tree-optimization/114485 - neg induction with partial vectors
[official-gcc.git] / gcc / combine.cc
blob745391016d04a725d55d4234f556996bea934e01
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
54 REG_DEAD note is lost
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
57 linking
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
63 #include "config.h"
64 #include "system.h"
65 #include "coretypes.h"
66 #include "backend.h"
67 #include "target.h"
68 #include "rtl.h"
69 #include "tree.h"
70 #include "cfghooks.h"
71 #include "predict.h"
72 #include "df.h"
73 #include "memmodel.h"
74 #include "tm_p.h"
75 #include "optabs.h"
76 #include "regs.h"
77 #include "emit-rtl.h"
78 #include "recog.h"
79 #include "cgraph.h"
80 #include "stor-layout.h"
81 #include "cfgrtl.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
84 #include "explow.h"
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
87 #include "expr.h"
88 #include "tree-pass.h"
89 #include "valtrack.h"
90 #include "rtl-iter.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
93 #include "rtlanal.h"
95 /* Number of attempts to combine instructions in this function. */
97 static int combine_attempts;
99 /* Number of attempts that got as far as substitution in this function. */
101 static int combine_merges;
103 /* Number of instructions combined with added SETs in this function. */
105 static int combine_extras;
107 /* Number of instructions combined in this function. */
109 static int combine_successes;
111 /* combine_instructions may try to replace the right hand side of the
112 second instruction with the value of an associated REG_EQUAL note
113 before throwing it at try_combine. That is problematic when there
114 is a REG_DEAD note for a register used in the old right hand side
115 and can cause distribute_notes to do wrong things. This is the
116 second instruction if it has been so modified, null otherwise. */
118 static rtx_insn *i2mod;
120 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
122 static rtx i2mod_old_rhs;
124 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
126 static rtx i2mod_new_rhs;
128 struct reg_stat_type {
129 /* Record last point of death of (hard or pseudo) register n. */
130 rtx_insn *last_death;
132 /* Record last point of modification of (hard or pseudo) register n. */
133 rtx_insn *last_set;
135 /* The next group of fields allows the recording of the last value assigned
136 to (hard or pseudo) register n. We use this information to see if an
137 operation being processed is redundant given a prior operation performed
138 on the register. For example, an `and' with a constant is redundant if
139 all the zero bits are already known to be turned off.
141 We use an approach similar to that used by cse, but change it in the
142 following ways:
144 (1) We do not want to reinitialize at each label.
145 (2) It is useful, but not critical, to know the actual value assigned
146 to a register. Often just its form is helpful.
148 Therefore, we maintain the following fields:
150 last_set_value the last value assigned
151 last_set_label records the value of label_tick when the
152 register was assigned
153 last_set_table_tick records the value of label_tick when a
154 value using the register is assigned
155 last_set_invalid set to true when it is not valid
156 to use the value of this register in some
157 register's value
159 To understand the usage of these tables, it is important to understand
160 the distinction between the value in last_set_value being valid and
161 the register being validly contained in some other expression in the
162 table.
164 (The next two parameters are out of date).
166 reg_stat[i].last_set_value is valid if it is nonzero, and either
167 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
169 Register I may validly appear in any expression returned for the value
170 of another register if reg_n_sets[i] is 1. It may also appear in the
171 value for register J if reg_stat[j].last_set_invalid is zero, or
172 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
174 If an expression is found in the table containing a register which may
175 not validly appear in an expression, the register is replaced by
176 something that won't match, (clobber (const_int 0)). */
178 /* Record last value assigned to (hard or pseudo) register n. */
180 rtx last_set_value;
182 /* Record the value of label_tick when an expression involving register n
183 is placed in last_set_value. */
185 int last_set_table_tick;
187 /* Record the value of label_tick when the value for register n is placed in
188 last_set_value. */
190 int last_set_label;
192 /* These fields are maintained in parallel with last_set_value and are
193 used to store the mode in which the register was last set, the bits
194 that were known to be zero when it was last set, and the number of
195 sign bits copies it was known to have when it was last set. */
197 unsigned HOST_WIDE_INT last_set_nonzero_bits;
198 char last_set_sign_bit_copies;
199 ENUM_BITFIELD(machine_mode) last_set_mode : MACHINE_MODE_BITSIZE;
201 /* Set to true if references to register n in expressions should not be
202 used. last_set_invalid is set nonzero when this register is being
203 assigned to and last_set_table_tick == label_tick. */
205 bool last_set_invalid;
207 /* Some registers that are set more than once and used in more than one
208 basic block are nevertheless always set in similar ways. For example,
209 a QImode register may be loaded from memory in two places on a machine
210 where byte loads zero extend.
212 We record in the following fields if a register has some leading bits
213 that are always equal to the sign bit, and what we know about the
214 nonzero bits of a register, specifically which bits are known to be
215 zero.
217 If an entry is zero, it means that we don't know anything special. */
219 unsigned char sign_bit_copies;
221 unsigned HOST_WIDE_INT nonzero_bits;
223 /* Record the value of the label_tick when the last truncation
224 happened. The field truncated_to_mode is only valid if
225 truncation_label == label_tick. */
227 int truncation_label;
229 /* Record the last truncation seen for this register. If truncation
230 is not a nop to this mode we might be able to save an explicit
231 truncation if we know that value already contains a truncated
232 value. */
234 ENUM_BITFIELD(machine_mode) truncated_to_mode : MACHINE_MODE_BITSIZE;
238 static vec<reg_stat_type> reg_stat;
240 /* One plus the highest pseudo for which we track REG_N_SETS.
241 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
242 but during combine_split_insns new pseudos can be created. As we don't have
243 updated DF information in that case, it is hard to initialize the array
244 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
245 so instead of growing the arrays, just assume all newly created pseudos
246 during combine might be set multiple times. */
248 static unsigned int reg_n_sets_max;
250 /* Record the luid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
253 static int mem_last_set;
255 /* Record the luid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
258 static int last_call_luid;
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
266 static rtx_insn *subst_insn;
268 /* This is the lowest LUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this LUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
275 static int subst_low_luid;
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
280 static HARD_REG_SET newpat_used_regs;
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
286 static rtx_insn *added_links_insn;
288 /* And similarly, for notes. */
290 static rtx_insn *added_notes_insn;
292 /* Basic block in which we are performing combines. */
293 static basic_block this_basic_block;
294 static bool optimize_this_for_speed_p;
297 /* Length of the currently allocated uid_insn_cost array. */
299 static int max_uid_known;
301 /* The following array records the insn_cost for every insn
302 in the instruction stream. */
304 static int *uid_insn_cost;
306 /* The following array records the LOG_LINKS for every insn in the
307 instruction stream as struct insn_link pointers. */
309 struct insn_link {
310 rtx_insn *insn;
311 unsigned int regno;
312 struct insn_link *next;
315 static struct insn_link **uid_log_links;
317 static inline int
318 insn_uid_check (const_rtx insn)
320 int uid = INSN_UID (insn);
321 gcc_checking_assert (uid <= max_uid_known);
322 return uid;
325 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
326 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
328 #define FOR_EACH_LOG_LINK(L, INSN) \
329 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
331 /* Links for LOG_LINKS are allocated from this obstack. */
333 static struct obstack insn_link_obstack;
335 /* Allocate a link. */
337 static inline struct insn_link *
338 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
340 struct insn_link *l
341 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
342 sizeof (struct insn_link));
343 l->insn = insn;
344 l->regno = regno;
345 l->next = next;
346 return l;
349 /* Incremented for each basic block. */
351 static int label_tick;
353 /* Reset to label_tick for each extended basic block in scanning order. */
355 static int label_tick_ebb_start;
357 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
358 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
360 static scalar_int_mode nonzero_bits_mode;
362 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
363 be safely used. It is zero while computing them and after combine has
364 completed. This former test prevents propagating values based on
365 previously set values, which can be incorrect if a variable is modified
366 in a loop. */
368 static int nonzero_sign_valid;
371 /* Record one modification to rtl structure
372 to be undone by storing old_contents into *where. */
374 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
376 struct undo
378 struct undo *next;
379 enum undo_kind kind;
380 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
381 union { rtx *r; int *i; int regno; struct insn_link **l; } where;
384 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
385 num_undo says how many are currently recorded.
387 other_insn is nonzero if we have modified some other insn in the process
388 of working on subst_insn. It must be verified too. */
390 struct undobuf
392 struct undo *undos;
393 struct undo *frees;
394 rtx_insn *other_insn;
397 static struct undobuf undobuf;
399 /* Number of times the pseudo being substituted for
400 was found and replaced. */
402 static int n_occurrences;
404 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
405 scalar_int_mode,
406 unsigned HOST_WIDE_INT *);
407 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
408 scalar_int_mode,
409 unsigned int *);
410 static void do_SUBST (rtx *, rtx);
411 static void do_SUBST_INT (int *, int);
412 static void init_reg_last (void);
413 static void setup_incoming_promotions (rtx_insn *);
414 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
415 static bool cant_combine_insn_p (rtx_insn *);
416 static bool can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
417 rtx_insn *, rtx_insn *, rtx *, rtx *);
418 static bool combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx,
419 bool, bool, rtx *);
420 static bool contains_muldiv (rtx);
421 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 bool *, rtx_insn *);
423 static void undo_all (void);
424 static void undo_commit (void);
425 static rtx *find_split_point (rtx *, rtx_insn *, bool);
426 static rtx subst (rtx, rtx, rtx, bool, bool, bool);
427 static rtx combine_simplify_rtx (rtx, machine_mode, bool, bool);
428 static rtx simplify_if_then_else (rtx);
429 static rtx simplify_set (rtx);
430 static rtx simplify_logical (rtx);
431 static rtx expand_compound_operation (rtx);
432 static const_rtx expand_field_assignment (const_rtx);
433 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT, rtx,
434 unsigned HOST_WIDE_INT, bool, bool, bool);
435 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
436 unsigned HOST_WIDE_INT *);
437 static rtx canon_reg_for_combine (rtx, rtx);
438 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
439 scalar_int_mode, unsigned HOST_WIDE_INT, bool);
440 static rtx force_to_mode (rtx, machine_mode,
441 unsigned HOST_WIDE_INT, bool);
442 static rtx if_then_else_cond (rtx, rtx *, rtx *);
443 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
444 static bool rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
445 static rtx make_field_assignment (rtx);
446 static rtx apply_distributive_law (rtx);
447 static rtx distribute_and_simplify_rtx (rtx, int);
448 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
449 unsigned HOST_WIDE_INT);
450 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
451 unsigned HOST_WIDE_INT);
452 static bool merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
453 HOST_WIDE_INT, machine_mode, bool *);
454 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
455 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
456 int);
457 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
458 static rtx gen_lowpart_for_combine (machine_mode, rtx);
459 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
460 rtx *, rtx *);
461 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
462 static void update_table_tick (rtx);
463 static void record_value_for_reg (rtx, rtx_insn *, rtx);
464 static void check_promoted_subreg (rtx_insn *, rtx);
465 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
466 static void record_dead_and_set_regs (rtx_insn *);
467 static bool get_last_value_validate (rtx *, rtx_insn *, int, bool);
468 static rtx get_last_value (const_rtx);
469 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
470 static bool reg_dead_at_p (rtx, rtx_insn *);
471 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
472 static bool reg_bitfield_target_p (rtx, rtx);
473 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *,
474 rtx, rtx, rtx);
475 static void distribute_links (struct insn_link *);
476 static void mark_used_regs_combine (rtx);
477 static void record_promoted_value (rtx_insn *, rtx);
478 static bool unmentioned_reg_p (rtx, rtx);
479 static void record_truncated_values (rtx *, void *);
480 static bool reg_truncated_to_mode (machine_mode, const_rtx);
481 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
484 /* It is not safe to use ordinary gen_lowpart in combine.
485 See comments in gen_lowpart_for_combine. */
486 #undef RTL_HOOKS_GEN_LOWPART
487 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
489 /* Our implementation of gen_lowpart never emits a new pseudo. */
490 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
491 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
493 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
494 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
496 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
497 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
499 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
500 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
502 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
505 /* Convenience wrapper for the canonicalize_comparison target hook.
506 Target hooks cannot use enum rtx_code. */
507 static inline void
508 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
509 bool op0_preserve_value)
511 int code_int = (int)*code;
512 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
513 *code = (enum rtx_code)code_int;
516 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
517 PATTERN cannot be split. Otherwise, it returns an insn sequence.
518 This is a wrapper around split_insns which ensures that the
519 reg_stat vector is made larger if the splitter creates a new
520 register. */
522 static rtx_insn *
523 combine_split_insns (rtx pattern, rtx_insn *insn)
525 rtx_insn *ret;
526 unsigned int nregs;
528 ret = split_insns (pattern, insn);
529 nregs = max_reg_num ();
530 if (nregs > reg_stat.length ())
531 reg_stat.safe_grow_cleared (nregs, true);
532 return ret;
535 /* This is used by find_single_use to locate an rtx in LOC that
536 contains exactly one use of DEST, which is typically a REG.
537 It returns a pointer to the innermost rtx expression
538 containing DEST. Appearances of DEST that are being used to
539 totally replace it are not counted. */
541 static rtx *
542 find_single_use_1 (rtx dest, rtx *loc)
544 rtx x = *loc;
545 enum rtx_code code = GET_CODE (x);
546 rtx *result = NULL;
547 rtx *this_result;
548 int i;
549 const char *fmt;
551 switch (code)
553 case CONST:
554 case LABEL_REF:
555 case SYMBOL_REF:
556 CASE_CONST_ANY:
557 case CLOBBER:
558 return 0;
560 case SET:
561 /* If the destination is anything other than PC, a REG or a SUBREG
562 of a REG that occupies all of the REG, the insn uses DEST if
563 it is mentioned in the destination or the source. Otherwise, we
564 need just check the source. */
565 if (GET_CODE (SET_DEST (x)) != PC
566 && !REG_P (SET_DEST (x))
567 && ! (GET_CODE (SET_DEST (x)) == SUBREG
568 && REG_P (SUBREG_REG (SET_DEST (x)))
569 && !read_modify_subreg_p (SET_DEST (x))))
570 break;
572 return find_single_use_1 (dest, &SET_SRC (x));
574 case MEM:
575 case SUBREG:
576 return find_single_use_1 (dest, &XEXP (x, 0));
578 default:
579 break;
582 /* If it wasn't one of the common cases above, check each expression and
583 vector of this code. Look for a unique usage of DEST. */
585 fmt = GET_RTX_FORMAT (code);
586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
588 if (fmt[i] == 'e')
590 if (dest == XEXP (x, i)
591 || (REG_P (dest) && REG_P (XEXP (x, i))
592 && REGNO (dest) == REGNO (XEXP (x, i))))
593 this_result = loc;
594 else
595 this_result = find_single_use_1 (dest, &XEXP (x, i));
597 if (result == NULL)
598 result = this_result;
599 else if (this_result)
600 /* Duplicate usage. */
601 return NULL;
603 else if (fmt[i] == 'E')
605 int j;
607 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
609 if (XVECEXP (x, i, j) == dest
610 || (REG_P (dest)
611 && REG_P (XVECEXP (x, i, j))
612 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
613 this_result = loc;
614 else
615 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
617 if (result == NULL)
618 result = this_result;
619 else if (this_result)
620 return NULL;
625 return result;
629 /* See if DEST, produced in INSN, is used only a single time in the
630 sequel. If so, return a pointer to the innermost rtx expression in which
631 it is used.
633 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
635 Otherwise, we find the single use by finding an insn that has a
636 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
637 only referenced once in that insn, we know that it must be the first
638 and last insn referencing DEST. */
640 static rtx *
641 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
643 basic_block bb;
644 rtx_insn *next;
645 rtx *result;
646 struct insn_link *link;
648 if (!REG_P (dest))
649 return 0;
651 bb = BLOCK_FOR_INSN (insn);
652 for (next = NEXT_INSN (insn);
653 next && BLOCK_FOR_INSN (next) == bb;
654 next = NEXT_INSN (next))
655 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
657 FOR_EACH_LOG_LINK (link, next)
658 if (link->insn == insn && link->regno == REGNO (dest))
659 break;
661 if (link)
663 result = find_single_use_1 (dest, &PATTERN (next));
664 if (ploc)
665 *ploc = next;
666 return result;
670 return 0;
673 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
674 insn. The substitution can be undone by undo_all. If INTO is already
675 set to NEWVAL, do not record this change. Because computing NEWVAL might
676 also call SUBST, we have to compute it before we put anything into
677 the undo table. */
679 static void
680 do_SUBST (rtx *into, rtx newval)
682 struct undo *buf;
683 rtx oldval = *into;
685 if (oldval == newval)
686 return;
688 /* We'd like to catch as many invalid transformations here as
689 possible. Unfortunately, there are way too many mode changes
690 that are perfectly valid, so we'd waste too much effort for
691 little gain doing the checks here. Focus on catching invalid
692 transformations involving integer constants. */
693 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
694 && CONST_INT_P (newval))
696 /* Sanity check that we're replacing oldval with a CONST_INT
697 that is a valid sign-extension for the original mode. */
698 gcc_assert (INTVAL (newval)
699 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
701 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
702 CONST_INT is not valid, because after the replacement, the
703 original mode would be gone. Unfortunately, we can't tell
704 when do_SUBST is called to replace the operand thereof, so we
705 perform this test on oldval instead, checking whether an
706 invalid replacement took place before we got here. */
707 gcc_assert (!(GET_CODE (oldval) == SUBREG
708 && CONST_INT_P (SUBREG_REG (oldval))));
709 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
710 && CONST_INT_P (XEXP (oldval, 0))));
713 if (undobuf.frees)
714 buf = undobuf.frees, undobuf.frees = buf->next;
715 else
716 buf = XNEW (struct undo);
718 buf->kind = UNDO_RTX;
719 buf->where.r = into;
720 buf->old_contents.r = oldval;
721 *into = newval;
723 buf->next = undobuf.undos, undobuf.undos = buf;
726 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
728 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
729 for the value of a HOST_WIDE_INT value (including CONST_INT) is
730 not safe. */
732 static void
733 do_SUBST_INT (int *into, int newval)
735 struct undo *buf;
736 int oldval = *into;
738 if (oldval == newval)
739 return;
741 if (undobuf.frees)
742 buf = undobuf.frees, undobuf.frees = buf->next;
743 else
744 buf = XNEW (struct undo);
746 buf->kind = UNDO_INT;
747 buf->where.i = into;
748 buf->old_contents.i = oldval;
749 *into = newval;
751 buf->next = undobuf.undos, undobuf.undos = buf;
754 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
756 /* Similar to SUBST, but just substitute the mode. This is used when
757 changing the mode of a pseudo-register, so that any other
758 references to the entry in the regno_reg_rtx array will change as
759 well. */
761 static void
762 subst_mode (int regno, machine_mode newval)
764 struct undo *buf;
765 rtx reg = regno_reg_rtx[regno];
766 machine_mode oldval = GET_MODE (reg);
768 if (oldval == newval)
769 return;
771 if (undobuf.frees)
772 buf = undobuf.frees, undobuf.frees = buf->next;
773 else
774 buf = XNEW (struct undo);
776 buf->kind = UNDO_MODE;
777 buf->where.regno = regno;
778 buf->old_contents.m = oldval;
779 adjust_reg_mode (reg, newval);
781 buf->next = undobuf.undos, undobuf.undos = buf;
784 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
786 static void
787 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
789 struct undo *buf;
790 struct insn_link * oldval = *into;
792 if (oldval == newval)
793 return;
795 if (undobuf.frees)
796 buf = undobuf.frees, undobuf.frees = buf->next;
797 else
798 buf = XNEW (struct undo);
800 buf->kind = UNDO_LINKS;
801 buf->where.l = into;
802 buf->old_contents.l = oldval;
803 *into = newval;
805 buf->next = undobuf.undos, undobuf.undos = buf;
808 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
810 /* Subroutine of try_combine. Determine whether the replacement patterns
811 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
812 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
813 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
814 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
815 of all the instructions can be estimated and the replacements are more
816 expensive than the original sequence. */
818 static bool
819 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
820 rtx newpat, rtx newi2pat, rtx newotherpat)
822 int i0_cost, i1_cost, i2_cost, i3_cost;
823 int new_i2_cost, new_i3_cost;
824 int old_cost, new_cost;
826 /* Lookup the original insn_costs. */
827 i2_cost = INSN_COST (i2);
828 i3_cost = INSN_COST (i3);
830 if (i1)
832 i1_cost = INSN_COST (i1);
833 if (i0)
835 i0_cost = INSN_COST (i0);
836 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
837 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
839 else
841 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
842 ? i1_cost + i2_cost + i3_cost : 0);
843 i0_cost = 0;
846 else
848 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
849 i1_cost = i0_cost = 0;
852 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
853 correct that. */
854 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
855 old_cost -= i1_cost;
858 /* Calculate the replacement insn_costs. */
859 rtx tmp = PATTERN (i3);
860 PATTERN (i3) = newpat;
861 int tmpi = INSN_CODE (i3);
862 INSN_CODE (i3) = -1;
863 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
864 PATTERN (i3) = tmp;
865 INSN_CODE (i3) = tmpi;
866 if (newi2pat)
868 tmp = PATTERN (i2);
869 PATTERN (i2) = newi2pat;
870 tmpi = INSN_CODE (i2);
871 INSN_CODE (i2) = -1;
872 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
873 PATTERN (i2) = tmp;
874 INSN_CODE (i2) = tmpi;
875 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
876 ? new_i2_cost + new_i3_cost : 0;
878 else
880 new_cost = new_i3_cost;
881 new_i2_cost = 0;
884 if (undobuf.other_insn)
886 int old_other_cost, new_other_cost;
888 old_other_cost = INSN_COST (undobuf.other_insn);
889 tmp = PATTERN (undobuf.other_insn);
890 PATTERN (undobuf.other_insn) = newotherpat;
891 tmpi = INSN_CODE (undobuf.other_insn);
892 INSN_CODE (undobuf.other_insn) = -1;
893 new_other_cost = insn_cost (undobuf.other_insn,
894 optimize_this_for_speed_p);
895 PATTERN (undobuf.other_insn) = tmp;
896 INSN_CODE (undobuf.other_insn) = tmpi;
897 if (old_other_cost > 0 && new_other_cost > 0)
899 old_cost += old_other_cost;
900 new_cost += new_other_cost;
902 else
903 old_cost = 0;
906 /* Disallow this combination if both new_cost and old_cost are greater than
907 zero, and new_cost is greater than old cost. */
908 bool reject = old_cost > 0 && new_cost > old_cost;
910 if (dump_file)
912 fprintf (dump_file, "%s combination of insns ",
913 reject ? "rejecting" : "allowing");
914 if (i0)
915 fprintf (dump_file, "%d, ", INSN_UID (i0));
916 if (i1 && INSN_UID (i1) != INSN_UID (i2))
917 fprintf (dump_file, "%d, ", INSN_UID (i1));
918 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
920 fprintf (dump_file, "original costs ");
921 if (i0)
922 fprintf (dump_file, "%d + ", i0_cost);
923 if (i1 && INSN_UID (i1) != INSN_UID (i2))
924 fprintf (dump_file, "%d + ", i1_cost);
925 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
927 if (newi2pat)
928 fprintf (dump_file, "replacement costs %d + %d = %d\n",
929 new_i2_cost, new_i3_cost, new_cost);
930 else
931 fprintf (dump_file, "replacement cost %d\n", new_cost);
934 if (reject)
935 return false;
937 /* Update the uid_insn_cost array with the replacement costs. */
938 INSN_COST (i2) = new_i2_cost;
939 INSN_COST (i3) = new_i3_cost;
940 if (i1)
942 INSN_COST (i1) = 0;
943 if (i0)
944 INSN_COST (i0) = 0;
947 return true;
951 /* Delete any insns that copy a register to itself.
952 Return true if the CFG was changed. */
954 static bool
955 delete_noop_moves (void)
957 rtx_insn *insn, *next;
958 basic_block bb;
960 bool edges_deleted = false;
962 FOR_EACH_BB_FN (bb, cfun)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 edges_deleted |= delete_insn_and_edges (insn);
977 return edges_deleted;
981 /* Return false if we do not want to (or cannot) combine DEF. */
982 static bool
983 can_combine_def_p (df_ref def)
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
989 unsigned int regno = DF_REF_REGNO (def);
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1001 return true;
1004 /* Return false if we do not want to (or cannot) combine USE. */
1005 static bool
1006 can_combine_use_p (df_ref use)
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1012 return true;
1015 /* Fill in log links field for all insns. */
1017 static void
1018 create_log_links (void)
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1036 FOR_EACH_BB_FN (bb, cfun)
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1046 FOR_EACH_INSN_DEF (def, insn)
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1051 if (!next_use[regno])
1052 continue;
1054 if (!can_combine_def_p (def))
1055 continue;
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1060 if (BLOCK_FOR_INSN (use_insn) != bb)
1061 continue;
1063 /* flow.c claimed:
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (use_insn)) >= 0)
1072 continue;
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1091 free (next_use);
1094 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B. */
1099 static bool
1100 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1102 struct insn_link *links;
1103 FOR_EACH_LOG_LINK (links, b)
1104 if (links->insn == a)
1105 return true;
1106 return false;
1109 /* Main entry point for combiner. F is the first insn of the function.
1110 NREGS is the first unused pseudo-reg number.
1112 Return nonzero if the CFG was changed (e.g. if the combiner has
1113 turned an indirect jump instruction into a direct jump). */
1114 static bool
1115 combine_instructions (rtx_insn *f, unsigned int nregs)
1117 rtx_insn *insn, *next;
1118 struct insn_link *links, *nextlinks;
1119 rtx_insn *first;
1120 basic_block last_bb;
1122 bool new_direct_jump_p = false;
1124 for (first = f; first && !NONDEBUG_INSN_P (first); )
1125 first = NEXT_INSN (first);
1126 if (!first)
1127 return false;
1129 combine_attempts = 0;
1130 combine_merges = 0;
1131 combine_extras = 0;
1132 combine_successes = 0;
1134 rtl_hooks = combine_rtl_hooks;
1136 reg_stat.safe_grow_cleared (nregs, true);
1138 init_recog_no_volatile ();
1140 /* Allocate array for insn info. */
1141 max_uid_known = get_max_uid ();
1142 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1143 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1144 gcc_obstack_init (&insn_link_obstack);
1146 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1148 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1149 problems when, for example, we have j <<= 1 in a loop. */
1151 nonzero_sign_valid = 0;
1152 label_tick = label_tick_ebb_start = 1;
1154 /* Scan all SETs and see if we can deduce anything about what
1155 bits are known to be zero for some registers and how many copies
1156 of the sign bit are known to exist for those registers.
1158 Also set any known values so that we can use it while searching
1159 for what bits are known to be set. */
1161 setup_incoming_promotions (first);
1162 /* Allow the entry block and the first block to fall into the same EBB.
1163 Conceptually the incoming promotions are assigned to the entry block. */
1164 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1166 create_log_links ();
1167 FOR_EACH_BB_FN (this_basic_block, cfun)
1169 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1170 last_call_luid = 0;
1171 mem_last_set = -1;
1173 label_tick++;
1174 if (!single_pred_p (this_basic_block)
1175 || single_pred (this_basic_block) != last_bb)
1176 label_tick_ebb_start = label_tick;
1177 last_bb = this_basic_block;
1179 FOR_BB_INSNS (this_basic_block, insn)
1180 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1182 rtx links;
1184 subst_low_luid = DF_INSN_LUID (insn);
1185 subst_insn = insn;
1187 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1188 record_dead_and_set_regs (insn);
1190 if (AUTO_INC_DEC)
1191 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1192 if (REG_NOTE_KIND (links) == REG_INC)
1193 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1194 insn);
1196 /* Record the current insn_cost of this instruction. */
1197 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1198 if (dump_file)
1200 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1201 dump_insn_slim (dump_file, insn);
1206 nonzero_sign_valid = 1;
1208 /* Now scan all the insns in forward order. */
1209 label_tick = label_tick_ebb_start = 1;
1210 init_reg_last ();
1211 setup_incoming_promotions (first);
1212 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1213 int max_combine = param_max_combine_insns;
1215 FOR_EACH_BB_FN (this_basic_block, cfun)
1217 rtx_insn *last_combined_insn = NULL;
1219 /* Ignore instruction combination in basic blocks that are going to
1220 be removed as unreachable anyway. See PR82386. */
1221 if (EDGE_COUNT (this_basic_block->preds) == 0)
1222 continue;
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1228 label_tick++;
1229 if (!single_pred_p (this_basic_block)
1230 || single_pred (this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1243 while (last_combined_insn
1244 && (!NONDEBUG_INSN_P (last_combined_insn)
1245 || last_combined_insn->deleted ()))
1246 last_combined_insn = PREV_INSN (last_combined_insn);
1247 if (last_combined_insn == NULL_RTX
1248 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1261 /* Try this insn with each insn it links back to. */
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1272 /* Try each sequence of three linked insns ending with this one. */
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1277 rtx_insn *link = links->insn;
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1294 /* Try combining an insn with two different insns whose results it
1295 uses. */
1296 if (max_combine >= 3)
1297 FOR_EACH_LOG_LINK (links, insn)
1298 for (nextlinks = links->next; nextlinks;
1299 nextlinks = nextlinks->next)
1300 if ((next = try_combine (insn, links->insn,
1301 nextlinks->insn, NULL,
1302 &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1306 statistics_counter_event (cfun, "three-insn combine", 1);
1307 goto retry;
1310 /* Try four-instruction combinations. */
1311 if (max_combine >= 4)
1312 FOR_EACH_LOG_LINK (links, insn)
1314 struct insn_link *next1;
1315 rtx_insn *link = links->insn;
1317 /* If the linked insn has been replaced by a note, then there
1318 is no point in pursuing this chain any further. */
1319 if (NOTE_P (link))
1320 continue;
1322 FOR_EACH_LOG_LINK (next1, link)
1324 rtx_insn *link1 = next1->insn;
1325 if (NOTE_P (link1))
1326 continue;
1327 /* I0 -> I1 -> I2 -> I3. */
1328 FOR_EACH_LOG_LINK (nextlinks, link1)
1329 if ((next = try_combine (insn, link, link1,
1330 nextlinks->insn,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1334 statistics_counter_event (cfun, "four-insn combine", 1);
1335 goto retry;
1337 /* I0, I1 -> I2, I2 -> I3. */
1338 for (nextlinks = next1->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, link, link1,
1341 nextlinks->insn,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1345 statistics_counter_event (cfun, "four-insn combine", 1);
1346 goto retry;
1350 for (next1 = links->next; next1; next1 = next1->next)
1352 rtx_insn *link1 = next1->insn;
1353 if (NOTE_P (link1))
1354 continue;
1355 /* I0 -> I2; I1, I2 -> I3. */
1356 FOR_EACH_LOG_LINK (nextlinks, link)
1357 if ((next = try_combine (insn, link, link1,
1358 nextlinks->insn,
1359 &new_direct_jump_p,
1360 last_combined_insn)) != 0)
1362 statistics_counter_event (cfun, "four-insn combine", 1);
1363 goto retry;
1365 /* I0 -> I1; I1, I2 -> I3. */
1366 FOR_EACH_LOG_LINK (nextlinks, link1)
1367 if ((next = try_combine (insn, link, link1,
1368 nextlinks->insn,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1372 statistics_counter_event (cfun, "four-insn combine", 1);
1373 goto retry;
1378 /* Try this insn with each REG_EQUAL note it links back to. */
1379 FOR_EACH_LOG_LINK (links, insn)
1381 rtx set, note;
1382 rtx_insn *temp = links->insn;
1383 if ((set = single_set (temp)) != 0
1384 && (note = find_reg_equal_equiv_note (temp)) != 0
1385 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1386 && ! side_effects_p (SET_SRC (set))
1387 /* Avoid using a register that may already been marked
1388 dead by an earlier instruction. */
1389 && ! unmentioned_reg_p (note, SET_SRC (set))
1390 && (GET_MODE (note) == VOIDmode
1391 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1392 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1393 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1394 || (GET_MODE (XEXP (SET_DEST (set), 0))
1395 == GET_MODE (note))))))
1397 /* Temporarily replace the set's source with the
1398 contents of the REG_EQUAL note. The insn will
1399 be deleted or recognized by try_combine. */
1400 rtx orig_src = SET_SRC (set);
1401 rtx orig_dest = SET_DEST (set);
1402 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1403 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1404 SET_SRC (set) = note;
1405 i2mod = temp;
1406 i2mod_old_rhs = copy_rtx (orig_src);
1407 i2mod_new_rhs = copy_rtx (note);
1408 next = try_combine (insn, i2mod, NULL, NULL,
1409 &new_direct_jump_p,
1410 last_combined_insn);
1411 i2mod = NULL;
1412 if (next)
1414 statistics_counter_event (cfun, "insn-with-note combine", 1);
1415 goto retry;
1417 INSN_CODE (temp) = -1;
1418 SET_SRC (set) = orig_src;
1419 SET_DEST (set) = orig_dest;
1423 if (!NOTE_P (insn))
1424 record_dead_and_set_regs (insn);
1426 retry:
1431 default_rtl_profile ();
1432 clear_bb_flags ();
1434 if (purge_all_dead_edges ())
1435 new_direct_jump_p = true;
1436 if (delete_noop_moves ())
1437 new_direct_jump_p = true;
1439 /* Clean up. */
1440 obstack_free (&insn_link_obstack, NULL);
1441 free (uid_log_links);
1442 free (uid_insn_cost);
1443 reg_stat.release ();
1446 struct undo *undo, *next;
1447 for (undo = undobuf.frees; undo; undo = next)
1449 next = undo->next;
1450 free (undo);
1452 undobuf.frees = 0;
1455 statistics_counter_event (cfun, "attempts", combine_attempts);
1456 statistics_counter_event (cfun, "merges", combine_merges);
1457 statistics_counter_event (cfun, "extras", combine_extras);
1458 statistics_counter_event (cfun, "successes", combine_successes);
1460 nonzero_sign_valid = 0;
1461 rtl_hooks = general_rtl_hooks;
1463 /* Make recognizer allow volatile MEMs again. */
1464 init_recog ();
1466 return new_direct_jump_p;
1469 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1471 static void
1472 init_reg_last (void)
1474 unsigned int i;
1475 reg_stat_type *p;
1477 FOR_EACH_VEC_ELT (reg_stat, i, p)
1478 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1481 /* Set up any promoted values for incoming argument registers. */
1483 static void
1484 setup_incoming_promotions (rtx_insn *first)
1486 tree arg;
1487 bool strictly_local = false;
1489 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1490 arg = DECL_CHAIN (arg))
1492 rtx x, reg = DECL_INCOMING_RTL (arg);
1493 int uns1, uns3;
1494 machine_mode mode1, mode2, mode3, mode4;
1496 /* Only continue if the incoming argument is in a register. */
1497 if (!REG_P (reg))
1498 continue;
1500 /* Determine, if possible, whether all call sites of the current
1501 function lie within the current compilation unit. (This does
1502 take into account the exporting of a function via taking its
1503 address, and so forth.) */
1504 strictly_local
1505 = cgraph_node::local_info_node (current_function_decl)->local;
1507 /* The mode and signedness of the argument before any promotions happen
1508 (equal to the mode of the pseudo holding it at that stage). */
1509 mode1 = TYPE_MODE (TREE_TYPE (arg));
1510 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1512 /* The mode and signedness of the argument after any source language and
1513 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1514 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1515 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1517 /* The mode and signedness of the argument as it is actually passed,
1518 see assign_parm_setup_reg in function.cc. */
1519 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1520 TREE_TYPE (cfun->decl), 0);
1522 /* The mode of the register in which the argument is being passed. */
1523 mode4 = GET_MODE (reg);
1525 /* Eliminate sign extensions in the callee when:
1526 (a) A mode promotion has occurred; */
1527 if (mode1 == mode3)
1528 continue;
1529 /* (b) The mode of the register is the same as the mode of
1530 the argument as it is passed; */
1531 if (mode3 != mode4)
1532 continue;
1533 /* (c) There's no language level extension; */
1534 if (mode1 == mode2)
1536 /* (c.1) All callers are from the current compilation unit. If that's
1537 the case we don't have to rely on an ABI, we only have to know
1538 what we're generating right now, and we know that we will do the
1539 mode1 to mode2 promotion with the given sign. */
1540 else if (!strictly_local)
1541 continue;
1542 /* (c.2) The combination of the two promotions is useful. This is
1543 true when the signs match, or if the first promotion is unsigned.
1544 In the later case, (sign_extend (zero_extend x)) is the same as
1545 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1546 else if (uns1)
1547 uns3 = true;
1548 else if (uns3)
1549 continue;
1551 /* Record that the value was promoted from mode1 to mode3,
1552 so that any sign extension at the head of the current
1553 function may be eliminated. */
1554 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1555 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1556 record_value_for_reg (reg, first, x);
1560 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1561 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1562 because some machines (maybe most) will actually do the sign-extension and
1563 this is the conservative approach.
1565 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1566 kludge. */
1568 static rtx
1569 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1571 scalar_int_mode int_mode;
1572 if (CONST_INT_P (src)
1573 && is_a <scalar_int_mode> (mode, &int_mode)
1574 && GET_MODE_PRECISION (int_mode) < prec
1575 && INTVAL (src) > 0
1576 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1577 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1579 return src;
1582 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1583 and SET. */
1585 static void
1586 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1587 rtx x)
1589 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1590 unsigned HOST_WIDE_INT bits = 0;
1591 rtx reg_equal = NULL, src = SET_SRC (set);
1592 unsigned int num = 0;
1594 if (reg_equal_note)
1595 reg_equal = XEXP (reg_equal_note, 0);
1597 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1599 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1600 if (reg_equal)
1601 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1604 /* Don't call nonzero_bits if it cannot change anything. */
1605 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1607 machine_mode mode = GET_MODE (x);
1608 if (GET_MODE_CLASS (mode) == MODE_INT
1609 && HWI_COMPUTABLE_MODE_P (mode))
1610 mode = nonzero_bits_mode;
1611 bits = nonzero_bits (src, mode);
1612 if (reg_equal && bits)
1613 bits &= nonzero_bits (reg_equal, mode);
1614 rsp->nonzero_bits |= bits;
1617 /* Don't call num_sign_bit_copies if it cannot change anything. */
1618 if (rsp->sign_bit_copies != 1)
1620 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1621 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1623 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1624 if (num == 0 || numeq > num)
1625 num = numeq;
1627 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1628 rsp->sign_bit_copies = num;
1632 /* Called via note_stores. If X is a pseudo that is narrower than
1633 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1635 If we are setting only a portion of X and we can't figure out what
1636 portion, assume all bits will be used since we don't know what will
1637 be happening.
1639 Similarly, set how many bits of X are known to be copies of the sign bit
1640 at all locations in the function. This is the smallest number implied
1641 by any set of X. */
1643 static void
1644 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1646 rtx_insn *insn = (rtx_insn *) data;
1647 scalar_int_mode mode;
1649 if (REG_P (x)
1650 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1651 /* If this register is undefined at the start of the file, we can't
1652 say what its contents were. */
1653 && ! REGNO_REG_SET_P
1654 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1655 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1656 && HWI_COMPUTABLE_MODE_P (mode))
1658 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1660 if (set == 0 || GET_CODE (set) == CLOBBER)
1662 rsp->nonzero_bits = GET_MODE_MASK (mode);
1663 rsp->sign_bit_copies = 1;
1664 return;
1667 /* If this register is being initialized using itself, and the
1668 register is uninitialized in this basic block, and there are
1669 no LOG_LINKS which set the register, then part of the
1670 register is uninitialized. In that case we can't assume
1671 anything about the number of nonzero bits.
1673 ??? We could do better if we checked this in
1674 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1675 could avoid making assumptions about the insn which initially
1676 sets the register, while still using the information in other
1677 insns. We would have to be careful to check every insn
1678 involved in the combination. */
1680 if (insn
1681 && reg_referenced_p (x, PATTERN (insn))
1682 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1683 REGNO (x)))
1685 struct insn_link *link;
1687 FOR_EACH_LOG_LINK (link, insn)
1688 if (dead_or_set_p (link->insn, x))
1689 break;
1690 if (!link)
1692 rsp->nonzero_bits = GET_MODE_MASK (mode);
1693 rsp->sign_bit_copies = 1;
1694 return;
1698 /* If this is a complex assignment, see if we can convert it into a
1699 simple assignment. */
1700 set = expand_field_assignment (set);
1702 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1703 set what we know about X. */
1705 if (SET_DEST (set) == x
1706 || (paradoxical_subreg_p (SET_DEST (set))
1707 && SUBREG_REG (SET_DEST (set)) == x))
1708 update_rsp_from_reg_equal (rsp, insn, set, x);
1709 else
1711 rsp->nonzero_bits = GET_MODE_MASK (mode);
1712 rsp->sign_bit_copies = 1;
1717 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1718 optionally insns that were previously combined into I3 or that will be
1719 combined into the merger of INSN and I3. The order is PRED, PRED2,
1720 INSN, SUCC, SUCC2, I3.
1722 Return false if the combination is not allowed for any reason.
1724 If the combination is allowed, *PDEST will be set to the single
1725 destination of INSN and *PSRC to the single source, and this function
1726 will return true. */
1728 static bool
1729 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1730 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1731 rtx *pdest, rtx *psrc)
1733 int i;
1734 const_rtx set = 0;
1735 rtx src, dest;
1736 rtx_insn *p;
1737 rtx link;
1738 bool all_adjacent = true;
1739 bool (*is_volatile_p) (const_rtx);
1741 if (succ)
1743 if (succ2)
1745 if (next_active_insn (succ2) != i3)
1746 all_adjacent = false;
1747 if (next_active_insn (succ) != succ2)
1748 all_adjacent = false;
1750 else if (next_active_insn (succ) != i3)
1751 all_adjacent = false;
1752 if (next_active_insn (insn) != succ)
1753 all_adjacent = false;
1755 else if (next_active_insn (insn) != i3)
1756 all_adjacent = false;
1758 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1759 or a PARALLEL consisting of such a SET and CLOBBERs.
1761 If INSN has CLOBBER parallel parts, ignore them for our processing.
1762 By definition, these happen during the execution of the insn. When it
1763 is merged with another insn, all bets are off. If they are, in fact,
1764 needed and aren't also supplied in I3, they may be added by
1765 recog_for_combine. Otherwise, it won't match.
1767 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1768 note.
1770 Get the source and destination of INSN. If more than one, can't
1771 combine. */
1773 if (GET_CODE (PATTERN (insn)) == SET)
1774 set = PATTERN (insn);
1775 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1776 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1778 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1780 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1782 switch (GET_CODE (elt))
1784 /* This is important to combine floating point insns
1785 for the SH4 port. */
1786 case USE:
1787 /* Combining an isolated USE doesn't make sense.
1788 We depend here on combinable_i3pat to reject them. */
1789 /* The code below this loop only verifies that the inputs of
1790 the SET in INSN do not change. We call reg_set_between_p
1791 to verify that the REG in the USE does not change between
1792 I3 and INSN.
1793 If the USE in INSN was for a pseudo register, the matching
1794 insn pattern will likely match any register; combining this
1795 with any other USE would only be safe if we knew that the
1796 used registers have identical values, or if there was
1797 something to tell them apart, e.g. different modes. For
1798 now, we forgo such complicated tests and simply disallow
1799 combining of USES of pseudo registers with any other USE. */
1800 if (REG_P (XEXP (elt, 0))
1801 && GET_CODE (PATTERN (i3)) == PARALLEL)
1803 rtx i3pat = PATTERN (i3);
1804 int i = XVECLEN (i3pat, 0) - 1;
1805 unsigned int regno = REGNO (XEXP (elt, 0));
1809 rtx i3elt = XVECEXP (i3pat, 0, i);
1811 if (GET_CODE (i3elt) == USE
1812 && REG_P (XEXP (i3elt, 0))
1813 && (REGNO (XEXP (i3elt, 0)) == regno
1814 ? reg_set_between_p (XEXP (elt, 0),
1815 PREV_INSN (insn), i3)
1816 : regno >= FIRST_PSEUDO_REGISTER))
1817 return false;
1819 while (--i >= 0);
1821 break;
1823 /* We can ignore CLOBBERs. */
1824 case CLOBBER:
1825 break;
1827 case SET:
1828 /* Ignore SETs whose result isn't used but not those that
1829 have side-effects. */
1830 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1831 && insn_nothrow_p (insn)
1832 && !side_effects_p (elt))
1833 break;
1835 /* If we have already found a SET, this is a second one and
1836 so we cannot combine with this insn. */
1837 if (set)
1838 return false;
1840 set = elt;
1841 break;
1843 default:
1844 /* Anything else means we can't combine. */
1845 return false;
1849 if (set == 0
1850 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1851 so don't do anything with it. */
1852 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1853 return false;
1855 else
1856 return false;
1858 if (set == 0)
1859 return false;
1861 /* The simplification in expand_field_assignment may call back to
1862 get_last_value, so set safe guard here. */
1863 subst_low_luid = DF_INSN_LUID (insn);
1865 set = expand_field_assignment (set);
1866 src = SET_SRC (set), dest = SET_DEST (set);
1868 /* Do not eliminate user-specified register if it is in an
1869 asm input because we may break the register asm usage defined
1870 in GCC manual if allow to do so.
1871 Be aware that this may cover more cases than we expect but this
1872 should be harmless. */
1873 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1874 && extract_asm_operands (PATTERN (i3)))
1875 return false;
1877 /* Don't eliminate a store in the stack pointer. */
1878 if (dest == stack_pointer_rtx
1879 /* Don't combine with an insn that sets a register to itself if it has
1880 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1881 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1882 /* Can't merge an ASM_OPERANDS. */
1883 || GET_CODE (src) == ASM_OPERANDS
1884 /* Can't merge a function call. */
1885 || GET_CODE (src) == CALL
1886 /* Don't eliminate a function call argument. */
1887 || (CALL_P (i3)
1888 && (find_reg_fusage (i3, USE, dest)
1889 || (REG_P (dest)
1890 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1891 && global_regs[REGNO (dest)])))
1892 /* Don't substitute into an incremented register. */
1893 || FIND_REG_INC_NOTE (i3, dest)
1894 || (succ && FIND_REG_INC_NOTE (succ, dest))
1895 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1896 /* Don't substitute into a non-local goto, this confuses CFG. */
1897 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1898 /* Make sure that DEST is not used after INSN but before SUCC, or
1899 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1900 || (!all_adjacent
1901 && ((succ2
1902 && (reg_used_between_p (dest, succ2, i3)
1903 || reg_used_between_p (dest, succ, succ2)))
1904 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1905 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1906 || (succ
1907 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1908 that case SUCC is not in the insn stream, so use SUCC2
1909 instead for this test. */
1910 && reg_used_between_p (dest, insn,
1911 succ2
1912 && INSN_UID (succ) == INSN_UID (succ2)
1913 ? succ2 : succ))))
1914 /* Make sure that the value that is to be substituted for the register
1915 does not use any registers whose values alter in between. However,
1916 If the insns are adjacent, a use can't cross a set even though we
1917 think it might (this can happen for a sequence of insns each setting
1918 the same destination; last_set of that register might point to
1919 a NOTE). If INSN has a REG_EQUIV note, the register is always
1920 equivalent to the memory so the substitution is valid even if there
1921 are intervening stores. Also, don't move a volatile asm or
1922 UNSPEC_VOLATILE across any other insns. */
1923 || (! all_adjacent
1924 && (((!MEM_P (src)
1925 || ! find_reg_note (insn, REG_EQUIV, src))
1926 && modified_between_p (src, insn, i3))
1927 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1928 || GET_CODE (src) == UNSPEC_VOLATILE))
1929 /* Don't combine across a CALL_INSN, because that would possibly
1930 change whether the life span of some REGs crosses calls or not,
1931 and it is a pain to update that information.
1932 Exception: if source is a constant, moving it later can't hurt.
1933 Accept that as a special case. */
1934 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1935 return false;
1937 /* DEST must be a REG. */
1938 if (REG_P (dest))
1940 /* If register alignment is being enforced for multi-word items in all
1941 cases except for parameters, it is possible to have a register copy
1942 insn referencing a hard register that is not allowed to contain the
1943 mode being copied and which would not be valid as an operand of most
1944 insns. Eliminate this problem by not combining with such an insn.
1946 Also, on some machines we don't want to extend the life of a hard
1947 register. */
1949 if (REG_P (src)
1950 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1951 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
1952 /* Don't extend the life of a hard register unless it is
1953 user variable (if we have few registers) or it can't
1954 fit into the desired register (meaning something special
1955 is going on).
1956 Also avoid substituting a return register into I3, because
1957 reload can't handle a conflict with constraints of other
1958 inputs. */
1959 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1960 && !targetm.hard_regno_mode_ok (REGNO (src),
1961 GET_MODE (src)))))
1962 return false;
1964 else
1965 return false;
1968 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1969 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1970 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1972 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1974 /* If the clobber represents an earlyclobber operand, we must not
1975 substitute an expression containing the clobbered register.
1976 As we do not analyze the constraint strings here, we have to
1977 make the conservative assumption. However, if the register is
1978 a fixed hard reg, the clobber cannot represent any operand;
1979 we leave it up to the machine description to either accept or
1980 reject use-and-clobber patterns. */
1981 if (!REG_P (reg)
1982 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1983 || !fixed_regs[REGNO (reg)])
1984 if (reg_overlap_mentioned_p (reg, src))
1985 return false;
1988 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1989 or not), reject, unless nothing volatile comes between it and I3 */
1991 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1993 /* Make sure neither succ nor succ2 contains a volatile reference. */
1994 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1995 return false;
1996 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1997 return false;
1998 /* We'll check insns between INSN and I3 below. */
2001 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2002 to be an explicit register variable, and was chosen for a reason. */
2004 if (GET_CODE (src) == ASM_OPERANDS
2005 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2006 return false;
2008 /* If INSN contains volatile references (specifically volatile MEMs),
2009 we cannot combine across any other volatile references.
2010 Even if INSN doesn't contain volatile references, any intervening
2011 volatile insn might affect machine state. */
2013 is_volatile_p = volatile_refs_p (PATTERN (insn))
2014 ? volatile_refs_p
2015 : volatile_insn_p;
2017 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2018 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2019 return false;
2021 /* If INSN contains an autoincrement or autodecrement, make sure that
2022 register is not used between there and I3, and not already used in
2023 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2024 Also insist that I3 not be a jump if using LRA; if it were one
2025 and the incremented register were spilled, we would lose.
2026 Reload handles this correctly. */
2028 if (AUTO_INC_DEC)
2029 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2030 if (REG_NOTE_KIND (link) == REG_INC
2031 && ((JUMP_P (i3) && targetm.lra_p ())
2032 || reg_used_between_p (XEXP (link, 0), insn, i3)
2033 || (pred != NULL_RTX
2034 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2035 || (pred2 != NULL_RTX
2036 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2037 || (succ != NULL_RTX
2038 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2039 || (succ2 != NULL_RTX
2040 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2041 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2042 return false;
2044 /* If we get here, we have passed all the tests and the combination is
2045 to be allowed. */
2047 *pdest = dest;
2048 *psrc = src;
2050 return true;
2053 /* LOC is the location within I3 that contains its pattern or the component
2054 of a PARALLEL of the pattern. We validate that it is valid for combining.
2056 One problem is if I3 modifies its output, as opposed to replacing it
2057 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2058 doing so would produce an insn that is not equivalent to the original insns.
2060 Consider:
2062 (set (reg:DI 101) (reg:DI 100))
2063 (set (subreg:SI (reg:DI 101) 0) <foo>)
2065 This is NOT equivalent to:
2067 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2068 (set (reg:DI 101) (reg:DI 100))])
2070 Not only does this modify 100 (in which case it might still be valid
2071 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2073 We can also run into a problem if I2 sets a register that I1
2074 uses and I1 gets directly substituted into I3 (not via I2). In that
2075 case, we would be getting the wrong value of I2DEST into I3, so we
2076 must reject the combination. This case occurs when I2 and I1 both
2077 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2078 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2079 of a SET must prevent combination from occurring. The same situation
2080 can occur for I0, in which case I0_NOT_IN_SRC is set.
2082 Before doing the above check, we first try to expand a field assignment
2083 into a set of logical operations.
2085 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2086 we place a register that is both set and used within I3. If more than one
2087 such register is detected, we fail.
2089 Return true if the combination is valid, false otherwise. */
2091 static bool
2092 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2093 bool i1_not_in_src, bool i0_not_in_src, rtx *pi3dest_killed)
2095 rtx x = *loc;
2097 if (GET_CODE (x) == SET)
2099 rtx set = x ;
2100 rtx dest = SET_DEST (set);
2101 rtx src = SET_SRC (set);
2102 rtx inner_dest = dest;
2103 rtx subdest;
2105 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2106 || GET_CODE (inner_dest) == SUBREG
2107 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2108 inner_dest = XEXP (inner_dest, 0);
2110 /* Check for the case where I3 modifies its output, as discussed
2111 above. We don't want to prevent pseudos from being combined
2112 into the address of a MEM, so only prevent the combination if
2113 i1 or i2 set the same MEM. */
2114 if ((inner_dest != dest &&
2115 (!MEM_P (inner_dest)
2116 || rtx_equal_p (i2dest, inner_dest)
2117 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2118 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2119 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2120 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2121 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2123 /* This is the same test done in can_combine_p except we can't test
2124 all_adjacent; we don't have to, since this instruction will stay
2125 in place, thus we are not considering increasing the lifetime of
2126 INNER_DEST.
2128 Also, if this insn sets a function argument, combining it with
2129 something that might need a spill could clobber a previous
2130 function argument; the all_adjacent test in can_combine_p also
2131 checks this; here, we do a more specific test for this case. */
2133 || (REG_P (inner_dest)
2134 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2135 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2136 GET_MODE (inner_dest)))
2137 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2138 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2139 return false;
2141 /* If DEST is used in I3, it is being killed in this insn, so
2142 record that for later. We have to consider paradoxical
2143 subregs here, since they kill the whole register, but we
2144 ignore partial subregs, STRICT_LOW_PART, etc.
2145 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2146 STACK_POINTER_REGNUM, since these are always considered to be
2147 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2148 subdest = dest;
2149 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2150 subdest = SUBREG_REG (subdest);
2151 if (pi3dest_killed
2152 && REG_P (subdest)
2153 && reg_referenced_p (subdest, PATTERN (i3))
2154 && REGNO (subdest) != FRAME_POINTER_REGNUM
2155 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2156 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2157 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2158 || (REGNO (subdest) != ARG_POINTER_REGNUM
2159 || ! fixed_regs [REGNO (subdest)]))
2160 && REGNO (subdest) != STACK_POINTER_REGNUM)
2162 if (*pi3dest_killed)
2163 return false;
2165 *pi3dest_killed = subdest;
2169 else if (GET_CODE (x) == PARALLEL)
2171 int i;
2173 for (i = 0; i < XVECLEN (x, 0); i++)
2174 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2175 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2176 return false;
2179 return true;
2182 /* Return true if X is an arithmetic expression that contains a multiplication
2183 and division. We don't count multiplications by powers of two here. */
2185 static bool
2186 contains_muldiv (rtx x)
2188 switch (GET_CODE (x))
2190 case MOD: case DIV: case UMOD: case UDIV:
2191 return true;
2193 case MULT:
2194 return ! (CONST_INT_P (XEXP (x, 1))
2195 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2196 default:
2197 if (BINARY_P (x))
2198 return contains_muldiv (XEXP (x, 0))
2199 || contains_muldiv (XEXP (x, 1));
2201 if (UNARY_P (x))
2202 return contains_muldiv (XEXP (x, 0));
2204 return false;
2208 /* Determine whether INSN can be used in a combination. Return true if
2209 not. This is used in try_combine to detect early some cases where we
2210 can't perform combinations. */
2212 static bool
2213 cant_combine_insn_p (rtx_insn *insn)
2215 rtx set;
2216 rtx src, dest;
2218 /* If this isn't really an insn, we can't do anything.
2219 This can occur when flow deletes an insn that it has merged into an
2220 auto-increment address. */
2221 if (!NONDEBUG_INSN_P (insn))
2222 return true;
2224 /* Never combine loads and stores involving hard regs that are likely
2225 to be spilled. The register allocator can usually handle such
2226 reg-reg moves by tying. If we allow the combiner to make
2227 substitutions of likely-spilled regs, reload might die.
2228 As an exception, we allow combinations involving fixed regs; these are
2229 not available to the register allocator so there's no risk involved. */
2231 set = single_set (insn);
2232 if (! set)
2233 return false;
2234 src = SET_SRC (set);
2235 dest = SET_DEST (set);
2236 if (GET_CODE (src) == SUBREG)
2237 src = SUBREG_REG (src);
2238 if (GET_CODE (dest) == SUBREG)
2239 dest = SUBREG_REG (dest);
2240 if (REG_P (src) && REG_P (dest)
2241 && ((HARD_REGISTER_P (src)
2242 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2243 #ifdef LEAF_REGISTERS
2244 && ! LEAF_REGISTERS [REGNO (src)])
2245 #else
2247 #endif
2248 || (HARD_REGISTER_P (dest)
2249 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2250 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2251 return true;
2253 return false;
2256 struct likely_spilled_retval_info
2258 unsigned regno, nregs;
2259 unsigned mask;
2262 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2263 hard registers that are known to be written to / clobbered in full. */
2264 static void
2265 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2267 struct likely_spilled_retval_info *const info =
2268 (struct likely_spilled_retval_info *) data;
2269 unsigned regno, nregs;
2270 unsigned new_mask;
2272 if (!REG_P (XEXP (set, 0)))
2273 return;
2274 regno = REGNO (x);
2275 if (regno >= info->regno + info->nregs)
2276 return;
2277 nregs = REG_NREGS (x);
2278 if (regno + nregs <= info->regno)
2279 return;
2280 new_mask = (2U << (nregs - 1)) - 1;
2281 if (regno < info->regno)
2282 new_mask >>= info->regno - regno;
2283 else
2284 new_mask <<= regno - info->regno;
2285 info->mask &= ~new_mask;
2288 /* Return true iff part of the return value is live during INSN, and
2289 it is likely spilled. This can happen when more than one insn is needed
2290 to copy the return value, e.g. when we consider to combine into the
2291 second copy insn for a complex value. */
2293 static bool
2294 likely_spilled_retval_p (rtx_insn *insn)
2296 rtx_insn *use = BB_END (this_basic_block);
2297 rtx reg;
2298 rtx_insn *p;
2299 unsigned regno, nregs;
2300 /* We assume here that no machine mode needs more than
2301 32 hard registers when the value overlaps with a register
2302 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2303 unsigned mask;
2304 struct likely_spilled_retval_info info;
2306 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2307 return false;
2308 reg = XEXP (PATTERN (use), 0);
2309 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2310 return false;
2311 regno = REGNO (reg);
2312 nregs = REG_NREGS (reg);
2313 if (nregs == 1)
2314 return false;
2315 mask = (2U << (nregs - 1)) - 1;
2317 /* Disregard parts of the return value that are set later. */
2318 info.regno = regno;
2319 info.nregs = nregs;
2320 info.mask = mask;
2321 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2322 if (INSN_P (p))
2323 note_stores (p, likely_spilled_retval_1, &info);
2324 mask = info.mask;
2326 /* Check if any of the (probably) live return value registers is
2327 likely spilled. */
2328 nregs --;
2331 if ((mask & 1 << nregs)
2332 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2333 return true;
2334 } while (nregs--);
2335 return false;
2338 /* Adjust INSN after we made a change to its destination.
2340 Changing the destination can invalidate notes that say something about
2341 the results of the insn and a LOG_LINK pointing to the insn. */
2343 static void
2344 adjust_for_new_dest (rtx_insn *insn)
2346 /* For notes, be conservative and simply remove them. */
2347 remove_reg_equal_equiv_notes (insn, true);
2349 /* The new insn will have a destination that was previously the destination
2350 of an insn just above it. Call distribute_links to make a LOG_LINK from
2351 the next use of that destination. */
2353 rtx set = single_set (insn);
2354 gcc_assert (set);
2356 rtx reg = SET_DEST (set);
2358 while (GET_CODE (reg) == ZERO_EXTRACT
2359 || GET_CODE (reg) == STRICT_LOW_PART
2360 || GET_CODE (reg) == SUBREG)
2361 reg = XEXP (reg, 0);
2362 gcc_assert (REG_P (reg));
2364 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2366 df_insn_rescan (insn);
2369 /* Return TRUE if combine can reuse reg X in mode MODE.
2370 ADDED_SETS is trueif the original set is still required. */
2371 static bool
2372 can_change_dest_mode (rtx x, bool added_sets, machine_mode mode)
2374 unsigned int regno;
2376 if (!REG_P (x))
2377 return false;
2379 /* Don't change between modes with different underlying register sizes,
2380 since this could lead to invalid subregs. */
2381 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2382 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2383 return false;
2385 regno = REGNO (x);
2386 /* Allow hard registers if the new mode is legal, and occupies no more
2387 registers than the old mode. */
2388 if (regno < FIRST_PSEUDO_REGISTER)
2389 return (targetm.hard_regno_mode_ok (regno, mode)
2390 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2392 /* Or a pseudo that is only used once. */
2393 return (regno < reg_n_sets_max
2394 && REG_N_SETS (regno) == 1
2395 && !added_sets
2396 && !REG_USERVAR_P (x));
2400 /* Check whether X, the destination of a set, refers to part of
2401 the register specified by REG. */
2403 static bool
2404 reg_subword_p (rtx x, rtx reg)
2406 /* Check that reg is an integer mode register. */
2407 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2408 return false;
2410 if (GET_CODE (x) == STRICT_LOW_PART
2411 || GET_CODE (x) == ZERO_EXTRACT)
2412 x = XEXP (x, 0);
2414 return GET_CODE (x) == SUBREG
2415 && !paradoxical_subreg_p (x)
2416 && SUBREG_REG (x) == reg
2417 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2420 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2421 by an arbitrary number of CLOBBERs. */
2422 static bool
2423 is_parallel_of_n_reg_sets (rtx pat, int n)
2425 if (GET_CODE (pat) != PARALLEL)
2426 return false;
2428 int len = XVECLEN (pat, 0);
2429 if (len < n)
2430 return false;
2432 int i;
2433 for (i = 0; i < n; i++)
2434 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2435 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2436 return false;
2437 for ( ; i < len; i++)
2438 switch (GET_CODE (XVECEXP (pat, 0, i)))
2440 case CLOBBER:
2441 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2442 return false;
2443 break;
2444 default:
2445 return false;
2447 return true;
2450 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2451 CLOBBERs), can be split into individual SETs in that order, without
2452 changing semantics. */
2453 static bool
2454 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2456 if (!insn_nothrow_p (insn))
2457 return false;
2459 rtx pat = PATTERN (insn);
2461 int i, j;
2462 for (i = 0; i < n; i++)
2464 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2465 return false;
2467 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2469 for (j = i + 1; j < n; j++)
2470 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2471 return false;
2474 return true;
2477 /* Return whether X is just a single_set, with the source
2478 a general_operand. */
2479 static bool
2480 is_just_move (rtx_insn *x)
2482 rtx set = single_set (x);
2483 if (!set)
2484 return false;
2486 return general_operand (SET_SRC (set), VOIDmode);
2489 /* Callback function to count autoincs. */
2491 static int
2492 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2494 (*((int *) arg))++;
2496 return 0;
2499 /* Try to combine the insns I0, I1 and I2 into I3.
2500 Here I0, I1 and I2 appear earlier than I3.
2501 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2504 If we are combining more than two insns and the resulting insn is not
2505 recognized, try splitting it into two insns. If that happens, I2 and I3
2506 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2507 Otherwise, I0, I1 and I2 are pseudo-deleted.
2509 Return 0 if the combination does not work. Then nothing is changed.
2510 If we did the combination, return the insn at which combine should
2511 resume scanning.
2513 Set NEW_DIRECT_JUMP_P to true if try_combine creates a
2514 new direct jump instruction.
2516 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2517 been I3 passed to an earlier try_combine within the same basic
2518 block. */
2520 static rtx_insn *
2521 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2522 bool *new_direct_jump_p, rtx_insn *last_combined_insn)
2524 /* New patterns for I3 and I2, respectively. */
2525 rtx newpat, newi2pat = 0;
2526 rtvec newpat_vec_with_clobbers = 0;
2527 bool substed_i2 = false, substed_i1 = false, substed_i0 = false;
2528 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2529 dead. */
2530 bool added_sets_0, added_sets_1, added_sets_2;
2531 /* Total number of SETs to put into I3. */
2532 int total_sets;
2533 /* Nonzero if I2's or I1's body now appears in I3. */
2534 int i2_is_used = 0, i1_is_used = 0;
2535 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2536 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2537 /* Contains I3 if the destination of I3 is used in its source, which means
2538 that the old life of I3 is being killed. If that usage is placed into
2539 I2 and not in I3, a REG_DEAD note must be made. */
2540 rtx i3dest_killed = 0;
2541 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2542 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2543 /* Copy of SET_SRC of I1 and I0, if needed. */
2544 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2545 /* Set if I2DEST was reused as a scratch register. */
2546 bool i2scratch = false;
2547 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2548 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2549 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2550 bool i2dest_in_i2src = false, i1dest_in_i1src = false;
2551 bool i2dest_in_i1src = false, i0dest_in_i0src = false;
2552 bool i1dest_in_i0src = false, i2dest_in_i0src = false;;
2553 bool i2dest_killed = false, i1dest_killed = false, i0dest_killed = false;
2554 bool i1_feeds_i2_n = false, i0_feeds_i2_n = false, i0_feeds_i1_n = false;
2555 /* Notes that must be added to REG_NOTES in I3 and I2. */
2556 rtx new_i3_notes, new_i2_notes;
2557 /* Notes that we substituted I3 into I2 instead of the normal case. */
2558 bool i3_subst_into_i2 = false;
2559 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 bool have_mult = false;
2561 bool swap_i2i3 = false;
2562 bool split_i2i3 = false;
2563 bool changed_i3_dest = false;
2564 bool i2_was_move = false, i3_was_move = false;
2565 int n_auto_inc = 0;
2567 int maxreg;
2568 rtx_insn *temp_insn;
2569 rtx temp_expr;
2570 struct insn_link *link;
2571 rtx other_pat = 0;
2572 rtx new_other_notes;
2573 int i;
2574 scalar_int_mode dest_mode, temp_mode;
2575 bool has_non_call_exception = false;
2577 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2578 never be). */
2579 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2580 return 0;
2582 /* Only try four-insn combinations when there's high likelihood of
2583 success. Look for simple insns, such as loads of constants or
2584 binary operations involving a constant. */
2585 if (i0)
2587 int i;
2588 int ngood = 0;
2589 int nshift = 0;
2590 rtx set0, set3;
2592 if (!flag_expensive_optimizations)
2593 return 0;
2595 for (i = 0; i < 4; i++)
2597 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2598 rtx set = single_set (insn);
2599 rtx src;
2600 if (!set)
2601 continue;
2602 src = SET_SRC (set);
2603 if (CONSTANT_P (src))
2605 ngood += 2;
2606 break;
2608 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2609 ngood++;
2610 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2611 || GET_CODE (src) == LSHIFTRT)
2612 nshift++;
2615 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2616 are likely manipulating its value. Ideally we'll be able to combine
2617 all four insns into a bitfield insertion of some kind.
2619 Note the source in I0 might be inside a sign/zero extension and the
2620 memory modes in I0 and I3 might be different. So extract the address
2621 from the destination of I3 and search for it in the source of I0.
2623 In the event that there's a match but the source/dest do not actually
2624 refer to the same memory, the worst that happens is we try some
2625 combinations that we wouldn't have otherwise. */
2626 if ((set0 = single_set (i0))
2627 /* Ensure the source of SET0 is a MEM, possibly buried inside
2628 an extension. */
2629 && (GET_CODE (SET_SRC (set0)) == MEM
2630 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2631 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2632 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2633 && (set3 = single_set (i3))
2634 /* Ensure the destination of SET3 is a MEM. */
2635 && GET_CODE (SET_DEST (set3)) == MEM
2636 /* Would it be better to extract the base address for the MEM
2637 in SET3 and look for that? I don't have cases where it matters
2638 but I could envision such cases. */
2639 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2640 ngood += 2;
2642 if (ngood < 2 && nshift < 2)
2643 return 0;
2646 /* Exit early if one of the insns involved can't be used for
2647 combinations. */
2648 if (CALL_P (i2)
2649 || (i1 && CALL_P (i1))
2650 || (i0 && CALL_P (i0))
2651 || cant_combine_insn_p (i3)
2652 || cant_combine_insn_p (i2)
2653 || (i1 && cant_combine_insn_p (i1))
2654 || (i0 && cant_combine_insn_p (i0))
2655 || likely_spilled_retval_p (i3))
2656 return 0;
2658 combine_attempts++;
2659 undobuf.other_insn = 0;
2661 /* Reset the hard register usage information. */
2662 CLEAR_HARD_REG_SET (newpat_used_regs);
2664 if (dump_file && (dump_flags & TDF_DETAILS))
2666 if (i0)
2667 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2668 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2669 else if (i1)
2670 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2671 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2672 else
2673 fprintf (dump_file, "\nTrying %d -> %d:\n",
2674 INSN_UID (i2), INSN_UID (i3));
2676 if (i0)
2677 dump_insn_slim (dump_file, i0);
2678 if (i1)
2679 dump_insn_slim (dump_file, i1);
2680 dump_insn_slim (dump_file, i2);
2681 dump_insn_slim (dump_file, i3);
2684 /* If multiple insns feed into one of I2 or I3, they can be in any
2685 order. To simplify the code below, reorder them in sequence. */
2686 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2687 std::swap (i0, i2);
2688 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2689 std::swap (i0, i1);
2690 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2691 std::swap (i1, i2);
2693 added_links_insn = 0;
2694 added_notes_insn = 0;
2696 /* First check for one important special case that the code below will
2697 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2698 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2699 we may be able to replace that destination with the destination of I3.
2700 This occurs in the common code where we compute both a quotient and
2701 remainder into a structure, in which case we want to do the computation
2702 directly into the structure to avoid register-register copies.
2704 Note that this case handles both multiple sets in I2 and also cases
2705 where I2 has a number of CLOBBERs inside the PARALLEL.
2707 We make very conservative checks below and only try to handle the
2708 most common cases of this. For example, we only handle the case
2709 where I2 and I3 are adjacent to avoid making difficult register
2710 usage tests. */
2712 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2713 && REG_P (SET_SRC (PATTERN (i3)))
2714 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2715 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2716 && GET_CODE (PATTERN (i2)) == PARALLEL
2717 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2718 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2719 below would need to check what is inside (and reg_overlap_mentioned_p
2720 doesn't support those codes anyway). Don't allow those destinations;
2721 the resulting insn isn't likely to be recognized anyway. */
2722 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2723 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2724 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2725 SET_DEST (PATTERN (i3)))
2726 && next_active_insn (i2) == i3)
2728 rtx p2 = PATTERN (i2);
2730 /* Make sure that the destination of I3,
2731 which we are going to substitute into one output of I2,
2732 is not used within another output of I2. We must avoid making this:
2733 (parallel [(set (mem (reg 69)) ...)
2734 (set (reg 69) ...)])
2735 which is not well-defined as to order of actions.
2736 (Besides, reload can't handle output reloads for this.)
2738 The problem can also happen if the dest of I3 is a memory ref,
2739 if another dest in I2 is an indirect memory ref.
2741 Neither can this PARALLEL be an asm. We do not allow combining
2742 that usually (see can_combine_p), so do not here either. */
2743 bool ok = true;
2744 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2746 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2747 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2748 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2749 SET_DEST (XVECEXP (p2, 0, i))))
2750 ok = false;
2751 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2752 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2753 ok = false;
2756 if (ok)
2757 for (i = 0; i < XVECLEN (p2, 0); i++)
2758 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2759 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2761 combine_merges++;
2763 subst_insn = i3;
2764 subst_low_luid = DF_INSN_LUID (i2);
2766 added_sets_2 = added_sets_1 = added_sets_0 = false;
2767 i2src = SET_SRC (XVECEXP (p2, 0, i));
2768 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2769 i2dest_killed = dead_or_set_p (i2, i2dest);
2771 /* Replace the dest in I2 with our dest and make the resulting
2772 insn the new pattern for I3. Then skip to where we validate
2773 the pattern. Everything was set up above. */
2774 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2775 newpat = p2;
2776 i3_subst_into_i2 = true;
2777 goto validate_replacement;
2781 /* If I2 is setting a pseudo to a constant and I3 is setting some
2782 sub-part of it to another constant, merge them by making a new
2783 constant. */
2784 if (i1 == 0
2785 && (temp_expr = single_set (i2)) != 0
2786 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2787 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2788 && GET_CODE (PATTERN (i3)) == SET
2789 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2790 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2792 rtx dest = SET_DEST (PATTERN (i3));
2793 rtx temp_dest = SET_DEST (temp_expr);
2794 int offset = -1;
2795 int width = 0;
2797 if (GET_CODE (dest) == ZERO_EXTRACT)
2799 if (CONST_INT_P (XEXP (dest, 1))
2800 && CONST_INT_P (XEXP (dest, 2))
2801 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2802 &dest_mode))
2804 width = INTVAL (XEXP (dest, 1));
2805 offset = INTVAL (XEXP (dest, 2));
2806 dest = XEXP (dest, 0);
2807 if (BITS_BIG_ENDIAN)
2808 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2811 else
2813 if (GET_CODE (dest) == STRICT_LOW_PART)
2814 dest = XEXP (dest, 0);
2815 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2817 width = GET_MODE_PRECISION (dest_mode);
2818 offset = 0;
2822 if (offset >= 0)
2824 /* If this is the low part, we're done. */
2825 if (subreg_lowpart_p (dest))
2827 /* Handle the case where inner is twice the size of outer. */
2828 else if (GET_MODE_PRECISION (temp_mode)
2829 == 2 * GET_MODE_PRECISION (dest_mode))
2830 offset += GET_MODE_PRECISION (dest_mode);
2831 /* Otherwise give up for now. */
2832 else
2833 offset = -1;
2836 if (offset >= 0)
2838 rtx inner = SET_SRC (PATTERN (i3));
2839 rtx outer = SET_SRC (temp_expr);
2841 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2842 rtx_mode_t (inner, dest_mode),
2843 offset, width);
2845 combine_merges++;
2846 subst_insn = i3;
2847 subst_low_luid = DF_INSN_LUID (i2);
2848 added_sets_2 = added_sets_1 = added_sets_0 = false;
2849 i2dest = temp_dest;
2850 i2dest_killed = dead_or_set_p (i2, i2dest);
2852 /* Replace the source in I2 with the new constant and make the
2853 resulting insn the new pattern for I3. Then skip to where we
2854 validate the pattern. Everything was set up above. */
2855 SUBST (SET_SRC (temp_expr),
2856 immed_wide_int_const (o, temp_mode));
2858 newpat = PATTERN (i2);
2860 /* The dest of I3 has been replaced with the dest of I2. */
2861 changed_i3_dest = true;
2862 goto validate_replacement;
2866 /* If we have no I1 and I2 looks like:
2867 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2868 (set Y OP)])
2869 make up a dummy I1 that is
2870 (set Y OP)
2871 and change I2 to be
2872 (set (reg:CC X) (compare:CC Y (const_int 0)))
2874 (We can ignore any trailing CLOBBERs.)
2876 This undoes a previous combination and allows us to match a branch-and-
2877 decrement insn. */
2879 if (i1 == 0
2880 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2881 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2882 == MODE_CC)
2883 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2884 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2885 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2886 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2887 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2888 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2890 /* We make I1 with the same INSN_UID as I2. This gives it
2891 the same DF_INSN_LUID for value tracking. Our fake I1 will
2892 never appear in the insn stream so giving it the same INSN_UID
2893 as I2 will not cause a problem. */
2895 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2896 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2897 -1, NULL_RTX);
2898 INSN_UID (i1) = INSN_UID (i2);
2900 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2901 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2902 SET_DEST (PATTERN (i1)));
2903 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2904 SUBST_LINK (LOG_LINKS (i2),
2905 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2908 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2909 make those two SETs separate I1 and I2 insns, and make an I0 that is
2910 the original I1. */
2911 if (i0 == 0
2912 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2913 && can_split_parallel_of_n_reg_sets (i2, 2)
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2916 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2917 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2919 /* If there is no I1, there is no I0 either. */
2920 i0 = i1;
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2928 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2929 -1, NULL_RTX);
2930 INSN_UID (i1) = INSN_UID (i2);
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2935 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2936 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
2938 if (dump_file && (dump_flags & TDF_DETAILS))
2939 fprintf (dump_file, "Can't combine i2 into i3\n");
2940 undo_all ();
2941 return 0;
2943 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
2945 if (dump_file && (dump_flags & TDF_DETAILS))
2946 fprintf (dump_file, "Can't combine i1 into i3\n");
2947 undo_all ();
2948 return 0;
2950 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
2952 if (dump_file && (dump_flags & TDF_DETAILS))
2953 fprintf (dump_file, "Can't combine i0 into i3\n");
2954 undo_all ();
2955 return 0;
2958 /* With non-call exceptions we can end up trying to combine multiple
2959 insns with possible EH side effects. Make sure we can combine
2960 that to a single insn which means there must be at most one insn
2961 in the combination with an EH side effect. */
2962 if (cfun->can_throw_non_call_exceptions)
2964 if (find_reg_note (i3, REG_EH_REGION, NULL_RTX)
2965 || find_reg_note (i2, REG_EH_REGION, NULL_RTX)
2966 || (i1 && find_reg_note (i1, REG_EH_REGION, NULL_RTX))
2967 || (i0 && find_reg_note (i0, REG_EH_REGION, NULL_RTX)))
2969 has_non_call_exception = true;
2970 if (insn_could_throw_p (i3)
2971 + insn_could_throw_p (i2)
2972 + (i1 ? insn_could_throw_p (i1) : 0)
2973 + (i0 ? insn_could_throw_p (i0) : 0) > 1)
2975 if (dump_file && (dump_flags & TDF_DETAILS))
2976 fprintf (dump_file, "Can't combine multiple insns with EH "
2977 "side-effects\n");
2978 undo_all ();
2979 return 0;
2984 /* Record whether i2 and i3 are trivial moves. */
2985 i2_was_move = is_just_move (i2);
2986 i3_was_move = is_just_move (i3);
2988 /* Record whether I2DEST is used in I2SRC and similarly for the other
2989 cases. Knowing this will help in register status updating below. */
2990 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2991 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2992 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2993 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2994 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2995 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2996 i2dest_killed = dead_or_set_p (i2, i2dest);
2997 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2998 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3000 /* For the earlier insns, determine which of the subsequent ones they
3001 feed. */
3002 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3003 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3004 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3005 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3006 && reg_overlap_mentioned_p (i0dest, i2src))));
3008 /* Ensure that I3's pattern can be the destination of combines. */
3009 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3010 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3011 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3012 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3013 &i3dest_killed))
3015 undo_all ();
3016 return 0;
3019 /* See if any of the insns is a MULT operation. Unless one is, we will
3020 reject a combination that is, since it must be slower. Be conservative
3021 here. */
3022 if (GET_CODE (i2src) == MULT
3023 || (i1 != 0 && GET_CODE (i1src) == MULT)
3024 || (i0 != 0 && GET_CODE (i0src) == MULT)
3025 || (GET_CODE (PATTERN (i3)) == SET
3026 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3027 have_mult = true;
3029 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3030 We used to do this EXCEPT in one case: I3 has a post-inc in an
3031 output operand. However, that exception can give rise to insns like
3032 mov r3,(r3)+
3033 which is a famous insn on the PDP-11 where the value of r3 used as the
3034 source was model-dependent. Avoid this sort of thing. */
3036 #if 0
3037 if (!(GET_CODE (PATTERN (i3)) == SET
3038 && REG_P (SET_SRC (PATTERN (i3)))
3039 && MEM_P (SET_DEST (PATTERN (i3)))
3040 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3041 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3042 /* It's not the exception. */
3043 #endif
3044 if (AUTO_INC_DEC)
3046 rtx link;
3047 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3048 if (REG_NOTE_KIND (link) == REG_INC
3049 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3050 || (i1 != 0
3051 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3053 undo_all ();
3054 return 0;
3058 /* See if the SETs in I1 or I2 need to be kept around in the merged
3059 instruction: whenever the value set there is still needed past I3.
3060 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3062 For the SET in I1, we have two cases: if I1 and I2 independently feed
3063 into I3, the set in I1 needs to be kept around unless I1DEST dies
3064 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3065 in I1 needs to be kept around unless I1DEST dies or is set in either
3066 I2 or I3. The same considerations apply to I0. */
3068 added_sets_2 = !dead_or_set_p (i3, i2dest);
3070 if (i1)
3071 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3072 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3073 else
3074 added_sets_1 = false;
3076 if (i0)
3077 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3078 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3079 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3080 && dead_or_set_p (i2, i0dest)));
3081 else
3082 added_sets_0 = false;
3084 /* We are about to copy insns for the case where they need to be kept
3085 around. Check that they can be copied in the merged instruction. */
3087 if (targetm.cannot_copy_insn_p
3088 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3089 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3090 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3092 undo_all ();
3093 return 0;
3096 /* We cannot safely duplicate volatile references in any case. */
3098 if ((added_sets_2 && volatile_refs_p (PATTERN (i2)))
3099 || (added_sets_1 && volatile_refs_p (PATTERN (i1)))
3100 || (added_sets_0 && volatile_refs_p (PATTERN (i0))))
3102 undo_all ();
3103 return 0;
3106 /* Count how many auto_inc expressions there were in the original insns;
3107 we need to have the same number in the resulting patterns. */
3109 if (i0)
3110 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3111 if (i1)
3112 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3113 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3114 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3116 /* If the set in I2 needs to be kept around, we must make a copy of
3117 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3118 PATTERN (I2), we are only substituting for the original I1DEST, not into
3119 an already-substituted copy. This also prevents making self-referential
3120 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3121 I2DEST. */
3123 if (added_sets_2)
3125 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3126 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3127 else
3128 i2pat = copy_rtx (PATTERN (i2));
3131 if (added_sets_1)
3133 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3134 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3135 else
3136 i1pat = copy_rtx (PATTERN (i1));
3139 if (added_sets_0)
3141 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3142 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3143 else
3144 i0pat = copy_rtx (PATTERN (i0));
3147 combine_merges++;
3149 /* Substitute in the latest insn for the regs set by the earlier ones. */
3151 maxreg = max_reg_num ();
3153 subst_insn = i3;
3155 /* Many machines have insns that can both perform an
3156 arithmetic operation and set the condition code. These operations will
3157 be represented as a PARALLEL with the first element of the vector
3158 being a COMPARE of an arithmetic operation with the constant zero.
3159 The second element of the vector will set some pseudo to the result
3160 of the same arithmetic operation. If we simplify the COMPARE, we won't
3161 match such a pattern and so will generate an extra insn. Here we test
3162 for this case, where both the comparison and the operation result are
3163 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3164 I2SRC. Later we will make the PARALLEL that contains I2. */
3166 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3167 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3168 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3169 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3171 rtx newpat_dest;
3172 rtx *cc_use_loc = NULL;
3173 rtx_insn *cc_use_insn = NULL;
3174 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3175 machine_mode compare_mode, orig_compare_mode;
3176 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3177 scalar_int_mode mode;
3179 newpat = PATTERN (i3);
3180 newpat_dest = SET_DEST (newpat);
3181 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3183 if (undobuf.other_insn == 0
3184 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3185 &cc_use_insn)))
3187 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3188 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3189 compare_code = simplify_compare_const (compare_code, mode,
3190 &op0, &op1);
3191 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3194 /* Do the rest only if op1 is const0_rtx, which may be the
3195 result of simplification. */
3196 if (op1 == const0_rtx)
3198 /* If a single use of the CC is found, prepare to modify it
3199 when SELECT_CC_MODE returns a new CC-class mode, or when
3200 the above simplify_compare_const() returned a new comparison
3201 operator. undobuf.other_insn is assigned the CC use insn
3202 when modifying it. */
3203 if (cc_use_loc)
3205 #ifdef SELECT_CC_MODE
3206 machine_mode new_mode
3207 = SELECT_CC_MODE (compare_code, op0, op1);
3208 if (new_mode != orig_compare_mode
3209 && can_change_dest_mode (SET_DEST (newpat),
3210 added_sets_2, new_mode))
3212 unsigned int regno = REGNO (newpat_dest);
3213 compare_mode = new_mode;
3214 if (regno < FIRST_PSEUDO_REGISTER)
3215 newpat_dest = gen_rtx_REG (compare_mode, regno);
3216 else
3218 subst_mode (regno, compare_mode);
3219 newpat_dest = regno_reg_rtx[regno];
3222 #endif
3223 /* Cases for modifying the CC-using comparison. */
3224 if (compare_code != orig_compare_code
3225 /* ??? Do we need to verify the zero rtx? */
3226 && XEXP (*cc_use_loc, 1) == const0_rtx)
3228 /* Replace cc_use_loc with entire new RTX. */
3229 SUBST (*cc_use_loc,
3230 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3231 newpat_dest, const0_rtx));
3232 undobuf.other_insn = cc_use_insn;
3234 else if (compare_mode != orig_compare_mode)
3236 /* Just replace the CC reg with a new mode. */
3237 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3238 undobuf.other_insn = cc_use_insn;
3242 /* Now we modify the current newpat:
3243 First, SET_DEST(newpat) is updated if the CC mode has been
3244 altered. For targets without SELECT_CC_MODE, this should be
3245 optimized away. */
3246 if (compare_mode != orig_compare_mode)
3247 SUBST (SET_DEST (newpat), newpat_dest);
3248 /* This is always done to propagate i2src into newpat. */
3249 SUBST (SET_SRC (newpat),
3250 gen_rtx_COMPARE (compare_mode, op0, op1));
3251 /* Create new version of i2pat if needed; the below PARALLEL
3252 creation needs this to work correctly. */
3253 if (! rtx_equal_p (i2src, op0))
3254 i2pat = gen_rtx_SET (i2dest, op0);
3255 i2_is_used = 1;
3259 if (i2_is_used == 0)
3261 /* It is possible that the source of I2 or I1 may be performing
3262 an unneeded operation, such as a ZERO_EXTEND of something
3263 that is known to have the high part zero. Handle that case
3264 by letting subst look at the inner insns.
3266 Another way to do this would be to have a function that tries
3267 to simplify a single insn instead of merging two or more
3268 insns. We don't do this because of the potential of infinite
3269 loops and because of the potential extra memory required.
3270 However, doing it the way we are is a bit of a kludge and
3271 doesn't catch all cases.
3273 But only do this if -fexpensive-optimizations since it slows
3274 things down and doesn't usually win.
3276 This is not done in the COMPARE case above because the
3277 unmodified I2PAT is used in the PARALLEL and so a pattern
3278 with a modified I2SRC would not match. */
3280 if (flag_expensive_optimizations)
3282 /* Pass pc_rtx so no substitutions are done, just
3283 simplifications. */
3284 if (i1)
3286 subst_low_luid = DF_INSN_LUID (i1);
3287 i1src = subst (i1src, pc_rtx, pc_rtx, false, false, false);
3290 subst_low_luid = DF_INSN_LUID (i2);
3291 i2src = subst (i2src, pc_rtx, pc_rtx, false, false, false);
3294 n_occurrences = 0; /* `subst' counts here */
3295 subst_low_luid = DF_INSN_LUID (i2);
3297 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3298 copy of I2SRC each time we substitute it, in order to avoid creating
3299 self-referential RTL when we will be substituting I1SRC for I1DEST
3300 later. Likewise if I0 feeds into I2, either directly or indirectly
3301 through I1, and I0DEST is in I0SRC. */
3302 newpat = subst (PATTERN (i3), i2dest, i2src, false, false,
3303 (i1_feeds_i2_n && i1dest_in_i1src)
3304 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3305 && i0dest_in_i0src));
3306 substed_i2 = true;
3308 /* Record whether I2's body now appears within I3's body. */
3309 i2_is_used = n_occurrences;
3312 /* If we already got a failure, don't try to do more. Otherwise, try to
3313 substitute I1 if we have it. */
3315 if (i1 && GET_CODE (newpat) != CLOBBER)
3317 /* Before we can do this substitution, we must redo the test done
3318 above (see detailed comments there) that ensures I1DEST isn't
3319 mentioned in any SETs in NEWPAT that are field assignments. */
3320 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3321 false, false, 0))
3323 undo_all ();
3324 return 0;
3327 n_occurrences = 0;
3328 subst_low_luid = DF_INSN_LUID (i1);
3330 /* If the following substitution will modify I1SRC, make a copy of it
3331 for the case where it is substituted for I1DEST in I2PAT later. */
3332 if (added_sets_2 && i1_feeds_i2_n)
3333 i1src_copy = copy_rtx (i1src);
3335 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3336 copy of I1SRC each time we substitute it, in order to avoid creating
3337 self-referential RTL when we will be substituting I0SRC for I0DEST
3338 later. */
3339 newpat = subst (newpat, i1dest, i1src, false, false,
3340 i0_feeds_i1_n && i0dest_in_i0src);
3341 substed_i1 = true;
3343 /* Record whether I1's body now appears within I3's body. */
3344 i1_is_used = n_occurrences;
3347 /* Likewise for I0 if we have it. */
3349 if (i0 && GET_CODE (newpat) != CLOBBER)
3351 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3352 false, false, 0))
3354 undo_all ();
3355 return 0;
3358 /* If the following substitution will modify I0SRC, make a copy of it
3359 for the case where it is substituted for I0DEST in I1PAT later. */
3360 if (added_sets_1 && i0_feeds_i1_n)
3361 i0src_copy = copy_rtx (i0src);
3362 /* And a copy for I0DEST in I2PAT substitution. */
3363 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3364 || (i0_feeds_i2_n)))
3365 i0src_copy2 = copy_rtx (i0src);
3367 n_occurrences = 0;
3368 subst_low_luid = DF_INSN_LUID (i0);
3369 newpat = subst (newpat, i0dest, i0src, false, false, false);
3370 substed_i0 = true;
3373 if (n_auto_inc)
3375 int new_n_auto_inc = 0;
3376 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3378 if (n_auto_inc != new_n_auto_inc)
3380 if (dump_file && (dump_flags & TDF_DETAILS))
3381 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3382 undo_all ();
3383 return 0;
3387 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3388 to count all the ways that I2SRC and I1SRC can be used. */
3389 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3390 && i2_is_used + added_sets_2 > 1)
3391 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3392 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n) > 1))
3393 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3394 && (n_occurrences + added_sets_0
3395 + (added_sets_1 && i0_feeds_i1_n)
3396 + (added_sets_2 && i0_feeds_i2_n) > 1))
3397 /* Fail if we tried to make a new register. */
3398 || max_reg_num () != maxreg
3399 /* Fail if we couldn't do something and have a CLOBBER. */
3400 || GET_CODE (newpat) == CLOBBER
3401 /* Fail if this new pattern is a MULT and we didn't have one before
3402 at the outer level. */
3403 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3404 && ! have_mult))
3406 undo_all ();
3407 return 0;
3410 /* If the actions of the earlier insns must be kept
3411 in addition to substituting them into the latest one,
3412 we must make a new PARALLEL for the latest insn
3413 to hold additional the SETs. */
3415 if (added_sets_0 || added_sets_1 || added_sets_2)
3417 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3418 combine_extras++;
3420 if (GET_CODE (newpat) == PARALLEL)
3422 rtvec old = XVEC (newpat, 0);
3423 total_sets = XVECLEN (newpat, 0) + extra_sets;
3424 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3425 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3426 sizeof (old->elem[0]) * old->num_elem);
3428 else
3430 rtx old = newpat;
3431 total_sets = 1 + extra_sets;
3432 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3433 XVECEXP (newpat, 0, 0) = old;
3436 if (added_sets_0)
3437 XVECEXP (newpat, 0, --total_sets) = i0pat;
3439 if (added_sets_1)
3441 rtx t = i1pat;
3442 if (i0_feeds_i1_n)
3443 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src,
3444 false, false, false);
3446 XVECEXP (newpat, 0, --total_sets) = t;
3448 if (added_sets_2)
3450 rtx t = i2pat;
3451 if (i1_feeds_i2_n)
3452 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, false, false,
3453 i0_feeds_i1_n && i0dest_in_i0src);
3454 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3455 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src,
3456 false, false, false);
3458 XVECEXP (newpat, 0, --total_sets) = t;
3462 validate_replacement:
3464 /* Note which hard regs this insn has as inputs. */
3465 mark_used_regs_combine (newpat);
3467 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3468 consider splitting this pattern, we might need these clobbers. */
3469 if (i1 && GET_CODE (newpat) == PARALLEL
3470 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3472 int len = XVECLEN (newpat, 0);
3474 newpat_vec_with_clobbers = rtvec_alloc (len);
3475 for (i = 0; i < len; i++)
3476 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3479 /* We have recognized nothing yet. */
3480 insn_code_number = -1;
3482 /* See if this is a PARALLEL of two SETs where one SET's destination is
3483 a register that is unused and this isn't marked as an instruction that
3484 might trap in an EH region. In that case, we just need the other SET.
3485 We prefer this over the PARALLEL.
3487 This can occur when simplifying a divmod insn. We *must* test for this
3488 case here because the code below that splits two independent SETs doesn't
3489 handle this case correctly when it updates the register status.
3491 It's pointless doing this if we originally had two sets, one from
3492 i3, and one from i2. Combining then splitting the parallel results
3493 in the original i2 again plus an invalid insn (which we delete).
3494 The net effect is only to move instructions around, which makes
3495 debug info less accurate.
3497 If the remaining SET came from I2 its destination should not be used
3498 between I2 and I3. See PR82024. */
3500 if (!(added_sets_2 && i1 == 0)
3501 && is_parallel_of_n_reg_sets (newpat, 2)
3502 && asm_noperands (newpat) < 0)
3504 rtx set0 = XVECEXP (newpat, 0, 0);
3505 rtx set1 = XVECEXP (newpat, 0, 1);
3506 rtx oldpat = newpat;
3508 if (((REG_P (SET_DEST (set1))
3509 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3510 || (GET_CODE (SET_DEST (set1)) == SUBREG
3511 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3512 && insn_nothrow_p (i3)
3513 && !side_effects_p (SET_SRC (set1)))
3515 newpat = set0;
3516 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3519 else if (((REG_P (SET_DEST (set0))
3520 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3521 || (GET_CODE (SET_DEST (set0)) == SUBREG
3522 && find_reg_note (i3, REG_UNUSED,
3523 SUBREG_REG (SET_DEST (set0)))))
3524 && insn_nothrow_p (i3)
3525 && !side_effects_p (SET_SRC (set0)))
3527 rtx dest = SET_DEST (set1);
3528 if (GET_CODE (dest) == SUBREG)
3529 dest = SUBREG_REG (dest);
3530 if (!reg_used_between_p (dest, i2, i3))
3532 newpat = set1;
3533 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3535 if (insn_code_number >= 0)
3536 changed_i3_dest = true;
3540 if (insn_code_number < 0)
3541 newpat = oldpat;
3544 /* Is the result of combination a valid instruction? */
3545 if (insn_code_number < 0)
3546 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3548 /* If we were combining three insns and the result is a simple SET
3549 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3550 insns. There are two ways to do this. It can be split using a
3551 machine-specific method (like when you have an addition of a large
3552 constant) or by combine in the function find_split_point. */
3554 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3555 && asm_noperands (newpat) < 0)
3557 rtx parallel, *split;
3558 rtx_insn *m_split_insn;
3560 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3561 use I2DEST as a scratch register will help. In the latter case,
3562 convert I2DEST to the mode of the source of NEWPAT if we can. */
3564 m_split_insn = combine_split_insns (newpat, i3);
3566 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3567 inputs of NEWPAT. */
3569 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3570 possible to try that as a scratch reg. This would require adding
3571 more code to make it work though. */
3573 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3575 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3577 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3578 (temporarily, until we are committed to this instruction
3579 combination) does not work: for example, any call to nonzero_bits
3580 on the register (from a splitter in the MD file, for example)
3581 will get the old information, which is invalid.
3583 Since nowadays we can create registers during combine just fine,
3584 we should just create a new one here, not reuse i2dest. */
3586 /* First try to split using the original register as a
3587 scratch register. */
3588 parallel = gen_rtx_PARALLEL (VOIDmode,
3589 gen_rtvec (2, newpat,
3590 gen_rtx_CLOBBER (VOIDmode,
3591 i2dest)));
3592 m_split_insn = combine_split_insns (parallel, i3);
3594 /* If that didn't work, try changing the mode of I2DEST if
3595 we can. */
3596 if (m_split_insn == 0
3597 && new_mode != GET_MODE (i2dest)
3598 && new_mode != VOIDmode
3599 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3601 machine_mode old_mode = GET_MODE (i2dest);
3602 rtx ni2dest;
3604 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3605 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3606 else
3608 subst_mode (REGNO (i2dest), new_mode);
3609 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3612 parallel = (gen_rtx_PARALLEL
3613 (VOIDmode,
3614 gen_rtvec (2, newpat,
3615 gen_rtx_CLOBBER (VOIDmode,
3616 ni2dest))));
3617 m_split_insn = combine_split_insns (parallel, i3);
3619 if (m_split_insn == 0
3620 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3622 struct undo *buf;
3624 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3625 buf = undobuf.undos;
3626 undobuf.undos = buf->next;
3627 buf->next = undobuf.frees;
3628 undobuf.frees = buf;
3632 i2scratch = m_split_insn != 0;
3635 /* If recog_for_combine has discarded clobbers, try to use them
3636 again for the split. */
3637 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3639 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3640 m_split_insn = combine_split_insns (parallel, i3);
3643 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3645 rtx m_split_pat = PATTERN (m_split_insn);
3646 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3647 if (insn_code_number >= 0)
3648 newpat = m_split_pat;
3650 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3651 && (next_nonnote_nondebug_insn (i2) == i3
3652 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3654 rtx i2set, i3set;
3655 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3656 newi2pat = PATTERN (m_split_insn);
3658 i3set = single_set (NEXT_INSN (m_split_insn));
3659 i2set = single_set (m_split_insn);
3661 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3663 /* If I2 or I3 has multiple SETs, we won't know how to track
3664 register status, so don't use these insns. If I2's destination
3665 is used between I2 and I3, we also can't use these insns. */
3667 if (i2_code_number >= 0 && i2set && i3set
3668 && (next_nonnote_nondebug_insn (i2) == i3
3669 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3670 insn_code_number = recog_for_combine (&newi3pat, i3,
3671 &new_i3_notes);
3672 if (insn_code_number >= 0)
3673 newpat = newi3pat;
3675 /* It is possible that both insns now set the destination of I3.
3676 If so, we must show an extra use of it. */
3678 if (insn_code_number >= 0)
3680 rtx new_i3_dest = SET_DEST (i3set);
3681 rtx new_i2_dest = SET_DEST (i2set);
3683 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3684 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3685 || GET_CODE (new_i3_dest) == SUBREG)
3686 new_i3_dest = XEXP (new_i3_dest, 0);
3688 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3689 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3690 || GET_CODE (new_i2_dest) == SUBREG)
3691 new_i2_dest = XEXP (new_i2_dest, 0);
3693 if (REG_P (new_i3_dest)
3694 && REG_P (new_i2_dest)
3695 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3696 && REGNO (new_i2_dest) < reg_n_sets_max)
3697 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3701 /* If we can split it and use I2DEST, go ahead and see if that
3702 helps things be recognized. Verify that none of the registers
3703 are set between I2 and I3. */
3704 if (insn_code_number < 0
3705 && (split = find_split_point (&newpat, i3, false)) != 0
3706 /* We need I2DEST in the proper mode. If it is a hard register
3707 or the only use of a pseudo, we can change its mode.
3708 Make sure we don't change a hard register to have a mode that
3709 isn't valid for it, or change the number of registers. */
3710 && (GET_MODE (*split) == GET_MODE (i2dest)
3711 || GET_MODE (*split) == VOIDmode
3712 || can_change_dest_mode (i2dest, added_sets_2,
3713 GET_MODE (*split)))
3714 && (next_nonnote_nondebug_insn (i2) == i3
3715 || !modified_between_p (*split, i2, i3))
3716 /* We can't overwrite I2DEST if its value is still used by
3717 NEWPAT. */
3718 && ! reg_referenced_p (i2dest, newpat)
3719 /* We should not split a possibly trapping part when we
3720 care about non-call EH and have REG_EH_REGION notes
3721 to distribute. */
3722 && ! (cfun->can_throw_non_call_exceptions
3723 && has_non_call_exception
3724 && may_trap_p (*split)))
3726 rtx newdest = i2dest;
3727 enum rtx_code split_code = GET_CODE (*split);
3728 machine_mode split_mode = GET_MODE (*split);
3729 bool subst_done = false;
3730 newi2pat = NULL_RTX;
3732 i2scratch = true;
3734 /* *SPLIT may be part of I2SRC, so make sure we have the
3735 original expression around for later debug processing.
3736 We should not need I2SRC any more in other cases. */
3737 if (MAY_HAVE_DEBUG_BIND_INSNS)
3738 i2src = copy_rtx (i2src);
3739 else
3740 i2src = NULL;
3742 /* Get NEWDEST as a register in the proper mode. We have already
3743 validated that we can do this. */
3744 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3746 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3747 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3748 else
3750 subst_mode (REGNO (i2dest), split_mode);
3751 newdest = regno_reg_rtx[REGNO (i2dest)];
3755 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3756 an ASHIFT. This can occur if it was inside a PLUS and hence
3757 appeared to be a memory address. This is a kludge. */
3758 if (split_code == MULT
3759 && CONST_INT_P (XEXP (*split, 1))
3760 && INTVAL (XEXP (*split, 1)) > 0
3761 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3763 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3764 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3765 XEXP (*split, 0), i_rtx));
3766 /* Update split_code because we may not have a multiply
3767 anymore. */
3768 split_code = GET_CODE (*split);
3771 /* Similarly for (plus (mult FOO (const_int pow2))). */
3772 if (split_code == PLUS
3773 && GET_CODE (XEXP (*split, 0)) == MULT
3774 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3775 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3776 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3778 rtx nsplit = XEXP (*split, 0);
3779 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3780 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3781 XEXP (nsplit, 0),
3782 i_rtx));
3783 /* Update split_code because we may not have a multiply
3784 anymore. */
3785 split_code = GET_CODE (*split);
3788 #ifdef INSN_SCHEDULING
3789 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3790 be written as a ZERO_EXTEND. */
3791 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3793 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3794 what it really is. */
3795 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3796 == SIGN_EXTEND)
3797 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3798 SUBREG_REG (*split)));
3799 else
3800 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3801 SUBREG_REG (*split)));
3803 #endif
3805 /* Attempt to split binary operators using arithmetic identities. */
3806 if (BINARY_P (SET_SRC (newpat))
3807 && split_mode == GET_MODE (SET_SRC (newpat))
3808 && ! side_effects_p (SET_SRC (newpat)))
3810 rtx setsrc = SET_SRC (newpat);
3811 machine_mode mode = GET_MODE (setsrc);
3812 enum rtx_code code = GET_CODE (setsrc);
3813 rtx src_op0 = XEXP (setsrc, 0);
3814 rtx src_op1 = XEXP (setsrc, 1);
3816 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3817 if (rtx_equal_p (src_op0, src_op1))
3819 newi2pat = gen_rtx_SET (newdest, src_op0);
3820 SUBST (XEXP (setsrc, 0), newdest);
3821 SUBST (XEXP (setsrc, 1), newdest);
3822 subst_done = true;
3824 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3825 else if ((code == PLUS || code == MULT)
3826 && GET_CODE (src_op0) == code
3827 && GET_CODE (XEXP (src_op0, 0)) == code
3828 && (INTEGRAL_MODE_P (mode)
3829 || (FLOAT_MODE_P (mode)
3830 && flag_unsafe_math_optimizations)))
3832 rtx p = XEXP (XEXP (src_op0, 0), 0);
3833 rtx q = XEXP (XEXP (src_op0, 0), 1);
3834 rtx r = XEXP (src_op0, 1);
3835 rtx s = src_op1;
3837 /* Split both "((X op Y) op X) op Y" and
3838 "((X op Y) op Y) op X" as "T op T" where T is
3839 "X op Y". */
3840 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3841 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3843 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3844 SUBST (XEXP (setsrc, 0), newdest);
3845 SUBST (XEXP (setsrc, 1), newdest);
3846 subst_done = true;
3848 /* Split "((X op X) op Y) op Y)" as "T op T" where
3849 T is "X op Y". */
3850 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3852 rtx tmp = simplify_gen_binary (code, mode, p, r);
3853 newi2pat = gen_rtx_SET (newdest, tmp);
3854 SUBST (XEXP (setsrc, 0), newdest);
3855 SUBST (XEXP (setsrc, 1), newdest);
3856 subst_done = true;
3861 if (!subst_done)
3863 newi2pat = gen_rtx_SET (newdest, *split);
3864 SUBST (*split, newdest);
3867 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3869 /* recog_for_combine might have added CLOBBERs to newi2pat.
3870 Make sure NEWPAT does not depend on the clobbered regs. */
3871 if (GET_CODE (newi2pat) == PARALLEL)
3872 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3873 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3875 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3876 if (reg_overlap_mentioned_p (reg, newpat))
3878 undo_all ();
3879 return 0;
3883 /* If the split point was a MULT and we didn't have one before,
3884 don't use one now. */
3885 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3886 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3890 /* Check for a case where we loaded from memory in a narrow mode and
3891 then sign extended it, but we need both registers. In that case,
3892 we have a PARALLEL with both loads from the same memory location.
3893 We can split this into a load from memory followed by a register-register
3894 copy. This saves at least one insn, more if register allocation can
3895 eliminate the copy.
3897 We cannot do this if the destination of the first assignment is a
3898 condition code register. We eliminate this case by making sure
3899 the SET_DEST and SET_SRC have the same mode.
3901 We cannot do this if the destination of the second assignment is
3902 a register that we have already assumed is zero-extended. Similarly
3903 for a SUBREG of such a register. */
3905 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3906 && GET_CODE (newpat) == PARALLEL
3907 && XVECLEN (newpat, 0) == 2
3908 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3909 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3910 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3911 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3912 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3913 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3914 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3915 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3916 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3918 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3919 (REG_P (temp_expr)
3920 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3921 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3922 BITS_PER_WORD)
3923 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3924 HOST_BITS_PER_INT)
3925 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3926 != GET_MODE_MASK (word_mode))))
3927 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3928 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3929 (REG_P (temp_expr)
3930 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3931 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3932 BITS_PER_WORD)
3933 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3934 HOST_BITS_PER_INT)
3935 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3936 != GET_MODE_MASK (word_mode)))))
3937 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3938 SET_SRC (XVECEXP (newpat, 0, 1)))
3939 && ! find_reg_note (i3, REG_UNUSED,
3940 SET_DEST (XVECEXP (newpat, 0, 0))))
3942 rtx ni2dest;
3944 newi2pat = XVECEXP (newpat, 0, 0);
3945 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3946 newpat = XVECEXP (newpat, 0, 1);
3947 SUBST (SET_SRC (newpat),
3948 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3949 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3951 if (i2_code_number >= 0)
3952 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3954 if (insn_code_number >= 0)
3955 swap_i2i3 = 1;
3958 /* Similarly, check for a case where we have a PARALLEL of two independent
3959 SETs but we started with three insns. In this case, we can do the sets
3960 as two separate insns. This case occurs when some SET allows two
3961 other insns to combine, but the destination of that SET is still live.
3963 Also do this if we started with two insns and (at least) one of the
3964 resulting sets is a noop; this noop will be deleted later.
3966 Also do this if we started with two insns neither of which was a simple
3967 move. */
3969 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3970 && GET_CODE (newpat) == PARALLEL
3971 && XVECLEN (newpat, 0) == 2
3972 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3973 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3974 && (i1
3975 || set_noop_p (XVECEXP (newpat, 0, 0))
3976 || set_noop_p (XVECEXP (newpat, 0, 1))
3977 || (!i2_was_move && !i3_was_move))
3978 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3979 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3980 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3981 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3982 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3983 XVECEXP (newpat, 0, 0))
3984 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3985 XVECEXP (newpat, 0, 1))
3986 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3987 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3989 rtx set0 = XVECEXP (newpat, 0, 0);
3990 rtx set1 = XVECEXP (newpat, 0, 1);
3992 /* Normally, it doesn't matter which of the two is done first, but
3993 one which uses any regs/memory set in between i2 and i3 can't
3994 be first. The PARALLEL might also have been pre-existing in i3,
3995 so we need to make sure that we won't wrongly hoist a SET to i2
3996 that would conflict with a death note present in there, or would
3997 have its dest modified between i2 and i3. */
3998 if (!modified_between_p (SET_SRC (set1), i2, i3)
3999 && !(REG_P (SET_DEST (set1))
4000 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4001 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4002 && find_reg_note (i2, REG_DEAD,
4003 SUBREG_REG (SET_DEST (set1))))
4004 && !modified_between_p (SET_DEST (set1), i2, i3)
4005 /* If I3 is a jump, ensure that set0 is a jump so that
4006 we do not create invalid RTL. */
4007 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4010 newi2pat = set1;
4011 newpat = set0;
4013 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4014 && !(REG_P (SET_DEST (set0))
4015 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4016 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4017 && find_reg_note (i2, REG_DEAD,
4018 SUBREG_REG (SET_DEST (set0))))
4019 && !modified_between_p (SET_DEST (set0), i2, i3)
4020 /* If I3 is a jump, ensure that set1 is a jump so that
4021 we do not create invalid RTL. */
4022 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4025 newi2pat = set0;
4026 newpat = set1;
4028 else
4030 undo_all ();
4031 return 0;
4034 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4036 if (i2_code_number >= 0)
4038 /* recog_for_combine might have added CLOBBERs to newi2pat.
4039 Make sure NEWPAT does not depend on the clobbered regs. */
4040 if (GET_CODE (newi2pat) == PARALLEL)
4042 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4043 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4045 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4046 if (reg_overlap_mentioned_p (reg, newpat))
4048 undo_all ();
4049 return 0;
4054 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4056 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4057 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4058 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4059 if (insn_code_number >= 0 && GET_CODE (newpat) == PARALLEL)
4061 for (i = XVECLEN (newpat, 0) - 1; i >= 0; i--)
4062 if (GET_CODE (XVECEXP (newpat, 0, i)) == CLOBBER)
4064 rtx reg = XEXP (XVECEXP (newpat, 0, i), 0);
4065 if (reg_overlap_mentioned_p (reg, SET_DEST (set0))
4066 || reg_overlap_mentioned_p (reg, SET_DEST (set1)))
4068 undo_all ();
4069 return 0;
4074 if (insn_code_number >= 0)
4075 split_i2i3 = true;
4079 /* If it still isn't recognized, fail and change things back the way they
4080 were. */
4081 if ((insn_code_number < 0
4082 /* Is the result a reasonable ASM_OPERANDS? */
4083 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4085 undo_all ();
4086 return 0;
4089 /* If we had to change another insn, make sure it is valid also. */
4090 if (undobuf.other_insn)
4092 CLEAR_HARD_REG_SET (newpat_used_regs);
4094 other_pat = PATTERN (undobuf.other_insn);
4095 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4096 &new_other_notes);
4098 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4100 undo_all ();
4101 return 0;
4105 /* Only allow this combination if insn_cost reports that the
4106 replacement instructions are cheaper than the originals. */
4107 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4109 undo_all ();
4110 return 0;
4113 if (MAY_HAVE_DEBUG_BIND_INSNS)
4115 struct undo *undo;
4117 for (undo = undobuf.undos; undo; undo = undo->next)
4118 if (undo->kind == UNDO_MODE)
4120 rtx reg = regno_reg_rtx[undo->where.regno];
4121 machine_mode new_mode = GET_MODE (reg);
4122 machine_mode old_mode = undo->old_contents.m;
4124 /* Temporarily revert mode back. */
4125 adjust_reg_mode (reg, old_mode);
4127 if (reg == i2dest && i2scratch)
4129 /* If we used i2dest as a scratch register with a
4130 different mode, substitute it for the original
4131 i2src while its original mode is temporarily
4132 restored, and then clear i2scratch so that we don't
4133 do it again later. */
4134 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4135 this_basic_block);
4136 i2scratch = false;
4137 /* Put back the new mode. */
4138 adjust_reg_mode (reg, new_mode);
4140 else
4142 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4143 rtx_insn *first, *last;
4145 if (reg == i2dest)
4147 first = i2;
4148 last = last_combined_insn;
4150 else
4152 first = i3;
4153 last = undobuf.other_insn;
4154 gcc_assert (last);
4155 if (DF_INSN_LUID (last)
4156 < DF_INSN_LUID (last_combined_insn))
4157 last = last_combined_insn;
4160 /* We're dealing with a reg that changed mode but not
4161 meaning, so we want to turn it into a subreg for
4162 the new mode. However, because of REG sharing and
4163 because its mode had already changed, we have to do
4164 it in two steps. First, replace any debug uses of
4165 reg, with its original mode temporarily restored,
4166 with this copy we have created; then, replace the
4167 copy with the SUBREG of the original shared reg,
4168 once again changed to the new mode. */
4169 propagate_for_debug (first, last, reg, tempreg,
4170 this_basic_block);
4171 adjust_reg_mode (reg, new_mode);
4172 propagate_for_debug (first, last, tempreg,
4173 lowpart_subreg (old_mode, reg, new_mode),
4174 this_basic_block);
4179 /* If we will be able to accept this, we have made a
4180 change to the destination of I3. This requires us to
4181 do a few adjustments. */
4183 if (changed_i3_dest)
4185 PATTERN (i3) = newpat;
4186 adjust_for_new_dest (i3);
4189 /* If I2 didn't change, this is not a combination (but a simplification or
4190 canonicalisation with context), which should not be done here. Doing
4191 it here explodes the algorithm. Don't. */
4192 if (rtx_equal_p (newi2pat, PATTERN (i2)))
4194 if (dump_file)
4195 fprintf (dump_file, "i2 didn't change, not doing this\n");
4196 undo_all ();
4197 return 0;
4200 /* We now know that we can do this combination. Merge the insns and
4201 update the status of registers and LOG_LINKS. */
4203 if (undobuf.other_insn)
4205 rtx note, next;
4207 PATTERN (undobuf.other_insn) = other_pat;
4209 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4210 ensure that they are still valid. Then add any non-duplicate
4211 notes added by recog_for_combine. */
4212 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4214 next = XEXP (note, 1);
4216 if ((REG_NOTE_KIND (note) == REG_DEAD
4217 && !reg_referenced_p (XEXP (note, 0),
4218 PATTERN (undobuf.other_insn)))
4219 ||(REG_NOTE_KIND (note) == REG_UNUSED
4220 && !reg_set_p (XEXP (note, 0),
4221 PATTERN (undobuf.other_insn)))
4222 /* Simply drop equal note since it may be no longer valid
4223 for other_insn. It may be possible to record that CC
4224 register is changed and only discard those notes, but
4225 in practice it's unnecessary complication and doesn't
4226 give any meaningful improvement.
4228 See PR78559. */
4229 || REG_NOTE_KIND (note) == REG_EQUAL
4230 || REG_NOTE_KIND (note) == REG_EQUIV)
4231 remove_note (undobuf.other_insn, note);
4234 distribute_notes (new_other_notes, undobuf.other_insn,
4235 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4236 NULL_RTX);
4239 if (swap_i2i3)
4241 /* I3 now uses what used to be its destination and which is now
4242 I2's destination. This requires us to do a few adjustments. */
4243 PATTERN (i3) = newpat;
4244 adjust_for_new_dest (i3);
4247 if (swap_i2i3 || split_i2i3)
4249 /* We might need a LOG_LINK from I3 to I2. But then we used to
4250 have one, so we still will.
4252 However, some later insn might be using I2's dest and have
4253 a LOG_LINK pointing at I3. We should change it to point at
4254 I2 instead. */
4256 /* newi2pat is usually a SET here; however, recog_for_combine might
4257 have added some clobbers. */
4258 rtx x = newi2pat;
4259 if (GET_CODE (x) == PARALLEL)
4260 x = XVECEXP (newi2pat, 0, 0);
4262 if (REG_P (SET_DEST (x))
4263 || (GET_CODE (SET_DEST (x)) == SUBREG
4264 && REG_P (SUBREG_REG (SET_DEST (x)))))
4266 unsigned int regno = reg_or_subregno (SET_DEST (x));
4268 bool done = false;
4269 for (rtx_insn *insn = NEXT_INSN (i3);
4270 !done
4271 && insn
4272 && INSN_P (insn)
4273 && BLOCK_FOR_INSN (insn) == this_basic_block;
4274 insn = NEXT_INSN (insn))
4276 if (DEBUG_INSN_P (insn))
4277 continue;
4278 struct insn_link *link;
4279 FOR_EACH_LOG_LINK (link, insn)
4280 if (link->insn == i3 && link->regno == regno)
4282 link->insn = i2;
4283 done = true;
4284 break;
4291 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4292 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4293 rtx midnotes = 0;
4294 int from_luid;
4295 /* Compute which registers we expect to eliminate. newi2pat may be setting
4296 either i3dest or i2dest, so we must check it. */
4297 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4298 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4299 || !i2dest_killed
4300 ? 0 : i2dest);
4301 /* For i1, we need to compute both local elimination and global
4302 elimination information with respect to newi2pat because i1dest
4303 may be the same as i3dest, in which case newi2pat may be setting
4304 i1dest. Global information is used when distributing REG_DEAD
4305 note for i2 and i3, in which case it does matter if newi2pat sets
4306 i1dest or not.
4308 Local information is used when distributing REG_DEAD note for i1,
4309 in which case it doesn't matter if newi2pat sets i1dest or not.
4310 See PR62151, if we have four insns combination:
4311 i0: r0 <- i0src
4312 i1: r1 <- i1src (using r0)
4313 REG_DEAD (r0)
4314 i2: r0 <- i2src (using r1)
4315 i3: r3 <- i3src (using r0)
4316 ix: using r0
4317 From i1's point of view, r0 is eliminated, no matter if it is set
4318 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4319 should be discarded.
4321 Note local information only affects cases in forms like "I1->I2->I3",
4322 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4323 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4324 i0dest anyway. */
4325 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4326 || !i1dest_killed
4327 ? 0 : i1dest);
4328 rtx elim_i1 = (local_elim_i1 == 0
4329 || (newi2pat && reg_set_p (i1dest, newi2pat))
4330 ? 0 : i1dest);
4331 /* Same case as i1. */
4332 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4333 ? 0 : i0dest);
4334 rtx elim_i0 = (local_elim_i0 == 0
4335 || (newi2pat && reg_set_p (i0dest, newi2pat))
4336 ? 0 : i0dest);
4338 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4339 clear them. */
4340 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4341 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4342 if (i1)
4343 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4344 if (i0)
4345 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4347 /* Ensure that we do not have something that should not be shared but
4348 occurs multiple times in the new insns. Check this by first
4349 resetting all the `used' flags and then copying anything is shared. */
4351 reset_used_flags (i3notes);
4352 reset_used_flags (i2notes);
4353 reset_used_flags (i1notes);
4354 reset_used_flags (i0notes);
4355 reset_used_flags (newpat);
4356 reset_used_flags (newi2pat);
4357 if (undobuf.other_insn)
4358 reset_used_flags (PATTERN (undobuf.other_insn));
4360 i3notes = copy_rtx_if_shared (i3notes);
4361 i2notes = copy_rtx_if_shared (i2notes);
4362 i1notes = copy_rtx_if_shared (i1notes);
4363 i0notes = copy_rtx_if_shared (i0notes);
4364 newpat = copy_rtx_if_shared (newpat);
4365 newi2pat = copy_rtx_if_shared (newi2pat);
4366 if (undobuf.other_insn)
4367 reset_used_flags (PATTERN (undobuf.other_insn));
4369 INSN_CODE (i3) = insn_code_number;
4370 PATTERN (i3) = newpat;
4372 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4374 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4375 link = XEXP (link, 1))
4377 if (substed_i2)
4379 /* I2SRC must still be meaningful at this point. Some
4380 splitting operations can invalidate I2SRC, but those
4381 operations do not apply to calls. */
4382 gcc_assert (i2src);
4383 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4384 i2dest, i2src);
4386 if (substed_i1)
4387 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4388 i1dest, i1src);
4389 if (substed_i0)
4390 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4391 i0dest, i0src);
4395 if (undobuf.other_insn)
4396 INSN_CODE (undobuf.other_insn) = other_code_number;
4398 /* We had one special case above where I2 had more than one set and
4399 we replaced a destination of one of those sets with the destination
4400 of I3. In that case, we have to update LOG_LINKS of insns later
4401 in this basic block. Note that this (expensive) case is rare.
4403 Also, in this case, we must pretend that all REG_NOTEs for I2
4404 actually came from I3, so that REG_UNUSED notes from I2 will be
4405 properly handled. */
4407 if (i3_subst_into_i2)
4409 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4410 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4411 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4412 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4413 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4414 && ! find_reg_note (i2, REG_UNUSED,
4415 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4416 for (temp_insn = NEXT_INSN (i2);
4417 temp_insn
4418 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4419 || BB_HEAD (this_basic_block) != temp_insn);
4420 temp_insn = NEXT_INSN (temp_insn))
4421 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4422 FOR_EACH_LOG_LINK (link, temp_insn)
4423 if (link->insn == i2)
4424 link->insn = i3;
4426 if (i3notes)
4428 rtx link = i3notes;
4429 while (XEXP (link, 1))
4430 link = XEXP (link, 1);
4431 XEXP (link, 1) = i2notes;
4433 else
4434 i3notes = i2notes;
4435 i2notes = 0;
4438 LOG_LINKS (i3) = NULL;
4439 REG_NOTES (i3) = 0;
4440 LOG_LINKS (i2) = NULL;
4441 REG_NOTES (i2) = 0;
4443 if (newi2pat)
4445 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4446 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4447 this_basic_block);
4448 INSN_CODE (i2) = i2_code_number;
4449 PATTERN (i2) = newi2pat;
4451 else
4453 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4454 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4455 this_basic_block);
4456 SET_INSN_DELETED (i2);
4459 if (i1)
4461 LOG_LINKS (i1) = NULL;
4462 REG_NOTES (i1) = 0;
4463 if (MAY_HAVE_DEBUG_BIND_INSNS)
4464 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4465 this_basic_block);
4466 SET_INSN_DELETED (i1);
4469 if (i0)
4471 LOG_LINKS (i0) = NULL;
4472 REG_NOTES (i0) = 0;
4473 if (MAY_HAVE_DEBUG_BIND_INSNS)
4474 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4475 this_basic_block);
4476 SET_INSN_DELETED (i0);
4479 /* Get death notes for everything that is now used in either I3 or
4480 I2 and used to die in a previous insn. If we built two new
4481 patterns, move from I1 to I2 then I2 to I3 so that we get the
4482 proper movement on registers that I2 modifies. */
4484 if (i0)
4485 from_luid = DF_INSN_LUID (i0);
4486 else if (i1)
4487 from_luid = DF_INSN_LUID (i1);
4488 else
4489 from_luid = DF_INSN_LUID (i2);
4490 if (newi2pat)
4491 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4492 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4494 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4495 if (i3notes)
4496 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4497 elim_i2, elim_i1, elim_i0);
4498 if (i2notes)
4499 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4500 elim_i2, elim_i1, elim_i0);
4501 if (i1notes)
4502 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4503 elim_i2, local_elim_i1, local_elim_i0);
4504 if (i0notes)
4505 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4506 elim_i2, elim_i1, local_elim_i0);
4507 if (midnotes)
4508 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4509 elim_i2, elim_i1, elim_i0);
4511 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4512 know these are REG_UNUSED and want them to go to the desired insn,
4513 so we always pass it as i3. */
4515 if (newi2pat && new_i2_notes)
4516 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4517 NULL_RTX);
4519 if (new_i3_notes)
4520 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4521 NULL_RTX);
4523 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4524 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4525 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4526 in that case, it might delete I2. Similarly for I2 and I1.
4527 Show an additional death due to the REG_DEAD note we make here. If
4528 we discard it in distribute_notes, we will decrement it again. */
4530 if (i3dest_killed)
4532 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4533 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4534 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4535 elim_i1, elim_i0);
4536 else
4537 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4538 elim_i2, elim_i1, elim_i0);
4541 if (i2dest_in_i2src)
4543 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4544 if (newi2pat && reg_set_p (i2dest, newi2pat))
4545 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4546 NULL_RTX, NULL_RTX);
4547 else
4548 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4549 NULL_RTX, NULL_RTX, NULL_RTX);
4552 if (i1dest_in_i1src)
4554 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4555 if (newi2pat && reg_set_p (i1dest, newi2pat))
4556 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4557 NULL_RTX, NULL_RTX);
4558 else
4559 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4560 NULL_RTX, NULL_RTX, NULL_RTX);
4563 if (i0dest_in_i0src)
4565 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4566 if (newi2pat && reg_set_p (i0dest, newi2pat))
4567 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4568 NULL_RTX, NULL_RTX);
4569 else
4570 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4571 NULL_RTX, NULL_RTX, NULL_RTX);
4574 distribute_links (i3links);
4575 distribute_links (i2links);
4576 distribute_links (i1links);
4577 distribute_links (i0links);
4579 if (REG_P (i2dest))
4581 struct insn_link *link;
4582 rtx_insn *i2_insn = 0;
4583 rtx i2_val = 0, set;
4585 /* The insn that used to set this register doesn't exist, and
4586 this life of the register may not exist either. See if one of
4587 I3's links points to an insn that sets I2DEST. If it does,
4588 that is now the last known value for I2DEST. If we don't update
4589 this and I2 set the register to a value that depended on its old
4590 contents, we will get confused. If this insn is used, thing
4591 will be set correctly in combine_instructions. */
4592 FOR_EACH_LOG_LINK (link, i3)
4593 if ((set = single_set (link->insn)) != 0
4594 && rtx_equal_p (i2dest, SET_DEST (set)))
4595 i2_insn = link->insn, i2_val = SET_SRC (set);
4597 record_value_for_reg (i2dest, i2_insn, i2_val);
4599 /* If the reg formerly set in I2 died only once and that was in I3,
4600 zero its use count so it won't make `reload' do any work. */
4601 if (! added_sets_2
4602 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4603 && ! i2dest_in_i2src
4604 && REGNO (i2dest) < reg_n_sets_max)
4605 INC_REG_N_SETS (REGNO (i2dest), -1);
4608 if (i1 && REG_P (i1dest))
4610 struct insn_link *link;
4611 rtx_insn *i1_insn = 0;
4612 rtx i1_val = 0, set;
4614 FOR_EACH_LOG_LINK (link, i3)
4615 if ((set = single_set (link->insn)) != 0
4616 && rtx_equal_p (i1dest, SET_DEST (set)))
4617 i1_insn = link->insn, i1_val = SET_SRC (set);
4619 record_value_for_reg (i1dest, i1_insn, i1_val);
4621 if (! added_sets_1
4622 && ! i1dest_in_i1src
4623 && REGNO (i1dest) < reg_n_sets_max)
4624 INC_REG_N_SETS (REGNO (i1dest), -1);
4627 if (i0 && REG_P (i0dest))
4629 struct insn_link *link;
4630 rtx_insn *i0_insn = 0;
4631 rtx i0_val = 0, set;
4633 FOR_EACH_LOG_LINK (link, i3)
4634 if ((set = single_set (link->insn)) != 0
4635 && rtx_equal_p (i0dest, SET_DEST (set)))
4636 i0_insn = link->insn, i0_val = SET_SRC (set);
4638 record_value_for_reg (i0dest, i0_insn, i0_val);
4640 if (! added_sets_0
4641 && ! i0dest_in_i0src
4642 && REGNO (i0dest) < reg_n_sets_max)
4643 INC_REG_N_SETS (REGNO (i0dest), -1);
4646 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4647 been made to this insn. The order is important, because newi2pat
4648 can affect nonzero_bits of newpat. */
4649 if (newi2pat)
4650 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4651 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4654 if (undobuf.other_insn != NULL_RTX)
4656 if (dump_file)
4658 fprintf (dump_file, "modifying other_insn ");
4659 dump_insn_slim (dump_file, undobuf.other_insn);
4661 df_insn_rescan (undobuf.other_insn);
4664 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4666 if (dump_file)
4668 fprintf (dump_file, "modifying insn i0 ");
4669 dump_insn_slim (dump_file, i0);
4671 df_insn_rescan (i0);
4674 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4676 if (dump_file)
4678 fprintf (dump_file, "modifying insn i1 ");
4679 dump_insn_slim (dump_file, i1);
4681 df_insn_rescan (i1);
4684 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4686 if (dump_file)
4688 fprintf (dump_file, "modifying insn i2 ");
4689 dump_insn_slim (dump_file, i2);
4691 df_insn_rescan (i2);
4694 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4696 if (dump_file)
4698 fprintf (dump_file, "modifying insn i3 ");
4699 dump_insn_slim (dump_file, i3);
4701 df_insn_rescan (i3);
4704 /* Set new_direct_jump_p if a new return or simple jump instruction
4705 has been created. Adjust the CFG accordingly. */
4706 if (returnjump_p (i3) || any_uncondjump_p (i3))
4708 *new_direct_jump_p = 1;
4709 mark_jump_label (PATTERN (i3), i3, 0);
4710 update_cfg_for_uncondjump (i3);
4713 if (undobuf.other_insn != NULL_RTX
4714 && (returnjump_p (undobuf.other_insn)
4715 || any_uncondjump_p (undobuf.other_insn)))
4717 *new_direct_jump_p = 1;
4718 update_cfg_for_uncondjump (undobuf.other_insn);
4721 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4722 && XEXP (PATTERN (i3), 0) == const1_rtx)
4724 basic_block bb = BLOCK_FOR_INSN (i3);
4725 gcc_assert (bb);
4726 remove_edge (split_block (bb, i3));
4727 emit_barrier_after_bb (bb);
4728 *new_direct_jump_p = 1;
4731 if (undobuf.other_insn
4732 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4733 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4735 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4736 gcc_assert (bb);
4737 remove_edge (split_block (bb, undobuf.other_insn));
4738 emit_barrier_after_bb (bb);
4739 *new_direct_jump_p = 1;
4742 /* A noop might also need cleaning up of CFG, if it comes from the
4743 simplification of a jump. */
4744 if (JUMP_P (i3)
4745 && GET_CODE (newpat) == SET
4746 && SET_SRC (newpat) == pc_rtx
4747 && SET_DEST (newpat) == pc_rtx)
4749 *new_direct_jump_p = 1;
4750 update_cfg_for_uncondjump (i3);
4753 if (undobuf.other_insn != NULL_RTX
4754 && JUMP_P (undobuf.other_insn)
4755 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4756 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4757 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4759 *new_direct_jump_p = 1;
4760 update_cfg_for_uncondjump (undobuf.other_insn);
4763 combine_successes++;
4764 undo_commit ();
4766 rtx_insn *ret = newi2pat ? i2 : i3;
4767 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4768 ret = added_links_insn;
4769 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4770 ret = added_notes_insn;
4772 return ret;
4775 /* Get a marker for undoing to the current state. */
4777 static void *
4778 get_undo_marker (void)
4780 return undobuf.undos;
4783 /* Undo the modifications up to the marker. */
4785 static void
4786 undo_to_marker (void *marker)
4788 struct undo *undo, *next;
4790 for (undo = undobuf.undos; undo != marker; undo = next)
4792 gcc_assert (undo);
4794 next = undo->next;
4795 switch (undo->kind)
4797 case UNDO_RTX:
4798 *undo->where.r = undo->old_contents.r;
4799 break;
4800 case UNDO_INT:
4801 *undo->where.i = undo->old_contents.i;
4802 break;
4803 case UNDO_MODE:
4804 adjust_reg_mode (regno_reg_rtx[undo->where.regno],
4805 undo->old_contents.m);
4806 break;
4807 case UNDO_LINKS:
4808 *undo->where.l = undo->old_contents.l;
4809 break;
4810 default:
4811 gcc_unreachable ();
4814 undo->next = undobuf.frees;
4815 undobuf.frees = undo;
4818 undobuf.undos = (struct undo *) marker;
4821 /* Undo all the modifications recorded in undobuf. */
4823 static void
4824 undo_all (void)
4826 undo_to_marker (0);
4829 /* We've committed to accepting the changes we made. Move all
4830 of the undos to the free list. */
4832 static void
4833 undo_commit (void)
4835 struct undo *undo, *next;
4837 for (undo = undobuf.undos; undo; undo = next)
4839 next = undo->next;
4840 undo->next = undobuf.frees;
4841 undobuf.frees = undo;
4843 undobuf.undos = 0;
4846 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4847 where we have an arithmetic expression and return that point. LOC will
4848 be inside INSN.
4850 try_combine will call this function to see if an insn can be split into
4851 two insns. */
4853 static rtx *
4854 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4856 rtx x = *loc;
4857 enum rtx_code code = GET_CODE (x);
4858 rtx *split;
4859 unsigned HOST_WIDE_INT len = 0;
4860 HOST_WIDE_INT pos = 0;
4861 bool unsignedp = false;
4862 rtx inner = NULL_RTX;
4863 scalar_int_mode mode, inner_mode;
4865 /* First special-case some codes. */
4866 switch (code)
4868 case SUBREG:
4869 #ifdef INSN_SCHEDULING
4870 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4871 point. */
4872 if (MEM_P (SUBREG_REG (x)))
4873 return loc;
4874 #endif
4875 return find_split_point (&SUBREG_REG (x), insn, false);
4877 case MEM:
4878 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4879 using LO_SUM and HIGH. */
4880 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4881 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4883 machine_mode address_mode = get_address_mode (x);
4885 SUBST (XEXP (x, 0),
4886 gen_rtx_LO_SUM (address_mode,
4887 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4888 XEXP (x, 0)));
4889 return &XEXP (XEXP (x, 0), 0);
4892 /* If we have a PLUS whose second operand is a constant and the
4893 address is not valid, perhaps we can split it up using
4894 the machine-specific way to split large constants. We use
4895 the first pseudo-reg (one of the virtual regs) as a placeholder;
4896 it will not remain in the result. */
4897 if (GET_CODE (XEXP (x, 0)) == PLUS
4898 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4899 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4900 MEM_ADDR_SPACE (x)))
4902 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4903 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4904 subst_insn);
4906 /* This should have produced two insns, each of which sets our
4907 placeholder. If the source of the second is a valid address,
4908 we can put both sources together and make a split point
4909 in the middle. */
4911 if (seq
4912 && NEXT_INSN (seq) != NULL_RTX
4913 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4914 && NONJUMP_INSN_P (seq)
4915 && GET_CODE (PATTERN (seq)) == SET
4916 && SET_DEST (PATTERN (seq)) == reg
4917 && ! reg_mentioned_p (reg,
4918 SET_SRC (PATTERN (seq)))
4919 && NONJUMP_INSN_P (NEXT_INSN (seq))
4920 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4921 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4922 && memory_address_addr_space_p
4923 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4924 MEM_ADDR_SPACE (x)))
4926 rtx src1 = SET_SRC (PATTERN (seq));
4927 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4929 /* Replace the placeholder in SRC2 with SRC1. If we can
4930 find where in SRC2 it was placed, that can become our
4931 split point and we can replace this address with SRC2.
4932 Just try two obvious places. */
4934 src2 = replace_rtx (src2, reg, src1);
4935 split = 0;
4936 if (XEXP (src2, 0) == src1)
4937 split = &XEXP (src2, 0);
4938 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4939 && XEXP (XEXP (src2, 0), 0) == src1)
4940 split = &XEXP (XEXP (src2, 0), 0);
4942 if (split)
4944 SUBST (XEXP (x, 0), src2);
4945 return split;
4949 /* If that didn't work and we have a nested plus, like:
4950 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4951 is valid address, try to split (REG1 * CONST1). */
4952 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4953 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4954 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4955 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
4956 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4957 0), 0)))))
4959 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
4960 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
4961 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4962 MEM_ADDR_SPACE (x)))
4964 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4965 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
4967 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4969 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4970 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4971 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4972 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
4973 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4974 0), 1)))))
4976 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
4977 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
4978 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4979 MEM_ADDR_SPACE (x)))
4981 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4982 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
4984 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4987 /* If that didn't work, perhaps the first operand is complex and
4988 needs to be computed separately, so make a split point there.
4989 This will occur on machines that just support REG + CONST
4990 and have a constant moved through some previous computation. */
4991 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4992 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4993 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4994 return &XEXP (XEXP (x, 0), 0);
4997 /* If we have a PLUS whose first operand is complex, try computing it
4998 separately by making a split there. */
4999 if (GET_CODE (XEXP (x, 0)) == PLUS
5000 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5001 MEM_ADDR_SPACE (x))
5002 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5003 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5004 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5005 return &XEXP (XEXP (x, 0), 0);
5006 break;
5008 case SET:
5009 /* See if we can split SET_SRC as it stands. */
5010 split = find_split_point (&SET_SRC (x), insn, true);
5011 if (split && split != &SET_SRC (x))
5012 return split;
5014 /* See if we can split SET_DEST as it stands. */
5015 split = find_split_point (&SET_DEST (x), insn, false);
5016 if (split && split != &SET_DEST (x))
5017 return split;
5019 /* See if this is a bitfield assignment with everything constant. If
5020 so, this is an IOR of an AND, so split it into that. */
5021 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5022 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5023 &inner_mode)
5024 && HWI_COMPUTABLE_MODE_P (inner_mode)
5025 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5026 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5027 && CONST_INT_P (SET_SRC (x))
5028 && ((INTVAL (XEXP (SET_DEST (x), 1))
5029 + INTVAL (XEXP (SET_DEST (x), 2)))
5030 <= GET_MODE_PRECISION (inner_mode))
5031 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5033 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5034 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5035 rtx dest = XEXP (SET_DEST (x), 0);
5036 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5037 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5038 rtx or_mask;
5040 if (BITS_BIG_ENDIAN)
5041 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5043 or_mask = gen_int_mode (src << pos, inner_mode);
5044 if (src == mask)
5045 SUBST (SET_SRC (x),
5046 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5047 else
5049 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5050 SUBST (SET_SRC (x),
5051 simplify_gen_binary (IOR, inner_mode,
5052 simplify_gen_binary (AND, inner_mode,
5053 dest, negmask),
5054 or_mask));
5057 SUBST (SET_DEST (x), dest);
5059 split = find_split_point (&SET_SRC (x), insn, true);
5060 if (split && split != &SET_SRC (x))
5061 return split;
5064 /* Otherwise, see if this is an operation that we can split into two.
5065 If so, try to split that. */
5066 code = GET_CODE (SET_SRC (x));
5068 switch (code)
5070 case AND:
5071 /* If we are AND'ing with a large constant that is only a single
5072 bit and the result is only being used in a context where we
5073 need to know if it is zero or nonzero, replace it with a bit
5074 extraction. This will avoid the large constant, which might
5075 have taken more than one insn to make. If the constant were
5076 not a valid argument to the AND but took only one insn to make,
5077 this is no worse, but if it took more than one insn, it will
5078 be better. */
5080 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5081 && REG_P (XEXP (SET_SRC (x), 0))
5082 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5083 && REG_P (SET_DEST (x))
5084 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5085 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5086 && XEXP (*split, 0) == SET_DEST (x)
5087 && XEXP (*split, 1) == const0_rtx)
5089 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5090 XEXP (SET_SRC (x), 0),
5091 pos, NULL_RTX, 1,
5092 true, false, false);
5093 if (extraction != 0)
5095 SUBST (SET_SRC (x), extraction);
5096 return find_split_point (loc, insn, false);
5099 break;
5101 case NE:
5102 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5103 is known to be on, this can be converted into a NEG of a shift. */
5104 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5105 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5106 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5107 GET_MODE (XEXP (SET_SRC (x),
5108 0))))) >= 1))
5110 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5111 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5112 SUBST (SET_SRC (x),
5113 gen_rtx_NEG (mode,
5114 gen_rtx_LSHIFTRT (mode,
5115 XEXP (SET_SRC (x), 0),
5116 pos_rtx)));
5118 split = find_split_point (&SET_SRC (x), insn, true);
5119 if (split && split != &SET_SRC (x))
5120 return split;
5122 break;
5124 case SIGN_EXTEND:
5125 inner = XEXP (SET_SRC (x), 0);
5127 /* We can't optimize if either mode is a partial integer
5128 mode as we don't know how many bits are significant
5129 in those modes. */
5130 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5131 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5132 break;
5134 pos = 0;
5135 len = GET_MODE_PRECISION (inner_mode);
5136 unsignedp = false;
5137 break;
5139 case SIGN_EXTRACT:
5140 case ZERO_EXTRACT:
5141 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5142 &inner_mode)
5143 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5144 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5146 inner = XEXP (SET_SRC (x), 0);
5147 len = INTVAL (XEXP (SET_SRC (x), 1));
5148 pos = INTVAL (XEXP (SET_SRC (x), 2));
5150 if (BITS_BIG_ENDIAN)
5151 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5152 unsignedp = (code == ZERO_EXTRACT);
5154 break;
5156 default:
5157 break;
5160 if (len
5161 && known_subrange_p (pos, len,
5162 0, GET_MODE_PRECISION (GET_MODE (inner)))
5163 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5165 /* For unsigned, we have a choice of a shift followed by an
5166 AND or two shifts. Use two shifts for field sizes where the
5167 constant might be too large. We assume here that we can
5168 always at least get 8-bit constants in an AND insn, which is
5169 true for every current RISC. */
5171 if (unsignedp && len <= 8)
5173 unsigned HOST_WIDE_INT mask
5174 = (HOST_WIDE_INT_1U << len) - 1;
5175 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5176 SUBST (SET_SRC (x),
5177 gen_rtx_AND (mode,
5178 gen_rtx_LSHIFTRT
5179 (mode, gen_lowpart (mode, inner), pos_rtx),
5180 gen_int_mode (mask, mode)));
5182 split = find_split_point (&SET_SRC (x), insn, true);
5183 if (split && split != &SET_SRC (x))
5184 return split;
5186 else
5188 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5189 int right_bits = GET_MODE_PRECISION (mode) - len;
5190 SUBST (SET_SRC (x),
5191 gen_rtx_fmt_ee
5192 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5193 gen_rtx_ASHIFT (mode,
5194 gen_lowpart (mode, inner),
5195 gen_int_shift_amount (mode, left_bits)),
5196 gen_int_shift_amount (mode, right_bits)));
5198 split = find_split_point (&SET_SRC (x), insn, true);
5199 if (split && split != &SET_SRC (x))
5200 return split;
5204 /* See if this is a simple operation with a constant as the second
5205 operand. It might be that this constant is out of range and hence
5206 could be used as a split point. */
5207 if (BINARY_P (SET_SRC (x))
5208 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5209 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5210 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5211 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5212 return &XEXP (SET_SRC (x), 1);
5214 /* Finally, see if this is a simple operation with its first operand
5215 not in a register. The operation might require this operand in a
5216 register, so return it as a split point. We can always do this
5217 because if the first operand were another operation, we would have
5218 already found it as a split point. */
5219 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5220 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5221 return &XEXP (SET_SRC (x), 0);
5223 return 0;
5225 case AND:
5226 case IOR:
5227 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5228 it is better to write this as (not (ior A B)) so we can split it.
5229 Similarly for IOR. */
5230 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5232 SUBST (*loc,
5233 gen_rtx_NOT (GET_MODE (x),
5234 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5235 GET_MODE (x),
5236 XEXP (XEXP (x, 0), 0),
5237 XEXP (XEXP (x, 1), 0))));
5238 return find_split_point (loc, insn, set_src);
5241 /* Many RISC machines have a large set of logical insns. If the
5242 second operand is a NOT, put it first so we will try to split the
5243 other operand first. */
5244 if (GET_CODE (XEXP (x, 1)) == NOT)
5246 rtx tem = XEXP (x, 0);
5247 SUBST (XEXP (x, 0), XEXP (x, 1));
5248 SUBST (XEXP (x, 1), tem);
5250 break;
5252 case PLUS:
5253 case MINUS:
5254 /* Canonicalization can produce (minus A (mult B C)), where C is a
5255 constant. It may be better to try splitting (plus (mult B -C) A)
5256 instead if this isn't a multiply by a power of two. */
5257 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5258 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5259 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5261 machine_mode mode = GET_MODE (x);
5262 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5263 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5264 SUBST (*loc, gen_rtx_PLUS (mode,
5265 gen_rtx_MULT (mode,
5266 XEXP (XEXP (x, 1), 0),
5267 gen_int_mode (other_int,
5268 mode)),
5269 XEXP (x, 0)));
5270 return find_split_point (loc, insn, set_src);
5273 /* Split at a multiply-accumulate instruction. However if this is
5274 the SET_SRC, we likely do not have such an instruction and it's
5275 worthless to try this split. */
5276 if (!set_src
5277 && (GET_CODE (XEXP (x, 0)) == MULT
5278 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5279 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5280 return loc;
5282 default:
5283 break;
5286 /* Otherwise, select our actions depending on our rtx class. */
5287 switch (GET_RTX_CLASS (code))
5289 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5290 case RTX_TERNARY:
5291 split = find_split_point (&XEXP (x, 2), insn, false);
5292 if (split)
5293 return split;
5294 /* fall through */
5295 case RTX_BIN_ARITH:
5296 case RTX_COMM_ARITH:
5297 case RTX_COMPARE:
5298 case RTX_COMM_COMPARE:
5299 split = find_split_point (&XEXP (x, 1), insn, false);
5300 if (split)
5301 return split;
5302 /* fall through */
5303 case RTX_UNARY:
5304 /* Some machines have (and (shift ...) ...) insns. If X is not
5305 an AND, but XEXP (X, 0) is, use it as our split point. */
5306 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5307 return &XEXP (x, 0);
5309 split = find_split_point (&XEXP (x, 0), insn, false);
5310 if (split)
5311 return split;
5312 return loc;
5314 default:
5315 /* Otherwise, we don't have a split point. */
5316 return 0;
5320 /* Throughout X, replace FROM with TO, and return the result.
5321 The result is TO if X is FROM;
5322 otherwise the result is X, but its contents may have been modified.
5323 If they were modified, a record was made in undobuf so that
5324 undo_all will (among other things) return X to its original state.
5326 If the number of changes necessary is too much to record to undo,
5327 the excess changes are not made, so the result is invalid.
5328 The changes already made can still be undone.
5329 undobuf.num_undo is incremented for such changes, so by testing that
5330 the caller can tell whether the result is valid.
5332 `n_occurrences' is incremented each time FROM is replaced.
5334 IN_DEST is true if we are processing the SET_DEST of a SET.
5336 IN_COND is true if we are at the top level of a condition.
5338 UNIQUE_COPY is true if each substitution must be unique. We do this
5339 by copying if `n_occurrences' is nonzero. */
5341 static rtx
5342 subst (rtx x, rtx from, rtx to, bool in_dest, bool in_cond, bool unique_copy)
5344 enum rtx_code code = GET_CODE (x);
5345 machine_mode op0_mode = VOIDmode;
5346 const char *fmt;
5347 int len, i;
5348 rtx new_rtx;
5350 /* Two expressions are equal if they are identical copies of a shared
5351 RTX or if they are both registers with the same register number
5352 and mode. */
5354 #define COMBINE_RTX_EQUAL_P(X,Y) \
5355 ((X) == (Y) \
5356 || (REG_P (X) && REG_P (Y) \
5357 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5359 /* Do not substitute into clobbers of regs -- this will never result in
5360 valid RTL. */
5361 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5362 return x;
5364 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5366 n_occurrences++;
5367 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5370 /* If X and FROM are the same register but different modes, they
5371 will not have been seen as equal above. However, the log links code
5372 will make a LOG_LINKS entry for that case. If we do nothing, we
5373 will try to rerecognize our original insn and, when it succeeds,
5374 we will delete the feeding insn, which is incorrect.
5376 So force this insn not to match in this (rare) case. */
5377 if (! in_dest && code == REG && REG_P (from)
5378 && reg_overlap_mentioned_p (x, from))
5379 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5381 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5382 of which may contain things that can be combined. */
5383 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5384 return x;
5386 /* It is possible to have a subexpression appear twice in the insn.
5387 Suppose that FROM is a register that appears within TO.
5388 Then, after that subexpression has been scanned once by `subst',
5389 the second time it is scanned, TO may be found. If we were
5390 to scan TO here, we would find FROM within it and create a
5391 self-referent rtl structure which is completely wrong. */
5392 if (COMBINE_RTX_EQUAL_P (x, to))
5393 return to;
5395 /* Parallel asm_operands need special attention because all of the
5396 inputs are shared across the arms. Furthermore, unsharing the
5397 rtl results in recognition failures. Failure to handle this case
5398 specially can result in circular rtl.
5400 Solve this by doing a normal pass across the first entry of the
5401 parallel, and only processing the SET_DESTs of the subsequent
5402 entries. Ug. */
5404 if (code == PARALLEL
5405 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5406 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5408 new_rtx = subst (XVECEXP (x, 0, 0), from, to, false, false, unique_copy);
5410 /* If this substitution failed, this whole thing fails. */
5411 if (GET_CODE (new_rtx) == CLOBBER
5412 && XEXP (new_rtx, 0) == const0_rtx)
5413 return new_rtx;
5415 SUBST (XVECEXP (x, 0, 0), new_rtx);
5417 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5419 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5421 if (!REG_P (dest) && GET_CODE (dest) != PC)
5423 new_rtx = subst (dest, from, to, false, false, unique_copy);
5425 /* If this substitution failed, this whole thing fails. */
5426 if (GET_CODE (new_rtx) == CLOBBER
5427 && XEXP (new_rtx, 0) == const0_rtx)
5428 return new_rtx;
5430 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5434 else
5436 len = GET_RTX_LENGTH (code);
5437 fmt = GET_RTX_FORMAT (code);
5439 /* We don't need to process a SET_DEST that is a register or PC, so
5440 set up to skip this common case. All other cases where we want
5441 to suppress replacing something inside a SET_SRC are handled via
5442 the IN_DEST operand. */
5443 if (code == SET
5444 && (REG_P (SET_DEST (x))
5445 || GET_CODE (SET_DEST (x)) == PC))
5446 fmt = "ie";
5448 /* Trying to simplify the operands of a widening MULT is not likely
5449 to create RTL matching a machine insn. */
5450 if (code == MULT
5451 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5452 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5453 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5454 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5455 && REG_P (XEXP (XEXP (x, 0), 0))
5456 && REG_P (XEXP (XEXP (x, 1), 0))
5457 && from == to)
5458 return x;
5461 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5462 constant. */
5463 if (fmt[0] == 'e')
5464 op0_mode = GET_MODE (XEXP (x, 0));
5466 for (i = 0; i < len; i++)
5468 if (fmt[i] == 'E')
5470 int j;
5471 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5473 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5475 new_rtx = (unique_copy && n_occurrences
5476 ? copy_rtx (to) : to);
5477 n_occurrences++;
5479 else
5481 new_rtx = subst (XVECEXP (x, i, j), from, to,
5482 false, false, unique_copy);
5484 /* If this substitution failed, this whole thing
5485 fails. */
5486 if (GET_CODE (new_rtx) == CLOBBER
5487 && XEXP (new_rtx, 0) == const0_rtx)
5488 return new_rtx;
5491 SUBST (XVECEXP (x, i, j), new_rtx);
5494 else if (fmt[i] == 'e')
5496 /* If this is a register being set, ignore it. */
5497 new_rtx = XEXP (x, i);
5498 if (in_dest
5499 && i == 0
5500 && (((code == SUBREG || code == ZERO_EXTRACT)
5501 && REG_P (new_rtx))
5502 || code == STRICT_LOW_PART))
5505 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5507 /* In general, don't install a subreg involving two
5508 modes not tieable. It can worsen register
5509 allocation, and can even make invalid reload
5510 insns, since the reg inside may need to be copied
5511 from in the outside mode, and that may be invalid
5512 if it is an fp reg copied in integer mode.
5514 We allow an exception to this: It is valid if
5515 it is inside another SUBREG and the mode of that
5516 SUBREG and the mode of the inside of TO is
5517 tieable. */
5519 if (GET_CODE (to) == SUBREG
5520 && !targetm.modes_tieable_p (GET_MODE (to),
5521 GET_MODE (SUBREG_REG (to)))
5522 && ! (code == SUBREG
5523 && (targetm.modes_tieable_p
5524 (GET_MODE (x), GET_MODE (SUBREG_REG (to))))))
5525 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5527 if (code == SUBREG
5528 && REG_P (to)
5529 && REGNO (to) < FIRST_PSEUDO_REGISTER
5530 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5531 SUBREG_BYTE (x),
5532 GET_MODE (x)) < 0)
5533 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5535 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5536 n_occurrences++;
5538 else
5539 /* If we are in a SET_DEST, suppress most cases unless we
5540 have gone inside a MEM, in which case we want to
5541 simplify the address. We assume here that things that
5542 are actually part of the destination have their inner
5543 parts in the first expression. This is true for SUBREG,
5544 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5545 things aside from REG and MEM that should appear in a
5546 SET_DEST. */
5547 new_rtx = subst (XEXP (x, i), from, to,
5548 (((in_dest
5549 && (code == SUBREG || code == STRICT_LOW_PART
5550 || code == ZERO_EXTRACT))
5551 || code == SET)
5552 && i == 0),
5553 code == IF_THEN_ELSE && i == 0,
5554 unique_copy);
5556 /* If we found that we will have to reject this combination,
5557 indicate that by returning the CLOBBER ourselves, rather than
5558 an expression containing it. This will speed things up as
5559 well as prevent accidents where two CLOBBERs are considered
5560 to be equal, thus producing an incorrect simplification. */
5562 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5563 return new_rtx;
5565 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5567 machine_mode mode = GET_MODE (x);
5569 x = simplify_subreg (GET_MODE (x), new_rtx,
5570 GET_MODE (SUBREG_REG (x)),
5571 SUBREG_BYTE (x));
5572 if (! x)
5573 x = gen_rtx_CLOBBER (mode, const0_rtx);
5575 else if (CONST_SCALAR_INT_P (new_rtx)
5576 && (GET_CODE (x) == ZERO_EXTEND
5577 || GET_CODE (x) == SIGN_EXTEND
5578 || GET_CODE (x) == FLOAT
5579 || GET_CODE (x) == UNSIGNED_FLOAT))
5581 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5582 new_rtx,
5583 GET_MODE (XEXP (x, 0)));
5584 if (!x)
5585 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5587 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5588 etc. arguments, otherwise we can ICE before trying to recog
5589 it. See PR104446. */
5590 else if (CONST_SCALAR_INT_P (new_rtx)
5591 && GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
5592 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5593 else
5594 SUBST (XEXP (x, i), new_rtx);
5599 /* Check if we are loading something from the constant pool via float
5600 extension; in this case we would undo compress_float_constant
5601 optimization and degenerate constant load to an immediate value. */
5602 if (GET_CODE (x) == FLOAT_EXTEND
5603 && MEM_P (XEXP (x, 0))
5604 && MEM_READONLY_P (XEXP (x, 0)))
5606 rtx tmp = avoid_constant_pool_reference (x);
5607 if (x != tmp)
5608 return x;
5611 /* Try to simplify X. If the simplification changed the code, it is likely
5612 that further simplification will help, so loop, but limit the number
5613 of repetitions that will be performed. */
5615 for (i = 0; i < 4; i++)
5617 /* If X is sufficiently simple, don't bother trying to do anything
5618 with it. */
5619 if (code != CONST_INT && code != REG && code != CLOBBER)
5620 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5622 if (GET_CODE (x) == code)
5623 break;
5625 code = GET_CODE (x);
5627 /* We no longer know the original mode of operand 0 since we
5628 have changed the form of X) */
5629 op0_mode = VOIDmode;
5632 return x;
5635 /* If X is a commutative operation whose operands are not in the canonical
5636 order, use substitutions to swap them. */
5638 static void
5639 maybe_swap_commutative_operands (rtx x)
5641 if (COMMUTATIVE_ARITH_P (x)
5642 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5644 rtx temp = XEXP (x, 0);
5645 SUBST (XEXP (x, 0), XEXP (x, 1));
5646 SUBST (XEXP (x, 1), temp);
5649 unsigned n_elts = 0;
5650 if (GET_CODE (x) == VEC_MERGE
5651 && CONST_INT_P (XEXP (x, 2))
5652 && GET_MODE_NUNITS (GET_MODE (x)).is_constant (&n_elts)
5653 && (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))
5654 /* Two operands have same precedence, then
5655 first bit of mask select first operand. */
5656 || (!swap_commutative_operands_p (XEXP (x, 1), XEXP (x, 0))
5657 && !(UINTVAL (XEXP (x, 2)) & 1))))
5659 rtx temp = XEXP (x, 0);
5660 unsigned HOST_WIDE_INT sel = UINTVAL (XEXP (x, 2));
5661 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_1U;
5662 if (n_elts == HOST_BITS_PER_WIDE_INT)
5663 mask = -1;
5664 else
5665 mask = (HOST_WIDE_INT_1U << n_elts) - 1;
5666 SUBST (XEXP (x, 0), XEXP (x, 1));
5667 SUBST (XEXP (x, 1), temp);
5668 SUBST (XEXP (x, 2), GEN_INT (~sel & mask));
5672 /* Simplify X, a piece of RTL. We just operate on the expression at the
5673 outer level; call `subst' to simplify recursively. Return the new
5674 expression.
5676 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is true
5677 if we are inside a SET_DEST. IN_COND is true if we are at the top level
5678 of a condition. */
5680 static rtx
5681 combine_simplify_rtx (rtx x, machine_mode op0_mode, bool in_dest, bool in_cond)
5683 enum rtx_code code = GET_CODE (x);
5684 machine_mode mode = GET_MODE (x);
5685 scalar_int_mode int_mode;
5686 rtx temp;
5687 int i;
5689 /* If this is a commutative operation, put a constant last and a complex
5690 expression first. We don't need to do this for comparisons here. */
5691 maybe_swap_commutative_operands (x);
5693 /* Try to fold this expression in case we have constants that weren't
5694 present before. */
5695 temp = 0;
5696 switch (GET_RTX_CLASS (code))
5698 case RTX_UNARY:
5699 if (op0_mode == VOIDmode)
5700 op0_mode = GET_MODE (XEXP (x, 0));
5701 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5702 break;
5703 case RTX_COMPARE:
5704 case RTX_COMM_COMPARE:
5706 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5707 if (cmp_mode == VOIDmode)
5709 cmp_mode = GET_MODE (XEXP (x, 1));
5710 if (cmp_mode == VOIDmode)
5711 cmp_mode = op0_mode;
5713 temp = simplify_relational_operation (code, mode, cmp_mode,
5714 XEXP (x, 0), XEXP (x, 1));
5716 break;
5717 case RTX_COMM_ARITH:
5718 case RTX_BIN_ARITH:
5719 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5720 break;
5721 case RTX_BITFIELD_OPS:
5722 case RTX_TERNARY:
5723 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5724 XEXP (x, 1), XEXP (x, 2));
5725 break;
5726 default:
5727 break;
5730 if (temp)
5732 x = temp;
5733 code = GET_CODE (temp);
5734 op0_mode = VOIDmode;
5735 mode = GET_MODE (temp);
5738 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5739 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5740 things. Check for cases where both arms are testing the same
5741 condition.
5743 Don't do anything if all operands are very simple. */
5745 if ((BINARY_P (x)
5746 && ((!OBJECT_P (XEXP (x, 0))
5747 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5748 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5749 || (!OBJECT_P (XEXP (x, 1))
5750 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5751 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5752 || (UNARY_P (x)
5753 && (!OBJECT_P (XEXP (x, 0))
5754 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5755 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5757 rtx cond, true_rtx, false_rtx;
5759 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5760 if (cond != 0
5761 /* If everything is a comparison, what we have is highly unlikely
5762 to be simpler, so don't use it. */
5763 && ! (COMPARISON_P (x)
5764 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5765 /* Similarly, if we end up with one of the expressions the same
5766 as the original, it is certainly not simpler. */
5767 && ! rtx_equal_p (x, true_rtx)
5768 && ! rtx_equal_p (x, false_rtx))
5770 rtx cop1 = const0_rtx;
5771 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5773 if (cond_code == NE && COMPARISON_P (cond))
5774 return x;
5776 /* Simplify the alternative arms; this may collapse the true and
5777 false arms to store-flag values. Be careful to use copy_rtx
5778 here since true_rtx or false_rtx might share RTL with x as a
5779 result of the if_then_else_cond call above. */
5780 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx,
5781 false, false, false);
5782 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx,
5783 false, false, false);
5785 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5786 is unlikely to be simpler. */
5787 if (general_operand (true_rtx, VOIDmode)
5788 && general_operand (false_rtx, VOIDmode))
5790 enum rtx_code reversed;
5792 /* Restarting if we generate a store-flag expression will cause
5793 us to loop. Just drop through in this case. */
5795 /* If the result values are STORE_FLAG_VALUE and zero, we can
5796 just make the comparison operation. */
5797 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5798 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5799 cond, cop1);
5800 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5801 && ((reversed = reversed_comparison_code_parts
5802 (cond_code, cond, cop1, NULL))
5803 != UNKNOWN))
5804 x = simplify_gen_relational (reversed, mode, VOIDmode,
5805 cond, cop1);
5807 /* Likewise, we can make the negate of a comparison operation
5808 if the result values are - STORE_FLAG_VALUE and zero. */
5809 else if (CONST_INT_P (true_rtx)
5810 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5811 && false_rtx == const0_rtx)
5812 x = simplify_gen_unary (NEG, mode,
5813 simplify_gen_relational (cond_code,
5814 mode, VOIDmode,
5815 cond, cop1),
5816 mode);
5817 else if (CONST_INT_P (false_rtx)
5818 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5819 && true_rtx == const0_rtx
5820 && ((reversed = reversed_comparison_code_parts
5821 (cond_code, cond, cop1, NULL))
5822 != UNKNOWN))
5823 x = simplify_gen_unary (NEG, mode,
5824 simplify_gen_relational (reversed,
5825 mode, VOIDmode,
5826 cond, cop1),
5827 mode);
5829 code = GET_CODE (x);
5830 op0_mode = VOIDmode;
5835 /* First see if we can apply the inverse distributive law. */
5836 if (code == PLUS || code == MINUS
5837 || code == AND || code == IOR || code == XOR)
5839 x = apply_distributive_law (x);
5840 code = GET_CODE (x);
5841 op0_mode = VOIDmode;
5844 /* If CODE is an associative operation not otherwise handled, see if we
5845 can associate some operands. This can win if they are constants or
5846 if they are logically related (i.e. (a & b) & a). */
5847 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5848 || code == AND || code == IOR || code == XOR
5849 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5850 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5851 || (flag_associative_math && FLOAT_MODE_P (mode))))
5853 if (GET_CODE (XEXP (x, 0)) == code)
5855 rtx other = XEXP (XEXP (x, 0), 0);
5856 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5857 rtx inner_op1 = XEXP (x, 1);
5858 rtx inner;
5860 /* Make sure we pass the constant operand if any as the second
5861 one if this is a commutative operation. */
5862 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5863 std::swap (inner_op0, inner_op1);
5864 inner = simplify_binary_operation (code == MINUS ? PLUS
5865 : code == DIV ? MULT
5866 : code,
5867 mode, inner_op0, inner_op1);
5869 /* For commutative operations, try the other pair if that one
5870 didn't simplify. */
5871 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5873 other = XEXP (XEXP (x, 0), 1);
5874 inner = simplify_binary_operation (code, mode,
5875 XEXP (XEXP (x, 0), 0),
5876 XEXP (x, 1));
5879 if (inner)
5880 return simplify_gen_binary (code, mode, other, inner);
5884 /* A little bit of algebraic simplification here. */
5885 switch (code)
5887 case MEM:
5888 /* Ensure that our address has any ASHIFTs converted to MULT in case
5889 address-recognizing predicates are called later. */
5890 temp = make_compound_operation (XEXP (x, 0), MEM);
5891 SUBST (XEXP (x, 0), temp);
5892 break;
5894 case SUBREG:
5895 if (op0_mode == VOIDmode)
5896 op0_mode = GET_MODE (SUBREG_REG (x));
5898 /* See if this can be moved to simplify_subreg. */
5899 if (CONSTANT_P (SUBREG_REG (x))
5900 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5901 /* Don't call gen_lowpart if the inner mode
5902 is VOIDmode and we cannot simplify it, as SUBREG without
5903 inner mode is invalid. */
5904 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5905 || gen_lowpart_common (mode, SUBREG_REG (x))))
5906 return gen_lowpart (mode, SUBREG_REG (x));
5908 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5909 break;
5911 rtx temp;
5912 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5913 SUBREG_BYTE (x));
5914 if (temp)
5915 return temp;
5917 /* If op is known to have all lower bits zero, the result is zero. */
5918 scalar_int_mode int_mode, int_op0_mode;
5919 if (!in_dest
5920 && is_a <scalar_int_mode> (mode, &int_mode)
5921 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5922 && (GET_MODE_PRECISION (int_mode)
5923 < GET_MODE_PRECISION (int_op0_mode))
5924 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5925 SUBREG_BYTE (x))
5926 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5927 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5928 & GET_MODE_MASK (int_mode)) == 0)
5929 && !side_effects_p (SUBREG_REG (x)))
5930 return CONST0_RTX (int_mode);
5933 /* Don't change the mode of the MEM if that would change the meaning
5934 of the address. */
5935 if (MEM_P (SUBREG_REG (x))
5936 && (MEM_VOLATILE_P (SUBREG_REG (x))
5937 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5938 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5939 return gen_rtx_CLOBBER (mode, const0_rtx);
5941 /* Note that we cannot do any narrowing for non-constants since
5942 we might have been counting on using the fact that some bits were
5943 zero. We now do this in the SET. */
5945 break;
5947 case NEG:
5948 temp = expand_compound_operation (XEXP (x, 0));
5950 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5951 replaced by (lshiftrt X C). This will convert
5952 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5954 if (GET_CODE (temp) == ASHIFTRT
5955 && CONST_INT_P (XEXP (temp, 1))
5956 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5957 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5958 INTVAL (XEXP (temp, 1)));
5960 /* If X has only a single bit that might be nonzero, say, bit I, convert
5961 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5962 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5963 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5964 or a SUBREG of one since we'd be making the expression more
5965 complex if it was just a register. */
5967 if (!REG_P (temp)
5968 && ! (GET_CODE (temp) == SUBREG
5969 && REG_P (SUBREG_REG (temp)))
5970 && is_a <scalar_int_mode> (mode, &int_mode)
5971 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5973 rtx temp1 = simplify_shift_const
5974 (NULL_RTX, ASHIFTRT, int_mode,
5975 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5976 GET_MODE_PRECISION (int_mode) - 1 - i),
5977 GET_MODE_PRECISION (int_mode) - 1 - i);
5979 /* If all we did was surround TEMP with the two shifts, we
5980 haven't improved anything, so don't use it. Otherwise,
5981 we are better off with TEMP1. */
5982 if (GET_CODE (temp1) != ASHIFTRT
5983 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5984 || XEXP (XEXP (temp1, 0), 0) != temp)
5985 return temp1;
5987 break;
5989 case TRUNCATE:
5990 /* We can't handle truncation to a partial integer mode here
5991 because we don't know the real bitsize of the partial
5992 integer mode. */
5993 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5994 break;
5996 if (HWI_COMPUTABLE_MODE_P (mode))
5997 SUBST (XEXP (x, 0),
5998 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5999 GET_MODE_MASK (mode), false));
6001 /* We can truncate a constant value and return it. */
6003 poly_int64 c;
6004 if (poly_int_rtx_p (XEXP (x, 0), &c))
6005 return gen_int_mode (c, mode);
6008 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
6009 whose value is a comparison can be replaced with a subreg if
6010 STORE_FLAG_VALUE permits. */
6011 if (HWI_COMPUTABLE_MODE_P (mode)
6012 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6013 && (temp = get_last_value (XEXP (x, 0)))
6014 && COMPARISON_P (temp)
6015 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (XEXP (x, 0))))
6016 return gen_lowpart (mode, XEXP (x, 0));
6017 break;
6019 case CONST:
6020 /* (const (const X)) can become (const X). Do it this way rather than
6021 returning the inner CONST since CONST can be shared with a
6022 REG_EQUAL note. */
6023 if (GET_CODE (XEXP (x, 0)) == CONST)
6024 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6025 break;
6027 case LO_SUM:
6028 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6029 can add in an offset. find_split_point will split this address up
6030 again if it doesn't match. */
6031 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6032 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6033 return XEXP (x, 1);
6034 break;
6036 case PLUS:
6037 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6038 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6039 bit-field and can be replaced by either a sign_extend or a
6040 sign_extract. The `and' may be a zero_extend and the two
6041 <c>, -<c> constants may be reversed. */
6042 if (GET_CODE (XEXP (x, 0)) == XOR
6043 && is_a <scalar_int_mode> (mode, &int_mode)
6044 && CONST_INT_P (XEXP (x, 1))
6045 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6046 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6047 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6048 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6049 && HWI_COMPUTABLE_MODE_P (int_mode)
6050 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6051 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6052 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6053 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6054 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6055 && known_eq ((GET_MODE_PRECISION
6056 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6057 (unsigned int) i + 1))))
6058 return simplify_shift_const
6059 (NULL_RTX, ASHIFTRT, int_mode,
6060 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6061 XEXP (XEXP (XEXP (x, 0), 0), 0),
6062 GET_MODE_PRECISION (int_mode) - (i + 1)),
6063 GET_MODE_PRECISION (int_mode) - (i + 1));
6065 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6066 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6067 the bitsize of the mode - 1. This allows simplification of
6068 "a = (b & 8) == 0;" */
6069 if (XEXP (x, 1) == constm1_rtx
6070 && !REG_P (XEXP (x, 0))
6071 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6072 && REG_P (SUBREG_REG (XEXP (x, 0))))
6073 && is_a <scalar_int_mode> (mode, &int_mode)
6074 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6075 return simplify_shift_const
6076 (NULL_RTX, ASHIFTRT, int_mode,
6077 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6078 gen_rtx_XOR (int_mode, XEXP (x, 0),
6079 const1_rtx),
6080 GET_MODE_PRECISION (int_mode) - 1),
6081 GET_MODE_PRECISION (int_mode) - 1);
6083 /* If we are adding two things that have no bits in common, convert
6084 the addition into an IOR. This will often be further simplified,
6085 for example in cases like ((a & 1) + (a & 2)), which can
6086 become a & 3. */
6088 if (HWI_COMPUTABLE_MODE_P (mode)
6089 && (nonzero_bits (XEXP (x, 0), mode)
6090 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6092 /* Try to simplify the expression further. */
6093 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6094 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, false);
6096 /* If we could, great. If not, do not go ahead with the IOR
6097 replacement, since PLUS appears in many special purpose
6098 address arithmetic instructions. */
6099 if (GET_CODE (temp) != CLOBBER
6100 && (GET_CODE (temp) != IOR
6101 || ((XEXP (temp, 0) != XEXP (x, 0)
6102 || XEXP (temp, 1) != XEXP (x, 1))
6103 && (XEXP (temp, 0) != XEXP (x, 1)
6104 || XEXP (temp, 1) != XEXP (x, 0)))))
6105 return temp;
6108 /* Canonicalize x + x into x << 1. */
6109 if (GET_MODE_CLASS (mode) == MODE_INT
6110 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6111 && !side_effects_p (XEXP (x, 0)))
6112 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6114 break;
6116 case MINUS:
6117 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6118 (and <foo> (const_int pow2-1)) */
6119 if (is_a <scalar_int_mode> (mode, &int_mode)
6120 && GET_CODE (XEXP (x, 1)) == AND
6121 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6122 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6123 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6124 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6125 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6126 break;
6128 case MULT:
6129 /* If we have (mult (plus A B) C), apply the distributive law and then
6130 the inverse distributive law to see if things simplify. This
6131 occurs mostly in addresses, often when unrolling loops. */
6133 if (GET_CODE (XEXP (x, 0)) == PLUS)
6135 rtx result = distribute_and_simplify_rtx (x, 0);
6136 if (result)
6137 return result;
6140 /* Try simplify a*(b/c) as (a*b)/c. */
6141 if (FLOAT_MODE_P (mode) && flag_associative_math
6142 && GET_CODE (XEXP (x, 0)) == DIV)
6144 rtx tem = simplify_binary_operation (MULT, mode,
6145 XEXP (XEXP (x, 0), 0),
6146 XEXP (x, 1));
6147 if (tem)
6148 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6150 break;
6152 case UDIV:
6153 /* If this is a divide by a power of two, treat it as a shift if
6154 its first operand is a shift. */
6155 if (is_a <scalar_int_mode> (mode, &int_mode)
6156 && CONST_INT_P (XEXP (x, 1))
6157 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6158 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6159 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6160 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6161 || GET_CODE (XEXP (x, 0)) == ROTATE
6162 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6163 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6164 XEXP (x, 0), i);
6165 break;
6167 case EQ: case NE:
6168 case GT: case GTU: case GE: case GEU:
6169 case LT: case LTU: case LE: case LEU:
6170 case UNEQ: case LTGT:
6171 case UNGT: case UNGE:
6172 case UNLT: case UNLE:
6173 case UNORDERED: case ORDERED:
6174 /* If the first operand is a condition code, we can't do anything
6175 with it. */
6176 if (GET_CODE (XEXP (x, 0)) == COMPARE
6177 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC)
6179 rtx op0 = XEXP (x, 0);
6180 rtx op1 = XEXP (x, 1);
6181 enum rtx_code new_code;
6183 if (GET_CODE (op0) == COMPARE)
6184 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6186 /* Simplify our comparison, if possible. */
6187 new_code = simplify_comparison (code, &op0, &op1);
6189 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6190 if only the low-order bit is possibly nonzero in X (such as when
6191 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6192 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6193 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6194 (plus X 1).
6196 Remove any ZERO_EXTRACT we made when thinking this was a
6197 comparison. It may now be simpler to use, e.g., an AND. If a
6198 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6199 the call to make_compound_operation in the SET case.
6201 Don't apply these optimizations if the caller would
6202 prefer a comparison rather than a value.
6203 E.g., for the condition in an IF_THEN_ELSE most targets need
6204 an explicit comparison. */
6206 if (in_cond)
6209 else if (STORE_FLAG_VALUE == 1
6210 && new_code == NE
6211 && is_int_mode (mode, &int_mode)
6212 && op1 == const0_rtx
6213 && int_mode == GET_MODE (op0)
6214 && nonzero_bits (op0, int_mode) == 1)
6215 return gen_lowpart (int_mode,
6216 expand_compound_operation (op0));
6218 else if (STORE_FLAG_VALUE == 1
6219 && new_code == NE
6220 && is_int_mode (mode, &int_mode)
6221 && op1 == const0_rtx
6222 && int_mode == GET_MODE (op0)
6223 && (num_sign_bit_copies (op0, int_mode)
6224 == GET_MODE_PRECISION (int_mode)))
6226 op0 = expand_compound_operation (op0);
6227 return simplify_gen_unary (NEG, int_mode,
6228 gen_lowpart (int_mode, op0),
6229 int_mode);
6232 else if (STORE_FLAG_VALUE == 1
6233 && new_code == EQ
6234 && is_int_mode (mode, &int_mode)
6235 && op1 == const0_rtx
6236 && int_mode == GET_MODE (op0)
6237 && nonzero_bits (op0, int_mode) == 1)
6239 op0 = expand_compound_operation (op0);
6240 return simplify_gen_binary (XOR, int_mode,
6241 gen_lowpart (int_mode, op0),
6242 const1_rtx);
6245 else if (STORE_FLAG_VALUE == 1
6246 && new_code == EQ
6247 && is_int_mode (mode, &int_mode)
6248 && op1 == const0_rtx
6249 && int_mode == GET_MODE (op0)
6250 && (num_sign_bit_copies (op0, int_mode)
6251 == GET_MODE_PRECISION (int_mode)))
6253 op0 = expand_compound_operation (op0);
6254 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6257 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6258 those above. */
6259 if (in_cond)
6262 else if (STORE_FLAG_VALUE == -1
6263 && new_code == NE
6264 && is_int_mode (mode, &int_mode)
6265 && op1 == const0_rtx
6266 && int_mode == GET_MODE (op0)
6267 && (num_sign_bit_copies (op0, int_mode)
6268 == GET_MODE_PRECISION (int_mode)))
6269 return gen_lowpart (int_mode, expand_compound_operation (op0));
6271 else if (STORE_FLAG_VALUE == -1
6272 && new_code == NE
6273 && is_int_mode (mode, &int_mode)
6274 && op1 == const0_rtx
6275 && int_mode == GET_MODE (op0)
6276 && nonzero_bits (op0, int_mode) == 1)
6278 op0 = expand_compound_operation (op0);
6279 return simplify_gen_unary (NEG, int_mode,
6280 gen_lowpart (int_mode, op0),
6281 int_mode);
6284 else if (STORE_FLAG_VALUE == -1
6285 && new_code == EQ
6286 && is_int_mode (mode, &int_mode)
6287 && op1 == const0_rtx
6288 && int_mode == GET_MODE (op0)
6289 && (num_sign_bit_copies (op0, int_mode)
6290 == GET_MODE_PRECISION (int_mode)))
6292 op0 = expand_compound_operation (op0);
6293 return simplify_gen_unary (NOT, int_mode,
6294 gen_lowpart (int_mode, op0),
6295 int_mode);
6298 /* If X is 0/1, (eq X 0) is X-1. */
6299 else if (STORE_FLAG_VALUE == -1
6300 && new_code == EQ
6301 && is_int_mode (mode, &int_mode)
6302 && op1 == const0_rtx
6303 && int_mode == GET_MODE (op0)
6304 && nonzero_bits (op0, int_mode) == 1)
6306 op0 = expand_compound_operation (op0);
6307 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6310 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6311 one bit that might be nonzero, we can convert (ne x 0) to
6312 (ashift x c) where C puts the bit in the sign bit. Remove any
6313 AND with STORE_FLAG_VALUE when we are done, since we are only
6314 going to test the sign bit. */
6315 if (new_code == NE
6316 && is_int_mode (mode, &int_mode)
6317 && HWI_COMPUTABLE_MODE_P (int_mode)
6318 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6319 && op1 == const0_rtx
6320 && int_mode == GET_MODE (op0)
6321 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6323 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6324 expand_compound_operation (op0),
6325 GET_MODE_PRECISION (int_mode) - 1 - i);
6326 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6327 return XEXP (x, 0);
6328 else
6329 return x;
6332 /* If the code changed, return a whole new comparison.
6333 We also need to avoid using SUBST in cases where
6334 simplify_comparison has widened a comparison with a CONST_INT,
6335 since in that case the wider CONST_INT may fail the sanity
6336 checks in do_SUBST. */
6337 if (new_code != code
6338 || (CONST_INT_P (op1)
6339 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6340 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6341 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6343 /* Otherwise, keep this operation, but maybe change its operands.
6344 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6345 SUBST (XEXP (x, 0), op0);
6346 SUBST (XEXP (x, 1), op1);
6348 break;
6350 case IF_THEN_ELSE:
6351 return simplify_if_then_else (x);
6353 case ZERO_EXTRACT:
6354 case SIGN_EXTRACT:
6355 case ZERO_EXTEND:
6356 case SIGN_EXTEND:
6357 /* If we are processing SET_DEST, we are done. */
6358 if (in_dest)
6359 return x;
6361 return expand_compound_operation (x);
6363 case SET:
6364 return simplify_set (x);
6366 case AND:
6367 case IOR:
6368 return simplify_logical (x);
6370 case ASHIFT:
6371 case LSHIFTRT:
6372 case ASHIFTRT:
6373 case ROTATE:
6374 case ROTATERT:
6375 /* If this is a shift by a constant amount, simplify it. */
6376 if (CONST_INT_P (XEXP (x, 1)))
6377 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6378 INTVAL (XEXP (x, 1)));
6380 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6381 SUBST (XEXP (x, 1),
6382 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6383 (HOST_WIDE_INT_1U
6384 << exact_log2 (GET_MODE_UNIT_BITSIZE
6385 (GET_MODE (x)))) - 1, false));
6386 break;
6387 case VEC_SELECT:
6389 rtx trueop0 = XEXP (x, 0);
6390 mode = GET_MODE (trueop0);
6391 rtx trueop1 = XEXP (x, 1);
6392 /* If we select a low-part subreg, return that. */
6393 if (vec_series_lowpart_p (GET_MODE (x), mode, trueop1))
6395 rtx new_rtx = lowpart_subreg (GET_MODE (x), trueop0, mode);
6396 if (new_rtx != NULL_RTX)
6397 return new_rtx;
6401 default:
6402 break;
6405 return x;
6408 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6410 static rtx
6411 simplify_if_then_else (rtx x)
6413 machine_mode mode = GET_MODE (x);
6414 rtx cond = XEXP (x, 0);
6415 rtx true_rtx = XEXP (x, 1);
6416 rtx false_rtx = XEXP (x, 2);
6417 enum rtx_code true_code = GET_CODE (cond);
6418 bool comparison_p = COMPARISON_P (cond);
6419 rtx temp;
6420 int i;
6421 enum rtx_code false_code;
6422 rtx reversed;
6423 scalar_int_mode int_mode, inner_mode;
6425 /* Simplify storing of the truth value. */
6426 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6427 return simplify_gen_relational (true_code, mode, VOIDmode,
6428 XEXP (cond, 0), XEXP (cond, 1));
6430 /* Also when the truth value has to be reversed. */
6431 if (comparison_p
6432 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6433 && (reversed = reversed_comparison (cond, mode)))
6434 return reversed;
6436 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6437 in it is being compared against certain values. Get the true and false
6438 comparisons and see if that says anything about the value of each arm. */
6440 if (comparison_p
6441 && ((false_code = reversed_comparison_code (cond, NULL))
6442 != UNKNOWN)
6443 && REG_P (XEXP (cond, 0)))
6445 HOST_WIDE_INT nzb;
6446 rtx from = XEXP (cond, 0);
6447 rtx true_val = XEXP (cond, 1);
6448 rtx false_val = true_val;
6449 bool swapped = false;
6451 /* If FALSE_CODE is EQ, swap the codes and arms. */
6453 if (false_code == EQ)
6455 swapped = true, true_code = EQ, false_code = NE;
6456 std::swap (true_rtx, false_rtx);
6459 scalar_int_mode from_mode;
6460 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6462 /* If we are comparing against zero and the expression being
6463 tested has only a single bit that might be nonzero, that is
6464 its value when it is not equal to zero. Similarly if it is
6465 known to be -1 or 0. */
6466 if (true_code == EQ
6467 && true_val == const0_rtx
6468 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6470 false_code = EQ;
6471 false_val = gen_int_mode (nzb, from_mode);
6473 else if (true_code == EQ
6474 && true_val == const0_rtx
6475 && (num_sign_bit_copies (from, from_mode)
6476 == GET_MODE_PRECISION (from_mode)))
6478 false_code = EQ;
6479 false_val = constm1_rtx;
6483 /* Now simplify an arm if we know the value of the register in the
6484 branch and it is used in the arm. Be careful due to the potential
6485 of locally-shared RTL. */
6487 if (reg_mentioned_p (from, true_rtx))
6488 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6489 from, true_val),
6490 pc_rtx, pc_rtx, false, false, false);
6491 if (reg_mentioned_p (from, false_rtx))
6492 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6493 from, false_val),
6494 pc_rtx, pc_rtx, false, false, false);
6496 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6497 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6499 true_rtx = XEXP (x, 1);
6500 false_rtx = XEXP (x, 2);
6501 true_code = GET_CODE (cond);
6504 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6505 reversed, do so to avoid needing two sets of patterns for
6506 subtract-and-branch insns. Similarly if we have a constant in the true
6507 arm, the false arm is the same as the first operand of the comparison, or
6508 the false arm is more complicated than the true arm. */
6510 if (comparison_p
6511 && reversed_comparison_code (cond, NULL) != UNKNOWN
6512 && (true_rtx == pc_rtx
6513 || (CONSTANT_P (true_rtx)
6514 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6515 || true_rtx == const0_rtx
6516 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6517 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6518 && !OBJECT_P (false_rtx))
6519 || reg_mentioned_p (true_rtx, false_rtx)
6520 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6522 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6523 SUBST (XEXP (x, 1), false_rtx);
6524 SUBST (XEXP (x, 2), true_rtx);
6526 std::swap (true_rtx, false_rtx);
6527 cond = XEXP (x, 0);
6529 /* It is possible that the conditional has been simplified out. */
6530 true_code = GET_CODE (cond);
6531 comparison_p = COMPARISON_P (cond);
6534 /* If the two arms are identical, we don't need the comparison. */
6536 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6537 return true_rtx;
6539 /* Convert a == b ? b : a to "a". */
6540 if (true_code == EQ && ! side_effects_p (cond)
6541 && !HONOR_NANS (mode)
6542 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6543 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6544 return false_rtx;
6545 else if (true_code == NE && ! side_effects_p (cond)
6546 && !HONOR_NANS (mode)
6547 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6548 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6549 return true_rtx;
6551 /* Look for cases where we have (abs x) or (neg (abs X)). */
6553 if (GET_MODE_CLASS (mode) == MODE_INT
6554 && comparison_p
6555 && XEXP (cond, 1) == const0_rtx
6556 && GET_CODE (false_rtx) == NEG
6557 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6558 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6559 && ! side_effects_p (true_rtx))
6560 switch (true_code)
6562 case GT:
6563 case GE:
6564 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6565 case LT:
6566 case LE:
6567 return
6568 simplify_gen_unary (NEG, mode,
6569 simplify_gen_unary (ABS, mode, true_rtx, mode),
6570 mode);
6571 default:
6572 break;
6575 /* Look for MIN or MAX. */
6577 if ((! FLOAT_MODE_P (mode)
6578 || (flag_unsafe_math_optimizations
6579 && !HONOR_NANS (mode)
6580 && !HONOR_SIGNED_ZEROS (mode)))
6581 && comparison_p
6582 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6583 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6584 && ! side_effects_p (cond))
6585 switch (true_code)
6587 case GE:
6588 case GT:
6589 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6590 case LE:
6591 case LT:
6592 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6593 case GEU:
6594 case GTU:
6595 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6596 case LEU:
6597 case LTU:
6598 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6599 default:
6600 break;
6603 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6604 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6605 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6606 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6607 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6608 neither 1 or -1, but it isn't worth checking for. */
6610 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6611 && comparison_p
6612 && is_int_mode (mode, &int_mode)
6613 && ! side_effects_p (x))
6615 rtx t = make_compound_operation (true_rtx, SET);
6616 rtx f = make_compound_operation (false_rtx, SET);
6617 rtx cond_op0 = XEXP (cond, 0);
6618 rtx cond_op1 = XEXP (cond, 1);
6619 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6620 scalar_int_mode m = int_mode;
6621 rtx z = 0, c1 = NULL_RTX;
6623 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6624 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6625 || GET_CODE (t) == ASHIFT
6626 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6627 && rtx_equal_p (XEXP (t, 0), f))
6628 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6630 /* If an identity-zero op is commutative, check whether there
6631 would be a match if we swapped the operands. */
6632 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6633 || GET_CODE (t) == XOR)
6634 && rtx_equal_p (XEXP (t, 1), f))
6635 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6636 else if (GET_CODE (t) == SIGN_EXTEND
6637 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6638 && (GET_CODE (XEXP (t, 0)) == PLUS
6639 || GET_CODE (XEXP (t, 0)) == MINUS
6640 || GET_CODE (XEXP (t, 0)) == IOR
6641 || GET_CODE (XEXP (t, 0)) == XOR
6642 || GET_CODE (XEXP (t, 0)) == ASHIFT
6643 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6644 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6645 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6646 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6647 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6648 && (num_sign_bit_copies (f, GET_MODE (f))
6649 > (unsigned int)
6650 (GET_MODE_PRECISION (int_mode)
6651 - GET_MODE_PRECISION (inner_mode))))
6653 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6654 extend_op = SIGN_EXTEND;
6655 m = inner_mode;
6657 else if (GET_CODE (t) == SIGN_EXTEND
6658 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6659 && (GET_CODE (XEXP (t, 0)) == PLUS
6660 || GET_CODE (XEXP (t, 0)) == IOR
6661 || GET_CODE (XEXP (t, 0)) == XOR)
6662 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6663 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6664 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6665 && (num_sign_bit_copies (f, GET_MODE (f))
6666 > (unsigned int)
6667 (GET_MODE_PRECISION (int_mode)
6668 - GET_MODE_PRECISION (inner_mode))))
6670 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6671 extend_op = SIGN_EXTEND;
6672 m = inner_mode;
6674 else if (GET_CODE (t) == ZERO_EXTEND
6675 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6676 && (GET_CODE (XEXP (t, 0)) == PLUS
6677 || GET_CODE (XEXP (t, 0)) == MINUS
6678 || GET_CODE (XEXP (t, 0)) == IOR
6679 || GET_CODE (XEXP (t, 0)) == XOR
6680 || GET_CODE (XEXP (t, 0)) == ASHIFT
6681 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6682 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6683 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6684 && HWI_COMPUTABLE_MODE_P (int_mode)
6685 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6686 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6687 && ((nonzero_bits (f, GET_MODE (f))
6688 & ~GET_MODE_MASK (inner_mode))
6689 == 0))
6691 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6692 extend_op = ZERO_EXTEND;
6693 m = inner_mode;
6695 else if (GET_CODE (t) == ZERO_EXTEND
6696 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6697 && (GET_CODE (XEXP (t, 0)) == PLUS
6698 || GET_CODE (XEXP (t, 0)) == IOR
6699 || GET_CODE (XEXP (t, 0)) == XOR)
6700 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6701 && HWI_COMPUTABLE_MODE_P (int_mode)
6702 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6703 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6704 && ((nonzero_bits (f, GET_MODE (f))
6705 & ~GET_MODE_MASK (inner_mode))
6706 == 0))
6708 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6709 extend_op = ZERO_EXTEND;
6710 m = inner_mode;
6713 if (z)
6715 machine_mode cm = m;
6716 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6717 && GET_MODE (c1) != VOIDmode)
6718 cm = GET_MODE (c1);
6719 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6720 cond_op0, cond_op1),
6721 pc_rtx, pc_rtx, false, false, false);
6722 temp = simplify_gen_binary (MULT, cm, temp,
6723 simplify_gen_binary (MULT, cm, c1,
6724 const_true_rtx));
6725 temp = subst (temp, pc_rtx, pc_rtx, false, false, false);
6726 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6728 if (extend_op != UNKNOWN)
6729 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6731 return temp;
6735 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6736 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6737 negation of a single bit, we can convert this operation to a shift. We
6738 can actually do this more generally, but it doesn't seem worth it. */
6740 if (true_code == NE
6741 && is_a <scalar_int_mode> (mode, &int_mode)
6742 && XEXP (cond, 1) == const0_rtx
6743 && false_rtx == const0_rtx
6744 && CONST_INT_P (true_rtx)
6745 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6746 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6747 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6748 == GET_MODE_PRECISION (int_mode))
6749 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6750 return
6751 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6752 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6754 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6755 non-zero bit in A is C1. */
6756 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6757 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6758 && is_a <scalar_int_mode> (mode, &int_mode)
6759 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6760 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6761 == nonzero_bits (XEXP (cond, 0), inner_mode)
6762 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6764 rtx val = XEXP (cond, 0);
6765 if (inner_mode == int_mode)
6766 return val;
6767 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6768 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6771 return x;
6774 /* Simplify X, a SET expression. Return the new expression. */
6776 static rtx
6777 simplify_set (rtx x)
6779 rtx src = SET_SRC (x);
6780 rtx dest = SET_DEST (x);
6781 machine_mode mode
6782 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6783 rtx_insn *other_insn;
6784 rtx *cc_use;
6785 scalar_int_mode int_mode;
6787 /* (set (pc) (return)) gets written as (return). */
6788 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6789 return src;
6791 /* Now that we know for sure which bits of SRC we are using, see if we can
6792 simplify the expression for the object knowing that we only need the
6793 low-order bits. */
6795 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6797 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, false);
6798 SUBST (SET_SRC (x), src);
6801 /* If the source is a COMPARE, look for the use of the comparison result
6802 and try to simplify it unless we already have used undobuf.other_insn. */
6803 if ((GET_MODE_CLASS (mode) == MODE_CC || GET_CODE (src) == COMPARE)
6804 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6805 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6806 && COMPARISON_P (*cc_use)
6807 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6809 enum rtx_code old_code = GET_CODE (*cc_use);
6810 enum rtx_code new_code;
6811 rtx op0, op1, tmp;
6812 bool other_changed = false;
6813 rtx inner_compare = NULL_RTX;
6814 machine_mode compare_mode = GET_MODE (dest);
6816 if (GET_CODE (src) == COMPARE)
6818 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6819 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6821 inner_compare = op0;
6822 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6825 else
6826 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6828 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6829 op0, op1);
6830 if (!tmp)
6831 new_code = old_code;
6832 else if (!CONSTANT_P (tmp))
6834 new_code = GET_CODE (tmp);
6835 op0 = XEXP (tmp, 0);
6836 op1 = XEXP (tmp, 1);
6838 else
6840 rtx pat = PATTERN (other_insn);
6841 undobuf.other_insn = other_insn;
6842 SUBST (*cc_use, tmp);
6844 /* Attempt to simplify CC user. */
6845 if (GET_CODE (pat) == SET)
6847 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6848 if (new_rtx != NULL_RTX)
6849 SUBST (SET_SRC (pat), new_rtx);
6852 /* Convert X into a no-op move. */
6853 SUBST (SET_DEST (x), pc_rtx);
6854 SUBST (SET_SRC (x), pc_rtx);
6855 return x;
6858 /* Simplify our comparison, if possible. */
6859 new_code = simplify_comparison (new_code, &op0, &op1);
6861 #ifdef SELECT_CC_MODE
6862 /* If this machine has CC modes other than CCmode, check to see if we
6863 need to use a different CC mode here. */
6864 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6865 compare_mode = GET_MODE (op0);
6866 else if (inner_compare
6867 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6868 && new_code == old_code
6869 && op0 == XEXP (inner_compare, 0)
6870 && op1 == XEXP (inner_compare, 1))
6871 compare_mode = GET_MODE (inner_compare);
6872 else
6873 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6875 /* If the mode changed, we have to change SET_DEST, the mode in the
6876 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6877 a hard register, just build new versions with the proper mode. If it
6878 is a pseudo, we lose unless it is only time we set the pseudo, in
6879 which case we can safely change its mode. */
6880 if (compare_mode != GET_MODE (dest))
6882 if (can_change_dest_mode (dest, 0, compare_mode))
6884 unsigned int regno = REGNO (dest);
6885 rtx new_dest;
6887 if (regno < FIRST_PSEUDO_REGISTER)
6888 new_dest = gen_rtx_REG (compare_mode, regno);
6889 else
6891 subst_mode (regno, compare_mode);
6892 new_dest = regno_reg_rtx[regno];
6895 SUBST (SET_DEST (x), new_dest);
6896 SUBST (XEXP (*cc_use, 0), new_dest);
6897 other_changed = true;
6899 dest = new_dest;
6902 #endif /* SELECT_CC_MODE */
6904 /* If the code changed, we have to build a new comparison in
6905 undobuf.other_insn. */
6906 if (new_code != old_code)
6908 bool other_changed_previously = other_changed;
6909 unsigned HOST_WIDE_INT mask;
6910 rtx old_cc_use = *cc_use;
6912 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6913 dest, const0_rtx));
6914 other_changed = true;
6916 /* If the only change we made was to change an EQ into an NE or
6917 vice versa, OP0 has only one bit that might be nonzero, and OP1
6918 is zero, check if changing the user of the condition code will
6919 produce a valid insn. If it won't, we can keep the original code
6920 in that insn by surrounding our operation with an XOR. */
6922 if (((old_code == NE && new_code == EQ)
6923 || (old_code == EQ && new_code == NE))
6924 && ! other_changed_previously && op1 == const0_rtx
6925 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6926 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6928 rtx pat = PATTERN (other_insn), note = 0;
6930 if ((recog_for_combine (&pat, other_insn, &note) < 0
6931 && ! check_asm_operands (pat)))
6933 *cc_use = old_cc_use;
6934 other_changed = false;
6936 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6937 gen_int_mode (mask,
6938 GET_MODE (op0)));
6943 if (other_changed)
6944 undobuf.other_insn = other_insn;
6946 /* Don't generate a compare of a CC with 0, just use that CC. */
6947 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6949 SUBST (SET_SRC (x), op0);
6950 src = SET_SRC (x);
6952 /* Otherwise, if we didn't previously have the same COMPARE we
6953 want, create it from scratch. */
6954 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6955 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6957 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6958 src = SET_SRC (x);
6961 else
6963 /* Get SET_SRC in a form where we have placed back any
6964 compound expressions. Then do the checks below. */
6965 src = make_compound_operation (src, SET);
6966 SUBST (SET_SRC (x), src);
6969 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6970 and X being a REG or (subreg (reg)), we may be able to convert this to
6971 (set (subreg:m2 x) (op)).
6973 We can always do this if M1 is narrower than M2 because that means that
6974 we only care about the low bits of the result.
6976 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6977 perform a narrower operation than requested since the high-order bits will
6978 be undefined. On machine where it is defined, this transformation is safe
6979 as long as M1 and M2 have the same number of words. */
6981 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6982 && !OBJECT_P (SUBREG_REG (src))
6983 && (known_equal_after_align_up
6984 (GET_MODE_SIZE (GET_MODE (src)),
6985 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6986 UNITS_PER_WORD))
6987 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6988 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6989 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6990 GET_MODE (SUBREG_REG (src)),
6991 GET_MODE (src)))
6992 && (REG_P (dest)
6993 || (GET_CODE (dest) == SUBREG
6994 && REG_P (SUBREG_REG (dest)))))
6996 SUBST (SET_DEST (x),
6997 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6998 dest));
6999 SUBST (SET_SRC (x), SUBREG_REG (src));
7001 src = SET_SRC (x), dest = SET_DEST (x);
7004 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7005 would require a paradoxical subreg. Replace the subreg with a
7006 zero_extend to avoid the reload that would otherwise be required.
7007 Don't do this unless we have a scalar integer mode, otherwise the
7008 transformation is incorrect. */
7010 enum rtx_code extend_op;
7011 if (paradoxical_subreg_p (src)
7012 && MEM_P (SUBREG_REG (src))
7013 && SCALAR_INT_MODE_P (GET_MODE (src))
7014 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7016 SUBST (SET_SRC (x),
7017 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7019 src = SET_SRC (x);
7022 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7023 are comparing an item known to be 0 or -1 against 0, use a logical
7024 operation instead. Check for one of the arms being an IOR of the other
7025 arm with some value. We compute three terms to be IOR'ed together. In
7026 practice, at most two will be nonzero. Then we do the IOR's. */
7028 if (GET_CODE (dest) != PC
7029 && GET_CODE (src) == IF_THEN_ELSE
7030 && is_int_mode (GET_MODE (src), &int_mode)
7031 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7032 && XEXP (XEXP (src, 0), 1) == const0_rtx
7033 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7034 && (!HAVE_conditional_move
7035 || ! can_conditionally_move_p (int_mode))
7036 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7037 == GET_MODE_PRECISION (int_mode))
7038 && ! side_effects_p (src))
7040 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7041 ? XEXP (src, 1) : XEXP (src, 2));
7042 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7043 ? XEXP (src, 2) : XEXP (src, 1));
7044 rtx term1 = const0_rtx, term2, term3;
7046 if (GET_CODE (true_rtx) == IOR
7047 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7048 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7049 else if (GET_CODE (true_rtx) == IOR
7050 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7051 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7052 else if (GET_CODE (false_rtx) == IOR
7053 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7054 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7055 else if (GET_CODE (false_rtx) == IOR
7056 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7057 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7059 term2 = simplify_gen_binary (AND, int_mode,
7060 XEXP (XEXP (src, 0), 0), true_rtx);
7061 term3 = simplify_gen_binary (AND, int_mode,
7062 simplify_gen_unary (NOT, int_mode,
7063 XEXP (XEXP (src, 0), 0),
7064 int_mode),
7065 false_rtx);
7067 SUBST (SET_SRC (x),
7068 simplify_gen_binary (IOR, int_mode,
7069 simplify_gen_binary (IOR, int_mode,
7070 term1, term2),
7071 term3));
7073 src = SET_SRC (x);
7076 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7077 whole thing fail. */
7078 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7079 return src;
7080 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7081 return dest;
7082 else
7083 /* Convert this into a field assignment operation, if possible. */
7084 return make_field_assignment (x);
7087 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7088 result. */
7090 static rtx
7091 simplify_logical (rtx x)
7093 rtx op0 = XEXP (x, 0);
7094 rtx op1 = XEXP (x, 1);
7095 scalar_int_mode mode;
7097 switch (GET_CODE (x))
7099 case AND:
7100 /* We can call simplify_and_const_int only if we don't lose
7101 any (sign) bits when converting INTVAL (op1) to
7102 "unsigned HOST_WIDE_INT". */
7103 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7104 && CONST_INT_P (op1)
7105 && (HWI_COMPUTABLE_MODE_P (mode)
7106 || INTVAL (op1) > 0))
7108 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7109 if (GET_CODE (x) != AND)
7110 return x;
7112 op0 = XEXP (x, 0);
7113 op1 = XEXP (x, 1);
7116 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7117 apply the distributive law and then the inverse distributive
7118 law to see if things simplify. */
7119 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7121 rtx result = distribute_and_simplify_rtx (x, 0);
7122 if (result)
7123 return result;
7125 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7127 rtx result = distribute_and_simplify_rtx (x, 1);
7128 if (result)
7129 return result;
7131 break;
7133 case IOR:
7134 /* If we have (ior (and A B) C), apply the distributive law and then
7135 the inverse distributive law to see if things simplify. */
7137 if (GET_CODE (op0) == AND)
7139 rtx result = distribute_and_simplify_rtx (x, 0);
7140 if (result)
7141 return result;
7144 if (GET_CODE (op1) == AND)
7146 rtx result = distribute_and_simplify_rtx (x, 1);
7147 if (result)
7148 return result;
7150 break;
7152 default:
7153 gcc_unreachable ();
7156 return x;
7159 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7160 operations" because they can be replaced with two more basic operations.
7161 ZERO_EXTEND is also considered "compound" because it can be replaced with
7162 an AND operation, which is simpler, though only one operation.
7164 The function expand_compound_operation is called with an rtx expression
7165 and will convert it to the appropriate shifts and AND operations,
7166 simplifying at each stage.
7168 The function make_compound_operation is called to convert an expression
7169 consisting of shifts and ANDs into the equivalent compound expression.
7170 It is the inverse of this function, loosely speaking. */
7172 static rtx
7173 expand_compound_operation (rtx x)
7175 unsigned HOST_WIDE_INT pos = 0, len;
7176 bool unsignedp = false;
7177 unsigned int modewidth;
7178 rtx tem;
7179 scalar_int_mode inner_mode;
7181 switch (GET_CODE (x))
7183 case ZERO_EXTEND:
7184 unsignedp = true;
7185 /* FALLTHRU */
7186 case SIGN_EXTEND:
7187 /* We can't necessarily use a const_int for a multiword mode;
7188 it depends on implicitly extending the value.
7189 Since we don't know the right way to extend it,
7190 we can't tell whether the implicit way is right.
7192 Even for a mode that is no wider than a const_int,
7193 we can't win, because we need to sign extend one of its bits through
7194 the rest of it, and we don't know which bit. */
7195 if (CONST_INT_P (XEXP (x, 0)))
7196 return x;
7198 /* Reject modes that aren't scalar integers because turning vector
7199 or complex modes into shifts causes problems. */
7200 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7201 return x;
7203 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7204 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7205 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7206 reloaded. If not for that, MEM's would very rarely be safe.
7208 Reject modes bigger than a word, because we might not be able
7209 to reference a two-register group starting with an arbitrary register
7210 (and currently gen_lowpart might crash for a SUBREG). */
7212 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7213 return x;
7215 len = GET_MODE_PRECISION (inner_mode);
7216 /* If the inner object has VOIDmode (the only way this can happen
7217 is if it is an ASM_OPERANDS), we can't do anything since we don't
7218 know how much masking to do. */
7219 if (len == 0)
7220 return x;
7222 break;
7224 case ZERO_EXTRACT:
7225 unsignedp = true;
7227 /* fall through */
7229 case SIGN_EXTRACT:
7230 /* If the operand is a CLOBBER, just return it. */
7231 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7232 return XEXP (x, 0);
7234 if (!CONST_INT_P (XEXP (x, 1))
7235 || !CONST_INT_P (XEXP (x, 2)))
7236 return x;
7238 /* Reject modes that aren't scalar integers because turning vector
7239 or complex modes into shifts causes problems. */
7240 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7241 return x;
7243 len = INTVAL (XEXP (x, 1));
7244 pos = INTVAL (XEXP (x, 2));
7246 /* This should stay within the object being extracted, fail otherwise. */
7247 if (len + pos > GET_MODE_PRECISION (inner_mode))
7248 return x;
7250 if (BITS_BIG_ENDIAN)
7251 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7253 break;
7255 default:
7256 return x;
7259 /* We've rejected non-scalar operations by now. */
7260 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7262 /* Convert sign extension to zero extension, if we know that the high
7263 bit is not set, as this is easier to optimize. It will be converted
7264 back to cheaper alternative in make_extraction. */
7265 if (GET_CODE (x) == SIGN_EXTEND
7266 && HWI_COMPUTABLE_MODE_P (mode)
7267 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7268 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7269 == 0))
7271 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7272 rtx temp2 = expand_compound_operation (temp);
7274 /* Make sure this is a profitable operation. */
7275 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7276 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7277 return temp2;
7278 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7279 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7280 return temp;
7281 else
7282 return x;
7285 /* We can optimize some special cases of ZERO_EXTEND. */
7286 if (GET_CODE (x) == ZERO_EXTEND)
7288 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7289 know that the last value didn't have any inappropriate bits
7290 set. */
7291 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7292 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7293 && HWI_COMPUTABLE_MODE_P (mode)
7294 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7295 & ~GET_MODE_MASK (inner_mode)) == 0)
7296 return XEXP (XEXP (x, 0), 0);
7298 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7299 if (GET_CODE (XEXP (x, 0)) == SUBREG
7300 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7301 && subreg_lowpart_p (XEXP (x, 0))
7302 && HWI_COMPUTABLE_MODE_P (mode)
7303 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7304 & ~GET_MODE_MASK (inner_mode)) == 0)
7305 return SUBREG_REG (XEXP (x, 0));
7307 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7308 is a comparison and STORE_FLAG_VALUE permits. This is like
7309 the first case, but it works even when MODE is larger
7310 than HOST_WIDE_INT. */
7311 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7312 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7313 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7314 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7315 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7316 return XEXP (XEXP (x, 0), 0);
7318 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7319 if (GET_CODE (XEXP (x, 0)) == SUBREG
7320 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7321 && subreg_lowpart_p (XEXP (x, 0))
7322 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7323 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7324 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7325 return SUBREG_REG (XEXP (x, 0));
7329 /* If we reach here, we want to return a pair of shifts. The inner
7330 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7331 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7332 logical depending on the value of UNSIGNEDP.
7334 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7335 converted into an AND of a shift.
7337 We must check for the case where the left shift would have a negative
7338 count. This can happen in a case like (x >> 31) & 255 on machines
7339 that can't shift by a constant. On those machines, we would first
7340 combine the shift with the AND to produce a variable-position
7341 extraction. Then the constant of 31 would be substituted in
7342 to produce such a position. */
7344 modewidth = GET_MODE_PRECISION (mode);
7345 if (modewidth >= pos + len)
7347 tem = gen_lowpart (mode, XEXP (x, 0));
7348 if (!tem || GET_CODE (tem) == CLOBBER)
7349 return x;
7350 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7351 tem, modewidth - pos - len);
7352 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7353 mode, tem, modewidth - len);
7355 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7357 tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7358 XEXP (x, 0), pos);
7359 tem = gen_lowpart (mode, tem);
7360 if (!tem || GET_CODE (tem) == CLOBBER)
7361 return x;
7362 tem = simplify_and_const_int (NULL_RTX, mode, tem,
7363 (HOST_WIDE_INT_1U << len) - 1);
7365 else
7366 /* Any other cases we can't handle. */
7367 return x;
7369 /* If we couldn't do this for some reason, return the original
7370 expression. */
7371 if (GET_CODE (tem) == CLOBBER)
7372 return x;
7374 return tem;
7377 /* X is a SET which contains an assignment of one object into
7378 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7379 or certain SUBREGS). If possible, convert it into a series of
7380 logical operations.
7382 We half-heartedly support variable positions, but do not at all
7383 support variable lengths. */
7385 static const_rtx
7386 expand_field_assignment (const_rtx x)
7388 rtx inner;
7389 rtx pos; /* Always counts from low bit. */
7390 int len, inner_len;
7391 rtx mask, cleared, masked;
7392 scalar_int_mode compute_mode;
7394 /* Loop until we find something we can't simplify. */
7395 while (1)
7397 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7398 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7400 rtx x0 = XEXP (SET_DEST (x), 0);
7401 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7402 break;
7403 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7404 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7405 MAX_MODE_INT);
7407 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7408 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7410 inner = XEXP (SET_DEST (x), 0);
7411 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7412 break;
7414 len = INTVAL (XEXP (SET_DEST (x), 1));
7415 pos = XEXP (SET_DEST (x), 2);
7417 /* A constant position should stay within the width of INNER. */
7418 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7419 break;
7421 if (BITS_BIG_ENDIAN)
7423 if (CONST_INT_P (pos))
7424 pos = GEN_INT (inner_len - len - INTVAL (pos));
7425 else if (GET_CODE (pos) == MINUS
7426 && CONST_INT_P (XEXP (pos, 1))
7427 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7428 /* If position is ADJUST - X, new position is X. */
7429 pos = XEXP (pos, 0);
7430 else
7431 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7432 gen_int_mode (inner_len - len,
7433 GET_MODE (pos)),
7434 pos);
7438 /* If the destination is a subreg that overwrites the whole of the inner
7439 register, we can move the subreg to the source. */
7440 else if (GET_CODE (SET_DEST (x)) == SUBREG
7441 /* We need SUBREGs to compute nonzero_bits properly. */
7442 && nonzero_sign_valid
7443 && !read_modify_subreg_p (SET_DEST (x)))
7445 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7446 gen_lowpart
7447 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7448 SET_SRC (x)));
7449 continue;
7451 else
7452 break;
7454 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7455 inner = SUBREG_REG (inner);
7457 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7458 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7460 /* Don't do anything for vector or complex integral types. */
7461 if (! FLOAT_MODE_P (GET_MODE (inner)))
7462 break;
7464 /* Try to find an integral mode to pun with. */
7465 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7466 .exists (&compute_mode))
7467 break;
7469 inner = gen_lowpart (compute_mode, inner);
7472 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7473 if (len >= HOST_BITS_PER_WIDE_INT)
7474 break;
7476 /* Don't try to compute in too wide unsupported modes. */
7477 if (!targetm.scalar_mode_supported_p (compute_mode))
7478 break;
7480 /* gen_lowpart_for_combine returns CLOBBER on failure. */
7481 rtx lowpart = gen_lowpart (compute_mode, SET_SRC (x));
7482 if (GET_CODE (lowpart) == CLOBBER)
7483 break;
7485 /* Now compute the equivalent expression. Make a copy of INNER
7486 for the SET_DEST in case it is a MEM into which we will substitute;
7487 we don't want shared RTL in that case. */
7488 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7489 compute_mode);
7490 cleared = simplify_gen_binary (AND, compute_mode,
7491 simplify_gen_unary (NOT, compute_mode,
7492 simplify_gen_binary (ASHIFT,
7493 compute_mode,
7494 mask, pos),
7495 compute_mode),
7496 inner);
7497 masked = simplify_gen_binary (ASHIFT, compute_mode,
7498 simplify_gen_binary (
7499 AND, compute_mode, lowpart, mask),
7500 pos);
7502 x = gen_rtx_SET (copy_rtx (inner),
7503 simplify_gen_binary (IOR, compute_mode,
7504 cleared, masked));
7507 return x;
7510 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7511 it is an RTX that represents the (variable) starting position; otherwise,
7512 POS is the (constant) starting bit position. Both are counted from the LSB.
7514 UNSIGNEDP is true for an unsigned reference and zero for a signed one.
7516 IN_DEST is true if this is a reference in the destination of a SET.
7517 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7518 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7519 be used.
7521 IN_COMPARE is true if we are in a COMPARE. This means that a
7522 ZERO_EXTRACT should be built even for bits starting at bit 0.
7524 MODE is the desired mode of the result (if IN_DEST == 0).
7526 The result is an RTX for the extraction or NULL_RTX if the target
7527 can't handle it. */
7529 static rtx
7530 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7531 rtx pos_rtx, unsigned HOST_WIDE_INT len, bool unsignedp,
7532 bool in_dest, bool in_compare)
7534 /* This mode describes the size of the storage area
7535 to fetch the overall value from. Within that, we
7536 ignore the POS lowest bits, etc. */
7537 machine_mode is_mode = GET_MODE (inner);
7538 machine_mode inner_mode;
7539 scalar_int_mode wanted_inner_mode;
7540 scalar_int_mode wanted_inner_reg_mode = word_mode;
7541 scalar_int_mode pos_mode = word_mode;
7542 machine_mode extraction_mode = word_mode;
7543 rtx new_rtx = 0;
7544 rtx orig_pos_rtx = pos_rtx;
7545 HOST_WIDE_INT orig_pos;
7547 if (pos_rtx && CONST_INT_P (pos_rtx))
7548 pos = INTVAL (pos_rtx), pos_rtx = 0;
7550 if (GET_CODE (inner) == SUBREG
7551 && subreg_lowpart_p (inner)
7552 && (paradoxical_subreg_p (inner)
7553 /* If trying or potentionally trying to extract
7554 bits outside of is_mode, don't look through
7555 non-paradoxical SUBREGs. See PR82192. */
7556 || (pos_rtx == NULL_RTX
7557 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7559 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7560 consider just the QI as the memory to extract from.
7561 The subreg adds or removes high bits; its mode is
7562 irrelevant to the meaning of this extraction,
7563 since POS and LEN count from the lsb. */
7564 if (MEM_P (SUBREG_REG (inner)))
7565 is_mode = GET_MODE (SUBREG_REG (inner));
7566 inner = SUBREG_REG (inner);
7568 else if (GET_CODE (inner) == ASHIFT
7569 && CONST_INT_P (XEXP (inner, 1))
7570 && pos_rtx == 0 && pos == 0
7571 && len > UINTVAL (XEXP (inner, 1)))
7573 /* We're extracting the least significant bits of an rtx
7574 (ashift X (const_int C)), where LEN > C. Extract the
7575 least significant (LEN - C) bits of X, giving an rtx
7576 whose mode is MODE, then shift it left C times. */
7577 new_rtx = make_extraction (mode, XEXP (inner, 0),
7578 0, 0, len - INTVAL (XEXP (inner, 1)),
7579 unsignedp, in_dest, in_compare);
7580 if (new_rtx != 0)
7581 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7583 else if (GET_CODE (inner) == MULT
7584 && CONST_INT_P (XEXP (inner, 1))
7585 && pos_rtx == 0 && pos == 0)
7587 /* We're extracting the least significant bits of an rtx
7588 (mult X (const_int 2^C)), where LEN > C. Extract the
7589 least significant (LEN - C) bits of X, giving an rtx
7590 whose mode is MODE, then multiply it by 2^C. */
7591 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7592 if (IN_RANGE (shift_amt, 1, len - 1))
7594 new_rtx = make_extraction (mode, XEXP (inner, 0),
7595 0, 0, len - shift_amt,
7596 unsignedp, in_dest, in_compare);
7597 if (new_rtx)
7598 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7601 else if (GET_CODE (inner) == TRUNCATE
7602 /* If trying or potentionally trying to extract
7603 bits outside of is_mode, don't look through
7604 TRUNCATE. See PR82192. */
7605 && pos_rtx == NULL_RTX
7606 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7607 inner = XEXP (inner, 0);
7609 inner_mode = GET_MODE (inner);
7611 /* See if this can be done without an extraction. We never can if the
7612 width of the field is not the same as that of some integer mode. For
7613 registers, we can only avoid the extraction if the position is at the
7614 low-order bit and this is either not in the destination or we have the
7615 appropriate STRICT_LOW_PART operation available.
7617 For MEM, we can avoid an extract if the field starts on an appropriate
7618 boundary and we can change the mode of the memory reference. */
7620 scalar_int_mode tmode;
7621 if (int_mode_for_size (len, 1).exists (&tmode)
7622 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7623 && !MEM_P (inner)
7624 && (pos == 0 || REG_P (inner))
7625 && (inner_mode == tmode
7626 || !REG_P (inner)
7627 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7628 || reg_truncated_to_mode (tmode, inner))
7629 && (! in_dest
7630 || (REG_P (inner)
7631 && have_insn_for (STRICT_LOW_PART, tmode))))
7632 || (MEM_P (inner) && pos_rtx == 0
7633 && (pos
7634 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7635 : BITS_PER_UNIT)) == 0
7636 /* We can't do this if we are widening INNER_MODE (it
7637 may not be aligned, for one thing). */
7638 && !paradoxical_subreg_p (tmode, inner_mode)
7639 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7640 && (inner_mode == tmode
7641 || (! mode_dependent_address_p (XEXP (inner, 0),
7642 MEM_ADDR_SPACE (inner))
7643 && ! MEM_VOLATILE_P (inner))))))
7645 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7646 field. If the original and current mode are the same, we need not
7647 adjust the offset. Otherwise, we do if bytes big endian.
7649 If INNER is not a MEM, get a piece consisting of just the field
7650 of interest (in this case POS % BITS_PER_WORD must be 0). */
7652 if (MEM_P (inner))
7654 poly_int64 offset;
7656 /* POS counts from lsb, but make OFFSET count in memory order. */
7657 if (BYTES_BIG_ENDIAN)
7658 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7659 - len - pos);
7660 else
7661 offset = pos / BITS_PER_UNIT;
7663 new_rtx = adjust_address_nv (inner, tmode, offset);
7665 else if (REG_P (inner))
7667 if (tmode != inner_mode)
7669 /* We can't call gen_lowpart in a DEST since we
7670 always want a SUBREG (see below) and it would sometimes
7671 return a new hard register. */
7672 if (pos || in_dest)
7674 poly_uint64 offset
7675 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7677 /* Avoid creating invalid subregs, for example when
7678 simplifying (x>>32)&255. */
7679 if (!validate_subreg (tmode, inner_mode, inner, offset))
7680 return NULL_RTX;
7682 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7684 else
7685 new_rtx = gen_lowpart (tmode, inner);
7687 else
7688 new_rtx = inner;
7690 else
7691 new_rtx = force_to_mode (inner, tmode,
7692 len >= HOST_BITS_PER_WIDE_INT
7693 ? HOST_WIDE_INT_M1U
7694 : (HOST_WIDE_INT_1U << len) - 1, false);
7696 /* If this extraction is going into the destination of a SET,
7697 make a STRICT_LOW_PART unless we made a MEM. */
7699 if (in_dest)
7700 return (MEM_P (new_rtx) ? new_rtx
7701 : (GET_CODE (new_rtx) != SUBREG
7702 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7703 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7705 if (mode == tmode)
7706 return new_rtx;
7708 if (CONST_SCALAR_INT_P (new_rtx))
7709 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7710 mode, new_rtx, tmode);
7712 /* If we know that no extraneous bits are set, and that the high
7713 bit is not set, convert the extraction to the cheaper of
7714 sign and zero extension, that are equivalent in these cases. */
7715 if (flag_expensive_optimizations
7716 && (HWI_COMPUTABLE_MODE_P (tmode)
7717 && ((nonzero_bits (new_rtx, tmode)
7718 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7719 == 0)))
7721 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7722 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7724 /* Prefer ZERO_EXTENSION, since it gives more information to
7725 backends. */
7726 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7727 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7728 return temp;
7729 return temp1;
7732 /* Otherwise, sign- or zero-extend unless we already are in the
7733 proper mode. */
7735 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7736 mode, new_rtx));
7739 /* Unless this is a COMPARE or we have a funny memory reference,
7740 don't do anything with zero-extending field extracts starting at
7741 the low-order bit since they are simple AND operations. */
7742 if (pos_rtx == 0 && pos == 0 && ! in_dest
7743 && ! in_compare && unsignedp)
7744 return 0;
7746 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7747 if the position is not a constant and the length is not 1. In all
7748 other cases, we would only be going outside our object in cases when
7749 an original shift would have been undefined. */
7750 if (MEM_P (inner)
7751 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7752 || (pos_rtx != 0 && len != 1)))
7753 return 0;
7755 enum extraction_pattern pattern = (in_dest ? EP_insv
7756 : unsignedp ? EP_extzv : EP_extv);
7758 /* If INNER is not from memory, we want it to have the mode of a register
7759 extraction pattern's structure operand, or word_mode if there is no
7760 such pattern. The same applies to extraction_mode and pos_mode
7761 and their respective operands.
7763 For memory, assume that the desired extraction_mode and pos_mode
7764 are the same as for a register operation, since at present we don't
7765 have named patterns for aligned memory structures. */
7766 class extraction_insn insn;
7767 unsigned int inner_size;
7768 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7769 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7771 wanted_inner_reg_mode = insn.struct_mode.require ();
7772 pos_mode = insn.pos_mode;
7773 extraction_mode = insn.field_mode;
7776 /* Never narrow an object, since that might not be safe. */
7778 if (mode != VOIDmode
7779 && partial_subreg_p (extraction_mode, mode))
7780 extraction_mode = mode;
7782 /* Punt if len is too large for extraction_mode. */
7783 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7784 return NULL_RTX;
7786 if (!MEM_P (inner))
7787 wanted_inner_mode = wanted_inner_reg_mode;
7788 else
7790 /* Be careful not to go beyond the extracted object and maintain the
7791 natural alignment of the memory. */
7792 wanted_inner_mode = smallest_int_mode_for_size (len);
7793 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7794 > GET_MODE_BITSIZE (wanted_inner_mode))
7795 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7798 orig_pos = pos;
7800 if (BITS_BIG_ENDIAN)
7802 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7803 BITS_BIG_ENDIAN style. If position is constant, compute new
7804 position. Otherwise, build subtraction.
7805 Note that POS is relative to the mode of the original argument.
7806 If it's a MEM we need to recompute POS relative to that.
7807 However, if we're extracting from (or inserting into) a register,
7808 we want to recompute POS relative to wanted_inner_mode. */
7809 int width;
7810 if (!MEM_P (inner))
7811 width = GET_MODE_BITSIZE (wanted_inner_mode);
7812 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7813 return NULL_RTX;
7815 if (pos_rtx == 0)
7816 pos = width - len - pos;
7817 else
7818 pos_rtx
7819 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7820 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7821 pos_rtx);
7822 /* POS may be less than 0 now, but we check for that below.
7823 Note that it can only be less than 0 if !MEM_P (inner). */
7826 /* If INNER has a wider mode, and this is a constant extraction, try to
7827 make it smaller and adjust the byte to point to the byte containing
7828 the value. */
7829 if (wanted_inner_mode != VOIDmode
7830 && inner_mode != wanted_inner_mode
7831 && ! pos_rtx
7832 && partial_subreg_p (wanted_inner_mode, is_mode)
7833 && MEM_P (inner)
7834 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7835 && ! MEM_VOLATILE_P (inner))
7837 poly_int64 offset = 0;
7839 /* The computations below will be correct if the machine is big
7840 endian in both bits and bytes or little endian in bits and bytes.
7841 If it is mixed, we must adjust. */
7843 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7844 adjust OFFSET to compensate. */
7845 if (BYTES_BIG_ENDIAN
7846 && paradoxical_subreg_p (is_mode, inner_mode))
7847 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7849 /* We can now move to the desired byte. */
7850 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7851 * GET_MODE_SIZE (wanted_inner_mode);
7852 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7854 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7855 && is_mode != wanted_inner_mode)
7856 offset = (GET_MODE_SIZE (is_mode)
7857 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7859 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7862 /* If INNER is not memory, get it into the proper mode. If we are changing
7863 its mode, POS must be a constant and smaller than the size of the new
7864 mode. */
7865 else if (!MEM_P (inner))
7867 /* On the LHS, don't create paradoxical subregs implicitely truncating
7868 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7869 if (in_dest
7870 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7871 wanted_inner_mode))
7872 return NULL_RTX;
7874 if (GET_MODE (inner) != wanted_inner_mode
7875 && (pos_rtx != 0
7876 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7877 return NULL_RTX;
7879 if (orig_pos < 0)
7880 return NULL_RTX;
7882 inner = force_to_mode (inner, wanted_inner_mode,
7883 pos_rtx
7884 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7885 ? HOST_WIDE_INT_M1U
7886 : (((HOST_WIDE_INT_1U << len) - 1)
7887 << orig_pos), false);
7890 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7891 have to zero extend. Otherwise, we can just use a SUBREG.
7893 We dealt with constant rtxes earlier, so pos_rtx cannot
7894 have VOIDmode at this point. */
7895 if (pos_rtx != 0
7896 && (GET_MODE_SIZE (pos_mode)
7897 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7899 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7900 GET_MODE (pos_rtx));
7902 /* If we know that no extraneous bits are set, and that the high
7903 bit is not set, convert extraction to cheaper one - either
7904 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7905 cases. */
7906 if (flag_expensive_optimizations
7907 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7908 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7909 & ~(((unsigned HOST_WIDE_INT)
7910 GET_MODE_MASK (GET_MODE (pos_rtx)))
7911 >> 1))
7912 == 0)))
7914 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7915 GET_MODE (pos_rtx));
7917 /* Prefer ZERO_EXTENSION, since it gives more information to
7918 backends. */
7919 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7920 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7921 temp = temp1;
7923 pos_rtx = temp;
7926 /* Make POS_RTX unless we already have it and it is correct. If we don't
7927 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7928 be a CONST_INT. */
7929 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7930 pos_rtx = orig_pos_rtx;
7932 else if (pos_rtx == 0)
7933 pos_rtx = GEN_INT (pos);
7935 /* Make the required operation. See if we can use existing rtx. */
7936 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7937 extraction_mode, inner, GEN_INT (len), pos_rtx);
7938 if (! in_dest)
7939 new_rtx = gen_lowpart (mode, new_rtx);
7941 return new_rtx;
7944 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7945 can be commuted with any other operations in X. Return X without
7946 that shift if so. */
7948 static rtx
7949 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7951 enum rtx_code code = GET_CODE (x);
7952 rtx tem;
7954 switch (code)
7956 case ASHIFT:
7957 /* This is the shift itself. If it is wide enough, we will return
7958 either the value being shifted if the shift count is equal to
7959 COUNT or a shift for the difference. */
7960 if (CONST_INT_P (XEXP (x, 1))
7961 && INTVAL (XEXP (x, 1)) >= count)
7962 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7963 INTVAL (XEXP (x, 1)) - count);
7964 break;
7966 case NEG: case NOT:
7967 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7968 return simplify_gen_unary (code, mode, tem, mode);
7970 break;
7972 case PLUS: case IOR: case XOR: case AND:
7973 /* If we can safely shift this constant and we find the inner shift,
7974 make a new operation. */
7975 if (CONST_INT_P (XEXP (x, 1))
7976 && (UINTVAL (XEXP (x, 1))
7977 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7978 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7980 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7981 return simplify_gen_binary (code, mode, tem,
7982 gen_int_mode (val, mode));
7984 break;
7986 default:
7987 break;
7990 return 0;
7993 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7994 level of the expression and MODE is its mode. IN_CODE is as for
7995 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7996 that should be used when recursing on operands of *X_PTR.
7998 There are two possible actions:
8000 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8001 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8003 - Return a new rtx, which the caller returns directly. */
8005 static rtx
8006 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8007 enum rtx_code in_code,
8008 enum rtx_code *next_code_ptr)
8010 rtx x = *x_ptr;
8011 enum rtx_code next_code = *next_code_ptr;
8012 enum rtx_code code = GET_CODE (x);
8013 int mode_width = GET_MODE_PRECISION (mode);
8014 rtx rhs, lhs;
8015 rtx new_rtx = 0;
8016 int i;
8017 rtx tem;
8018 scalar_int_mode inner_mode;
8019 bool equality_comparison = false;
8021 if (in_code == EQ)
8023 equality_comparison = true;
8024 in_code = COMPARE;
8027 /* Process depending on the code of this operation. If NEW is set
8028 nonzero, it will be returned. */
8030 switch (code)
8032 case ASHIFT:
8033 /* Convert shifts by constants into multiplications if inside
8034 an address. */
8035 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8036 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8037 && INTVAL (XEXP (x, 1)) >= 0)
8039 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8040 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8042 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8043 if (GET_CODE (new_rtx) == NEG)
8045 new_rtx = XEXP (new_rtx, 0);
8046 multval = -multval;
8048 multval = trunc_int_for_mode (multval, mode);
8049 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8051 break;
8053 case PLUS:
8054 lhs = XEXP (x, 0);
8055 rhs = XEXP (x, 1);
8056 lhs = make_compound_operation (lhs, next_code);
8057 rhs = make_compound_operation (rhs, next_code);
8058 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8060 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8061 XEXP (lhs, 1));
8062 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8064 else if (GET_CODE (lhs) == MULT
8065 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8067 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8068 simplify_gen_unary (NEG, mode,
8069 XEXP (lhs, 1),
8070 mode));
8071 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8073 else
8075 SUBST (XEXP (x, 0), lhs);
8076 SUBST (XEXP (x, 1), rhs);
8078 maybe_swap_commutative_operands (x);
8079 return x;
8081 case MINUS:
8082 lhs = XEXP (x, 0);
8083 rhs = XEXP (x, 1);
8084 lhs = make_compound_operation (lhs, next_code);
8085 rhs = make_compound_operation (rhs, next_code);
8086 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8088 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8089 XEXP (rhs, 1));
8090 return simplify_gen_binary (PLUS, mode, tem, lhs);
8092 else if (GET_CODE (rhs) == MULT
8093 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8095 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8096 simplify_gen_unary (NEG, mode,
8097 XEXP (rhs, 1),
8098 mode));
8099 return simplify_gen_binary (PLUS, mode, tem, lhs);
8101 else
8103 SUBST (XEXP (x, 0), lhs);
8104 SUBST (XEXP (x, 1), rhs);
8105 return x;
8108 case AND:
8109 /* If the second operand is not a constant, we can't do anything
8110 with it. */
8111 if (!CONST_INT_P (XEXP (x, 1)))
8112 break;
8114 /* If the constant is a power of two minus one and the first operand
8115 is a logical right shift, make an extraction. */
8116 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8117 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8119 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8120 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8121 i, true, false, in_code == COMPARE);
8124 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8125 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8126 && subreg_lowpart_p (XEXP (x, 0))
8127 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8128 &inner_mode)
8129 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8130 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8132 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8133 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8134 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8135 XEXP (inner_x0, 1),
8136 i, true, false, in_code == COMPARE);
8138 /* If we narrowed the mode when dropping the subreg, then we lose. */
8139 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8140 new_rtx = NULL;
8142 /* If that didn't give anything, see if the AND simplifies on
8143 its own. */
8144 if (!new_rtx && i >= 0)
8146 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8147 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i,
8148 true, false, in_code == COMPARE);
8151 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8152 else if ((GET_CODE (XEXP (x, 0)) == XOR
8153 || GET_CODE (XEXP (x, 0)) == IOR)
8154 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8155 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8156 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8158 /* Apply the distributive law, and then try to make extractions. */
8159 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8160 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8161 XEXP (x, 1)),
8162 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8163 XEXP (x, 1)));
8164 new_rtx = make_compound_operation (new_rtx, in_code);
8167 /* If we are have (and (rotate X C) M) and C is larger than the number
8168 of bits in M, this is an extraction. */
8170 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8171 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8172 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8173 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8175 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8176 new_rtx = make_extraction (mode, new_rtx,
8177 (GET_MODE_PRECISION (mode)
8178 - INTVAL (XEXP (XEXP (x, 0), 1))),
8179 NULL_RTX, i, true, false,
8180 in_code == COMPARE);
8183 /* On machines without logical shifts, if the operand of the AND is
8184 a logical shift and our mask turns off all the propagated sign
8185 bits, we can replace the logical shift with an arithmetic shift. */
8186 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8187 && !have_insn_for (LSHIFTRT, mode)
8188 && have_insn_for (ASHIFTRT, mode)
8189 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8190 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8191 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8192 && mode_width <= HOST_BITS_PER_WIDE_INT)
8194 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8196 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8197 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8198 SUBST (XEXP (x, 0),
8199 gen_rtx_ASHIFTRT (mode,
8200 make_compound_operation (XEXP (XEXP (x,
8203 next_code),
8204 XEXP (XEXP (x, 0), 1)));
8207 /* If the constant is one less than a power of two, this might be
8208 representable by an extraction even if no shift is present.
8209 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8210 we are in a COMPARE. */
8211 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8212 new_rtx = make_extraction (mode,
8213 make_compound_operation (XEXP (x, 0),
8214 next_code),
8215 0, NULL_RTX, i,
8216 true, false, in_code == COMPARE);
8218 /* If we are in a comparison and this is an AND with a power of two,
8219 convert this into the appropriate bit extract. */
8220 else if (in_code == COMPARE
8221 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8222 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8223 new_rtx = make_extraction (mode,
8224 make_compound_operation (XEXP (x, 0),
8225 next_code),
8226 i, NULL_RTX, 1, true, false, true);
8228 /* If the one operand is a paradoxical subreg of a register or memory and
8229 the constant (limited to the smaller mode) has only zero bits where
8230 the sub expression has known zero bits, this can be expressed as
8231 a zero_extend. */
8232 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8234 rtx sub;
8236 sub = XEXP (XEXP (x, 0), 0);
8237 machine_mode sub_mode = GET_MODE (sub);
8238 int sub_width;
8239 if ((REG_P (sub) || MEM_P (sub))
8240 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8241 && sub_width < mode_width
8242 && (!WORD_REGISTER_OPERATIONS
8243 || sub_width >= BITS_PER_WORD
8244 /* On WORD_REGISTER_OPERATIONS targets the bits
8245 beyond sub_mode aren't considered undefined,
8246 so optimize only if it is a MEM load when MEM loads
8247 zero extend, because then the upper bits are all zero. */
8248 || (MEM_P (sub)
8249 && load_extend_op (sub_mode) == ZERO_EXTEND)))
8251 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8252 unsigned HOST_WIDE_INT mask;
8254 /* Original AND constant with all the known zero bits set. */
8255 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8256 if ((mask & mode_mask) == mode_mask)
8258 new_rtx = make_compound_operation (sub, next_code);
8259 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8260 true, false, in_code == COMPARE);
8265 break;
8267 case LSHIFTRT:
8268 /* If the sign bit is known to be zero, replace this with an
8269 arithmetic shift. */
8270 if (have_insn_for (ASHIFTRT, mode)
8271 && ! have_insn_for (LSHIFTRT, mode)
8272 && mode_width <= HOST_BITS_PER_WIDE_INT
8273 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8275 new_rtx = gen_rtx_ASHIFTRT (mode,
8276 make_compound_operation (XEXP (x, 0),
8277 next_code),
8278 XEXP (x, 1));
8279 break;
8282 /* fall through */
8284 case ASHIFTRT:
8285 lhs = XEXP (x, 0);
8286 rhs = XEXP (x, 1);
8288 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8289 this is a SIGN_EXTRACT. */
8290 if (CONST_INT_P (rhs)
8291 && GET_CODE (lhs) == ASHIFT
8292 && CONST_INT_P (XEXP (lhs, 1))
8293 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8294 && INTVAL (XEXP (lhs, 1)) >= 0
8295 && INTVAL (rhs) < mode_width)
8297 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8298 new_rtx = make_extraction (mode, new_rtx,
8299 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8300 NULL_RTX, mode_width - INTVAL (rhs),
8301 code == LSHIFTRT, false,
8302 in_code == COMPARE);
8303 break;
8306 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8307 If so, try to merge the shifts into a SIGN_EXTEND. We could
8308 also do this for some cases of SIGN_EXTRACT, but it doesn't
8309 seem worth the effort; the case checked for occurs on Alpha. */
8311 if (!OBJECT_P (lhs)
8312 && ! (GET_CODE (lhs) == SUBREG
8313 && (OBJECT_P (SUBREG_REG (lhs))))
8314 && CONST_INT_P (rhs)
8315 && INTVAL (rhs) >= 0
8316 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8317 && INTVAL (rhs) < mode_width
8318 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8319 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8320 next_code),
8321 0, NULL_RTX, mode_width - INTVAL (rhs),
8322 code == LSHIFTRT, false, in_code == COMPARE);
8324 break;
8326 case SUBREG:
8327 /* Call ourselves recursively on the inner expression. If we are
8328 narrowing the object and it has a different RTL code from
8329 what it originally did, do this SUBREG as a force_to_mode. */
8331 rtx inner = SUBREG_REG (x), simplified;
8332 enum rtx_code subreg_code = in_code;
8334 /* If the SUBREG is masking of a logical right shift,
8335 make an extraction. */
8336 if (GET_CODE (inner) == LSHIFTRT
8337 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8338 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8339 && CONST_INT_P (XEXP (inner, 1))
8340 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8341 && subreg_lowpart_p (x))
8343 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8344 int width = GET_MODE_PRECISION (inner_mode)
8345 - INTVAL (XEXP (inner, 1));
8346 if (width > mode_width)
8347 width = mode_width;
8348 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8349 width, true, false, in_code == COMPARE);
8350 break;
8353 /* If in_code is COMPARE, it isn't always safe to pass it through
8354 to the recursive make_compound_operation call. */
8355 if (subreg_code == COMPARE
8356 && (!subreg_lowpart_p (x)
8357 || GET_CODE (inner) == SUBREG
8358 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8359 is (const_int 0), rather than
8360 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8361 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8362 for non-equality comparisons against 0 is not equivalent
8363 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8364 || (GET_CODE (inner) == AND
8365 && CONST_INT_P (XEXP (inner, 1))
8366 && partial_subreg_p (x)
8367 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8368 >= GET_MODE_BITSIZE (mode) - 1)))
8369 subreg_code = SET;
8371 tem = make_compound_operation (inner, subreg_code);
8373 simplified
8374 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8375 if (simplified)
8376 tem = simplified;
8378 if (GET_CODE (tem) != GET_CODE (inner)
8379 && partial_subreg_p (x)
8380 && subreg_lowpart_p (x))
8382 rtx newer
8383 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, false);
8385 /* If we have something other than a SUBREG, we might have
8386 done an expansion, so rerun ourselves. */
8387 if (GET_CODE (newer) != SUBREG)
8388 newer = make_compound_operation (newer, in_code);
8390 /* force_to_mode can expand compounds. If it just re-expanded
8391 the compound, use gen_lowpart to convert to the desired
8392 mode. */
8393 if (rtx_equal_p (newer, x)
8394 /* Likewise if it re-expanded the compound only partially.
8395 This happens for SUBREG of ZERO_EXTRACT if they extract
8396 the same number of bits. */
8397 || (GET_CODE (newer) == SUBREG
8398 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8399 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8400 && GET_CODE (inner) == AND
8401 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8402 return gen_lowpart (GET_MODE (x), tem);
8404 return newer;
8407 if (simplified)
8408 return tem;
8410 break;
8412 default:
8413 break;
8416 if (new_rtx)
8417 *x_ptr = gen_lowpart (mode, new_rtx);
8418 *next_code_ptr = next_code;
8419 return NULL_RTX;
8422 /* Look at the expression rooted at X. Look for expressions
8423 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8424 Form these expressions.
8426 Return the new rtx, usually just X.
8428 Also, for machines like the VAX that don't have logical shift insns,
8429 try to convert logical to arithmetic shift operations in cases where
8430 they are equivalent. This undoes the canonicalizations to logical
8431 shifts done elsewhere.
8433 We try, as much as possible, to re-use rtl expressions to save memory.
8435 IN_CODE says what kind of expression we are processing. Normally, it is
8436 SET. In a memory address it is MEM. When processing the arguments of
8437 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8438 precisely it is an equality comparison against zero. */
8441 make_compound_operation (rtx x, enum rtx_code in_code)
8443 enum rtx_code code = GET_CODE (x);
8444 const char *fmt;
8445 int i, j;
8446 enum rtx_code next_code;
8447 rtx new_rtx, tem;
8449 /* Select the code to be used in recursive calls. Once we are inside an
8450 address, we stay there. If we have a comparison, set to COMPARE,
8451 but once inside, go back to our default of SET. */
8453 next_code = (code == MEM ? MEM
8454 : ((code == COMPARE || COMPARISON_P (x))
8455 && XEXP (x, 1) == const0_rtx) ? COMPARE
8456 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8458 scalar_int_mode mode;
8459 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8461 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8462 &next_code);
8463 if (new_rtx)
8464 return new_rtx;
8465 code = GET_CODE (x);
8468 /* Now recursively process each operand of this operation. We need to
8469 handle ZERO_EXTEND specially so that we don't lose track of the
8470 inner mode. */
8471 if (code == ZERO_EXTEND)
8473 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8474 tem = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8475 new_rtx, GET_MODE (XEXP (x, 0)));
8476 if (tem)
8477 return tem;
8478 SUBST (XEXP (x, 0), new_rtx);
8479 return x;
8482 fmt = GET_RTX_FORMAT (code);
8483 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8484 if (fmt[i] == 'e')
8486 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8487 SUBST (XEXP (x, i), new_rtx);
8489 else if (fmt[i] == 'E')
8490 for (j = 0; j < XVECLEN (x, i); j++)
8492 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8493 SUBST (XVECEXP (x, i, j), new_rtx);
8496 maybe_swap_commutative_operands (x);
8497 return x;
8500 /* Given M see if it is a value that would select a field of bits
8501 within an item, but not the entire word. Return -1 if not.
8502 Otherwise, return the starting position of the field, where 0 is the
8503 low-order bit.
8505 *PLEN is set to the length of the field. */
8507 static int
8508 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8510 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8511 int pos = m ? ctz_hwi (m) : -1;
8512 int len = 0;
8514 if (pos >= 0)
8515 /* Now shift off the low-order zero bits and see if we have a
8516 power of two minus 1. */
8517 len = exact_log2 ((m >> pos) + 1);
8519 if (len <= 0)
8520 pos = -1;
8522 *plen = len;
8523 return pos;
8526 /* If X refers to a register that equals REG in value, replace these
8527 references with REG. */
8528 static rtx
8529 canon_reg_for_combine (rtx x, rtx reg)
8531 rtx op0, op1, op2;
8532 const char *fmt;
8533 int i;
8534 bool copied;
8536 enum rtx_code code = GET_CODE (x);
8537 switch (GET_RTX_CLASS (code))
8539 case RTX_UNARY:
8540 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8541 if (op0 != XEXP (x, 0))
8542 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8543 GET_MODE (reg));
8544 break;
8546 case RTX_BIN_ARITH:
8547 case RTX_COMM_ARITH:
8548 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8549 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8550 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8551 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8552 break;
8554 case RTX_COMPARE:
8555 case RTX_COMM_COMPARE:
8556 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8557 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8558 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8559 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8560 GET_MODE (op0), op0, op1);
8561 break;
8563 case RTX_TERNARY:
8564 case RTX_BITFIELD_OPS:
8565 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8566 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8567 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8568 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8569 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8570 GET_MODE (op0), op0, op1, op2);
8571 /* FALLTHRU */
8573 case RTX_OBJ:
8574 if (REG_P (x))
8576 if (rtx_equal_p (get_last_value (reg), x)
8577 || rtx_equal_p (reg, get_last_value (x)))
8578 return reg;
8579 else
8580 break;
8583 /* fall through */
8585 default:
8586 fmt = GET_RTX_FORMAT (code);
8587 copied = false;
8588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8589 if (fmt[i] == 'e')
8591 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8592 if (op != XEXP (x, i))
8594 if (!copied)
8596 copied = true;
8597 x = copy_rtx (x);
8599 XEXP (x, i) = op;
8602 else if (fmt[i] == 'E')
8604 int j;
8605 for (j = 0; j < XVECLEN (x, i); j++)
8607 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8608 if (op != XVECEXP (x, i, j))
8610 if (!copied)
8612 copied = true;
8613 x = copy_rtx (x);
8615 XVECEXP (x, i, j) = op;
8620 break;
8623 return x;
8626 /* Return X converted to MODE. If the value is already truncated to
8627 MODE we can just return a subreg even though in the general case we
8628 would need an explicit truncation. */
8630 static rtx
8631 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8633 if (!CONST_INT_P (x)
8634 && partial_subreg_p (mode, GET_MODE (x))
8635 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8636 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8638 /* Bit-cast X into an integer mode. */
8639 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8640 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8641 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8642 x, GET_MODE (x));
8645 return gen_lowpart (mode, x);
8648 /* See if X can be simplified knowing that we will only refer to it in
8649 MODE and will only refer to those bits that are nonzero in MASK.
8650 If other bits are being computed or if masking operations are done
8651 that select a superset of the bits in MASK, they can sometimes be
8652 ignored.
8654 Return a possibly simplified expression, but always convert X to
8655 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8657 If JUST_SELECT is true, don't optimize by noticing that bits in MASK
8658 are all off in X. This is used when X will be complemented, by either
8659 NOT, NEG, or XOR. */
8661 static rtx
8662 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8663 bool just_select)
8665 enum rtx_code code = GET_CODE (x);
8666 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8667 machine_mode op_mode;
8668 unsigned HOST_WIDE_INT nonzero;
8670 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8671 code below will do the wrong thing since the mode of such an
8672 expression is VOIDmode.
8674 Also do nothing if X is a CLOBBER; this can happen if X was
8675 the return value from a call to gen_lowpart. */
8676 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8677 return x;
8679 /* We want to perform the operation in its present mode unless we know
8680 that the operation is valid in MODE, in which case we do the operation
8681 in MODE. */
8682 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8683 && have_insn_for (code, mode))
8684 ? mode : GET_MODE (x));
8686 /* It is not valid to do a right-shift in a narrower mode
8687 than the one it came in with. */
8688 if ((code == LSHIFTRT || code == ASHIFTRT)
8689 && partial_subreg_p (mode, GET_MODE (x)))
8690 op_mode = GET_MODE (x);
8692 /* Truncate MASK to fit OP_MODE. */
8693 if (op_mode)
8694 mask &= GET_MODE_MASK (op_mode);
8696 /* Determine what bits of X are guaranteed to be (non)zero. */
8697 nonzero = nonzero_bits (x, mode);
8699 /* If none of the bits in X are needed, return a zero. */
8700 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8701 x = const0_rtx;
8703 /* If X is a CONST_INT, return a new one. Do this here since the
8704 test below will fail. */
8705 if (CONST_INT_P (x))
8707 if (SCALAR_INT_MODE_P (mode))
8708 return gen_int_mode (INTVAL (x) & mask, mode);
8709 else
8711 x = GEN_INT (INTVAL (x) & mask);
8712 return gen_lowpart_common (mode, x);
8716 /* If X is narrower than MODE and we want all the bits in X's mode, just
8717 get X in the proper mode. */
8718 if (paradoxical_subreg_p (mode, GET_MODE (x))
8719 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8720 return gen_lowpart (mode, x);
8722 /* We can ignore the effect of a SUBREG if it narrows the mode or
8723 if the constant masks to zero all the bits the mode doesn't have. */
8724 if (GET_CODE (x) == SUBREG
8725 && subreg_lowpart_p (x)
8726 && (partial_subreg_p (x)
8727 || (mask
8728 & GET_MODE_MASK (GET_MODE (x))
8729 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8730 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8732 scalar_int_mode int_mode, xmode;
8733 if (is_a <scalar_int_mode> (mode, &int_mode)
8734 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8735 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8736 integer too. */
8737 return force_int_to_mode (x, int_mode, xmode,
8738 as_a <scalar_int_mode> (op_mode),
8739 mask, just_select);
8741 return gen_lowpart_or_truncate (mode, x);
8744 /* Subroutine of force_to_mode that handles cases in which both X and
8745 the result are scalar integers. MODE is the mode of the result,
8746 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8747 is preferred for simplified versions of X. The other arguments
8748 are as for force_to_mode. */
8750 static rtx
8751 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8752 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8753 bool just_select)
8755 enum rtx_code code = GET_CODE (x);
8756 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8757 unsigned HOST_WIDE_INT fuller_mask;
8758 rtx op0, op1, temp;
8759 poly_int64 const_op0;
8761 /* When we have an arithmetic operation, or a shift whose count we
8762 do not know, we need to assume that all bits up to the highest-order
8763 bit in MASK will be needed. This is how we form such a mask. */
8764 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8765 fuller_mask = HOST_WIDE_INT_M1U;
8766 else
8767 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1)) - 1);
8769 switch (code)
8771 case CLOBBER:
8772 /* If X is a (clobber (const_int)), return it since we know we are
8773 generating something that won't match. */
8774 return x;
8776 case SIGN_EXTEND:
8777 case ZERO_EXTEND:
8778 case ZERO_EXTRACT:
8779 case SIGN_EXTRACT:
8780 x = expand_compound_operation (x);
8781 if (GET_CODE (x) != code)
8782 return force_to_mode (x, mode, mask, next_select);
8783 break;
8785 case TRUNCATE:
8786 /* Similarly for a truncate. */
8787 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8789 case AND:
8790 /* If this is an AND with a constant, convert it into an AND
8791 whose constant is the AND of that constant with MASK. If it
8792 remains an AND of MASK, delete it since it is redundant. */
8794 if (CONST_INT_P (XEXP (x, 1)))
8796 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8797 mask & INTVAL (XEXP (x, 1)));
8798 xmode = op_mode;
8800 /* If X is still an AND, see if it is an AND with a mask that
8801 is just some low-order bits. If so, and it is MASK, we don't
8802 need it. */
8804 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8805 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8806 x = XEXP (x, 0);
8808 /* If it remains an AND, try making another AND with the bits
8809 in the mode mask that aren't in MASK turned on. If the
8810 constant in the AND is wide enough, this might make a
8811 cheaper constant. */
8813 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8814 && GET_MODE_MASK (xmode) != mask
8815 && HWI_COMPUTABLE_MODE_P (xmode))
8817 unsigned HOST_WIDE_INT cval
8818 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8819 rtx y;
8821 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8822 gen_int_mode (cval, xmode));
8823 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8824 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8825 x = y;
8828 break;
8831 goto binop;
8833 case PLUS:
8834 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8835 low-order bits (as in an alignment operation) and FOO is already
8836 aligned to that boundary, mask C1 to that boundary as well.
8837 This may eliminate that PLUS and, later, the AND. */
8840 unsigned int width = GET_MODE_PRECISION (mode);
8841 unsigned HOST_WIDE_INT smask = mask;
8843 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8844 number, sign extend it. */
8846 if (width < HOST_BITS_PER_WIDE_INT
8847 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8848 smask |= HOST_WIDE_INT_M1U << width;
8850 if (CONST_INT_P (XEXP (x, 1))
8851 && pow2p_hwi (- smask)
8852 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8853 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8854 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8855 (INTVAL (XEXP (x, 1)) & smask)),
8856 mode, smask, next_select);
8859 /* fall through */
8861 case MULT:
8862 /* Substituting into the operands of a widening MULT is not likely to
8863 create RTL matching a machine insn. */
8864 if (code == MULT
8865 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8866 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8867 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8868 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8869 && REG_P (XEXP (XEXP (x, 0), 0))
8870 && REG_P (XEXP (XEXP (x, 1), 0)))
8871 return gen_lowpart_or_truncate (mode, x);
8873 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8874 most significant bit in MASK since carries from those bits will
8875 affect the bits we are interested in. */
8876 mask = fuller_mask;
8877 goto binop;
8879 case MINUS:
8880 /* If X is (minus C Y) where C's least set bit is larger than any bit
8881 in the mask, then we may replace with (neg Y). */
8882 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8883 && known_alignment (poly_uint64 (const_op0)) > mask)
8885 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8886 return force_to_mode (x, mode, mask, next_select);
8889 /* Similarly, if C contains every bit in the fuller_mask, then we may
8890 replace with (not Y). */
8891 if (CONST_INT_P (XEXP (x, 0))
8892 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8894 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8895 return force_to_mode (x, mode, mask, next_select);
8898 mask = fuller_mask;
8899 goto binop;
8901 case IOR:
8902 case XOR:
8903 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8904 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8905 operation which may be a bitfield extraction. Ensure that the
8906 constant we form is not wider than the mode of X. */
8908 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8909 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8910 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8911 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8912 && CONST_INT_P (XEXP (x, 1))
8913 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8914 + floor_log2 (INTVAL (XEXP (x, 1))))
8915 < GET_MODE_PRECISION (xmode))
8916 && (UINTVAL (XEXP (x, 1))
8917 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8919 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8920 << INTVAL (XEXP (XEXP (x, 0), 1)),
8921 xmode);
8922 temp = simplify_gen_binary (GET_CODE (x), xmode,
8923 XEXP (XEXP (x, 0), 0), temp);
8924 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8925 XEXP (XEXP (x, 0), 1));
8926 return force_to_mode (x, mode, mask, next_select);
8929 binop:
8930 /* For most binary operations, just propagate into the operation and
8931 change the mode if we have an operation of that mode. */
8933 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8934 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8936 /* If we ended up truncating both operands, truncate the result of the
8937 operation instead. */
8938 if (GET_CODE (op0) == TRUNCATE
8939 && GET_CODE (op1) == TRUNCATE)
8941 op0 = XEXP (op0, 0);
8942 op1 = XEXP (op1, 0);
8945 op0 = gen_lowpart_or_truncate (op_mode, op0);
8946 op1 = gen_lowpart_or_truncate (op_mode, op1);
8948 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8950 x = simplify_gen_binary (code, op_mode, op0, op1);
8951 xmode = op_mode;
8953 break;
8955 case ASHIFT:
8956 /* For left shifts, do the same, but just for the first operand.
8957 However, we cannot do anything with shifts where we cannot
8958 guarantee that the counts are smaller than the size of the mode
8959 because such a count will have a different meaning in a
8960 wider mode. */
8962 if (! (CONST_INT_P (XEXP (x, 1))
8963 && INTVAL (XEXP (x, 1)) >= 0
8964 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8965 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8966 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8967 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8968 break;
8970 /* If the shift count is a constant and we can do arithmetic in
8971 the mode of the shift, refine which bits we need. Otherwise, use the
8972 conservative form of the mask. */
8973 if (CONST_INT_P (XEXP (x, 1))
8974 && INTVAL (XEXP (x, 1)) >= 0
8975 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8976 && HWI_COMPUTABLE_MODE_P (op_mode))
8977 mask >>= INTVAL (XEXP (x, 1));
8978 else
8979 mask = fuller_mask;
8981 op0 = gen_lowpart_or_truncate (op_mode,
8982 force_to_mode (XEXP (x, 0), mode,
8983 mask, next_select));
8985 if (op_mode != xmode || op0 != XEXP (x, 0))
8987 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8988 xmode = op_mode;
8990 break;
8992 case LSHIFTRT:
8993 /* Here we can only do something if the shift count is a constant,
8994 this shift constant is valid for the host, and we can do arithmetic
8995 in OP_MODE. */
8997 if (CONST_INT_P (XEXP (x, 1))
8998 && INTVAL (XEXP (x, 1)) >= 0
8999 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9000 && HWI_COMPUTABLE_MODE_P (op_mode))
9002 rtx inner = XEXP (x, 0);
9003 unsigned HOST_WIDE_INT inner_mask;
9005 /* Select the mask of the bits we need for the shift operand. */
9006 inner_mask = mask << INTVAL (XEXP (x, 1));
9008 /* We can only change the mode of the shift if we can do arithmetic
9009 in the mode of the shift and INNER_MASK is no wider than the
9010 width of X's mode. */
9011 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9012 op_mode = xmode;
9014 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9016 if (xmode != op_mode || inner != XEXP (x, 0))
9018 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9019 xmode = op_mode;
9023 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9024 shift and AND produces only copies of the sign bit (C2 is one less
9025 than a power of two), we can do this with just a shift. */
9027 if (GET_CODE (x) == LSHIFTRT
9028 && CONST_INT_P (XEXP (x, 1))
9029 /* The shift puts one of the sign bit copies in the least significant
9030 bit. */
9031 && ((INTVAL (XEXP (x, 1))
9032 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9033 >= GET_MODE_PRECISION (xmode))
9034 && pow2p_hwi (mask + 1)
9035 /* Number of bits left after the shift must be more than the mask
9036 needs. */
9037 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9038 <= GET_MODE_PRECISION (xmode))
9039 /* Must be more sign bit copies than the mask needs. */
9040 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9041 >= exact_log2 (mask + 1)))
9043 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9044 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9045 gen_int_shift_amount (xmode, nbits));
9047 goto shiftrt;
9049 case ASHIFTRT:
9050 /* If we are just looking for the sign bit, we don't need this shift at
9051 all, even if it has a variable count. */
9052 if (val_signbit_p (xmode, mask))
9053 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9055 /* If this is a shift by a constant, get a mask that contains those bits
9056 that are not copies of the sign bit. We then have two cases: If
9057 MASK only includes those bits, this can be a logical shift, which may
9058 allow simplifications. If MASK is a single-bit field not within
9059 those bits, we are requesting a copy of the sign bit and hence can
9060 shift the sign bit to the appropriate location. */
9062 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9063 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9065 unsigned HOST_WIDE_INT nonzero;
9066 int i;
9068 /* If the considered data is wider than HOST_WIDE_INT, we can't
9069 represent a mask for all its bits in a single scalar.
9070 But we only care about the lower bits, so calculate these. */
9072 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9074 nonzero = HOST_WIDE_INT_M1U;
9076 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9077 is the number of bits a full-width mask would have set.
9078 We need only shift if these are fewer than nonzero can
9079 hold. If not, we must keep all bits set in nonzero. */
9081 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9082 < HOST_BITS_PER_WIDE_INT)
9083 nonzero >>= INTVAL (XEXP (x, 1))
9084 + HOST_BITS_PER_WIDE_INT
9085 - GET_MODE_PRECISION (xmode);
9087 else
9089 nonzero = GET_MODE_MASK (xmode);
9090 nonzero >>= INTVAL (XEXP (x, 1));
9093 if ((mask & ~nonzero) == 0)
9095 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9096 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9097 if (GET_CODE (x) != ASHIFTRT)
9098 return force_to_mode (x, mode, mask, next_select);
9101 else if ((i = exact_log2 (mask)) >= 0)
9103 x = simplify_shift_const
9104 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9105 GET_MODE_PRECISION (xmode) - 1 - i);
9107 if (GET_CODE (x) != ASHIFTRT)
9108 return force_to_mode (x, mode, mask, next_select);
9112 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9113 even if the shift count isn't a constant. */
9114 if (mask == 1)
9115 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9117 shiftrt:
9119 /* If this is a zero- or sign-extension operation that just affects bits
9120 we don't care about, remove it. Be sure the call above returned
9121 something that is still a shift. */
9123 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9124 && CONST_INT_P (XEXP (x, 1))
9125 && INTVAL (XEXP (x, 1)) >= 0
9126 && (INTVAL (XEXP (x, 1))
9127 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9128 && GET_CODE (XEXP (x, 0)) == ASHIFT
9129 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9130 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask, next_select);
9132 break;
9134 case ROTATE:
9135 case ROTATERT:
9136 /* If the shift count is constant and we can do computations
9137 in the mode of X, compute where the bits we care about are.
9138 Otherwise, we can't do anything. Don't change the mode of
9139 the shift or propagate MODE into the shift, though. */
9140 if (CONST_INT_P (XEXP (x, 1))
9141 && INTVAL (XEXP (x, 1)) >= 0)
9143 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9144 xmode, gen_int_mode (mask, xmode),
9145 XEXP (x, 1));
9146 if (temp && CONST_INT_P (temp))
9147 x = simplify_gen_binary (code, xmode,
9148 force_to_mode (XEXP (x, 0), xmode,
9149 INTVAL (temp), next_select),
9150 XEXP (x, 1));
9152 break;
9154 case NEG:
9155 /* If we just want the low-order bit, the NEG isn't needed since it
9156 won't change the low-order bit. */
9157 if (mask == 1)
9158 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9160 /* We need any bits less significant than the most significant bit in
9161 MASK since carries from those bits will affect the bits we are
9162 interested in. */
9163 mask = fuller_mask;
9164 goto unop;
9166 case NOT:
9167 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9168 same as the XOR case above. Ensure that the constant we form is not
9169 wider than the mode of X. */
9171 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9172 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9173 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9174 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9175 < GET_MODE_PRECISION (xmode))
9176 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9178 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9179 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9180 x = simplify_gen_binary (LSHIFTRT, xmode,
9181 temp, XEXP (XEXP (x, 0), 1));
9183 return force_to_mode (x, mode, mask, next_select);
9186 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9187 use the full mask inside the NOT. */
9188 mask = fuller_mask;
9190 unop:
9191 op0 = gen_lowpart_or_truncate (op_mode,
9192 force_to_mode (XEXP (x, 0), mode, mask,
9193 next_select));
9194 if (op_mode != xmode || op0 != XEXP (x, 0))
9196 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9197 xmode = op_mode;
9199 break;
9201 case NE:
9202 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9203 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9204 which is equal to STORE_FLAG_VALUE. */
9205 if ((mask & ~STORE_FLAG_VALUE) == 0
9206 && XEXP (x, 1) == const0_rtx
9207 && GET_MODE (XEXP (x, 0)) == mode
9208 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9209 && (nonzero_bits (XEXP (x, 0), mode)
9210 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9211 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9213 break;
9215 case IF_THEN_ELSE:
9216 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9217 written in a narrower mode. We play it safe and do not do so. */
9219 op0 = gen_lowpart_or_truncate (xmode,
9220 force_to_mode (XEXP (x, 1), mode,
9221 mask, next_select));
9222 op1 = gen_lowpart_or_truncate (xmode,
9223 force_to_mode (XEXP (x, 2), mode,
9224 mask, next_select));
9225 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9226 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9227 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9228 op0, op1);
9229 break;
9231 default:
9232 break;
9235 /* Ensure we return a value of the proper mode. */
9236 return gen_lowpart_or_truncate (mode, x);
9239 /* Return nonzero if X is an expression that has one of two values depending on
9240 whether some other value is zero or nonzero. In that case, we return the
9241 value that is being tested, *PTRUE is set to the value if the rtx being
9242 returned has a nonzero value, and *PFALSE is set to the other alternative.
9244 If we return zero, we set *PTRUE and *PFALSE to X. */
9246 static rtx
9247 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9249 machine_mode mode = GET_MODE (x);
9250 enum rtx_code code = GET_CODE (x);
9251 rtx cond0, cond1, true0, true1, false0, false1;
9252 unsigned HOST_WIDE_INT nz;
9253 scalar_int_mode int_mode;
9255 /* If we are comparing a value against zero, we are done. */
9256 if ((code == NE || code == EQ)
9257 && XEXP (x, 1) == const0_rtx)
9259 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9260 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9261 return XEXP (x, 0);
9264 /* If this is a unary operation whose operand has one of two values, apply
9265 our opcode to compute those values. */
9266 else if (UNARY_P (x)
9267 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9269 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9270 *pfalse = simplify_gen_unary (code, mode, false0,
9271 GET_MODE (XEXP (x, 0)));
9272 return cond0;
9275 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9276 make can't possibly match and would suppress other optimizations. */
9277 else if (code == COMPARE)
9280 /* If this is a binary operation, see if either side has only one of two
9281 values. If either one does or if both do and they are conditional on
9282 the same value, compute the new true and false values. */
9283 else if (BINARY_P (x))
9285 rtx op0 = XEXP (x, 0);
9286 rtx op1 = XEXP (x, 1);
9287 cond0 = if_then_else_cond (op0, &true0, &false0);
9288 cond1 = if_then_else_cond (op1, &true1, &false1);
9290 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9291 && (REG_P (op0) || REG_P (op1)))
9293 /* Try to enable a simplification by undoing work done by
9294 if_then_else_cond if it converted a REG into something more
9295 complex. */
9296 if (REG_P (op0))
9298 cond0 = 0;
9299 true0 = false0 = op0;
9301 else
9303 cond1 = 0;
9304 true1 = false1 = op1;
9308 if ((cond0 != 0 || cond1 != 0)
9309 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9311 /* If if_then_else_cond returned zero, then true/false are the
9312 same rtl. We must copy one of them to prevent invalid rtl
9313 sharing. */
9314 if (cond0 == 0)
9315 true0 = copy_rtx (true0);
9316 else if (cond1 == 0)
9317 true1 = copy_rtx (true1);
9319 if (COMPARISON_P (x))
9321 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9322 true0, true1);
9323 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9324 false0, false1);
9326 else
9328 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9329 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9332 return cond0 ? cond0 : cond1;
9335 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9336 operands is zero when the other is nonzero, and vice-versa,
9337 and STORE_FLAG_VALUE is 1 or -1. */
9339 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9340 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9341 || code == UMAX)
9342 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9344 rtx op0 = XEXP (XEXP (x, 0), 1);
9345 rtx op1 = XEXP (XEXP (x, 1), 1);
9347 cond0 = XEXP (XEXP (x, 0), 0);
9348 cond1 = XEXP (XEXP (x, 1), 0);
9350 if (COMPARISON_P (cond0)
9351 && COMPARISON_P (cond1)
9352 && SCALAR_INT_MODE_P (mode)
9353 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9354 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9355 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9356 || ((swap_condition (GET_CODE (cond0))
9357 == reversed_comparison_code (cond1, NULL))
9358 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9359 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9360 && ! side_effects_p (x))
9362 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9363 *pfalse = simplify_gen_binary (MULT, mode,
9364 (code == MINUS
9365 ? simplify_gen_unary (NEG, mode,
9366 op1, mode)
9367 : op1),
9368 const_true_rtx);
9369 return cond0;
9373 /* Similarly for MULT, AND and UMIN, except that for these the result
9374 is always zero. */
9375 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9376 && (code == MULT || code == AND || code == UMIN)
9377 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9379 cond0 = XEXP (XEXP (x, 0), 0);
9380 cond1 = XEXP (XEXP (x, 1), 0);
9382 if (COMPARISON_P (cond0)
9383 && COMPARISON_P (cond1)
9384 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9385 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9386 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9387 || ((swap_condition (GET_CODE (cond0))
9388 == reversed_comparison_code (cond1, NULL))
9389 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9390 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9391 && ! side_effects_p (x))
9393 *ptrue = *pfalse = const0_rtx;
9394 return cond0;
9399 else if (code == IF_THEN_ELSE)
9401 /* If we have IF_THEN_ELSE already, extract the condition and
9402 canonicalize it if it is NE or EQ. */
9403 cond0 = XEXP (x, 0);
9404 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9405 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9406 return XEXP (cond0, 0);
9407 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9409 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9410 return XEXP (cond0, 0);
9412 else
9413 return cond0;
9416 /* If X is a SUBREG, we can narrow both the true and false values
9417 if the inner expression, if there is a condition. */
9418 else if (code == SUBREG
9419 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9420 &false0)) != 0)
9422 true0 = simplify_gen_subreg (mode, true0,
9423 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9424 false0 = simplify_gen_subreg (mode, false0,
9425 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9426 if (true0 && false0)
9428 *ptrue = true0;
9429 *pfalse = false0;
9430 return cond0;
9434 /* If X is a constant, this isn't special and will cause confusions
9435 if we treat it as such. Likewise if it is equivalent to a constant. */
9436 else if (CONSTANT_P (x)
9437 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9440 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9441 will be least confusing to the rest of the compiler. */
9442 else if (mode == BImode)
9444 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9445 return x;
9448 /* If X is known to be either 0 or -1, those are the true and
9449 false values when testing X. */
9450 else if (x == constm1_rtx || x == const0_rtx
9451 || (is_a <scalar_int_mode> (mode, &int_mode)
9452 && (num_sign_bit_copies (x, int_mode)
9453 == GET_MODE_PRECISION (int_mode))))
9455 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9456 return x;
9459 /* Likewise for 0 or a single bit. */
9460 else if (HWI_COMPUTABLE_MODE_P (mode)
9461 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9463 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9464 return x;
9467 /* Otherwise fail; show no condition with true and false values the same. */
9468 *ptrue = *pfalse = x;
9469 return 0;
9472 /* Return the value of expression X given the fact that condition COND
9473 is known to be true when applied to REG as its first operand and VAL
9474 as its second. X is known to not be shared and so can be modified in
9475 place.
9477 We only handle the simplest cases, and specifically those cases that
9478 arise with IF_THEN_ELSE expressions. */
9480 static rtx
9481 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9483 enum rtx_code code = GET_CODE (x);
9484 const char *fmt;
9485 int i, j;
9487 if (side_effects_p (x))
9488 return x;
9490 /* If either operand of the condition is a floating point value,
9491 then we have to avoid collapsing an EQ comparison. */
9492 if (cond == EQ
9493 && rtx_equal_p (x, reg)
9494 && ! FLOAT_MODE_P (GET_MODE (x))
9495 && ! FLOAT_MODE_P (GET_MODE (val)))
9496 return val;
9498 if (cond == UNEQ && rtx_equal_p (x, reg))
9499 return val;
9501 /* If X is (abs REG) and we know something about REG's relationship
9502 with zero, we may be able to simplify this. */
9504 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9505 switch (cond)
9507 case GE: case GT: case EQ:
9508 return XEXP (x, 0);
9509 case LT: case LE:
9510 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9511 XEXP (x, 0),
9512 GET_MODE (XEXP (x, 0)));
9513 default:
9514 break;
9517 /* The only other cases we handle are MIN, MAX, and comparisons if the
9518 operands are the same as REG and VAL. */
9520 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9522 if (rtx_equal_p (XEXP (x, 0), val))
9524 std::swap (val, reg);
9525 cond = swap_condition (cond);
9528 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9530 if (COMPARISON_P (x))
9532 if (comparison_dominates_p (cond, code))
9533 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9535 code = reversed_comparison_code (x, NULL);
9536 if (code != UNKNOWN
9537 && comparison_dominates_p (cond, code))
9538 return CONST0_RTX (GET_MODE (x));
9539 else
9540 return x;
9542 else if (code == SMAX || code == SMIN
9543 || code == UMIN || code == UMAX)
9545 int unsignedp = (code == UMIN || code == UMAX);
9547 /* Do not reverse the condition when it is NE or EQ.
9548 This is because we cannot conclude anything about
9549 the value of 'SMAX (x, y)' when x is not equal to y,
9550 but we can when x equals y. */
9551 if ((code == SMAX || code == UMAX)
9552 && ! (cond == EQ || cond == NE))
9553 cond = reverse_condition (cond);
9555 switch (cond)
9557 case GE: case GT:
9558 return unsignedp ? x : XEXP (x, 1);
9559 case LE: case LT:
9560 return unsignedp ? x : XEXP (x, 0);
9561 case GEU: case GTU:
9562 return unsignedp ? XEXP (x, 1) : x;
9563 case LEU: case LTU:
9564 return unsignedp ? XEXP (x, 0) : x;
9565 default:
9566 break;
9571 else if (code == SUBREG)
9573 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9574 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9576 if (SUBREG_REG (x) != r)
9578 /* We must simplify subreg here, before we lose track of the
9579 original inner_mode. */
9580 new_rtx = simplify_subreg (GET_MODE (x), r,
9581 inner_mode, SUBREG_BYTE (x));
9582 if (new_rtx)
9583 return new_rtx;
9584 else
9585 SUBST (SUBREG_REG (x), r);
9588 return x;
9590 /* We don't have to handle SIGN_EXTEND here, because even in the
9591 case of replacing something with a modeless CONST_INT, a
9592 CONST_INT is already (supposed to be) a valid sign extension for
9593 its narrower mode, which implies it's already properly
9594 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9595 story is different. */
9596 else if (code == ZERO_EXTEND)
9598 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9599 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9601 if (XEXP (x, 0) != r)
9603 /* We must simplify the zero_extend here, before we lose
9604 track of the original inner_mode. */
9605 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9606 r, inner_mode);
9607 if (new_rtx)
9608 return new_rtx;
9609 else
9610 SUBST (XEXP (x, 0), r);
9613 return x;
9616 fmt = GET_RTX_FORMAT (code);
9617 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9619 if (fmt[i] == 'e')
9620 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9621 else if (fmt[i] == 'E')
9622 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9623 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9624 cond, reg, val));
9627 return x;
9630 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9631 assignment as a field assignment. */
9633 static bool
9634 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9636 if (widen_x && GET_MODE (x) != GET_MODE (y))
9638 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9639 return false;
9640 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9641 return false;
9642 x = adjust_address_nv (x, GET_MODE (y),
9643 byte_lowpart_offset (GET_MODE (y),
9644 GET_MODE (x)));
9647 if (x == y || rtx_equal_p (x, y))
9648 return true;
9650 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9651 return false;
9653 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9654 Note that all SUBREGs of MEM are paradoxical; otherwise they
9655 would have been rewritten. */
9656 if (MEM_P (x) && GET_CODE (y) == SUBREG
9657 && MEM_P (SUBREG_REG (y))
9658 && rtx_equal_p (SUBREG_REG (y),
9659 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9660 return true;
9662 if (MEM_P (y) && GET_CODE (x) == SUBREG
9663 && MEM_P (SUBREG_REG (x))
9664 && rtx_equal_p (SUBREG_REG (x),
9665 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9666 return true;
9668 /* We used to see if get_last_value of X and Y were the same but that's
9669 not correct. In one direction, we'll cause the assignment to have
9670 the wrong destination and in the case, we'll import a register into this
9671 insn that might have already have been dead. So fail if none of the
9672 above cases are true. */
9673 return false;
9676 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9677 Return that assignment if so.
9679 We only handle the most common cases. */
9681 static rtx
9682 make_field_assignment (rtx x)
9684 rtx dest = SET_DEST (x);
9685 rtx src = SET_SRC (x);
9686 rtx assign;
9687 rtx rhs, lhs;
9688 HOST_WIDE_INT c1;
9689 HOST_WIDE_INT pos;
9690 unsigned HOST_WIDE_INT len;
9691 rtx other;
9693 /* All the rules in this function are specific to scalar integers. */
9694 scalar_int_mode mode;
9695 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9696 return x;
9698 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9699 a clear of a one-bit field. We will have changed it to
9700 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9701 for a SUBREG. */
9703 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9704 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9705 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9706 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9708 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9709 1, true, true, false);
9710 if (assign != 0)
9711 return gen_rtx_SET (assign, const0_rtx);
9712 return x;
9715 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9716 && subreg_lowpart_p (XEXP (src, 0))
9717 && partial_subreg_p (XEXP (src, 0))
9718 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9719 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9720 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9721 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9723 assign = make_extraction (VOIDmode, dest, 0,
9724 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9725 1, true, true, false);
9726 if (assign != 0)
9727 return gen_rtx_SET (assign, const0_rtx);
9728 return x;
9731 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9732 one-bit field. */
9733 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9734 && XEXP (XEXP (src, 0), 0) == const1_rtx
9735 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9737 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9738 1, true, true, false);
9739 if (assign != 0)
9740 return gen_rtx_SET (assign, const1_rtx);
9741 return x;
9744 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9745 SRC is an AND with all bits of that field set, then we can discard
9746 the AND. */
9747 if (GET_CODE (dest) == ZERO_EXTRACT
9748 && CONST_INT_P (XEXP (dest, 1))
9749 && GET_CODE (src) == AND
9750 && CONST_INT_P (XEXP (src, 1)))
9752 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9753 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9754 unsigned HOST_WIDE_INT ze_mask;
9756 if (width >= HOST_BITS_PER_WIDE_INT)
9757 ze_mask = -1;
9758 else
9759 ze_mask = (HOST_WIDE_INT_1U << width) - 1;
9761 /* Complete overlap. We can remove the source AND. */
9762 if ((and_mask & ze_mask) == ze_mask)
9763 return gen_rtx_SET (dest, XEXP (src, 0));
9765 /* Partial overlap. We can reduce the source AND. */
9766 if ((and_mask & ze_mask) != and_mask)
9768 src = gen_rtx_AND (mode, XEXP (src, 0),
9769 gen_int_mode (and_mask & ze_mask, mode));
9770 return gen_rtx_SET (dest, src);
9774 /* The other case we handle is assignments into a constant-position
9775 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9776 a mask that has all one bits except for a group of zero bits and
9777 OTHER is known to have zeros where C1 has ones, this is such an
9778 assignment. Compute the position and length from C1. Shift OTHER
9779 to the appropriate position, force it to the required mode, and
9780 make the extraction. Check for the AND in both operands. */
9782 /* One or more SUBREGs might obscure the constant-position field
9783 assignment. The first one we are likely to encounter is an outer
9784 narrowing SUBREG, which we can just strip for the purposes of
9785 identifying the constant-field assignment. */
9786 scalar_int_mode src_mode = mode;
9787 if (GET_CODE (src) == SUBREG
9788 && subreg_lowpart_p (src)
9789 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9790 src = SUBREG_REG (src);
9792 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9793 return x;
9795 rhs = expand_compound_operation (XEXP (src, 0));
9796 lhs = expand_compound_operation (XEXP (src, 1));
9798 if (GET_CODE (rhs) == AND
9799 && CONST_INT_P (XEXP (rhs, 1))
9800 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9801 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9802 /* The second SUBREG that might get in the way is a paradoxical
9803 SUBREG around the first operand of the AND. We want to
9804 pretend the operand is as wide as the destination here. We
9805 do this by adjusting the MEM to wider mode for the sole
9806 purpose of the call to rtx_equal_for_field_assignment_p. Also
9807 note this trick only works for MEMs. */
9808 else if (GET_CODE (rhs) == AND
9809 && paradoxical_subreg_p (XEXP (rhs, 0))
9810 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9811 && CONST_INT_P (XEXP (rhs, 1))
9812 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9813 dest, true))
9814 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9815 else if (GET_CODE (lhs) == AND
9816 && CONST_INT_P (XEXP (lhs, 1))
9817 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9818 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9819 /* The second SUBREG that might get in the way is a paradoxical
9820 SUBREG around the first operand of the AND. We want to
9821 pretend the operand is as wide as the destination here. We
9822 do this by adjusting the MEM to wider mode for the sole
9823 purpose of the call to rtx_equal_for_field_assignment_p. Also
9824 note this trick only works for MEMs. */
9825 else if (GET_CODE (lhs) == AND
9826 && paradoxical_subreg_p (XEXP (lhs, 0))
9827 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9828 && CONST_INT_P (XEXP (lhs, 1))
9829 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9830 dest, true))
9831 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9832 else
9833 return x;
9835 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9836 if (pos < 0
9837 || pos + len > GET_MODE_PRECISION (mode)
9838 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9839 || (c1 & nonzero_bits (other, mode)) != 0)
9840 return x;
9842 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len,
9843 true, true, false);
9844 if (assign == 0)
9845 return x;
9847 /* The mode to use for the source is the mode of the assignment, or of
9848 what is inside a possible STRICT_LOW_PART. */
9849 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9850 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9852 /* Shift OTHER right POS places and make it the source, restricting it
9853 to the proper length and mode. */
9855 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9856 src_mode, other, pos),
9857 dest);
9858 src = force_to_mode (src, new_mode,
9859 len >= HOST_BITS_PER_WIDE_INT
9860 ? HOST_WIDE_INT_M1U
9861 : (HOST_WIDE_INT_1U << len) - 1, false);
9863 /* If SRC is masked by an AND that does not make a difference in
9864 the value being stored, strip it. */
9865 if (GET_CODE (assign) == ZERO_EXTRACT
9866 && CONST_INT_P (XEXP (assign, 1))
9867 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9868 && GET_CODE (src) == AND
9869 && CONST_INT_P (XEXP (src, 1))
9870 && UINTVAL (XEXP (src, 1))
9871 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9872 src = XEXP (src, 0);
9874 return gen_rtx_SET (assign, src);
9877 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9878 if so. */
9880 static rtx
9881 apply_distributive_law (rtx x)
9883 enum rtx_code code = GET_CODE (x);
9884 enum rtx_code inner_code;
9885 rtx lhs, rhs, other;
9886 rtx tem;
9888 /* Distributivity is not true for floating point as it can change the
9889 value. So we don't do it unless -funsafe-math-optimizations. */
9890 if (FLOAT_MODE_P (GET_MODE (x))
9891 && ! flag_unsafe_math_optimizations)
9892 return x;
9894 /* The outer operation can only be one of the following: */
9895 if (code != IOR && code != AND && code != XOR
9896 && code != PLUS && code != MINUS)
9897 return x;
9899 lhs = XEXP (x, 0);
9900 rhs = XEXP (x, 1);
9902 /* If either operand is a primitive we can't do anything, so get out
9903 fast. */
9904 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9905 return x;
9907 lhs = expand_compound_operation (lhs);
9908 rhs = expand_compound_operation (rhs);
9909 inner_code = GET_CODE (lhs);
9910 if (inner_code != GET_CODE (rhs))
9911 return x;
9913 /* See if the inner and outer operations distribute. */
9914 switch (inner_code)
9916 case LSHIFTRT:
9917 case ASHIFTRT:
9918 case AND:
9919 case IOR:
9920 /* These all distribute except over PLUS. */
9921 if (code == PLUS || code == MINUS)
9922 return x;
9923 break;
9925 case MULT:
9926 if (code != PLUS && code != MINUS)
9927 return x;
9928 break;
9930 case ASHIFT:
9931 /* This is also a multiply, so it distributes over everything. */
9932 break;
9934 /* This used to handle SUBREG, but this turned out to be counter-
9935 productive, since (subreg (op ...)) usually is not handled by
9936 insn patterns, and this "optimization" therefore transformed
9937 recognizable patterns into unrecognizable ones. Therefore the
9938 SUBREG case was removed from here.
9940 It is possible that distributing SUBREG over arithmetic operations
9941 leads to an intermediate result than can then be optimized further,
9942 e.g. by moving the outer SUBREG to the other side of a SET as done
9943 in simplify_set. This seems to have been the original intent of
9944 handling SUBREGs here.
9946 However, with current GCC this does not appear to actually happen,
9947 at least on major platforms. If some case is found where removing
9948 the SUBREG case here prevents follow-on optimizations, distributing
9949 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9951 default:
9952 return x;
9955 /* Set LHS and RHS to the inner operands (A and B in the example
9956 above) and set OTHER to the common operand (C in the example).
9957 There is only one way to do this unless the inner operation is
9958 commutative. */
9959 if (COMMUTATIVE_ARITH_P (lhs)
9960 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9961 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9962 else if (COMMUTATIVE_ARITH_P (lhs)
9963 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9964 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9965 else if (COMMUTATIVE_ARITH_P (lhs)
9966 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9967 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9968 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9969 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9970 else
9971 return x;
9973 /* Form the new inner operation, seeing if it simplifies first. */
9974 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9976 /* There is one exception to the general way of distributing:
9977 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9978 if (code == XOR && inner_code == IOR)
9980 inner_code = AND;
9981 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9984 /* We may be able to continuing distributing the result, so call
9985 ourselves recursively on the inner operation before forming the
9986 outer operation, which we return. */
9987 return simplify_gen_binary (inner_code, GET_MODE (x),
9988 apply_distributive_law (tem), other);
9991 /* See if X is of the form (* (+ A B) C), and if so convert to
9992 (+ (* A C) (* B C)) and try to simplify.
9994 Most of the time, this results in no change. However, if some of
9995 the operands are the same or inverses of each other, simplifications
9996 will result.
9998 For example, (and (ior A B) (not B)) can occur as the result of
9999 expanding a bit field assignment. When we apply the distributive
10000 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10001 which then simplifies to (and (A (not B))).
10003 Note that no checks happen on the validity of applying the inverse
10004 distributive law. This is pointless since we can do it in the
10005 few places where this routine is called.
10007 N is the index of the term that is decomposed (the arithmetic operation,
10008 i.e. (+ A B) in the first example above). !N is the index of the term that
10009 is distributed, i.e. of C in the first example above. */
10010 static rtx
10011 distribute_and_simplify_rtx (rtx x, int n)
10013 machine_mode mode;
10014 enum rtx_code outer_code, inner_code;
10015 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10017 /* Distributivity is not true for floating point as it can change the
10018 value. So we don't do it unless -funsafe-math-optimizations. */
10019 if (FLOAT_MODE_P (GET_MODE (x))
10020 && ! flag_unsafe_math_optimizations)
10021 return NULL_RTX;
10023 decomposed = XEXP (x, n);
10024 if (!ARITHMETIC_P (decomposed))
10025 return NULL_RTX;
10027 mode = GET_MODE (x);
10028 outer_code = GET_CODE (x);
10029 distributed = XEXP (x, !n);
10031 inner_code = GET_CODE (decomposed);
10032 inner_op0 = XEXP (decomposed, 0);
10033 inner_op1 = XEXP (decomposed, 1);
10035 /* Special case (and (xor B C) (not A)), which is equivalent to
10036 (xor (ior A B) (ior A C)) */
10037 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10039 distributed = XEXP (distributed, 0);
10040 outer_code = IOR;
10043 if (n == 0)
10045 /* Distribute the second term. */
10046 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10047 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10049 else
10051 /* Distribute the first term. */
10052 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10053 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10056 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10057 new_op0, new_op1));
10058 if (GET_CODE (tmp) != outer_code
10059 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10060 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10061 return tmp;
10063 return NULL_RTX;
10066 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10067 in MODE. Return an equivalent form, if different from (and VAROP
10068 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10070 static rtx
10071 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10072 unsigned HOST_WIDE_INT constop)
10074 unsigned HOST_WIDE_INT nonzero;
10075 unsigned HOST_WIDE_INT orig_constop;
10076 rtx orig_varop;
10077 int i;
10079 orig_varop = varop;
10080 orig_constop = constop;
10081 if (GET_CODE (varop) == CLOBBER)
10082 return NULL_RTX;
10084 /* Simplify VAROP knowing that we will be only looking at some of the
10085 bits in it.
10087 Note by passing in CONSTOP, we guarantee that the bits not set in
10088 CONSTOP are not significant and will never be examined. We must
10089 ensure that is the case by explicitly masking out those bits
10090 before returning. */
10091 varop = force_to_mode (varop, mode, constop, false);
10093 /* If VAROP is a CLOBBER, we will fail so return it. */
10094 if (GET_CODE (varop) == CLOBBER)
10095 return varop;
10097 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10098 to VAROP and return the new constant. */
10099 if (CONST_INT_P (varop))
10100 return gen_int_mode (INTVAL (varop) & constop, mode);
10102 /* See what bits may be nonzero in VAROP. Unlike the general case of
10103 a call to nonzero_bits, here we don't care about bits outside
10104 MODE unless WORD_REGISTER_OPERATIONS is true. */
10106 scalar_int_mode tmode = mode;
10107 if (WORD_REGISTER_OPERATIONS && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
10108 tmode = word_mode;
10109 nonzero = nonzero_bits (varop, tmode) & GET_MODE_MASK (tmode);
10111 /* Turn off all bits in the constant that are known to already be zero.
10112 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10113 which is tested below. */
10115 constop &= nonzero;
10117 /* If we don't have any bits left, return zero. */
10118 if (constop == 0 && !side_effects_p (varop))
10119 return const0_rtx;
10121 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10122 a power of two, we can replace this with an ASHIFT. */
10123 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), tmode) == 1
10124 && (i = exact_log2 (constop)) >= 0)
10125 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10127 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10128 or XOR, then try to apply the distributive law. This may eliminate
10129 operations if either branch can be simplified because of the AND.
10130 It may also make some cases more complex, but those cases probably
10131 won't match a pattern either with or without this. */
10133 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10135 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10136 return
10137 gen_lowpart
10138 (mode,
10139 apply_distributive_law
10140 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10141 simplify_and_const_int (NULL_RTX, varop_mode,
10142 XEXP (varop, 0),
10143 constop),
10144 simplify_and_const_int (NULL_RTX, varop_mode,
10145 XEXP (varop, 1),
10146 constop))));
10149 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10150 the AND and see if one of the operands simplifies to zero. If so, we
10151 may eliminate it. */
10153 if (GET_CODE (varop) == PLUS
10154 && pow2p_hwi (constop + 1))
10156 rtx o0, o1;
10158 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10159 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10160 if (o0 == const0_rtx)
10161 return o1;
10162 if (o1 == const0_rtx)
10163 return o0;
10166 /* Make a SUBREG if necessary. If we can't make it, fail. */
10167 varop = gen_lowpart (mode, varop);
10168 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10169 return NULL_RTX;
10171 /* If we are only masking insignificant bits, return VAROP. */
10172 if (constop == nonzero)
10173 return varop;
10175 if (varop == orig_varop && constop == orig_constop)
10176 return NULL_RTX;
10178 /* Otherwise, return an AND. */
10179 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10183 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10184 in MODE.
10186 Return an equivalent form, if different from X. Otherwise, return X. If
10187 X is zero, we are to always construct the equivalent form. */
10189 static rtx
10190 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10191 unsigned HOST_WIDE_INT constop)
10193 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10194 if (tem)
10195 return tem;
10197 if (!x)
10198 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10199 gen_int_mode (constop, mode));
10200 if (GET_MODE (x) != mode)
10201 x = gen_lowpart (mode, x);
10202 return x;
10205 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10206 We don't care about bits outside of those defined in MODE.
10207 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10209 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10210 a shift, AND, or zero_extract, we can do better. */
10212 static rtx
10213 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10214 scalar_int_mode mode,
10215 unsigned HOST_WIDE_INT *nonzero)
10217 rtx tem;
10218 reg_stat_type *rsp;
10220 /* If X is a register whose nonzero bits value is current, use it.
10221 Otherwise, if X is a register whose value we can find, use that
10222 value. Otherwise, use the previously-computed global nonzero bits
10223 for this register. */
10225 rsp = &reg_stat[REGNO (x)];
10226 if (rsp->last_set_value != 0
10227 && (rsp->last_set_mode == mode
10228 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10229 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10230 && GET_MODE_CLASS (mode) == MODE_INT))
10231 && ((rsp->last_set_label >= label_tick_ebb_start
10232 && rsp->last_set_label < label_tick)
10233 || (rsp->last_set_label == label_tick
10234 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10235 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10236 && REGNO (x) < reg_n_sets_max
10237 && REG_N_SETS (REGNO (x)) == 1
10238 && !REGNO_REG_SET_P
10239 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10240 REGNO (x)))))
10242 /* Note that, even if the precision of last_set_mode is lower than that
10243 of mode, record_value_for_reg invoked nonzero_bits on the register
10244 with nonzero_bits_mode (because last_set_mode is necessarily integral
10245 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10246 are all valid, hence in mode too since nonzero_bits_mode is defined
10247 to the largest HWI_COMPUTABLE_MODE_P mode. */
10248 *nonzero &= rsp->last_set_nonzero_bits;
10249 return NULL;
10252 tem = get_last_value (x);
10253 if (tem)
10255 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10256 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10258 return tem;
10261 if (nonzero_sign_valid && rsp->nonzero_bits)
10263 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10265 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10266 /* We don't know anything about the upper bits. */
10267 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10269 *nonzero &= mask;
10272 return NULL;
10275 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10276 end of X that are known to be equal to the sign bit. X will be used
10277 in mode MODE; the returned value will always be between 1 and the
10278 number of bits in MODE. */
10280 static rtx
10281 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10282 scalar_int_mode mode,
10283 unsigned int *result)
10285 rtx tem;
10286 reg_stat_type *rsp;
10288 rsp = &reg_stat[REGNO (x)];
10289 if (rsp->last_set_value != 0
10290 && rsp->last_set_mode == mode
10291 && ((rsp->last_set_label >= label_tick_ebb_start
10292 && rsp->last_set_label < label_tick)
10293 || (rsp->last_set_label == label_tick
10294 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10295 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10296 && REGNO (x) < reg_n_sets_max
10297 && REG_N_SETS (REGNO (x)) == 1
10298 && !REGNO_REG_SET_P
10299 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10300 REGNO (x)))))
10302 *result = rsp->last_set_sign_bit_copies;
10303 return NULL;
10306 tem = get_last_value (x);
10307 if (tem != 0)
10308 return tem;
10310 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10311 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10312 *result = rsp->sign_bit_copies;
10314 return NULL;
10317 /* Return the number of "extended" bits there are in X, when interpreted
10318 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10319 unsigned quantities, this is the number of high-order zero bits.
10320 For signed quantities, this is the number of copies of the sign bit
10321 minus 1. In both case, this function returns the number of "spare"
10322 bits. For example, if two quantities for which this function returns
10323 at least 1 are added, the addition is known not to overflow.
10325 This function will always return 0 unless called during combine, which
10326 implies that it must be called from a define_split. */
10328 unsigned int
10329 extended_count (const_rtx x, machine_mode mode, bool unsignedp)
10331 if (nonzero_sign_valid == 0)
10332 return 0;
10334 scalar_int_mode int_mode;
10335 return (unsignedp
10336 ? (is_a <scalar_int_mode> (mode, &int_mode)
10337 && HWI_COMPUTABLE_MODE_P (int_mode)
10338 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10339 - floor_log2 (nonzero_bits (x, int_mode)))
10340 : 0)
10341 : num_sign_bit_copies (x, mode) - 1);
10344 /* This function is called from `simplify_shift_const' to merge two
10345 outer operations. Specifically, we have already found that we need
10346 to perform operation *POP0 with constant *PCONST0 at the outermost
10347 position. We would now like to also perform OP1 with constant CONST1
10348 (with *POP0 being done last).
10350 Return true if we can do the operation and update *POP0 and *PCONST0 with
10351 the resulting operation. *PCOMP_P is set to true if we would need to
10352 complement the innermost operand, otherwise it is unchanged.
10354 MODE is the mode in which the operation will be done. No bits outside
10355 the width of this mode matter. It is assumed that the width of this mode
10356 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10358 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10359 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10360 result is simply *PCONST0.
10362 If the resulting operation cannot be expressed as one operation, we
10363 return false and do not change *POP0, *PCONST0, and *PCOMP_P. */
10365 static bool
10366 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0,
10367 enum rtx_code op1, HOST_WIDE_INT const1,
10368 machine_mode mode, bool *pcomp_p)
10370 enum rtx_code op0 = *pop0;
10371 HOST_WIDE_INT const0 = *pconst0;
10373 const0 &= GET_MODE_MASK (mode);
10374 const1 &= GET_MODE_MASK (mode);
10376 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10377 if (op0 == AND)
10378 const1 &= const0;
10380 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10381 if OP0 is SET. */
10383 if (op1 == UNKNOWN || op0 == SET)
10384 return true;
10386 else if (op0 == UNKNOWN)
10387 op0 = op1, const0 = const1;
10389 else if (op0 == op1)
10391 switch (op0)
10393 case AND:
10394 const0 &= const1;
10395 break;
10396 case IOR:
10397 const0 |= const1;
10398 break;
10399 case XOR:
10400 const0 ^= const1;
10401 break;
10402 case PLUS:
10403 const0 += const1;
10404 break;
10405 case NEG:
10406 op0 = UNKNOWN;
10407 break;
10408 default:
10409 break;
10413 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10414 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10415 return false;
10417 /* If the two constants aren't the same, we can't do anything. The
10418 remaining six cases can all be done. */
10419 else if (const0 != const1)
10420 return false;
10422 else
10423 switch (op0)
10425 case IOR:
10426 if (op1 == AND)
10427 /* (a & b) | b == b */
10428 op0 = SET;
10429 else /* op1 == XOR */
10430 /* (a ^ b) | b == a | b */
10432 break;
10434 case XOR:
10435 if (op1 == AND)
10436 /* (a & b) ^ b == (~a) & b */
10437 op0 = AND, *pcomp_p = true;
10438 else /* op1 == IOR */
10439 /* (a | b) ^ b == a & ~b */
10440 op0 = AND, const0 = ~const0;
10441 break;
10443 case AND:
10444 if (op1 == IOR)
10445 /* (a | b) & b == b */
10446 op0 = SET;
10447 else /* op1 == XOR */
10448 /* (a ^ b) & b) == (~a) & b */
10449 *pcomp_p = true;
10450 break;
10451 default:
10452 break;
10455 /* Check for NO-OP cases. */
10456 const0 &= GET_MODE_MASK (mode);
10457 if (const0 == 0
10458 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10459 op0 = UNKNOWN;
10460 else if (const0 == 0 && op0 == AND)
10461 op0 = SET;
10462 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10463 && op0 == AND)
10464 op0 = UNKNOWN;
10466 *pop0 = op0;
10468 /* ??? Slightly redundant with the above mask, but not entirely.
10469 Moving this above means we'd have to sign-extend the mode mask
10470 for the final test. */
10471 if (op0 != UNKNOWN && op0 != NEG)
10472 *pconst0 = trunc_int_for_mode (const0, mode);
10474 return true;
10477 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10478 the shift in. The original shift operation CODE is performed on OP in
10479 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10480 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10481 result of the shift is subject to operation OUTER_CODE with operand
10482 OUTER_CONST. */
10484 static scalar_int_mode
10485 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10486 scalar_int_mode orig_mode, scalar_int_mode mode,
10487 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10489 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10491 /* In general we can't perform in wider mode for right shift and rotate. */
10492 switch (code)
10494 case ASHIFTRT:
10495 /* We can still widen if the bits brought in from the left are identical
10496 to the sign bit of ORIG_MODE. */
10497 if (num_sign_bit_copies (op, mode)
10498 > (unsigned) (GET_MODE_PRECISION (mode)
10499 - GET_MODE_PRECISION (orig_mode)))
10500 return mode;
10501 return orig_mode;
10503 case LSHIFTRT:
10504 /* Similarly here but with zero bits. */
10505 if (HWI_COMPUTABLE_MODE_P (mode)
10506 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10507 return mode;
10509 /* We can also widen if the bits brought in will be masked off. This
10510 operation is performed in ORIG_MODE. */
10511 if (outer_code == AND)
10513 int care_bits = low_bitmask_len (orig_mode, outer_const);
10515 if (care_bits >= 0
10516 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10517 return mode;
10519 /* fall through */
10521 case ROTATE:
10522 return orig_mode;
10524 case ROTATERT:
10525 gcc_unreachable ();
10527 default:
10528 return mode;
10532 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10533 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10534 if we cannot simplify it. Otherwise, return a simplified value.
10536 The shift is normally computed in the widest mode we find in VAROP, as
10537 long as it isn't a different number of words than RESULT_MODE. Exceptions
10538 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10540 static rtx
10541 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10542 rtx varop, int orig_count)
10544 enum rtx_code orig_code = code;
10545 rtx orig_varop = varop;
10546 int count, log2;
10547 machine_mode mode = result_mode;
10548 machine_mode shift_mode;
10549 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10550 /* We form (outer_op (code varop count) (outer_const)). */
10551 enum rtx_code outer_op = UNKNOWN;
10552 HOST_WIDE_INT outer_const = 0;
10553 bool complement_p = false;
10554 rtx new_rtx, x;
10556 /* Make sure and truncate the "natural" shift on the way in. We don't
10557 want to do this inside the loop as it makes it more difficult to
10558 combine shifts. */
10559 if (SHIFT_COUNT_TRUNCATED)
10560 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10562 /* If we were given an invalid count, don't do anything except exactly
10563 what was requested. */
10565 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10566 return NULL_RTX;
10568 count = orig_count;
10570 /* Unless one of the branches of the `if' in this loop does a `continue',
10571 we will `break' the loop after the `if'. */
10573 while (count != 0)
10575 /* If we have an operand of (clobber (const_int 0)), fail. */
10576 if (GET_CODE (varop) == CLOBBER)
10577 return NULL_RTX;
10579 /* Convert ROTATERT to ROTATE. */
10580 if (code == ROTATERT)
10582 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10583 code = ROTATE;
10584 count = bitsize - count;
10587 shift_mode = result_mode;
10588 if (shift_mode != mode)
10590 /* We only change the modes of scalar shifts. */
10591 int_mode = as_a <scalar_int_mode> (mode);
10592 int_result_mode = as_a <scalar_int_mode> (result_mode);
10593 shift_mode = try_widen_shift_mode (code, varop, count,
10594 int_result_mode, int_mode,
10595 outer_op, outer_const);
10598 scalar_int_mode shift_unit_mode
10599 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10601 /* Handle cases where the count is greater than the size of the mode
10602 minus 1. For ASHIFT, use the size minus one as the count (this can
10603 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10604 take the count modulo the size. For other shifts, the result is
10605 zero.
10607 Since these shifts are being produced by the compiler by combining
10608 multiple operations, each of which are defined, we know what the
10609 result is supposed to be. */
10611 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10613 if (code == ASHIFTRT)
10614 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10615 else if (code == ROTATE || code == ROTATERT)
10616 count %= GET_MODE_PRECISION (shift_unit_mode);
10617 else
10619 /* We can't simply return zero because there may be an
10620 outer op. */
10621 varop = const0_rtx;
10622 count = 0;
10623 break;
10627 /* If we discovered we had to complement VAROP, leave. Making a NOT
10628 here would cause an infinite loop. */
10629 if (complement_p)
10630 break;
10632 if (shift_mode == shift_unit_mode)
10634 /* An arithmetic right shift of a quantity known to be -1 or 0
10635 is a no-op. */
10636 if (code == ASHIFTRT
10637 && (num_sign_bit_copies (varop, shift_unit_mode)
10638 == GET_MODE_PRECISION (shift_unit_mode)))
10640 count = 0;
10641 break;
10644 /* If we are doing an arithmetic right shift and discarding all but
10645 the sign bit copies, this is equivalent to doing a shift by the
10646 bitsize minus one. Convert it into that shift because it will
10647 often allow other simplifications. */
10649 if (code == ASHIFTRT
10650 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10651 >= GET_MODE_PRECISION (shift_unit_mode)))
10652 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10654 /* We simplify the tests below and elsewhere by converting
10655 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10656 `make_compound_operation' will convert it to an ASHIFTRT for
10657 those machines (such as VAX) that don't have an LSHIFTRT. */
10658 if (code == ASHIFTRT
10659 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10660 && val_signbit_known_clear_p (shift_unit_mode,
10661 nonzero_bits (varop,
10662 shift_unit_mode)))
10663 code = LSHIFTRT;
10665 if (((code == LSHIFTRT
10666 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10667 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10668 || (code == ASHIFT
10669 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10670 && !((nonzero_bits (varop, shift_unit_mode) << count)
10671 & GET_MODE_MASK (shift_unit_mode))))
10672 && !side_effects_p (varop))
10673 varop = const0_rtx;
10676 switch (GET_CODE (varop))
10678 case SIGN_EXTEND:
10679 case ZERO_EXTEND:
10680 case SIGN_EXTRACT:
10681 case ZERO_EXTRACT:
10682 new_rtx = expand_compound_operation (varop);
10683 if (new_rtx != varop)
10685 varop = new_rtx;
10686 continue;
10688 break;
10690 case MEM:
10691 /* The following rules apply only to scalars. */
10692 if (shift_mode != shift_unit_mode)
10693 break;
10694 int_mode = as_a <scalar_int_mode> (mode);
10696 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10697 minus the width of a smaller mode, we can do this with a
10698 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10699 if ((code == ASHIFTRT || code == LSHIFTRT)
10700 && ! mode_dependent_address_p (XEXP (varop, 0),
10701 MEM_ADDR_SPACE (varop))
10702 && ! MEM_VOLATILE_P (varop)
10703 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10704 .exists (&tmode)))
10706 new_rtx = adjust_address_nv (varop, tmode,
10707 BYTES_BIG_ENDIAN ? 0
10708 : count / BITS_PER_UNIT);
10710 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10711 : ZERO_EXTEND, int_mode, new_rtx);
10712 count = 0;
10713 continue;
10715 break;
10717 case SUBREG:
10718 /* The following rules apply only to scalars. */
10719 if (shift_mode != shift_unit_mode)
10720 break;
10721 int_mode = as_a <scalar_int_mode> (mode);
10722 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10724 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10725 the same number of words as what we've seen so far. Then store
10726 the widest mode in MODE. */
10727 if (subreg_lowpart_p (varop)
10728 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10729 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10730 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10731 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10732 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10734 varop = SUBREG_REG (varop);
10735 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10736 mode = inner_mode;
10737 continue;
10739 break;
10741 case MULT:
10742 /* Some machines use MULT instead of ASHIFT because MULT
10743 is cheaper. But it is still better on those machines to
10744 merge two shifts into one. */
10745 if (CONST_INT_P (XEXP (varop, 1))
10746 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10748 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10749 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10750 XEXP (varop, 0), log2_rtx);
10751 continue;
10753 break;
10755 case UDIV:
10756 /* Similar, for when divides are cheaper. */
10757 if (CONST_INT_P (XEXP (varop, 1))
10758 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10760 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10761 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10762 XEXP (varop, 0), log2_rtx);
10763 continue;
10765 break;
10767 case ASHIFTRT:
10768 /* If we are extracting just the sign bit of an arithmetic
10769 right shift, that shift is not needed. However, the sign
10770 bit of a wider mode may be different from what would be
10771 interpreted as the sign bit in a narrower mode, so, if
10772 the result is narrower, don't discard the shift. */
10773 if (code == LSHIFTRT
10774 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10775 && (GET_MODE_UNIT_BITSIZE (result_mode)
10776 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10778 varop = XEXP (varop, 0);
10779 continue;
10782 /* fall through */
10784 case LSHIFTRT:
10785 case ASHIFT:
10786 case ROTATE:
10787 /* The following rules apply only to scalars. */
10788 if (shift_mode != shift_unit_mode)
10789 break;
10790 int_mode = as_a <scalar_int_mode> (mode);
10791 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10792 int_result_mode = as_a <scalar_int_mode> (result_mode);
10794 /* Here we have two nested shifts. The result is usually the
10795 AND of a new shift with a mask. We compute the result below. */
10796 if (CONST_INT_P (XEXP (varop, 1))
10797 && INTVAL (XEXP (varop, 1)) >= 0
10798 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10799 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10800 && HWI_COMPUTABLE_MODE_P (int_mode))
10802 enum rtx_code first_code = GET_CODE (varop);
10803 unsigned int first_count = INTVAL (XEXP (varop, 1));
10804 unsigned HOST_WIDE_INT mask;
10805 rtx mask_rtx;
10807 /* We have one common special case. We can't do any merging if
10808 the inner code is an ASHIFTRT of a smaller mode. However, if
10809 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10810 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10811 we can convert it to
10812 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10813 This simplifies certain SIGN_EXTEND operations. */
10814 if (code == ASHIFT && first_code == ASHIFTRT
10815 && count == (GET_MODE_PRECISION (int_result_mode)
10816 - GET_MODE_PRECISION (int_varop_mode)))
10818 /* C3 has the low-order C1 bits zero. */
10820 mask = GET_MODE_MASK (int_mode)
10821 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10823 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10824 XEXP (varop, 0), mask);
10825 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10826 int_result_mode, varop, count);
10827 count = first_count;
10828 code = ASHIFTRT;
10829 continue;
10832 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10833 than C1 high-order bits equal to the sign bit, we can convert
10834 this to either an ASHIFT or an ASHIFTRT depending on the
10835 two counts.
10837 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10839 if (code == ASHIFTRT && first_code == ASHIFT
10840 && int_varop_mode == shift_unit_mode
10841 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10842 > first_count))
10844 varop = XEXP (varop, 0);
10845 count -= first_count;
10846 if (count < 0)
10848 count = -count;
10849 code = ASHIFT;
10852 continue;
10855 /* There are some cases we can't do. If CODE is ASHIFTRT,
10856 we can only do this if FIRST_CODE is also ASHIFTRT.
10858 We can't do the case when CODE is ROTATE and FIRST_CODE is
10859 ASHIFTRT.
10861 If the mode of this shift is not the mode of the outer shift,
10862 we can't do this if either shift is a right shift or ROTATE.
10864 Finally, we can't do any of these if the mode is too wide
10865 unless the codes are the same.
10867 Handle the case where the shift codes are the same
10868 first. */
10870 if (code == first_code)
10872 if (int_varop_mode != int_result_mode
10873 && (code == ASHIFTRT || code == LSHIFTRT
10874 || code == ROTATE))
10875 break;
10877 count += first_count;
10878 varop = XEXP (varop, 0);
10879 continue;
10882 if (code == ASHIFTRT
10883 || (code == ROTATE && first_code == ASHIFTRT)
10884 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10885 || (int_varop_mode != int_result_mode
10886 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10887 || first_code == ROTATE
10888 || code == ROTATE)))
10889 break;
10891 /* To compute the mask to apply after the shift, shift the
10892 nonzero bits of the inner shift the same way the
10893 outer shift will. */
10895 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10896 int_result_mode);
10897 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10898 mask_rtx
10899 = simplify_const_binary_operation (code, int_result_mode,
10900 mask_rtx, count_rtx);
10902 /* Give up if we can't compute an outer operation to use. */
10903 if (mask_rtx == 0
10904 || !CONST_INT_P (mask_rtx)
10905 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10906 INTVAL (mask_rtx),
10907 int_result_mode, &complement_p))
10908 break;
10910 /* If the shifts are in the same direction, we add the
10911 counts. Otherwise, we subtract them. */
10912 if ((code == ASHIFTRT || code == LSHIFTRT)
10913 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10914 count += first_count;
10915 else
10916 count -= first_count;
10918 /* If COUNT is positive, the new shift is usually CODE,
10919 except for the two exceptions below, in which case it is
10920 FIRST_CODE. If the count is negative, FIRST_CODE should
10921 always be used */
10922 if (count > 0
10923 && ((first_code == ROTATE && code == ASHIFT)
10924 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10925 code = first_code;
10926 else if (count < 0)
10927 code = first_code, count = -count;
10929 varop = XEXP (varop, 0);
10930 continue;
10933 /* If we have (A << B << C) for any shift, we can convert this to
10934 (A << C << B). This wins if A is a constant. Only try this if
10935 B is not a constant. */
10937 else if (GET_CODE (varop) == code
10938 && CONST_INT_P (XEXP (varop, 0))
10939 && !CONST_INT_P (XEXP (varop, 1)))
10941 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10942 sure the result will be masked. See PR70222. */
10943 if (code == LSHIFTRT
10944 && int_mode != int_result_mode
10945 && !merge_outer_ops (&outer_op, &outer_const, AND,
10946 GET_MODE_MASK (int_result_mode)
10947 >> orig_count, int_result_mode,
10948 &complement_p))
10949 break;
10950 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10951 up outer sign extension (often left and right shift) is
10952 hardly more efficient than the original. See PR70429.
10953 Similarly punt for rotates with different modes.
10954 See PR97386. */
10955 if ((code == ASHIFTRT || code == ROTATE)
10956 && int_mode != int_result_mode)
10957 break;
10959 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10960 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10961 XEXP (varop, 0),
10962 count_rtx);
10963 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10964 count = 0;
10965 continue;
10967 break;
10969 case NOT:
10970 /* The following rules apply only to scalars. */
10971 if (shift_mode != shift_unit_mode)
10972 break;
10974 /* Make this fit the case below. */
10975 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10976 continue;
10978 case IOR:
10979 case AND:
10980 case XOR:
10981 /* The following rules apply only to scalars. */
10982 if (shift_mode != shift_unit_mode)
10983 break;
10984 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10985 int_result_mode = as_a <scalar_int_mode> (result_mode);
10987 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10988 with C the size of VAROP - 1 and the shift is logical if
10989 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10990 we have an (le X 0) operation. If we have an arithmetic shift
10991 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10992 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10994 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10995 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10996 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10997 && (code == LSHIFTRT || code == ASHIFTRT)
10998 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10999 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11001 count = 0;
11002 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11003 const0_rtx);
11005 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11006 varop = gen_rtx_NEG (int_varop_mode, varop);
11008 continue;
11011 /* If we have (shift (logical)), move the logical to the outside
11012 to allow it to possibly combine with another logical and the
11013 shift to combine with another shift. This also canonicalizes to
11014 what a ZERO_EXTRACT looks like. Also, some machines have
11015 (and (shift)) insns. */
11017 if (CONST_INT_P (XEXP (varop, 1))
11018 /* We can't do this if we have (ashiftrt (xor)) and the
11019 constant has its sign bit set in shift_unit_mode with
11020 shift_unit_mode wider than result_mode. */
11021 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11022 && int_result_mode != shift_unit_mode
11023 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11024 shift_unit_mode) < 0)
11025 && (new_rtx = simplify_const_binary_operation
11026 (code, int_result_mode,
11027 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11028 gen_int_shift_amount (int_result_mode, count))) != 0
11029 && CONST_INT_P (new_rtx)
11030 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11031 INTVAL (new_rtx), int_result_mode,
11032 &complement_p))
11034 varop = XEXP (varop, 0);
11035 continue;
11038 /* If we can't do that, try to simplify the shift in each arm of the
11039 logical expression, make a new logical expression, and apply
11040 the inverse distributive law. This also can't be done for
11041 (ashiftrt (xor)) where we've widened the shift and the constant
11042 changes the sign bit. */
11043 if (CONST_INT_P (XEXP (varop, 1))
11044 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11045 && int_result_mode != shift_unit_mode
11046 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11047 shift_unit_mode) < 0))
11049 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11050 XEXP (varop, 0), count);
11051 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11052 XEXP (varop, 1), count);
11054 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11055 lhs, rhs);
11056 varop = apply_distributive_law (varop);
11058 count = 0;
11059 continue;
11061 break;
11063 case EQ:
11064 /* The following rules apply only to scalars. */
11065 if (shift_mode != shift_unit_mode)
11066 break;
11067 int_result_mode = as_a <scalar_int_mode> (result_mode);
11069 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11070 says that the sign bit can be tested, FOO has mode MODE, C is
11071 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11072 that may be nonzero. */
11073 if (code == LSHIFTRT
11074 && XEXP (varop, 1) == const0_rtx
11075 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11076 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11077 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11078 && STORE_FLAG_VALUE == -1
11079 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11080 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11081 int_result_mode, &complement_p))
11083 varop = XEXP (varop, 0);
11084 count = 0;
11085 continue;
11087 break;
11089 case NEG:
11090 /* The following rules apply only to scalars. */
11091 if (shift_mode != shift_unit_mode)
11092 break;
11093 int_result_mode = as_a <scalar_int_mode> (result_mode);
11095 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11096 than the number of bits in the mode is equivalent to A. */
11097 if (code == LSHIFTRT
11098 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11099 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11101 varop = XEXP (varop, 0);
11102 count = 0;
11103 continue;
11106 /* NEG commutes with ASHIFT since it is multiplication. Move the
11107 NEG outside to allow shifts to combine. */
11108 if (code == ASHIFT
11109 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11110 int_result_mode, &complement_p))
11112 varop = XEXP (varop, 0);
11113 continue;
11115 break;
11117 case PLUS:
11118 /* The following rules apply only to scalars. */
11119 if (shift_mode != shift_unit_mode)
11120 break;
11121 int_result_mode = as_a <scalar_int_mode> (result_mode);
11123 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11124 is one less than the number of bits in the mode is
11125 equivalent to (xor A 1). */
11126 if (code == LSHIFTRT
11127 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11128 && XEXP (varop, 1) == constm1_rtx
11129 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11130 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11131 int_result_mode, &complement_p))
11133 count = 0;
11134 varop = XEXP (varop, 0);
11135 continue;
11138 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11139 that might be nonzero in BAR are those being shifted out and those
11140 bits are known zero in FOO, we can replace the PLUS with FOO.
11141 Similarly in the other operand order. This code occurs when
11142 we are computing the size of a variable-size array. */
11144 if ((code == ASHIFTRT || code == LSHIFTRT)
11145 && count < HOST_BITS_PER_WIDE_INT
11146 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11147 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11148 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11150 varop = XEXP (varop, 0);
11151 continue;
11153 else if ((code == ASHIFTRT || code == LSHIFTRT)
11154 && count < HOST_BITS_PER_WIDE_INT
11155 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11156 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11157 >> count) == 0
11158 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11159 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11161 varop = XEXP (varop, 1);
11162 continue;
11165 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11166 if (code == ASHIFT
11167 && CONST_INT_P (XEXP (varop, 1))
11168 && (new_rtx = simplify_const_binary_operation
11169 (ASHIFT, int_result_mode,
11170 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11171 gen_int_shift_amount (int_result_mode, count))) != 0
11172 && CONST_INT_P (new_rtx)
11173 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11174 INTVAL (new_rtx), int_result_mode,
11175 &complement_p))
11177 varop = XEXP (varop, 0);
11178 continue;
11181 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11182 signbit', and attempt to change the PLUS to an XOR and move it to
11183 the outer operation as is done above in the AND/IOR/XOR case
11184 leg for shift(logical). See details in logical handling above
11185 for reasoning in doing so. */
11186 if (code == LSHIFTRT
11187 && CONST_INT_P (XEXP (varop, 1))
11188 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11189 && (new_rtx = simplify_const_binary_operation
11190 (code, int_result_mode,
11191 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11192 gen_int_shift_amount (int_result_mode, count))) != 0
11193 && CONST_INT_P (new_rtx)
11194 && merge_outer_ops (&outer_op, &outer_const, XOR,
11195 INTVAL (new_rtx), int_result_mode,
11196 &complement_p))
11198 varop = XEXP (varop, 0);
11199 continue;
11202 break;
11204 case MINUS:
11205 /* The following rules apply only to scalars. */
11206 if (shift_mode != shift_unit_mode)
11207 break;
11208 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11210 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11211 with C the size of VAROP - 1 and the shift is logical if
11212 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11213 we have a (gt X 0) operation. If the shift is arithmetic with
11214 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11215 we have a (neg (gt X 0)) operation. */
11217 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11218 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11219 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11220 && (code == LSHIFTRT || code == ASHIFTRT)
11221 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11222 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11223 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11225 count = 0;
11226 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11227 const0_rtx);
11229 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11230 varop = gen_rtx_NEG (int_varop_mode, varop);
11232 continue;
11234 break;
11236 case TRUNCATE:
11237 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11238 if the truncate does not affect the value. */
11239 if (code == LSHIFTRT
11240 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11241 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11242 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11243 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11244 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11246 rtx varop_inner = XEXP (varop, 0);
11247 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11248 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11249 new_count);
11250 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11251 XEXP (varop_inner, 0),
11252 new_count_rtx);
11253 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11254 count = 0;
11255 continue;
11257 break;
11259 default:
11260 break;
11263 break;
11266 shift_mode = result_mode;
11267 if (shift_mode != mode)
11269 /* We only change the modes of scalar shifts. */
11270 int_mode = as_a <scalar_int_mode> (mode);
11271 int_result_mode = as_a <scalar_int_mode> (result_mode);
11272 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11273 int_mode, outer_op, outer_const);
11276 /* We have now finished analyzing the shift. The result should be
11277 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11278 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11279 to the result of the shift. OUTER_CONST is the relevant constant,
11280 but we must turn off all bits turned off in the shift. */
11282 if (outer_op == UNKNOWN
11283 && orig_code == code && orig_count == count
11284 && varop == orig_varop
11285 && shift_mode == GET_MODE (varop))
11286 return NULL_RTX;
11288 /* Make a SUBREG if necessary. If we can't make it, fail. */
11289 varop = gen_lowpart (shift_mode, varop);
11290 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11291 return NULL_RTX;
11293 /* If we have an outer operation and we just made a shift, it is
11294 possible that we could have simplified the shift were it not
11295 for the outer operation. So try to do the simplification
11296 recursively. */
11298 if (outer_op != UNKNOWN)
11299 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11300 else
11301 x = NULL_RTX;
11303 if (x == NULL_RTX)
11304 x = simplify_gen_binary (code, shift_mode, varop,
11305 gen_int_shift_amount (shift_mode, count));
11307 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11308 turn off all the bits that the shift would have turned off. */
11309 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11310 /* We only change the modes of scalar shifts. */
11311 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11312 x, GET_MODE_MASK (result_mode) >> orig_count);
11314 /* Do the remainder of the processing in RESULT_MODE. */
11315 x = gen_lowpart_or_truncate (result_mode, x);
11317 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11318 operation. */
11319 if (complement_p)
11320 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11322 if (outer_op != UNKNOWN)
11324 int_result_mode = as_a <scalar_int_mode> (result_mode);
11326 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11327 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11328 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11330 if (outer_op == AND)
11331 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11332 else if (outer_op == SET)
11334 /* This means that we have determined that the result is
11335 equivalent to a constant. This should be rare. */
11336 if (!side_effects_p (x))
11337 x = GEN_INT (outer_const);
11339 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11340 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11341 else
11342 x = simplify_gen_binary (outer_op, int_result_mode, x,
11343 GEN_INT (outer_const));
11346 return x;
11349 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11350 The result of the shift is RESULT_MODE. If we cannot simplify it,
11351 return X or, if it is NULL, synthesize the expression with
11352 simplify_gen_binary. Otherwise, return a simplified value.
11354 The shift is normally computed in the widest mode we find in VAROP, as
11355 long as it isn't a different number of words than RESULT_MODE. Exceptions
11356 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11358 static rtx
11359 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11360 rtx varop, int count)
11362 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11363 if (tem)
11364 return tem;
11366 if (!x)
11367 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11368 gen_int_shift_amount (GET_MODE (varop), count));
11369 if (GET_MODE (x) != result_mode)
11370 x = gen_lowpart (result_mode, x);
11371 return x;
11375 /* A subroutine of recog_for_combine. See there for arguments and
11376 return value. */
11378 static int
11379 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11381 rtx pat = *pnewpat;
11382 rtx pat_without_clobbers;
11383 int insn_code_number;
11384 int num_clobbers_to_add = 0;
11385 int i;
11386 rtx notes = NULL_RTX;
11387 rtx old_notes, old_pat;
11388 int old_icode;
11390 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11391 we use to indicate that something didn't match. If we find such a
11392 thing, force rejection. */
11393 if (GET_CODE (pat) == PARALLEL)
11394 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11395 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11396 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11397 return -1;
11399 old_pat = PATTERN (insn);
11400 old_notes = REG_NOTES (insn);
11401 PATTERN (insn) = pat;
11402 REG_NOTES (insn) = NULL_RTX;
11404 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11405 if (dump_file && (dump_flags & TDF_DETAILS))
11407 if (insn_code_number < 0)
11408 fputs ("Failed to match this instruction:\n", dump_file);
11409 else
11410 fputs ("Successfully matched this instruction:\n", dump_file);
11411 print_rtl_single (dump_file, pat);
11414 /* If it isn't, there is the possibility that we previously had an insn
11415 that clobbered some register as a side effect, but the combined
11416 insn doesn't need to do that. So try once more without the clobbers
11417 unless this represents an ASM insn. */
11419 if (insn_code_number < 0 && ! check_asm_operands (pat)
11420 && GET_CODE (pat) == PARALLEL)
11422 int pos;
11424 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11425 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11427 if (i != pos)
11428 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11429 pos++;
11432 SUBST_INT (XVECLEN (pat, 0), pos);
11434 if (pos == 1)
11435 pat = XVECEXP (pat, 0, 0);
11437 PATTERN (insn) = pat;
11438 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11439 if (dump_file && (dump_flags & TDF_DETAILS))
11441 if (insn_code_number < 0)
11442 fputs ("Failed to match this instruction:\n", dump_file);
11443 else
11444 fputs ("Successfully matched this instruction:\n", dump_file);
11445 print_rtl_single (dump_file, pat);
11449 pat_without_clobbers = pat;
11451 PATTERN (insn) = old_pat;
11452 REG_NOTES (insn) = old_notes;
11454 /* Recognize all noop sets, these will be killed by followup pass. */
11455 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11456 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11458 /* If we had any clobbers to add, make a new pattern than contains
11459 them. Then check to make sure that all of them are dead. */
11460 if (num_clobbers_to_add)
11462 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11463 rtvec_alloc (GET_CODE (pat) == PARALLEL
11464 ? (XVECLEN (pat, 0)
11465 + num_clobbers_to_add)
11466 : num_clobbers_to_add + 1));
11468 if (GET_CODE (pat) == PARALLEL)
11469 for (i = 0; i < XVECLEN (pat, 0); i++)
11470 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11471 else
11472 XVECEXP (newpat, 0, 0) = pat;
11474 add_clobbers (newpat, insn_code_number);
11476 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11477 i < XVECLEN (newpat, 0); i++)
11479 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11480 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11481 return -1;
11482 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11484 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11485 notes = alloc_reg_note (REG_UNUSED,
11486 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11489 pat = newpat;
11492 if (insn_code_number >= 0
11493 && insn_code_number != NOOP_MOVE_INSN_CODE)
11495 old_pat = PATTERN (insn);
11496 old_notes = REG_NOTES (insn);
11497 old_icode = INSN_CODE (insn);
11498 PATTERN (insn) = pat;
11499 REG_NOTES (insn) = notes;
11500 INSN_CODE (insn) = insn_code_number;
11502 /* Allow targets to reject combined insn. */
11503 if (!targetm.legitimate_combined_insn (insn))
11505 if (dump_file && (dump_flags & TDF_DETAILS))
11506 fputs ("Instruction not appropriate for target.",
11507 dump_file);
11509 /* Callers expect recog_for_combine to strip
11510 clobbers from the pattern on failure. */
11511 pat = pat_without_clobbers;
11512 notes = NULL_RTX;
11514 insn_code_number = -1;
11517 PATTERN (insn) = old_pat;
11518 REG_NOTES (insn) = old_notes;
11519 INSN_CODE (insn) = old_icode;
11522 *pnewpat = pat;
11523 *pnotes = notes;
11525 return insn_code_number;
11528 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11529 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11530 Return whether anything was so changed. */
11532 static bool
11533 change_zero_ext (rtx pat)
11535 bool changed = false;
11536 rtx *src = &SET_SRC (pat);
11538 subrtx_ptr_iterator::array_type array;
11539 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11541 rtx x = **iter;
11542 scalar_int_mode mode, inner_mode;
11543 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11544 continue;
11545 int size;
11547 if (GET_CODE (x) == ZERO_EXTRACT
11548 && CONST_INT_P (XEXP (x, 1))
11549 && CONST_INT_P (XEXP (x, 2))
11550 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11551 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11553 size = INTVAL (XEXP (x, 1));
11555 int start = INTVAL (XEXP (x, 2));
11556 if (BITS_BIG_ENDIAN)
11557 start = GET_MODE_PRECISION (inner_mode) - size - start;
11559 if (start != 0)
11560 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11561 gen_int_shift_amount (inner_mode, start));
11562 else
11563 x = XEXP (x, 0);
11565 if (mode != inner_mode)
11567 if (REG_P (x) && HARD_REGISTER_P (x)
11568 && !can_change_dest_mode (x, 0, mode))
11569 continue;
11571 x = gen_lowpart_SUBREG (mode, x);
11574 else if (GET_CODE (x) == ZERO_EXTEND
11575 && GET_CODE (XEXP (x, 0)) == SUBREG
11576 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11577 && !paradoxical_subreg_p (XEXP (x, 0))
11578 && subreg_lowpart_p (XEXP (x, 0)))
11580 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11581 size = GET_MODE_PRECISION (inner_mode);
11582 x = SUBREG_REG (XEXP (x, 0));
11583 if (GET_MODE (x) != mode)
11585 if (REG_P (x) && HARD_REGISTER_P (x)
11586 && !can_change_dest_mode (x, 0, mode))
11587 continue;
11589 x = gen_lowpart_SUBREG (mode, x);
11592 else if (GET_CODE (x) == ZERO_EXTEND
11593 && REG_P (XEXP (x, 0))
11594 && HARD_REGISTER_P (XEXP (x, 0))
11595 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11597 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11598 size = GET_MODE_PRECISION (inner_mode);
11599 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11601 else
11602 continue;
11604 if (!(GET_CODE (x) == LSHIFTRT
11605 && CONST_INT_P (XEXP (x, 1))
11606 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11608 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11609 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11612 SUBST (**iter, x);
11613 changed = true;
11616 if (changed)
11617 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11618 maybe_swap_commutative_operands (**iter);
11620 rtx *dst = &SET_DEST (pat);
11621 scalar_int_mode mode;
11622 if (GET_CODE (*dst) == ZERO_EXTRACT
11623 && REG_P (XEXP (*dst, 0))
11624 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11625 && CONST_INT_P (XEXP (*dst, 1))
11626 && CONST_INT_P (XEXP (*dst, 2)))
11628 rtx reg = XEXP (*dst, 0);
11629 int width = INTVAL (XEXP (*dst, 1));
11630 int offset = INTVAL (XEXP (*dst, 2));
11631 int reg_width = GET_MODE_PRECISION (mode);
11632 if (BITS_BIG_ENDIAN)
11633 offset = reg_width - width - offset;
11635 rtx x, y, z, w;
11636 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11637 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11638 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11639 if (offset)
11640 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11641 else
11642 y = SET_SRC (pat);
11643 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11644 w = gen_rtx_IOR (mode, x, z);
11645 SUBST (SET_DEST (pat), reg);
11646 SUBST (SET_SRC (pat), w);
11648 changed = true;
11651 return changed;
11654 /* Like recog, but we receive the address of a pointer to a new pattern.
11655 We try to match the rtx that the pointer points to.
11656 If that fails, we may try to modify or replace the pattern,
11657 storing the replacement into the same pointer object.
11659 Modifications include deletion or addition of CLOBBERs. If the
11660 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11661 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11662 (and undo if that fails).
11664 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11665 the CLOBBERs are placed.
11667 The value is the final insn code from the pattern ultimately matched,
11668 or -1. */
11670 static int
11671 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11673 rtx pat = *pnewpat;
11674 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11675 if (insn_code_number >= 0 || check_asm_operands (pat))
11676 return insn_code_number;
11678 void *marker = get_undo_marker ();
11679 bool changed = false;
11681 if (GET_CODE (pat) == SET)
11683 /* For an unrecognized single set of a constant, try placing it in
11684 the constant pool, if this function already uses one. */
11685 rtx src = SET_SRC (pat);
11686 if (CONSTANT_P (src)
11687 && !CONST_INT_P (src)
11688 && crtl->uses_const_pool)
11690 machine_mode mode = GET_MODE (src);
11691 if (mode == VOIDmode)
11692 mode = GET_MODE (SET_DEST (pat));
11693 src = force_const_mem (mode, src);
11694 if (src)
11696 SUBST (SET_SRC (pat), src);
11697 changed = true;
11700 else
11701 changed = change_zero_ext (pat);
11703 else if (GET_CODE (pat) == PARALLEL)
11705 int i;
11706 for (i = 0; i < XVECLEN (pat, 0); i++)
11708 rtx set = XVECEXP (pat, 0, i);
11709 if (GET_CODE (set) == SET)
11710 changed |= change_zero_ext (set);
11714 if (changed)
11716 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11718 if (insn_code_number < 0)
11719 undo_to_marker (marker);
11722 return insn_code_number;
11725 /* Like gen_lowpart_general but for use by combine. In combine it
11726 is not possible to create any new pseudoregs. However, it is
11727 safe to create invalid memory addresses, because combine will
11728 try to recognize them and all they will do is make the combine
11729 attempt fail.
11731 If for some reason this cannot do its job, an rtx
11732 (clobber (const_int 0)) is returned.
11733 An insn containing that will not be recognized. */
11735 static rtx
11736 gen_lowpart_for_combine (machine_mode omode, rtx x)
11738 machine_mode imode = GET_MODE (x);
11739 rtx result;
11741 if (omode == imode)
11742 return x;
11744 /* We can only support MODE being wider than a word if X is a
11745 constant integer or has a mode the same size. */
11746 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11747 && ! (CONST_SCALAR_INT_P (x)
11748 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11749 goto fail;
11751 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11752 won't know what to do. So we will strip off the SUBREG here and
11753 process normally. */
11754 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11756 x = SUBREG_REG (x);
11758 /* For use in case we fall down into the address adjustments
11759 further below, we need to adjust the known mode and size of
11760 x; imode and isize, since we just adjusted x. */
11761 imode = GET_MODE (x);
11763 if (imode == omode)
11764 return x;
11767 result = gen_lowpart_common (omode, x);
11769 if (result)
11770 return result;
11772 if (MEM_P (x))
11774 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11775 address. */
11776 if (MEM_VOLATILE_P (x)
11777 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11778 goto fail;
11780 /* If we want to refer to something bigger than the original memref,
11781 generate a paradoxical subreg instead. That will force a reload
11782 of the original memref X. */
11783 if (paradoxical_subreg_p (omode, imode))
11784 return gen_rtx_SUBREG (omode, x, 0);
11786 poly_int64 offset = byte_lowpart_offset (omode, imode);
11787 return adjust_address_nv (x, omode, offset);
11790 /* If X is a comparison operator, rewrite it in a new mode. This
11791 probably won't match, but may allow further simplifications. */
11792 else if (COMPARISON_P (x)
11793 && SCALAR_INT_MODE_P (imode)
11794 && SCALAR_INT_MODE_P (omode))
11795 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11797 /* If we couldn't simplify X any other way, just enclose it in a
11798 SUBREG. Normally, this SUBREG won't match, but some patterns may
11799 include an explicit SUBREG or we may simplify it further in combine. */
11800 else
11802 rtx res;
11804 if (imode == VOIDmode)
11806 imode = int_mode_for_mode (omode).require ();
11807 x = gen_lowpart_common (imode, x);
11808 if (x == NULL)
11809 goto fail;
11811 res = lowpart_subreg (omode, x, imode);
11812 if (res)
11813 return res;
11816 fail:
11817 return gen_rtx_CLOBBER (omode, const0_rtx);
11820 /* Try to simplify a comparison between OP0 and a constant OP1,
11821 where CODE is the comparison code that will be tested, into a
11822 (CODE OP0 const0_rtx) form.
11824 The result is a possibly different comparison code to use.
11825 *POP0 and *POP1 may be updated. */
11827 static enum rtx_code
11828 simplify_compare_const (enum rtx_code code, machine_mode mode,
11829 rtx *pop0, rtx *pop1)
11831 scalar_int_mode int_mode;
11832 rtx op0 = *pop0;
11833 HOST_WIDE_INT const_op = INTVAL (*pop1);
11835 /* Get the constant we are comparing against and turn off all bits
11836 not on in our mode. */
11837 if (mode != VOIDmode)
11838 const_op = trunc_int_for_mode (const_op, mode);
11840 /* If we are comparing against a constant power of two and the value
11841 being compared can only have that single bit nonzero (e.g., it was
11842 `and'ed with that bit), we can replace this with a comparison
11843 with zero. */
11844 if (const_op
11845 && (code == EQ || code == NE || code == GE || code == GEU
11846 || code == LT || code == LTU)
11847 && is_a <scalar_int_mode> (mode, &int_mode)
11848 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11849 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11850 && (nonzero_bits (op0, int_mode)
11851 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11853 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11854 const_op = 0;
11857 /* Similarly, if we are comparing a value known to be either -1 or
11858 0 with -1, change it to the opposite comparison against zero. */
11859 if (const_op == -1
11860 && (code == EQ || code == NE || code == GT || code == LE
11861 || code == GEU || code == LTU)
11862 && is_a <scalar_int_mode> (mode, &int_mode)
11863 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11865 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11866 const_op = 0;
11869 /* Do some canonicalizations based on the comparison code. We prefer
11870 comparisons against zero and then prefer equality comparisons.
11871 If we can reduce the size of a constant, we will do that too. */
11872 switch (code)
11874 case LT:
11875 /* < C is equivalent to <= (C - 1) */
11876 if (const_op > 0)
11878 const_op -= 1;
11879 code = LE;
11880 /* ... fall through to LE case below. */
11881 gcc_fallthrough ();
11883 else
11884 break;
11886 case LE:
11887 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11888 if (const_op < 0)
11890 const_op += 1;
11891 code = LT;
11894 /* If we are doing a <= 0 comparison on a value known to have
11895 a zero sign bit, we can replace this with == 0. */
11896 else if (const_op == 0
11897 && is_a <scalar_int_mode> (mode, &int_mode)
11898 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11899 && (nonzero_bits (op0, int_mode)
11900 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11901 == 0)
11902 code = EQ;
11903 break;
11905 case GE:
11906 /* >= C is equivalent to > (C - 1). */
11907 if (const_op > 0)
11909 const_op -= 1;
11910 code = GT;
11911 /* ... fall through to GT below. */
11912 gcc_fallthrough ();
11914 else
11915 break;
11917 case GT:
11918 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11919 if (const_op < 0)
11921 const_op += 1;
11922 code = GE;
11925 /* If we are doing a > 0 comparison on a value known to have
11926 a zero sign bit, we can replace this with != 0. */
11927 else if (const_op == 0
11928 && is_a <scalar_int_mode> (mode, &int_mode)
11929 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11930 && (nonzero_bits (op0, int_mode)
11931 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11932 == 0)
11933 code = NE;
11934 break;
11936 case LTU:
11937 /* < C is equivalent to <= (C - 1). */
11938 if (const_op > 0)
11940 const_op -= 1;
11941 code = LEU;
11942 /* ... fall through ... */
11943 gcc_fallthrough ();
11945 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11946 else if (is_a <scalar_int_mode> (mode, &int_mode)
11947 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11948 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11949 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11951 const_op = 0;
11952 code = GE;
11953 break;
11955 else
11956 break;
11958 case LEU:
11959 /* unsigned <= 0 is equivalent to == 0 */
11960 if (const_op == 0)
11961 code = EQ;
11962 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11963 else if (is_a <scalar_int_mode> (mode, &int_mode)
11964 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11965 && ((unsigned HOST_WIDE_INT) const_op
11966 == ((HOST_WIDE_INT_1U
11967 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11969 const_op = 0;
11970 code = GE;
11972 break;
11974 case GEU:
11975 /* >= C is equivalent to > (C - 1). */
11976 if (const_op > 1)
11978 const_op -= 1;
11979 code = GTU;
11980 /* ... fall through ... */
11981 gcc_fallthrough ();
11984 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11985 else if (is_a <scalar_int_mode> (mode, &int_mode)
11986 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11987 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11988 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11990 const_op = 0;
11991 code = LT;
11992 break;
11994 else
11995 break;
11997 case GTU:
11998 /* unsigned > 0 is equivalent to != 0 */
11999 if (const_op == 0)
12000 code = NE;
12001 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12002 else if (is_a <scalar_int_mode> (mode, &int_mode)
12003 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12004 && ((unsigned HOST_WIDE_INT) const_op
12005 == (HOST_WIDE_INT_1U
12006 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12008 const_op = 0;
12009 code = LT;
12011 break;
12013 default:
12014 break;
12017 /* Narrow non-symmetric comparison of memory and constant as e.g.
12018 x0...x7 <= 0x3fffffffffffffff into x0 <= 0x3f where x0 is the most
12019 significant byte. Likewise, transform x0...x7 >= 0x4000000000000000 into
12020 x0 >= 0x40. */
12021 if ((code == LEU || code == LTU || code == GEU || code == GTU)
12022 && is_a <scalar_int_mode> (GET_MODE (op0), &int_mode)
12023 && HWI_COMPUTABLE_MODE_P (int_mode)
12024 && MEM_P (op0)
12025 && !MEM_VOLATILE_P (op0)
12026 /* The optimization makes only sense for constants which are big enough
12027 so that we have a chance to chop off something at all. */
12028 && ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode)) > 0xff
12029 /* Ensure that we do not overflow during normalization. */
12030 && (code != GTU
12031 || ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
12032 < HOST_WIDE_INT_M1U)
12033 && trunc_int_for_mode (const_op, int_mode) == const_op)
12035 unsigned HOST_WIDE_INT n
12036 = (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode);
12037 enum rtx_code adjusted_code;
12039 /* Normalize code to either LEU or GEU. */
12040 if (code == LTU)
12042 --n;
12043 adjusted_code = LEU;
12045 else if (code == GTU)
12047 ++n;
12048 adjusted_code = GEU;
12050 else
12051 adjusted_code = code;
12053 scalar_int_mode narrow_mode_iter;
12054 FOR_EACH_MODE_UNTIL (narrow_mode_iter, int_mode)
12056 unsigned nbits = GET_MODE_PRECISION (int_mode)
12057 - GET_MODE_PRECISION (narrow_mode_iter);
12058 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << nbits) - 1;
12059 unsigned HOST_WIDE_INT lower_bits = n & mask;
12060 if ((adjusted_code == LEU && lower_bits == mask)
12061 || (adjusted_code == GEU && lower_bits == 0))
12063 n >>= nbits;
12064 break;
12068 if (narrow_mode_iter < int_mode)
12070 if (dump_file && (dump_flags & TDF_DETAILS))
12072 fprintf (
12073 dump_file, "narrow comparison from mode %s to %s: (MEM %s "
12074 HOST_WIDE_INT_PRINT_HEX ") to (MEM %s "
12075 HOST_WIDE_INT_PRINT_HEX ").\n", GET_MODE_NAME (int_mode),
12076 GET_MODE_NAME (narrow_mode_iter), GET_RTX_NAME (code),
12077 (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode),
12078 GET_RTX_NAME (adjusted_code), n);
12080 poly_int64 offset = (BYTES_BIG_ENDIAN
12082 : (GET_MODE_SIZE (int_mode)
12083 - GET_MODE_SIZE (narrow_mode_iter)));
12084 *pop0 = adjust_address_nv (op0, narrow_mode_iter, offset);
12085 *pop1 = gen_int_mode (n, narrow_mode_iter);
12086 return adjusted_code;
12090 *pop1 = GEN_INT (const_op);
12091 return code;
12094 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12095 comparison code that will be tested.
12097 The result is a possibly different comparison code to use. *POP0 and
12098 *POP1 may be updated.
12100 It is possible that we might detect that a comparison is either always
12101 true or always false. However, we do not perform general constant
12102 folding in combine, so this knowledge isn't useful. Such tautologies
12103 should have been detected earlier. Hence we ignore all such cases. */
12105 static enum rtx_code
12106 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12108 rtx op0 = *pop0;
12109 rtx op1 = *pop1;
12110 rtx tem, tem1;
12111 int i;
12112 scalar_int_mode mode, inner_mode, tmode;
12113 opt_scalar_int_mode tmode_iter;
12115 /* Try a few ways of applying the same transformation to both operands. */
12116 while (1)
12118 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12119 so check specially. */
12120 if (!WORD_REGISTER_OPERATIONS
12121 && code != GTU && code != GEU && code != LTU && code != LEU
12122 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12123 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12124 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12125 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12126 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12127 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12128 && (is_a <scalar_int_mode>
12129 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12130 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12131 && CONST_INT_P (XEXP (op0, 1))
12132 && XEXP (op0, 1) == XEXP (op1, 1)
12133 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12134 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12135 && (INTVAL (XEXP (op0, 1))
12136 == (GET_MODE_PRECISION (mode)
12137 - GET_MODE_PRECISION (inner_mode))))
12139 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12140 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12143 /* If both operands are the same constant shift, see if we can ignore the
12144 shift. We can if the shift is a rotate or if the bits shifted out of
12145 this shift are known to be zero for both inputs and if the type of
12146 comparison is compatible with the shift. */
12147 if (GET_CODE (op0) == GET_CODE (op1)
12148 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12149 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12150 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12151 && (code != GT && code != LT && code != GE && code != LE))
12152 || (GET_CODE (op0) == ASHIFTRT
12153 && (code != GTU && code != LTU
12154 && code != GEU && code != LEU)))
12155 && CONST_INT_P (XEXP (op0, 1))
12156 && INTVAL (XEXP (op0, 1)) >= 0
12157 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12158 && XEXP (op0, 1) == XEXP (op1, 1))
12160 machine_mode mode = GET_MODE (op0);
12161 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12162 int shift_count = INTVAL (XEXP (op0, 1));
12164 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12165 mask &= (mask >> shift_count) << shift_count;
12166 else if (GET_CODE (op0) == ASHIFT)
12167 mask = (mask & (mask << shift_count)) >> shift_count;
12169 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12170 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12171 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12172 else
12173 break;
12176 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12177 SUBREGs are of the same mode, and, in both cases, the AND would
12178 be redundant if the comparison was done in the narrower mode,
12179 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12180 and the operand's possibly nonzero bits are 0xffffff01; in that case
12181 if we only care about QImode, we don't need the AND). This case
12182 occurs if the output mode of an scc insn is not SImode and
12183 STORE_FLAG_VALUE == 1 (e.g., the 386).
12185 Similarly, check for a case where the AND's are ZERO_EXTEND
12186 operations from some narrower mode even though a SUBREG is not
12187 present. */
12189 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12190 && CONST_INT_P (XEXP (op0, 1))
12191 && CONST_INT_P (XEXP (op1, 1)))
12193 rtx inner_op0 = XEXP (op0, 0);
12194 rtx inner_op1 = XEXP (op1, 0);
12195 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12196 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12197 bool changed = false;
12199 if (paradoxical_subreg_p (inner_op0)
12200 && GET_CODE (inner_op1) == SUBREG
12201 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12202 && (GET_MODE (SUBREG_REG (inner_op0))
12203 == GET_MODE (SUBREG_REG (inner_op1)))
12204 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12205 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12206 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12207 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12209 op0 = SUBREG_REG (inner_op0);
12210 op1 = SUBREG_REG (inner_op1);
12212 /* The resulting comparison is always unsigned since we masked
12213 off the original sign bit. */
12214 code = unsigned_condition (code);
12216 changed = true;
12219 else if (c0 == c1)
12220 FOR_EACH_MODE_UNTIL (tmode,
12221 as_a <scalar_int_mode> (GET_MODE (op0)))
12222 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12224 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12225 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12226 code = unsigned_condition (code);
12227 changed = true;
12228 break;
12231 if (! changed)
12232 break;
12235 /* If both operands are NOT, we can strip off the outer operation
12236 and adjust the comparison code for swapped operands; similarly for
12237 NEG, except that this must be an equality comparison. */
12238 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12239 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12240 && (code == EQ || code == NE)))
12241 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12243 else
12244 break;
12247 /* If the first operand is a constant, swap the operands and adjust the
12248 comparison code appropriately, but don't do this if the second operand
12249 is already a constant integer. */
12250 if (swap_commutative_operands_p (op0, op1))
12252 std::swap (op0, op1);
12253 code = swap_condition (code);
12256 /* We now enter a loop during which we will try to simplify the comparison.
12257 For the most part, we only are concerned with comparisons with zero,
12258 but some things may really be comparisons with zero but not start
12259 out looking that way. */
12261 while (CONST_INT_P (op1))
12263 machine_mode raw_mode = GET_MODE (op0);
12264 scalar_int_mode int_mode;
12265 int equality_comparison_p;
12266 int sign_bit_comparison_p;
12267 int unsigned_comparison_p;
12268 HOST_WIDE_INT const_op;
12270 /* We only want to handle integral modes. This catches VOIDmode,
12271 CCmode, and the floating-point modes. An exception is that we
12272 can handle VOIDmode if OP0 is a COMPARE or a comparison
12273 operation. */
12275 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12276 && ! (raw_mode == VOIDmode
12277 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12278 break;
12280 /* Try to simplify the compare to constant, possibly changing the
12281 comparison op, and/or changing op1 to zero. */
12282 code = simplify_compare_const (code, raw_mode, &op0, &op1);
12283 const_op = INTVAL (op1);
12285 /* Compute some predicates to simplify code below. */
12287 equality_comparison_p = (code == EQ || code == NE);
12288 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12289 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12290 || code == GEU);
12292 /* If this is a sign bit comparison and we can do arithmetic in
12293 MODE, say that we will only be needing the sign bit of OP0. */
12294 if (sign_bit_comparison_p
12295 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12296 && HWI_COMPUTABLE_MODE_P (int_mode))
12297 op0 = force_to_mode (op0, int_mode,
12298 HOST_WIDE_INT_1U
12299 << (GET_MODE_PRECISION (int_mode) - 1), false);
12301 if (COMPARISON_P (op0))
12303 /* We can't do anything if OP0 is a condition code value, rather
12304 than an actual data value. */
12305 if (const_op != 0
12306 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12307 break;
12309 /* Get the two operands being compared. */
12310 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12311 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12312 else
12313 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12315 /* Check for the cases where we simply want the result of the
12316 earlier test or the opposite of that result. */
12317 if (code == NE || code == EQ
12318 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12319 && (code == LT || code == GE)))
12321 enum rtx_code new_code;
12322 if (code == LT || code == NE)
12323 new_code = GET_CODE (op0);
12324 else
12325 new_code = reversed_comparison_code (op0, NULL);
12327 if (new_code != UNKNOWN)
12329 code = new_code;
12330 op0 = tem;
12331 op1 = tem1;
12332 continue;
12335 break;
12338 if (raw_mode == VOIDmode)
12339 break;
12340 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12342 /* Now try cases based on the opcode of OP0. If none of the cases
12343 does a "continue", we exit this loop immediately after the
12344 switch. */
12346 unsigned int mode_width = GET_MODE_PRECISION (mode);
12347 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12348 switch (GET_CODE (op0))
12350 case ZERO_EXTRACT:
12351 /* If we are extracting a single bit from a variable position in
12352 a constant that has only a single bit set and are comparing it
12353 with zero, we can convert this into an equality comparison
12354 between the position and the location of the single bit. */
12355 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12356 have already reduced the shift count modulo the word size. */
12357 if (!SHIFT_COUNT_TRUNCATED
12358 && CONST_INT_P (XEXP (op0, 0))
12359 && XEXP (op0, 1) == const1_rtx
12360 && equality_comparison_p && const_op == 0
12361 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12363 if (BITS_BIG_ENDIAN)
12364 i = BITS_PER_WORD - 1 - i;
12366 op0 = XEXP (op0, 2);
12367 op1 = GEN_INT (i);
12368 const_op = i;
12370 /* Result is nonzero iff shift count is equal to I. */
12371 code = reverse_condition (code);
12372 continue;
12375 /* fall through */
12377 case SIGN_EXTRACT:
12378 tem = expand_compound_operation (op0);
12379 if (tem != op0)
12381 op0 = tem;
12382 continue;
12384 break;
12386 case NOT:
12387 /* If testing for equality, we can take the NOT of the constant. */
12388 if (equality_comparison_p
12389 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12391 op0 = XEXP (op0, 0);
12392 op1 = tem;
12393 continue;
12396 /* If just looking at the sign bit, reverse the sense of the
12397 comparison. */
12398 if (sign_bit_comparison_p)
12400 op0 = XEXP (op0, 0);
12401 code = (code == GE ? LT : GE);
12402 continue;
12404 break;
12406 case NEG:
12407 /* If testing for equality, we can take the NEG of the constant. */
12408 if (equality_comparison_p
12409 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12411 op0 = XEXP (op0, 0);
12412 op1 = tem;
12413 continue;
12416 /* The remaining cases only apply to comparisons with zero. */
12417 if (const_op != 0)
12418 break;
12420 /* When X is ABS or is known positive,
12421 (neg X) is < 0 if and only if X != 0. */
12423 if (sign_bit_comparison_p
12424 && (GET_CODE (XEXP (op0, 0)) == ABS
12425 || (mode_width <= HOST_BITS_PER_WIDE_INT
12426 && (nonzero_bits (XEXP (op0, 0), mode)
12427 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12428 == 0)))
12430 op0 = XEXP (op0, 0);
12431 code = (code == LT ? NE : EQ);
12432 continue;
12435 /* If we have NEG of something whose two high-order bits are the
12436 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12437 if (num_sign_bit_copies (op0, mode) >= 2)
12439 op0 = XEXP (op0, 0);
12440 code = swap_condition (code);
12441 continue;
12443 break;
12445 case ROTATE:
12446 /* If we are testing equality and our count is a constant, we
12447 can perform the inverse operation on our RHS. */
12448 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12449 && (tem = simplify_binary_operation (ROTATERT, mode,
12450 op1, XEXP (op0, 1))) != 0)
12452 op0 = XEXP (op0, 0);
12453 op1 = tem;
12454 continue;
12457 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12458 a particular bit. Convert it to an AND of a constant of that
12459 bit. This will be converted into a ZERO_EXTRACT. */
12460 if (const_op == 0 && sign_bit_comparison_p
12461 && CONST_INT_P (XEXP (op0, 1))
12462 && mode_width <= HOST_BITS_PER_WIDE_INT
12463 && UINTVAL (XEXP (op0, 1)) < mode_width)
12465 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12466 (HOST_WIDE_INT_1U
12467 << (mode_width - 1
12468 - INTVAL (XEXP (op0, 1)))));
12469 code = (code == LT ? NE : EQ);
12470 continue;
12473 /* Fall through. */
12475 case ABS:
12476 /* ABS is ignorable inside an equality comparison with zero. */
12477 if (const_op == 0 && equality_comparison_p)
12479 op0 = XEXP (op0, 0);
12480 continue;
12482 break;
12484 case SIGN_EXTEND:
12485 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12486 (compare FOO CONST) if CONST fits in FOO's mode and we
12487 are either testing inequality or have an unsigned
12488 comparison with ZERO_EXTEND or a signed comparison with
12489 SIGN_EXTEND. But don't do it if we don't have a compare
12490 insn of the given mode, since we'd have to revert it
12491 later on, and then we wouldn't know whether to sign- or
12492 zero-extend. */
12493 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12494 && ! unsigned_comparison_p
12495 && HWI_COMPUTABLE_MODE_P (mode)
12496 && trunc_int_for_mode (const_op, mode) == const_op
12497 && have_insn_for (COMPARE, mode))
12499 op0 = XEXP (op0, 0);
12500 continue;
12502 break;
12504 case SUBREG:
12505 /* Check for the case where we are comparing A - C1 with C2, that is
12507 (subreg:MODE (plus (A) (-C1))) op (C2)
12509 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12510 comparison in the wider mode. One of the following two conditions
12511 must be true in order for this to be valid:
12513 1. The mode extension results in the same bit pattern being added
12514 on both sides and the comparison is equality or unsigned. As
12515 C2 has been truncated to fit in MODE, the pattern can only be
12516 all 0s or all 1s.
12518 2. The mode extension results in the sign bit being copied on
12519 each side.
12521 The difficulty here is that we have predicates for A but not for
12522 (A - C1) so we need to check that C1 is within proper bounds so
12523 as to perturbate A as little as possible. */
12525 if (mode_width <= HOST_BITS_PER_WIDE_INT
12526 && subreg_lowpart_p (op0)
12527 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12528 &inner_mode)
12529 && GET_MODE_PRECISION (inner_mode) > mode_width
12530 && GET_CODE (SUBREG_REG (op0)) == PLUS
12531 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12533 rtx a = XEXP (SUBREG_REG (op0), 0);
12534 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12536 if ((c1 > 0
12537 && (unsigned HOST_WIDE_INT) c1
12538 < HOST_WIDE_INT_1U << (mode_width - 1)
12539 && (equality_comparison_p || unsigned_comparison_p)
12540 /* (A - C1) zero-extends if it is positive and sign-extends
12541 if it is negative, C2 both zero- and sign-extends. */
12542 && (((nonzero_bits (a, inner_mode)
12543 & ~GET_MODE_MASK (mode)) == 0
12544 && const_op >= 0)
12545 /* (A - C1) sign-extends if it is positive and 1-extends
12546 if it is negative, C2 both sign- and 1-extends. */
12547 || (num_sign_bit_copies (a, inner_mode)
12548 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12549 - mode_width)
12550 && const_op < 0)))
12551 || ((unsigned HOST_WIDE_INT) c1
12552 < HOST_WIDE_INT_1U << (mode_width - 2)
12553 /* (A - C1) always sign-extends, like C2. */
12554 && num_sign_bit_copies (a, inner_mode)
12555 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12556 - (mode_width - 1))))
12558 op0 = SUBREG_REG (op0);
12559 continue;
12563 /* If the inner mode is narrower and we are extracting the low part,
12564 we can treat the SUBREG as if it were a ZERO_EXTEND ... */
12565 if (paradoxical_subreg_p (op0))
12567 if (WORD_REGISTER_OPERATIONS
12568 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12569 &inner_mode)
12570 && GET_MODE_PRECISION (inner_mode) < BITS_PER_WORD
12571 /* On WORD_REGISTER_OPERATIONS targets the bits
12572 beyond sub_mode aren't considered undefined,
12573 so optimize only if it is a MEM load when MEM loads
12574 zero extend, because then the upper bits are all zero. */
12575 && !(MEM_P (SUBREG_REG (op0))
12576 && load_extend_op (inner_mode) == ZERO_EXTEND))
12577 break;
12578 /* FALLTHROUGH to case ZERO_EXTEND */
12580 else if (subreg_lowpart_p (op0)
12581 && GET_MODE_CLASS (mode) == MODE_INT
12582 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12583 && (code == NE || code == EQ)
12584 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12585 && !paradoxical_subreg_p (op0)
12586 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12587 & ~GET_MODE_MASK (mode)) == 0)
12589 /* Remove outer subregs that don't do anything. */
12590 tem = gen_lowpart (inner_mode, op1);
12592 if ((nonzero_bits (tem, inner_mode)
12593 & ~GET_MODE_MASK (mode)) == 0)
12595 op0 = SUBREG_REG (op0);
12596 op1 = tem;
12597 continue;
12599 break;
12601 else
12602 break;
12604 /* FALLTHROUGH */
12606 case ZERO_EXTEND:
12607 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12608 && (unsigned_comparison_p || equality_comparison_p)
12609 && HWI_COMPUTABLE_MODE_P (mode)
12610 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12611 && const_op >= 0
12612 && have_insn_for (COMPARE, mode))
12614 op0 = XEXP (op0, 0);
12615 continue;
12617 break;
12619 case PLUS:
12620 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12621 this for equality comparisons due to pathological cases involving
12622 overflows. */
12623 if (equality_comparison_p
12624 && (tem = simplify_binary_operation (MINUS, mode,
12625 op1, XEXP (op0, 1))) != 0)
12627 op0 = XEXP (op0, 0);
12628 op1 = tem;
12629 continue;
12632 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12633 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12634 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12636 op0 = XEXP (XEXP (op0, 0), 0);
12637 code = (code == LT ? EQ : NE);
12638 continue;
12640 break;
12642 case MINUS:
12643 /* We used to optimize signed comparisons against zero, but that
12644 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12645 arrive here as equality comparisons, or (GEU, LTU) are
12646 optimized away. No need to special-case them. */
12648 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12649 (eq B (minus A C)), whichever simplifies. We can only do
12650 this for equality comparisons due to pathological cases involving
12651 overflows. */
12652 if (equality_comparison_p
12653 && (tem = simplify_binary_operation (PLUS, mode,
12654 XEXP (op0, 1), op1)) != 0)
12656 op0 = XEXP (op0, 0);
12657 op1 = tem;
12658 continue;
12661 if (equality_comparison_p
12662 && (tem = simplify_binary_operation (MINUS, mode,
12663 XEXP (op0, 0), op1)) != 0)
12665 op0 = XEXP (op0, 1);
12666 op1 = tem;
12667 continue;
12670 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12671 of bits in X minus 1, is one iff X > 0. */
12672 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12673 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12674 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12675 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12677 op0 = XEXP (op0, 1);
12678 code = (code == GE ? LE : GT);
12679 continue;
12681 break;
12683 case XOR:
12684 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12685 if C is zero or B is a constant. */
12686 if (equality_comparison_p
12687 && (tem = simplify_binary_operation (XOR, mode,
12688 XEXP (op0, 1), op1)) != 0)
12690 op0 = XEXP (op0, 0);
12691 op1 = tem;
12692 continue;
12694 break;
12697 case IOR:
12698 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12699 iff X <= 0. */
12700 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12701 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12702 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12704 op0 = XEXP (op0, 1);
12705 code = (code == GE ? GT : LE);
12706 continue;
12708 break;
12710 case AND:
12711 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12712 will be converted to a ZERO_EXTRACT later. */
12713 if (const_op == 0 && equality_comparison_p
12714 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12715 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12717 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12718 XEXP (XEXP (op0, 0), 1));
12719 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12720 continue;
12723 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12724 zero and X is a comparison and C1 and C2 describe only bits set
12725 in STORE_FLAG_VALUE, we can compare with X. */
12726 if (const_op == 0 && equality_comparison_p
12727 && mode_width <= HOST_BITS_PER_WIDE_INT
12728 && CONST_INT_P (XEXP (op0, 1))
12729 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12730 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12731 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12732 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12734 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12735 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12736 if ((~STORE_FLAG_VALUE & mask) == 0
12737 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12738 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12739 && COMPARISON_P (tem))))
12741 op0 = XEXP (XEXP (op0, 0), 0);
12742 continue;
12746 /* If we are doing an equality comparison of an AND of a bit equal
12747 to the sign bit, replace this with a LT or GE comparison of
12748 the underlying value. */
12749 if (equality_comparison_p
12750 && const_op == 0
12751 && CONST_INT_P (XEXP (op0, 1))
12752 && mode_width <= HOST_BITS_PER_WIDE_INT
12753 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12754 == HOST_WIDE_INT_1U << (mode_width - 1)))
12756 op0 = XEXP (op0, 0);
12757 code = (code == EQ ? GE : LT);
12758 continue;
12761 /* If this AND operation is really a ZERO_EXTEND from a narrower
12762 mode, the constant fits within that mode, and this is either an
12763 equality or unsigned comparison, try to do this comparison in
12764 the narrower mode.
12766 Note that in:
12768 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12769 -> (ne:DI (reg:SI 4) (const_int 0))
12771 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12772 known to hold a value of the required mode the
12773 transformation is invalid. */
12774 if ((equality_comparison_p || unsigned_comparison_p)
12775 && CONST_INT_P (XEXP (op0, 1))
12776 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12777 & GET_MODE_MASK (mode))
12778 + 1)) >= 0
12779 && const_op >> i == 0
12780 && int_mode_for_size (i, 1).exists (&tmode))
12782 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12783 continue;
12786 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12787 fits in both M1 and M2 and the SUBREG is either paradoxical
12788 or represents the low part, permute the SUBREG and the AND
12789 and try again. */
12790 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12791 && CONST_INT_P (XEXP (op0, 1)))
12793 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12794 /* Require an integral mode, to avoid creating something like
12795 (AND:SF ...). */
12796 if ((is_a <scalar_int_mode>
12797 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12798 /* It is unsafe to commute the AND into the SUBREG if the
12799 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12800 not defined. As originally written the upper bits
12801 have a defined value due to the AND operation.
12802 However, if we commute the AND inside the SUBREG then
12803 they no longer have defined values and the meaning of
12804 the code has been changed.
12805 Also C1 should not change value in the smaller mode,
12806 see PR67028 (a positive C1 can become negative in the
12807 smaller mode, so that the AND does no longer mask the
12808 upper bits). */
12809 && ((WORD_REGISTER_OPERATIONS
12810 && mode_width > GET_MODE_PRECISION (tmode)
12811 && mode_width <= BITS_PER_WORD
12812 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12813 || (mode_width <= GET_MODE_PRECISION (tmode)
12814 && subreg_lowpart_p (XEXP (op0, 0))))
12815 && mode_width <= HOST_BITS_PER_WIDE_INT
12816 && HWI_COMPUTABLE_MODE_P (tmode)
12817 && (c1 & ~mask) == 0
12818 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12819 && c1 != mask
12820 && c1 != GET_MODE_MASK (tmode))
12822 op0 = simplify_gen_binary (AND, tmode,
12823 SUBREG_REG (XEXP (op0, 0)),
12824 gen_int_mode (c1, tmode));
12825 op0 = gen_lowpart (mode, op0);
12826 continue;
12830 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12831 if (const_op == 0 && equality_comparison_p
12832 && XEXP (op0, 1) == const1_rtx
12833 && GET_CODE (XEXP (op0, 0)) == NOT)
12835 op0 = simplify_and_const_int (NULL_RTX, mode,
12836 XEXP (XEXP (op0, 0), 0), 1);
12837 code = (code == NE ? EQ : NE);
12838 continue;
12841 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12842 (eq (and (lshiftrt X) 1) 0).
12843 Also handle the case where (not X) is expressed using xor. */
12844 if (const_op == 0 && equality_comparison_p
12845 && XEXP (op0, 1) == const1_rtx
12846 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12848 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12849 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12851 if (GET_CODE (shift_op) == NOT
12852 || (GET_CODE (shift_op) == XOR
12853 && CONST_INT_P (XEXP (shift_op, 1))
12854 && CONST_INT_P (shift_count)
12855 && HWI_COMPUTABLE_MODE_P (mode)
12856 && (UINTVAL (XEXP (shift_op, 1))
12857 == HOST_WIDE_INT_1U
12858 << INTVAL (shift_count))))
12861 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12862 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12863 code = (code == NE ? EQ : NE);
12864 continue;
12867 break;
12869 case ASHIFT:
12870 /* If we have (compare (ashift FOO N) (const_int C)) and
12871 the high order N bits of FOO (N+1 if an inequality comparison)
12872 are known to be zero, we can do this by comparing FOO with C
12873 shifted right N bits so long as the low-order N bits of C are
12874 zero. */
12875 if (CONST_INT_P (XEXP (op0, 1))
12876 && INTVAL (XEXP (op0, 1)) >= 0
12877 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12878 < HOST_BITS_PER_WIDE_INT)
12879 && (((unsigned HOST_WIDE_INT) const_op
12880 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12881 - 1)) == 0)
12882 && mode_width <= HOST_BITS_PER_WIDE_INT
12883 && (nonzero_bits (XEXP (op0, 0), mode)
12884 & ~(mask >> (INTVAL (XEXP (op0, 1))
12885 + ! equality_comparison_p))) == 0)
12887 /* We must perform a logical shift, not an arithmetic one,
12888 as we want the top N bits of C to be zero. */
12889 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12891 temp >>= INTVAL (XEXP (op0, 1));
12892 op1 = gen_int_mode (temp, mode);
12893 op0 = XEXP (op0, 0);
12894 continue;
12897 /* If we are doing a sign bit comparison, it means we are testing
12898 a particular bit. Convert it to the appropriate AND. */
12899 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12900 && mode_width <= HOST_BITS_PER_WIDE_INT)
12902 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12903 (HOST_WIDE_INT_1U
12904 << (mode_width - 1
12905 - INTVAL (XEXP (op0, 1)))));
12906 code = (code == LT ? NE : EQ);
12907 continue;
12910 /* If this an equality comparison with zero and we are shifting
12911 the low bit to the sign bit, we can convert this to an AND of the
12912 low-order bit. */
12913 if (const_op == 0 && equality_comparison_p
12914 && CONST_INT_P (XEXP (op0, 1))
12915 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12917 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12918 continue;
12920 break;
12922 case ASHIFTRT:
12923 /* If this is an equality comparison with zero, we can do this
12924 as a logical shift, which might be much simpler. */
12925 if (equality_comparison_p && const_op == 0
12926 && CONST_INT_P (XEXP (op0, 1)))
12928 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12929 XEXP (op0, 0),
12930 INTVAL (XEXP (op0, 1)));
12931 continue;
12934 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12935 do the comparison in a narrower mode. */
12936 if (! unsigned_comparison_p
12937 && CONST_INT_P (XEXP (op0, 1))
12938 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12939 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12940 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12941 .exists (&tmode))
12942 && (((unsigned HOST_WIDE_INT) const_op
12943 + (GET_MODE_MASK (tmode) >> 1) + 1)
12944 <= GET_MODE_MASK (tmode)))
12946 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12947 continue;
12950 /* Likewise if OP0 is a PLUS of a sign extension with a
12951 constant, which is usually represented with the PLUS
12952 between the shifts. */
12953 if (! unsigned_comparison_p
12954 && CONST_INT_P (XEXP (op0, 1))
12955 && GET_CODE (XEXP (op0, 0)) == PLUS
12956 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12957 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12958 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12959 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12960 .exists (&tmode))
12961 && (((unsigned HOST_WIDE_INT) const_op
12962 + (GET_MODE_MASK (tmode) >> 1) + 1)
12963 <= GET_MODE_MASK (tmode)))
12965 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12966 rtx add_const = XEXP (XEXP (op0, 0), 1);
12967 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12968 add_const, XEXP (op0, 1));
12970 op0 = simplify_gen_binary (PLUS, tmode,
12971 gen_lowpart (tmode, inner),
12972 new_const);
12973 continue;
12976 /* FALLTHROUGH */
12977 case LSHIFTRT:
12978 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12979 the low order N bits of FOO are known to be zero, we can do this
12980 by comparing FOO with C shifted left N bits so long as no
12981 overflow occurs. Even if the low order N bits of FOO aren't known
12982 to be zero, if the comparison is >= or < we can use the same
12983 optimization and for > or <= by setting all the low
12984 order N bits in the comparison constant. */
12985 if (CONST_INT_P (XEXP (op0, 1))
12986 && INTVAL (XEXP (op0, 1)) > 0
12987 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12988 && mode_width <= HOST_BITS_PER_WIDE_INT
12989 && (((unsigned HOST_WIDE_INT) const_op
12990 + (GET_CODE (op0) != LSHIFTRT
12991 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12992 + 1)
12993 : 0))
12994 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12996 unsigned HOST_WIDE_INT low_bits
12997 = (nonzero_bits (XEXP (op0, 0), mode)
12998 & ((HOST_WIDE_INT_1U
12999 << INTVAL (XEXP (op0, 1))) - 1));
13000 if (low_bits == 0 || !equality_comparison_p)
13002 /* If the shift was logical, then we must make the condition
13003 unsigned. */
13004 if (GET_CODE (op0) == LSHIFTRT)
13005 code = unsigned_condition (code);
13007 const_op = (unsigned HOST_WIDE_INT) const_op
13008 << INTVAL (XEXP (op0, 1));
13009 if (low_bits != 0
13010 && (code == GT || code == GTU
13011 || code == LE || code == LEU))
13012 const_op
13013 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
13014 op1 = GEN_INT (const_op);
13015 op0 = XEXP (op0, 0);
13016 continue;
13020 /* If we are using this shift to extract just the sign bit, we
13021 can replace this with an LT or GE comparison. */
13022 if (const_op == 0
13023 && (equality_comparison_p || sign_bit_comparison_p)
13024 && CONST_INT_P (XEXP (op0, 1))
13025 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
13027 op0 = XEXP (op0, 0);
13028 code = (code == NE || code == GT ? LT : GE);
13029 continue;
13031 break;
13033 default:
13034 break;
13037 break;
13040 /* Now make any compound operations involved in this comparison. Then,
13041 check for an outmost SUBREG on OP0 that is not doing anything or is
13042 paradoxical. The latter transformation must only be performed when
13043 it is known that the "extra" bits will be the same in op0 and op1 or
13044 that they don't matter. There are three cases to consider:
13046 1. SUBREG_REG (op0) is a register. In this case the bits are don't
13047 care bits and we can assume they have any convenient value. So
13048 making the transformation is safe.
13050 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13051 In this case the upper bits of op0 are undefined. We should not make
13052 the simplification in that case as we do not know the contents of
13053 those bits.
13055 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13056 In that case we know those bits are zeros or ones. We must also be
13057 sure that they are the same as the upper bits of op1.
13059 We can never remove a SUBREG for a non-equality comparison because
13060 the sign bit is in a different place in the underlying object. */
13062 rtx_code op0_mco_code = SET;
13063 if (op1 == const0_rtx)
13064 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13066 op0 = make_compound_operation (op0, op0_mco_code);
13067 op1 = make_compound_operation (op1, SET);
13069 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13070 && is_int_mode (GET_MODE (op0), &mode)
13071 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13072 && (code == NE || code == EQ))
13074 if (paradoxical_subreg_p (op0))
13076 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13077 implemented. */
13078 if (REG_P (SUBREG_REG (op0)))
13080 op0 = SUBREG_REG (op0);
13081 op1 = gen_lowpart (inner_mode, op1);
13084 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13085 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13086 & ~GET_MODE_MASK (mode)) == 0)
13088 tem = gen_lowpart (inner_mode, op1);
13090 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13091 op0 = SUBREG_REG (op0), op1 = tem;
13095 /* We now do the opposite procedure: Some machines don't have compare
13096 insns in all modes. If OP0's mode is an integer mode smaller than a
13097 word and we can't do a compare in that mode, see if there is a larger
13098 mode for which we can do the compare. There are a number of cases in
13099 which we can use the wider mode. */
13101 if (is_int_mode (GET_MODE (op0), &mode)
13102 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13103 && ! have_insn_for (COMPARE, mode))
13104 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13106 tmode = tmode_iter.require ();
13107 if (!HWI_COMPUTABLE_MODE_P (tmode))
13108 break;
13109 if (have_insn_for (COMPARE, tmode))
13111 int zero_extended;
13113 /* If this is a test for negative, we can make an explicit
13114 test of the sign bit. Test this first so we can use
13115 a paradoxical subreg to extend OP0. */
13117 if (op1 == const0_rtx && (code == LT || code == GE)
13118 && HWI_COMPUTABLE_MODE_P (mode))
13120 unsigned HOST_WIDE_INT sign
13121 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13122 op0 = simplify_gen_binary (AND, tmode,
13123 gen_lowpart (tmode, op0),
13124 gen_int_mode (sign, tmode));
13125 code = (code == LT) ? NE : EQ;
13126 break;
13129 /* If the only nonzero bits in OP0 and OP1 are those in the
13130 narrower mode and this is an equality or unsigned comparison,
13131 we can use the wider mode. Similarly for sign-extended
13132 values, in which case it is true for all comparisons. */
13133 zero_extended = ((code == EQ || code == NE
13134 || code == GEU || code == GTU
13135 || code == LEU || code == LTU)
13136 && (nonzero_bits (op0, tmode)
13137 & ~GET_MODE_MASK (mode)) == 0
13138 && ((CONST_INT_P (op1)
13139 || (nonzero_bits (op1, tmode)
13140 & ~GET_MODE_MASK (mode)) == 0)));
13142 if (zero_extended
13143 || ((num_sign_bit_copies (op0, tmode)
13144 > (unsigned int) (GET_MODE_PRECISION (tmode)
13145 - GET_MODE_PRECISION (mode)))
13146 && (num_sign_bit_copies (op1, tmode)
13147 > (unsigned int) (GET_MODE_PRECISION (tmode)
13148 - GET_MODE_PRECISION (mode)))))
13150 /* If OP0 is an AND and we don't have an AND in MODE either,
13151 make a new AND in the proper mode. */
13152 if (GET_CODE (op0) == AND
13153 && !have_insn_for (AND, mode))
13154 op0 = simplify_gen_binary (AND, tmode,
13155 gen_lowpart (tmode,
13156 XEXP (op0, 0)),
13157 gen_lowpart (tmode,
13158 XEXP (op0, 1)));
13159 else
13161 if (zero_extended)
13163 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13164 op0, mode);
13165 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13166 op1, mode);
13168 else
13170 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13171 op0, mode);
13172 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13173 op1, mode);
13175 break;
13181 /* We may have changed the comparison operands. Re-canonicalize. */
13182 if (swap_commutative_operands_p (op0, op1))
13184 std::swap (op0, op1);
13185 code = swap_condition (code);
13188 /* If this machine only supports a subset of valid comparisons, see if we
13189 can convert an unsupported one into a supported one. */
13190 target_canonicalize_comparison (&code, &op0, &op1, 0);
13192 *pop0 = op0;
13193 *pop1 = op1;
13195 return code;
13198 /* Utility function for record_value_for_reg. Count number of
13199 rtxs in X. */
13200 static int
13201 count_rtxs (rtx x)
13203 enum rtx_code code = GET_CODE (x);
13204 const char *fmt;
13205 int i, j, ret = 1;
13207 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13208 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13210 rtx x0 = XEXP (x, 0);
13211 rtx x1 = XEXP (x, 1);
13213 if (x0 == x1)
13214 return 1 + 2 * count_rtxs (x0);
13216 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13217 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13218 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13219 return 2 + 2 * count_rtxs (x0)
13220 + count_rtxs (x == XEXP (x1, 0)
13221 ? XEXP (x1, 1) : XEXP (x1, 0));
13223 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13224 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13225 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13226 return 2 + 2 * count_rtxs (x1)
13227 + count_rtxs (x == XEXP (x0, 0)
13228 ? XEXP (x0, 1) : XEXP (x0, 0));
13231 fmt = GET_RTX_FORMAT (code);
13232 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13233 if (fmt[i] == 'e')
13234 ret += count_rtxs (XEXP (x, i));
13235 else if (fmt[i] == 'E')
13236 for (j = 0; j < XVECLEN (x, i); j++)
13237 ret += count_rtxs (XVECEXP (x, i, j));
13239 return ret;
13242 /* Utility function for following routine. Called when X is part of a value
13243 being stored into last_set_value. Sets last_set_table_tick
13244 for each register mentioned. Similar to mention_regs in cse.cc */
13246 static void
13247 update_table_tick (rtx x)
13249 enum rtx_code code = GET_CODE (x);
13250 const char *fmt = GET_RTX_FORMAT (code);
13251 int i, j;
13253 if (code == REG)
13255 unsigned int regno = REGNO (x);
13256 unsigned int endregno = END_REGNO (x);
13257 unsigned int r;
13259 for (r = regno; r < endregno; r++)
13261 reg_stat_type *rsp = &reg_stat[r];
13262 rsp->last_set_table_tick = label_tick;
13265 return;
13268 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13269 if (fmt[i] == 'e')
13271 /* Check for identical subexpressions. If x contains
13272 identical subexpression we only have to traverse one of
13273 them. */
13274 if (i == 0 && ARITHMETIC_P (x))
13276 /* Note that at this point x1 has already been
13277 processed. */
13278 rtx x0 = XEXP (x, 0);
13279 rtx x1 = XEXP (x, 1);
13281 /* If x0 and x1 are identical then there is no need to
13282 process x0. */
13283 if (x0 == x1)
13284 break;
13286 /* If x0 is identical to a subexpression of x1 then while
13287 processing x1, x0 has already been processed. Thus we
13288 are done with x. */
13289 if (ARITHMETIC_P (x1)
13290 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13291 break;
13293 /* If x1 is identical to a subexpression of x0 then we
13294 still have to process the rest of x0. */
13295 if (ARITHMETIC_P (x0)
13296 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13298 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13299 break;
13303 update_table_tick (XEXP (x, i));
13305 else if (fmt[i] == 'E')
13306 for (j = 0; j < XVECLEN (x, i); j++)
13307 update_table_tick (XVECEXP (x, i, j));
13310 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13311 are saying that the register is clobbered and we no longer know its
13312 value. If INSN is zero, don't update reg_stat[].last_set; this is
13313 only permitted with VALUE also zero and is used to invalidate the
13314 register. */
13316 static void
13317 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13319 unsigned int regno = REGNO (reg);
13320 unsigned int endregno = END_REGNO (reg);
13321 unsigned int i;
13322 reg_stat_type *rsp;
13324 /* If VALUE contains REG and we have a previous value for REG, substitute
13325 the previous value. */
13326 if (value && insn && reg_overlap_mentioned_p (reg, value))
13328 rtx tem;
13330 /* Set things up so get_last_value is allowed to see anything set up to
13331 our insn. */
13332 subst_low_luid = DF_INSN_LUID (insn);
13333 tem = get_last_value (reg);
13335 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13336 it isn't going to be useful and will take a lot of time to process,
13337 so just use the CLOBBER. */
13339 if (tem)
13341 if (ARITHMETIC_P (tem)
13342 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13343 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13344 tem = XEXP (tem, 0);
13345 else if (count_occurrences (value, reg, 1) >= 2)
13347 /* If there are two or more occurrences of REG in VALUE,
13348 prevent the value from growing too much. */
13349 if (count_rtxs (tem) > param_max_last_value_rtl)
13350 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13353 value = replace_rtx (copy_rtx (value), reg, tem);
13357 /* For each register modified, show we don't know its value, that
13358 we don't know about its bitwise content, that its value has been
13359 updated, and that we don't know the location of the death of the
13360 register. */
13361 for (i = regno; i < endregno; i++)
13363 rsp = &reg_stat[i];
13365 if (insn)
13366 rsp->last_set = insn;
13368 rsp->last_set_value = 0;
13369 rsp->last_set_mode = VOIDmode;
13370 rsp->last_set_nonzero_bits = 0;
13371 rsp->last_set_sign_bit_copies = 0;
13372 rsp->last_death = 0;
13373 rsp->truncated_to_mode = VOIDmode;
13376 /* Mark registers that are being referenced in this value. */
13377 if (value)
13378 update_table_tick (value);
13380 /* Now update the status of each register being set.
13381 If someone is using this register in this block, set this register
13382 to invalid since we will get confused between the two lives in this
13383 basic block. This makes using this register always invalid. In cse, we
13384 scan the table to invalidate all entries using this register, but this
13385 is too much work for us. */
13387 for (i = regno; i < endregno; i++)
13389 rsp = &reg_stat[i];
13390 rsp->last_set_label = label_tick;
13391 if (!insn
13392 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13393 rsp->last_set_invalid = true;
13394 else
13395 rsp->last_set_invalid = false;
13398 /* The value being assigned might refer to X (like in "x++;"). In that
13399 case, we must replace it with (clobber (const_int 0)) to prevent
13400 infinite loops. */
13401 rsp = &reg_stat[regno];
13402 if (value && !get_last_value_validate (&value, insn, label_tick, false))
13404 value = copy_rtx (value);
13405 if (!get_last_value_validate (&value, insn, label_tick, true))
13406 value = 0;
13409 /* For the main register being modified, update the value, the mode, the
13410 nonzero bits, and the number of sign bit copies. */
13412 rsp->last_set_value = value;
13414 if (value)
13416 machine_mode mode = GET_MODE (reg);
13417 subst_low_luid = DF_INSN_LUID (insn);
13418 rsp->last_set_mode = mode;
13419 if (GET_MODE_CLASS (mode) == MODE_INT
13420 && HWI_COMPUTABLE_MODE_P (mode))
13421 mode = nonzero_bits_mode;
13422 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13423 rsp->last_set_sign_bit_copies
13424 = num_sign_bit_copies (value, GET_MODE (reg));
13428 /* Called via note_stores from record_dead_and_set_regs to handle one
13429 SET or CLOBBER in an insn. DATA is the instruction in which the
13430 set is occurring. */
13432 static void
13433 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13435 rtx_insn *record_dead_insn = (rtx_insn *) data;
13437 if (GET_CODE (dest) == SUBREG)
13438 dest = SUBREG_REG (dest);
13440 if (!record_dead_insn)
13442 if (REG_P (dest))
13443 record_value_for_reg (dest, NULL, NULL_RTX);
13444 return;
13447 if (REG_P (dest))
13449 /* If we are setting the whole register, we know its value. */
13450 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13451 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13452 /* We can handle a SUBREG if it's the low part, but we must be
13453 careful with paradoxical SUBREGs on RISC architectures because
13454 we cannot strip e.g. an extension around a load and record the
13455 naked load since the RTL middle-end considers that the upper bits
13456 are defined according to LOAD_EXTEND_OP. */
13457 else if (GET_CODE (setter) == SET
13458 && GET_CODE (SET_DEST (setter)) == SUBREG
13459 && SUBREG_REG (SET_DEST (setter)) == dest
13460 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13461 BITS_PER_WORD)
13462 && subreg_lowpart_p (SET_DEST (setter)))
13464 if (WORD_REGISTER_OPERATIONS
13465 && word_register_operation_p (SET_SRC (setter))
13466 && paradoxical_subreg_p (SET_DEST (setter)))
13467 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13468 else if (!partial_subreg_p (SET_DEST (setter)))
13469 record_value_for_reg (dest, record_dead_insn,
13470 gen_lowpart (GET_MODE (dest),
13471 SET_SRC (setter)));
13472 else
13474 record_value_for_reg (dest, record_dead_insn,
13475 gen_lowpart (GET_MODE (dest),
13476 SET_SRC (setter)));
13478 unsigned HOST_WIDE_INT mask;
13479 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13480 mask = GET_MODE_MASK (GET_MODE (SET_DEST (setter)));
13481 rsp->last_set_nonzero_bits |= ~mask;
13482 rsp->last_set_sign_bit_copies = 1;
13485 /* Otherwise show that we don't know the value. */
13486 else
13487 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13489 else if (MEM_P (dest)
13490 /* Ignore pushes, they clobber nothing. */
13491 && ! push_operand (dest, GET_MODE (dest)))
13492 mem_last_set = DF_INSN_LUID (record_dead_insn);
13495 /* Update the records of when each REG was most recently set or killed
13496 for the things done by INSN. This is the last thing done in processing
13497 INSN in the combiner loop.
13499 We update reg_stat[], in particular fields last_set, last_set_value,
13500 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13501 last_death, and also the similar information mem_last_set (which insn
13502 most recently modified memory) and last_call_luid (which insn was the
13503 most recent subroutine call). */
13505 static void
13506 record_dead_and_set_regs (rtx_insn *insn)
13508 rtx link;
13509 unsigned int i;
13511 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13513 if (REG_NOTE_KIND (link) == REG_DEAD
13514 && REG_P (XEXP (link, 0)))
13516 unsigned int regno = REGNO (XEXP (link, 0));
13517 unsigned int endregno = END_REGNO (XEXP (link, 0));
13519 for (i = regno; i < endregno; i++)
13521 reg_stat_type *rsp;
13523 rsp = &reg_stat[i];
13524 rsp->last_death = insn;
13527 else if (REG_NOTE_KIND (link) == REG_INC)
13528 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13531 if (CALL_P (insn))
13533 HARD_REG_SET callee_clobbers
13534 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13535 hard_reg_set_iterator hrsi;
13536 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13538 reg_stat_type *rsp;
13540 /* ??? We could try to preserve some information from the last
13541 set of register I if the call doesn't actually clobber
13542 (reg:last_set_mode I), which might be true for ABIs with
13543 partial clobbers. However, it would be difficult to
13544 update last_set_nonzero_bits and last_sign_bit_copies
13545 to account for the part of I that actually was clobbered.
13546 It wouldn't help much anyway, since we rarely see this
13547 situation before RA. */
13548 rsp = &reg_stat[i];
13549 rsp->last_set_invalid = true;
13550 rsp->last_set = insn;
13551 rsp->last_set_value = 0;
13552 rsp->last_set_mode = VOIDmode;
13553 rsp->last_set_nonzero_bits = 0;
13554 rsp->last_set_sign_bit_copies = 0;
13555 rsp->last_death = 0;
13556 rsp->truncated_to_mode = VOIDmode;
13559 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13561 /* We can't combine into a call pattern. Remember, though, that
13562 the return value register is set at this LUID. We could
13563 still replace a register with the return value from the
13564 wrong subroutine call! */
13565 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13567 else
13568 note_stores (insn, record_dead_and_set_regs_1, insn);
13571 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13572 register present in the SUBREG, so for each such SUBREG go back and
13573 adjust nonzero and sign bit information of the registers that are
13574 known to have some zero/sign bits set.
13576 This is needed because when combine blows the SUBREGs away, the
13577 information on zero/sign bits is lost and further combines can be
13578 missed because of that. */
13580 static void
13581 record_promoted_value (rtx_insn *insn, rtx subreg)
13583 struct insn_link *links;
13584 rtx set;
13585 unsigned int regno = REGNO (SUBREG_REG (subreg));
13586 machine_mode mode = GET_MODE (subreg);
13588 if (!HWI_COMPUTABLE_MODE_P (mode))
13589 return;
13591 for (links = LOG_LINKS (insn); links;)
13593 reg_stat_type *rsp;
13595 insn = links->insn;
13596 set = single_set (insn);
13598 if (! set || !REG_P (SET_DEST (set))
13599 || REGNO (SET_DEST (set)) != regno
13600 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13602 links = links->next;
13603 continue;
13606 rsp = &reg_stat[regno];
13607 if (rsp->last_set == insn)
13609 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13610 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13613 if (REG_P (SET_SRC (set)))
13615 regno = REGNO (SET_SRC (set));
13616 links = LOG_LINKS (insn);
13618 else
13619 break;
13623 /* Check if X, a register, is known to contain a value already
13624 truncated to MODE. In this case we can use a subreg to refer to
13625 the truncated value even though in the generic case we would need
13626 an explicit truncation. */
13628 static bool
13629 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13631 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13632 machine_mode truncated = rsp->truncated_to_mode;
13634 if (truncated == 0
13635 || rsp->truncation_label < label_tick_ebb_start)
13636 return false;
13637 if (!partial_subreg_p (mode, truncated))
13638 return true;
13639 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13640 return true;
13641 return false;
13644 /* If X is a hard reg or a subreg record the mode that the register is
13645 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13646 able to turn a truncate into a subreg using this information. Return true
13647 if traversing X is complete. */
13649 static bool
13650 record_truncated_value (rtx x)
13652 machine_mode truncated_mode;
13653 reg_stat_type *rsp;
13655 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13657 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13658 truncated_mode = GET_MODE (x);
13660 if (!partial_subreg_p (truncated_mode, original_mode))
13661 return true;
13663 truncated_mode = GET_MODE (x);
13664 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13665 return true;
13667 x = SUBREG_REG (x);
13669 /* ??? For hard-regs we now record everything. We might be able to
13670 optimize this using last_set_mode. */
13671 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13672 truncated_mode = GET_MODE (x);
13673 else
13674 return false;
13676 rsp = &reg_stat[REGNO (x)];
13677 if (rsp->truncated_to_mode == 0
13678 || rsp->truncation_label < label_tick_ebb_start
13679 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13681 rsp->truncated_to_mode = truncated_mode;
13682 rsp->truncation_label = label_tick;
13685 return true;
13688 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13689 the modes they are used in. This can help truning TRUNCATEs into
13690 SUBREGs. */
13692 static void
13693 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13695 subrtx_var_iterator::array_type array;
13696 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13697 if (record_truncated_value (*iter))
13698 iter.skip_subrtxes ();
13701 /* Scan X for promoted SUBREGs. For each one found,
13702 note what it implies to the registers used in it. */
13704 static void
13705 check_promoted_subreg (rtx_insn *insn, rtx x)
13707 if (GET_CODE (x) == SUBREG
13708 && SUBREG_PROMOTED_VAR_P (x)
13709 && REG_P (SUBREG_REG (x)))
13710 record_promoted_value (insn, x);
13711 else
13713 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13714 int i, j;
13716 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13717 switch (format[i])
13719 case 'e':
13720 check_promoted_subreg (insn, XEXP (x, i));
13721 break;
13722 case 'V':
13723 case 'E':
13724 if (XVEC (x, i) != 0)
13725 for (j = 0; j < XVECLEN (x, i); j++)
13726 check_promoted_subreg (insn, XVECEXP (x, i, j));
13727 break;
13732 /* Verify that all the registers and memory references mentioned in *LOC are
13733 still valid. *LOC was part of a value set in INSN when label_tick was
13734 equal to TICK. Return false if some are not. If REPLACE is true, replace
13735 the invalid references with (clobber (const_int 0)) and return true. This
13736 replacement is useful because we often can get useful information about
13737 the form of a value (e.g., if it was produced by a shift that always
13738 produces -1 or 0) even though we don't know exactly what registers it
13739 was produced from. */
13741 static bool
13742 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, bool replace)
13744 rtx x = *loc;
13745 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13746 int len = GET_RTX_LENGTH (GET_CODE (x));
13747 int i, j;
13749 if (REG_P (x))
13751 unsigned int regno = REGNO (x);
13752 unsigned int endregno = END_REGNO (x);
13753 unsigned int j;
13755 for (j = regno; j < endregno; j++)
13757 reg_stat_type *rsp = &reg_stat[j];
13758 if (rsp->last_set_invalid
13759 /* If this is a pseudo-register that was only set once and not
13760 live at the beginning of the function, it is always valid. */
13761 || (! (regno >= FIRST_PSEUDO_REGISTER
13762 && regno < reg_n_sets_max
13763 && REG_N_SETS (regno) == 1
13764 && (!REGNO_REG_SET_P
13765 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13766 regno)))
13767 && rsp->last_set_label > tick))
13769 if (replace)
13770 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13771 return replace;
13775 return true;
13777 /* If this is a memory reference, make sure that there were no stores after
13778 it that might have clobbered the value. We don't have alias info, so we
13779 assume any store invalidates it. Moreover, we only have local UIDs, so
13780 we also assume that there were stores in the intervening basic blocks. */
13781 else if (MEM_P (x) && !MEM_READONLY_P (x)
13782 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13784 if (replace)
13785 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13786 return replace;
13789 for (i = 0; i < len; i++)
13791 if (fmt[i] == 'e')
13793 /* Check for identical subexpressions. If x contains
13794 identical subexpression we only have to traverse one of
13795 them. */
13796 if (i == 1 && ARITHMETIC_P (x))
13798 /* Note that at this point x0 has already been checked
13799 and found valid. */
13800 rtx x0 = XEXP (x, 0);
13801 rtx x1 = XEXP (x, 1);
13803 /* If x0 and x1 are identical then x is also valid. */
13804 if (x0 == x1)
13805 return true;
13807 /* If x1 is identical to a subexpression of x0 then
13808 while checking x0, x1 has already been checked. Thus
13809 it is valid and so as x. */
13810 if (ARITHMETIC_P (x0)
13811 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13812 return true;
13814 /* If x0 is identical to a subexpression of x1 then x is
13815 valid iff the rest of x1 is valid. */
13816 if (ARITHMETIC_P (x1)
13817 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13818 return
13819 get_last_value_validate (&XEXP (x1,
13820 x0 == XEXP (x1, 0) ? 1 : 0),
13821 insn, tick, replace);
13824 if (!get_last_value_validate (&XEXP (x, i), insn, tick, replace))
13825 return false;
13827 else if (fmt[i] == 'E')
13828 for (j = 0; j < XVECLEN (x, i); j++)
13829 if (!get_last_value_validate (&XVECEXP (x, i, j),
13830 insn, tick, replace))
13831 return false;
13834 /* If we haven't found a reason for it to be invalid, it is valid. */
13835 return true;
13838 /* Get the last value assigned to X, if known. Some registers
13839 in the value may be replaced with (clobber (const_int 0)) if their value
13840 is known longer known reliably. */
13842 static rtx
13843 get_last_value (const_rtx x)
13845 unsigned int regno;
13846 rtx value;
13847 reg_stat_type *rsp;
13849 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13850 then convert it to the desired mode. If this is a paradoxical SUBREG,
13851 we cannot predict what values the "extra" bits might have. */
13852 if (GET_CODE (x) == SUBREG
13853 && subreg_lowpart_p (x)
13854 && !paradoxical_subreg_p (x)
13855 && (value = get_last_value (SUBREG_REG (x))) != 0)
13856 return gen_lowpart (GET_MODE (x), value);
13858 if (!REG_P (x))
13859 return 0;
13861 regno = REGNO (x);
13862 rsp = &reg_stat[regno];
13863 value = rsp->last_set_value;
13865 /* If we don't have a value, or if it isn't for this basic block and
13866 it's either a hard register, set more than once, or it's a live
13867 at the beginning of the function, return 0.
13869 Because if it's not live at the beginning of the function then the reg
13870 is always set before being used (is never used without being set).
13871 And, if it's set only once, and it's always set before use, then all
13872 uses must have the same last value, even if it's not from this basic
13873 block. */
13875 if (value == 0
13876 || (rsp->last_set_label < label_tick_ebb_start
13877 && (regno < FIRST_PSEUDO_REGISTER
13878 || regno >= reg_n_sets_max
13879 || REG_N_SETS (regno) != 1
13880 || REGNO_REG_SET_P
13881 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13882 return 0;
13884 /* If the value was set in a later insn than the ones we are processing,
13885 we can't use it even if the register was only set once. */
13886 if (rsp->last_set_label == label_tick
13887 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13888 return 0;
13890 /* If fewer bits were set than what we are asked for now, we cannot use
13891 the value. */
13892 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13893 GET_MODE_PRECISION (GET_MODE (x))))
13894 return 0;
13896 /* If the value has all its registers valid, return it. */
13897 if (get_last_value_validate (&value, rsp->last_set,
13898 rsp->last_set_label, false))
13899 return value;
13901 /* Otherwise, make a copy and replace any invalid register with
13902 (clobber (const_int 0)). If that fails for some reason, return 0. */
13904 value = copy_rtx (value);
13905 if (get_last_value_validate (&value, rsp->last_set,
13906 rsp->last_set_label, true))
13907 return value;
13909 return 0;
13912 /* Define three variables used for communication between the following
13913 routines. */
13915 static unsigned int reg_dead_regno, reg_dead_endregno;
13916 static int reg_dead_flag;
13917 rtx reg_dead_reg;
13919 /* Function called via note_stores from reg_dead_at_p.
13921 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13922 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13924 static void
13925 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13927 unsigned int regno, endregno;
13929 if (!REG_P (dest))
13930 return;
13932 regno = REGNO (dest);
13933 endregno = END_REGNO (dest);
13934 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13935 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13938 /* Return true if REG is known to be dead at INSN.
13940 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13941 referencing REG, it is dead. If we hit a SET referencing REG, it is
13942 live. Otherwise, see if it is live or dead at the start of the basic
13943 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13944 must be assumed to be always live. */
13946 static bool
13947 reg_dead_at_p (rtx reg, rtx_insn *insn)
13949 basic_block block;
13950 unsigned int i;
13952 /* Set variables for reg_dead_at_p_1. */
13953 reg_dead_regno = REGNO (reg);
13954 reg_dead_endregno = END_REGNO (reg);
13955 reg_dead_reg = reg;
13957 reg_dead_flag = 0;
13959 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13960 we allow the machine description to decide whether use-and-clobber
13961 patterns are OK. */
13962 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13964 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13965 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13966 return false;
13969 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13970 beginning of basic block. */
13971 block = BLOCK_FOR_INSN (insn);
13972 for (;;)
13974 if (INSN_P (insn))
13976 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13977 return true;
13979 note_stores (insn, reg_dead_at_p_1, NULL);
13980 if (reg_dead_flag)
13981 return reg_dead_flag == 1 ? 1 : 0;
13983 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13984 return true;
13987 if (insn == BB_HEAD (block))
13988 break;
13990 insn = PREV_INSN (insn);
13993 /* Look at live-in sets for the basic block that we were in. */
13994 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13995 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13996 return false;
13998 return true;
14001 /* Note hard registers in X that are used. */
14003 static void
14004 mark_used_regs_combine (rtx x)
14006 RTX_CODE code = GET_CODE (x);
14007 unsigned int regno;
14008 int i;
14010 switch (code)
14012 case LABEL_REF:
14013 case SYMBOL_REF:
14014 case CONST:
14015 CASE_CONST_ANY:
14016 case PC:
14017 case ADDR_VEC:
14018 case ADDR_DIFF_VEC:
14019 case ASM_INPUT:
14020 return;
14022 case CLOBBER:
14023 /* If we are clobbering a MEM, mark any hard registers inside the
14024 address as used. */
14025 if (MEM_P (XEXP (x, 0)))
14026 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
14027 return;
14029 case REG:
14030 regno = REGNO (x);
14031 /* A hard reg in a wide mode may really be multiple registers.
14032 If so, mark all of them just like the first. */
14033 if (regno < FIRST_PSEUDO_REGISTER)
14035 /* None of this applies to the stack, frame or arg pointers. */
14036 if (regno == STACK_POINTER_REGNUM
14037 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
14038 && regno == HARD_FRAME_POINTER_REGNUM)
14039 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
14040 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
14041 || regno == FRAME_POINTER_REGNUM)
14042 return;
14044 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
14046 return;
14048 case SET:
14050 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
14051 the address. */
14052 rtx testreg = SET_DEST (x);
14054 while (GET_CODE (testreg) == SUBREG
14055 || GET_CODE (testreg) == ZERO_EXTRACT
14056 || GET_CODE (testreg) == STRICT_LOW_PART)
14057 testreg = XEXP (testreg, 0);
14059 if (MEM_P (testreg))
14060 mark_used_regs_combine (XEXP (testreg, 0));
14062 mark_used_regs_combine (SET_SRC (x));
14064 return;
14066 default:
14067 break;
14070 /* Recursively scan the operands of this expression. */
14073 const char *fmt = GET_RTX_FORMAT (code);
14075 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14077 if (fmt[i] == 'e')
14078 mark_used_regs_combine (XEXP (x, i));
14079 else if (fmt[i] == 'E')
14081 int j;
14083 for (j = 0; j < XVECLEN (x, i); j++)
14084 mark_used_regs_combine (XVECEXP (x, i, j));
14090 /* Remove register number REGNO from the dead registers list of INSN.
14092 Return the note used to record the death, if there was one. */
14095 remove_death (unsigned int regno, rtx_insn *insn)
14097 rtx note = find_regno_note (insn, REG_DEAD, regno);
14099 if (note)
14100 remove_note (insn, note);
14102 return note;
14105 /* For each register (hardware or pseudo) used within expression X, if its
14106 death is in an instruction with luid between FROM_LUID (inclusive) and
14107 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14108 list headed by PNOTES.
14110 That said, don't move registers killed by maybe_kill_insn.
14112 This is done when X is being merged by combination into TO_INSN. These
14113 notes will then be distributed as needed. */
14115 static void
14116 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14117 rtx *pnotes)
14119 const char *fmt;
14120 int len, i;
14121 enum rtx_code code = GET_CODE (x);
14123 if (code == REG)
14125 unsigned int regno = REGNO (x);
14126 rtx_insn *where_dead = reg_stat[regno].last_death;
14128 /* If we do not know where the register died, it may still die between
14129 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14130 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14132 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14133 while (insn
14134 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14135 && DF_INSN_LUID (insn) >= from_luid)
14137 if (dead_or_set_regno_p (insn, regno))
14139 if (find_regno_note (insn, REG_DEAD, regno))
14140 where_dead = insn;
14141 break;
14144 insn = prev_real_nondebug_insn (insn);
14148 /* Don't move the register if it gets killed in between from and to. */
14149 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14150 && ! reg_referenced_p (x, maybe_kill_insn))
14151 return;
14153 if (where_dead
14154 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14155 && DF_INSN_LUID (where_dead) >= from_luid
14156 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14158 rtx note = remove_death (regno, where_dead);
14160 /* It is possible for the call above to return 0. This can occur
14161 when last_death points to I2 or I1 that we combined with.
14162 In that case make a new note.
14164 We must also check for the case where X is a hard register
14165 and NOTE is a death note for a range of hard registers
14166 including X. In that case, we must put REG_DEAD notes for
14167 the remaining registers in place of NOTE. */
14169 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14170 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14172 unsigned int deadregno = REGNO (XEXP (note, 0));
14173 unsigned int deadend = END_REGNO (XEXP (note, 0));
14174 unsigned int ourend = END_REGNO (x);
14175 unsigned int i;
14177 for (i = deadregno; i < deadend; i++)
14178 if (i < regno || i >= ourend)
14179 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14182 /* If we didn't find any note, or if we found a REG_DEAD note that
14183 covers only part of the given reg, and we have a multi-reg hard
14184 register, then to be safe we must check for REG_DEAD notes
14185 for each register other than the first. They could have
14186 their own REG_DEAD notes lying around. */
14187 else if ((note == 0
14188 || (note != 0
14189 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14190 GET_MODE (x))))
14191 && regno < FIRST_PSEUDO_REGISTER
14192 && REG_NREGS (x) > 1)
14194 unsigned int ourend = END_REGNO (x);
14195 unsigned int i, offset;
14196 rtx oldnotes = 0;
14198 if (note)
14199 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14200 else
14201 offset = 1;
14203 for (i = regno + offset; i < ourend; i++)
14204 move_deaths (regno_reg_rtx[i],
14205 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14208 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14210 XEXP (note, 1) = *pnotes;
14211 *pnotes = note;
14213 else
14214 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14217 return;
14220 else if (GET_CODE (x) == SET)
14222 rtx dest = SET_DEST (x);
14224 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14226 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14227 that accesses one word of a multi-word item, some
14228 piece of everything register in the expression is used by
14229 this insn, so remove any old death. */
14230 /* ??? So why do we test for equality of the sizes? */
14232 if (GET_CODE (dest) == ZERO_EXTRACT
14233 || GET_CODE (dest) == STRICT_LOW_PART
14234 || (GET_CODE (dest) == SUBREG
14235 && !read_modify_subreg_p (dest)))
14237 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14238 return;
14241 /* If this is some other SUBREG, we know it replaces the entire
14242 value, so use that as the destination. */
14243 if (GET_CODE (dest) == SUBREG)
14244 dest = SUBREG_REG (dest);
14246 /* If this is a MEM, adjust deaths of anything used in the address.
14247 For a REG (the only other possibility), the entire value is
14248 being replaced so the old value is not used in this insn. */
14250 if (MEM_P (dest))
14251 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14252 to_insn, pnotes);
14253 return;
14256 else if (GET_CODE (x) == CLOBBER)
14257 return;
14259 len = GET_RTX_LENGTH (code);
14260 fmt = GET_RTX_FORMAT (code);
14262 for (i = 0; i < len; i++)
14264 if (fmt[i] == 'E')
14266 int j;
14267 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14268 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14269 to_insn, pnotes);
14271 else if (fmt[i] == 'e')
14272 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14276 /* Return true if X is the target of a bit-field assignment in BODY, the
14277 pattern of an insn. X must be a REG. */
14279 static bool
14280 reg_bitfield_target_p (rtx x, rtx body)
14282 int i;
14284 if (GET_CODE (body) == SET)
14286 rtx dest = SET_DEST (body);
14287 rtx target;
14288 unsigned int regno, tregno, endregno, endtregno;
14290 if (GET_CODE (dest) == ZERO_EXTRACT)
14291 target = XEXP (dest, 0);
14292 else if (GET_CODE (dest) == STRICT_LOW_PART)
14293 target = SUBREG_REG (XEXP (dest, 0));
14294 else
14295 return false;
14297 if (GET_CODE (target) == SUBREG)
14298 target = SUBREG_REG (target);
14300 if (!REG_P (target))
14301 return false;
14303 tregno = REGNO (target), regno = REGNO (x);
14304 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14305 return target == x;
14307 endtregno = end_hard_regno (GET_MODE (target), tregno);
14308 endregno = end_hard_regno (GET_MODE (x), regno);
14310 return endregno > tregno && regno < endtregno;
14313 else if (GET_CODE (body) == PARALLEL)
14314 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14315 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14316 return true;
14318 return false;
14321 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14322 as appropriate. I3 and I2 are the insns resulting from the combination
14323 insns including FROM (I2 may be zero).
14325 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14326 not need REG_DEAD notes because they are being substituted for. This
14327 saves searching in the most common cases.
14329 Each note in the list is either ignored or placed on some insns, depending
14330 on the type of note. */
14332 static void
14333 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14334 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14336 rtx note, next_note;
14337 rtx tem_note;
14338 rtx_insn *tem_insn;
14340 for (note = notes; note; note = next_note)
14342 rtx_insn *place = 0, *place2 = 0;
14344 next_note = XEXP (note, 1);
14345 switch (REG_NOTE_KIND (note))
14347 case REG_BR_PROB:
14348 case REG_BR_PRED:
14349 /* Doesn't matter much where we put this, as long as it's somewhere.
14350 It is preferable to keep these notes on branches, which is most
14351 likely to be i3. */
14352 place = i3;
14353 break;
14355 case REG_NON_LOCAL_GOTO:
14356 if (JUMP_P (i3))
14357 place = i3;
14358 else
14360 gcc_assert (i2 && JUMP_P (i2));
14361 place = i2;
14363 break;
14365 case REG_EH_REGION:
14367 /* The landing pad handling needs to be kept in sync with the
14368 prerequisite checking in try_combine. */
14369 int lp_nr = INTVAL (XEXP (note, 0));
14370 /* A REG_EH_REGION note transfering control can only ever come
14371 from i3. */
14372 if (lp_nr > 0)
14373 gcc_assert (from_insn == i3);
14374 /* We are making sure there is a single effective REG_EH_REGION
14375 note and it's valid to put it on i3. */
14376 if (!insn_could_throw_p (from_insn)
14377 && !(lp_nr == INT_MIN && can_nonlocal_goto (from_insn)))
14378 /* Throw away stray notes on insns that can never throw or
14379 make a nonlocal goto. */
14381 else
14383 if (CALL_P (i3))
14384 place = i3;
14385 else
14387 gcc_assert (cfun->can_throw_non_call_exceptions);
14388 /* If i3 can still trap preserve the note, otherwise we've
14389 combined things such that we can now prove that the
14390 instructions can't trap. Drop the note in this case. */
14391 if (may_trap_p (i3))
14392 place = i3;
14395 break;
14398 case REG_ARGS_SIZE:
14399 /* ??? How to distribute between i3-i1. Assume i3 contains the
14400 entire adjustment. Assert i3 contains at least some adjust. */
14401 if (!noop_move_p (i3))
14403 poly_int64 old_size, args_size = get_args_size (note);
14404 /* fixup_args_size_notes looks at REG_NORETURN note,
14405 so ensure the note is placed there first. */
14406 if (CALL_P (i3))
14408 rtx *np;
14409 for (np = &next_note; *np; np = &XEXP (*np, 1))
14410 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14412 rtx n = *np;
14413 *np = XEXP (n, 1);
14414 XEXP (n, 1) = REG_NOTES (i3);
14415 REG_NOTES (i3) = n;
14416 break;
14419 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14420 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14421 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14422 gcc_assert (maybe_ne (old_size, args_size)
14423 || (CALL_P (i3)
14424 && !ACCUMULATE_OUTGOING_ARGS
14425 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14427 break;
14429 case REG_NORETURN:
14430 case REG_SETJMP:
14431 case REG_TM:
14432 case REG_CALL_DECL:
14433 case REG_UNTYPED_CALL:
14434 case REG_CALL_NOCF_CHECK:
14435 /* These notes must remain with the call. It should not be
14436 possible for both I2 and I3 to be a call. */
14437 if (CALL_P (i3))
14438 place = i3;
14439 else
14441 gcc_assert (i2 && CALL_P (i2));
14442 place = i2;
14444 break;
14446 case REG_UNUSED:
14447 /* Any clobbers for i3 may still exist, and so we must process
14448 REG_UNUSED notes from that insn.
14450 Any clobbers from i2 or i1 can only exist if they were added by
14451 recog_for_combine. In that case, recog_for_combine created the
14452 necessary REG_UNUSED notes. Trying to keep any original
14453 REG_UNUSED notes from these insns can cause incorrect output
14454 if it is for the same register as the original i3 dest.
14455 In that case, we will notice that the register is set in i3,
14456 and then add a REG_UNUSED note for the destination of i3, which
14457 is wrong. However, it is possible to have REG_UNUSED notes from
14458 i2 or i1 for register which were both used and clobbered, so
14459 we keep notes from i2 or i1 if they will turn into REG_DEAD
14460 notes. */
14462 /* If this register is set or clobbered between FROM_INSN and I3,
14463 we should not create a note for it. */
14464 if (reg_set_between_p (XEXP (note, 0), from_insn, i3))
14465 break;
14467 /* If this register is set or clobbered in I3, put the note there
14468 unless there is one already. */
14469 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14471 if (from_insn != i3)
14472 break;
14474 if (! (REG_P (XEXP (note, 0))
14475 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14476 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14477 place = i3;
14479 /* Otherwise, if this register is used by I3, then this register
14480 now dies here, so we must put a REG_DEAD note here unless there
14481 is one already. */
14482 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14483 && ! (REG_P (XEXP (note, 0))
14484 ? find_regno_note (i3, REG_DEAD,
14485 REGNO (XEXP (note, 0)))
14486 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14488 PUT_REG_NOTE_KIND (note, REG_DEAD);
14489 place = i3;
14492 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14493 but we can't tell which at this point. We must reset any
14494 expectations we had about the value that was previously
14495 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14496 and, if appropriate, restore its previous value, but we
14497 don't have enough information for that at this point. */
14498 else
14500 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14502 /* Otherwise, if this register is now referenced in i2
14503 then the register used to be modified in one of the
14504 original insns. If it was i3 (say, in an unused
14505 parallel), it's now completely gone, so the note can
14506 be discarded. But if it was modified in i2, i1 or i0
14507 and we still reference it in i2, then we're
14508 referencing the previous value, and since the
14509 register was modified and REG_UNUSED, we know that
14510 the previous value is now dead. So, if we only
14511 reference the register in i2, we change the note to
14512 REG_DEAD, to reflect the previous value. However, if
14513 we're also setting or clobbering the register as
14514 scratch, we know (because the register was not
14515 referenced in i3) that it's unused, just as it was
14516 unused before, and we place the note in i2. */
14517 if (from_insn != i3 && i2 && INSN_P (i2)
14518 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14520 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14521 PUT_REG_NOTE_KIND (note, REG_DEAD);
14522 if (! (REG_P (XEXP (note, 0))
14523 ? find_regno_note (i2, REG_NOTE_KIND (note),
14524 REGNO (XEXP (note, 0)))
14525 : find_reg_note (i2, REG_NOTE_KIND (note),
14526 XEXP (note, 0))))
14527 place = i2;
14531 break;
14533 case REG_EQUAL:
14534 case REG_EQUIV:
14535 case REG_NOALIAS:
14536 /* These notes say something about results of an insn. We can
14537 only support them if they used to be on I3 in which case they
14538 remain on I3. Otherwise they are ignored.
14540 If the note refers to an expression that is not a constant, we
14541 must also ignore the note since we cannot tell whether the
14542 equivalence is still true. It might be possible to do
14543 slightly better than this (we only have a problem if I2DEST
14544 or I1DEST is present in the expression), but it doesn't
14545 seem worth the trouble. */
14547 if (from_insn == i3
14548 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14549 place = i3;
14550 break;
14552 case REG_INC:
14553 /* These notes say something about how a register is used. They must
14554 be present on any use of the register in I2 or I3. */
14555 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14556 place = i3;
14558 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14560 if (place)
14561 place2 = i2;
14562 else
14563 place = i2;
14565 break;
14567 case REG_LABEL_TARGET:
14568 case REG_LABEL_OPERAND:
14569 /* This can show up in several ways -- either directly in the
14570 pattern, or hidden off in the constant pool with (or without?)
14571 a REG_EQUAL note. */
14572 /* ??? Ignore the without-reg_equal-note problem for now. */
14573 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14574 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14575 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14576 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14577 place = i3;
14579 if (i2
14580 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14581 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14582 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14583 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14585 if (place)
14586 place2 = i2;
14587 else
14588 place = i2;
14591 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14592 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14593 there. */
14594 if (place && JUMP_P (place)
14595 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14596 && (JUMP_LABEL (place) == NULL
14597 || JUMP_LABEL (place) == XEXP (note, 0)))
14599 rtx label = JUMP_LABEL (place);
14601 if (!label)
14602 JUMP_LABEL (place) = XEXP (note, 0);
14603 else if (LABEL_P (label))
14604 LABEL_NUSES (label)--;
14607 if (place2 && JUMP_P (place2)
14608 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14609 && (JUMP_LABEL (place2) == NULL
14610 || JUMP_LABEL (place2) == XEXP (note, 0)))
14612 rtx label = JUMP_LABEL (place2);
14614 if (!label)
14615 JUMP_LABEL (place2) = XEXP (note, 0);
14616 else if (LABEL_P (label))
14617 LABEL_NUSES (label)--;
14618 place2 = 0;
14620 break;
14622 case REG_NONNEG:
14623 /* This note says something about the value of a register prior
14624 to the execution of an insn. It is too much trouble to see
14625 if the note is still correct in all situations. It is better
14626 to simply delete it. */
14627 break;
14629 case REG_DEAD:
14630 /* If we replaced the right hand side of FROM_INSN with a
14631 REG_EQUAL note, the original use of the dying register
14632 will not have been combined into I3 and I2. In such cases,
14633 FROM_INSN is guaranteed to be the first of the combined
14634 instructions, so we simply need to search back before
14635 FROM_INSN for the previous use or set of this register,
14636 then alter the notes there appropriately.
14638 If the register is used as an input in I3, it dies there.
14639 Similarly for I2, if it is nonzero and adjacent to I3.
14641 If the register is not used as an input in either I3 or I2
14642 and it is not one of the registers we were supposed to eliminate,
14643 there are two possibilities. We might have a non-adjacent I2
14644 or we might have somehow eliminated an additional register
14645 from a computation. For example, we might have had A & B where
14646 we discover that B will always be zero. In this case we will
14647 eliminate the reference to A.
14649 In both cases, we must search to see if we can find a previous
14650 use of A and put the death note there. */
14652 if (from_insn
14653 && from_insn == i2mod
14654 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14655 tem_insn = from_insn;
14656 else
14658 if (from_insn
14659 && CALL_P (from_insn)
14660 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14661 place = from_insn;
14662 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14664 /* If the new I2 sets the same register that is marked
14665 dead in the note, we do not in general know where to
14666 put the note. One important case we _can_ handle is
14667 when the note comes from I3. */
14668 if (from_insn == i3)
14669 place = i3;
14670 else
14671 break;
14673 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14674 place = i3;
14675 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14676 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14677 place = i2;
14678 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14679 && !(i2mod
14680 && reg_overlap_mentioned_p (XEXP (note, 0),
14681 i2mod_old_rhs)))
14682 || rtx_equal_p (XEXP (note, 0), elim_i1)
14683 || rtx_equal_p (XEXP (note, 0), elim_i0))
14684 break;
14685 tem_insn = i3;
14688 if (place == 0)
14690 basic_block bb = this_basic_block;
14692 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14694 if (!NONDEBUG_INSN_P (tem_insn))
14696 if (tem_insn == BB_HEAD (bb))
14697 break;
14698 continue;
14701 /* If the register is being set at TEM_INSN, see if that is all
14702 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14703 into a REG_UNUSED note instead. Don't delete sets to
14704 global register vars. */
14705 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14706 || !global_regs[REGNO (XEXP (note, 0))])
14707 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14709 rtx set = single_set (tem_insn);
14710 rtx inner_dest = 0;
14712 if (set != 0)
14713 for (inner_dest = SET_DEST (set);
14714 (GET_CODE (inner_dest) == STRICT_LOW_PART
14715 || GET_CODE (inner_dest) == SUBREG
14716 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14717 inner_dest = XEXP (inner_dest, 0))
14720 /* Verify that it was the set, and not a clobber that
14721 modified the register.
14723 If we cannot delete the setter due to side
14724 effects, mark the user with an UNUSED note instead
14725 of deleting it. */
14727 if (set != 0 && ! side_effects_p (SET_SRC (set))
14728 && rtx_equal_p (XEXP (note, 0), inner_dest))
14730 /* Move the notes and links of TEM_INSN elsewhere.
14731 This might delete other dead insns recursively.
14732 First set the pattern to something that won't use
14733 any register. */
14734 rtx old_notes = REG_NOTES (tem_insn);
14736 PATTERN (tem_insn) = pc_rtx;
14737 REG_NOTES (tem_insn) = NULL;
14739 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14740 NULL_RTX, NULL_RTX, NULL_RTX);
14741 distribute_links (LOG_LINKS (tem_insn));
14743 unsigned int regno = REGNO (XEXP (note, 0));
14744 reg_stat_type *rsp = &reg_stat[regno];
14745 if (rsp->last_set == tem_insn)
14746 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14748 SET_INSN_DELETED (tem_insn);
14749 if (tem_insn == i2)
14750 i2 = NULL;
14752 else
14754 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14756 /* If there isn't already a REG_UNUSED note, put one
14757 here. Do not place a REG_DEAD note, even if
14758 the register is also used here; that would not
14759 match the algorithm used in lifetime analysis
14760 and can cause the consistency check in the
14761 scheduler to fail. */
14762 if (! find_regno_note (tem_insn, REG_UNUSED,
14763 REGNO (XEXP (note, 0))))
14764 place = tem_insn;
14765 break;
14768 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14769 || (CALL_P (tem_insn)
14770 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14772 place = tem_insn;
14774 /* If we are doing a 3->2 combination, and we have a
14775 register which formerly died in i3 and was not used
14776 by i2, which now no longer dies in i3 and is used in
14777 i2 but does not die in i2, and place is between i2
14778 and i3, then we may need to move a link from place to
14779 i2. */
14780 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14781 && from_insn
14782 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14783 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14785 struct insn_link *links = LOG_LINKS (place);
14786 LOG_LINKS (place) = NULL;
14787 distribute_links (links);
14789 break;
14792 if (tem_insn == BB_HEAD (bb))
14793 break;
14798 /* If the register is set or already dead at PLACE, we needn't do
14799 anything with this note if it is still a REG_DEAD note.
14800 We check here if it is set at all, not if is it totally replaced,
14801 which is what `dead_or_set_p' checks, so also check for it being
14802 set partially. */
14804 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14806 unsigned int regno = REGNO (XEXP (note, 0));
14807 reg_stat_type *rsp = &reg_stat[regno];
14809 if (dead_or_set_p (place, XEXP (note, 0))
14810 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14812 /* Unless the register previously died in PLACE, clear
14813 last_death. [I no longer understand why this is
14814 being done.] */
14815 if (rsp->last_death != place)
14816 rsp->last_death = 0;
14817 place = 0;
14819 else
14820 rsp->last_death = place;
14822 /* If this is a death note for a hard reg that is occupying
14823 multiple registers, ensure that we are still using all
14824 parts of the object. If we find a piece of the object
14825 that is unused, we must arrange for an appropriate REG_DEAD
14826 note to be added for it. However, we can't just emit a USE
14827 and tag the note to it, since the register might actually
14828 be dead; so we recourse, and the recursive call then finds
14829 the previous insn that used this register. */
14831 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14833 unsigned int endregno = END_REGNO (XEXP (note, 0));
14834 bool all_used = true;
14835 unsigned int i;
14837 for (i = regno; i < endregno; i++)
14838 if ((! refers_to_regno_p (i, PATTERN (place))
14839 && ! find_regno_fusage (place, USE, i))
14840 || dead_or_set_regno_p (place, i))
14842 all_used = false;
14843 break;
14846 if (! all_used)
14848 /* Put only REG_DEAD notes for pieces that are
14849 not already dead or set. */
14851 for (i = regno; i < endregno;
14852 i += hard_regno_nregs (i, reg_raw_mode[i]))
14854 rtx piece = regno_reg_rtx[i];
14855 basic_block bb = this_basic_block;
14857 if (! dead_or_set_p (place, piece)
14858 && ! reg_bitfield_target_p (piece,
14859 PATTERN (place)))
14861 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14862 NULL_RTX);
14864 distribute_notes (new_note, place, place,
14865 NULL, NULL_RTX, NULL_RTX,
14866 NULL_RTX);
14868 else if (! refers_to_regno_p (i, PATTERN (place))
14869 && ! find_regno_fusage (place, USE, i))
14870 for (tem_insn = PREV_INSN (place); ;
14871 tem_insn = PREV_INSN (tem_insn))
14873 if (!NONDEBUG_INSN_P (tem_insn))
14875 if (tem_insn == BB_HEAD (bb))
14876 break;
14877 continue;
14879 if (dead_or_set_p (tem_insn, piece)
14880 || reg_bitfield_target_p (piece,
14881 PATTERN (tem_insn)))
14883 add_reg_note (tem_insn, REG_UNUSED, piece);
14884 break;
14889 place = 0;
14893 break;
14895 default:
14896 /* Any other notes should not be present at this point in the
14897 compilation. */
14898 gcc_unreachable ();
14901 if (place)
14903 XEXP (note, 1) = REG_NOTES (place);
14904 REG_NOTES (place) = note;
14906 /* Set added_notes_insn to the earliest insn we added a note to. */
14907 if (added_notes_insn == 0
14908 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14909 added_notes_insn = place;
14912 if (place2)
14914 add_shallow_copy_of_reg_note (place2, note);
14916 /* Set added_notes_insn to the earliest insn we added a note to. */
14917 if (added_notes_insn == 0
14918 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14919 added_notes_insn = place2;
14924 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14925 I3, I2, and I1 to new locations. This is also called to add a link
14926 pointing at I3 when I3's destination is changed. */
14928 static void
14929 distribute_links (struct insn_link *links)
14931 struct insn_link *link, *next_link;
14933 for (link = links; link; link = next_link)
14935 rtx_insn *place = 0;
14936 rtx_insn *insn;
14937 rtx set, reg;
14939 next_link = link->next;
14941 /* If the insn that this link points to is a NOTE, ignore it. */
14942 if (NOTE_P (link->insn))
14943 continue;
14945 set = 0;
14946 rtx pat = PATTERN (link->insn);
14947 if (GET_CODE (pat) == SET)
14948 set = pat;
14949 else if (GET_CODE (pat) == PARALLEL)
14951 int i;
14952 for (i = 0; i < XVECLEN (pat, 0); i++)
14954 set = XVECEXP (pat, 0, i);
14955 if (GET_CODE (set) != SET)
14956 continue;
14958 reg = SET_DEST (set);
14959 while (GET_CODE (reg) == ZERO_EXTRACT
14960 || GET_CODE (reg) == STRICT_LOW_PART
14961 || GET_CODE (reg) == SUBREG)
14962 reg = XEXP (reg, 0);
14964 if (!REG_P (reg))
14965 continue;
14967 if (REGNO (reg) == link->regno)
14968 break;
14970 if (i == XVECLEN (pat, 0))
14971 continue;
14973 else
14974 continue;
14976 reg = SET_DEST (set);
14978 while (GET_CODE (reg) == ZERO_EXTRACT
14979 || GET_CODE (reg) == STRICT_LOW_PART
14980 || GET_CODE (reg) == SUBREG)
14981 reg = XEXP (reg, 0);
14983 if (reg == pc_rtx)
14984 continue;
14986 /* A LOG_LINK is defined as being placed on the first insn that uses
14987 a register and points to the insn that sets the register. Start
14988 searching at the next insn after the target of the link and stop
14989 when we reach a set of the register or the end of the basic block.
14991 Note that this correctly handles the link that used to point from
14992 I3 to I2. Also note that not much searching is typically done here
14993 since most links don't point very far away. */
14995 for (insn = NEXT_INSN (link->insn);
14996 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14997 || BB_HEAD (this_basic_block->next_bb) != insn));
14998 insn = NEXT_INSN (insn))
14999 if (DEBUG_INSN_P (insn))
15000 continue;
15001 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
15003 if (reg_referenced_p (reg, PATTERN (insn)))
15004 place = insn;
15005 break;
15007 else if (CALL_P (insn)
15008 && find_reg_fusage (insn, USE, reg))
15010 place = insn;
15011 break;
15013 else if (INSN_P (insn) && reg_set_p (reg, insn))
15014 break;
15016 /* If we found a place to put the link, place it there unless there
15017 is already a link to the same insn as LINK at that point. */
15019 if (place)
15021 struct insn_link *link2;
15023 FOR_EACH_LOG_LINK (link2, place)
15024 if (link2->insn == link->insn && link2->regno == link->regno)
15025 break;
15027 if (link2 == NULL)
15029 link->next = LOG_LINKS (place);
15030 LOG_LINKS (place) = link;
15032 /* Set added_links_insn to the earliest insn we added a
15033 link to. */
15034 if (added_links_insn == 0
15035 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
15036 added_links_insn = place;
15042 /* Check for any register or memory mentioned in EQUIV that is not
15043 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
15044 of EXPR where some registers may have been replaced by constants. */
15046 static bool
15047 unmentioned_reg_p (rtx equiv, rtx expr)
15049 subrtx_iterator::array_type array;
15050 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
15052 const_rtx x = *iter;
15053 if ((REG_P (x) || MEM_P (x))
15054 && !reg_mentioned_p (x, expr))
15055 return true;
15057 return false;
15060 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15061 the reg-to-reg copy can usefully combine with later instructions, but we
15062 do not want to combine the hard reg into later instructions, for that
15063 restricts register allocation. */
15064 static void
15065 make_more_copies (void)
15067 basic_block bb;
15069 FOR_EACH_BB_FN (bb, cfun)
15071 rtx_insn *insn;
15073 FOR_BB_INSNS (bb, insn)
15075 if (!NONDEBUG_INSN_P (insn))
15076 continue;
15078 rtx set = single_set (insn);
15079 if (!set)
15080 continue;
15082 rtx dest = SET_DEST (set);
15083 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15084 continue;
15086 rtx src = SET_SRC (set);
15087 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15088 continue;
15089 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15090 continue;
15092 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15093 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15094 SET_SRC (set) = new_reg;
15095 emit_insn_before (new_insn, insn);
15096 df_insn_rescan (insn);
15101 /* Try combining insns through substitution. */
15102 static void
15103 rest_of_handle_combine (void)
15105 make_more_copies ();
15107 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15108 df_note_add_problem ();
15109 df_analyze ();
15111 regstat_init_n_sets_and_refs ();
15112 reg_n_sets_max = max_reg_num ();
15114 bool rebuild_jump_labels_after_combine
15115 = combine_instructions (get_insns (), max_reg_num ());
15117 /* Combining insns may have turned an indirect jump into a
15118 direct jump. Rebuild the JUMP_LABEL fields of jumping
15119 instructions. */
15120 if (rebuild_jump_labels_after_combine)
15122 if (dom_info_available_p (CDI_DOMINATORS))
15123 free_dominance_info (CDI_DOMINATORS);
15124 timevar_push (TV_JUMP);
15125 rebuild_jump_labels (get_insns ());
15126 cleanup_cfg (0);
15127 timevar_pop (TV_JUMP);
15130 regstat_free_n_sets_and_refs ();
15133 namespace {
15135 const pass_data pass_data_combine =
15137 RTL_PASS, /* type */
15138 "combine", /* name */
15139 OPTGROUP_NONE, /* optinfo_flags */
15140 TV_COMBINE, /* tv_id */
15141 PROP_cfglayout, /* properties_required */
15142 0, /* properties_provided */
15143 0, /* properties_destroyed */
15144 0, /* todo_flags_start */
15145 TODO_df_finish, /* todo_flags_finish */
15148 class pass_combine : public rtl_opt_pass
15150 public:
15151 pass_combine (gcc::context *ctxt)
15152 : rtl_opt_pass (pass_data_combine, ctxt)
15155 /* opt_pass methods: */
15156 bool gate (function *) final override { return (optimize > 0); }
15157 unsigned int execute (function *) final override
15159 rest_of_handle_combine ();
15160 return 0;
15163 }; // class pass_combine
15165 } // anon namespace
15167 rtl_opt_pass *
15168 make_pass_combine (gcc::context *ctxt)
15170 return new pass_combine (ctxt);