2014-07-29 Ed Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / var-tracking.c
blob00810b956d98128499d5111b91fb3d38070861c3
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table<variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type *vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type *htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type *changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type *dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type *, variable_table_type *);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type *);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
904 We must check whether the adjustments on other edges are
905 the same though. */
906 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
907 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
909 free (stack);
910 return false;
913 if (! ei_one_before_end_p (ei))
914 /* Go to the next edge. */
915 ei_next (&stack[sp - 1]);
916 else
917 /* Return to previous level if there are no more edges. */
918 sp--;
922 free (stack);
923 return true;
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx;
929 static HOST_WIDE_INT cfa_base_offset;
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
934 static inline rtx
935 compute_cfa_pointer (HOST_WIDE_INT adjustment)
937 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
944 /* Data for adjust_mems callback. */
946 struct adjust_mem_data
948 bool store;
949 enum machine_mode mem_mode;
950 HOST_WIDE_INT stack_adjust;
951 rtx side_effects;
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
960 static int
961 use_narrower_mode_test (rtx *loc, void *data)
963 rtx subreg = (rtx) data;
965 if (CONSTANT_P (*loc))
966 return -1;
967 switch (GET_CODE (*loc))
969 case REG:
970 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
971 return 1;
972 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
973 *loc, subreg_lowpart_offset (GET_MODE (subreg),
974 GET_MODE (*loc))))
975 return 1;
976 return -1;
977 case PLUS:
978 case MINUS:
979 case MULT:
980 return 0;
981 case ASHIFT:
982 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
983 return 1;
984 else
985 return -1;
986 default:
987 return 1;
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
993 static rtx
994 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
996 rtx op0, op1;
997 if (CONSTANT_P (x))
998 return lowpart_subreg (mode, x, wmode);
999 switch (GET_CODE (x))
1001 case REG:
1002 return lowpart_subreg (mode, x, wmode);
1003 case PLUS:
1004 case MINUS:
1005 case MULT:
1006 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1007 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1008 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1009 case ASHIFT:
1010 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1011 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1012 default:
1013 gcc_unreachable ();
1017 /* Helper function for adjusting used MEMs. */
1019 static rtx
1020 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1022 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1023 rtx mem, addr = loc, tem;
1024 enum machine_mode mem_mode_save;
1025 bool store_save;
1026 switch (GET_CODE (loc))
1028 case REG:
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1030 on the LHS. */
1031 if (amd->mem_mode == VOIDmode && amd->store)
1032 return loc;
1033 if (loc == stack_pointer_rtx
1034 && !frame_pointer_needed
1035 && cfa_base_rtx)
1036 return compute_cfa_pointer (amd->stack_adjust);
1037 else if (loc == hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment != -1
1040 && cfa_base_rtx)
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1042 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1043 return loc;
1044 case MEM:
1045 mem = loc;
1046 if (!amd->store)
1048 mem = targetm.delegitimize_address (mem);
1049 if (mem != loc && !MEM_P (mem))
1050 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1053 addr = XEXP (mem, 0);
1054 mem_mode_save = amd->mem_mode;
1055 amd->mem_mode = GET_MODE (mem);
1056 store_save = amd->store;
1057 amd->store = false;
1058 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1059 amd->store = store_save;
1060 amd->mem_mode = mem_mode_save;
1061 if (mem == loc)
1062 addr = targetm.delegitimize_address (addr);
1063 if (addr != XEXP (mem, 0))
1064 mem = replace_equiv_address_nv (mem, addr);
1065 if (!amd->store)
1066 mem = avoid_constant_pool_reference (mem);
1067 return mem;
1068 case PRE_INC:
1069 case PRE_DEC:
1070 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1071 gen_int_mode (GET_CODE (loc) == PRE_INC
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 case POST_INC:
1076 case POST_DEC:
1077 if (addr == loc)
1078 addr = XEXP (loc, 0);
1079 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1082 gen_int_mode ((GET_CODE (loc) == PRE_INC
1083 || GET_CODE (loc) == POST_INC)
1084 ? GET_MODE_SIZE (amd->mem_mode)
1085 : -GET_MODE_SIZE (amd->mem_mode),
1086 GET_MODE (loc)));
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode,
1093 XEXP (loc, 0), tem),
1094 amd->side_effects);
1095 return addr;
1096 case PRE_MODIFY:
1097 addr = XEXP (loc, 1);
1098 case POST_MODIFY:
1099 if (addr == loc)
1100 addr = XEXP (loc, 0);
1101 gcc_assert (amd->mem_mode != VOIDmode);
1102 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 store_save = amd->store;
1104 amd->store = false;
1105 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1106 adjust_mems, data);
1107 amd->store = store_save;
1108 amd->side_effects = alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode,
1110 XEXP (loc, 0), tem),
1111 amd->side_effects);
1112 return addr;
1113 case SUBREG:
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save = amd->store;
1117 amd->store = true;
1118 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1119 data);
1120 amd->store = store_save;
1121 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 if (mem == SUBREG_REG (loc))
1124 tem = loc;
1125 goto finish_subreg;
1127 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1128 GET_MODE (SUBREG_REG (loc)),
1129 SUBREG_BYTE (loc));
1130 if (tem)
1131 goto finish_subreg;
1132 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1133 GET_MODE (SUBREG_REG (loc)),
1134 SUBREG_BYTE (loc));
1135 if (tem == NULL_RTX)
1136 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1137 finish_subreg:
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem)) == MULT
1143 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1144 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1148 && subreg_lowpart_p (tem)
1149 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1150 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1151 GET_MODE (SUBREG_REG (tem)));
1152 return tem;
1153 case ASM_OPERANDS:
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1159 fix this up. */
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1161 return loc;
1162 break;
1163 default:
1164 break;
1166 return NULL_RTX;
1169 /* Helper function for replacement of uses. */
1171 static void
1172 adjust_mem_uses (rtx *x, void *data)
1174 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1175 if (new_x != *x)
1176 validate_change (NULL_RTX, x, new_x, true);
1179 /* Helper function for replacement of stores. */
1181 static void
1182 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1184 if (MEM_P (loc))
1186 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1187 adjust_mems, data);
1188 if (new_dest != SET_DEST (expr))
1190 rtx xexpr = CONST_CAST_RTX (expr);
1191 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1200 static void
1201 adjust_insn (basic_block bb, rtx insn)
1203 struct adjust_mem_data amd;
1204 rtx set;
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn)
1210 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1212 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1213 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1214 parm_reg_t *p;
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1218 XVECEXP (rtl, 0, i * 2)
1219 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl, 0, i * 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1223 gen_raw_REG (GET_MODE (p->outgoing),
1224 REGNO (p->outgoing)));
1227 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1228 return;
1230 #endif
1232 amd.mem_mode = VOIDmode;
1233 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1234 amd.side_effects = NULL_RTX;
1236 amd.store = true;
1237 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1239 amd.store = false;
1240 if (GET_CODE (PATTERN (insn)) == PARALLEL
1241 && asm_noperands (PATTERN (insn)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1244 rtx body, set0;
1245 int i;
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1254 body = PATTERN (insn);
1255 set0 = XVECEXP (body, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0) == SET
1257 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1259 for (i = 1; i < XVECLEN (body, 0); i++)
1260 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1261 break;
1262 else
1264 set = XVECEXP (body, 0, i);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1267 == i);
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1275 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1276 ASM_OPERANDS_INPUT_VEC (newsrc)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1280 ASM_OPERANDS_LABEL_VEC (newsrc)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1282 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1286 else
1287 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1289 /* For read-only MEMs containing some constant, prefer those
1290 constants. */
1291 set = single_set (insn);
1292 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1294 rtx note = find_reg_equal_equiv_note (insn);
1296 if (note && CONSTANT_P (XEXP (note, 0)))
1297 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1300 if (amd.side_effects)
1302 rtx *pat, new_pat, s;
1303 int i, oldn, newn;
1305 pat = &PATTERN (insn);
1306 if (GET_CODE (*pat) == COND_EXEC)
1307 pat = &COND_EXEC_CODE (*pat);
1308 if (GET_CODE (*pat) == PARALLEL)
1309 oldn = XVECLEN (*pat, 0);
1310 else
1311 oldn = 1;
1312 for (s = amd.side_effects, newn = 0; s; newn++)
1313 s = XEXP (s, 1);
1314 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1315 if (GET_CODE (*pat) == PARALLEL)
1316 for (i = 0; i < oldn; i++)
1317 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1318 else
1319 XVECEXP (new_pat, 0, 0) = *pat;
1320 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1321 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1322 free_EXPR_LIST_list (&amd.side_effects);
1323 validate_change (NULL_RTX, pat, new_pat, true);
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1328 static inline rtx
1329 dv_as_rtx (decl_or_value dv)
1331 tree decl;
1333 if (dv_is_value_p (dv))
1334 return dv_as_value (dv);
1336 decl = dv_as_decl (dv);
1338 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1339 return DECL_RTL_KNOWN_SET (decl);
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv)
1348 tree decl;
1350 if (!MAY_HAVE_DEBUG_INSNS)
1351 return NOT_ONEPART;
1353 if (dv_is_value_p (dv))
1354 return ONEPART_VALUE;
1356 decl = dv_as_decl (dv);
1358 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1359 return ONEPART_DEXPR;
1361 if (target_for_debug_bind (decl) != NULL_TREE)
1362 return ONEPART_VDECL;
1364 return NOT_ONEPART;
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart)
1371 return onepart ? valvar_pool : var_pool;
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 pool_free (loc_chain_pool, node);
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 pool_free (onepart_pool (var->onepart), var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 pool_free (attrs_pool, list);
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list;
1514 list = (attrs) pool_alloc (attrs_pool);
1515 list->loc = loc;
1516 list->dv = dv;
1517 list->offset = offset;
1518 list->next = *listp;
1519 *listp = list;
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1524 static void
1525 attrs_list_copy (attrs *dstp, attrs src)
1527 attrs n;
1529 attrs_list_clear (dstp);
1530 for (; src; src = src->next)
1532 n = (attrs) pool_alloc (attrs_pool);
1533 n->loc = src->loc;
1534 n->dv = src->dv;
1535 n->offset = src->offset;
1536 n->next = *dstp;
1537 *dstp = n;
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1543 static void
1544 attrs_list_union (attrs *dstp, attrs src)
1546 for (; src; src = src->next)
1548 if (!attrs_list_member (*dstp, src->dv, src->offset))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1554 *DSTP. */
1556 static void
1557 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1559 gcc_assert (!*dstp);
1560 for (; src; src = src->next)
1562 if (!dv_onepart_p (src->dv))
1563 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 for (src = src2; src; src = src->next)
1567 if (!dv_onepart_p (src->dv)
1568 && !attrs_list_member (*dstp, src->dv, src->offset))
1569 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573 /* Shared hashtable support. */
1575 /* Return true if VARS is shared. */
1577 static inline bool
1578 shared_hash_shared (shared_hash vars)
1580 return vars->refcount > 1;
1583 /* Return the hash table for VARS. */
1585 static inline variable_table_type *
1586 shared_hash_htab (shared_hash vars)
1588 return vars->htab;
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1593 static inline bool
1594 shared_var_p (variable var, shared_hash vars)
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var->refcount > 1 + (int) var->in_changed_variables)
1598 || shared_hash_shared (vars));
1601 /* Copy variables into a new hash table. */
1603 static shared_hash
1604 shared_hash_unshare (shared_hash vars)
1606 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1607 gcc_assert (vars->refcount > 1);
1608 new_vars->refcount = 1;
1609 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1610 vars_copy (new_vars->htab, vars->htab);
1611 vars->refcount--;
1612 return new_vars;
1615 /* Increment reference counter on VARS and return it. */
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars)
1620 vars->refcount++;
1621 return vars;
1624 /* Decrement reference counter and destroy hash table if not shared
1625 anymore. */
1627 static void
1628 shared_hash_destroy (shared_hash vars)
1630 gcc_checking_assert (vars->refcount > 0);
1631 if (--vars->refcount == 0)
1633 delete vars->htab;
1634 pool_free (shared_hash_pool, vars);
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1641 static inline variable_def **
1642 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1643 hashval_t dvhash, enum insert_option ins)
1645 if (shared_hash_shared (*pvars))
1646 *pvars = shared_hash_unshare (*pvars);
1647 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1650 static inline variable_def **
1651 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1652 enum insert_option ins)
1654 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1659 return NULL. */
1661 static inline variable_def **
1662 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1664 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1665 shared_hash_shared (vars)
1666 ? NO_INSERT : INSERT);
1669 static inline variable_def **
1670 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1672 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1675 /* Return slot for DV only if it is already present in the hash table. */
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1679 hashval_t dvhash)
1681 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1684 static inline variable_def **
1685 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1687 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1690 /* Return variable for DV or NULL if not already present in the hash
1691 table. */
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1696 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1699 static inline variable
1700 shared_hash_find (shared_hash vars, decl_or_value dv)
1702 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1714 static inline bool
1715 canon_value_cmp (rtx tval, rtx cval)
1717 return !cval
1718 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1721 static bool dst_can_be_shared;
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725 static variable_def **
1726 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1727 enum var_init_status initialized)
1729 variable new_var;
1730 int i;
1732 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1733 new_var->dv = var->dv;
1734 new_var->refcount = 1;
1735 var->refcount--;
1736 new_var->n_var_parts = var->n_var_parts;
1737 new_var->onepart = var->onepart;
1738 new_var->in_changed_variables = false;
1740 if (! flag_var_tracking_uninit)
1741 initialized = VAR_INIT_STATUS_INITIALIZED;
1743 for (i = 0; i < var->n_var_parts; i++)
1745 location_chain node;
1746 location_chain *nextp;
1748 if (i == 0 && var->onepart)
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1753 a no-op. */
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1755 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1756 VAR_LOC_1PAUX (var) = NULL;
1758 else
1759 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1760 nextp = &new_var->var_part[i].loc_chain;
1761 for (node = var->var_part[i].loc_chain; node; node = node->next)
1763 location_chain new_lc;
1765 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1766 new_lc->next = NULL;
1767 if (node->init > initialized)
1768 new_lc->init = node->init;
1769 else
1770 new_lc->init = initialized;
1771 if (node->set_src && !(MEM_P (node->set_src)))
1772 new_lc->set_src = node->set_src;
1773 else
1774 new_lc->set_src = NULL;
1775 new_lc->loc = node->loc;
1777 *nextp = new_lc;
1778 nextp = &new_lc->next;
1781 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1784 dst_can_be_shared = false;
1785 if (shared_hash_shared (set->vars))
1786 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1787 else if (set->traversed_vars && set->vars != set->traversed_vars)
1788 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1789 *slot = new_var;
1790 if (var->in_changed_variables)
1792 variable_def **cslot
1793 = changed_variables->find_slot_with_hash (var->dv,
1794 dv_htab_hash (var->dv),
1795 NO_INSERT);
1796 gcc_assert (*cslot == (void *) var);
1797 var->in_changed_variables = false;
1798 variable_htab_free (var);
1799 *cslot = new_var;
1800 new_var->in_changed_variables = true;
1802 return slot;
1805 /* Copy all variables from hash table SRC to hash table DST. */
1807 static void
1808 vars_copy (variable_table_type *dst, variable_table_type *src)
1810 variable_iterator_type hi;
1811 variable var;
1813 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1815 variable_def **dstp;
1816 var->refcount++;
1817 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1818 INSERT);
1819 *dstp = var;
1823 /* Map a decl to its main debug decl. */
1825 static inline tree
1826 var_debug_decl (tree decl)
1828 if (decl && TREE_CODE (decl) == VAR_DECL
1829 && DECL_HAS_DEBUG_EXPR_P (decl))
1831 tree debugdecl = DECL_DEBUG_EXPR (decl);
1832 if (DECL_P (debugdecl))
1833 decl = debugdecl;
1836 return decl;
1839 /* Set the register LOC to contain DV, OFFSET. */
1841 static void
1842 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1843 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1844 enum insert_option iopt)
1846 attrs node;
1847 bool decl_p = dv_is_decl_p (dv);
1849 if (decl_p)
1850 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1852 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1853 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1854 && node->offset == offset)
1855 break;
1856 if (!node)
1857 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1858 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1861 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1863 static void
1864 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1865 rtx set_src)
1867 tree decl = REG_EXPR (loc);
1868 HOST_WIDE_INT offset = REG_OFFSET (loc);
1870 var_reg_decl_set (set, loc, initialized,
1871 dv_from_decl (decl), offset, set_src, INSERT);
1874 static enum var_init_status
1875 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1877 variable var;
1878 int i;
1879 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1881 if (! flag_var_tracking_uninit)
1882 return VAR_INIT_STATUS_INITIALIZED;
1884 var = shared_hash_find (set->vars, dv);
1885 if (var)
1887 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1889 location_chain nextp;
1890 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1891 if (rtx_equal_p (nextp->loc, loc))
1893 ret_val = nextp->init;
1894 break;
1899 return ret_val;
1902 /* Delete current content of register LOC in dataflow set SET and set
1903 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1904 MODIFY is true, any other live copies of the same variable part are
1905 also deleted from the dataflow set, otherwise the variable part is
1906 assumed to be copied from another location holding the same
1907 part. */
1909 static void
1910 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1911 enum var_init_status initialized, rtx set_src)
1913 tree decl = REG_EXPR (loc);
1914 HOST_WIDE_INT offset = REG_OFFSET (loc);
1915 attrs node, next;
1916 attrs *nextp;
1918 decl = var_debug_decl (decl);
1920 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1921 initialized = get_init_value (set, loc, dv_from_decl (decl));
1923 nextp = &set->regs[REGNO (loc)];
1924 for (node = *nextp; node; node = next)
1926 next = node->next;
1927 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1929 delete_variable_part (set, node->loc, node->dv, node->offset);
1930 pool_free (attrs_pool, node);
1931 *nextp = next;
1933 else
1935 node->loc = loc;
1936 nextp = &node->next;
1939 if (modify)
1940 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1941 var_reg_set (set, loc, initialized, set_src);
1944 /* Delete the association of register LOC in dataflow set SET with any
1945 variables that aren't onepart. If CLOBBER is true, also delete any
1946 other live copies of the same variable part, and delete the
1947 association with onepart dvs too. */
1949 static void
1950 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1952 attrs *nextp = &set->regs[REGNO (loc)];
1953 attrs node, next;
1955 if (clobber)
1957 tree decl = REG_EXPR (loc);
1958 HOST_WIDE_INT offset = REG_OFFSET (loc);
1960 decl = var_debug_decl (decl);
1962 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1965 for (node = *nextp; node; node = next)
1967 next = node->next;
1968 if (clobber || !dv_onepart_p (node->dv))
1970 delete_variable_part (set, node->loc, node->dv, node->offset);
1971 pool_free (attrs_pool, node);
1972 *nextp = next;
1974 else
1975 nextp = &node->next;
1979 /* Delete content of register with number REGNO in dataflow set SET. */
1981 static void
1982 var_regno_delete (dataflow_set *set, int regno)
1984 attrs *reg = &set->regs[regno];
1985 attrs node, next;
1987 for (node = *reg; node; node = next)
1989 next = node->next;
1990 delete_variable_part (set, node->loc, node->dv, node->offset);
1991 pool_free (attrs_pool, node);
1993 *reg = NULL;
1996 /* Return true if I is the negated value of a power of two. */
1997 static bool
1998 negative_power_of_two_p (HOST_WIDE_INT i)
2000 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2001 return x == (x & -x);
2004 /* Strip constant offsets and alignments off of LOC. Return the base
2005 expression. */
2007 static rtx
2008 vt_get_canonicalize_base (rtx loc)
2010 while ((GET_CODE (loc) == PLUS
2011 || GET_CODE (loc) == AND)
2012 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2013 && (GET_CODE (loc) != AND
2014 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2015 loc = XEXP (loc, 0);
2017 return loc;
2020 /* This caches canonicalized addresses for VALUEs, computed using
2021 information in the global cselib table. */
2022 static struct pointer_map_t *global_get_addr_cache;
2024 /* This caches canonicalized addresses for VALUEs, computed using
2025 information from the global cache and information pertaining to a
2026 basic block being analyzed. */
2027 static struct pointer_map_t *local_get_addr_cache;
2029 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2031 /* Return the canonical address for LOC, that must be a VALUE, using a
2032 cached global equivalence or computing it and storing it in the
2033 global cache. */
2035 static rtx
2036 get_addr_from_global_cache (rtx const loc)
2038 rtx x;
2039 void **slot;
2041 gcc_checking_assert (GET_CODE (loc) == VALUE);
2043 slot = pointer_map_insert (global_get_addr_cache, loc);
2044 if (*slot)
2045 return (rtx)*slot;
2047 x = canon_rtx (get_addr (loc));
2049 /* Tentative, avoiding infinite recursion. */
2050 *slot = x;
2052 if (x != loc)
2054 rtx nx = vt_canonicalize_addr (NULL, x);
2055 if (nx != x)
2057 /* The table may have moved during recursion, recompute
2058 SLOT. */
2059 slot = pointer_map_contains (global_get_addr_cache, loc);
2060 *slot = x = nx;
2064 return x;
2067 /* Return the canonical address for LOC, that must be a VALUE, using a
2068 cached local equivalence or computing it and storing it in the
2069 local cache. */
2071 static rtx
2072 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2074 rtx x;
2075 void **slot;
2076 decl_or_value dv;
2077 variable var;
2078 location_chain l;
2080 gcc_checking_assert (GET_CODE (loc) == VALUE);
2082 slot = pointer_map_insert (local_get_addr_cache, loc);
2083 if (*slot)
2084 return (rtx)*slot;
2086 x = get_addr_from_global_cache (loc);
2088 /* Tentative, avoiding infinite recursion. */
2089 *slot = x;
2091 /* Recurse to cache local expansion of X, or if we need to search
2092 for a VALUE in the expansion. */
2093 if (x != loc)
2095 rtx nx = vt_canonicalize_addr (set, x);
2096 if (nx != x)
2098 slot = pointer_map_contains (local_get_addr_cache, loc);
2099 *slot = x = nx;
2101 return x;
2104 dv = dv_from_rtx (x);
2105 var = shared_hash_find (set->vars, dv);
2106 if (!var)
2107 return x;
2109 /* Look for an improved equivalent expression. */
2110 for (l = var->var_part[0].loc_chain; l; l = l->next)
2112 rtx base = vt_get_canonicalize_base (l->loc);
2113 if (GET_CODE (base) == VALUE
2114 && canon_value_cmp (base, loc))
2116 rtx nx = vt_canonicalize_addr (set, l->loc);
2117 if (x != nx)
2119 slot = pointer_map_contains (local_get_addr_cache, loc);
2120 *slot = x = nx;
2122 break;
2126 return x;
2129 /* Canonicalize LOC using equivalences from SET in addition to those
2130 in the cselib static table. It expects a VALUE-based expression,
2131 and it will only substitute VALUEs with other VALUEs or
2132 function-global equivalences, so that, if two addresses have base
2133 VALUEs that are locally or globally related in ways that
2134 memrefs_conflict_p cares about, they will both canonicalize to
2135 expressions that have the same base VALUE.
2137 The use of VALUEs as canonical base addresses enables the canonical
2138 RTXs to remain unchanged globally, if they resolve to a constant,
2139 or throughout a basic block otherwise, so that they can be cached
2140 and the cache needs not be invalidated when REGs, MEMs or such
2141 change. */
2143 static rtx
2144 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2146 HOST_WIDE_INT ofst = 0;
2147 enum machine_mode mode = GET_MODE (oloc);
2148 rtx loc = oloc;
2149 rtx x;
2150 bool retry = true;
2152 while (retry)
2154 while (GET_CODE (loc) == PLUS
2155 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2157 ofst += INTVAL (XEXP (loc, 1));
2158 loc = XEXP (loc, 0);
2161 /* Alignment operations can't normally be combined, so just
2162 canonicalize the base and we're done. We'll normally have
2163 only one stack alignment anyway. */
2164 if (GET_CODE (loc) == AND
2165 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2166 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2168 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2169 if (x != XEXP (loc, 0))
2170 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2171 retry = false;
2174 if (GET_CODE (loc) == VALUE)
2176 if (set)
2177 loc = get_addr_from_local_cache (set, loc);
2178 else
2179 loc = get_addr_from_global_cache (loc);
2181 /* Consolidate plus_constants. */
2182 while (ofst && GET_CODE (loc) == PLUS
2183 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2185 ofst += INTVAL (XEXP (loc, 1));
2186 loc = XEXP (loc, 0);
2189 retry = false;
2191 else
2193 x = canon_rtx (loc);
2194 if (retry)
2195 retry = (x != loc);
2196 loc = x;
2200 /* Add OFST back in. */
2201 if (ofst)
2203 /* Don't build new RTL if we can help it. */
2204 if (GET_CODE (oloc) == PLUS
2205 && XEXP (oloc, 0) == loc
2206 && INTVAL (XEXP (oloc, 1)) == ofst)
2207 return oloc;
2209 loc = plus_constant (mode, loc, ofst);
2212 return loc;
2215 /* Return true iff there's a true dependence between MLOC and LOC.
2216 MADDR must be a canonicalized version of MLOC's address. */
2218 static inline bool
2219 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2221 if (GET_CODE (loc) != MEM)
2222 return false;
2224 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2225 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2226 return false;
2228 return true;
2231 /* Hold parameters for the hashtab traversal function
2232 drop_overlapping_mem_locs, see below. */
2234 struct overlapping_mems
2236 dataflow_set *set;
2237 rtx loc, addr;
2240 /* Remove all MEMs that overlap with COMS->LOC from the location list
2241 of a hash table entry for a value. COMS->ADDR must be a
2242 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2243 canonicalized itself. */
2246 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2248 dataflow_set *set = coms->set;
2249 rtx mloc = coms->loc, addr = coms->addr;
2250 variable var = *slot;
2252 if (var->onepart == ONEPART_VALUE)
2254 location_chain loc, *locp;
2255 bool changed = false;
2256 rtx cur_loc;
2258 gcc_assert (var->n_var_parts == 1);
2260 if (shared_var_p (var, set->vars))
2262 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2263 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2264 break;
2266 if (!loc)
2267 return 1;
2269 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2270 var = *slot;
2271 gcc_assert (var->n_var_parts == 1);
2274 if (VAR_LOC_1PAUX (var))
2275 cur_loc = VAR_LOC_FROM (var);
2276 else
2277 cur_loc = var->var_part[0].cur_loc;
2279 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2280 loc; loc = *locp)
2282 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2284 locp = &loc->next;
2285 continue;
2288 *locp = loc->next;
2289 /* If we have deleted the location which was last emitted
2290 we have to emit new location so add the variable to set
2291 of changed variables. */
2292 if (cur_loc == loc->loc)
2294 changed = true;
2295 var->var_part[0].cur_loc = NULL;
2296 if (VAR_LOC_1PAUX (var))
2297 VAR_LOC_FROM (var) = NULL;
2299 pool_free (loc_chain_pool, loc);
2302 if (!var->var_part[0].loc_chain)
2304 var->n_var_parts--;
2305 changed = true;
2307 if (changed)
2308 variable_was_changed (var, set);
2311 return 1;
2314 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2316 static void
2317 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2319 struct overlapping_mems coms;
2321 gcc_checking_assert (GET_CODE (loc) == MEM);
2323 coms.set = set;
2324 coms.loc = canon_rtx (loc);
2325 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2327 set->traversed_vars = set->vars;
2328 shared_hash_htab (set->vars)
2329 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2330 set->traversed_vars = NULL;
2333 /* Set the location of DV, OFFSET as the MEM LOC. */
2335 static void
2336 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2337 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2338 enum insert_option iopt)
2340 if (dv_is_decl_p (dv))
2341 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2343 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2346 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2347 SET to LOC.
2348 Adjust the address first if it is stack pointer based. */
2350 static void
2351 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2352 rtx set_src)
2354 tree decl = MEM_EXPR (loc);
2355 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2357 var_mem_decl_set (set, loc, initialized,
2358 dv_from_decl (decl), offset, set_src, INSERT);
2361 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2362 dataflow set SET to LOC. If MODIFY is true, any other live copies
2363 of the same variable part are also deleted from the dataflow set,
2364 otherwise the variable part is assumed to be copied from another
2365 location holding the same part.
2366 Adjust the address first if it is stack pointer based. */
2368 static void
2369 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2370 enum var_init_status initialized, rtx set_src)
2372 tree decl = MEM_EXPR (loc);
2373 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2375 clobber_overlapping_mems (set, loc);
2376 decl = var_debug_decl (decl);
2378 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2379 initialized = get_init_value (set, loc, dv_from_decl (decl));
2381 if (modify)
2382 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2383 var_mem_set (set, loc, initialized, set_src);
2386 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2387 true, also delete any other live copies of the same variable part.
2388 Adjust the address first if it is stack pointer based. */
2390 static void
2391 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2393 tree decl = MEM_EXPR (loc);
2394 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2396 clobber_overlapping_mems (set, loc);
2397 decl = var_debug_decl (decl);
2398 if (clobber)
2399 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2400 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2403 /* Return true if LOC should not be expanded for location expressions,
2404 or used in them. */
2406 static inline bool
2407 unsuitable_loc (rtx loc)
2409 switch (GET_CODE (loc))
2411 case PC:
2412 case SCRATCH:
2413 case CC0:
2414 case ASM_INPUT:
2415 case ASM_OPERANDS:
2416 return true;
2418 default:
2419 return false;
2423 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2424 bound to it. */
2426 static inline void
2427 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2429 if (REG_P (loc))
2431 if (modified)
2432 var_regno_delete (set, REGNO (loc));
2433 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2434 dv_from_value (val), 0, NULL_RTX, INSERT);
2436 else if (MEM_P (loc))
2438 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2440 if (modified)
2441 clobber_overlapping_mems (set, loc);
2443 if (l && GET_CODE (l->loc) == VALUE)
2444 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2446 /* If this MEM is a global constant, we don't need it in the
2447 dynamic tables. ??? We should test this before emitting the
2448 micro-op in the first place. */
2449 while (l)
2450 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2451 break;
2452 else
2453 l = l->next;
2455 if (!l)
2456 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2457 dv_from_value (val), 0, NULL_RTX, INSERT);
2459 else
2461 /* Other kinds of equivalences are necessarily static, at least
2462 so long as we do not perform substitutions while merging
2463 expressions. */
2464 gcc_unreachable ();
2465 set_variable_part (set, loc, dv_from_value (val), 0,
2466 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2470 /* Bind a value to a location it was just stored in. If MODIFIED
2471 holds, assume the location was modified, detaching it from any
2472 values bound to it. */
2474 static void
2475 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2477 cselib_val *v = CSELIB_VAL_PTR (val);
2479 gcc_assert (cselib_preserved_value_p (v));
2481 if (dump_file)
2483 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2484 print_inline_rtx (dump_file, loc, 0);
2485 fprintf (dump_file, " evaluates to ");
2486 print_inline_rtx (dump_file, val, 0);
2487 if (v->locs)
2489 struct elt_loc_list *l;
2490 for (l = v->locs; l; l = l->next)
2492 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2493 print_inline_rtx (dump_file, l->loc, 0);
2496 fprintf (dump_file, "\n");
2499 gcc_checking_assert (!unsuitable_loc (loc));
2501 val_bind (set, val, loc, modified);
2504 /* Clear (canonical address) slots that reference X. */
2506 static bool
2507 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2508 void **slot, void *x)
2510 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2511 *slot = NULL;
2512 return true;
2515 /* Reset this node, detaching all its equivalences. Return the slot
2516 in the variable hash table that holds dv, if there is one. */
2518 static void
2519 val_reset (dataflow_set *set, decl_or_value dv)
2521 variable var = shared_hash_find (set->vars, dv) ;
2522 location_chain node;
2523 rtx cval;
2525 if (!var || !var->n_var_parts)
2526 return;
2528 gcc_assert (var->n_var_parts == 1);
2530 if (var->onepart == ONEPART_VALUE)
2532 rtx x = dv_as_value (dv);
2533 void **slot;
2535 /* Relationships in the global cache don't change, so reset the
2536 local cache entry only. */
2537 slot = pointer_map_contains (local_get_addr_cache, x);
2538 if (slot)
2540 /* If the value resolved back to itself, odds are that other
2541 values may have cached it too. These entries now refer
2542 to the old X, so detach them too. Entries that used the
2543 old X but resolved to something else remain ok as long as
2544 that something else isn't also reset. */
2545 if (*slot == x)
2546 pointer_map_traverse (local_get_addr_cache,
2547 local_get_addr_clear_given_value, x);
2548 *slot = NULL;
2552 cval = NULL;
2553 for (node = var->var_part[0].loc_chain; node; node = node->next)
2554 if (GET_CODE (node->loc) == VALUE
2555 && canon_value_cmp (node->loc, cval))
2556 cval = node->loc;
2558 for (node = var->var_part[0].loc_chain; node; node = node->next)
2559 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2561 /* Redirect the equivalence link to the new canonical
2562 value, or simply remove it if it would point at
2563 itself. */
2564 if (cval)
2565 set_variable_part (set, cval, dv_from_value (node->loc),
2566 0, node->init, node->set_src, NO_INSERT);
2567 delete_variable_part (set, dv_as_value (dv),
2568 dv_from_value (node->loc), 0);
2571 if (cval)
2573 decl_or_value cdv = dv_from_value (cval);
2575 /* Keep the remaining values connected, accummulating links
2576 in the canonical value. */
2577 for (node = var->var_part[0].loc_chain; node; node = node->next)
2579 if (node->loc == cval)
2580 continue;
2581 else if (GET_CODE (node->loc) == REG)
2582 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2583 node->set_src, NO_INSERT);
2584 else if (GET_CODE (node->loc) == MEM)
2585 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2586 node->set_src, NO_INSERT);
2587 else
2588 set_variable_part (set, node->loc, cdv, 0,
2589 node->init, node->set_src, NO_INSERT);
2593 /* We remove this last, to make sure that the canonical value is not
2594 removed to the point of requiring reinsertion. */
2595 if (cval)
2596 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2598 clobber_variable_part (set, NULL, dv, 0, NULL);
2601 /* Find the values in a given location and map the val to another
2602 value, if it is unique, or add the location as one holding the
2603 value. */
2605 static void
2606 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2608 decl_or_value dv = dv_from_value (val);
2610 if (dump_file && (dump_flags & TDF_DETAILS))
2612 if (insn)
2613 fprintf (dump_file, "%i: ", INSN_UID (insn));
2614 else
2615 fprintf (dump_file, "head: ");
2616 print_inline_rtx (dump_file, val, 0);
2617 fputs (" is at ", dump_file);
2618 print_inline_rtx (dump_file, loc, 0);
2619 fputc ('\n', dump_file);
2622 val_reset (set, dv);
2624 gcc_checking_assert (!unsuitable_loc (loc));
2626 if (REG_P (loc))
2628 attrs node, found = NULL;
2630 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2631 if (dv_is_value_p (node->dv)
2632 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2634 found = node;
2636 /* Map incoming equivalences. ??? Wouldn't it be nice if
2637 we just started sharing the location lists? Maybe a
2638 circular list ending at the value itself or some
2639 such. */
2640 set_variable_part (set, dv_as_value (node->dv),
2641 dv_from_value (val), node->offset,
2642 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2643 set_variable_part (set, val, node->dv, node->offset,
2644 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2647 /* If we didn't find any equivalence, we need to remember that
2648 this value is held in the named register. */
2649 if (found)
2650 return;
2652 /* ??? Attempt to find and merge equivalent MEMs or other
2653 expressions too. */
2655 val_bind (set, val, loc, false);
2658 /* Initialize dataflow set SET to be empty.
2659 VARS_SIZE is the initial size of hash table VARS. */
2661 static void
2662 dataflow_set_init (dataflow_set *set)
2664 init_attrs_list_set (set->regs);
2665 set->vars = shared_hash_copy (empty_shared_hash);
2666 set->stack_adjust = 0;
2667 set->traversed_vars = NULL;
2670 /* Delete the contents of dataflow set SET. */
2672 static void
2673 dataflow_set_clear (dataflow_set *set)
2675 int i;
2677 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2678 attrs_list_clear (&set->regs[i]);
2680 shared_hash_destroy (set->vars);
2681 set->vars = shared_hash_copy (empty_shared_hash);
2684 /* Copy the contents of dataflow set SRC to DST. */
2686 static void
2687 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2689 int i;
2691 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2692 attrs_list_copy (&dst->regs[i], src->regs[i]);
2694 shared_hash_destroy (dst->vars);
2695 dst->vars = shared_hash_copy (src->vars);
2696 dst->stack_adjust = src->stack_adjust;
2699 /* Information for merging lists of locations for a given offset of variable.
2701 struct variable_union_info
2703 /* Node of the location chain. */
2704 location_chain lc;
2706 /* The sum of positions in the input chains. */
2707 int pos;
2709 /* The position in the chain of DST dataflow set. */
2710 int pos_dst;
2713 /* Buffer for location list sorting and its allocated size. */
2714 static struct variable_union_info *vui_vec;
2715 static int vui_allocated;
2717 /* Compare function for qsort, order the structures by POS element. */
2719 static int
2720 variable_union_info_cmp_pos (const void *n1, const void *n2)
2722 const struct variable_union_info *const i1 =
2723 (const struct variable_union_info *) n1;
2724 const struct variable_union_info *const i2 =
2725 ( const struct variable_union_info *) n2;
2727 if (i1->pos != i2->pos)
2728 return i1->pos - i2->pos;
2730 return (i1->pos_dst - i2->pos_dst);
2733 /* Compute union of location parts of variable *SLOT and the same variable
2734 from hash table DATA. Compute "sorted" union of the location chains
2735 for common offsets, i.e. the locations of a variable part are sorted by
2736 a priority where the priority is the sum of the positions in the 2 chains
2737 (if a location is only in one list the position in the second list is
2738 defined to be larger than the length of the chains).
2739 When we are updating the location parts the newest location is in the
2740 beginning of the chain, so when we do the described "sorted" union
2741 we keep the newest locations in the beginning. */
2743 static int
2744 variable_union (variable src, dataflow_set *set)
2746 variable dst;
2747 variable_def **dstp;
2748 int i, j, k;
2750 dstp = shared_hash_find_slot (set->vars, src->dv);
2751 if (!dstp || !*dstp)
2753 src->refcount++;
2755 dst_can_be_shared = false;
2756 if (!dstp)
2757 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2759 *dstp = src;
2761 /* Continue traversing the hash table. */
2762 return 1;
2764 else
2765 dst = *dstp;
2767 gcc_assert (src->n_var_parts);
2768 gcc_checking_assert (src->onepart == dst->onepart);
2770 /* We can combine one-part variables very efficiently, because their
2771 entries are in canonical order. */
2772 if (src->onepart)
2774 location_chain *nodep, dnode, snode;
2776 gcc_assert (src->n_var_parts == 1
2777 && dst->n_var_parts == 1);
2779 snode = src->var_part[0].loc_chain;
2780 gcc_assert (snode);
2782 restart_onepart_unshared:
2783 nodep = &dst->var_part[0].loc_chain;
2784 dnode = *nodep;
2785 gcc_assert (dnode);
2787 while (snode)
2789 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2791 if (r > 0)
2793 location_chain nnode;
2795 if (shared_var_p (dst, set->vars))
2797 dstp = unshare_variable (set, dstp, dst,
2798 VAR_INIT_STATUS_INITIALIZED);
2799 dst = *dstp;
2800 goto restart_onepart_unshared;
2803 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2804 nnode->loc = snode->loc;
2805 nnode->init = snode->init;
2806 if (!snode->set_src || MEM_P (snode->set_src))
2807 nnode->set_src = NULL;
2808 else
2809 nnode->set_src = snode->set_src;
2810 nnode->next = dnode;
2811 dnode = nnode;
2813 else if (r == 0)
2814 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2816 if (r >= 0)
2817 snode = snode->next;
2819 nodep = &dnode->next;
2820 dnode = *nodep;
2823 return 1;
2826 gcc_checking_assert (!src->onepart);
2828 /* Count the number of location parts, result is K. */
2829 for (i = 0, j = 0, k = 0;
2830 i < src->n_var_parts && j < dst->n_var_parts; k++)
2832 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2834 i++;
2835 j++;
2837 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2838 i++;
2839 else
2840 j++;
2842 k += src->n_var_parts - i;
2843 k += dst->n_var_parts - j;
2845 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2846 thus there are at most MAX_VAR_PARTS different offsets. */
2847 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2849 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2851 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2852 dst = *dstp;
2855 i = src->n_var_parts - 1;
2856 j = dst->n_var_parts - 1;
2857 dst->n_var_parts = k;
2859 for (k--; k >= 0; k--)
2861 location_chain node, node2;
2863 if (i >= 0 && j >= 0
2864 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2866 /* Compute the "sorted" union of the chains, i.e. the locations which
2867 are in both chains go first, they are sorted by the sum of
2868 positions in the chains. */
2869 int dst_l, src_l;
2870 int ii, jj, n;
2871 struct variable_union_info *vui;
2873 /* If DST is shared compare the location chains.
2874 If they are different we will modify the chain in DST with
2875 high probability so make a copy of DST. */
2876 if (shared_var_p (dst, set->vars))
2878 for (node = src->var_part[i].loc_chain,
2879 node2 = dst->var_part[j].loc_chain; node && node2;
2880 node = node->next, node2 = node2->next)
2882 if (!((REG_P (node2->loc)
2883 && REG_P (node->loc)
2884 && REGNO (node2->loc) == REGNO (node->loc))
2885 || rtx_equal_p (node2->loc, node->loc)))
2887 if (node2->init < node->init)
2888 node2->init = node->init;
2889 break;
2892 if (node || node2)
2894 dstp = unshare_variable (set, dstp, dst,
2895 VAR_INIT_STATUS_UNKNOWN);
2896 dst = (variable)*dstp;
2900 src_l = 0;
2901 for (node = src->var_part[i].loc_chain; node; node = node->next)
2902 src_l++;
2903 dst_l = 0;
2904 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2905 dst_l++;
2907 if (dst_l == 1)
2909 /* The most common case, much simpler, no qsort is needed. */
2910 location_chain dstnode = dst->var_part[j].loc_chain;
2911 dst->var_part[k].loc_chain = dstnode;
2912 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2913 node2 = dstnode;
2914 for (node = src->var_part[i].loc_chain; node; node = node->next)
2915 if (!((REG_P (dstnode->loc)
2916 && REG_P (node->loc)
2917 && REGNO (dstnode->loc) == REGNO (node->loc))
2918 || rtx_equal_p (dstnode->loc, node->loc)))
2920 location_chain new_node;
2922 /* Copy the location from SRC. */
2923 new_node = (location_chain) pool_alloc (loc_chain_pool);
2924 new_node->loc = node->loc;
2925 new_node->init = node->init;
2926 if (!node->set_src || MEM_P (node->set_src))
2927 new_node->set_src = NULL;
2928 else
2929 new_node->set_src = node->set_src;
2930 node2->next = new_node;
2931 node2 = new_node;
2933 node2->next = NULL;
2935 else
2937 if (src_l + dst_l > vui_allocated)
2939 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2940 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2941 vui_allocated);
2943 vui = vui_vec;
2945 /* Fill in the locations from DST. */
2946 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2947 node = node->next, jj++)
2949 vui[jj].lc = node;
2950 vui[jj].pos_dst = jj;
2952 /* Pos plus value larger than a sum of 2 valid positions. */
2953 vui[jj].pos = jj + src_l + dst_l;
2956 /* Fill in the locations from SRC. */
2957 n = dst_l;
2958 for (node = src->var_part[i].loc_chain, ii = 0; node;
2959 node = node->next, ii++)
2961 /* Find location from NODE. */
2962 for (jj = 0; jj < dst_l; jj++)
2964 if ((REG_P (vui[jj].lc->loc)
2965 && REG_P (node->loc)
2966 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2967 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2969 vui[jj].pos = jj + ii;
2970 break;
2973 if (jj >= dst_l) /* The location has not been found. */
2975 location_chain new_node;
2977 /* Copy the location from SRC. */
2978 new_node = (location_chain) pool_alloc (loc_chain_pool);
2979 new_node->loc = node->loc;
2980 new_node->init = node->init;
2981 if (!node->set_src || MEM_P (node->set_src))
2982 new_node->set_src = NULL;
2983 else
2984 new_node->set_src = node->set_src;
2985 vui[n].lc = new_node;
2986 vui[n].pos_dst = src_l + dst_l;
2987 vui[n].pos = ii + src_l + dst_l;
2988 n++;
2992 if (dst_l == 2)
2994 /* Special case still very common case. For dst_l == 2
2995 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2996 vui[i].pos == i + src_l + dst_l. */
2997 if (vui[0].pos > vui[1].pos)
2999 /* Order should be 1, 0, 2... */
3000 dst->var_part[k].loc_chain = vui[1].lc;
3001 vui[1].lc->next = vui[0].lc;
3002 if (n >= 3)
3004 vui[0].lc->next = vui[2].lc;
3005 vui[n - 1].lc->next = NULL;
3007 else
3008 vui[0].lc->next = NULL;
3009 ii = 3;
3011 else
3013 dst->var_part[k].loc_chain = vui[0].lc;
3014 if (n >= 3 && vui[2].pos < vui[1].pos)
3016 /* Order should be 0, 2, 1, 3... */
3017 vui[0].lc->next = vui[2].lc;
3018 vui[2].lc->next = vui[1].lc;
3019 if (n >= 4)
3021 vui[1].lc->next = vui[3].lc;
3022 vui[n - 1].lc->next = NULL;
3024 else
3025 vui[1].lc->next = NULL;
3026 ii = 4;
3028 else
3030 /* Order should be 0, 1, 2... */
3031 ii = 1;
3032 vui[n - 1].lc->next = NULL;
3035 for (; ii < n; ii++)
3036 vui[ii - 1].lc->next = vui[ii].lc;
3038 else
3040 qsort (vui, n, sizeof (struct variable_union_info),
3041 variable_union_info_cmp_pos);
3043 /* Reconnect the nodes in sorted order. */
3044 for (ii = 1; ii < n; ii++)
3045 vui[ii - 1].lc->next = vui[ii].lc;
3046 vui[n - 1].lc->next = NULL;
3047 dst->var_part[k].loc_chain = vui[0].lc;
3050 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3052 i--;
3053 j--;
3055 else if ((i >= 0 && j >= 0
3056 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3057 || i < 0)
3059 dst->var_part[k] = dst->var_part[j];
3060 j--;
3062 else if ((i >= 0 && j >= 0
3063 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3064 || j < 0)
3066 location_chain *nextp;
3068 /* Copy the chain from SRC. */
3069 nextp = &dst->var_part[k].loc_chain;
3070 for (node = src->var_part[i].loc_chain; node; node = node->next)
3072 location_chain new_lc;
3074 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3075 new_lc->next = NULL;
3076 new_lc->init = node->init;
3077 if (!node->set_src || MEM_P (node->set_src))
3078 new_lc->set_src = NULL;
3079 else
3080 new_lc->set_src = node->set_src;
3081 new_lc->loc = node->loc;
3083 *nextp = new_lc;
3084 nextp = &new_lc->next;
3087 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3088 i--;
3090 dst->var_part[k].cur_loc = NULL;
3093 if (flag_var_tracking_uninit)
3094 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3096 location_chain node, node2;
3097 for (node = src->var_part[i].loc_chain; node; node = node->next)
3098 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3099 if (rtx_equal_p (node->loc, node2->loc))
3101 if (node->init > node2->init)
3102 node2->init = node->init;
3106 /* Continue traversing the hash table. */
3107 return 1;
3110 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3112 static void
3113 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3115 int i;
3117 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3118 attrs_list_union (&dst->regs[i], src->regs[i]);
3120 if (dst->vars == empty_shared_hash)
3122 shared_hash_destroy (dst->vars);
3123 dst->vars = shared_hash_copy (src->vars);
3125 else
3127 variable_iterator_type hi;
3128 variable var;
3130 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3131 var, variable, hi)
3132 variable_union (var, dst);
3136 /* Whether the value is currently being expanded. */
3137 #define VALUE_RECURSED_INTO(x) \
3138 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3140 /* Whether no expansion was found, saving useless lookups.
3141 It must only be set when VALUE_CHANGED is clear. */
3142 #define NO_LOC_P(x) \
3143 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3145 /* Whether cur_loc in the value needs to be (re)computed. */
3146 #define VALUE_CHANGED(x) \
3147 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3148 /* Whether cur_loc in the decl needs to be (re)computed. */
3149 #define DECL_CHANGED(x) TREE_VISITED (x)
3151 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3152 user DECLs, this means they're in changed_variables. Values and
3153 debug exprs may be left with this flag set if no user variable
3154 requires them to be evaluated. */
3156 static inline void
3157 set_dv_changed (decl_or_value dv, bool newv)
3159 switch (dv_onepart_p (dv))
3161 case ONEPART_VALUE:
3162 if (newv)
3163 NO_LOC_P (dv_as_value (dv)) = false;
3164 VALUE_CHANGED (dv_as_value (dv)) = newv;
3165 break;
3167 case ONEPART_DEXPR:
3168 if (newv)
3169 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3170 /* Fall through... */
3172 default:
3173 DECL_CHANGED (dv_as_decl (dv)) = newv;
3174 break;
3178 /* Return true if DV needs to have its cur_loc recomputed. */
3180 static inline bool
3181 dv_changed_p (decl_or_value dv)
3183 return (dv_is_value_p (dv)
3184 ? VALUE_CHANGED (dv_as_value (dv))
3185 : DECL_CHANGED (dv_as_decl (dv)));
3188 /* Return a location list node whose loc is rtx_equal to LOC, in the
3189 location list of a one-part variable or value VAR, or in that of
3190 any values recursively mentioned in the location lists. VARS must
3191 be in star-canonical form. */
3193 static location_chain
3194 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3196 location_chain node;
3197 enum rtx_code loc_code;
3199 if (!var)
3200 return NULL;
3202 gcc_checking_assert (var->onepart);
3204 if (!var->n_var_parts)
3205 return NULL;
3207 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3209 loc_code = GET_CODE (loc);
3210 for (node = var->var_part[0].loc_chain; node; node = node->next)
3212 decl_or_value dv;
3213 variable rvar;
3215 if (GET_CODE (node->loc) != loc_code)
3217 if (GET_CODE (node->loc) != VALUE)
3218 continue;
3220 else if (loc == node->loc)
3221 return node;
3222 else if (loc_code != VALUE)
3224 if (rtx_equal_p (loc, node->loc))
3225 return node;
3226 continue;
3229 /* Since we're in star-canonical form, we don't need to visit
3230 non-canonical nodes: one-part variables and non-canonical
3231 values would only point back to the canonical node. */
3232 if (dv_is_value_p (var->dv)
3233 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3235 /* Skip all subsequent VALUEs. */
3236 while (node->next && GET_CODE (node->next->loc) == VALUE)
3238 node = node->next;
3239 gcc_checking_assert (!canon_value_cmp (node->loc,
3240 dv_as_value (var->dv)));
3241 if (loc == node->loc)
3242 return node;
3244 continue;
3247 gcc_checking_assert (node == var->var_part[0].loc_chain);
3248 gcc_checking_assert (!node->next);
3250 dv = dv_from_value (node->loc);
3251 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3252 return find_loc_in_1pdv (loc, rvar, vars);
3255 /* ??? Gotta look in cselib_val locations too. */
3257 return NULL;
3260 /* Hash table iteration argument passed to variable_merge. */
3261 struct dfset_merge
3263 /* The set in which the merge is to be inserted. */
3264 dataflow_set *dst;
3265 /* The set that we're iterating in. */
3266 dataflow_set *cur;
3267 /* The set that may contain the other dv we are to merge with. */
3268 dataflow_set *src;
3269 /* Number of onepart dvs in src. */
3270 int src_onepart_cnt;
3273 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3274 loc_cmp order, and it is maintained as such. */
3276 static void
3277 insert_into_intersection (location_chain *nodep, rtx loc,
3278 enum var_init_status status)
3280 location_chain node;
3281 int r;
3283 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3284 if ((r = loc_cmp (node->loc, loc)) == 0)
3286 node->init = MIN (node->init, status);
3287 return;
3289 else if (r > 0)
3290 break;
3292 node = (location_chain) pool_alloc (loc_chain_pool);
3294 node->loc = loc;
3295 node->set_src = NULL;
3296 node->init = status;
3297 node->next = *nodep;
3298 *nodep = node;
3301 /* Insert in DEST the intersection of the locations present in both
3302 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3303 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3304 DSM->dst. */
3306 static void
3307 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3308 location_chain s1node, variable s2var)
3310 dataflow_set *s1set = dsm->cur;
3311 dataflow_set *s2set = dsm->src;
3312 location_chain found;
3314 if (s2var)
3316 location_chain s2node;
3318 gcc_checking_assert (s2var->onepart);
3320 if (s2var->n_var_parts)
3322 s2node = s2var->var_part[0].loc_chain;
3324 for (; s1node && s2node;
3325 s1node = s1node->next, s2node = s2node->next)
3326 if (s1node->loc != s2node->loc)
3327 break;
3328 else if (s1node->loc == val)
3329 continue;
3330 else
3331 insert_into_intersection (dest, s1node->loc,
3332 MIN (s1node->init, s2node->init));
3336 for (; s1node; s1node = s1node->next)
3338 if (s1node->loc == val)
3339 continue;
3341 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3342 shared_hash_htab (s2set->vars))))
3344 insert_into_intersection (dest, s1node->loc,
3345 MIN (s1node->init, found->init));
3346 continue;
3349 if (GET_CODE (s1node->loc) == VALUE
3350 && !VALUE_RECURSED_INTO (s1node->loc))
3352 decl_or_value dv = dv_from_value (s1node->loc);
3353 variable svar = shared_hash_find (s1set->vars, dv);
3354 if (svar)
3356 if (svar->n_var_parts == 1)
3358 VALUE_RECURSED_INTO (s1node->loc) = true;
3359 intersect_loc_chains (val, dest, dsm,
3360 svar->var_part[0].loc_chain,
3361 s2var);
3362 VALUE_RECURSED_INTO (s1node->loc) = false;
3367 /* ??? gotta look in cselib_val locations too. */
3369 /* ??? if the location is equivalent to any location in src,
3370 searched recursively
3372 add to dst the values needed to represent the equivalence
3374 telling whether locations S is equivalent to another dv's
3375 location list:
3377 for each location D in the list
3379 if S and D satisfy rtx_equal_p, then it is present
3381 else if D is a value, recurse without cycles
3383 else if S and D have the same CODE and MODE
3385 for each operand oS and the corresponding oD
3387 if oS and oD are not equivalent, then S an D are not equivalent
3389 else if they are RTX vectors
3391 if any vector oS element is not equivalent to its respective oD,
3392 then S and D are not equivalent
3400 /* Return -1 if X should be before Y in a location list for a 1-part
3401 variable, 1 if Y should be before X, and 0 if they're equivalent
3402 and should not appear in the list. */
3404 static int
3405 loc_cmp (rtx x, rtx y)
3407 int i, j, r;
3408 RTX_CODE code = GET_CODE (x);
3409 const char *fmt;
3411 if (x == y)
3412 return 0;
3414 if (REG_P (x))
3416 if (!REG_P (y))
3417 return -1;
3418 gcc_assert (GET_MODE (x) == GET_MODE (y));
3419 if (REGNO (x) == REGNO (y))
3420 return 0;
3421 else if (REGNO (x) < REGNO (y))
3422 return -1;
3423 else
3424 return 1;
3427 if (REG_P (y))
3428 return 1;
3430 if (MEM_P (x))
3432 if (!MEM_P (y))
3433 return -1;
3434 gcc_assert (GET_MODE (x) == GET_MODE (y));
3435 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3438 if (MEM_P (y))
3439 return 1;
3441 if (GET_CODE (x) == VALUE)
3443 if (GET_CODE (y) != VALUE)
3444 return -1;
3445 /* Don't assert the modes are the same, that is true only
3446 when not recursing. (subreg:QI (value:SI 1:1) 0)
3447 and (subreg:QI (value:DI 2:2) 0) can be compared,
3448 even when the modes are different. */
3449 if (canon_value_cmp (x, y))
3450 return -1;
3451 else
3452 return 1;
3455 if (GET_CODE (y) == VALUE)
3456 return 1;
3458 /* Entry value is the least preferable kind of expression. */
3459 if (GET_CODE (x) == ENTRY_VALUE)
3461 if (GET_CODE (y) != ENTRY_VALUE)
3462 return 1;
3463 gcc_assert (GET_MODE (x) == GET_MODE (y));
3464 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3467 if (GET_CODE (y) == ENTRY_VALUE)
3468 return -1;
3470 if (GET_CODE (x) == GET_CODE (y))
3471 /* Compare operands below. */;
3472 else if (GET_CODE (x) < GET_CODE (y))
3473 return -1;
3474 else
3475 return 1;
3477 gcc_assert (GET_MODE (x) == GET_MODE (y));
3479 if (GET_CODE (x) == DEBUG_EXPR)
3481 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3482 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3483 return -1;
3484 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3485 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3486 return 1;
3489 fmt = GET_RTX_FORMAT (code);
3490 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3491 switch (fmt[i])
3493 case 'w':
3494 if (XWINT (x, i) == XWINT (y, i))
3495 break;
3496 else if (XWINT (x, i) < XWINT (y, i))
3497 return -1;
3498 else
3499 return 1;
3501 case 'n':
3502 case 'i':
3503 if (XINT (x, i) == XINT (y, i))
3504 break;
3505 else if (XINT (x, i) < XINT (y, i))
3506 return -1;
3507 else
3508 return 1;
3510 case 'V':
3511 case 'E':
3512 /* Compare the vector length first. */
3513 if (XVECLEN (x, i) == XVECLEN (y, i))
3514 /* Compare the vectors elements. */;
3515 else if (XVECLEN (x, i) < XVECLEN (y, i))
3516 return -1;
3517 else
3518 return 1;
3520 for (j = 0; j < XVECLEN (x, i); j++)
3521 if ((r = loc_cmp (XVECEXP (x, i, j),
3522 XVECEXP (y, i, j))))
3523 return r;
3524 break;
3526 case 'e':
3527 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3528 return r;
3529 break;
3531 case 'S':
3532 case 's':
3533 if (XSTR (x, i) == XSTR (y, i))
3534 break;
3535 if (!XSTR (x, i))
3536 return -1;
3537 if (!XSTR (y, i))
3538 return 1;
3539 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3540 break;
3541 else if (r < 0)
3542 return -1;
3543 else
3544 return 1;
3546 case 'u':
3547 /* These are just backpointers, so they don't matter. */
3548 break;
3550 case '0':
3551 case 't':
3552 break;
3554 /* It is believed that rtx's at this level will never
3555 contain anything but integers and other rtx's,
3556 except for within LABEL_REFs and SYMBOL_REFs. */
3557 default:
3558 gcc_unreachable ();
3560 if (CONST_WIDE_INT_P (x))
3562 /* Compare the vector length first. */
3563 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3564 return 1;
3565 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3566 return -1;
3568 /* Compare the vectors elements. */;
3569 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3571 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3572 return -1;
3573 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3574 return 1;
3578 return 0;
3581 #if ENABLE_CHECKING
3582 /* Check the order of entries in one-part variables. */
3585 canonicalize_loc_order_check (variable_def **slot,
3586 dataflow_set *data ATTRIBUTE_UNUSED)
3588 variable var = *slot;
3589 location_chain node, next;
3591 #ifdef ENABLE_RTL_CHECKING
3592 int i;
3593 for (i = 0; i < var->n_var_parts; i++)
3594 gcc_assert (var->var_part[0].cur_loc == NULL);
3595 gcc_assert (!var->in_changed_variables);
3596 #endif
3598 if (!var->onepart)
3599 return 1;
3601 gcc_assert (var->n_var_parts == 1);
3602 node = var->var_part[0].loc_chain;
3603 gcc_assert (node);
3605 while ((next = node->next))
3607 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3608 node = next;
3611 return 1;
3613 #endif
3615 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3616 more likely to be chosen as canonical for an equivalence set.
3617 Ensure less likely values can reach more likely neighbors, making
3618 the connections bidirectional. */
3621 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3623 variable var = *slot;
3624 decl_or_value dv = var->dv;
3625 rtx val;
3626 location_chain node;
3628 if (!dv_is_value_p (dv))
3629 return 1;
3631 gcc_checking_assert (var->n_var_parts == 1);
3633 val = dv_as_value (dv);
3635 for (node = var->var_part[0].loc_chain; node; node = node->next)
3636 if (GET_CODE (node->loc) == VALUE)
3638 if (canon_value_cmp (node->loc, val))
3639 VALUE_RECURSED_INTO (val) = true;
3640 else
3642 decl_or_value odv = dv_from_value (node->loc);
3643 variable_def **oslot;
3644 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3646 set_slot_part (set, val, oslot, odv, 0,
3647 node->init, NULL_RTX);
3649 VALUE_RECURSED_INTO (node->loc) = true;
3653 return 1;
3656 /* Remove redundant entries from equivalence lists in onepart
3657 variables, canonicalizing equivalence sets into star shapes. */
3660 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3662 variable var = *slot;
3663 decl_or_value dv = var->dv;
3664 location_chain node;
3665 decl_or_value cdv;
3666 rtx val, cval;
3667 variable_def **cslot;
3668 bool has_value;
3669 bool has_marks;
3671 if (!var->onepart)
3672 return 1;
3674 gcc_checking_assert (var->n_var_parts == 1);
3676 if (dv_is_value_p (dv))
3678 cval = dv_as_value (dv);
3679 if (!VALUE_RECURSED_INTO (cval))
3680 return 1;
3681 VALUE_RECURSED_INTO (cval) = false;
3683 else
3684 cval = NULL_RTX;
3686 restart:
3687 val = cval;
3688 has_value = false;
3689 has_marks = false;
3691 gcc_assert (var->n_var_parts == 1);
3693 for (node = var->var_part[0].loc_chain; node; node = node->next)
3694 if (GET_CODE (node->loc) == VALUE)
3696 has_value = true;
3697 if (VALUE_RECURSED_INTO (node->loc))
3698 has_marks = true;
3699 if (canon_value_cmp (node->loc, cval))
3700 cval = node->loc;
3703 if (!has_value)
3704 return 1;
3706 if (cval == val)
3708 if (!has_marks || dv_is_decl_p (dv))
3709 return 1;
3711 /* Keep it marked so that we revisit it, either after visiting a
3712 child node, or after visiting a new parent that might be
3713 found out. */
3714 VALUE_RECURSED_INTO (val) = true;
3716 for (node = var->var_part[0].loc_chain; node; node = node->next)
3717 if (GET_CODE (node->loc) == VALUE
3718 && VALUE_RECURSED_INTO (node->loc))
3720 cval = node->loc;
3721 restart_with_cval:
3722 VALUE_RECURSED_INTO (cval) = false;
3723 dv = dv_from_value (cval);
3724 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3725 if (!slot)
3727 gcc_assert (dv_is_decl_p (var->dv));
3728 /* The canonical value was reset and dropped.
3729 Remove it. */
3730 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3731 return 1;
3733 var = *slot;
3734 gcc_assert (dv_is_value_p (var->dv));
3735 if (var->n_var_parts == 0)
3736 return 1;
3737 gcc_assert (var->n_var_parts == 1);
3738 goto restart;
3741 VALUE_RECURSED_INTO (val) = false;
3743 return 1;
3746 /* Push values to the canonical one. */
3747 cdv = dv_from_value (cval);
3748 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3750 for (node = var->var_part[0].loc_chain; node; node = node->next)
3751 if (node->loc != cval)
3753 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3754 node->init, NULL_RTX);
3755 if (GET_CODE (node->loc) == VALUE)
3757 decl_or_value ndv = dv_from_value (node->loc);
3759 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3760 NO_INSERT);
3762 if (canon_value_cmp (node->loc, val))
3764 /* If it could have been a local minimum, it's not any more,
3765 since it's now neighbor to cval, so it may have to push
3766 to it. Conversely, if it wouldn't have prevailed over
3767 val, then whatever mark it has is fine: if it was to
3768 push, it will now push to a more canonical node, but if
3769 it wasn't, then it has already pushed any values it might
3770 have to. */
3771 VALUE_RECURSED_INTO (node->loc) = true;
3772 /* Make sure we visit node->loc by ensuring we cval is
3773 visited too. */
3774 VALUE_RECURSED_INTO (cval) = true;
3776 else if (!VALUE_RECURSED_INTO (node->loc))
3777 /* If we have no need to "recurse" into this node, it's
3778 already "canonicalized", so drop the link to the old
3779 parent. */
3780 clobber_variable_part (set, cval, ndv, 0, NULL);
3782 else if (GET_CODE (node->loc) == REG)
3784 attrs list = set->regs[REGNO (node->loc)], *listp;
3786 /* Change an existing attribute referring to dv so that it
3787 refers to cdv, removing any duplicate this might
3788 introduce, and checking that no previous duplicates
3789 existed, all in a single pass. */
3791 while (list)
3793 if (list->offset == 0
3794 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3795 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3796 break;
3798 list = list->next;
3801 gcc_assert (list);
3802 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3804 list->dv = cdv;
3805 for (listp = &list->next; (list = *listp); listp = &list->next)
3807 if (list->offset)
3808 continue;
3810 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3812 *listp = list->next;
3813 pool_free (attrs_pool, list);
3814 list = *listp;
3815 break;
3818 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3821 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3823 for (listp = &list->next; (list = *listp); listp = &list->next)
3825 if (list->offset)
3826 continue;
3828 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3830 *listp = list->next;
3831 pool_free (attrs_pool, list);
3832 list = *listp;
3833 break;
3836 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3839 else
3840 gcc_unreachable ();
3842 #if ENABLE_CHECKING
3843 while (list)
3845 if (list->offset == 0
3846 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3847 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3848 gcc_unreachable ();
3850 list = list->next;
3852 #endif
3856 if (val)
3857 set_slot_part (set, val, cslot, cdv, 0,
3858 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3860 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3862 /* Variable may have been unshared. */
3863 var = *slot;
3864 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3865 && var->var_part[0].loc_chain->next == NULL);
3867 if (VALUE_RECURSED_INTO (cval))
3868 goto restart_with_cval;
3870 return 1;
3873 /* Bind one-part variables to the canonical value in an equivalence
3874 set. Not doing this causes dataflow convergence failure in rare
3875 circumstances, see PR42873. Unfortunately we can't do this
3876 efficiently as part of canonicalize_values_star, since we may not
3877 have determined or even seen the canonical value of a set when we
3878 get to a variable that references another member of the set. */
3881 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3883 variable var = *slot;
3884 decl_or_value dv = var->dv;
3885 location_chain node;
3886 rtx cval;
3887 decl_or_value cdv;
3888 variable_def **cslot;
3889 variable cvar;
3890 location_chain cnode;
3892 if (!var->onepart || var->onepart == ONEPART_VALUE)
3893 return 1;
3895 gcc_assert (var->n_var_parts == 1);
3897 node = var->var_part[0].loc_chain;
3899 if (GET_CODE (node->loc) != VALUE)
3900 return 1;
3902 gcc_assert (!node->next);
3903 cval = node->loc;
3905 /* Push values to the canonical one. */
3906 cdv = dv_from_value (cval);
3907 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3908 if (!cslot)
3909 return 1;
3910 cvar = *cslot;
3911 gcc_assert (cvar->n_var_parts == 1);
3913 cnode = cvar->var_part[0].loc_chain;
3915 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3916 that are not “more canonical” than it. */
3917 if (GET_CODE (cnode->loc) != VALUE
3918 || !canon_value_cmp (cnode->loc, cval))
3919 return 1;
3921 /* CVAL was found to be non-canonical. Change the variable to point
3922 to the canonical VALUE. */
3923 gcc_assert (!cnode->next);
3924 cval = cnode->loc;
3926 slot = set_slot_part (set, cval, slot, dv, 0,
3927 node->init, node->set_src);
3928 clobber_slot_part (set, cval, slot, 0, node->set_src);
3930 return 1;
3933 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3934 corresponding entry in DSM->src. Multi-part variables are combined
3935 with variable_union, whereas onepart dvs are combined with
3936 intersection. */
3938 static int
3939 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3941 dataflow_set *dst = dsm->dst;
3942 variable_def **dstslot;
3943 variable s2var, dvar = NULL;
3944 decl_or_value dv = s1var->dv;
3945 onepart_enum_t onepart = s1var->onepart;
3946 rtx val;
3947 hashval_t dvhash;
3948 location_chain node, *nodep;
3950 /* If the incoming onepart variable has an empty location list, then
3951 the intersection will be just as empty. For other variables,
3952 it's always union. */
3953 gcc_checking_assert (s1var->n_var_parts
3954 && s1var->var_part[0].loc_chain);
3956 if (!onepart)
3957 return variable_union (s1var, dst);
3959 gcc_checking_assert (s1var->n_var_parts == 1);
3961 dvhash = dv_htab_hash (dv);
3962 if (dv_is_value_p (dv))
3963 val = dv_as_value (dv);
3964 else
3965 val = NULL;
3967 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3968 if (!s2var)
3970 dst_can_be_shared = false;
3971 return 1;
3974 dsm->src_onepart_cnt--;
3975 gcc_assert (s2var->var_part[0].loc_chain
3976 && s2var->onepart == onepart
3977 && s2var->n_var_parts == 1);
3979 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3980 if (dstslot)
3982 dvar = *dstslot;
3983 gcc_assert (dvar->refcount == 1
3984 && dvar->onepart == onepart
3985 && dvar->n_var_parts == 1);
3986 nodep = &dvar->var_part[0].loc_chain;
3988 else
3990 nodep = &node;
3991 node = NULL;
3994 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3996 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3997 dvhash, INSERT);
3998 *dstslot = dvar = s2var;
3999 dvar->refcount++;
4001 else
4003 dst_can_be_shared = false;
4005 intersect_loc_chains (val, nodep, dsm,
4006 s1var->var_part[0].loc_chain, s2var);
4008 if (!dstslot)
4010 if (node)
4012 dvar = (variable) pool_alloc (onepart_pool (onepart));
4013 dvar->dv = dv;
4014 dvar->refcount = 1;
4015 dvar->n_var_parts = 1;
4016 dvar->onepart = onepart;
4017 dvar->in_changed_variables = false;
4018 dvar->var_part[0].loc_chain = node;
4019 dvar->var_part[0].cur_loc = NULL;
4020 if (onepart)
4021 VAR_LOC_1PAUX (dvar) = NULL;
4022 else
4023 VAR_PART_OFFSET (dvar, 0) = 0;
4025 dstslot
4026 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4027 INSERT);
4028 gcc_assert (!*dstslot);
4029 *dstslot = dvar;
4031 else
4032 return 1;
4036 nodep = &dvar->var_part[0].loc_chain;
4037 while ((node = *nodep))
4039 location_chain *nextp = &node->next;
4041 if (GET_CODE (node->loc) == REG)
4043 attrs list;
4045 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4046 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4047 && dv_is_value_p (list->dv))
4048 break;
4050 if (!list)
4051 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4052 dv, 0, node->loc);
4053 /* If this value became canonical for another value that had
4054 this register, we want to leave it alone. */
4055 else if (dv_as_value (list->dv) != val)
4057 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4058 dstslot, dv, 0,
4059 node->init, NULL_RTX);
4060 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4062 /* Since nextp points into the removed node, we can't
4063 use it. The pointer to the next node moved to nodep.
4064 However, if the variable we're walking is unshared
4065 during our walk, we'll keep walking the location list
4066 of the previously-shared variable, in which case the
4067 node won't have been removed, and we'll want to skip
4068 it. That's why we test *nodep here. */
4069 if (*nodep != node)
4070 nextp = nodep;
4073 else
4074 /* Canonicalization puts registers first, so we don't have to
4075 walk it all. */
4076 break;
4077 nodep = nextp;
4080 if (dvar != *dstslot)
4081 dvar = *dstslot;
4082 nodep = &dvar->var_part[0].loc_chain;
4084 if (val)
4086 /* Mark all referenced nodes for canonicalization, and make sure
4087 we have mutual equivalence links. */
4088 VALUE_RECURSED_INTO (val) = true;
4089 for (node = *nodep; node; node = node->next)
4090 if (GET_CODE (node->loc) == VALUE)
4092 VALUE_RECURSED_INTO (node->loc) = true;
4093 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4094 node->init, NULL, INSERT);
4097 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4098 gcc_assert (*dstslot == dvar);
4099 canonicalize_values_star (dstslot, dst);
4100 gcc_checking_assert (dstslot
4101 == shared_hash_find_slot_noinsert_1 (dst->vars,
4102 dv, dvhash));
4103 dvar = *dstslot;
4105 else
4107 bool has_value = false, has_other = false;
4109 /* If we have one value and anything else, we're going to
4110 canonicalize this, so make sure all values have an entry in
4111 the table and are marked for canonicalization. */
4112 for (node = *nodep; node; node = node->next)
4114 if (GET_CODE (node->loc) == VALUE)
4116 /* If this was marked during register canonicalization,
4117 we know we have to canonicalize values. */
4118 if (has_value)
4119 has_other = true;
4120 has_value = true;
4121 if (has_other)
4122 break;
4124 else
4126 has_other = true;
4127 if (has_value)
4128 break;
4132 if (has_value && has_other)
4134 for (node = *nodep; node; node = node->next)
4136 if (GET_CODE (node->loc) == VALUE)
4138 decl_or_value dv = dv_from_value (node->loc);
4139 variable_def **slot = NULL;
4141 if (shared_hash_shared (dst->vars))
4142 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4143 if (!slot)
4144 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4145 INSERT);
4146 if (!*slot)
4148 variable var = (variable) pool_alloc (onepart_pool
4149 (ONEPART_VALUE));
4150 var->dv = dv;
4151 var->refcount = 1;
4152 var->n_var_parts = 1;
4153 var->onepart = ONEPART_VALUE;
4154 var->in_changed_variables = false;
4155 var->var_part[0].loc_chain = NULL;
4156 var->var_part[0].cur_loc = NULL;
4157 VAR_LOC_1PAUX (var) = NULL;
4158 *slot = var;
4161 VALUE_RECURSED_INTO (node->loc) = true;
4165 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4166 gcc_assert (*dstslot == dvar);
4167 canonicalize_values_star (dstslot, dst);
4168 gcc_checking_assert (dstslot
4169 == shared_hash_find_slot_noinsert_1 (dst->vars,
4170 dv, dvhash));
4171 dvar = *dstslot;
4175 if (!onepart_variable_different_p (dvar, s2var))
4177 variable_htab_free (dvar);
4178 *dstslot = dvar = s2var;
4179 dvar->refcount++;
4181 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4183 variable_htab_free (dvar);
4184 *dstslot = dvar = s1var;
4185 dvar->refcount++;
4186 dst_can_be_shared = false;
4188 else
4189 dst_can_be_shared = false;
4191 return 1;
4194 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4195 multi-part variable. Unions of multi-part variables and
4196 intersections of one-part ones will be handled in
4197 variable_merge_over_cur(). */
4199 static int
4200 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4202 dataflow_set *dst = dsm->dst;
4203 decl_or_value dv = s2var->dv;
4205 if (!s2var->onepart)
4207 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4208 *dstp = s2var;
4209 s2var->refcount++;
4210 return 1;
4213 dsm->src_onepart_cnt++;
4214 return 1;
4217 /* Combine dataflow set information from SRC2 into DST, using PDST
4218 to carry over information across passes. */
4220 static void
4221 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4223 dataflow_set cur = *dst;
4224 dataflow_set *src1 = &cur;
4225 struct dfset_merge dsm;
4226 int i;
4227 size_t src1_elems, src2_elems;
4228 variable_iterator_type hi;
4229 variable var;
4231 src1_elems = shared_hash_htab (src1->vars)->elements ();
4232 src2_elems = shared_hash_htab (src2->vars)->elements ();
4233 dataflow_set_init (dst);
4234 dst->stack_adjust = cur.stack_adjust;
4235 shared_hash_destroy (dst->vars);
4236 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4237 dst->vars->refcount = 1;
4238 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4240 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4241 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4243 dsm.dst = dst;
4244 dsm.src = src2;
4245 dsm.cur = src1;
4246 dsm.src_onepart_cnt = 0;
4248 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4249 var, variable, hi)
4250 variable_merge_over_src (var, &dsm);
4251 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4252 var, variable, hi)
4253 variable_merge_over_cur (var, &dsm);
4255 if (dsm.src_onepart_cnt)
4256 dst_can_be_shared = false;
4258 dataflow_set_destroy (src1);
4261 /* Mark register equivalences. */
4263 static void
4264 dataflow_set_equiv_regs (dataflow_set *set)
4266 int i;
4267 attrs list, *listp;
4269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4271 rtx canon[NUM_MACHINE_MODES];
4273 /* If the list is empty or one entry, no need to canonicalize
4274 anything. */
4275 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4276 continue;
4278 memset (canon, 0, sizeof (canon));
4280 for (list = set->regs[i]; list; list = list->next)
4281 if (list->offset == 0 && dv_is_value_p (list->dv))
4283 rtx val = dv_as_value (list->dv);
4284 rtx *cvalp = &canon[(int)GET_MODE (val)];
4285 rtx cval = *cvalp;
4287 if (canon_value_cmp (val, cval))
4288 *cvalp = val;
4291 for (list = set->regs[i]; list; list = list->next)
4292 if (list->offset == 0 && dv_onepart_p (list->dv))
4294 rtx cval = canon[(int)GET_MODE (list->loc)];
4296 if (!cval)
4297 continue;
4299 if (dv_is_value_p (list->dv))
4301 rtx val = dv_as_value (list->dv);
4303 if (val == cval)
4304 continue;
4306 VALUE_RECURSED_INTO (val) = true;
4307 set_variable_part (set, val, dv_from_value (cval), 0,
4308 VAR_INIT_STATUS_INITIALIZED,
4309 NULL, NO_INSERT);
4312 VALUE_RECURSED_INTO (cval) = true;
4313 set_variable_part (set, cval, list->dv, 0,
4314 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4317 for (listp = &set->regs[i]; (list = *listp);
4318 listp = list ? &list->next : listp)
4319 if (list->offset == 0 && dv_onepart_p (list->dv))
4321 rtx cval = canon[(int)GET_MODE (list->loc)];
4322 variable_def **slot;
4324 if (!cval)
4325 continue;
4327 if (dv_is_value_p (list->dv))
4329 rtx val = dv_as_value (list->dv);
4330 if (!VALUE_RECURSED_INTO (val))
4331 continue;
4334 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4335 canonicalize_values_star (slot, set);
4336 if (*listp != list)
4337 list = NULL;
4342 /* Remove any redundant values in the location list of VAR, which must
4343 be unshared and 1-part. */
4345 static void
4346 remove_duplicate_values (variable var)
4348 location_chain node, *nodep;
4350 gcc_assert (var->onepart);
4351 gcc_assert (var->n_var_parts == 1);
4352 gcc_assert (var->refcount == 1);
4354 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4356 if (GET_CODE (node->loc) == VALUE)
4358 if (VALUE_RECURSED_INTO (node->loc))
4360 /* Remove duplicate value node. */
4361 *nodep = node->next;
4362 pool_free (loc_chain_pool, node);
4363 continue;
4365 else
4366 VALUE_RECURSED_INTO (node->loc) = true;
4368 nodep = &node->next;
4371 for (node = var->var_part[0].loc_chain; node; node = node->next)
4372 if (GET_CODE (node->loc) == VALUE)
4374 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4375 VALUE_RECURSED_INTO (node->loc) = false;
4380 /* Hash table iteration argument passed to variable_post_merge. */
4381 struct dfset_post_merge
4383 /* The new input set for the current block. */
4384 dataflow_set *set;
4385 /* Pointer to the permanent input set for the current block, or
4386 NULL. */
4387 dataflow_set **permp;
4390 /* Create values for incoming expressions associated with one-part
4391 variables that don't have value numbers for them. */
4394 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4396 dataflow_set *set = dfpm->set;
4397 variable var = *slot;
4398 location_chain node;
4400 if (!var->onepart || !var->n_var_parts)
4401 return 1;
4403 gcc_assert (var->n_var_parts == 1);
4405 if (dv_is_decl_p (var->dv))
4407 bool check_dupes = false;
4409 restart:
4410 for (node = var->var_part[0].loc_chain; node; node = node->next)
4412 if (GET_CODE (node->loc) == VALUE)
4413 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4414 else if (GET_CODE (node->loc) == REG)
4416 attrs att, *attp, *curp = NULL;
4418 if (var->refcount != 1)
4420 slot = unshare_variable (set, slot, var,
4421 VAR_INIT_STATUS_INITIALIZED);
4422 var = *slot;
4423 goto restart;
4426 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4427 attp = &att->next)
4428 if (att->offset == 0
4429 && GET_MODE (att->loc) == GET_MODE (node->loc))
4431 if (dv_is_value_p (att->dv))
4433 rtx cval = dv_as_value (att->dv);
4434 node->loc = cval;
4435 check_dupes = true;
4436 break;
4438 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4439 curp = attp;
4442 if (!curp)
4444 curp = attp;
4445 while (*curp)
4446 if ((*curp)->offset == 0
4447 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4448 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4449 break;
4450 else
4451 curp = &(*curp)->next;
4452 gcc_assert (*curp);
4455 if (!att)
4457 decl_or_value cdv;
4458 rtx cval;
4460 if (!*dfpm->permp)
4462 *dfpm->permp = XNEW (dataflow_set);
4463 dataflow_set_init (*dfpm->permp);
4466 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4467 att; att = att->next)
4468 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4470 gcc_assert (att->offset == 0
4471 && dv_is_value_p (att->dv));
4472 val_reset (set, att->dv);
4473 break;
4476 if (att)
4478 cdv = att->dv;
4479 cval = dv_as_value (cdv);
4481 else
4483 /* Create a unique value to hold this register,
4484 that ought to be found and reused in
4485 subsequent rounds. */
4486 cselib_val *v;
4487 gcc_assert (!cselib_lookup (node->loc,
4488 GET_MODE (node->loc), 0,
4489 VOIDmode));
4490 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4491 VOIDmode);
4492 cselib_preserve_value (v);
4493 cselib_invalidate_rtx (node->loc);
4494 cval = v->val_rtx;
4495 cdv = dv_from_value (cval);
4496 if (dump_file)
4497 fprintf (dump_file,
4498 "Created new value %u:%u for reg %i\n",
4499 v->uid, v->hash, REGNO (node->loc));
4502 var_reg_decl_set (*dfpm->permp, node->loc,
4503 VAR_INIT_STATUS_INITIALIZED,
4504 cdv, 0, NULL, INSERT);
4506 node->loc = cval;
4507 check_dupes = true;
4510 /* Remove attribute referring to the decl, which now
4511 uses the value for the register, already existing or
4512 to be added when we bring perm in. */
4513 att = *curp;
4514 *curp = att->next;
4515 pool_free (attrs_pool, att);
4519 if (check_dupes)
4520 remove_duplicate_values (var);
4523 return 1;
4526 /* Reset values in the permanent set that are not associated with the
4527 chosen expression. */
4530 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4532 dataflow_set *set = dfpm->set;
4533 variable pvar = *pslot, var;
4534 location_chain pnode;
4535 decl_or_value dv;
4536 attrs att;
4538 gcc_assert (dv_is_value_p (pvar->dv)
4539 && pvar->n_var_parts == 1);
4540 pnode = pvar->var_part[0].loc_chain;
4541 gcc_assert (pnode
4542 && !pnode->next
4543 && REG_P (pnode->loc));
4545 dv = pvar->dv;
4547 var = shared_hash_find (set->vars, dv);
4548 if (var)
4550 /* Although variable_post_merge_new_vals may have made decls
4551 non-star-canonical, values that pre-existed in canonical form
4552 remain canonical, and newly-created values reference a single
4553 REG, so they are canonical as well. Since VAR has the
4554 location list for a VALUE, using find_loc_in_1pdv for it is
4555 fine, since VALUEs don't map back to DECLs. */
4556 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4557 return 1;
4558 val_reset (set, dv);
4561 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4562 if (att->offset == 0
4563 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4564 && dv_is_value_p (att->dv))
4565 break;
4567 /* If there is a value associated with this register already, create
4568 an equivalence. */
4569 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4571 rtx cval = dv_as_value (att->dv);
4572 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4573 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4574 NULL, INSERT);
4576 else if (!att)
4578 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4579 dv, 0, pnode->loc);
4580 variable_union (pvar, set);
4583 return 1;
4586 /* Just checking stuff and registering register attributes for
4587 now. */
4589 static void
4590 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4592 struct dfset_post_merge dfpm;
4594 dfpm.set = set;
4595 dfpm.permp = permp;
4597 shared_hash_htab (set->vars)
4598 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4599 if (*permp)
4600 shared_hash_htab ((*permp)->vars)
4601 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4602 shared_hash_htab (set->vars)
4603 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4604 shared_hash_htab (set->vars)
4605 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4608 /* Return a node whose loc is a MEM that refers to EXPR in the
4609 location list of a one-part variable or value VAR, or in that of
4610 any values recursively mentioned in the location lists. */
4612 static location_chain
4613 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4615 location_chain node;
4616 decl_or_value dv;
4617 variable var;
4618 location_chain where = NULL;
4620 if (!val)
4621 return NULL;
4623 gcc_assert (GET_CODE (val) == VALUE
4624 && !VALUE_RECURSED_INTO (val));
4626 dv = dv_from_value (val);
4627 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4629 if (!var)
4630 return NULL;
4632 gcc_assert (var->onepart);
4634 if (!var->n_var_parts)
4635 return NULL;
4637 VALUE_RECURSED_INTO (val) = true;
4639 for (node = var->var_part[0].loc_chain; node; node = node->next)
4640 if (MEM_P (node->loc)
4641 && MEM_EXPR (node->loc) == expr
4642 && INT_MEM_OFFSET (node->loc) == 0)
4644 where = node;
4645 break;
4647 else if (GET_CODE (node->loc) == VALUE
4648 && !VALUE_RECURSED_INTO (node->loc)
4649 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4650 break;
4652 VALUE_RECURSED_INTO (val) = false;
4654 return where;
4657 /* Return TRUE if the value of MEM may vary across a call. */
4659 static bool
4660 mem_dies_at_call (rtx mem)
4662 tree expr = MEM_EXPR (mem);
4663 tree decl;
4665 if (!expr)
4666 return true;
4668 decl = get_base_address (expr);
4670 if (!decl)
4671 return true;
4673 if (!DECL_P (decl))
4674 return true;
4676 return (may_be_aliased (decl)
4677 || (!TREE_READONLY (decl) && is_global_var (decl)));
4680 /* Remove all MEMs from the location list of a hash table entry for a
4681 one-part variable, except those whose MEM attributes map back to
4682 the variable itself, directly or within a VALUE. */
4685 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4687 variable var = *slot;
4689 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4691 tree decl = dv_as_decl (var->dv);
4692 location_chain loc, *locp;
4693 bool changed = false;
4695 if (!var->n_var_parts)
4696 return 1;
4698 gcc_assert (var->n_var_parts == 1);
4700 if (shared_var_p (var, set->vars))
4702 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4704 /* We want to remove dying MEMs that doesn't refer to DECL. */
4705 if (GET_CODE (loc->loc) == MEM
4706 && (MEM_EXPR (loc->loc) != decl
4707 || INT_MEM_OFFSET (loc->loc) != 0)
4708 && !mem_dies_at_call (loc->loc))
4709 break;
4710 /* We want to move here MEMs that do refer to DECL. */
4711 else if (GET_CODE (loc->loc) == VALUE
4712 && find_mem_expr_in_1pdv (decl, loc->loc,
4713 shared_hash_htab (set->vars)))
4714 break;
4717 if (!loc)
4718 return 1;
4720 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4721 var = *slot;
4722 gcc_assert (var->n_var_parts == 1);
4725 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4726 loc; loc = *locp)
4728 rtx old_loc = loc->loc;
4729 if (GET_CODE (old_loc) == VALUE)
4731 location_chain mem_node
4732 = find_mem_expr_in_1pdv (decl, loc->loc,
4733 shared_hash_htab (set->vars));
4735 /* ??? This picks up only one out of multiple MEMs that
4736 refer to the same variable. Do we ever need to be
4737 concerned about dealing with more than one, or, given
4738 that they should all map to the same variable
4739 location, their addresses will have been merged and
4740 they will be regarded as equivalent? */
4741 if (mem_node)
4743 loc->loc = mem_node->loc;
4744 loc->set_src = mem_node->set_src;
4745 loc->init = MIN (loc->init, mem_node->init);
4749 if (GET_CODE (loc->loc) != MEM
4750 || (MEM_EXPR (loc->loc) == decl
4751 && INT_MEM_OFFSET (loc->loc) == 0)
4752 || !mem_dies_at_call (loc->loc))
4754 if (old_loc != loc->loc && emit_notes)
4756 if (old_loc == var->var_part[0].cur_loc)
4758 changed = true;
4759 var->var_part[0].cur_loc = NULL;
4762 locp = &loc->next;
4763 continue;
4766 if (emit_notes)
4768 if (old_loc == var->var_part[0].cur_loc)
4770 changed = true;
4771 var->var_part[0].cur_loc = NULL;
4774 *locp = loc->next;
4775 pool_free (loc_chain_pool, loc);
4778 if (!var->var_part[0].loc_chain)
4780 var->n_var_parts--;
4781 changed = true;
4783 if (changed)
4784 variable_was_changed (var, set);
4787 return 1;
4790 /* Remove all MEMs from the location list of a hash table entry for a
4791 value. */
4794 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4796 variable var = *slot;
4798 if (var->onepart == ONEPART_VALUE)
4800 location_chain loc, *locp;
4801 bool changed = false;
4802 rtx cur_loc;
4804 gcc_assert (var->n_var_parts == 1);
4806 if (shared_var_p (var, set->vars))
4808 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4809 if (GET_CODE (loc->loc) == MEM
4810 && mem_dies_at_call (loc->loc))
4811 break;
4813 if (!loc)
4814 return 1;
4816 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4817 var = *slot;
4818 gcc_assert (var->n_var_parts == 1);
4821 if (VAR_LOC_1PAUX (var))
4822 cur_loc = VAR_LOC_FROM (var);
4823 else
4824 cur_loc = var->var_part[0].cur_loc;
4826 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4827 loc; loc = *locp)
4829 if (GET_CODE (loc->loc) != MEM
4830 || !mem_dies_at_call (loc->loc))
4832 locp = &loc->next;
4833 continue;
4836 *locp = loc->next;
4837 /* If we have deleted the location which was last emitted
4838 we have to emit new location so add the variable to set
4839 of changed variables. */
4840 if (cur_loc == loc->loc)
4842 changed = true;
4843 var->var_part[0].cur_loc = NULL;
4844 if (VAR_LOC_1PAUX (var))
4845 VAR_LOC_FROM (var) = NULL;
4847 pool_free (loc_chain_pool, loc);
4850 if (!var->var_part[0].loc_chain)
4852 var->n_var_parts--;
4853 changed = true;
4855 if (changed)
4856 variable_was_changed (var, set);
4859 return 1;
4862 /* Remove all variable-location information about call-clobbered
4863 registers, as well as associations between MEMs and VALUEs. */
4865 static void
4866 dataflow_set_clear_at_call (dataflow_set *set)
4868 unsigned int r;
4869 hard_reg_set_iterator hrsi;
4871 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4872 var_regno_delete (set, r);
4874 if (MAY_HAVE_DEBUG_INSNS)
4876 set->traversed_vars = set->vars;
4877 shared_hash_htab (set->vars)
4878 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4879 set->traversed_vars = set->vars;
4880 shared_hash_htab (set->vars)
4881 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4882 set->traversed_vars = NULL;
4886 static bool
4887 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4889 location_chain lc1, lc2;
4891 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4893 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4895 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4897 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4898 break;
4900 if (rtx_equal_p (lc1->loc, lc2->loc))
4901 break;
4903 if (!lc2)
4904 return true;
4906 return false;
4909 /* Return true if one-part variables VAR1 and VAR2 are different.
4910 They must be in canonical order. */
4912 static bool
4913 onepart_variable_different_p (variable var1, variable var2)
4915 location_chain lc1, lc2;
4917 if (var1 == var2)
4918 return false;
4920 gcc_assert (var1->n_var_parts == 1
4921 && var2->n_var_parts == 1);
4923 lc1 = var1->var_part[0].loc_chain;
4924 lc2 = var2->var_part[0].loc_chain;
4926 gcc_assert (lc1 && lc2);
4928 while (lc1 && lc2)
4930 if (loc_cmp (lc1->loc, lc2->loc))
4931 return true;
4932 lc1 = lc1->next;
4933 lc2 = lc2->next;
4936 return lc1 != lc2;
4939 /* Return true if variables VAR1 and VAR2 are different. */
4941 static bool
4942 variable_different_p (variable var1, variable var2)
4944 int i;
4946 if (var1 == var2)
4947 return false;
4949 if (var1->onepart != var2->onepart)
4950 return true;
4952 if (var1->n_var_parts != var2->n_var_parts)
4953 return true;
4955 if (var1->onepart && var1->n_var_parts)
4957 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4958 && var1->n_var_parts == 1);
4959 /* One-part values have locations in a canonical order. */
4960 return onepart_variable_different_p (var1, var2);
4963 for (i = 0; i < var1->n_var_parts; i++)
4965 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4966 return true;
4967 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4968 return true;
4969 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4970 return true;
4972 return false;
4975 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4977 static bool
4978 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4980 variable_iterator_type hi;
4981 variable var1;
4983 if (old_set->vars == new_set->vars)
4984 return false;
4986 if (shared_hash_htab (old_set->vars)->elements ()
4987 != shared_hash_htab (new_set->vars)->elements ())
4988 return true;
4990 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4991 var1, variable, hi)
4993 variable_table_type *htab = shared_hash_htab (new_set->vars);
4994 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4995 if (!var2)
4997 if (dump_file && (dump_flags & TDF_DETAILS))
4999 fprintf (dump_file, "dataflow difference found: removal of:\n");
5000 dump_var (var1);
5002 return true;
5005 if (variable_different_p (var1, var2))
5007 if (dump_file && (dump_flags & TDF_DETAILS))
5009 fprintf (dump_file, "dataflow difference found: "
5010 "old and new follow:\n");
5011 dump_var (var1);
5012 dump_var (var2);
5014 return true;
5018 /* No need to traverse the second hashtab, if both have the same number
5019 of elements and the second one had all entries found in the first one,
5020 then it can't have any extra entries. */
5021 return false;
5024 /* Free the contents of dataflow set SET. */
5026 static void
5027 dataflow_set_destroy (dataflow_set *set)
5029 int i;
5031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5032 attrs_list_clear (&set->regs[i]);
5034 shared_hash_destroy (set->vars);
5035 set->vars = NULL;
5038 /* Return true if RTL X contains a SYMBOL_REF. */
5040 static bool
5041 contains_symbol_ref (rtx x)
5043 const char *fmt;
5044 RTX_CODE code;
5045 int i;
5047 if (!x)
5048 return false;
5050 code = GET_CODE (x);
5051 if (code == SYMBOL_REF)
5052 return true;
5054 fmt = GET_RTX_FORMAT (code);
5055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5057 if (fmt[i] == 'e')
5059 if (contains_symbol_ref (XEXP (x, i)))
5060 return true;
5062 else if (fmt[i] == 'E')
5064 int j;
5065 for (j = 0; j < XVECLEN (x, i); j++)
5066 if (contains_symbol_ref (XVECEXP (x, i, j)))
5067 return true;
5071 return false;
5074 /* Shall EXPR be tracked? */
5076 static bool
5077 track_expr_p (tree expr, bool need_rtl)
5079 rtx decl_rtl;
5080 tree realdecl;
5082 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5083 return DECL_RTL_SET_P (expr);
5085 /* If EXPR is not a parameter or a variable do not track it. */
5086 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5087 return 0;
5089 /* It also must have a name... */
5090 if (!DECL_NAME (expr) && need_rtl)
5091 return 0;
5093 /* ... and a RTL assigned to it. */
5094 decl_rtl = DECL_RTL_IF_SET (expr);
5095 if (!decl_rtl && need_rtl)
5096 return 0;
5098 /* If this expression is really a debug alias of some other declaration, we
5099 don't need to track this expression if the ultimate declaration is
5100 ignored. */
5101 realdecl = expr;
5102 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5104 realdecl = DECL_DEBUG_EXPR (realdecl);
5105 if (!DECL_P (realdecl))
5107 if (handled_component_p (realdecl)
5108 || (TREE_CODE (realdecl) == MEM_REF
5109 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5111 HOST_WIDE_INT bitsize, bitpos, maxsize;
5112 tree innerdecl
5113 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5114 &maxsize);
5115 if (!DECL_P (innerdecl)
5116 || DECL_IGNORED_P (innerdecl)
5117 /* Do not track declarations for parts of tracked parameters
5118 since we want to track them as a whole instead. */
5119 || (TREE_CODE (innerdecl) == PARM_DECL
5120 && DECL_MODE (innerdecl) != BLKmode
5121 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5122 || TREE_STATIC (innerdecl)
5123 || bitsize <= 0
5124 || bitpos + bitsize > 256
5125 || bitsize != maxsize)
5126 return 0;
5127 else
5128 realdecl = expr;
5130 else
5131 return 0;
5135 /* Do not track EXPR if REALDECL it should be ignored for debugging
5136 purposes. */
5137 if (DECL_IGNORED_P (realdecl))
5138 return 0;
5140 /* Do not track global variables until we are able to emit correct location
5141 list for them. */
5142 if (TREE_STATIC (realdecl))
5143 return 0;
5145 /* When the EXPR is a DECL for alias of some variable (see example)
5146 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5147 DECL_RTL contains SYMBOL_REF.
5149 Example:
5150 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5151 char **_dl_argv;
5153 if (decl_rtl && MEM_P (decl_rtl)
5154 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5155 return 0;
5157 /* If RTX is a memory it should not be very large (because it would be
5158 an array or struct). */
5159 if (decl_rtl && MEM_P (decl_rtl))
5161 /* Do not track structures and arrays. */
5162 if (GET_MODE (decl_rtl) == BLKmode
5163 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5164 return 0;
5165 if (MEM_SIZE_KNOWN_P (decl_rtl)
5166 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5167 return 0;
5170 DECL_CHANGED (expr) = 0;
5171 DECL_CHANGED (realdecl) = 0;
5172 return 1;
5175 /* Determine whether a given LOC refers to the same variable part as
5176 EXPR+OFFSET. */
5178 static bool
5179 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5181 tree expr2;
5182 HOST_WIDE_INT offset2;
5184 if (! DECL_P (expr))
5185 return false;
5187 if (REG_P (loc))
5189 expr2 = REG_EXPR (loc);
5190 offset2 = REG_OFFSET (loc);
5192 else if (MEM_P (loc))
5194 expr2 = MEM_EXPR (loc);
5195 offset2 = INT_MEM_OFFSET (loc);
5197 else
5198 return false;
5200 if (! expr2 || ! DECL_P (expr2))
5201 return false;
5203 expr = var_debug_decl (expr);
5204 expr2 = var_debug_decl (expr2);
5206 return (expr == expr2 && offset == offset2);
5209 /* LOC is a REG or MEM that we would like to track if possible.
5210 If EXPR is null, we don't know what expression LOC refers to,
5211 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5212 LOC is an lvalue register.
5214 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5215 is something we can track. When returning true, store the mode of
5216 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5217 from EXPR in *OFFSET_OUT (if nonnull). */
5219 static bool
5220 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5221 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5223 enum machine_mode mode;
5225 if (expr == NULL || !track_expr_p (expr, true))
5226 return false;
5228 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5229 whole subreg, but only the old inner part is really relevant. */
5230 mode = GET_MODE (loc);
5231 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5233 enum machine_mode pseudo_mode;
5235 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5236 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5238 offset += byte_lowpart_offset (pseudo_mode, mode);
5239 mode = pseudo_mode;
5243 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5244 Do the same if we are storing to a register and EXPR occupies
5245 the whole of register LOC; in that case, the whole of EXPR is
5246 being changed. We exclude complex modes from the second case
5247 because the real and imaginary parts are represented as separate
5248 pseudo registers, even if the whole complex value fits into one
5249 hard register. */
5250 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5251 || (store_reg_p
5252 && !COMPLEX_MODE_P (DECL_MODE (expr))
5253 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5254 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5256 mode = DECL_MODE (expr);
5257 offset = 0;
5260 if (offset < 0 || offset >= MAX_VAR_PARTS)
5261 return false;
5263 if (mode_out)
5264 *mode_out = mode;
5265 if (offset_out)
5266 *offset_out = offset;
5267 return true;
5270 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5271 want to track. When returning nonnull, make sure that the attributes
5272 on the returned value are updated. */
5274 static rtx
5275 var_lowpart (enum machine_mode mode, rtx loc)
5277 unsigned int offset, reg_offset, regno;
5279 if (GET_MODE (loc) == mode)
5280 return loc;
5282 if (!REG_P (loc) && !MEM_P (loc))
5283 return NULL;
5285 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5287 if (MEM_P (loc))
5288 return adjust_address_nv (loc, mode, offset);
5290 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5291 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5292 reg_offset, mode);
5293 return gen_rtx_REG_offset (loc, mode, regno, offset);
5296 /* Carry information about uses and stores while walking rtx. */
5298 struct count_use_info
5300 /* The insn where the RTX is. */
5301 rtx insn;
5303 /* The basic block where insn is. */
5304 basic_block bb;
5306 /* The array of n_sets sets in the insn, as determined by cselib. */
5307 struct cselib_set *sets;
5308 int n_sets;
5310 /* True if we're counting stores, false otherwise. */
5311 bool store_p;
5314 /* Find a VALUE corresponding to X. */
5316 static inline cselib_val *
5317 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5319 int i;
5321 if (cui->sets)
5323 /* This is called after uses are set up and before stores are
5324 processed by cselib, so it's safe to look up srcs, but not
5325 dsts. So we look up expressions that appear in srcs or in
5326 dest expressions, but we search the sets array for dests of
5327 stores. */
5328 if (cui->store_p)
5330 /* Some targets represent memset and memcpy patterns
5331 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5332 (set (mem:BLK ...) (const_int ...)) or
5333 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5334 in that case, otherwise we end up with mode mismatches. */
5335 if (mode == BLKmode && MEM_P (x))
5336 return NULL;
5337 for (i = 0; i < cui->n_sets; i++)
5338 if (cui->sets[i].dest == x)
5339 return cui->sets[i].src_elt;
5341 else
5342 return cselib_lookup (x, mode, 0, VOIDmode);
5345 return NULL;
5348 /* Replace all registers and addresses in an expression with VALUE
5349 expressions that map back to them, unless the expression is a
5350 register. If no mapping is or can be performed, returns NULL. */
5352 static rtx
5353 replace_expr_with_values (rtx loc)
5355 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5356 return NULL;
5357 else if (MEM_P (loc))
5359 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5360 get_address_mode (loc), 0,
5361 GET_MODE (loc));
5362 if (addr)
5363 return replace_equiv_address_nv (loc, addr->val_rtx);
5364 else
5365 return NULL;
5367 else
5368 return cselib_subst_to_values (loc, VOIDmode);
5371 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5372 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5373 RTX. */
5375 static int
5376 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5378 rtx loc = *x;
5380 return GET_CODE (loc) == DEBUG_EXPR;
5383 /* Determine what kind of micro operation to choose for a USE. Return
5384 MO_CLOBBER if no micro operation is to be generated. */
5386 static enum micro_operation_type
5387 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5389 tree expr;
5391 if (cui && cui->sets)
5393 if (GET_CODE (loc) == VAR_LOCATION)
5395 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5397 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5398 if (! VAR_LOC_UNKNOWN_P (ploc))
5400 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5401 VOIDmode);
5403 /* ??? flag_float_store and volatile mems are never
5404 given values, but we could in theory use them for
5405 locations. */
5406 gcc_assert (val || 1);
5408 return MO_VAL_LOC;
5410 else
5411 return MO_CLOBBER;
5414 if (REG_P (loc) || MEM_P (loc))
5416 if (modep)
5417 *modep = GET_MODE (loc);
5418 if (cui->store_p)
5420 if (REG_P (loc)
5421 || (find_use_val (loc, GET_MODE (loc), cui)
5422 && cselib_lookup (XEXP (loc, 0),
5423 get_address_mode (loc), 0,
5424 GET_MODE (loc))))
5425 return MO_VAL_SET;
5427 else
5429 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5431 if (val && !cselib_preserved_value_p (val))
5432 return MO_VAL_USE;
5437 if (REG_P (loc))
5439 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5441 if (loc == cfa_base_rtx)
5442 return MO_CLOBBER;
5443 expr = REG_EXPR (loc);
5445 if (!expr)
5446 return MO_USE_NO_VAR;
5447 else if (target_for_debug_bind (var_debug_decl (expr)))
5448 return MO_CLOBBER;
5449 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5450 false, modep, NULL))
5451 return MO_USE;
5452 else
5453 return MO_USE_NO_VAR;
5455 else if (MEM_P (loc))
5457 expr = MEM_EXPR (loc);
5459 if (!expr)
5460 return MO_CLOBBER;
5461 else if (target_for_debug_bind (var_debug_decl (expr)))
5462 return MO_CLOBBER;
5463 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5464 false, modep, NULL)
5465 /* Multi-part variables shouldn't refer to one-part
5466 variable names such as VALUEs (never happens) or
5467 DEBUG_EXPRs (only happens in the presence of debug
5468 insns). */
5469 && (!MAY_HAVE_DEBUG_INSNS
5470 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5471 return MO_USE;
5472 else
5473 return MO_CLOBBER;
5476 return MO_CLOBBER;
5479 /* Log to OUT information about micro-operation MOPT involving X in
5480 INSN of BB. */
5482 static inline void
5483 log_op_type (rtx x, basic_block bb, rtx insn,
5484 enum micro_operation_type mopt, FILE *out)
5486 fprintf (out, "bb %i op %i insn %i %s ",
5487 bb->index, VTI (bb)->mos.length (),
5488 INSN_UID (insn), micro_operation_type_name[mopt]);
5489 print_inline_rtx (out, x, 2);
5490 fputc ('\n', out);
5493 /* Tell whether the CONCAT used to holds a VALUE and its location
5494 needs value resolution, i.e., an attempt of mapping the location
5495 back to other incoming values. */
5496 #define VAL_NEEDS_RESOLUTION(x) \
5497 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5498 /* Whether the location in the CONCAT is a tracked expression, that
5499 should also be handled like a MO_USE. */
5500 #define VAL_HOLDS_TRACK_EXPR(x) \
5501 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5502 /* Whether the location in the CONCAT should be handled like a MO_COPY
5503 as well. */
5504 #define VAL_EXPR_IS_COPIED(x) \
5505 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5506 /* Whether the location in the CONCAT should be handled like a
5507 MO_CLOBBER as well. */
5508 #define VAL_EXPR_IS_CLOBBERED(x) \
5509 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5511 /* All preserved VALUEs. */
5512 static vec<rtx> preserved_values;
5514 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5516 static void
5517 preserve_value (cselib_val *val)
5519 cselib_preserve_value (val);
5520 preserved_values.safe_push (val->val_rtx);
5523 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5524 any rtxes not suitable for CONST use not replaced by VALUEs
5525 are discovered. */
5527 static int
5528 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5530 if (*x == NULL_RTX)
5531 return 0;
5533 switch (GET_CODE (*x))
5535 case REG:
5536 case DEBUG_EXPR:
5537 case PC:
5538 case SCRATCH:
5539 case CC0:
5540 case ASM_INPUT:
5541 case ASM_OPERANDS:
5542 return 1;
5543 case MEM:
5544 return !MEM_READONLY_P (*x);
5545 default:
5546 return 0;
5550 /* Add uses (register and memory references) LOC which will be tracked
5551 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5553 static int
5554 add_uses (rtx *ploc, void *data)
5556 rtx loc = *ploc;
5557 enum machine_mode mode = VOIDmode;
5558 struct count_use_info *cui = (struct count_use_info *)data;
5559 enum micro_operation_type type = use_type (loc, cui, &mode);
5561 if (type != MO_CLOBBER)
5563 basic_block bb = cui->bb;
5564 micro_operation mo;
5566 mo.type = type;
5567 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5568 mo.insn = cui->insn;
5570 if (type == MO_VAL_LOC)
5572 rtx oloc = loc;
5573 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5574 cselib_val *val;
5576 gcc_assert (cui->sets);
5578 if (MEM_P (vloc)
5579 && !REG_P (XEXP (vloc, 0))
5580 && !MEM_P (XEXP (vloc, 0)))
5582 rtx mloc = vloc;
5583 enum machine_mode address_mode = get_address_mode (mloc);
5584 cselib_val *val
5585 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5586 GET_MODE (mloc));
5588 if (val && !cselib_preserved_value_p (val))
5589 preserve_value (val);
5592 if (CONSTANT_P (vloc)
5593 && (GET_CODE (vloc) != CONST
5594 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5595 /* For constants don't look up any value. */;
5596 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5597 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5599 enum machine_mode mode2;
5600 enum micro_operation_type type2;
5601 rtx nloc = NULL;
5602 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5604 if (resolvable)
5605 nloc = replace_expr_with_values (vloc);
5607 if (nloc)
5609 oloc = shallow_copy_rtx (oloc);
5610 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5613 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5615 type2 = use_type (vloc, 0, &mode2);
5617 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5618 || type2 == MO_CLOBBER);
5620 if (type2 == MO_CLOBBER
5621 && !cselib_preserved_value_p (val))
5623 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5624 preserve_value (val);
5627 else if (!VAR_LOC_UNKNOWN_P (vloc))
5629 oloc = shallow_copy_rtx (oloc);
5630 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5633 mo.u.loc = oloc;
5635 else if (type == MO_VAL_USE)
5637 enum machine_mode mode2 = VOIDmode;
5638 enum micro_operation_type type2;
5639 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5640 rtx vloc, oloc = loc, nloc;
5642 gcc_assert (cui->sets);
5644 if (MEM_P (oloc)
5645 && !REG_P (XEXP (oloc, 0))
5646 && !MEM_P (XEXP (oloc, 0)))
5648 rtx mloc = oloc;
5649 enum machine_mode address_mode = get_address_mode (mloc);
5650 cselib_val *val
5651 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5652 GET_MODE (mloc));
5654 if (val && !cselib_preserved_value_p (val))
5655 preserve_value (val);
5658 type2 = use_type (loc, 0, &mode2);
5660 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5661 || type2 == MO_CLOBBER);
5663 if (type2 == MO_USE)
5664 vloc = var_lowpart (mode2, loc);
5665 else
5666 vloc = oloc;
5668 /* The loc of a MO_VAL_USE may have two forms:
5670 (concat val src): val is at src, a value-based
5671 representation.
5673 (concat (concat val use) src): same as above, with use as
5674 the MO_USE tracked value, if it differs from src.
5678 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5679 nloc = replace_expr_with_values (loc);
5680 if (!nloc)
5681 nloc = oloc;
5683 if (vloc != nloc)
5684 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5685 else
5686 oloc = val->val_rtx;
5688 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5690 if (type2 == MO_USE)
5691 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5692 if (!cselib_preserved_value_p (val))
5694 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5695 preserve_value (val);
5698 else
5699 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5701 if (dump_file && (dump_flags & TDF_DETAILS))
5702 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5703 VTI (bb)->mos.safe_push (mo);
5706 return 0;
5709 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5711 static void
5712 add_uses_1 (rtx *x, void *cui)
5714 for_each_rtx (x, add_uses, cui);
5717 /* This is the value used during expansion of locations. We want it
5718 to be unbounded, so that variables expanded deep in a recursion
5719 nest are fully evaluated, so that their values are cached
5720 correctly. We avoid recursion cycles through other means, and we
5721 don't unshare RTL, so excess complexity is not a problem. */
5722 #define EXPR_DEPTH (INT_MAX)
5723 /* We use this to keep too-complex expressions from being emitted as
5724 location notes, and then to debug information. Users can trade
5725 compile time for ridiculously complex expressions, although they're
5726 seldom useful, and they may often have to be discarded as not
5727 representable anyway. */
5728 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5730 /* Attempt to reverse the EXPR operation in the debug info and record
5731 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5732 no longer live we can express its value as VAL - 6. */
5734 static void
5735 reverse_op (rtx val, const_rtx expr, rtx insn)
5737 rtx src, arg, ret;
5738 cselib_val *v;
5739 struct elt_loc_list *l;
5740 enum rtx_code code;
5741 int count;
5743 if (GET_CODE (expr) != SET)
5744 return;
5746 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5747 return;
5749 src = SET_SRC (expr);
5750 switch (GET_CODE (src))
5752 case PLUS:
5753 case MINUS:
5754 case XOR:
5755 case NOT:
5756 case NEG:
5757 if (!REG_P (XEXP (src, 0)))
5758 return;
5759 break;
5760 case SIGN_EXTEND:
5761 case ZERO_EXTEND:
5762 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5763 return;
5764 break;
5765 default:
5766 return;
5769 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5770 return;
5772 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5773 if (!v || !cselib_preserved_value_p (v))
5774 return;
5776 /* Use canonical V to avoid creating multiple redundant expressions
5777 for different VALUES equivalent to V. */
5778 v = canonical_cselib_val (v);
5780 /* Adding a reverse op isn't useful if V already has an always valid
5781 location. Ignore ENTRY_VALUE, while it is always constant, we should
5782 prefer non-ENTRY_VALUE locations whenever possible. */
5783 for (l = v->locs, count = 0; l; l = l->next, count++)
5784 if (CONSTANT_P (l->loc)
5785 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5786 return;
5787 /* Avoid creating too large locs lists. */
5788 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5789 return;
5791 switch (GET_CODE (src))
5793 case NOT:
5794 case NEG:
5795 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5796 return;
5797 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5798 break;
5799 case SIGN_EXTEND:
5800 case ZERO_EXTEND:
5801 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5802 break;
5803 case XOR:
5804 code = XOR;
5805 goto binary;
5806 case PLUS:
5807 code = MINUS;
5808 goto binary;
5809 case MINUS:
5810 code = PLUS;
5811 goto binary;
5812 binary:
5813 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5814 return;
5815 arg = XEXP (src, 1);
5816 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5818 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5819 if (arg == NULL_RTX)
5820 return;
5821 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5822 return;
5824 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5825 if (ret == val)
5826 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5827 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5828 breaks a lot of routines during var-tracking. */
5829 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5830 break;
5831 default:
5832 gcc_unreachable ();
5835 cselib_add_permanent_equiv (v, ret, insn);
5838 /* Add stores (register and memory references) LOC which will be tracked
5839 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5840 CUIP->insn is instruction which the LOC is part of. */
5842 static void
5843 add_stores (rtx loc, const_rtx expr, void *cuip)
5845 enum machine_mode mode = VOIDmode, mode2;
5846 struct count_use_info *cui = (struct count_use_info *)cuip;
5847 basic_block bb = cui->bb;
5848 micro_operation mo;
5849 rtx oloc = loc, nloc, src = NULL;
5850 enum micro_operation_type type = use_type (loc, cui, &mode);
5851 bool track_p = false;
5852 cselib_val *v;
5853 bool resolve, preserve;
5855 if (type == MO_CLOBBER)
5856 return;
5858 mode2 = mode;
5860 if (REG_P (loc))
5862 gcc_assert (loc != cfa_base_rtx);
5863 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5864 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5865 || GET_CODE (expr) == CLOBBER)
5867 mo.type = MO_CLOBBER;
5868 mo.u.loc = loc;
5869 if (GET_CODE (expr) == SET
5870 && SET_DEST (expr) == loc
5871 && !unsuitable_loc (SET_SRC (expr))
5872 && find_use_val (loc, mode, cui))
5874 gcc_checking_assert (type == MO_VAL_SET);
5875 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5878 else
5880 if (GET_CODE (expr) == SET
5881 && SET_DEST (expr) == loc
5882 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5883 src = var_lowpart (mode2, SET_SRC (expr));
5884 loc = var_lowpart (mode2, loc);
5886 if (src == NULL)
5888 mo.type = MO_SET;
5889 mo.u.loc = loc;
5891 else
5893 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5894 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5896 /* If this is an instruction copying (part of) a parameter
5897 passed by invisible reference to its register location,
5898 pretend it's a SET so that the initial memory location
5899 is discarded, as the parameter register can be reused
5900 for other purposes and we do not track locations based
5901 on generic registers. */
5902 if (MEM_P (src)
5903 && REG_EXPR (loc)
5904 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5905 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5906 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5907 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5908 != arg_pointer_rtx)
5909 mo.type = MO_SET;
5910 else
5911 mo.type = MO_COPY;
5913 else
5914 mo.type = MO_SET;
5915 mo.u.loc = xexpr;
5918 mo.insn = cui->insn;
5920 else if (MEM_P (loc)
5921 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5922 || cui->sets))
5924 if (MEM_P (loc) && type == MO_VAL_SET
5925 && !REG_P (XEXP (loc, 0))
5926 && !MEM_P (XEXP (loc, 0)))
5928 rtx mloc = loc;
5929 enum machine_mode address_mode = get_address_mode (mloc);
5930 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5931 address_mode, 0,
5932 GET_MODE (mloc));
5934 if (val && !cselib_preserved_value_p (val))
5935 preserve_value (val);
5938 if (GET_CODE (expr) == CLOBBER || !track_p)
5940 mo.type = MO_CLOBBER;
5941 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5943 else
5945 if (GET_CODE (expr) == SET
5946 && SET_DEST (expr) == loc
5947 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5948 src = var_lowpart (mode2, SET_SRC (expr));
5949 loc = var_lowpart (mode2, loc);
5951 if (src == NULL)
5953 mo.type = MO_SET;
5954 mo.u.loc = loc;
5956 else
5958 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5959 if (same_variable_part_p (SET_SRC (xexpr),
5960 MEM_EXPR (loc),
5961 INT_MEM_OFFSET (loc)))
5962 mo.type = MO_COPY;
5963 else
5964 mo.type = MO_SET;
5965 mo.u.loc = xexpr;
5968 mo.insn = cui->insn;
5970 else
5971 return;
5973 if (type != MO_VAL_SET)
5974 goto log_and_return;
5976 v = find_use_val (oloc, mode, cui);
5978 if (!v)
5979 goto log_and_return;
5981 resolve = preserve = !cselib_preserved_value_p (v);
5983 /* We cannot track values for multiple-part variables, so we track only
5984 locations for tracked parameters passed either by invisible reference
5985 or directly in multiple locations. */
5986 if (track_p
5987 && REG_P (loc)
5988 && REG_EXPR (loc)
5989 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5990 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5991 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5992 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5993 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5994 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5995 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5997 /* Although we don't use the value here, it could be used later by the
5998 mere virtue of its existence as the operand of the reverse operation
5999 that gave rise to it (typically extension/truncation). Make sure it
6000 is preserved as required by vt_expand_var_loc_chain. */
6001 if (preserve)
6002 preserve_value (v);
6003 goto log_and_return;
6006 if (loc == stack_pointer_rtx
6007 && hard_frame_pointer_adjustment != -1
6008 && preserve)
6009 cselib_set_value_sp_based (v);
6011 nloc = replace_expr_with_values (oloc);
6012 if (nloc)
6013 oloc = nloc;
6015 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6017 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6019 if (oval == v)
6020 return;
6021 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6023 if (oval && !cselib_preserved_value_p (oval))
6025 micro_operation moa;
6027 preserve_value (oval);
6029 moa.type = MO_VAL_USE;
6030 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6031 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6032 moa.insn = cui->insn;
6034 if (dump_file && (dump_flags & TDF_DETAILS))
6035 log_op_type (moa.u.loc, cui->bb, cui->insn,
6036 moa.type, dump_file);
6037 VTI (bb)->mos.safe_push (moa);
6040 resolve = false;
6042 else if (resolve && GET_CODE (mo.u.loc) == SET)
6044 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6045 nloc = replace_expr_with_values (SET_SRC (expr));
6046 else
6047 nloc = NULL_RTX;
6049 /* Avoid the mode mismatch between oexpr and expr. */
6050 if (!nloc && mode != mode2)
6052 nloc = SET_SRC (expr);
6053 gcc_assert (oloc == SET_DEST (expr));
6056 if (nloc && nloc != SET_SRC (mo.u.loc))
6057 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6058 else
6060 if (oloc == SET_DEST (mo.u.loc))
6061 /* No point in duplicating. */
6062 oloc = mo.u.loc;
6063 if (!REG_P (SET_SRC (mo.u.loc)))
6064 resolve = false;
6067 else if (!resolve)
6069 if (GET_CODE (mo.u.loc) == SET
6070 && oloc == SET_DEST (mo.u.loc))
6071 /* No point in duplicating. */
6072 oloc = mo.u.loc;
6074 else
6075 resolve = false;
6077 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6079 if (mo.u.loc != oloc)
6080 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6082 /* The loc of a MO_VAL_SET may have various forms:
6084 (concat val dst): dst now holds val
6086 (concat val (set dst src)): dst now holds val, copied from src
6088 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6089 after replacing mems and non-top-level regs with values.
6091 (concat (concat val dstv) (set dst src)): dst now holds val,
6092 copied from src. dstv is a value-based representation of dst, if
6093 it differs from dst. If resolution is needed, src is a REG, and
6094 its mode is the same as that of val.
6096 (concat (concat val (set dstv srcv)) (set dst src)): src
6097 copied to dst, holding val. dstv and srcv are value-based
6098 representations of dst and src, respectively.
6102 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6103 reverse_op (v->val_rtx, expr, cui->insn);
6105 mo.u.loc = loc;
6107 if (track_p)
6108 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6109 if (preserve)
6111 VAL_NEEDS_RESOLUTION (loc) = resolve;
6112 preserve_value (v);
6114 if (mo.type == MO_CLOBBER)
6115 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6116 if (mo.type == MO_COPY)
6117 VAL_EXPR_IS_COPIED (loc) = 1;
6119 mo.type = MO_VAL_SET;
6121 log_and_return:
6122 if (dump_file && (dump_flags & TDF_DETAILS))
6123 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6124 VTI (bb)->mos.safe_push (mo);
6127 /* Arguments to the call. */
6128 static rtx call_arguments;
6130 /* Compute call_arguments. */
6132 static void
6133 prepare_call_arguments (basic_block bb, rtx insn)
6135 rtx link, x, call;
6136 rtx prev, cur, next;
6137 rtx this_arg = NULL_RTX;
6138 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6139 tree obj_type_ref = NULL_TREE;
6140 CUMULATIVE_ARGS args_so_far_v;
6141 cumulative_args_t args_so_far;
6143 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6144 args_so_far = pack_cumulative_args (&args_so_far_v);
6145 call = get_call_rtx_from (insn);
6146 if (call)
6148 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6150 rtx symbol = XEXP (XEXP (call, 0), 0);
6151 if (SYMBOL_REF_DECL (symbol))
6152 fndecl = SYMBOL_REF_DECL (symbol);
6154 if (fndecl == NULL_TREE)
6155 fndecl = MEM_EXPR (XEXP (call, 0));
6156 if (fndecl
6157 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6158 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6159 fndecl = NULL_TREE;
6160 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6161 type = TREE_TYPE (fndecl);
6162 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6164 if (TREE_CODE (fndecl) == INDIRECT_REF
6165 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6166 obj_type_ref = TREE_OPERAND (fndecl, 0);
6167 fndecl = NULL_TREE;
6169 if (type)
6171 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6172 t = TREE_CHAIN (t))
6173 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6174 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6175 break;
6176 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6177 type = NULL;
6178 else
6180 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6181 link = CALL_INSN_FUNCTION_USAGE (insn);
6182 #ifndef PCC_STATIC_STRUCT_RETURN
6183 if (aggregate_value_p (TREE_TYPE (type), type)
6184 && targetm.calls.struct_value_rtx (type, 0) == 0)
6186 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6187 enum machine_mode mode = TYPE_MODE (struct_addr);
6188 rtx reg;
6189 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6190 nargs + 1);
6191 reg = targetm.calls.function_arg (args_so_far, mode,
6192 struct_addr, true);
6193 targetm.calls.function_arg_advance (args_so_far, mode,
6194 struct_addr, true);
6195 if (reg == NULL_RTX)
6197 for (; link; link = XEXP (link, 1))
6198 if (GET_CODE (XEXP (link, 0)) == USE
6199 && MEM_P (XEXP (XEXP (link, 0), 0)))
6201 link = XEXP (link, 1);
6202 break;
6206 else
6207 #endif
6208 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6209 nargs);
6210 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6212 enum machine_mode mode;
6213 t = TYPE_ARG_TYPES (type);
6214 mode = TYPE_MODE (TREE_VALUE (t));
6215 this_arg = targetm.calls.function_arg (args_so_far, mode,
6216 TREE_VALUE (t), true);
6217 if (this_arg && !REG_P (this_arg))
6218 this_arg = NULL_RTX;
6219 else if (this_arg == NULL_RTX)
6221 for (; link; link = XEXP (link, 1))
6222 if (GET_CODE (XEXP (link, 0)) == USE
6223 && MEM_P (XEXP (XEXP (link, 0), 0)))
6225 this_arg = XEXP (XEXP (link, 0), 0);
6226 break;
6233 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6235 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6236 if (GET_CODE (XEXP (link, 0)) == USE)
6238 rtx item = NULL_RTX;
6239 x = XEXP (XEXP (link, 0), 0);
6240 if (GET_MODE (link) == VOIDmode
6241 || GET_MODE (link) == BLKmode
6242 || (GET_MODE (link) != GET_MODE (x)
6243 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6244 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6245 /* Can't do anything for these, if the original type mode
6246 isn't known or can't be converted. */;
6247 else if (REG_P (x))
6249 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6250 if (val && cselib_preserved_value_p (val))
6251 item = val->val_rtx;
6252 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6254 enum machine_mode mode = GET_MODE (x);
6256 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6257 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6259 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6261 if (reg == NULL_RTX || !REG_P (reg))
6262 continue;
6263 val = cselib_lookup (reg, mode, 0, VOIDmode);
6264 if (val && cselib_preserved_value_p (val))
6266 item = val->val_rtx;
6267 break;
6272 else if (MEM_P (x))
6274 rtx mem = x;
6275 cselib_val *val;
6277 if (!frame_pointer_needed)
6279 struct adjust_mem_data amd;
6280 amd.mem_mode = VOIDmode;
6281 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6282 amd.side_effects = NULL_RTX;
6283 amd.store = true;
6284 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6285 &amd);
6286 gcc_assert (amd.side_effects == NULL_RTX);
6288 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6289 if (val && cselib_preserved_value_p (val))
6290 item = val->val_rtx;
6291 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6293 /* For non-integer stack argument see also if they weren't
6294 initialized by integers. */
6295 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6296 if (imode != GET_MODE (mem) && imode != BLKmode)
6298 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6299 imode, 0, VOIDmode);
6300 if (val && cselib_preserved_value_p (val))
6301 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6302 imode);
6306 if (item)
6308 rtx x2 = x;
6309 if (GET_MODE (item) != GET_MODE (link))
6310 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6311 if (GET_MODE (x2) != GET_MODE (link))
6312 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6313 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6314 call_arguments
6315 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6317 if (t && t != void_list_node)
6319 tree argtype = TREE_VALUE (t);
6320 enum machine_mode mode = TYPE_MODE (argtype);
6321 rtx reg;
6322 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6324 argtype = build_pointer_type (argtype);
6325 mode = TYPE_MODE (argtype);
6327 reg = targetm.calls.function_arg (args_so_far, mode,
6328 argtype, true);
6329 if (TREE_CODE (argtype) == REFERENCE_TYPE
6330 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6331 && reg
6332 && REG_P (reg)
6333 && GET_MODE (reg) == mode
6334 && GET_MODE_CLASS (mode) == MODE_INT
6335 && REG_P (x)
6336 && REGNO (x) == REGNO (reg)
6337 && GET_MODE (x) == mode
6338 && item)
6340 enum machine_mode indmode
6341 = TYPE_MODE (TREE_TYPE (argtype));
6342 rtx mem = gen_rtx_MEM (indmode, x);
6343 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6344 if (val && cselib_preserved_value_p (val))
6346 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6347 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6348 call_arguments);
6350 else
6352 struct elt_loc_list *l;
6353 tree initial;
6355 /* Try harder, when passing address of a constant
6356 pool integer it can be easily read back. */
6357 item = XEXP (item, 1);
6358 if (GET_CODE (item) == SUBREG)
6359 item = SUBREG_REG (item);
6360 gcc_assert (GET_CODE (item) == VALUE);
6361 val = CSELIB_VAL_PTR (item);
6362 for (l = val->locs; l; l = l->next)
6363 if (GET_CODE (l->loc) == SYMBOL_REF
6364 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6365 && SYMBOL_REF_DECL (l->loc)
6366 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6368 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6369 if (tree_fits_shwi_p (initial))
6371 item = GEN_INT (tree_to_shwi (initial));
6372 item = gen_rtx_CONCAT (indmode, mem, item);
6373 call_arguments
6374 = gen_rtx_EXPR_LIST (VOIDmode, item,
6375 call_arguments);
6377 break;
6381 targetm.calls.function_arg_advance (args_so_far, mode,
6382 argtype, true);
6383 t = TREE_CHAIN (t);
6387 /* Add debug arguments. */
6388 if (fndecl
6389 && TREE_CODE (fndecl) == FUNCTION_DECL
6390 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6392 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6393 if (debug_args)
6395 unsigned int ix;
6396 tree param;
6397 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6399 rtx item;
6400 tree dtemp = (**debug_args)[ix + 1];
6401 enum machine_mode mode = DECL_MODE (dtemp);
6402 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6403 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6404 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6405 call_arguments);
6410 /* Reverse call_arguments chain. */
6411 prev = NULL_RTX;
6412 for (cur = call_arguments; cur; cur = next)
6414 next = XEXP (cur, 1);
6415 XEXP (cur, 1) = prev;
6416 prev = cur;
6418 call_arguments = prev;
6420 x = get_call_rtx_from (insn);
6421 if (x)
6423 x = XEXP (XEXP (x, 0), 0);
6424 if (GET_CODE (x) == SYMBOL_REF)
6425 /* Don't record anything. */;
6426 else if (CONSTANT_P (x))
6428 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6429 pc_rtx, x);
6430 call_arguments
6431 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6433 else
6435 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6436 if (val && cselib_preserved_value_p (val))
6438 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6439 call_arguments
6440 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6444 if (this_arg)
6446 enum machine_mode mode
6447 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6448 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6449 HOST_WIDE_INT token
6450 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6451 if (token)
6452 clobbered = plus_constant (mode, clobbered,
6453 token * GET_MODE_SIZE (mode));
6454 clobbered = gen_rtx_MEM (mode, clobbered);
6455 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6456 call_arguments
6457 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6461 /* Callback for cselib_record_sets_hook, that records as micro
6462 operations uses and stores in an insn after cselib_record_sets has
6463 analyzed the sets in an insn, but before it modifies the stored
6464 values in the internal tables, unless cselib_record_sets doesn't
6465 call it directly (perhaps because we're not doing cselib in the
6466 first place, in which case sets and n_sets will be 0). */
6468 static void
6469 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6471 basic_block bb = BLOCK_FOR_INSN (insn);
6472 int n1, n2;
6473 struct count_use_info cui;
6474 micro_operation *mos;
6476 cselib_hook_called = true;
6478 cui.insn = insn;
6479 cui.bb = bb;
6480 cui.sets = sets;
6481 cui.n_sets = n_sets;
6483 n1 = VTI (bb)->mos.length ();
6484 cui.store_p = false;
6485 note_uses (&PATTERN (insn), add_uses_1, &cui);
6486 n2 = VTI (bb)->mos.length () - 1;
6487 mos = VTI (bb)->mos.address ();
6489 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6490 MO_VAL_LOC last. */
6491 while (n1 < n2)
6493 while (n1 < n2 && mos[n1].type == MO_USE)
6494 n1++;
6495 while (n1 < n2 && mos[n2].type != MO_USE)
6496 n2--;
6497 if (n1 < n2)
6499 micro_operation sw;
6501 sw = mos[n1];
6502 mos[n1] = mos[n2];
6503 mos[n2] = sw;
6507 n2 = VTI (bb)->mos.length () - 1;
6508 while (n1 < n2)
6510 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6511 n1++;
6512 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6513 n2--;
6514 if (n1 < n2)
6516 micro_operation sw;
6518 sw = mos[n1];
6519 mos[n1] = mos[n2];
6520 mos[n2] = sw;
6524 if (CALL_P (insn))
6526 micro_operation mo;
6528 mo.type = MO_CALL;
6529 mo.insn = insn;
6530 mo.u.loc = call_arguments;
6531 call_arguments = NULL_RTX;
6533 if (dump_file && (dump_flags & TDF_DETAILS))
6534 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6535 VTI (bb)->mos.safe_push (mo);
6538 n1 = VTI (bb)->mos.length ();
6539 /* This will record NEXT_INSN (insn), such that we can
6540 insert notes before it without worrying about any
6541 notes that MO_USEs might emit after the insn. */
6542 cui.store_p = true;
6543 note_stores (PATTERN (insn), add_stores, &cui);
6544 n2 = VTI (bb)->mos.length () - 1;
6545 mos = VTI (bb)->mos.address ();
6547 /* Order the MO_VAL_USEs first (note_stores does nothing
6548 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6549 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6550 while (n1 < n2)
6552 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6553 n1++;
6554 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6555 n2--;
6556 if (n1 < n2)
6558 micro_operation sw;
6560 sw = mos[n1];
6561 mos[n1] = mos[n2];
6562 mos[n2] = sw;
6566 n2 = VTI (bb)->mos.length () - 1;
6567 while (n1 < n2)
6569 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6570 n1++;
6571 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6572 n2--;
6573 if (n1 < n2)
6575 micro_operation sw;
6577 sw = mos[n1];
6578 mos[n1] = mos[n2];
6579 mos[n2] = sw;
6584 static enum var_init_status
6585 find_src_status (dataflow_set *in, rtx src)
6587 tree decl = NULL_TREE;
6588 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6590 if (! flag_var_tracking_uninit)
6591 status = VAR_INIT_STATUS_INITIALIZED;
6593 if (src && REG_P (src))
6594 decl = var_debug_decl (REG_EXPR (src));
6595 else if (src && MEM_P (src))
6596 decl = var_debug_decl (MEM_EXPR (src));
6598 if (src && decl)
6599 status = get_init_value (in, src, dv_from_decl (decl));
6601 return status;
6604 /* SRC is the source of an assignment. Use SET to try to find what
6605 was ultimately assigned to SRC. Return that value if known,
6606 otherwise return SRC itself. */
6608 static rtx
6609 find_src_set_src (dataflow_set *set, rtx src)
6611 tree decl = NULL_TREE; /* The variable being copied around. */
6612 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6613 variable var;
6614 location_chain nextp;
6615 int i;
6616 bool found;
6618 if (src && REG_P (src))
6619 decl = var_debug_decl (REG_EXPR (src));
6620 else if (src && MEM_P (src))
6621 decl = var_debug_decl (MEM_EXPR (src));
6623 if (src && decl)
6625 decl_or_value dv = dv_from_decl (decl);
6627 var = shared_hash_find (set->vars, dv);
6628 if (var)
6630 found = false;
6631 for (i = 0; i < var->n_var_parts && !found; i++)
6632 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6633 nextp = nextp->next)
6634 if (rtx_equal_p (nextp->loc, src))
6636 set_src = nextp->set_src;
6637 found = true;
6643 return set_src;
6646 /* Compute the changes of variable locations in the basic block BB. */
6648 static bool
6649 compute_bb_dataflow (basic_block bb)
6651 unsigned int i;
6652 micro_operation *mo;
6653 bool changed;
6654 dataflow_set old_out;
6655 dataflow_set *in = &VTI (bb)->in;
6656 dataflow_set *out = &VTI (bb)->out;
6658 dataflow_set_init (&old_out);
6659 dataflow_set_copy (&old_out, out);
6660 dataflow_set_copy (out, in);
6662 if (MAY_HAVE_DEBUG_INSNS)
6663 local_get_addr_cache = pointer_map_create ();
6665 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6667 rtx insn = mo->insn;
6669 switch (mo->type)
6671 case MO_CALL:
6672 dataflow_set_clear_at_call (out);
6673 break;
6675 case MO_USE:
6677 rtx loc = mo->u.loc;
6679 if (REG_P (loc))
6680 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6681 else if (MEM_P (loc))
6682 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6684 break;
6686 case MO_VAL_LOC:
6688 rtx loc = mo->u.loc;
6689 rtx val, vloc;
6690 tree var;
6692 if (GET_CODE (loc) == CONCAT)
6694 val = XEXP (loc, 0);
6695 vloc = XEXP (loc, 1);
6697 else
6699 val = NULL_RTX;
6700 vloc = loc;
6703 var = PAT_VAR_LOCATION_DECL (vloc);
6705 clobber_variable_part (out, NULL_RTX,
6706 dv_from_decl (var), 0, NULL_RTX);
6707 if (val)
6709 if (VAL_NEEDS_RESOLUTION (loc))
6710 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6711 set_variable_part (out, val, dv_from_decl (var), 0,
6712 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6713 INSERT);
6715 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6716 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6717 dv_from_decl (var), 0,
6718 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6719 INSERT);
6721 break;
6723 case MO_VAL_USE:
6725 rtx loc = mo->u.loc;
6726 rtx val, vloc, uloc;
6728 vloc = uloc = XEXP (loc, 1);
6729 val = XEXP (loc, 0);
6731 if (GET_CODE (val) == CONCAT)
6733 uloc = XEXP (val, 1);
6734 val = XEXP (val, 0);
6737 if (VAL_NEEDS_RESOLUTION (loc))
6738 val_resolve (out, val, vloc, insn);
6739 else
6740 val_store (out, val, uloc, insn, false);
6742 if (VAL_HOLDS_TRACK_EXPR (loc))
6744 if (GET_CODE (uloc) == REG)
6745 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6746 NULL);
6747 else if (GET_CODE (uloc) == MEM)
6748 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6749 NULL);
6752 break;
6754 case MO_VAL_SET:
6756 rtx loc = mo->u.loc;
6757 rtx val, vloc, uloc;
6758 rtx dstv, srcv;
6760 vloc = loc;
6761 uloc = XEXP (vloc, 1);
6762 val = XEXP (vloc, 0);
6763 vloc = uloc;
6765 if (GET_CODE (uloc) == SET)
6767 dstv = SET_DEST (uloc);
6768 srcv = SET_SRC (uloc);
6770 else
6772 dstv = uloc;
6773 srcv = NULL;
6776 if (GET_CODE (val) == CONCAT)
6778 dstv = vloc = XEXP (val, 1);
6779 val = XEXP (val, 0);
6782 if (GET_CODE (vloc) == SET)
6784 srcv = SET_SRC (vloc);
6786 gcc_assert (val != srcv);
6787 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6789 dstv = vloc = SET_DEST (vloc);
6791 if (VAL_NEEDS_RESOLUTION (loc))
6792 val_resolve (out, val, srcv, insn);
6794 else if (VAL_NEEDS_RESOLUTION (loc))
6796 gcc_assert (GET_CODE (uloc) == SET
6797 && GET_CODE (SET_SRC (uloc)) == REG);
6798 val_resolve (out, val, SET_SRC (uloc), insn);
6801 if (VAL_HOLDS_TRACK_EXPR (loc))
6803 if (VAL_EXPR_IS_CLOBBERED (loc))
6805 if (REG_P (uloc))
6806 var_reg_delete (out, uloc, true);
6807 else if (MEM_P (uloc))
6809 gcc_assert (MEM_P (dstv));
6810 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6811 var_mem_delete (out, dstv, true);
6814 else
6816 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6817 rtx src = NULL, dst = uloc;
6818 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6820 if (GET_CODE (uloc) == SET)
6822 src = SET_SRC (uloc);
6823 dst = SET_DEST (uloc);
6826 if (copied_p)
6828 if (flag_var_tracking_uninit)
6830 status = find_src_status (in, src);
6832 if (status == VAR_INIT_STATUS_UNKNOWN)
6833 status = find_src_status (out, src);
6836 src = find_src_set_src (in, src);
6839 if (REG_P (dst))
6840 var_reg_delete_and_set (out, dst, !copied_p,
6841 status, srcv);
6842 else if (MEM_P (dst))
6844 gcc_assert (MEM_P (dstv));
6845 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6846 var_mem_delete_and_set (out, dstv, !copied_p,
6847 status, srcv);
6851 else if (REG_P (uloc))
6852 var_regno_delete (out, REGNO (uloc));
6853 else if (MEM_P (uloc))
6855 gcc_checking_assert (GET_CODE (vloc) == MEM);
6856 gcc_checking_assert (dstv == vloc);
6857 if (dstv != vloc)
6858 clobber_overlapping_mems (out, vloc);
6861 val_store (out, val, dstv, insn, true);
6863 break;
6865 case MO_SET:
6867 rtx loc = mo->u.loc;
6868 rtx set_src = NULL;
6870 if (GET_CODE (loc) == SET)
6872 set_src = SET_SRC (loc);
6873 loc = SET_DEST (loc);
6876 if (REG_P (loc))
6877 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6878 set_src);
6879 else if (MEM_P (loc))
6880 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6881 set_src);
6883 break;
6885 case MO_COPY:
6887 rtx loc = mo->u.loc;
6888 enum var_init_status src_status;
6889 rtx set_src = NULL;
6891 if (GET_CODE (loc) == SET)
6893 set_src = SET_SRC (loc);
6894 loc = SET_DEST (loc);
6897 if (! flag_var_tracking_uninit)
6898 src_status = VAR_INIT_STATUS_INITIALIZED;
6899 else
6901 src_status = find_src_status (in, set_src);
6903 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6904 src_status = find_src_status (out, set_src);
6907 set_src = find_src_set_src (in, set_src);
6909 if (REG_P (loc))
6910 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6911 else if (MEM_P (loc))
6912 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6914 break;
6916 case MO_USE_NO_VAR:
6918 rtx loc = mo->u.loc;
6920 if (REG_P (loc))
6921 var_reg_delete (out, loc, false);
6922 else if (MEM_P (loc))
6923 var_mem_delete (out, loc, false);
6925 break;
6927 case MO_CLOBBER:
6929 rtx loc = mo->u.loc;
6931 if (REG_P (loc))
6932 var_reg_delete (out, loc, true);
6933 else if (MEM_P (loc))
6934 var_mem_delete (out, loc, true);
6936 break;
6938 case MO_ADJUST:
6939 out->stack_adjust += mo->u.adjust;
6940 break;
6944 if (MAY_HAVE_DEBUG_INSNS)
6946 pointer_map_destroy (local_get_addr_cache);
6947 local_get_addr_cache = NULL;
6949 dataflow_set_equiv_regs (out);
6950 shared_hash_htab (out->vars)
6951 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6952 shared_hash_htab (out->vars)
6953 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6954 #if ENABLE_CHECKING
6955 shared_hash_htab (out->vars)
6956 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6957 #endif
6959 changed = dataflow_set_different (&old_out, out);
6960 dataflow_set_destroy (&old_out);
6961 return changed;
6964 /* Find the locations of variables in the whole function. */
6966 static bool
6967 vt_find_locations (void)
6969 fibheap_t worklist, pending, fibheap_swap;
6970 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6971 basic_block bb;
6972 edge e;
6973 int *bb_order;
6974 int *rc_order;
6975 int i;
6976 int htabsz = 0;
6977 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6978 bool success = true;
6980 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6981 /* Compute reverse completion order of depth first search of the CFG
6982 so that the data-flow runs faster. */
6983 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6984 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6985 pre_and_rev_post_order_compute (NULL, rc_order, false);
6986 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6987 bb_order[rc_order[i]] = i;
6988 free (rc_order);
6990 worklist = fibheap_new ();
6991 pending = fibheap_new ();
6992 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6993 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6994 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6995 bitmap_clear (in_worklist);
6997 FOR_EACH_BB_FN (bb, cfun)
6998 fibheap_insert (pending, bb_order[bb->index], bb);
6999 bitmap_ones (in_pending);
7001 while (success && !fibheap_empty (pending))
7003 fibheap_swap = pending;
7004 pending = worklist;
7005 worklist = fibheap_swap;
7006 sbitmap_swap = in_pending;
7007 in_pending = in_worklist;
7008 in_worklist = sbitmap_swap;
7010 bitmap_clear (visited);
7012 while (!fibheap_empty (worklist))
7014 bb = (basic_block) fibheap_extract_min (worklist);
7015 bitmap_clear_bit (in_worklist, bb->index);
7016 gcc_assert (!bitmap_bit_p (visited, bb->index));
7017 if (!bitmap_bit_p (visited, bb->index))
7019 bool changed;
7020 edge_iterator ei;
7021 int oldinsz, oldoutsz;
7023 bitmap_set_bit (visited, bb->index);
7025 if (VTI (bb)->in.vars)
7027 htabsz
7028 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7029 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7030 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7031 oldoutsz
7032 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7034 else
7035 oldinsz = oldoutsz = 0;
7037 if (MAY_HAVE_DEBUG_INSNS)
7039 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7040 bool first = true, adjust = false;
7042 /* Calculate the IN set as the intersection of
7043 predecessor OUT sets. */
7045 dataflow_set_clear (in);
7046 dst_can_be_shared = true;
7048 FOR_EACH_EDGE (e, ei, bb->preds)
7049 if (!VTI (e->src)->flooded)
7050 gcc_assert (bb_order[bb->index]
7051 <= bb_order[e->src->index]);
7052 else if (first)
7054 dataflow_set_copy (in, &VTI (e->src)->out);
7055 first_out = &VTI (e->src)->out;
7056 first = false;
7058 else
7060 dataflow_set_merge (in, &VTI (e->src)->out);
7061 adjust = true;
7064 if (adjust)
7066 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7067 #if ENABLE_CHECKING
7068 /* Merge and merge_adjust should keep entries in
7069 canonical order. */
7070 shared_hash_htab (in->vars)
7071 ->traverse <dataflow_set *,
7072 canonicalize_loc_order_check> (in);
7073 #endif
7074 if (dst_can_be_shared)
7076 shared_hash_destroy (in->vars);
7077 in->vars = shared_hash_copy (first_out->vars);
7081 VTI (bb)->flooded = true;
7083 else
7085 /* Calculate the IN set as union of predecessor OUT sets. */
7086 dataflow_set_clear (&VTI (bb)->in);
7087 FOR_EACH_EDGE (e, ei, bb->preds)
7088 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7091 changed = compute_bb_dataflow (bb);
7092 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7093 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7095 if (htabmax && htabsz > htabmax)
7097 if (MAY_HAVE_DEBUG_INSNS)
7098 inform (DECL_SOURCE_LOCATION (cfun->decl),
7099 "variable tracking size limit exceeded with "
7100 "-fvar-tracking-assignments, retrying without");
7101 else
7102 inform (DECL_SOURCE_LOCATION (cfun->decl),
7103 "variable tracking size limit exceeded");
7104 success = false;
7105 break;
7108 if (changed)
7110 FOR_EACH_EDGE (e, ei, bb->succs)
7112 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7113 continue;
7115 if (bitmap_bit_p (visited, e->dest->index))
7117 if (!bitmap_bit_p (in_pending, e->dest->index))
7119 /* Send E->DEST to next round. */
7120 bitmap_set_bit (in_pending, e->dest->index);
7121 fibheap_insert (pending,
7122 bb_order[e->dest->index],
7123 e->dest);
7126 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7128 /* Add E->DEST to current round. */
7129 bitmap_set_bit (in_worklist, e->dest->index);
7130 fibheap_insert (worklist, bb_order[e->dest->index],
7131 e->dest);
7136 if (dump_file)
7137 fprintf (dump_file,
7138 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7139 bb->index,
7140 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7141 oldinsz,
7142 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7143 oldoutsz,
7144 (int)worklist->nodes, (int)pending->nodes, htabsz);
7146 if (dump_file && (dump_flags & TDF_DETAILS))
7148 fprintf (dump_file, "BB %i IN:\n", bb->index);
7149 dump_dataflow_set (&VTI (bb)->in);
7150 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7151 dump_dataflow_set (&VTI (bb)->out);
7157 if (success && MAY_HAVE_DEBUG_INSNS)
7158 FOR_EACH_BB_FN (bb, cfun)
7159 gcc_assert (VTI (bb)->flooded);
7161 free (bb_order);
7162 fibheap_delete (worklist);
7163 fibheap_delete (pending);
7164 sbitmap_free (visited);
7165 sbitmap_free (in_worklist);
7166 sbitmap_free (in_pending);
7168 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7169 return success;
7172 /* Print the content of the LIST to dump file. */
7174 static void
7175 dump_attrs_list (attrs list)
7177 for (; list; list = list->next)
7179 if (dv_is_decl_p (list->dv))
7180 print_mem_expr (dump_file, dv_as_decl (list->dv));
7181 else
7182 print_rtl_single (dump_file, dv_as_value (list->dv));
7183 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7185 fprintf (dump_file, "\n");
7188 /* Print the information about variable *SLOT to dump file. */
7191 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7193 variable var = *slot;
7195 dump_var (var);
7197 /* Continue traversing the hash table. */
7198 return 1;
7201 /* Print the information about variable VAR to dump file. */
7203 static void
7204 dump_var (variable var)
7206 int i;
7207 location_chain node;
7209 if (dv_is_decl_p (var->dv))
7211 const_tree decl = dv_as_decl (var->dv);
7213 if (DECL_NAME (decl))
7215 fprintf (dump_file, " name: %s",
7216 IDENTIFIER_POINTER (DECL_NAME (decl)));
7217 if (dump_flags & TDF_UID)
7218 fprintf (dump_file, "D.%u", DECL_UID (decl));
7220 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7221 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7222 else
7223 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7224 fprintf (dump_file, "\n");
7226 else
7228 fputc (' ', dump_file);
7229 print_rtl_single (dump_file, dv_as_value (var->dv));
7232 for (i = 0; i < var->n_var_parts; i++)
7234 fprintf (dump_file, " offset %ld\n",
7235 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7236 for (node = var->var_part[i].loc_chain; node; node = node->next)
7238 fprintf (dump_file, " ");
7239 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7240 fprintf (dump_file, "[uninit]");
7241 print_rtl_single (dump_file, node->loc);
7246 /* Print the information about variables from hash table VARS to dump file. */
7248 static void
7249 dump_vars (variable_table_type *vars)
7251 if (vars->elements () > 0)
7253 fprintf (dump_file, "Variables:\n");
7254 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7258 /* Print the dataflow set SET to dump file. */
7260 static void
7261 dump_dataflow_set (dataflow_set *set)
7263 int i;
7265 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7266 set->stack_adjust);
7267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7269 if (set->regs[i])
7271 fprintf (dump_file, "Reg %d:", i);
7272 dump_attrs_list (set->regs[i]);
7275 dump_vars (shared_hash_htab (set->vars));
7276 fprintf (dump_file, "\n");
7279 /* Print the IN and OUT sets for each basic block to dump file. */
7281 static void
7282 dump_dataflow_sets (void)
7284 basic_block bb;
7286 FOR_EACH_BB_FN (bb, cfun)
7288 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7289 fprintf (dump_file, "IN:\n");
7290 dump_dataflow_set (&VTI (bb)->in);
7291 fprintf (dump_file, "OUT:\n");
7292 dump_dataflow_set (&VTI (bb)->out);
7296 /* Return the variable for DV in dropped_values, inserting one if
7297 requested with INSERT. */
7299 static inline variable
7300 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7302 variable_def **slot;
7303 variable empty_var;
7304 onepart_enum_t onepart;
7306 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7308 if (!slot)
7309 return NULL;
7311 if (*slot)
7312 return *slot;
7314 gcc_checking_assert (insert == INSERT);
7316 onepart = dv_onepart_p (dv);
7318 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7320 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7321 empty_var->dv = dv;
7322 empty_var->refcount = 1;
7323 empty_var->n_var_parts = 0;
7324 empty_var->onepart = onepart;
7325 empty_var->in_changed_variables = false;
7326 empty_var->var_part[0].loc_chain = NULL;
7327 empty_var->var_part[0].cur_loc = NULL;
7328 VAR_LOC_1PAUX (empty_var) = NULL;
7329 set_dv_changed (dv, true);
7331 *slot = empty_var;
7333 return empty_var;
7336 /* Recover the one-part aux from dropped_values. */
7338 static struct onepart_aux *
7339 recover_dropped_1paux (variable var)
7341 variable dvar;
7343 gcc_checking_assert (var->onepart);
7345 if (VAR_LOC_1PAUX (var))
7346 return VAR_LOC_1PAUX (var);
7348 if (var->onepart == ONEPART_VDECL)
7349 return NULL;
7351 dvar = variable_from_dropped (var->dv, NO_INSERT);
7353 if (!dvar)
7354 return NULL;
7356 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7357 VAR_LOC_1PAUX (dvar) = NULL;
7359 return VAR_LOC_1PAUX (var);
7362 /* Add variable VAR to the hash table of changed variables and
7363 if it has no locations delete it from SET's hash table. */
7365 static void
7366 variable_was_changed (variable var, dataflow_set *set)
7368 hashval_t hash = dv_htab_hash (var->dv);
7370 if (emit_notes)
7372 variable_def **slot;
7374 /* Remember this decl or VALUE has been added to changed_variables. */
7375 set_dv_changed (var->dv, true);
7377 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7379 if (*slot)
7381 variable old_var = *slot;
7382 gcc_assert (old_var->in_changed_variables);
7383 old_var->in_changed_variables = false;
7384 if (var != old_var && var->onepart)
7386 /* Restore the auxiliary info from an empty variable
7387 previously created for changed_variables, so it is
7388 not lost. */
7389 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7390 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7391 VAR_LOC_1PAUX (old_var) = NULL;
7393 variable_htab_free (*slot);
7396 if (set && var->n_var_parts == 0)
7398 onepart_enum_t onepart = var->onepart;
7399 variable empty_var = NULL;
7400 variable_def **dslot = NULL;
7402 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7404 dslot = dropped_values->find_slot_with_hash (var->dv,
7405 dv_htab_hash (var->dv),
7406 INSERT);
7407 empty_var = *dslot;
7409 if (empty_var)
7411 gcc_checking_assert (!empty_var->in_changed_variables);
7412 if (!VAR_LOC_1PAUX (var))
7414 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7415 VAR_LOC_1PAUX (empty_var) = NULL;
7417 else
7418 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7422 if (!empty_var)
7424 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7425 empty_var->dv = var->dv;
7426 empty_var->refcount = 1;
7427 empty_var->n_var_parts = 0;
7428 empty_var->onepart = onepart;
7429 if (dslot)
7431 empty_var->refcount++;
7432 *dslot = empty_var;
7435 else
7436 empty_var->refcount++;
7437 empty_var->in_changed_variables = true;
7438 *slot = empty_var;
7439 if (onepart)
7441 empty_var->var_part[0].loc_chain = NULL;
7442 empty_var->var_part[0].cur_loc = NULL;
7443 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7444 VAR_LOC_1PAUX (var) = NULL;
7446 goto drop_var;
7448 else
7450 if (var->onepart && !VAR_LOC_1PAUX (var))
7451 recover_dropped_1paux (var);
7452 var->refcount++;
7453 var->in_changed_variables = true;
7454 *slot = var;
7457 else
7459 gcc_assert (set);
7460 if (var->n_var_parts == 0)
7462 variable_def **slot;
7464 drop_var:
7465 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7466 if (slot)
7468 if (shared_hash_shared (set->vars))
7469 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7470 NO_INSERT);
7471 shared_hash_htab (set->vars)->clear_slot (slot);
7477 /* Look for the index in VAR->var_part corresponding to OFFSET.
7478 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7479 referenced int will be set to the index that the part has or should
7480 have, if it should be inserted. */
7482 static inline int
7483 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7484 int *insertion_point)
7486 int pos, low, high;
7488 if (var->onepart)
7490 if (offset != 0)
7491 return -1;
7493 if (insertion_point)
7494 *insertion_point = 0;
7496 return var->n_var_parts - 1;
7499 /* Find the location part. */
7500 low = 0;
7501 high = var->n_var_parts;
7502 while (low != high)
7504 pos = (low + high) / 2;
7505 if (VAR_PART_OFFSET (var, pos) < offset)
7506 low = pos + 1;
7507 else
7508 high = pos;
7510 pos = low;
7512 if (insertion_point)
7513 *insertion_point = pos;
7515 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7516 return pos;
7518 return -1;
7521 static variable_def **
7522 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7523 decl_or_value dv, HOST_WIDE_INT offset,
7524 enum var_init_status initialized, rtx set_src)
7526 int pos;
7527 location_chain node, next;
7528 location_chain *nextp;
7529 variable var;
7530 onepart_enum_t onepart;
7532 var = *slot;
7534 if (var)
7535 onepart = var->onepart;
7536 else
7537 onepart = dv_onepart_p (dv);
7539 gcc_checking_assert (offset == 0 || !onepart);
7540 gcc_checking_assert (loc != dv_as_opaque (dv));
7542 if (! flag_var_tracking_uninit)
7543 initialized = VAR_INIT_STATUS_INITIALIZED;
7545 if (!var)
7547 /* Create new variable information. */
7548 var = (variable) pool_alloc (onepart_pool (onepart));
7549 var->dv = dv;
7550 var->refcount = 1;
7551 var->n_var_parts = 1;
7552 var->onepart = onepart;
7553 var->in_changed_variables = false;
7554 if (var->onepart)
7555 VAR_LOC_1PAUX (var) = NULL;
7556 else
7557 VAR_PART_OFFSET (var, 0) = offset;
7558 var->var_part[0].loc_chain = NULL;
7559 var->var_part[0].cur_loc = NULL;
7560 *slot = var;
7561 pos = 0;
7562 nextp = &var->var_part[0].loc_chain;
7564 else if (onepart)
7566 int r = -1, c = 0;
7568 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7570 pos = 0;
7572 if (GET_CODE (loc) == VALUE)
7574 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7575 nextp = &node->next)
7576 if (GET_CODE (node->loc) == VALUE)
7578 if (node->loc == loc)
7580 r = 0;
7581 break;
7583 if (canon_value_cmp (node->loc, loc))
7584 c++;
7585 else
7587 r = 1;
7588 break;
7591 else if (REG_P (node->loc) || MEM_P (node->loc))
7592 c++;
7593 else
7595 r = 1;
7596 break;
7599 else if (REG_P (loc))
7601 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7602 nextp = &node->next)
7603 if (REG_P (node->loc))
7605 if (REGNO (node->loc) < REGNO (loc))
7606 c++;
7607 else
7609 if (REGNO (node->loc) == REGNO (loc))
7610 r = 0;
7611 else
7612 r = 1;
7613 break;
7616 else
7618 r = 1;
7619 break;
7622 else if (MEM_P (loc))
7624 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7625 nextp = &node->next)
7626 if (REG_P (node->loc))
7627 c++;
7628 else if (MEM_P (node->loc))
7630 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7631 break;
7632 else
7633 c++;
7635 else
7637 r = 1;
7638 break;
7641 else
7642 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7643 nextp = &node->next)
7644 if ((r = loc_cmp (node->loc, loc)) >= 0)
7645 break;
7646 else
7647 c++;
7649 if (r == 0)
7650 return slot;
7652 if (shared_var_p (var, set->vars))
7654 slot = unshare_variable (set, slot, var, initialized);
7655 var = *slot;
7656 for (nextp = &var->var_part[0].loc_chain; c;
7657 nextp = &(*nextp)->next)
7658 c--;
7659 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7662 else
7664 int inspos = 0;
7666 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7668 pos = find_variable_location_part (var, offset, &inspos);
7670 if (pos >= 0)
7672 node = var->var_part[pos].loc_chain;
7674 if (node
7675 && ((REG_P (node->loc) && REG_P (loc)
7676 && REGNO (node->loc) == REGNO (loc))
7677 || rtx_equal_p (node->loc, loc)))
7679 /* LOC is in the beginning of the chain so we have nothing
7680 to do. */
7681 if (node->init < initialized)
7682 node->init = initialized;
7683 if (set_src != NULL)
7684 node->set_src = set_src;
7686 return slot;
7688 else
7690 /* We have to make a copy of a shared variable. */
7691 if (shared_var_p (var, set->vars))
7693 slot = unshare_variable (set, slot, var, initialized);
7694 var = *slot;
7698 else
7700 /* We have not found the location part, new one will be created. */
7702 /* We have to make a copy of the shared variable. */
7703 if (shared_var_p (var, set->vars))
7705 slot = unshare_variable (set, slot, var, initialized);
7706 var = *slot;
7709 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7710 thus there are at most MAX_VAR_PARTS different offsets. */
7711 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7712 && (!var->n_var_parts || !onepart));
7714 /* We have to move the elements of array starting at index
7715 inspos to the next position. */
7716 for (pos = var->n_var_parts; pos > inspos; pos--)
7717 var->var_part[pos] = var->var_part[pos - 1];
7719 var->n_var_parts++;
7720 gcc_checking_assert (!onepart);
7721 VAR_PART_OFFSET (var, pos) = offset;
7722 var->var_part[pos].loc_chain = NULL;
7723 var->var_part[pos].cur_loc = NULL;
7726 /* Delete the location from the list. */
7727 nextp = &var->var_part[pos].loc_chain;
7728 for (node = var->var_part[pos].loc_chain; node; node = next)
7730 next = node->next;
7731 if ((REG_P (node->loc) && REG_P (loc)
7732 && REGNO (node->loc) == REGNO (loc))
7733 || rtx_equal_p (node->loc, loc))
7735 /* Save these values, to assign to the new node, before
7736 deleting this one. */
7737 if (node->init > initialized)
7738 initialized = node->init;
7739 if (node->set_src != NULL && set_src == NULL)
7740 set_src = node->set_src;
7741 if (var->var_part[pos].cur_loc == node->loc)
7742 var->var_part[pos].cur_loc = NULL;
7743 pool_free (loc_chain_pool, node);
7744 *nextp = next;
7745 break;
7747 else
7748 nextp = &node->next;
7751 nextp = &var->var_part[pos].loc_chain;
7754 /* Add the location to the beginning. */
7755 node = (location_chain) pool_alloc (loc_chain_pool);
7756 node->loc = loc;
7757 node->init = initialized;
7758 node->set_src = set_src;
7759 node->next = *nextp;
7760 *nextp = node;
7762 /* If no location was emitted do so. */
7763 if (var->var_part[pos].cur_loc == NULL)
7764 variable_was_changed (var, set);
7766 return slot;
7769 /* Set the part of variable's location in the dataflow set SET. The
7770 variable part is specified by variable's declaration in DV and
7771 offset OFFSET and the part's location by LOC. IOPT should be
7772 NO_INSERT if the variable is known to be in SET already and the
7773 variable hash table must not be resized, and INSERT otherwise. */
7775 static void
7776 set_variable_part (dataflow_set *set, rtx loc,
7777 decl_or_value dv, HOST_WIDE_INT offset,
7778 enum var_init_status initialized, rtx set_src,
7779 enum insert_option iopt)
7781 variable_def **slot;
7783 if (iopt == NO_INSERT)
7784 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7785 else
7787 slot = shared_hash_find_slot (set->vars, dv);
7788 if (!slot)
7789 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7791 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7794 /* Remove all recorded register locations for the given variable part
7795 from dataflow set SET, except for those that are identical to loc.
7796 The variable part is specified by variable's declaration or value
7797 DV and offset OFFSET. */
7799 static variable_def **
7800 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7801 HOST_WIDE_INT offset, rtx set_src)
7803 variable var = *slot;
7804 int pos = find_variable_location_part (var, offset, NULL);
7806 if (pos >= 0)
7808 location_chain node, next;
7810 /* Remove the register locations from the dataflow set. */
7811 next = var->var_part[pos].loc_chain;
7812 for (node = next; node; node = next)
7814 next = node->next;
7815 if (node->loc != loc
7816 && (!flag_var_tracking_uninit
7817 || !set_src
7818 || MEM_P (set_src)
7819 || !rtx_equal_p (set_src, node->set_src)))
7821 if (REG_P (node->loc))
7823 attrs anode, anext;
7824 attrs *anextp;
7826 /* Remove the variable part from the register's
7827 list, but preserve any other variable parts
7828 that might be regarded as live in that same
7829 register. */
7830 anextp = &set->regs[REGNO (node->loc)];
7831 for (anode = *anextp; anode; anode = anext)
7833 anext = anode->next;
7834 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7835 && anode->offset == offset)
7837 pool_free (attrs_pool, anode);
7838 *anextp = anext;
7840 else
7841 anextp = &anode->next;
7845 slot = delete_slot_part (set, node->loc, slot, offset);
7850 return slot;
7853 /* Remove all recorded register locations for the given variable part
7854 from dataflow set SET, except for those that are identical to loc.
7855 The variable part is specified by variable's declaration or value
7856 DV and offset OFFSET. */
7858 static void
7859 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7860 HOST_WIDE_INT offset, rtx set_src)
7862 variable_def **slot;
7864 if (!dv_as_opaque (dv)
7865 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7866 return;
7868 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7869 if (!slot)
7870 return;
7872 clobber_slot_part (set, loc, slot, offset, set_src);
7875 /* Delete the part of variable's location from dataflow set SET. The
7876 variable part is specified by its SET->vars slot SLOT and offset
7877 OFFSET and the part's location by LOC. */
7879 static variable_def **
7880 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7881 HOST_WIDE_INT offset)
7883 variable var = *slot;
7884 int pos = find_variable_location_part (var, offset, NULL);
7886 if (pos >= 0)
7888 location_chain node, next;
7889 location_chain *nextp;
7890 bool changed;
7891 rtx cur_loc;
7893 if (shared_var_p (var, set->vars))
7895 /* If the variable contains the location part we have to
7896 make a copy of the variable. */
7897 for (node = var->var_part[pos].loc_chain; node;
7898 node = node->next)
7900 if ((REG_P (node->loc) && REG_P (loc)
7901 && REGNO (node->loc) == REGNO (loc))
7902 || rtx_equal_p (node->loc, loc))
7904 slot = unshare_variable (set, slot, var,
7905 VAR_INIT_STATUS_UNKNOWN);
7906 var = *slot;
7907 break;
7912 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7913 cur_loc = VAR_LOC_FROM (var);
7914 else
7915 cur_loc = var->var_part[pos].cur_loc;
7917 /* Delete the location part. */
7918 changed = false;
7919 nextp = &var->var_part[pos].loc_chain;
7920 for (node = *nextp; node; node = next)
7922 next = node->next;
7923 if ((REG_P (node->loc) && REG_P (loc)
7924 && REGNO (node->loc) == REGNO (loc))
7925 || rtx_equal_p (node->loc, loc))
7927 /* If we have deleted the location which was last emitted
7928 we have to emit new location so add the variable to set
7929 of changed variables. */
7930 if (cur_loc == node->loc)
7932 changed = true;
7933 var->var_part[pos].cur_loc = NULL;
7934 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7935 VAR_LOC_FROM (var) = NULL;
7937 pool_free (loc_chain_pool, node);
7938 *nextp = next;
7939 break;
7941 else
7942 nextp = &node->next;
7945 if (var->var_part[pos].loc_chain == NULL)
7947 changed = true;
7948 var->n_var_parts--;
7949 while (pos < var->n_var_parts)
7951 var->var_part[pos] = var->var_part[pos + 1];
7952 pos++;
7955 if (changed)
7956 variable_was_changed (var, set);
7959 return slot;
7962 /* Delete the part of variable's location from dataflow set SET. The
7963 variable part is specified by variable's declaration or value DV
7964 and offset OFFSET and the part's location by LOC. */
7966 static void
7967 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7968 HOST_WIDE_INT offset)
7970 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7971 if (!slot)
7972 return;
7974 delete_slot_part (set, loc, slot, offset);
7978 /* Structure for passing some other parameters to function
7979 vt_expand_loc_callback. */
7980 struct expand_loc_callback_data
7982 /* The variables and values active at this point. */
7983 variable_table_type *vars;
7985 /* Stack of values and debug_exprs under expansion, and their
7986 children. */
7987 auto_vec<rtx, 4> expanding;
7989 /* Stack of values and debug_exprs whose expansion hit recursion
7990 cycles. They will have VALUE_RECURSED_INTO marked when added to
7991 this list. This flag will be cleared if any of its dependencies
7992 resolves to a valid location. So, if the flag remains set at the
7993 end of the search, we know no valid location for this one can
7994 possibly exist. */
7995 auto_vec<rtx, 4> pending;
7997 /* The maximum depth among the sub-expressions under expansion.
7998 Zero indicates no expansion so far. */
7999 expand_depth depth;
8002 /* Allocate the one-part auxiliary data structure for VAR, with enough
8003 room for COUNT dependencies. */
8005 static void
8006 loc_exp_dep_alloc (variable var, int count)
8008 size_t allocsize;
8010 gcc_checking_assert (var->onepart);
8012 /* We can be called with COUNT == 0 to allocate the data structure
8013 without any dependencies, e.g. for the backlinks only. However,
8014 if we are specifying a COUNT, then the dependency list must have
8015 been emptied before. It would be possible to adjust pointers or
8016 force it empty here, but this is better done at an earlier point
8017 in the algorithm, so we instead leave an assertion to catch
8018 errors. */
8019 gcc_checking_assert (!count
8020 || VAR_LOC_DEP_VEC (var) == NULL
8021 || VAR_LOC_DEP_VEC (var)->is_empty ());
8023 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8024 return;
8026 allocsize = offsetof (struct onepart_aux, deps)
8027 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8029 if (VAR_LOC_1PAUX (var))
8031 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8032 VAR_LOC_1PAUX (var), allocsize);
8033 /* If the reallocation moves the onepaux structure, the
8034 back-pointer to BACKLINKS in the first list member will still
8035 point to its old location. Adjust it. */
8036 if (VAR_LOC_DEP_LST (var))
8037 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8039 else
8041 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8042 *VAR_LOC_DEP_LSTP (var) = NULL;
8043 VAR_LOC_FROM (var) = NULL;
8044 VAR_LOC_DEPTH (var).complexity = 0;
8045 VAR_LOC_DEPTH (var).entryvals = 0;
8047 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8050 /* Remove all entries from the vector of active dependencies of VAR,
8051 removing them from the back-links lists too. */
8053 static void
8054 loc_exp_dep_clear (variable var)
8056 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8058 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8059 if (led->next)
8060 led->next->pprev = led->pprev;
8061 if (led->pprev)
8062 *led->pprev = led->next;
8063 VAR_LOC_DEP_VEC (var)->pop ();
8067 /* Insert an active dependency from VAR on X to the vector of
8068 dependencies, and add the corresponding back-link to X's list of
8069 back-links in VARS. */
8071 static void
8072 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8074 decl_or_value dv;
8075 variable xvar;
8076 loc_exp_dep *led;
8078 dv = dv_from_rtx (x);
8080 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8081 an additional look up? */
8082 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8084 if (!xvar)
8086 xvar = variable_from_dropped (dv, NO_INSERT);
8087 gcc_checking_assert (xvar);
8090 /* No point in adding the same backlink more than once. This may
8091 arise if say the same value appears in two complex expressions in
8092 the same loc_list, or even more than once in a single
8093 expression. */
8094 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8095 return;
8097 if (var->onepart == NOT_ONEPART)
8098 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8099 else
8101 loc_exp_dep empty;
8102 memset (&empty, 0, sizeof (empty));
8103 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8104 led = &VAR_LOC_DEP_VEC (var)->last ();
8106 led->dv = var->dv;
8107 led->value = x;
8109 loc_exp_dep_alloc (xvar, 0);
8110 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8111 led->next = *led->pprev;
8112 if (led->next)
8113 led->next->pprev = &led->next;
8114 *led->pprev = led;
8117 /* Create active dependencies of VAR on COUNT values starting at
8118 VALUE, and corresponding back-links to the entries in VARS. Return
8119 true if we found any pending-recursion results. */
8121 static bool
8122 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8123 variable_table_type *vars)
8125 bool pending_recursion = false;
8127 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8128 || VAR_LOC_DEP_VEC (var)->is_empty ());
8130 /* Set up all dependencies from last_child (as set up at the end of
8131 the loop above) to the end. */
8132 loc_exp_dep_alloc (var, count);
8134 while (count--)
8136 rtx x = *value++;
8138 if (!pending_recursion)
8139 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8141 loc_exp_insert_dep (var, x, vars);
8144 return pending_recursion;
8147 /* Notify the back-links of IVAR that are pending recursion that we
8148 have found a non-NIL value for it, so they are cleared for another
8149 attempt to compute a current location. */
8151 static void
8152 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8154 loc_exp_dep *led, *next;
8156 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8158 decl_or_value dv = led->dv;
8159 variable var;
8161 next = led->next;
8163 if (dv_is_value_p (dv))
8165 rtx value = dv_as_value (dv);
8167 /* If we have already resolved it, leave it alone. */
8168 if (!VALUE_RECURSED_INTO (value))
8169 continue;
8171 /* Check that VALUE_RECURSED_INTO, true from the test above,
8172 implies NO_LOC_P. */
8173 gcc_checking_assert (NO_LOC_P (value));
8175 /* We won't notify variables that are being expanded,
8176 because their dependency list is cleared before
8177 recursing. */
8178 NO_LOC_P (value) = false;
8179 VALUE_RECURSED_INTO (value) = false;
8181 gcc_checking_assert (dv_changed_p (dv));
8183 else
8185 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8186 if (!dv_changed_p (dv))
8187 continue;
8190 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8192 if (!var)
8193 var = variable_from_dropped (dv, NO_INSERT);
8195 if (var)
8196 notify_dependents_of_resolved_value (var, vars);
8198 if (next)
8199 next->pprev = led->pprev;
8200 if (led->pprev)
8201 *led->pprev = next;
8202 led->next = NULL;
8203 led->pprev = NULL;
8207 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8208 int max_depth, void *data);
8210 /* Return the combined depth, when one sub-expression evaluated to
8211 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8213 static inline expand_depth
8214 update_depth (expand_depth saved_depth, expand_depth best_depth)
8216 /* If we didn't find anything, stick with what we had. */
8217 if (!best_depth.complexity)
8218 return saved_depth;
8220 /* If we found hadn't found anything, use the depth of the current
8221 expression. Do NOT add one extra level, we want to compute the
8222 maximum depth among sub-expressions. We'll increment it later,
8223 if appropriate. */
8224 if (!saved_depth.complexity)
8225 return best_depth;
8227 /* Combine the entryval count so that regardless of which one we
8228 return, the entryval count is accurate. */
8229 best_depth.entryvals = saved_depth.entryvals
8230 = best_depth.entryvals + saved_depth.entryvals;
8232 if (saved_depth.complexity < best_depth.complexity)
8233 return best_depth;
8234 else
8235 return saved_depth;
8238 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8239 DATA for cselib expand callback. If PENDRECP is given, indicate in
8240 it whether any sub-expression couldn't be fully evaluated because
8241 it is pending recursion resolution. */
8243 static inline rtx
8244 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8246 struct expand_loc_callback_data *elcd
8247 = (struct expand_loc_callback_data *) data;
8248 location_chain loc, next;
8249 rtx result = NULL;
8250 int first_child, result_first_child, last_child;
8251 bool pending_recursion;
8252 rtx loc_from = NULL;
8253 struct elt_loc_list *cloc = NULL;
8254 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8255 int wanted_entryvals, found_entryvals = 0;
8257 /* Clear all backlinks pointing at this, so that we're not notified
8258 while we're active. */
8259 loc_exp_dep_clear (var);
8261 retry:
8262 if (var->onepart == ONEPART_VALUE)
8264 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8266 gcc_checking_assert (cselib_preserved_value_p (val));
8268 cloc = val->locs;
8271 first_child = result_first_child = last_child
8272 = elcd->expanding.length ();
8274 wanted_entryvals = found_entryvals;
8276 /* Attempt to expand each available location in turn. */
8277 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8278 loc || cloc; loc = next)
8280 result_first_child = last_child;
8282 if (!loc)
8284 loc_from = cloc->loc;
8285 next = loc;
8286 cloc = cloc->next;
8287 if (unsuitable_loc (loc_from))
8288 continue;
8290 else
8292 loc_from = loc->loc;
8293 next = loc->next;
8296 gcc_checking_assert (!unsuitable_loc (loc_from));
8298 elcd->depth.complexity = elcd->depth.entryvals = 0;
8299 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8300 vt_expand_loc_callback, data);
8301 last_child = elcd->expanding.length ();
8303 if (result)
8305 depth = elcd->depth;
8307 gcc_checking_assert (depth.complexity
8308 || result_first_child == last_child);
8310 if (last_child - result_first_child != 1)
8312 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8313 depth.entryvals++;
8314 depth.complexity++;
8317 if (depth.complexity <= EXPR_USE_DEPTH)
8319 if (depth.entryvals <= wanted_entryvals)
8320 break;
8321 else if (!found_entryvals || depth.entryvals < found_entryvals)
8322 found_entryvals = depth.entryvals;
8325 result = NULL;
8328 /* Set it up in case we leave the loop. */
8329 depth.complexity = depth.entryvals = 0;
8330 loc_from = NULL;
8331 result_first_child = first_child;
8334 if (!loc_from && wanted_entryvals < found_entryvals)
8336 /* We found entries with ENTRY_VALUEs and skipped them. Since
8337 we could not find any expansions without ENTRY_VALUEs, but we
8338 found at least one with them, go back and get an entry with
8339 the minimum number ENTRY_VALUE count that we found. We could
8340 avoid looping, but since each sub-loc is already resolved,
8341 the re-expansion should be trivial. ??? Should we record all
8342 attempted locs as dependencies, so that we retry the
8343 expansion should any of them change, in the hope it can give
8344 us a new entry without an ENTRY_VALUE? */
8345 elcd->expanding.truncate (first_child);
8346 goto retry;
8349 /* Register all encountered dependencies as active. */
8350 pending_recursion = loc_exp_dep_set
8351 (var, result, elcd->expanding.address () + result_first_child,
8352 last_child - result_first_child, elcd->vars);
8354 elcd->expanding.truncate (first_child);
8356 /* Record where the expansion came from. */
8357 gcc_checking_assert (!result || !pending_recursion);
8358 VAR_LOC_FROM (var) = loc_from;
8359 VAR_LOC_DEPTH (var) = depth;
8361 gcc_checking_assert (!depth.complexity == !result);
8363 elcd->depth = update_depth (saved_depth, depth);
8365 /* Indicate whether any of the dependencies are pending recursion
8366 resolution. */
8367 if (pendrecp)
8368 *pendrecp = pending_recursion;
8370 if (!pendrecp || !pending_recursion)
8371 var->var_part[0].cur_loc = result;
8373 return result;
8376 /* Callback for cselib_expand_value, that looks for expressions
8377 holding the value in the var-tracking hash tables. Return X for
8378 standard processing, anything else is to be used as-is. */
8380 static rtx
8381 vt_expand_loc_callback (rtx x, bitmap regs,
8382 int max_depth ATTRIBUTE_UNUSED,
8383 void *data)
8385 struct expand_loc_callback_data *elcd
8386 = (struct expand_loc_callback_data *) data;
8387 decl_or_value dv;
8388 variable var;
8389 rtx result, subreg;
8390 bool pending_recursion = false;
8391 bool from_empty = false;
8393 switch (GET_CODE (x))
8395 case SUBREG:
8396 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8397 EXPR_DEPTH,
8398 vt_expand_loc_callback, data);
8400 if (!subreg)
8401 return NULL;
8403 result = simplify_gen_subreg (GET_MODE (x), subreg,
8404 GET_MODE (SUBREG_REG (x)),
8405 SUBREG_BYTE (x));
8407 /* Invalid SUBREGs are ok in debug info. ??? We could try
8408 alternate expansions for the VALUE as well. */
8409 if (!result)
8410 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8412 return result;
8414 case DEBUG_EXPR:
8415 case VALUE:
8416 dv = dv_from_rtx (x);
8417 break;
8419 default:
8420 return x;
8423 elcd->expanding.safe_push (x);
8425 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8426 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8428 if (NO_LOC_P (x))
8430 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8431 return NULL;
8434 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8436 if (!var)
8438 from_empty = true;
8439 var = variable_from_dropped (dv, INSERT);
8442 gcc_checking_assert (var);
8444 if (!dv_changed_p (dv))
8446 gcc_checking_assert (!NO_LOC_P (x));
8447 gcc_checking_assert (var->var_part[0].cur_loc);
8448 gcc_checking_assert (VAR_LOC_1PAUX (var));
8449 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8451 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8453 return var->var_part[0].cur_loc;
8456 VALUE_RECURSED_INTO (x) = true;
8457 /* This is tentative, but it makes some tests simpler. */
8458 NO_LOC_P (x) = true;
8460 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8462 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8464 if (pending_recursion)
8466 gcc_checking_assert (!result);
8467 elcd->pending.safe_push (x);
8469 else
8471 NO_LOC_P (x) = !result;
8472 VALUE_RECURSED_INTO (x) = false;
8473 set_dv_changed (dv, false);
8475 if (result)
8476 notify_dependents_of_resolved_value (var, elcd->vars);
8479 return result;
8482 /* While expanding variables, we may encounter recursion cycles
8483 because of mutual (possibly indirect) dependencies between two
8484 particular variables (or values), say A and B. If we're trying to
8485 expand A when we get to B, which in turn attempts to expand A, if
8486 we can't find any other expansion for B, we'll add B to this
8487 pending-recursion stack, and tentatively return NULL for its
8488 location. This tentative value will be used for any other
8489 occurrences of B, unless A gets some other location, in which case
8490 it will notify B that it is worth another try at computing a
8491 location for it, and it will use the location computed for A then.
8492 At the end of the expansion, the tentative NULL locations become
8493 final for all members of PENDING that didn't get a notification.
8494 This function performs this finalization of NULL locations. */
8496 static void
8497 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8499 while (!pending->is_empty ())
8501 rtx x = pending->pop ();
8502 decl_or_value dv;
8504 if (!VALUE_RECURSED_INTO (x))
8505 continue;
8507 gcc_checking_assert (NO_LOC_P (x));
8508 VALUE_RECURSED_INTO (x) = false;
8509 dv = dv_from_rtx (x);
8510 gcc_checking_assert (dv_changed_p (dv));
8511 set_dv_changed (dv, false);
8515 /* Initialize expand_loc_callback_data D with variable hash table V.
8516 It must be a macro because of alloca (vec stack). */
8517 #define INIT_ELCD(d, v) \
8518 do \
8520 (d).vars = (v); \
8521 (d).depth.complexity = (d).depth.entryvals = 0; \
8523 while (0)
8524 /* Finalize expand_loc_callback_data D, resolved to location L. */
8525 #define FINI_ELCD(d, l) \
8526 do \
8528 resolve_expansions_pending_recursion (&(d).pending); \
8529 (d).pending.release (); \
8530 (d).expanding.release (); \
8532 if ((l) && MEM_P (l)) \
8533 (l) = targetm.delegitimize_address (l); \
8535 while (0)
8537 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8538 equivalences in VARS, updating their CUR_LOCs in the process. */
8540 static rtx
8541 vt_expand_loc (rtx loc, variable_table_type *vars)
8543 struct expand_loc_callback_data data;
8544 rtx result;
8546 if (!MAY_HAVE_DEBUG_INSNS)
8547 return loc;
8549 INIT_ELCD (data, vars);
8551 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8552 vt_expand_loc_callback, &data);
8554 FINI_ELCD (data, result);
8556 return result;
8559 /* Expand the one-part VARiable to a location, using the equivalences
8560 in VARS, updating their CUR_LOCs in the process. */
8562 static rtx
8563 vt_expand_1pvar (variable var, variable_table_type *vars)
8565 struct expand_loc_callback_data data;
8566 rtx loc;
8568 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8570 if (!dv_changed_p (var->dv))
8571 return var->var_part[0].cur_loc;
8573 INIT_ELCD (data, vars);
8575 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8577 gcc_checking_assert (data.expanding.is_empty ());
8579 FINI_ELCD (data, loc);
8581 return loc;
8584 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8585 additional parameters: WHERE specifies whether the note shall be emitted
8586 before or after instruction INSN. */
8589 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8591 variable var = *varp;
8592 rtx insn = data->insn;
8593 enum emit_note_where where = data->where;
8594 variable_table_type *vars = data->vars;
8595 rtx note, note_vl;
8596 int i, j, n_var_parts;
8597 bool complete;
8598 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8599 HOST_WIDE_INT last_limit;
8600 tree type_size_unit;
8601 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8602 rtx loc[MAX_VAR_PARTS];
8603 tree decl;
8604 location_chain lc;
8606 gcc_checking_assert (var->onepart == NOT_ONEPART
8607 || var->onepart == ONEPART_VDECL);
8609 decl = dv_as_decl (var->dv);
8611 complete = true;
8612 last_limit = 0;
8613 n_var_parts = 0;
8614 if (!var->onepart)
8615 for (i = 0; i < var->n_var_parts; i++)
8616 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8617 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8618 for (i = 0; i < var->n_var_parts; i++)
8620 enum machine_mode mode, wider_mode;
8621 rtx loc2;
8622 HOST_WIDE_INT offset;
8624 if (i == 0 && var->onepart)
8626 gcc_checking_assert (var->n_var_parts == 1);
8627 offset = 0;
8628 initialized = VAR_INIT_STATUS_INITIALIZED;
8629 loc2 = vt_expand_1pvar (var, vars);
8631 else
8633 if (last_limit < VAR_PART_OFFSET (var, i))
8635 complete = false;
8636 break;
8638 else if (last_limit > VAR_PART_OFFSET (var, i))
8639 continue;
8640 offset = VAR_PART_OFFSET (var, i);
8641 loc2 = var->var_part[i].cur_loc;
8642 if (loc2 && GET_CODE (loc2) == MEM
8643 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8645 rtx depval = XEXP (loc2, 0);
8647 loc2 = vt_expand_loc (loc2, vars);
8649 if (loc2)
8650 loc_exp_insert_dep (var, depval, vars);
8652 if (!loc2)
8654 complete = false;
8655 continue;
8657 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8658 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8659 if (var->var_part[i].cur_loc == lc->loc)
8661 initialized = lc->init;
8662 break;
8664 gcc_assert (lc);
8667 offsets[n_var_parts] = offset;
8668 if (!loc2)
8670 complete = false;
8671 continue;
8673 loc[n_var_parts] = loc2;
8674 mode = GET_MODE (var->var_part[i].cur_loc);
8675 if (mode == VOIDmode && var->onepart)
8676 mode = DECL_MODE (decl);
8677 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8679 /* Attempt to merge adjacent registers or memory. */
8680 wider_mode = GET_MODE_WIDER_MODE (mode);
8681 for (j = i + 1; j < var->n_var_parts; j++)
8682 if (last_limit <= VAR_PART_OFFSET (var, j))
8683 break;
8684 if (j < var->n_var_parts
8685 && wider_mode != VOIDmode
8686 && var->var_part[j].cur_loc
8687 && mode == GET_MODE (var->var_part[j].cur_loc)
8688 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8689 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8690 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8691 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8693 rtx new_loc = NULL;
8695 if (REG_P (loc[n_var_parts])
8696 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8697 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8698 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8699 == REGNO (loc2))
8701 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8702 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8703 mode, 0);
8704 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8705 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8706 if (new_loc)
8708 if (!REG_P (new_loc)
8709 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8710 new_loc = NULL;
8711 else
8712 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8715 else if (MEM_P (loc[n_var_parts])
8716 && GET_CODE (XEXP (loc2, 0)) == PLUS
8717 && REG_P (XEXP (XEXP (loc2, 0), 0))
8718 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8720 if ((REG_P (XEXP (loc[n_var_parts], 0))
8721 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8722 XEXP (XEXP (loc2, 0), 0))
8723 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8724 == GET_MODE_SIZE (mode))
8725 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8726 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8727 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8728 XEXP (XEXP (loc2, 0), 0))
8729 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8730 + GET_MODE_SIZE (mode)
8731 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8732 new_loc = adjust_address_nv (loc[n_var_parts],
8733 wider_mode, 0);
8736 if (new_loc)
8738 loc[n_var_parts] = new_loc;
8739 mode = wider_mode;
8740 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8741 i = j;
8744 ++n_var_parts;
8746 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8747 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8748 complete = false;
8750 if (! flag_var_tracking_uninit)
8751 initialized = VAR_INIT_STATUS_INITIALIZED;
8753 note_vl = NULL_RTX;
8754 if (!complete)
8755 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8756 else if (n_var_parts == 1)
8758 rtx expr_list;
8760 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8761 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8762 else
8763 expr_list = loc[0];
8765 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8767 else if (n_var_parts)
8769 rtx parallel;
8771 for (i = 0; i < n_var_parts; i++)
8772 loc[i]
8773 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8775 parallel = gen_rtx_PARALLEL (VOIDmode,
8776 gen_rtvec_v (n_var_parts, loc));
8777 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8778 parallel, initialized);
8781 if (where != EMIT_NOTE_BEFORE_INSN)
8783 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8784 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8785 NOTE_DURING_CALL_P (note) = true;
8787 else
8789 /* Make sure that the call related notes come first. */
8790 while (NEXT_INSN (insn)
8791 && NOTE_P (insn)
8792 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8793 && NOTE_DURING_CALL_P (insn))
8794 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8795 insn = NEXT_INSN (insn);
8796 if (NOTE_P (insn)
8797 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8798 && NOTE_DURING_CALL_P (insn))
8799 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8800 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8801 else
8802 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8804 NOTE_VAR_LOCATION (note) = note_vl;
8806 set_dv_changed (var->dv, false);
8807 gcc_assert (var->in_changed_variables);
8808 var->in_changed_variables = false;
8809 changed_variables->clear_slot (varp);
8811 /* Continue traversing the hash table. */
8812 return 1;
8815 /* While traversing changed_variables, push onto DATA (a stack of RTX
8816 values) entries that aren't user variables. */
8819 var_track_values_to_stack (variable_def **slot,
8820 vec<rtx, va_heap> *changed_values_stack)
8822 variable var = *slot;
8824 if (var->onepart == ONEPART_VALUE)
8825 changed_values_stack->safe_push (dv_as_value (var->dv));
8826 else if (var->onepart == ONEPART_DEXPR)
8827 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8829 return 1;
8832 /* Remove from changed_variables the entry whose DV corresponds to
8833 value or debug_expr VAL. */
8834 static void
8835 remove_value_from_changed_variables (rtx val)
8837 decl_or_value dv = dv_from_rtx (val);
8838 variable_def **slot;
8839 variable var;
8841 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8842 NO_INSERT);
8843 var = *slot;
8844 var->in_changed_variables = false;
8845 changed_variables->clear_slot (slot);
8848 /* If VAL (a value or debug_expr) has backlinks to variables actively
8849 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8850 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8851 have dependencies of their own to notify. */
8853 static void
8854 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8855 vec<rtx, va_heap> *changed_values_stack)
8857 variable_def **slot;
8858 variable var;
8859 loc_exp_dep *led;
8860 decl_or_value dv = dv_from_rtx (val);
8862 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8863 NO_INSERT);
8864 if (!slot)
8865 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8866 if (!slot)
8867 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8868 NO_INSERT);
8869 var = *slot;
8871 while ((led = VAR_LOC_DEP_LST (var)))
8873 decl_or_value ldv = led->dv;
8874 variable ivar;
8876 /* Deactivate and remove the backlink, as it was “used up”. It
8877 makes no sense to attempt to notify the same entity again:
8878 either it will be recomputed and re-register an active
8879 dependency, or it will still have the changed mark. */
8880 if (led->next)
8881 led->next->pprev = led->pprev;
8882 if (led->pprev)
8883 *led->pprev = led->next;
8884 led->next = NULL;
8885 led->pprev = NULL;
8887 if (dv_changed_p (ldv))
8888 continue;
8890 switch (dv_onepart_p (ldv))
8892 case ONEPART_VALUE:
8893 case ONEPART_DEXPR:
8894 set_dv_changed (ldv, true);
8895 changed_values_stack->safe_push (dv_as_rtx (ldv));
8896 break;
8898 case ONEPART_VDECL:
8899 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8900 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8901 variable_was_changed (ivar, NULL);
8902 break;
8904 case NOT_ONEPART:
8905 pool_free (loc_exp_dep_pool, led);
8906 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8907 if (ivar)
8909 int i = ivar->n_var_parts;
8910 while (i--)
8912 rtx loc = ivar->var_part[i].cur_loc;
8914 if (loc && GET_CODE (loc) == MEM
8915 && XEXP (loc, 0) == val)
8917 variable_was_changed (ivar, NULL);
8918 break;
8922 break;
8924 default:
8925 gcc_unreachable ();
8930 /* Take out of changed_variables any entries that don't refer to use
8931 variables. Back-propagate change notifications from values and
8932 debug_exprs to their active dependencies in HTAB or in
8933 CHANGED_VARIABLES. */
8935 static void
8936 process_changed_values (variable_table_type *htab)
8938 int i, n;
8939 rtx val;
8940 auto_vec<rtx, 20> changed_values_stack;
8942 /* Move values from changed_variables to changed_values_stack. */
8943 changed_variables
8944 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8945 (&changed_values_stack);
8947 /* Back-propagate change notifications in values while popping
8948 them from the stack. */
8949 for (n = i = changed_values_stack.length ();
8950 i > 0; i = changed_values_stack.length ())
8952 val = changed_values_stack.pop ();
8953 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8955 /* This condition will hold when visiting each of the entries
8956 originally in changed_variables. We can't remove them
8957 earlier because this could drop the backlinks before we got a
8958 chance to use them. */
8959 if (i == n)
8961 remove_value_from_changed_variables (val);
8962 n--;
8967 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8968 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8969 the notes shall be emitted before of after instruction INSN. */
8971 static void
8972 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8973 shared_hash vars)
8975 emit_note_data data;
8976 variable_table_type *htab = shared_hash_htab (vars);
8978 if (!changed_variables->elements ())
8979 return;
8981 if (MAY_HAVE_DEBUG_INSNS)
8982 process_changed_values (htab);
8984 data.insn = insn;
8985 data.where = where;
8986 data.vars = htab;
8988 changed_variables
8989 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8992 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8993 same variable in hash table DATA or is not there at all. */
8996 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8998 variable old_var, new_var;
9000 old_var = *slot;
9001 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9003 if (!new_var)
9005 /* Variable has disappeared. */
9006 variable empty_var = NULL;
9008 if (old_var->onepart == ONEPART_VALUE
9009 || old_var->onepart == ONEPART_DEXPR)
9011 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9012 if (empty_var)
9014 gcc_checking_assert (!empty_var->in_changed_variables);
9015 if (!VAR_LOC_1PAUX (old_var))
9017 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9018 VAR_LOC_1PAUX (empty_var) = NULL;
9020 else
9021 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9025 if (!empty_var)
9027 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9028 empty_var->dv = old_var->dv;
9029 empty_var->refcount = 0;
9030 empty_var->n_var_parts = 0;
9031 empty_var->onepart = old_var->onepart;
9032 empty_var->in_changed_variables = false;
9035 if (empty_var->onepart)
9037 /* Propagate the auxiliary data to (ultimately)
9038 changed_variables. */
9039 empty_var->var_part[0].loc_chain = NULL;
9040 empty_var->var_part[0].cur_loc = NULL;
9041 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9042 VAR_LOC_1PAUX (old_var) = NULL;
9044 variable_was_changed (empty_var, NULL);
9045 /* Continue traversing the hash table. */
9046 return 1;
9048 /* Update cur_loc and one-part auxiliary data, before new_var goes
9049 through variable_was_changed. */
9050 if (old_var != new_var && new_var->onepart)
9052 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9053 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9054 VAR_LOC_1PAUX (old_var) = NULL;
9055 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9057 if (variable_different_p (old_var, new_var))
9058 variable_was_changed (new_var, NULL);
9060 /* Continue traversing the hash table. */
9061 return 1;
9064 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9065 table DATA. */
9068 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9070 variable old_var, new_var;
9072 new_var = *slot;
9073 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9074 if (!old_var)
9076 int i;
9077 for (i = 0; i < new_var->n_var_parts; i++)
9078 new_var->var_part[i].cur_loc = NULL;
9079 variable_was_changed (new_var, NULL);
9082 /* Continue traversing the hash table. */
9083 return 1;
9086 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9087 NEW_SET. */
9089 static void
9090 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9091 dataflow_set *new_set)
9093 shared_hash_htab (old_set->vars)
9094 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9095 (shared_hash_htab (new_set->vars));
9096 shared_hash_htab (new_set->vars)
9097 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9098 (shared_hash_htab (old_set->vars));
9099 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9102 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9104 static rtx
9105 next_non_note_insn_var_location (rtx insn)
9107 while (insn)
9109 insn = NEXT_INSN (insn);
9110 if (insn == 0
9111 || !NOTE_P (insn)
9112 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9113 break;
9116 return insn;
9119 /* Emit the notes for changes of location parts in the basic block BB. */
9121 static void
9122 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9124 unsigned int i;
9125 micro_operation *mo;
9127 dataflow_set_clear (set);
9128 dataflow_set_copy (set, &VTI (bb)->in);
9130 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9132 rtx insn = mo->insn;
9133 rtx next_insn = next_non_note_insn_var_location (insn);
9135 switch (mo->type)
9137 case MO_CALL:
9138 dataflow_set_clear_at_call (set);
9139 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9141 rtx arguments = mo->u.loc, *p = &arguments, note;
9142 while (*p)
9144 XEXP (XEXP (*p, 0), 1)
9145 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9146 shared_hash_htab (set->vars));
9147 /* If expansion is successful, keep it in the list. */
9148 if (XEXP (XEXP (*p, 0), 1))
9149 p = &XEXP (*p, 1);
9150 /* Otherwise, if the following item is data_value for it,
9151 drop it too too. */
9152 else if (XEXP (*p, 1)
9153 && REG_P (XEXP (XEXP (*p, 0), 0))
9154 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9155 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9157 && REGNO (XEXP (XEXP (*p, 0), 0))
9158 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9159 0), 0)))
9160 *p = XEXP (XEXP (*p, 1), 1);
9161 /* Just drop this item. */
9162 else
9163 *p = XEXP (*p, 1);
9165 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9166 NOTE_VAR_LOCATION (note) = arguments;
9168 break;
9170 case MO_USE:
9172 rtx loc = mo->u.loc;
9174 if (REG_P (loc))
9175 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9176 else
9177 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9179 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9181 break;
9183 case MO_VAL_LOC:
9185 rtx loc = mo->u.loc;
9186 rtx val, vloc;
9187 tree var;
9189 if (GET_CODE (loc) == CONCAT)
9191 val = XEXP (loc, 0);
9192 vloc = XEXP (loc, 1);
9194 else
9196 val = NULL_RTX;
9197 vloc = loc;
9200 var = PAT_VAR_LOCATION_DECL (vloc);
9202 clobber_variable_part (set, NULL_RTX,
9203 dv_from_decl (var), 0, NULL_RTX);
9204 if (val)
9206 if (VAL_NEEDS_RESOLUTION (loc))
9207 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9208 set_variable_part (set, val, dv_from_decl (var), 0,
9209 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9210 INSERT);
9212 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9213 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9214 dv_from_decl (var), 0,
9215 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9216 INSERT);
9218 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9220 break;
9222 case MO_VAL_USE:
9224 rtx loc = mo->u.loc;
9225 rtx val, vloc, uloc;
9227 vloc = uloc = XEXP (loc, 1);
9228 val = XEXP (loc, 0);
9230 if (GET_CODE (val) == CONCAT)
9232 uloc = XEXP (val, 1);
9233 val = XEXP (val, 0);
9236 if (VAL_NEEDS_RESOLUTION (loc))
9237 val_resolve (set, val, vloc, insn);
9238 else
9239 val_store (set, val, uloc, insn, false);
9241 if (VAL_HOLDS_TRACK_EXPR (loc))
9243 if (GET_CODE (uloc) == REG)
9244 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9245 NULL);
9246 else if (GET_CODE (uloc) == MEM)
9247 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9248 NULL);
9251 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9253 break;
9255 case MO_VAL_SET:
9257 rtx loc = mo->u.loc;
9258 rtx val, vloc, uloc;
9259 rtx dstv, srcv;
9261 vloc = loc;
9262 uloc = XEXP (vloc, 1);
9263 val = XEXP (vloc, 0);
9264 vloc = uloc;
9266 if (GET_CODE (uloc) == SET)
9268 dstv = SET_DEST (uloc);
9269 srcv = SET_SRC (uloc);
9271 else
9273 dstv = uloc;
9274 srcv = NULL;
9277 if (GET_CODE (val) == CONCAT)
9279 dstv = vloc = XEXP (val, 1);
9280 val = XEXP (val, 0);
9283 if (GET_CODE (vloc) == SET)
9285 srcv = SET_SRC (vloc);
9287 gcc_assert (val != srcv);
9288 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9290 dstv = vloc = SET_DEST (vloc);
9292 if (VAL_NEEDS_RESOLUTION (loc))
9293 val_resolve (set, val, srcv, insn);
9295 else if (VAL_NEEDS_RESOLUTION (loc))
9297 gcc_assert (GET_CODE (uloc) == SET
9298 && GET_CODE (SET_SRC (uloc)) == REG);
9299 val_resolve (set, val, SET_SRC (uloc), insn);
9302 if (VAL_HOLDS_TRACK_EXPR (loc))
9304 if (VAL_EXPR_IS_CLOBBERED (loc))
9306 if (REG_P (uloc))
9307 var_reg_delete (set, uloc, true);
9308 else if (MEM_P (uloc))
9310 gcc_assert (MEM_P (dstv));
9311 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9312 var_mem_delete (set, dstv, true);
9315 else
9317 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9318 rtx src = NULL, dst = uloc;
9319 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9321 if (GET_CODE (uloc) == SET)
9323 src = SET_SRC (uloc);
9324 dst = SET_DEST (uloc);
9327 if (copied_p)
9329 status = find_src_status (set, src);
9331 src = find_src_set_src (set, src);
9334 if (REG_P (dst))
9335 var_reg_delete_and_set (set, dst, !copied_p,
9336 status, srcv);
9337 else if (MEM_P (dst))
9339 gcc_assert (MEM_P (dstv));
9340 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9341 var_mem_delete_and_set (set, dstv, !copied_p,
9342 status, srcv);
9346 else if (REG_P (uloc))
9347 var_regno_delete (set, REGNO (uloc));
9348 else if (MEM_P (uloc))
9350 gcc_checking_assert (GET_CODE (vloc) == MEM);
9351 gcc_checking_assert (vloc == dstv);
9352 if (vloc != dstv)
9353 clobber_overlapping_mems (set, vloc);
9356 val_store (set, val, dstv, insn, true);
9358 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9359 set->vars);
9361 break;
9363 case MO_SET:
9365 rtx loc = mo->u.loc;
9366 rtx set_src = NULL;
9368 if (GET_CODE (loc) == SET)
9370 set_src = SET_SRC (loc);
9371 loc = SET_DEST (loc);
9374 if (REG_P (loc))
9375 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9376 set_src);
9377 else
9378 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9379 set_src);
9381 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9382 set->vars);
9384 break;
9386 case MO_COPY:
9388 rtx loc = mo->u.loc;
9389 enum var_init_status src_status;
9390 rtx set_src = NULL;
9392 if (GET_CODE (loc) == SET)
9394 set_src = SET_SRC (loc);
9395 loc = SET_DEST (loc);
9398 src_status = find_src_status (set, set_src);
9399 set_src = find_src_set_src (set, set_src);
9401 if (REG_P (loc))
9402 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9403 else
9404 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9406 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9407 set->vars);
9409 break;
9411 case MO_USE_NO_VAR:
9413 rtx loc = mo->u.loc;
9415 if (REG_P (loc))
9416 var_reg_delete (set, loc, false);
9417 else
9418 var_mem_delete (set, loc, false);
9420 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9422 break;
9424 case MO_CLOBBER:
9426 rtx loc = mo->u.loc;
9428 if (REG_P (loc))
9429 var_reg_delete (set, loc, true);
9430 else
9431 var_mem_delete (set, loc, true);
9433 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9434 set->vars);
9436 break;
9438 case MO_ADJUST:
9439 set->stack_adjust += mo->u.adjust;
9440 break;
9445 /* Emit notes for the whole function. */
9447 static void
9448 vt_emit_notes (void)
9450 basic_block bb;
9451 dataflow_set cur;
9453 gcc_assert (!changed_variables->elements ());
9455 /* Free memory occupied by the out hash tables, as they aren't used
9456 anymore. */
9457 FOR_EACH_BB_FN (bb, cfun)
9458 dataflow_set_clear (&VTI (bb)->out);
9460 /* Enable emitting notes by functions (mainly by set_variable_part and
9461 delete_variable_part). */
9462 emit_notes = true;
9464 if (MAY_HAVE_DEBUG_INSNS)
9466 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9467 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9468 sizeof (loc_exp_dep), 64);
9471 dataflow_set_init (&cur);
9473 FOR_EACH_BB_FN (bb, cfun)
9475 /* Emit the notes for changes of variable locations between two
9476 subsequent basic blocks. */
9477 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9479 if (MAY_HAVE_DEBUG_INSNS)
9480 local_get_addr_cache = pointer_map_create ();
9482 /* Emit the notes for the changes in the basic block itself. */
9483 emit_notes_in_bb (bb, &cur);
9485 if (MAY_HAVE_DEBUG_INSNS)
9486 pointer_map_destroy (local_get_addr_cache);
9487 local_get_addr_cache = NULL;
9489 /* Free memory occupied by the in hash table, we won't need it
9490 again. */
9491 dataflow_set_clear (&VTI (bb)->in);
9493 #ifdef ENABLE_CHECKING
9494 shared_hash_htab (cur.vars)
9495 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9496 (shared_hash_htab (empty_shared_hash));
9497 #endif
9498 dataflow_set_destroy (&cur);
9500 if (MAY_HAVE_DEBUG_INSNS)
9501 delete dropped_values;
9502 dropped_values = NULL;
9504 emit_notes = false;
9507 /* If there is a declaration and offset associated with register/memory RTL
9508 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9510 static bool
9511 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9513 if (REG_P (rtl))
9515 if (REG_ATTRS (rtl))
9517 *declp = REG_EXPR (rtl);
9518 *offsetp = REG_OFFSET (rtl);
9519 return true;
9522 else if (GET_CODE (rtl) == PARALLEL)
9524 tree decl = NULL_TREE;
9525 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9526 int len = XVECLEN (rtl, 0), i;
9528 for (i = 0; i < len; i++)
9530 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9531 if (!REG_P (reg) || !REG_ATTRS (reg))
9532 break;
9533 if (!decl)
9534 decl = REG_EXPR (reg);
9535 if (REG_EXPR (reg) != decl)
9536 break;
9537 if (REG_OFFSET (reg) < offset)
9538 offset = REG_OFFSET (reg);
9541 if (i == len)
9543 *declp = decl;
9544 *offsetp = offset;
9545 return true;
9548 else if (MEM_P (rtl))
9550 if (MEM_ATTRS (rtl))
9552 *declp = MEM_EXPR (rtl);
9553 *offsetp = INT_MEM_OFFSET (rtl);
9554 return true;
9557 return false;
9560 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9561 of VAL. */
9563 static void
9564 record_entry_value (cselib_val *val, rtx rtl)
9566 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9568 ENTRY_VALUE_EXP (ev) = rtl;
9570 cselib_add_permanent_equiv (val, ev, get_insns ());
9573 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9575 static void
9576 vt_add_function_parameter (tree parm)
9578 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9579 rtx incoming = DECL_INCOMING_RTL (parm);
9580 tree decl;
9581 enum machine_mode mode;
9582 HOST_WIDE_INT offset;
9583 dataflow_set *out;
9584 decl_or_value dv;
9586 if (TREE_CODE (parm) != PARM_DECL)
9587 return;
9589 if (!decl_rtl || !incoming)
9590 return;
9592 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9593 return;
9595 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9596 rewrite the incoming location of parameters passed on the stack
9597 into MEMs based on the argument pointer, so that incoming doesn't
9598 depend on a pseudo. */
9599 if (MEM_P (incoming)
9600 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9601 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9602 && XEXP (XEXP (incoming, 0), 0)
9603 == crtl->args.internal_arg_pointer
9604 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9606 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9607 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9608 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9609 incoming
9610 = replace_equiv_address_nv (incoming,
9611 plus_constant (Pmode,
9612 arg_pointer_rtx, off));
9615 #ifdef HAVE_window_save
9616 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9617 If the target machine has an explicit window save instruction, the
9618 actual entry value is the corresponding OUTGOING_REGNO instead. */
9619 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9621 if (REG_P (incoming)
9622 && HARD_REGISTER_P (incoming)
9623 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9625 parm_reg_t p;
9626 p.incoming = incoming;
9627 incoming
9628 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9629 OUTGOING_REGNO (REGNO (incoming)), 0);
9630 p.outgoing = incoming;
9631 vec_safe_push (windowed_parm_regs, p);
9633 else if (GET_CODE (incoming) == PARALLEL)
9635 rtx outgoing
9636 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9637 int i;
9639 for (i = 0; i < XVECLEN (incoming, 0); i++)
9641 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9642 parm_reg_t p;
9643 p.incoming = reg;
9644 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9645 OUTGOING_REGNO (REGNO (reg)), 0);
9646 p.outgoing = reg;
9647 XVECEXP (outgoing, 0, i)
9648 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9649 XEXP (XVECEXP (incoming, 0, i), 1));
9650 vec_safe_push (windowed_parm_regs, p);
9653 incoming = outgoing;
9655 else if (MEM_P (incoming)
9656 && REG_P (XEXP (incoming, 0))
9657 && HARD_REGISTER_P (XEXP (incoming, 0)))
9659 rtx reg = XEXP (incoming, 0);
9660 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9662 parm_reg_t p;
9663 p.incoming = reg;
9664 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9665 p.outgoing = reg;
9666 vec_safe_push (windowed_parm_regs, p);
9667 incoming = replace_equiv_address_nv (incoming, reg);
9671 #endif
9673 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9675 if (MEM_P (incoming))
9677 /* This means argument is passed by invisible reference. */
9678 offset = 0;
9679 decl = parm;
9681 else
9683 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9684 return;
9685 offset += byte_lowpart_offset (GET_MODE (incoming),
9686 GET_MODE (decl_rtl));
9690 if (!decl)
9691 return;
9693 if (parm != decl)
9695 /* If that DECL_RTL wasn't a pseudo that got spilled to
9696 memory, bail out. Otherwise, the spill slot sharing code
9697 will force the memory to reference spill_slot_decl (%sfp),
9698 so we don't match above. That's ok, the pseudo must have
9699 referenced the entire parameter, so just reset OFFSET. */
9700 if (decl != get_spill_slot_decl (false))
9701 return;
9702 offset = 0;
9705 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9706 return;
9708 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9710 dv = dv_from_decl (parm);
9712 if (target_for_debug_bind (parm)
9713 /* We can't deal with these right now, because this kind of
9714 variable is single-part. ??? We could handle parallels
9715 that describe multiple locations for the same single
9716 value, but ATM we don't. */
9717 && GET_CODE (incoming) != PARALLEL)
9719 cselib_val *val;
9720 rtx lowpart;
9722 /* ??? We shouldn't ever hit this, but it may happen because
9723 arguments passed by invisible reference aren't dealt with
9724 above: incoming-rtl will have Pmode rather than the
9725 expected mode for the type. */
9726 if (offset)
9727 return;
9729 lowpart = var_lowpart (mode, incoming);
9730 if (!lowpart)
9731 return;
9733 val = cselib_lookup_from_insn (lowpart, mode, true,
9734 VOIDmode, get_insns ());
9736 /* ??? Float-typed values in memory are not handled by
9737 cselib. */
9738 if (val)
9740 preserve_value (val);
9741 set_variable_part (out, val->val_rtx, dv, offset,
9742 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9743 dv = dv_from_value (val->val_rtx);
9746 if (MEM_P (incoming))
9748 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9749 VOIDmode, get_insns ());
9750 if (val)
9752 preserve_value (val);
9753 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9758 if (REG_P (incoming))
9760 incoming = var_lowpart (mode, incoming);
9761 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9762 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9763 incoming);
9764 set_variable_part (out, incoming, dv, offset,
9765 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9766 if (dv_is_value_p (dv))
9768 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9769 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9770 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9772 enum machine_mode indmode
9773 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9774 rtx mem = gen_rtx_MEM (indmode, incoming);
9775 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9776 VOIDmode,
9777 get_insns ());
9778 if (val)
9780 preserve_value (val);
9781 record_entry_value (val, mem);
9782 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9783 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9788 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9790 int i;
9792 for (i = 0; i < XVECLEN (incoming, 0); i++)
9794 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9795 offset = REG_OFFSET (reg);
9796 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9797 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9798 set_variable_part (out, reg, dv, offset,
9799 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9802 else if (MEM_P (incoming))
9804 incoming = var_lowpart (mode, incoming);
9805 set_variable_part (out, incoming, dv, offset,
9806 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9810 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9812 static void
9813 vt_add_function_parameters (void)
9815 tree parm;
9817 for (parm = DECL_ARGUMENTS (current_function_decl);
9818 parm; parm = DECL_CHAIN (parm))
9819 vt_add_function_parameter (parm);
9821 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9823 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9825 if (TREE_CODE (vexpr) == INDIRECT_REF)
9826 vexpr = TREE_OPERAND (vexpr, 0);
9828 if (TREE_CODE (vexpr) == PARM_DECL
9829 && DECL_ARTIFICIAL (vexpr)
9830 && !DECL_IGNORED_P (vexpr)
9831 && DECL_NAMELESS (vexpr))
9832 vt_add_function_parameter (vexpr);
9836 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9837 ensure it isn't flushed during cselib_reset_table.
9838 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9839 has been eliminated. */
9841 static void
9842 vt_init_cfa_base (void)
9844 cselib_val *val;
9846 #ifdef FRAME_POINTER_CFA_OFFSET
9847 cfa_base_rtx = frame_pointer_rtx;
9848 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9849 #else
9850 cfa_base_rtx = arg_pointer_rtx;
9851 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9852 #endif
9853 if (cfa_base_rtx == hard_frame_pointer_rtx
9854 || !fixed_regs[REGNO (cfa_base_rtx)])
9856 cfa_base_rtx = NULL_RTX;
9857 return;
9859 if (!MAY_HAVE_DEBUG_INSNS)
9860 return;
9862 /* Tell alias analysis that cfa_base_rtx should share
9863 find_base_term value with stack pointer or hard frame pointer. */
9864 if (!frame_pointer_needed)
9865 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9866 else if (!crtl->stack_realign_tried)
9867 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9869 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9870 VOIDmode, get_insns ());
9871 preserve_value (val);
9872 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9875 /* Allocate and initialize the data structures for variable tracking
9876 and parse the RTL to get the micro operations. */
9878 static bool
9879 vt_initialize (void)
9881 basic_block bb;
9882 HOST_WIDE_INT fp_cfa_offset = -1;
9884 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9886 attrs_pool = create_alloc_pool ("attrs_def pool",
9887 sizeof (struct attrs_def), 1024);
9888 var_pool = create_alloc_pool ("variable_def pool",
9889 sizeof (struct variable_def)
9890 + (MAX_VAR_PARTS - 1)
9891 * sizeof (((variable)NULL)->var_part[0]), 64);
9892 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9893 sizeof (struct location_chain_def),
9894 1024);
9895 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9896 sizeof (struct shared_hash_def), 256);
9897 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9898 empty_shared_hash->refcount = 1;
9899 empty_shared_hash->htab = new variable_table_type (1);
9900 changed_variables = new variable_table_type (10);
9902 /* Init the IN and OUT sets. */
9903 FOR_ALL_BB_FN (bb, cfun)
9905 VTI (bb)->visited = false;
9906 VTI (bb)->flooded = false;
9907 dataflow_set_init (&VTI (bb)->in);
9908 dataflow_set_init (&VTI (bb)->out);
9909 VTI (bb)->permp = NULL;
9912 if (MAY_HAVE_DEBUG_INSNS)
9914 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9915 scratch_regs = BITMAP_ALLOC (NULL);
9916 valvar_pool = create_alloc_pool ("small variable_def pool",
9917 sizeof (struct variable_def), 256);
9918 preserved_values.create (256);
9919 global_get_addr_cache = pointer_map_create ();
9921 else
9923 scratch_regs = NULL;
9924 valvar_pool = NULL;
9925 global_get_addr_cache = NULL;
9928 if (MAY_HAVE_DEBUG_INSNS)
9930 rtx reg, expr;
9931 int ofst;
9932 cselib_val *val;
9934 #ifdef FRAME_POINTER_CFA_OFFSET
9935 reg = frame_pointer_rtx;
9936 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9937 #else
9938 reg = arg_pointer_rtx;
9939 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9940 #endif
9942 ofst -= INCOMING_FRAME_SP_OFFSET;
9944 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9945 VOIDmode, get_insns ());
9946 preserve_value (val);
9947 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9948 cselib_preserve_cfa_base_value (val, REGNO (reg));
9949 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9950 stack_pointer_rtx, -ofst);
9951 cselib_add_permanent_equiv (val, expr, get_insns ());
9953 if (ofst)
9955 val = cselib_lookup_from_insn (stack_pointer_rtx,
9956 GET_MODE (stack_pointer_rtx), 1,
9957 VOIDmode, get_insns ());
9958 preserve_value (val);
9959 expr = plus_constant (GET_MODE (reg), reg, ofst);
9960 cselib_add_permanent_equiv (val, expr, get_insns ());
9964 /* In order to factor out the adjustments made to the stack pointer or to
9965 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9966 instead of individual location lists, we're going to rewrite MEMs based
9967 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9968 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9969 resp. arg_pointer_rtx. We can do this either when there is no frame
9970 pointer in the function and stack adjustments are consistent for all
9971 basic blocks or when there is a frame pointer and no stack realignment.
9972 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9973 has been eliminated. */
9974 if (!frame_pointer_needed)
9976 rtx reg, elim;
9978 if (!vt_stack_adjustments ())
9979 return false;
9981 #ifdef FRAME_POINTER_CFA_OFFSET
9982 reg = frame_pointer_rtx;
9983 #else
9984 reg = arg_pointer_rtx;
9985 #endif
9986 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9987 if (elim != reg)
9989 if (GET_CODE (elim) == PLUS)
9990 elim = XEXP (elim, 0);
9991 if (elim == stack_pointer_rtx)
9992 vt_init_cfa_base ();
9995 else if (!crtl->stack_realign_tried)
9997 rtx reg, elim;
9999 #ifdef FRAME_POINTER_CFA_OFFSET
10000 reg = frame_pointer_rtx;
10001 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10002 #else
10003 reg = arg_pointer_rtx;
10004 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10005 #endif
10006 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10007 if (elim != reg)
10009 if (GET_CODE (elim) == PLUS)
10011 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10012 elim = XEXP (elim, 0);
10014 if (elim != hard_frame_pointer_rtx)
10015 fp_cfa_offset = -1;
10017 else
10018 fp_cfa_offset = -1;
10021 /* If the stack is realigned and a DRAP register is used, we're going to
10022 rewrite MEMs based on it representing incoming locations of parameters
10023 passed on the stack into MEMs based on the argument pointer. Although
10024 we aren't going to rewrite other MEMs, we still need to initialize the
10025 virtual CFA pointer in order to ensure that the argument pointer will
10026 be seen as a constant throughout the function.
10028 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10029 else if (stack_realign_drap)
10031 rtx reg, elim;
10033 #ifdef FRAME_POINTER_CFA_OFFSET
10034 reg = frame_pointer_rtx;
10035 #else
10036 reg = arg_pointer_rtx;
10037 #endif
10038 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10039 if (elim != reg)
10041 if (GET_CODE (elim) == PLUS)
10042 elim = XEXP (elim, 0);
10043 if (elim == hard_frame_pointer_rtx)
10044 vt_init_cfa_base ();
10048 hard_frame_pointer_adjustment = -1;
10050 vt_add_function_parameters ();
10052 FOR_EACH_BB_FN (bb, cfun)
10054 rtx insn;
10055 HOST_WIDE_INT pre, post = 0;
10056 basic_block first_bb, last_bb;
10058 if (MAY_HAVE_DEBUG_INSNS)
10060 cselib_record_sets_hook = add_with_sets;
10061 if (dump_file && (dump_flags & TDF_DETAILS))
10062 fprintf (dump_file, "first value: %i\n",
10063 cselib_get_next_uid ());
10066 first_bb = bb;
10067 for (;;)
10069 edge e;
10070 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10071 || ! single_pred_p (bb->next_bb))
10072 break;
10073 e = find_edge (bb, bb->next_bb);
10074 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10075 break;
10076 bb = bb->next_bb;
10078 last_bb = bb;
10080 /* Add the micro-operations to the vector. */
10081 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10083 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10084 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10085 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10086 insn = NEXT_INSN (insn))
10088 if (INSN_P (insn))
10090 if (!frame_pointer_needed)
10092 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10093 if (pre)
10095 micro_operation mo;
10096 mo.type = MO_ADJUST;
10097 mo.u.adjust = pre;
10098 mo.insn = insn;
10099 if (dump_file && (dump_flags & TDF_DETAILS))
10100 log_op_type (PATTERN (insn), bb, insn,
10101 MO_ADJUST, dump_file);
10102 VTI (bb)->mos.safe_push (mo);
10103 VTI (bb)->out.stack_adjust += pre;
10107 cselib_hook_called = false;
10108 adjust_insn (bb, insn);
10109 if (MAY_HAVE_DEBUG_INSNS)
10111 if (CALL_P (insn))
10112 prepare_call_arguments (bb, insn);
10113 cselib_process_insn (insn);
10114 if (dump_file && (dump_flags & TDF_DETAILS))
10116 print_rtl_single (dump_file, insn);
10117 dump_cselib_table (dump_file);
10120 if (!cselib_hook_called)
10121 add_with_sets (insn, 0, 0);
10122 cancel_changes (0);
10124 if (!frame_pointer_needed && post)
10126 micro_operation mo;
10127 mo.type = MO_ADJUST;
10128 mo.u.adjust = post;
10129 mo.insn = insn;
10130 if (dump_file && (dump_flags & TDF_DETAILS))
10131 log_op_type (PATTERN (insn), bb, insn,
10132 MO_ADJUST, dump_file);
10133 VTI (bb)->mos.safe_push (mo);
10134 VTI (bb)->out.stack_adjust += post;
10137 if (fp_cfa_offset != -1
10138 && hard_frame_pointer_adjustment == -1
10139 && fp_setter_insn (insn))
10141 vt_init_cfa_base ();
10142 hard_frame_pointer_adjustment = fp_cfa_offset;
10143 /* Disassociate sp from fp now. */
10144 if (MAY_HAVE_DEBUG_INSNS)
10146 cselib_val *v;
10147 cselib_invalidate_rtx (stack_pointer_rtx);
10148 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10149 VOIDmode);
10150 if (v && !cselib_preserved_value_p (v))
10152 cselib_set_value_sp_based (v);
10153 preserve_value (v);
10159 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10162 bb = last_bb;
10164 if (MAY_HAVE_DEBUG_INSNS)
10166 cselib_preserve_only_values ();
10167 cselib_reset_table (cselib_get_next_uid ());
10168 cselib_record_sets_hook = NULL;
10172 hard_frame_pointer_adjustment = -1;
10173 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10174 cfa_base_rtx = NULL_RTX;
10175 return true;
10178 /* This is *not* reset after each function. It gives each
10179 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10180 a unique label number. */
10182 static int debug_label_num = 1;
10184 /* Get rid of all debug insns from the insn stream. */
10186 static void
10187 delete_debug_insns (void)
10189 basic_block bb;
10190 rtx insn, next;
10192 if (!MAY_HAVE_DEBUG_INSNS)
10193 return;
10195 FOR_EACH_BB_FN (bb, cfun)
10197 FOR_BB_INSNS_SAFE (bb, insn, next)
10198 if (DEBUG_INSN_P (insn))
10200 tree decl = INSN_VAR_LOCATION_DECL (insn);
10201 if (TREE_CODE (decl) == LABEL_DECL
10202 && DECL_NAME (decl)
10203 && !DECL_RTL_SET_P (decl))
10205 PUT_CODE (insn, NOTE);
10206 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10207 NOTE_DELETED_LABEL_NAME (insn)
10208 = IDENTIFIER_POINTER (DECL_NAME (decl));
10209 SET_DECL_RTL (decl, insn);
10210 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10212 else
10213 delete_insn (insn);
10218 /* Run a fast, BB-local only version of var tracking, to take care of
10219 information that we don't do global analysis on, such that not all
10220 information is lost. If SKIPPED holds, we're skipping the global
10221 pass entirely, so we should try to use information it would have
10222 handled as well.. */
10224 static void
10225 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10227 /* ??? Just skip it all for now. */
10228 delete_debug_insns ();
10231 /* Free the data structures needed for variable tracking. */
10233 static void
10234 vt_finalize (void)
10236 basic_block bb;
10238 FOR_EACH_BB_FN (bb, cfun)
10240 VTI (bb)->mos.release ();
10243 FOR_ALL_BB_FN (bb, cfun)
10245 dataflow_set_destroy (&VTI (bb)->in);
10246 dataflow_set_destroy (&VTI (bb)->out);
10247 if (VTI (bb)->permp)
10249 dataflow_set_destroy (VTI (bb)->permp);
10250 XDELETE (VTI (bb)->permp);
10253 free_aux_for_blocks ();
10254 delete empty_shared_hash->htab;
10255 empty_shared_hash->htab = NULL;
10256 delete changed_variables;
10257 changed_variables = NULL;
10258 free_alloc_pool (attrs_pool);
10259 free_alloc_pool (var_pool);
10260 free_alloc_pool (loc_chain_pool);
10261 free_alloc_pool (shared_hash_pool);
10263 if (MAY_HAVE_DEBUG_INSNS)
10265 if (global_get_addr_cache)
10266 pointer_map_destroy (global_get_addr_cache);
10267 global_get_addr_cache = NULL;
10268 if (loc_exp_dep_pool)
10269 free_alloc_pool (loc_exp_dep_pool);
10270 loc_exp_dep_pool = NULL;
10271 free_alloc_pool (valvar_pool);
10272 preserved_values.release ();
10273 cselib_finish ();
10274 BITMAP_FREE (scratch_regs);
10275 scratch_regs = NULL;
10278 #ifdef HAVE_window_save
10279 vec_free (windowed_parm_regs);
10280 #endif
10282 if (vui_vec)
10283 XDELETEVEC (vui_vec);
10284 vui_vec = NULL;
10285 vui_allocated = 0;
10288 /* The entry point to variable tracking pass. */
10290 static inline unsigned int
10291 variable_tracking_main_1 (void)
10293 bool success;
10295 if (flag_var_tracking_assignments < 0)
10297 delete_debug_insns ();
10298 return 0;
10301 if (n_basic_blocks_for_fn (cfun) > 500 &&
10302 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10304 vt_debug_insns_local (true);
10305 return 0;
10308 mark_dfs_back_edges ();
10309 if (!vt_initialize ())
10311 vt_finalize ();
10312 vt_debug_insns_local (true);
10313 return 0;
10316 success = vt_find_locations ();
10318 if (!success && flag_var_tracking_assignments > 0)
10320 vt_finalize ();
10322 delete_debug_insns ();
10324 /* This is later restored by our caller. */
10325 flag_var_tracking_assignments = 0;
10327 success = vt_initialize ();
10328 gcc_assert (success);
10330 success = vt_find_locations ();
10333 if (!success)
10335 vt_finalize ();
10336 vt_debug_insns_local (false);
10337 return 0;
10340 if (dump_file && (dump_flags & TDF_DETAILS))
10342 dump_dataflow_sets ();
10343 dump_reg_info (dump_file);
10344 dump_flow_info (dump_file, dump_flags);
10347 timevar_push (TV_VAR_TRACKING_EMIT);
10348 vt_emit_notes ();
10349 timevar_pop (TV_VAR_TRACKING_EMIT);
10351 vt_finalize ();
10352 vt_debug_insns_local (false);
10353 return 0;
10356 unsigned int
10357 variable_tracking_main (void)
10359 unsigned int ret;
10360 int save = flag_var_tracking_assignments;
10362 ret = variable_tracking_main_1 ();
10364 flag_var_tracking_assignments = save;
10366 return ret;
10369 namespace {
10371 const pass_data pass_data_variable_tracking =
10373 RTL_PASS, /* type */
10374 "vartrack", /* name */
10375 OPTGROUP_NONE, /* optinfo_flags */
10376 TV_VAR_TRACKING, /* tv_id */
10377 0, /* properties_required */
10378 0, /* properties_provided */
10379 0, /* properties_destroyed */
10380 0, /* todo_flags_start */
10381 0, /* todo_flags_finish */
10384 class pass_variable_tracking : public rtl_opt_pass
10386 public:
10387 pass_variable_tracking (gcc::context *ctxt)
10388 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10391 /* opt_pass methods: */
10392 virtual bool gate (function *)
10394 return (flag_var_tracking && !targetm.delay_vartrack);
10397 virtual unsigned int execute (function *)
10399 return variable_tracking_main ();
10402 }; // class pass_variable_tracking
10404 } // anon namespace
10406 rtl_opt_pass *
10407 make_pass_variable_tracking (gcc::context *ctxt)
10409 return new pass_variable_tracking (ctxt);