2014-07-29 Ed Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / stmt.c
blob0aae085aa892e3d1ef06e4261f438063cc3ff46e
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
30 #include "rtl.h"
31 #include "hard-reg-set.h"
32 #include "tree.h"
33 #include "varasm.h"
34 #include "stor-layout.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "except.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expr.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "machmode.h"
44 #include "diagnostic-core.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "predict.h"
48 #include "optabs.h"
49 #include "target.h"
50 #include "pointer-set.h"
51 #include "basic-block.h"
52 #include "tree-ssa-alias.h"
53 #include "internal-fn.h"
54 #include "gimple-expr.h"
55 #include "is-a.h"
56 #include "gimple.h"
57 #include "regs.h"
58 #include "alloc-pool.h"
59 #include "pretty-print.h"
60 #include "params.h"
61 #include "dumpfile.h"
62 #include "builtins.h"
65 /* Functions and data structures for expanding case statements. */
67 /* Case label structure, used to hold info on labels within case
68 statements. We handle "range" labels; for a single-value label
69 as in C, the high and low limits are the same.
71 We start with a vector of case nodes sorted in ascending order, and
72 the default label as the last element in the vector. Before expanding
73 to RTL, we transform this vector into a list linked via the RIGHT
74 fields in the case_node struct. Nodes with higher case values are
75 later in the list.
77 Switch statements can be output in three forms. A branch table is
78 used if there are more than a few labels and the labels are dense
79 within the range between the smallest and largest case value. If a
80 branch table is used, no further manipulations are done with the case
81 node chain.
83 The alternative to the use of a branch table is to generate a series
84 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
85 and PARENT fields to hold a binary tree. Initially the tree is
86 totally unbalanced, with everything on the right. We balance the tree
87 with nodes on the left having lower case values than the parent
88 and nodes on the right having higher values. We then output the tree
89 in order.
91 For very small, suitable switch statements, we can generate a series
92 of simple bit test and branches instead. */
94 struct case_node
96 struct case_node *left; /* Left son in binary tree */
97 struct case_node *right; /* Right son in binary tree; also node chain */
98 struct case_node *parent; /* Parent of node in binary tree */
99 tree low; /* Lowest index value for this label */
100 tree high; /* Highest index value for this label */
101 tree code_label; /* Label to jump to when node matches */
102 int prob; /* Probability of taking this case. */
103 /* Probability of reaching subtree rooted at this node */
104 int subtree_prob;
107 typedef struct case_node case_node;
108 typedef struct case_node *case_node_ptr;
110 extern basic_block label_to_block_fn (struct function *, tree);
112 static bool check_unique_operand_names (tree, tree, tree);
113 static char *resolve_operand_name_1 (char *, tree, tree, tree);
114 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
115 static int node_has_low_bound (case_node_ptr, tree);
116 static int node_has_high_bound (case_node_ptr, tree);
117 static int node_is_bounded (case_node_ptr, tree);
118 static void emit_case_nodes (rtx, case_node_ptr, rtx, int, tree);
120 /* Return the rtx-label that corresponds to a LABEL_DECL,
121 creating it if necessary. */
124 label_rtx (tree label)
126 gcc_assert (TREE_CODE (label) == LABEL_DECL);
128 if (!DECL_RTL_SET_P (label))
130 rtx r = gen_label_rtx ();
131 SET_DECL_RTL (label, r);
132 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
133 LABEL_PRESERVE_P (r) = 1;
136 return DECL_RTL (label);
139 /* As above, but also put it on the forced-reference list of the
140 function that contains it. */
142 force_label_rtx (tree label)
144 rtx ref = label_rtx (label);
145 tree function = decl_function_context (label);
147 gcc_assert (function);
149 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref, forced_labels);
150 return ref;
153 /* Add an unconditional jump to LABEL as the next sequential instruction. */
155 void
156 emit_jump (rtx label)
158 do_pending_stack_adjust ();
159 emit_jump_insn (gen_jump (label));
160 emit_barrier ();
163 /* Handle goto statements and the labels that they can go to. */
165 /* Specify the location in the RTL code of a label LABEL,
166 which is a LABEL_DECL tree node.
168 This is used for the kind of label that the user can jump to with a
169 goto statement, and for alternatives of a switch or case statement.
170 RTL labels generated for loops and conditionals don't go through here;
171 they are generated directly at the RTL level, by other functions below.
173 Note that this has nothing to do with defining label *names*.
174 Languages vary in how they do that and what that even means. */
176 void
177 expand_label (tree label)
179 rtx label_r = label_rtx (label);
181 do_pending_stack_adjust ();
182 emit_label (label_r);
183 if (DECL_NAME (label))
184 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
186 if (DECL_NONLOCAL (label))
188 expand_builtin_setjmp_receiver (NULL);
189 nonlocal_goto_handler_labels
190 = gen_rtx_EXPR_LIST (VOIDmode, label_r,
191 nonlocal_goto_handler_labels);
194 if (FORCED_LABEL (label))
195 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
197 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
198 maybe_set_first_label_num (label_r);
201 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
202 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
203 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
204 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
205 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
206 constraint allows the use of a register operand. And, *IS_INOUT
207 will be true if the operand is read-write, i.e., if it is used as
208 an input as well as an output. If *CONSTRAINT_P is not in
209 canonical form, it will be made canonical. (Note that `+' will be
210 replaced with `=' as part of this process.)
212 Returns TRUE if all went well; FALSE if an error occurred. */
214 bool
215 parse_output_constraint (const char **constraint_p, int operand_num,
216 int ninputs, int noutputs, bool *allows_mem,
217 bool *allows_reg, bool *is_inout)
219 const char *constraint = *constraint_p;
220 const char *p;
222 /* Assume the constraint doesn't allow the use of either a register
223 or memory. */
224 *allows_mem = false;
225 *allows_reg = false;
227 /* Allow the `=' or `+' to not be at the beginning of the string,
228 since it wasn't explicitly documented that way, and there is a
229 large body of code that puts it last. Swap the character to
230 the front, so as not to uglify any place else. */
231 p = strchr (constraint, '=');
232 if (!p)
233 p = strchr (constraint, '+');
235 /* If the string doesn't contain an `=', issue an error
236 message. */
237 if (!p)
239 error ("output operand constraint lacks %<=%>");
240 return false;
243 /* If the constraint begins with `+', then the operand is both read
244 from and written to. */
245 *is_inout = (*p == '+');
247 /* Canonicalize the output constraint so that it begins with `='. */
248 if (p != constraint || *is_inout)
250 char *buf;
251 size_t c_len = strlen (constraint);
253 if (p != constraint)
254 warning (0, "output constraint %qc for operand %d "
255 "is not at the beginning",
256 *p, operand_num);
258 /* Make a copy of the constraint. */
259 buf = XALLOCAVEC (char, c_len + 1);
260 strcpy (buf, constraint);
261 /* Swap the first character and the `=' or `+'. */
262 buf[p - constraint] = buf[0];
263 /* Make sure the first character is an `='. (Until we do this,
264 it might be a `+'.) */
265 buf[0] = '=';
266 /* Replace the constraint with the canonicalized string. */
267 *constraint_p = ggc_alloc_string (buf, c_len);
268 constraint = *constraint_p;
271 /* Loop through the constraint string. */
272 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
273 switch (*p)
275 case '+':
276 case '=':
277 error ("operand constraint contains incorrectly positioned "
278 "%<+%> or %<=%>");
279 return false;
281 case '%':
282 if (operand_num + 1 == ninputs + noutputs)
284 error ("%<%%%> constraint used with last operand");
285 return false;
287 break;
289 case '?': case '!': case '*': case '&': case '#':
290 case 'E': case 'F': case 'G': case 'H':
291 case 's': case 'i': case 'n':
292 case 'I': case 'J': case 'K': case 'L': case 'M':
293 case 'N': case 'O': case 'P': case ',':
294 break;
296 case '0': case '1': case '2': case '3': case '4':
297 case '5': case '6': case '7': case '8': case '9':
298 case '[':
299 error ("matching constraint not valid in output operand");
300 return false;
302 case '<': case '>':
303 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
304 excepting those that expand_call created. So match memory
305 and hope. */
306 *allows_mem = true;
307 break;
309 case 'g': case 'X':
310 *allows_reg = true;
311 *allows_mem = true;
312 break;
314 default:
315 if (!ISALPHA (*p))
316 break;
317 enum constraint_num cn = lookup_constraint (p);
318 if (reg_class_for_constraint (cn) != NO_REGS
319 || insn_extra_address_constraint (cn))
320 *allows_reg = true;
321 else if (insn_extra_memory_constraint (cn))
322 *allows_mem = true;
323 else
325 /* Otherwise we can't assume anything about the nature of
326 the constraint except that it isn't purely registers.
327 Treat it like "g" and hope for the best. */
328 *allows_reg = true;
329 *allows_mem = true;
331 break;
334 return true;
337 /* Similar, but for input constraints. */
339 bool
340 parse_input_constraint (const char **constraint_p, int input_num,
341 int ninputs, int noutputs, int ninout,
342 const char * const * constraints,
343 bool *allows_mem, bool *allows_reg)
345 const char *constraint = *constraint_p;
346 const char *orig_constraint = constraint;
347 size_t c_len = strlen (constraint);
348 size_t j;
349 bool saw_match = false;
351 /* Assume the constraint doesn't allow the use of either
352 a register or memory. */
353 *allows_mem = false;
354 *allows_reg = false;
356 /* Make sure constraint has neither `=', `+', nor '&'. */
358 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
359 switch (constraint[j])
361 case '+': case '=': case '&':
362 if (constraint == orig_constraint)
364 error ("input operand constraint contains %qc", constraint[j]);
365 return false;
367 break;
369 case '%':
370 if (constraint == orig_constraint
371 && input_num + 1 == ninputs - ninout)
373 error ("%<%%%> constraint used with last operand");
374 return false;
376 break;
378 case '<': case '>':
379 case '?': case '!': case '*': case '#':
380 case 'E': case 'F': case 'G': case 'H':
381 case 's': case 'i': case 'n':
382 case 'I': case 'J': case 'K': case 'L': case 'M':
383 case 'N': case 'O': case 'P': case ',':
384 break;
386 /* Whether or not a numeric constraint allows a register is
387 decided by the matching constraint, and so there is no need
388 to do anything special with them. We must handle them in
389 the default case, so that we don't unnecessarily force
390 operands to memory. */
391 case '0': case '1': case '2': case '3': case '4':
392 case '5': case '6': case '7': case '8': case '9':
394 char *end;
395 unsigned long match;
397 saw_match = true;
399 match = strtoul (constraint + j, &end, 10);
400 if (match >= (unsigned long) noutputs)
402 error ("matching constraint references invalid operand number");
403 return false;
406 /* Try and find the real constraint for this dup. Only do this
407 if the matching constraint is the only alternative. */
408 if (*end == '\0'
409 && (j == 0 || (j == 1 && constraint[0] == '%')))
411 constraint = constraints[match];
412 *constraint_p = constraint;
413 c_len = strlen (constraint);
414 j = 0;
415 /* ??? At the end of the loop, we will skip the first part of
416 the matched constraint. This assumes not only that the
417 other constraint is an output constraint, but also that
418 the '=' or '+' come first. */
419 break;
421 else
422 j = end - constraint;
423 /* Anticipate increment at end of loop. */
424 j--;
426 /* Fall through. */
428 case 'g': case 'X':
429 *allows_reg = true;
430 *allows_mem = true;
431 break;
433 default:
434 if (! ISALPHA (constraint[j]))
436 error ("invalid punctuation %qc in constraint", constraint[j]);
437 return false;
439 enum constraint_num cn = lookup_constraint (constraint + j);
440 if (reg_class_for_constraint (cn) != NO_REGS
441 || insn_extra_address_constraint (cn))
442 *allows_reg = true;
443 else if (insn_extra_memory_constraint (cn))
444 *allows_mem = true;
445 else
447 /* Otherwise we can't assume anything about the nature of
448 the constraint except that it isn't purely registers.
449 Treat it like "g" and hope for the best. */
450 *allows_reg = true;
451 *allows_mem = true;
453 break;
456 if (saw_match && !*allows_reg)
457 warning (0, "matching constraint does not allow a register");
459 return true;
462 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
463 can be an asm-declared register. Called via walk_tree. */
465 static tree
466 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
467 void *data)
469 tree decl = *declp;
470 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
472 if (TREE_CODE (decl) == VAR_DECL)
474 if (DECL_HARD_REGISTER (decl)
475 && REG_P (DECL_RTL (decl))
476 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
478 rtx reg = DECL_RTL (decl);
480 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
481 return decl;
483 walk_subtrees = 0;
485 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
486 walk_subtrees = 0;
487 return NULL_TREE;
490 /* If there is an overlap between *REGS and DECL, return the first overlap
491 found. */
492 tree
493 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
495 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
499 /* A subroutine of expand_asm_operands. Check that all operand names
500 are unique. Return true if so. We rely on the fact that these names
501 are identifiers, and so have been canonicalized by get_identifier,
502 so all we need are pointer comparisons. */
504 static bool
505 check_unique_operand_names (tree outputs, tree inputs, tree labels)
507 tree i, j, i_name = NULL_TREE;
509 for (i = outputs; i ; i = TREE_CHAIN (i))
511 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
512 if (! i_name)
513 continue;
515 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
516 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
517 goto failure;
520 for (i = inputs; i ; i = TREE_CHAIN (i))
522 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
523 if (! i_name)
524 continue;
526 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
527 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
528 goto failure;
529 for (j = outputs; j ; j = TREE_CHAIN (j))
530 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
531 goto failure;
534 for (i = labels; i ; i = TREE_CHAIN (i))
536 i_name = TREE_PURPOSE (i);
537 if (! i_name)
538 continue;
540 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
541 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
542 goto failure;
543 for (j = inputs; j ; j = TREE_CHAIN (j))
544 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
545 goto failure;
548 return true;
550 failure:
551 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
552 return false;
555 /* A subroutine of expand_asm_operands. Resolve the names of the operands
556 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
557 STRING and in the constraints to those numbers. */
559 tree
560 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
562 char *buffer;
563 char *p;
564 const char *c;
565 tree t;
567 check_unique_operand_names (outputs, inputs, labels);
569 /* Substitute [<name>] in input constraint strings. There should be no
570 named operands in output constraints. */
571 for (t = inputs; t ; t = TREE_CHAIN (t))
573 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
574 if (strchr (c, '[') != NULL)
576 p = buffer = xstrdup (c);
577 while ((p = strchr (p, '[')) != NULL)
578 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
579 TREE_VALUE (TREE_PURPOSE (t))
580 = build_string (strlen (buffer), buffer);
581 free (buffer);
585 /* Now check for any needed substitutions in the template. */
586 c = TREE_STRING_POINTER (string);
587 while ((c = strchr (c, '%')) != NULL)
589 if (c[1] == '[')
590 break;
591 else if (ISALPHA (c[1]) && c[2] == '[')
592 break;
593 else
595 c += 1 + (c[1] == '%');
596 continue;
600 if (c)
602 /* OK, we need to make a copy so we can perform the substitutions.
603 Assume that we will not need extra space--we get to remove '['
604 and ']', which means we cannot have a problem until we have more
605 than 999 operands. */
606 buffer = xstrdup (TREE_STRING_POINTER (string));
607 p = buffer + (c - TREE_STRING_POINTER (string));
609 while ((p = strchr (p, '%')) != NULL)
611 if (p[1] == '[')
612 p += 1;
613 else if (ISALPHA (p[1]) && p[2] == '[')
614 p += 2;
615 else
617 p += 1 + (p[1] == '%');
618 continue;
621 p = resolve_operand_name_1 (p, outputs, inputs, labels);
624 string = build_string (strlen (buffer), buffer);
625 free (buffer);
628 return string;
631 /* A subroutine of resolve_operand_names. P points to the '[' for a
632 potential named operand of the form [<name>]. In place, replace
633 the name and brackets with a number. Return a pointer to the
634 balance of the string after substitution. */
636 static char *
637 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
639 char *q;
640 int op;
641 tree t;
643 /* Collect the operand name. */
644 q = strchr (++p, ']');
645 if (!q)
647 error ("missing close brace for named operand");
648 return strchr (p, '\0');
650 *q = '\0';
652 /* Resolve the name to a number. */
653 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
655 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
656 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
657 goto found;
659 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
661 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
662 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
663 goto found;
665 for (t = labels; t ; t = TREE_CHAIN (t), op++)
667 tree name = TREE_PURPOSE (t);
668 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
669 goto found;
672 error ("undefined named operand %qs", identifier_to_locale (p));
673 op = 0;
675 found:
676 /* Replace the name with the number. Unfortunately, not all libraries
677 get the return value of sprintf correct, so search for the end of the
678 generated string by hand. */
679 sprintf (--p, "%d", op);
680 p = strchr (p, '\0');
682 /* Verify the no extra buffer space assumption. */
683 gcc_assert (p <= q);
685 /* Shift the rest of the buffer down to fill the gap. */
686 memmove (p, q + 1, strlen (q + 1) + 1);
688 return p;
692 /* Generate RTL to return directly from the current function.
693 (That is, we bypass any return value.) */
695 void
696 expand_naked_return (void)
698 rtx end_label;
700 clear_pending_stack_adjust ();
701 do_pending_stack_adjust ();
703 end_label = naked_return_label;
704 if (end_label == 0)
705 end_label = naked_return_label = gen_label_rtx ();
707 emit_jump (end_label);
710 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
711 is the probability of jumping to LABEL. */
712 static void
713 do_jump_if_equal (enum machine_mode mode, rtx op0, rtx op1, rtx label,
714 int unsignedp, int prob)
716 gcc_assert (prob <= REG_BR_PROB_BASE);
717 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
718 NULL_RTX, NULL_RTX, label, prob);
721 /* Do the insertion of a case label into case_list. The labels are
722 fed to us in descending order from the sorted vector of case labels used
723 in the tree part of the middle end. So the list we construct is
724 sorted in ascending order.
726 LABEL is the case label to be inserted. LOW and HIGH are the bounds
727 against which the index is compared to jump to LABEL and PROB is the
728 estimated probability LABEL is reached from the switch statement. */
730 static struct case_node *
731 add_case_node (struct case_node *head, tree low, tree high,
732 tree label, int prob, alloc_pool case_node_pool)
734 struct case_node *r;
736 gcc_checking_assert (low);
737 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
739 /* Add this label to the chain. */
740 r = (struct case_node *) pool_alloc (case_node_pool);
741 r->low = low;
742 r->high = high;
743 r->code_label = label;
744 r->parent = r->left = NULL;
745 r->prob = prob;
746 r->subtree_prob = prob;
747 r->right = head;
748 return r;
751 /* Dump ROOT, a list or tree of case nodes, to file. */
753 static void
754 dump_case_nodes (FILE *f, struct case_node *root,
755 int indent_step, int indent_level)
757 if (root == 0)
758 return;
759 indent_level++;
761 dump_case_nodes (f, root->left, indent_step, indent_level);
763 fputs (";; ", f);
764 fprintf (f, "%*s", indent_step * indent_level, "");
765 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
766 if (!tree_int_cst_equal (root->low, root->high))
768 fprintf (f, " ... ");
769 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
771 fputs ("\n", f);
773 dump_case_nodes (f, root->right, indent_step, indent_level);
776 #ifndef HAVE_casesi
777 #define HAVE_casesi 0
778 #endif
780 #ifndef HAVE_tablejump
781 #define HAVE_tablejump 0
782 #endif
784 /* Return the smallest number of different values for which it is best to use a
785 jump-table instead of a tree of conditional branches. */
787 static unsigned int
788 case_values_threshold (void)
790 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
792 if (threshold == 0)
793 threshold = targetm.case_values_threshold ();
795 return threshold;
798 /* Return true if a switch should be expanded as a decision tree.
799 RANGE is the difference between highest and lowest case.
800 UNIQ is number of unique case node targets, not counting the default case.
801 COUNT is the number of comparisons needed, not counting the default case. */
803 static bool
804 expand_switch_as_decision_tree_p (tree range,
805 unsigned int uniq ATTRIBUTE_UNUSED,
806 unsigned int count)
808 int max_ratio;
810 /* If neither casesi or tablejump is available, or flag_jump_tables
811 over-ruled us, we really have no choice. */
812 if (!HAVE_casesi && !HAVE_tablejump)
813 return true;
814 if (!flag_jump_tables)
815 return true;
816 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
817 if (flag_pic)
818 return true;
819 #endif
821 /* If the switch is relatively small such that the cost of one
822 indirect jump on the target are higher than the cost of a
823 decision tree, go with the decision tree.
825 If range of values is much bigger than number of values,
826 or if it is too large to represent in a HOST_WIDE_INT,
827 make a sequence of conditional branches instead of a dispatch.
829 The definition of "much bigger" depends on whether we are
830 optimizing for size or for speed. If the former, the maximum
831 ratio range/count = 3, because this was found to be the optimal
832 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
833 10 is much older, and was probably selected after an extensive
834 benchmarking investigation on numerous platforms. Or maybe it
835 just made sense to someone at some point in the history of GCC,
836 who knows... */
837 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
838 if (count < case_values_threshold ()
839 || ! tree_fits_uhwi_p (range)
840 || compare_tree_int (range, max_ratio * count) > 0)
841 return true;
843 return false;
846 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
847 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
848 DEFAULT_PROB is the estimated probability that it jumps to
849 DEFAULT_LABEL.
851 We generate a binary decision tree to select the appropriate target
852 code. This is done as follows:
854 If the index is a short or char that we do not have
855 an insn to handle comparisons directly, convert it to
856 a full integer now, rather than letting each comparison
857 generate the conversion.
859 Load the index into a register.
861 The list of cases is rearranged into a binary tree,
862 nearly optimal assuming equal probability for each case.
864 The tree is transformed into RTL, eliminating redundant
865 test conditions at the same time.
867 If program flow could reach the end of the decision tree
868 an unconditional jump to the default code is emitted.
870 The above process is unaware of the CFG. The caller has to fix up
871 the CFG itself. This is done in cfgexpand.c. */
873 static void
874 emit_case_decision_tree (tree index_expr, tree index_type,
875 struct case_node *case_list, rtx default_label,
876 int default_prob)
878 rtx index = expand_normal (index_expr);
880 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
881 && ! have_insn_for (COMPARE, GET_MODE (index)))
883 int unsignedp = TYPE_UNSIGNED (index_type);
884 enum machine_mode wider_mode;
885 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
886 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
887 if (have_insn_for (COMPARE, wider_mode))
889 index = convert_to_mode (wider_mode, index, unsignedp);
890 break;
894 do_pending_stack_adjust ();
896 if (MEM_P (index))
898 index = copy_to_reg (index);
899 if (TREE_CODE (index_expr) == SSA_NAME)
900 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
903 balance_case_nodes (&case_list, NULL);
905 if (dump_file && (dump_flags & TDF_DETAILS))
907 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
908 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
909 dump_case_nodes (dump_file, case_list, indent_step, 0);
912 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
913 if (default_label)
914 emit_jump (default_label);
917 /* Return the sum of probabilities of outgoing edges of basic block BB. */
919 static int
920 get_outgoing_edge_probs (basic_block bb)
922 edge e;
923 edge_iterator ei;
924 int prob_sum = 0;
925 if (!bb)
926 return 0;
927 FOR_EACH_EDGE (e, ei, bb->succs)
928 prob_sum += e->probability;
929 return prob_sum;
932 /* Computes the conditional probability of jumping to a target if the branch
933 instruction is executed.
934 TARGET_PROB is the estimated probability of jumping to a target relative
935 to some basic block BB.
936 BASE_PROB is the probability of reaching the branch instruction relative
937 to the same basic block BB. */
939 static inline int
940 conditional_probability (int target_prob, int base_prob)
942 if (base_prob > 0)
944 gcc_assert (target_prob >= 0);
945 gcc_assert (target_prob <= base_prob);
946 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
948 return -1;
951 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
952 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
953 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
954 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
956 First, a jump insn is emitted. First we try "casesi". If that
957 fails, try "tablejump". A target *must* have one of them (or both).
959 Then, a table with the target labels is emitted.
961 The process is unaware of the CFG. The caller has to fix up
962 the CFG itself. This is done in cfgexpand.c. */
964 static void
965 emit_case_dispatch_table (tree index_expr, tree index_type,
966 struct case_node *case_list, rtx default_label,
967 tree minval, tree maxval, tree range,
968 basic_block stmt_bb)
970 int i, ncases;
971 struct case_node *n;
972 rtx *labelvec;
973 rtx fallback_label = label_rtx (case_list->code_label);
974 rtx table_label = gen_label_rtx ();
975 bool has_gaps = false;
976 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
977 int default_prob = default_edge ? default_edge->probability : 0;
978 int base = get_outgoing_edge_probs (stmt_bb);
979 bool try_with_tablejump = false;
981 int new_default_prob = conditional_probability (default_prob,
982 base);
984 if (! try_casesi (index_type, index_expr, minval, range,
985 table_label, default_label, fallback_label,
986 new_default_prob))
988 /* Index jumptables from zero for suitable values of minval to avoid
989 a subtraction. For the rationale see:
990 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
991 if (optimize_insn_for_speed_p ()
992 && compare_tree_int (minval, 0) > 0
993 && compare_tree_int (minval, 3) < 0)
995 minval = build_int_cst (index_type, 0);
996 range = maxval;
997 has_gaps = true;
999 try_with_tablejump = true;
1002 /* Get table of labels to jump to, in order of case index. */
1004 ncases = tree_to_shwi (range) + 1;
1005 labelvec = XALLOCAVEC (rtx, ncases);
1006 memset (labelvec, 0, ncases * sizeof (rtx));
1008 for (n = case_list; n; n = n->right)
1010 /* Compute the low and high bounds relative to the minimum
1011 value since that should fit in a HOST_WIDE_INT while the
1012 actual values may not. */
1013 HOST_WIDE_INT i_low
1014 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1015 n->low, minval));
1016 HOST_WIDE_INT i_high
1017 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1018 n->high, minval));
1019 HOST_WIDE_INT i;
1021 for (i = i_low; i <= i_high; i ++)
1022 labelvec[i]
1023 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1026 /* Fill in the gaps with the default. We may have gaps at
1027 the beginning if we tried to avoid the minval subtraction,
1028 so substitute some label even if the default label was
1029 deemed unreachable. */
1030 if (!default_label)
1031 default_label = fallback_label;
1032 for (i = 0; i < ncases; i++)
1033 if (labelvec[i] == 0)
1035 has_gaps = true;
1036 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1039 if (has_gaps)
1041 /* There is at least one entry in the jump table that jumps
1042 to default label. The default label can either be reached
1043 through the indirect jump or the direct conditional jump
1044 before that. Split the probability of reaching the
1045 default label among these two jumps. */
1046 new_default_prob = conditional_probability (default_prob/2,
1047 base);
1048 default_prob /= 2;
1049 base -= default_prob;
1051 else
1053 base -= default_prob;
1054 default_prob = 0;
1057 if (default_edge)
1058 default_edge->probability = default_prob;
1060 /* We have altered the probability of the default edge. So the probabilities
1061 of all other edges need to be adjusted so that it sums up to
1062 REG_BR_PROB_BASE. */
1063 if (base)
1065 edge e;
1066 edge_iterator ei;
1067 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1068 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1071 if (try_with_tablejump)
1073 bool ok = try_tablejump (index_type, index_expr, minval, range,
1074 table_label, default_label, new_default_prob);
1075 gcc_assert (ok);
1077 /* Output the table. */
1078 emit_label (table_label);
1080 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1081 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1082 gen_rtx_LABEL_REF (Pmode,
1083 table_label),
1084 gen_rtvec_v (ncases, labelvec),
1085 const0_rtx, const0_rtx));
1086 else
1087 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1088 gen_rtvec_v (ncases, labelvec)));
1090 /* Record no drop-through after the table. */
1091 emit_barrier ();
1094 /* Reset the aux field of all outgoing edges of basic block BB. */
1096 static inline void
1097 reset_out_edges_aux (basic_block bb)
1099 edge e;
1100 edge_iterator ei;
1101 FOR_EACH_EDGE (e, ei, bb->succs)
1102 e->aux = (void *)0;
1105 /* Compute the number of case labels that correspond to each outgoing edge of
1106 STMT. Record this information in the aux field of the edge. */
1108 static inline void
1109 compute_cases_per_edge (gimple stmt)
1111 basic_block bb = gimple_bb (stmt);
1112 reset_out_edges_aux (bb);
1113 int ncases = gimple_switch_num_labels (stmt);
1114 for (int i = ncases - 1; i >= 1; --i)
1116 tree elt = gimple_switch_label (stmt, i);
1117 tree lab = CASE_LABEL (elt);
1118 basic_block case_bb = label_to_block_fn (cfun, lab);
1119 edge case_edge = find_edge (bb, case_bb);
1120 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1124 /* Terminate a case (Pascal/Ada) or switch (C) statement
1125 in which ORIG_INDEX is the expression to be tested.
1126 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1127 type as given in the source before any compiler conversions.
1128 Generate the code to test it and jump to the right place. */
1130 void
1131 expand_case (gimple stmt)
1133 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1134 rtx default_label = NULL_RTX;
1135 unsigned int count, uniq;
1136 int i;
1137 int ncases = gimple_switch_num_labels (stmt);
1138 tree index_expr = gimple_switch_index (stmt);
1139 tree index_type = TREE_TYPE (index_expr);
1140 tree elt;
1141 basic_block bb = gimple_bb (stmt);
1143 /* A list of case labels; it is first built as a list and it may then
1144 be rearranged into a nearly balanced binary tree. */
1145 struct case_node *case_list = 0;
1147 /* A pool for case nodes. */
1148 alloc_pool case_node_pool;
1150 /* An ERROR_MARK occurs for various reasons including invalid data type.
1151 ??? Can this still happen, with GIMPLE and all? */
1152 if (index_type == error_mark_node)
1153 return;
1155 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1156 expressions being INTEGER_CST. */
1157 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1159 case_node_pool = create_alloc_pool ("struct case_node pool",
1160 sizeof (struct case_node),
1161 100);
1163 do_pending_stack_adjust ();
1165 /* Find the default case target label. */
1166 default_label = label_rtx (CASE_LABEL (gimple_switch_default_label (stmt)));
1167 edge default_edge = EDGE_SUCC (bb, 0);
1168 int default_prob = default_edge->probability;
1170 /* Get upper and lower bounds of case values. */
1171 elt = gimple_switch_label (stmt, 1);
1172 minval = fold_convert (index_type, CASE_LOW (elt));
1173 elt = gimple_switch_label (stmt, ncases - 1);
1174 if (CASE_HIGH (elt))
1175 maxval = fold_convert (index_type, CASE_HIGH (elt));
1176 else
1177 maxval = fold_convert (index_type, CASE_LOW (elt));
1179 /* Compute span of values. */
1180 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1182 /* Listify the labels queue and gather some numbers to decide
1183 how to expand this switch(). */
1184 uniq = 0;
1185 count = 0;
1186 struct pointer_set_t *seen_labels = pointer_set_create ();
1187 compute_cases_per_edge (stmt);
1189 for (i = ncases - 1; i >= 1; --i)
1191 elt = gimple_switch_label (stmt, i);
1192 tree low = CASE_LOW (elt);
1193 gcc_assert (low);
1194 tree high = CASE_HIGH (elt);
1195 gcc_assert (! high || tree_int_cst_lt (low, high));
1196 tree lab = CASE_LABEL (elt);
1198 /* Count the elements.
1199 A range counts double, since it requires two compares. */
1200 count++;
1201 if (high)
1202 count++;
1204 /* If we have not seen this label yet, then increase the
1205 number of unique case node targets seen. */
1206 if (!pointer_set_insert (seen_labels, lab))
1207 uniq++;
1209 /* The bounds on the case range, LOW and HIGH, have to be converted
1210 to case's index type TYPE. Note that the original type of the
1211 case index in the source code is usually "lost" during
1212 gimplification due to type promotion, but the case labels retain the
1213 original type. Make sure to drop overflow flags. */
1214 low = fold_convert (index_type, low);
1215 if (TREE_OVERFLOW (low))
1216 low = wide_int_to_tree (index_type, low);
1218 /* The canonical from of a case label in GIMPLE is that a simple case
1219 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1220 the back ends want simple cases to have high == low. */
1221 if (! high)
1222 high = low;
1223 high = fold_convert (index_type, high);
1224 if (TREE_OVERFLOW (high))
1225 high = wide_int_to_tree (index_type, high);
1227 basic_block case_bb = label_to_block_fn (cfun, lab);
1228 edge case_edge = find_edge (bb, case_bb);
1229 case_list = add_case_node (
1230 case_list, low, high, lab,
1231 case_edge->probability / (intptr_t)(case_edge->aux),
1232 case_node_pool);
1234 pointer_set_destroy (seen_labels);
1235 reset_out_edges_aux (bb);
1237 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1238 destination, such as one with a default case only.
1239 It also removes cases that are out of range for the switch
1240 type, so we should never get a zero here. */
1241 gcc_assert (count > 0);
1243 rtx before_case = get_last_insn ();
1245 /* Decide how to expand this switch.
1246 The two options at this point are a dispatch table (casesi or
1247 tablejump) or a decision tree. */
1249 if (expand_switch_as_decision_tree_p (range, uniq, count))
1250 emit_case_decision_tree (index_expr, index_type,
1251 case_list, default_label,
1252 default_prob);
1253 else
1254 emit_case_dispatch_table (index_expr, index_type,
1255 case_list, default_label,
1256 minval, maxval, range, bb);
1258 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1260 free_temp_slots ();
1261 free_alloc_pool (case_node_pool);
1264 /* Expand the dispatch to a short decrement chain if there are few cases
1265 to dispatch to. Likewise if neither casesi nor tablejump is available,
1266 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1267 tablejump. The index mode is always the mode of integer_type_node.
1268 Trap if no case matches the index.
1270 DISPATCH_INDEX is the index expression to switch on. It should be a
1271 memory or register operand.
1273 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1274 ascending order, be contiguous, starting with value 0, and contain only
1275 single-valued case labels. */
1277 void
1278 expand_sjlj_dispatch_table (rtx dispatch_index,
1279 vec<tree> dispatch_table)
1281 tree index_type = integer_type_node;
1282 enum machine_mode index_mode = TYPE_MODE (index_type);
1284 int ncases = dispatch_table.length ();
1286 do_pending_stack_adjust ();
1287 rtx before_case = get_last_insn ();
1289 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1290 labels. This covers more than 98% of the cases in libjava,
1291 and seems to be a reasonable compromise between the "old way"
1292 of expanding as a decision tree or dispatch table vs. the "new
1293 way" with decrement chain or dispatch table. */
1294 if (dispatch_table.length () <= 5
1295 || (!HAVE_casesi && !HAVE_tablejump)
1296 || !flag_jump_tables)
1298 /* Expand the dispatch as a decrement chain:
1300 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1304 if (index == 0) do_0; else index--;
1305 if (index == 0) do_1; else index--;
1307 if (index == 0) do_N; else index--;
1309 This is more efficient than a dispatch table on most machines.
1310 The last "index--" is redundant but the code is trivially dead
1311 and will be cleaned up by later passes. */
1312 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1313 rtx zero = CONST0_RTX (index_mode);
1314 for (int i = 0; i < ncases; i++)
1316 tree elt = dispatch_table[i];
1317 rtx lab = label_rtx (CASE_LABEL (elt));
1318 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1319 force_expand_binop (index_mode, sub_optab,
1320 index, CONST1_RTX (index_mode),
1321 index, 0, OPTAB_DIRECT);
1324 else
1326 /* Similar to expand_case, but much simpler. */
1327 struct case_node *case_list = 0;
1328 alloc_pool case_node_pool = create_alloc_pool ("struct sjlj_case pool",
1329 sizeof (struct case_node),
1330 ncases);
1331 tree index_expr = make_tree (index_type, dispatch_index);
1332 tree minval = build_int_cst (index_type, 0);
1333 tree maxval = CASE_LOW (dispatch_table.last ());
1334 tree range = maxval;
1335 rtx default_label = gen_label_rtx ();
1337 for (int i = ncases - 1; i >= 0; --i)
1339 tree elt = dispatch_table[i];
1340 tree low = CASE_LOW (elt);
1341 tree lab = CASE_LABEL (elt);
1342 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1345 emit_case_dispatch_table (index_expr, index_type,
1346 case_list, default_label,
1347 minval, maxval, range,
1348 BLOCK_FOR_INSN (before_case));
1349 emit_label (default_label);
1350 free_alloc_pool (case_node_pool);
1353 /* Dispatching something not handled? Trap! */
1354 expand_builtin_trap ();
1356 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1358 free_temp_slots ();
1362 /* Take an ordered list of case nodes
1363 and transform them into a near optimal binary tree,
1364 on the assumption that any target code selection value is as
1365 likely as any other.
1367 The transformation is performed by splitting the ordered
1368 list into two equal sections plus a pivot. The parts are
1369 then attached to the pivot as left and right branches. Each
1370 branch is then transformed recursively. */
1372 static void
1373 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1375 case_node_ptr np;
1377 np = *head;
1378 if (np)
1380 int i = 0;
1381 int ranges = 0;
1382 case_node_ptr *npp;
1383 case_node_ptr left;
1385 /* Count the number of entries on branch. Also count the ranges. */
1387 while (np)
1389 if (!tree_int_cst_equal (np->low, np->high))
1390 ranges++;
1392 i++;
1393 np = np->right;
1396 if (i > 2)
1398 /* Split this list if it is long enough for that to help. */
1399 npp = head;
1400 left = *npp;
1402 /* If there are just three nodes, split at the middle one. */
1403 if (i == 3)
1404 npp = &(*npp)->right;
1405 else
1407 /* Find the place in the list that bisects the list's total cost,
1408 where ranges count as 2.
1409 Here I gets half the total cost. */
1410 i = (i + ranges + 1) / 2;
1411 while (1)
1413 /* Skip nodes while their cost does not reach that amount. */
1414 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1415 i--;
1416 i--;
1417 if (i <= 0)
1418 break;
1419 npp = &(*npp)->right;
1422 *head = np = *npp;
1423 *npp = 0;
1424 np->parent = parent;
1425 np->left = left;
1427 /* Optimize each of the two split parts. */
1428 balance_case_nodes (&np->left, np);
1429 balance_case_nodes (&np->right, np);
1430 np->subtree_prob = np->prob;
1431 np->subtree_prob += np->left->subtree_prob;
1432 np->subtree_prob += np->right->subtree_prob;
1434 else
1436 /* Else leave this branch as one level,
1437 but fill in `parent' fields. */
1438 np = *head;
1439 np->parent = parent;
1440 np->subtree_prob = np->prob;
1441 for (; np->right; np = np->right)
1443 np->right->parent = np;
1444 (*head)->subtree_prob += np->right->subtree_prob;
1450 /* Search the parent sections of the case node tree
1451 to see if a test for the lower bound of NODE would be redundant.
1452 INDEX_TYPE is the type of the index expression.
1454 The instructions to generate the case decision tree are
1455 output in the same order as nodes are processed so it is
1456 known that if a parent node checks the range of the current
1457 node minus one that the current node is bounded at its lower
1458 span. Thus the test would be redundant. */
1460 static int
1461 node_has_low_bound (case_node_ptr node, tree index_type)
1463 tree low_minus_one;
1464 case_node_ptr pnode;
1466 /* If the lower bound of this node is the lowest value in the index type,
1467 we need not test it. */
1469 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1470 return 1;
1472 /* If this node has a left branch, the value at the left must be less
1473 than that at this node, so it cannot be bounded at the bottom and
1474 we need not bother testing any further. */
1476 if (node->left)
1477 return 0;
1479 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1480 node->low,
1481 build_int_cst (TREE_TYPE (node->low), 1));
1483 /* If the subtraction above overflowed, we can't verify anything.
1484 Otherwise, look for a parent that tests our value - 1. */
1486 if (! tree_int_cst_lt (low_minus_one, node->low))
1487 return 0;
1489 for (pnode = node->parent; pnode; pnode = pnode->parent)
1490 if (tree_int_cst_equal (low_minus_one, pnode->high))
1491 return 1;
1493 return 0;
1496 /* Search the parent sections of the case node tree
1497 to see if a test for the upper bound of NODE would be redundant.
1498 INDEX_TYPE is the type of the index expression.
1500 The instructions to generate the case decision tree are
1501 output in the same order as nodes are processed so it is
1502 known that if a parent node checks the range of the current
1503 node plus one that the current node is bounded at its upper
1504 span. Thus the test would be redundant. */
1506 static int
1507 node_has_high_bound (case_node_ptr node, tree index_type)
1509 tree high_plus_one;
1510 case_node_ptr pnode;
1512 /* If there is no upper bound, obviously no test is needed. */
1514 if (TYPE_MAX_VALUE (index_type) == NULL)
1515 return 1;
1517 /* If the upper bound of this node is the highest value in the type
1518 of the index expression, we need not test against it. */
1520 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1521 return 1;
1523 /* If this node has a right branch, the value at the right must be greater
1524 than that at this node, so it cannot be bounded at the top and
1525 we need not bother testing any further. */
1527 if (node->right)
1528 return 0;
1530 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1531 node->high,
1532 build_int_cst (TREE_TYPE (node->high), 1));
1534 /* If the addition above overflowed, we can't verify anything.
1535 Otherwise, look for a parent that tests our value + 1. */
1537 if (! tree_int_cst_lt (node->high, high_plus_one))
1538 return 0;
1540 for (pnode = node->parent; pnode; pnode = pnode->parent)
1541 if (tree_int_cst_equal (high_plus_one, pnode->low))
1542 return 1;
1544 return 0;
1547 /* Search the parent sections of the
1548 case node tree to see if both tests for the upper and lower
1549 bounds of NODE would be redundant. */
1551 static int
1552 node_is_bounded (case_node_ptr node, tree index_type)
1554 return (node_has_low_bound (node, index_type)
1555 && node_has_high_bound (node, index_type));
1559 /* Emit step-by-step code to select a case for the value of INDEX.
1560 The thus generated decision tree follows the form of the
1561 case-node binary tree NODE, whose nodes represent test conditions.
1562 INDEX_TYPE is the type of the index of the switch.
1564 Care is taken to prune redundant tests from the decision tree
1565 by detecting any boundary conditions already checked by
1566 emitted rtx. (See node_has_high_bound, node_has_low_bound
1567 and node_is_bounded, above.)
1569 Where the test conditions can be shown to be redundant we emit
1570 an unconditional jump to the target code. As a further
1571 optimization, the subordinates of a tree node are examined to
1572 check for bounded nodes. In this case conditional and/or
1573 unconditional jumps as a result of the boundary check for the
1574 current node are arranged to target the subordinates associated
1575 code for out of bound conditions on the current node.
1577 We can assume that when control reaches the code generated here,
1578 the index value has already been compared with the parents
1579 of this node, and determined to be on the same side of each parent
1580 as this node is. Thus, if this node tests for the value 51,
1581 and a parent tested for 52, we don't need to consider
1582 the possibility of a value greater than 51. If another parent
1583 tests for the value 50, then this node need not test anything. */
1585 static void
1586 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
1587 int default_prob, tree index_type)
1589 /* If INDEX has an unsigned type, we must make unsigned branches. */
1590 int unsignedp = TYPE_UNSIGNED (index_type);
1591 int probability;
1592 int prob = node->prob, subtree_prob = node->subtree_prob;
1593 enum machine_mode mode = GET_MODE (index);
1594 enum machine_mode imode = TYPE_MODE (index_type);
1596 /* Handle indices detected as constant during RTL expansion. */
1597 if (mode == VOIDmode)
1598 mode = imode;
1600 /* See if our parents have already tested everything for us.
1601 If they have, emit an unconditional jump for this node. */
1602 if (node_is_bounded (node, index_type))
1603 emit_jump (label_rtx (node->code_label));
1605 else if (tree_int_cst_equal (node->low, node->high))
1607 probability = conditional_probability (prob, subtree_prob + default_prob);
1608 /* Node is single valued. First see if the index expression matches
1609 this node and then check our children, if any. */
1610 do_jump_if_equal (mode, index,
1611 convert_modes (mode, imode,
1612 expand_normal (node->low),
1613 unsignedp),
1614 label_rtx (node->code_label), unsignedp, probability);
1615 /* Since this case is taken at this point, reduce its weight from
1616 subtree_weight. */
1617 subtree_prob -= prob;
1618 if (node->right != 0 && node->left != 0)
1620 /* This node has children on both sides.
1621 Dispatch to one side or the other
1622 by comparing the index value with this node's value.
1623 If one subtree is bounded, check that one first,
1624 so we can avoid real branches in the tree. */
1626 if (node_is_bounded (node->right, index_type))
1628 probability = conditional_probability (
1629 node->right->prob,
1630 subtree_prob + default_prob);
1631 emit_cmp_and_jump_insns (index,
1632 convert_modes
1633 (mode, imode,
1634 expand_normal (node->high),
1635 unsignedp),
1636 GT, NULL_RTX, mode, unsignedp,
1637 label_rtx (node->right->code_label),
1638 probability);
1639 emit_case_nodes (index, node->left, default_label, default_prob,
1640 index_type);
1643 else if (node_is_bounded (node->left, index_type))
1645 probability = conditional_probability (
1646 node->left->prob,
1647 subtree_prob + default_prob);
1648 emit_cmp_and_jump_insns (index,
1649 convert_modes
1650 (mode, imode,
1651 expand_normal (node->high),
1652 unsignedp),
1653 LT, NULL_RTX, mode, unsignedp,
1654 label_rtx (node->left->code_label),
1655 probability);
1656 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1659 /* If both children are single-valued cases with no
1660 children, finish up all the work. This way, we can save
1661 one ordered comparison. */
1662 else if (tree_int_cst_equal (node->right->low, node->right->high)
1663 && node->right->left == 0
1664 && node->right->right == 0
1665 && tree_int_cst_equal (node->left->low, node->left->high)
1666 && node->left->left == 0
1667 && node->left->right == 0)
1669 /* Neither node is bounded. First distinguish the two sides;
1670 then emit the code for one side at a time. */
1672 /* See if the value matches what the right hand side
1673 wants. */
1674 probability = conditional_probability (
1675 node->right->prob,
1676 subtree_prob + default_prob);
1677 do_jump_if_equal (mode, index,
1678 convert_modes (mode, imode,
1679 expand_normal (node->right->low),
1680 unsignedp),
1681 label_rtx (node->right->code_label),
1682 unsignedp, probability);
1684 /* See if the value matches what the left hand side
1685 wants. */
1686 probability = conditional_probability (
1687 node->left->prob,
1688 subtree_prob + default_prob);
1689 do_jump_if_equal (mode, index,
1690 convert_modes (mode, imode,
1691 expand_normal (node->left->low),
1692 unsignedp),
1693 label_rtx (node->left->code_label),
1694 unsignedp, probability);
1697 else
1699 /* Neither node is bounded. First distinguish the two sides;
1700 then emit the code for one side at a time. */
1702 tree test_label
1703 = build_decl (curr_insn_location (),
1704 LABEL_DECL, NULL_TREE, NULL_TREE);
1706 /* The default label could be reached either through the right
1707 subtree or the left subtree. Divide the probability
1708 equally. */
1709 probability = conditional_probability (
1710 node->right->subtree_prob + default_prob/2,
1711 subtree_prob + default_prob);
1712 /* See if the value is on the right. */
1713 emit_cmp_and_jump_insns (index,
1714 convert_modes
1715 (mode, imode,
1716 expand_normal (node->high),
1717 unsignedp),
1718 GT, NULL_RTX, mode, unsignedp,
1719 label_rtx (test_label),
1720 probability);
1721 default_prob /= 2;
1723 /* Value must be on the left.
1724 Handle the left-hand subtree. */
1725 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1726 /* If left-hand subtree does nothing,
1727 go to default. */
1728 if (default_label)
1729 emit_jump (default_label);
1731 /* Code branches here for the right-hand subtree. */
1732 expand_label (test_label);
1733 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1737 else if (node->right != 0 && node->left == 0)
1739 /* Here we have a right child but no left so we issue a conditional
1740 branch to default and process the right child.
1742 Omit the conditional branch to default if the right child
1743 does not have any children and is single valued; it would
1744 cost too much space to save so little time. */
1746 if (node->right->right || node->right->left
1747 || !tree_int_cst_equal (node->right->low, node->right->high))
1749 if (!node_has_low_bound (node, index_type))
1751 probability = conditional_probability (
1752 default_prob/2,
1753 subtree_prob + default_prob);
1754 emit_cmp_and_jump_insns (index,
1755 convert_modes
1756 (mode, imode,
1757 expand_normal (node->high),
1758 unsignedp),
1759 LT, NULL_RTX, mode, unsignedp,
1760 default_label,
1761 probability);
1762 default_prob /= 2;
1765 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1767 else
1769 probability = conditional_probability (
1770 node->right->subtree_prob,
1771 subtree_prob + default_prob);
1772 /* We cannot process node->right normally
1773 since we haven't ruled out the numbers less than
1774 this node's value. So handle node->right explicitly. */
1775 do_jump_if_equal (mode, index,
1776 convert_modes
1777 (mode, imode,
1778 expand_normal (node->right->low),
1779 unsignedp),
1780 label_rtx (node->right->code_label), unsignedp, probability);
1784 else if (node->right == 0 && node->left != 0)
1786 /* Just one subtree, on the left. */
1787 if (node->left->left || node->left->right
1788 || !tree_int_cst_equal (node->left->low, node->left->high))
1790 if (!node_has_high_bound (node, index_type))
1792 probability = conditional_probability (
1793 default_prob/2,
1794 subtree_prob + default_prob);
1795 emit_cmp_and_jump_insns (index,
1796 convert_modes
1797 (mode, imode,
1798 expand_normal (node->high),
1799 unsignedp),
1800 GT, NULL_RTX, mode, unsignedp,
1801 default_label,
1802 probability);
1803 default_prob /= 2;
1806 emit_case_nodes (index, node->left, default_label,
1807 default_prob, index_type);
1809 else
1811 probability = conditional_probability (
1812 node->left->subtree_prob,
1813 subtree_prob + default_prob);
1814 /* We cannot process node->left normally
1815 since we haven't ruled out the numbers less than
1816 this node's value. So handle node->left explicitly. */
1817 do_jump_if_equal (mode, index,
1818 convert_modes
1819 (mode, imode,
1820 expand_normal (node->left->low),
1821 unsignedp),
1822 label_rtx (node->left->code_label), unsignedp, probability);
1826 else
1828 /* Node is a range. These cases are very similar to those for a single
1829 value, except that we do not start by testing whether this node
1830 is the one to branch to. */
1832 if (node->right != 0 && node->left != 0)
1834 /* Node has subtrees on both sides.
1835 If the right-hand subtree is bounded,
1836 test for it first, since we can go straight there.
1837 Otherwise, we need to make a branch in the control structure,
1838 then handle the two subtrees. */
1839 tree test_label = 0;
1841 if (node_is_bounded (node->right, index_type))
1843 /* Right hand node is fully bounded so we can eliminate any
1844 testing and branch directly to the target code. */
1845 probability = conditional_probability (
1846 node->right->subtree_prob,
1847 subtree_prob + default_prob);
1848 emit_cmp_and_jump_insns (index,
1849 convert_modes
1850 (mode, imode,
1851 expand_normal (node->high),
1852 unsignedp),
1853 GT, NULL_RTX, mode, unsignedp,
1854 label_rtx (node->right->code_label),
1855 probability);
1857 else
1859 /* Right hand node requires testing.
1860 Branch to a label where we will handle it later. */
1862 test_label = build_decl (curr_insn_location (),
1863 LABEL_DECL, NULL_TREE, NULL_TREE);
1864 probability = conditional_probability (
1865 node->right->subtree_prob + default_prob/2,
1866 subtree_prob + default_prob);
1867 emit_cmp_and_jump_insns (index,
1868 convert_modes
1869 (mode, imode,
1870 expand_normal (node->high),
1871 unsignedp),
1872 GT, NULL_RTX, mode, unsignedp,
1873 label_rtx (test_label),
1874 probability);
1875 default_prob /= 2;
1878 /* Value belongs to this node or to the left-hand subtree. */
1880 probability = conditional_probability (
1881 prob,
1882 subtree_prob + default_prob);
1883 emit_cmp_and_jump_insns (index,
1884 convert_modes
1885 (mode, imode,
1886 expand_normal (node->low),
1887 unsignedp),
1888 GE, NULL_RTX, mode, unsignedp,
1889 label_rtx (node->code_label),
1890 probability);
1892 /* Handle the left-hand subtree. */
1893 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1895 /* If right node had to be handled later, do that now. */
1897 if (test_label)
1899 /* If the left-hand subtree fell through,
1900 don't let it fall into the right-hand subtree. */
1901 if (default_label)
1902 emit_jump (default_label);
1904 expand_label (test_label);
1905 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1909 else if (node->right != 0 && node->left == 0)
1911 /* Deal with values to the left of this node,
1912 if they are possible. */
1913 if (!node_has_low_bound (node, index_type))
1915 probability = conditional_probability (
1916 default_prob/2,
1917 subtree_prob + default_prob);
1918 emit_cmp_and_jump_insns (index,
1919 convert_modes
1920 (mode, imode,
1921 expand_normal (node->low),
1922 unsignedp),
1923 LT, NULL_RTX, mode, unsignedp,
1924 default_label,
1925 probability);
1926 default_prob /= 2;
1929 /* Value belongs to this node or to the right-hand subtree. */
1931 probability = conditional_probability (
1932 prob,
1933 subtree_prob + default_prob);
1934 emit_cmp_and_jump_insns (index,
1935 convert_modes
1936 (mode, imode,
1937 expand_normal (node->high),
1938 unsignedp),
1939 LE, NULL_RTX, mode, unsignedp,
1940 label_rtx (node->code_label),
1941 probability);
1943 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1946 else if (node->right == 0 && node->left != 0)
1948 /* Deal with values to the right of this node,
1949 if they are possible. */
1950 if (!node_has_high_bound (node, index_type))
1952 probability = conditional_probability (
1953 default_prob/2,
1954 subtree_prob + default_prob);
1955 emit_cmp_and_jump_insns (index,
1956 convert_modes
1957 (mode, imode,
1958 expand_normal (node->high),
1959 unsignedp),
1960 GT, NULL_RTX, mode, unsignedp,
1961 default_label,
1962 probability);
1963 default_prob /= 2;
1966 /* Value belongs to this node or to the left-hand subtree. */
1968 probability = conditional_probability (
1969 prob,
1970 subtree_prob + default_prob);
1971 emit_cmp_and_jump_insns (index,
1972 convert_modes
1973 (mode, imode,
1974 expand_normal (node->low),
1975 unsignedp),
1976 GE, NULL_RTX, mode, unsignedp,
1977 label_rtx (node->code_label),
1978 probability);
1980 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1983 else
1985 /* Node has no children so we check low and high bounds to remove
1986 redundant tests. Only one of the bounds can exist,
1987 since otherwise this node is bounded--a case tested already. */
1988 int high_bound = node_has_high_bound (node, index_type);
1989 int low_bound = node_has_low_bound (node, index_type);
1991 if (!high_bound && low_bound)
1993 probability = conditional_probability (
1994 default_prob,
1995 subtree_prob + default_prob);
1996 emit_cmp_and_jump_insns (index,
1997 convert_modes
1998 (mode, imode,
1999 expand_normal (node->high),
2000 unsignedp),
2001 GT, NULL_RTX, mode, unsignedp,
2002 default_label,
2003 probability);
2006 else if (!low_bound && high_bound)
2008 probability = conditional_probability (
2009 default_prob,
2010 subtree_prob + default_prob);
2011 emit_cmp_and_jump_insns (index,
2012 convert_modes
2013 (mode, imode,
2014 expand_normal (node->low),
2015 unsignedp),
2016 LT, NULL_RTX, mode, unsignedp,
2017 default_label,
2018 probability);
2020 else if (!low_bound && !high_bound)
2022 /* Widen LOW and HIGH to the same width as INDEX. */
2023 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2024 tree low = build1 (CONVERT_EXPR, type, node->low);
2025 tree high = build1 (CONVERT_EXPR, type, node->high);
2026 rtx low_rtx, new_index, new_bound;
2028 /* Instead of doing two branches, emit one unsigned branch for
2029 (index-low) > (high-low). */
2030 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2031 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2032 NULL_RTX, unsignedp,
2033 OPTAB_WIDEN);
2034 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2035 high, low),
2036 NULL_RTX, mode, EXPAND_NORMAL);
2038 probability = conditional_probability (
2039 default_prob,
2040 subtree_prob + default_prob);
2041 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2042 mode, 1, default_label, probability);
2045 emit_jump (label_rtx (node->code_label));