2016-01-21 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / tree-data-ref.c
bloba40f40dc33965142746f176a3f0713b777daaa5d
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
47 information,
49 - to define an interface to access this data.
52 Definitions:
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
64 References:
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
71 by Utpal Banerjee.
76 #include "config.h"
77 #include "system.h"
78 #include "coretypes.h"
79 #include "backend.h"
80 #include "rtl.h"
81 #include "tree.h"
82 #include "gimple.h"
83 #include "gimple-pretty-print.h"
84 #include "alias.h"
85 #include "fold-const.h"
86 #include "expr.h"
87 #include "gimple-iterator.h"
88 #include "tree-ssa-loop-niter.h"
89 #include "tree-ssa-loop.h"
90 #include "tree-ssa.h"
91 #include "cfgloop.h"
92 #include "tree-data-ref.h"
93 #include "tree-scalar-evolution.h"
94 #include "dumpfile.h"
95 #include "tree-affine.h"
96 #include "params.h"
98 static struct datadep_stats
100 int num_dependence_tests;
101 int num_dependence_dependent;
102 int num_dependence_independent;
103 int num_dependence_undetermined;
105 int num_subscript_tests;
106 int num_subscript_undetermined;
107 int num_same_subscript_function;
109 int num_ziv;
110 int num_ziv_independent;
111 int num_ziv_dependent;
112 int num_ziv_unimplemented;
114 int num_siv;
115 int num_siv_independent;
116 int num_siv_dependent;
117 int num_siv_unimplemented;
119 int num_miv;
120 int num_miv_independent;
121 int num_miv_dependent;
122 int num_miv_unimplemented;
123 } dependence_stats;
125 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
126 struct data_reference *,
127 struct data_reference *,
128 struct loop *);
129 /* Returns true iff A divides B. */
131 static inline bool
132 tree_fold_divides_p (const_tree a, const_tree b)
134 gcc_assert (TREE_CODE (a) == INTEGER_CST);
135 gcc_assert (TREE_CODE (b) == INTEGER_CST);
136 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
139 /* Returns true iff A divides B. */
141 static inline bool
142 int_divides_p (int a, int b)
144 return ((b % a) == 0);
149 /* Dump into FILE all the data references from DATAREFS. */
151 static void
152 dump_data_references (FILE *file, vec<data_reference_p> datarefs)
154 unsigned int i;
155 struct data_reference *dr;
157 FOR_EACH_VEC_ELT (datarefs, i, dr)
158 dump_data_reference (file, dr);
161 /* Unified dump into FILE all the data references from DATAREFS. */
163 DEBUG_FUNCTION void
164 debug (vec<data_reference_p> &ref)
166 dump_data_references (stderr, ref);
169 DEBUG_FUNCTION void
170 debug (vec<data_reference_p> *ptr)
172 if (ptr)
173 debug (*ptr);
174 else
175 fprintf (stderr, "<nil>\n");
179 /* Dump into STDERR all the data references from DATAREFS. */
181 DEBUG_FUNCTION void
182 debug_data_references (vec<data_reference_p> datarefs)
184 dump_data_references (stderr, datarefs);
187 /* Print to STDERR the data_reference DR. */
189 DEBUG_FUNCTION void
190 debug_data_reference (struct data_reference *dr)
192 dump_data_reference (stderr, dr);
195 /* Dump function for a DATA_REFERENCE structure. */
197 void
198 dump_data_reference (FILE *outf,
199 struct data_reference *dr)
201 unsigned int i;
203 fprintf (outf, "#(Data Ref: \n");
204 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
205 fprintf (outf, "# stmt: ");
206 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
207 fprintf (outf, "# ref: ");
208 print_generic_stmt (outf, DR_REF (dr), 0);
209 fprintf (outf, "# base_object: ");
210 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
212 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
214 fprintf (outf, "# Access function %d: ", i);
215 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
217 fprintf (outf, "#)\n");
220 /* Unified dump function for a DATA_REFERENCE structure. */
222 DEBUG_FUNCTION void
223 debug (data_reference &ref)
225 dump_data_reference (stderr, &ref);
228 DEBUG_FUNCTION void
229 debug (data_reference *ptr)
231 if (ptr)
232 debug (*ptr);
233 else
234 fprintf (stderr, "<nil>\n");
238 /* Dumps the affine function described by FN to the file OUTF. */
240 DEBUG_FUNCTION void
241 dump_affine_function (FILE *outf, affine_fn fn)
243 unsigned i;
244 tree coef;
246 print_generic_expr (outf, fn[0], TDF_SLIM);
247 for (i = 1; fn.iterate (i, &coef); i++)
249 fprintf (outf, " + ");
250 print_generic_expr (outf, coef, TDF_SLIM);
251 fprintf (outf, " * x_%u", i);
255 /* Dumps the conflict function CF to the file OUTF. */
257 DEBUG_FUNCTION void
258 dump_conflict_function (FILE *outf, conflict_function *cf)
260 unsigned i;
262 if (cf->n == NO_DEPENDENCE)
263 fprintf (outf, "no dependence");
264 else if (cf->n == NOT_KNOWN)
265 fprintf (outf, "not known");
266 else
268 for (i = 0; i < cf->n; i++)
270 if (i != 0)
271 fprintf (outf, " ");
272 fprintf (outf, "[");
273 dump_affine_function (outf, cf->fns[i]);
274 fprintf (outf, "]");
279 /* Dump function for a SUBSCRIPT structure. */
281 DEBUG_FUNCTION void
282 dump_subscript (FILE *outf, struct subscript *subscript)
284 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
286 fprintf (outf, "\n (subscript \n");
287 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
288 dump_conflict_function (outf, cf);
289 if (CF_NONTRIVIAL_P (cf))
291 tree last_iteration = SUB_LAST_CONFLICT (subscript);
292 fprintf (outf, "\n last_conflict: ");
293 print_generic_expr (outf, last_iteration, 0);
296 cf = SUB_CONFLICTS_IN_B (subscript);
297 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
298 dump_conflict_function (outf, cf);
299 if (CF_NONTRIVIAL_P (cf))
301 tree last_iteration = SUB_LAST_CONFLICT (subscript);
302 fprintf (outf, "\n last_conflict: ");
303 print_generic_expr (outf, last_iteration, 0);
306 fprintf (outf, "\n (Subscript distance: ");
307 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
308 fprintf (outf, " ))\n");
311 /* Print the classic direction vector DIRV to OUTF. */
313 DEBUG_FUNCTION void
314 print_direction_vector (FILE *outf,
315 lambda_vector dirv,
316 int length)
318 int eq;
320 for (eq = 0; eq < length; eq++)
322 enum data_dependence_direction dir = ((enum data_dependence_direction)
323 dirv[eq]);
325 switch (dir)
327 case dir_positive:
328 fprintf (outf, " +");
329 break;
330 case dir_negative:
331 fprintf (outf, " -");
332 break;
333 case dir_equal:
334 fprintf (outf, " =");
335 break;
336 case dir_positive_or_equal:
337 fprintf (outf, " +=");
338 break;
339 case dir_positive_or_negative:
340 fprintf (outf, " +-");
341 break;
342 case dir_negative_or_equal:
343 fprintf (outf, " -=");
344 break;
345 case dir_star:
346 fprintf (outf, " *");
347 break;
348 default:
349 fprintf (outf, "indep");
350 break;
353 fprintf (outf, "\n");
356 /* Print a vector of direction vectors. */
358 DEBUG_FUNCTION void
359 print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
360 int length)
362 unsigned j;
363 lambda_vector v;
365 FOR_EACH_VEC_ELT (dir_vects, j, v)
366 print_direction_vector (outf, v, length);
369 /* Print out a vector VEC of length N to OUTFILE. */
371 DEBUG_FUNCTION void
372 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
374 int i;
376 for (i = 0; i < n; i++)
377 fprintf (outfile, "%3d ", vector[i]);
378 fprintf (outfile, "\n");
381 /* Print a vector of distance vectors. */
383 DEBUG_FUNCTION void
384 print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
385 int length)
387 unsigned j;
388 lambda_vector v;
390 FOR_EACH_VEC_ELT (dist_vects, j, v)
391 print_lambda_vector (outf, v, length);
394 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
396 DEBUG_FUNCTION void
397 dump_data_dependence_relation (FILE *outf,
398 struct data_dependence_relation *ddr)
400 struct data_reference *dra, *drb;
402 fprintf (outf, "(Data Dep: \n");
404 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
406 if (ddr)
408 dra = DDR_A (ddr);
409 drb = DDR_B (ddr);
410 if (dra)
411 dump_data_reference (outf, dra);
412 else
413 fprintf (outf, " (nil)\n");
414 if (drb)
415 dump_data_reference (outf, drb);
416 else
417 fprintf (outf, " (nil)\n");
419 fprintf (outf, " (don't know)\n)\n");
420 return;
423 dra = DDR_A (ddr);
424 drb = DDR_B (ddr);
425 dump_data_reference (outf, dra);
426 dump_data_reference (outf, drb);
428 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
429 fprintf (outf, " (no dependence)\n");
431 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
433 unsigned int i;
434 struct loop *loopi;
436 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
438 fprintf (outf, " access_fn_A: ");
439 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
440 fprintf (outf, " access_fn_B: ");
441 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
442 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
445 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
446 fprintf (outf, " loop nest: (");
447 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
448 fprintf (outf, "%d ", loopi->num);
449 fprintf (outf, ")\n");
451 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
453 fprintf (outf, " distance_vector: ");
454 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
455 DDR_NB_LOOPS (ddr));
458 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
460 fprintf (outf, " direction_vector: ");
461 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
462 DDR_NB_LOOPS (ddr));
466 fprintf (outf, ")\n");
469 /* Debug version. */
471 DEBUG_FUNCTION void
472 debug_data_dependence_relation (struct data_dependence_relation *ddr)
474 dump_data_dependence_relation (stderr, ddr);
477 /* Dump into FILE all the dependence relations from DDRS. */
479 DEBUG_FUNCTION void
480 dump_data_dependence_relations (FILE *file,
481 vec<ddr_p> ddrs)
483 unsigned int i;
484 struct data_dependence_relation *ddr;
486 FOR_EACH_VEC_ELT (ddrs, i, ddr)
487 dump_data_dependence_relation (file, ddr);
490 DEBUG_FUNCTION void
491 debug (vec<ddr_p> &ref)
493 dump_data_dependence_relations (stderr, ref);
496 DEBUG_FUNCTION void
497 debug (vec<ddr_p> *ptr)
499 if (ptr)
500 debug (*ptr);
501 else
502 fprintf (stderr, "<nil>\n");
506 /* Dump to STDERR all the dependence relations from DDRS. */
508 DEBUG_FUNCTION void
509 debug_data_dependence_relations (vec<ddr_p> ddrs)
511 dump_data_dependence_relations (stderr, ddrs);
514 /* Dumps the distance and direction vectors in FILE. DDRS contains
515 the dependence relations, and VECT_SIZE is the size of the
516 dependence vectors, or in other words the number of loops in the
517 considered nest. */
519 DEBUG_FUNCTION void
520 dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
522 unsigned int i, j;
523 struct data_dependence_relation *ddr;
524 lambda_vector v;
526 FOR_EACH_VEC_ELT (ddrs, i, ddr)
527 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
529 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
531 fprintf (file, "DISTANCE_V (");
532 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
533 fprintf (file, ")\n");
536 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
538 fprintf (file, "DIRECTION_V (");
539 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
540 fprintf (file, ")\n");
544 fprintf (file, "\n\n");
547 /* Dumps the data dependence relations DDRS in FILE. */
549 DEBUG_FUNCTION void
550 dump_ddrs (FILE *file, vec<ddr_p> ddrs)
552 unsigned int i;
553 struct data_dependence_relation *ddr;
555 FOR_EACH_VEC_ELT (ddrs, i, ddr)
556 dump_data_dependence_relation (file, ddr);
558 fprintf (file, "\n\n");
561 DEBUG_FUNCTION void
562 debug_ddrs (vec<ddr_p> ddrs)
564 dump_ddrs (stderr, ddrs);
567 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
568 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
569 constant of type ssizetype, and returns true. If we cannot do this
570 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
571 is returned. */
573 static bool
574 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
575 tree *var, tree *off)
577 tree var0, var1;
578 tree off0, off1;
579 enum tree_code ocode = code;
581 *var = NULL_TREE;
582 *off = NULL_TREE;
584 switch (code)
586 case INTEGER_CST:
587 *var = build_int_cst (type, 0);
588 *off = fold_convert (ssizetype, op0);
589 return true;
591 case POINTER_PLUS_EXPR:
592 ocode = PLUS_EXPR;
593 /* FALLTHROUGH */
594 case PLUS_EXPR:
595 case MINUS_EXPR:
596 split_constant_offset (op0, &var0, &off0);
597 split_constant_offset (op1, &var1, &off1);
598 *var = fold_build2 (code, type, var0, var1);
599 *off = size_binop (ocode, off0, off1);
600 return true;
602 case MULT_EXPR:
603 if (TREE_CODE (op1) != INTEGER_CST)
604 return false;
606 split_constant_offset (op0, &var0, &off0);
607 *var = fold_build2 (MULT_EXPR, type, var0, op1);
608 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
609 return true;
611 case ADDR_EXPR:
613 tree base, poffset;
614 HOST_WIDE_INT pbitsize, pbitpos;
615 machine_mode pmode;
616 int punsignedp, preversep, pvolatilep;
618 op0 = TREE_OPERAND (op0, 0);
619 base
620 = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
621 &punsignedp, &preversep, &pvolatilep, false);
623 if (pbitpos % BITS_PER_UNIT != 0)
624 return false;
625 base = build_fold_addr_expr (base);
626 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
628 if (poffset)
630 split_constant_offset (poffset, &poffset, &off1);
631 off0 = size_binop (PLUS_EXPR, off0, off1);
632 if (POINTER_TYPE_P (TREE_TYPE (base)))
633 base = fold_build_pointer_plus (base, poffset);
634 else
635 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
636 fold_convert (TREE_TYPE (base), poffset));
639 var0 = fold_convert (type, base);
641 /* If variable length types are involved, punt, otherwise casts
642 might be converted into ARRAY_REFs in gimplify_conversion.
643 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
644 possibly no longer appears in current GIMPLE, might resurface.
645 This perhaps could run
646 if (CONVERT_EXPR_P (var0))
648 gimplify_conversion (&var0);
649 // Attempt to fill in any within var0 found ARRAY_REF's
650 // element size from corresponding op embedded ARRAY_REF,
651 // if unsuccessful, just punt.
652 } */
653 while (POINTER_TYPE_P (type))
654 type = TREE_TYPE (type);
655 if (int_size_in_bytes (type) < 0)
656 return false;
658 *var = var0;
659 *off = off0;
660 return true;
663 case SSA_NAME:
665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
666 return false;
668 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
669 enum tree_code subcode;
671 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
672 return false;
674 var0 = gimple_assign_rhs1 (def_stmt);
675 subcode = gimple_assign_rhs_code (def_stmt);
676 var1 = gimple_assign_rhs2 (def_stmt);
678 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
680 CASE_CONVERT:
682 /* We must not introduce undefined overflow, and we must not change the value.
683 Hence we're okay if the inner type doesn't overflow to start with
684 (pointer or signed), the outer type also is an integer or pointer
685 and the outer precision is at least as large as the inner. */
686 tree itype = TREE_TYPE (op0);
687 if ((POINTER_TYPE_P (itype)
688 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
689 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
690 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
692 split_constant_offset (op0, &var0, off);
693 *var = fold_convert (type, var0);
694 return true;
696 return false;
699 default:
700 return false;
704 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
705 will be ssizetype. */
707 void
708 split_constant_offset (tree exp, tree *var, tree *off)
710 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
711 enum tree_code code;
713 *var = exp;
714 *off = ssize_int (0);
715 STRIP_NOPS (exp);
717 if (tree_is_chrec (exp)
718 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
719 return;
721 otype = TREE_TYPE (exp);
722 code = TREE_CODE (exp);
723 extract_ops_from_tree (exp, &code, &op0, &op1);
724 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
726 *var = fold_convert (type, e);
727 *off = o;
731 /* Returns the address ADDR of an object in a canonical shape (without nop
732 casts, and with type of pointer to the object). */
734 static tree
735 canonicalize_base_object_address (tree addr)
737 tree orig = addr;
739 STRIP_NOPS (addr);
741 /* The base address may be obtained by casting from integer, in that case
742 keep the cast. */
743 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
744 return orig;
746 if (TREE_CODE (addr) != ADDR_EXPR)
747 return addr;
749 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
752 /* Analyzes the behavior of the memory reference DR in the innermost loop or
753 basic block that contains it. Returns true if analysis succeed or false
754 otherwise. */
756 bool
757 dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
759 gimple *stmt = DR_STMT (dr);
760 struct loop *loop = loop_containing_stmt (stmt);
761 tree ref = DR_REF (dr);
762 HOST_WIDE_INT pbitsize, pbitpos;
763 tree base, poffset;
764 machine_mode pmode;
765 int punsignedp, preversep, pvolatilep;
766 affine_iv base_iv, offset_iv;
767 tree init, dinit, step;
768 bool in_loop = (loop && loop->num);
770 if (dump_file && (dump_flags & TDF_DETAILS))
771 fprintf (dump_file, "analyze_innermost: ");
773 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
774 &punsignedp, &preversep, &pvolatilep, false);
775 gcc_assert (base != NULL_TREE);
777 if (pbitpos % BITS_PER_UNIT != 0)
779 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "failed: bit offset alignment.\n");
781 return false;
784 if (preversep)
786 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "failed: reverse storage order.\n");
788 return false;
791 if (TREE_CODE (base) == MEM_REF)
793 if (!integer_zerop (TREE_OPERAND (base, 1)))
795 offset_int moff = mem_ref_offset (base);
796 tree mofft = wide_int_to_tree (sizetype, moff);
797 if (!poffset)
798 poffset = mofft;
799 else
800 poffset = size_binop (PLUS_EXPR, poffset, mofft);
802 base = TREE_OPERAND (base, 0);
804 else
805 base = build_fold_addr_expr (base);
807 if (in_loop)
809 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
810 nest ? true : false))
812 if (nest)
814 if (dump_file && (dump_flags & TDF_DETAILS))
815 fprintf (dump_file, "failed: evolution of base is not"
816 " affine.\n");
817 return false;
819 else
821 base_iv.base = base;
822 base_iv.step = ssize_int (0);
823 base_iv.no_overflow = true;
827 else
829 base_iv.base = base;
830 base_iv.step = ssize_int (0);
831 base_iv.no_overflow = true;
834 if (!poffset)
836 offset_iv.base = ssize_int (0);
837 offset_iv.step = ssize_int (0);
839 else
841 if (!in_loop)
843 offset_iv.base = poffset;
844 offset_iv.step = ssize_int (0);
846 else if (!simple_iv (loop, loop_containing_stmt (stmt),
847 poffset, &offset_iv,
848 nest ? true : false))
850 if (nest)
852 if (dump_file && (dump_flags & TDF_DETAILS))
853 fprintf (dump_file, "failed: evolution of offset is not"
854 " affine.\n");
855 return false;
857 else
859 offset_iv.base = poffset;
860 offset_iv.step = ssize_int (0);
865 init = ssize_int (pbitpos / BITS_PER_UNIT);
866 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
867 init = size_binop (PLUS_EXPR, init, dinit);
868 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
869 init = size_binop (PLUS_EXPR, init, dinit);
871 step = size_binop (PLUS_EXPR,
872 fold_convert (ssizetype, base_iv.step),
873 fold_convert (ssizetype, offset_iv.step));
875 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
877 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
878 DR_INIT (dr) = init;
879 DR_STEP (dr) = step;
881 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, "success.\n");
886 return true;
889 /* Determines the base object and the list of indices of memory reference
890 DR, analyzed in LOOP and instantiated in loop nest NEST. */
892 static void
893 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
895 vec<tree> access_fns = vNULL;
896 tree ref, op;
897 tree base, off, access_fn;
898 basic_block before_loop;
900 /* If analyzing a basic-block there are no indices to analyze
901 and thus no access functions. */
902 if (!nest)
904 DR_BASE_OBJECT (dr) = DR_REF (dr);
905 DR_ACCESS_FNS (dr).create (0);
906 return;
909 ref = DR_REF (dr);
910 before_loop = block_before_loop (nest);
912 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
913 into a two element array with a constant index. The base is
914 then just the immediate underlying object. */
915 if (TREE_CODE (ref) == REALPART_EXPR)
917 ref = TREE_OPERAND (ref, 0);
918 access_fns.safe_push (integer_zero_node);
920 else if (TREE_CODE (ref) == IMAGPART_EXPR)
922 ref = TREE_OPERAND (ref, 0);
923 access_fns.safe_push (integer_one_node);
926 /* Analyze access functions of dimensions we know to be independent. */
927 while (handled_component_p (ref))
929 if (TREE_CODE (ref) == ARRAY_REF)
931 op = TREE_OPERAND (ref, 1);
932 access_fn = analyze_scalar_evolution (loop, op);
933 access_fn = instantiate_scev (before_loop, loop, access_fn);
934 access_fns.safe_push (access_fn);
936 else if (TREE_CODE (ref) == COMPONENT_REF
937 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
939 /* For COMPONENT_REFs of records (but not unions!) use the
940 FIELD_DECL offset as constant access function so we can
941 disambiguate a[i].f1 and a[i].f2. */
942 tree off = component_ref_field_offset (ref);
943 off = size_binop (PLUS_EXPR,
944 size_binop (MULT_EXPR,
945 fold_convert (bitsizetype, off),
946 bitsize_int (BITS_PER_UNIT)),
947 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
948 access_fns.safe_push (off);
950 else
951 /* If we have an unhandled component we could not translate
952 to an access function stop analyzing. We have determined
953 our base object in this case. */
954 break;
956 ref = TREE_OPERAND (ref, 0);
959 /* If the address operand of a MEM_REF base has an evolution in the
960 analyzed nest, add it as an additional independent access-function. */
961 if (TREE_CODE (ref) == MEM_REF)
963 op = TREE_OPERAND (ref, 0);
964 access_fn = analyze_scalar_evolution (loop, op);
965 access_fn = instantiate_scev (before_loop, loop, access_fn);
966 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
968 tree orig_type;
969 tree memoff = TREE_OPERAND (ref, 1);
970 base = initial_condition (access_fn);
971 orig_type = TREE_TYPE (base);
972 STRIP_USELESS_TYPE_CONVERSION (base);
973 split_constant_offset (base, &base, &off);
974 STRIP_USELESS_TYPE_CONVERSION (base);
975 /* Fold the MEM_REF offset into the evolutions initial
976 value to make more bases comparable. */
977 if (!integer_zerop (memoff))
979 off = size_binop (PLUS_EXPR, off,
980 fold_convert (ssizetype, memoff));
981 memoff = build_int_cst (TREE_TYPE (memoff), 0);
983 /* Adjust the offset so it is a multiple of the access type
984 size and thus we separate bases that can possibly be used
985 to produce partial overlaps (which the access_fn machinery
986 cannot handle). */
987 wide_int rem;
988 if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
989 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
990 && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
991 rem = wi::mod_trunc (off, TYPE_SIZE_UNIT (TREE_TYPE (ref)), SIGNED);
992 else
993 /* If we can't compute the remainder simply force the initial
994 condition to zero. */
995 rem = off;
996 off = wide_int_to_tree (ssizetype, wi::sub (off, rem));
997 memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
998 /* And finally replace the initial condition. */
999 access_fn = chrec_replace_initial_condition
1000 (access_fn, fold_convert (orig_type, off));
1001 /* ??? This is still not a suitable base object for
1002 dr_may_alias_p - the base object needs to be an
1003 access that covers the object as whole. With
1004 an evolution in the pointer this cannot be
1005 guaranteed.
1006 As a band-aid, mark the access so we can special-case
1007 it in dr_may_alias_p. */
1008 tree old = ref;
1009 ref = fold_build2_loc (EXPR_LOCATION (ref),
1010 MEM_REF, TREE_TYPE (ref),
1011 base, memoff);
1012 MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
1013 MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
1014 DR_UNCONSTRAINED_BASE (dr) = true;
1015 access_fns.safe_push (access_fn);
1018 else if (DECL_P (ref))
1020 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1021 ref = build2 (MEM_REF, TREE_TYPE (ref),
1022 build_fold_addr_expr (ref),
1023 build_int_cst (reference_alias_ptr_type (ref), 0));
1026 DR_BASE_OBJECT (dr) = ref;
1027 DR_ACCESS_FNS (dr) = access_fns;
1030 /* Extracts the alias analysis information from the memory reference DR. */
1032 static void
1033 dr_analyze_alias (struct data_reference *dr)
1035 tree ref = DR_REF (dr);
1036 tree base = get_base_address (ref), addr;
1038 if (INDIRECT_REF_P (base)
1039 || TREE_CODE (base) == MEM_REF)
1041 addr = TREE_OPERAND (base, 0);
1042 if (TREE_CODE (addr) == SSA_NAME)
1043 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1047 /* Frees data reference DR. */
1049 void
1050 free_data_ref (data_reference_p dr)
1052 DR_ACCESS_FNS (dr).release ();
1053 free (dr);
1056 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1057 is read if IS_READ is true, write otherwise. Returns the
1058 data_reference description of MEMREF. NEST is the outermost loop
1059 in which the reference should be instantiated, LOOP is the loop in
1060 which the data reference should be analyzed. */
1062 struct data_reference *
1063 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple *stmt,
1064 bool is_read)
1066 struct data_reference *dr;
1068 if (dump_file && (dump_flags & TDF_DETAILS))
1070 fprintf (dump_file, "Creating dr for ");
1071 print_generic_expr (dump_file, memref, TDF_SLIM);
1072 fprintf (dump_file, "\n");
1075 dr = XCNEW (struct data_reference);
1076 DR_STMT (dr) = stmt;
1077 DR_REF (dr) = memref;
1078 DR_IS_READ (dr) = is_read;
1080 dr_analyze_innermost (dr, nest);
1081 dr_analyze_indices (dr, nest, loop);
1082 dr_analyze_alias (dr);
1084 if (dump_file && (dump_flags & TDF_DETAILS))
1086 unsigned i;
1087 fprintf (dump_file, "\tbase_address: ");
1088 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1089 fprintf (dump_file, "\n\toffset from base address: ");
1090 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1091 fprintf (dump_file, "\n\tconstant offset from base address: ");
1092 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
1093 fprintf (dump_file, "\n\tstep: ");
1094 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1095 fprintf (dump_file, "\n\taligned to: ");
1096 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1097 fprintf (dump_file, "\n\tbase_object: ");
1098 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1099 fprintf (dump_file, "\n");
1100 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1102 fprintf (dump_file, "\tAccess function %d: ", i);
1103 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1107 return dr;
1110 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1111 expressions. */
1112 static bool
1113 dr_equal_offsets_p1 (tree offset1, tree offset2)
1115 bool res;
1117 STRIP_NOPS (offset1);
1118 STRIP_NOPS (offset2);
1120 if (offset1 == offset2)
1121 return true;
1123 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1124 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1125 return false;
1127 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1128 TREE_OPERAND (offset2, 0));
1130 if (!res || !BINARY_CLASS_P (offset1))
1131 return res;
1133 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1134 TREE_OPERAND (offset2, 1));
1136 return res;
1139 /* Check if DRA and DRB have equal offsets. */
1140 bool
1141 dr_equal_offsets_p (struct data_reference *dra,
1142 struct data_reference *drb)
1144 tree offset1, offset2;
1146 offset1 = DR_OFFSET (dra);
1147 offset2 = DR_OFFSET (drb);
1149 return dr_equal_offsets_p1 (offset1, offset2);
1152 /* Returns true if FNA == FNB. */
1154 static bool
1155 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1157 unsigned i, n = fna.length ();
1159 if (n != fnb.length ())
1160 return false;
1162 for (i = 0; i < n; i++)
1163 if (!operand_equal_p (fna[i], fnb[i], 0))
1164 return false;
1166 return true;
1169 /* If all the functions in CF are the same, returns one of them,
1170 otherwise returns NULL. */
1172 static affine_fn
1173 common_affine_function (conflict_function *cf)
1175 unsigned i;
1176 affine_fn comm;
1178 if (!CF_NONTRIVIAL_P (cf))
1179 return affine_fn ();
1181 comm = cf->fns[0];
1183 for (i = 1; i < cf->n; i++)
1184 if (!affine_function_equal_p (comm, cf->fns[i]))
1185 return affine_fn ();
1187 return comm;
1190 /* Returns the base of the affine function FN. */
1192 static tree
1193 affine_function_base (affine_fn fn)
1195 return fn[0];
1198 /* Returns true if FN is a constant. */
1200 static bool
1201 affine_function_constant_p (affine_fn fn)
1203 unsigned i;
1204 tree coef;
1206 for (i = 1; fn.iterate (i, &coef); i++)
1207 if (!integer_zerop (coef))
1208 return false;
1210 return true;
1213 /* Returns true if FN is the zero constant function. */
1215 static bool
1216 affine_function_zero_p (affine_fn fn)
1218 return (integer_zerop (affine_function_base (fn))
1219 && affine_function_constant_p (fn));
1222 /* Returns a signed integer type with the largest precision from TA
1223 and TB. */
1225 static tree
1226 signed_type_for_types (tree ta, tree tb)
1228 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1229 return signed_type_for (ta);
1230 else
1231 return signed_type_for (tb);
1234 /* Applies operation OP on affine functions FNA and FNB, and returns the
1235 result. */
1237 static affine_fn
1238 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1240 unsigned i, n, m;
1241 affine_fn ret;
1242 tree coef;
1244 if (fnb.length () > fna.length ())
1246 n = fna.length ();
1247 m = fnb.length ();
1249 else
1251 n = fnb.length ();
1252 m = fna.length ();
1255 ret.create (m);
1256 for (i = 0; i < n; i++)
1258 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1259 TREE_TYPE (fnb[i]));
1260 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
1263 for (; fna.iterate (i, &coef); i++)
1264 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1265 coef, integer_zero_node));
1266 for (; fnb.iterate (i, &coef); i++)
1267 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1268 integer_zero_node, coef));
1270 return ret;
1273 /* Returns the sum of affine functions FNA and FNB. */
1275 static affine_fn
1276 affine_fn_plus (affine_fn fna, affine_fn fnb)
1278 return affine_fn_op (PLUS_EXPR, fna, fnb);
1281 /* Returns the difference of affine functions FNA and FNB. */
1283 static affine_fn
1284 affine_fn_minus (affine_fn fna, affine_fn fnb)
1286 return affine_fn_op (MINUS_EXPR, fna, fnb);
1289 /* Frees affine function FN. */
1291 static void
1292 affine_fn_free (affine_fn fn)
1294 fn.release ();
1297 /* Determine for each subscript in the data dependence relation DDR
1298 the distance. */
1300 static void
1301 compute_subscript_distance (struct data_dependence_relation *ddr)
1303 conflict_function *cf_a, *cf_b;
1304 affine_fn fn_a, fn_b, diff;
1306 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1308 unsigned int i;
1310 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1312 struct subscript *subscript;
1314 subscript = DDR_SUBSCRIPT (ddr, i);
1315 cf_a = SUB_CONFLICTS_IN_A (subscript);
1316 cf_b = SUB_CONFLICTS_IN_B (subscript);
1318 fn_a = common_affine_function (cf_a);
1319 fn_b = common_affine_function (cf_b);
1320 if (!fn_a.exists () || !fn_b.exists ())
1322 SUB_DISTANCE (subscript) = chrec_dont_know;
1323 return;
1325 diff = affine_fn_minus (fn_a, fn_b);
1327 if (affine_function_constant_p (diff))
1328 SUB_DISTANCE (subscript) = affine_function_base (diff);
1329 else
1330 SUB_DISTANCE (subscript) = chrec_dont_know;
1332 affine_fn_free (diff);
1337 /* Returns the conflict function for "unknown". */
1339 static conflict_function *
1340 conflict_fn_not_known (void)
1342 conflict_function *fn = XCNEW (conflict_function);
1343 fn->n = NOT_KNOWN;
1345 return fn;
1348 /* Returns the conflict function for "independent". */
1350 static conflict_function *
1351 conflict_fn_no_dependence (void)
1353 conflict_function *fn = XCNEW (conflict_function);
1354 fn->n = NO_DEPENDENCE;
1356 return fn;
1359 /* Returns true if the address of OBJ is invariant in LOOP. */
1361 static bool
1362 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1364 while (handled_component_p (obj))
1366 if (TREE_CODE (obj) == ARRAY_REF)
1368 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1369 need to check the stride and the lower bound of the reference. */
1370 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1371 loop->num)
1372 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1373 loop->num))
1374 return false;
1376 else if (TREE_CODE (obj) == COMPONENT_REF)
1378 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1379 loop->num))
1380 return false;
1382 obj = TREE_OPERAND (obj, 0);
1385 if (!INDIRECT_REF_P (obj)
1386 && TREE_CODE (obj) != MEM_REF)
1387 return true;
1389 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1390 loop->num);
1393 /* Returns false if we can prove that data references A and B do not alias,
1394 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1395 considered. */
1397 bool
1398 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1399 bool loop_nest)
1401 tree addr_a = DR_BASE_OBJECT (a);
1402 tree addr_b = DR_BASE_OBJECT (b);
1404 /* If we are not processing a loop nest but scalar code we
1405 do not need to care about possible cross-iteration dependences
1406 and thus can process the full original reference. Do so,
1407 similar to how loop invariant motion applies extra offset-based
1408 disambiguation. */
1409 if (!loop_nest)
1411 aff_tree off1, off2;
1412 widest_int size1, size2;
1413 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1414 get_inner_reference_aff (DR_REF (b), &off2, &size2);
1415 aff_combination_scale (&off1, -1);
1416 aff_combination_add (&off2, &off1);
1417 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1418 return false;
1421 if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
1422 && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
1423 && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
1424 && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
1425 return false;
1427 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1428 do not know the size of the base-object. So we cannot do any
1429 offset/overlap based analysis but have to rely on points-to
1430 information only. */
1431 if (TREE_CODE (addr_a) == MEM_REF
1432 && (DR_UNCONSTRAINED_BASE (a)
1433 || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
1435 /* For true dependences we can apply TBAA. */
1436 if (flag_strict_aliasing
1437 && DR_IS_WRITE (a) && DR_IS_READ (b)
1438 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1439 get_alias_set (DR_REF (b))))
1440 return false;
1441 if (TREE_CODE (addr_b) == MEM_REF)
1442 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1443 TREE_OPERAND (addr_b, 0));
1444 else
1445 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1446 build_fold_addr_expr (addr_b));
1448 else if (TREE_CODE (addr_b) == MEM_REF
1449 && (DR_UNCONSTRAINED_BASE (b)
1450 || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
1452 /* For true dependences we can apply TBAA. */
1453 if (flag_strict_aliasing
1454 && DR_IS_WRITE (a) && DR_IS_READ (b)
1455 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1456 get_alias_set (DR_REF (b))))
1457 return false;
1458 if (TREE_CODE (addr_a) == MEM_REF)
1459 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1460 TREE_OPERAND (addr_b, 0));
1461 else
1462 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1463 TREE_OPERAND (addr_b, 0));
1466 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1467 that is being subsetted in the loop nest. */
1468 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1469 return refs_output_dependent_p (addr_a, addr_b);
1470 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1471 return refs_anti_dependent_p (addr_a, addr_b);
1472 return refs_may_alias_p (addr_a, addr_b);
1475 /* Initialize a data dependence relation between data accesses A and
1476 B. NB_LOOPS is the number of loops surrounding the references: the
1477 size of the classic distance/direction vectors. */
1479 struct data_dependence_relation *
1480 initialize_data_dependence_relation (struct data_reference *a,
1481 struct data_reference *b,
1482 vec<loop_p> loop_nest)
1484 struct data_dependence_relation *res;
1485 unsigned int i;
1487 res = XNEW (struct data_dependence_relation);
1488 DDR_A (res) = a;
1489 DDR_B (res) = b;
1490 DDR_LOOP_NEST (res).create (0);
1491 DDR_REVERSED_P (res) = false;
1492 DDR_SUBSCRIPTS (res).create (0);
1493 DDR_DIR_VECTS (res).create (0);
1494 DDR_DIST_VECTS (res).create (0);
1496 if (a == NULL || b == NULL)
1498 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1499 return res;
1502 /* If the data references do not alias, then they are independent. */
1503 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
1505 DDR_ARE_DEPENDENT (res) = chrec_known;
1506 return res;
1509 /* The case where the references are exactly the same. */
1510 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1512 if (loop_nest.exists ()
1513 && !object_address_invariant_in_loop_p (loop_nest[0],
1514 DR_BASE_OBJECT (a)))
1516 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1517 return res;
1519 DDR_AFFINE_P (res) = true;
1520 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1521 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1522 DDR_LOOP_NEST (res) = loop_nest;
1523 DDR_INNER_LOOP (res) = 0;
1524 DDR_SELF_REFERENCE (res) = true;
1525 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1527 struct subscript *subscript;
1529 subscript = XNEW (struct subscript);
1530 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1531 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1532 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1533 SUB_DISTANCE (subscript) = chrec_dont_know;
1534 DDR_SUBSCRIPTS (res).safe_push (subscript);
1536 return res;
1539 /* If the references do not access the same object, we do not know
1540 whether they alias or not. */
1541 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
1543 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1544 return res;
1547 /* If the base of the object is not invariant in the loop nest, we cannot
1548 analyze it. TODO -- in fact, it would suffice to record that there may
1549 be arbitrary dependences in the loops where the base object varies. */
1550 if (loop_nest.exists ()
1551 && !object_address_invariant_in_loop_p (loop_nest[0],
1552 DR_BASE_OBJECT (a)))
1554 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1555 return res;
1558 /* If the number of dimensions of the access to not agree we can have
1559 a pointer access to a component of the array element type and an
1560 array access while the base-objects are still the same. Punt. */
1561 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1563 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1564 return res;
1567 DDR_AFFINE_P (res) = true;
1568 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1569 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1570 DDR_LOOP_NEST (res) = loop_nest;
1571 DDR_INNER_LOOP (res) = 0;
1572 DDR_SELF_REFERENCE (res) = false;
1574 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1576 struct subscript *subscript;
1578 subscript = XNEW (struct subscript);
1579 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1580 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1581 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1582 SUB_DISTANCE (subscript) = chrec_dont_know;
1583 DDR_SUBSCRIPTS (res).safe_push (subscript);
1586 return res;
1589 /* Frees memory used by the conflict function F. */
1591 static void
1592 free_conflict_function (conflict_function *f)
1594 unsigned i;
1596 if (CF_NONTRIVIAL_P (f))
1598 for (i = 0; i < f->n; i++)
1599 affine_fn_free (f->fns[i]);
1601 free (f);
1604 /* Frees memory used by SUBSCRIPTS. */
1606 static void
1607 free_subscripts (vec<subscript_p> subscripts)
1609 unsigned i;
1610 subscript_p s;
1612 FOR_EACH_VEC_ELT (subscripts, i, s)
1614 free_conflict_function (s->conflicting_iterations_in_a);
1615 free_conflict_function (s->conflicting_iterations_in_b);
1616 free (s);
1618 subscripts.release ();
1621 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1622 description. */
1624 static inline void
1625 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1626 tree chrec)
1628 DDR_ARE_DEPENDENT (ddr) = chrec;
1629 free_subscripts (DDR_SUBSCRIPTS (ddr));
1630 DDR_SUBSCRIPTS (ddr).create (0);
1633 /* The dependence relation DDR cannot be represented by a distance
1634 vector. */
1636 static inline void
1637 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1639 if (dump_file && (dump_flags & TDF_DETAILS))
1640 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1642 DDR_AFFINE_P (ddr) = false;
1647 /* This section contains the classic Banerjee tests. */
1649 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1650 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1652 static inline bool
1653 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1655 return (evolution_function_is_constant_p (chrec_a)
1656 && evolution_function_is_constant_p (chrec_b));
1659 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1660 variable, i.e., if the SIV (Single Index Variable) test is true. */
1662 static bool
1663 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1665 if ((evolution_function_is_constant_p (chrec_a)
1666 && evolution_function_is_univariate_p (chrec_b))
1667 || (evolution_function_is_constant_p (chrec_b)
1668 && evolution_function_is_univariate_p (chrec_a)))
1669 return true;
1671 if (evolution_function_is_univariate_p (chrec_a)
1672 && evolution_function_is_univariate_p (chrec_b))
1674 switch (TREE_CODE (chrec_a))
1676 case POLYNOMIAL_CHREC:
1677 switch (TREE_CODE (chrec_b))
1679 case POLYNOMIAL_CHREC:
1680 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1681 return false;
1683 default:
1684 return true;
1687 default:
1688 return true;
1692 return false;
1695 /* Creates a conflict function with N dimensions. The affine functions
1696 in each dimension follow. */
1698 static conflict_function *
1699 conflict_fn (unsigned n, ...)
1701 unsigned i;
1702 conflict_function *ret = XCNEW (conflict_function);
1703 va_list ap;
1705 gcc_assert (0 < n && n <= MAX_DIM);
1706 va_start (ap, n);
1708 ret->n = n;
1709 for (i = 0; i < n; i++)
1710 ret->fns[i] = va_arg (ap, affine_fn);
1711 va_end (ap);
1713 return ret;
1716 /* Returns constant affine function with value CST. */
1718 static affine_fn
1719 affine_fn_cst (tree cst)
1721 affine_fn fn;
1722 fn.create (1);
1723 fn.quick_push (cst);
1724 return fn;
1727 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1729 static affine_fn
1730 affine_fn_univar (tree cst, unsigned dim, tree coef)
1732 affine_fn fn;
1733 fn.create (dim + 1);
1734 unsigned i;
1736 gcc_assert (dim > 0);
1737 fn.quick_push (cst);
1738 for (i = 1; i < dim; i++)
1739 fn.quick_push (integer_zero_node);
1740 fn.quick_push (coef);
1741 return fn;
1744 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1745 *OVERLAPS_B are initialized to the functions that describe the
1746 relation between the elements accessed twice by CHREC_A and
1747 CHREC_B. For k >= 0, the following property is verified:
1749 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1751 static void
1752 analyze_ziv_subscript (tree chrec_a,
1753 tree chrec_b,
1754 conflict_function **overlaps_a,
1755 conflict_function **overlaps_b,
1756 tree *last_conflicts)
1758 tree type, difference;
1759 dependence_stats.num_ziv++;
1761 if (dump_file && (dump_flags & TDF_DETAILS))
1762 fprintf (dump_file, "(analyze_ziv_subscript \n");
1764 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1765 chrec_a = chrec_convert (type, chrec_a, NULL);
1766 chrec_b = chrec_convert (type, chrec_b, NULL);
1767 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1769 switch (TREE_CODE (difference))
1771 case INTEGER_CST:
1772 if (integer_zerop (difference))
1774 /* The difference is equal to zero: the accessed index
1775 overlaps for each iteration in the loop. */
1776 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1777 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1778 *last_conflicts = chrec_dont_know;
1779 dependence_stats.num_ziv_dependent++;
1781 else
1783 /* The accesses do not overlap. */
1784 *overlaps_a = conflict_fn_no_dependence ();
1785 *overlaps_b = conflict_fn_no_dependence ();
1786 *last_conflicts = integer_zero_node;
1787 dependence_stats.num_ziv_independent++;
1789 break;
1791 default:
1792 /* We're not sure whether the indexes overlap. For the moment,
1793 conservatively answer "don't know". */
1794 if (dump_file && (dump_flags & TDF_DETAILS))
1795 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1797 *overlaps_a = conflict_fn_not_known ();
1798 *overlaps_b = conflict_fn_not_known ();
1799 *last_conflicts = chrec_dont_know;
1800 dependence_stats.num_ziv_unimplemented++;
1801 break;
1804 if (dump_file && (dump_flags & TDF_DETAILS))
1805 fprintf (dump_file, ")\n");
1808 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1809 and only if it fits to the int type. If this is not the case, or the
1810 bound on the number of iterations of LOOP could not be derived, returns
1811 chrec_dont_know. */
1813 static tree
1814 max_stmt_executions_tree (struct loop *loop)
1816 widest_int nit;
1818 if (!max_stmt_executions (loop, &nit))
1819 return chrec_dont_know;
1821 if (!wi::fits_to_tree_p (nit, unsigned_type_node))
1822 return chrec_dont_know;
1824 return wide_int_to_tree (unsigned_type_node, nit);
1827 /* Determine whether the CHREC is always positive/negative. If the expression
1828 cannot be statically analyzed, return false, otherwise set the answer into
1829 VALUE. */
1831 static bool
1832 chrec_is_positive (tree chrec, bool *value)
1834 bool value0, value1, value2;
1835 tree end_value, nb_iter;
1837 switch (TREE_CODE (chrec))
1839 case POLYNOMIAL_CHREC:
1840 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1841 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1842 return false;
1844 /* FIXME -- overflows. */
1845 if (value0 == value1)
1847 *value = value0;
1848 return true;
1851 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1852 and the proof consists in showing that the sign never
1853 changes during the execution of the loop, from 0 to
1854 loop->nb_iterations. */
1855 if (!evolution_function_is_affine_p (chrec))
1856 return false;
1858 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1859 if (chrec_contains_undetermined (nb_iter))
1860 return false;
1862 #if 0
1863 /* TODO -- If the test is after the exit, we may decrease the number of
1864 iterations by one. */
1865 if (after_exit)
1866 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1867 #endif
1869 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1871 if (!chrec_is_positive (end_value, &value2))
1872 return false;
1874 *value = value0;
1875 return value0 == value1;
1877 case INTEGER_CST:
1878 switch (tree_int_cst_sgn (chrec))
1880 case -1:
1881 *value = false;
1882 break;
1883 case 1:
1884 *value = true;
1885 break;
1886 default:
1887 return false;
1889 return true;
1891 default:
1892 return false;
1897 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1898 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1899 *OVERLAPS_B are initialized to the functions that describe the
1900 relation between the elements accessed twice by CHREC_A and
1901 CHREC_B. For k >= 0, the following property is verified:
1903 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1905 static void
1906 analyze_siv_subscript_cst_affine (tree chrec_a,
1907 tree chrec_b,
1908 conflict_function **overlaps_a,
1909 conflict_function **overlaps_b,
1910 tree *last_conflicts)
1912 bool value0, value1, value2;
1913 tree type, difference, tmp;
1915 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1916 chrec_a = chrec_convert (type, chrec_a, NULL);
1917 chrec_b = chrec_convert (type, chrec_b, NULL);
1918 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1920 /* Special case overlap in the first iteration. */
1921 if (integer_zerop (difference))
1923 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1924 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1925 *last_conflicts = integer_one_node;
1926 return;
1929 if (!chrec_is_positive (initial_condition (difference), &value0))
1931 if (dump_file && (dump_flags & TDF_DETAILS))
1932 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1934 dependence_stats.num_siv_unimplemented++;
1935 *overlaps_a = conflict_fn_not_known ();
1936 *overlaps_b = conflict_fn_not_known ();
1937 *last_conflicts = chrec_dont_know;
1938 return;
1940 else
1942 if (value0 == false)
1944 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1946 if (dump_file && (dump_flags & TDF_DETAILS))
1947 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1949 *overlaps_a = conflict_fn_not_known ();
1950 *overlaps_b = conflict_fn_not_known ();
1951 *last_conflicts = chrec_dont_know;
1952 dependence_stats.num_siv_unimplemented++;
1953 return;
1955 else
1957 if (value1 == true)
1959 /* Example:
1960 chrec_a = 12
1961 chrec_b = {10, +, 1}
1964 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1966 HOST_WIDE_INT numiter;
1967 struct loop *loop = get_chrec_loop (chrec_b);
1969 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1970 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1971 fold_build1 (ABS_EXPR, type, difference),
1972 CHREC_RIGHT (chrec_b));
1973 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1974 *last_conflicts = integer_one_node;
1977 /* Perform weak-zero siv test to see if overlap is
1978 outside the loop bounds. */
1979 numiter = max_stmt_executions_int (loop);
1981 if (numiter >= 0
1982 && compare_tree_int (tmp, numiter) > 0)
1984 free_conflict_function (*overlaps_a);
1985 free_conflict_function (*overlaps_b);
1986 *overlaps_a = conflict_fn_no_dependence ();
1987 *overlaps_b = conflict_fn_no_dependence ();
1988 *last_conflicts = integer_zero_node;
1989 dependence_stats.num_siv_independent++;
1990 return;
1992 dependence_stats.num_siv_dependent++;
1993 return;
1996 /* When the step does not divide the difference, there are
1997 no overlaps. */
1998 else
2000 *overlaps_a = conflict_fn_no_dependence ();
2001 *overlaps_b = conflict_fn_no_dependence ();
2002 *last_conflicts = integer_zero_node;
2003 dependence_stats.num_siv_independent++;
2004 return;
2008 else
2010 /* Example:
2011 chrec_a = 12
2012 chrec_b = {10, +, -1}
2014 In this case, chrec_a will not overlap with chrec_b. */
2015 *overlaps_a = conflict_fn_no_dependence ();
2016 *overlaps_b = conflict_fn_no_dependence ();
2017 *last_conflicts = integer_zero_node;
2018 dependence_stats.num_siv_independent++;
2019 return;
2023 else
2025 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
2027 if (dump_file && (dump_flags & TDF_DETAILS))
2028 fprintf (dump_file, "siv test failed: chrec not positive.\n");
2030 *overlaps_a = conflict_fn_not_known ();
2031 *overlaps_b = conflict_fn_not_known ();
2032 *last_conflicts = chrec_dont_know;
2033 dependence_stats.num_siv_unimplemented++;
2034 return;
2036 else
2038 if (value2 == false)
2040 /* Example:
2041 chrec_a = 3
2042 chrec_b = {10, +, -1}
2044 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
2046 HOST_WIDE_INT numiter;
2047 struct loop *loop = get_chrec_loop (chrec_b);
2049 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2050 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
2051 CHREC_RIGHT (chrec_b));
2052 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
2053 *last_conflicts = integer_one_node;
2055 /* Perform weak-zero siv test to see if overlap is
2056 outside the loop bounds. */
2057 numiter = max_stmt_executions_int (loop);
2059 if (numiter >= 0
2060 && compare_tree_int (tmp, numiter) > 0)
2062 free_conflict_function (*overlaps_a);
2063 free_conflict_function (*overlaps_b);
2064 *overlaps_a = conflict_fn_no_dependence ();
2065 *overlaps_b = conflict_fn_no_dependence ();
2066 *last_conflicts = integer_zero_node;
2067 dependence_stats.num_siv_independent++;
2068 return;
2070 dependence_stats.num_siv_dependent++;
2071 return;
2074 /* When the step does not divide the difference, there
2075 are no overlaps. */
2076 else
2078 *overlaps_a = conflict_fn_no_dependence ();
2079 *overlaps_b = conflict_fn_no_dependence ();
2080 *last_conflicts = integer_zero_node;
2081 dependence_stats.num_siv_independent++;
2082 return;
2085 else
2087 /* Example:
2088 chrec_a = 3
2089 chrec_b = {4, +, 1}
2091 In this case, chrec_a will not overlap with chrec_b. */
2092 *overlaps_a = conflict_fn_no_dependence ();
2093 *overlaps_b = conflict_fn_no_dependence ();
2094 *last_conflicts = integer_zero_node;
2095 dependence_stats.num_siv_independent++;
2096 return;
2103 /* Helper recursive function for initializing the matrix A. Returns
2104 the initial value of CHREC. */
2106 static tree
2107 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2109 gcc_assert (chrec);
2111 switch (TREE_CODE (chrec))
2113 case POLYNOMIAL_CHREC:
2114 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2116 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2117 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2119 case PLUS_EXPR:
2120 case MULT_EXPR:
2121 case MINUS_EXPR:
2123 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2124 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2126 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2129 CASE_CONVERT:
2131 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2132 return chrec_convert (chrec_type (chrec), op, NULL);
2135 case BIT_NOT_EXPR:
2137 /* Handle ~X as -1 - X. */
2138 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2139 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2140 build_int_cst (TREE_TYPE (chrec), -1), op);
2143 case INTEGER_CST:
2144 return chrec;
2146 default:
2147 gcc_unreachable ();
2148 return NULL_TREE;
2152 #define FLOOR_DIV(x,y) ((x) / (y))
2154 /* Solves the special case of the Diophantine equation:
2155 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2157 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2158 number of iterations that loops X and Y run. The overlaps will be
2159 constructed as evolutions in dimension DIM. */
2161 static void
2162 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
2163 affine_fn *overlaps_a,
2164 affine_fn *overlaps_b,
2165 tree *last_conflicts, int dim)
2167 if (((step_a > 0 && step_b > 0)
2168 || (step_a < 0 && step_b < 0)))
2170 int step_overlaps_a, step_overlaps_b;
2171 int gcd_steps_a_b, last_conflict, tau2;
2173 gcd_steps_a_b = gcd (step_a, step_b);
2174 step_overlaps_a = step_b / gcd_steps_a_b;
2175 step_overlaps_b = step_a / gcd_steps_a_b;
2177 if (niter > 0)
2179 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2180 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2181 last_conflict = tau2;
2182 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2184 else
2185 *last_conflicts = chrec_dont_know;
2187 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
2188 build_int_cst (NULL_TREE,
2189 step_overlaps_a));
2190 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2191 build_int_cst (NULL_TREE,
2192 step_overlaps_b));
2195 else
2197 *overlaps_a = affine_fn_cst (integer_zero_node);
2198 *overlaps_b = affine_fn_cst (integer_zero_node);
2199 *last_conflicts = integer_zero_node;
2203 /* Solves the special case of a Diophantine equation where CHREC_A is
2204 an affine bivariate function, and CHREC_B is an affine univariate
2205 function. For example,
2207 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2209 has the following overlapping functions:
2211 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2212 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2213 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2215 FORNOW: This is a specialized implementation for a case occurring in
2216 a common benchmark. Implement the general algorithm. */
2218 static void
2219 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2220 conflict_function **overlaps_a,
2221 conflict_function **overlaps_b,
2222 tree *last_conflicts)
2224 bool xz_p, yz_p, xyz_p;
2225 int step_x, step_y, step_z;
2226 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2227 affine_fn overlaps_a_xz, overlaps_b_xz;
2228 affine_fn overlaps_a_yz, overlaps_b_yz;
2229 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2230 affine_fn ova1, ova2, ovb;
2231 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2233 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2234 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2235 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2237 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2238 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2239 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
2241 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2243 if (dump_file && (dump_flags & TDF_DETAILS))
2244 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2246 *overlaps_a = conflict_fn_not_known ();
2247 *overlaps_b = conflict_fn_not_known ();
2248 *last_conflicts = chrec_dont_know;
2249 return;
2252 niter = MIN (niter_x, niter_z);
2253 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2254 &overlaps_a_xz,
2255 &overlaps_b_xz,
2256 &last_conflicts_xz, 1);
2257 niter = MIN (niter_y, niter_z);
2258 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2259 &overlaps_a_yz,
2260 &overlaps_b_yz,
2261 &last_conflicts_yz, 2);
2262 niter = MIN (niter_x, niter_z);
2263 niter = MIN (niter_y, niter);
2264 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2265 &overlaps_a_xyz,
2266 &overlaps_b_xyz,
2267 &last_conflicts_xyz, 3);
2269 xz_p = !integer_zerop (last_conflicts_xz);
2270 yz_p = !integer_zerop (last_conflicts_yz);
2271 xyz_p = !integer_zerop (last_conflicts_xyz);
2273 if (xz_p || yz_p || xyz_p)
2275 ova1 = affine_fn_cst (integer_zero_node);
2276 ova2 = affine_fn_cst (integer_zero_node);
2277 ovb = affine_fn_cst (integer_zero_node);
2278 if (xz_p)
2280 affine_fn t0 = ova1;
2281 affine_fn t2 = ovb;
2283 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2284 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2285 affine_fn_free (t0);
2286 affine_fn_free (t2);
2287 *last_conflicts = last_conflicts_xz;
2289 if (yz_p)
2291 affine_fn t0 = ova2;
2292 affine_fn t2 = ovb;
2294 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2295 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2296 affine_fn_free (t0);
2297 affine_fn_free (t2);
2298 *last_conflicts = last_conflicts_yz;
2300 if (xyz_p)
2302 affine_fn t0 = ova1;
2303 affine_fn t2 = ova2;
2304 affine_fn t4 = ovb;
2306 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2307 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2308 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2309 affine_fn_free (t0);
2310 affine_fn_free (t2);
2311 affine_fn_free (t4);
2312 *last_conflicts = last_conflicts_xyz;
2314 *overlaps_a = conflict_fn (2, ova1, ova2);
2315 *overlaps_b = conflict_fn (1, ovb);
2317 else
2319 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2320 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2321 *last_conflicts = integer_zero_node;
2324 affine_fn_free (overlaps_a_xz);
2325 affine_fn_free (overlaps_b_xz);
2326 affine_fn_free (overlaps_a_yz);
2327 affine_fn_free (overlaps_b_yz);
2328 affine_fn_free (overlaps_a_xyz);
2329 affine_fn_free (overlaps_b_xyz);
2332 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2334 static void
2335 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2336 int size)
2338 memcpy (vec2, vec1, size * sizeof (*vec1));
2341 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2343 static void
2344 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2345 int m, int n)
2347 int i;
2349 for (i = 0; i < m; i++)
2350 lambda_vector_copy (mat1[i], mat2[i], n);
2353 /* Store the N x N identity matrix in MAT. */
2355 static void
2356 lambda_matrix_id (lambda_matrix mat, int size)
2358 int i, j;
2360 for (i = 0; i < size; i++)
2361 for (j = 0; j < size; j++)
2362 mat[i][j] = (i == j) ? 1 : 0;
2365 /* Return the first nonzero element of vector VEC1 between START and N.
2366 We must have START <= N. Returns N if VEC1 is the zero vector. */
2368 static int
2369 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2371 int j = start;
2372 while (j < n && vec1[j] == 0)
2373 j++;
2374 return j;
2377 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2378 R2 = R2 + CONST1 * R1. */
2380 static void
2381 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2383 int i;
2385 if (const1 == 0)
2386 return;
2388 for (i = 0; i < n; i++)
2389 mat[r2][i] += const1 * mat[r1][i];
2392 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2393 and store the result in VEC2. */
2395 static void
2396 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2397 int size, int const1)
2399 int i;
2401 if (const1 == 0)
2402 lambda_vector_clear (vec2, size);
2403 else
2404 for (i = 0; i < size; i++)
2405 vec2[i] = const1 * vec1[i];
2408 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2410 static void
2411 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2412 int size)
2414 lambda_vector_mult_const (vec1, vec2, size, -1);
2417 /* Negate row R1 of matrix MAT which has N columns. */
2419 static void
2420 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2422 lambda_vector_negate (mat[r1], mat[r1], n);
2425 /* Return true if two vectors are equal. */
2427 static bool
2428 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2430 int i;
2431 for (i = 0; i < size; i++)
2432 if (vec1[i] != vec2[i])
2433 return false;
2434 return true;
2437 /* Given an M x N integer matrix A, this function determines an M x
2438 M unimodular matrix U, and an M x N echelon matrix S such that
2439 "U.A = S". This decomposition is also known as "right Hermite".
2441 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2442 Restructuring Compilers" Utpal Banerjee. */
2444 static void
2445 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2446 lambda_matrix S, lambda_matrix U)
2448 int i, j, i0 = 0;
2450 lambda_matrix_copy (A, S, m, n);
2451 lambda_matrix_id (U, m);
2453 for (j = 0; j < n; j++)
2455 if (lambda_vector_first_nz (S[j], m, i0) < m)
2457 ++i0;
2458 for (i = m - 1; i >= i0; i--)
2460 while (S[i][j] != 0)
2462 int sigma, factor, a, b;
2464 a = S[i-1][j];
2465 b = S[i][j];
2466 sigma = (a * b < 0) ? -1: 1;
2467 a = abs (a);
2468 b = abs (b);
2469 factor = sigma * (a / b);
2471 lambda_matrix_row_add (S, n, i, i-1, -factor);
2472 std::swap (S[i], S[i-1]);
2474 lambda_matrix_row_add (U, m, i, i-1, -factor);
2475 std::swap (U[i], U[i-1]);
2482 /* Determines the overlapping elements due to accesses CHREC_A and
2483 CHREC_B, that are affine functions. This function cannot handle
2484 symbolic evolution functions, ie. when initial conditions are
2485 parameters, because it uses lambda matrices of integers. */
2487 static void
2488 analyze_subscript_affine_affine (tree chrec_a,
2489 tree chrec_b,
2490 conflict_function **overlaps_a,
2491 conflict_function **overlaps_b,
2492 tree *last_conflicts)
2494 unsigned nb_vars_a, nb_vars_b, dim;
2495 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2496 lambda_matrix A, U, S;
2497 struct obstack scratch_obstack;
2499 if (eq_evolutions_p (chrec_a, chrec_b))
2501 /* The accessed index overlaps for each iteration in the
2502 loop. */
2503 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2504 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2505 *last_conflicts = chrec_dont_know;
2506 return;
2508 if (dump_file && (dump_flags & TDF_DETAILS))
2509 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2511 /* For determining the initial intersection, we have to solve a
2512 Diophantine equation. This is the most time consuming part.
2514 For answering to the question: "Is there a dependence?" we have
2515 to prove that there exists a solution to the Diophantine
2516 equation, and that the solution is in the iteration domain,
2517 i.e. the solution is positive or zero, and that the solution
2518 happens before the upper bound loop.nb_iterations. Otherwise
2519 there is no dependence. This function outputs a description of
2520 the iterations that hold the intersections. */
2522 nb_vars_a = nb_vars_in_chrec (chrec_a);
2523 nb_vars_b = nb_vars_in_chrec (chrec_b);
2525 gcc_obstack_init (&scratch_obstack);
2527 dim = nb_vars_a + nb_vars_b;
2528 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2529 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2530 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2532 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2533 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2534 gamma = init_b - init_a;
2536 /* Don't do all the hard work of solving the Diophantine equation
2537 when we already know the solution: for example,
2538 | {3, +, 1}_1
2539 | {3, +, 4}_2
2540 | gamma = 3 - 3 = 0.
2541 Then the first overlap occurs during the first iterations:
2542 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2544 if (gamma == 0)
2546 if (nb_vars_a == 1 && nb_vars_b == 1)
2548 HOST_WIDE_INT step_a, step_b;
2549 HOST_WIDE_INT niter, niter_a, niter_b;
2550 affine_fn ova, ovb;
2552 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2553 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
2554 niter = MIN (niter_a, niter_b);
2555 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2556 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2558 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2559 &ova, &ovb,
2560 last_conflicts, 1);
2561 *overlaps_a = conflict_fn (1, ova);
2562 *overlaps_b = conflict_fn (1, ovb);
2565 else if (nb_vars_a == 2 && nb_vars_b == 1)
2566 compute_overlap_steps_for_affine_1_2
2567 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2569 else if (nb_vars_a == 1 && nb_vars_b == 2)
2570 compute_overlap_steps_for_affine_1_2
2571 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2573 else
2575 if (dump_file && (dump_flags & TDF_DETAILS))
2576 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2577 *overlaps_a = conflict_fn_not_known ();
2578 *overlaps_b = conflict_fn_not_known ();
2579 *last_conflicts = chrec_dont_know;
2581 goto end_analyze_subs_aa;
2584 /* U.A = S */
2585 lambda_matrix_right_hermite (A, dim, 1, S, U);
2587 if (S[0][0] < 0)
2589 S[0][0] *= -1;
2590 lambda_matrix_row_negate (U, dim, 0);
2592 gcd_alpha_beta = S[0][0];
2594 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2595 but that is a quite strange case. Instead of ICEing, answer
2596 don't know. */
2597 if (gcd_alpha_beta == 0)
2599 *overlaps_a = conflict_fn_not_known ();
2600 *overlaps_b = conflict_fn_not_known ();
2601 *last_conflicts = chrec_dont_know;
2602 goto end_analyze_subs_aa;
2605 /* The classic "gcd-test". */
2606 if (!int_divides_p (gcd_alpha_beta, gamma))
2608 /* The "gcd-test" has determined that there is no integer
2609 solution, i.e. there is no dependence. */
2610 *overlaps_a = conflict_fn_no_dependence ();
2611 *overlaps_b = conflict_fn_no_dependence ();
2612 *last_conflicts = integer_zero_node;
2615 /* Both access functions are univariate. This includes SIV and MIV cases. */
2616 else if (nb_vars_a == 1 && nb_vars_b == 1)
2618 /* Both functions should have the same evolution sign. */
2619 if (((A[0][0] > 0 && -A[1][0] > 0)
2620 || (A[0][0] < 0 && -A[1][0] < 0)))
2622 /* The solutions are given by:
2624 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2625 | [u21 u22] [y0]
2627 For a given integer t. Using the following variables,
2629 | i0 = u11 * gamma / gcd_alpha_beta
2630 | j0 = u12 * gamma / gcd_alpha_beta
2631 | i1 = u21
2632 | j1 = u22
2634 the solutions are:
2636 | x0 = i0 + i1 * t,
2637 | y0 = j0 + j1 * t. */
2638 HOST_WIDE_INT i0, j0, i1, j1;
2640 i0 = U[0][0] * gamma / gcd_alpha_beta;
2641 j0 = U[0][1] * gamma / gcd_alpha_beta;
2642 i1 = U[1][0];
2643 j1 = U[1][1];
2645 if ((i1 == 0 && i0 < 0)
2646 || (j1 == 0 && j0 < 0))
2648 /* There is no solution.
2649 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2650 falls in here, but for the moment we don't look at the
2651 upper bound of the iteration domain. */
2652 *overlaps_a = conflict_fn_no_dependence ();
2653 *overlaps_b = conflict_fn_no_dependence ();
2654 *last_conflicts = integer_zero_node;
2655 goto end_analyze_subs_aa;
2658 if (i1 > 0 && j1 > 0)
2660 HOST_WIDE_INT niter_a
2661 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2662 HOST_WIDE_INT niter_b
2663 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2664 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2666 /* (X0, Y0) is a solution of the Diophantine equation:
2667 "chrec_a (X0) = chrec_b (Y0)". */
2668 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2669 CEIL (-j0, j1));
2670 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2671 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2673 /* (X1, Y1) is the smallest positive solution of the eq
2674 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2675 first conflict occurs. */
2676 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2677 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2678 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2680 if (niter > 0)
2682 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2683 FLOOR_DIV (niter - j0, j1));
2684 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2686 /* If the overlap occurs outside of the bounds of the
2687 loop, there is no dependence. */
2688 if (x1 >= niter || y1 >= niter)
2690 *overlaps_a = conflict_fn_no_dependence ();
2691 *overlaps_b = conflict_fn_no_dependence ();
2692 *last_conflicts = integer_zero_node;
2693 goto end_analyze_subs_aa;
2695 else
2696 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2698 else
2699 *last_conflicts = chrec_dont_know;
2701 *overlaps_a
2702 = conflict_fn (1,
2703 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2705 build_int_cst (NULL_TREE, i1)));
2706 *overlaps_b
2707 = conflict_fn (1,
2708 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2710 build_int_cst (NULL_TREE, j1)));
2712 else
2714 /* FIXME: For the moment, the upper bound of the
2715 iteration domain for i and j is not checked. */
2716 if (dump_file && (dump_flags & TDF_DETAILS))
2717 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2718 *overlaps_a = conflict_fn_not_known ();
2719 *overlaps_b = conflict_fn_not_known ();
2720 *last_conflicts = chrec_dont_know;
2723 else
2725 if (dump_file && (dump_flags & TDF_DETAILS))
2726 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2727 *overlaps_a = conflict_fn_not_known ();
2728 *overlaps_b = conflict_fn_not_known ();
2729 *last_conflicts = chrec_dont_know;
2732 else
2734 if (dump_file && (dump_flags & TDF_DETAILS))
2735 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2736 *overlaps_a = conflict_fn_not_known ();
2737 *overlaps_b = conflict_fn_not_known ();
2738 *last_conflicts = chrec_dont_know;
2741 end_analyze_subs_aa:
2742 obstack_free (&scratch_obstack, NULL);
2743 if (dump_file && (dump_flags & TDF_DETAILS))
2745 fprintf (dump_file, " (overlaps_a = ");
2746 dump_conflict_function (dump_file, *overlaps_a);
2747 fprintf (dump_file, ")\n (overlaps_b = ");
2748 dump_conflict_function (dump_file, *overlaps_b);
2749 fprintf (dump_file, "))\n");
2753 /* Returns true when analyze_subscript_affine_affine can be used for
2754 determining the dependence relation between chrec_a and chrec_b,
2755 that contain symbols. This function modifies chrec_a and chrec_b
2756 such that the analysis result is the same, and such that they don't
2757 contain symbols, and then can safely be passed to the analyzer.
2759 Example: The analysis of the following tuples of evolutions produce
2760 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2761 vs. {0, +, 1}_1
2763 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2764 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2767 static bool
2768 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2770 tree diff, type, left_a, left_b, right_b;
2772 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2773 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2774 /* FIXME: For the moment not handled. Might be refined later. */
2775 return false;
2777 type = chrec_type (*chrec_a);
2778 left_a = CHREC_LEFT (*chrec_a);
2779 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2780 diff = chrec_fold_minus (type, left_a, left_b);
2782 if (!evolution_function_is_constant_p (diff))
2783 return false;
2785 if (dump_file && (dump_flags & TDF_DETAILS))
2786 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2788 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2789 diff, CHREC_RIGHT (*chrec_a));
2790 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2791 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2792 build_int_cst (type, 0),
2793 right_b);
2794 return true;
2797 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2798 *OVERLAPS_B are initialized to the functions that describe the
2799 relation between the elements accessed twice by CHREC_A and
2800 CHREC_B. For k >= 0, the following property is verified:
2802 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2804 static void
2805 analyze_siv_subscript (tree chrec_a,
2806 tree chrec_b,
2807 conflict_function **overlaps_a,
2808 conflict_function **overlaps_b,
2809 tree *last_conflicts,
2810 int loop_nest_num)
2812 dependence_stats.num_siv++;
2814 if (dump_file && (dump_flags & TDF_DETAILS))
2815 fprintf (dump_file, "(analyze_siv_subscript \n");
2817 if (evolution_function_is_constant_p (chrec_a)
2818 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2819 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2820 overlaps_a, overlaps_b, last_conflicts);
2822 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2823 && evolution_function_is_constant_p (chrec_b))
2824 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2825 overlaps_b, overlaps_a, last_conflicts);
2827 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2828 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2830 if (!chrec_contains_symbols (chrec_a)
2831 && !chrec_contains_symbols (chrec_b))
2833 analyze_subscript_affine_affine (chrec_a, chrec_b,
2834 overlaps_a, overlaps_b,
2835 last_conflicts);
2837 if (CF_NOT_KNOWN_P (*overlaps_a)
2838 || CF_NOT_KNOWN_P (*overlaps_b))
2839 dependence_stats.num_siv_unimplemented++;
2840 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2841 || CF_NO_DEPENDENCE_P (*overlaps_b))
2842 dependence_stats.num_siv_independent++;
2843 else
2844 dependence_stats.num_siv_dependent++;
2846 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2847 &chrec_b))
2849 analyze_subscript_affine_affine (chrec_a, chrec_b,
2850 overlaps_a, overlaps_b,
2851 last_conflicts);
2853 if (CF_NOT_KNOWN_P (*overlaps_a)
2854 || CF_NOT_KNOWN_P (*overlaps_b))
2855 dependence_stats.num_siv_unimplemented++;
2856 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2857 || CF_NO_DEPENDENCE_P (*overlaps_b))
2858 dependence_stats.num_siv_independent++;
2859 else
2860 dependence_stats.num_siv_dependent++;
2862 else
2863 goto siv_subscript_dontknow;
2866 else
2868 siv_subscript_dontknow:;
2869 if (dump_file && (dump_flags & TDF_DETAILS))
2870 fprintf (dump_file, " siv test failed: unimplemented");
2871 *overlaps_a = conflict_fn_not_known ();
2872 *overlaps_b = conflict_fn_not_known ();
2873 *last_conflicts = chrec_dont_know;
2874 dependence_stats.num_siv_unimplemented++;
2877 if (dump_file && (dump_flags & TDF_DETAILS))
2878 fprintf (dump_file, ")\n");
2881 /* Returns false if we can prove that the greatest common divisor of the steps
2882 of CHREC does not divide CST, false otherwise. */
2884 static bool
2885 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2887 HOST_WIDE_INT cd = 0, val;
2888 tree step;
2890 if (!tree_fits_shwi_p (cst))
2891 return true;
2892 val = tree_to_shwi (cst);
2894 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2896 step = CHREC_RIGHT (chrec);
2897 if (!tree_fits_shwi_p (step))
2898 return true;
2899 cd = gcd (cd, tree_to_shwi (step));
2900 chrec = CHREC_LEFT (chrec);
2903 return val % cd == 0;
2906 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2907 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2908 functions that describe the relation between the elements accessed
2909 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2910 is verified:
2912 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2914 static void
2915 analyze_miv_subscript (tree chrec_a,
2916 tree chrec_b,
2917 conflict_function **overlaps_a,
2918 conflict_function **overlaps_b,
2919 tree *last_conflicts,
2920 struct loop *loop_nest)
2922 tree type, difference;
2924 dependence_stats.num_miv++;
2925 if (dump_file && (dump_flags & TDF_DETAILS))
2926 fprintf (dump_file, "(analyze_miv_subscript \n");
2928 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2929 chrec_a = chrec_convert (type, chrec_a, NULL);
2930 chrec_b = chrec_convert (type, chrec_b, NULL);
2931 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2933 if (eq_evolutions_p (chrec_a, chrec_b))
2935 /* Access functions are the same: all the elements are accessed
2936 in the same order. */
2937 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2938 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2939 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
2940 dependence_stats.num_miv_dependent++;
2943 else if (evolution_function_is_constant_p (difference)
2944 /* For the moment, the following is verified:
2945 evolution_function_is_affine_multivariate_p (chrec_a,
2946 loop_nest->num) */
2947 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2949 /* testsuite/.../ssa-chrec-33.c
2950 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2952 The difference is 1, and all the evolution steps are multiples
2953 of 2, consequently there are no overlapping elements. */
2954 *overlaps_a = conflict_fn_no_dependence ();
2955 *overlaps_b = conflict_fn_no_dependence ();
2956 *last_conflicts = integer_zero_node;
2957 dependence_stats.num_miv_independent++;
2960 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2961 && !chrec_contains_symbols (chrec_a)
2962 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2963 && !chrec_contains_symbols (chrec_b))
2965 /* testsuite/.../ssa-chrec-35.c
2966 {0, +, 1}_2 vs. {0, +, 1}_3
2967 the overlapping elements are respectively located at iterations:
2968 {0, +, 1}_x and {0, +, 1}_x,
2969 in other words, we have the equality:
2970 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2972 Other examples:
2973 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2974 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2976 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2977 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2979 analyze_subscript_affine_affine (chrec_a, chrec_b,
2980 overlaps_a, overlaps_b, last_conflicts);
2982 if (CF_NOT_KNOWN_P (*overlaps_a)
2983 || CF_NOT_KNOWN_P (*overlaps_b))
2984 dependence_stats.num_miv_unimplemented++;
2985 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2986 || CF_NO_DEPENDENCE_P (*overlaps_b))
2987 dependence_stats.num_miv_independent++;
2988 else
2989 dependence_stats.num_miv_dependent++;
2992 else
2994 /* When the analysis is too difficult, answer "don't know". */
2995 if (dump_file && (dump_flags & TDF_DETAILS))
2996 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
2998 *overlaps_a = conflict_fn_not_known ();
2999 *overlaps_b = conflict_fn_not_known ();
3000 *last_conflicts = chrec_dont_know;
3001 dependence_stats.num_miv_unimplemented++;
3004 if (dump_file && (dump_flags & TDF_DETAILS))
3005 fprintf (dump_file, ")\n");
3008 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
3009 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
3010 OVERLAP_ITERATIONS_B are initialized with two functions that
3011 describe the iterations that contain conflicting elements.
3013 Remark: For an integer k >= 0, the following equality is true:
3015 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3018 static void
3019 analyze_overlapping_iterations (tree chrec_a,
3020 tree chrec_b,
3021 conflict_function **overlap_iterations_a,
3022 conflict_function **overlap_iterations_b,
3023 tree *last_conflicts, struct loop *loop_nest)
3025 unsigned int lnn = loop_nest->num;
3027 dependence_stats.num_subscript_tests++;
3029 if (dump_file && (dump_flags & TDF_DETAILS))
3031 fprintf (dump_file, "(analyze_overlapping_iterations \n");
3032 fprintf (dump_file, " (chrec_a = ");
3033 print_generic_expr (dump_file, chrec_a, 0);
3034 fprintf (dump_file, ")\n (chrec_b = ");
3035 print_generic_expr (dump_file, chrec_b, 0);
3036 fprintf (dump_file, ")\n");
3039 if (chrec_a == NULL_TREE
3040 || chrec_b == NULL_TREE
3041 || chrec_contains_undetermined (chrec_a)
3042 || chrec_contains_undetermined (chrec_b))
3044 dependence_stats.num_subscript_undetermined++;
3046 *overlap_iterations_a = conflict_fn_not_known ();
3047 *overlap_iterations_b = conflict_fn_not_known ();
3050 /* If they are the same chrec, and are affine, they overlap
3051 on every iteration. */
3052 else if (eq_evolutions_p (chrec_a, chrec_b)
3053 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3054 || operand_equal_p (chrec_a, chrec_b, 0)))
3056 dependence_stats.num_same_subscript_function++;
3057 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3058 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3059 *last_conflicts = chrec_dont_know;
3062 /* If they aren't the same, and aren't affine, we can't do anything
3063 yet. */
3064 else if ((chrec_contains_symbols (chrec_a)
3065 || chrec_contains_symbols (chrec_b))
3066 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3067 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
3069 dependence_stats.num_subscript_undetermined++;
3070 *overlap_iterations_a = conflict_fn_not_known ();
3071 *overlap_iterations_b = conflict_fn_not_known ();
3074 else if (ziv_subscript_p (chrec_a, chrec_b))
3075 analyze_ziv_subscript (chrec_a, chrec_b,
3076 overlap_iterations_a, overlap_iterations_b,
3077 last_conflicts);
3079 else if (siv_subscript_p (chrec_a, chrec_b))
3080 analyze_siv_subscript (chrec_a, chrec_b,
3081 overlap_iterations_a, overlap_iterations_b,
3082 last_conflicts, lnn);
3084 else
3085 analyze_miv_subscript (chrec_a, chrec_b,
3086 overlap_iterations_a, overlap_iterations_b,
3087 last_conflicts, loop_nest);
3089 if (dump_file && (dump_flags & TDF_DETAILS))
3091 fprintf (dump_file, " (overlap_iterations_a = ");
3092 dump_conflict_function (dump_file, *overlap_iterations_a);
3093 fprintf (dump_file, ")\n (overlap_iterations_b = ");
3094 dump_conflict_function (dump_file, *overlap_iterations_b);
3095 fprintf (dump_file, "))\n");
3099 /* Helper function for uniquely inserting distance vectors. */
3101 static void
3102 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3104 unsigned i;
3105 lambda_vector v;
3107 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
3108 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3109 return;
3111 DDR_DIST_VECTS (ddr).safe_push (dist_v);
3114 /* Helper function for uniquely inserting direction vectors. */
3116 static void
3117 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
3119 unsigned i;
3120 lambda_vector v;
3122 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
3123 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3124 return;
3126 DDR_DIR_VECTS (ddr).safe_push (dir_v);
3129 /* Add a distance of 1 on all the loops outer than INDEX. If we
3130 haven't yet determined a distance for this outer loop, push a new
3131 distance vector composed of the previous distance, and a distance
3132 of 1 for this outer loop. Example:
3134 | loop_1
3135 | loop_2
3136 | A[10]
3137 | endloop_2
3138 | endloop_1
3140 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3141 save (0, 1), then we have to save (1, 0). */
3143 static void
3144 add_outer_distances (struct data_dependence_relation *ddr,
3145 lambda_vector dist_v, int index)
3147 /* For each outer loop where init_v is not set, the accesses are
3148 in dependence of distance 1 in the loop. */
3149 while (--index >= 0)
3151 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3152 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3153 save_v[index] = 1;
3154 save_dist_v (ddr, save_v);
3158 /* Return false when fail to represent the data dependence as a
3159 distance vector. INIT_B is set to true when a component has been
3160 added to the distance vector DIST_V. INDEX_CARRY is then set to
3161 the index in DIST_V that carries the dependence. */
3163 static bool
3164 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3165 struct data_reference *ddr_a,
3166 struct data_reference *ddr_b,
3167 lambda_vector dist_v, bool *init_b,
3168 int *index_carry)
3170 unsigned i;
3171 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3173 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3175 tree access_fn_a, access_fn_b;
3176 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
3178 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3180 non_affine_dependence_relation (ddr);
3181 return false;
3184 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3185 access_fn_b = DR_ACCESS_FN (ddr_b, i);
3187 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
3188 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
3190 int dist, index;
3191 int var_a = CHREC_VARIABLE (access_fn_a);
3192 int var_b = CHREC_VARIABLE (access_fn_b);
3194 if (var_a != var_b
3195 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3197 non_affine_dependence_relation (ddr);
3198 return false;
3201 dist = int_cst_value (SUB_DISTANCE (subscript));
3202 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3203 *index_carry = MIN (index, *index_carry);
3205 /* This is the subscript coupling test. If we have already
3206 recorded a distance for this loop (a distance coming from
3207 another subscript), it should be the same. For example,
3208 in the following code, there is no dependence:
3210 | loop i = 0, N, 1
3211 | T[i+1][i] = ...
3212 | ... = T[i][i]
3213 | endloop
3215 if (init_v[index] != 0 && dist_v[index] != dist)
3217 finalize_ddr_dependent (ddr, chrec_known);
3218 return false;
3221 dist_v[index] = dist;
3222 init_v[index] = 1;
3223 *init_b = true;
3225 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3227 /* This can be for example an affine vs. constant dependence
3228 (T[i] vs. T[3]) that is not an affine dependence and is
3229 not representable as a distance vector. */
3230 non_affine_dependence_relation (ddr);
3231 return false;
3235 return true;
3238 /* Return true when the DDR contains only constant access functions. */
3240 static bool
3241 constant_access_functions (const struct data_dependence_relation *ddr)
3243 unsigned i;
3245 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3246 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3247 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3248 return false;
3250 return true;
3253 /* Helper function for the case where DDR_A and DDR_B are the same
3254 multivariate access function with a constant step. For an example
3255 see pr34635-1.c. */
3257 static void
3258 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3260 int x_1, x_2;
3261 tree c_1 = CHREC_LEFT (c_2);
3262 tree c_0 = CHREC_LEFT (c_1);
3263 lambda_vector dist_v;
3264 int v1, v2, cd;
3266 /* Polynomials with more than 2 variables are not handled yet. When
3267 the evolution steps are parameters, it is not possible to
3268 represent the dependence using classical distance vectors. */
3269 if (TREE_CODE (c_0) != INTEGER_CST
3270 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3271 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3273 DDR_AFFINE_P (ddr) = false;
3274 return;
3277 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3278 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3280 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3281 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3282 v1 = int_cst_value (CHREC_RIGHT (c_1));
3283 v2 = int_cst_value (CHREC_RIGHT (c_2));
3284 cd = gcd (v1, v2);
3285 v1 /= cd;
3286 v2 /= cd;
3288 if (v2 < 0)
3290 v2 = -v2;
3291 v1 = -v1;
3294 dist_v[x_1] = v2;
3295 dist_v[x_2] = -v1;
3296 save_dist_v (ddr, dist_v);
3298 add_outer_distances (ddr, dist_v, x_1);
3301 /* Helper function for the case where DDR_A and DDR_B are the same
3302 access functions. */
3304 static void
3305 add_other_self_distances (struct data_dependence_relation *ddr)
3307 lambda_vector dist_v;
3308 unsigned i;
3309 int index_carry = DDR_NB_LOOPS (ddr);
3311 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3313 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3315 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3317 if (!evolution_function_is_univariate_p (access_fun))
3319 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3321 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3322 return;
3325 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3327 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3328 add_multivariate_self_dist (ddr, access_fun);
3329 else
3330 /* The evolution step is not constant: it varies in
3331 the outer loop, so this cannot be represented by a
3332 distance vector. For example in pr34635.c the
3333 evolution is {0, +, {0, +, 4}_1}_2. */
3334 DDR_AFFINE_P (ddr) = false;
3336 return;
3339 index_carry = MIN (index_carry,
3340 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3341 DDR_LOOP_NEST (ddr)));
3345 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3346 add_outer_distances (ddr, dist_v, index_carry);
3349 static void
3350 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3352 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3354 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3355 save_dist_v (ddr, dist_v);
3358 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3359 is the case for example when access functions are the same and
3360 equal to a constant, as in:
3362 | loop_1
3363 | A[3] = ...
3364 | ... = A[3]
3365 | endloop_1
3367 in which case the distance vectors are (0) and (1). */
3369 static void
3370 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3372 unsigned i, j;
3374 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3376 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3377 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3378 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3380 for (j = 0; j < ca->n; j++)
3381 if (affine_function_zero_p (ca->fns[j]))
3383 insert_innermost_unit_dist_vector (ddr);
3384 return;
3387 for (j = 0; j < cb->n; j++)
3388 if (affine_function_zero_p (cb->fns[j]))
3390 insert_innermost_unit_dist_vector (ddr);
3391 return;
3396 /* Compute the classic per loop distance vector. DDR is the data
3397 dependence relation to build a vector from. Return false when fail
3398 to represent the data dependence as a distance vector. */
3400 static bool
3401 build_classic_dist_vector (struct data_dependence_relation *ddr,
3402 struct loop *loop_nest)
3404 bool init_b = false;
3405 int index_carry = DDR_NB_LOOPS (ddr);
3406 lambda_vector dist_v;
3408 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3409 return false;
3411 if (same_access_functions (ddr))
3413 /* Save the 0 vector. */
3414 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3415 save_dist_v (ddr, dist_v);
3417 if (constant_access_functions (ddr))
3418 add_distance_for_zero_overlaps (ddr);
3420 if (DDR_NB_LOOPS (ddr) > 1)
3421 add_other_self_distances (ddr);
3423 return true;
3426 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3427 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3428 dist_v, &init_b, &index_carry))
3429 return false;
3431 /* Save the distance vector if we initialized one. */
3432 if (init_b)
3434 /* Verify a basic constraint: classic distance vectors should
3435 always be lexicographically positive.
3437 Data references are collected in the order of execution of
3438 the program, thus for the following loop
3440 | for (i = 1; i < 100; i++)
3441 | for (j = 1; j < 100; j++)
3443 | t = T[j+1][i-1]; // A
3444 | T[j][i] = t + 2; // B
3447 references are collected following the direction of the wind:
3448 A then B. The data dependence tests are performed also
3449 following this order, such that we're looking at the distance
3450 separating the elements accessed by A from the elements later
3451 accessed by B. But in this example, the distance returned by
3452 test_dep (A, B) is lexicographically negative (-1, 1), that
3453 means that the access A occurs later than B with respect to
3454 the outer loop, ie. we're actually looking upwind. In this
3455 case we solve test_dep (B, A) looking downwind to the
3456 lexicographically positive solution, that returns the
3457 distance vector (1, -1). */
3458 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3460 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3461 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3462 loop_nest))
3463 return false;
3464 compute_subscript_distance (ddr);
3465 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3466 save_v, &init_b, &index_carry))
3467 return false;
3468 save_dist_v (ddr, save_v);
3469 DDR_REVERSED_P (ddr) = true;
3471 /* In this case there is a dependence forward for all the
3472 outer loops:
3474 | for (k = 1; k < 100; k++)
3475 | for (i = 1; i < 100; i++)
3476 | for (j = 1; j < 100; j++)
3478 | t = T[j+1][i-1]; // A
3479 | T[j][i] = t + 2; // B
3482 the vectors are:
3483 (0, 1, -1)
3484 (1, 1, -1)
3485 (1, -1, 1)
3487 if (DDR_NB_LOOPS (ddr) > 1)
3489 add_outer_distances (ddr, save_v, index_carry);
3490 add_outer_distances (ddr, dist_v, index_carry);
3493 else
3495 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3496 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3498 if (DDR_NB_LOOPS (ddr) > 1)
3500 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3502 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3503 DDR_A (ddr), loop_nest))
3504 return false;
3505 compute_subscript_distance (ddr);
3506 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3507 opposite_v, &init_b,
3508 &index_carry))
3509 return false;
3511 save_dist_v (ddr, save_v);
3512 add_outer_distances (ddr, dist_v, index_carry);
3513 add_outer_distances (ddr, opposite_v, index_carry);
3515 else
3516 save_dist_v (ddr, save_v);
3519 else
3521 /* There is a distance of 1 on all the outer loops: Example:
3522 there is a dependence of distance 1 on loop_1 for the array A.
3524 | loop_1
3525 | A[5] = ...
3526 | endloop
3528 add_outer_distances (ddr, dist_v,
3529 lambda_vector_first_nz (dist_v,
3530 DDR_NB_LOOPS (ddr), 0));
3533 if (dump_file && (dump_flags & TDF_DETAILS))
3535 unsigned i;
3537 fprintf (dump_file, "(build_classic_dist_vector\n");
3538 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3540 fprintf (dump_file, " dist_vector = (");
3541 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3542 DDR_NB_LOOPS (ddr));
3543 fprintf (dump_file, " )\n");
3545 fprintf (dump_file, ")\n");
3548 return true;
3551 /* Return the direction for a given distance.
3552 FIXME: Computing dir this way is suboptimal, since dir can catch
3553 cases that dist is unable to represent. */
3555 static inline enum data_dependence_direction
3556 dir_from_dist (int dist)
3558 if (dist > 0)
3559 return dir_positive;
3560 else if (dist < 0)
3561 return dir_negative;
3562 else
3563 return dir_equal;
3566 /* Compute the classic per loop direction vector. DDR is the data
3567 dependence relation to build a vector from. */
3569 static void
3570 build_classic_dir_vector (struct data_dependence_relation *ddr)
3572 unsigned i, j;
3573 lambda_vector dist_v;
3575 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3577 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3579 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3580 dir_v[j] = dir_from_dist (dist_v[j]);
3582 save_dir_v (ddr, dir_v);
3586 /* Helper function. Returns true when there is a dependence between
3587 data references DRA and DRB. */
3589 static bool
3590 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3591 struct data_reference *dra,
3592 struct data_reference *drb,
3593 struct loop *loop_nest)
3595 unsigned int i;
3596 tree last_conflicts;
3597 struct subscript *subscript;
3598 tree res = NULL_TREE;
3600 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
3602 conflict_function *overlaps_a, *overlaps_b;
3604 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3605 DR_ACCESS_FN (drb, i),
3606 &overlaps_a, &overlaps_b,
3607 &last_conflicts, loop_nest);
3609 if (SUB_CONFLICTS_IN_A (subscript))
3610 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3611 if (SUB_CONFLICTS_IN_B (subscript))
3612 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3614 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3615 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3616 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3618 /* If there is any undetermined conflict function we have to
3619 give a conservative answer in case we cannot prove that
3620 no dependence exists when analyzing another subscript. */
3621 if (CF_NOT_KNOWN_P (overlaps_a)
3622 || CF_NOT_KNOWN_P (overlaps_b))
3624 res = chrec_dont_know;
3625 continue;
3628 /* When there is a subscript with no dependence we can stop. */
3629 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3630 || CF_NO_DEPENDENCE_P (overlaps_b))
3632 res = chrec_known;
3633 break;
3637 if (res == NULL_TREE)
3638 return true;
3640 if (res == chrec_known)
3641 dependence_stats.num_dependence_independent++;
3642 else
3643 dependence_stats.num_dependence_undetermined++;
3644 finalize_ddr_dependent (ddr, res);
3645 return false;
3648 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3650 static void
3651 subscript_dependence_tester (struct data_dependence_relation *ddr,
3652 struct loop *loop_nest)
3654 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3655 dependence_stats.num_dependence_dependent++;
3657 compute_subscript_distance (ddr);
3658 if (build_classic_dist_vector (ddr, loop_nest))
3659 build_classic_dir_vector (ddr);
3662 /* Returns true when all the access functions of A are affine or
3663 constant with respect to LOOP_NEST. */
3665 static bool
3666 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3667 const struct loop *loop_nest)
3669 unsigned int i;
3670 vec<tree> fns = DR_ACCESS_FNS (a);
3671 tree t;
3673 FOR_EACH_VEC_ELT (fns, i, t)
3674 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3675 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3676 return false;
3678 return true;
3681 /* This computes the affine dependence relation between A and B with
3682 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
3683 independence between two accesses, while CHREC_DONT_KNOW is used
3684 for representing the unknown relation.
3686 Note that it is possible to stop the computation of the dependence
3687 relation the first time we detect a CHREC_KNOWN element for a given
3688 subscript. */
3690 void
3691 compute_affine_dependence (struct data_dependence_relation *ddr,
3692 struct loop *loop_nest)
3694 struct data_reference *dra = DDR_A (ddr);
3695 struct data_reference *drb = DDR_B (ddr);
3697 if (dump_file && (dump_flags & TDF_DETAILS))
3699 fprintf (dump_file, "(compute_affine_dependence\n");
3700 fprintf (dump_file, " stmt_a: ");
3701 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
3702 fprintf (dump_file, " stmt_b: ");
3703 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
3706 /* Analyze only when the dependence relation is not yet known. */
3707 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
3709 dependence_stats.num_dependence_tests++;
3711 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
3712 && access_functions_are_affine_or_constant_p (drb, loop_nest))
3713 subscript_dependence_tester (ddr, loop_nest);
3715 /* As a last case, if the dependence cannot be determined, or if
3716 the dependence is considered too difficult to determine, answer
3717 "don't know". */
3718 else
3720 dependence_stats.num_dependence_undetermined++;
3722 if (dump_file && (dump_flags & TDF_DETAILS))
3724 fprintf (dump_file, "Data ref a:\n");
3725 dump_data_reference (dump_file, dra);
3726 fprintf (dump_file, "Data ref b:\n");
3727 dump_data_reference (dump_file, drb);
3728 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
3730 finalize_ddr_dependent (ddr, chrec_dont_know);
3734 if (dump_file && (dump_flags & TDF_DETAILS))
3736 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
3737 fprintf (dump_file, ") -> no dependence\n");
3738 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
3739 fprintf (dump_file, ") -> dependence analysis failed\n");
3740 else
3741 fprintf (dump_file, ")\n");
3745 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
3746 the data references in DATAREFS, in the LOOP_NEST. When
3747 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
3748 relations. Return true when successful, i.e. data references number
3749 is small enough to be handled. */
3751 bool
3752 compute_all_dependences (vec<data_reference_p> datarefs,
3753 vec<ddr_p> *dependence_relations,
3754 vec<loop_p> loop_nest,
3755 bool compute_self_and_rr)
3757 struct data_dependence_relation *ddr;
3758 struct data_reference *a, *b;
3759 unsigned int i, j;
3761 if ((int) datarefs.length ()
3762 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
3764 struct data_dependence_relation *ddr;
3766 /* Insert a single relation into dependence_relations:
3767 chrec_dont_know. */
3768 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
3769 dependence_relations->safe_push (ddr);
3770 return false;
3773 FOR_EACH_VEC_ELT (datarefs, i, a)
3774 for (j = i + 1; datarefs.iterate (j, &b); j++)
3775 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
3777 ddr = initialize_data_dependence_relation (a, b, loop_nest);
3778 dependence_relations->safe_push (ddr);
3779 if (loop_nest.exists ())
3780 compute_affine_dependence (ddr, loop_nest[0]);
3783 if (compute_self_and_rr)
3784 FOR_EACH_VEC_ELT (datarefs, i, a)
3786 ddr = initialize_data_dependence_relation (a, a, loop_nest);
3787 dependence_relations->safe_push (ddr);
3788 if (loop_nest.exists ())
3789 compute_affine_dependence (ddr, loop_nest[0]);
3792 return true;
3795 /* Describes a location of a memory reference. */
3797 struct data_ref_loc
3799 /* The memory reference. */
3800 tree ref;
3802 /* True if the memory reference is read. */
3803 bool is_read;
3807 /* Stores the locations of memory references in STMT to REFERENCES. Returns
3808 true if STMT clobbers memory, false otherwise. */
3810 static bool
3811 get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
3813 bool clobbers_memory = false;
3814 data_ref_loc ref;
3815 tree op0, op1;
3816 enum gimple_code stmt_code = gimple_code (stmt);
3818 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
3819 As we cannot model data-references to not spelled out
3820 accesses give up if they may occur. */
3821 if (stmt_code == GIMPLE_CALL
3822 && !(gimple_call_flags (stmt) & ECF_CONST))
3824 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
3825 if (gimple_call_internal_p (stmt))
3826 switch (gimple_call_internal_fn (stmt))
3828 case IFN_GOMP_SIMD_LANE:
3830 struct loop *loop = gimple_bb (stmt)->loop_father;
3831 tree uid = gimple_call_arg (stmt, 0);
3832 gcc_assert (TREE_CODE (uid) == SSA_NAME);
3833 if (loop == NULL
3834 || loop->simduid != SSA_NAME_VAR (uid))
3835 clobbers_memory = true;
3836 break;
3838 case IFN_MASK_LOAD:
3839 case IFN_MASK_STORE:
3840 break;
3841 default:
3842 clobbers_memory = true;
3843 break;
3845 else
3846 clobbers_memory = true;
3848 else if (stmt_code == GIMPLE_ASM
3849 && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
3850 || gimple_vuse (stmt)))
3851 clobbers_memory = true;
3853 if (!gimple_vuse (stmt))
3854 return clobbers_memory;
3856 if (stmt_code == GIMPLE_ASSIGN)
3858 tree base;
3859 op0 = gimple_assign_lhs (stmt);
3860 op1 = gimple_assign_rhs1 (stmt);
3862 if (DECL_P (op1)
3863 || (REFERENCE_CLASS_P (op1)
3864 && (base = get_base_address (op1))
3865 && TREE_CODE (base) != SSA_NAME))
3867 ref.ref = op1;
3868 ref.is_read = true;
3869 references->safe_push (ref);
3872 else if (stmt_code == GIMPLE_CALL)
3874 unsigned i, n;
3875 tree ptr, type;
3876 unsigned int align;
3878 ref.is_read = false;
3879 if (gimple_call_internal_p (stmt))
3880 switch (gimple_call_internal_fn (stmt))
3882 case IFN_MASK_LOAD:
3883 if (gimple_call_lhs (stmt) == NULL_TREE)
3884 break;
3885 ref.is_read = true;
3886 case IFN_MASK_STORE:
3887 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
3888 align = tree_to_shwi (gimple_call_arg (stmt, 1));
3889 if (ref.is_read)
3890 type = TREE_TYPE (gimple_call_lhs (stmt));
3891 else
3892 type = TREE_TYPE (gimple_call_arg (stmt, 3));
3893 if (TYPE_ALIGN (type) != align)
3894 type = build_aligned_type (type, align);
3895 ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
3896 ptr);
3897 references->safe_push (ref);
3898 return false;
3899 default:
3900 break;
3903 op0 = gimple_call_lhs (stmt);
3904 n = gimple_call_num_args (stmt);
3905 for (i = 0; i < n; i++)
3907 op1 = gimple_call_arg (stmt, i);
3909 if (DECL_P (op1)
3910 || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
3912 ref.ref = op1;
3913 ref.is_read = true;
3914 references->safe_push (ref);
3918 else
3919 return clobbers_memory;
3921 if (op0
3922 && (DECL_P (op0)
3923 || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
3925 ref.ref = op0;
3926 ref.is_read = false;
3927 references->safe_push (ref);
3929 return clobbers_memory;
3933 /* Returns true if the loop-nest has any data reference. */
3935 bool
3936 loop_nest_has_data_refs (loop_p loop)
3938 basic_block *bbs = get_loop_body (loop);
3939 vec<data_ref_loc> references;
3940 references.create (3);
3942 for (unsigned i = 0; i < loop->num_nodes; i++)
3944 basic_block bb = bbs[i];
3945 gimple_stmt_iterator bsi;
3947 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3949 gimple *stmt = gsi_stmt (bsi);
3950 get_references_in_stmt (stmt, &references);
3951 if (references.length ())
3953 free (bbs);
3954 references.release ();
3955 return true;
3959 free (bbs);
3960 references.release ();
3962 if (loop->inner)
3964 loop = loop->inner;
3965 while (loop)
3967 if (loop_nest_has_data_refs (loop))
3968 return true;
3969 loop = loop->next;
3972 return false;
3975 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
3976 reference, returns false, otherwise returns true. NEST is the outermost
3977 loop of the loop nest in which the references should be analyzed. */
3979 bool
3980 find_data_references_in_stmt (struct loop *nest, gimple *stmt,
3981 vec<data_reference_p> *datarefs)
3983 unsigned i;
3984 auto_vec<data_ref_loc, 2> references;
3985 data_ref_loc *ref;
3986 bool ret = true;
3987 data_reference_p dr;
3989 if (get_references_in_stmt (stmt, &references))
3990 return false;
3992 FOR_EACH_VEC_ELT (references, i, ref)
3994 dr = create_data_ref (nest, loop_containing_stmt (stmt),
3995 ref->ref, stmt, ref->is_read);
3996 gcc_assert (dr != NULL);
3997 datarefs->safe_push (dr);
3999 references.release ();
4000 return ret;
4003 /* Stores the data references in STMT to DATAREFS. If there is an
4004 unanalyzable reference, returns false, otherwise returns true.
4005 NEST is the outermost loop of the loop nest in which the references
4006 should be instantiated, LOOP is the loop in which the references
4007 should be analyzed. */
4009 bool
4010 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple *stmt,
4011 vec<data_reference_p> *datarefs)
4013 unsigned i;
4014 auto_vec<data_ref_loc, 2> references;
4015 data_ref_loc *ref;
4016 bool ret = true;
4017 data_reference_p dr;
4019 if (get_references_in_stmt (stmt, &references))
4020 return false;
4022 FOR_EACH_VEC_ELT (references, i, ref)
4024 dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read);
4025 gcc_assert (dr != NULL);
4026 datarefs->safe_push (dr);
4029 references.release ();
4030 return ret;
4033 /* Search the data references in LOOP, and record the information into
4034 DATAREFS. Returns chrec_dont_know when failing to analyze a
4035 difficult case, returns NULL_TREE otherwise. */
4037 tree
4038 find_data_references_in_bb (struct loop *loop, basic_block bb,
4039 vec<data_reference_p> *datarefs)
4041 gimple_stmt_iterator bsi;
4043 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4045 gimple *stmt = gsi_stmt (bsi);
4047 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4049 struct data_reference *res;
4050 res = XCNEW (struct data_reference);
4051 datarefs->safe_push (res);
4053 return chrec_dont_know;
4057 return NULL_TREE;
4060 /* Search the data references in LOOP, and record the information into
4061 DATAREFS. Returns chrec_dont_know when failing to analyze a
4062 difficult case, returns NULL_TREE otherwise.
4064 TODO: This function should be made smarter so that it can handle address
4065 arithmetic as if they were array accesses, etc. */
4067 tree
4068 find_data_references_in_loop (struct loop *loop,
4069 vec<data_reference_p> *datarefs)
4071 basic_block bb, *bbs;
4072 unsigned int i;
4074 bbs = get_loop_body_in_dom_order (loop);
4076 for (i = 0; i < loop->num_nodes; i++)
4078 bb = bbs[i];
4080 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4082 free (bbs);
4083 return chrec_dont_know;
4086 free (bbs);
4088 return NULL_TREE;
4091 /* Recursive helper function. */
4093 static bool
4094 find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
4096 /* Inner loops of the nest should not contain siblings. Example:
4097 when there are two consecutive loops,
4099 | loop_0
4100 | loop_1
4101 | A[{0, +, 1}_1]
4102 | endloop_1
4103 | loop_2
4104 | A[{0, +, 1}_2]
4105 | endloop_2
4106 | endloop_0
4108 the dependence relation cannot be captured by the distance
4109 abstraction. */
4110 if (loop->next)
4111 return false;
4113 loop_nest->safe_push (loop);
4114 if (loop->inner)
4115 return find_loop_nest_1 (loop->inner, loop_nest);
4116 return true;
4119 /* Return false when the LOOP is not well nested. Otherwise return
4120 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4121 contain the loops from the outermost to the innermost, as they will
4122 appear in the classic distance vector. */
4124 bool
4125 find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
4127 loop_nest->safe_push (loop);
4128 if (loop->inner)
4129 return find_loop_nest_1 (loop->inner, loop_nest);
4130 return true;
4133 /* Returns true when the data dependences have been computed, false otherwise.
4134 Given a loop nest LOOP, the following vectors are returned:
4135 DATAREFS is initialized to all the array elements contained in this loop,
4136 DEPENDENCE_RELATIONS contains the relations between the data references.
4137 Compute read-read and self relations if
4138 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4140 bool
4141 compute_data_dependences_for_loop (struct loop *loop,
4142 bool compute_self_and_read_read_dependences,
4143 vec<loop_p> *loop_nest,
4144 vec<data_reference_p> *datarefs,
4145 vec<ddr_p> *dependence_relations)
4147 bool res = true;
4149 memset (&dependence_stats, 0, sizeof (dependence_stats));
4151 /* If the loop nest is not well formed, or one of the data references
4152 is not computable, give up without spending time to compute other
4153 dependences. */
4154 if (!loop
4155 || !find_loop_nest (loop, loop_nest)
4156 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4157 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4158 compute_self_and_read_read_dependences))
4159 res = false;
4161 if (dump_file && (dump_flags & TDF_STATS))
4163 fprintf (dump_file, "Dependence tester statistics:\n");
4165 fprintf (dump_file, "Number of dependence tests: %d\n",
4166 dependence_stats.num_dependence_tests);
4167 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4168 dependence_stats.num_dependence_dependent);
4169 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4170 dependence_stats.num_dependence_independent);
4171 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4172 dependence_stats.num_dependence_undetermined);
4174 fprintf (dump_file, "Number of subscript tests: %d\n",
4175 dependence_stats.num_subscript_tests);
4176 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4177 dependence_stats.num_subscript_undetermined);
4178 fprintf (dump_file, "Number of same subscript function: %d\n",
4179 dependence_stats.num_same_subscript_function);
4181 fprintf (dump_file, "Number of ziv tests: %d\n",
4182 dependence_stats.num_ziv);
4183 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4184 dependence_stats.num_ziv_dependent);
4185 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4186 dependence_stats.num_ziv_independent);
4187 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4188 dependence_stats.num_ziv_unimplemented);
4190 fprintf (dump_file, "Number of siv tests: %d\n",
4191 dependence_stats.num_siv);
4192 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4193 dependence_stats.num_siv_dependent);
4194 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4195 dependence_stats.num_siv_independent);
4196 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4197 dependence_stats.num_siv_unimplemented);
4199 fprintf (dump_file, "Number of miv tests: %d\n",
4200 dependence_stats.num_miv);
4201 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4202 dependence_stats.num_miv_dependent);
4203 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4204 dependence_stats.num_miv_independent);
4205 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4206 dependence_stats.num_miv_unimplemented);
4209 return res;
4212 /* Free the memory used by a data dependence relation DDR. */
4214 void
4215 free_dependence_relation (struct data_dependence_relation *ddr)
4217 if (ddr == NULL)
4218 return;
4220 if (DDR_SUBSCRIPTS (ddr).exists ())
4221 free_subscripts (DDR_SUBSCRIPTS (ddr));
4222 DDR_DIST_VECTS (ddr).release ();
4223 DDR_DIR_VECTS (ddr).release ();
4225 free (ddr);
4228 /* Free the memory used by the data dependence relations from
4229 DEPENDENCE_RELATIONS. */
4231 void
4232 free_dependence_relations (vec<ddr_p> dependence_relations)
4234 unsigned int i;
4235 struct data_dependence_relation *ddr;
4237 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4238 if (ddr)
4239 free_dependence_relation (ddr);
4241 dependence_relations.release ();
4244 /* Free the memory used by the data references from DATAREFS. */
4246 void
4247 free_data_refs (vec<data_reference_p> datarefs)
4249 unsigned int i;
4250 struct data_reference *dr;
4252 FOR_EACH_VEC_ELT (datarefs, i, dr)
4253 free_data_ref (dr);
4254 datarefs.release ();