Pass name cleanups
[official-gcc.git] / gcc / alias.c
blobb32e6b37cac2c15cbb76f841de6165c08c8147d5
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "tree-ssa-alias.h"
48 #include "pointer-set.h"
49 #include "tree-flow.h"
51 /* The aliasing API provided here solves related but different problems:
53 Say there exists (in c)
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
60 struct Y y2, *py;
61 struct Z z2, *pz;
64 py = &px1.y1;
65 px2 = &x1;
67 Consider the four questions:
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162 static int aliases_everything_p (const_rtx);
163 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
164 static tree decl_for_component_ref (tree);
165 static rtx adjust_offset_for_component_ref (tree, rtx);
166 static int write_dependence_p (const_rtx, const_rtx, int);
168 static void memory_modified_1 (rtx, const_rtx, void *);
170 /* Set up all info needed to perform alias analysis on memory references. */
172 /* Returns the size in bytes of the mode of X. */
173 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
175 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
176 different alias sets. We ignore alias sets in functions making use
177 of variable arguments because the va_arg macros on some systems are
178 not legal ANSI C. */
179 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
180 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
182 /* Cap the number of passes we make over the insns propagating alias
183 information through set chains. 10 is a completely arbitrary choice. */
184 #define MAX_ALIAS_LOOP_PASSES 10
186 /* reg_base_value[N] gives an address to which register N is related.
187 If all sets after the first add or subtract to the current value
188 or otherwise modify it so it does not point to a different top level
189 object, reg_base_value[N] is equal to the address part of the source
190 of the first set.
192 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
193 expressions represent certain special values: function arguments and
194 the stack, frame, and argument pointers.
196 The contents of an ADDRESS is not normally used, the mode of the
197 ADDRESS determines whether the ADDRESS is a function argument or some
198 other special value. Pointer equality, not rtx_equal_p, determines whether
199 two ADDRESS expressions refer to the same base address.
201 The only use of the contents of an ADDRESS is for determining if the
202 current function performs nonlocal memory memory references for the
203 purposes of marking the function as a constant function. */
205 static GTY(()) VEC(rtx,gc) *reg_base_value;
206 static rtx *new_reg_base_value;
208 /* We preserve the copy of old array around to avoid amount of garbage
209 produced. About 8% of garbage produced were attributed to this
210 array. */
211 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
213 #define static_reg_base_value \
214 (this_target_rtl->x_static_reg_base_value)
216 #define REG_BASE_VALUE(X) \
217 (REGNO (X) < VEC_length (rtx, reg_base_value) \
218 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
220 /* Vector indexed by N giving the initial (unchanging) value known for
221 pseudo-register N. This array is initialized in init_alias_analysis,
222 and does not change until end_alias_analysis is called. */
223 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
225 /* Indicates number of valid entries in reg_known_value. */
226 static GTY(()) unsigned int reg_known_value_size;
228 /* Vector recording for each reg_known_value whether it is due to a
229 REG_EQUIV note. Future passes (viz., reload) may replace the
230 pseudo with the equivalent expression and so we account for the
231 dependences that would be introduced if that happens.
233 The REG_EQUIV notes created in assign_parms may mention the arg
234 pointer, and there are explicit insns in the RTL that modify the
235 arg pointer. Thus we must ensure that such insns don't get
236 scheduled across each other because that would invalidate the
237 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
238 wrong, but solving the problem in the scheduler will likely give
239 better code, so we do it here. */
240 static bool *reg_known_equiv_p;
242 /* True when scanning insns from the start of the rtl to the
243 NOTE_INSN_FUNCTION_BEG note. */
244 static bool copying_arguments;
246 DEF_VEC_P(alias_set_entry);
247 DEF_VEC_ALLOC_P(alias_set_entry,gc);
249 /* The splay-tree used to store the various alias set entries. */
250 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
252 /* Build a decomposed reference object for querying the alias-oracle
253 from the MEM rtx and store it in *REF.
254 Returns false if MEM is not suitable for the alias-oracle. */
256 static bool
257 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
259 tree expr = MEM_EXPR (mem);
260 tree base;
262 if (!expr)
263 return false;
265 ao_ref_init (ref, expr);
267 /* Get the base of the reference and see if we have to reject or
268 adjust it. */
269 base = ao_ref_base (ref);
270 if (base == NULL_TREE)
271 return false;
273 /* The tree oracle doesn't like to have these. */
274 if (TREE_CODE (base) == FUNCTION_DECL
275 || TREE_CODE (base) == LABEL_DECL)
276 return false;
278 /* If this is a pointer dereference of a non-SSA_NAME punt.
279 ??? We could replace it with a pointer to anything. */
280 if ((INDIRECT_REF_P (base)
281 || TREE_CODE (base) == MEM_REF)
282 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
283 return false;
284 if (TREE_CODE (base) == TARGET_MEM_REF
285 && TMR_BASE (base)
286 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
287 return false;
289 /* If this is a reference based on a partitioned decl replace the
290 base with an INDIRECT_REF of the pointer representative we
291 created during stack slot partitioning. */
292 if (TREE_CODE (base) == VAR_DECL
293 && ! TREE_STATIC (base)
294 && cfun->gimple_df->decls_to_pointers != NULL)
296 void *namep;
297 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
298 if (namep)
299 ref->base = build_simple_mem_ref (*(tree *)namep);
301 else if (TREE_CODE (base) == TARGET_MEM_REF
302 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
303 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
304 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
305 && cfun->gimple_df->decls_to_pointers != NULL)
307 void *namep;
308 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
309 TREE_OPERAND (TMR_BASE (base), 0));
310 if (namep)
311 ref->base = build_simple_mem_ref (*(tree *)namep);
314 ref->ref_alias_set = MEM_ALIAS_SET (mem);
316 /* If MEM_OFFSET or MEM_SIZE are NULL we have to punt.
317 Keep points-to related information though. */
318 if (!MEM_OFFSET (mem)
319 || !MEM_SIZE (mem))
321 ref->ref = NULL_TREE;
322 ref->offset = 0;
323 ref->size = -1;
324 ref->max_size = -1;
325 return true;
328 /* If the base decl is a parameter we can have negative MEM_OFFSET in
329 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
330 here. */
331 if (INTVAL (MEM_OFFSET (mem)) < 0
332 && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
333 * BITS_PER_UNIT) == ref->size)
334 return true;
336 ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
337 ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
339 /* The MEM may extend into adjacent fields, so adjust max_size if
340 necessary. */
341 if (ref->max_size != -1
342 && ref->size > ref->max_size)
343 ref->max_size = ref->size;
345 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
346 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
347 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
348 && (ref->offset < 0
349 || (DECL_P (ref->base)
350 && (!host_integerp (DECL_SIZE (ref->base), 1)
351 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
352 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
353 return false;
355 return true;
358 /* Query the alias-oracle on whether the two memory rtx X and MEM may
359 alias. If TBAA_P is set also apply TBAA. Returns true if the
360 two rtxen may alias, false otherwise. */
362 static bool
363 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
365 ao_ref ref1, ref2;
367 if (!ao_ref_from_mem (&ref1, x)
368 || !ao_ref_from_mem (&ref2, mem))
369 return true;
371 return refs_may_alias_p_1 (&ref1, &ref2,
372 tbaa_p
373 && MEM_ALIAS_SET (x) != 0
374 && MEM_ALIAS_SET (mem) != 0);
377 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
378 such an entry, or NULL otherwise. */
380 static inline alias_set_entry
381 get_alias_set_entry (alias_set_type alias_set)
383 return VEC_index (alias_set_entry, alias_sets, alias_set);
386 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
387 the two MEMs cannot alias each other. */
389 static inline int
390 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
392 /* Perform a basic sanity check. Namely, that there are no alias sets
393 if we're not using strict aliasing. This helps to catch bugs
394 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
395 where a MEM is allocated in some way other than by the use of
396 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
397 use alias sets to indicate that spilled registers cannot alias each
398 other, we might need to remove this check. */
399 gcc_assert (flag_strict_aliasing
400 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
402 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
405 /* Insert the NODE into the splay tree given by DATA. Used by
406 record_alias_subset via splay_tree_foreach. */
408 static int
409 insert_subset_children (splay_tree_node node, void *data)
411 splay_tree_insert ((splay_tree) data, node->key, node->value);
413 return 0;
416 /* Return true if the first alias set is a subset of the second. */
418 bool
419 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
421 alias_set_entry ase;
423 /* Everything is a subset of the "aliases everything" set. */
424 if (set2 == 0)
425 return true;
427 /* Otherwise, check if set1 is a subset of set2. */
428 ase = get_alias_set_entry (set2);
429 if (ase != 0
430 && (ase->has_zero_child
431 || splay_tree_lookup (ase->children,
432 (splay_tree_key) set1)))
433 return true;
434 return false;
437 /* Return 1 if the two specified alias sets may conflict. */
440 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
442 alias_set_entry ase;
444 /* The easy case. */
445 if (alias_sets_must_conflict_p (set1, set2))
446 return 1;
448 /* See if the first alias set is a subset of the second. */
449 ase = get_alias_set_entry (set1);
450 if (ase != 0
451 && (ase->has_zero_child
452 || splay_tree_lookup (ase->children,
453 (splay_tree_key) set2)))
454 return 1;
456 /* Now do the same, but with the alias sets reversed. */
457 ase = get_alias_set_entry (set2);
458 if (ase != 0
459 && (ase->has_zero_child
460 || splay_tree_lookup (ase->children,
461 (splay_tree_key) set1)))
462 return 1;
464 /* The two alias sets are distinct and neither one is the
465 child of the other. Therefore, they cannot conflict. */
466 return 0;
469 /* Return 1 if the two specified alias sets will always conflict. */
472 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
474 if (set1 == 0 || set2 == 0 || set1 == set2)
475 return 1;
477 return 0;
480 /* Return 1 if any MEM object of type T1 will always conflict (using the
481 dependency routines in this file) with any MEM object of type T2.
482 This is used when allocating temporary storage. If T1 and/or T2 are
483 NULL_TREE, it means we know nothing about the storage. */
486 objects_must_conflict_p (tree t1, tree t2)
488 alias_set_type set1, set2;
490 /* If neither has a type specified, we don't know if they'll conflict
491 because we may be using them to store objects of various types, for
492 example the argument and local variables areas of inlined functions. */
493 if (t1 == 0 && t2 == 0)
494 return 0;
496 /* If they are the same type, they must conflict. */
497 if (t1 == t2
498 /* Likewise if both are volatile. */
499 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
500 return 1;
502 set1 = t1 ? get_alias_set (t1) : 0;
503 set2 = t2 ? get_alias_set (t2) : 0;
505 /* We can't use alias_sets_conflict_p because we must make sure
506 that every subtype of t1 will conflict with every subtype of
507 t2 for which a pair of subobjects of these respective subtypes
508 overlaps on the stack. */
509 return alias_sets_must_conflict_p (set1, set2);
512 /* Return true if all nested component references handled by
513 get_inner_reference in T are such that we should use the alias set
514 provided by the object at the heart of T.
516 This is true for non-addressable components (which don't have their
517 own alias set), as well as components of objects in alias set zero.
518 This later point is a special case wherein we wish to override the
519 alias set used by the component, but we don't have per-FIELD_DECL
520 assignable alias sets. */
522 bool
523 component_uses_parent_alias_set (const_tree t)
525 while (1)
527 /* If we're at the end, it vacuously uses its own alias set. */
528 if (!handled_component_p (t))
529 return false;
531 switch (TREE_CODE (t))
533 case COMPONENT_REF:
534 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
535 return true;
536 break;
538 case ARRAY_REF:
539 case ARRAY_RANGE_REF:
540 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
541 return true;
542 break;
544 case REALPART_EXPR:
545 case IMAGPART_EXPR:
546 break;
548 default:
549 /* Bitfields and casts are never addressable. */
550 return true;
553 t = TREE_OPERAND (t, 0);
554 if (get_alias_set (TREE_TYPE (t)) == 0)
555 return true;
559 /* Return the alias set for the memory pointed to by T, which may be
560 either a type or an expression. Return -1 if there is nothing
561 special about dereferencing T. */
563 static alias_set_type
564 get_deref_alias_set_1 (tree t)
566 /* If we're not doing any alias analysis, just assume everything
567 aliases everything else. */
568 if (!flag_strict_aliasing)
569 return 0;
571 /* All we care about is the type. */
572 if (! TYPE_P (t))
573 t = TREE_TYPE (t);
575 /* If we have an INDIRECT_REF via a void pointer, we don't
576 know anything about what that might alias. Likewise if the
577 pointer is marked that way. */
578 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
579 || TYPE_REF_CAN_ALIAS_ALL (t))
580 return 0;
582 return -1;
585 /* Return the alias set for the memory pointed to by T, which may be
586 either a type or an expression. */
588 alias_set_type
589 get_deref_alias_set (tree t)
591 alias_set_type set = get_deref_alias_set_1 (t);
593 /* Fall back to the alias-set of the pointed-to type. */
594 if (set == -1)
596 if (! TYPE_P (t))
597 t = TREE_TYPE (t);
598 set = get_alias_set (TREE_TYPE (t));
601 return set;
604 /* Return the alias set for T, which may be either a type or an
605 expression. Call language-specific routine for help, if needed. */
607 alias_set_type
608 get_alias_set (tree t)
610 alias_set_type set;
612 /* If we're not doing any alias analysis, just assume everything
613 aliases everything else. Also return 0 if this or its type is
614 an error. */
615 if (! flag_strict_aliasing || t == error_mark_node
616 || (! TYPE_P (t)
617 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
618 return 0;
620 /* We can be passed either an expression or a type. This and the
621 language-specific routine may make mutually-recursive calls to each other
622 to figure out what to do. At each juncture, we see if this is a tree
623 that the language may need to handle specially. First handle things that
624 aren't types. */
625 if (! TYPE_P (t))
627 tree inner;
629 /* Give the language a chance to do something with this tree
630 before we look at it. */
631 STRIP_NOPS (t);
632 set = lang_hooks.get_alias_set (t);
633 if (set != -1)
634 return set;
636 /* Get the base object of the reference. */
637 inner = t;
638 while (handled_component_p (inner))
640 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
641 the type of any component references that wrap it to
642 determine the alias-set. */
643 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
644 t = TREE_OPERAND (inner, 0);
645 inner = TREE_OPERAND (inner, 0);
648 /* Handle pointer dereferences here, they can override the
649 alias-set. */
650 if (INDIRECT_REF_P (inner))
652 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
653 if (set != -1)
654 return set;
656 else if (TREE_CODE (inner) == TARGET_MEM_REF)
657 return get_deref_alias_set (TMR_OFFSET (inner));
658 else if (TREE_CODE (inner) == MEM_REF)
660 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
661 if (set != -1)
662 return set;
665 /* If the innermost reference is a MEM_REF that has a
666 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
667 using the memory access type for determining the alias-set. */
668 if (TREE_CODE (inner) == MEM_REF
669 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
670 != TYPE_MAIN_VARIANT
671 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
672 return get_deref_alias_set (TREE_OPERAND (inner, 1));
674 /* Otherwise, pick up the outermost object that we could have a pointer
675 to, processing conversions as above. */
676 while (component_uses_parent_alias_set (t))
678 t = TREE_OPERAND (t, 0);
679 STRIP_NOPS (t);
682 /* If we've already determined the alias set for a decl, just return
683 it. This is necessary for C++ anonymous unions, whose component
684 variables don't look like union members (boo!). */
685 if (TREE_CODE (t) == VAR_DECL
686 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
687 return MEM_ALIAS_SET (DECL_RTL (t));
689 /* Now all we care about is the type. */
690 t = TREE_TYPE (t);
693 /* Variant qualifiers don't affect the alias set, so get the main
694 variant. */
695 t = TYPE_MAIN_VARIANT (t);
697 /* Always use the canonical type as well. If this is a type that
698 requires structural comparisons to identify compatible types
699 use alias set zero. */
700 if (TYPE_STRUCTURAL_EQUALITY_P (t))
702 /* Allow the language to specify another alias set for this
703 type. */
704 set = lang_hooks.get_alias_set (t);
705 if (set != -1)
706 return set;
707 return 0;
710 t = TYPE_CANONICAL (t);
712 /* The canonical type should not require structural equality checks. */
713 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
715 /* If this is a type with a known alias set, return it. */
716 if (TYPE_ALIAS_SET_KNOWN_P (t))
717 return TYPE_ALIAS_SET (t);
719 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
720 if (!COMPLETE_TYPE_P (t))
722 /* For arrays with unknown size the conservative answer is the
723 alias set of the element type. */
724 if (TREE_CODE (t) == ARRAY_TYPE)
725 return get_alias_set (TREE_TYPE (t));
727 /* But return zero as a conservative answer for incomplete types. */
728 return 0;
731 /* See if the language has special handling for this type. */
732 set = lang_hooks.get_alias_set (t);
733 if (set != -1)
734 return set;
736 /* There are no objects of FUNCTION_TYPE, so there's no point in
737 using up an alias set for them. (There are, of course, pointers
738 and references to functions, but that's different.) */
739 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
740 set = 0;
742 /* Unless the language specifies otherwise, let vector types alias
743 their components. This avoids some nasty type punning issues in
744 normal usage. And indeed lets vectors be treated more like an
745 array slice. */
746 else if (TREE_CODE (t) == VECTOR_TYPE)
747 set = get_alias_set (TREE_TYPE (t));
749 /* Unless the language specifies otherwise, treat array types the
750 same as their components. This avoids the asymmetry we get
751 through recording the components. Consider accessing a
752 character(kind=1) through a reference to a character(kind=1)[1:1].
753 Or consider if we want to assign integer(kind=4)[0:D.1387] and
754 integer(kind=4)[4] the same alias set or not.
755 Just be pragmatic here and make sure the array and its element
756 type get the same alias set assigned. */
757 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
758 set = get_alias_set (TREE_TYPE (t));
760 /* From the former common C and C++ langhook implementation:
762 Unfortunately, there is no canonical form of a pointer type.
763 In particular, if we have `typedef int I', then `int *', and
764 `I *' are different types. So, we have to pick a canonical
765 representative. We do this below.
767 Technically, this approach is actually more conservative that
768 it needs to be. In particular, `const int *' and `int *'
769 should be in different alias sets, according to the C and C++
770 standard, since their types are not the same, and so,
771 technically, an `int **' and `const int **' cannot point at
772 the same thing.
774 But, the standard is wrong. In particular, this code is
775 legal C++:
777 int *ip;
778 int **ipp = &ip;
779 const int* const* cipp = ipp;
780 And, it doesn't make sense for that to be legal unless you
781 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
782 the pointed-to types. This issue has been reported to the
783 C++ committee.
785 In addition to the above canonicalization issue, with LTO
786 we should also canonicalize `T (*)[]' to `T *' avoiding
787 alias issues with pointer-to element types and pointer-to
788 array types.
790 Likewise we need to deal with the situation of incomplete
791 pointed-to types and make `*(struct X **)&a' and
792 `*(struct X {} **)&a' alias. Otherwise we will have to
793 guarantee that all pointer-to incomplete type variants
794 will be replaced by pointer-to complete type variants if
795 they are available.
797 With LTO the convenient situation of using `void *' to
798 access and store any pointer type will also become
799 more apparent (and `void *' is just another pointer-to
800 incomplete type). Assigning alias-set zero to `void *'
801 and all pointer-to incomplete types is a not appealing
802 solution. Assigning an effective alias-set zero only
803 affecting pointers might be - by recording proper subset
804 relationships of all pointer alias-sets.
806 Pointer-to function types are another grey area which
807 needs caution. Globbing them all into one alias-set
808 or the above effective zero set would work.
810 For now just assign the same alias-set to all pointers.
811 That's simple and avoids all the above problems. */
812 else if (POINTER_TYPE_P (t)
813 && t != ptr_type_node)
814 set = get_alias_set (ptr_type_node);
816 /* Otherwise make a new alias set for this type. */
817 else
819 /* Each canonical type gets its own alias set, so canonical types
820 shouldn't form a tree. It doesn't really matter for types
821 we handle specially above, so only check it where it possibly
822 would result in a bogus alias set. */
823 gcc_checking_assert (TYPE_CANONICAL (t) == t);
825 set = new_alias_set ();
828 TYPE_ALIAS_SET (t) = set;
830 /* If this is an aggregate type or a complex type, we must record any
831 component aliasing information. */
832 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
833 record_component_aliases (t);
835 return set;
838 /* Return a brand-new alias set. */
840 alias_set_type
841 new_alias_set (void)
843 if (flag_strict_aliasing)
845 if (alias_sets == 0)
846 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
847 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
848 return VEC_length (alias_set_entry, alias_sets) - 1;
850 else
851 return 0;
854 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
855 not everything that aliases SUPERSET also aliases SUBSET. For example,
856 in C, a store to an `int' can alias a load of a structure containing an
857 `int', and vice versa. But it can't alias a load of a 'double' member
858 of the same structure. Here, the structure would be the SUPERSET and
859 `int' the SUBSET. This relationship is also described in the comment at
860 the beginning of this file.
862 This function should be called only once per SUPERSET/SUBSET pair.
864 It is illegal for SUPERSET to be zero; everything is implicitly a
865 subset of alias set zero. */
867 void
868 record_alias_subset (alias_set_type superset, alias_set_type subset)
870 alias_set_entry superset_entry;
871 alias_set_entry subset_entry;
873 /* It is possible in complex type situations for both sets to be the same,
874 in which case we can ignore this operation. */
875 if (superset == subset)
876 return;
878 gcc_assert (superset);
880 superset_entry = get_alias_set_entry (superset);
881 if (superset_entry == 0)
883 /* Create an entry for the SUPERSET, so that we have a place to
884 attach the SUBSET. */
885 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
886 superset_entry->alias_set = superset;
887 superset_entry->children
888 = splay_tree_new_ggc (splay_tree_compare_ints,
889 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
890 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
891 superset_entry->has_zero_child = 0;
892 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
895 if (subset == 0)
896 superset_entry->has_zero_child = 1;
897 else
899 subset_entry = get_alias_set_entry (subset);
900 /* If there is an entry for the subset, enter all of its children
901 (if they are not already present) as children of the SUPERSET. */
902 if (subset_entry)
904 if (subset_entry->has_zero_child)
905 superset_entry->has_zero_child = 1;
907 splay_tree_foreach (subset_entry->children, insert_subset_children,
908 superset_entry->children);
911 /* Enter the SUBSET itself as a child of the SUPERSET. */
912 splay_tree_insert (superset_entry->children,
913 (splay_tree_key) subset, 0);
917 /* Record that component types of TYPE, if any, are part of that type for
918 aliasing purposes. For record types, we only record component types
919 for fields that are not marked non-addressable. For array types, we
920 only record the component type if it is not marked non-aliased. */
922 void
923 record_component_aliases (tree type)
925 alias_set_type superset = get_alias_set (type);
926 tree field;
928 if (superset == 0)
929 return;
931 switch (TREE_CODE (type))
933 case RECORD_TYPE:
934 case UNION_TYPE:
935 case QUAL_UNION_TYPE:
936 /* Recursively record aliases for the base classes, if there are any. */
937 if (TYPE_BINFO (type))
939 int i;
940 tree binfo, base_binfo;
942 for (binfo = TYPE_BINFO (type), i = 0;
943 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
944 record_alias_subset (superset,
945 get_alias_set (BINFO_TYPE (base_binfo)));
947 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
948 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
949 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
950 break;
952 case COMPLEX_TYPE:
953 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
954 break;
956 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
957 element type. */
959 default:
960 break;
964 /* Allocate an alias set for use in storing and reading from the varargs
965 spill area. */
967 static GTY(()) alias_set_type varargs_set = -1;
969 alias_set_type
970 get_varargs_alias_set (void)
972 #if 1
973 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
974 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
975 consistently use the varargs alias set for loads from the varargs
976 area. So don't use it anywhere. */
977 return 0;
978 #else
979 if (varargs_set == -1)
980 varargs_set = new_alias_set ();
982 return varargs_set;
983 #endif
986 /* Likewise, but used for the fixed portions of the frame, e.g., register
987 save areas. */
989 static GTY(()) alias_set_type frame_set = -1;
991 alias_set_type
992 get_frame_alias_set (void)
994 if (frame_set == -1)
995 frame_set = new_alias_set ();
997 return frame_set;
1000 /* Inside SRC, the source of a SET, find a base address. */
1002 static rtx
1003 find_base_value (rtx src)
1005 unsigned int regno;
1007 #if defined (FIND_BASE_TERM)
1008 /* Try machine-dependent ways to find the base term. */
1009 src = FIND_BASE_TERM (src);
1010 #endif
1012 switch (GET_CODE (src))
1014 case SYMBOL_REF:
1015 case LABEL_REF:
1016 return src;
1018 case REG:
1019 regno = REGNO (src);
1020 /* At the start of a function, argument registers have known base
1021 values which may be lost later. Returning an ADDRESS
1022 expression here allows optimization based on argument values
1023 even when the argument registers are used for other purposes. */
1024 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1025 return new_reg_base_value[regno];
1027 /* If a pseudo has a known base value, return it. Do not do this
1028 for non-fixed hard regs since it can result in a circular
1029 dependency chain for registers which have values at function entry.
1031 The test above is not sufficient because the scheduler may move
1032 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1033 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1034 && regno < VEC_length (rtx, reg_base_value))
1036 /* If we're inside init_alias_analysis, use new_reg_base_value
1037 to reduce the number of relaxation iterations. */
1038 if (new_reg_base_value && new_reg_base_value[regno]
1039 && DF_REG_DEF_COUNT (regno) == 1)
1040 return new_reg_base_value[regno];
1042 if (VEC_index (rtx, reg_base_value, regno))
1043 return VEC_index (rtx, reg_base_value, regno);
1046 return 0;
1048 case MEM:
1049 /* Check for an argument passed in memory. Only record in the
1050 copying-arguments block; it is too hard to track changes
1051 otherwise. */
1052 if (copying_arguments
1053 && (XEXP (src, 0) == arg_pointer_rtx
1054 || (GET_CODE (XEXP (src, 0)) == PLUS
1055 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1056 return gen_rtx_ADDRESS (VOIDmode, src);
1057 return 0;
1059 case CONST:
1060 src = XEXP (src, 0);
1061 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1062 break;
1064 /* ... fall through ... */
1066 case PLUS:
1067 case MINUS:
1069 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1071 /* If either operand is a REG that is a known pointer, then it
1072 is the base. */
1073 if (REG_P (src_0) && REG_POINTER (src_0))
1074 return find_base_value (src_0);
1075 if (REG_P (src_1) && REG_POINTER (src_1))
1076 return find_base_value (src_1);
1078 /* If either operand is a REG, then see if we already have
1079 a known value for it. */
1080 if (REG_P (src_0))
1082 temp = find_base_value (src_0);
1083 if (temp != 0)
1084 src_0 = temp;
1087 if (REG_P (src_1))
1089 temp = find_base_value (src_1);
1090 if (temp!= 0)
1091 src_1 = temp;
1094 /* If either base is named object or a special address
1095 (like an argument or stack reference), then use it for the
1096 base term. */
1097 if (src_0 != 0
1098 && (GET_CODE (src_0) == SYMBOL_REF
1099 || GET_CODE (src_0) == LABEL_REF
1100 || (GET_CODE (src_0) == ADDRESS
1101 && GET_MODE (src_0) != VOIDmode)))
1102 return src_0;
1104 if (src_1 != 0
1105 && (GET_CODE (src_1) == SYMBOL_REF
1106 || GET_CODE (src_1) == LABEL_REF
1107 || (GET_CODE (src_1) == ADDRESS
1108 && GET_MODE (src_1) != VOIDmode)))
1109 return src_1;
1111 /* Guess which operand is the base address:
1112 If either operand is a symbol, then it is the base. If
1113 either operand is a CONST_INT, then the other is the base. */
1114 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1115 return find_base_value (src_0);
1116 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1117 return find_base_value (src_1);
1119 return 0;
1122 case LO_SUM:
1123 /* The standard form is (lo_sum reg sym) so look only at the
1124 second operand. */
1125 return find_base_value (XEXP (src, 1));
1127 case AND:
1128 /* If the second operand is constant set the base
1129 address to the first operand. */
1130 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1131 return find_base_value (XEXP (src, 0));
1132 return 0;
1134 case TRUNCATE:
1135 /* As we do not know which address space the pointer is refering to, we can
1136 handle this only if the target does not support different pointer or
1137 address modes depending on the address space. */
1138 if (!target_default_pointer_address_modes_p ())
1139 break;
1140 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1141 break;
1142 /* Fall through. */
1143 case HIGH:
1144 case PRE_INC:
1145 case PRE_DEC:
1146 case POST_INC:
1147 case POST_DEC:
1148 case PRE_MODIFY:
1149 case POST_MODIFY:
1150 return find_base_value (XEXP (src, 0));
1152 case ZERO_EXTEND:
1153 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1154 /* As we do not know which address space the pointer is refering to, we can
1155 handle this only if the target does not support different pointer or
1156 address modes depending on the address space. */
1157 if (!target_default_pointer_address_modes_p ())
1158 break;
1161 rtx temp = find_base_value (XEXP (src, 0));
1163 if (temp != 0 && CONSTANT_P (temp))
1164 temp = convert_memory_address (Pmode, temp);
1166 return temp;
1169 default:
1170 break;
1173 return 0;
1176 /* Called from init_alias_analysis indirectly through note_stores. */
1178 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1179 register N has been set in this function. */
1180 static char *reg_seen;
1182 /* Addresses which are known not to alias anything else are identified
1183 by a unique integer. */
1184 static int unique_id;
1186 static void
1187 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1189 unsigned regno;
1190 rtx src;
1191 int n;
1193 if (!REG_P (dest))
1194 return;
1196 regno = REGNO (dest);
1198 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1200 /* If this spans multiple hard registers, then we must indicate that every
1201 register has an unusable value. */
1202 if (regno < FIRST_PSEUDO_REGISTER)
1203 n = hard_regno_nregs[regno][GET_MODE (dest)];
1204 else
1205 n = 1;
1206 if (n != 1)
1208 while (--n >= 0)
1210 reg_seen[regno + n] = 1;
1211 new_reg_base_value[regno + n] = 0;
1213 return;
1216 if (set)
1218 /* A CLOBBER wipes out any old value but does not prevent a previously
1219 unset register from acquiring a base address (i.e. reg_seen is not
1220 set). */
1221 if (GET_CODE (set) == CLOBBER)
1223 new_reg_base_value[regno] = 0;
1224 return;
1226 src = SET_SRC (set);
1228 else
1230 if (reg_seen[regno])
1232 new_reg_base_value[regno] = 0;
1233 return;
1235 reg_seen[regno] = 1;
1236 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1237 GEN_INT (unique_id++));
1238 return;
1241 /* If this is not the first set of REGNO, see whether the new value
1242 is related to the old one. There are two cases of interest:
1244 (1) The register might be assigned an entirely new value
1245 that has the same base term as the original set.
1247 (2) The set might be a simple self-modification that
1248 cannot change REGNO's base value.
1250 If neither case holds, reject the original base value as invalid.
1251 Note that the following situation is not detected:
1253 extern int x, y; int *p = &x; p += (&y-&x);
1255 ANSI C does not allow computing the difference of addresses
1256 of distinct top level objects. */
1257 if (new_reg_base_value[regno] != 0
1258 && find_base_value (src) != new_reg_base_value[regno])
1259 switch (GET_CODE (src))
1261 case LO_SUM:
1262 case MINUS:
1263 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1264 new_reg_base_value[regno] = 0;
1265 break;
1266 case PLUS:
1267 /* If the value we add in the PLUS is also a valid base value,
1268 this might be the actual base value, and the original value
1269 an index. */
1271 rtx other = NULL_RTX;
1273 if (XEXP (src, 0) == dest)
1274 other = XEXP (src, 1);
1275 else if (XEXP (src, 1) == dest)
1276 other = XEXP (src, 0);
1278 if (! other || find_base_value (other))
1279 new_reg_base_value[regno] = 0;
1280 break;
1282 case AND:
1283 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1284 new_reg_base_value[regno] = 0;
1285 break;
1286 default:
1287 new_reg_base_value[regno] = 0;
1288 break;
1290 /* If this is the first set of a register, record the value. */
1291 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1292 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1293 new_reg_base_value[regno] = find_base_value (src);
1295 reg_seen[regno] = 1;
1298 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1299 using hard registers with non-null REG_BASE_VALUE for renaming. */
1301 get_reg_base_value (unsigned int regno)
1303 return VEC_index (rtx, reg_base_value, regno);
1306 /* If a value is known for REGNO, return it. */
1309 get_reg_known_value (unsigned int regno)
1311 if (regno >= FIRST_PSEUDO_REGISTER)
1313 regno -= FIRST_PSEUDO_REGISTER;
1314 if (regno < reg_known_value_size)
1315 return reg_known_value[regno];
1317 return NULL;
1320 /* Set it. */
1322 static void
1323 set_reg_known_value (unsigned int regno, rtx val)
1325 if (regno >= FIRST_PSEUDO_REGISTER)
1327 regno -= FIRST_PSEUDO_REGISTER;
1328 if (regno < reg_known_value_size)
1329 reg_known_value[regno] = val;
1333 /* Similarly for reg_known_equiv_p. */
1335 bool
1336 get_reg_known_equiv_p (unsigned int regno)
1338 if (regno >= FIRST_PSEUDO_REGISTER)
1340 regno -= FIRST_PSEUDO_REGISTER;
1341 if (regno < reg_known_value_size)
1342 return reg_known_equiv_p[regno];
1344 return false;
1347 static void
1348 set_reg_known_equiv_p (unsigned int regno, bool val)
1350 if (regno >= FIRST_PSEUDO_REGISTER)
1352 regno -= FIRST_PSEUDO_REGISTER;
1353 if (regno < reg_known_value_size)
1354 reg_known_equiv_p[regno] = val;
1359 /* Returns a canonical version of X, from the point of view alias
1360 analysis. (For example, if X is a MEM whose address is a register,
1361 and the register has a known value (say a SYMBOL_REF), then a MEM
1362 whose address is the SYMBOL_REF is returned.) */
1365 canon_rtx (rtx x)
1367 /* Recursively look for equivalences. */
1368 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1370 rtx t = get_reg_known_value (REGNO (x));
1371 if (t == x)
1372 return x;
1373 if (t)
1374 return canon_rtx (t);
1377 if (GET_CODE (x) == PLUS)
1379 rtx x0 = canon_rtx (XEXP (x, 0));
1380 rtx x1 = canon_rtx (XEXP (x, 1));
1382 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1384 if (CONST_INT_P (x0))
1385 return plus_constant (x1, INTVAL (x0));
1386 else if (CONST_INT_P (x1))
1387 return plus_constant (x0, INTVAL (x1));
1388 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1392 /* This gives us much better alias analysis when called from
1393 the loop optimizer. Note we want to leave the original
1394 MEM alone, but need to return the canonicalized MEM with
1395 all the flags with their original values. */
1396 else if (MEM_P (x))
1397 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1399 return x;
1402 /* Return 1 if X and Y are identical-looking rtx's.
1403 Expect that X and Y has been already canonicalized.
1405 We use the data in reg_known_value above to see if two registers with
1406 different numbers are, in fact, equivalent. */
1408 static int
1409 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1411 int i;
1412 int j;
1413 enum rtx_code code;
1414 const char *fmt;
1416 if (x == 0 && y == 0)
1417 return 1;
1418 if (x == 0 || y == 0)
1419 return 0;
1421 if (x == y)
1422 return 1;
1424 code = GET_CODE (x);
1425 /* Rtx's of different codes cannot be equal. */
1426 if (code != GET_CODE (y))
1427 return 0;
1429 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1430 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1432 if (GET_MODE (x) != GET_MODE (y))
1433 return 0;
1435 /* Some RTL can be compared without a recursive examination. */
1436 switch (code)
1438 case REG:
1439 return REGNO (x) == REGNO (y);
1441 case LABEL_REF:
1442 return XEXP (x, 0) == XEXP (y, 0);
1444 case SYMBOL_REF:
1445 return XSTR (x, 0) == XSTR (y, 0);
1447 case VALUE:
1448 case CONST_INT:
1449 case CONST_DOUBLE:
1450 case CONST_FIXED:
1451 /* There's no need to compare the contents of CONST_DOUBLEs or
1452 CONST_INTs because pointer equality is a good enough
1453 comparison for these nodes. */
1454 return 0;
1456 default:
1457 break;
1460 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1461 if (code == PLUS)
1462 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1463 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1464 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1465 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1466 /* For commutative operations, the RTX match if the operand match in any
1467 order. Also handle the simple binary and unary cases without a loop. */
1468 if (COMMUTATIVE_P (x))
1470 rtx xop0 = canon_rtx (XEXP (x, 0));
1471 rtx yop0 = canon_rtx (XEXP (y, 0));
1472 rtx yop1 = canon_rtx (XEXP (y, 1));
1474 return ((rtx_equal_for_memref_p (xop0, yop0)
1475 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1476 || (rtx_equal_for_memref_p (xop0, yop1)
1477 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1479 else if (NON_COMMUTATIVE_P (x))
1481 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1482 canon_rtx (XEXP (y, 0)))
1483 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1484 canon_rtx (XEXP (y, 1))));
1486 else if (UNARY_P (x))
1487 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1488 canon_rtx (XEXP (y, 0)));
1490 /* Compare the elements. If any pair of corresponding elements
1491 fail to match, return 0 for the whole things.
1493 Limit cases to types which actually appear in addresses. */
1495 fmt = GET_RTX_FORMAT (code);
1496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1498 switch (fmt[i])
1500 case 'i':
1501 if (XINT (x, i) != XINT (y, i))
1502 return 0;
1503 break;
1505 case 'E':
1506 /* Two vectors must have the same length. */
1507 if (XVECLEN (x, i) != XVECLEN (y, i))
1508 return 0;
1510 /* And the corresponding elements must match. */
1511 for (j = 0; j < XVECLEN (x, i); j++)
1512 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1513 canon_rtx (XVECEXP (y, i, j))) == 0)
1514 return 0;
1515 break;
1517 case 'e':
1518 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1519 canon_rtx (XEXP (y, i))) == 0)
1520 return 0;
1521 break;
1523 /* This can happen for asm operands. */
1524 case 's':
1525 if (strcmp (XSTR (x, i), XSTR (y, i)))
1526 return 0;
1527 break;
1529 /* This can happen for an asm which clobbers memory. */
1530 case '0':
1531 break;
1533 /* It is believed that rtx's at this level will never
1534 contain anything but integers and other rtx's,
1535 except for within LABEL_REFs and SYMBOL_REFs. */
1536 default:
1537 gcc_unreachable ();
1540 return 1;
1544 find_base_term (rtx x)
1546 cselib_val *val;
1547 struct elt_loc_list *l;
1549 #if defined (FIND_BASE_TERM)
1550 /* Try machine-dependent ways to find the base term. */
1551 x = FIND_BASE_TERM (x);
1552 #endif
1554 switch (GET_CODE (x))
1556 case REG:
1557 return REG_BASE_VALUE (x);
1559 case TRUNCATE:
1560 /* As we do not know which address space the pointer is refering to, we can
1561 handle this only if the target does not support different pointer or
1562 address modes depending on the address space. */
1563 if (!target_default_pointer_address_modes_p ())
1564 return 0;
1565 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1566 return 0;
1567 /* Fall through. */
1568 case HIGH:
1569 case PRE_INC:
1570 case PRE_DEC:
1571 case POST_INC:
1572 case POST_DEC:
1573 case PRE_MODIFY:
1574 case POST_MODIFY:
1575 return find_base_term (XEXP (x, 0));
1577 case ZERO_EXTEND:
1578 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1579 /* As we do not know which address space the pointer is refering to, we can
1580 handle this only if the target does not support different pointer or
1581 address modes depending on the address space. */
1582 if (!target_default_pointer_address_modes_p ())
1583 return 0;
1586 rtx temp = find_base_term (XEXP (x, 0));
1588 if (temp != 0 && CONSTANT_P (temp))
1589 temp = convert_memory_address (Pmode, temp);
1591 return temp;
1594 case VALUE:
1595 val = CSELIB_VAL_PTR (x);
1596 if (!val)
1597 return 0;
1598 for (l = val->locs; l; l = l->next)
1599 if ((x = find_base_term (l->loc)) != 0)
1600 return x;
1601 return 0;
1603 case LO_SUM:
1604 /* The standard form is (lo_sum reg sym) so look only at the
1605 second operand. */
1606 return find_base_term (XEXP (x, 1));
1608 case CONST:
1609 x = XEXP (x, 0);
1610 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1611 return 0;
1612 /* Fall through. */
1613 case PLUS:
1614 case MINUS:
1616 rtx tmp1 = XEXP (x, 0);
1617 rtx tmp2 = XEXP (x, 1);
1619 /* This is a little bit tricky since we have to determine which of
1620 the two operands represents the real base address. Otherwise this
1621 routine may return the index register instead of the base register.
1623 That may cause us to believe no aliasing was possible, when in
1624 fact aliasing is possible.
1626 We use a few simple tests to guess the base register. Additional
1627 tests can certainly be added. For example, if one of the operands
1628 is a shift or multiply, then it must be the index register and the
1629 other operand is the base register. */
1631 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1632 return find_base_term (tmp2);
1634 /* If either operand is known to be a pointer, then use it
1635 to determine the base term. */
1636 if (REG_P (tmp1) && REG_POINTER (tmp1))
1638 rtx base = find_base_term (tmp1);
1639 if (base)
1640 return base;
1643 if (REG_P (tmp2) && REG_POINTER (tmp2))
1645 rtx base = find_base_term (tmp2);
1646 if (base)
1647 return base;
1650 /* Neither operand was known to be a pointer. Go ahead and find the
1651 base term for both operands. */
1652 tmp1 = find_base_term (tmp1);
1653 tmp2 = find_base_term (tmp2);
1655 /* If either base term is named object or a special address
1656 (like an argument or stack reference), then use it for the
1657 base term. */
1658 if (tmp1 != 0
1659 && (GET_CODE (tmp1) == SYMBOL_REF
1660 || GET_CODE (tmp1) == LABEL_REF
1661 || (GET_CODE (tmp1) == ADDRESS
1662 && GET_MODE (tmp1) != VOIDmode)))
1663 return tmp1;
1665 if (tmp2 != 0
1666 && (GET_CODE (tmp2) == SYMBOL_REF
1667 || GET_CODE (tmp2) == LABEL_REF
1668 || (GET_CODE (tmp2) == ADDRESS
1669 && GET_MODE (tmp2) != VOIDmode)))
1670 return tmp2;
1672 /* We could not determine which of the two operands was the
1673 base register and which was the index. So we can determine
1674 nothing from the base alias check. */
1675 return 0;
1678 case AND:
1679 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1680 return find_base_term (XEXP (x, 0));
1681 return 0;
1683 case SYMBOL_REF:
1684 case LABEL_REF:
1685 return x;
1687 default:
1688 return 0;
1692 /* Return 0 if the addresses X and Y are known to point to different
1693 objects, 1 if they might be pointers to the same object. */
1695 static int
1696 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1697 enum machine_mode y_mode)
1699 rtx x_base = find_base_term (x);
1700 rtx y_base = find_base_term (y);
1702 /* If the address itself has no known base see if a known equivalent
1703 value has one. If either address still has no known base, nothing
1704 is known about aliasing. */
1705 if (x_base == 0)
1707 rtx x_c;
1709 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1710 return 1;
1712 x_base = find_base_term (x_c);
1713 if (x_base == 0)
1714 return 1;
1717 if (y_base == 0)
1719 rtx y_c;
1720 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1721 return 1;
1723 y_base = find_base_term (y_c);
1724 if (y_base == 0)
1725 return 1;
1728 /* If the base addresses are equal nothing is known about aliasing. */
1729 if (rtx_equal_p (x_base, y_base))
1730 return 1;
1732 /* The base addresses are different expressions. If they are not accessed
1733 via AND, there is no conflict. We can bring knowledge of object
1734 alignment into play here. For example, on alpha, "char a, b;" can
1735 alias one another, though "char a; long b;" cannot. AND addesses may
1736 implicitly alias surrounding objects; i.e. unaligned access in DImode
1737 via AND address can alias all surrounding object types except those
1738 with aligment 8 or higher. */
1739 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1740 return 1;
1741 if (GET_CODE (x) == AND
1742 && (!CONST_INT_P (XEXP (x, 1))
1743 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1744 return 1;
1745 if (GET_CODE (y) == AND
1746 && (!CONST_INT_P (XEXP (y, 1))
1747 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1748 return 1;
1750 /* Differing symbols not accessed via AND never alias. */
1751 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1752 return 0;
1754 /* If one address is a stack reference there can be no alias:
1755 stack references using different base registers do not alias,
1756 a stack reference can not alias a parameter, and a stack reference
1757 can not alias a global. */
1758 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1759 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1760 return 0;
1762 return 1;
1765 /* Convert the address X into something we can use. This is done by returning
1766 it unchanged unless it is a value; in the latter case we call cselib to get
1767 a more useful rtx. */
1770 get_addr (rtx x)
1772 cselib_val *v;
1773 struct elt_loc_list *l;
1775 if (GET_CODE (x) != VALUE)
1776 return x;
1777 v = CSELIB_VAL_PTR (x);
1778 if (v)
1780 for (l = v->locs; l; l = l->next)
1781 if (CONSTANT_P (l->loc))
1782 return l->loc;
1783 for (l = v->locs; l; l = l->next)
1784 if (!REG_P (l->loc) && !MEM_P (l->loc))
1785 return l->loc;
1786 if (v->locs)
1787 return v->locs->loc;
1789 return x;
1792 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1793 where SIZE is the size in bytes of the memory reference. If ADDR
1794 is not modified by the memory reference then ADDR is returned. */
1796 static rtx
1797 addr_side_effect_eval (rtx addr, int size, int n_refs)
1799 int offset = 0;
1801 switch (GET_CODE (addr))
1803 case PRE_INC:
1804 offset = (n_refs + 1) * size;
1805 break;
1806 case PRE_DEC:
1807 offset = -(n_refs + 1) * size;
1808 break;
1809 case POST_INC:
1810 offset = n_refs * size;
1811 break;
1812 case POST_DEC:
1813 offset = -n_refs * size;
1814 break;
1816 default:
1817 return addr;
1820 if (offset)
1821 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1822 GEN_INT (offset));
1823 else
1824 addr = XEXP (addr, 0);
1825 addr = canon_rtx (addr);
1827 return addr;
1830 /* Return one if X and Y (memory addresses) reference the
1831 same location in memory or if the references overlap.
1832 Return zero if they do not overlap, else return
1833 minus one in which case they still might reference the same location.
1835 C is an offset accumulator. When
1836 C is nonzero, we are testing aliases between X and Y + C.
1837 XSIZE is the size in bytes of the X reference,
1838 similarly YSIZE is the size in bytes for Y.
1839 Expect that canon_rtx has been already called for X and Y.
1841 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1842 referenced (the reference was BLKmode), so make the most pessimistic
1843 assumptions.
1845 If XSIZE or YSIZE is negative, we may access memory outside the object
1846 being referenced as a side effect. This can happen when using AND to
1847 align memory references, as is done on the Alpha.
1849 Nice to notice that varying addresses cannot conflict with fp if no
1850 local variables had their addresses taken, but that's too hard now.
1852 ??? Contrary to the tree alias oracle this does not return
1853 one for X + non-constant and Y + non-constant when X and Y are equal.
1854 If that is fixed the TBAA hack for union type-punning can be removed. */
1856 static int
1857 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1859 if (GET_CODE (x) == VALUE)
1861 if (REG_P (y))
1863 struct elt_loc_list *l = NULL;
1864 if (CSELIB_VAL_PTR (x))
1865 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1866 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1867 break;
1868 if (l)
1869 x = y;
1870 else
1871 x = get_addr (x);
1873 /* Don't call get_addr if y is the same VALUE. */
1874 else if (x != y)
1875 x = get_addr (x);
1877 if (GET_CODE (y) == VALUE)
1879 if (REG_P (x))
1881 struct elt_loc_list *l = NULL;
1882 if (CSELIB_VAL_PTR (y))
1883 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1884 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1885 break;
1886 if (l)
1887 y = x;
1888 else
1889 y = get_addr (y);
1891 /* Don't call get_addr if x is the same VALUE. */
1892 else if (y != x)
1893 y = get_addr (y);
1895 if (GET_CODE (x) == HIGH)
1896 x = XEXP (x, 0);
1897 else if (GET_CODE (x) == LO_SUM)
1898 x = XEXP (x, 1);
1899 else
1900 x = addr_side_effect_eval (x, xsize, 0);
1901 if (GET_CODE (y) == HIGH)
1902 y = XEXP (y, 0);
1903 else if (GET_CODE (y) == LO_SUM)
1904 y = XEXP (y, 1);
1905 else
1906 y = addr_side_effect_eval (y, ysize, 0);
1908 if (rtx_equal_for_memref_p (x, y))
1910 if (xsize <= 0 || ysize <= 0)
1911 return 1;
1912 if (c >= 0 && xsize > c)
1913 return 1;
1914 if (c < 0 && ysize+c > 0)
1915 return 1;
1916 return 0;
1919 /* This code used to check for conflicts involving stack references and
1920 globals but the base address alias code now handles these cases. */
1922 if (GET_CODE (x) == PLUS)
1924 /* The fact that X is canonicalized means that this
1925 PLUS rtx is canonicalized. */
1926 rtx x0 = XEXP (x, 0);
1927 rtx x1 = XEXP (x, 1);
1929 if (GET_CODE (y) == PLUS)
1931 /* The fact that Y is canonicalized means that this
1932 PLUS rtx is canonicalized. */
1933 rtx y0 = XEXP (y, 0);
1934 rtx y1 = XEXP (y, 1);
1936 if (rtx_equal_for_memref_p (x1, y1))
1937 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1938 if (rtx_equal_for_memref_p (x0, y0))
1939 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1940 if (CONST_INT_P (x1))
1942 if (CONST_INT_P (y1))
1943 return memrefs_conflict_p (xsize, x0, ysize, y0,
1944 c - INTVAL (x1) + INTVAL (y1));
1945 else
1946 return memrefs_conflict_p (xsize, x0, ysize, y,
1947 c - INTVAL (x1));
1949 else if (CONST_INT_P (y1))
1950 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1952 return -1;
1954 else if (CONST_INT_P (x1))
1955 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1957 else if (GET_CODE (y) == PLUS)
1959 /* The fact that Y is canonicalized means that this
1960 PLUS rtx is canonicalized. */
1961 rtx y0 = XEXP (y, 0);
1962 rtx y1 = XEXP (y, 1);
1964 if (CONST_INT_P (y1))
1965 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1966 else
1967 return -1;
1970 if (GET_CODE (x) == GET_CODE (y))
1971 switch (GET_CODE (x))
1973 case MULT:
1975 /* Handle cases where we expect the second operands to be the
1976 same, and check only whether the first operand would conflict
1977 or not. */
1978 rtx x0, y0;
1979 rtx x1 = canon_rtx (XEXP (x, 1));
1980 rtx y1 = canon_rtx (XEXP (y, 1));
1981 if (! rtx_equal_for_memref_p (x1, y1))
1982 return -1;
1983 x0 = canon_rtx (XEXP (x, 0));
1984 y0 = canon_rtx (XEXP (y, 0));
1985 if (rtx_equal_for_memref_p (x0, y0))
1986 return (xsize == 0 || ysize == 0
1987 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1989 /* Can't properly adjust our sizes. */
1990 if (!CONST_INT_P (x1))
1991 return -1;
1992 xsize /= INTVAL (x1);
1993 ysize /= INTVAL (x1);
1994 c /= INTVAL (x1);
1995 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1998 default:
1999 break;
2002 /* Treat an access through an AND (e.g. a subword access on an Alpha)
2003 as an access with indeterminate size. Assume that references
2004 besides AND are aligned, so if the size of the other reference is
2005 at least as large as the alignment, assume no other overlap. */
2006 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2008 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
2009 xsize = -1;
2010 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
2012 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2014 /* ??? If we are indexing far enough into the array/structure, we
2015 may yet be able to determine that we can not overlap. But we
2016 also need to that we are far enough from the end not to overlap
2017 a following reference, so we do nothing with that for now. */
2018 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
2019 ysize = -1;
2020 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
2023 if (CONSTANT_P (x))
2025 if (CONST_INT_P (x) && CONST_INT_P (y))
2027 c += (INTVAL (y) - INTVAL (x));
2028 return (xsize <= 0 || ysize <= 0
2029 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2032 if (GET_CODE (x) == CONST)
2034 if (GET_CODE (y) == CONST)
2035 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2036 ysize, canon_rtx (XEXP (y, 0)), c);
2037 else
2038 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2039 ysize, y, c);
2041 if (GET_CODE (y) == CONST)
2042 return memrefs_conflict_p (xsize, x, ysize,
2043 canon_rtx (XEXP (y, 0)), c);
2045 if (CONSTANT_P (y))
2046 return (xsize <= 0 || ysize <= 0
2047 || (rtx_equal_for_memref_p (x, y)
2048 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2050 return -1;
2053 return -1;
2056 /* Functions to compute memory dependencies.
2058 Since we process the insns in execution order, we can build tables
2059 to keep track of what registers are fixed (and not aliased), what registers
2060 are varying in known ways, and what registers are varying in unknown
2061 ways.
2063 If both memory references are volatile, then there must always be a
2064 dependence between the two references, since their order can not be
2065 changed. A volatile and non-volatile reference can be interchanged
2066 though.
2068 A MEM_IN_STRUCT reference at a non-AND varying address can never
2069 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
2070 also must allow AND addresses, because they may generate accesses
2071 outside the object being referenced. This is used to generate
2072 aligned addresses from unaligned addresses, for instance, the alpha
2073 storeqi_unaligned pattern. */
2075 /* Read dependence: X is read after read in MEM takes place. There can
2076 only be a dependence here if both reads are volatile. */
2079 read_dependence (const_rtx mem, const_rtx x)
2081 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2084 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
2085 MEM2 is a reference to a structure at a varying address, or returns
2086 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
2087 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
2088 to decide whether or not an address may vary; it should return
2089 nonzero whenever variation is possible.
2090 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
2092 static const_rtx
2093 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2094 rtx mem2_addr,
2095 bool (*varies_p) (const_rtx, bool))
2097 if (! flag_strict_aliasing)
2098 return NULL_RTX;
2100 if (MEM_ALIAS_SET (mem2)
2101 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2102 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2103 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2104 varying address. */
2105 return mem1;
2107 if (MEM_ALIAS_SET (mem1)
2108 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2109 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2110 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2111 varying address. */
2112 return mem2;
2114 return NULL_RTX;
2117 /* Returns nonzero if something about the mode or address format MEM1
2118 indicates that it might well alias *anything*. */
2120 static int
2121 aliases_everything_p (const_rtx mem)
2123 if (GET_CODE (XEXP (mem, 0)) == AND)
2124 /* If the address is an AND, it's very hard to know at what it is
2125 actually pointing. */
2126 return 1;
2128 return 0;
2131 /* Return true if we can determine that the fields referenced cannot
2132 overlap for any pair of objects. */
2134 static bool
2135 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2137 const_tree fieldx, fieldy, typex, typey, orig_y;
2139 if (!flag_strict_aliasing)
2140 return false;
2144 /* The comparison has to be done at a common type, since we don't
2145 know how the inheritance hierarchy works. */
2146 orig_y = y;
2149 fieldx = TREE_OPERAND (x, 1);
2150 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2152 y = orig_y;
2155 fieldy = TREE_OPERAND (y, 1);
2156 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2158 if (typex == typey)
2159 goto found;
2161 y = TREE_OPERAND (y, 0);
2163 while (y && TREE_CODE (y) == COMPONENT_REF);
2165 x = TREE_OPERAND (x, 0);
2167 while (x && TREE_CODE (x) == COMPONENT_REF);
2168 /* Never found a common type. */
2169 return false;
2171 found:
2172 /* If we're left with accessing different fields of a structure,
2173 then no overlap. */
2174 if (TREE_CODE (typex) == RECORD_TYPE
2175 && fieldx != fieldy)
2176 return true;
2178 /* The comparison on the current field failed. If we're accessing
2179 a very nested structure, look at the next outer level. */
2180 x = TREE_OPERAND (x, 0);
2181 y = TREE_OPERAND (y, 0);
2183 while (x && y
2184 && TREE_CODE (x) == COMPONENT_REF
2185 && TREE_CODE (y) == COMPONENT_REF);
2187 return false;
2190 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2192 static tree
2193 decl_for_component_ref (tree x)
2197 x = TREE_OPERAND (x, 0);
2199 while (x && TREE_CODE (x) == COMPONENT_REF);
2201 return x && DECL_P (x) ? x : NULL_TREE;
2204 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2205 offset of the field reference. */
2207 static rtx
2208 adjust_offset_for_component_ref (tree x, rtx offset)
2210 HOST_WIDE_INT ioffset;
2212 if (! offset)
2213 return NULL_RTX;
2215 ioffset = INTVAL (offset);
2218 tree offset = component_ref_field_offset (x);
2219 tree field = TREE_OPERAND (x, 1);
2221 if (! host_integerp (offset, 1))
2222 return NULL_RTX;
2223 ioffset += (tree_low_cst (offset, 1)
2224 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2225 / BITS_PER_UNIT));
2227 x = TREE_OPERAND (x, 0);
2229 while (x && TREE_CODE (x) == COMPONENT_REF);
2231 return GEN_INT (ioffset);
2234 /* Return nonzero if we can determine the exprs corresponding to memrefs
2235 X and Y and they do not overlap.
2236 If LOOP_VARIANT is set, skip offset-based disambiguation */
2239 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2241 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2242 rtx rtlx, rtly;
2243 rtx basex, basey;
2244 rtx moffsetx, moffsety;
2245 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2247 /* Unless both have exprs, we can't tell anything. */
2248 if (exprx == 0 || expry == 0)
2249 return 0;
2251 /* For spill-slot accesses make sure we have valid offsets. */
2252 if ((exprx == get_spill_slot_decl (false)
2253 && ! MEM_OFFSET (x))
2254 || (expry == get_spill_slot_decl (false)
2255 && ! MEM_OFFSET (y)))
2256 return 0;
2258 /* If both are field references, we may be able to determine something. */
2259 if (TREE_CODE (exprx) == COMPONENT_REF
2260 && TREE_CODE (expry) == COMPONENT_REF
2261 && nonoverlapping_component_refs_p (exprx, expry))
2262 return 1;
2265 /* If the field reference test failed, look at the DECLs involved. */
2266 moffsetx = MEM_OFFSET (x);
2267 if (TREE_CODE (exprx) == COMPONENT_REF)
2269 tree t = decl_for_component_ref (exprx);
2270 if (! t)
2271 return 0;
2272 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2273 exprx = t;
2276 moffsety = MEM_OFFSET (y);
2277 if (TREE_CODE (expry) == COMPONENT_REF)
2279 tree t = decl_for_component_ref (expry);
2280 if (! t)
2281 return 0;
2282 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2283 expry = t;
2286 if (! DECL_P (exprx) || ! DECL_P (expry))
2287 return 0;
2289 /* With invalid code we can end up storing into the constant pool.
2290 Bail out to avoid ICEing when creating RTL for this.
2291 See gfortran.dg/lto/20091028-2_0.f90. */
2292 if (TREE_CODE (exprx) == CONST_DECL
2293 || TREE_CODE (expry) == CONST_DECL)
2294 return 1;
2296 rtlx = DECL_RTL (exprx);
2297 rtly = DECL_RTL (expry);
2299 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2300 can't overlap unless they are the same because we never reuse that part
2301 of the stack frame used for locals for spilled pseudos. */
2302 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2303 && ! rtx_equal_p (rtlx, rtly))
2304 return 1;
2306 /* If we have MEMs refering to different address spaces (which can
2307 potentially overlap), we cannot easily tell from the addresses
2308 whether the references overlap. */
2309 if (MEM_P (rtlx) && MEM_P (rtly)
2310 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2311 return 0;
2313 /* Get the base and offsets of both decls. If either is a register, we
2314 know both are and are the same, so use that as the base. The only
2315 we can avoid overlap is if we can deduce that they are nonoverlapping
2316 pieces of that decl, which is very rare. */
2317 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2318 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2319 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2321 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2322 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2323 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2325 /* If the bases are different, we know they do not overlap if both
2326 are constants or if one is a constant and the other a pointer into the
2327 stack frame. Otherwise a different base means we can't tell if they
2328 overlap or not. */
2329 if (! rtx_equal_p (basex, basey))
2330 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2331 || (CONSTANT_P (basex) && REG_P (basey)
2332 && REGNO_PTR_FRAME_P (REGNO (basey)))
2333 || (CONSTANT_P (basey) && REG_P (basex)
2334 && REGNO_PTR_FRAME_P (REGNO (basex))));
2336 /* Offset based disambiguation not appropriate for loop invariant */
2337 if (loop_invariant)
2338 return 0;
2340 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2341 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2342 : -1);
2343 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2344 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2345 -1);
2347 /* If we have an offset for either memref, it can update the values computed
2348 above. */
2349 if (moffsetx)
2350 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2351 if (moffsety)
2352 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2354 /* If a memref has both a size and an offset, we can use the smaller size.
2355 We can't do this if the offset isn't known because we must view this
2356 memref as being anywhere inside the DECL's MEM. */
2357 if (MEM_SIZE (x) && moffsetx)
2358 sizex = INTVAL (MEM_SIZE (x));
2359 if (MEM_SIZE (y) && moffsety)
2360 sizey = INTVAL (MEM_SIZE (y));
2362 /* Put the values of the memref with the lower offset in X's values. */
2363 if (offsetx > offsety)
2365 tem = offsetx, offsetx = offsety, offsety = tem;
2366 tem = sizex, sizex = sizey, sizey = tem;
2369 /* If we don't know the size of the lower-offset value, we can't tell
2370 if they conflict. Otherwise, we do the test. */
2371 return sizex >= 0 && offsety >= offsetx + sizex;
2374 /* Helper for true_dependence and canon_true_dependence.
2375 Checks for true dependence: X is read after store in MEM takes place.
2377 VARIES is the function that should be used as rtx_varies function.
2379 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2380 NULL_RTX, and the canonical addresses of MEM and X are both computed
2381 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2383 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2385 Returns 1 if there is a true dependence, 0 otherwise. */
2387 static int
2388 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2389 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool),
2390 bool mem_canonicalized)
2392 rtx base;
2393 int ret;
2395 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2396 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2398 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2399 return 1;
2401 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2402 This is used in epilogue deallocation functions, and in cselib. */
2403 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2404 return 1;
2405 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2406 return 1;
2407 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2408 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2409 return 1;
2411 /* Read-only memory is by definition never modified, and therefore can't
2412 conflict with anything. We don't expect to find read-only set on MEM,
2413 but stupid user tricks can produce them, so don't die. */
2414 if (MEM_READONLY_P (x))
2415 return 0;
2417 /* If we have MEMs refering to different address spaces (which can
2418 potentially overlap), we cannot easily tell from the addresses
2419 whether the references overlap. */
2420 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2421 return 1;
2423 if (! mem_addr)
2425 mem_addr = XEXP (mem, 0);
2426 if (mem_mode == VOIDmode)
2427 mem_mode = GET_MODE (mem);
2430 if (! x_addr)
2432 x_addr = XEXP (x, 0);
2433 if (!((GET_CODE (x_addr) == VALUE
2434 && GET_CODE (mem_addr) != VALUE
2435 && reg_mentioned_p (x_addr, mem_addr))
2436 || (GET_CODE (x_addr) != VALUE
2437 && GET_CODE (mem_addr) == VALUE
2438 && reg_mentioned_p (mem_addr, x_addr))))
2440 x_addr = get_addr (x_addr);
2441 if (! mem_canonicalized)
2442 mem_addr = get_addr (mem_addr);
2446 base = find_base_term (x_addr);
2447 if (base && (GET_CODE (base) == LABEL_REF
2448 || (GET_CODE (base) == SYMBOL_REF
2449 && CONSTANT_POOL_ADDRESS_P (base))))
2450 return 0;
2452 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2453 return 0;
2455 x_addr = canon_rtx (x_addr);
2456 if (!mem_canonicalized)
2457 mem_addr = canon_rtx (mem_addr);
2459 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2460 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2461 return ret;
2463 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2464 return 0;
2466 if (nonoverlapping_memrefs_p (mem, x, false))
2467 return 0;
2469 if (aliases_everything_p (x))
2470 return 1;
2472 /* We cannot use aliases_everything_p to test MEM, since we must look
2473 at MEM_ADDR, rather than XEXP (mem, 0). */
2474 if (GET_CODE (mem_addr) == AND)
2475 return 1;
2477 /* ??? In true_dependence we also allow BLKmode to alias anything. Why
2478 don't we do this in anti_dependence and output_dependence? */
2479 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2480 return 1;
2482 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2483 return 0;
2485 return rtx_refs_may_alias_p (x, mem, true);
2488 /* True dependence: X is read after store in MEM takes place. */
2491 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2492 bool (*varies) (const_rtx, bool))
2494 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2495 x, NULL_RTX, varies,
2496 /*mem_canonicalized=*/false);
2499 /* Canonical true dependence: X is read after store in MEM takes place.
2500 Variant of true_dependence which assumes MEM has already been
2501 canonicalized (hence we no longer do that here).
2502 The mem_addr argument has been added, since true_dependence_1 computed
2503 this value prior to canonicalizing. */
2506 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2507 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2509 return true_dependence_1 (mem, mem_mode, mem_addr,
2510 x, x_addr, varies,
2511 /*mem_canonicalized=*/true);
2514 /* Returns nonzero if a write to X might alias a previous read from
2515 (or, if WRITEP is nonzero, a write to) MEM. */
2517 static int
2518 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2520 rtx x_addr, mem_addr;
2521 const_rtx fixed_scalar;
2522 rtx base;
2523 int ret;
2525 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2526 return 1;
2528 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2529 This is used in epilogue deallocation functions. */
2530 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2531 return 1;
2532 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2533 return 1;
2534 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2535 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2536 return 1;
2538 /* A read from read-only memory can't conflict with read-write memory. */
2539 if (!writep && MEM_READONLY_P (mem))
2540 return 0;
2542 /* If we have MEMs refering to different address spaces (which can
2543 potentially overlap), we cannot easily tell from the addresses
2544 whether the references overlap. */
2545 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2546 return 1;
2548 x_addr = XEXP (x, 0);
2549 mem_addr = XEXP (mem, 0);
2550 if (!((GET_CODE (x_addr) == VALUE
2551 && GET_CODE (mem_addr) != VALUE
2552 && reg_mentioned_p (x_addr, mem_addr))
2553 || (GET_CODE (x_addr) != VALUE
2554 && GET_CODE (mem_addr) == VALUE
2555 && reg_mentioned_p (mem_addr, x_addr))))
2557 x_addr = get_addr (x_addr);
2558 mem_addr = get_addr (mem_addr);
2561 if (! writep)
2563 base = find_base_term (mem_addr);
2564 if (base && (GET_CODE (base) == LABEL_REF
2565 || (GET_CODE (base) == SYMBOL_REF
2566 && CONSTANT_POOL_ADDRESS_P (base))))
2567 return 0;
2570 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2571 GET_MODE (mem)))
2572 return 0;
2574 x_addr = canon_rtx (x_addr);
2575 mem_addr = canon_rtx (mem_addr);
2577 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2578 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2579 return ret;
2581 if (nonoverlapping_memrefs_p (x, mem, false))
2582 return 0;
2584 fixed_scalar
2585 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2586 rtx_addr_varies_p);
2588 if ((fixed_scalar == mem && !aliases_everything_p (x))
2589 || (fixed_scalar == x && !aliases_everything_p (mem)))
2590 return 0;
2592 return rtx_refs_may_alias_p (x, mem, false);
2595 /* Anti dependence: X is written after read in MEM takes place. */
2598 anti_dependence (const_rtx mem, const_rtx x)
2600 return write_dependence_p (mem, x, /*writep=*/0);
2603 /* Output dependence: X is written after store in MEM takes place. */
2606 output_dependence (const_rtx mem, const_rtx x)
2608 return write_dependence_p (mem, x, /*writep=*/1);
2613 /* Check whether X may be aliased with MEM. Don't do offset-based
2614 memory disambiguation & TBAA. */
2616 may_alias_p (const_rtx mem, const_rtx x)
2618 rtx x_addr, mem_addr;
2620 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2621 return 1;
2623 /* ??? In true_dependence we also allow BLKmode to alias anything. */
2624 if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
2625 return 1;
2627 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2628 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2629 return 1;
2631 /* Read-only memory is by definition never modified, and therefore can't
2632 conflict with anything. We don't expect to find read-only set on MEM,
2633 but stupid user tricks can produce them, so don't die. */
2634 if (MEM_READONLY_P (x))
2635 return 0;
2637 /* If we have MEMs refering to different address spaces (which can
2638 potentially overlap), we cannot easily tell from the addresses
2639 whether the references overlap. */
2640 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2641 return 1;
2643 x_addr = XEXP (x, 0);
2644 mem_addr = XEXP (mem, 0);
2645 if (!((GET_CODE (x_addr) == VALUE
2646 && GET_CODE (mem_addr) != VALUE
2647 && reg_mentioned_p (x_addr, mem_addr))
2648 || (GET_CODE (x_addr) != VALUE
2649 && GET_CODE (mem_addr) == VALUE
2650 && reg_mentioned_p (mem_addr, x_addr))))
2652 x_addr = get_addr (x_addr);
2653 mem_addr = get_addr (mem_addr);
2656 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2657 return 0;
2659 x_addr = canon_rtx (x_addr);
2660 mem_addr = canon_rtx (mem_addr);
2662 if (nonoverlapping_memrefs_p (mem, x, true))
2663 return 0;
2665 if (aliases_everything_p (x))
2666 return 1;
2668 /* We cannot use aliases_everything_p to test MEM, since we must look
2669 at MEM_ADDR, rather than XEXP (mem, 0). */
2670 if (GET_CODE (mem_addr) == AND)
2671 return 1;
2673 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2674 rtx_addr_varies_p))
2675 return 0;
2677 /* TBAA not valid for loop_invarint */
2678 return rtx_refs_may_alias_p (x, mem, false);
2681 void
2682 init_alias_target (void)
2684 int i;
2686 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2689 /* Check whether this register can hold an incoming pointer
2690 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2691 numbers, so translate if necessary due to register windows. */
2692 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2693 && HARD_REGNO_MODE_OK (i, Pmode))
2694 static_reg_base_value[i]
2695 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2697 static_reg_base_value[STACK_POINTER_REGNUM]
2698 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2699 static_reg_base_value[ARG_POINTER_REGNUM]
2700 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2701 static_reg_base_value[FRAME_POINTER_REGNUM]
2702 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2703 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2704 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2705 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2706 #endif
2709 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2710 to be memory reference. */
2711 static bool memory_modified;
2712 static void
2713 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2715 if (MEM_P (x))
2717 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2718 memory_modified = true;
2723 /* Return true when INSN possibly modify memory contents of MEM
2724 (i.e. address can be modified). */
2725 bool
2726 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2728 if (!INSN_P (insn))
2729 return false;
2730 memory_modified = false;
2731 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2732 return memory_modified;
2735 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2736 array. */
2738 void
2739 init_alias_analysis (void)
2741 unsigned int maxreg = max_reg_num ();
2742 int changed, pass;
2743 int i;
2744 unsigned int ui;
2745 rtx insn;
2747 timevar_push (TV_ALIAS_ANALYSIS);
2749 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2750 reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2751 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2753 /* If we have memory allocated from the previous run, use it. */
2754 if (old_reg_base_value)
2755 reg_base_value = old_reg_base_value;
2757 if (reg_base_value)
2758 VEC_truncate (rtx, reg_base_value, 0);
2760 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2762 new_reg_base_value = XNEWVEC (rtx, maxreg);
2763 reg_seen = XNEWVEC (char, maxreg);
2765 /* The basic idea is that each pass through this loop will use the
2766 "constant" information from the previous pass to propagate alias
2767 information through another level of assignments.
2769 This could get expensive if the assignment chains are long. Maybe
2770 we should throttle the number of iterations, possibly based on
2771 the optimization level or flag_expensive_optimizations.
2773 We could propagate more information in the first pass by making use
2774 of DF_REG_DEF_COUNT to determine immediately that the alias information
2775 for a pseudo is "constant".
2777 A program with an uninitialized variable can cause an infinite loop
2778 here. Instead of doing a full dataflow analysis to detect such problems
2779 we just cap the number of iterations for the loop.
2781 The state of the arrays for the set chain in question does not matter
2782 since the program has undefined behavior. */
2784 pass = 0;
2787 /* Assume nothing will change this iteration of the loop. */
2788 changed = 0;
2790 /* We want to assign the same IDs each iteration of this loop, so
2791 start counting from zero each iteration of the loop. */
2792 unique_id = 0;
2794 /* We're at the start of the function each iteration through the
2795 loop, so we're copying arguments. */
2796 copying_arguments = true;
2798 /* Wipe the potential alias information clean for this pass. */
2799 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2801 /* Wipe the reg_seen array clean. */
2802 memset (reg_seen, 0, maxreg);
2804 /* Mark all hard registers which may contain an address.
2805 The stack, frame and argument pointers may contain an address.
2806 An argument register which can hold a Pmode value may contain
2807 an address even if it is not in BASE_REGS.
2809 The address expression is VOIDmode for an argument and
2810 Pmode for other registers. */
2812 memcpy (new_reg_base_value, static_reg_base_value,
2813 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2815 /* Walk the insns adding values to the new_reg_base_value array. */
2816 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2818 if (INSN_P (insn))
2820 rtx note, set;
2822 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2823 /* The prologue/epilogue insns are not threaded onto the
2824 insn chain until after reload has completed. Thus,
2825 there is no sense wasting time checking if INSN is in
2826 the prologue/epilogue until after reload has completed. */
2827 if (reload_completed
2828 && prologue_epilogue_contains (insn))
2829 continue;
2830 #endif
2832 /* If this insn has a noalias note, process it, Otherwise,
2833 scan for sets. A simple set will have no side effects
2834 which could change the base value of any other register. */
2836 if (GET_CODE (PATTERN (insn)) == SET
2837 && REG_NOTES (insn) != 0
2838 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2839 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2840 else
2841 note_stores (PATTERN (insn), record_set, NULL);
2843 set = single_set (insn);
2845 if (set != 0
2846 && REG_P (SET_DEST (set))
2847 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2849 unsigned int regno = REGNO (SET_DEST (set));
2850 rtx src = SET_SRC (set);
2851 rtx t;
2853 note = find_reg_equal_equiv_note (insn);
2854 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2855 && DF_REG_DEF_COUNT (regno) != 1)
2856 note = NULL_RTX;
2858 if (note != NULL_RTX
2859 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2860 && ! rtx_varies_p (XEXP (note, 0), 1)
2861 && ! reg_overlap_mentioned_p (SET_DEST (set),
2862 XEXP (note, 0)))
2864 set_reg_known_value (regno, XEXP (note, 0));
2865 set_reg_known_equiv_p (regno,
2866 REG_NOTE_KIND (note) == REG_EQUIV);
2868 else if (DF_REG_DEF_COUNT (regno) == 1
2869 && GET_CODE (src) == PLUS
2870 && REG_P (XEXP (src, 0))
2871 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2872 && CONST_INT_P (XEXP (src, 1)))
2874 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2875 set_reg_known_value (regno, t);
2876 set_reg_known_equiv_p (regno, 0);
2878 else if (DF_REG_DEF_COUNT (regno) == 1
2879 && ! rtx_varies_p (src, 1))
2881 set_reg_known_value (regno, src);
2882 set_reg_known_equiv_p (regno, 0);
2886 else if (NOTE_P (insn)
2887 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2888 copying_arguments = false;
2891 /* Now propagate values from new_reg_base_value to reg_base_value. */
2892 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2894 for (ui = 0; ui < maxreg; ui++)
2896 if (new_reg_base_value[ui]
2897 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2898 && ! rtx_equal_p (new_reg_base_value[ui],
2899 VEC_index (rtx, reg_base_value, ui)))
2901 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2902 changed = 1;
2906 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2908 /* Fill in the remaining entries. */
2909 for (i = 0; i < (int)reg_known_value_size; i++)
2910 if (reg_known_value[i] == 0)
2911 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2913 /* Clean up. */
2914 free (new_reg_base_value);
2915 new_reg_base_value = 0;
2916 free (reg_seen);
2917 reg_seen = 0;
2918 timevar_pop (TV_ALIAS_ANALYSIS);
2921 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2922 Special API for var-tracking pass purposes. */
2924 void
2925 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2927 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2930 void
2931 end_alias_analysis (void)
2933 old_reg_base_value = reg_base_value;
2934 ggc_free (reg_known_value);
2935 reg_known_value = 0;
2936 reg_known_value_size = 0;
2937 free (reg_known_equiv_p);
2938 reg_known_equiv_p = 0;
2941 #include "gt-alias.h"