2014-07-29 Ed Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / postreload.c
blob69df18c9401ecd726d475cc230b6733d6bb264d3
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "cselib.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "tree.h"
43 #include "target.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "dbgcnt.h"
48 static int reload_cse_noop_set_p (rtx);
49 static bool reload_cse_simplify (rtx, rtx);
50 static void reload_cse_regs_1 (void);
51 static int reload_cse_simplify_set (rtx, rtx);
52 static int reload_cse_simplify_operands (rtx, rtx);
54 static void reload_combine (void);
55 static void reload_combine_note_use (rtx *, rtx, int, rtx);
56 static void reload_combine_note_store (rtx, const_rtx, void *);
58 static bool reload_cse_move2add (rtx);
59 static void move2add_note_store (rtx, const_rtx, void *);
61 /* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
64 static void
65 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
67 bool moves_converted;
68 reload_cse_regs_1 ();
69 reload_combine ();
70 moves_converted = reload_cse_move2add (first);
71 if (flag_expensive_optimizations)
73 if (moves_converted)
74 reload_combine ();
75 reload_cse_regs_1 ();
79 /* See whether a single set SET is a noop. */
80 static int
81 reload_cse_noop_set_p (rtx set)
83 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
84 return 0;
86 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
89 /* Try to simplify INSN. Return true if the CFG may have changed. */
90 static bool
91 reload_cse_simplify (rtx insn, rtx testreg)
93 rtx body = PATTERN (insn);
94 basic_block insn_bb = BLOCK_FOR_INSN (insn);
95 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
97 if (GET_CODE (body) == SET)
99 int count = 0;
101 /* Simplify even if we may think it is a no-op.
102 We may think a memory load of a value smaller than WORD_SIZE
103 is redundant because we haven't taken into account possible
104 implicit extension. reload_cse_simplify_set() will bring
105 this out, so it's safer to simplify before we delete. */
106 count += reload_cse_simplify_set (body, insn);
108 if (!count && reload_cse_noop_set_p (body))
110 rtx value = SET_DEST (body);
111 if (REG_P (value)
112 && ! REG_FUNCTION_VALUE_P (value))
113 value = 0;
114 if (check_for_inc_dec (insn))
115 delete_insn_and_edges (insn);
116 /* We're done with this insn. */
117 goto done;
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
125 else if (GET_CODE (body) == PARALLEL)
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
156 if (value)
157 break;
158 value = SET_DEST (part);
161 else if (GET_CODE (part) != CLOBBER)
162 break;
165 if (i < 0)
167 if (check_for_inc_dec (insn))
168 delete_insn_and_edges (insn);
169 /* We're done with this insn. */
170 goto done;
173 /* It's not a no-op, but we can try to simplify it. */
174 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
175 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
176 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
178 if (count > 0)
179 apply_change_group ();
180 else
181 reload_cse_simplify_operands (insn, testreg);
184 done:
185 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
188 /* Do a very simple CSE pass over the hard registers.
190 This function detects no-op moves where we happened to assign two
191 different pseudo-registers to the same hard register, and then
192 copied one to the other. Reload will generate a useless
193 instruction copying a register to itself.
195 This function also detects cases where we load a value from memory
196 into two different registers, and (if memory is more expensive than
197 registers) changes it to simply copy the first register into the
198 second register.
200 Another optimization is performed that scans the operands of each
201 instruction to see whether the value is already available in a
202 hard register. It then replaces the operand with the hard register
203 if possible, much like an optional reload would. */
205 static void
206 reload_cse_regs_1 (void)
208 bool cfg_changed = false;
209 basic_block bb;
210 rtx insn;
211 rtx testreg = gen_rtx_REG (VOIDmode, -1);
213 cselib_init (CSELIB_RECORD_MEMORY);
214 init_alias_analysis ();
216 FOR_EACH_BB_FN (bb, cfun)
217 FOR_BB_INSNS (bb, insn)
219 if (INSN_P (insn))
220 cfg_changed |= reload_cse_simplify (insn, testreg);
222 cselib_process_insn (insn);
225 /* Clean up. */
226 end_alias_analysis ();
227 cselib_finish ();
228 if (cfg_changed)
229 cleanup_cfg (0);
232 /* Try to simplify a single SET instruction. SET is the set pattern.
233 INSN is the instruction it came from.
234 This function only handles one case: if we set a register to a value
235 which is not a register, we try to find that value in some other register
236 and change the set into a register copy. */
238 static int
239 reload_cse_simplify_set (rtx set, rtx insn)
241 int did_change = 0;
242 int dreg;
243 rtx src;
244 reg_class_t dclass;
245 int old_cost;
246 cselib_val *val;
247 struct elt_loc_list *l;
248 #ifdef LOAD_EXTEND_OP
249 enum rtx_code extend_op = UNKNOWN;
250 #endif
251 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
253 dreg = true_regnum (SET_DEST (set));
254 if (dreg < 0)
255 return 0;
257 src = SET_SRC (set);
258 if (side_effects_p (src) || true_regnum (src) >= 0)
259 return 0;
261 dclass = REGNO_REG_CLASS (dreg);
263 #ifdef LOAD_EXTEND_OP
264 /* When replacing a memory with a register, we need to honor assumptions
265 that combine made wrt the contents of sign bits. We'll do this by
266 generating an extend instruction instead of a reg->reg copy. Thus
267 the destination must be a register that we can widen. */
268 if (MEM_P (src)
269 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
270 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
271 && !REG_P (SET_DEST (set)))
272 return 0;
273 #endif
275 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
276 if (! val)
277 return 0;
279 /* If memory loads are cheaper than register copies, don't change them. */
280 if (MEM_P (src))
281 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
282 else if (REG_P (src))
283 old_cost = register_move_cost (GET_MODE (src),
284 REGNO_REG_CLASS (REGNO (src)), dclass);
285 else
286 old_cost = set_src_cost (src, speed);
288 for (l = val->locs; l; l = l->next)
290 rtx this_rtx = l->loc;
291 int this_cost;
293 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
295 #ifdef LOAD_EXTEND_OP
296 if (extend_op != UNKNOWN)
298 wide_int result;
300 if (!CONST_SCALAR_INT_P (this_rtx))
301 continue;
303 switch (extend_op)
305 case ZERO_EXTEND:
306 result = wide_int::from (std::make_pair (this_rtx,
307 GET_MODE (src)),
308 BITS_PER_WORD, UNSIGNED);
309 break;
310 case SIGN_EXTEND:
311 result = wide_int::from (std::make_pair (this_rtx,
312 GET_MODE (src)),
313 BITS_PER_WORD, SIGNED);
314 break;
315 default:
316 gcc_unreachable ();
318 this_rtx = immed_wide_int_const (result, word_mode);
320 #endif
321 this_cost = set_src_cost (this_rtx, speed);
323 else if (REG_P (this_rtx))
325 #ifdef LOAD_EXTEND_OP
326 if (extend_op != UNKNOWN)
328 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
329 this_cost = set_src_cost (this_rtx, speed);
331 else
332 #endif
333 this_cost = register_move_cost (GET_MODE (this_rtx),
334 REGNO_REG_CLASS (REGNO (this_rtx)),
335 dclass);
337 else
338 continue;
340 /* If equal costs, prefer registers over anything else. That
341 tends to lead to smaller instructions on some machines. */
342 if (this_cost < old_cost
343 || (this_cost == old_cost
344 && REG_P (this_rtx)
345 && !REG_P (SET_SRC (set))))
347 #ifdef LOAD_EXTEND_OP
348 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
349 && extend_op != UNKNOWN
350 #ifdef CANNOT_CHANGE_MODE_CLASS
351 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
352 word_mode,
353 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
354 #endif
357 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
358 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
359 validate_change (insn, &SET_DEST (set), wide_dest, 1);
361 #endif
363 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
364 old_cost = this_cost, did_change = 1;
368 return did_change;
371 /* Try to replace operands in INSN with equivalent values that are already
372 in registers. This can be viewed as optional reloading.
374 For each non-register operand in the insn, see if any hard regs are
375 known to be equivalent to that operand. Record the alternatives which
376 can accept these hard registers. Among all alternatives, select the
377 ones which are better or equal to the one currently matching, where
378 "better" is in terms of '?' and '!' constraints. Among the remaining
379 alternatives, select the one which replaces most operands with
380 hard registers. */
382 static int
383 reload_cse_simplify_operands (rtx insn, rtx testreg)
385 int i, j;
387 /* For each operand, all registers that are equivalent to it. */
388 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
390 const char *constraints[MAX_RECOG_OPERANDS];
392 /* Vector recording how bad an alternative is. */
393 int *alternative_reject;
394 /* Vector recording how many registers can be introduced by choosing
395 this alternative. */
396 int *alternative_nregs;
397 /* Array of vectors recording, for each operand and each alternative,
398 which hard register to substitute, or -1 if the operand should be
399 left as it is. */
400 int *op_alt_regno[MAX_RECOG_OPERANDS];
401 /* Array of alternatives, sorted in order of decreasing desirability. */
402 int *alternative_order;
404 extract_insn (insn);
406 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
407 return 0;
409 /* Figure out which alternative currently matches. */
410 if (! constrain_operands (1))
411 fatal_insn_not_found (insn);
413 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
415 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
416 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
417 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
419 /* For each operand, find out which regs are equivalent. */
420 for (i = 0; i < recog_data.n_operands; i++)
422 cselib_val *v;
423 struct elt_loc_list *l;
424 rtx op;
426 CLEAR_HARD_REG_SET (equiv_regs[i]);
428 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
429 right, so avoid the problem here. Likewise if we have a constant
430 and the insn pattern doesn't tell us the mode we need. */
431 if (LABEL_P (recog_data.operand[i])
432 || (CONSTANT_P (recog_data.operand[i])
433 && recog_data.operand_mode[i] == VOIDmode))
434 continue;
436 op = recog_data.operand[i];
437 #ifdef LOAD_EXTEND_OP
438 if (MEM_P (op)
439 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
440 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
442 rtx set = single_set (insn);
444 /* We might have multiple sets, some of which do implicit
445 extension. Punt on this for now. */
446 if (! set)
447 continue;
448 /* If the destination is also a MEM or a STRICT_LOW_PART, no
449 extension applies.
450 Also, if there is an explicit extension, we don't have to
451 worry about an implicit one. */
452 else if (MEM_P (SET_DEST (set))
453 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
454 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
455 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
456 ; /* Continue ordinary processing. */
457 #ifdef CANNOT_CHANGE_MODE_CLASS
458 /* If the register cannot change mode to word_mode, it follows that
459 it cannot have been used in word_mode. */
460 else if (REG_P (SET_DEST (set))
461 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
462 word_mode,
463 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
464 ; /* Continue ordinary processing. */
465 #endif
466 /* If this is a straight load, make the extension explicit. */
467 else if (REG_P (SET_DEST (set))
468 && recog_data.n_operands == 2
469 && SET_SRC (set) == op
470 && SET_DEST (set) == recog_data.operand[1-i])
472 validate_change (insn, recog_data.operand_loc[i],
473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
474 word_mode, op),
476 validate_change (insn, recog_data.operand_loc[1-i],
477 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
479 if (! apply_change_group ())
480 return 0;
481 return reload_cse_simplify_operands (insn, testreg);
483 else
484 /* ??? There might be arithmetic operations with memory that are
485 safe to optimize, but is it worth the trouble? */
486 continue;
488 #endif /* LOAD_EXTEND_OP */
489 if (side_effects_p (op))
490 continue;
491 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
492 if (! v)
493 continue;
495 for (l = v->locs; l; l = l->next)
496 if (REG_P (l->loc))
497 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
500 for (i = 0; i < recog_data.n_operands; i++)
502 enum machine_mode mode;
503 int regno;
504 const char *p;
506 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
507 for (j = 0; j < recog_data.n_alternatives; j++)
508 op_alt_regno[i][j] = -1;
510 p = constraints[i] = recog_data.constraints[i];
511 mode = recog_data.operand_mode[i];
513 /* Add the reject values for each alternative given by the constraints
514 for this operand. */
515 j = 0;
516 while (*p != '\0')
518 char c = *p++;
519 if (c == ',')
520 j++;
521 else if (c == '?')
522 alternative_reject[j] += 3;
523 else if (c == '!')
524 alternative_reject[j] += 300;
527 /* We won't change operands which are already registers. We
528 also don't want to modify output operands. */
529 regno = true_regnum (recog_data.operand[i]);
530 if (regno >= 0
531 || constraints[i][0] == '='
532 || constraints[i][0] == '+')
533 continue;
535 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
537 enum reg_class rclass = NO_REGS;
539 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
540 continue;
542 SET_REGNO_RAW (testreg, regno);
543 PUT_MODE (testreg, mode);
545 /* We found a register equal to this operand. Now look for all
546 alternatives that can accept this register and have not been
547 assigned a register they can use yet. */
548 j = 0;
549 p = constraints[i];
550 for (;;)
552 char c = *p;
554 switch (c)
556 case 'g':
557 rclass = reg_class_subunion[rclass][GENERAL_REGS];
558 break;
560 default:
561 rclass
562 = (reg_class_subunion
563 [rclass]
564 [reg_class_for_constraint (lookup_constraint (p))]);
565 break;
567 case ',': case '\0':
568 /* See if REGNO fits this alternative, and set it up as the
569 replacement register if we don't have one for this
570 alternative yet and the operand being replaced is not
571 a cheap CONST_INT. */
572 if (op_alt_regno[i][j] == -1
573 && TEST_BIT (recog_data.enabled_alternatives, j)
574 && reg_fits_class_p (testreg, rclass, 0, mode)
575 && (!CONST_INT_P (recog_data.operand[i])
576 || (set_src_cost (recog_data.operand[i],
577 optimize_bb_for_speed_p
578 (BLOCK_FOR_INSN (insn)))
579 > set_src_cost (testreg,
580 optimize_bb_for_speed_p
581 (BLOCK_FOR_INSN (insn))))))
583 alternative_nregs[j]++;
584 op_alt_regno[i][j] = regno;
586 j++;
587 rclass = NO_REGS;
588 break;
590 p += CONSTRAINT_LEN (c, p);
592 if (c == '\0')
593 break;
598 /* Record all alternatives which are better or equal to the currently
599 matching one in the alternative_order array. */
600 for (i = j = 0; i < recog_data.n_alternatives; i++)
601 if (alternative_reject[i] <= alternative_reject[which_alternative])
602 alternative_order[j++] = i;
603 recog_data.n_alternatives = j;
605 /* Sort it. Given a small number of alternatives, a dumb algorithm
606 won't hurt too much. */
607 for (i = 0; i < recog_data.n_alternatives - 1; i++)
609 int best = i;
610 int best_reject = alternative_reject[alternative_order[i]];
611 int best_nregs = alternative_nregs[alternative_order[i]];
612 int tmp;
614 for (j = i + 1; j < recog_data.n_alternatives; j++)
616 int this_reject = alternative_reject[alternative_order[j]];
617 int this_nregs = alternative_nregs[alternative_order[j]];
619 if (this_reject < best_reject
620 || (this_reject == best_reject && this_nregs > best_nregs))
622 best = j;
623 best_reject = this_reject;
624 best_nregs = this_nregs;
628 tmp = alternative_order[best];
629 alternative_order[best] = alternative_order[i];
630 alternative_order[i] = tmp;
633 /* Substitute the operands as determined by op_alt_regno for the best
634 alternative. */
635 j = alternative_order[0];
637 for (i = 0; i < recog_data.n_operands; i++)
639 enum machine_mode mode = recog_data.operand_mode[i];
640 if (op_alt_regno[i][j] == -1)
641 continue;
643 validate_change (insn, recog_data.operand_loc[i],
644 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
647 for (i = recog_data.n_dups - 1; i >= 0; i--)
649 int op = recog_data.dup_num[i];
650 enum machine_mode mode = recog_data.operand_mode[op];
652 if (op_alt_regno[op][j] == -1)
653 continue;
655 validate_change (insn, recog_data.dup_loc[i],
656 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
659 return apply_change_group ();
662 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
663 addressing now.
664 This code might also be useful when reload gave up on reg+reg addressing
665 because of clashes between the return register and INDEX_REG_CLASS. */
667 /* The maximum number of uses of a register we can keep track of to
668 replace them with reg+reg addressing. */
669 #define RELOAD_COMBINE_MAX_USES 16
671 /* Describes a recorded use of a register. */
672 struct reg_use
674 /* The insn where a register has been used. */
675 rtx insn;
676 /* Points to the memory reference enclosing the use, if any, NULL_RTX
677 otherwise. */
678 rtx containing_mem;
679 /* Location of the register within INSN. */
680 rtx *usep;
681 /* The reverse uid of the insn. */
682 int ruid;
685 /* If the register is used in some unknown fashion, USE_INDEX is negative.
686 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
687 indicates where it is first set or clobbered.
688 Otherwise, USE_INDEX is the index of the last encountered use of the
689 register (which is first among these we have seen since we scan backwards).
690 USE_RUID indicates the first encountered, i.e. last, of these uses.
691 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
692 with a constant offset; OFFSET contains this constant in that case.
693 STORE_RUID is always meaningful if we only want to use a value in a
694 register in a different place: it denotes the next insn in the insn
695 stream (i.e. the last encountered) that sets or clobbers the register.
696 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
697 static struct
699 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
700 rtx offset;
701 int use_index;
702 int store_ruid;
703 int real_store_ruid;
704 int use_ruid;
705 bool all_offsets_match;
706 } reg_state[FIRST_PSEUDO_REGISTER];
708 /* Reverse linear uid. This is increased in reload_combine while scanning
709 the instructions from last to first. It is used to set last_label_ruid
710 and the store_ruid / use_ruid fields in reg_state. */
711 static int reload_combine_ruid;
713 /* The RUID of the last label we encountered in reload_combine. */
714 static int last_label_ruid;
716 /* The RUID of the last jump we encountered in reload_combine. */
717 static int last_jump_ruid;
719 /* The register numbers of the first and last index register. A value of
720 -1 in LAST_INDEX_REG indicates that we've previously computed these
721 values and found no suitable index registers. */
722 static int first_index_reg = -1;
723 static int last_index_reg;
725 #define LABEL_LIVE(LABEL) \
726 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
728 /* Subroutine of reload_combine_split_ruids, called to fix up a single
729 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
731 static inline void
732 reload_combine_split_one_ruid (int *pruid, int split_ruid)
734 if (*pruid > split_ruid)
735 (*pruid)++;
738 /* Called when we insert a new insn in a position we've already passed in
739 the scan. Examine all our state, increasing all ruids that are higher
740 than SPLIT_RUID by one in order to make room for a new insn. */
742 static void
743 reload_combine_split_ruids (int split_ruid)
745 unsigned i;
747 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
748 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
749 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
753 int j, idx = reg_state[i].use_index;
754 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
755 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
756 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
757 split_ruid);
758 if (idx < 0)
759 continue;
760 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
762 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
763 split_ruid);
768 /* Called when we are about to rescan a previously encountered insn with
769 reload_combine_note_use after modifying some part of it. This clears all
770 information about uses in that particular insn. */
772 static void
773 reload_combine_purge_insn_uses (rtx insn)
775 unsigned i;
777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
779 int j, k, idx = reg_state[i].use_index;
780 if (idx < 0)
781 continue;
782 j = k = RELOAD_COMBINE_MAX_USES;
783 while (j-- > idx)
785 if (reg_state[i].reg_use[j].insn != insn)
787 k--;
788 if (k != j)
789 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
792 reg_state[i].use_index = k;
796 /* Called when we need to forget about all uses of REGNO after an insn
797 which is identified by RUID. */
799 static void
800 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
802 int j, k, idx = reg_state[regno].use_index;
803 if (idx < 0)
804 return;
805 j = k = RELOAD_COMBINE_MAX_USES;
806 while (j-- > idx)
808 if (reg_state[regno].reg_use[j].ruid >= ruid)
810 k--;
811 if (k != j)
812 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
815 reg_state[regno].use_index = k;
818 /* Find the use of REGNO with the ruid that is highest among those
819 lower than RUID_LIMIT, and return it if it is the only use of this
820 reg in the insn. Return NULL otherwise. */
822 static struct reg_use *
823 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
825 int i, best_ruid = 0;
826 int use_idx = reg_state[regno].use_index;
827 struct reg_use *retval;
829 if (use_idx < 0)
830 return NULL;
831 retval = NULL;
832 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
834 struct reg_use *use = reg_state[regno].reg_use + i;
835 int this_ruid = use->ruid;
836 if (this_ruid >= ruid_limit)
837 continue;
838 if (this_ruid > best_ruid)
840 best_ruid = this_ruid;
841 retval = use;
843 else if (this_ruid == best_ruid)
844 retval = NULL;
846 if (last_label_ruid >= best_ruid)
847 return NULL;
848 return retval;
851 /* After we've moved an add insn, fix up any debug insns that occur
852 between the old location of the add and the new location. REG is
853 the destination register of the add insn; REPLACEMENT is the
854 SET_SRC of the add. FROM and TO specify the range in which we
855 should make this change on debug insns. */
857 static void
858 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
860 rtx insn;
861 for (insn = from; insn != to; insn = NEXT_INSN (insn))
863 rtx t;
865 if (!DEBUG_INSN_P (insn))
866 continue;
868 t = INSN_VAR_LOCATION_LOC (insn);
869 t = simplify_replace_rtx (t, reg, replacement);
870 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
874 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
875 with SRC in the insn described by USE, taking costs into account. Return
876 true if we made the replacement. */
878 static bool
879 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
881 rtx use_insn = use->insn;
882 rtx mem = use->containing_mem;
883 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
885 if (mem != NULL_RTX)
887 addr_space_t as = MEM_ADDR_SPACE (mem);
888 rtx oldaddr = XEXP (mem, 0);
889 rtx newaddr = NULL_RTX;
890 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
891 int new_cost;
893 newaddr = simplify_replace_rtx (oldaddr, reg, src);
894 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
896 XEXP (mem, 0) = newaddr;
897 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
898 XEXP (mem, 0) = oldaddr;
899 if (new_cost <= old_cost
900 && validate_change (use_insn,
901 &XEXP (mem, 0), newaddr, 0))
902 return true;
905 else
907 rtx new_set = single_set (use_insn);
908 if (new_set
909 && REG_P (SET_DEST (new_set))
910 && GET_CODE (SET_SRC (new_set)) == PLUS
911 && REG_P (XEXP (SET_SRC (new_set), 0))
912 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
914 rtx new_src;
915 int old_cost = set_src_cost (SET_SRC (new_set), speed);
917 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
918 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
920 if (set_src_cost (new_src, speed) <= old_cost
921 && validate_change (use_insn, &SET_SRC (new_set),
922 new_src, 0))
923 return true;
926 return false;
929 /* Called by reload_combine when scanning INSN. This function tries to detect
930 patterns where a constant is added to a register, and the result is used
931 in an address.
932 Return true if no further processing is needed on INSN; false if it wasn't
933 recognized and should be handled normally. */
935 static bool
936 reload_combine_recognize_const_pattern (rtx insn)
938 int from_ruid = reload_combine_ruid;
939 rtx set, pat, reg, src, addreg;
940 unsigned int regno;
941 struct reg_use *use;
942 bool must_move_add;
943 rtx add_moved_after_insn = NULL_RTX;
944 int add_moved_after_ruid = 0;
945 int clobbered_regno = -1;
947 set = single_set (insn);
948 if (set == NULL_RTX)
949 return false;
951 reg = SET_DEST (set);
952 src = SET_SRC (set);
953 if (!REG_P (reg)
954 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
955 || GET_MODE (reg) != Pmode
956 || reg == stack_pointer_rtx)
957 return false;
959 regno = REGNO (reg);
961 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
962 uses of REG1 inside an address, or inside another add insn. If
963 possible and profitable, merge the addition into subsequent
964 uses. */
965 if (GET_CODE (src) != PLUS
966 || !REG_P (XEXP (src, 0))
967 || !CONSTANT_P (XEXP (src, 1)))
968 return false;
970 addreg = XEXP (src, 0);
971 must_move_add = rtx_equal_p (reg, addreg);
973 pat = PATTERN (insn);
974 if (must_move_add && set != pat)
976 /* We have to be careful when moving the add; apart from the
977 single_set there may also be clobbers. Recognize one special
978 case, that of one clobber alongside the set (likely a clobber
979 of the CC register). */
980 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
981 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
982 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
983 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
984 return false;
985 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
990 use = reload_combine_closest_single_use (regno, from_ruid);
992 if (use)
993 /* Start the search for the next use from here. */
994 from_ruid = use->ruid;
996 if (use && GET_MODE (*use->usep) == Pmode)
998 bool delete_add = false;
999 rtx use_insn = use->insn;
1000 int use_ruid = use->ruid;
1002 /* Avoid moving the add insn past a jump. */
1003 if (must_move_add && use_ruid <= last_jump_ruid)
1004 break;
1006 /* If the add clobbers another hard reg in parallel, don't move
1007 it past a real set of this hard reg. */
1008 if (must_move_add && clobbered_regno >= 0
1009 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1010 break;
1012 #ifdef HAVE_cc0
1013 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1014 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1015 break;
1016 #endif
1018 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1019 /* Avoid moving a use of ADDREG past a point where it is stored. */
1020 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1021 break;
1023 /* We also must not move the addition past an insn that sets
1024 the same register, unless we can combine two add insns. */
1025 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1027 if (use->containing_mem == NULL_RTX)
1028 delete_add = true;
1029 else
1030 break;
1033 if (try_replace_in_use (use, reg, src))
1035 reload_combine_purge_insn_uses (use_insn);
1036 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1037 use_ruid, NULL_RTX);
1039 if (delete_add)
1041 fixup_debug_insns (reg, src, insn, use_insn);
1042 delete_insn (insn);
1043 return true;
1045 if (must_move_add)
1047 add_moved_after_insn = use_insn;
1048 add_moved_after_ruid = use_ruid;
1050 continue;
1053 /* If we get here, we couldn't handle this use. */
1054 if (must_move_add)
1055 break;
1057 while (use);
1059 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1060 /* Process the add normally. */
1061 return false;
1063 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1065 reorder_insns (insn, insn, add_moved_after_insn);
1066 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1067 reload_combine_split_ruids (add_moved_after_ruid - 1);
1068 reload_combine_note_use (&PATTERN (insn), insn,
1069 add_moved_after_ruid, NULL_RTX);
1070 reg_state[regno].store_ruid = add_moved_after_ruid;
1072 return true;
1075 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1076 can handle and improve. Return true if no further processing is needed on
1077 INSN; false if it wasn't recognized and should be handled normally. */
1079 static bool
1080 reload_combine_recognize_pattern (rtx insn)
1082 rtx set, reg, src;
1083 unsigned int regno;
1085 set = single_set (insn);
1086 if (set == NULL_RTX)
1087 return false;
1089 reg = SET_DEST (set);
1090 src = SET_SRC (set);
1091 if (!REG_P (reg)
1092 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1093 return false;
1095 regno = REGNO (reg);
1097 /* Look for (set (REGX) (CONST_INT))
1098 (set (REGX) (PLUS (REGX) (REGY)))
1100 ... (MEM (REGX)) ...
1101 and convert it to
1102 (set (REGZ) (CONST_INT))
1104 ... (MEM (PLUS (REGZ) (REGY)))... .
1106 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1107 and that we know all uses of REGX before it dies.
1108 Also, explicitly check that REGX != REGY; our life information
1109 does not yet show whether REGY changes in this insn. */
1111 if (GET_CODE (src) == PLUS
1112 && reg_state[regno].all_offsets_match
1113 && last_index_reg != -1
1114 && REG_P (XEXP (src, 1))
1115 && rtx_equal_p (XEXP (src, 0), reg)
1116 && !rtx_equal_p (XEXP (src, 1), reg)
1117 && reg_state[regno].use_index >= 0
1118 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1119 && last_label_ruid < reg_state[regno].use_ruid)
1121 rtx base = XEXP (src, 1);
1122 rtx prev = prev_nonnote_nondebug_insn (insn);
1123 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1124 rtx index_reg = NULL_RTX;
1125 rtx reg_sum = NULL_RTX;
1126 int i;
1128 /* Now we need to set INDEX_REG to an index register (denoted as
1129 REGZ in the illustration above) and REG_SUM to the expression
1130 register+register that we want to use to substitute uses of REG
1131 (typically in MEMs) with. First check REG and BASE for being
1132 index registers; we can use them even if they are not dead. */
1133 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1134 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1135 REGNO (base)))
1137 index_reg = reg;
1138 reg_sum = src;
1140 else
1142 /* Otherwise, look for a free index register. Since we have
1143 checked above that neither REG nor BASE are index registers,
1144 if we find anything at all, it will be different from these
1145 two registers. */
1146 for (i = first_index_reg; i <= last_index_reg; i++)
1148 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1149 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1150 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1151 && (call_used_regs[i] || df_regs_ever_live_p (i))
1152 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1153 && !fixed_regs[i] && !global_regs[i]
1154 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1155 && targetm.hard_regno_scratch_ok (i))
1157 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1158 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1159 break;
1164 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1165 (REGY), i.e. BASE, is not clobbered before the last use we'll
1166 create. */
1167 if (reg_sum
1168 && prev_set
1169 && CONST_INT_P (SET_SRC (prev_set))
1170 && rtx_equal_p (SET_DEST (prev_set), reg)
1171 && (reg_state[REGNO (base)].store_ruid
1172 <= reg_state[regno].use_ruid))
1174 /* Change destination register and, if necessary, the constant
1175 value in PREV, the constant loading instruction. */
1176 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1177 if (reg_state[regno].offset != const0_rtx)
1178 validate_change (prev,
1179 &SET_SRC (prev_set),
1180 GEN_INT (INTVAL (SET_SRC (prev_set))
1181 + INTVAL (reg_state[regno].offset)),
1184 /* Now for every use of REG that we have recorded, replace REG
1185 with REG_SUM. */
1186 for (i = reg_state[regno].use_index;
1187 i < RELOAD_COMBINE_MAX_USES; i++)
1188 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1189 reg_state[regno].reg_use[i].usep,
1190 /* Each change must have its own
1191 replacement. */
1192 reg_sum, 1);
1194 if (apply_change_group ())
1196 struct reg_use *lowest_ruid = NULL;
1198 /* For every new use of REG_SUM, we have to record the use
1199 of BASE therein, i.e. operand 1. */
1200 for (i = reg_state[regno].use_index;
1201 i < RELOAD_COMBINE_MAX_USES; i++)
1203 struct reg_use *use = reg_state[regno].reg_use + i;
1204 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1205 use->ruid, use->containing_mem);
1206 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1207 lowest_ruid = use;
1210 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1212 /* Delete the reg-reg addition. */
1213 delete_insn (insn);
1215 if (reg_state[regno].offset != const0_rtx)
1216 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1217 are now invalid. */
1218 remove_reg_equal_equiv_notes (prev);
1220 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1221 return true;
1225 return false;
1228 static void
1229 reload_combine (void)
1231 rtx insn, prev;
1232 basic_block bb;
1233 unsigned int r;
1234 int min_labelno, n_labels;
1235 HARD_REG_SET ever_live_at_start, *label_live;
1237 /* To avoid wasting too much time later searching for an index register,
1238 determine the minimum and maximum index register numbers. */
1239 if (INDEX_REG_CLASS == NO_REGS)
1240 last_index_reg = -1;
1241 else if (first_index_reg == -1 && last_index_reg == 0)
1243 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1244 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1246 if (first_index_reg == -1)
1247 first_index_reg = r;
1249 last_index_reg = r;
1252 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1253 to -1 so we'll know to quit early the next time we get here. */
1254 if (first_index_reg == -1)
1256 last_index_reg = -1;
1257 return;
1261 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1262 information is a bit fuzzy immediately after reload, but it's
1263 still good enough to determine which registers are live at a jump
1264 destination. */
1265 min_labelno = get_first_label_num ();
1266 n_labels = max_label_num () - min_labelno;
1267 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1268 CLEAR_HARD_REG_SET (ever_live_at_start);
1270 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1272 insn = BB_HEAD (bb);
1273 if (LABEL_P (insn))
1275 HARD_REG_SET live;
1276 bitmap live_in = df_get_live_in (bb);
1278 REG_SET_TO_HARD_REG_SET (live, live_in);
1279 compute_use_by_pseudos (&live, live_in);
1280 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1281 IOR_HARD_REG_SET (ever_live_at_start, live);
1285 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1286 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1287 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1289 reg_state[r].store_ruid = 0;
1290 reg_state[r].real_store_ruid = 0;
1291 if (fixed_regs[r])
1292 reg_state[r].use_index = -1;
1293 else
1294 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1297 for (insn = get_last_insn (); insn; insn = prev)
1299 bool control_flow_insn;
1300 rtx note;
1302 prev = PREV_INSN (insn);
1304 /* We cannot do our optimization across labels. Invalidating all the use
1305 information we have would be costly, so we just note where the label
1306 is and then later disable any optimization that would cross it. */
1307 if (LABEL_P (insn))
1308 last_label_ruid = reload_combine_ruid;
1309 else if (BARRIER_P (insn))
1311 /* Crossing a barrier resets all the use information. */
1312 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1313 if (! fixed_regs[r])
1314 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1316 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1317 /* Optimizations across insns being marked as volatile must be
1318 prevented. All the usage information is invalidated
1319 here. */
1320 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1321 if (! fixed_regs[r]
1322 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1323 reg_state[r].use_index = -1;
1325 if (! NONDEBUG_INSN_P (insn))
1326 continue;
1328 reload_combine_ruid++;
1330 control_flow_insn = control_flow_insn_p (insn);
1331 if (control_flow_insn)
1332 last_jump_ruid = reload_combine_ruid;
1334 if (reload_combine_recognize_const_pattern (insn)
1335 || reload_combine_recognize_pattern (insn))
1336 continue;
1338 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1340 if (CALL_P (insn))
1342 rtx link;
1344 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1345 if (call_used_regs[r])
1347 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1348 reg_state[r].store_ruid = reload_combine_ruid;
1351 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1352 link = XEXP (link, 1))
1354 rtx setuse = XEXP (link, 0);
1355 rtx usage_rtx = XEXP (setuse, 0);
1356 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1357 && REG_P (usage_rtx))
1359 unsigned int i;
1360 unsigned int start_reg = REGNO (usage_rtx);
1361 unsigned int num_regs
1362 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1363 unsigned int end_reg = start_reg + num_regs - 1;
1364 for (i = start_reg; i <= end_reg; i++)
1365 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1367 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1368 reg_state[i].store_ruid = reload_combine_ruid;
1370 else
1371 reg_state[i].use_index = -1;
1376 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1378 /* Non-spill registers might be used at the call destination in
1379 some unknown fashion, so we have to mark the unknown use. */
1380 HARD_REG_SET *live;
1382 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1383 && JUMP_LABEL (insn))
1385 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1386 live = NULL;
1387 else
1388 live = &LABEL_LIVE (JUMP_LABEL (insn));
1390 else
1391 live = &ever_live_at_start;
1393 if (live)
1394 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1395 if (TEST_HARD_REG_BIT (*live, r))
1396 reg_state[r].use_index = -1;
1399 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1400 NULL_RTX);
1402 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1404 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1406 int regno = REGNO (XEXP (note, 0));
1407 reg_state[regno].store_ruid = reload_combine_ruid;
1408 reg_state[regno].real_store_ruid = reload_combine_ruid;
1409 reg_state[regno].use_index = -1;
1414 free (label_live);
1417 /* Check if DST is a register or a subreg of a register; if it is,
1418 update store_ruid, real_store_ruid and use_index in the reg_state
1419 structure accordingly. Called via note_stores from reload_combine. */
1421 static void
1422 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1424 int regno = 0;
1425 int i;
1426 enum machine_mode mode = GET_MODE (dst);
1428 if (GET_CODE (dst) == SUBREG)
1430 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1431 GET_MODE (SUBREG_REG (dst)),
1432 SUBREG_BYTE (dst),
1433 GET_MODE (dst));
1434 dst = SUBREG_REG (dst);
1437 /* Some targets do argument pushes without adding REG_INC notes. */
1439 if (MEM_P (dst))
1441 dst = XEXP (dst, 0);
1442 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1443 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1444 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1446 regno = REGNO (XEXP (dst, 0));
1447 mode = GET_MODE (XEXP (dst, 0));
1448 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1450 /* We could probably do better, but for now mark the register
1451 as used in an unknown fashion and set/clobbered at this
1452 insn. */
1453 reg_state[i].use_index = -1;
1454 reg_state[i].store_ruid = reload_combine_ruid;
1455 reg_state[i].real_store_ruid = reload_combine_ruid;
1458 else
1459 return;
1462 if (!REG_P (dst))
1463 return;
1464 regno += REGNO (dst);
1466 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1467 careful with registers / register parts that are not full words.
1468 Similarly for ZERO_EXTRACT. */
1469 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1470 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1472 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1474 reg_state[i].use_index = -1;
1475 reg_state[i].store_ruid = reload_combine_ruid;
1476 reg_state[i].real_store_ruid = reload_combine_ruid;
1479 else
1481 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1483 reg_state[i].store_ruid = reload_combine_ruid;
1484 if (GET_CODE (set) == SET)
1485 reg_state[i].real_store_ruid = reload_combine_ruid;
1486 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1491 /* XP points to a piece of rtl that has to be checked for any uses of
1492 registers.
1493 *XP is the pattern of INSN, or a part of it.
1494 Called from reload_combine, and recursively by itself. */
1495 static void
1496 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1498 rtx x = *xp;
1499 enum rtx_code code = x->code;
1500 const char *fmt;
1501 int i, j;
1502 rtx offset = const0_rtx; /* For the REG case below. */
1504 switch (code)
1506 case SET:
1507 if (REG_P (SET_DEST (x)))
1509 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1510 return;
1512 break;
1514 case USE:
1515 /* If this is the USE of a return value, we can't change it. */
1516 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1518 /* Mark the return register as used in an unknown fashion. */
1519 rtx reg = XEXP (x, 0);
1520 int regno = REGNO (reg);
1521 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1523 while (--nregs >= 0)
1524 reg_state[regno + nregs].use_index = -1;
1525 return;
1527 break;
1529 case CLOBBER:
1530 if (REG_P (SET_DEST (x)))
1532 /* No spurious CLOBBERs of pseudo registers may remain. */
1533 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1534 return;
1536 break;
1538 case PLUS:
1539 /* We are interested in (plus (reg) (const_int)) . */
1540 if (!REG_P (XEXP (x, 0))
1541 || !CONST_INT_P (XEXP (x, 1)))
1542 break;
1543 offset = XEXP (x, 1);
1544 x = XEXP (x, 0);
1545 /* Fall through. */
1546 case REG:
1548 int regno = REGNO (x);
1549 int use_index;
1550 int nregs;
1552 /* No spurious USEs of pseudo registers may remain. */
1553 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1555 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1557 /* We can't substitute into multi-hard-reg uses. */
1558 if (nregs > 1)
1560 while (--nregs >= 0)
1561 reg_state[regno + nregs].use_index = -1;
1562 return;
1565 /* We may be called to update uses in previously seen insns.
1566 Don't add uses beyond the last store we saw. */
1567 if (ruid < reg_state[regno].store_ruid)
1568 return;
1570 /* If this register is already used in some unknown fashion, we
1571 can't do anything.
1572 If we decrement the index from zero to -1, we can't store more
1573 uses, so this register becomes used in an unknown fashion. */
1574 use_index = --reg_state[regno].use_index;
1575 if (use_index < 0)
1576 return;
1578 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1580 /* This is the first use of this register we have seen since we
1581 marked it as dead. */
1582 reg_state[regno].offset = offset;
1583 reg_state[regno].all_offsets_match = true;
1584 reg_state[regno].use_ruid = ruid;
1586 else
1588 if (reg_state[regno].use_ruid > ruid)
1589 reg_state[regno].use_ruid = ruid;
1591 if (! rtx_equal_p (offset, reg_state[regno].offset))
1592 reg_state[regno].all_offsets_match = false;
1595 reg_state[regno].reg_use[use_index].insn = insn;
1596 reg_state[regno].reg_use[use_index].ruid = ruid;
1597 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1598 reg_state[regno].reg_use[use_index].usep = xp;
1599 return;
1602 case MEM:
1603 containing_mem = x;
1604 break;
1606 default:
1607 break;
1610 /* Recursively process the components of X. */
1611 fmt = GET_RTX_FORMAT (code);
1612 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1614 if (fmt[i] == 'e')
1615 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1616 else if (fmt[i] == 'E')
1618 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1619 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1620 containing_mem);
1625 /* See if we can reduce the cost of a constant by replacing a move
1626 with an add. We track situations in which a register is set to a
1627 constant or to a register plus a constant. */
1628 /* We cannot do our optimization across labels. Invalidating all the
1629 information about register contents we have would be costly, so we
1630 use move2add_last_label_luid to note where the label is and then
1631 later disable any optimization that would cross it.
1632 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1633 are only valid if reg_set_luid[n] is greater than
1634 move2add_last_label_luid.
1635 For a set that established a new (potential) base register with
1636 non-constant value, we use move2add_luid from the place where the
1637 setting insn is encountered; registers based off that base then
1638 get the same reg_set_luid. Constants all get
1639 move2add_last_label_luid + 1 as their reg_set_luid. */
1640 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1642 /* If reg_base_reg[n] is negative, register n has been set to
1643 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1644 If reg_base_reg[n] is non-negative, register n has been set to the
1645 sum of reg_offset[n] and the value of register reg_base_reg[n]
1646 before reg_set_luid[n], calculated in mode reg_mode[n] .
1647 For multi-hard-register registers, all but the first one are
1648 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1649 marks it as invalid. */
1650 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1651 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1652 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1653 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1655 /* move2add_luid is linearly increased while scanning the instructions
1656 from first to last. It is used to set reg_set_luid in
1657 reload_cse_move2add and move2add_note_store. */
1658 static int move2add_luid;
1660 /* move2add_last_label_luid is set whenever a label is found. Labels
1661 invalidate all previously collected reg_offset data. */
1662 static int move2add_last_label_luid;
1664 /* ??? We don't know how zero / sign extension is handled, hence we
1665 can't go from a narrower to a wider mode. */
1666 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1667 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1668 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1669 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1671 /* Record that REG is being set to a value with the mode of REG. */
1673 static void
1674 move2add_record_mode (rtx reg)
1676 int regno, nregs;
1677 enum machine_mode mode = GET_MODE (reg);
1679 if (GET_CODE (reg) == SUBREG)
1681 regno = subreg_regno (reg);
1682 nregs = subreg_nregs (reg);
1684 else if (REG_P (reg))
1686 regno = REGNO (reg);
1687 nregs = hard_regno_nregs[regno][mode];
1689 else
1690 gcc_unreachable ();
1691 for (int i = nregs - 1; i > 0; i--)
1692 reg_mode[regno + i] = BLKmode;
1693 reg_mode[regno] = mode;
1696 /* Record that REG is being set to the sum of SYM and OFF. */
1698 static void
1699 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1701 int regno = REGNO (reg);
1703 move2add_record_mode (reg);
1704 reg_set_luid[regno] = move2add_luid;
1705 reg_base_reg[regno] = -1;
1706 reg_symbol_ref[regno] = sym;
1707 reg_offset[regno] = INTVAL (off);
1710 /* Check if REGNO contains a valid value in MODE. */
1712 static bool
1713 move2add_valid_value_p (int regno, enum machine_mode mode)
1715 if (reg_set_luid[regno] <= move2add_last_label_luid)
1716 return false;
1718 if (mode != reg_mode[regno])
1720 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1721 return false;
1722 /* The value loaded into regno in reg_mode[regno] is also valid in
1723 mode after truncation only if (REG:mode regno) is the lowpart of
1724 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1725 regno of the lowpart might be different. */
1726 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1727 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1728 if (s_off != 0)
1729 /* We could in principle adjust regno, check reg_mode[regno] to be
1730 BLKmode, and return s_off to the caller (vs. -1 for failure),
1731 but we currently have no callers that could make use of this
1732 information. */
1733 return false;
1736 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1737 if (reg_mode[regno + i] != BLKmode)
1738 return false;
1739 return true;
1742 /* This function is called with INSN that sets REG to (SYM + OFF),
1743 while REG is known to already have value (SYM + offset).
1744 This function tries to change INSN into an add instruction
1745 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1746 It also updates the information about REG's known value.
1747 Return true if we made a change. */
1749 static bool
1750 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1752 rtx pat = PATTERN (insn);
1753 rtx src = SET_SRC (pat);
1754 int regno = REGNO (reg);
1755 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1756 GET_MODE (reg));
1757 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1758 bool changed = false;
1760 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1761 use (set (reg) (reg)) instead.
1762 We don't delete this insn, nor do we convert it into a
1763 note, to avoid losing register notes or the return
1764 value flag. jump2 already knows how to get rid of
1765 no-op moves. */
1766 if (new_src == const0_rtx)
1768 /* If the constants are different, this is a
1769 truncation, that, if turned into (set (reg)
1770 (reg)), would be discarded. Maybe we should
1771 try a truncMN pattern? */
1772 if (INTVAL (off) == reg_offset [regno])
1773 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1775 else
1777 struct full_rtx_costs oldcst, newcst;
1778 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1780 get_full_set_rtx_cost (pat, &oldcst);
1781 SET_SRC (pat) = tem;
1782 get_full_set_rtx_cost (pat, &newcst);
1783 SET_SRC (pat) = src;
1785 if (costs_lt_p (&newcst, &oldcst, speed)
1786 && have_add2_insn (reg, new_src))
1787 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1788 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1790 enum machine_mode narrow_mode;
1791 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1792 narrow_mode != VOIDmode
1793 && narrow_mode != GET_MODE (reg);
1794 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1796 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1797 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1798 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1800 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1801 rtx narrow_src = gen_int_mode (INTVAL (off),
1802 narrow_mode);
1803 rtx new_set
1804 = gen_rtx_SET (VOIDmode,
1805 gen_rtx_STRICT_LOW_PART (VOIDmode,
1806 narrow_reg),
1807 narrow_src);
1808 get_full_set_rtx_cost (new_set, &newcst);
1809 if (costs_lt_p (&newcst, &oldcst, speed))
1811 changed = validate_change (insn, &PATTERN (insn),
1812 new_set, 0);
1813 if (changed)
1814 break;
1820 move2add_record_sym_value (reg, sym, off);
1821 return changed;
1825 /* This function is called with INSN that sets REG to (SYM + OFF),
1826 but REG doesn't have known value (SYM + offset). This function
1827 tries to find another register which is known to already have
1828 value (SYM + offset) and change INSN into an add instruction
1829 (set (REG) (plus (the found register) (OFF - offset))) if such
1830 a register is found. It also updates the information about
1831 REG's known value.
1832 Return true iff we made a change. */
1834 static bool
1835 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1837 rtx pat = PATTERN (insn);
1838 rtx src = SET_SRC (pat);
1839 int regno = REGNO (reg);
1840 int min_regno = 0;
1841 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1842 int i;
1843 bool changed = false;
1844 struct full_rtx_costs oldcst, newcst, mincst;
1845 rtx plus_expr;
1847 init_costs_to_max (&mincst);
1848 get_full_set_rtx_cost (pat, &oldcst);
1850 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1851 SET_SRC (pat) = plus_expr;
1853 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1854 if (move2add_valid_value_p (i, GET_MODE (reg))
1855 && reg_base_reg[i] < 0
1856 && reg_symbol_ref[i] != NULL_RTX
1857 && rtx_equal_p (sym, reg_symbol_ref[i]))
1859 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1860 GET_MODE (reg));
1861 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1862 use (set (reg) (reg)) instead.
1863 We don't delete this insn, nor do we convert it into a
1864 note, to avoid losing register notes or the return
1865 value flag. jump2 already knows how to get rid of
1866 no-op moves. */
1867 if (new_src == const0_rtx)
1869 init_costs_to_zero (&mincst);
1870 min_regno = i;
1871 break;
1873 else
1875 XEXP (plus_expr, 1) = new_src;
1876 get_full_set_rtx_cost (pat, &newcst);
1878 if (costs_lt_p (&newcst, &mincst, speed))
1880 mincst = newcst;
1881 min_regno = i;
1885 SET_SRC (pat) = src;
1887 if (costs_lt_p (&mincst, &oldcst, speed))
1889 rtx tem;
1891 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1892 if (i != min_regno)
1894 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1895 GET_MODE (reg));
1896 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1898 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1899 changed = true;
1901 reg_set_luid[regno] = move2add_luid;
1902 move2add_record_sym_value (reg, sym, off);
1903 return changed;
1906 /* Convert move insns with constant inputs to additions if they are cheaper.
1907 Return true if any changes were made. */
1908 static bool
1909 reload_cse_move2add (rtx first)
1911 int i;
1912 rtx insn;
1913 bool changed = false;
1915 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1917 reg_set_luid[i] = 0;
1918 reg_offset[i] = 0;
1919 reg_base_reg[i] = 0;
1920 reg_symbol_ref[i] = NULL_RTX;
1921 reg_mode[i] = VOIDmode;
1924 move2add_last_label_luid = 0;
1925 move2add_luid = 2;
1926 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1928 rtx pat, note;
1930 if (LABEL_P (insn))
1932 move2add_last_label_luid = move2add_luid;
1933 /* We're going to increment move2add_luid twice after a
1934 label, so that we can use move2add_last_label_luid + 1 as
1935 the luid for constants. */
1936 move2add_luid++;
1937 continue;
1939 if (! INSN_P (insn))
1940 continue;
1941 pat = PATTERN (insn);
1942 /* For simplicity, we only perform this optimization on
1943 straightforward SETs. */
1944 if (GET_CODE (pat) == SET
1945 && REG_P (SET_DEST (pat)))
1947 rtx reg = SET_DEST (pat);
1948 int regno = REGNO (reg);
1949 rtx src = SET_SRC (pat);
1951 /* Check if we have valid information on the contents of this
1952 register in the mode of REG. */
1953 if (move2add_valid_value_p (regno, GET_MODE (reg))
1954 && dbg_cnt (cse2_move2add))
1956 /* Try to transform (set (REGX) (CONST_INT A))
1958 (set (REGX) (CONST_INT B))
1960 (set (REGX) (CONST_INT A))
1962 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1964 (set (REGX) (CONST_INT A))
1966 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1969 if (CONST_INT_P (src)
1970 && reg_base_reg[regno] < 0
1971 && reg_symbol_ref[regno] == NULL_RTX)
1973 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1974 continue;
1977 /* Try to transform (set (REGX) (REGY))
1978 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1980 (set (REGX) (REGY))
1981 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1983 (set (REGX) (REGY))
1984 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1986 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1987 else if (REG_P (src)
1988 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1989 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1990 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1992 rtx next = next_nonnote_nondebug_insn (insn);
1993 rtx set = NULL_RTX;
1994 if (next)
1995 set = single_set (next);
1996 if (set
1997 && SET_DEST (set) == reg
1998 && GET_CODE (SET_SRC (set)) == PLUS
1999 && XEXP (SET_SRC (set), 0) == reg
2000 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2002 rtx src3 = XEXP (SET_SRC (set), 1);
2003 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2004 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2005 HOST_WIDE_INT regno_offset = reg_offset[regno];
2006 rtx new_src =
2007 gen_int_mode (added_offset
2008 + base_offset
2009 - regno_offset,
2010 GET_MODE (reg));
2011 bool success = false;
2012 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2014 if (new_src == const0_rtx)
2015 /* See above why we create (set (reg) (reg)) here. */
2016 success
2017 = validate_change (next, &SET_SRC (set), reg, 0);
2018 else
2020 rtx old_src = SET_SRC (set);
2021 struct full_rtx_costs oldcst, newcst;
2022 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2024 get_full_set_rtx_cost (set, &oldcst);
2025 SET_SRC (set) = tem;
2026 get_full_set_src_cost (tem, &newcst);
2027 SET_SRC (set) = old_src;
2028 costs_add_n_insns (&oldcst, 1);
2030 if (costs_lt_p (&newcst, &oldcst, speed)
2031 && have_add2_insn (reg, new_src))
2033 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2034 success
2035 = validate_change (next, &PATTERN (next),
2036 newpat, 0);
2039 if (success)
2040 delete_insn (insn);
2041 changed |= success;
2042 insn = next;
2043 move2add_record_mode (reg);
2044 reg_offset[regno]
2045 = trunc_int_for_mode (added_offset + base_offset,
2046 GET_MODE (reg));
2047 continue;
2052 /* Try to transform
2053 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2055 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2057 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2059 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2060 if ((GET_CODE (src) == SYMBOL_REF
2061 || (GET_CODE (src) == CONST
2062 && GET_CODE (XEXP (src, 0)) == PLUS
2063 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2064 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2065 && dbg_cnt (cse2_move2add))
2067 rtx sym, off;
2069 if (GET_CODE (src) == SYMBOL_REF)
2071 sym = src;
2072 off = const0_rtx;
2074 else
2076 sym = XEXP (XEXP (src, 0), 0);
2077 off = XEXP (XEXP (src, 0), 1);
2080 /* If the reg already contains the value which is sum of
2081 sym and some constant value, we can use an add2 insn. */
2082 if (move2add_valid_value_p (regno, GET_MODE (reg))
2083 && reg_base_reg[regno] < 0
2084 && reg_symbol_ref[regno] != NULL_RTX
2085 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2086 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2088 /* Otherwise, we have to find a register whose value is sum
2089 of sym and some constant value. */
2090 else
2091 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2093 continue;
2097 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2099 if (REG_NOTE_KIND (note) == REG_INC
2100 && REG_P (XEXP (note, 0)))
2102 /* Reset the information about this register. */
2103 int regno = REGNO (XEXP (note, 0));
2104 if (regno < FIRST_PSEUDO_REGISTER)
2106 move2add_record_mode (XEXP (note, 0));
2107 reg_mode[regno] = VOIDmode;
2111 note_stores (PATTERN (insn), move2add_note_store, insn);
2113 /* If INSN is a conditional branch, we try to extract an
2114 implicit set out of it. */
2115 if (any_condjump_p (insn))
2117 rtx cnd = fis_get_condition (insn);
2119 if (cnd != NULL_RTX
2120 && GET_CODE (cnd) == NE
2121 && REG_P (XEXP (cnd, 0))
2122 && !reg_set_p (XEXP (cnd, 0), insn)
2123 /* The following two checks, which are also in
2124 move2add_note_store, are intended to reduce the
2125 number of calls to gen_rtx_SET to avoid memory
2126 allocation if possible. */
2127 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2128 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2129 && CONST_INT_P (XEXP (cnd, 1)))
2131 rtx implicit_set =
2132 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2133 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2137 /* If this is a CALL_INSN, all call used registers are stored with
2138 unknown values. */
2139 if (CALL_P (insn))
2141 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2143 if (call_used_regs[i])
2144 /* Reset the information about this register. */
2145 reg_mode[i] = VOIDmode;
2149 return changed;
2152 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2153 contains SET.
2154 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2155 Called from reload_cse_move2add via note_stores. */
2157 static void
2158 move2add_note_store (rtx dst, const_rtx set, void *data)
2160 rtx insn = (rtx) data;
2161 unsigned int regno = 0;
2162 enum machine_mode mode = GET_MODE (dst);
2164 /* Some targets do argument pushes without adding REG_INC notes. */
2166 if (MEM_P (dst))
2168 dst = XEXP (dst, 0);
2169 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2170 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2171 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2172 return;
2175 if (GET_CODE (dst) == SUBREG)
2176 regno = subreg_regno (dst);
2177 else if (REG_P (dst))
2178 regno = REGNO (dst);
2179 else
2180 return;
2182 if (SCALAR_INT_MODE_P (mode)
2183 && GET_CODE (set) == SET)
2185 rtx note, sym = NULL_RTX;
2186 rtx off;
2188 note = find_reg_equal_equiv_note (insn);
2189 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2191 sym = XEXP (note, 0);
2192 off = const0_rtx;
2194 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2195 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2196 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2197 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2199 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2200 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2203 if (sym != NULL_RTX)
2205 move2add_record_sym_value (dst, sym, off);
2206 return;
2210 if (SCALAR_INT_MODE_P (mode)
2211 && GET_CODE (set) == SET
2212 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2213 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2215 rtx src = SET_SRC (set);
2216 rtx base_reg;
2217 unsigned HOST_WIDE_INT offset;
2218 int base_regno;
2220 switch (GET_CODE (src))
2222 case PLUS:
2223 if (REG_P (XEXP (src, 0)))
2225 base_reg = XEXP (src, 0);
2227 if (CONST_INT_P (XEXP (src, 1)))
2228 offset = UINTVAL (XEXP (src, 1));
2229 else if (REG_P (XEXP (src, 1))
2230 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2232 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2233 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2234 offset = reg_offset[REGNO (XEXP (src, 1))];
2235 /* Maybe the first register is known to be a
2236 constant. */
2237 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2238 && reg_base_reg[REGNO (base_reg)] < 0
2239 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2241 offset = reg_offset[REGNO (base_reg)];
2242 base_reg = XEXP (src, 1);
2244 else
2245 goto invalidate;
2247 else
2248 goto invalidate;
2250 break;
2253 goto invalidate;
2255 case REG:
2256 base_reg = src;
2257 offset = 0;
2258 break;
2260 case CONST_INT:
2261 /* Start tracking the register as a constant. */
2262 reg_base_reg[regno] = -1;
2263 reg_symbol_ref[regno] = NULL_RTX;
2264 reg_offset[regno] = INTVAL (SET_SRC (set));
2265 /* We assign the same luid to all registers set to constants. */
2266 reg_set_luid[regno] = move2add_last_label_luid + 1;
2267 move2add_record_mode (dst);
2268 return;
2270 default:
2271 goto invalidate;
2274 base_regno = REGNO (base_reg);
2275 /* If information about the base register is not valid, set it
2276 up as a new base register, pretending its value is known
2277 starting from the current insn. */
2278 if (!move2add_valid_value_p (base_regno, mode))
2280 reg_base_reg[base_regno] = base_regno;
2281 reg_symbol_ref[base_regno] = NULL_RTX;
2282 reg_offset[base_regno] = 0;
2283 reg_set_luid[base_regno] = move2add_luid;
2284 gcc_assert (GET_MODE (base_reg) == mode);
2285 move2add_record_mode (base_reg);
2288 /* Copy base information from our base register. */
2289 reg_set_luid[regno] = reg_set_luid[base_regno];
2290 reg_base_reg[regno] = reg_base_reg[base_regno];
2291 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2293 /* Compute the sum of the offsets or constants. */
2294 reg_offset[regno]
2295 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2297 move2add_record_mode (dst);
2299 else
2301 invalidate:
2302 /* Invalidate the contents of the register. */
2303 move2add_record_mode (dst);
2304 reg_mode[regno] = VOIDmode;
2308 namespace {
2310 const pass_data pass_data_postreload_cse =
2312 RTL_PASS, /* type */
2313 "postreload", /* name */
2314 OPTGROUP_NONE, /* optinfo_flags */
2315 TV_RELOAD_CSE_REGS, /* tv_id */
2316 0, /* properties_required */
2317 0, /* properties_provided */
2318 0, /* properties_destroyed */
2319 0, /* todo_flags_start */
2320 TODO_df_finish, /* todo_flags_finish */
2323 class pass_postreload_cse : public rtl_opt_pass
2325 public:
2326 pass_postreload_cse (gcc::context *ctxt)
2327 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2330 /* opt_pass methods: */
2331 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2333 virtual unsigned int execute (function *);
2335 }; // class pass_postreload_cse
2337 unsigned int
2338 pass_postreload_cse::execute (function *fun)
2340 if (!dbg_cnt (postreload_cse))
2341 return 0;
2343 /* Do a very simple CSE pass over just the hard registers. */
2344 reload_cse_regs (get_insns ());
2345 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2346 Remove any EH edges associated with them. */
2347 if (fun->can_throw_non_call_exceptions
2348 && purge_all_dead_edges ())
2349 cleanup_cfg (0);
2351 return 0;
2354 } // anon namespace
2356 rtl_opt_pass *
2357 make_pass_postreload_cse (gcc::context *ctxt)
2359 return new pass_postreload_cse (ctxt);