Pass name cleanups
[official-gcc.git] / gcc / fold-const.c
blob9a3f8cb0fecf5c0c788b0388ad9fdac286675fdf
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide and size_binop.
32 fold takes a tree as argument and returns a simplified tree.
34 size_binop takes a tree code for an arithmetic operation
35 and two operands that are trees, and produces a tree for the
36 result, assuming the type comes from `sizetype'.
38 size_int takes an integer value, and creates a tree constant
39 with type from `sizetype'.
41 Note: Since the folders get called on non-gimple code as well as
42 gimple code, we need to handle GIMPLE tuples as well as their
43 corresponding tree equivalents. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "realmpfr.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "target.h"
56 #include "diagnostic-core.h"
57 #include "intl.h"
58 #include "ggc.h"
59 #include "hashtab.h"
60 #include "langhooks.h"
61 #include "md5.h"
62 #include "gimple.h"
63 #include "tree-flow.h"
65 /* Nonzero if we are folding constants inside an initializer; zero
66 otherwise. */
67 int folding_initializer = 0;
69 /* The following constants represent a bit based encoding of GCC's
70 comparison operators. This encoding simplifies transformations
71 on relational comparison operators, such as AND and OR. */
72 enum comparison_code {
73 COMPCODE_FALSE = 0,
74 COMPCODE_LT = 1,
75 COMPCODE_EQ = 2,
76 COMPCODE_LE = 3,
77 COMPCODE_GT = 4,
78 COMPCODE_LTGT = 5,
79 COMPCODE_GE = 6,
80 COMPCODE_ORD = 7,
81 COMPCODE_UNORD = 8,
82 COMPCODE_UNLT = 9,
83 COMPCODE_UNEQ = 10,
84 COMPCODE_UNLE = 11,
85 COMPCODE_UNGT = 12,
86 COMPCODE_NE = 13,
87 COMPCODE_UNGE = 14,
88 COMPCODE_TRUE = 15
91 static bool negate_mathfn_p (enum built_in_function);
92 static bool negate_expr_p (tree);
93 static tree negate_expr (tree);
94 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
95 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
96 static tree const_binop (enum tree_code, tree, tree);
97 static enum comparison_code comparison_to_compcode (enum tree_code);
98 static enum tree_code compcode_to_comparison (enum comparison_code);
99 static int operand_equal_for_comparison_p (tree, tree, tree);
100 static int twoval_comparison_p (tree, tree *, tree *, int *);
101 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
102 static tree pedantic_omit_one_operand_loc (location_t, tree, tree, tree);
103 static tree distribute_bit_expr (location_t, enum tree_code, tree, tree, tree);
104 static tree make_bit_field_ref (location_t, tree, tree,
105 HOST_WIDE_INT, HOST_WIDE_INT, int);
106 static tree optimize_bit_field_compare (location_t, enum tree_code,
107 tree, tree, tree);
108 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
109 HOST_WIDE_INT *,
110 enum machine_mode *, int *, int *,
111 tree *, tree *);
112 static int all_ones_mask_p (const_tree, int);
113 static tree sign_bit_p (tree, const_tree);
114 static int simple_operand_p (const_tree);
115 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
116 static tree range_predecessor (tree);
117 static tree range_successor (tree);
118 extern tree make_range (tree, int *, tree *, tree *, bool *);
119 extern bool merge_ranges (int *, tree *, tree *, int, tree, tree, int,
120 tree, tree);
121 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
122 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
123 static tree unextend (tree, int, int, tree);
124 static tree fold_truthop (location_t, enum tree_code, tree, tree, tree);
125 static tree optimize_minmax_comparison (location_t, enum tree_code,
126 tree, tree, tree);
127 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
128 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
129 static tree fold_binary_op_with_conditional_arg (location_t,
130 enum tree_code, tree,
131 tree, tree,
132 tree, tree, int);
133 static tree fold_mathfn_compare (location_t,
134 enum built_in_function, enum tree_code,
135 tree, tree, tree);
136 static tree fold_inf_compare (location_t, enum tree_code, tree, tree, tree);
137 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
138 static bool reorder_operands_p (const_tree, const_tree);
139 static tree fold_negate_const (tree, tree);
140 static tree fold_not_const (const_tree, tree);
141 static tree fold_relational_const (enum tree_code, tree, tree, tree);
142 static tree fold_convert_const (enum tree_code, tree, tree);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
147 static location_t
148 expr_location_or (tree t, location_t loc)
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc != UNKNOWN_LOCATION ? tloc : loc;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
169 return x;
173 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
174 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
175 and SUM1. Then this yields nonzero if overflow occurred during the
176 addition.
178 Overflow occurs if A and B have the same sign, but A and SUM differ in
179 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
180 sign. */
181 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
183 /* If ARG2 divides ARG1 with zero remainder, carries out the division
184 of type CODE and returns the quotient.
185 Otherwise returns NULL_TREE. */
187 tree
188 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
190 double_int quo, rem;
191 int uns;
193 /* The sign of the division is according to operand two, that
194 does the correct thing for POINTER_PLUS_EXPR where we want
195 a signed division. */
196 uns = TYPE_UNSIGNED (TREE_TYPE (arg2));
197 if (TREE_CODE (TREE_TYPE (arg2)) == INTEGER_TYPE
198 && TYPE_IS_SIZETYPE (TREE_TYPE (arg2)))
199 uns = false;
201 quo = double_int_divmod (tree_to_double_int (arg1),
202 tree_to_double_int (arg2),
203 uns, code, &rem);
205 if (double_int_zero_p (rem))
206 return build_int_cst_wide (TREE_TYPE (arg1), quo.low, quo.high);
208 return NULL_TREE;
211 /* This is nonzero if we should defer warnings about undefined
212 overflow. This facility exists because these warnings are a
213 special case. The code to estimate loop iterations does not want
214 to issue any warnings, since it works with expressions which do not
215 occur in user code. Various bits of cleanup code call fold(), but
216 only use the result if it has certain characteristics (e.g., is a
217 constant); that code only wants to issue a warning if the result is
218 used. */
220 static int fold_deferring_overflow_warnings;
222 /* If a warning about undefined overflow is deferred, this is the
223 warning. Note that this may cause us to turn two warnings into
224 one, but that is fine since it is sufficient to only give one
225 warning per expression. */
227 static const char* fold_deferred_overflow_warning;
229 /* If a warning about undefined overflow is deferred, this is the
230 level at which the warning should be emitted. */
232 static enum warn_strict_overflow_code fold_deferred_overflow_code;
234 /* Start deferring overflow warnings. We could use a stack here to
235 permit nested calls, but at present it is not necessary. */
237 void
238 fold_defer_overflow_warnings (void)
240 ++fold_deferring_overflow_warnings;
243 /* Stop deferring overflow warnings. If there is a pending warning,
244 and ISSUE is true, then issue the warning if appropriate. STMT is
245 the statement with which the warning should be associated (used for
246 location information); STMT may be NULL. CODE is the level of the
247 warning--a warn_strict_overflow_code value. This function will use
248 the smaller of CODE and the deferred code when deciding whether to
249 issue the warning. CODE may be zero to mean to always use the
250 deferred code. */
252 void
253 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
255 const char *warnmsg;
256 location_t locus;
258 gcc_assert (fold_deferring_overflow_warnings > 0);
259 --fold_deferring_overflow_warnings;
260 if (fold_deferring_overflow_warnings > 0)
262 if (fold_deferred_overflow_warning != NULL
263 && code != 0
264 && code < (int) fold_deferred_overflow_code)
265 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
266 return;
269 warnmsg = fold_deferred_overflow_warning;
270 fold_deferred_overflow_warning = NULL;
272 if (!issue || warnmsg == NULL)
273 return;
275 if (gimple_no_warning_p (stmt))
276 return;
278 /* Use the smallest code level when deciding to issue the
279 warning. */
280 if (code == 0 || code > (int) fold_deferred_overflow_code)
281 code = fold_deferred_overflow_code;
283 if (!issue_strict_overflow_warning (code))
284 return;
286 if (stmt == NULL)
287 locus = input_location;
288 else
289 locus = gimple_location (stmt);
290 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
293 /* Stop deferring overflow warnings, ignoring any deferred
294 warnings. */
296 void
297 fold_undefer_and_ignore_overflow_warnings (void)
299 fold_undefer_overflow_warnings (false, NULL, 0);
302 /* Whether we are deferring overflow warnings. */
304 bool
305 fold_deferring_overflow_warnings_p (void)
307 return fold_deferring_overflow_warnings > 0;
310 /* This is called when we fold something based on the fact that signed
311 overflow is undefined. */
313 static void
314 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
316 if (fold_deferring_overflow_warnings > 0)
318 if (fold_deferred_overflow_warning == NULL
319 || wc < fold_deferred_overflow_code)
321 fold_deferred_overflow_warning = gmsgid;
322 fold_deferred_overflow_code = wc;
325 else if (issue_strict_overflow_warning (wc))
326 warning (OPT_Wstrict_overflow, gmsgid);
329 /* Return true if the built-in mathematical function specified by CODE
330 is odd, i.e. -f(x) == f(-x). */
332 static bool
333 negate_mathfn_p (enum built_in_function code)
335 switch (code)
337 CASE_FLT_FN (BUILT_IN_ASIN):
338 CASE_FLT_FN (BUILT_IN_ASINH):
339 CASE_FLT_FN (BUILT_IN_ATAN):
340 CASE_FLT_FN (BUILT_IN_ATANH):
341 CASE_FLT_FN (BUILT_IN_CASIN):
342 CASE_FLT_FN (BUILT_IN_CASINH):
343 CASE_FLT_FN (BUILT_IN_CATAN):
344 CASE_FLT_FN (BUILT_IN_CATANH):
345 CASE_FLT_FN (BUILT_IN_CBRT):
346 CASE_FLT_FN (BUILT_IN_CPROJ):
347 CASE_FLT_FN (BUILT_IN_CSIN):
348 CASE_FLT_FN (BUILT_IN_CSINH):
349 CASE_FLT_FN (BUILT_IN_CTAN):
350 CASE_FLT_FN (BUILT_IN_CTANH):
351 CASE_FLT_FN (BUILT_IN_ERF):
352 CASE_FLT_FN (BUILT_IN_LLROUND):
353 CASE_FLT_FN (BUILT_IN_LROUND):
354 CASE_FLT_FN (BUILT_IN_ROUND):
355 CASE_FLT_FN (BUILT_IN_SIN):
356 CASE_FLT_FN (BUILT_IN_SINH):
357 CASE_FLT_FN (BUILT_IN_TAN):
358 CASE_FLT_FN (BUILT_IN_TANH):
359 CASE_FLT_FN (BUILT_IN_TRUNC):
360 return true;
362 CASE_FLT_FN (BUILT_IN_LLRINT):
363 CASE_FLT_FN (BUILT_IN_LRINT):
364 CASE_FLT_FN (BUILT_IN_NEARBYINT):
365 CASE_FLT_FN (BUILT_IN_RINT):
366 return !flag_rounding_math;
368 default:
369 break;
371 return false;
374 /* Check whether we may negate an integer constant T without causing
375 overflow. */
377 bool
378 may_negate_without_overflow_p (const_tree t)
380 unsigned HOST_WIDE_INT val;
381 unsigned int prec;
382 tree type;
384 gcc_assert (TREE_CODE (t) == INTEGER_CST);
386 type = TREE_TYPE (t);
387 if (TYPE_UNSIGNED (type))
388 return false;
390 prec = TYPE_PRECISION (type);
391 if (prec > HOST_BITS_PER_WIDE_INT)
393 if (TREE_INT_CST_LOW (t) != 0)
394 return true;
395 prec -= HOST_BITS_PER_WIDE_INT;
396 val = TREE_INT_CST_HIGH (t);
398 else
399 val = TREE_INT_CST_LOW (t);
400 if (prec < HOST_BITS_PER_WIDE_INT)
401 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
402 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
405 /* Determine whether an expression T can be cheaply negated using
406 the function negate_expr without introducing undefined overflow. */
408 static bool
409 negate_expr_p (tree t)
411 tree type;
413 if (t == 0)
414 return false;
416 type = TREE_TYPE (t);
418 STRIP_SIGN_NOPS (t);
419 switch (TREE_CODE (t))
421 case INTEGER_CST:
422 if (TYPE_OVERFLOW_WRAPS (type))
423 return true;
425 /* Check that -CST will not overflow type. */
426 return may_negate_without_overflow_p (t);
427 case BIT_NOT_EXPR:
428 return (INTEGRAL_TYPE_P (type)
429 && TYPE_OVERFLOW_WRAPS (type));
431 case FIXED_CST:
432 case NEGATE_EXPR:
433 return true;
435 case REAL_CST:
436 /* We want to canonicalize to positive real constants. Pretend
437 that only negative ones can be easily negated. */
438 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
440 case COMPLEX_CST:
441 return negate_expr_p (TREE_REALPART (t))
442 && negate_expr_p (TREE_IMAGPART (t));
444 case COMPLEX_EXPR:
445 return negate_expr_p (TREE_OPERAND (t, 0))
446 && negate_expr_p (TREE_OPERAND (t, 1));
448 case CONJ_EXPR:
449 return negate_expr_p (TREE_OPERAND (t, 0));
451 case PLUS_EXPR:
452 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
453 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
454 return false;
455 /* -(A + B) -> (-B) - A. */
456 if (negate_expr_p (TREE_OPERAND (t, 1))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1)))
459 return true;
460 /* -(A + B) -> (-A) - B. */
461 return negate_expr_p (TREE_OPERAND (t, 0));
463 case MINUS_EXPR:
464 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
465 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
466 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
467 && reorder_operands_p (TREE_OPERAND (t, 0),
468 TREE_OPERAND (t, 1));
470 case MULT_EXPR:
471 if (TYPE_UNSIGNED (TREE_TYPE (t)))
472 break;
474 /* Fall through. */
476 case RDIV_EXPR:
477 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
478 return negate_expr_p (TREE_OPERAND (t, 1))
479 || negate_expr_p (TREE_OPERAND (t, 0));
480 break;
482 case TRUNC_DIV_EXPR:
483 case ROUND_DIV_EXPR:
484 case FLOOR_DIV_EXPR:
485 case CEIL_DIV_EXPR:
486 case EXACT_DIV_EXPR:
487 /* In general we can't negate A / B, because if A is INT_MIN and
488 B is 1, we may turn this into INT_MIN / -1 which is undefined
489 and actually traps on some architectures. But if overflow is
490 undefined, we can negate, because - (INT_MIN / 1) is an
491 overflow. */
492 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
493 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
494 break;
495 return negate_expr_p (TREE_OPERAND (t, 1))
496 || negate_expr_p (TREE_OPERAND (t, 0));
498 case NOP_EXPR:
499 /* Negate -((double)float) as (double)(-float). */
500 if (TREE_CODE (type) == REAL_TYPE)
502 tree tem = strip_float_extensions (t);
503 if (tem != t)
504 return negate_expr_p (tem);
506 break;
508 case CALL_EXPR:
509 /* Negate -f(x) as f(-x). */
510 if (negate_mathfn_p (builtin_mathfn_code (t)))
511 return negate_expr_p (CALL_EXPR_ARG (t, 0));
512 break;
514 case RSHIFT_EXPR:
515 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
516 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
518 tree op1 = TREE_OPERAND (t, 1);
519 if (TREE_INT_CST_HIGH (op1) == 0
520 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
521 == TREE_INT_CST_LOW (op1))
522 return true;
524 break;
526 default:
527 break;
529 return false;
532 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
533 simplification is possible.
534 If negate_expr_p would return true for T, NULL_TREE will never be
535 returned. */
537 static tree
538 fold_negate_expr (location_t loc, tree t)
540 tree type = TREE_TYPE (t);
541 tree tem;
543 switch (TREE_CODE (t))
545 /* Convert - (~A) to A + 1. */
546 case BIT_NOT_EXPR:
547 if (INTEGRAL_TYPE_P (type))
548 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
549 build_int_cst (type, 1));
550 break;
552 case INTEGER_CST:
553 tem = fold_negate_const (t, type);
554 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
555 || !TYPE_OVERFLOW_TRAPS (type))
556 return tem;
557 break;
559 case REAL_CST:
560 tem = fold_negate_const (t, type);
561 /* Two's complement FP formats, such as c4x, may overflow. */
562 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
563 return tem;
564 break;
566 case FIXED_CST:
567 tem = fold_negate_const (t, type);
568 return tem;
570 case COMPLEX_CST:
572 tree rpart = negate_expr (TREE_REALPART (t));
573 tree ipart = negate_expr (TREE_IMAGPART (t));
575 if ((TREE_CODE (rpart) == REAL_CST
576 && TREE_CODE (ipart) == REAL_CST)
577 || (TREE_CODE (rpart) == INTEGER_CST
578 && TREE_CODE (ipart) == INTEGER_CST))
579 return build_complex (type, rpart, ipart);
581 break;
583 case COMPLEX_EXPR:
584 if (negate_expr_p (t))
585 return fold_build2_loc (loc, COMPLEX_EXPR, type,
586 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
587 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
588 break;
590 case CONJ_EXPR:
591 if (negate_expr_p (t))
592 return fold_build1_loc (loc, CONJ_EXPR, type,
593 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
594 break;
596 case NEGATE_EXPR:
597 return TREE_OPERAND (t, 0);
599 case PLUS_EXPR:
600 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
601 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
603 /* -(A + B) -> (-B) - A. */
604 if (negate_expr_p (TREE_OPERAND (t, 1))
605 && reorder_operands_p (TREE_OPERAND (t, 0),
606 TREE_OPERAND (t, 1)))
608 tem = negate_expr (TREE_OPERAND (t, 1));
609 return fold_build2_loc (loc, MINUS_EXPR, type,
610 tem, TREE_OPERAND (t, 0));
613 /* -(A + B) -> (-A) - B. */
614 if (negate_expr_p (TREE_OPERAND (t, 0)))
616 tem = negate_expr (TREE_OPERAND (t, 0));
617 return fold_build2_loc (loc, MINUS_EXPR, type,
618 tem, TREE_OPERAND (t, 1));
621 break;
623 case MINUS_EXPR:
624 /* - (A - B) -> B - A */
625 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
626 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
627 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
628 return fold_build2_loc (loc, MINUS_EXPR, type,
629 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
630 break;
632 case MULT_EXPR:
633 if (TYPE_UNSIGNED (type))
634 break;
636 /* Fall through. */
638 case RDIV_EXPR:
639 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
641 tem = TREE_OPERAND (t, 1);
642 if (negate_expr_p (tem))
643 return fold_build2_loc (loc, TREE_CODE (t), type,
644 TREE_OPERAND (t, 0), negate_expr (tem));
645 tem = TREE_OPERAND (t, 0);
646 if (negate_expr_p (tem))
647 return fold_build2_loc (loc, TREE_CODE (t), type,
648 negate_expr (tem), TREE_OPERAND (t, 1));
650 break;
652 case TRUNC_DIV_EXPR:
653 case ROUND_DIV_EXPR:
654 case FLOOR_DIV_EXPR:
655 case CEIL_DIV_EXPR:
656 case EXACT_DIV_EXPR:
657 /* In general we can't negate A / B, because if A is INT_MIN and
658 B is 1, we may turn this into INT_MIN / -1 which is undefined
659 and actually traps on some architectures. But if overflow is
660 undefined, we can negate, because - (INT_MIN / 1) is an
661 overflow. */
662 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
664 const char * const warnmsg = G_("assuming signed overflow does not "
665 "occur when negating a division");
666 tem = TREE_OPERAND (t, 1);
667 if (negate_expr_p (tem))
669 if (INTEGRAL_TYPE_P (type)
670 && (TREE_CODE (tem) != INTEGER_CST
671 || integer_onep (tem)))
672 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
673 return fold_build2_loc (loc, TREE_CODE (t), type,
674 TREE_OPERAND (t, 0), negate_expr (tem));
676 tem = TREE_OPERAND (t, 0);
677 if (negate_expr_p (tem))
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 negate_expr (tem), TREE_OPERAND (t, 1));
687 break;
689 case NOP_EXPR:
690 /* Convert -((double)float) into (double)(-float). */
691 if (TREE_CODE (type) == REAL_TYPE)
693 tem = strip_float_extensions (t);
694 if (tem != t && negate_expr_p (tem))
695 return fold_convert_loc (loc, type, negate_expr (tem));
697 break;
699 case CALL_EXPR:
700 /* Negate -f(x) as f(-x). */
701 if (negate_mathfn_p (builtin_mathfn_code (t))
702 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
704 tree fndecl, arg;
706 fndecl = get_callee_fndecl (t);
707 arg = negate_expr (CALL_EXPR_ARG (t, 0));
708 return build_call_expr_loc (loc, fndecl, 1, arg);
710 break;
712 case RSHIFT_EXPR:
713 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
714 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
716 tree op1 = TREE_OPERAND (t, 1);
717 if (TREE_INT_CST_HIGH (op1) == 0
718 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
719 == TREE_INT_CST_LOW (op1))
721 tree ntype = TYPE_UNSIGNED (type)
722 ? signed_type_for (type)
723 : unsigned_type_for (type);
724 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
725 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
726 return fold_convert_loc (loc, type, temp);
729 break;
731 default:
732 break;
735 return NULL_TREE;
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
740 return NULL_TREE. */
742 static tree
743 negate_expr (tree t)
745 tree type, tem;
746 location_t loc;
748 if (t == NULL_TREE)
749 return NULL_TREE;
751 loc = EXPR_LOCATION (t);
752 type = TREE_TYPE (t);
753 STRIP_SIGN_NOPS (t);
755 tem = fold_negate_expr (loc, t);
756 if (!tem)
757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
758 return fold_convert_loc (loc, type, tem);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead.
776 If IN is itself a literal or constant, return it as appropriate.
778 Note that we do not guarantee that any of the three values will be the
779 same type as IN, but they will have the same signedness and mode. */
781 static tree
782 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
783 tree *minus_litp, int negate_p)
785 tree var = 0;
787 *conp = 0;
788 *litp = 0;
789 *minus_litp = 0;
791 /* Strip any conversions that don't change the machine mode or signedness. */
792 STRIP_SIGN_NOPS (in);
794 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
795 || TREE_CODE (in) == FIXED_CST)
796 *litp = in;
797 else if (TREE_CODE (in) == code
798 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
799 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
800 /* We can associate addition and subtraction together (even
801 though the C standard doesn't say so) for integers because
802 the value is not affected. For reals, the value might be
803 affected, so we can't. */
804 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
805 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
807 tree op0 = TREE_OPERAND (in, 0);
808 tree op1 = TREE_OPERAND (in, 1);
809 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
810 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
812 /* First see if either of the operands is a literal, then a constant. */
813 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
814 || TREE_CODE (op0) == FIXED_CST)
815 *litp = op0, op0 = 0;
816 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
817 || TREE_CODE (op1) == FIXED_CST)
818 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
820 if (op0 != 0 && TREE_CONSTANT (op0))
821 *conp = op0, op0 = 0;
822 else if (op1 != 0 && TREE_CONSTANT (op1))
823 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
825 /* If we haven't dealt with either operand, this is not a case we can
826 decompose. Otherwise, VAR is either of the ones remaining, if any. */
827 if (op0 != 0 && op1 != 0)
828 var = in;
829 else if (op0 != 0)
830 var = op0;
831 else
832 var = op1, neg_var_p = neg1_p;
834 /* Now do any needed negations. */
835 if (neg_litp_p)
836 *minus_litp = *litp, *litp = 0;
837 if (neg_conp_p)
838 *conp = negate_expr (*conp);
839 if (neg_var_p)
840 var = negate_expr (var);
842 else if (TREE_CONSTANT (in))
843 *conp = in;
844 else
845 var = in;
847 if (negate_p)
849 if (*litp)
850 *minus_litp = *litp, *litp = 0;
851 else if (*minus_litp)
852 *litp = *minus_litp, *minus_litp = 0;
853 *conp = negate_expr (*conp);
854 var = negate_expr (var);
857 return var;
860 /* Re-associate trees split by the above function. T1 and T2 are
861 either expressions to associate or null. Return the new
862 expression, if any. LOC is the location of the new expression. If
863 we build an operation, do it in TYPE and with CODE. */
865 static tree
866 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
868 if (t1 == 0)
869 return t2;
870 else if (t2 == 0)
871 return t1;
873 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
874 try to fold this since we will have infinite recursion. But do
875 deal with any NEGATE_EXPRs. */
876 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
877 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
879 if (code == PLUS_EXPR)
881 if (TREE_CODE (t1) == NEGATE_EXPR)
882 return build2_loc (loc, MINUS_EXPR, type,
883 fold_convert_loc (loc, type, t2),
884 fold_convert_loc (loc, type,
885 TREE_OPERAND (t1, 0)));
886 else if (TREE_CODE (t2) == NEGATE_EXPR)
887 return build2_loc (loc, MINUS_EXPR, type,
888 fold_convert_loc (loc, type, t1),
889 fold_convert_loc (loc, type,
890 TREE_OPERAND (t2, 0)));
891 else if (integer_zerop (t2))
892 return fold_convert_loc (loc, type, t1);
894 else if (code == MINUS_EXPR)
896 if (integer_zerop (t2))
897 return fold_convert_loc (loc, type, t1);
900 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
901 fold_convert_loc (loc, type, t2));
904 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
905 fold_convert_loc (loc, type, t2));
908 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
909 for use in int_const_binop, size_binop and size_diffop. */
911 static bool
912 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
914 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
915 return false;
916 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
917 return false;
919 switch (code)
921 case LSHIFT_EXPR:
922 case RSHIFT_EXPR:
923 case LROTATE_EXPR:
924 case RROTATE_EXPR:
925 return true;
927 default:
928 break;
931 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
932 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
933 && TYPE_MODE (type1) == TYPE_MODE (type2);
937 /* Combine two integer constants ARG1 and ARG2 under operation CODE
938 to produce a new constant. Return NULL_TREE if we don't know how
939 to evaluate CODE at compile-time. */
941 tree
942 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
944 double_int op1, op2, res, tmp;
945 tree t;
946 tree type = TREE_TYPE (arg1);
947 bool uns = TYPE_UNSIGNED (type);
948 bool is_sizetype
949 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
950 bool overflow = false;
952 op1 = tree_to_double_int (arg1);
953 op2 = tree_to_double_int (arg2);
955 switch (code)
957 case BIT_IOR_EXPR:
958 res = double_int_ior (op1, op2);
959 break;
961 case BIT_XOR_EXPR:
962 res = double_int_xor (op1, op2);
963 break;
965 case BIT_AND_EXPR:
966 res = double_int_and (op1, op2);
967 break;
969 case RSHIFT_EXPR:
970 res = double_int_rshift (op1, double_int_to_shwi (op2),
971 TYPE_PRECISION (type), !uns);
972 break;
974 case LSHIFT_EXPR:
975 /* It's unclear from the C standard whether shifts can overflow.
976 The following code ignores overflow; perhaps a C standard
977 interpretation ruling is needed. */
978 res = double_int_lshift (op1, double_int_to_shwi (op2),
979 TYPE_PRECISION (type), !uns);
980 break;
982 case RROTATE_EXPR:
983 res = double_int_rrotate (op1, double_int_to_shwi (op2),
984 TYPE_PRECISION (type));
985 break;
987 case LROTATE_EXPR:
988 res = double_int_lrotate (op1, double_int_to_shwi (op2),
989 TYPE_PRECISION (type));
990 break;
992 case PLUS_EXPR:
993 overflow = add_double (op1.low, op1.high, op2.low, op2.high,
994 &res.low, &res.high);
995 break;
997 case MINUS_EXPR:
998 neg_double (op2.low, op2.high, &res.low, &res.high);
999 add_double (op1.low, op1.high, res.low, res.high,
1000 &res.low, &res.high);
1001 overflow = OVERFLOW_SUM_SIGN (res.high, op2.high, op1.high);
1002 break;
1004 case MULT_EXPR:
1005 overflow = mul_double (op1.low, op1.high, op2.low, op2.high,
1006 &res.low, &res.high);
1007 break;
1009 case TRUNC_DIV_EXPR:
1010 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1011 case EXACT_DIV_EXPR:
1012 /* This is a shortcut for a common special case. */
1013 if (op2.high == 0 && (HOST_WIDE_INT) op2.low > 0
1014 && !TREE_OVERFLOW (arg1)
1015 && !TREE_OVERFLOW (arg2)
1016 && op1.high == 0 && (HOST_WIDE_INT) op1.low >= 0)
1018 if (code == CEIL_DIV_EXPR)
1019 op1.low += op2.low - 1;
1021 res.low = op1.low / op2.low, res.high = 0;
1022 break;
1025 /* ... fall through ... */
1027 case ROUND_DIV_EXPR:
1028 if (double_int_zero_p (op2))
1029 return NULL_TREE;
1030 if (double_int_one_p (op2))
1032 res = op1;
1033 break;
1035 if (double_int_equal_p (op1, op2)
1036 && ! double_int_zero_p (op1))
1038 res = double_int_one;
1039 break;
1041 overflow = div_and_round_double (code, uns,
1042 op1.low, op1.high, op2.low, op2.high,
1043 &res.low, &res.high,
1044 &tmp.low, &tmp.high);
1045 break;
1047 case TRUNC_MOD_EXPR:
1048 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1049 /* This is a shortcut for a common special case. */
1050 if (op2.high == 0 && (HOST_WIDE_INT) op2.low > 0
1051 && !TREE_OVERFLOW (arg1)
1052 && !TREE_OVERFLOW (arg2)
1053 && op1.high == 0 && (HOST_WIDE_INT) op1.low >= 0)
1055 if (code == CEIL_MOD_EXPR)
1056 op1.low += op2.low - 1;
1057 res.low = op1.low % op2.low, res.high = 0;
1058 break;
1061 /* ... fall through ... */
1063 case ROUND_MOD_EXPR:
1064 if (double_int_zero_p (op2))
1065 return NULL_TREE;
1066 overflow = div_and_round_double (code, uns,
1067 op1.low, op1.high, op2.low, op2.high,
1068 &tmp.low, &tmp.high,
1069 &res.low, &res.high);
1070 break;
1072 case MIN_EXPR:
1073 res = double_int_min (op1, op2, uns);
1074 break;
1076 case MAX_EXPR:
1077 res = double_int_max (op1, op2, uns);
1078 break;
1080 default:
1081 return NULL_TREE;
1084 t = force_fit_type_double (TREE_TYPE (arg1), res, 1,
1085 ((!uns || is_sizetype) && overflow)
1086 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1088 return t;
1091 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1092 constant. We assume ARG1 and ARG2 have the same data type, or at least
1093 are the same kind of constant and the same machine mode. Return zero if
1094 combining the constants is not allowed in the current operating mode. */
1096 static tree
1097 const_binop (enum tree_code code, tree arg1, tree arg2)
1099 /* Sanity check for the recursive cases. */
1100 if (!arg1 || !arg2)
1101 return NULL_TREE;
1103 STRIP_NOPS (arg1);
1104 STRIP_NOPS (arg2);
1106 if (TREE_CODE (arg1) == INTEGER_CST)
1107 return int_const_binop (code, arg1, arg2);
1109 if (TREE_CODE (arg1) == REAL_CST)
1111 enum machine_mode mode;
1112 REAL_VALUE_TYPE d1;
1113 REAL_VALUE_TYPE d2;
1114 REAL_VALUE_TYPE value;
1115 REAL_VALUE_TYPE result;
1116 bool inexact;
1117 tree t, type;
1119 /* The following codes are handled by real_arithmetic. */
1120 switch (code)
1122 case PLUS_EXPR:
1123 case MINUS_EXPR:
1124 case MULT_EXPR:
1125 case RDIV_EXPR:
1126 case MIN_EXPR:
1127 case MAX_EXPR:
1128 break;
1130 default:
1131 return NULL_TREE;
1134 d1 = TREE_REAL_CST (arg1);
1135 d2 = TREE_REAL_CST (arg2);
1137 type = TREE_TYPE (arg1);
1138 mode = TYPE_MODE (type);
1140 /* Don't perform operation if we honor signaling NaNs and
1141 either operand is a NaN. */
1142 if (HONOR_SNANS (mode)
1143 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1144 return NULL_TREE;
1146 /* Don't perform operation if it would raise a division
1147 by zero exception. */
1148 if (code == RDIV_EXPR
1149 && REAL_VALUES_EQUAL (d2, dconst0)
1150 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1151 return NULL_TREE;
1153 /* If either operand is a NaN, just return it. Otherwise, set up
1154 for floating-point trap; we return an overflow. */
1155 if (REAL_VALUE_ISNAN (d1))
1156 return arg1;
1157 else if (REAL_VALUE_ISNAN (d2))
1158 return arg2;
1160 inexact = real_arithmetic (&value, code, &d1, &d2);
1161 real_convert (&result, mode, &value);
1163 /* Don't constant fold this floating point operation if
1164 the result has overflowed and flag_trapping_math. */
1165 if (flag_trapping_math
1166 && MODE_HAS_INFINITIES (mode)
1167 && REAL_VALUE_ISINF (result)
1168 && !REAL_VALUE_ISINF (d1)
1169 && !REAL_VALUE_ISINF (d2))
1170 return NULL_TREE;
1172 /* Don't constant fold this floating point operation if the
1173 result may dependent upon the run-time rounding mode and
1174 flag_rounding_math is set, or if GCC's software emulation
1175 is unable to accurately represent the result. */
1176 if ((flag_rounding_math
1177 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1178 && (inexact || !real_identical (&result, &value)))
1179 return NULL_TREE;
1181 t = build_real (type, result);
1183 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1184 return t;
1187 if (TREE_CODE (arg1) == FIXED_CST)
1189 FIXED_VALUE_TYPE f1;
1190 FIXED_VALUE_TYPE f2;
1191 FIXED_VALUE_TYPE result;
1192 tree t, type;
1193 int sat_p;
1194 bool overflow_p;
1196 /* The following codes are handled by fixed_arithmetic. */
1197 switch (code)
1199 case PLUS_EXPR:
1200 case MINUS_EXPR:
1201 case MULT_EXPR:
1202 case TRUNC_DIV_EXPR:
1203 f2 = TREE_FIXED_CST (arg2);
1204 break;
1206 case LSHIFT_EXPR:
1207 case RSHIFT_EXPR:
1208 f2.data.high = TREE_INT_CST_HIGH (arg2);
1209 f2.data.low = TREE_INT_CST_LOW (arg2);
1210 f2.mode = SImode;
1211 break;
1213 default:
1214 return NULL_TREE;
1217 f1 = TREE_FIXED_CST (arg1);
1218 type = TREE_TYPE (arg1);
1219 sat_p = TYPE_SATURATING (type);
1220 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1221 t = build_fixed (type, result);
1222 /* Propagate overflow flags. */
1223 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1224 TREE_OVERFLOW (t) = 1;
1225 return t;
1228 if (TREE_CODE (arg1) == COMPLEX_CST)
1230 tree type = TREE_TYPE (arg1);
1231 tree r1 = TREE_REALPART (arg1);
1232 tree i1 = TREE_IMAGPART (arg1);
1233 tree r2 = TREE_REALPART (arg2);
1234 tree i2 = TREE_IMAGPART (arg2);
1235 tree real, imag;
1237 switch (code)
1239 case PLUS_EXPR:
1240 case MINUS_EXPR:
1241 real = const_binop (code, r1, r2);
1242 imag = const_binop (code, i1, i2);
1243 break;
1245 case MULT_EXPR:
1246 if (COMPLEX_FLOAT_TYPE_P (type))
1247 return do_mpc_arg2 (arg1, arg2, type,
1248 /* do_nonfinite= */ folding_initializer,
1249 mpc_mul);
1251 real = const_binop (MINUS_EXPR,
1252 const_binop (MULT_EXPR, r1, r2),
1253 const_binop (MULT_EXPR, i1, i2));
1254 imag = const_binop (PLUS_EXPR,
1255 const_binop (MULT_EXPR, r1, i2),
1256 const_binop (MULT_EXPR, i1, r2));
1257 break;
1259 case RDIV_EXPR:
1260 if (COMPLEX_FLOAT_TYPE_P (type))
1261 return do_mpc_arg2 (arg1, arg2, type,
1262 /* do_nonfinite= */ folding_initializer,
1263 mpc_div);
1264 /* Fallthru ... */
1265 case TRUNC_DIV_EXPR:
1266 case CEIL_DIV_EXPR:
1267 case FLOOR_DIV_EXPR:
1268 case ROUND_DIV_EXPR:
1269 if (flag_complex_method == 0)
1271 /* Keep this algorithm in sync with
1272 tree-complex.c:expand_complex_div_straight().
1274 Expand complex division to scalars, straightforward algorithm.
1275 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1276 t = br*br + bi*bi
1278 tree magsquared
1279 = const_binop (PLUS_EXPR,
1280 const_binop (MULT_EXPR, r2, r2),
1281 const_binop (MULT_EXPR, i2, i2));
1282 tree t1
1283 = const_binop (PLUS_EXPR,
1284 const_binop (MULT_EXPR, r1, r2),
1285 const_binop (MULT_EXPR, i1, i2));
1286 tree t2
1287 = const_binop (MINUS_EXPR,
1288 const_binop (MULT_EXPR, i1, r2),
1289 const_binop (MULT_EXPR, r1, i2));
1291 real = const_binop (code, t1, magsquared);
1292 imag = const_binop (code, t2, magsquared);
1294 else
1296 /* Keep this algorithm in sync with
1297 tree-complex.c:expand_complex_div_wide().
1299 Expand complex division to scalars, modified algorithm to minimize
1300 overflow with wide input ranges. */
1301 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1302 fold_abs_const (r2, TREE_TYPE (type)),
1303 fold_abs_const (i2, TREE_TYPE (type)));
1305 if (integer_nonzerop (compare))
1307 /* In the TRUE branch, we compute
1308 ratio = br/bi;
1309 div = (br * ratio) + bi;
1310 tr = (ar * ratio) + ai;
1311 ti = (ai * ratio) - ar;
1312 tr = tr / div;
1313 ti = ti / div; */
1314 tree ratio = const_binop (code, r2, i2);
1315 tree div = const_binop (PLUS_EXPR, i2,
1316 const_binop (MULT_EXPR, r2, ratio));
1317 real = const_binop (MULT_EXPR, r1, ratio);
1318 real = const_binop (PLUS_EXPR, real, i1);
1319 real = const_binop (code, real, div);
1321 imag = const_binop (MULT_EXPR, i1, ratio);
1322 imag = const_binop (MINUS_EXPR, imag, r1);
1323 imag = const_binop (code, imag, div);
1325 else
1327 /* In the FALSE branch, we compute
1328 ratio = d/c;
1329 divisor = (d * ratio) + c;
1330 tr = (b * ratio) + a;
1331 ti = b - (a * ratio);
1332 tr = tr / div;
1333 ti = ti / div; */
1334 tree ratio = const_binop (code, i2, r2);
1335 tree div = const_binop (PLUS_EXPR, r2,
1336 const_binop (MULT_EXPR, i2, ratio));
1338 real = const_binop (MULT_EXPR, i1, ratio);
1339 real = const_binop (PLUS_EXPR, real, r1);
1340 real = const_binop (code, real, div);
1342 imag = const_binop (MULT_EXPR, r1, ratio);
1343 imag = const_binop (MINUS_EXPR, i1, imag);
1344 imag = const_binop (code, imag, div);
1347 break;
1349 default:
1350 return NULL_TREE;
1353 if (real && imag)
1354 return build_complex (type, real, imag);
1357 if (TREE_CODE (arg1) == VECTOR_CST)
1359 tree type = TREE_TYPE(arg1);
1360 int count = TYPE_VECTOR_SUBPARTS (type), i;
1361 tree elements1, elements2, list = NULL_TREE;
1363 if(TREE_CODE(arg2) != VECTOR_CST)
1364 return NULL_TREE;
1366 elements1 = TREE_VECTOR_CST_ELTS (arg1);
1367 elements2 = TREE_VECTOR_CST_ELTS (arg2);
1369 for (i = 0; i < count; i++)
1371 tree elem1, elem2, elem;
1373 /* The trailing elements can be empty and should be treated as 0 */
1374 if(!elements1)
1375 elem1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1376 else
1378 elem1 = TREE_VALUE(elements1);
1379 elements1 = TREE_CHAIN (elements1);
1382 if(!elements2)
1383 elem2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1384 else
1386 elem2 = TREE_VALUE(elements2);
1387 elements2 = TREE_CHAIN (elements2);
1390 elem = const_binop (code, elem1, elem2);
1392 /* It is possible that const_binop cannot handle the given
1393 code and return NULL_TREE */
1394 if(elem == NULL_TREE)
1395 return NULL_TREE;
1397 list = tree_cons (NULL_TREE, elem, list);
1399 return build_vector(type, nreverse(list));
1401 return NULL_TREE;
1404 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1405 indicates which particular sizetype to create. */
1407 tree
1408 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1410 return build_int_cst (sizetype_tab[(int) kind], number);
1413 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1414 is a tree code. The type of the result is taken from the operands.
1415 Both must be equivalent integer types, ala int_binop_types_match_p.
1416 If the operands are constant, so is the result. */
1418 tree
1419 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1421 tree type = TREE_TYPE (arg0);
1423 if (arg0 == error_mark_node || arg1 == error_mark_node)
1424 return error_mark_node;
1426 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1427 TREE_TYPE (arg1)));
1429 /* Handle the special case of two integer constants faster. */
1430 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1432 /* And some specific cases even faster than that. */
1433 if (code == PLUS_EXPR)
1435 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1436 return arg1;
1437 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1438 return arg0;
1440 else if (code == MINUS_EXPR)
1442 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1443 return arg0;
1445 else if (code == MULT_EXPR)
1447 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1448 return arg1;
1451 /* Handle general case of two integer constants. */
1452 return int_const_binop (code, arg0, arg1);
1455 return fold_build2_loc (loc, code, type, arg0, arg1);
1458 /* Given two values, either both of sizetype or both of bitsizetype,
1459 compute the difference between the two values. Return the value
1460 in signed type corresponding to the type of the operands. */
1462 tree
1463 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1465 tree type = TREE_TYPE (arg0);
1466 tree ctype;
1468 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1469 TREE_TYPE (arg1)));
1471 /* If the type is already signed, just do the simple thing. */
1472 if (!TYPE_UNSIGNED (type))
1473 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1475 if (type == sizetype)
1476 ctype = ssizetype;
1477 else if (type == bitsizetype)
1478 ctype = sbitsizetype;
1479 else
1480 ctype = signed_type_for (type);
1482 /* If either operand is not a constant, do the conversions to the signed
1483 type and subtract. The hardware will do the right thing with any
1484 overflow in the subtraction. */
1485 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1486 return size_binop_loc (loc, MINUS_EXPR,
1487 fold_convert_loc (loc, ctype, arg0),
1488 fold_convert_loc (loc, ctype, arg1));
1490 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1491 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1492 overflow) and negate (which can't either). Special-case a result
1493 of zero while we're here. */
1494 if (tree_int_cst_equal (arg0, arg1))
1495 return build_int_cst (ctype, 0);
1496 else if (tree_int_cst_lt (arg1, arg0))
1497 return fold_convert_loc (loc, ctype,
1498 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1499 else
1500 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1501 fold_convert_loc (loc, ctype,
1502 size_binop_loc (loc,
1503 MINUS_EXPR,
1504 arg1, arg0)));
1507 /* A subroutine of fold_convert_const handling conversions of an
1508 INTEGER_CST to another integer type. */
1510 static tree
1511 fold_convert_const_int_from_int (tree type, const_tree arg1)
1513 tree t;
1515 /* Given an integer constant, make new constant with new type,
1516 appropriately sign-extended or truncated. */
1517 t = force_fit_type_double (type, tree_to_double_int (arg1),
1518 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1519 (TREE_INT_CST_HIGH (arg1) < 0
1520 && (TYPE_UNSIGNED (type)
1521 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1522 | TREE_OVERFLOW (arg1));
1524 return t;
1527 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1528 to an integer type. */
1530 static tree
1531 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1533 int overflow = 0;
1534 tree t;
1536 /* The following code implements the floating point to integer
1537 conversion rules required by the Java Language Specification,
1538 that IEEE NaNs are mapped to zero and values that overflow
1539 the target precision saturate, i.e. values greater than
1540 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1541 are mapped to INT_MIN. These semantics are allowed by the
1542 C and C++ standards that simply state that the behavior of
1543 FP-to-integer conversion is unspecified upon overflow. */
1545 double_int val;
1546 REAL_VALUE_TYPE r;
1547 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1549 switch (code)
1551 case FIX_TRUNC_EXPR:
1552 real_trunc (&r, VOIDmode, &x);
1553 break;
1555 default:
1556 gcc_unreachable ();
1559 /* If R is NaN, return zero and show we have an overflow. */
1560 if (REAL_VALUE_ISNAN (r))
1562 overflow = 1;
1563 val = double_int_zero;
1566 /* See if R is less than the lower bound or greater than the
1567 upper bound. */
1569 if (! overflow)
1571 tree lt = TYPE_MIN_VALUE (type);
1572 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1573 if (REAL_VALUES_LESS (r, l))
1575 overflow = 1;
1576 val = tree_to_double_int (lt);
1580 if (! overflow)
1582 tree ut = TYPE_MAX_VALUE (type);
1583 if (ut)
1585 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1586 if (REAL_VALUES_LESS (u, r))
1588 overflow = 1;
1589 val = tree_to_double_int (ut);
1594 if (! overflow)
1595 real_to_integer2 ((HOST_WIDE_INT *) &val.low, &val.high, &r);
1597 t = force_fit_type_double (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1598 return t;
1601 /* A subroutine of fold_convert_const handling conversions of a
1602 FIXED_CST to an integer type. */
1604 static tree
1605 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1607 tree t;
1608 double_int temp, temp_trunc;
1609 unsigned int mode;
1611 /* Right shift FIXED_CST to temp by fbit. */
1612 temp = TREE_FIXED_CST (arg1).data;
1613 mode = TREE_FIXED_CST (arg1).mode;
1614 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
1616 temp = double_int_rshift (temp, GET_MODE_FBIT (mode),
1617 HOST_BITS_PER_DOUBLE_INT,
1618 SIGNED_FIXED_POINT_MODE_P (mode));
1620 /* Left shift temp to temp_trunc by fbit. */
1621 temp_trunc = double_int_lshift (temp, GET_MODE_FBIT (mode),
1622 HOST_BITS_PER_DOUBLE_INT,
1623 SIGNED_FIXED_POINT_MODE_P (mode));
1625 else
1627 temp = double_int_zero;
1628 temp_trunc = double_int_zero;
1631 /* If FIXED_CST is negative, we need to round the value toward 0.
1632 By checking if the fractional bits are not zero to add 1 to temp. */
1633 if (SIGNED_FIXED_POINT_MODE_P (mode)
1634 && double_int_negative_p (temp_trunc)
1635 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
1636 temp = double_int_add (temp, double_int_one);
1638 /* Given a fixed-point constant, make new constant with new type,
1639 appropriately sign-extended or truncated. */
1640 t = force_fit_type_double (type, temp, -1,
1641 (double_int_negative_p (temp)
1642 && (TYPE_UNSIGNED (type)
1643 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1644 | TREE_OVERFLOW (arg1));
1646 return t;
1649 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1650 to another floating point type. */
1652 static tree
1653 fold_convert_const_real_from_real (tree type, const_tree arg1)
1655 REAL_VALUE_TYPE value;
1656 tree t;
1658 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1659 t = build_real (type, value);
1661 /* If converting an infinity or NAN to a representation that doesn't
1662 have one, set the overflow bit so that we can produce some kind of
1663 error message at the appropriate point if necessary. It's not the
1664 most user-friendly message, but it's better than nothing. */
1665 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1666 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1667 TREE_OVERFLOW (t) = 1;
1668 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1669 && !MODE_HAS_NANS (TYPE_MODE (type)))
1670 TREE_OVERFLOW (t) = 1;
1671 /* Regular overflow, conversion produced an infinity in a mode that
1672 can't represent them. */
1673 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1674 && REAL_VALUE_ISINF (value)
1675 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1676 TREE_OVERFLOW (t) = 1;
1677 else
1678 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1679 return t;
1682 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1683 to a floating point type. */
1685 static tree
1686 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1688 REAL_VALUE_TYPE value;
1689 tree t;
1691 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1692 t = build_real (type, value);
1694 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1695 return t;
1698 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1699 to another fixed-point type. */
1701 static tree
1702 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
1704 FIXED_VALUE_TYPE value;
1705 tree t;
1706 bool overflow_p;
1708 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
1709 TYPE_SATURATING (type));
1710 t = build_fixed (type, value);
1712 /* Propagate overflow flags. */
1713 if (overflow_p | TREE_OVERFLOW (arg1))
1714 TREE_OVERFLOW (t) = 1;
1715 return t;
1718 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
1719 to a fixed-point type. */
1721 static tree
1722 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
1724 FIXED_VALUE_TYPE value;
1725 tree t;
1726 bool overflow_p;
1728 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
1729 TREE_INT_CST (arg1),
1730 TYPE_UNSIGNED (TREE_TYPE (arg1)),
1731 TYPE_SATURATING (type));
1732 t = build_fixed (type, value);
1734 /* Propagate overflow flags. */
1735 if (overflow_p | TREE_OVERFLOW (arg1))
1736 TREE_OVERFLOW (t) = 1;
1737 return t;
1740 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1741 to a fixed-point type. */
1743 static tree
1744 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
1746 FIXED_VALUE_TYPE value;
1747 tree t;
1748 bool overflow_p;
1750 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
1751 &TREE_REAL_CST (arg1),
1752 TYPE_SATURATING (type));
1753 t = build_fixed (type, value);
1755 /* Propagate overflow flags. */
1756 if (overflow_p | TREE_OVERFLOW (arg1))
1757 TREE_OVERFLOW (t) = 1;
1758 return t;
1761 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1762 type TYPE. If no simplification can be done return NULL_TREE. */
1764 static tree
1765 fold_convert_const (enum tree_code code, tree type, tree arg1)
1767 if (TREE_TYPE (arg1) == type)
1768 return arg1;
1770 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
1771 || TREE_CODE (type) == OFFSET_TYPE)
1773 if (TREE_CODE (arg1) == INTEGER_CST)
1774 return fold_convert_const_int_from_int (type, arg1);
1775 else if (TREE_CODE (arg1) == REAL_CST)
1776 return fold_convert_const_int_from_real (code, type, arg1);
1777 else if (TREE_CODE (arg1) == FIXED_CST)
1778 return fold_convert_const_int_from_fixed (type, arg1);
1780 else if (TREE_CODE (type) == REAL_TYPE)
1782 if (TREE_CODE (arg1) == INTEGER_CST)
1783 return build_real_from_int_cst (type, arg1);
1784 else if (TREE_CODE (arg1) == REAL_CST)
1785 return fold_convert_const_real_from_real (type, arg1);
1786 else if (TREE_CODE (arg1) == FIXED_CST)
1787 return fold_convert_const_real_from_fixed (type, arg1);
1789 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
1791 if (TREE_CODE (arg1) == FIXED_CST)
1792 return fold_convert_const_fixed_from_fixed (type, arg1);
1793 else if (TREE_CODE (arg1) == INTEGER_CST)
1794 return fold_convert_const_fixed_from_int (type, arg1);
1795 else if (TREE_CODE (arg1) == REAL_CST)
1796 return fold_convert_const_fixed_from_real (type, arg1);
1798 return NULL_TREE;
1801 /* Construct a vector of zero elements of vector type TYPE. */
1803 static tree
1804 build_zero_vector (tree type)
1806 tree t;
1808 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1809 return build_vector_from_val (type, t);
1812 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
1814 bool
1815 fold_convertible_p (const_tree type, const_tree arg)
1817 tree orig = TREE_TYPE (arg);
1819 if (type == orig)
1820 return true;
1822 if (TREE_CODE (arg) == ERROR_MARK
1823 || TREE_CODE (type) == ERROR_MARK
1824 || TREE_CODE (orig) == ERROR_MARK)
1825 return false;
1827 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
1828 return true;
1830 switch (TREE_CODE (type))
1832 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1833 case POINTER_TYPE: case REFERENCE_TYPE:
1834 case OFFSET_TYPE:
1835 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1836 || TREE_CODE (orig) == OFFSET_TYPE)
1837 return true;
1838 return (TREE_CODE (orig) == VECTOR_TYPE
1839 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1841 case REAL_TYPE:
1842 case FIXED_POINT_TYPE:
1843 case COMPLEX_TYPE:
1844 case VECTOR_TYPE:
1845 case VOID_TYPE:
1846 return TREE_CODE (type) == TREE_CODE (orig);
1848 default:
1849 return false;
1853 /* Convert expression ARG to type TYPE. Used by the middle-end for
1854 simple conversions in preference to calling the front-end's convert. */
1856 tree
1857 fold_convert_loc (location_t loc, tree type, tree arg)
1859 tree orig = TREE_TYPE (arg);
1860 tree tem;
1862 if (type == orig)
1863 return arg;
1865 if (TREE_CODE (arg) == ERROR_MARK
1866 || TREE_CODE (type) == ERROR_MARK
1867 || TREE_CODE (orig) == ERROR_MARK)
1868 return error_mark_node;
1870 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
1871 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1873 switch (TREE_CODE (type))
1875 case POINTER_TYPE:
1876 case REFERENCE_TYPE:
1877 /* Handle conversions between pointers to different address spaces. */
1878 if (POINTER_TYPE_P (orig)
1879 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
1880 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
1881 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
1882 /* fall through */
1884 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1885 case OFFSET_TYPE:
1886 if (TREE_CODE (arg) == INTEGER_CST)
1888 tem = fold_convert_const (NOP_EXPR, type, arg);
1889 if (tem != NULL_TREE)
1890 return tem;
1892 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1893 || TREE_CODE (orig) == OFFSET_TYPE)
1894 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1895 if (TREE_CODE (orig) == COMPLEX_TYPE)
1896 return fold_convert_loc (loc, type,
1897 fold_build1_loc (loc, REALPART_EXPR,
1898 TREE_TYPE (orig), arg));
1899 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1900 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1901 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1903 case REAL_TYPE:
1904 if (TREE_CODE (arg) == INTEGER_CST)
1906 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1907 if (tem != NULL_TREE)
1908 return tem;
1910 else if (TREE_CODE (arg) == REAL_CST)
1912 tem = fold_convert_const (NOP_EXPR, type, arg);
1913 if (tem != NULL_TREE)
1914 return tem;
1916 else if (TREE_CODE (arg) == FIXED_CST)
1918 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1919 if (tem != NULL_TREE)
1920 return tem;
1923 switch (TREE_CODE (orig))
1925 case INTEGER_TYPE:
1926 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1927 case POINTER_TYPE: case REFERENCE_TYPE:
1928 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
1930 case REAL_TYPE:
1931 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1933 case FIXED_POINT_TYPE:
1934 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1936 case COMPLEX_TYPE:
1937 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1938 return fold_convert_loc (loc, type, tem);
1940 default:
1941 gcc_unreachable ();
1944 case FIXED_POINT_TYPE:
1945 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
1946 || TREE_CODE (arg) == REAL_CST)
1948 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1949 if (tem != NULL_TREE)
1950 goto fold_convert_exit;
1953 switch (TREE_CODE (orig))
1955 case FIXED_POINT_TYPE:
1956 case INTEGER_TYPE:
1957 case ENUMERAL_TYPE:
1958 case BOOLEAN_TYPE:
1959 case REAL_TYPE:
1960 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1962 case COMPLEX_TYPE:
1963 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1964 return fold_convert_loc (loc, type, tem);
1966 default:
1967 gcc_unreachable ();
1970 case COMPLEX_TYPE:
1971 switch (TREE_CODE (orig))
1973 case INTEGER_TYPE:
1974 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1975 case POINTER_TYPE: case REFERENCE_TYPE:
1976 case REAL_TYPE:
1977 case FIXED_POINT_TYPE:
1978 return fold_build2_loc (loc, COMPLEX_EXPR, type,
1979 fold_convert_loc (loc, TREE_TYPE (type), arg),
1980 fold_convert_loc (loc, TREE_TYPE (type),
1981 integer_zero_node));
1982 case COMPLEX_TYPE:
1984 tree rpart, ipart;
1986 if (TREE_CODE (arg) == COMPLEX_EXPR)
1988 rpart = fold_convert_loc (loc, TREE_TYPE (type),
1989 TREE_OPERAND (arg, 0));
1990 ipart = fold_convert_loc (loc, TREE_TYPE (type),
1991 TREE_OPERAND (arg, 1));
1992 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
1995 arg = save_expr (arg);
1996 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1997 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
1998 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
1999 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2000 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2003 default:
2004 gcc_unreachable ();
2007 case VECTOR_TYPE:
2008 if (integer_zerop (arg))
2009 return build_zero_vector (type);
2010 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2011 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2012 || TREE_CODE (orig) == VECTOR_TYPE);
2013 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2015 case VOID_TYPE:
2016 tem = fold_ignored_result (arg);
2017 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2019 default:
2020 gcc_unreachable ();
2022 fold_convert_exit:
2023 protected_set_expr_location_unshare (tem, loc);
2024 return tem;
2027 /* Return false if expr can be assumed not to be an lvalue, true
2028 otherwise. */
2030 static bool
2031 maybe_lvalue_p (const_tree x)
2033 /* We only need to wrap lvalue tree codes. */
2034 switch (TREE_CODE (x))
2036 case VAR_DECL:
2037 case PARM_DECL:
2038 case RESULT_DECL:
2039 case LABEL_DECL:
2040 case FUNCTION_DECL:
2041 case SSA_NAME:
2043 case COMPONENT_REF:
2044 case MEM_REF:
2045 case INDIRECT_REF:
2046 case ARRAY_REF:
2047 case ARRAY_RANGE_REF:
2048 case BIT_FIELD_REF:
2049 case OBJ_TYPE_REF:
2051 case REALPART_EXPR:
2052 case IMAGPART_EXPR:
2053 case PREINCREMENT_EXPR:
2054 case PREDECREMENT_EXPR:
2055 case SAVE_EXPR:
2056 case TRY_CATCH_EXPR:
2057 case WITH_CLEANUP_EXPR:
2058 case COMPOUND_EXPR:
2059 case MODIFY_EXPR:
2060 case TARGET_EXPR:
2061 case COND_EXPR:
2062 case BIND_EXPR:
2063 break;
2065 default:
2066 /* Assume the worst for front-end tree codes. */
2067 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2068 break;
2069 return false;
2072 return true;
2075 /* Return an expr equal to X but certainly not valid as an lvalue. */
2077 tree
2078 non_lvalue_loc (location_t loc, tree x)
2080 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2081 us. */
2082 if (in_gimple_form)
2083 return x;
2085 if (! maybe_lvalue_p (x))
2086 return x;
2087 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2090 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2091 Zero means allow extended lvalues. */
2093 int pedantic_lvalues;
2095 /* When pedantic, return an expr equal to X but certainly not valid as a
2096 pedantic lvalue. Otherwise, return X. */
2098 static tree
2099 pedantic_non_lvalue_loc (location_t loc, tree x)
2101 if (pedantic_lvalues)
2102 return non_lvalue_loc (loc, x);
2104 return protected_set_expr_location_unshare (x, loc);
2107 /* Given a tree comparison code, return the code that is the logical inverse
2108 of the given code. It is not safe to do this for floating-point
2109 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2110 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2112 enum tree_code
2113 invert_tree_comparison (enum tree_code code, bool honor_nans)
2115 if (honor_nans && flag_trapping_math)
2116 return ERROR_MARK;
2118 switch (code)
2120 case EQ_EXPR:
2121 return NE_EXPR;
2122 case NE_EXPR:
2123 return EQ_EXPR;
2124 case GT_EXPR:
2125 return honor_nans ? UNLE_EXPR : LE_EXPR;
2126 case GE_EXPR:
2127 return honor_nans ? UNLT_EXPR : LT_EXPR;
2128 case LT_EXPR:
2129 return honor_nans ? UNGE_EXPR : GE_EXPR;
2130 case LE_EXPR:
2131 return honor_nans ? UNGT_EXPR : GT_EXPR;
2132 case LTGT_EXPR:
2133 return UNEQ_EXPR;
2134 case UNEQ_EXPR:
2135 return LTGT_EXPR;
2136 case UNGT_EXPR:
2137 return LE_EXPR;
2138 case UNGE_EXPR:
2139 return LT_EXPR;
2140 case UNLT_EXPR:
2141 return GE_EXPR;
2142 case UNLE_EXPR:
2143 return GT_EXPR;
2144 case ORDERED_EXPR:
2145 return UNORDERED_EXPR;
2146 case UNORDERED_EXPR:
2147 return ORDERED_EXPR;
2148 default:
2149 gcc_unreachable ();
2153 /* Similar, but return the comparison that results if the operands are
2154 swapped. This is safe for floating-point. */
2156 enum tree_code
2157 swap_tree_comparison (enum tree_code code)
2159 switch (code)
2161 case EQ_EXPR:
2162 case NE_EXPR:
2163 case ORDERED_EXPR:
2164 case UNORDERED_EXPR:
2165 case LTGT_EXPR:
2166 case UNEQ_EXPR:
2167 return code;
2168 case GT_EXPR:
2169 return LT_EXPR;
2170 case GE_EXPR:
2171 return LE_EXPR;
2172 case LT_EXPR:
2173 return GT_EXPR;
2174 case LE_EXPR:
2175 return GE_EXPR;
2176 case UNGT_EXPR:
2177 return UNLT_EXPR;
2178 case UNGE_EXPR:
2179 return UNLE_EXPR;
2180 case UNLT_EXPR:
2181 return UNGT_EXPR;
2182 case UNLE_EXPR:
2183 return UNGE_EXPR;
2184 default:
2185 gcc_unreachable ();
2190 /* Convert a comparison tree code from an enum tree_code representation
2191 into a compcode bit-based encoding. This function is the inverse of
2192 compcode_to_comparison. */
2194 static enum comparison_code
2195 comparison_to_compcode (enum tree_code code)
2197 switch (code)
2199 case LT_EXPR:
2200 return COMPCODE_LT;
2201 case EQ_EXPR:
2202 return COMPCODE_EQ;
2203 case LE_EXPR:
2204 return COMPCODE_LE;
2205 case GT_EXPR:
2206 return COMPCODE_GT;
2207 case NE_EXPR:
2208 return COMPCODE_NE;
2209 case GE_EXPR:
2210 return COMPCODE_GE;
2211 case ORDERED_EXPR:
2212 return COMPCODE_ORD;
2213 case UNORDERED_EXPR:
2214 return COMPCODE_UNORD;
2215 case UNLT_EXPR:
2216 return COMPCODE_UNLT;
2217 case UNEQ_EXPR:
2218 return COMPCODE_UNEQ;
2219 case UNLE_EXPR:
2220 return COMPCODE_UNLE;
2221 case UNGT_EXPR:
2222 return COMPCODE_UNGT;
2223 case LTGT_EXPR:
2224 return COMPCODE_LTGT;
2225 case UNGE_EXPR:
2226 return COMPCODE_UNGE;
2227 default:
2228 gcc_unreachable ();
2232 /* Convert a compcode bit-based encoding of a comparison operator back
2233 to GCC's enum tree_code representation. This function is the
2234 inverse of comparison_to_compcode. */
2236 static enum tree_code
2237 compcode_to_comparison (enum comparison_code code)
2239 switch (code)
2241 case COMPCODE_LT:
2242 return LT_EXPR;
2243 case COMPCODE_EQ:
2244 return EQ_EXPR;
2245 case COMPCODE_LE:
2246 return LE_EXPR;
2247 case COMPCODE_GT:
2248 return GT_EXPR;
2249 case COMPCODE_NE:
2250 return NE_EXPR;
2251 case COMPCODE_GE:
2252 return GE_EXPR;
2253 case COMPCODE_ORD:
2254 return ORDERED_EXPR;
2255 case COMPCODE_UNORD:
2256 return UNORDERED_EXPR;
2257 case COMPCODE_UNLT:
2258 return UNLT_EXPR;
2259 case COMPCODE_UNEQ:
2260 return UNEQ_EXPR;
2261 case COMPCODE_UNLE:
2262 return UNLE_EXPR;
2263 case COMPCODE_UNGT:
2264 return UNGT_EXPR;
2265 case COMPCODE_LTGT:
2266 return LTGT_EXPR;
2267 case COMPCODE_UNGE:
2268 return UNGE_EXPR;
2269 default:
2270 gcc_unreachable ();
2274 /* Return a tree for the comparison which is the combination of
2275 doing the AND or OR (depending on CODE) of the two operations LCODE
2276 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2277 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2278 if this makes the transformation invalid. */
2280 tree
2281 combine_comparisons (location_t loc,
2282 enum tree_code code, enum tree_code lcode,
2283 enum tree_code rcode, tree truth_type,
2284 tree ll_arg, tree lr_arg)
2286 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2287 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2288 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2289 int compcode;
2291 switch (code)
2293 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2294 compcode = lcompcode & rcompcode;
2295 break;
2297 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2298 compcode = lcompcode | rcompcode;
2299 break;
2301 default:
2302 return NULL_TREE;
2305 if (!honor_nans)
2307 /* Eliminate unordered comparisons, as well as LTGT and ORD
2308 which are not used unless the mode has NaNs. */
2309 compcode &= ~COMPCODE_UNORD;
2310 if (compcode == COMPCODE_LTGT)
2311 compcode = COMPCODE_NE;
2312 else if (compcode == COMPCODE_ORD)
2313 compcode = COMPCODE_TRUE;
2315 else if (flag_trapping_math)
2317 /* Check that the original operation and the optimized ones will trap
2318 under the same condition. */
2319 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2320 && (lcompcode != COMPCODE_EQ)
2321 && (lcompcode != COMPCODE_ORD);
2322 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2323 && (rcompcode != COMPCODE_EQ)
2324 && (rcompcode != COMPCODE_ORD);
2325 bool trap = (compcode & COMPCODE_UNORD) == 0
2326 && (compcode != COMPCODE_EQ)
2327 && (compcode != COMPCODE_ORD);
2329 /* In a short-circuited boolean expression the LHS might be
2330 such that the RHS, if evaluated, will never trap. For
2331 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2332 if neither x nor y is NaN. (This is a mixed blessing: for
2333 example, the expression above will never trap, hence
2334 optimizing it to x < y would be invalid). */
2335 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2336 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2337 rtrap = false;
2339 /* If the comparison was short-circuited, and only the RHS
2340 trapped, we may now generate a spurious trap. */
2341 if (rtrap && !ltrap
2342 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2343 return NULL_TREE;
2345 /* If we changed the conditions that cause a trap, we lose. */
2346 if ((ltrap || rtrap) != trap)
2347 return NULL_TREE;
2350 if (compcode == COMPCODE_TRUE)
2351 return constant_boolean_node (true, truth_type);
2352 else if (compcode == COMPCODE_FALSE)
2353 return constant_boolean_node (false, truth_type);
2354 else
2356 enum tree_code tcode;
2358 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2359 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2363 /* Return nonzero if two operands (typically of the same tree node)
2364 are necessarily equal. If either argument has side-effects this
2365 function returns zero. FLAGS modifies behavior as follows:
2367 If OEP_ONLY_CONST is set, only return nonzero for constants.
2368 This function tests whether the operands are indistinguishable;
2369 it does not test whether they are equal using C's == operation.
2370 The distinction is important for IEEE floating point, because
2371 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2372 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2374 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2375 even though it may hold multiple values during a function.
2376 This is because a GCC tree node guarantees that nothing else is
2377 executed between the evaluation of its "operands" (which may often
2378 be evaluated in arbitrary order). Hence if the operands themselves
2379 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2380 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2381 unset means assuming isochronic (or instantaneous) tree equivalence.
2382 Unless comparing arbitrary expression trees, such as from different
2383 statements, this flag can usually be left unset.
2385 If OEP_PURE_SAME is set, then pure functions with identical arguments
2386 are considered the same. It is used when the caller has other ways
2387 to ensure that global memory is unchanged in between. */
2390 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2392 /* If either is ERROR_MARK, they aren't equal. */
2393 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2394 || TREE_TYPE (arg0) == error_mark_node
2395 || TREE_TYPE (arg1) == error_mark_node)
2396 return 0;
2398 /* Similar, if either does not have a type (like a released SSA name),
2399 they aren't equal. */
2400 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2401 return 0;
2403 /* Check equality of integer constants before bailing out due to
2404 precision differences. */
2405 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2406 return tree_int_cst_equal (arg0, arg1);
2408 /* If both types don't have the same signedness, then we can't consider
2409 them equal. We must check this before the STRIP_NOPS calls
2410 because they may change the signedness of the arguments. As pointers
2411 strictly don't have a signedness, require either two pointers or
2412 two non-pointers as well. */
2413 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2414 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2415 return 0;
2417 /* We cannot consider pointers to different address space equal. */
2418 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2419 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2420 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2421 return 0;
2423 /* If both types don't have the same precision, then it is not safe
2424 to strip NOPs. */
2425 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
2426 return 0;
2428 STRIP_NOPS (arg0);
2429 STRIP_NOPS (arg1);
2431 /* In case both args are comparisons but with different comparison
2432 code, try to swap the comparison operands of one arg to produce
2433 a match and compare that variant. */
2434 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2435 && COMPARISON_CLASS_P (arg0)
2436 && COMPARISON_CLASS_P (arg1))
2438 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2440 if (TREE_CODE (arg0) == swap_code)
2441 return operand_equal_p (TREE_OPERAND (arg0, 0),
2442 TREE_OPERAND (arg1, 1), flags)
2443 && operand_equal_p (TREE_OPERAND (arg0, 1),
2444 TREE_OPERAND (arg1, 0), flags);
2447 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2448 /* This is needed for conversions and for COMPONENT_REF.
2449 Might as well play it safe and always test this. */
2450 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2451 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2452 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2453 return 0;
2455 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2456 We don't care about side effects in that case because the SAVE_EXPR
2457 takes care of that for us. In all other cases, two expressions are
2458 equal if they have no side effects. If we have two identical
2459 expressions with side effects that should be treated the same due
2460 to the only side effects being identical SAVE_EXPR's, that will
2461 be detected in the recursive calls below.
2462 If we are taking an invariant address of two identical objects
2463 they are necessarily equal as well. */
2464 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2465 && (TREE_CODE (arg0) == SAVE_EXPR
2466 || (flags & OEP_CONSTANT_ADDRESS_OF)
2467 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2468 return 1;
2470 /* Next handle constant cases, those for which we can return 1 even
2471 if ONLY_CONST is set. */
2472 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2473 switch (TREE_CODE (arg0))
2475 case INTEGER_CST:
2476 return tree_int_cst_equal (arg0, arg1);
2478 case FIXED_CST:
2479 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2480 TREE_FIXED_CST (arg1));
2482 case REAL_CST:
2483 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2484 TREE_REAL_CST (arg1)))
2485 return 1;
2488 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
2490 /* If we do not distinguish between signed and unsigned zero,
2491 consider them equal. */
2492 if (real_zerop (arg0) && real_zerop (arg1))
2493 return 1;
2495 return 0;
2497 case VECTOR_CST:
2499 tree v1, v2;
2501 v1 = TREE_VECTOR_CST_ELTS (arg0);
2502 v2 = TREE_VECTOR_CST_ELTS (arg1);
2503 while (v1 && v2)
2505 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2506 flags))
2507 return 0;
2508 v1 = TREE_CHAIN (v1);
2509 v2 = TREE_CHAIN (v2);
2512 return v1 == v2;
2515 case COMPLEX_CST:
2516 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2517 flags)
2518 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2519 flags));
2521 case STRING_CST:
2522 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2523 && ! memcmp (TREE_STRING_POINTER (arg0),
2524 TREE_STRING_POINTER (arg1),
2525 TREE_STRING_LENGTH (arg0)));
2527 case ADDR_EXPR:
2528 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2529 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2530 ? OEP_CONSTANT_ADDRESS_OF : 0);
2531 default:
2532 break;
2535 if (flags & OEP_ONLY_CONST)
2536 return 0;
2538 /* Define macros to test an operand from arg0 and arg1 for equality and a
2539 variant that allows null and views null as being different from any
2540 non-null value. In the latter case, if either is null, the both
2541 must be; otherwise, do the normal comparison. */
2542 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2543 TREE_OPERAND (arg1, N), flags)
2545 #define OP_SAME_WITH_NULL(N) \
2546 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2547 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2549 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2551 case tcc_unary:
2552 /* Two conversions are equal only if signedness and modes match. */
2553 switch (TREE_CODE (arg0))
2555 CASE_CONVERT:
2556 case FIX_TRUNC_EXPR:
2557 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2558 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2559 return 0;
2560 break;
2561 default:
2562 break;
2565 return OP_SAME (0);
2568 case tcc_comparison:
2569 case tcc_binary:
2570 if (OP_SAME (0) && OP_SAME (1))
2571 return 1;
2573 /* For commutative ops, allow the other order. */
2574 return (commutative_tree_code (TREE_CODE (arg0))
2575 && operand_equal_p (TREE_OPERAND (arg0, 0),
2576 TREE_OPERAND (arg1, 1), flags)
2577 && operand_equal_p (TREE_OPERAND (arg0, 1),
2578 TREE_OPERAND (arg1, 0), flags));
2580 case tcc_reference:
2581 /* If either of the pointer (or reference) expressions we are
2582 dereferencing contain a side effect, these cannot be equal. */
2583 if (TREE_SIDE_EFFECTS (arg0)
2584 || TREE_SIDE_EFFECTS (arg1))
2585 return 0;
2587 switch (TREE_CODE (arg0))
2589 case INDIRECT_REF:
2590 case REALPART_EXPR:
2591 case IMAGPART_EXPR:
2592 return OP_SAME (0);
2594 case MEM_REF:
2595 /* Require equal access sizes, and similar pointer types.
2596 We can have incomplete types for array references of
2597 variable-sized arrays from the Fortran frontent
2598 though. */
2599 return ((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2600 || (TYPE_SIZE (TREE_TYPE (arg0))
2601 && TYPE_SIZE (TREE_TYPE (arg1))
2602 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2603 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2604 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg0, 1)))
2605 == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg1, 1))))
2606 && OP_SAME (0) && OP_SAME (1));
2608 case ARRAY_REF:
2609 case ARRAY_RANGE_REF:
2610 /* Operands 2 and 3 may be null.
2611 Compare the array index by value if it is constant first as we
2612 may have different types but same value here. */
2613 return (OP_SAME (0)
2614 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2615 TREE_OPERAND (arg1, 1))
2616 || OP_SAME (1))
2617 && OP_SAME_WITH_NULL (2)
2618 && OP_SAME_WITH_NULL (3));
2620 case COMPONENT_REF:
2621 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2622 may be NULL when we're called to compare MEM_EXPRs. */
2623 return OP_SAME_WITH_NULL (0)
2624 && OP_SAME (1)
2625 && OP_SAME_WITH_NULL (2);
2627 case BIT_FIELD_REF:
2628 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2630 default:
2631 return 0;
2634 case tcc_expression:
2635 switch (TREE_CODE (arg0))
2637 case ADDR_EXPR:
2638 case TRUTH_NOT_EXPR:
2639 return OP_SAME (0);
2641 case TRUTH_ANDIF_EXPR:
2642 case TRUTH_ORIF_EXPR:
2643 return OP_SAME (0) && OP_SAME (1);
2645 case FMA_EXPR:
2646 case WIDEN_MULT_PLUS_EXPR:
2647 case WIDEN_MULT_MINUS_EXPR:
2648 if (!OP_SAME (2))
2649 return 0;
2650 /* The multiplcation operands are commutative. */
2651 /* FALLTHRU */
2653 case TRUTH_AND_EXPR:
2654 case TRUTH_OR_EXPR:
2655 case TRUTH_XOR_EXPR:
2656 if (OP_SAME (0) && OP_SAME (1))
2657 return 1;
2659 /* Otherwise take into account this is a commutative operation. */
2660 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2661 TREE_OPERAND (arg1, 1), flags)
2662 && operand_equal_p (TREE_OPERAND (arg0, 1),
2663 TREE_OPERAND (arg1, 0), flags));
2665 case COND_EXPR:
2666 case VEC_COND_EXPR:
2667 case DOT_PROD_EXPR:
2668 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2670 default:
2671 return 0;
2674 case tcc_vl_exp:
2675 switch (TREE_CODE (arg0))
2677 case CALL_EXPR:
2678 /* If the CALL_EXPRs call different functions, then they
2679 clearly can not be equal. */
2680 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
2681 flags))
2682 return 0;
2685 unsigned int cef = call_expr_flags (arg0);
2686 if (flags & OEP_PURE_SAME)
2687 cef &= ECF_CONST | ECF_PURE;
2688 else
2689 cef &= ECF_CONST;
2690 if (!cef)
2691 return 0;
2694 /* Now see if all the arguments are the same. */
2696 const_call_expr_arg_iterator iter0, iter1;
2697 const_tree a0, a1;
2698 for (a0 = first_const_call_expr_arg (arg0, &iter0),
2699 a1 = first_const_call_expr_arg (arg1, &iter1);
2700 a0 && a1;
2701 a0 = next_const_call_expr_arg (&iter0),
2702 a1 = next_const_call_expr_arg (&iter1))
2703 if (! operand_equal_p (a0, a1, flags))
2704 return 0;
2706 /* If we get here and both argument lists are exhausted
2707 then the CALL_EXPRs are equal. */
2708 return ! (a0 || a1);
2710 default:
2711 return 0;
2714 case tcc_declaration:
2715 /* Consider __builtin_sqrt equal to sqrt. */
2716 return (TREE_CODE (arg0) == FUNCTION_DECL
2717 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2718 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2719 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2721 default:
2722 return 0;
2725 #undef OP_SAME
2726 #undef OP_SAME_WITH_NULL
2729 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2730 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2732 When in doubt, return 0. */
2734 static int
2735 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2737 int unsignedp1, unsignedpo;
2738 tree primarg0, primarg1, primother;
2739 unsigned int correct_width;
2741 if (operand_equal_p (arg0, arg1, 0))
2742 return 1;
2744 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2745 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2746 return 0;
2748 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2749 and see if the inner values are the same. This removes any
2750 signedness comparison, which doesn't matter here. */
2751 primarg0 = arg0, primarg1 = arg1;
2752 STRIP_NOPS (primarg0);
2753 STRIP_NOPS (primarg1);
2754 if (operand_equal_p (primarg0, primarg1, 0))
2755 return 1;
2757 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2758 actual comparison operand, ARG0.
2760 First throw away any conversions to wider types
2761 already present in the operands. */
2763 primarg1 = get_narrower (arg1, &unsignedp1);
2764 primother = get_narrower (other, &unsignedpo);
2766 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2767 if (unsignedp1 == unsignedpo
2768 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2769 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2771 tree type = TREE_TYPE (arg0);
2773 /* Make sure shorter operand is extended the right way
2774 to match the longer operand. */
2775 primarg1 = fold_convert (signed_or_unsigned_type_for
2776 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2778 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2779 return 1;
2782 return 0;
2785 /* See if ARG is an expression that is either a comparison or is performing
2786 arithmetic on comparisons. The comparisons must only be comparing
2787 two different values, which will be stored in *CVAL1 and *CVAL2; if
2788 they are nonzero it means that some operands have already been found.
2789 No variables may be used anywhere else in the expression except in the
2790 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2791 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2793 If this is true, return 1. Otherwise, return zero. */
2795 static int
2796 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2798 enum tree_code code = TREE_CODE (arg);
2799 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2801 /* We can handle some of the tcc_expression cases here. */
2802 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2803 tclass = tcc_unary;
2804 else if (tclass == tcc_expression
2805 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2806 || code == COMPOUND_EXPR))
2807 tclass = tcc_binary;
2809 else if (tclass == tcc_expression && code == SAVE_EXPR
2810 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2812 /* If we've already found a CVAL1 or CVAL2, this expression is
2813 two complex to handle. */
2814 if (*cval1 || *cval2)
2815 return 0;
2817 tclass = tcc_unary;
2818 *save_p = 1;
2821 switch (tclass)
2823 case tcc_unary:
2824 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2826 case tcc_binary:
2827 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2828 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2829 cval1, cval2, save_p));
2831 case tcc_constant:
2832 return 1;
2834 case tcc_expression:
2835 if (code == COND_EXPR)
2836 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2837 cval1, cval2, save_p)
2838 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2839 cval1, cval2, save_p)
2840 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2841 cval1, cval2, save_p));
2842 return 0;
2844 case tcc_comparison:
2845 /* First see if we can handle the first operand, then the second. For
2846 the second operand, we know *CVAL1 can't be zero. It must be that
2847 one side of the comparison is each of the values; test for the
2848 case where this isn't true by failing if the two operands
2849 are the same. */
2851 if (operand_equal_p (TREE_OPERAND (arg, 0),
2852 TREE_OPERAND (arg, 1), 0))
2853 return 0;
2855 if (*cval1 == 0)
2856 *cval1 = TREE_OPERAND (arg, 0);
2857 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2859 else if (*cval2 == 0)
2860 *cval2 = TREE_OPERAND (arg, 0);
2861 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2863 else
2864 return 0;
2866 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2868 else if (*cval2 == 0)
2869 *cval2 = TREE_OPERAND (arg, 1);
2870 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2872 else
2873 return 0;
2875 return 1;
2877 default:
2878 return 0;
2882 /* ARG is a tree that is known to contain just arithmetic operations and
2883 comparisons. Evaluate the operations in the tree substituting NEW0 for
2884 any occurrence of OLD0 as an operand of a comparison and likewise for
2885 NEW1 and OLD1. */
2887 static tree
2888 eval_subst (location_t loc, tree arg, tree old0, tree new0,
2889 tree old1, tree new1)
2891 tree type = TREE_TYPE (arg);
2892 enum tree_code code = TREE_CODE (arg);
2893 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2895 /* We can handle some of the tcc_expression cases here. */
2896 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2897 tclass = tcc_unary;
2898 else if (tclass == tcc_expression
2899 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2900 tclass = tcc_binary;
2902 switch (tclass)
2904 case tcc_unary:
2905 return fold_build1_loc (loc, code, type,
2906 eval_subst (loc, TREE_OPERAND (arg, 0),
2907 old0, new0, old1, new1));
2909 case tcc_binary:
2910 return fold_build2_loc (loc, code, type,
2911 eval_subst (loc, TREE_OPERAND (arg, 0),
2912 old0, new0, old1, new1),
2913 eval_subst (loc, TREE_OPERAND (arg, 1),
2914 old0, new0, old1, new1));
2916 case tcc_expression:
2917 switch (code)
2919 case SAVE_EXPR:
2920 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
2921 old1, new1);
2923 case COMPOUND_EXPR:
2924 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
2925 old1, new1);
2927 case COND_EXPR:
2928 return fold_build3_loc (loc, code, type,
2929 eval_subst (loc, TREE_OPERAND (arg, 0),
2930 old0, new0, old1, new1),
2931 eval_subst (loc, TREE_OPERAND (arg, 1),
2932 old0, new0, old1, new1),
2933 eval_subst (loc, TREE_OPERAND (arg, 2),
2934 old0, new0, old1, new1));
2935 default:
2936 break;
2938 /* Fall through - ??? */
2940 case tcc_comparison:
2942 tree arg0 = TREE_OPERAND (arg, 0);
2943 tree arg1 = TREE_OPERAND (arg, 1);
2945 /* We need to check both for exact equality and tree equality. The
2946 former will be true if the operand has a side-effect. In that
2947 case, we know the operand occurred exactly once. */
2949 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2950 arg0 = new0;
2951 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2952 arg0 = new1;
2954 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2955 arg1 = new0;
2956 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2957 arg1 = new1;
2959 return fold_build2_loc (loc, code, type, arg0, arg1);
2962 default:
2963 return arg;
2967 /* Return a tree for the case when the result of an expression is RESULT
2968 converted to TYPE and OMITTED was previously an operand of the expression
2969 but is now not needed (e.g., we folded OMITTED * 0).
2971 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2972 the conversion of RESULT to TYPE. */
2974 tree
2975 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
2977 tree t = fold_convert_loc (loc, type, result);
2979 /* If the resulting operand is an empty statement, just return the omitted
2980 statement casted to void. */
2981 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
2982 return build1_loc (loc, NOP_EXPR, void_type_node,
2983 fold_ignored_result (omitted));
2985 if (TREE_SIDE_EFFECTS (omitted))
2986 return build2_loc (loc, COMPOUND_EXPR, type,
2987 fold_ignored_result (omitted), t);
2989 return non_lvalue_loc (loc, t);
2992 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2994 static tree
2995 pedantic_omit_one_operand_loc (location_t loc, tree type, tree result,
2996 tree omitted)
2998 tree t = fold_convert_loc (loc, type, result);
3000 /* If the resulting operand is an empty statement, just return the omitted
3001 statement casted to void. */
3002 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3003 return build1_loc (loc, NOP_EXPR, void_type_node,
3004 fold_ignored_result (omitted));
3006 if (TREE_SIDE_EFFECTS (omitted))
3007 return build2_loc (loc, COMPOUND_EXPR, type,
3008 fold_ignored_result (omitted), t);
3010 return pedantic_non_lvalue_loc (loc, t);
3013 /* Return a tree for the case when the result of an expression is RESULT
3014 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3015 of the expression but are now not needed.
3017 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3018 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3019 evaluated before OMITTED2. Otherwise, if neither has side effects,
3020 just do the conversion of RESULT to TYPE. */
3022 tree
3023 omit_two_operands_loc (location_t loc, tree type, tree result,
3024 tree omitted1, tree omitted2)
3026 tree t = fold_convert_loc (loc, type, result);
3028 if (TREE_SIDE_EFFECTS (omitted2))
3029 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3030 if (TREE_SIDE_EFFECTS (omitted1))
3031 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3033 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3037 /* Return a simplified tree node for the truth-negation of ARG. This
3038 never alters ARG itself. We assume that ARG is an operation that
3039 returns a truth value (0 or 1).
3041 FIXME: one would think we would fold the result, but it causes
3042 problems with the dominator optimizer. */
3044 tree
3045 fold_truth_not_expr (location_t loc, tree arg)
3047 tree type = TREE_TYPE (arg);
3048 enum tree_code code = TREE_CODE (arg);
3049 location_t loc1, loc2;
3051 /* If this is a comparison, we can simply invert it, except for
3052 floating-point non-equality comparisons, in which case we just
3053 enclose a TRUTH_NOT_EXPR around what we have. */
3055 if (TREE_CODE_CLASS (code) == tcc_comparison)
3057 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3058 if (FLOAT_TYPE_P (op_type)
3059 && flag_trapping_math
3060 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3061 && code != NE_EXPR && code != EQ_EXPR)
3062 return NULL_TREE;
3064 code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (op_type)));
3065 if (code == ERROR_MARK)
3066 return NULL_TREE;
3068 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3069 TREE_OPERAND (arg, 1));
3072 switch (code)
3074 case INTEGER_CST:
3075 return constant_boolean_node (integer_zerop (arg), type);
3077 case TRUTH_AND_EXPR:
3078 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3079 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3080 return build2_loc (loc, TRUTH_OR_EXPR, type,
3081 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3082 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3084 case TRUTH_OR_EXPR:
3085 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3086 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3087 return build2_loc (loc, TRUTH_AND_EXPR, type,
3088 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3089 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3091 case TRUTH_XOR_EXPR:
3092 /* Here we can invert either operand. We invert the first operand
3093 unless the second operand is a TRUTH_NOT_EXPR in which case our
3094 result is the XOR of the first operand with the inside of the
3095 negation of the second operand. */
3097 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3098 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3099 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3100 else
3101 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3102 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3103 TREE_OPERAND (arg, 1));
3105 case TRUTH_ANDIF_EXPR:
3106 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3107 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3108 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3109 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3110 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3112 case TRUTH_ORIF_EXPR:
3113 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3114 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3115 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3116 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3117 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3119 case TRUTH_NOT_EXPR:
3120 return TREE_OPERAND (arg, 0);
3122 case COND_EXPR:
3124 tree arg1 = TREE_OPERAND (arg, 1);
3125 tree arg2 = TREE_OPERAND (arg, 2);
3127 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3128 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3130 /* A COND_EXPR may have a throw as one operand, which
3131 then has void type. Just leave void operands
3132 as they are. */
3133 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3134 VOID_TYPE_P (TREE_TYPE (arg1))
3135 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3136 VOID_TYPE_P (TREE_TYPE (arg2))
3137 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3140 case COMPOUND_EXPR:
3141 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3142 return build2_loc (loc, COMPOUND_EXPR, type,
3143 TREE_OPERAND (arg, 0),
3144 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3146 case NON_LVALUE_EXPR:
3147 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3148 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3150 CASE_CONVERT:
3151 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3152 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3154 /* ... fall through ... */
3156 case FLOAT_EXPR:
3157 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3158 return build1_loc (loc, TREE_CODE (arg), type,
3159 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3161 case BIT_AND_EXPR:
3162 if (!integer_onep (TREE_OPERAND (arg, 1)))
3163 return NULL_TREE;
3164 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3166 case SAVE_EXPR:
3167 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3169 case CLEANUP_POINT_EXPR:
3170 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3171 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3172 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3174 default:
3175 return NULL_TREE;
3179 /* Return a simplified tree node for the truth-negation of ARG. This
3180 never alters ARG itself. We assume that ARG is an operation that
3181 returns a truth value (0 or 1).
3183 FIXME: one would think we would fold the result, but it causes
3184 problems with the dominator optimizer. */
3186 tree
3187 invert_truthvalue_loc (location_t loc, tree arg)
3189 tree tem;
3191 if (TREE_CODE (arg) == ERROR_MARK)
3192 return arg;
3194 tem = fold_truth_not_expr (loc, arg);
3195 if (!tem)
3196 tem = build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3198 return tem;
3201 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3202 operands are another bit-wise operation with a common input. If so,
3203 distribute the bit operations to save an operation and possibly two if
3204 constants are involved. For example, convert
3205 (A | B) & (A | C) into A | (B & C)
3206 Further simplification will occur if B and C are constants.
3208 If this optimization cannot be done, 0 will be returned. */
3210 static tree
3211 distribute_bit_expr (location_t loc, enum tree_code code, tree type,
3212 tree arg0, tree arg1)
3214 tree common;
3215 tree left, right;
3217 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3218 || TREE_CODE (arg0) == code
3219 || (TREE_CODE (arg0) != BIT_AND_EXPR
3220 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3221 return 0;
3223 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3225 common = TREE_OPERAND (arg0, 0);
3226 left = TREE_OPERAND (arg0, 1);
3227 right = TREE_OPERAND (arg1, 1);
3229 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3231 common = TREE_OPERAND (arg0, 0);
3232 left = TREE_OPERAND (arg0, 1);
3233 right = TREE_OPERAND (arg1, 0);
3235 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3237 common = TREE_OPERAND (arg0, 1);
3238 left = TREE_OPERAND (arg0, 0);
3239 right = TREE_OPERAND (arg1, 1);
3241 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3243 common = TREE_OPERAND (arg0, 1);
3244 left = TREE_OPERAND (arg0, 0);
3245 right = TREE_OPERAND (arg1, 0);
3247 else
3248 return 0;
3250 common = fold_convert_loc (loc, type, common);
3251 left = fold_convert_loc (loc, type, left);
3252 right = fold_convert_loc (loc, type, right);
3253 return fold_build2_loc (loc, TREE_CODE (arg0), type, common,
3254 fold_build2_loc (loc, code, type, left, right));
3257 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3258 with code CODE. This optimization is unsafe. */
3259 static tree
3260 distribute_real_division (location_t loc, enum tree_code code, tree type,
3261 tree arg0, tree arg1)
3263 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3264 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3266 /* (A / C) +- (B / C) -> (A +- B) / C. */
3267 if (mul0 == mul1
3268 && operand_equal_p (TREE_OPERAND (arg0, 1),
3269 TREE_OPERAND (arg1, 1), 0))
3270 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3271 fold_build2_loc (loc, code, type,
3272 TREE_OPERAND (arg0, 0),
3273 TREE_OPERAND (arg1, 0)),
3274 TREE_OPERAND (arg0, 1));
3276 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3277 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3278 TREE_OPERAND (arg1, 0), 0)
3279 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3280 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3282 REAL_VALUE_TYPE r0, r1;
3283 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3284 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3285 if (!mul0)
3286 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3287 if (!mul1)
3288 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3289 real_arithmetic (&r0, code, &r0, &r1);
3290 return fold_build2_loc (loc, MULT_EXPR, type,
3291 TREE_OPERAND (arg0, 0),
3292 build_real (type, r0));
3295 return NULL_TREE;
3298 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3299 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3301 static tree
3302 make_bit_field_ref (location_t loc, tree inner, tree type,
3303 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3305 tree result, bftype;
3307 if (bitpos == 0)
3309 tree size = TYPE_SIZE (TREE_TYPE (inner));
3310 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3311 || POINTER_TYPE_P (TREE_TYPE (inner)))
3312 && host_integerp (size, 0)
3313 && tree_low_cst (size, 0) == bitsize)
3314 return fold_convert_loc (loc, type, inner);
3317 bftype = type;
3318 if (TYPE_PRECISION (bftype) != bitsize
3319 || TYPE_UNSIGNED (bftype) == !unsignedp)
3320 bftype = build_nonstandard_integer_type (bitsize, 0);
3322 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3323 size_int (bitsize), bitsize_int (bitpos));
3325 if (bftype != type)
3326 result = fold_convert_loc (loc, type, result);
3328 return result;
3331 /* Optimize a bit-field compare.
3333 There are two cases: First is a compare against a constant and the
3334 second is a comparison of two items where the fields are at the same
3335 bit position relative to the start of a chunk (byte, halfword, word)
3336 large enough to contain it. In these cases we can avoid the shift
3337 implicit in bitfield extractions.
3339 For constants, we emit a compare of the shifted constant with the
3340 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3341 compared. For two fields at the same position, we do the ANDs with the
3342 similar mask and compare the result of the ANDs.
3344 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3345 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3346 are the left and right operands of the comparison, respectively.
3348 If the optimization described above can be done, we return the resulting
3349 tree. Otherwise we return zero. */
3351 static tree
3352 optimize_bit_field_compare (location_t loc, enum tree_code code,
3353 tree compare_type, tree lhs, tree rhs)
3355 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3356 tree type = TREE_TYPE (lhs);
3357 tree signed_type, unsigned_type;
3358 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3359 enum machine_mode lmode, rmode, nmode;
3360 int lunsignedp, runsignedp;
3361 int lvolatilep = 0, rvolatilep = 0;
3362 tree linner, rinner = NULL_TREE;
3363 tree mask;
3364 tree offset;
3366 /* Get all the information about the extractions being done. If the bit size
3367 if the same as the size of the underlying object, we aren't doing an
3368 extraction at all and so can do nothing. We also don't want to
3369 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3370 then will no longer be able to replace it. */
3371 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3372 &lunsignedp, &lvolatilep, false);
3373 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3374 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3375 return 0;
3377 if (!const_p)
3379 /* If this is not a constant, we can only do something if bit positions,
3380 sizes, and signedness are the same. */
3381 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3382 &runsignedp, &rvolatilep, false);
3384 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3385 || lunsignedp != runsignedp || offset != 0
3386 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3387 return 0;
3390 /* See if we can find a mode to refer to this field. We should be able to,
3391 but fail if we can't. */
3392 if (lvolatilep
3393 && GET_MODE_BITSIZE (lmode) > 0
3394 && flag_strict_volatile_bitfields > 0)
3395 nmode = lmode;
3396 else
3397 nmode = get_best_mode (lbitsize, lbitpos,
3398 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3399 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3400 TYPE_ALIGN (TREE_TYPE (rinner))),
3401 word_mode, lvolatilep || rvolatilep);
3402 if (nmode == VOIDmode)
3403 return 0;
3405 /* Set signed and unsigned types of the precision of this mode for the
3406 shifts below. */
3407 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3408 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3410 /* Compute the bit position and size for the new reference and our offset
3411 within it. If the new reference is the same size as the original, we
3412 won't optimize anything, so return zero. */
3413 nbitsize = GET_MODE_BITSIZE (nmode);
3414 nbitpos = lbitpos & ~ (nbitsize - 1);
3415 lbitpos -= nbitpos;
3416 if (nbitsize == lbitsize)
3417 return 0;
3419 if (BYTES_BIG_ENDIAN)
3420 lbitpos = nbitsize - lbitsize - lbitpos;
3422 /* Make the mask to be used against the extracted field. */
3423 mask = build_int_cst_type (unsigned_type, -1);
3424 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3425 mask = const_binop (RSHIFT_EXPR, mask,
3426 size_int (nbitsize - lbitsize - lbitpos));
3428 if (! const_p)
3429 /* If not comparing with constant, just rework the comparison
3430 and return. */
3431 return fold_build2_loc (loc, code, compare_type,
3432 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3433 make_bit_field_ref (loc, linner,
3434 unsigned_type,
3435 nbitsize, nbitpos,
3437 mask),
3438 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3439 make_bit_field_ref (loc, rinner,
3440 unsigned_type,
3441 nbitsize, nbitpos,
3443 mask));
3445 /* Otherwise, we are handling the constant case. See if the constant is too
3446 big for the field. Warn and return a tree of for 0 (false) if so. We do
3447 this not only for its own sake, but to avoid having to test for this
3448 error case below. If we didn't, we might generate wrong code.
3450 For unsigned fields, the constant shifted right by the field length should
3451 be all zero. For signed fields, the high-order bits should agree with
3452 the sign bit. */
3454 if (lunsignedp)
3456 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3457 fold_convert_loc (loc,
3458 unsigned_type, rhs),
3459 size_int (lbitsize))))
3461 warning (0, "comparison is always %d due to width of bit-field",
3462 code == NE_EXPR);
3463 return constant_boolean_node (code == NE_EXPR, compare_type);
3466 else
3468 tree tem = const_binop (RSHIFT_EXPR,
3469 fold_convert_loc (loc, signed_type, rhs),
3470 size_int (lbitsize - 1));
3471 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3473 warning (0, "comparison is always %d due to width of bit-field",
3474 code == NE_EXPR);
3475 return constant_boolean_node (code == NE_EXPR, compare_type);
3479 /* Single-bit compares should always be against zero. */
3480 if (lbitsize == 1 && ! integer_zerop (rhs))
3482 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3483 rhs = build_int_cst (type, 0);
3486 /* Make a new bitfield reference, shift the constant over the
3487 appropriate number of bits and mask it with the computed mask
3488 (in case this was a signed field). If we changed it, make a new one. */
3489 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3490 if (lvolatilep)
3492 TREE_SIDE_EFFECTS (lhs) = 1;
3493 TREE_THIS_VOLATILE (lhs) = 1;
3496 rhs = const_binop (BIT_AND_EXPR,
3497 const_binop (LSHIFT_EXPR,
3498 fold_convert_loc (loc, unsigned_type, rhs),
3499 size_int (lbitpos)),
3500 mask);
3502 lhs = build2_loc (loc, code, compare_type,
3503 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3504 return lhs;
3507 /* Subroutine for fold_truthop: decode a field reference.
3509 If EXP is a comparison reference, we return the innermost reference.
3511 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3512 set to the starting bit number.
3514 If the innermost field can be completely contained in a mode-sized
3515 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3517 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3518 otherwise it is not changed.
3520 *PUNSIGNEDP is set to the signedness of the field.
3522 *PMASK is set to the mask used. This is either contained in a
3523 BIT_AND_EXPR or derived from the width of the field.
3525 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3527 Return 0 if this is not a component reference or is one that we can't
3528 do anything with. */
3530 static tree
3531 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3532 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3533 int *punsignedp, int *pvolatilep,
3534 tree *pmask, tree *pand_mask)
3536 tree outer_type = 0;
3537 tree and_mask = 0;
3538 tree mask, inner, offset;
3539 tree unsigned_type;
3540 unsigned int precision;
3542 /* All the optimizations using this function assume integer fields.
3543 There are problems with FP fields since the type_for_size call
3544 below can fail for, e.g., XFmode. */
3545 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3546 return 0;
3548 /* We are interested in the bare arrangement of bits, so strip everything
3549 that doesn't affect the machine mode. However, record the type of the
3550 outermost expression if it may matter below. */
3551 if (CONVERT_EXPR_P (exp)
3552 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3553 outer_type = TREE_TYPE (exp);
3554 STRIP_NOPS (exp);
3556 if (TREE_CODE (exp) == BIT_AND_EXPR)
3558 and_mask = TREE_OPERAND (exp, 1);
3559 exp = TREE_OPERAND (exp, 0);
3560 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3561 if (TREE_CODE (and_mask) != INTEGER_CST)
3562 return 0;
3565 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3566 punsignedp, pvolatilep, false);
3567 if ((inner == exp && and_mask == 0)
3568 || *pbitsize < 0 || offset != 0
3569 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3570 return 0;
3572 /* If the number of bits in the reference is the same as the bitsize of
3573 the outer type, then the outer type gives the signedness. Otherwise
3574 (in case of a small bitfield) the signedness is unchanged. */
3575 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3576 *punsignedp = TYPE_UNSIGNED (outer_type);
3578 /* Compute the mask to access the bitfield. */
3579 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3580 precision = TYPE_PRECISION (unsigned_type);
3582 mask = build_int_cst_type (unsigned_type, -1);
3584 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3585 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3587 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3588 if (and_mask != 0)
3589 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3590 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3592 *pmask = mask;
3593 *pand_mask = and_mask;
3594 return inner;
3597 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3598 bit positions. */
3600 static int
3601 all_ones_mask_p (const_tree mask, int size)
3603 tree type = TREE_TYPE (mask);
3604 unsigned int precision = TYPE_PRECISION (type);
3605 tree tmask;
3607 tmask = build_int_cst_type (signed_type_for (type), -1);
3609 return
3610 tree_int_cst_equal (mask,
3611 const_binop (RSHIFT_EXPR,
3612 const_binop (LSHIFT_EXPR, tmask,
3613 size_int (precision - size)),
3614 size_int (precision - size)));
3617 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3618 represents the sign bit of EXP's type. If EXP represents a sign
3619 or zero extension, also test VAL against the unextended type.
3620 The return value is the (sub)expression whose sign bit is VAL,
3621 or NULL_TREE otherwise. */
3623 static tree
3624 sign_bit_p (tree exp, const_tree val)
3626 unsigned HOST_WIDE_INT mask_lo, lo;
3627 HOST_WIDE_INT mask_hi, hi;
3628 int width;
3629 tree t;
3631 /* Tree EXP must have an integral type. */
3632 t = TREE_TYPE (exp);
3633 if (! INTEGRAL_TYPE_P (t))
3634 return NULL_TREE;
3636 /* Tree VAL must be an integer constant. */
3637 if (TREE_CODE (val) != INTEGER_CST
3638 || TREE_OVERFLOW (val))
3639 return NULL_TREE;
3641 width = TYPE_PRECISION (t);
3642 if (width > HOST_BITS_PER_WIDE_INT)
3644 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3645 lo = 0;
3647 mask_hi = ((unsigned HOST_WIDE_INT) -1
3648 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3649 mask_lo = -1;
3651 else
3653 hi = 0;
3654 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3656 mask_hi = 0;
3657 mask_lo = ((unsigned HOST_WIDE_INT) -1
3658 >> (HOST_BITS_PER_WIDE_INT - width));
3661 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3662 treat VAL as if it were unsigned. */
3663 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3664 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3665 return exp;
3667 /* Handle extension from a narrower type. */
3668 if (TREE_CODE (exp) == NOP_EXPR
3669 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3670 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3672 return NULL_TREE;
3675 /* Subroutine for fold_truthop: determine if an operand is simple enough
3676 to be evaluated unconditionally. */
3678 static int
3679 simple_operand_p (const_tree exp)
3681 /* Strip any conversions that don't change the machine mode. */
3682 STRIP_NOPS (exp);
3684 return (CONSTANT_CLASS_P (exp)
3685 || TREE_CODE (exp) == SSA_NAME
3686 || (DECL_P (exp)
3687 && ! TREE_ADDRESSABLE (exp)
3688 && ! TREE_THIS_VOLATILE (exp)
3689 && ! DECL_NONLOCAL (exp)
3690 /* Don't regard global variables as simple. They may be
3691 allocated in ways unknown to the compiler (shared memory,
3692 #pragma weak, etc). */
3693 && ! TREE_PUBLIC (exp)
3694 && ! DECL_EXTERNAL (exp)
3695 /* Loading a static variable is unduly expensive, but global
3696 registers aren't expensive. */
3697 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3700 /* The following functions are subroutines to fold_range_test and allow it to
3701 try to change a logical combination of comparisons into a range test.
3703 For example, both
3704 X == 2 || X == 3 || X == 4 || X == 5
3706 X >= 2 && X <= 5
3707 are converted to
3708 (unsigned) (X - 2) <= 3
3710 We describe each set of comparisons as being either inside or outside
3711 a range, using a variable named like IN_P, and then describe the
3712 range with a lower and upper bound. If one of the bounds is omitted,
3713 it represents either the highest or lowest value of the type.
3715 In the comments below, we represent a range by two numbers in brackets
3716 preceded by a "+" to designate being inside that range, or a "-" to
3717 designate being outside that range, so the condition can be inverted by
3718 flipping the prefix. An omitted bound is represented by a "-". For
3719 example, "- [-, 10]" means being outside the range starting at the lowest
3720 possible value and ending at 10, in other words, being greater than 10.
3721 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3722 always false.
3724 We set up things so that the missing bounds are handled in a consistent
3725 manner so neither a missing bound nor "true" and "false" need to be
3726 handled using a special case. */
3728 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3729 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3730 and UPPER1_P are nonzero if the respective argument is an upper bound
3731 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3732 must be specified for a comparison. ARG1 will be converted to ARG0's
3733 type if both are specified. */
3735 static tree
3736 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3737 tree arg1, int upper1_p)
3739 tree tem;
3740 int result;
3741 int sgn0, sgn1;
3743 /* If neither arg represents infinity, do the normal operation.
3744 Else, if not a comparison, return infinity. Else handle the special
3745 comparison rules. Note that most of the cases below won't occur, but
3746 are handled for consistency. */
3748 if (arg0 != 0 && arg1 != 0)
3750 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3751 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3752 STRIP_NOPS (tem);
3753 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3756 if (TREE_CODE_CLASS (code) != tcc_comparison)
3757 return 0;
3759 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3760 for neither. In real maths, we cannot assume open ended ranges are
3761 the same. But, this is computer arithmetic, where numbers are finite.
3762 We can therefore make the transformation of any unbounded range with
3763 the value Z, Z being greater than any representable number. This permits
3764 us to treat unbounded ranges as equal. */
3765 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3766 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3767 switch (code)
3769 case EQ_EXPR:
3770 result = sgn0 == sgn1;
3771 break;
3772 case NE_EXPR:
3773 result = sgn0 != sgn1;
3774 break;
3775 case LT_EXPR:
3776 result = sgn0 < sgn1;
3777 break;
3778 case LE_EXPR:
3779 result = sgn0 <= sgn1;
3780 break;
3781 case GT_EXPR:
3782 result = sgn0 > sgn1;
3783 break;
3784 case GE_EXPR:
3785 result = sgn0 >= sgn1;
3786 break;
3787 default:
3788 gcc_unreachable ();
3791 return constant_boolean_node (result, type);
3794 /* Given EXP, a logical expression, set the range it is testing into
3795 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3796 actually being tested. *PLOW and *PHIGH will be made of the same
3797 type as the returned expression. If EXP is not a comparison, we
3798 will most likely not be returning a useful value and range. Set
3799 *STRICT_OVERFLOW_P to true if the return value is only valid
3800 because signed overflow is undefined; otherwise, do not change
3801 *STRICT_OVERFLOW_P. */
3803 tree
3804 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
3805 bool *strict_overflow_p)
3807 enum tree_code code;
3808 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3809 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3810 int in_p, n_in_p;
3811 tree low, high, n_low, n_high;
3812 location_t loc = EXPR_LOCATION (exp);
3814 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3815 and see if we can refine the range. Some of the cases below may not
3816 happen, but it doesn't seem worth worrying about this. We "continue"
3817 the outer loop when we've changed something; otherwise we "break"
3818 the switch, which will "break" the while. */
3820 in_p = 0;
3821 low = high = build_int_cst (TREE_TYPE (exp), 0);
3823 while (1)
3825 code = TREE_CODE (exp);
3826 exp_type = TREE_TYPE (exp);
3828 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3830 if (TREE_OPERAND_LENGTH (exp) > 0)
3831 arg0 = TREE_OPERAND (exp, 0);
3832 if (TREE_CODE_CLASS (code) == tcc_comparison
3833 || TREE_CODE_CLASS (code) == tcc_unary
3834 || TREE_CODE_CLASS (code) == tcc_binary)
3835 arg0_type = TREE_TYPE (arg0);
3836 if (TREE_CODE_CLASS (code) == tcc_binary
3837 || TREE_CODE_CLASS (code) == tcc_comparison
3838 || (TREE_CODE_CLASS (code) == tcc_expression
3839 && TREE_OPERAND_LENGTH (exp) > 1))
3840 arg1 = TREE_OPERAND (exp, 1);
3843 switch (code)
3845 case TRUTH_NOT_EXPR:
3846 in_p = ! in_p, exp = arg0;
3847 continue;
3849 case EQ_EXPR: case NE_EXPR:
3850 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3851 /* We can only do something if the range is testing for zero
3852 and if the second operand is an integer constant. Note that
3853 saying something is "in" the range we make is done by
3854 complementing IN_P since it will set in the initial case of
3855 being not equal to zero; "out" is leaving it alone. */
3856 if (low == 0 || high == 0
3857 || ! integer_zerop (low) || ! integer_zerop (high)
3858 || TREE_CODE (arg1) != INTEGER_CST)
3859 break;
3861 switch (code)
3863 case NE_EXPR: /* - [c, c] */
3864 low = high = arg1;
3865 break;
3866 case EQ_EXPR: /* + [c, c] */
3867 in_p = ! in_p, low = high = arg1;
3868 break;
3869 case GT_EXPR: /* - [-, c] */
3870 low = 0, high = arg1;
3871 break;
3872 case GE_EXPR: /* + [c, -] */
3873 in_p = ! in_p, low = arg1, high = 0;
3874 break;
3875 case LT_EXPR: /* - [c, -] */
3876 low = arg1, high = 0;
3877 break;
3878 case LE_EXPR: /* + [-, c] */
3879 in_p = ! in_p, low = 0, high = arg1;
3880 break;
3881 default:
3882 gcc_unreachable ();
3885 /* If this is an unsigned comparison, we also know that EXP is
3886 greater than or equal to zero. We base the range tests we make
3887 on that fact, so we record it here so we can parse existing
3888 range tests. We test arg0_type since often the return type
3889 of, e.g. EQ_EXPR, is boolean. */
3890 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3892 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3893 in_p, low, high, 1,
3894 build_int_cst (arg0_type, 0),
3895 NULL_TREE))
3896 break;
3898 in_p = n_in_p, low = n_low, high = n_high;
3900 /* If the high bound is missing, but we have a nonzero low
3901 bound, reverse the range so it goes from zero to the low bound
3902 minus 1. */
3903 if (high == 0 && low && ! integer_zerop (low))
3905 in_p = ! in_p;
3906 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3907 integer_one_node, 0);
3908 low = build_int_cst (arg0_type, 0);
3912 exp = arg0;
3913 continue;
3915 case NEGATE_EXPR:
3916 /* (-x) IN [a,b] -> x in [-b, -a] */
3917 n_low = range_binop (MINUS_EXPR, exp_type,
3918 build_int_cst (exp_type, 0),
3919 0, high, 1);
3920 n_high = range_binop (MINUS_EXPR, exp_type,
3921 build_int_cst (exp_type, 0),
3922 0, low, 0);
3923 if (n_high != 0 && TREE_OVERFLOW (n_high))
3924 break;
3925 goto normalize;
3927 case BIT_NOT_EXPR:
3928 /* ~ X -> -X - 1 */
3929 exp = build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
3930 build_int_cst (exp_type, 1));
3931 continue;
3933 case PLUS_EXPR: case MINUS_EXPR:
3934 if (TREE_CODE (arg1) != INTEGER_CST)
3935 break;
3937 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
3938 move a constant to the other side. */
3939 if (!TYPE_UNSIGNED (arg0_type)
3940 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
3941 break;
3943 /* If EXP is signed, any overflow in the computation is undefined,
3944 so we don't worry about it so long as our computations on
3945 the bounds don't overflow. For unsigned, overflow is defined
3946 and this is exactly the right thing. */
3947 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3948 arg0_type, low, 0, arg1, 0);
3949 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3950 arg0_type, high, 1, arg1, 0);
3951 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3952 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3953 break;
3955 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
3956 *strict_overflow_p = true;
3958 normalize:
3959 /* Check for an unsigned range which has wrapped around the maximum
3960 value thus making n_high < n_low, and normalize it. */
3961 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3963 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3964 integer_one_node, 0);
3965 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3966 integer_one_node, 0);
3968 /* If the range is of the form +/- [ x+1, x ], we won't
3969 be able to normalize it. But then, it represents the
3970 whole range or the empty set, so make it
3971 +/- [ -, - ]. */
3972 if (tree_int_cst_equal (n_low, low)
3973 && tree_int_cst_equal (n_high, high))
3974 low = high = 0;
3975 else
3976 in_p = ! in_p;
3978 else
3979 low = n_low, high = n_high;
3981 exp = arg0;
3982 continue;
3984 CASE_CONVERT: case NON_LVALUE_EXPR:
3985 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3986 break;
3988 if (! INTEGRAL_TYPE_P (arg0_type)
3989 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3990 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3991 break;
3993 n_low = low, n_high = high;
3995 if (n_low != 0)
3996 n_low = fold_convert_loc (loc, arg0_type, n_low);
3998 if (n_high != 0)
3999 n_high = fold_convert_loc (loc, arg0_type, n_high);
4002 /* If we're converting arg0 from an unsigned type, to exp,
4003 a signed type, we will be doing the comparison as unsigned.
4004 The tests above have already verified that LOW and HIGH
4005 are both positive.
4007 So we have to ensure that we will handle large unsigned
4008 values the same way that the current signed bounds treat
4009 negative values. */
4011 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4013 tree high_positive;
4014 tree equiv_type;
4015 /* For fixed-point modes, we need to pass the saturating flag
4016 as the 2nd parameter. */
4017 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4018 equiv_type = lang_hooks.types.type_for_mode
4019 (TYPE_MODE (arg0_type),
4020 TYPE_SATURATING (arg0_type));
4021 else
4022 equiv_type = lang_hooks.types.type_for_mode
4023 (TYPE_MODE (arg0_type), 1);
4025 /* A range without an upper bound is, naturally, unbounded.
4026 Since convert would have cropped a very large value, use
4027 the max value for the destination type. */
4028 high_positive
4029 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4030 : TYPE_MAX_VALUE (arg0_type);
4032 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4033 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4034 fold_convert_loc (loc, arg0_type,
4035 high_positive),
4036 build_int_cst (arg0_type, 1));
4038 /* If the low bound is specified, "and" the range with the
4039 range for which the original unsigned value will be
4040 positive. */
4041 if (low != 0)
4043 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4044 1, n_low, n_high, 1,
4045 fold_convert_loc (loc, arg0_type,
4046 integer_zero_node),
4047 high_positive))
4048 break;
4050 in_p = (n_in_p == in_p);
4052 else
4054 /* Otherwise, "or" the range with the range of the input
4055 that will be interpreted as negative. */
4056 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4057 0, n_low, n_high, 1,
4058 fold_convert_loc (loc, arg0_type,
4059 integer_zero_node),
4060 high_positive))
4061 break;
4063 in_p = (in_p != n_in_p);
4067 exp = arg0;
4068 low = n_low, high = n_high;
4069 continue;
4071 default:
4072 break;
4075 break;
4078 /* If EXP is a constant, we can evaluate whether this is true or false. */
4079 if (TREE_CODE (exp) == INTEGER_CST)
4081 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4082 exp, 0, low, 0))
4083 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4084 exp, 1, high, 1)));
4085 low = high = 0;
4086 exp = 0;
4089 *pin_p = in_p, *plow = low, *phigh = high;
4090 return exp;
4093 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4094 type, TYPE, return an expression to test if EXP is in (or out of, depending
4095 on IN_P) the range. Return 0 if the test couldn't be created. */
4097 tree
4098 build_range_check (location_t loc, tree type, tree exp, int in_p,
4099 tree low, tree high)
4101 tree etype = TREE_TYPE (exp), value;
4103 #ifdef HAVE_canonicalize_funcptr_for_compare
4104 /* Disable this optimization for function pointer expressions
4105 on targets that require function pointer canonicalization. */
4106 if (HAVE_canonicalize_funcptr_for_compare
4107 && TREE_CODE (etype) == POINTER_TYPE
4108 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4109 return NULL_TREE;
4110 #endif
4112 if (! in_p)
4114 value = build_range_check (loc, type, exp, 1, low, high);
4115 if (value != 0)
4116 return invert_truthvalue_loc (loc, value);
4118 return 0;
4121 if (low == 0 && high == 0)
4122 return build_int_cst (type, 1);
4124 if (low == 0)
4125 return fold_build2_loc (loc, LE_EXPR, type, exp,
4126 fold_convert_loc (loc, etype, high));
4128 if (high == 0)
4129 return fold_build2_loc (loc, GE_EXPR, type, exp,
4130 fold_convert_loc (loc, etype, low));
4132 if (operand_equal_p (low, high, 0))
4133 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4134 fold_convert_loc (loc, etype, low));
4136 if (integer_zerop (low))
4138 if (! TYPE_UNSIGNED (etype))
4140 etype = unsigned_type_for (etype);
4141 high = fold_convert_loc (loc, etype, high);
4142 exp = fold_convert_loc (loc, etype, exp);
4144 return build_range_check (loc, type, exp, 1, 0, high);
4147 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4148 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4150 unsigned HOST_WIDE_INT lo;
4151 HOST_WIDE_INT hi;
4152 int prec;
4154 prec = TYPE_PRECISION (etype);
4155 if (prec <= HOST_BITS_PER_WIDE_INT)
4157 hi = 0;
4158 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4160 else
4162 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4163 lo = (unsigned HOST_WIDE_INT) -1;
4166 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4168 if (TYPE_UNSIGNED (etype))
4170 tree signed_etype = signed_type_for (etype);
4171 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4172 etype
4173 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4174 else
4175 etype = signed_etype;
4176 exp = fold_convert_loc (loc, etype, exp);
4178 return fold_build2_loc (loc, GT_EXPR, type, exp,
4179 build_int_cst (etype, 0));
4183 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4184 This requires wrap-around arithmetics for the type of the expression.
4185 First make sure that arithmetics in this type is valid, then make sure
4186 that it wraps around. */
4187 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4188 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4189 TYPE_UNSIGNED (etype));
4191 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4193 tree utype, minv, maxv;
4195 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4196 for the type in question, as we rely on this here. */
4197 utype = unsigned_type_for (etype);
4198 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4199 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4200 integer_one_node, 1);
4201 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4203 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4204 minv, 1, maxv, 1)))
4205 etype = utype;
4206 else
4207 return 0;
4210 high = fold_convert_loc (loc, etype, high);
4211 low = fold_convert_loc (loc, etype, low);
4212 exp = fold_convert_loc (loc, etype, exp);
4214 value = const_binop (MINUS_EXPR, high, low);
4217 if (POINTER_TYPE_P (etype))
4219 if (value != 0 && !TREE_OVERFLOW (value))
4221 low = fold_convert_loc (loc, sizetype, low);
4222 low = fold_build1_loc (loc, NEGATE_EXPR, sizetype, low);
4223 return build_range_check (loc, type,
4224 fold_build2_loc (loc, POINTER_PLUS_EXPR,
4225 etype, exp, low),
4226 1, build_int_cst (etype, 0), value);
4228 return 0;
4231 if (value != 0 && !TREE_OVERFLOW (value))
4232 return build_range_check (loc, type,
4233 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4234 1, build_int_cst (etype, 0), value);
4236 return 0;
4239 /* Return the predecessor of VAL in its type, handling the infinite case. */
4241 static tree
4242 range_predecessor (tree val)
4244 tree type = TREE_TYPE (val);
4246 if (INTEGRAL_TYPE_P (type)
4247 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4248 return 0;
4249 else
4250 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4253 /* Return the successor of VAL in its type, handling the infinite case. */
4255 static tree
4256 range_successor (tree val)
4258 tree type = TREE_TYPE (val);
4260 if (INTEGRAL_TYPE_P (type)
4261 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4262 return 0;
4263 else
4264 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4267 /* Given two ranges, see if we can merge them into one. Return 1 if we
4268 can, 0 if we can't. Set the output range into the specified parameters. */
4270 bool
4271 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4272 tree high0, int in1_p, tree low1, tree high1)
4274 int no_overlap;
4275 int subset;
4276 int temp;
4277 tree tem;
4278 int in_p;
4279 tree low, high;
4280 int lowequal = ((low0 == 0 && low1 == 0)
4281 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4282 low0, 0, low1, 0)));
4283 int highequal = ((high0 == 0 && high1 == 0)
4284 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4285 high0, 1, high1, 1)));
4287 /* Make range 0 be the range that starts first, or ends last if they
4288 start at the same value. Swap them if it isn't. */
4289 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4290 low0, 0, low1, 0))
4291 || (lowequal
4292 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4293 high1, 1, high0, 1))))
4295 temp = in0_p, in0_p = in1_p, in1_p = temp;
4296 tem = low0, low0 = low1, low1 = tem;
4297 tem = high0, high0 = high1, high1 = tem;
4300 /* Now flag two cases, whether the ranges are disjoint or whether the
4301 second range is totally subsumed in the first. Note that the tests
4302 below are simplified by the ones above. */
4303 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4304 high0, 1, low1, 0));
4305 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4306 high1, 1, high0, 1));
4308 /* We now have four cases, depending on whether we are including or
4309 excluding the two ranges. */
4310 if (in0_p && in1_p)
4312 /* If they don't overlap, the result is false. If the second range
4313 is a subset it is the result. Otherwise, the range is from the start
4314 of the second to the end of the first. */
4315 if (no_overlap)
4316 in_p = 0, low = high = 0;
4317 else if (subset)
4318 in_p = 1, low = low1, high = high1;
4319 else
4320 in_p = 1, low = low1, high = high0;
4323 else if (in0_p && ! in1_p)
4325 /* If they don't overlap, the result is the first range. If they are
4326 equal, the result is false. If the second range is a subset of the
4327 first, and the ranges begin at the same place, we go from just after
4328 the end of the second range to the end of the first. If the second
4329 range is not a subset of the first, or if it is a subset and both
4330 ranges end at the same place, the range starts at the start of the
4331 first range and ends just before the second range.
4332 Otherwise, we can't describe this as a single range. */
4333 if (no_overlap)
4334 in_p = 1, low = low0, high = high0;
4335 else if (lowequal && highequal)
4336 in_p = 0, low = high = 0;
4337 else if (subset && lowequal)
4339 low = range_successor (high1);
4340 high = high0;
4341 in_p = 1;
4342 if (low == 0)
4344 /* We are in the weird situation where high0 > high1 but
4345 high1 has no successor. Punt. */
4346 return 0;
4349 else if (! subset || highequal)
4351 low = low0;
4352 high = range_predecessor (low1);
4353 in_p = 1;
4354 if (high == 0)
4356 /* low0 < low1 but low1 has no predecessor. Punt. */
4357 return 0;
4360 else
4361 return 0;
4364 else if (! in0_p && in1_p)
4366 /* If they don't overlap, the result is the second range. If the second
4367 is a subset of the first, the result is false. Otherwise,
4368 the range starts just after the first range and ends at the
4369 end of the second. */
4370 if (no_overlap)
4371 in_p = 1, low = low1, high = high1;
4372 else if (subset || highequal)
4373 in_p = 0, low = high = 0;
4374 else
4376 low = range_successor (high0);
4377 high = high1;
4378 in_p = 1;
4379 if (low == 0)
4381 /* high1 > high0 but high0 has no successor. Punt. */
4382 return 0;
4387 else
4389 /* The case where we are excluding both ranges. Here the complex case
4390 is if they don't overlap. In that case, the only time we have a
4391 range is if they are adjacent. If the second is a subset of the
4392 first, the result is the first. Otherwise, the range to exclude
4393 starts at the beginning of the first range and ends at the end of the
4394 second. */
4395 if (no_overlap)
4397 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4398 range_successor (high0),
4399 1, low1, 0)))
4400 in_p = 0, low = low0, high = high1;
4401 else
4403 /* Canonicalize - [min, x] into - [-, x]. */
4404 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4405 switch (TREE_CODE (TREE_TYPE (low0)))
4407 case ENUMERAL_TYPE:
4408 if (TYPE_PRECISION (TREE_TYPE (low0))
4409 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4410 break;
4411 /* FALLTHROUGH */
4412 case INTEGER_TYPE:
4413 if (tree_int_cst_equal (low0,
4414 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4415 low0 = 0;
4416 break;
4417 case POINTER_TYPE:
4418 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4419 && integer_zerop (low0))
4420 low0 = 0;
4421 break;
4422 default:
4423 break;
4426 /* Canonicalize - [x, max] into - [x, -]. */
4427 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4428 switch (TREE_CODE (TREE_TYPE (high1)))
4430 case ENUMERAL_TYPE:
4431 if (TYPE_PRECISION (TREE_TYPE (high1))
4432 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4433 break;
4434 /* FALLTHROUGH */
4435 case INTEGER_TYPE:
4436 if (tree_int_cst_equal (high1,
4437 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4438 high1 = 0;
4439 break;
4440 case POINTER_TYPE:
4441 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4442 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4443 high1, 1,
4444 integer_one_node, 1)))
4445 high1 = 0;
4446 break;
4447 default:
4448 break;
4451 /* The ranges might be also adjacent between the maximum and
4452 minimum values of the given type. For
4453 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4454 return + [x + 1, y - 1]. */
4455 if (low0 == 0 && high1 == 0)
4457 low = range_successor (high0);
4458 high = range_predecessor (low1);
4459 if (low == 0 || high == 0)
4460 return 0;
4462 in_p = 1;
4464 else
4465 return 0;
4468 else if (subset)
4469 in_p = 0, low = low0, high = high0;
4470 else
4471 in_p = 0, low = low0, high = high1;
4474 *pin_p = in_p, *plow = low, *phigh = high;
4475 return 1;
4479 /* Subroutine of fold, looking inside expressions of the form
4480 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4481 of the COND_EXPR. This function is being used also to optimize
4482 A op B ? C : A, by reversing the comparison first.
4484 Return a folded expression whose code is not a COND_EXPR
4485 anymore, or NULL_TREE if no folding opportunity is found. */
4487 static tree
4488 fold_cond_expr_with_comparison (location_t loc, tree type,
4489 tree arg0, tree arg1, tree arg2)
4491 enum tree_code comp_code = TREE_CODE (arg0);
4492 tree arg00 = TREE_OPERAND (arg0, 0);
4493 tree arg01 = TREE_OPERAND (arg0, 1);
4494 tree arg1_type = TREE_TYPE (arg1);
4495 tree tem;
4497 STRIP_NOPS (arg1);
4498 STRIP_NOPS (arg2);
4500 /* If we have A op 0 ? A : -A, consider applying the following
4501 transformations:
4503 A == 0? A : -A same as -A
4504 A != 0? A : -A same as A
4505 A >= 0? A : -A same as abs (A)
4506 A > 0? A : -A same as abs (A)
4507 A <= 0? A : -A same as -abs (A)
4508 A < 0? A : -A same as -abs (A)
4510 None of these transformations work for modes with signed
4511 zeros. If A is +/-0, the first two transformations will
4512 change the sign of the result (from +0 to -0, or vice
4513 versa). The last four will fix the sign of the result,
4514 even though the original expressions could be positive or
4515 negative, depending on the sign of A.
4517 Note that all these transformations are correct if A is
4518 NaN, since the two alternatives (A and -A) are also NaNs. */
4519 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4520 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4521 ? real_zerop (arg01)
4522 : integer_zerop (arg01))
4523 && ((TREE_CODE (arg2) == NEGATE_EXPR
4524 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4525 /* In the case that A is of the form X-Y, '-A' (arg2) may
4526 have already been folded to Y-X, check for that. */
4527 || (TREE_CODE (arg1) == MINUS_EXPR
4528 && TREE_CODE (arg2) == MINUS_EXPR
4529 && operand_equal_p (TREE_OPERAND (arg1, 0),
4530 TREE_OPERAND (arg2, 1), 0)
4531 && operand_equal_p (TREE_OPERAND (arg1, 1),
4532 TREE_OPERAND (arg2, 0), 0))))
4533 switch (comp_code)
4535 case EQ_EXPR:
4536 case UNEQ_EXPR:
4537 tem = fold_convert_loc (loc, arg1_type, arg1);
4538 return pedantic_non_lvalue_loc (loc,
4539 fold_convert_loc (loc, type,
4540 negate_expr (tem)));
4541 case NE_EXPR:
4542 case LTGT_EXPR:
4543 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4544 case UNGE_EXPR:
4545 case UNGT_EXPR:
4546 if (flag_trapping_math)
4547 break;
4548 /* Fall through. */
4549 case GE_EXPR:
4550 case GT_EXPR:
4551 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4552 arg1 = fold_convert_loc (loc, signed_type_for
4553 (TREE_TYPE (arg1)), arg1);
4554 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4555 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4556 case UNLE_EXPR:
4557 case UNLT_EXPR:
4558 if (flag_trapping_math)
4559 break;
4560 case LE_EXPR:
4561 case LT_EXPR:
4562 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4563 arg1 = fold_convert_loc (loc, signed_type_for
4564 (TREE_TYPE (arg1)), arg1);
4565 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4566 return negate_expr (fold_convert_loc (loc, type, tem));
4567 default:
4568 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4569 break;
4572 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4573 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4574 both transformations are correct when A is NaN: A != 0
4575 is then true, and A == 0 is false. */
4577 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4578 && integer_zerop (arg01) && integer_zerop (arg2))
4580 if (comp_code == NE_EXPR)
4581 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4582 else if (comp_code == EQ_EXPR)
4583 return build_int_cst (type, 0);
4586 /* Try some transformations of A op B ? A : B.
4588 A == B? A : B same as B
4589 A != B? A : B same as A
4590 A >= B? A : B same as max (A, B)
4591 A > B? A : B same as max (B, A)
4592 A <= B? A : B same as min (A, B)
4593 A < B? A : B same as min (B, A)
4595 As above, these transformations don't work in the presence
4596 of signed zeros. For example, if A and B are zeros of
4597 opposite sign, the first two transformations will change
4598 the sign of the result. In the last four, the original
4599 expressions give different results for (A=+0, B=-0) and
4600 (A=-0, B=+0), but the transformed expressions do not.
4602 The first two transformations are correct if either A or B
4603 is a NaN. In the first transformation, the condition will
4604 be false, and B will indeed be chosen. In the case of the
4605 second transformation, the condition A != B will be true,
4606 and A will be chosen.
4608 The conversions to max() and min() are not correct if B is
4609 a number and A is not. The conditions in the original
4610 expressions will be false, so all four give B. The min()
4611 and max() versions would give a NaN instead. */
4612 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4613 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4614 /* Avoid these transformations if the COND_EXPR may be used
4615 as an lvalue in the C++ front-end. PR c++/19199. */
4616 && (in_gimple_form
4617 || (strcmp (lang_hooks.name, "GNU C++") != 0
4618 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4619 || ! maybe_lvalue_p (arg1)
4620 || ! maybe_lvalue_p (arg2)))
4622 tree comp_op0 = arg00;
4623 tree comp_op1 = arg01;
4624 tree comp_type = TREE_TYPE (comp_op0);
4626 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4627 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4629 comp_type = type;
4630 comp_op0 = arg1;
4631 comp_op1 = arg2;
4634 switch (comp_code)
4636 case EQ_EXPR:
4637 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4638 case NE_EXPR:
4639 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4640 case LE_EXPR:
4641 case LT_EXPR:
4642 case UNLE_EXPR:
4643 case UNLT_EXPR:
4644 /* In C++ a ?: expression can be an lvalue, so put the
4645 operand which will be used if they are equal first
4646 so that we can convert this back to the
4647 corresponding COND_EXPR. */
4648 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4650 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4651 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4652 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4653 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4654 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4655 comp_op1, comp_op0);
4656 return pedantic_non_lvalue_loc (loc,
4657 fold_convert_loc (loc, type, tem));
4659 break;
4660 case GE_EXPR:
4661 case GT_EXPR:
4662 case UNGE_EXPR:
4663 case UNGT_EXPR:
4664 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4666 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4667 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4668 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4669 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4670 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4671 comp_op1, comp_op0);
4672 return pedantic_non_lvalue_loc (loc,
4673 fold_convert_loc (loc, type, tem));
4675 break;
4676 case UNEQ_EXPR:
4677 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4678 return pedantic_non_lvalue_loc (loc,
4679 fold_convert_loc (loc, type, arg2));
4680 break;
4681 case LTGT_EXPR:
4682 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4683 return pedantic_non_lvalue_loc (loc,
4684 fold_convert_loc (loc, type, arg1));
4685 break;
4686 default:
4687 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4688 break;
4692 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4693 we might still be able to simplify this. For example,
4694 if C1 is one less or one more than C2, this might have started
4695 out as a MIN or MAX and been transformed by this function.
4696 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4698 if (INTEGRAL_TYPE_P (type)
4699 && TREE_CODE (arg01) == INTEGER_CST
4700 && TREE_CODE (arg2) == INTEGER_CST)
4701 switch (comp_code)
4703 case EQ_EXPR:
4704 if (TREE_CODE (arg1) == INTEGER_CST)
4705 break;
4706 /* We can replace A with C1 in this case. */
4707 arg1 = fold_convert_loc (loc, type, arg01);
4708 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
4710 case LT_EXPR:
4711 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
4712 MIN_EXPR, to preserve the signedness of the comparison. */
4713 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4714 OEP_ONLY_CONST)
4715 && operand_equal_p (arg01,
4716 const_binop (PLUS_EXPR, arg2,
4717 build_int_cst (type, 1)),
4718 OEP_ONLY_CONST))
4720 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4721 fold_convert_loc (loc, TREE_TYPE (arg00),
4722 arg2));
4723 return pedantic_non_lvalue_loc (loc,
4724 fold_convert_loc (loc, type, tem));
4726 break;
4728 case LE_EXPR:
4729 /* If C1 is C2 - 1, this is min(A, C2), with the same care
4730 as above. */
4731 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4732 OEP_ONLY_CONST)
4733 && operand_equal_p (arg01,
4734 const_binop (MINUS_EXPR, arg2,
4735 build_int_cst (type, 1)),
4736 OEP_ONLY_CONST))
4738 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4739 fold_convert_loc (loc, TREE_TYPE (arg00),
4740 arg2));
4741 return pedantic_non_lvalue_loc (loc,
4742 fold_convert_loc (loc, type, tem));
4744 break;
4746 case GT_EXPR:
4747 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
4748 MAX_EXPR, to preserve the signedness of the comparison. */
4749 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4750 OEP_ONLY_CONST)
4751 && operand_equal_p (arg01,
4752 const_binop (MINUS_EXPR, arg2,
4753 build_int_cst (type, 1)),
4754 OEP_ONLY_CONST))
4756 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4757 fold_convert_loc (loc, TREE_TYPE (arg00),
4758 arg2));
4759 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4761 break;
4763 case GE_EXPR:
4764 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
4765 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4766 OEP_ONLY_CONST)
4767 && operand_equal_p (arg01,
4768 const_binop (PLUS_EXPR, arg2,
4769 build_int_cst (type, 1)),
4770 OEP_ONLY_CONST))
4772 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4773 fold_convert_loc (loc, TREE_TYPE (arg00),
4774 arg2));
4775 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4777 break;
4778 case NE_EXPR:
4779 break;
4780 default:
4781 gcc_unreachable ();
4784 return NULL_TREE;
4789 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4790 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
4791 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
4792 false) >= 2)
4793 #endif
4795 /* EXP is some logical combination of boolean tests. See if we can
4796 merge it into some range test. Return the new tree if so. */
4798 static tree
4799 fold_range_test (location_t loc, enum tree_code code, tree type,
4800 tree op0, tree op1)
4802 int or_op = (code == TRUTH_ORIF_EXPR
4803 || code == TRUTH_OR_EXPR);
4804 int in0_p, in1_p, in_p;
4805 tree low0, low1, low, high0, high1, high;
4806 bool strict_overflow_p = false;
4807 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
4808 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
4809 tree tem;
4810 const char * const warnmsg = G_("assuming signed overflow does not occur "
4811 "when simplifying range test");
4813 /* If this is an OR operation, invert both sides; we will invert
4814 again at the end. */
4815 if (or_op)
4816 in0_p = ! in0_p, in1_p = ! in1_p;
4818 /* If both expressions are the same, if we can merge the ranges, and we
4819 can build the range test, return it or it inverted. If one of the
4820 ranges is always true or always false, consider it to be the same
4821 expression as the other. */
4822 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4823 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4824 in1_p, low1, high1)
4825 && 0 != (tem = (build_range_check (loc, type,
4826 lhs != 0 ? lhs
4827 : rhs != 0 ? rhs : integer_zero_node,
4828 in_p, low, high))))
4830 if (strict_overflow_p)
4831 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
4832 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
4835 /* On machines where the branch cost is expensive, if this is a
4836 short-circuited branch and the underlying object on both sides
4837 is the same, make a non-short-circuit operation. */
4838 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4839 && lhs != 0 && rhs != 0
4840 && (code == TRUTH_ANDIF_EXPR
4841 || code == TRUTH_ORIF_EXPR)
4842 && operand_equal_p (lhs, rhs, 0))
4844 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4845 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4846 which cases we can't do this. */
4847 if (simple_operand_p (lhs))
4848 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4849 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4850 type, op0, op1);
4852 else if (!lang_hooks.decls.global_bindings_p ()
4853 && !CONTAINS_PLACEHOLDER_P (lhs))
4855 tree common = save_expr (lhs);
4857 if (0 != (lhs = build_range_check (loc, type, common,
4858 or_op ? ! in0_p : in0_p,
4859 low0, high0))
4860 && (0 != (rhs = build_range_check (loc, type, common,
4861 or_op ? ! in1_p : in1_p,
4862 low1, high1))))
4864 if (strict_overflow_p)
4865 fold_overflow_warning (warnmsg,
4866 WARN_STRICT_OVERFLOW_COMPARISON);
4867 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4868 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4869 type, lhs, rhs);
4874 return 0;
4877 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4878 bit value. Arrange things so the extra bits will be set to zero if and
4879 only if C is signed-extended to its full width. If MASK is nonzero,
4880 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4882 static tree
4883 unextend (tree c, int p, int unsignedp, tree mask)
4885 tree type = TREE_TYPE (c);
4886 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4887 tree temp;
4889 if (p == modesize || unsignedp)
4890 return c;
4892 /* We work by getting just the sign bit into the low-order bit, then
4893 into the high-order bit, then sign-extend. We then XOR that value
4894 with C. */
4895 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1));
4896 temp = const_binop (BIT_AND_EXPR, temp, size_int (1));
4898 /* We must use a signed type in order to get an arithmetic right shift.
4899 However, we must also avoid introducing accidental overflows, so that
4900 a subsequent call to integer_zerop will work. Hence we must
4901 do the type conversion here. At this point, the constant is either
4902 zero or one, and the conversion to a signed type can never overflow.
4903 We could get an overflow if this conversion is done anywhere else. */
4904 if (TYPE_UNSIGNED (type))
4905 temp = fold_convert (signed_type_for (type), temp);
4907 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
4908 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
4909 if (mask != 0)
4910 temp = const_binop (BIT_AND_EXPR, temp,
4911 fold_convert (TREE_TYPE (c), mask));
4912 /* If necessary, convert the type back to match the type of C. */
4913 if (TYPE_UNSIGNED (type))
4914 temp = fold_convert (type, temp);
4916 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
4919 /* For an expression that has the form
4920 (A && B) || ~B
4922 (A || B) && ~B,
4923 we can drop one of the inner expressions and simplify to
4924 A || ~B
4926 A && ~B
4927 LOC is the location of the resulting expression. OP is the inner
4928 logical operation; the left-hand side in the examples above, while CMPOP
4929 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
4930 removing a condition that guards another, as in
4931 (A != NULL && A->...) || A == NULL
4932 which we must not transform. If RHS_ONLY is true, only eliminate the
4933 right-most operand of the inner logical operation. */
4935 static tree
4936 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
4937 bool rhs_only)
4939 tree type = TREE_TYPE (cmpop);
4940 enum tree_code code = TREE_CODE (cmpop);
4941 enum tree_code truthop_code = TREE_CODE (op);
4942 tree lhs = TREE_OPERAND (op, 0);
4943 tree rhs = TREE_OPERAND (op, 1);
4944 tree orig_lhs = lhs, orig_rhs = rhs;
4945 enum tree_code rhs_code = TREE_CODE (rhs);
4946 enum tree_code lhs_code = TREE_CODE (lhs);
4947 enum tree_code inv_code;
4949 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
4950 return NULL_TREE;
4952 if (TREE_CODE_CLASS (code) != tcc_comparison)
4953 return NULL_TREE;
4955 if (rhs_code == truthop_code)
4957 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
4958 if (newrhs != NULL_TREE)
4960 rhs = newrhs;
4961 rhs_code = TREE_CODE (rhs);
4964 if (lhs_code == truthop_code && !rhs_only)
4966 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
4967 if (newlhs != NULL_TREE)
4969 lhs = newlhs;
4970 lhs_code = TREE_CODE (lhs);
4974 inv_code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
4975 if (inv_code == rhs_code
4976 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
4977 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
4978 return lhs;
4979 if (!rhs_only && inv_code == lhs_code
4980 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
4981 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
4982 return rhs;
4983 if (rhs != orig_rhs || lhs != orig_lhs)
4984 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
4985 lhs, rhs);
4986 return NULL_TREE;
4989 /* Find ways of folding logical expressions of LHS and RHS:
4990 Try to merge two comparisons to the same innermost item.
4991 Look for range tests like "ch >= '0' && ch <= '9'".
4992 Look for combinations of simple terms on machines with expensive branches
4993 and evaluate the RHS unconditionally.
4995 For example, if we have p->a == 2 && p->b == 4 and we can make an
4996 object large enough to span both A and B, we can do this with a comparison
4997 against the object ANDed with the a mask.
4999 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5000 operations to do this with one comparison.
5002 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5003 function and the one above.
5005 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5006 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5008 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5009 two operands.
5011 We return the simplified tree or 0 if no optimization is possible. */
5013 static tree
5014 fold_truthop (location_t loc, enum tree_code code, tree truth_type,
5015 tree lhs, tree rhs)
5017 /* If this is the "or" of two comparisons, we can do something if
5018 the comparisons are NE_EXPR. If this is the "and", we can do something
5019 if the comparisons are EQ_EXPR. I.e.,
5020 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5022 WANTED_CODE is this operation code. For single bit fields, we can
5023 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5024 comparison for one-bit fields. */
5026 enum tree_code wanted_code;
5027 enum tree_code lcode, rcode;
5028 tree ll_arg, lr_arg, rl_arg, rr_arg;
5029 tree ll_inner, lr_inner, rl_inner, rr_inner;
5030 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5031 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5032 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5033 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5034 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5035 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5036 enum machine_mode lnmode, rnmode;
5037 tree ll_mask, lr_mask, rl_mask, rr_mask;
5038 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5039 tree l_const, r_const;
5040 tree lntype, rntype, result;
5041 HOST_WIDE_INT first_bit, end_bit;
5042 int volatilep;
5043 tree orig_lhs = lhs, orig_rhs = rhs;
5044 enum tree_code orig_code = code;
5046 /* Start by getting the comparison codes. Fail if anything is volatile.
5047 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5048 it were surrounded with a NE_EXPR. */
5050 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5051 return 0;
5053 lcode = TREE_CODE (lhs);
5054 rcode = TREE_CODE (rhs);
5056 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5058 lhs = build2 (NE_EXPR, truth_type, lhs,
5059 build_int_cst (TREE_TYPE (lhs), 0));
5060 lcode = NE_EXPR;
5063 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5065 rhs = build2 (NE_EXPR, truth_type, rhs,
5066 build_int_cst (TREE_TYPE (rhs), 0));
5067 rcode = NE_EXPR;
5070 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5071 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5072 return 0;
5074 ll_arg = TREE_OPERAND (lhs, 0);
5075 lr_arg = TREE_OPERAND (lhs, 1);
5076 rl_arg = TREE_OPERAND (rhs, 0);
5077 rr_arg = TREE_OPERAND (rhs, 1);
5079 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5080 if (simple_operand_p (ll_arg)
5081 && simple_operand_p (lr_arg))
5083 if (operand_equal_p (ll_arg, rl_arg, 0)
5084 && operand_equal_p (lr_arg, rr_arg, 0))
5086 result = combine_comparisons (loc, code, lcode, rcode,
5087 truth_type, ll_arg, lr_arg);
5088 if (result)
5089 return result;
5091 else if (operand_equal_p (ll_arg, rr_arg, 0)
5092 && operand_equal_p (lr_arg, rl_arg, 0))
5094 result = combine_comparisons (loc, code, lcode,
5095 swap_tree_comparison (rcode),
5096 truth_type, ll_arg, lr_arg);
5097 if (result)
5098 return result;
5102 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5103 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5105 /* If the RHS can be evaluated unconditionally and its operands are
5106 simple, it wins to evaluate the RHS unconditionally on machines
5107 with expensive branches. In this case, this isn't a comparison
5108 that can be merged. Avoid doing this if the RHS is a floating-point
5109 comparison since those can trap. */
5111 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5112 false) >= 2
5113 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5114 && simple_operand_p (rl_arg)
5115 && simple_operand_p (rr_arg))
5117 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5118 if (code == TRUTH_OR_EXPR
5119 && lcode == NE_EXPR && integer_zerop (lr_arg)
5120 && rcode == NE_EXPR && integer_zerop (rr_arg)
5121 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5122 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5123 return build2_loc (loc, NE_EXPR, truth_type,
5124 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5125 ll_arg, rl_arg),
5126 build_int_cst (TREE_TYPE (ll_arg), 0));
5128 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5129 if (code == TRUTH_AND_EXPR
5130 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5131 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5132 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5133 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5134 return build2_loc (loc, EQ_EXPR, truth_type,
5135 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5136 ll_arg, rl_arg),
5137 build_int_cst (TREE_TYPE (ll_arg), 0));
5139 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5141 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5142 return build2_loc (loc, code, truth_type, lhs, rhs);
5143 return NULL_TREE;
5147 /* See if the comparisons can be merged. Then get all the parameters for
5148 each side. */
5150 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5151 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5152 return 0;
5154 volatilep = 0;
5155 ll_inner = decode_field_reference (loc, ll_arg,
5156 &ll_bitsize, &ll_bitpos, &ll_mode,
5157 &ll_unsignedp, &volatilep, &ll_mask,
5158 &ll_and_mask);
5159 lr_inner = decode_field_reference (loc, lr_arg,
5160 &lr_bitsize, &lr_bitpos, &lr_mode,
5161 &lr_unsignedp, &volatilep, &lr_mask,
5162 &lr_and_mask);
5163 rl_inner = decode_field_reference (loc, rl_arg,
5164 &rl_bitsize, &rl_bitpos, &rl_mode,
5165 &rl_unsignedp, &volatilep, &rl_mask,
5166 &rl_and_mask);
5167 rr_inner = decode_field_reference (loc, rr_arg,
5168 &rr_bitsize, &rr_bitpos, &rr_mode,
5169 &rr_unsignedp, &volatilep, &rr_mask,
5170 &rr_and_mask);
5172 /* It must be true that the inner operation on the lhs of each
5173 comparison must be the same if we are to be able to do anything.
5174 Then see if we have constants. If not, the same must be true for
5175 the rhs's. */
5176 if (volatilep || ll_inner == 0 || rl_inner == 0
5177 || ! operand_equal_p (ll_inner, rl_inner, 0))
5178 return 0;
5180 if (TREE_CODE (lr_arg) == INTEGER_CST
5181 && TREE_CODE (rr_arg) == INTEGER_CST)
5182 l_const = lr_arg, r_const = rr_arg;
5183 else if (lr_inner == 0 || rr_inner == 0
5184 || ! operand_equal_p (lr_inner, rr_inner, 0))
5185 return 0;
5186 else
5187 l_const = r_const = 0;
5189 /* If either comparison code is not correct for our logical operation,
5190 fail. However, we can convert a one-bit comparison against zero into
5191 the opposite comparison against that bit being set in the field. */
5193 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5194 if (lcode != wanted_code)
5196 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5198 /* Make the left operand unsigned, since we are only interested
5199 in the value of one bit. Otherwise we are doing the wrong
5200 thing below. */
5201 ll_unsignedp = 1;
5202 l_const = ll_mask;
5204 else
5205 return 0;
5208 /* This is analogous to the code for l_const above. */
5209 if (rcode != wanted_code)
5211 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5213 rl_unsignedp = 1;
5214 r_const = rl_mask;
5216 else
5217 return 0;
5220 /* See if we can find a mode that contains both fields being compared on
5221 the left. If we can't, fail. Otherwise, update all constants and masks
5222 to be relative to a field of that size. */
5223 first_bit = MIN (ll_bitpos, rl_bitpos);
5224 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5225 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5226 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5227 volatilep);
5228 if (lnmode == VOIDmode)
5229 return 0;
5231 lnbitsize = GET_MODE_BITSIZE (lnmode);
5232 lnbitpos = first_bit & ~ (lnbitsize - 1);
5233 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5234 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5236 if (BYTES_BIG_ENDIAN)
5238 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5239 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5242 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5243 size_int (xll_bitpos));
5244 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5245 size_int (xrl_bitpos));
5247 if (l_const)
5249 l_const = fold_convert_loc (loc, lntype, l_const);
5250 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5251 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5252 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5253 fold_build1_loc (loc, BIT_NOT_EXPR,
5254 lntype, ll_mask))))
5256 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5258 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5261 if (r_const)
5263 r_const = fold_convert_loc (loc, lntype, r_const);
5264 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5265 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5266 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5267 fold_build1_loc (loc, BIT_NOT_EXPR,
5268 lntype, rl_mask))))
5270 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5272 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5276 /* If the right sides are not constant, do the same for it. Also,
5277 disallow this optimization if a size or signedness mismatch occurs
5278 between the left and right sides. */
5279 if (l_const == 0)
5281 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5282 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5283 /* Make sure the two fields on the right
5284 correspond to the left without being swapped. */
5285 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5286 return 0;
5288 first_bit = MIN (lr_bitpos, rr_bitpos);
5289 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5290 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5291 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5292 volatilep);
5293 if (rnmode == VOIDmode)
5294 return 0;
5296 rnbitsize = GET_MODE_BITSIZE (rnmode);
5297 rnbitpos = first_bit & ~ (rnbitsize - 1);
5298 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5299 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5301 if (BYTES_BIG_ENDIAN)
5303 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5304 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5307 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5308 rntype, lr_mask),
5309 size_int (xlr_bitpos));
5310 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5311 rntype, rr_mask),
5312 size_int (xrr_bitpos));
5314 /* Make a mask that corresponds to both fields being compared.
5315 Do this for both items being compared. If the operands are the
5316 same size and the bits being compared are in the same position
5317 then we can do this by masking both and comparing the masked
5318 results. */
5319 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5320 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5321 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5323 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5324 ll_unsignedp || rl_unsignedp);
5325 if (! all_ones_mask_p (ll_mask, lnbitsize))
5326 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5328 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5329 lr_unsignedp || rr_unsignedp);
5330 if (! all_ones_mask_p (lr_mask, rnbitsize))
5331 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5333 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5336 /* There is still another way we can do something: If both pairs of
5337 fields being compared are adjacent, we may be able to make a wider
5338 field containing them both.
5340 Note that we still must mask the lhs/rhs expressions. Furthermore,
5341 the mask must be shifted to account for the shift done by
5342 make_bit_field_ref. */
5343 if ((ll_bitsize + ll_bitpos == rl_bitpos
5344 && lr_bitsize + lr_bitpos == rr_bitpos)
5345 || (ll_bitpos == rl_bitpos + rl_bitsize
5346 && lr_bitpos == rr_bitpos + rr_bitsize))
5348 tree type;
5350 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5351 ll_bitsize + rl_bitsize,
5352 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5353 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5354 lr_bitsize + rr_bitsize,
5355 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5357 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5358 size_int (MIN (xll_bitpos, xrl_bitpos)));
5359 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5360 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5362 /* Convert to the smaller type before masking out unwanted bits. */
5363 type = lntype;
5364 if (lntype != rntype)
5366 if (lnbitsize > rnbitsize)
5368 lhs = fold_convert_loc (loc, rntype, lhs);
5369 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5370 type = rntype;
5372 else if (lnbitsize < rnbitsize)
5374 rhs = fold_convert_loc (loc, lntype, rhs);
5375 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5376 type = lntype;
5380 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5381 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5383 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5384 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5386 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5389 return 0;
5392 /* Handle the case of comparisons with constants. If there is something in
5393 common between the masks, those bits of the constants must be the same.
5394 If not, the condition is always false. Test for this to avoid generating
5395 incorrect code below. */
5396 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5397 if (! integer_zerop (result)
5398 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5399 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5401 if (wanted_code == NE_EXPR)
5403 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5404 return constant_boolean_node (true, truth_type);
5406 else
5408 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5409 return constant_boolean_node (false, truth_type);
5413 /* Construct the expression we will return. First get the component
5414 reference we will make. Unless the mask is all ones the width of
5415 that field, perform the mask operation. Then compare with the
5416 merged constant. */
5417 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5418 ll_unsignedp || rl_unsignedp);
5420 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5421 if (! all_ones_mask_p (ll_mask, lnbitsize))
5422 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5424 return build2_loc (loc, wanted_code, truth_type, result,
5425 const_binop (BIT_IOR_EXPR, l_const, r_const));
5428 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5429 constant. */
5431 static tree
5432 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5433 tree op0, tree op1)
5435 tree arg0 = op0;
5436 enum tree_code op_code;
5437 tree comp_const;
5438 tree minmax_const;
5439 int consts_equal, consts_lt;
5440 tree inner;
5442 STRIP_SIGN_NOPS (arg0);
5444 op_code = TREE_CODE (arg0);
5445 minmax_const = TREE_OPERAND (arg0, 1);
5446 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5447 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5448 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5449 inner = TREE_OPERAND (arg0, 0);
5451 /* If something does not permit us to optimize, return the original tree. */
5452 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5453 || TREE_CODE (comp_const) != INTEGER_CST
5454 || TREE_OVERFLOW (comp_const)
5455 || TREE_CODE (minmax_const) != INTEGER_CST
5456 || TREE_OVERFLOW (minmax_const))
5457 return NULL_TREE;
5459 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5460 and GT_EXPR, doing the rest with recursive calls using logical
5461 simplifications. */
5462 switch (code)
5464 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5466 tree tem
5467 = optimize_minmax_comparison (loc,
5468 invert_tree_comparison (code, false),
5469 type, op0, op1);
5470 if (tem)
5471 return invert_truthvalue_loc (loc, tem);
5472 return NULL_TREE;
5475 case GE_EXPR:
5476 return
5477 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5478 optimize_minmax_comparison
5479 (loc, EQ_EXPR, type, arg0, comp_const),
5480 optimize_minmax_comparison
5481 (loc, GT_EXPR, type, arg0, comp_const));
5483 case EQ_EXPR:
5484 if (op_code == MAX_EXPR && consts_equal)
5485 /* MAX (X, 0) == 0 -> X <= 0 */
5486 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5488 else if (op_code == MAX_EXPR && consts_lt)
5489 /* MAX (X, 0) == 5 -> X == 5 */
5490 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5492 else if (op_code == MAX_EXPR)
5493 /* MAX (X, 0) == -1 -> false */
5494 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5496 else if (consts_equal)
5497 /* MIN (X, 0) == 0 -> X >= 0 */
5498 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5500 else if (consts_lt)
5501 /* MIN (X, 0) == 5 -> false */
5502 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5504 else
5505 /* MIN (X, 0) == -1 -> X == -1 */
5506 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5508 case GT_EXPR:
5509 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5510 /* MAX (X, 0) > 0 -> X > 0
5511 MAX (X, 0) > 5 -> X > 5 */
5512 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5514 else if (op_code == MAX_EXPR)
5515 /* MAX (X, 0) > -1 -> true */
5516 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5518 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5519 /* MIN (X, 0) > 0 -> false
5520 MIN (X, 0) > 5 -> false */
5521 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5523 else
5524 /* MIN (X, 0) > -1 -> X > -1 */
5525 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5527 default:
5528 return NULL_TREE;
5532 /* T is an integer expression that is being multiplied, divided, or taken a
5533 modulus (CODE says which and what kind of divide or modulus) by a
5534 constant C. See if we can eliminate that operation by folding it with
5535 other operations already in T. WIDE_TYPE, if non-null, is a type that
5536 should be used for the computation if wider than our type.
5538 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5539 (X * 2) + (Y * 4). We must, however, be assured that either the original
5540 expression would not overflow or that overflow is undefined for the type
5541 in the language in question.
5543 If we return a non-null expression, it is an equivalent form of the
5544 original computation, but need not be in the original type.
5546 We set *STRICT_OVERFLOW_P to true if the return values depends on
5547 signed overflow being undefined. Otherwise we do not change
5548 *STRICT_OVERFLOW_P. */
5550 static tree
5551 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5552 bool *strict_overflow_p)
5554 /* To avoid exponential search depth, refuse to allow recursion past
5555 three levels. Beyond that (1) it's highly unlikely that we'll find
5556 something interesting and (2) we've probably processed it before
5557 when we built the inner expression. */
5559 static int depth;
5560 tree ret;
5562 if (depth > 3)
5563 return NULL;
5565 depth++;
5566 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5567 depth--;
5569 return ret;
5572 static tree
5573 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5574 bool *strict_overflow_p)
5576 tree type = TREE_TYPE (t);
5577 enum tree_code tcode = TREE_CODE (t);
5578 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5579 > GET_MODE_SIZE (TYPE_MODE (type)))
5580 ? wide_type : type);
5581 tree t1, t2;
5582 int same_p = tcode == code;
5583 tree op0 = NULL_TREE, op1 = NULL_TREE;
5584 bool sub_strict_overflow_p;
5586 /* Don't deal with constants of zero here; they confuse the code below. */
5587 if (integer_zerop (c))
5588 return NULL_TREE;
5590 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5591 op0 = TREE_OPERAND (t, 0);
5593 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5594 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5596 /* Note that we need not handle conditional operations here since fold
5597 already handles those cases. So just do arithmetic here. */
5598 switch (tcode)
5600 case INTEGER_CST:
5601 /* For a constant, we can always simplify if we are a multiply
5602 or (for divide and modulus) if it is a multiple of our constant. */
5603 if (code == MULT_EXPR
5604 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c)))
5605 return const_binop (code, fold_convert (ctype, t),
5606 fold_convert (ctype, c));
5607 break;
5609 CASE_CONVERT: case NON_LVALUE_EXPR:
5610 /* If op0 is an expression ... */
5611 if ((COMPARISON_CLASS_P (op0)
5612 || UNARY_CLASS_P (op0)
5613 || BINARY_CLASS_P (op0)
5614 || VL_EXP_CLASS_P (op0)
5615 || EXPRESSION_CLASS_P (op0))
5616 /* ... and has wrapping overflow, and its type is smaller
5617 than ctype, then we cannot pass through as widening. */
5618 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
5619 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5620 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5621 && (TYPE_PRECISION (ctype)
5622 > TYPE_PRECISION (TREE_TYPE (op0))))
5623 /* ... or this is a truncation (t is narrower than op0),
5624 then we cannot pass through this narrowing. */
5625 || (TYPE_PRECISION (type)
5626 < TYPE_PRECISION (TREE_TYPE (op0)))
5627 /* ... or signedness changes for division or modulus,
5628 then we cannot pass through this conversion. */
5629 || (code != MULT_EXPR
5630 && (TYPE_UNSIGNED (ctype)
5631 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5632 /* ... or has undefined overflow while the converted to
5633 type has not, we cannot do the operation in the inner type
5634 as that would introduce undefined overflow. */
5635 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
5636 && !TYPE_OVERFLOW_UNDEFINED (type))))
5637 break;
5639 /* Pass the constant down and see if we can make a simplification. If
5640 we can, replace this expression with the inner simplification for
5641 possible later conversion to our or some other type. */
5642 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5643 && TREE_CODE (t2) == INTEGER_CST
5644 && !TREE_OVERFLOW (t2)
5645 && (0 != (t1 = extract_muldiv (op0, t2, code,
5646 code == MULT_EXPR
5647 ? ctype : NULL_TREE,
5648 strict_overflow_p))))
5649 return t1;
5650 break;
5652 case ABS_EXPR:
5653 /* If widening the type changes it from signed to unsigned, then we
5654 must avoid building ABS_EXPR itself as unsigned. */
5655 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5657 tree cstype = (*signed_type_for) (ctype);
5658 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5659 != 0)
5661 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5662 return fold_convert (ctype, t1);
5664 break;
5666 /* If the constant is negative, we cannot simplify this. */
5667 if (tree_int_cst_sgn (c) == -1)
5668 break;
5669 /* FALLTHROUGH */
5670 case NEGATE_EXPR:
5671 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5672 != 0)
5673 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5674 break;
5676 case MIN_EXPR: case MAX_EXPR:
5677 /* If widening the type changes the signedness, then we can't perform
5678 this optimization as that changes the result. */
5679 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5680 break;
5682 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5683 sub_strict_overflow_p = false;
5684 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5685 &sub_strict_overflow_p)) != 0
5686 && (t2 = extract_muldiv (op1, c, code, wide_type,
5687 &sub_strict_overflow_p)) != 0)
5689 if (tree_int_cst_sgn (c) < 0)
5690 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5691 if (sub_strict_overflow_p)
5692 *strict_overflow_p = true;
5693 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5694 fold_convert (ctype, t2));
5696 break;
5698 case LSHIFT_EXPR: case RSHIFT_EXPR:
5699 /* If the second operand is constant, this is a multiplication
5700 or floor division, by a power of two, so we can treat it that
5701 way unless the multiplier or divisor overflows. Signed
5702 left-shift overflow is implementation-defined rather than
5703 undefined in C90, so do not convert signed left shift into
5704 multiplication. */
5705 if (TREE_CODE (op1) == INTEGER_CST
5706 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5707 /* const_binop may not detect overflow correctly,
5708 so check for it explicitly here. */
5709 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5710 && TREE_INT_CST_HIGH (op1) == 0
5711 && 0 != (t1 = fold_convert (ctype,
5712 const_binop (LSHIFT_EXPR,
5713 size_one_node,
5714 op1)))
5715 && !TREE_OVERFLOW (t1))
5716 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5717 ? MULT_EXPR : FLOOR_DIV_EXPR,
5718 ctype,
5719 fold_convert (ctype, op0),
5720 t1),
5721 c, code, wide_type, strict_overflow_p);
5722 break;
5724 case PLUS_EXPR: case MINUS_EXPR:
5725 /* See if we can eliminate the operation on both sides. If we can, we
5726 can return a new PLUS or MINUS. If we can't, the only remaining
5727 cases where we can do anything are if the second operand is a
5728 constant. */
5729 sub_strict_overflow_p = false;
5730 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
5731 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
5732 if (t1 != 0 && t2 != 0
5733 && (code == MULT_EXPR
5734 /* If not multiplication, we can only do this if both operands
5735 are divisible by c. */
5736 || (multiple_of_p (ctype, op0, c)
5737 && multiple_of_p (ctype, op1, c))))
5739 if (sub_strict_overflow_p)
5740 *strict_overflow_p = true;
5741 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5742 fold_convert (ctype, t2));
5745 /* If this was a subtraction, negate OP1 and set it to be an addition.
5746 This simplifies the logic below. */
5747 if (tcode == MINUS_EXPR)
5749 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5750 /* If OP1 was not easily negatable, the constant may be OP0. */
5751 if (TREE_CODE (op0) == INTEGER_CST)
5753 tree tem = op0;
5754 op0 = op1;
5755 op1 = tem;
5756 tem = t1;
5757 t1 = t2;
5758 t2 = tem;
5762 if (TREE_CODE (op1) != INTEGER_CST)
5763 break;
5765 /* If either OP1 or C are negative, this optimization is not safe for
5766 some of the division and remainder types while for others we need
5767 to change the code. */
5768 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5770 if (code == CEIL_DIV_EXPR)
5771 code = FLOOR_DIV_EXPR;
5772 else if (code == FLOOR_DIV_EXPR)
5773 code = CEIL_DIV_EXPR;
5774 else if (code != MULT_EXPR
5775 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5776 break;
5779 /* If it's a multiply or a division/modulus operation of a multiple
5780 of our constant, do the operation and verify it doesn't overflow. */
5781 if (code == MULT_EXPR
5782 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5784 op1 = const_binop (code, fold_convert (ctype, op1),
5785 fold_convert (ctype, c));
5786 /* We allow the constant to overflow with wrapping semantics. */
5787 if (op1 == 0
5788 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
5789 break;
5791 else
5792 break;
5794 /* If we have an unsigned type is not a sizetype, we cannot widen
5795 the operation since it will change the result if the original
5796 computation overflowed. */
5797 if (TYPE_UNSIGNED (ctype)
5798 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5799 && ctype != type)
5800 break;
5802 /* If we were able to eliminate our operation from the first side,
5803 apply our operation to the second side and reform the PLUS. */
5804 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5805 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5807 /* The last case is if we are a multiply. In that case, we can
5808 apply the distributive law to commute the multiply and addition
5809 if the multiplication of the constants doesn't overflow. */
5810 if (code == MULT_EXPR)
5811 return fold_build2 (tcode, ctype,
5812 fold_build2 (code, ctype,
5813 fold_convert (ctype, op0),
5814 fold_convert (ctype, c)),
5815 op1);
5817 break;
5819 case MULT_EXPR:
5820 /* We have a special case here if we are doing something like
5821 (C * 8) % 4 since we know that's zero. */
5822 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5823 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5824 /* If the multiplication can overflow we cannot optimize this.
5825 ??? Until we can properly mark individual operations as
5826 not overflowing we need to treat sizetype special here as
5827 stor-layout relies on this opimization to make
5828 DECL_FIELD_BIT_OFFSET always a constant. */
5829 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
5830 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
5831 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
5832 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5833 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5835 *strict_overflow_p = true;
5836 return omit_one_operand (type, integer_zero_node, op0);
5839 /* ... fall through ... */
5841 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5842 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5843 /* If we can extract our operation from the LHS, do so and return a
5844 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5845 do something only if the second operand is a constant. */
5846 if (same_p
5847 && (t1 = extract_muldiv (op0, c, code, wide_type,
5848 strict_overflow_p)) != 0)
5849 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5850 fold_convert (ctype, op1));
5851 else if (tcode == MULT_EXPR && code == MULT_EXPR
5852 && (t1 = extract_muldiv (op1, c, code, wide_type,
5853 strict_overflow_p)) != 0)
5854 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5855 fold_convert (ctype, t1));
5856 else if (TREE_CODE (op1) != INTEGER_CST)
5857 return 0;
5859 /* If these are the same operation types, we can associate them
5860 assuming no overflow. */
5861 if (tcode == code)
5863 double_int mul;
5864 int overflow_p;
5865 mul = double_int_mul_with_sign
5866 (double_int_ext
5867 (tree_to_double_int (op1),
5868 TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
5869 double_int_ext
5870 (tree_to_double_int (c),
5871 TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
5872 false, &overflow_p);
5873 overflow_p = (((!TYPE_UNSIGNED (ctype)
5874 || (TREE_CODE (ctype) == INTEGER_TYPE
5875 && TYPE_IS_SIZETYPE (ctype)))
5876 && overflow_p)
5877 | TREE_OVERFLOW (c) | TREE_OVERFLOW (op1));
5878 if (!double_int_fits_to_tree_p (ctype, mul)
5879 && ((TYPE_UNSIGNED (ctype) && tcode != MULT_EXPR)
5880 || !TYPE_UNSIGNED (ctype)
5881 || (TREE_CODE (ctype) == INTEGER_TYPE
5882 && TYPE_IS_SIZETYPE (ctype))))
5883 overflow_p = 1;
5884 if (!overflow_p)
5885 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5886 double_int_to_tree (ctype, mul));
5889 /* If these operations "cancel" each other, we have the main
5890 optimizations of this pass, which occur when either constant is a
5891 multiple of the other, in which case we replace this with either an
5892 operation or CODE or TCODE.
5894 If we have an unsigned type that is not a sizetype, we cannot do
5895 this since it will change the result if the original computation
5896 overflowed. */
5897 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
5898 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5899 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5900 || (tcode == MULT_EXPR
5901 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5902 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
5903 && code != MULT_EXPR)))
5905 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5907 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5908 *strict_overflow_p = true;
5909 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5910 fold_convert (ctype,
5911 const_binop (TRUNC_DIV_EXPR,
5912 op1, c)));
5914 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1)))
5916 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5917 *strict_overflow_p = true;
5918 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5919 fold_convert (ctype,
5920 const_binop (TRUNC_DIV_EXPR,
5921 c, op1)));
5924 break;
5926 default:
5927 break;
5930 return 0;
5933 /* Return a node which has the indicated constant VALUE (either 0 or
5934 1), and is of the indicated TYPE. */
5936 tree
5937 constant_boolean_node (int value, tree type)
5939 if (type == integer_type_node)
5940 return value ? integer_one_node : integer_zero_node;
5941 else if (type == boolean_type_node)
5942 return value ? boolean_true_node : boolean_false_node;
5943 else
5944 return build_int_cst (type, value);
5948 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5949 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5950 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5951 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5952 COND is the first argument to CODE; otherwise (as in the example
5953 given here), it is the second argument. TYPE is the type of the
5954 original expression. Return NULL_TREE if no simplification is
5955 possible. */
5957 static tree
5958 fold_binary_op_with_conditional_arg (location_t loc,
5959 enum tree_code code,
5960 tree type, tree op0, tree op1,
5961 tree cond, tree arg, int cond_first_p)
5963 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
5964 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
5965 tree test, true_value, false_value;
5966 tree lhs = NULL_TREE;
5967 tree rhs = NULL_TREE;
5969 if (TREE_CODE (cond) == COND_EXPR)
5971 test = TREE_OPERAND (cond, 0);
5972 true_value = TREE_OPERAND (cond, 1);
5973 false_value = TREE_OPERAND (cond, 2);
5974 /* If this operand throws an expression, then it does not make
5975 sense to try to perform a logical or arithmetic operation
5976 involving it. */
5977 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5978 lhs = true_value;
5979 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5980 rhs = false_value;
5982 else
5984 tree testtype = TREE_TYPE (cond);
5985 test = cond;
5986 true_value = constant_boolean_node (true, testtype);
5987 false_value = constant_boolean_node (false, testtype);
5990 /* This transformation is only worthwhile if we don't have to wrap ARG
5991 in a SAVE_EXPR and the operation can be simplified on at least one
5992 of the branches once its pushed inside the COND_EXPR. */
5993 if (!TREE_CONSTANT (arg)
5994 && (TREE_SIDE_EFFECTS (arg)
5995 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
5996 return NULL_TREE;
5998 arg = fold_convert_loc (loc, arg_type, arg);
5999 if (lhs == 0)
6001 true_value = fold_convert_loc (loc, cond_type, true_value);
6002 if (cond_first_p)
6003 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6004 else
6005 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6007 if (rhs == 0)
6009 false_value = fold_convert_loc (loc, cond_type, false_value);
6010 if (cond_first_p)
6011 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6012 else
6013 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6016 /* Check that we have simplified at least one of the branches. */
6017 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6018 return NULL_TREE;
6020 return fold_build3_loc (loc, COND_EXPR, type, test, lhs, rhs);
6024 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6026 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6027 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6028 ADDEND is the same as X.
6030 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6031 and finite. The problematic cases are when X is zero, and its mode
6032 has signed zeros. In the case of rounding towards -infinity,
6033 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6034 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6036 bool
6037 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6039 if (!real_zerop (addend))
6040 return false;
6042 /* Don't allow the fold with -fsignaling-nans. */
6043 if (HONOR_SNANS (TYPE_MODE (type)))
6044 return false;
6046 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6047 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6048 return true;
6050 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6051 if (TREE_CODE (addend) == REAL_CST
6052 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6053 negate = !negate;
6055 /* The mode has signed zeros, and we have to honor their sign.
6056 In this situation, there is only one case we can return true for.
6057 X - 0 is the same as X unless rounding towards -infinity is
6058 supported. */
6059 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6062 /* Subroutine of fold() that checks comparisons of built-in math
6063 functions against real constants.
6065 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6066 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6067 is the type of the result and ARG0 and ARG1 are the operands of the
6068 comparison. ARG1 must be a TREE_REAL_CST.
6070 The function returns the constant folded tree if a simplification
6071 can be made, and NULL_TREE otherwise. */
6073 static tree
6074 fold_mathfn_compare (location_t loc,
6075 enum built_in_function fcode, enum tree_code code,
6076 tree type, tree arg0, tree arg1)
6078 REAL_VALUE_TYPE c;
6080 if (BUILTIN_SQRT_P (fcode))
6082 tree arg = CALL_EXPR_ARG (arg0, 0);
6083 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6085 c = TREE_REAL_CST (arg1);
6086 if (REAL_VALUE_NEGATIVE (c))
6088 /* sqrt(x) < y is always false, if y is negative. */
6089 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6090 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6092 /* sqrt(x) > y is always true, if y is negative and we
6093 don't care about NaNs, i.e. negative values of x. */
6094 if (code == NE_EXPR || !HONOR_NANS (mode))
6095 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6097 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6098 return fold_build2_loc (loc, GE_EXPR, type, arg,
6099 build_real (TREE_TYPE (arg), dconst0));
6101 else if (code == GT_EXPR || code == GE_EXPR)
6103 REAL_VALUE_TYPE c2;
6105 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6106 real_convert (&c2, mode, &c2);
6108 if (REAL_VALUE_ISINF (c2))
6110 /* sqrt(x) > y is x == +Inf, when y is very large. */
6111 if (HONOR_INFINITIES (mode))
6112 return fold_build2_loc (loc, EQ_EXPR, type, arg,
6113 build_real (TREE_TYPE (arg), c2));
6115 /* sqrt(x) > y is always false, when y is very large
6116 and we don't care about infinities. */
6117 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6120 /* sqrt(x) > c is the same as x > c*c. */
6121 return fold_build2_loc (loc, code, type, arg,
6122 build_real (TREE_TYPE (arg), c2));
6124 else if (code == LT_EXPR || code == LE_EXPR)
6126 REAL_VALUE_TYPE c2;
6128 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6129 real_convert (&c2, mode, &c2);
6131 if (REAL_VALUE_ISINF (c2))
6133 /* sqrt(x) < y is always true, when y is a very large
6134 value and we don't care about NaNs or Infinities. */
6135 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6136 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6138 /* sqrt(x) < y is x != +Inf when y is very large and we
6139 don't care about NaNs. */
6140 if (! HONOR_NANS (mode))
6141 return fold_build2_loc (loc, NE_EXPR, type, arg,
6142 build_real (TREE_TYPE (arg), c2));
6144 /* sqrt(x) < y is x >= 0 when y is very large and we
6145 don't care about Infinities. */
6146 if (! HONOR_INFINITIES (mode))
6147 return fold_build2_loc (loc, GE_EXPR, type, arg,
6148 build_real (TREE_TYPE (arg), dconst0));
6150 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6151 arg = save_expr (arg);
6152 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6153 fold_build2_loc (loc, GE_EXPR, type, arg,
6154 build_real (TREE_TYPE (arg),
6155 dconst0)),
6156 fold_build2_loc (loc, NE_EXPR, type, arg,
6157 build_real (TREE_TYPE (arg),
6158 c2)));
6161 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6162 if (! HONOR_NANS (mode))
6163 return fold_build2_loc (loc, code, type, arg,
6164 build_real (TREE_TYPE (arg), c2));
6166 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6167 arg = save_expr (arg);
6168 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6169 fold_build2_loc (loc, GE_EXPR, type, arg,
6170 build_real (TREE_TYPE (arg),
6171 dconst0)),
6172 fold_build2_loc (loc, code, type, arg,
6173 build_real (TREE_TYPE (arg),
6174 c2)));
6178 return NULL_TREE;
6181 /* Subroutine of fold() that optimizes comparisons against Infinities,
6182 either +Inf or -Inf.
6184 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6185 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6186 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6188 The function returns the constant folded tree if a simplification
6189 can be made, and NULL_TREE otherwise. */
6191 static tree
6192 fold_inf_compare (location_t loc, enum tree_code code, tree type,
6193 tree arg0, tree arg1)
6195 enum machine_mode mode;
6196 REAL_VALUE_TYPE max;
6197 tree temp;
6198 bool neg;
6200 mode = TYPE_MODE (TREE_TYPE (arg0));
6202 /* For negative infinity swap the sense of the comparison. */
6203 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6204 if (neg)
6205 code = swap_tree_comparison (code);
6207 switch (code)
6209 case GT_EXPR:
6210 /* x > +Inf is always false, if with ignore sNANs. */
6211 if (HONOR_SNANS (mode))
6212 return NULL_TREE;
6213 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6215 case LE_EXPR:
6216 /* x <= +Inf is always true, if we don't case about NaNs. */
6217 if (! HONOR_NANS (mode))
6218 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6220 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6221 arg0 = save_expr (arg0);
6222 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg0);
6224 case EQ_EXPR:
6225 case GE_EXPR:
6226 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6227 real_maxval (&max, neg, mode);
6228 return fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6229 arg0, build_real (TREE_TYPE (arg0), max));
6231 case LT_EXPR:
6232 /* x < +Inf is always equal to x <= DBL_MAX. */
6233 real_maxval (&max, neg, mode);
6234 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6235 arg0, build_real (TREE_TYPE (arg0), max));
6237 case NE_EXPR:
6238 /* x != +Inf is always equal to !(x > DBL_MAX). */
6239 real_maxval (&max, neg, mode);
6240 if (! HONOR_NANS (mode))
6241 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6242 arg0, build_real (TREE_TYPE (arg0), max));
6244 temp = fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6245 arg0, build_real (TREE_TYPE (arg0), max));
6246 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, temp);
6248 default:
6249 break;
6252 return NULL_TREE;
6255 /* Subroutine of fold() that optimizes comparisons of a division by
6256 a nonzero integer constant against an integer constant, i.e.
6257 X/C1 op C2.
6259 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6260 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6261 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6263 The function returns the constant folded tree if a simplification
6264 can be made, and NULL_TREE otherwise. */
6266 static tree
6267 fold_div_compare (location_t loc,
6268 enum tree_code code, tree type, tree arg0, tree arg1)
6270 tree prod, tmp, hi, lo;
6271 tree arg00 = TREE_OPERAND (arg0, 0);
6272 tree arg01 = TREE_OPERAND (arg0, 1);
6273 double_int val;
6274 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6275 bool neg_overflow;
6276 int overflow;
6278 /* We have to do this the hard way to detect unsigned overflow.
6279 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6280 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6281 TREE_INT_CST_HIGH (arg01),
6282 TREE_INT_CST_LOW (arg1),
6283 TREE_INT_CST_HIGH (arg1),
6284 &val.low, &val.high, unsigned_p);
6285 prod = force_fit_type_double (TREE_TYPE (arg00), val, -1, overflow);
6286 neg_overflow = false;
6288 if (unsigned_p)
6290 tmp = int_const_binop (MINUS_EXPR, arg01,
6291 build_int_cst (TREE_TYPE (arg01), 1));
6292 lo = prod;
6294 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6295 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6296 TREE_INT_CST_HIGH (prod),
6297 TREE_INT_CST_LOW (tmp),
6298 TREE_INT_CST_HIGH (tmp),
6299 &val.low, &val.high, unsigned_p);
6300 hi = force_fit_type_double (TREE_TYPE (arg00), val,
6301 -1, overflow | TREE_OVERFLOW (prod));
6303 else if (tree_int_cst_sgn (arg01) >= 0)
6305 tmp = int_const_binop (MINUS_EXPR, arg01,
6306 build_int_cst (TREE_TYPE (arg01), 1));
6307 switch (tree_int_cst_sgn (arg1))
6309 case -1:
6310 neg_overflow = true;
6311 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6312 hi = prod;
6313 break;
6315 case 0:
6316 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6317 hi = tmp;
6318 break;
6320 case 1:
6321 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6322 lo = prod;
6323 break;
6325 default:
6326 gcc_unreachable ();
6329 else
6331 /* A negative divisor reverses the relational operators. */
6332 code = swap_tree_comparison (code);
6334 tmp = int_const_binop (PLUS_EXPR, arg01,
6335 build_int_cst (TREE_TYPE (arg01), 1));
6336 switch (tree_int_cst_sgn (arg1))
6338 case -1:
6339 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6340 lo = prod;
6341 break;
6343 case 0:
6344 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6345 lo = tmp;
6346 break;
6348 case 1:
6349 neg_overflow = true;
6350 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6351 hi = prod;
6352 break;
6354 default:
6355 gcc_unreachable ();
6359 switch (code)
6361 case EQ_EXPR:
6362 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6363 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6364 if (TREE_OVERFLOW (hi))
6365 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6366 if (TREE_OVERFLOW (lo))
6367 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6368 return build_range_check (loc, type, arg00, 1, lo, hi);
6370 case NE_EXPR:
6371 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6372 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6373 if (TREE_OVERFLOW (hi))
6374 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6375 if (TREE_OVERFLOW (lo))
6376 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6377 return build_range_check (loc, type, arg00, 0, lo, hi);
6379 case LT_EXPR:
6380 if (TREE_OVERFLOW (lo))
6382 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6383 return omit_one_operand_loc (loc, type, tmp, arg00);
6385 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6387 case LE_EXPR:
6388 if (TREE_OVERFLOW (hi))
6390 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6391 return omit_one_operand_loc (loc, type, tmp, arg00);
6393 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6395 case GT_EXPR:
6396 if (TREE_OVERFLOW (hi))
6398 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6399 return omit_one_operand_loc (loc, type, tmp, arg00);
6401 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6403 case GE_EXPR:
6404 if (TREE_OVERFLOW (lo))
6406 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6407 return omit_one_operand_loc (loc, type, tmp, arg00);
6409 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6411 default:
6412 break;
6415 return NULL_TREE;
6419 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6420 equality/inequality test, then return a simplified form of the test
6421 using a sign testing. Otherwise return NULL. TYPE is the desired
6422 result type. */
6424 static tree
6425 fold_single_bit_test_into_sign_test (location_t loc,
6426 enum tree_code code, tree arg0, tree arg1,
6427 tree result_type)
6429 /* If this is testing a single bit, we can optimize the test. */
6430 if ((code == NE_EXPR || code == EQ_EXPR)
6431 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6432 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6434 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6435 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6436 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6438 if (arg00 != NULL_TREE
6439 /* This is only a win if casting to a signed type is cheap,
6440 i.e. when arg00's type is not a partial mode. */
6441 && TYPE_PRECISION (TREE_TYPE (arg00))
6442 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6444 tree stype = signed_type_for (TREE_TYPE (arg00));
6445 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6446 result_type,
6447 fold_convert_loc (loc, stype, arg00),
6448 build_int_cst (stype, 0));
6452 return NULL_TREE;
6455 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6456 equality/inequality test, then return a simplified form of
6457 the test using shifts and logical operations. Otherwise return
6458 NULL. TYPE is the desired result type. */
6460 tree
6461 fold_single_bit_test (location_t loc, enum tree_code code,
6462 tree arg0, tree arg1, tree result_type)
6464 /* If this is testing a single bit, we can optimize the test. */
6465 if ((code == NE_EXPR || code == EQ_EXPR)
6466 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6467 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6469 tree inner = TREE_OPERAND (arg0, 0);
6470 tree type = TREE_TYPE (arg0);
6471 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6472 enum machine_mode operand_mode = TYPE_MODE (type);
6473 int ops_unsigned;
6474 tree signed_type, unsigned_type, intermediate_type;
6475 tree tem, one;
6477 /* First, see if we can fold the single bit test into a sign-bit
6478 test. */
6479 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6480 result_type);
6481 if (tem)
6482 return tem;
6484 /* Otherwise we have (A & C) != 0 where C is a single bit,
6485 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6486 Similarly for (A & C) == 0. */
6488 /* If INNER is a right shift of a constant and it plus BITNUM does
6489 not overflow, adjust BITNUM and INNER. */
6490 if (TREE_CODE (inner) == RSHIFT_EXPR
6491 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6492 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6493 && bitnum < TYPE_PRECISION (type)
6494 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6495 bitnum - TYPE_PRECISION (type)))
6497 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6498 inner = TREE_OPERAND (inner, 0);
6501 /* If we are going to be able to omit the AND below, we must do our
6502 operations as unsigned. If we must use the AND, we have a choice.
6503 Normally unsigned is faster, but for some machines signed is. */
6504 #ifdef LOAD_EXTEND_OP
6505 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6506 && !flag_syntax_only) ? 0 : 1;
6507 #else
6508 ops_unsigned = 1;
6509 #endif
6511 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6512 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6513 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6514 inner = fold_convert_loc (loc, intermediate_type, inner);
6516 if (bitnum != 0)
6517 inner = build2 (RSHIFT_EXPR, intermediate_type,
6518 inner, size_int (bitnum));
6520 one = build_int_cst (intermediate_type, 1);
6522 if (code == EQ_EXPR)
6523 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6525 /* Put the AND last so it can combine with more things. */
6526 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6528 /* Make sure to return the proper type. */
6529 inner = fold_convert_loc (loc, result_type, inner);
6531 return inner;
6533 return NULL_TREE;
6536 /* Check whether we are allowed to reorder operands arg0 and arg1,
6537 such that the evaluation of arg1 occurs before arg0. */
6539 static bool
6540 reorder_operands_p (const_tree arg0, const_tree arg1)
6542 if (! flag_evaluation_order)
6543 return true;
6544 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6545 return true;
6546 return ! TREE_SIDE_EFFECTS (arg0)
6547 && ! TREE_SIDE_EFFECTS (arg1);
6550 /* Test whether it is preferable two swap two operands, ARG0 and
6551 ARG1, for example because ARG0 is an integer constant and ARG1
6552 isn't. If REORDER is true, only recommend swapping if we can
6553 evaluate the operands in reverse order. */
6555 bool
6556 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6558 STRIP_SIGN_NOPS (arg0);
6559 STRIP_SIGN_NOPS (arg1);
6561 if (TREE_CODE (arg1) == INTEGER_CST)
6562 return 0;
6563 if (TREE_CODE (arg0) == INTEGER_CST)
6564 return 1;
6566 if (TREE_CODE (arg1) == REAL_CST)
6567 return 0;
6568 if (TREE_CODE (arg0) == REAL_CST)
6569 return 1;
6571 if (TREE_CODE (arg1) == FIXED_CST)
6572 return 0;
6573 if (TREE_CODE (arg0) == FIXED_CST)
6574 return 1;
6576 if (TREE_CODE (arg1) == COMPLEX_CST)
6577 return 0;
6578 if (TREE_CODE (arg0) == COMPLEX_CST)
6579 return 1;
6581 if (TREE_CONSTANT (arg1))
6582 return 0;
6583 if (TREE_CONSTANT (arg0))
6584 return 1;
6586 if (optimize_function_for_size_p (cfun))
6587 return 0;
6589 if (reorder && flag_evaluation_order
6590 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6591 return 0;
6593 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6594 for commutative and comparison operators. Ensuring a canonical
6595 form allows the optimizers to find additional redundancies without
6596 having to explicitly check for both orderings. */
6597 if (TREE_CODE (arg0) == SSA_NAME
6598 && TREE_CODE (arg1) == SSA_NAME
6599 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6600 return 1;
6602 /* Put SSA_NAMEs last. */
6603 if (TREE_CODE (arg1) == SSA_NAME)
6604 return 0;
6605 if (TREE_CODE (arg0) == SSA_NAME)
6606 return 1;
6608 /* Put variables last. */
6609 if (DECL_P (arg1))
6610 return 0;
6611 if (DECL_P (arg0))
6612 return 1;
6614 return 0;
6617 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6618 ARG0 is extended to a wider type. */
6620 static tree
6621 fold_widened_comparison (location_t loc, enum tree_code code,
6622 tree type, tree arg0, tree arg1)
6624 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6625 tree arg1_unw;
6626 tree shorter_type, outer_type;
6627 tree min, max;
6628 bool above, below;
6630 if (arg0_unw == arg0)
6631 return NULL_TREE;
6632 shorter_type = TREE_TYPE (arg0_unw);
6634 #ifdef HAVE_canonicalize_funcptr_for_compare
6635 /* Disable this optimization if we're casting a function pointer
6636 type on targets that require function pointer canonicalization. */
6637 if (HAVE_canonicalize_funcptr_for_compare
6638 && TREE_CODE (shorter_type) == POINTER_TYPE
6639 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6640 return NULL_TREE;
6641 #endif
6643 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6644 return NULL_TREE;
6646 arg1_unw = get_unwidened (arg1, NULL_TREE);
6648 /* If possible, express the comparison in the shorter mode. */
6649 if ((code == EQ_EXPR || code == NE_EXPR
6650 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6651 && (TREE_TYPE (arg1_unw) == shorter_type
6652 || ((TYPE_PRECISION (shorter_type)
6653 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
6654 && (TYPE_UNSIGNED (shorter_type)
6655 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
6656 || (TREE_CODE (arg1_unw) == INTEGER_CST
6657 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6658 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6659 && int_fits_type_p (arg1_unw, shorter_type))))
6660 return fold_build2_loc (loc, code, type, arg0_unw,
6661 fold_convert_loc (loc, shorter_type, arg1_unw));
6663 if (TREE_CODE (arg1_unw) != INTEGER_CST
6664 || TREE_CODE (shorter_type) != INTEGER_TYPE
6665 || !int_fits_type_p (arg1_unw, shorter_type))
6666 return NULL_TREE;
6668 /* If we are comparing with the integer that does not fit into the range
6669 of the shorter type, the result is known. */
6670 outer_type = TREE_TYPE (arg1_unw);
6671 min = lower_bound_in_type (outer_type, shorter_type);
6672 max = upper_bound_in_type (outer_type, shorter_type);
6674 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6675 max, arg1_unw));
6676 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6677 arg1_unw, min));
6679 switch (code)
6681 case EQ_EXPR:
6682 if (above || below)
6683 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6684 break;
6686 case NE_EXPR:
6687 if (above || below)
6688 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6689 break;
6691 case LT_EXPR:
6692 case LE_EXPR:
6693 if (above)
6694 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6695 else if (below)
6696 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6698 case GT_EXPR:
6699 case GE_EXPR:
6700 if (above)
6701 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6702 else if (below)
6703 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6705 default:
6706 break;
6709 return NULL_TREE;
6712 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6713 ARG0 just the signedness is changed. */
6715 static tree
6716 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
6717 tree arg0, tree arg1)
6719 tree arg0_inner;
6720 tree inner_type, outer_type;
6722 if (!CONVERT_EXPR_P (arg0))
6723 return NULL_TREE;
6725 outer_type = TREE_TYPE (arg0);
6726 arg0_inner = TREE_OPERAND (arg0, 0);
6727 inner_type = TREE_TYPE (arg0_inner);
6729 #ifdef HAVE_canonicalize_funcptr_for_compare
6730 /* Disable this optimization if we're casting a function pointer
6731 type on targets that require function pointer canonicalization. */
6732 if (HAVE_canonicalize_funcptr_for_compare
6733 && TREE_CODE (inner_type) == POINTER_TYPE
6734 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6735 return NULL_TREE;
6736 #endif
6738 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6739 return NULL_TREE;
6741 if (TREE_CODE (arg1) != INTEGER_CST
6742 && !(CONVERT_EXPR_P (arg1)
6743 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6744 return NULL_TREE;
6746 if ((TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6747 || POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
6748 && code != NE_EXPR
6749 && code != EQ_EXPR)
6750 return NULL_TREE;
6752 if (TREE_CODE (arg1) == INTEGER_CST)
6753 arg1 = force_fit_type_double (inner_type, tree_to_double_int (arg1),
6754 0, TREE_OVERFLOW (arg1));
6755 else
6756 arg1 = fold_convert_loc (loc, inner_type, arg1);
6758 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
6761 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
6762 step of the array. Reconstructs s and delta in the case of s *
6763 delta being an integer constant (and thus already folded). ADDR is
6764 the address. MULT is the multiplicative expression. If the
6765 function succeeds, the new address expression is returned.
6766 Otherwise NULL_TREE is returned. LOC is the location of the
6767 resulting expression. */
6769 static tree
6770 try_move_mult_to_index (location_t loc, tree addr, tree op1)
6772 tree s, delta, step;
6773 tree ref = TREE_OPERAND (addr, 0), pref;
6774 tree ret, pos;
6775 tree itype;
6776 bool mdim = false;
6778 /* Strip the nops that might be added when converting op1 to sizetype. */
6779 STRIP_NOPS (op1);
6781 /* Canonicalize op1 into a possibly non-constant delta
6782 and an INTEGER_CST s. */
6783 if (TREE_CODE (op1) == MULT_EXPR)
6785 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6787 STRIP_NOPS (arg0);
6788 STRIP_NOPS (arg1);
6790 if (TREE_CODE (arg0) == INTEGER_CST)
6792 s = arg0;
6793 delta = arg1;
6795 else if (TREE_CODE (arg1) == INTEGER_CST)
6797 s = arg1;
6798 delta = arg0;
6800 else
6801 return NULL_TREE;
6803 else if (TREE_CODE (op1) == INTEGER_CST)
6805 delta = op1;
6806 s = NULL_TREE;
6808 else
6810 /* Simulate we are delta * 1. */
6811 delta = op1;
6812 s = integer_one_node;
6815 for (;; ref = TREE_OPERAND (ref, 0))
6817 if (TREE_CODE (ref) == ARRAY_REF)
6819 tree domain;
6821 /* Remember if this was a multi-dimensional array. */
6822 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6823 mdim = true;
6825 domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6826 if (! domain)
6827 continue;
6828 itype = TREE_TYPE (domain);
6830 step = array_ref_element_size (ref);
6831 if (TREE_CODE (step) != INTEGER_CST)
6832 continue;
6834 if (s)
6836 if (! tree_int_cst_equal (step, s))
6837 continue;
6839 else
6841 /* Try if delta is a multiple of step. */
6842 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, op1, step);
6843 if (! tmp)
6844 continue;
6845 delta = tmp;
6848 /* Only fold here if we can verify we do not overflow one
6849 dimension of a multi-dimensional array. */
6850 if (mdim)
6852 tree tmp;
6854 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
6855 || !TYPE_MAX_VALUE (domain)
6856 || TREE_CODE (TYPE_MAX_VALUE (domain)) != INTEGER_CST)
6857 continue;
6859 tmp = fold_binary_loc (loc, PLUS_EXPR, itype,
6860 fold_convert_loc (loc, itype,
6861 TREE_OPERAND (ref, 1)),
6862 fold_convert_loc (loc, itype, delta));
6863 if (!tmp
6864 || TREE_CODE (tmp) != INTEGER_CST
6865 || tree_int_cst_lt (TYPE_MAX_VALUE (domain), tmp))
6866 continue;
6869 break;
6871 else
6872 mdim = false;
6874 if (!handled_component_p (ref))
6875 return NULL_TREE;
6878 /* We found the suitable array reference. So copy everything up to it,
6879 and replace the index. */
6881 pref = TREE_OPERAND (addr, 0);
6882 ret = copy_node (pref);
6883 SET_EXPR_LOCATION (ret, loc);
6884 pos = ret;
6886 while (pref != ref)
6888 pref = TREE_OPERAND (pref, 0);
6889 TREE_OPERAND (pos, 0) = copy_node (pref);
6890 pos = TREE_OPERAND (pos, 0);
6893 TREE_OPERAND (pos, 1) = fold_build2_loc (loc, PLUS_EXPR, itype,
6894 fold_convert_loc (loc, itype,
6895 TREE_OPERAND (pos, 1)),
6896 fold_convert_loc (loc, itype, delta));
6898 return fold_build1_loc (loc, ADDR_EXPR, TREE_TYPE (addr), ret);
6902 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6903 means A >= Y && A != MAX, but in this case we know that
6904 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6906 static tree
6907 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6909 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6911 if (TREE_CODE (bound) == LT_EXPR)
6912 a = TREE_OPERAND (bound, 0);
6913 else if (TREE_CODE (bound) == GT_EXPR)
6914 a = TREE_OPERAND (bound, 1);
6915 else
6916 return NULL_TREE;
6918 typea = TREE_TYPE (a);
6919 if (!INTEGRAL_TYPE_P (typea)
6920 && !POINTER_TYPE_P (typea))
6921 return NULL_TREE;
6923 if (TREE_CODE (ineq) == LT_EXPR)
6925 a1 = TREE_OPERAND (ineq, 1);
6926 y = TREE_OPERAND (ineq, 0);
6928 else if (TREE_CODE (ineq) == GT_EXPR)
6930 a1 = TREE_OPERAND (ineq, 0);
6931 y = TREE_OPERAND (ineq, 1);
6933 else
6934 return NULL_TREE;
6936 if (TREE_TYPE (a1) != typea)
6937 return NULL_TREE;
6939 if (POINTER_TYPE_P (typea))
6941 /* Convert the pointer types into integer before taking the difference. */
6942 tree ta = fold_convert_loc (loc, ssizetype, a);
6943 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6944 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6946 else
6947 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6949 if (!diff || !integer_onep (diff))
6950 return NULL_TREE;
6952 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6955 /* Fold a sum or difference of at least one multiplication.
6956 Returns the folded tree or NULL if no simplification could be made. */
6958 static tree
6959 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6960 tree arg0, tree arg1)
6962 tree arg00, arg01, arg10, arg11;
6963 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6965 /* (A * C) +- (B * C) -> (A+-B) * C.
6966 (A * C) +- A -> A * (C+-1).
6967 We are most concerned about the case where C is a constant,
6968 but other combinations show up during loop reduction. Since
6969 it is not difficult, try all four possibilities. */
6971 if (TREE_CODE (arg0) == MULT_EXPR)
6973 arg00 = TREE_OPERAND (arg0, 0);
6974 arg01 = TREE_OPERAND (arg0, 1);
6976 else if (TREE_CODE (arg0) == INTEGER_CST)
6978 arg00 = build_one_cst (type);
6979 arg01 = arg0;
6981 else
6983 /* We cannot generate constant 1 for fract. */
6984 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6985 return NULL_TREE;
6986 arg00 = arg0;
6987 arg01 = build_one_cst (type);
6989 if (TREE_CODE (arg1) == MULT_EXPR)
6991 arg10 = TREE_OPERAND (arg1, 0);
6992 arg11 = TREE_OPERAND (arg1, 1);
6994 else if (TREE_CODE (arg1) == INTEGER_CST)
6996 arg10 = build_one_cst (type);
6997 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6998 the purpose of this canonicalization. */
6999 if (TREE_INT_CST_HIGH (arg1) == -1
7000 && negate_expr_p (arg1)
7001 && code == PLUS_EXPR)
7003 arg11 = negate_expr (arg1);
7004 code = MINUS_EXPR;
7006 else
7007 arg11 = arg1;
7009 else
7011 /* We cannot generate constant 1 for fract. */
7012 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7013 return NULL_TREE;
7014 arg10 = arg1;
7015 arg11 = build_one_cst (type);
7017 same = NULL_TREE;
7019 if (operand_equal_p (arg01, arg11, 0))
7020 same = arg01, alt0 = arg00, alt1 = arg10;
7021 else if (operand_equal_p (arg00, arg10, 0))
7022 same = arg00, alt0 = arg01, alt1 = arg11;
7023 else if (operand_equal_p (arg00, arg11, 0))
7024 same = arg00, alt0 = arg01, alt1 = arg10;
7025 else if (operand_equal_p (arg01, arg10, 0))
7026 same = arg01, alt0 = arg00, alt1 = arg11;
7028 /* No identical multiplicands; see if we can find a common
7029 power-of-two factor in non-power-of-two multiplies. This
7030 can help in multi-dimensional array access. */
7031 else if (host_integerp (arg01, 0)
7032 && host_integerp (arg11, 0))
7034 HOST_WIDE_INT int01, int11, tmp;
7035 bool swap = false;
7036 tree maybe_same;
7037 int01 = TREE_INT_CST_LOW (arg01);
7038 int11 = TREE_INT_CST_LOW (arg11);
7040 /* Move min of absolute values to int11. */
7041 if ((int01 >= 0 ? int01 : -int01)
7042 < (int11 >= 0 ? int11 : -int11))
7044 tmp = int01, int01 = int11, int11 = tmp;
7045 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7046 maybe_same = arg01;
7047 swap = true;
7049 else
7050 maybe_same = arg11;
7052 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0
7053 /* The remainder should not be a constant, otherwise we
7054 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7055 increased the number of multiplications necessary. */
7056 && TREE_CODE (arg10) != INTEGER_CST)
7058 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7059 build_int_cst (TREE_TYPE (arg00),
7060 int01 / int11));
7061 alt1 = arg10;
7062 same = maybe_same;
7063 if (swap)
7064 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7068 if (same)
7069 return fold_build2_loc (loc, MULT_EXPR, type,
7070 fold_build2_loc (loc, code, type,
7071 fold_convert_loc (loc, type, alt0),
7072 fold_convert_loc (loc, type, alt1)),
7073 fold_convert_loc (loc, type, same));
7075 return NULL_TREE;
7078 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7079 specified by EXPR into the buffer PTR of length LEN bytes.
7080 Return the number of bytes placed in the buffer, or zero
7081 upon failure. */
7083 static int
7084 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7086 tree type = TREE_TYPE (expr);
7087 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7088 int byte, offset, word, words;
7089 unsigned char value;
7091 if (total_bytes > len)
7092 return 0;
7093 words = total_bytes / UNITS_PER_WORD;
7095 for (byte = 0; byte < total_bytes; byte++)
7097 int bitpos = byte * BITS_PER_UNIT;
7098 if (bitpos < HOST_BITS_PER_WIDE_INT)
7099 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7100 else
7101 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7102 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7104 if (total_bytes > UNITS_PER_WORD)
7106 word = byte / UNITS_PER_WORD;
7107 if (WORDS_BIG_ENDIAN)
7108 word = (words - 1) - word;
7109 offset = word * UNITS_PER_WORD;
7110 if (BYTES_BIG_ENDIAN)
7111 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7112 else
7113 offset += byte % UNITS_PER_WORD;
7115 else
7116 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7117 ptr[offset] = value;
7119 return total_bytes;
7123 /* Subroutine of native_encode_expr. Encode the REAL_CST
7124 specified by EXPR into the buffer PTR of length LEN bytes.
7125 Return the number of bytes placed in the buffer, or zero
7126 upon failure. */
7128 static int
7129 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7131 tree type = TREE_TYPE (expr);
7132 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7133 int byte, offset, word, words, bitpos;
7134 unsigned char value;
7136 /* There are always 32 bits in each long, no matter the size of
7137 the hosts long. We handle floating point representations with
7138 up to 192 bits. */
7139 long tmp[6];
7141 if (total_bytes > len)
7142 return 0;
7143 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7145 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7147 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7148 bitpos += BITS_PER_UNIT)
7150 byte = (bitpos / BITS_PER_UNIT) & 3;
7151 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7153 if (UNITS_PER_WORD < 4)
7155 word = byte / UNITS_PER_WORD;
7156 if (WORDS_BIG_ENDIAN)
7157 word = (words - 1) - word;
7158 offset = word * UNITS_PER_WORD;
7159 if (BYTES_BIG_ENDIAN)
7160 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7161 else
7162 offset += byte % UNITS_PER_WORD;
7164 else
7165 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7166 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7168 return total_bytes;
7171 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7172 specified by EXPR into the buffer PTR of length LEN bytes.
7173 Return the number of bytes placed in the buffer, or zero
7174 upon failure. */
7176 static int
7177 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7179 int rsize, isize;
7180 tree part;
7182 part = TREE_REALPART (expr);
7183 rsize = native_encode_expr (part, ptr, len);
7184 if (rsize == 0)
7185 return 0;
7186 part = TREE_IMAGPART (expr);
7187 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7188 if (isize != rsize)
7189 return 0;
7190 return rsize + isize;
7194 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7195 specified by EXPR into the buffer PTR of length LEN bytes.
7196 Return the number of bytes placed in the buffer, or zero
7197 upon failure. */
7199 static int
7200 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7202 int i, size, offset, count;
7203 tree itype, elem, elements;
7205 offset = 0;
7206 elements = TREE_VECTOR_CST_ELTS (expr);
7207 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7208 itype = TREE_TYPE (TREE_TYPE (expr));
7209 size = GET_MODE_SIZE (TYPE_MODE (itype));
7210 for (i = 0; i < count; i++)
7212 if (elements)
7214 elem = TREE_VALUE (elements);
7215 elements = TREE_CHAIN (elements);
7217 else
7218 elem = NULL_TREE;
7220 if (elem)
7222 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7223 return 0;
7225 else
7227 if (offset + size > len)
7228 return 0;
7229 memset (ptr+offset, 0, size);
7231 offset += size;
7233 return offset;
7237 /* Subroutine of native_encode_expr. Encode the STRING_CST
7238 specified by EXPR into the buffer PTR of length LEN bytes.
7239 Return the number of bytes placed in the buffer, or zero
7240 upon failure. */
7242 static int
7243 native_encode_string (const_tree expr, unsigned char *ptr, int len)
7245 tree type = TREE_TYPE (expr);
7246 HOST_WIDE_INT total_bytes;
7248 if (TREE_CODE (type) != ARRAY_TYPE
7249 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7250 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7251 || !host_integerp (TYPE_SIZE_UNIT (type), 0))
7252 return 0;
7253 total_bytes = tree_low_cst (TYPE_SIZE_UNIT (type), 0);
7254 if (total_bytes > len)
7255 return 0;
7256 if (TREE_STRING_LENGTH (expr) < total_bytes)
7258 memcpy (ptr, TREE_STRING_POINTER (expr), TREE_STRING_LENGTH (expr));
7259 memset (ptr + TREE_STRING_LENGTH (expr), 0,
7260 total_bytes - TREE_STRING_LENGTH (expr));
7262 else
7263 memcpy (ptr, TREE_STRING_POINTER (expr), total_bytes);
7264 return total_bytes;
7268 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7269 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7270 buffer PTR of length LEN bytes. Return the number of bytes
7271 placed in the buffer, or zero upon failure. */
7274 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7276 switch (TREE_CODE (expr))
7278 case INTEGER_CST:
7279 return native_encode_int (expr, ptr, len);
7281 case REAL_CST:
7282 return native_encode_real (expr, ptr, len);
7284 case COMPLEX_CST:
7285 return native_encode_complex (expr, ptr, len);
7287 case VECTOR_CST:
7288 return native_encode_vector (expr, ptr, len);
7290 case STRING_CST:
7291 return native_encode_string (expr, ptr, len);
7293 default:
7294 return 0;
7299 /* Subroutine of native_interpret_expr. Interpret the contents of
7300 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7301 If the buffer cannot be interpreted, return NULL_TREE. */
7303 static tree
7304 native_interpret_int (tree type, const unsigned char *ptr, int len)
7306 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7307 int byte, offset, word, words;
7308 unsigned char value;
7309 double_int result;
7311 if (total_bytes > len)
7312 return NULL_TREE;
7313 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7314 return NULL_TREE;
7316 result = double_int_zero;
7317 words = total_bytes / UNITS_PER_WORD;
7319 for (byte = 0; byte < total_bytes; byte++)
7321 int bitpos = byte * BITS_PER_UNIT;
7322 if (total_bytes > UNITS_PER_WORD)
7324 word = byte / UNITS_PER_WORD;
7325 if (WORDS_BIG_ENDIAN)
7326 word = (words - 1) - word;
7327 offset = word * UNITS_PER_WORD;
7328 if (BYTES_BIG_ENDIAN)
7329 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7330 else
7331 offset += byte % UNITS_PER_WORD;
7333 else
7334 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7335 value = ptr[offset];
7337 if (bitpos < HOST_BITS_PER_WIDE_INT)
7338 result.low |= (unsigned HOST_WIDE_INT) value << bitpos;
7339 else
7340 result.high |= (unsigned HOST_WIDE_INT) value
7341 << (bitpos - HOST_BITS_PER_WIDE_INT);
7344 return double_int_to_tree (type, result);
7348 /* Subroutine of native_interpret_expr. Interpret the contents of
7349 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7350 If the buffer cannot be interpreted, return NULL_TREE. */
7352 static tree
7353 native_interpret_real (tree type, const unsigned char *ptr, int len)
7355 enum machine_mode mode = TYPE_MODE (type);
7356 int total_bytes = GET_MODE_SIZE (mode);
7357 int byte, offset, word, words, bitpos;
7358 unsigned char value;
7359 /* There are always 32 bits in each long, no matter the size of
7360 the hosts long. We handle floating point representations with
7361 up to 192 bits. */
7362 REAL_VALUE_TYPE r;
7363 long tmp[6];
7365 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7366 if (total_bytes > len || total_bytes > 24)
7367 return NULL_TREE;
7368 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7370 memset (tmp, 0, sizeof (tmp));
7371 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7372 bitpos += BITS_PER_UNIT)
7374 byte = (bitpos / BITS_PER_UNIT) & 3;
7375 if (UNITS_PER_WORD < 4)
7377 word = byte / UNITS_PER_WORD;
7378 if (WORDS_BIG_ENDIAN)
7379 word = (words - 1) - word;
7380 offset = word * UNITS_PER_WORD;
7381 if (BYTES_BIG_ENDIAN)
7382 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7383 else
7384 offset += byte % UNITS_PER_WORD;
7386 else
7387 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7388 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7390 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7393 real_from_target (&r, tmp, mode);
7394 return build_real (type, r);
7398 /* Subroutine of native_interpret_expr. Interpret the contents of
7399 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7400 If the buffer cannot be interpreted, return NULL_TREE. */
7402 static tree
7403 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7405 tree etype, rpart, ipart;
7406 int size;
7408 etype = TREE_TYPE (type);
7409 size = GET_MODE_SIZE (TYPE_MODE (etype));
7410 if (size * 2 > len)
7411 return NULL_TREE;
7412 rpart = native_interpret_expr (etype, ptr, size);
7413 if (!rpart)
7414 return NULL_TREE;
7415 ipart = native_interpret_expr (etype, ptr+size, size);
7416 if (!ipart)
7417 return NULL_TREE;
7418 return build_complex (type, rpart, ipart);
7422 /* Subroutine of native_interpret_expr. Interpret the contents of
7423 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7424 If the buffer cannot be interpreted, return NULL_TREE. */
7426 static tree
7427 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7429 tree etype, elem, elements;
7430 int i, size, count;
7432 etype = TREE_TYPE (type);
7433 size = GET_MODE_SIZE (TYPE_MODE (etype));
7434 count = TYPE_VECTOR_SUBPARTS (type);
7435 if (size * count > len)
7436 return NULL_TREE;
7438 elements = NULL_TREE;
7439 for (i = count - 1; i >= 0; i--)
7441 elem = native_interpret_expr (etype, ptr+(i*size), size);
7442 if (!elem)
7443 return NULL_TREE;
7444 elements = tree_cons (NULL_TREE, elem, elements);
7446 return build_vector (type, elements);
7450 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7451 the buffer PTR of length LEN as a constant of type TYPE. For
7452 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7453 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7454 return NULL_TREE. */
7456 tree
7457 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7459 switch (TREE_CODE (type))
7461 case INTEGER_TYPE:
7462 case ENUMERAL_TYPE:
7463 case BOOLEAN_TYPE:
7464 return native_interpret_int (type, ptr, len);
7466 case REAL_TYPE:
7467 return native_interpret_real (type, ptr, len);
7469 case COMPLEX_TYPE:
7470 return native_interpret_complex (type, ptr, len);
7472 case VECTOR_TYPE:
7473 return native_interpret_vector (type, ptr, len);
7475 default:
7476 return NULL_TREE;
7481 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7482 TYPE at compile-time. If we're unable to perform the conversion
7483 return NULL_TREE. */
7485 static tree
7486 fold_view_convert_expr (tree type, tree expr)
7488 /* We support up to 512-bit values (for V8DFmode). */
7489 unsigned char buffer[64];
7490 int len;
7492 /* Check that the host and target are sane. */
7493 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7494 return NULL_TREE;
7496 len = native_encode_expr (expr, buffer, sizeof (buffer));
7497 if (len == 0)
7498 return NULL_TREE;
7500 return native_interpret_expr (type, buffer, len);
7503 /* Build an expression for the address of T. Folds away INDIRECT_REF
7504 to avoid confusing the gimplify process. */
7506 tree
7507 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7509 /* The size of the object is not relevant when talking about its address. */
7510 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7511 t = TREE_OPERAND (t, 0);
7513 if (TREE_CODE (t) == INDIRECT_REF)
7515 t = TREE_OPERAND (t, 0);
7517 if (TREE_TYPE (t) != ptrtype)
7518 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7520 else if (TREE_CODE (t) == MEM_REF
7521 && integer_zerop (TREE_OPERAND (t, 1)))
7522 return TREE_OPERAND (t, 0);
7523 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7525 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7527 if (TREE_TYPE (t) != ptrtype)
7528 t = fold_convert_loc (loc, ptrtype, t);
7530 else
7531 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7533 return t;
7536 /* Build an expression for the address of T. */
7538 tree
7539 build_fold_addr_expr_loc (location_t loc, tree t)
7541 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7543 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7546 /* Fold a unary expression of code CODE and type TYPE with operand
7547 OP0. Return the folded expression if folding is successful.
7548 Otherwise, return NULL_TREE. */
7550 tree
7551 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7553 tree tem;
7554 tree arg0;
7555 enum tree_code_class kind = TREE_CODE_CLASS (code);
7557 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7558 && TREE_CODE_LENGTH (code) == 1);
7560 arg0 = op0;
7561 if (arg0)
7563 if (CONVERT_EXPR_CODE_P (code)
7564 || code == FLOAT_EXPR || code == ABS_EXPR)
7566 /* Don't use STRIP_NOPS, because signedness of argument type
7567 matters. */
7568 STRIP_SIGN_NOPS (arg0);
7570 else
7572 /* Strip any conversions that don't change the mode. This
7573 is safe for every expression, except for a comparison
7574 expression because its signedness is derived from its
7575 operands.
7577 Note that this is done as an internal manipulation within
7578 the constant folder, in order to find the simplest
7579 representation of the arguments so that their form can be
7580 studied. In any cases, the appropriate type conversions
7581 should be put back in the tree that will get out of the
7582 constant folder. */
7583 STRIP_NOPS (arg0);
7587 if (TREE_CODE_CLASS (code) == tcc_unary)
7589 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7590 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7591 fold_build1_loc (loc, code, type,
7592 fold_convert_loc (loc, TREE_TYPE (op0),
7593 TREE_OPERAND (arg0, 1))));
7594 else if (TREE_CODE (arg0) == COND_EXPR)
7596 tree arg01 = TREE_OPERAND (arg0, 1);
7597 tree arg02 = TREE_OPERAND (arg0, 2);
7598 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7599 arg01 = fold_build1_loc (loc, code, type,
7600 fold_convert_loc (loc,
7601 TREE_TYPE (op0), arg01));
7602 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7603 arg02 = fold_build1_loc (loc, code, type,
7604 fold_convert_loc (loc,
7605 TREE_TYPE (op0), arg02));
7606 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7607 arg01, arg02);
7609 /* If this was a conversion, and all we did was to move into
7610 inside the COND_EXPR, bring it back out. But leave it if
7611 it is a conversion from integer to integer and the
7612 result precision is no wider than a word since such a
7613 conversion is cheap and may be optimized away by combine,
7614 while it couldn't if it were outside the COND_EXPR. Then return
7615 so we don't get into an infinite recursion loop taking the
7616 conversion out and then back in. */
7618 if ((CONVERT_EXPR_CODE_P (code)
7619 || code == NON_LVALUE_EXPR)
7620 && TREE_CODE (tem) == COND_EXPR
7621 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7622 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7623 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7624 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7625 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7626 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7627 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7628 && (INTEGRAL_TYPE_P
7629 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7630 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7631 || flag_syntax_only))
7632 tem = build1_loc (loc, code, type,
7633 build3 (COND_EXPR,
7634 TREE_TYPE (TREE_OPERAND
7635 (TREE_OPERAND (tem, 1), 0)),
7636 TREE_OPERAND (tem, 0),
7637 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7638 TREE_OPERAND (TREE_OPERAND (tem, 2),
7639 0)));
7640 return tem;
7644 switch (code)
7646 case PAREN_EXPR:
7647 /* Re-association barriers around constants and other re-association
7648 barriers can be removed. */
7649 if (CONSTANT_CLASS_P (op0)
7650 || TREE_CODE (op0) == PAREN_EXPR)
7651 return fold_convert_loc (loc, type, op0);
7652 return NULL_TREE;
7654 CASE_CONVERT:
7655 case FLOAT_EXPR:
7656 case FIX_TRUNC_EXPR:
7657 if (TREE_TYPE (op0) == type)
7658 return op0;
7660 if (COMPARISON_CLASS_P (op0))
7662 /* If we have (type) (a CMP b) and type is an integral type, return
7663 new expression involving the new type. Canonicalize
7664 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7665 non-integral type.
7666 Do not fold the result as that would not simplify further, also
7667 folding again results in recursions. */
7668 if (INTEGRAL_TYPE_P (type))
7669 return build2_loc (loc, TREE_CODE (op0), type,
7670 TREE_OPERAND (op0, 0),
7671 TREE_OPERAND (op0, 1));
7672 else
7673 return build3_loc (loc, COND_EXPR, type, op0,
7674 fold_convert (type, boolean_true_node),
7675 fold_convert (type, boolean_false_node));
7678 /* Handle cases of two conversions in a row. */
7679 if (CONVERT_EXPR_P (op0))
7681 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7682 tree inter_type = TREE_TYPE (op0);
7683 int inside_int = INTEGRAL_TYPE_P (inside_type);
7684 int inside_ptr = POINTER_TYPE_P (inside_type);
7685 int inside_float = FLOAT_TYPE_P (inside_type);
7686 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7687 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7688 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7689 int inter_int = INTEGRAL_TYPE_P (inter_type);
7690 int inter_ptr = POINTER_TYPE_P (inter_type);
7691 int inter_float = FLOAT_TYPE_P (inter_type);
7692 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7693 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7694 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7695 int final_int = INTEGRAL_TYPE_P (type);
7696 int final_ptr = POINTER_TYPE_P (type);
7697 int final_float = FLOAT_TYPE_P (type);
7698 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7699 unsigned int final_prec = TYPE_PRECISION (type);
7700 int final_unsignedp = TYPE_UNSIGNED (type);
7702 /* In addition to the cases of two conversions in a row
7703 handled below, if we are converting something to its own
7704 type via an object of identical or wider precision, neither
7705 conversion is needed. */
7706 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7707 && (((inter_int || inter_ptr) && final_int)
7708 || (inter_float && final_float))
7709 && inter_prec >= final_prec)
7710 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7712 /* Likewise, if the intermediate and initial types are either both
7713 float or both integer, we don't need the middle conversion if the
7714 former is wider than the latter and doesn't change the signedness
7715 (for integers). Avoid this if the final type is a pointer since
7716 then we sometimes need the middle conversion. Likewise if the
7717 final type has a precision not equal to the size of its mode. */
7718 if (((inter_int && inside_int)
7719 || (inter_float && inside_float)
7720 || (inter_vec && inside_vec))
7721 && inter_prec >= inside_prec
7722 && (inter_float || inter_vec
7723 || inter_unsignedp == inside_unsignedp)
7724 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7725 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7726 && ! final_ptr
7727 && (! final_vec || inter_prec == inside_prec))
7728 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7730 /* If we have a sign-extension of a zero-extended value, we can
7731 replace that by a single zero-extension. */
7732 if (inside_int && inter_int && final_int
7733 && inside_prec < inter_prec && inter_prec < final_prec
7734 && inside_unsignedp && !inter_unsignedp)
7735 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7737 /* Two conversions in a row are not needed unless:
7738 - some conversion is floating-point (overstrict for now), or
7739 - some conversion is a vector (overstrict for now), or
7740 - the intermediate type is narrower than both initial and
7741 final, or
7742 - the intermediate type and innermost type differ in signedness,
7743 and the outermost type is wider than the intermediate, or
7744 - the initial type is a pointer type and the precisions of the
7745 intermediate and final types differ, or
7746 - the final type is a pointer type and the precisions of the
7747 initial and intermediate types differ. */
7748 if (! inside_float && ! inter_float && ! final_float
7749 && ! inside_vec && ! inter_vec && ! final_vec
7750 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7751 && ! (inside_int && inter_int
7752 && inter_unsignedp != inside_unsignedp
7753 && inter_prec < final_prec)
7754 && ((inter_unsignedp && inter_prec > inside_prec)
7755 == (final_unsignedp && final_prec > inter_prec))
7756 && ! (inside_ptr && inter_prec != final_prec)
7757 && ! (final_ptr && inside_prec != inter_prec)
7758 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7759 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
7760 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7763 /* Handle (T *)&A.B.C for A being of type T and B and C
7764 living at offset zero. This occurs frequently in
7765 C++ upcasting and then accessing the base. */
7766 if (TREE_CODE (op0) == ADDR_EXPR
7767 && POINTER_TYPE_P (type)
7768 && handled_component_p (TREE_OPERAND (op0, 0)))
7770 HOST_WIDE_INT bitsize, bitpos;
7771 tree offset;
7772 enum machine_mode mode;
7773 int unsignedp, volatilep;
7774 tree base = TREE_OPERAND (op0, 0);
7775 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7776 &mode, &unsignedp, &volatilep, false);
7777 /* If the reference was to a (constant) zero offset, we can use
7778 the address of the base if it has the same base type
7779 as the result type and the pointer type is unqualified. */
7780 if (! offset && bitpos == 0
7781 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7782 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7783 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7784 return fold_convert_loc (loc, type,
7785 build_fold_addr_expr_loc (loc, base));
7788 if (TREE_CODE (op0) == MODIFY_EXPR
7789 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7790 /* Detect assigning a bitfield. */
7791 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7792 && DECL_BIT_FIELD
7793 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7795 /* Don't leave an assignment inside a conversion
7796 unless assigning a bitfield. */
7797 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7798 /* First do the assignment, then return converted constant. */
7799 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7800 TREE_NO_WARNING (tem) = 1;
7801 TREE_USED (tem) = 1;
7802 return tem;
7805 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7806 constants (if x has signed type, the sign bit cannot be set
7807 in c). This folds extension into the BIT_AND_EXPR.
7808 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7809 very likely don't have maximal range for their precision and this
7810 transformation effectively doesn't preserve non-maximal ranges. */
7811 if (TREE_CODE (type) == INTEGER_TYPE
7812 && TREE_CODE (op0) == BIT_AND_EXPR
7813 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7815 tree and_expr = op0;
7816 tree and0 = TREE_OPERAND (and_expr, 0);
7817 tree and1 = TREE_OPERAND (and_expr, 1);
7818 int change = 0;
7820 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7821 || (TYPE_PRECISION (type)
7822 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7823 change = 1;
7824 else if (TYPE_PRECISION (TREE_TYPE (and1))
7825 <= HOST_BITS_PER_WIDE_INT
7826 && host_integerp (and1, 1))
7828 unsigned HOST_WIDE_INT cst;
7830 cst = tree_low_cst (and1, 1);
7831 cst &= (HOST_WIDE_INT) -1
7832 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7833 change = (cst == 0);
7834 #ifdef LOAD_EXTEND_OP
7835 if (change
7836 && !flag_syntax_only
7837 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7838 == ZERO_EXTEND))
7840 tree uns = unsigned_type_for (TREE_TYPE (and0));
7841 and0 = fold_convert_loc (loc, uns, and0);
7842 and1 = fold_convert_loc (loc, uns, and1);
7844 #endif
7846 if (change)
7848 tem = force_fit_type_double (type, tree_to_double_int (and1),
7849 0, TREE_OVERFLOW (and1));
7850 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7851 fold_convert_loc (loc, type, and0), tem);
7855 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7856 when one of the new casts will fold away. Conservatively we assume
7857 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7858 if (POINTER_TYPE_P (type)
7859 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7860 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7861 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7862 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7864 tree arg00 = TREE_OPERAND (arg0, 0);
7865 tree arg01 = TREE_OPERAND (arg0, 1);
7867 return fold_build2_loc (loc,
7868 TREE_CODE (arg0), type,
7869 fold_convert_loc (loc, type, arg00),
7870 fold_convert_loc (loc, sizetype, arg01));
7873 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7874 of the same precision, and X is an integer type not narrower than
7875 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7876 if (INTEGRAL_TYPE_P (type)
7877 && TREE_CODE (op0) == BIT_NOT_EXPR
7878 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7879 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7880 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7882 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7883 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7884 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7885 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7886 fold_convert_loc (loc, type, tem));
7889 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7890 type of X and Y (integer types only). */
7891 if (INTEGRAL_TYPE_P (type)
7892 && TREE_CODE (op0) == MULT_EXPR
7893 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7894 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7896 /* Be careful not to introduce new overflows. */
7897 tree mult_type;
7898 if (TYPE_OVERFLOW_WRAPS (type))
7899 mult_type = type;
7900 else
7901 mult_type = unsigned_type_for (type);
7903 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7905 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7906 fold_convert_loc (loc, mult_type,
7907 TREE_OPERAND (op0, 0)),
7908 fold_convert_loc (loc, mult_type,
7909 TREE_OPERAND (op0, 1)));
7910 return fold_convert_loc (loc, type, tem);
7914 tem = fold_convert_const (code, type, op0);
7915 return tem ? tem : NULL_TREE;
7917 case ADDR_SPACE_CONVERT_EXPR:
7918 if (integer_zerop (arg0))
7919 return fold_convert_const (code, type, arg0);
7920 return NULL_TREE;
7922 case FIXED_CONVERT_EXPR:
7923 tem = fold_convert_const (code, type, arg0);
7924 return tem ? tem : NULL_TREE;
7926 case VIEW_CONVERT_EXPR:
7927 if (TREE_TYPE (op0) == type)
7928 return op0;
7929 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
7930 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
7931 type, TREE_OPERAND (op0, 0));
7932 if (TREE_CODE (op0) == MEM_REF)
7933 return fold_build2_loc (loc, MEM_REF, type,
7934 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7936 /* For integral conversions with the same precision or pointer
7937 conversions use a NOP_EXPR instead. */
7938 if ((INTEGRAL_TYPE_P (type)
7939 || POINTER_TYPE_P (type))
7940 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
7941 || POINTER_TYPE_P (TREE_TYPE (op0)))
7942 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7943 return fold_convert_loc (loc, type, op0);
7945 /* Strip inner integral conversions that do not change the precision. */
7946 if (CONVERT_EXPR_P (op0)
7947 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
7948 || POINTER_TYPE_P (TREE_TYPE (op0)))
7949 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0)))
7950 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0))))
7951 && (TYPE_PRECISION (TREE_TYPE (op0))
7952 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
7953 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
7954 type, TREE_OPERAND (op0, 0));
7956 return fold_view_convert_expr (type, op0);
7958 case NEGATE_EXPR:
7959 tem = fold_negate_expr (loc, arg0);
7960 if (tem)
7961 return fold_convert_loc (loc, type, tem);
7962 return NULL_TREE;
7964 case ABS_EXPR:
7965 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
7966 return fold_abs_const (arg0, type);
7967 else if (TREE_CODE (arg0) == NEGATE_EXPR)
7968 return fold_build1_loc (loc, ABS_EXPR, type, TREE_OPERAND (arg0, 0));
7969 /* Convert fabs((double)float) into (double)fabsf(float). */
7970 else if (TREE_CODE (arg0) == NOP_EXPR
7971 && TREE_CODE (type) == REAL_TYPE)
7973 tree targ0 = strip_float_extensions (arg0);
7974 if (targ0 != arg0)
7975 return fold_convert_loc (loc, type,
7976 fold_build1_loc (loc, ABS_EXPR,
7977 TREE_TYPE (targ0),
7978 targ0));
7980 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
7981 else if (TREE_CODE (arg0) == ABS_EXPR)
7982 return arg0;
7983 else if (tree_expr_nonnegative_p (arg0))
7984 return arg0;
7986 /* Strip sign ops from argument. */
7987 if (TREE_CODE (type) == REAL_TYPE)
7989 tem = fold_strip_sign_ops (arg0);
7990 if (tem)
7991 return fold_build1_loc (loc, ABS_EXPR, type,
7992 fold_convert_loc (loc, type, tem));
7994 return NULL_TREE;
7996 case CONJ_EXPR:
7997 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7998 return fold_convert_loc (loc, type, arg0);
7999 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8001 tree itype = TREE_TYPE (type);
8002 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
8003 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
8004 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
8005 negate_expr (ipart));
8007 if (TREE_CODE (arg0) == COMPLEX_CST)
8009 tree itype = TREE_TYPE (type);
8010 tree rpart = fold_convert_loc (loc, itype, TREE_REALPART (arg0));
8011 tree ipart = fold_convert_loc (loc, itype, TREE_IMAGPART (arg0));
8012 return build_complex (type, rpart, negate_expr (ipart));
8014 if (TREE_CODE (arg0) == CONJ_EXPR)
8015 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8016 return NULL_TREE;
8018 case BIT_NOT_EXPR:
8019 if (TREE_CODE (arg0) == INTEGER_CST)
8020 return fold_not_const (arg0, type);
8021 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8022 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8023 /* Convert ~ (-A) to A - 1. */
8024 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8025 return fold_build2_loc (loc, MINUS_EXPR, type,
8026 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)),
8027 build_int_cst (type, 1));
8028 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8029 else if (INTEGRAL_TYPE_P (type)
8030 && ((TREE_CODE (arg0) == MINUS_EXPR
8031 && integer_onep (TREE_OPERAND (arg0, 1)))
8032 || (TREE_CODE (arg0) == PLUS_EXPR
8033 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8034 return fold_build1_loc (loc, NEGATE_EXPR, type,
8035 fold_convert_loc (loc, type,
8036 TREE_OPERAND (arg0, 0)));
8037 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8038 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8039 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8040 fold_convert_loc (loc, type,
8041 TREE_OPERAND (arg0, 0)))))
8042 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8043 fold_convert_loc (loc, type,
8044 TREE_OPERAND (arg0, 1)));
8045 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8046 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8047 fold_convert_loc (loc, type,
8048 TREE_OPERAND (arg0, 1)))))
8049 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8050 fold_convert_loc (loc, type,
8051 TREE_OPERAND (arg0, 0)), tem);
8052 /* Perform BIT_NOT_EXPR on each element individually. */
8053 else if (TREE_CODE (arg0) == VECTOR_CST)
8055 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8056 int count = TYPE_VECTOR_SUBPARTS (type), i;
8058 for (i = 0; i < count; i++)
8060 if (elements)
8062 elem = TREE_VALUE (elements);
8063 elem = fold_unary_loc (loc, BIT_NOT_EXPR, TREE_TYPE (type), elem);
8064 if (elem == NULL_TREE)
8065 break;
8066 elements = TREE_CHAIN (elements);
8068 else
8069 elem = build_int_cst (TREE_TYPE (type), -1);
8070 list = tree_cons (NULL_TREE, elem, list);
8072 if (i == count)
8073 return build_vector (type, nreverse (list));
8076 return NULL_TREE;
8078 case TRUTH_NOT_EXPR:
8079 /* The argument to invert_truthvalue must have Boolean type. */
8080 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8081 arg0 = fold_convert_loc (loc, boolean_type_node, arg0);
8083 /* Note that the operand of this must be an int
8084 and its values must be 0 or 1.
8085 ("true" is a fixed value perhaps depending on the language,
8086 but we don't handle values other than 1 correctly yet.) */
8087 tem = fold_truth_not_expr (loc, arg0);
8088 if (!tem)
8089 return NULL_TREE;
8090 return fold_convert_loc (loc, type, tem);
8092 case REALPART_EXPR:
8093 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8094 return fold_convert_loc (loc, type, arg0);
8095 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8096 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
8097 TREE_OPERAND (arg0, 1));
8098 if (TREE_CODE (arg0) == COMPLEX_CST)
8099 return fold_convert_loc (loc, type, TREE_REALPART (arg0));
8100 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8102 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8103 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8104 fold_build1_loc (loc, REALPART_EXPR, itype,
8105 TREE_OPERAND (arg0, 0)),
8106 fold_build1_loc (loc, REALPART_EXPR, itype,
8107 TREE_OPERAND (arg0, 1)));
8108 return fold_convert_loc (loc, type, tem);
8110 if (TREE_CODE (arg0) == CONJ_EXPR)
8112 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8113 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
8114 TREE_OPERAND (arg0, 0));
8115 return fold_convert_loc (loc, type, tem);
8117 if (TREE_CODE (arg0) == CALL_EXPR)
8119 tree fn = get_callee_fndecl (arg0);
8120 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8121 switch (DECL_FUNCTION_CODE (fn))
8123 CASE_FLT_FN (BUILT_IN_CEXPI):
8124 fn = mathfn_built_in (type, BUILT_IN_COS);
8125 if (fn)
8126 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8127 break;
8129 default:
8130 break;
8133 return NULL_TREE;
8135 case IMAGPART_EXPR:
8136 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8137 return build_zero_cst (type);
8138 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8139 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 1),
8140 TREE_OPERAND (arg0, 0));
8141 if (TREE_CODE (arg0) == COMPLEX_CST)
8142 return fold_convert_loc (loc, type, TREE_IMAGPART (arg0));
8143 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8145 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8146 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8147 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8148 TREE_OPERAND (arg0, 0)),
8149 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8150 TREE_OPERAND (arg0, 1)));
8151 return fold_convert_loc (loc, type, tem);
8153 if (TREE_CODE (arg0) == CONJ_EXPR)
8155 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8156 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8157 return fold_convert_loc (loc, type, negate_expr (tem));
8159 if (TREE_CODE (arg0) == CALL_EXPR)
8161 tree fn = get_callee_fndecl (arg0);
8162 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8163 switch (DECL_FUNCTION_CODE (fn))
8165 CASE_FLT_FN (BUILT_IN_CEXPI):
8166 fn = mathfn_built_in (type, BUILT_IN_SIN);
8167 if (fn)
8168 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8169 break;
8171 default:
8172 break;
8175 return NULL_TREE;
8177 case INDIRECT_REF:
8178 /* Fold *&X to X if X is an lvalue. */
8179 if (TREE_CODE (op0) == ADDR_EXPR)
8181 tree op00 = TREE_OPERAND (op0, 0);
8182 if ((TREE_CODE (op00) == VAR_DECL
8183 || TREE_CODE (op00) == PARM_DECL
8184 || TREE_CODE (op00) == RESULT_DECL)
8185 && !TREE_READONLY (op00))
8186 return op00;
8188 return NULL_TREE;
8190 default:
8191 return NULL_TREE;
8192 } /* switch (code) */
8196 /* If the operation was a conversion do _not_ mark a resulting constant
8197 with TREE_OVERFLOW if the original constant was not. These conversions
8198 have implementation defined behavior and retaining the TREE_OVERFLOW
8199 flag here would confuse later passes such as VRP. */
8200 tree
8201 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8202 tree type, tree op0)
8204 tree res = fold_unary_loc (loc, code, type, op0);
8205 if (res
8206 && TREE_CODE (res) == INTEGER_CST
8207 && TREE_CODE (op0) == INTEGER_CST
8208 && CONVERT_EXPR_CODE_P (code))
8209 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8211 return res;
8214 /* Fold a binary expression of code CODE and type TYPE with operands
8215 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8216 Return the folded expression if folding is successful. Otherwise,
8217 return NULL_TREE. */
8219 static tree
8220 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8222 enum tree_code compl_code;
8224 if (code == MIN_EXPR)
8225 compl_code = MAX_EXPR;
8226 else if (code == MAX_EXPR)
8227 compl_code = MIN_EXPR;
8228 else
8229 gcc_unreachable ();
8231 /* MIN (MAX (a, b), b) == b. */
8232 if (TREE_CODE (op0) == compl_code
8233 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8234 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8236 /* MIN (MAX (b, a), b) == b. */
8237 if (TREE_CODE (op0) == compl_code
8238 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8239 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8240 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8242 /* MIN (a, MAX (a, b)) == a. */
8243 if (TREE_CODE (op1) == compl_code
8244 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8245 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8246 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8248 /* MIN (a, MAX (b, a)) == a. */
8249 if (TREE_CODE (op1) == compl_code
8250 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8251 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8252 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8254 return NULL_TREE;
8257 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8258 by changing CODE to reduce the magnitude of constants involved in
8259 ARG0 of the comparison.
8260 Returns a canonicalized comparison tree if a simplification was
8261 possible, otherwise returns NULL_TREE.
8262 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8263 valid if signed overflow is undefined. */
8265 static tree
8266 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8267 tree arg0, tree arg1,
8268 bool *strict_overflow_p)
8270 enum tree_code code0 = TREE_CODE (arg0);
8271 tree t, cst0 = NULL_TREE;
8272 int sgn0;
8273 bool swap = false;
8275 /* Match A +- CST code arg1 and CST code arg1. We can change the
8276 first form only if overflow is undefined. */
8277 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8278 /* In principle pointers also have undefined overflow behavior,
8279 but that causes problems elsewhere. */
8280 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8281 && (code0 == MINUS_EXPR
8282 || code0 == PLUS_EXPR)
8283 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8284 || code0 == INTEGER_CST))
8285 return NULL_TREE;
8287 /* Identify the constant in arg0 and its sign. */
8288 if (code0 == INTEGER_CST)
8289 cst0 = arg0;
8290 else
8291 cst0 = TREE_OPERAND (arg0, 1);
8292 sgn0 = tree_int_cst_sgn (cst0);
8294 /* Overflowed constants and zero will cause problems. */
8295 if (integer_zerop (cst0)
8296 || TREE_OVERFLOW (cst0))
8297 return NULL_TREE;
8299 /* See if we can reduce the magnitude of the constant in
8300 arg0 by changing the comparison code. */
8301 if (code0 == INTEGER_CST)
8303 /* CST <= arg1 -> CST-1 < arg1. */
8304 if (code == LE_EXPR && sgn0 == 1)
8305 code = LT_EXPR;
8306 /* -CST < arg1 -> -CST-1 <= arg1. */
8307 else if (code == LT_EXPR && sgn0 == -1)
8308 code = LE_EXPR;
8309 /* CST > arg1 -> CST-1 >= arg1. */
8310 else if (code == GT_EXPR && sgn0 == 1)
8311 code = GE_EXPR;
8312 /* -CST >= arg1 -> -CST-1 > arg1. */
8313 else if (code == GE_EXPR && sgn0 == -1)
8314 code = GT_EXPR;
8315 else
8316 return NULL_TREE;
8317 /* arg1 code' CST' might be more canonical. */
8318 swap = true;
8320 else
8322 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8323 if (code == LT_EXPR
8324 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8325 code = LE_EXPR;
8326 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8327 else if (code == GT_EXPR
8328 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8329 code = GE_EXPR;
8330 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8331 else if (code == LE_EXPR
8332 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8333 code = LT_EXPR;
8334 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8335 else if (code == GE_EXPR
8336 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8337 code = GT_EXPR;
8338 else
8339 return NULL_TREE;
8340 *strict_overflow_p = true;
8343 /* Now build the constant reduced in magnitude. But not if that
8344 would produce one outside of its types range. */
8345 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8346 && ((sgn0 == 1
8347 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8348 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8349 || (sgn0 == -1
8350 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8351 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8352 /* We cannot swap the comparison here as that would cause us to
8353 endlessly recurse. */
8354 return NULL_TREE;
8356 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8357 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8358 if (code0 != INTEGER_CST)
8359 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8361 /* If swapping might yield to a more canonical form, do so. */
8362 if (swap)
8363 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8364 else
8365 return fold_build2_loc (loc, code, type, t, arg1);
8368 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8369 overflow further. Try to decrease the magnitude of constants involved
8370 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8371 and put sole constants at the second argument position.
8372 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8374 static tree
8375 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8376 tree arg0, tree arg1)
8378 tree t;
8379 bool strict_overflow_p;
8380 const char * const warnmsg = G_("assuming signed overflow does not occur "
8381 "when reducing constant in comparison");
8383 /* Try canonicalization by simplifying arg0. */
8384 strict_overflow_p = false;
8385 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8386 &strict_overflow_p);
8387 if (t)
8389 if (strict_overflow_p)
8390 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8391 return t;
8394 /* Try canonicalization by simplifying arg1 using the swapped
8395 comparison. */
8396 code = swap_tree_comparison (code);
8397 strict_overflow_p = false;
8398 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8399 &strict_overflow_p);
8400 if (t && strict_overflow_p)
8401 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8402 return t;
8405 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8406 space. This is used to avoid issuing overflow warnings for
8407 expressions like &p->x which can not wrap. */
8409 static bool
8410 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8412 unsigned HOST_WIDE_INT offset_low, total_low;
8413 HOST_WIDE_INT size, offset_high, total_high;
8415 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8416 return true;
8418 if (bitpos < 0)
8419 return true;
8421 if (offset == NULL_TREE)
8423 offset_low = 0;
8424 offset_high = 0;
8426 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8427 return true;
8428 else
8430 offset_low = TREE_INT_CST_LOW (offset);
8431 offset_high = TREE_INT_CST_HIGH (offset);
8434 if (add_double_with_sign (offset_low, offset_high,
8435 bitpos / BITS_PER_UNIT, 0,
8436 &total_low, &total_high,
8437 true))
8438 return true;
8440 if (total_high != 0)
8441 return true;
8443 size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8444 if (size <= 0)
8445 return true;
8447 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8448 array. */
8449 if (TREE_CODE (base) == ADDR_EXPR)
8451 HOST_WIDE_INT base_size;
8453 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8454 if (base_size > 0 && size < base_size)
8455 size = base_size;
8458 return total_low > (unsigned HOST_WIDE_INT) size;
8461 /* Subroutine of fold_binary. This routine performs all of the
8462 transformations that are common to the equality/inequality
8463 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8464 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8465 fold_binary should call fold_binary. Fold a comparison with
8466 tree code CODE and type TYPE with operands OP0 and OP1. Return
8467 the folded comparison or NULL_TREE. */
8469 static tree
8470 fold_comparison (location_t loc, enum tree_code code, tree type,
8471 tree op0, tree op1)
8473 tree arg0, arg1, tem;
8475 arg0 = op0;
8476 arg1 = op1;
8478 STRIP_SIGN_NOPS (arg0);
8479 STRIP_SIGN_NOPS (arg1);
8481 tem = fold_relational_const (code, type, arg0, arg1);
8482 if (tem != NULL_TREE)
8483 return tem;
8485 /* If one arg is a real or integer constant, put it last. */
8486 if (tree_swap_operands_p (arg0, arg1, true))
8487 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
8489 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8490 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8491 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8492 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8493 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8494 && (TREE_CODE (arg1) == INTEGER_CST
8495 && !TREE_OVERFLOW (arg1)))
8497 tree const1 = TREE_OPERAND (arg0, 1);
8498 tree const2 = arg1;
8499 tree variable = TREE_OPERAND (arg0, 0);
8500 tree lhs;
8501 int lhs_add;
8502 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8504 lhs = fold_build2_loc (loc, lhs_add ? PLUS_EXPR : MINUS_EXPR,
8505 TREE_TYPE (arg1), const2, const1);
8507 /* If the constant operation overflowed this can be
8508 simplified as a comparison against INT_MAX/INT_MIN. */
8509 if (TREE_CODE (lhs) == INTEGER_CST
8510 && TREE_OVERFLOW (lhs))
8512 int const1_sgn = tree_int_cst_sgn (const1);
8513 enum tree_code code2 = code;
8515 /* Get the sign of the constant on the lhs if the
8516 operation were VARIABLE + CONST1. */
8517 if (TREE_CODE (arg0) == MINUS_EXPR)
8518 const1_sgn = -const1_sgn;
8520 /* The sign of the constant determines if we overflowed
8521 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8522 Canonicalize to the INT_MIN overflow by swapping the comparison
8523 if necessary. */
8524 if (const1_sgn == -1)
8525 code2 = swap_tree_comparison (code);
8527 /* We now can look at the canonicalized case
8528 VARIABLE + 1 CODE2 INT_MIN
8529 and decide on the result. */
8530 if (code2 == LT_EXPR
8531 || code2 == LE_EXPR
8532 || code2 == EQ_EXPR)
8533 return omit_one_operand_loc (loc, type, boolean_false_node, variable);
8534 else if (code2 == NE_EXPR
8535 || code2 == GE_EXPR
8536 || code2 == GT_EXPR)
8537 return omit_one_operand_loc (loc, type, boolean_true_node, variable);
8540 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8541 && (TREE_CODE (lhs) != INTEGER_CST
8542 || !TREE_OVERFLOW (lhs)))
8544 if (code != EQ_EXPR && code != NE_EXPR)
8545 fold_overflow_warning ("assuming signed overflow does not occur "
8546 "when changing X +- C1 cmp C2 to "
8547 "X cmp C1 +- C2",
8548 WARN_STRICT_OVERFLOW_COMPARISON);
8549 return fold_build2_loc (loc, code, type, variable, lhs);
8553 /* For comparisons of pointers we can decompose it to a compile time
8554 comparison of the base objects and the offsets into the object.
8555 This requires at least one operand being an ADDR_EXPR or a
8556 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8557 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8558 && (TREE_CODE (arg0) == ADDR_EXPR
8559 || TREE_CODE (arg1) == ADDR_EXPR
8560 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8561 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8563 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8564 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8565 enum machine_mode mode;
8566 int volatilep, unsignedp;
8567 bool indirect_base0 = false, indirect_base1 = false;
8569 /* Get base and offset for the access. Strip ADDR_EXPR for
8570 get_inner_reference, but put it back by stripping INDIRECT_REF
8571 off the base object if possible. indirect_baseN will be true
8572 if baseN is not an address but refers to the object itself. */
8573 base0 = arg0;
8574 if (TREE_CODE (arg0) == ADDR_EXPR)
8576 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8577 &bitsize, &bitpos0, &offset0, &mode,
8578 &unsignedp, &volatilep, false);
8579 if (TREE_CODE (base0) == INDIRECT_REF)
8580 base0 = TREE_OPERAND (base0, 0);
8581 else
8582 indirect_base0 = true;
8584 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8586 base0 = TREE_OPERAND (arg0, 0);
8587 STRIP_SIGN_NOPS (base0);
8588 if (TREE_CODE (base0) == ADDR_EXPR)
8590 base0 = TREE_OPERAND (base0, 0);
8591 indirect_base0 = true;
8593 offset0 = TREE_OPERAND (arg0, 1);
8596 base1 = arg1;
8597 if (TREE_CODE (arg1) == ADDR_EXPR)
8599 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8600 &bitsize, &bitpos1, &offset1, &mode,
8601 &unsignedp, &volatilep, false);
8602 if (TREE_CODE (base1) == INDIRECT_REF)
8603 base1 = TREE_OPERAND (base1, 0);
8604 else
8605 indirect_base1 = true;
8607 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8609 base1 = TREE_OPERAND (arg1, 0);
8610 STRIP_SIGN_NOPS (base1);
8611 if (TREE_CODE (base1) == ADDR_EXPR)
8613 base1 = TREE_OPERAND (base1, 0);
8614 indirect_base1 = true;
8616 offset1 = TREE_OPERAND (arg1, 1);
8619 /* A local variable can never be pointed to by
8620 the default SSA name of an incoming parameter. */
8621 if ((TREE_CODE (arg0) == ADDR_EXPR
8622 && indirect_base0
8623 && TREE_CODE (base0) == VAR_DECL
8624 && auto_var_in_fn_p (base0, current_function_decl)
8625 && !indirect_base1
8626 && TREE_CODE (base1) == SSA_NAME
8627 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL
8628 && SSA_NAME_IS_DEFAULT_DEF (base1))
8629 || (TREE_CODE (arg1) == ADDR_EXPR
8630 && indirect_base1
8631 && TREE_CODE (base1) == VAR_DECL
8632 && auto_var_in_fn_p (base1, current_function_decl)
8633 && !indirect_base0
8634 && TREE_CODE (base0) == SSA_NAME
8635 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL
8636 && SSA_NAME_IS_DEFAULT_DEF (base0)))
8638 if (code == NE_EXPR)
8639 return constant_boolean_node (1, type);
8640 else if (code == EQ_EXPR)
8641 return constant_boolean_node (0, type);
8643 /* If we have equivalent bases we might be able to simplify. */
8644 else if (indirect_base0 == indirect_base1
8645 && operand_equal_p (base0, base1, 0))
8647 /* We can fold this expression to a constant if the non-constant
8648 offset parts are equal. */
8649 if ((offset0 == offset1
8650 || (offset0 && offset1
8651 && operand_equal_p (offset0, offset1, 0)))
8652 && (code == EQ_EXPR
8653 || code == NE_EXPR
8654 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8657 if (code != EQ_EXPR
8658 && code != NE_EXPR
8659 && bitpos0 != bitpos1
8660 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8661 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8662 fold_overflow_warning (("assuming pointer wraparound does not "
8663 "occur when comparing P +- C1 with "
8664 "P +- C2"),
8665 WARN_STRICT_OVERFLOW_CONDITIONAL);
8667 switch (code)
8669 case EQ_EXPR:
8670 return constant_boolean_node (bitpos0 == bitpos1, type);
8671 case NE_EXPR:
8672 return constant_boolean_node (bitpos0 != bitpos1, type);
8673 case LT_EXPR:
8674 return constant_boolean_node (bitpos0 < bitpos1, type);
8675 case LE_EXPR:
8676 return constant_boolean_node (bitpos0 <= bitpos1, type);
8677 case GE_EXPR:
8678 return constant_boolean_node (bitpos0 >= bitpos1, type);
8679 case GT_EXPR:
8680 return constant_boolean_node (bitpos0 > bitpos1, type);
8681 default:;
8684 /* We can simplify the comparison to a comparison of the variable
8685 offset parts if the constant offset parts are equal.
8686 Be careful to use signed size type here because otherwise we
8687 mess with array offsets in the wrong way. This is possible
8688 because pointer arithmetic is restricted to retain within an
8689 object and overflow on pointer differences is undefined as of
8690 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8691 else if (bitpos0 == bitpos1
8692 && ((code == EQ_EXPR || code == NE_EXPR)
8693 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8695 /* By converting to signed size type we cover middle-end pointer
8696 arithmetic which operates on unsigned pointer types of size
8697 type size and ARRAY_REF offsets which are properly sign or
8698 zero extended from their type in case it is narrower than
8699 size type. */
8700 if (offset0 == NULL_TREE)
8701 offset0 = build_int_cst (ssizetype, 0);
8702 else
8703 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8704 if (offset1 == NULL_TREE)
8705 offset1 = build_int_cst (ssizetype, 0);
8706 else
8707 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8709 if (code != EQ_EXPR
8710 && code != NE_EXPR
8711 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8712 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8713 fold_overflow_warning (("assuming pointer wraparound does not "
8714 "occur when comparing P +- C1 with "
8715 "P +- C2"),
8716 WARN_STRICT_OVERFLOW_COMPARISON);
8718 return fold_build2_loc (loc, code, type, offset0, offset1);
8721 /* For non-equal bases we can simplify if they are addresses
8722 of local binding decls or constants. */
8723 else if (indirect_base0 && indirect_base1
8724 /* We know that !operand_equal_p (base0, base1, 0)
8725 because the if condition was false. But make
8726 sure two decls are not the same. */
8727 && base0 != base1
8728 && TREE_CODE (arg0) == ADDR_EXPR
8729 && TREE_CODE (arg1) == ADDR_EXPR
8730 && (((TREE_CODE (base0) == VAR_DECL
8731 || TREE_CODE (base0) == PARM_DECL)
8732 && (targetm.binds_local_p (base0)
8733 || CONSTANT_CLASS_P (base1)))
8734 || CONSTANT_CLASS_P (base0))
8735 && (((TREE_CODE (base1) == VAR_DECL
8736 || TREE_CODE (base1) == PARM_DECL)
8737 && (targetm.binds_local_p (base1)
8738 || CONSTANT_CLASS_P (base0)))
8739 || CONSTANT_CLASS_P (base1)))
8741 if (code == EQ_EXPR)
8742 return omit_two_operands_loc (loc, type, boolean_false_node,
8743 arg0, arg1);
8744 else if (code == NE_EXPR)
8745 return omit_two_operands_loc (loc, type, boolean_true_node,
8746 arg0, arg1);
8748 /* For equal offsets we can simplify to a comparison of the
8749 base addresses. */
8750 else if (bitpos0 == bitpos1
8751 && (indirect_base0
8752 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8753 && (indirect_base1
8754 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8755 && ((offset0 == offset1)
8756 || (offset0 && offset1
8757 && operand_equal_p (offset0, offset1, 0))))
8759 if (indirect_base0)
8760 base0 = build_fold_addr_expr_loc (loc, base0);
8761 if (indirect_base1)
8762 base1 = build_fold_addr_expr_loc (loc, base1);
8763 return fold_build2_loc (loc, code, type, base0, base1);
8767 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8768 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8769 the resulting offset is smaller in absolute value than the
8770 original one. */
8771 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8772 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8773 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8774 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8775 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8776 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8777 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8779 tree const1 = TREE_OPERAND (arg0, 1);
8780 tree const2 = TREE_OPERAND (arg1, 1);
8781 tree variable1 = TREE_OPERAND (arg0, 0);
8782 tree variable2 = TREE_OPERAND (arg1, 0);
8783 tree cst;
8784 const char * const warnmsg = G_("assuming signed overflow does not "
8785 "occur when combining constants around "
8786 "a comparison");
8788 /* Put the constant on the side where it doesn't overflow and is
8789 of lower absolute value than before. */
8790 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8791 ? MINUS_EXPR : PLUS_EXPR,
8792 const2, const1);
8793 if (!TREE_OVERFLOW (cst)
8794 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
8796 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8797 return fold_build2_loc (loc, code, type,
8798 variable1,
8799 fold_build2_loc (loc,
8800 TREE_CODE (arg1), TREE_TYPE (arg1),
8801 variable2, cst));
8804 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8805 ? MINUS_EXPR : PLUS_EXPR,
8806 const1, const2);
8807 if (!TREE_OVERFLOW (cst)
8808 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
8810 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8811 return fold_build2_loc (loc, code, type,
8812 fold_build2_loc (loc, TREE_CODE (arg0), TREE_TYPE (arg0),
8813 variable1, cst),
8814 variable2);
8818 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
8819 signed arithmetic case. That form is created by the compiler
8820 often enough for folding it to be of value. One example is in
8821 computing loop trip counts after Operator Strength Reduction. */
8822 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8823 && TREE_CODE (arg0) == MULT_EXPR
8824 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8825 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8826 && integer_zerop (arg1))
8828 tree const1 = TREE_OPERAND (arg0, 1);
8829 tree const2 = arg1; /* zero */
8830 tree variable1 = TREE_OPERAND (arg0, 0);
8831 enum tree_code cmp_code = code;
8833 /* Handle unfolded multiplication by zero. */
8834 if (integer_zerop (const1))
8835 return fold_build2_loc (loc, cmp_code, type, const1, const2);
8837 fold_overflow_warning (("assuming signed overflow does not occur when "
8838 "eliminating multiplication in comparison "
8839 "with zero"),
8840 WARN_STRICT_OVERFLOW_COMPARISON);
8842 /* If const1 is negative we swap the sense of the comparison. */
8843 if (tree_int_cst_sgn (const1) < 0)
8844 cmp_code = swap_tree_comparison (cmp_code);
8846 return fold_build2_loc (loc, cmp_code, type, variable1, const2);
8849 tem = maybe_canonicalize_comparison (loc, code, type, op0, op1);
8850 if (tem)
8851 return tem;
8853 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
8855 tree targ0 = strip_float_extensions (arg0);
8856 tree targ1 = strip_float_extensions (arg1);
8857 tree newtype = TREE_TYPE (targ0);
8859 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8860 newtype = TREE_TYPE (targ1);
8862 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
8863 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
8864 return fold_build2_loc (loc, code, type,
8865 fold_convert_loc (loc, newtype, targ0),
8866 fold_convert_loc (loc, newtype, targ1));
8868 /* (-a) CMP (-b) -> b CMP a */
8869 if (TREE_CODE (arg0) == NEGATE_EXPR
8870 && TREE_CODE (arg1) == NEGATE_EXPR)
8871 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg1, 0),
8872 TREE_OPERAND (arg0, 0));
8874 if (TREE_CODE (arg1) == REAL_CST)
8876 REAL_VALUE_TYPE cst;
8877 cst = TREE_REAL_CST (arg1);
8879 /* (-a) CMP CST -> a swap(CMP) (-CST) */
8880 if (TREE_CODE (arg0) == NEGATE_EXPR)
8881 return fold_build2_loc (loc, swap_tree_comparison (code), type,
8882 TREE_OPERAND (arg0, 0),
8883 build_real (TREE_TYPE (arg1),
8884 real_value_negate (&cst)));
8886 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
8887 /* a CMP (-0) -> a CMP 0 */
8888 if (REAL_VALUE_MINUS_ZERO (cst))
8889 return fold_build2_loc (loc, code, type, arg0,
8890 build_real (TREE_TYPE (arg1), dconst0));
8892 /* x != NaN is always true, other ops are always false. */
8893 if (REAL_VALUE_ISNAN (cst)
8894 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
8896 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
8897 return omit_one_operand_loc (loc, type, tem, arg0);
8900 /* Fold comparisons against infinity. */
8901 if (REAL_VALUE_ISINF (cst)
8902 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
8904 tem = fold_inf_compare (loc, code, type, arg0, arg1);
8905 if (tem != NULL_TREE)
8906 return tem;
8910 /* If this is a comparison of a real constant with a PLUS_EXPR
8911 or a MINUS_EXPR of a real constant, we can convert it into a
8912 comparison with a revised real constant as long as no overflow
8913 occurs when unsafe_math_optimizations are enabled. */
8914 if (flag_unsafe_math_optimizations
8915 && TREE_CODE (arg1) == REAL_CST
8916 && (TREE_CODE (arg0) == PLUS_EXPR
8917 || TREE_CODE (arg0) == MINUS_EXPR)
8918 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
8919 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8920 ? MINUS_EXPR : PLUS_EXPR,
8921 arg1, TREE_OPERAND (arg0, 1)))
8922 && !TREE_OVERFLOW (tem))
8923 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8925 /* Likewise, we can simplify a comparison of a real constant with
8926 a MINUS_EXPR whose first operand is also a real constant, i.e.
8927 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
8928 floating-point types only if -fassociative-math is set. */
8929 if (flag_associative_math
8930 && TREE_CODE (arg1) == REAL_CST
8931 && TREE_CODE (arg0) == MINUS_EXPR
8932 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
8933 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
8934 arg1))
8935 && !TREE_OVERFLOW (tem))
8936 return fold_build2_loc (loc, swap_tree_comparison (code), type,
8937 TREE_OPERAND (arg0, 1), tem);
8939 /* Fold comparisons against built-in math functions. */
8940 if (TREE_CODE (arg1) == REAL_CST
8941 && flag_unsafe_math_optimizations
8942 && ! flag_errno_math)
8944 enum built_in_function fcode = builtin_mathfn_code (arg0);
8946 if (fcode != END_BUILTINS)
8948 tem = fold_mathfn_compare (loc, fcode, code, type, arg0, arg1);
8949 if (tem != NULL_TREE)
8950 return tem;
8955 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8956 && CONVERT_EXPR_P (arg0))
8958 /* If we are widening one operand of an integer comparison,
8959 see if the other operand is similarly being widened. Perhaps we
8960 can do the comparison in the narrower type. */
8961 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
8962 if (tem)
8963 return tem;
8965 /* Or if we are changing signedness. */
8966 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
8967 if (tem)
8968 return tem;
8971 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8972 constant, we can simplify it. */
8973 if (TREE_CODE (arg1) == INTEGER_CST
8974 && (TREE_CODE (arg0) == MIN_EXPR
8975 || TREE_CODE (arg0) == MAX_EXPR)
8976 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8978 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8979 if (tem)
8980 return tem;
8983 /* Simplify comparison of something with itself. (For IEEE
8984 floating-point, we can only do some of these simplifications.) */
8985 if (operand_equal_p (arg0, arg1, 0))
8987 switch (code)
8989 case EQ_EXPR:
8990 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8991 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8992 return constant_boolean_node (1, type);
8993 break;
8995 case GE_EXPR:
8996 case LE_EXPR:
8997 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8998 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8999 return constant_boolean_node (1, type);
9000 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg1);
9002 case NE_EXPR:
9003 /* For NE, we can only do this simplification if integer
9004 or we don't honor IEEE floating point NaNs. */
9005 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9006 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9007 break;
9008 /* ... fall through ... */
9009 case GT_EXPR:
9010 case LT_EXPR:
9011 return constant_boolean_node (0, type);
9012 default:
9013 gcc_unreachable ();
9017 /* If we are comparing an expression that just has comparisons
9018 of two integer values, arithmetic expressions of those comparisons,
9019 and constants, we can simplify it. There are only three cases
9020 to check: the two values can either be equal, the first can be
9021 greater, or the second can be greater. Fold the expression for
9022 those three values. Since each value must be 0 or 1, we have
9023 eight possibilities, each of which corresponds to the constant 0
9024 or 1 or one of the six possible comparisons.
9026 This handles common cases like (a > b) == 0 but also handles
9027 expressions like ((x > y) - (y > x)) > 0, which supposedly
9028 occur in macroized code. */
9030 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9032 tree cval1 = 0, cval2 = 0;
9033 int save_p = 0;
9035 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9036 /* Don't handle degenerate cases here; they should already
9037 have been handled anyway. */
9038 && cval1 != 0 && cval2 != 0
9039 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9040 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9041 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9042 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9043 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9044 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9045 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9047 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9048 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9050 /* We can't just pass T to eval_subst in case cval1 or cval2
9051 was the same as ARG1. */
9053 tree high_result
9054 = fold_build2_loc (loc, code, type,
9055 eval_subst (loc, arg0, cval1, maxval,
9056 cval2, minval),
9057 arg1);
9058 tree equal_result
9059 = fold_build2_loc (loc, code, type,
9060 eval_subst (loc, arg0, cval1, maxval,
9061 cval2, maxval),
9062 arg1);
9063 tree low_result
9064 = fold_build2_loc (loc, code, type,
9065 eval_subst (loc, arg0, cval1, minval,
9066 cval2, maxval),
9067 arg1);
9069 /* All three of these results should be 0 or 1. Confirm they are.
9070 Then use those values to select the proper code to use. */
9072 if (TREE_CODE (high_result) == INTEGER_CST
9073 && TREE_CODE (equal_result) == INTEGER_CST
9074 && TREE_CODE (low_result) == INTEGER_CST)
9076 /* Make a 3-bit mask with the high-order bit being the
9077 value for `>', the next for '=', and the low for '<'. */
9078 switch ((integer_onep (high_result) * 4)
9079 + (integer_onep (equal_result) * 2)
9080 + integer_onep (low_result))
9082 case 0:
9083 /* Always false. */
9084 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9085 case 1:
9086 code = LT_EXPR;
9087 break;
9088 case 2:
9089 code = EQ_EXPR;
9090 break;
9091 case 3:
9092 code = LE_EXPR;
9093 break;
9094 case 4:
9095 code = GT_EXPR;
9096 break;
9097 case 5:
9098 code = NE_EXPR;
9099 break;
9100 case 6:
9101 code = GE_EXPR;
9102 break;
9103 case 7:
9104 /* Always true. */
9105 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9108 if (save_p)
9110 tem = save_expr (build2 (code, type, cval1, cval2));
9111 SET_EXPR_LOCATION (tem, loc);
9112 return tem;
9114 return fold_build2_loc (loc, code, type, cval1, cval2);
9119 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9120 into a single range test. */
9121 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9122 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9123 && TREE_CODE (arg1) == INTEGER_CST
9124 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9125 && !integer_zerop (TREE_OPERAND (arg0, 1))
9126 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9127 && !TREE_OVERFLOW (arg1))
9129 tem = fold_div_compare (loc, code, type, arg0, arg1);
9130 if (tem != NULL_TREE)
9131 return tem;
9134 /* Fold ~X op ~Y as Y op X. */
9135 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9136 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9138 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9139 return fold_build2_loc (loc, code, type,
9140 fold_convert_loc (loc, cmp_type,
9141 TREE_OPERAND (arg1, 0)),
9142 TREE_OPERAND (arg0, 0));
9145 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9146 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9147 && TREE_CODE (arg1) == INTEGER_CST)
9149 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9150 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9151 TREE_OPERAND (arg0, 0),
9152 fold_build1_loc (loc, BIT_NOT_EXPR, cmp_type,
9153 fold_convert_loc (loc, cmp_type, arg1)));
9156 return NULL_TREE;
9160 /* Subroutine of fold_binary. Optimize complex multiplications of the
9161 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9162 argument EXPR represents the expression "z" of type TYPE. */
9164 static tree
9165 fold_mult_zconjz (location_t loc, tree type, tree expr)
9167 tree itype = TREE_TYPE (type);
9168 tree rpart, ipart, tem;
9170 if (TREE_CODE (expr) == COMPLEX_EXPR)
9172 rpart = TREE_OPERAND (expr, 0);
9173 ipart = TREE_OPERAND (expr, 1);
9175 else if (TREE_CODE (expr) == COMPLEX_CST)
9177 rpart = TREE_REALPART (expr);
9178 ipart = TREE_IMAGPART (expr);
9180 else
9182 expr = save_expr (expr);
9183 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9184 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9187 rpart = save_expr (rpart);
9188 ipart = save_expr (ipart);
9189 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9190 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9191 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9192 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9193 build_zero_cst (itype));
9197 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9198 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9199 guarantees that P and N have the same least significant log2(M) bits.
9200 N is not otherwise constrained. In particular, N is not normalized to
9201 0 <= N < M as is common. In general, the precise value of P is unknown.
9202 M is chosen as large as possible such that constant N can be determined.
9204 Returns M and sets *RESIDUE to N.
9206 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9207 account. This is not always possible due to PR 35705.
9210 static unsigned HOST_WIDE_INT
9211 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9212 bool allow_func_align)
9214 enum tree_code code;
9216 *residue = 0;
9218 code = TREE_CODE (expr);
9219 if (code == ADDR_EXPR)
9221 unsigned int bitalign;
9222 bitalign = get_object_alignment_1 (TREE_OPERAND (expr, 0), residue);
9223 *residue /= BITS_PER_UNIT;
9224 return bitalign / BITS_PER_UNIT;
9226 else if (code == POINTER_PLUS_EXPR)
9228 tree op0, op1;
9229 unsigned HOST_WIDE_INT modulus;
9230 enum tree_code inner_code;
9232 op0 = TREE_OPERAND (expr, 0);
9233 STRIP_NOPS (op0);
9234 modulus = get_pointer_modulus_and_residue (op0, residue,
9235 allow_func_align);
9237 op1 = TREE_OPERAND (expr, 1);
9238 STRIP_NOPS (op1);
9239 inner_code = TREE_CODE (op1);
9240 if (inner_code == INTEGER_CST)
9242 *residue += TREE_INT_CST_LOW (op1);
9243 return modulus;
9245 else if (inner_code == MULT_EXPR)
9247 op1 = TREE_OPERAND (op1, 1);
9248 if (TREE_CODE (op1) == INTEGER_CST)
9250 unsigned HOST_WIDE_INT align;
9252 /* Compute the greatest power-of-2 divisor of op1. */
9253 align = TREE_INT_CST_LOW (op1);
9254 align &= -align;
9256 /* If align is non-zero and less than *modulus, replace
9257 *modulus with align., If align is 0, then either op1 is 0
9258 or the greatest power-of-2 divisor of op1 doesn't fit in an
9259 unsigned HOST_WIDE_INT. In either case, no additional
9260 constraint is imposed. */
9261 if (align)
9262 modulus = MIN (modulus, align);
9264 return modulus;
9269 /* If we get here, we were unable to determine anything useful about the
9270 expression. */
9271 return 1;
9275 /* Fold a binary expression of code CODE and type TYPE with operands
9276 OP0 and OP1. LOC is the location of the resulting expression.
9277 Return the folded expression if folding is successful. Otherwise,
9278 return NULL_TREE. */
9280 tree
9281 fold_binary_loc (location_t loc,
9282 enum tree_code code, tree type, tree op0, tree op1)
9284 enum tree_code_class kind = TREE_CODE_CLASS (code);
9285 tree arg0, arg1, tem;
9286 tree t1 = NULL_TREE;
9287 bool strict_overflow_p;
9289 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9290 && TREE_CODE_LENGTH (code) == 2
9291 && op0 != NULL_TREE
9292 && op1 != NULL_TREE);
9294 arg0 = op0;
9295 arg1 = op1;
9297 /* Strip any conversions that don't change the mode. This is
9298 safe for every expression, except for a comparison expression
9299 because its signedness is derived from its operands. So, in
9300 the latter case, only strip conversions that don't change the
9301 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9302 preserved.
9304 Note that this is done as an internal manipulation within the
9305 constant folder, in order to find the simplest representation
9306 of the arguments so that their form can be studied. In any
9307 cases, the appropriate type conversions should be put back in
9308 the tree that will get out of the constant folder. */
9310 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9312 STRIP_SIGN_NOPS (arg0);
9313 STRIP_SIGN_NOPS (arg1);
9315 else
9317 STRIP_NOPS (arg0);
9318 STRIP_NOPS (arg1);
9321 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9322 constant but we can't do arithmetic on them. */
9323 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9324 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9325 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9326 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9327 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9328 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9330 if (kind == tcc_binary)
9332 /* Make sure type and arg0 have the same saturating flag. */
9333 gcc_assert (TYPE_SATURATING (type)
9334 == TYPE_SATURATING (TREE_TYPE (arg0)));
9335 tem = const_binop (code, arg0, arg1);
9337 else if (kind == tcc_comparison)
9338 tem = fold_relational_const (code, type, arg0, arg1);
9339 else
9340 tem = NULL_TREE;
9342 if (tem != NULL_TREE)
9344 if (TREE_TYPE (tem) != type)
9345 tem = fold_convert_loc (loc, type, tem);
9346 return tem;
9350 /* If this is a commutative operation, and ARG0 is a constant, move it
9351 to ARG1 to reduce the number of tests below. */
9352 if (commutative_tree_code (code)
9353 && tree_swap_operands_p (arg0, arg1, true))
9354 return fold_build2_loc (loc, code, type, op1, op0);
9356 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9358 First check for cases where an arithmetic operation is applied to a
9359 compound, conditional, or comparison operation. Push the arithmetic
9360 operation inside the compound or conditional to see if any folding
9361 can then be done. Convert comparison to conditional for this purpose.
9362 The also optimizes non-constant cases that used to be done in
9363 expand_expr.
9365 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9366 one of the operands is a comparison and the other is a comparison, a
9367 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9368 code below would make the expression more complex. Change it to a
9369 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9370 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9372 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9373 || code == EQ_EXPR || code == NE_EXPR)
9374 && ((truth_value_p (TREE_CODE (arg0))
9375 && (truth_value_p (TREE_CODE (arg1))
9376 || (TREE_CODE (arg1) == BIT_AND_EXPR
9377 && integer_onep (TREE_OPERAND (arg1, 1)))))
9378 || (truth_value_p (TREE_CODE (arg1))
9379 && (truth_value_p (TREE_CODE (arg0))
9380 || (TREE_CODE (arg0) == BIT_AND_EXPR
9381 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9383 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9384 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9385 : TRUTH_XOR_EXPR,
9386 boolean_type_node,
9387 fold_convert_loc (loc, boolean_type_node, arg0),
9388 fold_convert_loc (loc, boolean_type_node, arg1));
9390 if (code == EQ_EXPR)
9391 tem = invert_truthvalue_loc (loc, tem);
9393 return fold_convert_loc (loc, type, tem);
9396 if (TREE_CODE_CLASS (code) == tcc_binary
9397 || TREE_CODE_CLASS (code) == tcc_comparison)
9399 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9401 tem = fold_build2_loc (loc, code, type,
9402 fold_convert_loc (loc, TREE_TYPE (op0),
9403 TREE_OPERAND (arg0, 1)), op1);
9404 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9405 tem);
9407 if (TREE_CODE (arg1) == COMPOUND_EXPR
9408 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9410 tem = fold_build2_loc (loc, code, type, op0,
9411 fold_convert_loc (loc, TREE_TYPE (op1),
9412 TREE_OPERAND (arg1, 1)));
9413 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9414 tem);
9417 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9419 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9420 arg0, arg1,
9421 /*cond_first_p=*/1);
9422 if (tem != NULL_TREE)
9423 return tem;
9426 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9428 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9429 arg1, arg0,
9430 /*cond_first_p=*/0);
9431 if (tem != NULL_TREE)
9432 return tem;
9436 switch (code)
9438 case MEM_REF:
9439 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9440 if (TREE_CODE (arg0) == ADDR_EXPR
9441 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9443 tree iref = TREE_OPERAND (arg0, 0);
9444 return fold_build2 (MEM_REF, type,
9445 TREE_OPERAND (iref, 0),
9446 int_const_binop (PLUS_EXPR, arg1,
9447 TREE_OPERAND (iref, 1)));
9450 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9451 if (TREE_CODE (arg0) == ADDR_EXPR
9452 && handled_component_p (TREE_OPERAND (arg0, 0)))
9454 tree base;
9455 HOST_WIDE_INT coffset;
9456 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9457 &coffset);
9458 if (!base)
9459 return NULL_TREE;
9460 return fold_build2 (MEM_REF, type,
9461 build_fold_addr_expr (base),
9462 int_const_binop (PLUS_EXPR, arg1,
9463 size_int (coffset)));
9466 return NULL_TREE;
9468 case POINTER_PLUS_EXPR:
9469 /* 0 +p index -> (type)index */
9470 if (integer_zerop (arg0))
9471 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
9473 /* PTR +p 0 -> PTR */
9474 if (integer_zerop (arg1))
9475 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9477 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9478 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9479 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9480 return fold_convert_loc (loc, type,
9481 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9482 fold_convert_loc (loc, sizetype,
9483 arg1),
9484 fold_convert_loc (loc, sizetype,
9485 arg0)));
9487 /* index +p PTR -> PTR +p index */
9488 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9489 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9490 return fold_build2_loc (loc, POINTER_PLUS_EXPR, type,
9491 fold_convert_loc (loc, type, arg1),
9492 fold_convert_loc (loc, sizetype, arg0));
9494 /* (PTR +p B) +p A -> PTR +p (B + A) */
9495 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9497 tree inner;
9498 tree arg01 = fold_convert_loc (loc, sizetype, TREE_OPERAND (arg0, 1));
9499 tree arg00 = TREE_OPERAND (arg0, 0);
9500 inner = fold_build2_loc (loc, PLUS_EXPR, sizetype,
9501 arg01, fold_convert_loc (loc, sizetype, arg1));
9502 return fold_convert_loc (loc, type,
9503 fold_build2_loc (loc, POINTER_PLUS_EXPR,
9504 TREE_TYPE (arg00),
9505 arg00, inner));
9508 /* PTR_CST +p CST -> CST1 */
9509 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9510 return fold_build2_loc (loc, PLUS_EXPR, type, arg0,
9511 fold_convert_loc (loc, type, arg1));
9513 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9514 of the array. Loop optimizer sometimes produce this type of
9515 expressions. */
9516 if (TREE_CODE (arg0) == ADDR_EXPR)
9518 tem = try_move_mult_to_index (loc, arg0,
9519 fold_convert_loc (loc, sizetype, arg1));
9520 if (tem)
9521 return fold_convert_loc (loc, type, tem);
9524 return NULL_TREE;
9526 case PLUS_EXPR:
9527 /* A + (-B) -> A - B */
9528 if (TREE_CODE (arg1) == NEGATE_EXPR)
9529 return fold_build2_loc (loc, MINUS_EXPR, type,
9530 fold_convert_loc (loc, type, arg0),
9531 fold_convert_loc (loc, type,
9532 TREE_OPERAND (arg1, 0)));
9533 /* (-A) + B -> B - A */
9534 if (TREE_CODE (arg0) == NEGATE_EXPR
9535 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9536 return fold_build2_loc (loc, MINUS_EXPR, type,
9537 fold_convert_loc (loc, type, arg1),
9538 fold_convert_loc (loc, type,
9539 TREE_OPERAND (arg0, 0)));
9541 if (INTEGRAL_TYPE_P (type))
9543 /* Convert ~A + 1 to -A. */
9544 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9545 && integer_onep (arg1))
9546 return fold_build1_loc (loc, NEGATE_EXPR, type,
9547 fold_convert_loc (loc, type,
9548 TREE_OPERAND (arg0, 0)));
9550 /* ~X + X is -1. */
9551 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9552 && !TYPE_OVERFLOW_TRAPS (type))
9554 tree tem = TREE_OPERAND (arg0, 0);
9556 STRIP_NOPS (tem);
9557 if (operand_equal_p (tem, arg1, 0))
9559 t1 = build_int_cst_type (type, -1);
9560 return omit_one_operand_loc (loc, type, t1, arg1);
9564 /* X + ~X is -1. */
9565 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9566 && !TYPE_OVERFLOW_TRAPS (type))
9568 tree tem = TREE_OPERAND (arg1, 0);
9570 STRIP_NOPS (tem);
9571 if (operand_equal_p (arg0, tem, 0))
9573 t1 = build_int_cst_type (type, -1);
9574 return omit_one_operand_loc (loc, type, t1, arg0);
9578 /* X + (X / CST) * -CST is X % CST. */
9579 if (TREE_CODE (arg1) == MULT_EXPR
9580 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9581 && operand_equal_p (arg0,
9582 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9584 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9585 tree cst1 = TREE_OPERAND (arg1, 1);
9586 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9587 cst1, cst0);
9588 if (sum && integer_zerop (sum))
9589 return fold_convert_loc (loc, type,
9590 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9591 TREE_TYPE (arg0), arg0,
9592 cst0));
9596 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9597 same or one. Make sure type is not saturating.
9598 fold_plusminus_mult_expr will re-associate. */
9599 if ((TREE_CODE (arg0) == MULT_EXPR
9600 || TREE_CODE (arg1) == MULT_EXPR)
9601 && !TYPE_SATURATING (type)
9602 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9604 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9605 if (tem)
9606 return tem;
9609 if (! FLOAT_TYPE_P (type))
9611 if (integer_zerop (arg1))
9612 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9614 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9615 with a constant, and the two constants have no bits in common,
9616 we should treat this as a BIT_IOR_EXPR since this may produce more
9617 simplifications. */
9618 if (TREE_CODE (arg0) == BIT_AND_EXPR
9619 && TREE_CODE (arg1) == BIT_AND_EXPR
9620 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9621 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9622 && integer_zerop (const_binop (BIT_AND_EXPR,
9623 TREE_OPERAND (arg0, 1),
9624 TREE_OPERAND (arg1, 1))))
9626 code = BIT_IOR_EXPR;
9627 goto bit_ior;
9630 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9631 (plus (plus (mult) (mult)) (foo)) so that we can
9632 take advantage of the factoring cases below. */
9633 if (((TREE_CODE (arg0) == PLUS_EXPR
9634 || TREE_CODE (arg0) == MINUS_EXPR)
9635 && TREE_CODE (arg1) == MULT_EXPR)
9636 || ((TREE_CODE (arg1) == PLUS_EXPR
9637 || TREE_CODE (arg1) == MINUS_EXPR)
9638 && TREE_CODE (arg0) == MULT_EXPR))
9640 tree parg0, parg1, parg, marg;
9641 enum tree_code pcode;
9643 if (TREE_CODE (arg1) == MULT_EXPR)
9644 parg = arg0, marg = arg1;
9645 else
9646 parg = arg1, marg = arg0;
9647 pcode = TREE_CODE (parg);
9648 parg0 = TREE_OPERAND (parg, 0);
9649 parg1 = TREE_OPERAND (parg, 1);
9650 STRIP_NOPS (parg0);
9651 STRIP_NOPS (parg1);
9653 if (TREE_CODE (parg0) == MULT_EXPR
9654 && TREE_CODE (parg1) != MULT_EXPR)
9655 return fold_build2_loc (loc, pcode, type,
9656 fold_build2_loc (loc, PLUS_EXPR, type,
9657 fold_convert_loc (loc, type,
9658 parg0),
9659 fold_convert_loc (loc, type,
9660 marg)),
9661 fold_convert_loc (loc, type, parg1));
9662 if (TREE_CODE (parg0) != MULT_EXPR
9663 && TREE_CODE (parg1) == MULT_EXPR)
9664 return
9665 fold_build2_loc (loc, PLUS_EXPR, type,
9666 fold_convert_loc (loc, type, parg0),
9667 fold_build2_loc (loc, pcode, type,
9668 fold_convert_loc (loc, type, marg),
9669 fold_convert_loc (loc, type,
9670 parg1)));
9673 else
9675 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9676 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
9677 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9679 /* Likewise if the operands are reversed. */
9680 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9681 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
9683 /* Convert X + -C into X - C. */
9684 if (TREE_CODE (arg1) == REAL_CST
9685 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
9687 tem = fold_negate_const (arg1, type);
9688 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
9689 return fold_build2_loc (loc, MINUS_EXPR, type,
9690 fold_convert_loc (loc, type, arg0),
9691 fold_convert_loc (loc, type, tem));
9694 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9695 to __complex__ ( x, y ). This is not the same for SNaNs or
9696 if signed zeros are involved. */
9697 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9698 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9699 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9701 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9702 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9703 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9704 bool arg0rz = false, arg0iz = false;
9705 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9706 || (arg0i && (arg0iz = real_zerop (arg0i))))
9708 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9709 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9710 if (arg0rz && arg1i && real_zerop (arg1i))
9712 tree rp = arg1r ? arg1r
9713 : build1 (REALPART_EXPR, rtype, arg1);
9714 tree ip = arg0i ? arg0i
9715 : build1 (IMAGPART_EXPR, rtype, arg0);
9716 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9718 else if (arg0iz && arg1r && real_zerop (arg1r))
9720 tree rp = arg0r ? arg0r
9721 : build1 (REALPART_EXPR, rtype, arg0);
9722 tree ip = arg1i ? arg1i
9723 : build1 (IMAGPART_EXPR, rtype, arg1);
9724 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9729 if (flag_unsafe_math_optimizations
9730 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9731 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9732 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9733 return tem;
9735 /* Convert x+x into x*2.0. */
9736 if (operand_equal_p (arg0, arg1, 0)
9737 && SCALAR_FLOAT_TYPE_P (type))
9738 return fold_build2_loc (loc, MULT_EXPR, type, arg0,
9739 build_real (type, dconst2));
9741 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9742 We associate floats only if the user has specified
9743 -fassociative-math. */
9744 if (flag_associative_math
9745 && TREE_CODE (arg1) == PLUS_EXPR
9746 && TREE_CODE (arg0) != MULT_EXPR)
9748 tree tree10 = TREE_OPERAND (arg1, 0);
9749 tree tree11 = TREE_OPERAND (arg1, 1);
9750 if (TREE_CODE (tree11) == MULT_EXPR
9751 && TREE_CODE (tree10) == MULT_EXPR)
9753 tree tree0;
9754 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9755 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9758 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9759 We associate floats only if the user has specified
9760 -fassociative-math. */
9761 if (flag_associative_math
9762 && TREE_CODE (arg0) == PLUS_EXPR
9763 && TREE_CODE (arg1) != MULT_EXPR)
9765 tree tree00 = TREE_OPERAND (arg0, 0);
9766 tree tree01 = TREE_OPERAND (arg0, 1);
9767 if (TREE_CODE (tree01) == MULT_EXPR
9768 && TREE_CODE (tree00) == MULT_EXPR)
9770 tree tree0;
9771 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9772 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9777 bit_rotate:
9778 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9779 is a rotate of A by C1 bits. */
9780 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9781 is a rotate of A by B bits. */
9783 enum tree_code code0, code1;
9784 tree rtype;
9785 code0 = TREE_CODE (arg0);
9786 code1 = TREE_CODE (arg1);
9787 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9788 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9789 && operand_equal_p (TREE_OPERAND (arg0, 0),
9790 TREE_OPERAND (arg1, 0), 0)
9791 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9792 TYPE_UNSIGNED (rtype))
9793 /* Only create rotates in complete modes. Other cases are not
9794 expanded properly. */
9795 && TYPE_PRECISION (rtype) == GET_MODE_PRECISION (TYPE_MODE (rtype)))
9797 tree tree01, tree11;
9798 enum tree_code code01, code11;
9800 tree01 = TREE_OPERAND (arg0, 1);
9801 tree11 = TREE_OPERAND (arg1, 1);
9802 STRIP_NOPS (tree01);
9803 STRIP_NOPS (tree11);
9804 code01 = TREE_CODE (tree01);
9805 code11 = TREE_CODE (tree11);
9806 if (code01 == INTEGER_CST
9807 && code11 == INTEGER_CST
9808 && TREE_INT_CST_HIGH (tree01) == 0
9809 && TREE_INT_CST_HIGH (tree11) == 0
9810 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
9811 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9813 tem = build2_loc (loc, LROTATE_EXPR,
9814 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9815 TREE_OPERAND (arg0, 0),
9816 code0 == LSHIFT_EXPR ? tree01 : tree11);
9817 return fold_convert_loc (loc, type, tem);
9819 else if (code11 == MINUS_EXPR)
9821 tree tree110, tree111;
9822 tree110 = TREE_OPERAND (tree11, 0);
9823 tree111 = TREE_OPERAND (tree11, 1);
9824 STRIP_NOPS (tree110);
9825 STRIP_NOPS (tree111);
9826 if (TREE_CODE (tree110) == INTEGER_CST
9827 && 0 == compare_tree_int (tree110,
9828 TYPE_PRECISION
9829 (TREE_TYPE (TREE_OPERAND
9830 (arg0, 0))))
9831 && operand_equal_p (tree01, tree111, 0))
9832 return
9833 fold_convert_loc (loc, type,
9834 build2 ((code0 == LSHIFT_EXPR
9835 ? LROTATE_EXPR
9836 : RROTATE_EXPR),
9837 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9838 TREE_OPERAND (arg0, 0), tree01));
9840 else if (code01 == MINUS_EXPR)
9842 tree tree010, tree011;
9843 tree010 = TREE_OPERAND (tree01, 0);
9844 tree011 = TREE_OPERAND (tree01, 1);
9845 STRIP_NOPS (tree010);
9846 STRIP_NOPS (tree011);
9847 if (TREE_CODE (tree010) == INTEGER_CST
9848 && 0 == compare_tree_int (tree010,
9849 TYPE_PRECISION
9850 (TREE_TYPE (TREE_OPERAND
9851 (arg0, 0))))
9852 && operand_equal_p (tree11, tree011, 0))
9853 return fold_convert_loc
9854 (loc, type,
9855 build2 ((code0 != LSHIFT_EXPR
9856 ? LROTATE_EXPR
9857 : RROTATE_EXPR),
9858 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9859 TREE_OPERAND (arg0, 0), tree11));
9864 associate:
9865 /* In most languages, can't associate operations on floats through
9866 parentheses. Rather than remember where the parentheses were, we
9867 don't associate floats at all, unless the user has specified
9868 -fassociative-math.
9869 And, we need to make sure type is not saturating. */
9871 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9872 && !TYPE_SATURATING (type))
9874 tree var0, con0, lit0, minus_lit0;
9875 tree var1, con1, lit1, minus_lit1;
9876 bool ok = true;
9878 /* Split both trees into variables, constants, and literals. Then
9879 associate each group together, the constants with literals,
9880 then the result with variables. This increases the chances of
9881 literals being recombined later and of generating relocatable
9882 expressions for the sum of a constant and literal. */
9883 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9884 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9885 code == MINUS_EXPR);
9887 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9888 if (code == MINUS_EXPR)
9889 code = PLUS_EXPR;
9891 /* With undefined overflow we can only associate constants with one
9892 variable, and constants whose association doesn't overflow. */
9893 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9894 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9896 if (var0 && var1)
9898 tree tmp0 = var0;
9899 tree tmp1 = var1;
9901 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9902 tmp0 = TREE_OPERAND (tmp0, 0);
9903 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9904 tmp1 = TREE_OPERAND (tmp1, 0);
9905 /* The only case we can still associate with two variables
9906 is if they are the same, modulo negation. */
9907 if (!operand_equal_p (tmp0, tmp1, 0))
9908 ok = false;
9911 if (ok && lit0 && lit1)
9913 tree tmp0 = fold_convert (type, lit0);
9914 tree tmp1 = fold_convert (type, lit1);
9916 if (!TREE_OVERFLOW (tmp0) && !TREE_OVERFLOW (tmp1)
9917 && TREE_OVERFLOW (fold_build2 (code, type, tmp0, tmp1)))
9918 ok = false;
9922 /* Only do something if we found more than two objects. Otherwise,
9923 nothing has changed and we risk infinite recursion. */
9924 if (ok
9925 && (2 < ((var0 != 0) + (var1 != 0)
9926 + (con0 != 0) + (con1 != 0)
9927 + (lit0 != 0) + (lit1 != 0)
9928 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9930 var0 = associate_trees (loc, var0, var1, code, type);
9931 con0 = associate_trees (loc, con0, con1, code, type);
9932 lit0 = associate_trees (loc, lit0, lit1, code, type);
9933 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, code, type);
9935 /* Preserve the MINUS_EXPR if the negative part of the literal is
9936 greater than the positive part. Otherwise, the multiplicative
9937 folding code (i.e extract_muldiv) may be fooled in case
9938 unsigned constants are subtracted, like in the following
9939 example: ((X*2 + 4) - 8U)/2. */
9940 if (minus_lit0 && lit0)
9942 if (TREE_CODE (lit0) == INTEGER_CST
9943 && TREE_CODE (minus_lit0) == INTEGER_CST
9944 && tree_int_cst_lt (lit0, minus_lit0))
9946 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9947 MINUS_EXPR, type);
9948 lit0 = 0;
9950 else
9952 lit0 = associate_trees (loc, lit0, minus_lit0,
9953 MINUS_EXPR, type);
9954 minus_lit0 = 0;
9957 if (minus_lit0)
9959 if (con0 == 0)
9960 return
9961 fold_convert_loc (loc, type,
9962 associate_trees (loc, var0, minus_lit0,
9963 MINUS_EXPR, type));
9964 else
9966 con0 = associate_trees (loc, con0, minus_lit0,
9967 MINUS_EXPR, type);
9968 return
9969 fold_convert_loc (loc, type,
9970 associate_trees (loc, var0, con0,
9971 PLUS_EXPR, type));
9975 con0 = associate_trees (loc, con0, lit0, code, type);
9976 return
9977 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9978 code, type));
9982 return NULL_TREE;
9984 case MINUS_EXPR:
9985 /* Pointer simplifications for subtraction, simple reassociations. */
9986 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9988 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9989 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9990 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9992 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9993 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9994 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9995 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9996 return fold_build2_loc (loc, PLUS_EXPR, type,
9997 fold_build2_loc (loc, MINUS_EXPR, type,
9998 arg00, arg10),
9999 fold_build2_loc (loc, MINUS_EXPR, type,
10000 arg01, arg11));
10002 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10003 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10005 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10006 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10007 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
10008 fold_convert_loc (loc, type, arg1));
10009 if (tmp)
10010 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
10013 /* A - (-B) -> A + B */
10014 if (TREE_CODE (arg1) == NEGATE_EXPR)
10015 return fold_build2_loc (loc, PLUS_EXPR, type, op0,
10016 fold_convert_loc (loc, type,
10017 TREE_OPERAND (arg1, 0)));
10018 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10019 if (TREE_CODE (arg0) == NEGATE_EXPR
10020 && (FLOAT_TYPE_P (type)
10021 || INTEGRAL_TYPE_P (type))
10022 && negate_expr_p (arg1)
10023 && reorder_operands_p (arg0, arg1))
10024 return fold_build2_loc (loc, MINUS_EXPR, type,
10025 fold_convert_loc (loc, type,
10026 negate_expr (arg1)),
10027 fold_convert_loc (loc, type,
10028 TREE_OPERAND (arg0, 0)));
10029 /* Convert -A - 1 to ~A. */
10030 if (INTEGRAL_TYPE_P (type)
10031 && TREE_CODE (arg0) == NEGATE_EXPR
10032 && integer_onep (arg1)
10033 && !TYPE_OVERFLOW_TRAPS (type))
10034 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
10035 fold_convert_loc (loc, type,
10036 TREE_OPERAND (arg0, 0)));
10038 /* Convert -1 - A to ~A. */
10039 if (INTEGRAL_TYPE_P (type)
10040 && integer_all_onesp (arg0))
10041 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op1);
10044 /* X - (X / CST) * CST is X % CST. */
10045 if (INTEGRAL_TYPE_P (type)
10046 && TREE_CODE (arg1) == MULT_EXPR
10047 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10048 && operand_equal_p (arg0,
10049 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10050 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10051 TREE_OPERAND (arg1, 1), 0))
10052 return
10053 fold_convert_loc (loc, type,
10054 fold_build2_loc (loc, TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10055 arg0, TREE_OPERAND (arg1, 1)));
10057 if (! FLOAT_TYPE_P (type))
10059 if (integer_zerop (arg0))
10060 return negate_expr (fold_convert_loc (loc, type, arg1));
10061 if (integer_zerop (arg1))
10062 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10064 /* Fold A - (A & B) into ~B & A. */
10065 if (!TREE_SIDE_EFFECTS (arg0)
10066 && TREE_CODE (arg1) == BIT_AND_EXPR)
10068 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10070 tree arg10 = fold_convert_loc (loc, type,
10071 TREE_OPERAND (arg1, 0));
10072 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10073 fold_build1_loc (loc, BIT_NOT_EXPR,
10074 type, arg10),
10075 fold_convert_loc (loc, type, arg0));
10077 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10079 tree arg11 = fold_convert_loc (loc,
10080 type, TREE_OPERAND (arg1, 1));
10081 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10082 fold_build1_loc (loc, BIT_NOT_EXPR,
10083 type, arg11),
10084 fold_convert_loc (loc, type, arg0));
10088 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10089 any power of 2 minus 1. */
10090 if (TREE_CODE (arg0) == BIT_AND_EXPR
10091 && TREE_CODE (arg1) == BIT_AND_EXPR
10092 && operand_equal_p (TREE_OPERAND (arg0, 0),
10093 TREE_OPERAND (arg1, 0), 0))
10095 tree mask0 = TREE_OPERAND (arg0, 1);
10096 tree mask1 = TREE_OPERAND (arg1, 1);
10097 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
10099 if (operand_equal_p (tem, mask1, 0))
10101 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
10102 TREE_OPERAND (arg0, 0), mask1);
10103 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
10108 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10109 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10110 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10112 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10113 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10114 (-ARG1 + ARG0) reduces to -ARG1. */
10115 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10116 return negate_expr (fold_convert_loc (loc, type, arg1));
10118 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10119 __complex__ ( x, -y ). This is not the same for SNaNs or if
10120 signed zeros are involved. */
10121 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10122 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10123 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10125 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10126 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10127 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10128 bool arg0rz = false, arg0iz = false;
10129 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10130 || (arg0i && (arg0iz = real_zerop (arg0i))))
10132 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10133 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10134 if (arg0rz && arg1i && real_zerop (arg1i))
10136 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10137 arg1r ? arg1r
10138 : build1 (REALPART_EXPR, rtype, arg1));
10139 tree ip = arg0i ? arg0i
10140 : build1 (IMAGPART_EXPR, rtype, arg0);
10141 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10143 else if (arg0iz && arg1r && real_zerop (arg1r))
10145 tree rp = arg0r ? arg0r
10146 : build1 (REALPART_EXPR, rtype, arg0);
10147 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10148 arg1i ? arg1i
10149 : build1 (IMAGPART_EXPR, rtype, arg1));
10150 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10155 /* Fold &x - &x. This can happen from &x.foo - &x.
10156 This is unsafe for certain floats even in non-IEEE formats.
10157 In IEEE, it is unsafe because it does wrong for NaNs.
10158 Also note that operand_equal_p is always false if an operand
10159 is volatile. */
10161 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10162 && operand_equal_p (arg0, arg1, 0))
10163 return build_zero_cst (type);
10165 /* A - B -> A + (-B) if B is easily negatable. */
10166 if (negate_expr_p (arg1)
10167 && ((FLOAT_TYPE_P (type)
10168 /* Avoid this transformation if B is a positive REAL_CST. */
10169 && (TREE_CODE (arg1) != REAL_CST
10170 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10171 || INTEGRAL_TYPE_P (type)))
10172 return fold_build2_loc (loc, PLUS_EXPR, type,
10173 fold_convert_loc (loc, type, arg0),
10174 fold_convert_loc (loc, type,
10175 negate_expr (arg1)));
10177 /* Try folding difference of addresses. */
10179 HOST_WIDE_INT diff;
10181 if ((TREE_CODE (arg0) == ADDR_EXPR
10182 || TREE_CODE (arg1) == ADDR_EXPR)
10183 && ptr_difference_const (arg0, arg1, &diff))
10184 return build_int_cst_type (type, diff);
10187 /* Fold &a[i] - &a[j] to i-j. */
10188 if (TREE_CODE (arg0) == ADDR_EXPR
10189 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10190 && TREE_CODE (arg1) == ADDR_EXPR
10191 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10193 tree aref0 = TREE_OPERAND (arg0, 0);
10194 tree aref1 = TREE_OPERAND (arg1, 0);
10195 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10196 TREE_OPERAND (aref1, 0), 0))
10198 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
10199 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
10200 tree esz = array_ref_element_size (aref0);
10201 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10202 return fold_build2_loc (loc, MULT_EXPR, type, diff,
10203 fold_convert_loc (loc, type, esz));
10208 if (FLOAT_TYPE_P (type)
10209 && flag_unsafe_math_optimizations
10210 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10211 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10212 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10213 return tem;
10215 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10216 same or one. Make sure type is not saturating.
10217 fold_plusminus_mult_expr will re-associate. */
10218 if ((TREE_CODE (arg0) == MULT_EXPR
10219 || TREE_CODE (arg1) == MULT_EXPR)
10220 && !TYPE_SATURATING (type)
10221 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10223 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10224 if (tem)
10225 return tem;
10228 goto associate;
10230 case MULT_EXPR:
10231 /* (-A) * (-B) -> A * B */
10232 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10233 return fold_build2_loc (loc, MULT_EXPR, type,
10234 fold_convert_loc (loc, type,
10235 TREE_OPERAND (arg0, 0)),
10236 fold_convert_loc (loc, type,
10237 negate_expr (arg1)));
10238 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10239 return fold_build2_loc (loc, MULT_EXPR, type,
10240 fold_convert_loc (loc, type,
10241 negate_expr (arg0)),
10242 fold_convert_loc (loc, type,
10243 TREE_OPERAND (arg1, 0)));
10245 if (! FLOAT_TYPE_P (type))
10247 if (integer_zerop (arg1))
10248 return omit_one_operand_loc (loc, type, arg1, arg0);
10249 if (integer_onep (arg1))
10250 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10251 /* Transform x * -1 into -x. Make sure to do the negation
10252 on the original operand with conversions not stripped
10253 because we can only strip non-sign-changing conversions. */
10254 if (integer_all_onesp (arg1))
10255 return fold_convert_loc (loc, type, negate_expr (op0));
10256 /* Transform x * -C into -x * C if x is easily negatable. */
10257 if (TREE_CODE (arg1) == INTEGER_CST
10258 && tree_int_cst_sgn (arg1) == -1
10259 && negate_expr_p (arg0)
10260 && (tem = negate_expr (arg1)) != arg1
10261 && !TREE_OVERFLOW (tem))
10262 return fold_build2_loc (loc, MULT_EXPR, type,
10263 fold_convert_loc (loc, type,
10264 negate_expr (arg0)),
10265 tem);
10267 /* (a * (1 << b)) is (a << b) */
10268 if (TREE_CODE (arg1) == LSHIFT_EXPR
10269 && integer_onep (TREE_OPERAND (arg1, 0)))
10270 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
10271 TREE_OPERAND (arg1, 1));
10272 if (TREE_CODE (arg0) == LSHIFT_EXPR
10273 && integer_onep (TREE_OPERAND (arg0, 0)))
10274 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
10275 TREE_OPERAND (arg0, 1));
10277 /* (A + A) * C -> A * 2 * C */
10278 if (TREE_CODE (arg0) == PLUS_EXPR
10279 && TREE_CODE (arg1) == INTEGER_CST
10280 && operand_equal_p (TREE_OPERAND (arg0, 0),
10281 TREE_OPERAND (arg0, 1), 0))
10282 return fold_build2_loc (loc, MULT_EXPR, type,
10283 omit_one_operand_loc (loc, type,
10284 TREE_OPERAND (arg0, 0),
10285 TREE_OPERAND (arg0, 1)),
10286 fold_build2_loc (loc, MULT_EXPR, type,
10287 build_int_cst (type, 2) , arg1));
10289 strict_overflow_p = false;
10290 if (TREE_CODE (arg1) == INTEGER_CST
10291 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10292 &strict_overflow_p)))
10294 if (strict_overflow_p)
10295 fold_overflow_warning (("assuming signed overflow does not "
10296 "occur when simplifying "
10297 "multiplication"),
10298 WARN_STRICT_OVERFLOW_MISC);
10299 return fold_convert_loc (loc, type, tem);
10302 /* Optimize z * conj(z) for integer complex numbers. */
10303 if (TREE_CODE (arg0) == CONJ_EXPR
10304 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10305 return fold_mult_zconjz (loc, type, arg1);
10306 if (TREE_CODE (arg1) == CONJ_EXPR
10307 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10308 return fold_mult_zconjz (loc, type, arg0);
10310 else
10312 /* Maybe fold x * 0 to 0. The expressions aren't the same
10313 when x is NaN, since x * 0 is also NaN. Nor are they the
10314 same in modes with signed zeros, since multiplying a
10315 negative value by 0 gives -0, not +0. */
10316 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10317 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10318 && real_zerop (arg1))
10319 return omit_one_operand_loc (loc, type, arg1, arg0);
10320 /* In IEEE floating point, x*1 is not equivalent to x for snans.
10321 Likewise for complex arithmetic with signed zeros. */
10322 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10323 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10324 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10325 && real_onep (arg1))
10326 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10328 /* Transform x * -1.0 into -x. */
10329 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10330 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10331 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10332 && real_minus_onep (arg1))
10333 return fold_convert_loc (loc, type, negate_expr (arg0));
10335 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10336 the result for floating point types due to rounding so it is applied
10337 only if -fassociative-math was specify. */
10338 if (flag_associative_math
10339 && TREE_CODE (arg0) == RDIV_EXPR
10340 && TREE_CODE (arg1) == REAL_CST
10341 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10343 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10344 arg1);
10345 if (tem)
10346 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10347 TREE_OPERAND (arg0, 1));
10350 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10351 if (operand_equal_p (arg0, arg1, 0))
10353 tree tem = fold_strip_sign_ops (arg0);
10354 if (tem != NULL_TREE)
10356 tem = fold_convert_loc (loc, type, tem);
10357 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
10361 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10362 This is not the same for NaNs or if signed zeros are
10363 involved. */
10364 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10365 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10366 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10367 && TREE_CODE (arg1) == COMPLEX_CST
10368 && real_zerop (TREE_REALPART (arg1)))
10370 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10371 if (real_onep (TREE_IMAGPART (arg1)))
10372 return
10373 fold_build2_loc (loc, COMPLEX_EXPR, type,
10374 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10375 rtype, arg0)),
10376 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10377 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10378 return
10379 fold_build2_loc (loc, COMPLEX_EXPR, type,
10380 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10381 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10382 rtype, arg0)));
10385 /* Optimize z * conj(z) for floating point complex numbers.
10386 Guarded by flag_unsafe_math_optimizations as non-finite
10387 imaginary components don't produce scalar results. */
10388 if (flag_unsafe_math_optimizations
10389 && TREE_CODE (arg0) == CONJ_EXPR
10390 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10391 return fold_mult_zconjz (loc, type, arg1);
10392 if (flag_unsafe_math_optimizations
10393 && TREE_CODE (arg1) == CONJ_EXPR
10394 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10395 return fold_mult_zconjz (loc, type, arg0);
10397 if (flag_unsafe_math_optimizations)
10399 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10400 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10402 /* Optimizations of root(...)*root(...). */
10403 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10405 tree rootfn, arg;
10406 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10407 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10409 /* Optimize sqrt(x)*sqrt(x) as x. */
10410 if (BUILTIN_SQRT_P (fcode0)
10411 && operand_equal_p (arg00, arg10, 0)
10412 && ! HONOR_SNANS (TYPE_MODE (type)))
10413 return arg00;
10415 /* Optimize root(x)*root(y) as root(x*y). */
10416 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10417 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10418 return build_call_expr_loc (loc, rootfn, 1, arg);
10421 /* Optimize expN(x)*expN(y) as expN(x+y). */
10422 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10424 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10425 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10426 CALL_EXPR_ARG (arg0, 0),
10427 CALL_EXPR_ARG (arg1, 0));
10428 return build_call_expr_loc (loc, expfn, 1, arg);
10431 /* Optimizations of pow(...)*pow(...). */
10432 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10433 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10434 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10436 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10437 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10438 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10439 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10441 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10442 if (operand_equal_p (arg01, arg11, 0))
10444 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10445 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10446 arg00, arg10);
10447 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10450 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10451 if (operand_equal_p (arg00, arg10, 0))
10453 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10454 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10455 arg01, arg11);
10456 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10460 /* Optimize tan(x)*cos(x) as sin(x). */
10461 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10462 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10463 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10464 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10465 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10466 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10467 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10468 CALL_EXPR_ARG (arg1, 0), 0))
10470 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10472 if (sinfn != NULL_TREE)
10473 return build_call_expr_loc (loc, sinfn, 1,
10474 CALL_EXPR_ARG (arg0, 0));
10477 /* Optimize x*pow(x,c) as pow(x,c+1). */
10478 if (fcode1 == BUILT_IN_POW
10479 || fcode1 == BUILT_IN_POWF
10480 || fcode1 == BUILT_IN_POWL)
10482 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10483 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10484 if (TREE_CODE (arg11) == REAL_CST
10485 && !TREE_OVERFLOW (arg11)
10486 && operand_equal_p (arg0, arg10, 0))
10488 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10489 REAL_VALUE_TYPE c;
10490 tree arg;
10492 c = TREE_REAL_CST (arg11);
10493 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10494 arg = build_real (type, c);
10495 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10499 /* Optimize pow(x,c)*x as pow(x,c+1). */
10500 if (fcode0 == BUILT_IN_POW
10501 || fcode0 == BUILT_IN_POWF
10502 || fcode0 == BUILT_IN_POWL)
10504 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10505 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10506 if (TREE_CODE (arg01) == REAL_CST
10507 && !TREE_OVERFLOW (arg01)
10508 && operand_equal_p (arg1, arg00, 0))
10510 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10511 REAL_VALUE_TYPE c;
10512 tree arg;
10514 c = TREE_REAL_CST (arg01);
10515 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10516 arg = build_real (type, c);
10517 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10521 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10522 if (optimize_function_for_speed_p (cfun)
10523 && operand_equal_p (arg0, arg1, 0))
10525 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10527 if (powfn)
10529 tree arg = build_real (type, dconst2);
10530 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10535 goto associate;
10537 case BIT_IOR_EXPR:
10538 bit_ior:
10539 if (integer_all_onesp (arg1))
10540 return omit_one_operand_loc (loc, type, arg1, arg0);
10541 if (integer_zerop (arg1))
10542 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10543 if (operand_equal_p (arg0, arg1, 0))
10544 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10546 /* ~X | X is -1. */
10547 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10548 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10550 t1 = build_zero_cst (type);
10551 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10552 return omit_one_operand_loc (loc, type, t1, arg1);
10555 /* X | ~X is -1. */
10556 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10557 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10559 t1 = build_zero_cst (type);
10560 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10561 return omit_one_operand_loc (loc, type, t1, arg0);
10564 /* Canonicalize (X & C1) | C2. */
10565 if (TREE_CODE (arg0) == BIT_AND_EXPR
10566 && TREE_CODE (arg1) == INTEGER_CST
10567 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10569 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, hi3, lo3, mlo, mhi;
10570 int width = TYPE_PRECISION (type), w;
10571 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10572 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10573 hi2 = TREE_INT_CST_HIGH (arg1);
10574 lo2 = TREE_INT_CST_LOW (arg1);
10576 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10577 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10578 return omit_one_operand_loc (loc, type, arg1,
10579 TREE_OPERAND (arg0, 0));
10581 if (width > HOST_BITS_PER_WIDE_INT)
10583 mhi = (unsigned HOST_WIDE_INT) -1
10584 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10585 mlo = -1;
10587 else
10589 mhi = 0;
10590 mlo = (unsigned HOST_WIDE_INT) -1
10591 >> (HOST_BITS_PER_WIDE_INT - width);
10594 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10595 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10596 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10597 TREE_OPERAND (arg0, 0), arg1);
10599 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10600 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10601 mode which allows further optimizations. */
10602 hi1 &= mhi;
10603 lo1 &= mlo;
10604 hi2 &= mhi;
10605 lo2 &= mlo;
10606 hi3 = hi1 & ~hi2;
10607 lo3 = lo1 & ~lo2;
10608 for (w = BITS_PER_UNIT;
10609 w <= width && w <= HOST_BITS_PER_WIDE_INT;
10610 w <<= 1)
10612 unsigned HOST_WIDE_INT mask
10613 = (unsigned HOST_WIDE_INT) -1 >> (HOST_BITS_PER_WIDE_INT - w);
10614 if (((lo1 | lo2) & mask) == mask
10615 && (lo1 & ~mask) == 0 && hi1 == 0)
10617 hi3 = 0;
10618 lo3 = mask;
10619 break;
10622 if (hi3 != hi1 || lo3 != lo1)
10623 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10624 fold_build2_loc (loc, BIT_AND_EXPR, type,
10625 TREE_OPERAND (arg0, 0),
10626 build_int_cst_wide (type,
10627 lo3, hi3)),
10628 arg1);
10631 /* (X & Y) | Y is (X, Y). */
10632 if (TREE_CODE (arg0) == BIT_AND_EXPR
10633 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10634 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
10635 /* (X & Y) | X is (Y, X). */
10636 if (TREE_CODE (arg0) == BIT_AND_EXPR
10637 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10638 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10639 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
10640 /* X | (X & Y) is (Y, X). */
10641 if (TREE_CODE (arg1) == BIT_AND_EXPR
10642 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10643 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10644 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
10645 /* X | (Y & X) is (Y, X). */
10646 if (TREE_CODE (arg1) == BIT_AND_EXPR
10647 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10648 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10649 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
10651 /* (X & ~Y) | (~X & Y) is X ^ Y */
10652 if (TREE_CODE (arg0) == BIT_AND_EXPR
10653 && TREE_CODE (arg1) == BIT_AND_EXPR)
10655 tree a0, a1, l0, l1, n0, n1;
10657 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10658 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10660 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10661 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10663 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10664 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10666 if ((operand_equal_p (n0, a0, 0)
10667 && operand_equal_p (n1, a1, 0))
10668 || (operand_equal_p (n0, a1, 0)
10669 && operand_equal_p (n1, a0, 0)))
10670 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10673 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
10674 if (t1 != NULL_TREE)
10675 return t1;
10677 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10679 This results in more efficient code for machines without a NAND
10680 instruction. Combine will canonicalize to the first form
10681 which will allow use of NAND instructions provided by the
10682 backend if they exist. */
10683 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10684 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10686 return
10687 fold_build1_loc (loc, BIT_NOT_EXPR, type,
10688 build2 (BIT_AND_EXPR, type,
10689 fold_convert_loc (loc, type,
10690 TREE_OPERAND (arg0, 0)),
10691 fold_convert_loc (loc, type,
10692 TREE_OPERAND (arg1, 0))));
10695 /* See if this can be simplified into a rotate first. If that
10696 is unsuccessful continue in the association code. */
10697 goto bit_rotate;
10699 case BIT_XOR_EXPR:
10700 if (integer_zerop (arg1))
10701 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10702 if (integer_all_onesp (arg1))
10703 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op0);
10704 if (operand_equal_p (arg0, arg1, 0))
10705 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10707 /* ~X ^ X is -1. */
10708 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10709 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10711 t1 = build_zero_cst (type);
10712 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10713 return omit_one_operand_loc (loc, type, t1, arg1);
10716 /* X ^ ~X is -1. */
10717 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10718 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10720 t1 = build_zero_cst (type);
10721 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10722 return omit_one_operand_loc (loc, type, t1, arg0);
10725 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10726 with a constant, and the two constants have no bits in common,
10727 we should treat this as a BIT_IOR_EXPR since this may produce more
10728 simplifications. */
10729 if (TREE_CODE (arg0) == BIT_AND_EXPR
10730 && TREE_CODE (arg1) == BIT_AND_EXPR
10731 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10732 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10733 && integer_zerop (const_binop (BIT_AND_EXPR,
10734 TREE_OPERAND (arg0, 1),
10735 TREE_OPERAND (arg1, 1))))
10737 code = BIT_IOR_EXPR;
10738 goto bit_ior;
10741 /* (X | Y) ^ X -> Y & ~ X*/
10742 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10743 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10745 tree t2 = TREE_OPERAND (arg0, 1);
10746 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
10747 arg1);
10748 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10749 fold_convert_loc (loc, type, t2),
10750 fold_convert_loc (loc, type, t1));
10751 return t1;
10754 /* (Y | X) ^ X -> Y & ~ X*/
10755 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10756 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10758 tree t2 = TREE_OPERAND (arg0, 0);
10759 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
10760 arg1);
10761 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10762 fold_convert_loc (loc, type, t2),
10763 fold_convert_loc (loc, type, t1));
10764 return t1;
10767 /* X ^ (X | Y) -> Y & ~ X*/
10768 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10769 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
10771 tree t2 = TREE_OPERAND (arg1, 1);
10772 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
10773 arg0);
10774 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10775 fold_convert_loc (loc, type, t2),
10776 fold_convert_loc (loc, type, t1));
10777 return t1;
10780 /* X ^ (Y | X) -> Y & ~ X*/
10781 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10782 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
10784 tree t2 = TREE_OPERAND (arg1, 0);
10785 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
10786 arg0);
10787 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10788 fold_convert_loc (loc, type, t2),
10789 fold_convert_loc (loc, type, t1));
10790 return t1;
10793 /* Convert ~X ^ ~Y to X ^ Y. */
10794 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10795 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10796 return fold_build2_loc (loc, code, type,
10797 fold_convert_loc (loc, type,
10798 TREE_OPERAND (arg0, 0)),
10799 fold_convert_loc (loc, type,
10800 TREE_OPERAND (arg1, 0)));
10802 /* Convert ~X ^ C to X ^ ~C. */
10803 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10804 && TREE_CODE (arg1) == INTEGER_CST)
10805 return fold_build2_loc (loc, code, type,
10806 fold_convert_loc (loc, type,
10807 TREE_OPERAND (arg0, 0)),
10808 fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
10810 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10811 if (TREE_CODE (arg0) == BIT_AND_EXPR
10812 && integer_onep (TREE_OPERAND (arg0, 1))
10813 && integer_onep (arg1))
10814 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10815 build_int_cst (TREE_TYPE (arg0), 0));
10817 /* Fold (X & Y) ^ Y as ~X & Y. */
10818 if (TREE_CODE (arg0) == BIT_AND_EXPR
10819 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10821 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10822 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10823 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10824 fold_convert_loc (loc, type, arg1));
10826 /* Fold (X & Y) ^ X as ~Y & X. */
10827 if (TREE_CODE (arg0) == BIT_AND_EXPR
10828 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10829 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10831 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10832 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10833 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10834 fold_convert_loc (loc, type, arg1));
10836 /* Fold X ^ (X & Y) as X & ~Y. */
10837 if (TREE_CODE (arg1) == BIT_AND_EXPR
10838 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10840 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10841 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10842 fold_convert_loc (loc, type, arg0),
10843 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10845 /* Fold X ^ (Y & X) as ~Y & X. */
10846 if (TREE_CODE (arg1) == BIT_AND_EXPR
10847 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10848 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10850 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10851 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10852 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10853 fold_convert_loc (loc, type, arg0));
10856 /* See if this can be simplified into a rotate first. If that
10857 is unsuccessful continue in the association code. */
10858 goto bit_rotate;
10860 case BIT_AND_EXPR:
10861 if (integer_all_onesp (arg1))
10862 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10863 if (integer_zerop (arg1))
10864 return omit_one_operand_loc (loc, type, arg1, arg0);
10865 if (operand_equal_p (arg0, arg1, 0))
10866 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10868 /* ~X & X is always zero. */
10869 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10870 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10871 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10873 /* X & ~X is always zero. */
10874 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10875 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10876 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10878 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
10879 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10880 && TREE_CODE (arg1) == INTEGER_CST
10881 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10883 tree tmp1 = fold_convert_loc (loc, type, arg1);
10884 tree tmp2 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10885 tree tmp3 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10886 tmp2 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp2, tmp1);
10887 tmp3 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp3, tmp1);
10888 return
10889 fold_convert_loc (loc, type,
10890 fold_build2_loc (loc, BIT_IOR_EXPR,
10891 type, tmp2, tmp3));
10894 /* (X | Y) & Y is (X, Y). */
10895 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10896 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10897 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
10898 /* (X | Y) & X is (Y, X). */
10899 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10900 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10901 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10902 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
10903 /* X & (X | Y) is (Y, X). */
10904 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10905 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10906 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10907 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
10908 /* X & (Y | X) is (Y, X). */
10909 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10910 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10911 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10912 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
10914 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10915 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10916 && integer_onep (TREE_OPERAND (arg0, 1))
10917 && integer_onep (arg1))
10919 tem = TREE_OPERAND (arg0, 0);
10920 return fold_build2_loc (loc, EQ_EXPR, type,
10921 fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), tem,
10922 build_int_cst (TREE_TYPE (tem), 1)),
10923 build_int_cst (TREE_TYPE (tem), 0));
10925 /* Fold ~X & 1 as (X & 1) == 0. */
10926 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10927 && integer_onep (arg1))
10929 tem = TREE_OPERAND (arg0, 0);
10930 return fold_build2_loc (loc, EQ_EXPR, type,
10931 fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), tem,
10932 build_int_cst (TREE_TYPE (tem), 1)),
10933 build_int_cst (TREE_TYPE (tem), 0));
10936 /* Fold (X ^ Y) & Y as ~X & Y. */
10937 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10938 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10940 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10941 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10942 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10943 fold_convert_loc (loc, type, arg1));
10945 /* Fold (X ^ Y) & X as ~Y & X. */
10946 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10947 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10948 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10950 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10951 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10952 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10953 fold_convert_loc (loc, type, arg1));
10955 /* Fold X & (X ^ Y) as X & ~Y. */
10956 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10957 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10959 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10960 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10961 fold_convert_loc (loc, type, arg0),
10962 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10964 /* Fold X & (Y ^ X) as ~Y & X. */
10965 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10966 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10967 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10969 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10970 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10971 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10972 fold_convert_loc (loc, type, arg0));
10975 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10976 ((A & N) + B) & M -> (A + B) & M
10977 Similarly if (N & M) == 0,
10978 ((A | N) + B) & M -> (A + B) & M
10979 and for - instead of + (or unary - instead of +)
10980 and/or ^ instead of |.
10981 If B is constant and (B & M) == 0, fold into A & M. */
10982 if (host_integerp (arg1, 1))
10984 unsigned HOST_WIDE_INT cst1 = tree_low_cst (arg1, 1);
10985 if (~cst1 && (cst1 & (cst1 + 1)) == 0
10986 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10987 && (TREE_CODE (arg0) == PLUS_EXPR
10988 || TREE_CODE (arg0) == MINUS_EXPR
10989 || TREE_CODE (arg0) == NEGATE_EXPR)
10990 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10991 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10993 tree pmop[2];
10994 int which = 0;
10995 unsigned HOST_WIDE_INT cst0;
10997 /* Now we know that arg0 is (C + D) or (C - D) or
10998 -C and arg1 (M) is == (1LL << cst) - 1.
10999 Store C into PMOP[0] and D into PMOP[1]. */
11000 pmop[0] = TREE_OPERAND (arg0, 0);
11001 pmop[1] = NULL;
11002 if (TREE_CODE (arg0) != NEGATE_EXPR)
11004 pmop[1] = TREE_OPERAND (arg0, 1);
11005 which = 1;
11008 if (!host_integerp (TYPE_MAX_VALUE (TREE_TYPE (arg0)), 1)
11009 || (tree_low_cst (TYPE_MAX_VALUE (TREE_TYPE (arg0)), 1)
11010 & cst1) != cst1)
11011 which = -1;
11013 for (; which >= 0; which--)
11014 switch (TREE_CODE (pmop[which]))
11016 case BIT_AND_EXPR:
11017 case BIT_IOR_EXPR:
11018 case BIT_XOR_EXPR:
11019 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
11020 != INTEGER_CST)
11021 break;
11022 /* tree_low_cst not used, because we don't care about
11023 the upper bits. */
11024 cst0 = TREE_INT_CST_LOW (TREE_OPERAND (pmop[which], 1));
11025 cst0 &= cst1;
11026 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
11028 if (cst0 != cst1)
11029 break;
11031 else if (cst0 != 0)
11032 break;
11033 /* If C or D is of the form (A & N) where
11034 (N & M) == M, or of the form (A | N) or
11035 (A ^ N) where (N & M) == 0, replace it with A. */
11036 pmop[which] = TREE_OPERAND (pmop[which], 0);
11037 break;
11038 case INTEGER_CST:
11039 /* If C or D is a N where (N & M) == 0, it can be
11040 omitted (assumed 0). */
11041 if ((TREE_CODE (arg0) == PLUS_EXPR
11042 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
11043 && (TREE_INT_CST_LOW (pmop[which]) & cst1) == 0)
11044 pmop[which] = NULL;
11045 break;
11046 default:
11047 break;
11050 /* Only build anything new if we optimized one or both arguments
11051 above. */
11052 if (pmop[0] != TREE_OPERAND (arg0, 0)
11053 || (TREE_CODE (arg0) != NEGATE_EXPR
11054 && pmop[1] != TREE_OPERAND (arg0, 1)))
11056 tree utype = TREE_TYPE (arg0);
11057 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11059 /* Perform the operations in a type that has defined
11060 overflow behavior. */
11061 utype = unsigned_type_for (TREE_TYPE (arg0));
11062 if (pmop[0] != NULL)
11063 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
11064 if (pmop[1] != NULL)
11065 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
11068 if (TREE_CODE (arg0) == NEGATE_EXPR)
11069 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
11070 else if (TREE_CODE (arg0) == PLUS_EXPR)
11072 if (pmop[0] != NULL && pmop[1] != NULL)
11073 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
11074 pmop[0], pmop[1]);
11075 else if (pmop[0] != NULL)
11076 tem = pmop[0];
11077 else if (pmop[1] != NULL)
11078 tem = pmop[1];
11079 else
11080 return build_int_cst (type, 0);
11082 else if (pmop[0] == NULL)
11083 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
11084 else
11085 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
11086 pmop[0], pmop[1]);
11087 /* TEM is now the new binary +, - or unary - replacement. */
11088 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
11089 fold_convert_loc (loc, utype, arg1));
11090 return fold_convert_loc (loc, type, tem);
11095 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11096 if (t1 != NULL_TREE)
11097 return t1;
11098 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11099 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11100 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11102 unsigned int prec
11103 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11105 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
11106 && (~TREE_INT_CST_LOW (arg1)
11107 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
11108 return
11109 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11112 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11114 This results in more efficient code for machines without a NOR
11115 instruction. Combine will canonicalize to the first form
11116 which will allow use of NOR instructions provided by the
11117 backend if they exist. */
11118 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11119 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11121 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
11122 build2 (BIT_IOR_EXPR, type,
11123 fold_convert_loc (loc, type,
11124 TREE_OPERAND (arg0, 0)),
11125 fold_convert_loc (loc, type,
11126 TREE_OPERAND (arg1, 0))));
11129 /* If arg0 is derived from the address of an object or function, we may
11130 be able to fold this expression using the object or function's
11131 alignment. */
11132 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && host_integerp (arg1, 1))
11134 unsigned HOST_WIDE_INT modulus, residue;
11135 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg1);
11137 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11138 integer_onep (arg1));
11140 /* This works because modulus is a power of 2. If this weren't the
11141 case, we'd have to replace it by its greatest power-of-2
11142 divisor: modulus & -modulus. */
11143 if (low < modulus)
11144 return build_int_cst (type, residue & low);
11147 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11148 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11149 if the new mask might be further optimized. */
11150 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11151 || TREE_CODE (arg0) == RSHIFT_EXPR)
11152 && host_integerp (TREE_OPERAND (arg0, 1), 1)
11153 && host_integerp (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)))
11154 && tree_low_cst (TREE_OPERAND (arg0, 1), 1)
11155 < TYPE_PRECISION (TREE_TYPE (arg0))
11156 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11157 && tree_low_cst (TREE_OPERAND (arg0, 1), 1) > 0)
11159 unsigned int shiftc = tree_low_cst (TREE_OPERAND (arg0, 1), 1);
11160 unsigned HOST_WIDE_INT mask
11161 = tree_low_cst (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)));
11162 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11163 tree shift_type = TREE_TYPE (arg0);
11165 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11166 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11167 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11168 && TYPE_PRECISION (TREE_TYPE (arg0))
11169 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg0))))
11171 unsigned int prec = TYPE_PRECISION (TREE_TYPE (arg0));
11172 tree arg00 = TREE_OPERAND (arg0, 0);
11173 /* See if more bits can be proven as zero because of
11174 zero extension. */
11175 if (TREE_CODE (arg00) == NOP_EXPR
11176 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11178 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11179 if (TYPE_PRECISION (inner_type)
11180 == GET_MODE_BITSIZE (TYPE_MODE (inner_type))
11181 && TYPE_PRECISION (inner_type) < prec)
11183 prec = TYPE_PRECISION (inner_type);
11184 /* See if we can shorten the right shift. */
11185 if (shiftc < prec)
11186 shift_type = inner_type;
11189 zerobits = ~(unsigned HOST_WIDE_INT) 0;
11190 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
11191 zerobits <<= prec - shiftc;
11192 /* For arithmetic shift if sign bit could be set, zerobits
11193 can contain actually sign bits, so no transformation is
11194 possible, unless MASK masks them all away. In that
11195 case the shift needs to be converted into logical shift. */
11196 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
11197 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
11199 if ((mask & zerobits) == 0)
11200 shift_type = unsigned_type_for (TREE_TYPE (arg0));
11201 else
11202 zerobits = 0;
11206 /* ((X << 16) & 0xff00) is (X, 0). */
11207 if ((mask & zerobits) == mask)
11208 return omit_one_operand_loc (loc, type,
11209 build_int_cst (type, 0), arg0);
11211 newmask = mask | zerobits;
11212 if (newmask != mask && (newmask & (newmask + 1)) == 0)
11214 unsigned int prec;
11216 /* Only do the transformation if NEWMASK is some integer
11217 mode's mask. */
11218 for (prec = BITS_PER_UNIT;
11219 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
11220 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
11221 break;
11222 if (prec < HOST_BITS_PER_WIDE_INT
11223 || newmask == ~(unsigned HOST_WIDE_INT) 0)
11225 tree newmaskt;
11227 if (shift_type != TREE_TYPE (arg0))
11229 tem = fold_build2_loc (loc, TREE_CODE (arg0), shift_type,
11230 fold_convert_loc (loc, shift_type,
11231 TREE_OPERAND (arg0, 0)),
11232 TREE_OPERAND (arg0, 1));
11233 tem = fold_convert_loc (loc, type, tem);
11235 else
11236 tem = op0;
11237 newmaskt = build_int_cst_type (TREE_TYPE (op1), newmask);
11238 if (!tree_int_cst_equal (newmaskt, arg1))
11239 return fold_build2_loc (loc, BIT_AND_EXPR, type, tem, newmaskt);
11244 goto associate;
11246 case RDIV_EXPR:
11247 /* Don't touch a floating-point divide by zero unless the mode
11248 of the constant can represent infinity. */
11249 if (TREE_CODE (arg1) == REAL_CST
11250 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11251 && real_zerop (arg1))
11252 return NULL_TREE;
11254 /* Optimize A / A to 1.0 if we don't care about
11255 NaNs or Infinities. Skip the transformation
11256 for non-real operands. */
11257 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
11258 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11259 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
11260 && operand_equal_p (arg0, arg1, 0))
11262 tree r = build_real (TREE_TYPE (arg0), dconst1);
11264 return omit_two_operands_loc (loc, type, r, arg0, arg1);
11267 /* The complex version of the above A / A optimization. */
11268 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11269 && operand_equal_p (arg0, arg1, 0))
11271 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
11272 if (! HONOR_NANS (TYPE_MODE (elem_type))
11273 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
11275 tree r = build_real (elem_type, dconst1);
11276 /* omit_two_operands will call fold_convert for us. */
11277 return omit_two_operands_loc (loc, type, r, arg0, arg1);
11281 /* (-A) / (-B) -> A / B */
11282 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11283 return fold_build2_loc (loc, RDIV_EXPR, type,
11284 TREE_OPERAND (arg0, 0),
11285 negate_expr (arg1));
11286 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11287 return fold_build2_loc (loc, RDIV_EXPR, type,
11288 negate_expr (arg0),
11289 TREE_OPERAND (arg1, 0));
11291 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
11292 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11293 && real_onep (arg1))
11294 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11296 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
11297 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11298 && real_minus_onep (arg1))
11299 return non_lvalue_loc (loc, fold_convert_loc (loc, type,
11300 negate_expr (arg0)));
11302 /* If ARG1 is a constant, we can convert this to a multiply by the
11303 reciprocal. This does not have the same rounding properties,
11304 so only do this if -freciprocal-math. We can actually
11305 always safely do it if ARG1 is a power of two, but it's hard to
11306 tell if it is or not in a portable manner. */
11307 if (TREE_CODE (arg1) == REAL_CST)
11309 if (flag_reciprocal_math
11310 && 0 != (tem = const_binop (code, build_real (type, dconst1),
11311 arg1)))
11312 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tem);
11313 /* Find the reciprocal if optimizing and the result is exact. */
11314 if (optimize)
11316 REAL_VALUE_TYPE r;
11317 r = TREE_REAL_CST (arg1);
11318 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
11320 tem = build_real (type, r);
11321 return fold_build2_loc (loc, MULT_EXPR, type,
11322 fold_convert_loc (loc, type, arg0), tem);
11326 /* Convert A/B/C to A/(B*C). */
11327 if (flag_reciprocal_math
11328 && TREE_CODE (arg0) == RDIV_EXPR)
11329 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11330 fold_build2_loc (loc, MULT_EXPR, type,
11331 TREE_OPERAND (arg0, 1), arg1));
11333 /* Convert A/(B/C) to (A/B)*C. */
11334 if (flag_reciprocal_math
11335 && TREE_CODE (arg1) == RDIV_EXPR)
11336 return fold_build2_loc (loc, MULT_EXPR, type,
11337 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
11338 TREE_OPERAND (arg1, 0)),
11339 TREE_OPERAND (arg1, 1));
11341 /* Convert C1/(X*C2) into (C1/C2)/X. */
11342 if (flag_reciprocal_math
11343 && TREE_CODE (arg1) == MULT_EXPR
11344 && TREE_CODE (arg0) == REAL_CST
11345 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11347 tree tem = const_binop (RDIV_EXPR, arg0,
11348 TREE_OPERAND (arg1, 1));
11349 if (tem)
11350 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
11351 TREE_OPERAND (arg1, 0));
11354 if (flag_unsafe_math_optimizations)
11356 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11357 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11359 /* Optimize sin(x)/cos(x) as tan(x). */
11360 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11361 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11362 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11363 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11364 CALL_EXPR_ARG (arg1, 0), 0))
11366 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11368 if (tanfn != NULL_TREE)
11369 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11372 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11373 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11374 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11375 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11376 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11377 CALL_EXPR_ARG (arg1, 0), 0))
11379 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11381 if (tanfn != NULL_TREE)
11383 tree tmp = build_call_expr_loc (loc, tanfn, 1,
11384 CALL_EXPR_ARG (arg0, 0));
11385 return fold_build2_loc (loc, RDIV_EXPR, type,
11386 build_real (type, dconst1), tmp);
11390 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11391 NaNs or Infinities. */
11392 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11393 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11394 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11396 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11397 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11399 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11400 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11401 && operand_equal_p (arg00, arg01, 0))
11403 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11405 if (cosfn != NULL_TREE)
11406 return build_call_expr_loc (loc, cosfn, 1, arg00);
11410 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11411 NaNs or Infinities. */
11412 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11413 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11414 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11416 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11417 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11419 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11420 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11421 && operand_equal_p (arg00, arg01, 0))
11423 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11425 if (cosfn != NULL_TREE)
11427 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
11428 return fold_build2_loc (loc, RDIV_EXPR, type,
11429 build_real (type, dconst1),
11430 tmp);
11435 /* Optimize pow(x,c)/x as pow(x,c-1). */
11436 if (fcode0 == BUILT_IN_POW
11437 || fcode0 == BUILT_IN_POWF
11438 || fcode0 == BUILT_IN_POWL)
11440 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11441 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11442 if (TREE_CODE (arg01) == REAL_CST
11443 && !TREE_OVERFLOW (arg01)
11444 && operand_equal_p (arg1, arg00, 0))
11446 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11447 REAL_VALUE_TYPE c;
11448 tree arg;
11450 c = TREE_REAL_CST (arg01);
11451 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11452 arg = build_real (type, c);
11453 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
11457 /* Optimize a/root(b/c) into a*root(c/b). */
11458 if (BUILTIN_ROOT_P (fcode1))
11460 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11462 if (TREE_CODE (rootarg) == RDIV_EXPR)
11464 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11465 tree b = TREE_OPERAND (rootarg, 0);
11466 tree c = TREE_OPERAND (rootarg, 1);
11468 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
11470 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
11471 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
11475 /* Optimize x/expN(y) into x*expN(-y). */
11476 if (BUILTIN_EXPONENT_P (fcode1))
11478 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11479 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11480 arg1 = build_call_expr_loc (loc,
11481 expfn, 1,
11482 fold_convert_loc (loc, type, arg));
11483 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11486 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11487 if (fcode1 == BUILT_IN_POW
11488 || fcode1 == BUILT_IN_POWF
11489 || fcode1 == BUILT_IN_POWL)
11491 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11492 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11493 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11494 tree neg11 = fold_convert_loc (loc, type,
11495 negate_expr (arg11));
11496 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
11497 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11500 return NULL_TREE;
11502 case TRUNC_DIV_EXPR:
11503 /* Optimize (X & (-A)) / A where A is a power of 2,
11504 to X >> log2(A) */
11505 if (TREE_CODE (arg0) == BIT_AND_EXPR
11506 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
11507 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
11509 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
11510 arg1, TREE_OPERAND (arg0, 1));
11511 if (sum && integer_zerop (sum)) {
11512 unsigned long pow2;
11514 if (TREE_INT_CST_LOW (arg1))
11515 pow2 = exact_log2 (TREE_INT_CST_LOW (arg1));
11516 else
11517 pow2 = exact_log2 (TREE_INT_CST_HIGH (arg1))
11518 + HOST_BITS_PER_WIDE_INT;
11520 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11521 TREE_OPERAND (arg0, 0),
11522 build_int_cst (integer_type_node, pow2));
11526 /* Fall thru */
11528 case FLOOR_DIV_EXPR:
11529 /* Simplify A / (B << N) where A and B are positive and B is
11530 a power of 2, to A >> (N + log2(B)). */
11531 strict_overflow_p = false;
11532 if (TREE_CODE (arg1) == LSHIFT_EXPR
11533 && (TYPE_UNSIGNED (type)
11534 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11536 tree sval = TREE_OPERAND (arg1, 0);
11537 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11539 tree sh_cnt = TREE_OPERAND (arg1, 1);
11540 unsigned long pow2;
11542 if (TREE_INT_CST_LOW (sval))
11543 pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11544 else
11545 pow2 = exact_log2 (TREE_INT_CST_HIGH (sval))
11546 + HOST_BITS_PER_WIDE_INT;
11548 if (strict_overflow_p)
11549 fold_overflow_warning (("assuming signed overflow does not "
11550 "occur when simplifying A / (B << N)"),
11551 WARN_STRICT_OVERFLOW_MISC);
11553 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11554 sh_cnt,
11555 build_int_cst (TREE_TYPE (sh_cnt),
11556 pow2));
11557 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11558 fold_convert_loc (loc, type, arg0), sh_cnt);
11562 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
11563 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
11564 if (INTEGRAL_TYPE_P (type)
11565 && TYPE_UNSIGNED (type)
11566 && code == FLOOR_DIV_EXPR)
11567 return fold_build2_loc (loc, TRUNC_DIV_EXPR, type, op0, op1);
11569 /* Fall thru */
11571 case ROUND_DIV_EXPR:
11572 case CEIL_DIV_EXPR:
11573 case EXACT_DIV_EXPR:
11574 if (integer_onep (arg1))
11575 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11576 if (integer_zerop (arg1))
11577 return NULL_TREE;
11578 /* X / -1 is -X. */
11579 if (!TYPE_UNSIGNED (type)
11580 && TREE_CODE (arg1) == INTEGER_CST
11581 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11582 && TREE_INT_CST_HIGH (arg1) == -1)
11583 return fold_convert_loc (loc, type, negate_expr (arg0));
11585 /* Convert -A / -B to A / B when the type is signed and overflow is
11586 undefined. */
11587 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11588 && TREE_CODE (arg0) == NEGATE_EXPR
11589 && negate_expr_p (arg1))
11591 if (INTEGRAL_TYPE_P (type))
11592 fold_overflow_warning (("assuming signed overflow does not occur "
11593 "when distributing negation across "
11594 "division"),
11595 WARN_STRICT_OVERFLOW_MISC);
11596 return fold_build2_loc (loc, code, type,
11597 fold_convert_loc (loc, type,
11598 TREE_OPERAND (arg0, 0)),
11599 fold_convert_loc (loc, type,
11600 negate_expr (arg1)));
11602 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11603 && TREE_CODE (arg1) == NEGATE_EXPR
11604 && negate_expr_p (arg0))
11606 if (INTEGRAL_TYPE_P (type))
11607 fold_overflow_warning (("assuming signed overflow does not occur "
11608 "when distributing negation across "
11609 "division"),
11610 WARN_STRICT_OVERFLOW_MISC);
11611 return fold_build2_loc (loc, code, type,
11612 fold_convert_loc (loc, type,
11613 negate_expr (arg0)),
11614 fold_convert_loc (loc, type,
11615 TREE_OPERAND (arg1, 0)));
11618 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11619 operation, EXACT_DIV_EXPR.
11621 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11622 At one time others generated faster code, it's not clear if they do
11623 after the last round to changes to the DIV code in expmed.c. */
11624 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11625 && multiple_of_p (type, arg0, arg1))
11626 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
11628 strict_overflow_p = false;
11629 if (TREE_CODE (arg1) == INTEGER_CST
11630 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11631 &strict_overflow_p)))
11633 if (strict_overflow_p)
11634 fold_overflow_warning (("assuming signed overflow does not occur "
11635 "when simplifying division"),
11636 WARN_STRICT_OVERFLOW_MISC);
11637 return fold_convert_loc (loc, type, tem);
11640 return NULL_TREE;
11642 case CEIL_MOD_EXPR:
11643 case FLOOR_MOD_EXPR:
11644 case ROUND_MOD_EXPR:
11645 case TRUNC_MOD_EXPR:
11646 /* X % 1 is always zero, but be sure to preserve any side
11647 effects in X. */
11648 if (integer_onep (arg1))
11649 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11651 /* X % 0, return X % 0 unchanged so that we can get the
11652 proper warnings and errors. */
11653 if (integer_zerop (arg1))
11654 return NULL_TREE;
11656 /* 0 % X is always zero, but be sure to preserve any side
11657 effects in X. Place this after checking for X == 0. */
11658 if (integer_zerop (arg0))
11659 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11661 /* X % -1 is zero. */
11662 if (!TYPE_UNSIGNED (type)
11663 && TREE_CODE (arg1) == INTEGER_CST
11664 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11665 && TREE_INT_CST_HIGH (arg1) == -1)
11666 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11668 /* X % -C is the same as X % C. */
11669 if (code == TRUNC_MOD_EXPR
11670 && !TYPE_UNSIGNED (type)
11671 && TREE_CODE (arg1) == INTEGER_CST
11672 && !TREE_OVERFLOW (arg1)
11673 && TREE_INT_CST_HIGH (arg1) < 0
11674 && !TYPE_OVERFLOW_TRAPS (type)
11675 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11676 && !sign_bit_p (arg1, arg1))
11677 return fold_build2_loc (loc, code, type,
11678 fold_convert_loc (loc, type, arg0),
11679 fold_convert_loc (loc, type,
11680 negate_expr (arg1)));
11682 /* X % -Y is the same as X % Y. */
11683 if (code == TRUNC_MOD_EXPR
11684 && !TYPE_UNSIGNED (type)
11685 && TREE_CODE (arg1) == NEGATE_EXPR
11686 && !TYPE_OVERFLOW_TRAPS (type))
11687 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, arg0),
11688 fold_convert_loc (loc, type,
11689 TREE_OPERAND (arg1, 0)));
11691 strict_overflow_p = false;
11692 if (TREE_CODE (arg1) == INTEGER_CST
11693 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11694 &strict_overflow_p)))
11696 if (strict_overflow_p)
11697 fold_overflow_warning (("assuming signed overflow does not occur "
11698 "when simplifying modulus"),
11699 WARN_STRICT_OVERFLOW_MISC);
11700 return fold_convert_loc (loc, type, tem);
11703 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11704 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11705 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11706 && (TYPE_UNSIGNED (type)
11707 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11709 tree c = arg1;
11710 /* Also optimize A % (C << N) where C is a power of 2,
11711 to A & ((C << N) - 1). */
11712 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11713 c = TREE_OPERAND (arg1, 0);
11715 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11717 tree mask
11718 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (arg1), arg1,
11719 build_int_cst (TREE_TYPE (arg1), 1));
11720 if (strict_overflow_p)
11721 fold_overflow_warning (("assuming signed overflow does not "
11722 "occur when simplifying "
11723 "X % (power of two)"),
11724 WARN_STRICT_OVERFLOW_MISC);
11725 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11726 fold_convert_loc (loc, type, arg0),
11727 fold_convert_loc (loc, type, mask));
11731 return NULL_TREE;
11733 case LROTATE_EXPR:
11734 case RROTATE_EXPR:
11735 if (integer_all_onesp (arg0))
11736 return omit_one_operand_loc (loc, type, arg0, arg1);
11737 goto shift;
11739 case RSHIFT_EXPR:
11740 /* Optimize -1 >> x for arithmetic right shifts. */
11741 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type)
11742 && tree_expr_nonnegative_p (arg1))
11743 return omit_one_operand_loc (loc, type, arg0, arg1);
11744 /* ... fall through ... */
11746 case LSHIFT_EXPR:
11747 shift:
11748 if (integer_zerop (arg1))
11749 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11750 if (integer_zerop (arg0))
11751 return omit_one_operand_loc (loc, type, arg0, arg1);
11753 /* Since negative shift count is not well-defined,
11754 don't try to compute it in the compiler. */
11755 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11756 return NULL_TREE;
11758 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11759 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
11760 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11761 && host_integerp (TREE_OPERAND (arg0, 1), false)
11762 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11764 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
11765 + TREE_INT_CST_LOW (arg1));
11767 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11768 being well defined. */
11769 if (low >= TYPE_PRECISION (type))
11771 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11772 low = low % TYPE_PRECISION (type);
11773 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11774 return omit_one_operand_loc (loc, type, build_int_cst (type, 0),
11775 TREE_OPERAND (arg0, 0));
11776 else
11777 low = TYPE_PRECISION (type) - 1;
11780 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11781 build_int_cst (type, low));
11784 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11785 into x & ((unsigned)-1 >> c) for unsigned types. */
11786 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11787 || (TYPE_UNSIGNED (type)
11788 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11789 && host_integerp (arg1, false)
11790 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11791 && host_integerp (TREE_OPERAND (arg0, 1), false)
11792 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11794 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
11795 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
11796 tree lshift;
11797 tree arg00;
11799 if (low0 == low1)
11801 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11803 lshift = build_int_cst (type, -1);
11804 lshift = int_const_binop (code, lshift, arg1);
11806 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
11810 /* Rewrite an LROTATE_EXPR by a constant into an
11811 RROTATE_EXPR by a new constant. */
11812 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
11814 tree tem = build_int_cst (TREE_TYPE (arg1),
11815 TYPE_PRECISION (type));
11816 tem = const_binop (MINUS_EXPR, tem, arg1);
11817 return fold_build2_loc (loc, RROTATE_EXPR, type, op0, tem);
11820 /* If we have a rotate of a bit operation with the rotate count and
11821 the second operand of the bit operation both constant,
11822 permute the two operations. */
11823 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11824 && (TREE_CODE (arg0) == BIT_AND_EXPR
11825 || TREE_CODE (arg0) == BIT_IOR_EXPR
11826 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11827 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11828 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11829 fold_build2_loc (loc, code, type,
11830 TREE_OPERAND (arg0, 0), arg1),
11831 fold_build2_loc (loc, code, type,
11832 TREE_OPERAND (arg0, 1), arg1));
11834 /* Two consecutive rotates adding up to the precision of the
11835 type can be ignored. */
11836 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11837 && TREE_CODE (arg0) == RROTATE_EXPR
11838 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11839 && TREE_INT_CST_HIGH (arg1) == 0
11840 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
11841 && ((TREE_INT_CST_LOW (arg1)
11842 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
11843 == (unsigned int) TYPE_PRECISION (type)))
11844 return TREE_OPERAND (arg0, 0);
11846 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
11847 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
11848 if the latter can be further optimized. */
11849 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
11850 && TREE_CODE (arg0) == BIT_AND_EXPR
11851 && TREE_CODE (arg1) == INTEGER_CST
11852 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11854 tree mask = fold_build2_loc (loc, code, type,
11855 fold_convert_loc (loc, type,
11856 TREE_OPERAND (arg0, 1)),
11857 arg1);
11858 tree shift = fold_build2_loc (loc, code, type,
11859 fold_convert_loc (loc, type,
11860 TREE_OPERAND (arg0, 0)),
11861 arg1);
11862 tem = fold_binary_loc (loc, BIT_AND_EXPR, type, shift, mask);
11863 if (tem)
11864 return tem;
11867 return NULL_TREE;
11869 case MIN_EXPR:
11870 if (operand_equal_p (arg0, arg1, 0))
11871 return omit_one_operand_loc (loc, type, arg0, arg1);
11872 if (INTEGRAL_TYPE_P (type)
11873 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
11874 return omit_one_operand_loc (loc, type, arg1, arg0);
11875 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
11876 if (tem)
11877 return tem;
11878 goto associate;
11880 case MAX_EXPR:
11881 if (operand_equal_p (arg0, arg1, 0))
11882 return omit_one_operand_loc (loc, type, arg0, arg1);
11883 if (INTEGRAL_TYPE_P (type)
11884 && TYPE_MAX_VALUE (type)
11885 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
11886 return omit_one_operand_loc (loc, type, arg1, arg0);
11887 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
11888 if (tem)
11889 return tem;
11890 goto associate;
11892 case TRUTH_ANDIF_EXPR:
11893 /* Note that the operands of this must be ints
11894 and their values must be 0 or 1.
11895 ("true" is a fixed value perhaps depending on the language.) */
11896 /* If first arg is constant zero, return it. */
11897 if (integer_zerop (arg0))
11898 return fold_convert_loc (loc, type, arg0);
11899 case TRUTH_AND_EXPR:
11900 /* If either arg is constant true, drop it. */
11901 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11902 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11903 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11904 /* Preserve sequence points. */
11905 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11906 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11907 /* If second arg is constant zero, result is zero, but first arg
11908 must be evaluated. */
11909 if (integer_zerop (arg1))
11910 return omit_one_operand_loc (loc, type, arg1, arg0);
11911 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11912 case will be handled here. */
11913 if (integer_zerop (arg0))
11914 return omit_one_operand_loc (loc, type, arg0, arg1);
11916 /* !X && X is always false. */
11917 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11918 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11919 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11920 /* X && !X is always false. */
11921 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11922 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11923 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11925 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11926 means A >= Y && A != MAX, but in this case we know that
11927 A < X <= MAX. */
11929 if (!TREE_SIDE_EFFECTS (arg0)
11930 && !TREE_SIDE_EFFECTS (arg1))
11932 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
11933 if (tem && !operand_equal_p (tem, arg0, 0))
11934 return fold_build2_loc (loc, code, type, tem, arg1);
11936 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
11937 if (tem && !operand_equal_p (tem, arg1, 0))
11938 return fold_build2_loc (loc, code, type, arg0, tem);
11941 truth_andor:
11942 /* We only do these simplifications if we are optimizing. */
11943 if (!optimize)
11944 return NULL_TREE;
11946 /* Check for things like (A || B) && (A || C). We can convert this
11947 to A || (B && C). Note that either operator can be any of the four
11948 truth and/or operations and the transformation will still be
11949 valid. Also note that we only care about order for the
11950 ANDIF and ORIF operators. If B contains side effects, this
11951 might change the truth-value of A. */
11952 if (TREE_CODE (arg0) == TREE_CODE (arg1)
11953 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
11954 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
11955 || TREE_CODE (arg0) == TRUTH_AND_EXPR
11956 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
11957 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
11959 tree a00 = TREE_OPERAND (arg0, 0);
11960 tree a01 = TREE_OPERAND (arg0, 1);
11961 tree a10 = TREE_OPERAND (arg1, 0);
11962 tree a11 = TREE_OPERAND (arg1, 1);
11963 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
11964 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
11965 && (code == TRUTH_AND_EXPR
11966 || code == TRUTH_OR_EXPR));
11968 if (operand_equal_p (a00, a10, 0))
11969 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
11970 fold_build2_loc (loc, code, type, a01, a11));
11971 else if (commutative && operand_equal_p (a00, a11, 0))
11972 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
11973 fold_build2_loc (loc, code, type, a01, a10));
11974 else if (commutative && operand_equal_p (a01, a10, 0))
11975 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
11976 fold_build2_loc (loc, code, type, a00, a11));
11978 /* This case if tricky because we must either have commutative
11979 operators or else A10 must not have side-effects. */
11981 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
11982 && operand_equal_p (a01, a11, 0))
11983 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11984 fold_build2_loc (loc, code, type, a00, a10),
11985 a01);
11988 /* See if we can build a range comparison. */
11989 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
11990 return tem;
11992 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
11993 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
11995 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
11996 if (tem)
11997 return fold_build2_loc (loc, code, type, tem, arg1);
12000 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
12001 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
12003 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
12004 if (tem)
12005 return fold_build2_loc (loc, code, type, arg0, tem);
12008 /* Check for the possibility of merging component references. If our
12009 lhs is another similar operation, try to merge its rhs with our
12010 rhs. Then try to merge our lhs and rhs. */
12011 if (TREE_CODE (arg0) == code
12012 && 0 != (tem = fold_truthop (loc, code, type,
12013 TREE_OPERAND (arg0, 1), arg1)))
12014 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12016 if ((tem = fold_truthop (loc, code, type, arg0, arg1)) != 0)
12017 return tem;
12019 return NULL_TREE;
12021 case TRUTH_ORIF_EXPR:
12022 /* Note that the operands of this must be ints
12023 and their values must be 0 or true.
12024 ("true" is a fixed value perhaps depending on the language.) */
12025 /* If first arg is constant true, return it. */
12026 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12027 return fold_convert_loc (loc, type, arg0);
12028 case TRUTH_OR_EXPR:
12029 /* If either arg is constant zero, drop it. */
12030 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12031 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12032 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12033 /* Preserve sequence points. */
12034 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12035 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12036 /* If second arg is constant true, result is true, but we must
12037 evaluate first arg. */
12038 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12039 return omit_one_operand_loc (loc, type, arg1, arg0);
12040 /* Likewise for first arg, but note this only occurs here for
12041 TRUTH_OR_EXPR. */
12042 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12043 return omit_one_operand_loc (loc, type, arg0, arg1);
12045 /* !X || X is always true. */
12046 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12047 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12048 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12049 /* X || !X is always true. */
12050 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12051 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12052 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12054 /* (X && !Y) || (!X && Y) is X ^ Y */
12055 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12056 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12058 tree a0, a1, l0, l1, n0, n1;
12060 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12061 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12063 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12064 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12066 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12067 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12069 if ((operand_equal_p (n0, a0, 0)
12070 && operand_equal_p (n1, a1, 0))
12071 || (operand_equal_p (n0, a1, 0)
12072 && operand_equal_p (n1, a0, 0)))
12073 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12075 goto truth_andor;
12077 case TRUTH_XOR_EXPR:
12078 /* If the second arg is constant zero, drop it. */
12079 if (integer_zerop (arg1))
12080 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12081 /* If the second arg is constant true, this is a logical inversion. */
12082 if (integer_onep (arg1))
12084 /* Only call invert_truthvalue if operand is a truth value. */
12085 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
12086 tem = fold_build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
12087 else
12088 tem = invert_truthvalue_loc (loc, arg0);
12089 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12091 /* Identical arguments cancel to zero. */
12092 if (operand_equal_p (arg0, arg1, 0))
12093 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12095 /* !X ^ X is always true. */
12096 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12097 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12098 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12100 /* X ^ !X is always true. */
12101 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12102 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12103 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12105 return NULL_TREE;
12107 case EQ_EXPR:
12108 case NE_EXPR:
12109 STRIP_NOPS (arg0);
12110 STRIP_NOPS (arg1);
12112 tem = fold_comparison (loc, code, type, op0, op1);
12113 if (tem != NULL_TREE)
12114 return tem;
12116 /* bool_var != 0 becomes bool_var. */
12117 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12118 && code == NE_EXPR)
12119 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12121 /* bool_var == 1 becomes bool_var. */
12122 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12123 && code == EQ_EXPR)
12124 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12126 /* bool_var != 1 becomes !bool_var. */
12127 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12128 && code == NE_EXPR)
12129 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
12130 fold_convert_loc (loc, type, arg0));
12132 /* bool_var == 0 becomes !bool_var. */
12133 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12134 && code == EQ_EXPR)
12135 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
12136 fold_convert_loc (loc, type, arg0));
12138 /* !exp != 0 becomes !exp */
12139 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12140 && code == NE_EXPR)
12141 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12143 /* If this is an equality comparison of the address of two non-weak,
12144 unaliased symbols neither of which are extern (since we do not
12145 have access to attributes for externs), then we know the result. */
12146 if (TREE_CODE (arg0) == ADDR_EXPR
12147 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
12148 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
12149 && ! lookup_attribute ("alias",
12150 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
12151 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
12152 && TREE_CODE (arg1) == ADDR_EXPR
12153 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
12154 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
12155 && ! lookup_attribute ("alias",
12156 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
12157 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
12159 /* We know that we're looking at the address of two
12160 non-weak, unaliased, static _DECL nodes.
12162 It is both wasteful and incorrect to call operand_equal_p
12163 to compare the two ADDR_EXPR nodes. It is wasteful in that
12164 all we need to do is test pointer equality for the arguments
12165 to the two ADDR_EXPR nodes. It is incorrect to use
12166 operand_equal_p as that function is NOT equivalent to a
12167 C equality test. It can in fact return false for two
12168 objects which would test as equal using the C equality
12169 operator. */
12170 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12171 return constant_boolean_node (equal
12172 ? code == EQ_EXPR : code != EQ_EXPR,
12173 type);
12176 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
12177 a MINUS_EXPR of a constant, we can convert it into a comparison with
12178 a revised constant as long as no overflow occurs. */
12179 if (TREE_CODE (arg1) == INTEGER_CST
12180 && (TREE_CODE (arg0) == PLUS_EXPR
12181 || TREE_CODE (arg0) == MINUS_EXPR)
12182 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12183 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
12184 ? MINUS_EXPR : PLUS_EXPR,
12185 fold_convert_loc (loc, TREE_TYPE (arg0),
12186 arg1),
12187 TREE_OPERAND (arg0, 1)))
12188 && !TREE_OVERFLOW (tem))
12189 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12191 /* Similarly for a NEGATE_EXPR. */
12192 if (TREE_CODE (arg0) == NEGATE_EXPR
12193 && TREE_CODE (arg1) == INTEGER_CST
12194 && 0 != (tem = negate_expr (fold_convert_loc (loc, TREE_TYPE (arg0),
12195 arg1)))
12196 && TREE_CODE (tem) == INTEGER_CST
12197 && !TREE_OVERFLOW (tem))
12198 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12200 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12201 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12202 && TREE_CODE (arg1) == INTEGER_CST
12203 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12204 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12205 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
12206 fold_convert_loc (loc,
12207 TREE_TYPE (arg0),
12208 arg1),
12209 TREE_OPERAND (arg0, 1)));
12211 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12212 if ((TREE_CODE (arg0) == PLUS_EXPR
12213 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12214 || TREE_CODE (arg0) == MINUS_EXPR)
12215 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12216 0)),
12217 arg1, 0)
12218 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12219 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12221 tree val = TREE_OPERAND (arg0, 1);
12222 return omit_two_operands_loc (loc, type,
12223 fold_build2_loc (loc, code, type,
12224 val,
12225 build_int_cst (TREE_TYPE (val),
12226 0)),
12227 TREE_OPERAND (arg0, 0), arg1);
12230 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12231 if (TREE_CODE (arg0) == MINUS_EXPR
12232 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12233 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12234 1)),
12235 arg1, 0)
12236 && (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 0)) & 1) == 1)
12238 return omit_two_operands_loc (loc, type,
12239 code == NE_EXPR
12240 ? boolean_true_node : boolean_false_node,
12241 TREE_OPERAND (arg0, 1), arg1);
12244 /* If we have X - Y == 0, we can convert that to X == Y and similarly
12245 for !=. Don't do this for ordered comparisons due to overflow. */
12246 if (TREE_CODE (arg0) == MINUS_EXPR
12247 && integer_zerop (arg1))
12248 return fold_build2_loc (loc, code, type,
12249 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
12251 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12252 if (TREE_CODE (arg0) == ABS_EXPR
12253 && (integer_zerop (arg1) || real_zerop (arg1)))
12254 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
12256 /* If this is an EQ or NE comparison with zero and ARG0 is
12257 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12258 two operations, but the latter can be done in one less insn
12259 on machines that have only two-operand insns or on which a
12260 constant cannot be the first operand. */
12261 if (TREE_CODE (arg0) == BIT_AND_EXPR
12262 && integer_zerop (arg1))
12264 tree arg00 = TREE_OPERAND (arg0, 0);
12265 tree arg01 = TREE_OPERAND (arg0, 1);
12266 if (TREE_CODE (arg00) == LSHIFT_EXPR
12267 && integer_onep (TREE_OPERAND (arg00, 0)))
12269 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12270 arg01, TREE_OPERAND (arg00, 1));
12271 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12272 build_int_cst (TREE_TYPE (arg0), 1));
12273 return fold_build2_loc (loc, code, type,
12274 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12275 arg1);
12277 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12278 && integer_onep (TREE_OPERAND (arg01, 0)))
12280 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12281 arg00, TREE_OPERAND (arg01, 1));
12282 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12283 build_int_cst (TREE_TYPE (arg0), 1));
12284 return fold_build2_loc (loc, code, type,
12285 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12286 arg1);
12290 /* If this is an NE or EQ comparison of zero against the result of a
12291 signed MOD operation whose second operand is a power of 2, make
12292 the MOD operation unsigned since it is simpler and equivalent. */
12293 if (integer_zerop (arg1)
12294 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12295 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12296 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12297 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12298 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12299 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12301 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12302 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
12303 fold_convert_loc (loc, newtype,
12304 TREE_OPERAND (arg0, 0)),
12305 fold_convert_loc (loc, newtype,
12306 TREE_OPERAND (arg0, 1)));
12308 return fold_build2_loc (loc, code, type, newmod,
12309 fold_convert_loc (loc, newtype, arg1));
12312 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12313 C1 is a valid shift constant, and C2 is a power of two, i.e.
12314 a single bit. */
12315 if (TREE_CODE (arg0) == BIT_AND_EXPR
12316 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12317 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12318 == INTEGER_CST
12319 && integer_pow2p (TREE_OPERAND (arg0, 1))
12320 && integer_zerop (arg1))
12322 tree itype = TREE_TYPE (arg0);
12323 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
12324 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12326 /* Check for a valid shift count. */
12327 if (TREE_INT_CST_HIGH (arg001) == 0
12328 && TREE_INT_CST_LOW (arg001) < prec)
12330 tree arg01 = TREE_OPERAND (arg0, 1);
12331 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12332 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12333 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12334 can be rewritten as (X & (C2 << C1)) != 0. */
12335 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12337 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
12338 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
12339 return fold_build2_loc (loc, code, type, tem,
12340 fold_convert_loc (loc, itype, arg1));
12342 /* Otherwise, for signed (arithmetic) shifts,
12343 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12344 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12345 else if (!TYPE_UNSIGNED (itype))
12346 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12347 arg000, build_int_cst (itype, 0));
12348 /* Otherwise, of unsigned (logical) shifts,
12349 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12350 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12351 else
12352 return omit_one_operand_loc (loc, type,
12353 code == EQ_EXPR ? integer_one_node
12354 : integer_zero_node,
12355 arg000);
12359 /* If this is an NE comparison of zero with an AND of one, remove the
12360 comparison since the AND will give the correct value. */
12361 if (code == NE_EXPR
12362 && integer_zerop (arg1)
12363 && TREE_CODE (arg0) == BIT_AND_EXPR
12364 && integer_onep (TREE_OPERAND (arg0, 1)))
12365 return fold_convert_loc (loc, type, arg0);
12367 /* If we have (A & C) == C where C is a power of 2, convert this into
12368 (A & C) != 0. Similarly for NE_EXPR. */
12369 if (TREE_CODE (arg0) == BIT_AND_EXPR
12370 && integer_pow2p (TREE_OPERAND (arg0, 1))
12371 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12372 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12373 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
12374 integer_zero_node));
12376 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12377 bit, then fold the expression into A < 0 or A >= 0. */
12378 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
12379 if (tem)
12380 return tem;
12382 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12383 Similarly for NE_EXPR. */
12384 if (TREE_CODE (arg0) == BIT_AND_EXPR
12385 && TREE_CODE (arg1) == INTEGER_CST
12386 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12388 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
12389 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12390 TREE_OPERAND (arg0, 1));
12391 tree dandnotc
12392 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12393 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
12394 notc);
12395 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12396 if (integer_nonzerop (dandnotc))
12397 return omit_one_operand_loc (loc, type, rslt, arg0);
12400 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12401 Similarly for NE_EXPR. */
12402 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12403 && TREE_CODE (arg1) == INTEGER_CST
12404 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12406 tree notd = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12407 tree candnotd
12408 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12409 TREE_OPERAND (arg0, 1),
12410 fold_convert_loc (loc, TREE_TYPE (arg0), notd));
12411 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12412 if (integer_nonzerop (candnotd))
12413 return omit_one_operand_loc (loc, type, rslt, arg0);
12416 /* If this is a comparison of a field, we may be able to simplify it. */
12417 if ((TREE_CODE (arg0) == COMPONENT_REF
12418 || TREE_CODE (arg0) == BIT_FIELD_REF)
12419 /* Handle the constant case even without -O
12420 to make sure the warnings are given. */
12421 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12423 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
12424 if (t1)
12425 return t1;
12428 /* Optimize comparisons of strlen vs zero to a compare of the
12429 first character of the string vs zero. To wit,
12430 strlen(ptr) == 0 => *ptr == 0
12431 strlen(ptr) != 0 => *ptr != 0
12432 Other cases should reduce to one of these two (or a constant)
12433 due to the return value of strlen being unsigned. */
12434 if (TREE_CODE (arg0) == CALL_EXPR
12435 && integer_zerop (arg1))
12437 tree fndecl = get_callee_fndecl (arg0);
12439 if (fndecl
12440 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12441 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12442 && call_expr_nargs (arg0) == 1
12443 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12445 tree iref = build_fold_indirect_ref_loc (loc,
12446 CALL_EXPR_ARG (arg0, 0));
12447 return fold_build2_loc (loc, code, type, iref,
12448 build_int_cst (TREE_TYPE (iref), 0));
12452 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12453 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12454 if (TREE_CODE (arg0) == RSHIFT_EXPR
12455 && integer_zerop (arg1)
12456 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12458 tree arg00 = TREE_OPERAND (arg0, 0);
12459 tree arg01 = TREE_OPERAND (arg0, 1);
12460 tree itype = TREE_TYPE (arg00);
12461 if (TREE_INT_CST_HIGH (arg01) == 0
12462 && TREE_INT_CST_LOW (arg01)
12463 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
12465 if (TYPE_UNSIGNED (itype))
12467 itype = signed_type_for (itype);
12468 arg00 = fold_convert_loc (loc, itype, arg00);
12470 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12471 type, arg00, build_int_cst (itype, 0));
12475 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12476 if (integer_zerop (arg1)
12477 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12478 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12479 TREE_OPERAND (arg0, 1));
12481 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12482 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12483 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12484 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12485 build_int_cst (TREE_TYPE (arg0), 0));
12486 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12487 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12488 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12489 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12490 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 1),
12491 build_int_cst (TREE_TYPE (arg0), 0));
12493 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12494 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12495 && TREE_CODE (arg1) == INTEGER_CST
12496 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12497 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12498 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg1),
12499 TREE_OPERAND (arg0, 1), arg1));
12501 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12502 (X & C) == 0 when C is a single bit. */
12503 if (TREE_CODE (arg0) == BIT_AND_EXPR
12504 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12505 && integer_zerop (arg1)
12506 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12508 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12509 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12510 TREE_OPERAND (arg0, 1));
12511 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12512 type, tem,
12513 fold_convert_loc (loc, TREE_TYPE (arg0),
12514 arg1));
12517 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12518 constant C is a power of two, i.e. a single bit. */
12519 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12520 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12521 && integer_zerop (arg1)
12522 && integer_pow2p (TREE_OPERAND (arg0, 1))
12523 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12524 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12526 tree arg00 = TREE_OPERAND (arg0, 0);
12527 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12528 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12531 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12532 when is C is a power of two, i.e. a single bit. */
12533 if (TREE_CODE (arg0) == BIT_AND_EXPR
12534 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12535 && integer_zerop (arg1)
12536 && integer_pow2p (TREE_OPERAND (arg0, 1))
12537 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12538 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12540 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12541 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12542 arg000, TREE_OPERAND (arg0, 1));
12543 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12544 tem, build_int_cst (TREE_TYPE (tem), 0));
12547 if (integer_zerop (arg1)
12548 && tree_expr_nonzero_p (arg0))
12550 tree res = constant_boolean_node (code==NE_EXPR, type);
12551 return omit_one_operand_loc (loc, type, res, arg0);
12554 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12555 if (TREE_CODE (arg0) == NEGATE_EXPR
12556 && TREE_CODE (arg1) == NEGATE_EXPR)
12557 return fold_build2_loc (loc, code, type,
12558 TREE_OPERAND (arg0, 0),
12559 fold_convert_loc (loc, TREE_TYPE (arg0),
12560 TREE_OPERAND (arg1, 0)));
12562 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12563 if (TREE_CODE (arg0) == BIT_AND_EXPR
12564 && TREE_CODE (arg1) == BIT_AND_EXPR)
12566 tree arg00 = TREE_OPERAND (arg0, 0);
12567 tree arg01 = TREE_OPERAND (arg0, 1);
12568 tree arg10 = TREE_OPERAND (arg1, 0);
12569 tree arg11 = TREE_OPERAND (arg1, 1);
12570 tree itype = TREE_TYPE (arg0);
12572 if (operand_equal_p (arg01, arg11, 0))
12573 return fold_build2_loc (loc, code, type,
12574 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12575 fold_build2_loc (loc,
12576 BIT_XOR_EXPR, itype,
12577 arg00, arg10),
12578 arg01),
12579 build_int_cst (itype, 0));
12581 if (operand_equal_p (arg01, arg10, 0))
12582 return fold_build2_loc (loc, code, type,
12583 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12584 fold_build2_loc (loc,
12585 BIT_XOR_EXPR, itype,
12586 arg00, arg11),
12587 arg01),
12588 build_int_cst (itype, 0));
12590 if (operand_equal_p (arg00, arg11, 0))
12591 return fold_build2_loc (loc, code, type,
12592 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12593 fold_build2_loc (loc,
12594 BIT_XOR_EXPR, itype,
12595 arg01, arg10),
12596 arg00),
12597 build_int_cst (itype, 0));
12599 if (operand_equal_p (arg00, arg10, 0))
12600 return fold_build2_loc (loc, code, type,
12601 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12602 fold_build2_loc (loc,
12603 BIT_XOR_EXPR, itype,
12604 arg01, arg11),
12605 arg00),
12606 build_int_cst (itype, 0));
12609 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12610 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12612 tree arg00 = TREE_OPERAND (arg0, 0);
12613 tree arg01 = TREE_OPERAND (arg0, 1);
12614 tree arg10 = TREE_OPERAND (arg1, 0);
12615 tree arg11 = TREE_OPERAND (arg1, 1);
12616 tree itype = TREE_TYPE (arg0);
12618 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12619 operand_equal_p guarantees no side-effects so we don't need
12620 to use omit_one_operand on Z. */
12621 if (operand_equal_p (arg01, arg11, 0))
12622 return fold_build2_loc (loc, code, type, arg00,
12623 fold_convert_loc (loc, TREE_TYPE (arg00),
12624 arg10));
12625 if (operand_equal_p (arg01, arg10, 0))
12626 return fold_build2_loc (loc, code, type, arg00,
12627 fold_convert_loc (loc, TREE_TYPE (arg00),
12628 arg11));
12629 if (operand_equal_p (arg00, arg11, 0))
12630 return fold_build2_loc (loc, code, type, arg01,
12631 fold_convert_loc (loc, TREE_TYPE (arg01),
12632 arg10));
12633 if (operand_equal_p (arg00, arg10, 0))
12634 return fold_build2_loc (loc, code, type, arg01,
12635 fold_convert_loc (loc, TREE_TYPE (arg01),
12636 arg11));
12638 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12639 if (TREE_CODE (arg01) == INTEGER_CST
12640 && TREE_CODE (arg11) == INTEGER_CST)
12642 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12643 fold_convert_loc (loc, itype, arg11));
12644 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12645 return fold_build2_loc (loc, code, type, tem,
12646 fold_convert_loc (loc, itype, arg10));
12650 /* Attempt to simplify equality/inequality comparisons of complex
12651 values. Only lower the comparison if the result is known or
12652 can be simplified to a single scalar comparison. */
12653 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12654 || TREE_CODE (arg0) == COMPLEX_CST)
12655 && (TREE_CODE (arg1) == COMPLEX_EXPR
12656 || TREE_CODE (arg1) == COMPLEX_CST))
12658 tree real0, imag0, real1, imag1;
12659 tree rcond, icond;
12661 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12663 real0 = TREE_OPERAND (arg0, 0);
12664 imag0 = TREE_OPERAND (arg0, 1);
12666 else
12668 real0 = TREE_REALPART (arg0);
12669 imag0 = TREE_IMAGPART (arg0);
12672 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12674 real1 = TREE_OPERAND (arg1, 0);
12675 imag1 = TREE_OPERAND (arg1, 1);
12677 else
12679 real1 = TREE_REALPART (arg1);
12680 imag1 = TREE_IMAGPART (arg1);
12683 rcond = fold_binary_loc (loc, code, type, real0, real1);
12684 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12686 if (integer_zerop (rcond))
12688 if (code == EQ_EXPR)
12689 return omit_two_operands_loc (loc, type, boolean_false_node,
12690 imag0, imag1);
12691 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12693 else
12695 if (code == NE_EXPR)
12696 return omit_two_operands_loc (loc, type, boolean_true_node,
12697 imag0, imag1);
12698 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12702 icond = fold_binary_loc (loc, code, type, imag0, imag1);
12703 if (icond && TREE_CODE (icond) == INTEGER_CST)
12705 if (integer_zerop (icond))
12707 if (code == EQ_EXPR)
12708 return omit_two_operands_loc (loc, type, boolean_false_node,
12709 real0, real1);
12710 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12712 else
12714 if (code == NE_EXPR)
12715 return omit_two_operands_loc (loc, type, boolean_true_node,
12716 real0, real1);
12717 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12722 return NULL_TREE;
12724 case LT_EXPR:
12725 case GT_EXPR:
12726 case LE_EXPR:
12727 case GE_EXPR:
12728 tem = fold_comparison (loc, code, type, op0, op1);
12729 if (tem != NULL_TREE)
12730 return tem;
12732 /* Transform comparisons of the form X +- C CMP X. */
12733 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12734 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12735 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12736 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12737 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12738 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12740 tree arg01 = TREE_OPERAND (arg0, 1);
12741 enum tree_code code0 = TREE_CODE (arg0);
12742 int is_positive;
12744 if (TREE_CODE (arg01) == REAL_CST)
12745 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12746 else
12747 is_positive = tree_int_cst_sgn (arg01);
12749 /* (X - c) > X becomes false. */
12750 if (code == GT_EXPR
12751 && ((code0 == MINUS_EXPR && is_positive >= 0)
12752 || (code0 == PLUS_EXPR && is_positive <= 0)))
12754 if (TREE_CODE (arg01) == INTEGER_CST
12755 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12756 fold_overflow_warning (("assuming signed overflow does not "
12757 "occur when assuming that (X - c) > X "
12758 "is always false"),
12759 WARN_STRICT_OVERFLOW_ALL);
12760 return constant_boolean_node (0, type);
12763 /* Likewise (X + c) < X becomes false. */
12764 if (code == LT_EXPR
12765 && ((code0 == PLUS_EXPR && is_positive >= 0)
12766 || (code0 == MINUS_EXPR && is_positive <= 0)))
12768 if (TREE_CODE (arg01) == INTEGER_CST
12769 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12770 fold_overflow_warning (("assuming signed overflow does not "
12771 "occur when assuming that "
12772 "(X + c) < X is always false"),
12773 WARN_STRICT_OVERFLOW_ALL);
12774 return constant_boolean_node (0, type);
12777 /* Convert (X - c) <= X to true. */
12778 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12779 && code == LE_EXPR
12780 && ((code0 == MINUS_EXPR && is_positive >= 0)
12781 || (code0 == PLUS_EXPR && is_positive <= 0)))
12783 if (TREE_CODE (arg01) == INTEGER_CST
12784 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12785 fold_overflow_warning (("assuming signed overflow does not "
12786 "occur when assuming that "
12787 "(X - c) <= X is always true"),
12788 WARN_STRICT_OVERFLOW_ALL);
12789 return constant_boolean_node (1, type);
12792 /* Convert (X + c) >= X to true. */
12793 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12794 && code == GE_EXPR
12795 && ((code0 == PLUS_EXPR && is_positive >= 0)
12796 || (code0 == MINUS_EXPR && is_positive <= 0)))
12798 if (TREE_CODE (arg01) == INTEGER_CST
12799 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12800 fold_overflow_warning (("assuming signed overflow does not "
12801 "occur when assuming that "
12802 "(X + c) >= X is always true"),
12803 WARN_STRICT_OVERFLOW_ALL);
12804 return constant_boolean_node (1, type);
12807 if (TREE_CODE (arg01) == INTEGER_CST)
12809 /* Convert X + c > X and X - c < X to true for integers. */
12810 if (code == GT_EXPR
12811 && ((code0 == PLUS_EXPR && is_positive > 0)
12812 || (code0 == MINUS_EXPR && is_positive < 0)))
12814 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12815 fold_overflow_warning (("assuming signed overflow does "
12816 "not occur when assuming that "
12817 "(X + c) > X is always true"),
12818 WARN_STRICT_OVERFLOW_ALL);
12819 return constant_boolean_node (1, type);
12822 if (code == LT_EXPR
12823 && ((code0 == MINUS_EXPR && is_positive > 0)
12824 || (code0 == PLUS_EXPR && is_positive < 0)))
12826 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12827 fold_overflow_warning (("assuming signed overflow does "
12828 "not occur when assuming that "
12829 "(X - c) < X is always true"),
12830 WARN_STRICT_OVERFLOW_ALL);
12831 return constant_boolean_node (1, type);
12834 /* Convert X + c <= X and X - c >= X to false for integers. */
12835 if (code == LE_EXPR
12836 && ((code0 == PLUS_EXPR && is_positive > 0)
12837 || (code0 == MINUS_EXPR && is_positive < 0)))
12839 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12840 fold_overflow_warning (("assuming signed overflow does "
12841 "not occur when assuming that "
12842 "(X + c) <= X is always false"),
12843 WARN_STRICT_OVERFLOW_ALL);
12844 return constant_boolean_node (0, type);
12847 if (code == GE_EXPR
12848 && ((code0 == MINUS_EXPR && is_positive > 0)
12849 || (code0 == PLUS_EXPR && is_positive < 0)))
12851 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12852 fold_overflow_warning (("assuming signed overflow does "
12853 "not occur when assuming that "
12854 "(X - c) >= X is always false"),
12855 WARN_STRICT_OVERFLOW_ALL);
12856 return constant_boolean_node (0, type);
12861 /* Comparisons with the highest or lowest possible integer of
12862 the specified precision will have known values. */
12864 tree arg1_type = TREE_TYPE (arg1);
12865 unsigned int width = TYPE_PRECISION (arg1_type);
12867 if (TREE_CODE (arg1) == INTEGER_CST
12868 && width <= 2 * HOST_BITS_PER_WIDE_INT
12869 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12871 HOST_WIDE_INT signed_max_hi;
12872 unsigned HOST_WIDE_INT signed_max_lo;
12873 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
12875 if (width <= HOST_BITS_PER_WIDE_INT)
12877 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12878 - 1;
12879 signed_max_hi = 0;
12880 max_hi = 0;
12882 if (TYPE_UNSIGNED (arg1_type))
12884 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12885 min_lo = 0;
12886 min_hi = 0;
12888 else
12890 max_lo = signed_max_lo;
12891 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12892 min_hi = -1;
12895 else
12897 width -= HOST_BITS_PER_WIDE_INT;
12898 signed_max_lo = -1;
12899 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12900 - 1;
12901 max_lo = -1;
12902 min_lo = 0;
12904 if (TYPE_UNSIGNED (arg1_type))
12906 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12907 min_hi = 0;
12909 else
12911 max_hi = signed_max_hi;
12912 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12916 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
12917 && TREE_INT_CST_LOW (arg1) == max_lo)
12918 switch (code)
12920 case GT_EXPR:
12921 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12923 case GE_EXPR:
12924 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12926 case LE_EXPR:
12927 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12929 case LT_EXPR:
12930 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12932 /* The GE_EXPR and LT_EXPR cases above are not normally
12933 reached because of previous transformations. */
12935 default:
12936 break;
12938 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12939 == max_hi
12940 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
12941 switch (code)
12943 case GT_EXPR:
12944 arg1 = const_binop (PLUS_EXPR, arg1,
12945 build_int_cst (TREE_TYPE (arg1), 1));
12946 return fold_build2_loc (loc, EQ_EXPR, type,
12947 fold_convert_loc (loc,
12948 TREE_TYPE (arg1), arg0),
12949 arg1);
12950 case LE_EXPR:
12951 arg1 = const_binop (PLUS_EXPR, arg1,
12952 build_int_cst (TREE_TYPE (arg1), 1));
12953 return fold_build2_loc (loc, NE_EXPR, type,
12954 fold_convert_loc (loc, TREE_TYPE (arg1),
12955 arg0),
12956 arg1);
12957 default:
12958 break;
12960 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12961 == min_hi
12962 && TREE_INT_CST_LOW (arg1) == min_lo)
12963 switch (code)
12965 case LT_EXPR:
12966 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12968 case LE_EXPR:
12969 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12971 case GE_EXPR:
12972 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12974 case GT_EXPR:
12975 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12977 default:
12978 break;
12980 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12981 == min_hi
12982 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
12983 switch (code)
12985 case GE_EXPR:
12986 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node);
12987 return fold_build2_loc (loc, NE_EXPR, type,
12988 fold_convert_loc (loc,
12989 TREE_TYPE (arg1), arg0),
12990 arg1);
12991 case LT_EXPR:
12992 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node);
12993 return fold_build2_loc (loc, EQ_EXPR, type,
12994 fold_convert_loc (loc, TREE_TYPE (arg1),
12995 arg0),
12996 arg1);
12997 default:
12998 break;
13001 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
13002 && TREE_INT_CST_LOW (arg1) == signed_max_lo
13003 && TYPE_UNSIGNED (arg1_type)
13004 /* We will flip the signedness of the comparison operator
13005 associated with the mode of arg1, so the sign bit is
13006 specified by this mode. Check that arg1 is the signed
13007 max associated with this sign bit. */
13008 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
13009 /* signed_type does not work on pointer types. */
13010 && INTEGRAL_TYPE_P (arg1_type))
13012 /* The following case also applies to X < signed_max+1
13013 and X >= signed_max+1 because previous transformations. */
13014 if (code == LE_EXPR || code == GT_EXPR)
13016 tree st;
13017 st = signed_type_for (TREE_TYPE (arg1));
13018 return fold_build2_loc (loc,
13019 code == LE_EXPR ? GE_EXPR : LT_EXPR,
13020 type, fold_convert_loc (loc, st, arg0),
13021 build_int_cst (st, 0));
13027 /* If we are comparing an ABS_EXPR with a constant, we can
13028 convert all the cases into explicit comparisons, but they may
13029 well not be faster than doing the ABS and one comparison.
13030 But ABS (X) <= C is a range comparison, which becomes a subtraction
13031 and a comparison, and is probably faster. */
13032 if (code == LE_EXPR
13033 && TREE_CODE (arg1) == INTEGER_CST
13034 && TREE_CODE (arg0) == ABS_EXPR
13035 && ! TREE_SIDE_EFFECTS (arg0)
13036 && (0 != (tem = negate_expr (arg1)))
13037 && TREE_CODE (tem) == INTEGER_CST
13038 && !TREE_OVERFLOW (tem))
13039 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13040 build2 (GE_EXPR, type,
13041 TREE_OPERAND (arg0, 0), tem),
13042 build2 (LE_EXPR, type,
13043 TREE_OPERAND (arg0, 0), arg1));
13045 /* Convert ABS_EXPR<x> >= 0 to true. */
13046 strict_overflow_p = false;
13047 if (code == GE_EXPR
13048 && (integer_zerop (arg1)
13049 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
13050 && real_zerop (arg1)))
13051 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13053 if (strict_overflow_p)
13054 fold_overflow_warning (("assuming signed overflow does not occur "
13055 "when simplifying comparison of "
13056 "absolute value and zero"),
13057 WARN_STRICT_OVERFLOW_CONDITIONAL);
13058 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13061 /* Convert ABS_EXPR<x> < 0 to false. */
13062 strict_overflow_p = false;
13063 if (code == LT_EXPR
13064 && (integer_zerop (arg1) || real_zerop (arg1))
13065 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13067 if (strict_overflow_p)
13068 fold_overflow_warning (("assuming signed overflow does not occur "
13069 "when simplifying comparison of "
13070 "absolute value and zero"),
13071 WARN_STRICT_OVERFLOW_CONDITIONAL);
13072 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13075 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13076 and similarly for >= into !=. */
13077 if ((code == LT_EXPR || code == GE_EXPR)
13078 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13079 && TREE_CODE (arg1) == LSHIFT_EXPR
13080 && integer_onep (TREE_OPERAND (arg1, 0)))
13081 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13082 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13083 TREE_OPERAND (arg1, 1)),
13084 build_int_cst (TREE_TYPE (arg0), 0));
13086 if ((code == LT_EXPR || code == GE_EXPR)
13087 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13088 && CONVERT_EXPR_P (arg1)
13089 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13090 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13092 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13093 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
13094 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13095 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
13096 build_int_cst (TREE_TYPE (arg0), 0));
13099 return NULL_TREE;
13101 case UNORDERED_EXPR:
13102 case ORDERED_EXPR:
13103 case UNLT_EXPR:
13104 case UNLE_EXPR:
13105 case UNGT_EXPR:
13106 case UNGE_EXPR:
13107 case UNEQ_EXPR:
13108 case LTGT_EXPR:
13109 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13111 t1 = fold_relational_const (code, type, arg0, arg1);
13112 if (t1 != NULL_TREE)
13113 return t1;
13116 /* If the first operand is NaN, the result is constant. */
13117 if (TREE_CODE (arg0) == REAL_CST
13118 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13119 && (code != LTGT_EXPR || ! flag_trapping_math))
13121 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13122 ? integer_zero_node
13123 : integer_one_node;
13124 return omit_one_operand_loc (loc, type, t1, arg1);
13127 /* If the second operand is NaN, the result is constant. */
13128 if (TREE_CODE (arg1) == REAL_CST
13129 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13130 && (code != LTGT_EXPR || ! flag_trapping_math))
13132 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13133 ? integer_zero_node
13134 : integer_one_node;
13135 return omit_one_operand_loc (loc, type, t1, arg0);
13138 /* Simplify unordered comparison of something with itself. */
13139 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13140 && operand_equal_p (arg0, arg1, 0))
13141 return constant_boolean_node (1, type);
13143 if (code == LTGT_EXPR
13144 && !flag_trapping_math
13145 && operand_equal_p (arg0, arg1, 0))
13146 return constant_boolean_node (0, type);
13148 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13150 tree targ0 = strip_float_extensions (arg0);
13151 tree targ1 = strip_float_extensions (arg1);
13152 tree newtype = TREE_TYPE (targ0);
13154 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13155 newtype = TREE_TYPE (targ1);
13157 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13158 return fold_build2_loc (loc, code, type,
13159 fold_convert_loc (loc, newtype, targ0),
13160 fold_convert_loc (loc, newtype, targ1));
13163 return NULL_TREE;
13165 case COMPOUND_EXPR:
13166 /* When pedantic, a compound expression can be neither an lvalue
13167 nor an integer constant expression. */
13168 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13169 return NULL_TREE;
13170 /* Don't let (0, 0) be null pointer constant. */
13171 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13172 : fold_convert_loc (loc, type, arg1);
13173 return pedantic_non_lvalue_loc (loc, tem);
13175 case COMPLEX_EXPR:
13176 if ((TREE_CODE (arg0) == REAL_CST
13177 && TREE_CODE (arg1) == REAL_CST)
13178 || (TREE_CODE (arg0) == INTEGER_CST
13179 && TREE_CODE (arg1) == INTEGER_CST))
13180 return build_complex (type, arg0, arg1);
13181 if (TREE_CODE (arg0) == REALPART_EXPR
13182 && TREE_CODE (arg1) == IMAGPART_EXPR
13183 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg0, 0)))
13184 == TYPE_MAIN_VARIANT (type))
13185 && operand_equal_p (TREE_OPERAND (arg0, 0),
13186 TREE_OPERAND (arg1, 0), 0))
13187 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
13188 TREE_OPERAND (arg1, 0));
13189 return NULL_TREE;
13191 case ASSERT_EXPR:
13192 /* An ASSERT_EXPR should never be passed to fold_binary. */
13193 gcc_unreachable ();
13195 default:
13196 return NULL_TREE;
13197 } /* switch (code) */
13200 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13201 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13202 of GOTO_EXPR. */
13204 static tree
13205 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
13207 switch (TREE_CODE (*tp))
13209 case LABEL_EXPR:
13210 return *tp;
13212 case GOTO_EXPR:
13213 *walk_subtrees = 0;
13215 /* ... fall through ... */
13217 default:
13218 return NULL_TREE;
13222 /* Return whether the sub-tree ST contains a label which is accessible from
13223 outside the sub-tree. */
13225 static bool
13226 contains_label_p (tree st)
13228 return
13229 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
13232 /* Fold a ternary expression of code CODE and type TYPE with operands
13233 OP0, OP1, and OP2. Return the folded expression if folding is
13234 successful. Otherwise, return NULL_TREE. */
13236 tree
13237 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13238 tree op0, tree op1, tree op2)
13240 tree tem;
13241 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13242 enum tree_code_class kind = TREE_CODE_CLASS (code);
13244 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13245 && TREE_CODE_LENGTH (code) == 3);
13247 /* Strip any conversions that don't change the mode. This is safe
13248 for every expression, except for a comparison expression because
13249 its signedness is derived from its operands. So, in the latter
13250 case, only strip conversions that don't change the signedness.
13252 Note that this is done as an internal manipulation within the
13253 constant folder, in order to find the simplest representation of
13254 the arguments so that their form can be studied. In any cases,
13255 the appropriate type conversions should be put back in the tree
13256 that will get out of the constant folder. */
13257 if (op0)
13259 arg0 = op0;
13260 STRIP_NOPS (arg0);
13263 if (op1)
13265 arg1 = op1;
13266 STRIP_NOPS (arg1);
13269 if (op2)
13271 arg2 = op2;
13272 STRIP_NOPS (arg2);
13275 switch (code)
13277 case COMPONENT_REF:
13278 if (TREE_CODE (arg0) == CONSTRUCTOR
13279 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13281 unsigned HOST_WIDE_INT idx;
13282 tree field, value;
13283 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13284 if (field == arg1)
13285 return value;
13287 return NULL_TREE;
13289 case COND_EXPR:
13290 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13291 so all simple results must be passed through pedantic_non_lvalue. */
13292 if (TREE_CODE (arg0) == INTEGER_CST)
13294 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13295 tem = integer_zerop (arg0) ? op2 : op1;
13296 /* Only optimize constant conditions when the selected branch
13297 has the same type as the COND_EXPR. This avoids optimizing
13298 away "c ? x : throw", where the throw has a void type.
13299 Avoid throwing away that operand which contains label. */
13300 if ((!TREE_SIDE_EFFECTS (unused_op)
13301 || !contains_label_p (unused_op))
13302 && (! VOID_TYPE_P (TREE_TYPE (tem))
13303 || VOID_TYPE_P (type)))
13304 return pedantic_non_lvalue_loc (loc, tem);
13305 return NULL_TREE;
13307 if (operand_equal_p (arg1, op2, 0))
13308 return pedantic_omit_one_operand_loc (loc, type, arg1, arg0);
13310 /* If we have A op B ? A : C, we may be able to convert this to a
13311 simpler expression, depending on the operation and the values
13312 of B and C. Signed zeros prevent all of these transformations,
13313 for reasons given above each one.
13315 Also try swapping the arguments and inverting the conditional. */
13316 if (COMPARISON_CLASS_P (arg0)
13317 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13318 arg1, TREE_OPERAND (arg0, 1))
13319 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
13321 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
13322 if (tem)
13323 return tem;
13326 if (COMPARISON_CLASS_P (arg0)
13327 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13328 op2,
13329 TREE_OPERAND (arg0, 1))
13330 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
13332 location_t loc0 = expr_location_or (arg0, loc);
13333 tem = fold_truth_not_expr (loc0, arg0);
13334 if (tem && COMPARISON_CLASS_P (tem))
13336 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
13337 if (tem)
13338 return tem;
13342 /* If the second operand is simpler than the third, swap them
13343 since that produces better jump optimization results. */
13344 if (truth_value_p (TREE_CODE (arg0))
13345 && tree_swap_operands_p (op1, op2, false))
13347 location_t loc0 = expr_location_or (arg0, loc);
13348 /* See if this can be inverted. If it can't, possibly because
13349 it was a floating-point inequality comparison, don't do
13350 anything. */
13351 tem = fold_truth_not_expr (loc0, arg0);
13352 if (tem)
13353 return fold_build3_loc (loc, code, type, tem, op2, op1);
13356 /* Convert A ? 1 : 0 to simply A. */
13357 if (integer_onep (op1)
13358 && integer_zerop (op2)
13359 /* If we try to convert OP0 to our type, the
13360 call to fold will try to move the conversion inside
13361 a COND, which will recurse. In that case, the COND_EXPR
13362 is probably the best choice, so leave it alone. */
13363 && type == TREE_TYPE (arg0))
13364 return pedantic_non_lvalue_loc (loc, arg0);
13366 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13367 over COND_EXPR in cases such as floating point comparisons. */
13368 if (integer_zerop (op1)
13369 && integer_onep (op2)
13370 && truth_value_p (TREE_CODE (arg0)))
13371 return pedantic_non_lvalue_loc (loc,
13372 fold_convert_loc (loc, type,
13373 invert_truthvalue_loc (loc,
13374 arg0)));
13376 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13377 if (TREE_CODE (arg0) == LT_EXPR
13378 && integer_zerop (TREE_OPERAND (arg0, 1))
13379 && integer_zerop (op2)
13380 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13382 /* sign_bit_p only checks ARG1 bits within A's precision.
13383 If <sign bit of A> has wider type than A, bits outside
13384 of A's precision in <sign bit of A> need to be checked.
13385 If they are all 0, this optimization needs to be done
13386 in unsigned A's type, if they are all 1 in signed A's type,
13387 otherwise this can't be done. */
13388 if (TYPE_PRECISION (TREE_TYPE (tem))
13389 < TYPE_PRECISION (TREE_TYPE (arg1))
13390 && TYPE_PRECISION (TREE_TYPE (tem))
13391 < TYPE_PRECISION (type))
13393 unsigned HOST_WIDE_INT mask_lo;
13394 HOST_WIDE_INT mask_hi;
13395 int inner_width, outer_width;
13396 tree tem_type;
13398 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13399 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13400 if (outer_width > TYPE_PRECISION (type))
13401 outer_width = TYPE_PRECISION (type);
13403 if (outer_width > HOST_BITS_PER_WIDE_INT)
13405 mask_hi = ((unsigned HOST_WIDE_INT) -1
13406 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
13407 mask_lo = -1;
13409 else
13411 mask_hi = 0;
13412 mask_lo = ((unsigned HOST_WIDE_INT) -1
13413 >> (HOST_BITS_PER_WIDE_INT - outer_width));
13415 if (inner_width > HOST_BITS_PER_WIDE_INT)
13417 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
13418 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13419 mask_lo = 0;
13421 else
13422 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
13423 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13425 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
13426 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
13428 tem_type = signed_type_for (TREE_TYPE (tem));
13429 tem = fold_convert_loc (loc, tem_type, tem);
13431 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
13432 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
13434 tem_type = unsigned_type_for (TREE_TYPE (tem));
13435 tem = fold_convert_loc (loc, tem_type, tem);
13437 else
13438 tem = NULL;
13441 if (tem)
13442 return
13443 fold_convert_loc (loc, type,
13444 fold_build2_loc (loc, BIT_AND_EXPR,
13445 TREE_TYPE (tem), tem,
13446 fold_convert_loc (loc,
13447 TREE_TYPE (tem),
13448 arg1)));
13451 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13452 already handled above. */
13453 if (TREE_CODE (arg0) == BIT_AND_EXPR
13454 && integer_onep (TREE_OPERAND (arg0, 1))
13455 && integer_zerop (op2)
13456 && integer_pow2p (arg1))
13458 tree tem = TREE_OPERAND (arg0, 0);
13459 STRIP_NOPS (tem);
13460 if (TREE_CODE (tem) == RSHIFT_EXPR
13461 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
13462 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13463 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
13464 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13465 TREE_OPERAND (tem, 0), arg1);
13468 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13469 is probably obsolete because the first operand should be a
13470 truth value (that's why we have the two cases above), but let's
13471 leave it in until we can confirm this for all front-ends. */
13472 if (integer_zerop (op2)
13473 && TREE_CODE (arg0) == NE_EXPR
13474 && integer_zerop (TREE_OPERAND (arg0, 1))
13475 && integer_pow2p (arg1)
13476 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13477 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13478 arg1, OEP_ONLY_CONST))
13479 return pedantic_non_lvalue_loc (loc,
13480 fold_convert_loc (loc, type,
13481 TREE_OPERAND (arg0, 0)));
13483 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13484 if (integer_zerop (op2)
13485 && truth_value_p (TREE_CODE (arg0))
13486 && truth_value_p (TREE_CODE (arg1)))
13487 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13488 fold_convert_loc (loc, type, arg0),
13489 arg1);
13491 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13492 if (integer_onep (op2)
13493 && truth_value_p (TREE_CODE (arg0))
13494 && truth_value_p (TREE_CODE (arg1)))
13496 location_t loc0 = expr_location_or (arg0, loc);
13497 /* Only perform transformation if ARG0 is easily inverted. */
13498 tem = fold_truth_not_expr (loc0, arg0);
13499 if (tem)
13500 return fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
13501 fold_convert_loc (loc, type, tem),
13502 arg1);
13505 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13506 if (integer_zerop (arg1)
13507 && truth_value_p (TREE_CODE (arg0))
13508 && truth_value_p (TREE_CODE (op2)))
13510 location_t loc0 = expr_location_or (arg0, loc);
13511 /* Only perform transformation if ARG0 is easily inverted. */
13512 tem = fold_truth_not_expr (loc0, arg0);
13513 if (tem)
13514 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13515 fold_convert_loc (loc, type, tem),
13516 op2);
13519 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13520 if (integer_onep (arg1)
13521 && truth_value_p (TREE_CODE (arg0))
13522 && truth_value_p (TREE_CODE (op2)))
13523 return fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
13524 fold_convert_loc (loc, type, arg0),
13525 op2);
13527 return NULL_TREE;
13529 case CALL_EXPR:
13530 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13531 of fold_ternary on them. */
13532 gcc_unreachable ();
13534 case BIT_FIELD_REF:
13535 if ((TREE_CODE (arg0) == VECTOR_CST
13536 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
13537 && type == TREE_TYPE (TREE_TYPE (arg0)))
13539 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13540 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13542 if (width != 0
13543 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13544 && (idx % width) == 0
13545 && (idx = idx / width)
13546 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13548 tree elements = NULL_TREE;
13550 if (TREE_CODE (arg0) == VECTOR_CST)
13551 elements = TREE_VECTOR_CST_ELTS (arg0);
13552 else
13554 unsigned HOST_WIDE_INT idx;
13555 tree value;
13557 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
13558 elements = tree_cons (NULL_TREE, value, elements);
13560 while (idx-- > 0 && elements)
13561 elements = TREE_CHAIN (elements);
13562 if (elements)
13563 return TREE_VALUE (elements);
13564 else
13565 return build_zero_cst (type);
13569 /* A bit-field-ref that referenced the full argument can be stripped. */
13570 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13571 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_low_cst (arg1, 1)
13572 && integer_zerop (op2))
13573 return fold_convert_loc (loc, type, arg0);
13575 return NULL_TREE;
13577 case FMA_EXPR:
13578 /* For integers we can decompose the FMA if possible. */
13579 if (TREE_CODE (arg0) == INTEGER_CST
13580 && TREE_CODE (arg1) == INTEGER_CST)
13581 return fold_build2_loc (loc, PLUS_EXPR, type,
13582 const_binop (MULT_EXPR, arg0, arg1), arg2);
13583 if (integer_zerop (arg2))
13584 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
13586 return fold_fma (loc, type, arg0, arg1, arg2);
13588 default:
13589 return NULL_TREE;
13590 } /* switch (code) */
13593 /* Perform constant folding and related simplification of EXPR.
13594 The related simplifications include x*1 => x, x*0 => 0, etc.,
13595 and application of the associative law.
13596 NOP_EXPR conversions may be removed freely (as long as we
13597 are careful not to change the type of the overall expression).
13598 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13599 but we can constant-fold them if they have constant operands. */
13601 #ifdef ENABLE_FOLD_CHECKING
13602 # define fold(x) fold_1 (x)
13603 static tree fold_1 (tree);
13604 static
13605 #endif
13606 tree
13607 fold (tree expr)
13609 const tree t = expr;
13610 enum tree_code code = TREE_CODE (t);
13611 enum tree_code_class kind = TREE_CODE_CLASS (code);
13612 tree tem;
13613 location_t loc = EXPR_LOCATION (expr);
13615 /* Return right away if a constant. */
13616 if (kind == tcc_constant)
13617 return t;
13619 /* CALL_EXPR-like objects with variable numbers of operands are
13620 treated specially. */
13621 if (kind == tcc_vl_exp)
13623 if (code == CALL_EXPR)
13625 tem = fold_call_expr (loc, expr, false);
13626 return tem ? tem : expr;
13628 return expr;
13631 if (IS_EXPR_CODE_CLASS (kind))
13633 tree type = TREE_TYPE (t);
13634 tree op0, op1, op2;
13636 switch (TREE_CODE_LENGTH (code))
13638 case 1:
13639 op0 = TREE_OPERAND (t, 0);
13640 tem = fold_unary_loc (loc, code, type, op0);
13641 return tem ? tem : expr;
13642 case 2:
13643 op0 = TREE_OPERAND (t, 0);
13644 op1 = TREE_OPERAND (t, 1);
13645 tem = fold_binary_loc (loc, code, type, op0, op1);
13646 return tem ? tem : expr;
13647 case 3:
13648 op0 = TREE_OPERAND (t, 0);
13649 op1 = TREE_OPERAND (t, 1);
13650 op2 = TREE_OPERAND (t, 2);
13651 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13652 return tem ? tem : expr;
13653 default:
13654 break;
13658 switch (code)
13660 case ARRAY_REF:
13662 tree op0 = TREE_OPERAND (t, 0);
13663 tree op1 = TREE_OPERAND (t, 1);
13665 if (TREE_CODE (op1) == INTEGER_CST
13666 && TREE_CODE (op0) == CONSTRUCTOR
13667 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13669 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (op0);
13670 unsigned HOST_WIDE_INT end = VEC_length (constructor_elt, elts);
13671 unsigned HOST_WIDE_INT begin = 0;
13673 /* Find a matching index by means of a binary search. */
13674 while (begin != end)
13676 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13677 tree index = VEC_index (constructor_elt, elts, middle)->index;
13679 if (TREE_CODE (index) == INTEGER_CST
13680 && tree_int_cst_lt (index, op1))
13681 begin = middle + 1;
13682 else if (TREE_CODE (index) == INTEGER_CST
13683 && tree_int_cst_lt (op1, index))
13684 end = middle;
13685 else if (TREE_CODE (index) == RANGE_EXPR
13686 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13687 begin = middle + 1;
13688 else if (TREE_CODE (index) == RANGE_EXPR
13689 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13690 end = middle;
13691 else
13692 return VEC_index (constructor_elt, elts, middle)->value;
13696 return t;
13699 case CONST_DECL:
13700 return fold (DECL_INITIAL (t));
13702 default:
13703 return t;
13704 } /* switch (code) */
13707 #ifdef ENABLE_FOLD_CHECKING
13708 #undef fold
13710 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13711 static void fold_check_failed (const_tree, const_tree);
13712 void print_fold_checksum (const_tree);
13714 /* When --enable-checking=fold, compute a digest of expr before
13715 and after actual fold call to see if fold did not accidentally
13716 change original expr. */
13718 tree
13719 fold (tree expr)
13721 tree ret;
13722 struct md5_ctx ctx;
13723 unsigned char checksum_before[16], checksum_after[16];
13724 htab_t ht;
13726 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13727 md5_init_ctx (&ctx);
13728 fold_checksum_tree (expr, &ctx, ht);
13729 md5_finish_ctx (&ctx, checksum_before);
13730 htab_empty (ht);
13732 ret = fold_1 (expr);
13734 md5_init_ctx (&ctx);
13735 fold_checksum_tree (expr, &ctx, ht);
13736 md5_finish_ctx (&ctx, checksum_after);
13737 htab_delete (ht);
13739 if (memcmp (checksum_before, checksum_after, 16))
13740 fold_check_failed (expr, ret);
13742 return ret;
13745 void
13746 print_fold_checksum (const_tree expr)
13748 struct md5_ctx ctx;
13749 unsigned char checksum[16], cnt;
13750 htab_t ht;
13752 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13753 md5_init_ctx (&ctx);
13754 fold_checksum_tree (expr, &ctx, ht);
13755 md5_finish_ctx (&ctx, checksum);
13756 htab_delete (ht);
13757 for (cnt = 0; cnt < 16; ++cnt)
13758 fprintf (stderr, "%02x", checksum[cnt]);
13759 putc ('\n', stderr);
13762 static void
13763 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13765 internal_error ("fold check: original tree changed by fold");
13768 static void
13769 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13771 void **slot;
13772 enum tree_code code;
13773 union tree_node buf;
13774 int i, len;
13776 recursive_label:
13778 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
13779 <= sizeof (struct tree_function_decl))
13780 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
13781 if (expr == NULL)
13782 return;
13783 slot = (void **) htab_find_slot (ht, expr, INSERT);
13784 if (*slot != NULL)
13785 return;
13786 *slot = CONST_CAST_TREE (expr);
13787 code = TREE_CODE (expr);
13788 if (TREE_CODE_CLASS (code) == tcc_declaration
13789 && DECL_ASSEMBLER_NAME_SET_P (expr))
13791 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13792 memcpy ((char *) &buf, expr, tree_size (expr));
13793 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13794 expr = (tree) &buf;
13796 else if (TREE_CODE_CLASS (code) == tcc_type
13797 && (TYPE_POINTER_TO (expr)
13798 || TYPE_REFERENCE_TO (expr)
13799 || TYPE_CACHED_VALUES_P (expr)
13800 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13801 || TYPE_NEXT_VARIANT (expr)))
13803 /* Allow these fields to be modified. */
13804 tree tmp;
13805 memcpy ((char *) &buf, expr, tree_size (expr));
13806 expr = tmp = (tree) &buf;
13807 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13808 TYPE_POINTER_TO (tmp) = NULL;
13809 TYPE_REFERENCE_TO (tmp) = NULL;
13810 TYPE_NEXT_VARIANT (tmp) = NULL;
13811 if (TYPE_CACHED_VALUES_P (tmp))
13813 TYPE_CACHED_VALUES_P (tmp) = 0;
13814 TYPE_CACHED_VALUES (tmp) = NULL;
13817 md5_process_bytes (expr, tree_size (expr), ctx);
13818 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13819 if (TREE_CODE_CLASS (code) != tcc_type
13820 && TREE_CODE_CLASS (code) != tcc_declaration
13821 && code != TREE_LIST
13822 && code != SSA_NAME
13823 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
13824 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13825 switch (TREE_CODE_CLASS (code))
13827 case tcc_constant:
13828 switch (code)
13830 case STRING_CST:
13831 md5_process_bytes (TREE_STRING_POINTER (expr),
13832 TREE_STRING_LENGTH (expr), ctx);
13833 break;
13834 case COMPLEX_CST:
13835 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13836 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13837 break;
13838 case VECTOR_CST:
13839 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
13840 break;
13841 default:
13842 break;
13844 break;
13845 case tcc_exceptional:
13846 switch (code)
13848 case TREE_LIST:
13849 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13850 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13851 expr = TREE_CHAIN (expr);
13852 goto recursive_label;
13853 break;
13854 case TREE_VEC:
13855 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13856 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13857 break;
13858 default:
13859 break;
13861 break;
13862 case tcc_expression:
13863 case tcc_reference:
13864 case tcc_comparison:
13865 case tcc_unary:
13866 case tcc_binary:
13867 case tcc_statement:
13868 case tcc_vl_exp:
13869 len = TREE_OPERAND_LENGTH (expr);
13870 for (i = 0; i < len; ++i)
13871 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13872 break;
13873 case tcc_declaration:
13874 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13875 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13876 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13878 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13879 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13880 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13881 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13882 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13884 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
13885 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
13887 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13889 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13890 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13891 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
13893 break;
13894 case tcc_type:
13895 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13896 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13897 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13898 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13899 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13900 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13901 if (INTEGRAL_TYPE_P (expr)
13902 || SCALAR_FLOAT_TYPE_P (expr))
13904 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13905 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13907 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13908 if (TREE_CODE (expr) == RECORD_TYPE
13909 || TREE_CODE (expr) == UNION_TYPE
13910 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13911 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13912 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13913 break;
13914 default:
13915 break;
13919 /* Helper function for outputting the checksum of a tree T. When
13920 debugging with gdb, you can "define mynext" to be "next" followed
13921 by "call debug_fold_checksum (op0)", then just trace down till the
13922 outputs differ. */
13924 DEBUG_FUNCTION void
13925 debug_fold_checksum (const_tree t)
13927 int i;
13928 unsigned char checksum[16];
13929 struct md5_ctx ctx;
13930 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13932 md5_init_ctx (&ctx);
13933 fold_checksum_tree (t, &ctx, ht);
13934 md5_finish_ctx (&ctx, checksum);
13935 htab_empty (ht);
13937 for (i = 0; i < 16; i++)
13938 fprintf (stderr, "%d ", checksum[i]);
13940 fprintf (stderr, "\n");
13943 #endif
13945 /* Fold a unary tree expression with code CODE of type TYPE with an
13946 operand OP0. LOC is the location of the resulting expression.
13947 Return a folded expression if successful. Otherwise, return a tree
13948 expression with code CODE of type TYPE with an operand OP0. */
13950 tree
13951 fold_build1_stat_loc (location_t loc,
13952 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13954 tree tem;
13955 #ifdef ENABLE_FOLD_CHECKING
13956 unsigned char checksum_before[16], checksum_after[16];
13957 struct md5_ctx ctx;
13958 htab_t ht;
13960 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13961 md5_init_ctx (&ctx);
13962 fold_checksum_tree (op0, &ctx, ht);
13963 md5_finish_ctx (&ctx, checksum_before);
13964 htab_empty (ht);
13965 #endif
13967 tem = fold_unary_loc (loc, code, type, op0);
13968 if (!tem)
13969 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
13971 #ifdef ENABLE_FOLD_CHECKING
13972 md5_init_ctx (&ctx);
13973 fold_checksum_tree (op0, &ctx, ht);
13974 md5_finish_ctx (&ctx, checksum_after);
13975 htab_delete (ht);
13977 if (memcmp (checksum_before, checksum_after, 16))
13978 fold_check_failed (op0, tem);
13979 #endif
13980 return tem;
13983 /* Fold a binary tree expression with code CODE of type TYPE with
13984 operands OP0 and OP1. LOC is the location of the resulting
13985 expression. Return a folded expression if successful. Otherwise,
13986 return a tree expression with code CODE of type TYPE with operands
13987 OP0 and OP1. */
13989 tree
13990 fold_build2_stat_loc (location_t loc,
13991 enum tree_code code, tree type, tree op0, tree op1
13992 MEM_STAT_DECL)
13994 tree tem;
13995 #ifdef ENABLE_FOLD_CHECKING
13996 unsigned char checksum_before_op0[16],
13997 checksum_before_op1[16],
13998 checksum_after_op0[16],
13999 checksum_after_op1[16];
14000 struct md5_ctx ctx;
14001 htab_t ht;
14003 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14004 md5_init_ctx (&ctx);
14005 fold_checksum_tree (op0, &ctx, ht);
14006 md5_finish_ctx (&ctx, checksum_before_op0);
14007 htab_empty (ht);
14009 md5_init_ctx (&ctx);
14010 fold_checksum_tree (op1, &ctx, ht);
14011 md5_finish_ctx (&ctx, checksum_before_op1);
14012 htab_empty (ht);
14013 #endif
14015 tem = fold_binary_loc (loc, code, type, op0, op1);
14016 if (!tem)
14017 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
14019 #ifdef ENABLE_FOLD_CHECKING
14020 md5_init_ctx (&ctx);
14021 fold_checksum_tree (op0, &ctx, ht);
14022 md5_finish_ctx (&ctx, checksum_after_op0);
14023 htab_empty (ht);
14025 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14026 fold_check_failed (op0, tem);
14028 md5_init_ctx (&ctx);
14029 fold_checksum_tree (op1, &ctx, ht);
14030 md5_finish_ctx (&ctx, checksum_after_op1);
14031 htab_delete (ht);
14033 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14034 fold_check_failed (op1, tem);
14035 #endif
14036 return tem;
14039 /* Fold a ternary tree expression with code CODE of type TYPE with
14040 operands OP0, OP1, and OP2. Return a folded expression if
14041 successful. Otherwise, return a tree expression with code CODE of
14042 type TYPE with operands OP0, OP1, and OP2. */
14044 tree
14045 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
14046 tree op0, tree op1, tree op2 MEM_STAT_DECL)
14048 tree tem;
14049 #ifdef ENABLE_FOLD_CHECKING
14050 unsigned char checksum_before_op0[16],
14051 checksum_before_op1[16],
14052 checksum_before_op2[16],
14053 checksum_after_op0[16],
14054 checksum_after_op1[16],
14055 checksum_after_op2[16];
14056 struct md5_ctx ctx;
14057 htab_t ht;
14059 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14060 md5_init_ctx (&ctx);
14061 fold_checksum_tree (op0, &ctx, ht);
14062 md5_finish_ctx (&ctx, checksum_before_op0);
14063 htab_empty (ht);
14065 md5_init_ctx (&ctx);
14066 fold_checksum_tree (op1, &ctx, ht);
14067 md5_finish_ctx (&ctx, checksum_before_op1);
14068 htab_empty (ht);
14070 md5_init_ctx (&ctx);
14071 fold_checksum_tree (op2, &ctx, ht);
14072 md5_finish_ctx (&ctx, checksum_before_op2);
14073 htab_empty (ht);
14074 #endif
14076 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14077 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14078 if (!tem)
14079 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
14081 #ifdef ENABLE_FOLD_CHECKING
14082 md5_init_ctx (&ctx);
14083 fold_checksum_tree (op0, &ctx, ht);
14084 md5_finish_ctx (&ctx, checksum_after_op0);
14085 htab_empty (ht);
14087 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14088 fold_check_failed (op0, tem);
14090 md5_init_ctx (&ctx);
14091 fold_checksum_tree (op1, &ctx, ht);
14092 md5_finish_ctx (&ctx, checksum_after_op1);
14093 htab_empty (ht);
14095 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14096 fold_check_failed (op1, tem);
14098 md5_init_ctx (&ctx);
14099 fold_checksum_tree (op2, &ctx, ht);
14100 md5_finish_ctx (&ctx, checksum_after_op2);
14101 htab_delete (ht);
14103 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14104 fold_check_failed (op2, tem);
14105 #endif
14106 return tem;
14109 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14110 arguments in ARGARRAY, and a null static chain.
14111 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14112 of type TYPE from the given operands as constructed by build_call_array. */
14114 tree
14115 fold_build_call_array_loc (location_t loc, tree type, tree fn,
14116 int nargs, tree *argarray)
14118 tree tem;
14119 #ifdef ENABLE_FOLD_CHECKING
14120 unsigned char checksum_before_fn[16],
14121 checksum_before_arglist[16],
14122 checksum_after_fn[16],
14123 checksum_after_arglist[16];
14124 struct md5_ctx ctx;
14125 htab_t ht;
14126 int i;
14128 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14129 md5_init_ctx (&ctx);
14130 fold_checksum_tree (fn, &ctx, ht);
14131 md5_finish_ctx (&ctx, checksum_before_fn);
14132 htab_empty (ht);
14134 md5_init_ctx (&ctx);
14135 for (i = 0; i < nargs; i++)
14136 fold_checksum_tree (argarray[i], &ctx, ht);
14137 md5_finish_ctx (&ctx, checksum_before_arglist);
14138 htab_empty (ht);
14139 #endif
14141 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
14143 #ifdef ENABLE_FOLD_CHECKING
14144 md5_init_ctx (&ctx);
14145 fold_checksum_tree (fn, &ctx, ht);
14146 md5_finish_ctx (&ctx, checksum_after_fn);
14147 htab_empty (ht);
14149 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14150 fold_check_failed (fn, tem);
14152 md5_init_ctx (&ctx);
14153 for (i = 0; i < nargs; i++)
14154 fold_checksum_tree (argarray[i], &ctx, ht);
14155 md5_finish_ctx (&ctx, checksum_after_arglist);
14156 htab_delete (ht);
14158 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14159 fold_check_failed (NULL_TREE, tem);
14160 #endif
14161 return tem;
14164 /* Perform constant folding and related simplification of initializer
14165 expression EXPR. These behave identically to "fold_buildN" but ignore
14166 potential run-time traps and exceptions that fold must preserve. */
14168 #define START_FOLD_INIT \
14169 int saved_signaling_nans = flag_signaling_nans;\
14170 int saved_trapping_math = flag_trapping_math;\
14171 int saved_rounding_math = flag_rounding_math;\
14172 int saved_trapv = flag_trapv;\
14173 int saved_folding_initializer = folding_initializer;\
14174 flag_signaling_nans = 0;\
14175 flag_trapping_math = 0;\
14176 flag_rounding_math = 0;\
14177 flag_trapv = 0;\
14178 folding_initializer = 1;
14180 #define END_FOLD_INIT \
14181 flag_signaling_nans = saved_signaling_nans;\
14182 flag_trapping_math = saved_trapping_math;\
14183 flag_rounding_math = saved_rounding_math;\
14184 flag_trapv = saved_trapv;\
14185 folding_initializer = saved_folding_initializer;
14187 tree
14188 fold_build1_initializer_loc (location_t loc, enum tree_code code,
14189 tree type, tree op)
14191 tree result;
14192 START_FOLD_INIT;
14194 result = fold_build1_loc (loc, code, type, op);
14196 END_FOLD_INIT;
14197 return result;
14200 tree
14201 fold_build2_initializer_loc (location_t loc, enum tree_code code,
14202 tree type, tree op0, tree op1)
14204 tree result;
14205 START_FOLD_INIT;
14207 result = fold_build2_loc (loc, code, type, op0, op1);
14209 END_FOLD_INIT;
14210 return result;
14213 tree
14214 fold_build3_initializer_loc (location_t loc, enum tree_code code,
14215 tree type, tree op0, tree op1, tree op2)
14217 tree result;
14218 START_FOLD_INIT;
14220 result = fold_build3_loc (loc, code, type, op0, op1, op2);
14222 END_FOLD_INIT;
14223 return result;
14226 tree
14227 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14228 int nargs, tree *argarray)
14230 tree result;
14231 START_FOLD_INIT;
14233 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14235 END_FOLD_INIT;
14236 return result;
14239 #undef START_FOLD_INIT
14240 #undef END_FOLD_INIT
14242 /* Determine if first argument is a multiple of second argument. Return 0 if
14243 it is not, or we cannot easily determined it to be.
14245 An example of the sort of thing we care about (at this point; this routine
14246 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14247 fold cases do now) is discovering that
14249 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14251 is a multiple of
14253 SAVE_EXPR (J * 8)
14255 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14257 This code also handles discovering that
14259 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14261 is a multiple of 8 so we don't have to worry about dealing with a
14262 possible remainder.
14264 Note that we *look* inside a SAVE_EXPR only to determine how it was
14265 calculated; it is not safe for fold to do much of anything else with the
14266 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14267 at run time. For example, the latter example above *cannot* be implemented
14268 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14269 evaluation time of the original SAVE_EXPR is not necessarily the same at
14270 the time the new expression is evaluated. The only optimization of this
14271 sort that would be valid is changing
14273 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14275 divided by 8 to
14277 SAVE_EXPR (I) * SAVE_EXPR (J)
14279 (where the same SAVE_EXPR (J) is used in the original and the
14280 transformed version). */
14283 multiple_of_p (tree type, const_tree top, const_tree bottom)
14285 if (operand_equal_p (top, bottom, 0))
14286 return 1;
14288 if (TREE_CODE (type) != INTEGER_TYPE)
14289 return 0;
14291 switch (TREE_CODE (top))
14293 case BIT_AND_EXPR:
14294 /* Bitwise and provides a power of two multiple. If the mask is
14295 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14296 if (!integer_pow2p (bottom))
14297 return 0;
14298 /* FALLTHRU */
14300 case MULT_EXPR:
14301 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14302 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14304 case PLUS_EXPR:
14305 case MINUS_EXPR:
14306 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14307 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14309 case LSHIFT_EXPR:
14310 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14312 tree op1, t1;
14314 op1 = TREE_OPERAND (top, 1);
14315 /* const_binop may not detect overflow correctly,
14316 so check for it explicitly here. */
14317 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
14318 > TREE_INT_CST_LOW (op1)
14319 && TREE_INT_CST_HIGH (op1) == 0
14320 && 0 != (t1 = fold_convert (type,
14321 const_binop (LSHIFT_EXPR,
14322 size_one_node,
14323 op1)))
14324 && !TREE_OVERFLOW (t1))
14325 return multiple_of_p (type, t1, bottom);
14327 return 0;
14329 case NOP_EXPR:
14330 /* Can't handle conversions from non-integral or wider integral type. */
14331 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14332 || (TYPE_PRECISION (type)
14333 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14334 return 0;
14336 /* .. fall through ... */
14338 case SAVE_EXPR:
14339 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14341 case COND_EXPR:
14342 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
14343 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
14345 case INTEGER_CST:
14346 if (TREE_CODE (bottom) != INTEGER_CST
14347 || integer_zerop (bottom)
14348 || (TYPE_UNSIGNED (type)
14349 && (tree_int_cst_sgn (top) < 0
14350 || tree_int_cst_sgn (bottom) < 0)))
14351 return 0;
14352 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
14353 top, bottom));
14355 default:
14356 return 0;
14360 /* Return true if CODE or TYPE is known to be non-negative. */
14362 static bool
14363 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14365 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14366 && truth_value_p (code))
14367 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14368 have a signed:1 type (where the value is -1 and 0). */
14369 return true;
14370 return false;
14373 /* Return true if (CODE OP0) is known to be non-negative. If the return
14374 value is based on the assumption that signed overflow is undefined,
14375 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14376 *STRICT_OVERFLOW_P. */
14378 bool
14379 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14380 bool *strict_overflow_p)
14382 if (TYPE_UNSIGNED (type))
14383 return true;
14385 switch (code)
14387 case ABS_EXPR:
14388 /* We can't return 1 if flag_wrapv is set because
14389 ABS_EXPR<INT_MIN> = INT_MIN. */
14390 if (!INTEGRAL_TYPE_P (type))
14391 return true;
14392 if (TYPE_OVERFLOW_UNDEFINED (type))
14394 *strict_overflow_p = true;
14395 return true;
14397 break;
14399 case NON_LVALUE_EXPR:
14400 case FLOAT_EXPR:
14401 case FIX_TRUNC_EXPR:
14402 return tree_expr_nonnegative_warnv_p (op0,
14403 strict_overflow_p);
14405 case NOP_EXPR:
14407 tree inner_type = TREE_TYPE (op0);
14408 tree outer_type = type;
14410 if (TREE_CODE (outer_type) == REAL_TYPE)
14412 if (TREE_CODE (inner_type) == REAL_TYPE)
14413 return tree_expr_nonnegative_warnv_p (op0,
14414 strict_overflow_p);
14415 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14417 if (TYPE_UNSIGNED (inner_type))
14418 return true;
14419 return tree_expr_nonnegative_warnv_p (op0,
14420 strict_overflow_p);
14423 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
14425 if (TREE_CODE (inner_type) == REAL_TYPE)
14426 return tree_expr_nonnegative_warnv_p (op0,
14427 strict_overflow_p);
14428 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14429 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14430 && TYPE_UNSIGNED (inner_type);
14433 break;
14435 default:
14436 return tree_simple_nonnegative_warnv_p (code, type);
14439 /* We don't know sign of `t', so be conservative and return false. */
14440 return false;
14443 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14444 value is based on the assumption that signed overflow is undefined,
14445 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14446 *STRICT_OVERFLOW_P. */
14448 bool
14449 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14450 tree op1, bool *strict_overflow_p)
14452 if (TYPE_UNSIGNED (type))
14453 return true;
14455 switch (code)
14457 case POINTER_PLUS_EXPR:
14458 case PLUS_EXPR:
14459 if (FLOAT_TYPE_P (type))
14460 return (tree_expr_nonnegative_warnv_p (op0,
14461 strict_overflow_p)
14462 && tree_expr_nonnegative_warnv_p (op1,
14463 strict_overflow_p));
14465 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14466 both unsigned and at least 2 bits shorter than the result. */
14467 if (TREE_CODE (type) == INTEGER_TYPE
14468 && TREE_CODE (op0) == NOP_EXPR
14469 && TREE_CODE (op1) == NOP_EXPR)
14471 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14472 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14473 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14474 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14476 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14477 TYPE_PRECISION (inner2)) + 1;
14478 return prec < TYPE_PRECISION (type);
14481 break;
14483 case MULT_EXPR:
14484 if (FLOAT_TYPE_P (type))
14486 /* x * x for floating point x is always non-negative. */
14487 if (operand_equal_p (op0, op1, 0))
14488 return true;
14489 return (tree_expr_nonnegative_warnv_p (op0,
14490 strict_overflow_p)
14491 && tree_expr_nonnegative_warnv_p (op1,
14492 strict_overflow_p));
14495 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14496 both unsigned and their total bits is shorter than the result. */
14497 if (TREE_CODE (type) == INTEGER_TYPE
14498 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14499 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14501 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14502 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14503 : TREE_TYPE (op0);
14504 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14505 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14506 : TREE_TYPE (op1);
14508 bool unsigned0 = TYPE_UNSIGNED (inner0);
14509 bool unsigned1 = TYPE_UNSIGNED (inner1);
14511 if (TREE_CODE (op0) == INTEGER_CST)
14512 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14514 if (TREE_CODE (op1) == INTEGER_CST)
14515 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14517 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14518 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14520 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14521 ? tree_int_cst_min_precision (op0, /*unsignedp=*/true)
14522 : TYPE_PRECISION (inner0);
14524 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14525 ? tree_int_cst_min_precision (op1, /*unsignedp=*/true)
14526 : TYPE_PRECISION (inner1);
14528 return precision0 + precision1 < TYPE_PRECISION (type);
14531 return false;
14533 case BIT_AND_EXPR:
14534 case MAX_EXPR:
14535 return (tree_expr_nonnegative_warnv_p (op0,
14536 strict_overflow_p)
14537 || tree_expr_nonnegative_warnv_p (op1,
14538 strict_overflow_p));
14540 case BIT_IOR_EXPR:
14541 case BIT_XOR_EXPR:
14542 case MIN_EXPR:
14543 case RDIV_EXPR:
14544 case TRUNC_DIV_EXPR:
14545 case CEIL_DIV_EXPR:
14546 case FLOOR_DIV_EXPR:
14547 case ROUND_DIV_EXPR:
14548 return (tree_expr_nonnegative_warnv_p (op0,
14549 strict_overflow_p)
14550 && tree_expr_nonnegative_warnv_p (op1,
14551 strict_overflow_p));
14553 case TRUNC_MOD_EXPR:
14554 case CEIL_MOD_EXPR:
14555 case FLOOR_MOD_EXPR:
14556 case ROUND_MOD_EXPR:
14557 return tree_expr_nonnegative_warnv_p (op0,
14558 strict_overflow_p);
14559 default:
14560 return tree_simple_nonnegative_warnv_p (code, type);
14563 /* We don't know sign of `t', so be conservative and return false. */
14564 return false;
14567 /* Return true if T is known to be non-negative. If the return
14568 value is based on the assumption that signed overflow is undefined,
14569 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14570 *STRICT_OVERFLOW_P. */
14572 bool
14573 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14575 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14576 return true;
14578 switch (TREE_CODE (t))
14580 case INTEGER_CST:
14581 return tree_int_cst_sgn (t) >= 0;
14583 case REAL_CST:
14584 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14586 case FIXED_CST:
14587 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14589 case COND_EXPR:
14590 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14591 strict_overflow_p)
14592 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14593 strict_overflow_p));
14594 default:
14595 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14596 TREE_TYPE (t));
14598 /* We don't know sign of `t', so be conservative and return false. */
14599 return false;
14602 /* Return true if T is known to be non-negative. If the return
14603 value is based on the assumption that signed overflow is undefined,
14604 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14605 *STRICT_OVERFLOW_P. */
14607 bool
14608 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14609 tree arg0, tree arg1, bool *strict_overflow_p)
14611 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14612 switch (DECL_FUNCTION_CODE (fndecl))
14614 CASE_FLT_FN (BUILT_IN_ACOS):
14615 CASE_FLT_FN (BUILT_IN_ACOSH):
14616 CASE_FLT_FN (BUILT_IN_CABS):
14617 CASE_FLT_FN (BUILT_IN_COSH):
14618 CASE_FLT_FN (BUILT_IN_ERFC):
14619 CASE_FLT_FN (BUILT_IN_EXP):
14620 CASE_FLT_FN (BUILT_IN_EXP10):
14621 CASE_FLT_FN (BUILT_IN_EXP2):
14622 CASE_FLT_FN (BUILT_IN_FABS):
14623 CASE_FLT_FN (BUILT_IN_FDIM):
14624 CASE_FLT_FN (BUILT_IN_HYPOT):
14625 CASE_FLT_FN (BUILT_IN_POW10):
14626 CASE_INT_FN (BUILT_IN_FFS):
14627 CASE_INT_FN (BUILT_IN_PARITY):
14628 CASE_INT_FN (BUILT_IN_POPCOUNT):
14629 case BUILT_IN_BSWAP32:
14630 case BUILT_IN_BSWAP64:
14631 /* Always true. */
14632 return true;
14634 CASE_FLT_FN (BUILT_IN_SQRT):
14635 /* sqrt(-0.0) is -0.0. */
14636 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
14637 return true;
14638 return tree_expr_nonnegative_warnv_p (arg0,
14639 strict_overflow_p);
14641 CASE_FLT_FN (BUILT_IN_ASINH):
14642 CASE_FLT_FN (BUILT_IN_ATAN):
14643 CASE_FLT_FN (BUILT_IN_ATANH):
14644 CASE_FLT_FN (BUILT_IN_CBRT):
14645 CASE_FLT_FN (BUILT_IN_CEIL):
14646 CASE_FLT_FN (BUILT_IN_ERF):
14647 CASE_FLT_FN (BUILT_IN_EXPM1):
14648 CASE_FLT_FN (BUILT_IN_FLOOR):
14649 CASE_FLT_FN (BUILT_IN_FMOD):
14650 CASE_FLT_FN (BUILT_IN_FREXP):
14651 CASE_FLT_FN (BUILT_IN_LCEIL):
14652 CASE_FLT_FN (BUILT_IN_LDEXP):
14653 CASE_FLT_FN (BUILT_IN_LFLOOR):
14654 CASE_FLT_FN (BUILT_IN_LLCEIL):
14655 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14656 CASE_FLT_FN (BUILT_IN_LLRINT):
14657 CASE_FLT_FN (BUILT_IN_LLROUND):
14658 CASE_FLT_FN (BUILT_IN_LRINT):
14659 CASE_FLT_FN (BUILT_IN_LROUND):
14660 CASE_FLT_FN (BUILT_IN_MODF):
14661 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14662 CASE_FLT_FN (BUILT_IN_RINT):
14663 CASE_FLT_FN (BUILT_IN_ROUND):
14664 CASE_FLT_FN (BUILT_IN_SCALB):
14665 CASE_FLT_FN (BUILT_IN_SCALBLN):
14666 CASE_FLT_FN (BUILT_IN_SCALBN):
14667 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14668 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14669 CASE_FLT_FN (BUILT_IN_SINH):
14670 CASE_FLT_FN (BUILT_IN_TANH):
14671 CASE_FLT_FN (BUILT_IN_TRUNC):
14672 /* True if the 1st argument is nonnegative. */
14673 return tree_expr_nonnegative_warnv_p (arg0,
14674 strict_overflow_p);
14676 CASE_FLT_FN (BUILT_IN_FMAX):
14677 /* True if the 1st OR 2nd arguments are nonnegative. */
14678 return (tree_expr_nonnegative_warnv_p (arg0,
14679 strict_overflow_p)
14680 || (tree_expr_nonnegative_warnv_p (arg1,
14681 strict_overflow_p)));
14683 CASE_FLT_FN (BUILT_IN_FMIN):
14684 /* True if the 1st AND 2nd arguments are nonnegative. */
14685 return (tree_expr_nonnegative_warnv_p (arg0,
14686 strict_overflow_p)
14687 && (tree_expr_nonnegative_warnv_p (arg1,
14688 strict_overflow_p)));
14690 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14691 /* True if the 2nd argument is nonnegative. */
14692 return tree_expr_nonnegative_warnv_p (arg1,
14693 strict_overflow_p);
14695 CASE_FLT_FN (BUILT_IN_POWI):
14696 /* True if the 1st argument is nonnegative or the second
14697 argument is an even integer. */
14698 if (TREE_CODE (arg1) == INTEGER_CST
14699 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14700 return true;
14701 return tree_expr_nonnegative_warnv_p (arg0,
14702 strict_overflow_p);
14704 CASE_FLT_FN (BUILT_IN_POW):
14705 /* True if the 1st argument is nonnegative or the second
14706 argument is an even integer valued real. */
14707 if (TREE_CODE (arg1) == REAL_CST)
14709 REAL_VALUE_TYPE c;
14710 HOST_WIDE_INT n;
14712 c = TREE_REAL_CST (arg1);
14713 n = real_to_integer (&c);
14714 if ((n & 1) == 0)
14716 REAL_VALUE_TYPE cint;
14717 real_from_integer (&cint, VOIDmode, n,
14718 n < 0 ? -1 : 0, 0);
14719 if (real_identical (&c, &cint))
14720 return true;
14723 return tree_expr_nonnegative_warnv_p (arg0,
14724 strict_overflow_p);
14726 default:
14727 break;
14729 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14730 type);
14733 /* Return true if T is known to be non-negative. If the return
14734 value is based on the assumption that signed overflow is undefined,
14735 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14736 *STRICT_OVERFLOW_P. */
14738 bool
14739 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14741 enum tree_code code = TREE_CODE (t);
14742 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14743 return true;
14745 switch (code)
14747 case TARGET_EXPR:
14749 tree temp = TARGET_EXPR_SLOT (t);
14750 t = TARGET_EXPR_INITIAL (t);
14752 /* If the initializer is non-void, then it's a normal expression
14753 that will be assigned to the slot. */
14754 if (!VOID_TYPE_P (t))
14755 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14757 /* Otherwise, the initializer sets the slot in some way. One common
14758 way is an assignment statement at the end of the initializer. */
14759 while (1)
14761 if (TREE_CODE (t) == BIND_EXPR)
14762 t = expr_last (BIND_EXPR_BODY (t));
14763 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14764 || TREE_CODE (t) == TRY_CATCH_EXPR)
14765 t = expr_last (TREE_OPERAND (t, 0));
14766 else if (TREE_CODE (t) == STATEMENT_LIST)
14767 t = expr_last (t);
14768 else
14769 break;
14771 if (TREE_CODE (t) == MODIFY_EXPR
14772 && TREE_OPERAND (t, 0) == temp)
14773 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14774 strict_overflow_p);
14776 return false;
14779 case CALL_EXPR:
14781 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14782 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14784 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14785 get_callee_fndecl (t),
14786 arg0,
14787 arg1,
14788 strict_overflow_p);
14790 case COMPOUND_EXPR:
14791 case MODIFY_EXPR:
14792 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14793 strict_overflow_p);
14794 case BIND_EXPR:
14795 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14796 strict_overflow_p);
14797 case SAVE_EXPR:
14798 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14799 strict_overflow_p);
14801 default:
14802 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14803 TREE_TYPE (t));
14806 /* We don't know sign of `t', so be conservative and return false. */
14807 return false;
14810 /* Return true if T is known to be non-negative. If the return
14811 value is based on the assumption that signed overflow is undefined,
14812 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14813 *STRICT_OVERFLOW_P. */
14815 bool
14816 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14818 enum tree_code code;
14819 if (t == error_mark_node)
14820 return false;
14822 code = TREE_CODE (t);
14823 switch (TREE_CODE_CLASS (code))
14825 case tcc_binary:
14826 case tcc_comparison:
14827 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14828 TREE_TYPE (t),
14829 TREE_OPERAND (t, 0),
14830 TREE_OPERAND (t, 1),
14831 strict_overflow_p);
14833 case tcc_unary:
14834 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14835 TREE_TYPE (t),
14836 TREE_OPERAND (t, 0),
14837 strict_overflow_p);
14839 case tcc_constant:
14840 case tcc_declaration:
14841 case tcc_reference:
14842 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14844 default:
14845 break;
14848 switch (code)
14850 case TRUTH_AND_EXPR:
14851 case TRUTH_OR_EXPR:
14852 case TRUTH_XOR_EXPR:
14853 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14854 TREE_TYPE (t),
14855 TREE_OPERAND (t, 0),
14856 TREE_OPERAND (t, 1),
14857 strict_overflow_p);
14858 case TRUTH_NOT_EXPR:
14859 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14860 TREE_TYPE (t),
14861 TREE_OPERAND (t, 0),
14862 strict_overflow_p);
14864 case COND_EXPR:
14865 case CONSTRUCTOR:
14866 case OBJ_TYPE_REF:
14867 case ASSERT_EXPR:
14868 case ADDR_EXPR:
14869 case WITH_SIZE_EXPR:
14870 case SSA_NAME:
14871 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14873 default:
14874 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
14878 /* Return true if `t' is known to be non-negative. Handle warnings
14879 about undefined signed overflow. */
14881 bool
14882 tree_expr_nonnegative_p (tree t)
14884 bool ret, strict_overflow_p;
14886 strict_overflow_p = false;
14887 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14888 if (strict_overflow_p)
14889 fold_overflow_warning (("assuming signed overflow does not occur when "
14890 "determining that expression is always "
14891 "non-negative"),
14892 WARN_STRICT_OVERFLOW_MISC);
14893 return ret;
14897 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14898 For floating point we further ensure that T is not denormal.
14899 Similar logic is present in nonzero_address in rtlanal.h.
14901 If the return value is based on the assumption that signed overflow
14902 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14903 change *STRICT_OVERFLOW_P. */
14905 bool
14906 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14907 bool *strict_overflow_p)
14909 switch (code)
14911 case ABS_EXPR:
14912 return tree_expr_nonzero_warnv_p (op0,
14913 strict_overflow_p);
14915 case NOP_EXPR:
14917 tree inner_type = TREE_TYPE (op0);
14918 tree outer_type = type;
14920 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14921 && tree_expr_nonzero_warnv_p (op0,
14922 strict_overflow_p));
14924 break;
14926 case NON_LVALUE_EXPR:
14927 return tree_expr_nonzero_warnv_p (op0,
14928 strict_overflow_p);
14930 default:
14931 break;
14934 return false;
14937 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14938 For floating point we further ensure that T is not denormal.
14939 Similar logic is present in nonzero_address in rtlanal.h.
14941 If the return value is based on the assumption that signed overflow
14942 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14943 change *STRICT_OVERFLOW_P. */
14945 bool
14946 tree_binary_nonzero_warnv_p (enum tree_code code,
14947 tree type,
14948 tree op0,
14949 tree op1, bool *strict_overflow_p)
14951 bool sub_strict_overflow_p;
14952 switch (code)
14954 case POINTER_PLUS_EXPR:
14955 case PLUS_EXPR:
14956 if (TYPE_OVERFLOW_UNDEFINED (type))
14958 /* With the presence of negative values it is hard
14959 to say something. */
14960 sub_strict_overflow_p = false;
14961 if (!tree_expr_nonnegative_warnv_p (op0,
14962 &sub_strict_overflow_p)
14963 || !tree_expr_nonnegative_warnv_p (op1,
14964 &sub_strict_overflow_p))
14965 return false;
14966 /* One of operands must be positive and the other non-negative. */
14967 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14968 overflows, on a twos-complement machine the sum of two
14969 nonnegative numbers can never be zero. */
14970 return (tree_expr_nonzero_warnv_p (op0,
14971 strict_overflow_p)
14972 || tree_expr_nonzero_warnv_p (op1,
14973 strict_overflow_p));
14975 break;
14977 case MULT_EXPR:
14978 if (TYPE_OVERFLOW_UNDEFINED (type))
14980 if (tree_expr_nonzero_warnv_p (op0,
14981 strict_overflow_p)
14982 && tree_expr_nonzero_warnv_p (op1,
14983 strict_overflow_p))
14985 *strict_overflow_p = true;
14986 return true;
14989 break;
14991 case MIN_EXPR:
14992 sub_strict_overflow_p = false;
14993 if (tree_expr_nonzero_warnv_p (op0,
14994 &sub_strict_overflow_p)
14995 && tree_expr_nonzero_warnv_p (op1,
14996 &sub_strict_overflow_p))
14998 if (sub_strict_overflow_p)
14999 *strict_overflow_p = true;
15001 break;
15003 case MAX_EXPR:
15004 sub_strict_overflow_p = false;
15005 if (tree_expr_nonzero_warnv_p (op0,
15006 &sub_strict_overflow_p))
15008 if (sub_strict_overflow_p)
15009 *strict_overflow_p = true;
15011 /* When both operands are nonzero, then MAX must be too. */
15012 if (tree_expr_nonzero_warnv_p (op1,
15013 strict_overflow_p))
15014 return true;
15016 /* MAX where operand 0 is positive is positive. */
15017 return tree_expr_nonnegative_warnv_p (op0,
15018 strict_overflow_p);
15020 /* MAX where operand 1 is positive is positive. */
15021 else if (tree_expr_nonzero_warnv_p (op1,
15022 &sub_strict_overflow_p)
15023 && tree_expr_nonnegative_warnv_p (op1,
15024 &sub_strict_overflow_p))
15026 if (sub_strict_overflow_p)
15027 *strict_overflow_p = true;
15028 return true;
15030 break;
15032 case BIT_IOR_EXPR:
15033 return (tree_expr_nonzero_warnv_p (op1,
15034 strict_overflow_p)
15035 || tree_expr_nonzero_warnv_p (op0,
15036 strict_overflow_p));
15038 default:
15039 break;
15042 return false;
15045 /* Return true when T is an address and is known to be nonzero.
15046 For floating point we further ensure that T is not denormal.
15047 Similar logic is present in nonzero_address in rtlanal.h.
15049 If the return value is based on the assumption that signed overflow
15050 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15051 change *STRICT_OVERFLOW_P. */
15053 bool
15054 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15056 bool sub_strict_overflow_p;
15057 switch (TREE_CODE (t))
15059 case INTEGER_CST:
15060 return !integer_zerop (t);
15062 case ADDR_EXPR:
15064 tree base = TREE_OPERAND (t, 0);
15065 if (!DECL_P (base))
15066 base = get_base_address (base);
15068 if (!base)
15069 return false;
15071 /* Weak declarations may link to NULL. Other things may also be NULL
15072 so protect with -fdelete-null-pointer-checks; but not variables
15073 allocated on the stack. */
15074 if (DECL_P (base)
15075 && (flag_delete_null_pointer_checks
15076 || (DECL_CONTEXT (base)
15077 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
15078 && auto_var_in_fn_p (base, DECL_CONTEXT (base)))))
15079 return !VAR_OR_FUNCTION_DECL_P (base) || !DECL_WEAK (base);
15081 /* Constants are never weak. */
15082 if (CONSTANT_CLASS_P (base))
15083 return true;
15085 return false;
15088 case COND_EXPR:
15089 sub_strict_overflow_p = false;
15090 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15091 &sub_strict_overflow_p)
15092 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15093 &sub_strict_overflow_p))
15095 if (sub_strict_overflow_p)
15096 *strict_overflow_p = true;
15097 return true;
15099 break;
15101 default:
15102 break;
15104 return false;
15107 /* Return true when T is an address and is known to be nonzero.
15108 For floating point we further ensure that T is not denormal.
15109 Similar logic is present in nonzero_address in rtlanal.h.
15111 If the return value is based on the assumption that signed overflow
15112 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15113 change *STRICT_OVERFLOW_P. */
15115 bool
15116 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15118 tree type = TREE_TYPE (t);
15119 enum tree_code code;
15121 /* Doing something useful for floating point would need more work. */
15122 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
15123 return false;
15125 code = TREE_CODE (t);
15126 switch (TREE_CODE_CLASS (code))
15128 case tcc_unary:
15129 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15130 strict_overflow_p);
15131 case tcc_binary:
15132 case tcc_comparison:
15133 return tree_binary_nonzero_warnv_p (code, type,
15134 TREE_OPERAND (t, 0),
15135 TREE_OPERAND (t, 1),
15136 strict_overflow_p);
15137 case tcc_constant:
15138 case tcc_declaration:
15139 case tcc_reference:
15140 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15142 default:
15143 break;
15146 switch (code)
15148 case TRUTH_NOT_EXPR:
15149 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15150 strict_overflow_p);
15152 case TRUTH_AND_EXPR:
15153 case TRUTH_OR_EXPR:
15154 case TRUTH_XOR_EXPR:
15155 return tree_binary_nonzero_warnv_p (code, type,
15156 TREE_OPERAND (t, 0),
15157 TREE_OPERAND (t, 1),
15158 strict_overflow_p);
15160 case COND_EXPR:
15161 case CONSTRUCTOR:
15162 case OBJ_TYPE_REF:
15163 case ASSERT_EXPR:
15164 case ADDR_EXPR:
15165 case WITH_SIZE_EXPR:
15166 case SSA_NAME:
15167 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15169 case COMPOUND_EXPR:
15170 case MODIFY_EXPR:
15171 case BIND_EXPR:
15172 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15173 strict_overflow_p);
15175 case SAVE_EXPR:
15176 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
15177 strict_overflow_p);
15179 case CALL_EXPR:
15180 return alloca_call_p (t);
15182 default:
15183 break;
15185 return false;
15188 /* Return true when T is an address and is known to be nonzero.
15189 Handle warnings about undefined signed overflow. */
15191 bool
15192 tree_expr_nonzero_p (tree t)
15194 bool ret, strict_overflow_p;
15196 strict_overflow_p = false;
15197 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
15198 if (strict_overflow_p)
15199 fold_overflow_warning (("assuming signed overflow does not occur when "
15200 "determining that expression is always "
15201 "non-zero"),
15202 WARN_STRICT_OVERFLOW_MISC);
15203 return ret;
15206 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15207 attempt to fold the expression to a constant without modifying TYPE,
15208 OP0 or OP1.
15210 If the expression could be simplified to a constant, then return
15211 the constant. If the expression would not be simplified to a
15212 constant, then return NULL_TREE. */
15214 tree
15215 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15217 tree tem = fold_binary (code, type, op0, op1);
15218 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15221 /* Given the components of a unary expression CODE, TYPE and OP0,
15222 attempt to fold the expression to a constant without modifying
15223 TYPE or OP0.
15225 If the expression could be simplified to a constant, then return
15226 the constant. If the expression would not be simplified to a
15227 constant, then return NULL_TREE. */
15229 tree
15230 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15232 tree tem = fold_unary (code, type, op0);
15233 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15236 /* If EXP represents referencing an element in a constant string
15237 (either via pointer arithmetic or array indexing), return the
15238 tree representing the value accessed, otherwise return NULL. */
15240 tree
15241 fold_read_from_constant_string (tree exp)
15243 if ((TREE_CODE (exp) == INDIRECT_REF
15244 || TREE_CODE (exp) == ARRAY_REF)
15245 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15247 tree exp1 = TREE_OPERAND (exp, 0);
15248 tree index;
15249 tree string;
15250 location_t loc = EXPR_LOCATION (exp);
15252 if (TREE_CODE (exp) == INDIRECT_REF)
15253 string = string_constant (exp1, &index);
15254 else
15256 tree low_bound = array_ref_low_bound (exp);
15257 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15259 /* Optimize the special-case of a zero lower bound.
15261 We convert the low_bound to sizetype to avoid some problems
15262 with constant folding. (E.g. suppose the lower bound is 1,
15263 and its mode is QI. Without the conversion,l (ARRAY
15264 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15265 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15266 if (! integer_zerop (low_bound))
15267 index = size_diffop_loc (loc, index,
15268 fold_convert_loc (loc, sizetype, low_bound));
15270 string = exp1;
15273 if (string
15274 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15275 && TREE_CODE (string) == STRING_CST
15276 && TREE_CODE (index) == INTEGER_CST
15277 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15278 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15279 == MODE_INT)
15280 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15281 return build_int_cst_type (TREE_TYPE (exp),
15282 (TREE_STRING_POINTER (string)
15283 [TREE_INT_CST_LOW (index)]));
15285 return NULL;
15288 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15289 an integer constant, real, or fixed-point constant.
15291 TYPE is the type of the result. */
15293 static tree
15294 fold_negate_const (tree arg0, tree type)
15296 tree t = NULL_TREE;
15298 switch (TREE_CODE (arg0))
15300 case INTEGER_CST:
15302 double_int val = tree_to_double_int (arg0);
15303 int overflow = neg_double (val.low, val.high, &val.low, &val.high);
15305 t = force_fit_type_double (type, val, 1,
15306 (overflow | TREE_OVERFLOW (arg0))
15307 && !TYPE_UNSIGNED (type));
15308 break;
15311 case REAL_CST:
15312 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15313 break;
15315 case FIXED_CST:
15317 FIXED_VALUE_TYPE f;
15318 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15319 &(TREE_FIXED_CST (arg0)), NULL,
15320 TYPE_SATURATING (type));
15321 t = build_fixed (type, f);
15322 /* Propagate overflow flags. */
15323 if (overflow_p | TREE_OVERFLOW (arg0))
15324 TREE_OVERFLOW (t) = 1;
15325 break;
15328 default:
15329 gcc_unreachable ();
15332 return t;
15335 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15336 an integer constant or real constant.
15338 TYPE is the type of the result. */
15340 tree
15341 fold_abs_const (tree arg0, tree type)
15343 tree t = NULL_TREE;
15345 switch (TREE_CODE (arg0))
15347 case INTEGER_CST:
15349 double_int val = tree_to_double_int (arg0);
15351 /* If the value is unsigned or non-negative, then the absolute value
15352 is the same as the ordinary value. */
15353 if (TYPE_UNSIGNED (type)
15354 || !double_int_negative_p (val))
15355 t = arg0;
15357 /* If the value is negative, then the absolute value is
15358 its negation. */
15359 else
15361 int overflow;
15363 overflow = neg_double (val.low, val.high, &val.low, &val.high);
15364 t = force_fit_type_double (type, val, -1,
15365 overflow | TREE_OVERFLOW (arg0));
15368 break;
15370 case REAL_CST:
15371 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15372 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15373 else
15374 t = arg0;
15375 break;
15377 default:
15378 gcc_unreachable ();
15381 return t;
15384 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15385 constant. TYPE is the type of the result. */
15387 static tree
15388 fold_not_const (const_tree arg0, tree type)
15390 double_int val;
15392 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15394 val = double_int_not (tree_to_double_int (arg0));
15395 return force_fit_type_double (type, val, 0, TREE_OVERFLOW (arg0));
15398 /* Given CODE, a relational operator, the target type, TYPE and two
15399 constant operands OP0 and OP1, return the result of the
15400 relational operation. If the result is not a compile time
15401 constant, then return NULL_TREE. */
15403 static tree
15404 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15406 int result, invert;
15408 /* From here on, the only cases we handle are when the result is
15409 known to be a constant. */
15411 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15413 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15414 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15416 /* Handle the cases where either operand is a NaN. */
15417 if (real_isnan (c0) || real_isnan (c1))
15419 switch (code)
15421 case EQ_EXPR:
15422 case ORDERED_EXPR:
15423 result = 0;
15424 break;
15426 case NE_EXPR:
15427 case UNORDERED_EXPR:
15428 case UNLT_EXPR:
15429 case UNLE_EXPR:
15430 case UNGT_EXPR:
15431 case UNGE_EXPR:
15432 case UNEQ_EXPR:
15433 result = 1;
15434 break;
15436 case LT_EXPR:
15437 case LE_EXPR:
15438 case GT_EXPR:
15439 case GE_EXPR:
15440 case LTGT_EXPR:
15441 if (flag_trapping_math)
15442 return NULL_TREE;
15443 result = 0;
15444 break;
15446 default:
15447 gcc_unreachable ();
15450 return constant_boolean_node (result, type);
15453 return constant_boolean_node (real_compare (code, c0, c1), type);
15456 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15458 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15459 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15460 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15463 /* Handle equality/inequality of complex constants. */
15464 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15466 tree rcond = fold_relational_const (code, type,
15467 TREE_REALPART (op0),
15468 TREE_REALPART (op1));
15469 tree icond = fold_relational_const (code, type,
15470 TREE_IMAGPART (op0),
15471 TREE_IMAGPART (op1));
15472 if (code == EQ_EXPR)
15473 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15474 else if (code == NE_EXPR)
15475 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15476 else
15477 return NULL_TREE;
15480 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15482 To compute GT, swap the arguments and do LT.
15483 To compute GE, do LT and invert the result.
15484 To compute LE, swap the arguments, do LT and invert the result.
15485 To compute NE, do EQ and invert the result.
15487 Therefore, the code below must handle only EQ and LT. */
15489 if (code == LE_EXPR || code == GT_EXPR)
15491 tree tem = op0;
15492 op0 = op1;
15493 op1 = tem;
15494 code = swap_tree_comparison (code);
15497 /* Note that it is safe to invert for real values here because we
15498 have already handled the one case that it matters. */
15500 invert = 0;
15501 if (code == NE_EXPR || code == GE_EXPR)
15503 invert = 1;
15504 code = invert_tree_comparison (code, false);
15507 /* Compute a result for LT or EQ if args permit;
15508 Otherwise return T. */
15509 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15511 if (code == EQ_EXPR)
15512 result = tree_int_cst_equal (op0, op1);
15513 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
15514 result = INT_CST_LT_UNSIGNED (op0, op1);
15515 else
15516 result = INT_CST_LT (op0, op1);
15518 else
15519 return NULL_TREE;
15521 if (invert)
15522 result ^= 1;
15523 return constant_boolean_node (result, type);
15526 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15527 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15528 itself. */
15530 tree
15531 fold_build_cleanup_point_expr (tree type, tree expr)
15533 /* If the expression does not have side effects then we don't have to wrap
15534 it with a cleanup point expression. */
15535 if (!TREE_SIDE_EFFECTS (expr))
15536 return expr;
15538 /* If the expression is a return, check to see if the expression inside the
15539 return has no side effects or the right hand side of the modify expression
15540 inside the return. If either don't have side effects set we don't need to
15541 wrap the expression in a cleanup point expression. Note we don't check the
15542 left hand side of the modify because it should always be a return decl. */
15543 if (TREE_CODE (expr) == RETURN_EXPR)
15545 tree op = TREE_OPERAND (expr, 0);
15546 if (!op || !TREE_SIDE_EFFECTS (op))
15547 return expr;
15548 op = TREE_OPERAND (op, 1);
15549 if (!TREE_SIDE_EFFECTS (op))
15550 return expr;
15553 return build1 (CLEANUP_POINT_EXPR, type, expr);
15556 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15557 of an indirection through OP0, or NULL_TREE if no simplification is
15558 possible. */
15560 tree
15561 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
15563 tree sub = op0;
15564 tree subtype;
15566 STRIP_NOPS (sub);
15567 subtype = TREE_TYPE (sub);
15568 if (!POINTER_TYPE_P (subtype))
15569 return NULL_TREE;
15571 if (TREE_CODE (sub) == ADDR_EXPR)
15573 tree op = TREE_OPERAND (sub, 0);
15574 tree optype = TREE_TYPE (op);
15575 /* *&CONST_DECL -> to the value of the const decl. */
15576 if (TREE_CODE (op) == CONST_DECL)
15577 return DECL_INITIAL (op);
15578 /* *&p => p; make sure to handle *&"str"[cst] here. */
15579 if (type == optype)
15581 tree fop = fold_read_from_constant_string (op);
15582 if (fop)
15583 return fop;
15584 else
15585 return op;
15587 /* *(foo *)&fooarray => fooarray[0] */
15588 else if (TREE_CODE (optype) == ARRAY_TYPE
15589 && type == TREE_TYPE (optype)
15590 && (!in_gimple_form
15591 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15593 tree type_domain = TYPE_DOMAIN (optype);
15594 tree min_val = size_zero_node;
15595 if (type_domain && TYPE_MIN_VALUE (type_domain))
15596 min_val = TYPE_MIN_VALUE (type_domain);
15597 if (in_gimple_form
15598 && TREE_CODE (min_val) != INTEGER_CST)
15599 return NULL_TREE;
15600 return build4_loc (loc, ARRAY_REF, type, op, min_val,
15601 NULL_TREE, NULL_TREE);
15603 /* *(foo *)&complexfoo => __real__ complexfoo */
15604 else if (TREE_CODE (optype) == COMPLEX_TYPE
15605 && type == TREE_TYPE (optype))
15606 return fold_build1_loc (loc, REALPART_EXPR, type, op);
15607 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15608 else if (TREE_CODE (optype) == VECTOR_TYPE
15609 && type == TREE_TYPE (optype))
15611 tree part_width = TYPE_SIZE (type);
15612 tree index = bitsize_int (0);
15613 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
15617 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15618 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15620 tree op00 = TREE_OPERAND (sub, 0);
15621 tree op01 = TREE_OPERAND (sub, 1);
15623 STRIP_NOPS (op00);
15624 if (TREE_CODE (op00) == ADDR_EXPR)
15626 tree op00type;
15627 op00 = TREE_OPERAND (op00, 0);
15628 op00type = TREE_TYPE (op00);
15630 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15631 if (TREE_CODE (op00type) == VECTOR_TYPE
15632 && type == TREE_TYPE (op00type))
15634 HOST_WIDE_INT offset = tree_low_cst (op01, 0);
15635 tree part_width = TYPE_SIZE (type);
15636 unsigned HOST_WIDE_INT part_widthi = tree_low_cst (part_width, 0)/BITS_PER_UNIT;
15637 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15638 tree index = bitsize_int (indexi);
15640 if (offset/part_widthi <= TYPE_VECTOR_SUBPARTS (op00type))
15641 return fold_build3_loc (loc,
15642 BIT_FIELD_REF, type, op00,
15643 part_width, index);
15646 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15647 else if (TREE_CODE (op00type) == COMPLEX_TYPE
15648 && type == TREE_TYPE (op00type))
15650 tree size = TYPE_SIZE_UNIT (type);
15651 if (tree_int_cst_equal (size, op01))
15652 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
15654 /* ((foo *)&fooarray)[1] => fooarray[1] */
15655 else if (TREE_CODE (op00type) == ARRAY_TYPE
15656 && type == TREE_TYPE (op00type))
15658 tree type_domain = TYPE_DOMAIN (op00type);
15659 tree min_val = size_zero_node;
15660 if (type_domain && TYPE_MIN_VALUE (type_domain))
15661 min_val = TYPE_MIN_VALUE (type_domain);
15662 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
15663 TYPE_SIZE_UNIT (type));
15664 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
15665 return build4_loc (loc, ARRAY_REF, type, op00, op01,
15666 NULL_TREE, NULL_TREE);
15671 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15672 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15673 && type == TREE_TYPE (TREE_TYPE (subtype))
15674 && (!in_gimple_form
15675 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15677 tree type_domain;
15678 tree min_val = size_zero_node;
15679 sub = build_fold_indirect_ref_loc (loc, sub);
15680 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15681 if (type_domain && TYPE_MIN_VALUE (type_domain))
15682 min_val = TYPE_MIN_VALUE (type_domain);
15683 if (in_gimple_form
15684 && TREE_CODE (min_val) != INTEGER_CST)
15685 return NULL_TREE;
15686 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
15687 NULL_TREE);
15690 return NULL_TREE;
15693 /* Builds an expression for an indirection through T, simplifying some
15694 cases. */
15696 tree
15697 build_fold_indirect_ref_loc (location_t loc, tree t)
15699 tree type = TREE_TYPE (TREE_TYPE (t));
15700 tree sub = fold_indirect_ref_1 (loc, type, t);
15702 if (sub)
15703 return sub;
15705 return build1_loc (loc, INDIRECT_REF, type, t);
15708 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15710 tree
15711 fold_indirect_ref_loc (location_t loc, tree t)
15713 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
15715 if (sub)
15716 return sub;
15717 else
15718 return t;
15721 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15722 whose result is ignored. The type of the returned tree need not be
15723 the same as the original expression. */
15725 tree
15726 fold_ignored_result (tree t)
15728 if (!TREE_SIDE_EFFECTS (t))
15729 return integer_zero_node;
15731 for (;;)
15732 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15734 case tcc_unary:
15735 t = TREE_OPERAND (t, 0);
15736 break;
15738 case tcc_binary:
15739 case tcc_comparison:
15740 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15741 t = TREE_OPERAND (t, 0);
15742 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15743 t = TREE_OPERAND (t, 1);
15744 else
15745 return t;
15746 break;
15748 case tcc_expression:
15749 switch (TREE_CODE (t))
15751 case COMPOUND_EXPR:
15752 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15753 return t;
15754 t = TREE_OPERAND (t, 0);
15755 break;
15757 case COND_EXPR:
15758 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15759 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15760 return t;
15761 t = TREE_OPERAND (t, 0);
15762 break;
15764 default:
15765 return t;
15767 break;
15769 default:
15770 return t;
15774 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
15775 This can only be applied to objects of a sizetype. */
15777 tree
15778 round_up_loc (location_t loc, tree value, int divisor)
15780 tree div = NULL_TREE;
15782 gcc_assert (divisor > 0);
15783 if (divisor == 1)
15784 return value;
15786 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15787 have to do anything. Only do this when we are not given a const,
15788 because in that case, this check is more expensive than just
15789 doing it. */
15790 if (TREE_CODE (value) != INTEGER_CST)
15792 div = build_int_cst (TREE_TYPE (value), divisor);
15794 if (multiple_of_p (TREE_TYPE (value), value, div))
15795 return value;
15798 /* If divisor is a power of two, simplify this to bit manipulation. */
15799 if (divisor == (divisor & -divisor))
15801 if (TREE_CODE (value) == INTEGER_CST)
15803 double_int val = tree_to_double_int (value);
15804 bool overflow_p;
15806 if ((val.low & (divisor - 1)) == 0)
15807 return value;
15809 overflow_p = TREE_OVERFLOW (value);
15810 val.low &= ~(divisor - 1);
15811 val.low += divisor;
15812 if (val.low == 0)
15814 val.high++;
15815 if (val.high == 0)
15816 overflow_p = true;
15819 return force_fit_type_double (TREE_TYPE (value), val,
15820 -1, overflow_p);
15822 else
15824 tree t;
15826 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15827 value = size_binop_loc (loc, PLUS_EXPR, value, t);
15828 t = build_int_cst (TREE_TYPE (value), -divisor);
15829 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15832 else
15834 if (!div)
15835 div = build_int_cst (TREE_TYPE (value), divisor);
15836 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
15837 value = size_binop_loc (loc, MULT_EXPR, value, div);
15840 return value;
15843 /* Likewise, but round down. */
15845 tree
15846 round_down_loc (location_t loc, tree value, int divisor)
15848 tree div = NULL_TREE;
15850 gcc_assert (divisor > 0);
15851 if (divisor == 1)
15852 return value;
15854 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15855 have to do anything. Only do this when we are not given a const,
15856 because in that case, this check is more expensive than just
15857 doing it. */
15858 if (TREE_CODE (value) != INTEGER_CST)
15860 div = build_int_cst (TREE_TYPE (value), divisor);
15862 if (multiple_of_p (TREE_TYPE (value), value, div))
15863 return value;
15866 /* If divisor is a power of two, simplify this to bit manipulation. */
15867 if (divisor == (divisor & -divisor))
15869 tree t;
15871 t = build_int_cst (TREE_TYPE (value), -divisor);
15872 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15874 else
15876 if (!div)
15877 div = build_int_cst (TREE_TYPE (value), divisor);
15878 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
15879 value = size_binop_loc (loc, MULT_EXPR, value, div);
15882 return value;
15885 /* Returns the pointer to the base of the object addressed by EXP and
15886 extracts the information about the offset of the access, storing it
15887 to PBITPOS and POFFSET. */
15889 static tree
15890 split_address_to_core_and_offset (tree exp,
15891 HOST_WIDE_INT *pbitpos, tree *poffset)
15893 tree core;
15894 enum machine_mode mode;
15895 int unsignedp, volatilep;
15896 HOST_WIDE_INT bitsize;
15897 location_t loc = EXPR_LOCATION (exp);
15899 if (TREE_CODE (exp) == ADDR_EXPR)
15901 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15902 poffset, &mode, &unsignedp, &volatilep,
15903 false);
15904 core = build_fold_addr_expr_loc (loc, core);
15906 else
15908 core = exp;
15909 *pbitpos = 0;
15910 *poffset = NULL_TREE;
15913 return core;
15916 /* Returns true if addresses of E1 and E2 differ by a constant, false
15917 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15919 bool
15920 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15922 tree core1, core2;
15923 HOST_WIDE_INT bitpos1, bitpos2;
15924 tree toffset1, toffset2, tdiff, type;
15926 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15927 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15929 if (bitpos1 % BITS_PER_UNIT != 0
15930 || bitpos2 % BITS_PER_UNIT != 0
15931 || !operand_equal_p (core1, core2, 0))
15932 return false;
15934 if (toffset1 && toffset2)
15936 type = TREE_TYPE (toffset1);
15937 if (type != TREE_TYPE (toffset2))
15938 toffset2 = fold_convert (type, toffset2);
15940 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15941 if (!cst_and_fits_in_hwi (tdiff))
15942 return false;
15944 *diff = int_cst_value (tdiff);
15946 else if (toffset1 || toffset2)
15948 /* If only one of the offsets is non-constant, the difference cannot
15949 be a constant. */
15950 return false;
15952 else
15953 *diff = 0;
15955 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15956 return true;
15959 /* Simplify the floating point expression EXP when the sign of the
15960 result is not significant. Return NULL_TREE if no simplification
15961 is possible. */
15963 tree
15964 fold_strip_sign_ops (tree exp)
15966 tree arg0, arg1;
15967 location_t loc = EXPR_LOCATION (exp);
15969 switch (TREE_CODE (exp))
15971 case ABS_EXPR:
15972 case NEGATE_EXPR:
15973 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15974 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15976 case MULT_EXPR:
15977 case RDIV_EXPR:
15978 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
15979 return NULL_TREE;
15980 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15981 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15982 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15983 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
15984 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15985 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15986 break;
15988 case COMPOUND_EXPR:
15989 arg0 = TREE_OPERAND (exp, 0);
15990 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15991 if (arg1)
15992 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15993 break;
15995 case COND_EXPR:
15996 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15997 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15998 if (arg0 || arg1)
15999 return fold_build3_loc (loc,
16000 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
16001 arg0 ? arg0 : TREE_OPERAND (exp, 1),
16002 arg1 ? arg1 : TREE_OPERAND (exp, 2));
16003 break;
16005 case CALL_EXPR:
16007 const enum built_in_function fcode = builtin_mathfn_code (exp);
16008 switch (fcode)
16010 CASE_FLT_FN (BUILT_IN_COPYSIGN):
16011 /* Strip copysign function call, return the 1st argument. */
16012 arg0 = CALL_EXPR_ARG (exp, 0);
16013 arg1 = CALL_EXPR_ARG (exp, 1);
16014 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
16016 default:
16017 /* Strip sign ops from the argument of "odd" math functions. */
16018 if (negate_mathfn_p (fcode))
16020 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
16021 if (arg0)
16022 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
16024 break;
16027 break;
16029 default:
16030 break;
16032 return NULL_TREE;