Rebase.
[official-gcc.git] / gcc / tree-sra.c
blob2f80497ea60199a5a7747d99dbea00cccd162a23
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008-2014 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "hash-map.h"
78 #include "hash-table.h"
79 #include "alloc-pool.h"
80 #include "tm.h"
81 #include "tree.h"
82 #include "basic-block.h"
83 #include "tree-ssa-alias.h"
84 #include "internal-fn.h"
85 #include "tree-eh.h"
86 #include "gimple-expr.h"
87 #include "is-a.h"
88 #include "gimple.h"
89 #include "stor-layout.h"
90 #include "gimplify.h"
91 #include "gimple-iterator.h"
92 #include "gimplify-me.h"
93 #include "gimple-walk.h"
94 #include "bitmap.h"
95 #include "gimple-ssa.h"
96 #include "tree-cfg.h"
97 #include "tree-phinodes.h"
98 #include "ssa-iterators.h"
99 #include "stringpool.h"
100 #include "tree-ssanames.h"
101 #include "expr.h"
102 #include "tree-dfa.h"
103 #include "tree-ssa.h"
104 #include "tree-pass.h"
105 #include "ipa-prop.h"
106 #include "statistics.h"
107 #include "params.h"
108 #include "target.h"
109 #include "flags.h"
110 #include "dbgcnt.h"
111 #include "tree-inline.h"
112 #include "gimple-pretty-print.h"
113 #include "ipa-inline.h"
114 #include "ipa-utils.h"
115 #include "builtins.h"
117 /* Enumeration of all aggregate reductions we can do. */
118 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
119 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
120 SRA_MODE_INTRA }; /* late intraprocedural SRA */
122 /* Global variable describing which aggregate reduction we are performing at
123 the moment. */
124 static enum sra_mode sra_mode;
126 struct assign_link;
128 /* ACCESS represents each access to an aggregate variable (as a whole or a
129 part). It can also represent a group of accesses that refer to exactly the
130 same fragment of an aggregate (i.e. those that have exactly the same offset
131 and size). Such representatives for a single aggregate, once determined,
132 are linked in a linked list and have the group fields set.
134 Moreover, when doing intraprocedural SRA, a tree is built from those
135 representatives (by the means of first_child and next_sibling pointers), in
136 which all items in a subtree are "within" the root, i.e. their offset is
137 greater or equal to offset of the root and offset+size is smaller or equal
138 to offset+size of the root. Children of an access are sorted by offset.
140 Note that accesses to parts of vector and complex number types always
141 represented by an access to the whole complex number or a vector. It is a
142 duty of the modifying functions to replace them appropriately. */
144 struct access
146 /* Values returned by `get_ref_base_and_extent' for each component reference
147 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
148 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
149 HOST_WIDE_INT offset;
150 HOST_WIDE_INT size;
151 tree base;
153 /* Expression. It is context dependent so do not use it to create new
154 expressions to access the original aggregate. See PR 42154 for a
155 testcase. */
156 tree expr;
157 /* Type. */
158 tree type;
160 /* The statement this access belongs to. */
161 gimple stmt;
163 /* Next group representative for this aggregate. */
164 struct access *next_grp;
166 /* Pointer to the group representative. Pointer to itself if the struct is
167 the representative. */
168 struct access *group_representative;
170 /* If this access has any children (in terms of the definition above), this
171 points to the first one. */
172 struct access *first_child;
174 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
175 described above. In IPA-SRA this is a pointer to the next access
176 belonging to the same group (having the same representative). */
177 struct access *next_sibling;
179 /* Pointers to the first and last element in the linked list of assign
180 links. */
181 struct assign_link *first_link, *last_link;
183 /* Pointer to the next access in the work queue. */
184 struct access *next_queued;
186 /* Replacement variable for this access "region." Never to be accessed
187 directly, always only by the means of get_access_replacement() and only
188 when grp_to_be_replaced flag is set. */
189 tree replacement_decl;
191 /* Is this particular access write access? */
192 unsigned write : 1;
194 /* Is this access an access to a non-addressable field? */
195 unsigned non_addressable : 1;
197 /* Is this access currently in the work queue? */
198 unsigned grp_queued : 1;
200 /* Does this group contain a write access? This flag is propagated down the
201 access tree. */
202 unsigned grp_write : 1;
204 /* Does this group contain a read access? This flag is propagated down the
205 access tree. */
206 unsigned grp_read : 1;
208 /* Does this group contain a read access that comes from an assignment
209 statement? This flag is propagated down the access tree. */
210 unsigned grp_assignment_read : 1;
212 /* Does this group contain a write access that comes from an assignment
213 statement? This flag is propagated down the access tree. */
214 unsigned grp_assignment_write : 1;
216 /* Does this group contain a read access through a scalar type? This flag is
217 not propagated in the access tree in any direction. */
218 unsigned grp_scalar_read : 1;
220 /* Does this group contain a write access through a scalar type? This flag
221 is not propagated in the access tree in any direction. */
222 unsigned grp_scalar_write : 1;
224 /* Is this access an artificial one created to scalarize some record
225 entirely? */
226 unsigned grp_total_scalarization : 1;
228 /* Other passes of the analysis use this bit to make function
229 analyze_access_subtree create scalar replacements for this group if
230 possible. */
231 unsigned grp_hint : 1;
233 /* Is the subtree rooted in this access fully covered by scalar
234 replacements? */
235 unsigned grp_covered : 1;
237 /* If set to true, this access and all below it in an access tree must not be
238 scalarized. */
239 unsigned grp_unscalarizable_region : 1;
241 /* Whether data have been written to parts of the aggregate covered by this
242 access which is not to be scalarized. This flag is propagated up in the
243 access tree. */
244 unsigned grp_unscalarized_data : 1;
246 /* Does this access and/or group contain a write access through a
247 BIT_FIELD_REF? */
248 unsigned grp_partial_lhs : 1;
250 /* Set when a scalar replacement should be created for this variable. */
251 unsigned grp_to_be_replaced : 1;
253 /* Set when we want a replacement for the sole purpose of having it in
254 generated debug statements. */
255 unsigned grp_to_be_debug_replaced : 1;
257 /* Should TREE_NO_WARNING of a replacement be set? */
258 unsigned grp_no_warning : 1;
260 /* Is it possible that the group refers to data which might be (directly or
261 otherwise) modified? */
262 unsigned grp_maybe_modified : 1;
264 /* Set when this is a representative of a pointer to scalar (i.e. by
265 reference) parameter which we consider for turning into a plain scalar
266 (i.e. a by value parameter). */
267 unsigned grp_scalar_ptr : 1;
269 /* Set when we discover that this pointer is not safe to dereference in the
270 caller. */
271 unsigned grp_not_necessarilly_dereferenced : 1;
274 typedef struct access *access_p;
277 /* Alloc pool for allocating access structures. */
278 static alloc_pool access_pool;
280 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
281 are used to propagate subaccesses from rhs to lhs as long as they don't
282 conflict with what is already there. */
283 struct assign_link
285 struct access *lacc, *racc;
286 struct assign_link *next;
289 /* Alloc pool for allocating assign link structures. */
290 static alloc_pool link_pool;
292 /* Base (tree) -> Vector (vec<access_p> *) map. */
293 static hash_map<tree, auto_vec<access_p> > *base_access_vec;
295 /* Candidate hash table helpers. */
297 struct uid_decl_hasher : typed_noop_remove <tree_node>
299 typedef tree_node value_type;
300 typedef tree_node compare_type;
301 static inline hashval_t hash (const value_type *);
302 static inline bool equal (const value_type *, const compare_type *);
305 /* Hash a tree in a uid_decl_map. */
307 inline hashval_t
308 uid_decl_hasher::hash (const value_type *item)
310 return item->decl_minimal.uid;
313 /* Return true if the DECL_UID in both trees are equal. */
315 inline bool
316 uid_decl_hasher::equal (const value_type *a, const compare_type *b)
318 return (a->decl_minimal.uid == b->decl_minimal.uid);
321 /* Set of candidates. */
322 static bitmap candidate_bitmap;
323 static hash_table<uid_decl_hasher> *candidates;
325 /* For a candidate UID return the candidates decl. */
327 static inline tree
328 candidate (unsigned uid)
330 tree_node t;
331 t.decl_minimal.uid = uid;
332 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
335 /* Bitmap of candidates which we should try to entirely scalarize away and
336 those which cannot be (because they are and need be used as a whole). */
337 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
339 /* Obstack for creation of fancy names. */
340 static struct obstack name_obstack;
342 /* Head of a linked list of accesses that need to have its subaccesses
343 propagated to their assignment counterparts. */
344 static struct access *work_queue_head;
346 /* Number of parameters of the analyzed function when doing early ipa SRA. */
347 static int func_param_count;
349 /* scan_function sets the following to true if it encounters a call to
350 __builtin_apply_args. */
351 static bool encountered_apply_args;
353 /* Set by scan_function when it finds a recursive call. */
354 static bool encountered_recursive_call;
356 /* Set by scan_function when it finds a recursive call with less actual
357 arguments than formal parameters.. */
358 static bool encountered_unchangable_recursive_call;
360 /* This is a table in which for each basic block and parameter there is a
361 distance (offset + size) in that parameter which is dereferenced and
362 accessed in that BB. */
363 static HOST_WIDE_INT *bb_dereferences;
364 /* Bitmap of BBs that can cause the function to "stop" progressing by
365 returning, throwing externally, looping infinitely or calling a function
366 which might abort etc.. */
367 static bitmap final_bbs;
369 /* Representative of no accesses at all. */
370 static struct access no_accesses_representant;
372 /* Predicate to test the special value. */
374 static inline bool
375 no_accesses_p (struct access *access)
377 return access == &no_accesses_representant;
380 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
381 representative fields are dumped, otherwise those which only describe the
382 individual access are. */
384 static struct
386 /* Number of processed aggregates is readily available in
387 analyze_all_variable_accesses and so is not stored here. */
389 /* Number of created scalar replacements. */
390 int replacements;
392 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
393 expression. */
394 int exprs;
396 /* Number of statements created by generate_subtree_copies. */
397 int subtree_copies;
399 /* Number of statements created by load_assign_lhs_subreplacements. */
400 int subreplacements;
402 /* Number of times sra_modify_assign has deleted a statement. */
403 int deleted;
405 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
406 RHS reparately due to type conversions or nonexistent matching
407 references. */
408 int separate_lhs_rhs_handling;
410 /* Number of parameters that were removed because they were unused. */
411 int deleted_unused_parameters;
413 /* Number of scalars passed as parameters by reference that have been
414 converted to be passed by value. */
415 int scalar_by_ref_to_by_val;
417 /* Number of aggregate parameters that were replaced by one or more of their
418 components. */
419 int aggregate_params_reduced;
421 /* Numbber of components created when splitting aggregate parameters. */
422 int param_reductions_created;
423 } sra_stats;
425 static void
426 dump_access (FILE *f, struct access *access, bool grp)
428 fprintf (f, "access { ");
429 fprintf (f, "base = (%d)'", DECL_UID (access->base));
430 print_generic_expr (f, access->base, 0);
431 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
432 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
433 fprintf (f, ", expr = ");
434 print_generic_expr (f, access->expr, 0);
435 fprintf (f, ", type = ");
436 print_generic_expr (f, access->type, 0);
437 if (grp)
438 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
439 "grp_assignment_write = %d, grp_scalar_read = %d, "
440 "grp_scalar_write = %d, grp_total_scalarization = %d, "
441 "grp_hint = %d, grp_covered = %d, "
442 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
443 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
444 "grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
445 "grp_not_necessarilly_dereferenced = %d\n",
446 access->grp_read, access->grp_write, access->grp_assignment_read,
447 access->grp_assignment_write, access->grp_scalar_read,
448 access->grp_scalar_write, access->grp_total_scalarization,
449 access->grp_hint, access->grp_covered,
450 access->grp_unscalarizable_region, access->grp_unscalarized_data,
451 access->grp_partial_lhs, access->grp_to_be_replaced,
452 access->grp_to_be_debug_replaced, access->grp_maybe_modified,
453 access->grp_not_necessarilly_dereferenced);
454 else
455 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
456 "grp_partial_lhs = %d\n",
457 access->write, access->grp_total_scalarization,
458 access->grp_partial_lhs);
461 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
463 static void
464 dump_access_tree_1 (FILE *f, struct access *access, int level)
468 int i;
470 for (i = 0; i < level; i++)
471 fputs ("* ", dump_file);
473 dump_access (f, access, true);
475 if (access->first_child)
476 dump_access_tree_1 (f, access->first_child, level + 1);
478 access = access->next_sibling;
480 while (access);
483 /* Dump all access trees for a variable, given the pointer to the first root in
484 ACCESS. */
486 static void
487 dump_access_tree (FILE *f, struct access *access)
489 for (; access; access = access->next_grp)
490 dump_access_tree_1 (f, access, 0);
493 /* Return true iff ACC is non-NULL and has subaccesses. */
495 static inline bool
496 access_has_children_p (struct access *acc)
498 return acc && acc->first_child;
501 /* Return true iff ACC is (partly) covered by at least one replacement. */
503 static bool
504 access_has_replacements_p (struct access *acc)
506 struct access *child;
507 if (acc->grp_to_be_replaced)
508 return true;
509 for (child = acc->first_child; child; child = child->next_sibling)
510 if (access_has_replacements_p (child))
511 return true;
512 return false;
515 /* Return a vector of pointers to accesses for the variable given in BASE or
516 NULL if there is none. */
518 static vec<access_p> *
519 get_base_access_vector (tree base)
521 return base_access_vec->get (base);
524 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
525 in ACCESS. Return NULL if it cannot be found. */
527 static struct access *
528 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
529 HOST_WIDE_INT size)
531 while (access && (access->offset != offset || access->size != size))
533 struct access *child = access->first_child;
535 while (child && (child->offset + child->size <= offset))
536 child = child->next_sibling;
537 access = child;
540 return access;
543 /* Return the first group representative for DECL or NULL if none exists. */
545 static struct access *
546 get_first_repr_for_decl (tree base)
548 vec<access_p> *access_vec;
550 access_vec = get_base_access_vector (base);
551 if (!access_vec)
552 return NULL;
554 return (*access_vec)[0];
557 /* Find an access representative for the variable BASE and given OFFSET and
558 SIZE. Requires that access trees have already been built. Return NULL if
559 it cannot be found. */
561 static struct access *
562 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
563 HOST_WIDE_INT size)
565 struct access *access;
567 access = get_first_repr_for_decl (base);
568 while (access && (access->offset + access->size <= offset))
569 access = access->next_grp;
570 if (!access)
571 return NULL;
573 return find_access_in_subtree (access, offset, size);
576 /* Add LINK to the linked list of assign links of RACC. */
577 static void
578 add_link_to_rhs (struct access *racc, struct assign_link *link)
580 gcc_assert (link->racc == racc);
582 if (!racc->first_link)
584 gcc_assert (!racc->last_link);
585 racc->first_link = link;
587 else
588 racc->last_link->next = link;
590 racc->last_link = link;
591 link->next = NULL;
594 /* Move all link structures in their linked list in OLD_RACC to the linked list
595 in NEW_RACC. */
596 static void
597 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
599 if (!old_racc->first_link)
601 gcc_assert (!old_racc->last_link);
602 return;
605 if (new_racc->first_link)
607 gcc_assert (!new_racc->last_link->next);
608 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
610 new_racc->last_link->next = old_racc->first_link;
611 new_racc->last_link = old_racc->last_link;
613 else
615 gcc_assert (!new_racc->last_link);
617 new_racc->first_link = old_racc->first_link;
618 new_racc->last_link = old_racc->last_link;
620 old_racc->first_link = old_racc->last_link = NULL;
623 /* Add ACCESS to the work queue (which is actually a stack). */
625 static void
626 add_access_to_work_queue (struct access *access)
628 if (!access->grp_queued)
630 gcc_assert (!access->next_queued);
631 access->next_queued = work_queue_head;
632 access->grp_queued = 1;
633 work_queue_head = access;
637 /* Pop an access from the work queue, and return it, assuming there is one. */
639 static struct access *
640 pop_access_from_work_queue (void)
642 struct access *access = work_queue_head;
644 work_queue_head = access->next_queued;
645 access->next_queued = NULL;
646 access->grp_queued = 0;
647 return access;
651 /* Allocate necessary structures. */
653 static void
654 sra_initialize (void)
656 candidate_bitmap = BITMAP_ALLOC (NULL);
657 candidates = new hash_table<uid_decl_hasher>
658 (vec_safe_length (cfun->local_decls) / 2);
659 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
660 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
661 gcc_obstack_init (&name_obstack);
662 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
663 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
664 base_access_vec = new hash_map<tree, auto_vec<access_p> >;
665 memset (&sra_stats, 0, sizeof (sra_stats));
666 encountered_apply_args = false;
667 encountered_recursive_call = false;
668 encountered_unchangable_recursive_call = false;
671 /* Deallocate all general structures. */
673 static void
674 sra_deinitialize (void)
676 BITMAP_FREE (candidate_bitmap);
677 delete candidates;
678 candidates = NULL;
679 BITMAP_FREE (should_scalarize_away_bitmap);
680 BITMAP_FREE (cannot_scalarize_away_bitmap);
681 free_alloc_pool (access_pool);
682 free_alloc_pool (link_pool);
683 obstack_free (&name_obstack, NULL);
685 delete base_access_vec;
688 /* Remove DECL from candidates for SRA and write REASON to the dump file if
689 there is one. */
690 static void
691 disqualify_candidate (tree decl, const char *reason)
693 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
694 candidates->remove_elt_with_hash (decl, DECL_UID (decl));
696 if (dump_file && (dump_flags & TDF_DETAILS))
698 fprintf (dump_file, "! Disqualifying ");
699 print_generic_expr (dump_file, decl, 0);
700 fprintf (dump_file, " - %s\n", reason);
704 /* Return true iff the type contains a field or an element which does not allow
705 scalarization. */
707 static bool
708 type_internals_preclude_sra_p (tree type, const char **msg)
710 tree fld;
711 tree et;
713 switch (TREE_CODE (type))
715 case RECORD_TYPE:
716 case UNION_TYPE:
717 case QUAL_UNION_TYPE:
718 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
719 if (TREE_CODE (fld) == FIELD_DECL)
721 tree ft = TREE_TYPE (fld);
723 if (TREE_THIS_VOLATILE (fld))
725 *msg = "volatile structure field";
726 return true;
728 if (!DECL_FIELD_OFFSET (fld))
730 *msg = "no structure field offset";
731 return true;
733 if (!DECL_SIZE (fld))
735 *msg = "zero structure field size";
736 return true;
738 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
740 *msg = "structure field offset not fixed";
741 return true;
743 if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
745 *msg = "structure field size not fixed";
746 return true;
748 if (!tree_fits_shwi_p (bit_position (fld)))
750 *msg = "structure field size too big";
751 return true;
753 if (AGGREGATE_TYPE_P (ft)
754 && int_bit_position (fld) % BITS_PER_UNIT != 0)
756 *msg = "structure field is bit field";
757 return true;
760 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
761 return true;
764 return false;
766 case ARRAY_TYPE:
767 et = TREE_TYPE (type);
769 if (TYPE_VOLATILE (et))
771 *msg = "element type is volatile";
772 return true;
775 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
776 return true;
778 return false;
780 default:
781 return false;
785 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
786 base variable if it is. Return T if it is not an SSA_NAME. */
788 static tree
789 get_ssa_base_param (tree t)
791 if (TREE_CODE (t) == SSA_NAME)
793 if (SSA_NAME_IS_DEFAULT_DEF (t))
794 return SSA_NAME_VAR (t);
795 else
796 return NULL_TREE;
798 return t;
801 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
802 belongs to, unless the BB has already been marked as a potentially
803 final. */
805 static void
806 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
808 basic_block bb = gimple_bb (stmt);
809 int idx, parm_index = 0;
810 tree parm;
812 if (bitmap_bit_p (final_bbs, bb->index))
813 return;
815 for (parm = DECL_ARGUMENTS (current_function_decl);
816 parm && parm != base;
817 parm = DECL_CHAIN (parm))
818 parm_index++;
820 gcc_assert (parm_index < func_param_count);
822 idx = bb->index * func_param_count + parm_index;
823 if (bb_dereferences[idx] < dist)
824 bb_dereferences[idx] = dist;
827 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
828 the three fields. Also add it to the vector of accesses corresponding to
829 the base. Finally, return the new access. */
831 static struct access *
832 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
834 struct access *access;
836 access = (struct access *) pool_alloc (access_pool);
837 memset (access, 0, sizeof (struct access));
838 access->base = base;
839 access->offset = offset;
840 access->size = size;
842 base_access_vec->get_or_insert (base).safe_push (access);
844 return access;
847 /* Create and insert access for EXPR. Return created access, or NULL if it is
848 not possible. */
850 static struct access *
851 create_access (tree expr, gimple stmt, bool write)
853 struct access *access;
854 HOST_WIDE_INT offset, size, max_size;
855 tree base = expr;
856 bool ptr, unscalarizable_region = false;
858 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
860 if (sra_mode == SRA_MODE_EARLY_IPA
861 && TREE_CODE (base) == MEM_REF)
863 base = get_ssa_base_param (TREE_OPERAND (base, 0));
864 if (!base)
865 return NULL;
866 ptr = true;
868 else
869 ptr = false;
871 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
872 return NULL;
874 if (sra_mode == SRA_MODE_EARLY_IPA)
876 if (size < 0 || size != max_size)
878 disqualify_candidate (base, "Encountered a variable sized access.");
879 return NULL;
881 if (TREE_CODE (expr) == COMPONENT_REF
882 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
884 disqualify_candidate (base, "Encountered a bit-field access.");
885 return NULL;
887 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
889 if (ptr)
890 mark_parm_dereference (base, offset + size, stmt);
892 else
894 if (size != max_size)
896 size = max_size;
897 unscalarizable_region = true;
899 if (size < 0)
901 disqualify_candidate (base, "Encountered an unconstrained access.");
902 return NULL;
906 access = create_access_1 (base, offset, size);
907 access->expr = expr;
908 access->type = TREE_TYPE (expr);
909 access->write = write;
910 access->grp_unscalarizable_region = unscalarizable_region;
911 access->stmt = stmt;
913 if (TREE_CODE (expr) == COMPONENT_REF
914 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
915 access->non_addressable = 1;
917 return access;
921 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
922 register types or (recursively) records with only these two kinds of fields.
923 It also returns false if any of these records contains a bit-field. */
925 static bool
926 type_consists_of_records_p (tree type)
928 tree fld;
930 if (TREE_CODE (type) != RECORD_TYPE)
931 return false;
933 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
934 if (TREE_CODE (fld) == FIELD_DECL)
936 tree ft = TREE_TYPE (fld);
938 if (DECL_BIT_FIELD (fld))
939 return false;
941 if (!is_gimple_reg_type (ft)
942 && !type_consists_of_records_p (ft))
943 return false;
946 return true;
949 /* Create total_scalarization accesses for all scalar type fields in DECL that
950 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
951 must be the top-most VAR_DECL representing the variable, OFFSET must be the
952 offset of DECL within BASE. REF must be the memory reference expression for
953 the given decl. */
955 static void
956 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
957 tree ref)
959 tree fld, decl_type = TREE_TYPE (decl);
961 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
962 if (TREE_CODE (fld) == FIELD_DECL)
964 HOST_WIDE_INT pos = offset + int_bit_position (fld);
965 tree ft = TREE_TYPE (fld);
966 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
967 NULL_TREE);
969 if (is_gimple_reg_type (ft))
971 struct access *access;
972 HOST_WIDE_INT size;
974 size = tree_to_uhwi (DECL_SIZE (fld));
975 access = create_access_1 (base, pos, size);
976 access->expr = nref;
977 access->type = ft;
978 access->grp_total_scalarization = 1;
979 /* Accesses for intraprocedural SRA can have their stmt NULL. */
981 else
982 completely_scalarize_record (base, fld, pos, nref);
986 /* Create total_scalarization accesses for all scalar type fields in VAR and
987 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
988 type_consists_of_records_p. */
990 static void
991 completely_scalarize_var (tree var)
993 HOST_WIDE_INT size = tree_to_uhwi (DECL_SIZE (var));
994 struct access *access;
996 access = create_access_1 (var, 0, size);
997 access->expr = var;
998 access->type = TREE_TYPE (var);
999 access->grp_total_scalarization = 1;
1001 completely_scalarize_record (var, var, 0, var);
1004 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1006 static inline bool
1007 contains_view_convert_expr_p (const_tree ref)
1009 while (handled_component_p (ref))
1011 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1012 return true;
1013 ref = TREE_OPERAND (ref, 0);
1016 return false;
1019 /* Search the given tree for a declaration by skipping handled components and
1020 exclude it from the candidates. */
1022 static void
1023 disqualify_base_of_expr (tree t, const char *reason)
1025 t = get_base_address (t);
1026 if (sra_mode == SRA_MODE_EARLY_IPA
1027 && TREE_CODE (t) == MEM_REF)
1028 t = get_ssa_base_param (TREE_OPERAND (t, 0));
1030 if (t && DECL_P (t))
1031 disqualify_candidate (t, reason);
1034 /* Scan expression EXPR and create access structures for all accesses to
1035 candidates for scalarization. Return the created access or NULL if none is
1036 created. */
1038 static struct access *
1039 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
1041 struct access *ret = NULL;
1042 bool partial_ref;
1044 if (TREE_CODE (expr) == BIT_FIELD_REF
1045 || TREE_CODE (expr) == IMAGPART_EXPR
1046 || TREE_CODE (expr) == REALPART_EXPR)
1048 expr = TREE_OPERAND (expr, 0);
1049 partial_ref = true;
1051 else
1052 partial_ref = false;
1054 /* We need to dive through V_C_Es in order to get the size of its parameter
1055 and not the result type. Ada produces such statements. We are also
1056 capable of handling the topmost V_C_E but not any of those buried in other
1057 handled components. */
1058 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1059 expr = TREE_OPERAND (expr, 0);
1061 if (contains_view_convert_expr_p (expr))
1063 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1064 "component.");
1065 return NULL;
1068 switch (TREE_CODE (expr))
1070 case MEM_REF:
1071 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1072 && sra_mode != SRA_MODE_EARLY_IPA)
1073 return NULL;
1074 /* fall through */
1075 case VAR_DECL:
1076 case PARM_DECL:
1077 case RESULT_DECL:
1078 case COMPONENT_REF:
1079 case ARRAY_REF:
1080 case ARRAY_RANGE_REF:
1081 ret = create_access (expr, stmt, write);
1082 break;
1084 default:
1085 break;
1088 if (write && partial_ref && ret)
1089 ret->grp_partial_lhs = 1;
1091 return ret;
1094 /* Scan expression EXPR and create access structures for all accesses to
1095 candidates for scalarization. Return true if any access has been inserted.
1096 STMT must be the statement from which the expression is taken, WRITE must be
1097 true if the expression is a store and false otherwise. */
1099 static bool
1100 build_access_from_expr (tree expr, gimple stmt, bool write)
1102 struct access *access;
1104 access = build_access_from_expr_1 (expr, stmt, write);
1105 if (access)
1107 /* This means the aggregate is accesses as a whole in a way other than an
1108 assign statement and thus cannot be removed even if we had a scalar
1109 replacement for everything. */
1110 if (cannot_scalarize_away_bitmap)
1111 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1112 return true;
1114 return false;
1117 /* Return the single non-EH successor edge of BB or NULL if there is none or
1118 more than one. */
1120 static edge
1121 single_non_eh_succ (basic_block bb)
1123 edge e, res = NULL;
1124 edge_iterator ei;
1126 FOR_EACH_EDGE (e, ei, bb->succs)
1127 if (!(e->flags & EDGE_EH))
1129 if (res)
1130 return NULL;
1131 res = e;
1134 return res;
1137 /* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
1138 there is no alternative spot where to put statements SRA might need to
1139 generate after it. The spot we are looking for is an edge leading to a
1140 single non-EH successor, if it exists and is indeed single. RHS may be
1141 NULL, in that case ignore it. */
1143 static bool
1144 disqualify_if_bad_bb_terminating_stmt (gimple stmt, tree lhs, tree rhs)
1146 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1147 && stmt_ends_bb_p (stmt))
1149 if (single_non_eh_succ (gimple_bb (stmt)))
1150 return false;
1152 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1153 if (rhs)
1154 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1155 return true;
1157 return false;
1160 /* Scan expressions occurring in STMT, create access structures for all accesses
1161 to candidates for scalarization and remove those candidates which occur in
1162 statements or expressions that prevent them from being split apart. Return
1163 true if any access has been inserted. */
1165 static bool
1166 build_accesses_from_assign (gimple stmt)
1168 tree lhs, rhs;
1169 struct access *lacc, *racc;
1171 if (!gimple_assign_single_p (stmt)
1172 /* Scope clobbers don't influence scalarization. */
1173 || gimple_clobber_p (stmt))
1174 return false;
1176 lhs = gimple_assign_lhs (stmt);
1177 rhs = gimple_assign_rhs1 (stmt);
1179 if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
1180 return false;
1182 racc = build_access_from_expr_1 (rhs, stmt, false);
1183 lacc = build_access_from_expr_1 (lhs, stmt, true);
1185 if (lacc)
1186 lacc->grp_assignment_write = 1;
1188 if (racc)
1190 racc->grp_assignment_read = 1;
1191 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1192 && !is_gimple_reg_type (racc->type))
1193 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1196 if (lacc && racc
1197 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1198 && !lacc->grp_unscalarizable_region
1199 && !racc->grp_unscalarizable_region
1200 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1201 && lacc->size == racc->size
1202 && useless_type_conversion_p (lacc->type, racc->type))
1204 struct assign_link *link;
1206 link = (struct assign_link *) pool_alloc (link_pool);
1207 memset (link, 0, sizeof (struct assign_link));
1209 link->lacc = lacc;
1210 link->racc = racc;
1212 add_link_to_rhs (racc, link);
1215 return lacc || racc;
1218 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1219 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1221 static bool
1222 asm_visit_addr (gimple, tree op, tree, void *)
1224 op = get_base_address (op);
1225 if (op
1226 && DECL_P (op))
1227 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1229 return false;
1232 /* Return true iff callsite CALL has at least as many actual arguments as there
1233 are formal parameters of the function currently processed by IPA-SRA and
1234 that their types match. */
1236 static inline bool
1237 callsite_arguments_match_p (gimple call)
1239 if (gimple_call_num_args (call) < (unsigned) func_param_count)
1240 return false;
1242 tree parm;
1243 int i;
1244 for (parm = DECL_ARGUMENTS (current_function_decl), i = 0;
1245 parm;
1246 parm = DECL_CHAIN (parm), i++)
1248 tree arg = gimple_call_arg (call, i);
1249 if (!useless_type_conversion_p (TREE_TYPE (parm), TREE_TYPE (arg)))
1250 return false;
1252 return true;
1255 /* Scan function and look for interesting expressions and create access
1256 structures for them. Return true iff any access is created. */
1258 static bool
1259 scan_function (void)
1261 basic_block bb;
1262 bool ret = false;
1264 FOR_EACH_BB_FN (bb, cfun)
1266 gimple_stmt_iterator gsi;
1267 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1269 gimple stmt = gsi_stmt (gsi);
1270 tree t;
1271 unsigned i;
1273 if (final_bbs && stmt_can_throw_external (stmt))
1274 bitmap_set_bit (final_bbs, bb->index);
1275 switch (gimple_code (stmt))
1277 case GIMPLE_RETURN:
1278 t = gimple_return_retval (stmt);
1279 if (t != NULL_TREE)
1280 ret |= build_access_from_expr (t, stmt, false);
1281 if (final_bbs)
1282 bitmap_set_bit (final_bbs, bb->index);
1283 break;
1285 case GIMPLE_ASSIGN:
1286 ret |= build_accesses_from_assign (stmt);
1287 break;
1289 case GIMPLE_CALL:
1290 for (i = 0; i < gimple_call_num_args (stmt); i++)
1291 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1292 stmt, false);
1294 if (sra_mode == SRA_MODE_EARLY_IPA)
1296 tree dest = gimple_call_fndecl (stmt);
1297 int flags = gimple_call_flags (stmt);
1299 if (dest)
1301 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1302 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1303 encountered_apply_args = true;
1304 if (recursive_call_p (current_function_decl, dest))
1306 encountered_recursive_call = true;
1307 if (!callsite_arguments_match_p (stmt))
1308 encountered_unchangable_recursive_call = true;
1312 if (final_bbs
1313 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1314 bitmap_set_bit (final_bbs, bb->index);
1317 t = gimple_call_lhs (stmt);
1318 if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
1319 ret |= build_access_from_expr (t, stmt, true);
1320 break;
1322 case GIMPLE_ASM:
1323 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1324 asm_visit_addr);
1325 if (final_bbs)
1326 bitmap_set_bit (final_bbs, bb->index);
1328 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1330 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1331 ret |= build_access_from_expr (t, stmt, false);
1333 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1335 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1336 ret |= build_access_from_expr (t, stmt, true);
1338 break;
1340 default:
1341 break;
1346 return ret;
1349 /* Helper of QSORT function. There are pointers to accesses in the array. An
1350 access is considered smaller than another if it has smaller offset or if the
1351 offsets are the same but is size is bigger. */
1353 static int
1354 compare_access_positions (const void *a, const void *b)
1356 const access_p *fp1 = (const access_p *) a;
1357 const access_p *fp2 = (const access_p *) b;
1358 const access_p f1 = *fp1;
1359 const access_p f2 = *fp2;
1361 if (f1->offset != f2->offset)
1362 return f1->offset < f2->offset ? -1 : 1;
1364 if (f1->size == f2->size)
1366 if (f1->type == f2->type)
1367 return 0;
1368 /* Put any non-aggregate type before any aggregate type. */
1369 else if (!is_gimple_reg_type (f1->type)
1370 && is_gimple_reg_type (f2->type))
1371 return 1;
1372 else if (is_gimple_reg_type (f1->type)
1373 && !is_gimple_reg_type (f2->type))
1374 return -1;
1375 /* Put any complex or vector type before any other scalar type. */
1376 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1377 && TREE_CODE (f1->type) != VECTOR_TYPE
1378 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1379 || TREE_CODE (f2->type) == VECTOR_TYPE))
1380 return 1;
1381 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1382 || TREE_CODE (f1->type) == VECTOR_TYPE)
1383 && TREE_CODE (f2->type) != COMPLEX_TYPE
1384 && TREE_CODE (f2->type) != VECTOR_TYPE)
1385 return -1;
1386 /* Put the integral type with the bigger precision first. */
1387 else if (INTEGRAL_TYPE_P (f1->type)
1388 && INTEGRAL_TYPE_P (f2->type))
1389 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1390 /* Put any integral type with non-full precision last. */
1391 else if (INTEGRAL_TYPE_P (f1->type)
1392 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1393 != TYPE_PRECISION (f1->type)))
1394 return 1;
1395 else if (INTEGRAL_TYPE_P (f2->type)
1396 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1397 != TYPE_PRECISION (f2->type)))
1398 return -1;
1399 /* Stabilize the sort. */
1400 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1403 /* We want the bigger accesses first, thus the opposite operator in the next
1404 line: */
1405 return f1->size > f2->size ? -1 : 1;
1409 /* Append a name of the declaration to the name obstack. A helper function for
1410 make_fancy_name. */
1412 static void
1413 make_fancy_decl_name (tree decl)
1415 char buffer[32];
1417 tree name = DECL_NAME (decl);
1418 if (name)
1419 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1420 IDENTIFIER_LENGTH (name));
1421 else
1423 sprintf (buffer, "D%u", DECL_UID (decl));
1424 obstack_grow (&name_obstack, buffer, strlen (buffer));
1428 /* Helper for make_fancy_name. */
1430 static void
1431 make_fancy_name_1 (tree expr)
1433 char buffer[32];
1434 tree index;
1436 if (DECL_P (expr))
1438 make_fancy_decl_name (expr);
1439 return;
1442 switch (TREE_CODE (expr))
1444 case COMPONENT_REF:
1445 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1446 obstack_1grow (&name_obstack, '$');
1447 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1448 break;
1450 case ARRAY_REF:
1451 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1452 obstack_1grow (&name_obstack, '$');
1453 /* Arrays with only one element may not have a constant as their
1454 index. */
1455 index = TREE_OPERAND (expr, 1);
1456 if (TREE_CODE (index) != INTEGER_CST)
1457 break;
1458 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1459 obstack_grow (&name_obstack, buffer, strlen (buffer));
1460 break;
1462 case ADDR_EXPR:
1463 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1464 break;
1466 case MEM_REF:
1467 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1468 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1470 obstack_1grow (&name_obstack, '$');
1471 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1472 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1473 obstack_grow (&name_obstack, buffer, strlen (buffer));
1475 break;
1477 case BIT_FIELD_REF:
1478 case REALPART_EXPR:
1479 case IMAGPART_EXPR:
1480 gcc_unreachable (); /* we treat these as scalars. */
1481 break;
1482 default:
1483 break;
1487 /* Create a human readable name for replacement variable of ACCESS. */
1489 static char *
1490 make_fancy_name (tree expr)
1492 make_fancy_name_1 (expr);
1493 obstack_1grow (&name_obstack, '\0');
1494 return XOBFINISH (&name_obstack, char *);
1497 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1498 EXP_TYPE at the given OFFSET. If BASE is something for which
1499 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1500 to insert new statements either before or below the current one as specified
1501 by INSERT_AFTER. This function is not capable of handling bitfields.
1503 BASE must be either a declaration or a memory reference that has correct
1504 alignment ifformation embeded in it (e.g. a pre-existing one in SRA). */
1506 tree
1507 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1508 tree exp_type, gimple_stmt_iterator *gsi,
1509 bool insert_after)
1511 tree prev_base = base;
1512 tree off;
1513 tree mem_ref;
1514 HOST_WIDE_INT base_offset;
1515 unsigned HOST_WIDE_INT misalign;
1516 unsigned int align;
1518 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1519 get_object_alignment_1 (base, &align, &misalign);
1520 base = get_addr_base_and_unit_offset (base, &base_offset);
1522 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1523 offset such as array[var_index]. */
1524 if (!base)
1526 gimple stmt;
1527 tree tmp, addr;
1529 gcc_checking_assert (gsi);
1530 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1531 addr = build_fold_addr_expr (unshare_expr (prev_base));
1532 STRIP_USELESS_TYPE_CONVERSION (addr);
1533 stmt = gimple_build_assign (tmp, addr);
1534 gimple_set_location (stmt, loc);
1535 if (insert_after)
1536 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1537 else
1538 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1540 off = build_int_cst (reference_alias_ptr_type (prev_base),
1541 offset / BITS_PER_UNIT);
1542 base = tmp;
1544 else if (TREE_CODE (base) == MEM_REF)
1546 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1547 base_offset + offset / BITS_PER_UNIT);
1548 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1549 base = unshare_expr (TREE_OPERAND (base, 0));
1551 else
1553 off = build_int_cst (reference_alias_ptr_type (base),
1554 base_offset + offset / BITS_PER_UNIT);
1555 base = build_fold_addr_expr (unshare_expr (base));
1558 misalign = (misalign + offset) & (align - 1);
1559 if (misalign != 0)
1560 align = (misalign & -misalign);
1561 if (align < TYPE_ALIGN (exp_type))
1562 exp_type = build_aligned_type (exp_type, align);
1564 mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1565 if (TREE_THIS_VOLATILE (prev_base))
1566 TREE_THIS_VOLATILE (mem_ref) = 1;
1567 if (TREE_SIDE_EFFECTS (prev_base))
1568 TREE_SIDE_EFFECTS (mem_ref) = 1;
1569 return mem_ref;
1572 /* Construct a memory reference to a part of an aggregate BASE at the given
1573 OFFSET and of the same type as MODEL. In case this is a reference to a
1574 bit-field, the function will replicate the last component_ref of model's
1575 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1576 build_ref_for_offset. */
1578 static tree
1579 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1580 struct access *model, gimple_stmt_iterator *gsi,
1581 bool insert_after)
1583 if (TREE_CODE (model->expr) == COMPONENT_REF
1584 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1586 /* This access represents a bit-field. */
1587 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1589 offset -= int_bit_position (fld);
1590 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1591 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1592 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1593 NULL_TREE);
1595 else
1596 return build_ref_for_offset (loc, base, offset, model->type,
1597 gsi, insert_after);
1600 /* Attempt to build a memory reference that we could but into a gimple
1601 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1602 create statements and return s NULL instead. This function also ignores
1603 alignment issues and so its results should never end up in non-debug
1604 statements. */
1606 static tree
1607 build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1608 struct access *model)
1610 HOST_WIDE_INT base_offset;
1611 tree off;
1613 if (TREE_CODE (model->expr) == COMPONENT_REF
1614 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1615 return NULL_TREE;
1617 base = get_addr_base_and_unit_offset (base, &base_offset);
1618 if (!base)
1619 return NULL_TREE;
1620 if (TREE_CODE (base) == MEM_REF)
1622 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1623 base_offset + offset / BITS_PER_UNIT);
1624 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1625 base = unshare_expr (TREE_OPERAND (base, 0));
1627 else
1629 off = build_int_cst (reference_alias_ptr_type (base),
1630 base_offset + offset / BITS_PER_UNIT);
1631 base = build_fold_addr_expr (unshare_expr (base));
1634 return fold_build2_loc (loc, MEM_REF, model->type, base, off);
1637 /* Construct a memory reference consisting of component_refs and array_refs to
1638 a part of an aggregate *RES (which is of type TYPE). The requested part
1639 should have type EXP_TYPE at be the given OFFSET. This function might not
1640 succeed, it returns true when it does and only then *RES points to something
1641 meaningful. This function should be used only to build expressions that we
1642 might need to present to user (e.g. in warnings). In all other situations,
1643 build_ref_for_model or build_ref_for_offset should be used instead. */
1645 static bool
1646 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1647 tree exp_type)
1649 while (1)
1651 tree fld;
1652 tree tr_size, index, minidx;
1653 HOST_WIDE_INT el_size;
1655 if (offset == 0 && exp_type
1656 && types_compatible_p (exp_type, type))
1657 return true;
1659 switch (TREE_CODE (type))
1661 case UNION_TYPE:
1662 case QUAL_UNION_TYPE:
1663 case RECORD_TYPE:
1664 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1666 HOST_WIDE_INT pos, size;
1667 tree tr_pos, expr, *expr_ptr;
1669 if (TREE_CODE (fld) != FIELD_DECL)
1670 continue;
1672 tr_pos = bit_position (fld);
1673 if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
1674 continue;
1675 pos = tree_to_uhwi (tr_pos);
1676 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1677 tr_size = DECL_SIZE (fld);
1678 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1679 continue;
1680 size = tree_to_uhwi (tr_size);
1681 if (size == 0)
1683 if (pos != offset)
1684 continue;
1686 else if (pos > offset || (pos + size) <= offset)
1687 continue;
1689 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1690 NULL_TREE);
1691 expr_ptr = &expr;
1692 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1693 offset - pos, exp_type))
1695 *res = expr;
1696 return true;
1699 return false;
1701 case ARRAY_TYPE:
1702 tr_size = TYPE_SIZE (TREE_TYPE (type));
1703 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1704 return false;
1705 el_size = tree_to_uhwi (tr_size);
1707 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1708 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1709 return false;
1710 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1711 if (!integer_zerop (minidx))
1712 index = int_const_binop (PLUS_EXPR, index, minidx);
1713 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1714 NULL_TREE, NULL_TREE);
1715 offset = offset % el_size;
1716 type = TREE_TYPE (type);
1717 break;
1719 default:
1720 if (offset != 0)
1721 return false;
1723 if (exp_type)
1724 return false;
1725 else
1726 return true;
1731 /* Return true iff TYPE is stdarg va_list type. */
1733 static inline bool
1734 is_va_list_type (tree type)
1736 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1739 /* Print message to dump file why a variable was rejected. */
1741 static void
1742 reject (tree var, const char *msg)
1744 if (dump_file && (dump_flags & TDF_DETAILS))
1746 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1747 print_generic_expr (dump_file, var, 0);
1748 fprintf (dump_file, "\n");
1752 /* Return true if VAR is a candidate for SRA. */
1754 static bool
1755 maybe_add_sra_candidate (tree var)
1757 tree type = TREE_TYPE (var);
1758 const char *msg;
1759 tree_node **slot;
1761 if (!AGGREGATE_TYPE_P (type))
1763 reject (var, "not aggregate");
1764 return false;
1766 if (needs_to_live_in_memory (var))
1768 reject (var, "needs to live in memory");
1769 return false;
1771 if (TREE_THIS_VOLATILE (var))
1773 reject (var, "is volatile");
1774 return false;
1776 if (!COMPLETE_TYPE_P (type))
1778 reject (var, "has incomplete type");
1779 return false;
1781 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
1783 reject (var, "type size not fixed");
1784 return false;
1786 if (tree_to_uhwi (TYPE_SIZE (type)) == 0)
1788 reject (var, "type size is zero");
1789 return false;
1791 if (type_internals_preclude_sra_p (type, &msg))
1793 reject (var, msg);
1794 return false;
1796 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1797 we also want to schedule it rather late. Thus we ignore it in
1798 the early pass. */
1799 (sra_mode == SRA_MODE_EARLY_INTRA
1800 && is_va_list_type (type)))
1802 reject (var, "is va_list");
1803 return false;
1806 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1807 slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
1808 *slot = var;
1810 if (dump_file && (dump_flags & TDF_DETAILS))
1812 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1813 print_generic_expr (dump_file, var, 0);
1814 fprintf (dump_file, "\n");
1817 return true;
1820 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1821 those with type which is suitable for scalarization. */
1823 static bool
1824 find_var_candidates (void)
1826 tree var, parm;
1827 unsigned int i;
1828 bool ret = false;
1830 for (parm = DECL_ARGUMENTS (current_function_decl);
1831 parm;
1832 parm = DECL_CHAIN (parm))
1833 ret |= maybe_add_sra_candidate (parm);
1835 FOR_EACH_LOCAL_DECL (cfun, i, var)
1837 if (TREE_CODE (var) != VAR_DECL)
1838 continue;
1840 ret |= maybe_add_sra_candidate (var);
1843 return ret;
1846 /* Sort all accesses for the given variable, check for partial overlaps and
1847 return NULL if there are any. If there are none, pick a representative for
1848 each combination of offset and size and create a linked list out of them.
1849 Return the pointer to the first representative and make sure it is the first
1850 one in the vector of accesses. */
1852 static struct access *
1853 sort_and_splice_var_accesses (tree var)
1855 int i, j, access_count;
1856 struct access *res, **prev_acc_ptr = &res;
1857 vec<access_p> *access_vec;
1858 bool first = true;
1859 HOST_WIDE_INT low = -1, high = 0;
1861 access_vec = get_base_access_vector (var);
1862 if (!access_vec)
1863 return NULL;
1864 access_count = access_vec->length ();
1866 /* Sort by <OFFSET, SIZE>. */
1867 access_vec->qsort (compare_access_positions);
1869 i = 0;
1870 while (i < access_count)
1872 struct access *access = (*access_vec)[i];
1873 bool grp_write = access->write;
1874 bool grp_read = !access->write;
1875 bool grp_scalar_write = access->write
1876 && is_gimple_reg_type (access->type);
1877 bool grp_scalar_read = !access->write
1878 && is_gimple_reg_type (access->type);
1879 bool grp_assignment_read = access->grp_assignment_read;
1880 bool grp_assignment_write = access->grp_assignment_write;
1881 bool multiple_scalar_reads = false;
1882 bool total_scalarization = access->grp_total_scalarization;
1883 bool grp_partial_lhs = access->grp_partial_lhs;
1884 bool first_scalar = is_gimple_reg_type (access->type);
1885 bool unscalarizable_region = access->grp_unscalarizable_region;
1887 if (first || access->offset >= high)
1889 first = false;
1890 low = access->offset;
1891 high = access->offset + access->size;
1893 else if (access->offset > low && access->offset + access->size > high)
1894 return NULL;
1895 else
1896 gcc_assert (access->offset >= low
1897 && access->offset + access->size <= high);
1899 j = i + 1;
1900 while (j < access_count)
1902 struct access *ac2 = (*access_vec)[j];
1903 if (ac2->offset != access->offset || ac2->size != access->size)
1904 break;
1905 if (ac2->write)
1907 grp_write = true;
1908 grp_scalar_write = (grp_scalar_write
1909 || is_gimple_reg_type (ac2->type));
1911 else
1913 grp_read = true;
1914 if (is_gimple_reg_type (ac2->type))
1916 if (grp_scalar_read)
1917 multiple_scalar_reads = true;
1918 else
1919 grp_scalar_read = true;
1922 grp_assignment_read |= ac2->grp_assignment_read;
1923 grp_assignment_write |= ac2->grp_assignment_write;
1924 grp_partial_lhs |= ac2->grp_partial_lhs;
1925 unscalarizable_region |= ac2->grp_unscalarizable_region;
1926 total_scalarization |= ac2->grp_total_scalarization;
1927 relink_to_new_repr (access, ac2);
1929 /* If there are both aggregate-type and scalar-type accesses with
1930 this combination of size and offset, the comparison function
1931 should have put the scalars first. */
1932 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1933 ac2->group_representative = access;
1934 j++;
1937 i = j;
1939 access->group_representative = access;
1940 access->grp_write = grp_write;
1941 access->grp_read = grp_read;
1942 access->grp_scalar_read = grp_scalar_read;
1943 access->grp_scalar_write = grp_scalar_write;
1944 access->grp_assignment_read = grp_assignment_read;
1945 access->grp_assignment_write = grp_assignment_write;
1946 access->grp_hint = multiple_scalar_reads || total_scalarization;
1947 access->grp_total_scalarization = total_scalarization;
1948 access->grp_partial_lhs = grp_partial_lhs;
1949 access->grp_unscalarizable_region = unscalarizable_region;
1950 if (access->first_link)
1951 add_access_to_work_queue (access);
1953 *prev_acc_ptr = access;
1954 prev_acc_ptr = &access->next_grp;
1957 gcc_assert (res == (*access_vec)[0]);
1958 return res;
1961 /* Create a variable for the given ACCESS which determines the type, name and a
1962 few other properties. Return the variable declaration and store it also to
1963 ACCESS->replacement. */
1965 static tree
1966 create_access_replacement (struct access *access)
1968 tree repl;
1970 if (access->grp_to_be_debug_replaced)
1972 repl = create_tmp_var_raw (access->type, NULL);
1973 DECL_CONTEXT (repl) = current_function_decl;
1975 else
1976 repl = create_tmp_var (access->type, "SR");
1977 if (TREE_CODE (access->type) == COMPLEX_TYPE
1978 || TREE_CODE (access->type) == VECTOR_TYPE)
1980 if (!access->grp_partial_lhs)
1981 DECL_GIMPLE_REG_P (repl) = 1;
1983 else if (access->grp_partial_lhs
1984 && is_gimple_reg_type (access->type))
1985 TREE_ADDRESSABLE (repl) = 1;
1987 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1988 DECL_ARTIFICIAL (repl) = 1;
1989 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1991 if (DECL_NAME (access->base)
1992 && !DECL_IGNORED_P (access->base)
1993 && !DECL_ARTIFICIAL (access->base))
1995 char *pretty_name = make_fancy_name (access->expr);
1996 tree debug_expr = unshare_expr_without_location (access->expr), d;
1997 bool fail = false;
1999 DECL_NAME (repl) = get_identifier (pretty_name);
2000 obstack_free (&name_obstack, pretty_name);
2002 /* Get rid of any SSA_NAMEs embedded in debug_expr,
2003 as DECL_DEBUG_EXPR isn't considered when looking for still
2004 used SSA_NAMEs and thus they could be freed. All debug info
2005 generation cares is whether something is constant or variable
2006 and that get_ref_base_and_extent works properly on the
2007 expression. It cannot handle accesses at a non-constant offset
2008 though, so just give up in those cases. */
2009 for (d = debug_expr;
2010 !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
2011 d = TREE_OPERAND (d, 0))
2012 switch (TREE_CODE (d))
2014 case ARRAY_REF:
2015 case ARRAY_RANGE_REF:
2016 if (TREE_OPERAND (d, 1)
2017 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
2018 fail = true;
2019 if (TREE_OPERAND (d, 3)
2020 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
2021 fail = true;
2022 /* FALLTHRU */
2023 case COMPONENT_REF:
2024 if (TREE_OPERAND (d, 2)
2025 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
2026 fail = true;
2027 break;
2028 case MEM_REF:
2029 if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
2030 fail = true;
2031 else
2032 d = TREE_OPERAND (d, 0);
2033 break;
2034 default:
2035 break;
2037 if (!fail)
2039 SET_DECL_DEBUG_EXPR (repl, debug_expr);
2040 DECL_HAS_DEBUG_EXPR_P (repl) = 1;
2042 if (access->grp_no_warning)
2043 TREE_NO_WARNING (repl) = 1;
2044 else
2045 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
2047 else
2048 TREE_NO_WARNING (repl) = 1;
2050 if (dump_file)
2052 if (access->grp_to_be_debug_replaced)
2054 fprintf (dump_file, "Created a debug-only replacement for ");
2055 print_generic_expr (dump_file, access->base, 0);
2056 fprintf (dump_file, " offset: %u, size: %u\n",
2057 (unsigned) access->offset, (unsigned) access->size);
2059 else
2061 fprintf (dump_file, "Created a replacement for ");
2062 print_generic_expr (dump_file, access->base, 0);
2063 fprintf (dump_file, " offset: %u, size: %u: ",
2064 (unsigned) access->offset, (unsigned) access->size);
2065 print_generic_expr (dump_file, repl, 0);
2066 fprintf (dump_file, "\n");
2069 sra_stats.replacements++;
2071 return repl;
2074 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2076 static inline tree
2077 get_access_replacement (struct access *access)
2079 gcc_checking_assert (access->replacement_decl);
2080 return access->replacement_decl;
2084 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2085 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2086 to it is not "within" the root. Return false iff some accesses partially
2087 overlap. */
2089 static bool
2090 build_access_subtree (struct access **access)
2092 struct access *root = *access, *last_child = NULL;
2093 HOST_WIDE_INT limit = root->offset + root->size;
2095 *access = (*access)->next_grp;
2096 while (*access && (*access)->offset + (*access)->size <= limit)
2098 if (!last_child)
2099 root->first_child = *access;
2100 else
2101 last_child->next_sibling = *access;
2102 last_child = *access;
2104 if (!build_access_subtree (access))
2105 return false;
2108 if (*access && (*access)->offset < limit)
2109 return false;
2111 return true;
2114 /* Build a tree of access representatives, ACCESS is the pointer to the first
2115 one, others are linked in a list by the next_grp field. Return false iff
2116 some accesses partially overlap. */
2118 static bool
2119 build_access_trees (struct access *access)
2121 while (access)
2123 struct access *root = access;
2125 if (!build_access_subtree (&access))
2126 return false;
2127 root->next_grp = access;
2129 return true;
2132 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2133 array. */
2135 static bool
2136 expr_with_var_bounded_array_refs_p (tree expr)
2138 while (handled_component_p (expr))
2140 if (TREE_CODE (expr) == ARRAY_REF
2141 && !tree_fits_shwi_p (array_ref_low_bound (expr)))
2142 return true;
2143 expr = TREE_OPERAND (expr, 0);
2145 return false;
2148 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2149 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2150 sorts of access flags appropriately along the way, notably always set
2151 grp_read and grp_assign_read according to MARK_READ and grp_write when
2152 MARK_WRITE is true.
2154 Creating a replacement for a scalar access is considered beneficial if its
2155 grp_hint is set (this means we are either attempting total scalarization or
2156 there is more than one direct read access) or according to the following
2157 table:
2159 Access written to through a scalar type (once or more times)
2161 | Written to in an assignment statement
2163 | | Access read as scalar _once_
2164 | | |
2165 | | | Read in an assignment statement
2166 | | | |
2167 | | | | Scalarize Comment
2168 -----------------------------------------------------------------------------
2169 0 0 0 0 No access for the scalar
2170 0 0 0 1 No access for the scalar
2171 0 0 1 0 No Single read - won't help
2172 0 0 1 1 No The same case
2173 0 1 0 0 No access for the scalar
2174 0 1 0 1 No access for the scalar
2175 0 1 1 0 Yes s = *g; return s.i;
2176 0 1 1 1 Yes The same case as above
2177 1 0 0 0 No Won't help
2178 1 0 0 1 Yes s.i = 1; *g = s;
2179 1 0 1 0 Yes s.i = 5; g = s.i;
2180 1 0 1 1 Yes The same case as above
2181 1 1 0 0 No Won't help.
2182 1 1 0 1 Yes s.i = 1; *g = s;
2183 1 1 1 0 Yes s = *g; return s.i;
2184 1 1 1 1 Yes Any of the above yeses */
2186 static bool
2187 analyze_access_subtree (struct access *root, struct access *parent,
2188 bool allow_replacements)
2190 struct access *child;
2191 HOST_WIDE_INT limit = root->offset + root->size;
2192 HOST_WIDE_INT covered_to = root->offset;
2193 bool scalar = is_gimple_reg_type (root->type);
2194 bool hole = false, sth_created = false;
2196 if (parent)
2198 if (parent->grp_read)
2199 root->grp_read = 1;
2200 if (parent->grp_assignment_read)
2201 root->grp_assignment_read = 1;
2202 if (parent->grp_write)
2203 root->grp_write = 1;
2204 if (parent->grp_assignment_write)
2205 root->grp_assignment_write = 1;
2206 if (parent->grp_total_scalarization)
2207 root->grp_total_scalarization = 1;
2210 if (root->grp_unscalarizable_region)
2211 allow_replacements = false;
2213 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2214 allow_replacements = false;
2216 for (child = root->first_child; child; child = child->next_sibling)
2218 hole |= covered_to < child->offset;
2219 sth_created |= analyze_access_subtree (child, root,
2220 allow_replacements && !scalar);
2222 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2223 root->grp_total_scalarization &= child->grp_total_scalarization;
2224 if (child->grp_covered)
2225 covered_to += child->size;
2226 else
2227 hole = true;
2230 if (allow_replacements && scalar && !root->first_child
2231 && (root->grp_hint
2232 || ((root->grp_scalar_read || root->grp_assignment_read)
2233 && (root->grp_scalar_write || root->grp_assignment_write))))
2235 /* Always create access replacements that cover the whole access.
2236 For integral types this means the precision has to match.
2237 Avoid assumptions based on the integral type kind, too. */
2238 if (INTEGRAL_TYPE_P (root->type)
2239 && (TREE_CODE (root->type) != INTEGER_TYPE
2240 || TYPE_PRECISION (root->type) != root->size)
2241 /* But leave bitfield accesses alone. */
2242 && (TREE_CODE (root->expr) != COMPONENT_REF
2243 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2245 tree rt = root->type;
2246 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2247 && (root->size % BITS_PER_UNIT) == 0);
2248 root->type = build_nonstandard_integer_type (root->size,
2249 TYPE_UNSIGNED (rt));
2250 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2251 root->base, root->offset,
2252 root->type, NULL, false);
2254 if (dump_file && (dump_flags & TDF_DETAILS))
2256 fprintf (dump_file, "Changing the type of a replacement for ");
2257 print_generic_expr (dump_file, root->base, 0);
2258 fprintf (dump_file, " offset: %u, size: %u ",
2259 (unsigned) root->offset, (unsigned) root->size);
2260 fprintf (dump_file, " to an integer.\n");
2264 root->grp_to_be_replaced = 1;
2265 root->replacement_decl = create_access_replacement (root);
2266 sth_created = true;
2267 hole = false;
2269 else
2271 if (allow_replacements
2272 && scalar && !root->first_child
2273 && (root->grp_scalar_write || root->grp_assignment_write)
2274 && !bitmap_bit_p (cannot_scalarize_away_bitmap,
2275 DECL_UID (root->base)))
2277 gcc_checking_assert (!root->grp_scalar_read
2278 && !root->grp_assignment_read);
2279 sth_created = true;
2280 if (MAY_HAVE_DEBUG_STMTS)
2282 root->grp_to_be_debug_replaced = 1;
2283 root->replacement_decl = create_access_replacement (root);
2287 if (covered_to < limit)
2288 hole = true;
2289 if (scalar)
2290 root->grp_total_scalarization = 0;
2293 if (!hole || root->grp_total_scalarization)
2294 root->grp_covered = 1;
2295 else if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2296 root->grp_unscalarized_data = 1; /* not covered and written to */
2297 return sth_created;
2300 /* Analyze all access trees linked by next_grp by the means of
2301 analyze_access_subtree. */
2302 static bool
2303 analyze_access_trees (struct access *access)
2305 bool ret = false;
2307 while (access)
2309 if (analyze_access_subtree (access, NULL, true))
2310 ret = true;
2311 access = access->next_grp;
2314 return ret;
2317 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2318 SIZE would conflict with an already existing one. If exactly such a child
2319 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2321 static bool
2322 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2323 HOST_WIDE_INT size, struct access **exact_match)
2325 struct access *child;
2327 for (child = lacc->first_child; child; child = child->next_sibling)
2329 if (child->offset == norm_offset && child->size == size)
2331 *exact_match = child;
2332 return true;
2335 if (child->offset < norm_offset + size
2336 && child->offset + child->size > norm_offset)
2337 return true;
2340 return false;
2343 /* Create a new child access of PARENT, with all properties just like MODEL
2344 except for its offset and with its grp_write false and grp_read true.
2345 Return the new access or NULL if it cannot be created. Note that this access
2346 is created long after all splicing and sorting, it's not located in any
2347 access vector and is automatically a representative of its group. */
2349 static struct access *
2350 create_artificial_child_access (struct access *parent, struct access *model,
2351 HOST_WIDE_INT new_offset)
2353 struct access *access;
2354 struct access **child;
2355 tree expr = parent->base;
2357 gcc_assert (!model->grp_unscalarizable_region);
2359 access = (struct access *) pool_alloc (access_pool);
2360 memset (access, 0, sizeof (struct access));
2361 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2362 model->type))
2364 access->grp_no_warning = true;
2365 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2366 new_offset, model, NULL, false);
2369 access->base = parent->base;
2370 access->expr = expr;
2371 access->offset = new_offset;
2372 access->size = model->size;
2373 access->type = model->type;
2374 access->grp_write = true;
2375 access->grp_read = false;
2377 child = &parent->first_child;
2378 while (*child && (*child)->offset < new_offset)
2379 child = &(*child)->next_sibling;
2381 access->next_sibling = *child;
2382 *child = access;
2384 return access;
2388 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2389 true if any new subaccess was created. Additionally, if RACC is a scalar
2390 access but LACC is not, change the type of the latter, if possible. */
2392 static bool
2393 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2395 struct access *rchild;
2396 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2397 bool ret = false;
2399 if (is_gimple_reg_type (lacc->type)
2400 || lacc->grp_unscalarizable_region
2401 || racc->grp_unscalarizable_region)
2402 return false;
2404 if (is_gimple_reg_type (racc->type))
2406 if (!lacc->first_child && !racc->first_child)
2408 tree t = lacc->base;
2410 lacc->type = racc->type;
2411 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2412 lacc->offset, racc->type))
2413 lacc->expr = t;
2414 else
2416 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2417 lacc->base, lacc->offset,
2418 racc, NULL, false);
2419 lacc->grp_no_warning = true;
2422 return false;
2425 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2427 struct access *new_acc = NULL;
2428 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2430 if (rchild->grp_unscalarizable_region)
2431 continue;
2433 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2434 &new_acc))
2436 if (new_acc)
2438 rchild->grp_hint = 1;
2439 new_acc->grp_hint |= new_acc->grp_read;
2440 if (rchild->first_child)
2441 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2443 continue;
2446 rchild->grp_hint = 1;
2447 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2448 if (new_acc)
2450 ret = true;
2451 if (racc->first_child)
2452 propagate_subaccesses_across_link (new_acc, rchild);
2456 return ret;
2459 /* Propagate all subaccesses across assignment links. */
2461 static void
2462 propagate_all_subaccesses (void)
2464 while (work_queue_head)
2466 struct access *racc = pop_access_from_work_queue ();
2467 struct assign_link *link;
2469 gcc_assert (racc->first_link);
2471 for (link = racc->first_link; link; link = link->next)
2473 struct access *lacc = link->lacc;
2475 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2476 continue;
2477 lacc = lacc->group_representative;
2478 if (propagate_subaccesses_across_link (lacc, racc)
2479 && lacc->first_link)
2480 add_access_to_work_queue (lacc);
2485 /* Go through all accesses collected throughout the (intraprocedural) analysis
2486 stage, exclude overlapping ones, identify representatives and build trees
2487 out of them, making decisions about scalarization on the way. Return true
2488 iff there are any to-be-scalarized variables after this stage. */
2490 static bool
2491 analyze_all_variable_accesses (void)
2493 int res = 0;
2494 bitmap tmp = BITMAP_ALLOC (NULL);
2495 bitmap_iterator bi;
2496 unsigned i, max_total_scalarization_size;
2498 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2499 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2501 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2502 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2503 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2505 tree var = candidate (i);
2507 if (TREE_CODE (var) == VAR_DECL
2508 && type_consists_of_records_p (TREE_TYPE (var)))
2510 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var)))
2511 <= max_total_scalarization_size)
2513 completely_scalarize_var (var);
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2516 fprintf (dump_file, "Will attempt to totally scalarize ");
2517 print_generic_expr (dump_file, var, 0);
2518 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2521 else if (dump_file && (dump_flags & TDF_DETAILS))
2523 fprintf (dump_file, "Too big to totally scalarize: ");
2524 print_generic_expr (dump_file, var, 0);
2525 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2530 bitmap_copy (tmp, candidate_bitmap);
2531 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2533 tree var = candidate (i);
2534 struct access *access;
2536 access = sort_and_splice_var_accesses (var);
2537 if (!access || !build_access_trees (access))
2538 disqualify_candidate (var,
2539 "No or inhibitingly overlapping accesses.");
2542 propagate_all_subaccesses ();
2544 bitmap_copy (tmp, candidate_bitmap);
2545 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2547 tree var = candidate (i);
2548 struct access *access = get_first_repr_for_decl (var);
2550 if (analyze_access_trees (access))
2552 res++;
2553 if (dump_file && (dump_flags & TDF_DETAILS))
2555 fprintf (dump_file, "\nAccess trees for ");
2556 print_generic_expr (dump_file, var, 0);
2557 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2558 dump_access_tree (dump_file, access);
2559 fprintf (dump_file, "\n");
2562 else
2563 disqualify_candidate (var, "No scalar replacements to be created.");
2566 BITMAP_FREE (tmp);
2568 if (res)
2570 statistics_counter_event (cfun, "Scalarized aggregates", res);
2571 return true;
2573 else
2574 return false;
2577 /* Generate statements copying scalar replacements of accesses within a subtree
2578 into or out of AGG. ACCESS, all its children, siblings and their children
2579 are to be processed. AGG is an aggregate type expression (can be a
2580 declaration but does not have to be, it can for example also be a mem_ref or
2581 a series of handled components). TOP_OFFSET is the offset of the processed
2582 subtree which has to be subtracted from offsets of individual accesses to
2583 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2584 replacements in the interval <start_offset, start_offset + chunk_size>,
2585 otherwise copy all. GSI is a statement iterator used to place the new
2586 statements. WRITE should be true when the statements should write from AGG
2587 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2588 statements will be added after the current statement in GSI, they will be
2589 added before the statement otherwise. */
2591 static void
2592 generate_subtree_copies (struct access *access, tree agg,
2593 HOST_WIDE_INT top_offset,
2594 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2595 gimple_stmt_iterator *gsi, bool write,
2596 bool insert_after, location_t loc)
2600 if (chunk_size && access->offset >= start_offset + chunk_size)
2601 return;
2603 if (access->grp_to_be_replaced
2604 && (chunk_size == 0
2605 || access->offset + access->size > start_offset))
2607 tree expr, repl = get_access_replacement (access);
2608 gimple stmt;
2610 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2611 access, gsi, insert_after);
2613 if (write)
2615 if (access->grp_partial_lhs)
2616 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2617 !insert_after,
2618 insert_after ? GSI_NEW_STMT
2619 : GSI_SAME_STMT);
2620 stmt = gimple_build_assign (repl, expr);
2622 else
2624 TREE_NO_WARNING (repl) = 1;
2625 if (access->grp_partial_lhs)
2626 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2627 !insert_after,
2628 insert_after ? GSI_NEW_STMT
2629 : GSI_SAME_STMT);
2630 stmt = gimple_build_assign (expr, repl);
2632 gimple_set_location (stmt, loc);
2634 if (insert_after)
2635 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2636 else
2637 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2638 update_stmt (stmt);
2639 sra_stats.subtree_copies++;
2641 else if (write
2642 && access->grp_to_be_debug_replaced
2643 && (chunk_size == 0
2644 || access->offset + access->size > start_offset))
2646 gimple ds;
2647 tree drhs = build_debug_ref_for_model (loc, agg,
2648 access->offset - top_offset,
2649 access);
2650 ds = gimple_build_debug_bind (get_access_replacement (access),
2651 drhs, gsi_stmt (*gsi));
2652 if (insert_after)
2653 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2654 else
2655 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2658 if (access->first_child)
2659 generate_subtree_copies (access->first_child, agg, top_offset,
2660 start_offset, chunk_size, gsi,
2661 write, insert_after, loc);
2663 access = access->next_sibling;
2665 while (access);
2668 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2669 the root of the subtree to be processed. GSI is the statement iterator used
2670 for inserting statements which are added after the current statement if
2671 INSERT_AFTER is true or before it otherwise. */
2673 static void
2674 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2675 bool insert_after, location_t loc)
2678 struct access *child;
2680 if (access->grp_to_be_replaced)
2682 gimple stmt;
2684 stmt = gimple_build_assign (get_access_replacement (access),
2685 build_zero_cst (access->type));
2686 if (insert_after)
2687 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2688 else
2689 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2690 update_stmt (stmt);
2691 gimple_set_location (stmt, loc);
2693 else if (access->grp_to_be_debug_replaced)
2695 gimple ds = gimple_build_debug_bind (get_access_replacement (access),
2696 build_zero_cst (access->type),
2697 gsi_stmt (*gsi));
2698 if (insert_after)
2699 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2700 else
2701 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2704 for (child = access->first_child; child; child = child->next_sibling)
2705 init_subtree_with_zero (child, gsi, insert_after, loc);
2708 /* Search for an access representative for the given expression EXPR and
2709 return it or NULL if it cannot be found. */
2711 static struct access *
2712 get_access_for_expr (tree expr)
2714 HOST_WIDE_INT offset, size, max_size;
2715 tree base;
2717 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2718 a different size than the size of its argument and we need the latter
2719 one. */
2720 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2721 expr = TREE_OPERAND (expr, 0);
2723 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2724 if (max_size == -1 || !DECL_P (base))
2725 return NULL;
2727 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2728 return NULL;
2730 return get_var_base_offset_size_access (base, offset, max_size);
2733 /* Replace the expression EXPR with a scalar replacement if there is one and
2734 generate other statements to do type conversion or subtree copying if
2735 necessary. GSI is used to place newly created statements, WRITE is true if
2736 the expression is being written to (it is on a LHS of a statement or output
2737 in an assembly statement). */
2739 static bool
2740 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2742 location_t loc;
2743 struct access *access;
2744 tree type, bfr, orig_expr;
2746 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2748 bfr = *expr;
2749 expr = &TREE_OPERAND (*expr, 0);
2751 else
2752 bfr = NULL_TREE;
2754 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2755 expr = &TREE_OPERAND (*expr, 0);
2756 access = get_access_for_expr (*expr);
2757 if (!access)
2758 return false;
2759 type = TREE_TYPE (*expr);
2760 orig_expr = *expr;
2762 loc = gimple_location (gsi_stmt (*gsi));
2763 gimple_stmt_iterator alt_gsi = gsi_none ();
2764 if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
2766 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
2767 gsi = &alt_gsi;
2770 if (access->grp_to_be_replaced)
2772 tree repl = get_access_replacement (access);
2773 /* If we replace a non-register typed access simply use the original
2774 access expression to extract the scalar component afterwards.
2775 This happens if scalarizing a function return value or parameter
2776 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2777 gcc.c-torture/compile/20011217-1.c.
2779 We also want to use this when accessing a complex or vector which can
2780 be accessed as a different type too, potentially creating a need for
2781 type conversion (see PR42196) and when scalarized unions are involved
2782 in assembler statements (see PR42398). */
2783 if (!useless_type_conversion_p (type, access->type))
2785 tree ref;
2787 ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
2789 if (write)
2791 gimple stmt;
2793 if (access->grp_partial_lhs)
2794 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2795 false, GSI_NEW_STMT);
2796 stmt = gimple_build_assign (repl, ref);
2797 gimple_set_location (stmt, loc);
2798 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2800 else
2802 gimple stmt;
2804 if (access->grp_partial_lhs)
2805 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2806 true, GSI_SAME_STMT);
2807 stmt = gimple_build_assign (ref, repl);
2808 gimple_set_location (stmt, loc);
2809 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2812 else
2813 *expr = repl;
2814 sra_stats.exprs++;
2816 else if (write && access->grp_to_be_debug_replaced)
2818 gimple ds = gimple_build_debug_bind (get_access_replacement (access),
2819 NULL_TREE,
2820 gsi_stmt (*gsi));
2821 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2824 if (access->first_child)
2826 HOST_WIDE_INT start_offset, chunk_size;
2827 if (bfr
2828 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
2829 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
2831 chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
2832 start_offset = access->offset
2833 + tree_to_uhwi (TREE_OPERAND (bfr, 2));
2835 else
2836 start_offset = chunk_size = 0;
2838 generate_subtree_copies (access->first_child, orig_expr, access->offset,
2839 start_offset, chunk_size, gsi, write, write,
2840 loc);
2842 return true;
2845 /* Where scalar replacements of the RHS have been written to when a replacement
2846 of a LHS of an assigments cannot be direclty loaded from a replacement of
2847 the RHS. */
2848 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2849 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2850 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2852 struct subreplacement_assignment_data
2854 /* Offset of the access representing the lhs of the assignment. */
2855 HOST_WIDE_INT left_offset;
2857 /* LHS and RHS of the original assignment. */
2858 tree assignment_lhs, assignment_rhs;
2860 /* Access representing the rhs of the whole assignment. */
2861 struct access *top_racc;
2863 /* Stmt iterator used for statement insertions after the original assignment.
2864 It points to the main GSI used to traverse a BB during function body
2865 modification. */
2866 gimple_stmt_iterator *new_gsi;
2868 /* Stmt iterator used for statement insertions before the original
2869 assignment. Keeps on pointing to the original statement. */
2870 gimple_stmt_iterator old_gsi;
2872 /* Location of the assignment. */
2873 location_t loc;
2875 /* Keeps the information whether we have needed to refresh replacements of
2876 the LHS and from which side of the assignments this takes place. */
2877 enum unscalarized_data_handling refreshed;
2880 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2881 base aggregate if there are unscalarized data or directly to LHS of the
2882 statement that is pointed to by GSI otherwise. */
2884 static void
2885 handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
2887 tree src;
2888 if (sad->top_racc->grp_unscalarized_data)
2890 src = sad->assignment_rhs;
2891 sad->refreshed = SRA_UDH_RIGHT;
2893 else
2895 src = sad->assignment_lhs;
2896 sad->refreshed = SRA_UDH_LEFT;
2898 generate_subtree_copies (sad->top_racc->first_child, src,
2899 sad->top_racc->offset, 0, 0,
2900 &sad->old_gsi, false, false, sad->loc);
2903 /* Try to generate statements to load all sub-replacements in an access subtree
2904 formed by children of LACC from scalar replacements in the SAD->top_racc
2905 subtree. If that is not possible, refresh the SAD->top_racc base aggregate
2906 and load the accesses from it. */
2908 static void
2909 load_assign_lhs_subreplacements (struct access *lacc,
2910 struct subreplacement_assignment_data *sad)
2912 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2914 HOST_WIDE_INT offset;
2915 offset = lacc->offset - sad->left_offset + sad->top_racc->offset;
2917 if (lacc->grp_to_be_replaced)
2919 struct access *racc;
2920 gimple stmt;
2921 tree rhs;
2923 racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
2924 if (racc && racc->grp_to_be_replaced)
2926 rhs = get_access_replacement (racc);
2927 if (!useless_type_conversion_p (lacc->type, racc->type))
2928 rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
2929 lacc->type, rhs);
2931 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2932 rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
2933 NULL_TREE, true, GSI_SAME_STMT);
2935 else
2937 /* No suitable access on the right hand side, need to load from
2938 the aggregate. See if we have to update it first... */
2939 if (sad->refreshed == SRA_UDH_NONE)
2940 handle_unscalarized_data_in_subtree (sad);
2942 if (sad->refreshed == SRA_UDH_LEFT)
2943 rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
2944 lacc->offset - sad->left_offset,
2945 lacc, sad->new_gsi, true);
2946 else
2947 rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
2948 lacc->offset - sad->left_offset,
2949 lacc, sad->new_gsi, true);
2950 if (lacc->grp_partial_lhs)
2951 rhs = force_gimple_operand_gsi (sad->new_gsi,
2952 rhs, true, NULL_TREE,
2953 false, GSI_NEW_STMT);
2956 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2957 gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
2958 gimple_set_location (stmt, sad->loc);
2959 update_stmt (stmt);
2960 sra_stats.subreplacements++;
2962 else
2964 if (sad->refreshed == SRA_UDH_NONE
2965 && lacc->grp_read && !lacc->grp_covered)
2966 handle_unscalarized_data_in_subtree (sad);
2968 if (lacc && lacc->grp_to_be_debug_replaced)
2970 gimple ds;
2971 tree drhs;
2972 struct access *racc = find_access_in_subtree (sad->top_racc,
2973 offset,
2974 lacc->size);
2976 if (racc && racc->grp_to_be_replaced)
2978 if (racc->grp_write)
2979 drhs = get_access_replacement (racc);
2980 else
2981 drhs = NULL;
2983 else if (sad->refreshed == SRA_UDH_LEFT)
2984 drhs = build_debug_ref_for_model (sad->loc, lacc->base,
2985 lacc->offset, lacc);
2986 else if (sad->refreshed == SRA_UDH_RIGHT)
2987 drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
2988 offset, lacc);
2989 else
2990 drhs = NULL_TREE;
2991 if (drhs
2992 && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
2993 drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
2994 lacc->type, drhs);
2995 ds = gimple_build_debug_bind (get_access_replacement (lacc),
2996 drhs, gsi_stmt (sad->old_gsi));
2997 gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
3001 if (lacc->first_child)
3002 load_assign_lhs_subreplacements (lacc, sad);
3006 /* Result code for SRA assignment modification. */
3007 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
3008 SRA_AM_MODIFIED, /* stmt changed but not
3009 removed */
3010 SRA_AM_REMOVED }; /* stmt eliminated */
3012 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
3013 to the assignment and GSI is the statement iterator pointing at it. Returns
3014 the same values as sra_modify_assign. */
3016 static enum assignment_mod_result
3017 sra_modify_constructor_assign (gimple stmt, gimple_stmt_iterator *gsi)
3019 tree lhs = gimple_assign_lhs (stmt);
3020 struct access *acc;
3021 location_t loc;
3023 acc = get_access_for_expr (lhs);
3024 if (!acc)
3025 return SRA_AM_NONE;
3027 if (gimple_clobber_p (stmt))
3029 /* Remove clobbers of fully scalarized variables, otherwise
3030 do nothing. */
3031 if (acc->grp_covered)
3033 unlink_stmt_vdef (stmt);
3034 gsi_remove (gsi, true);
3035 release_defs (stmt);
3036 return SRA_AM_REMOVED;
3038 else
3039 return SRA_AM_NONE;
3042 loc = gimple_location (stmt);
3043 if (vec_safe_length (CONSTRUCTOR_ELTS (gimple_assign_rhs1 (stmt))) > 0)
3045 /* I have never seen this code path trigger but if it can happen the
3046 following should handle it gracefully. */
3047 if (access_has_children_p (acc))
3048 generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
3049 true, true, loc);
3050 return SRA_AM_MODIFIED;
3053 if (acc->grp_covered)
3055 init_subtree_with_zero (acc, gsi, false, loc);
3056 unlink_stmt_vdef (stmt);
3057 gsi_remove (gsi, true);
3058 release_defs (stmt);
3059 return SRA_AM_REMOVED;
3061 else
3063 init_subtree_with_zero (acc, gsi, true, loc);
3064 return SRA_AM_MODIFIED;
3068 /* Create and return a new suitable default definition SSA_NAME for RACC which
3069 is an access describing an uninitialized part of an aggregate that is being
3070 loaded. */
3072 static tree
3073 get_repl_default_def_ssa_name (struct access *racc)
3075 gcc_checking_assert (!racc->grp_to_be_replaced
3076 && !racc->grp_to_be_debug_replaced);
3077 if (!racc->replacement_decl)
3078 racc->replacement_decl = create_access_replacement (racc);
3079 return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
3082 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
3083 bit-field field declaration somewhere in it. */
3085 static inline bool
3086 contains_vce_or_bfcref_p (const_tree ref)
3088 while (handled_component_p (ref))
3090 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
3091 || (TREE_CODE (ref) == COMPONENT_REF
3092 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
3093 return true;
3094 ref = TREE_OPERAND (ref, 0);
3097 return false;
3100 /* Examine both sides of the assignment statement pointed to by STMT, replace
3101 them with a scalare replacement if there is one and generate copying of
3102 replacements if scalarized aggregates have been used in the assignment. GSI
3103 is used to hold generated statements for type conversions and subtree
3104 copying. */
3106 static enum assignment_mod_result
3107 sra_modify_assign (gimple stmt, gimple_stmt_iterator *gsi)
3109 struct access *lacc, *racc;
3110 tree lhs, rhs;
3111 bool modify_this_stmt = false;
3112 bool force_gimple_rhs = false;
3113 location_t loc;
3114 gimple_stmt_iterator orig_gsi = *gsi;
3116 if (!gimple_assign_single_p (stmt))
3117 return SRA_AM_NONE;
3118 lhs = gimple_assign_lhs (stmt);
3119 rhs = gimple_assign_rhs1 (stmt);
3121 if (TREE_CODE (rhs) == CONSTRUCTOR)
3122 return sra_modify_constructor_assign (stmt, gsi);
3124 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
3125 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
3126 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
3128 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
3129 gsi, false);
3130 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
3131 gsi, true);
3132 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3135 lacc = get_access_for_expr (lhs);
3136 racc = get_access_for_expr (rhs);
3137 if (!lacc && !racc)
3138 return SRA_AM_NONE;
3140 loc = gimple_location (stmt);
3141 if (lacc && lacc->grp_to_be_replaced)
3143 lhs = get_access_replacement (lacc);
3144 gimple_assign_set_lhs (stmt, lhs);
3145 modify_this_stmt = true;
3146 if (lacc->grp_partial_lhs)
3147 force_gimple_rhs = true;
3148 sra_stats.exprs++;
3151 if (racc && racc->grp_to_be_replaced)
3153 rhs = get_access_replacement (racc);
3154 modify_this_stmt = true;
3155 if (racc->grp_partial_lhs)
3156 force_gimple_rhs = true;
3157 sra_stats.exprs++;
3159 else if (racc
3160 && !racc->grp_unscalarized_data
3161 && TREE_CODE (lhs) == SSA_NAME
3162 && !access_has_replacements_p (racc))
3164 rhs = get_repl_default_def_ssa_name (racc);
3165 modify_this_stmt = true;
3166 sra_stats.exprs++;
3169 if (modify_this_stmt)
3171 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3173 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3174 ??? This should move to fold_stmt which we simply should
3175 call after building a VIEW_CONVERT_EXPR here. */
3176 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3177 && !contains_bitfld_component_ref_p (lhs))
3179 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3180 gimple_assign_set_lhs (stmt, lhs);
3182 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3183 && !contains_vce_or_bfcref_p (rhs))
3184 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3186 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3188 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3189 rhs);
3190 if (is_gimple_reg_type (TREE_TYPE (lhs))
3191 && TREE_CODE (lhs) != SSA_NAME)
3192 force_gimple_rhs = true;
3197 if (lacc && lacc->grp_to_be_debug_replaced)
3199 tree dlhs = get_access_replacement (lacc);
3200 tree drhs = unshare_expr (rhs);
3201 if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
3203 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
3204 && !contains_vce_or_bfcref_p (drhs))
3205 drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
3206 if (drhs
3207 && !useless_type_conversion_p (TREE_TYPE (dlhs),
3208 TREE_TYPE (drhs)))
3209 drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
3210 TREE_TYPE (dlhs), drhs);
3212 gimple ds = gimple_build_debug_bind (dlhs, drhs, stmt);
3213 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3216 /* From this point on, the function deals with assignments in between
3217 aggregates when at least one has scalar reductions of some of its
3218 components. There are three possible scenarios: Both the LHS and RHS have
3219 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3221 In the first case, we would like to load the LHS components from RHS
3222 components whenever possible. If that is not possible, we would like to
3223 read it directly from the RHS (after updating it by storing in it its own
3224 components). If there are some necessary unscalarized data in the LHS,
3225 those will be loaded by the original assignment too. If neither of these
3226 cases happen, the original statement can be removed. Most of this is done
3227 by load_assign_lhs_subreplacements.
3229 In the second case, we would like to store all RHS scalarized components
3230 directly into LHS and if they cover the aggregate completely, remove the
3231 statement too. In the third case, we want the LHS components to be loaded
3232 directly from the RHS (DSE will remove the original statement if it
3233 becomes redundant).
3235 This is a bit complex but manageable when types match and when unions do
3236 not cause confusion in a way that we cannot really load a component of LHS
3237 from the RHS or vice versa (the access representing this level can have
3238 subaccesses that are accessible only through a different union field at a
3239 higher level - different from the one used in the examined expression).
3240 Unions are fun.
3242 Therefore, I specially handle a fourth case, happening when there is a
3243 specific type cast or it is impossible to locate a scalarized subaccess on
3244 the other side of the expression. If that happens, I simply "refresh" the
3245 RHS by storing in it is scalarized components leave the original statement
3246 there to do the copying and then load the scalar replacements of the LHS.
3247 This is what the first branch does. */
3249 if (modify_this_stmt
3250 || gimple_has_volatile_ops (stmt)
3251 || contains_vce_or_bfcref_p (rhs)
3252 || contains_vce_or_bfcref_p (lhs)
3253 || stmt_ends_bb_p (stmt))
3255 if (access_has_children_p (racc))
3256 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3257 gsi, false, false, loc);
3258 if (access_has_children_p (lacc))
3260 gimple_stmt_iterator alt_gsi = gsi_none ();
3261 if (stmt_ends_bb_p (stmt))
3263 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
3264 gsi = &alt_gsi;
3266 generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
3267 gsi, true, true, loc);
3269 sra_stats.separate_lhs_rhs_handling++;
3271 /* This gimplification must be done after generate_subtree_copies,
3272 lest we insert the subtree copies in the middle of the gimplified
3273 sequence. */
3274 if (force_gimple_rhs)
3275 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3276 true, GSI_SAME_STMT);
3277 if (gimple_assign_rhs1 (stmt) != rhs)
3279 modify_this_stmt = true;
3280 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3281 gcc_assert (stmt == gsi_stmt (orig_gsi));
3284 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3286 else
3288 if (access_has_children_p (lacc)
3289 && access_has_children_p (racc)
3290 /* When an access represents an unscalarizable region, it usually
3291 represents accesses with variable offset and thus must not be used
3292 to generate new memory accesses. */
3293 && !lacc->grp_unscalarizable_region
3294 && !racc->grp_unscalarizable_region)
3296 struct subreplacement_assignment_data sad;
3298 sad.left_offset = lacc->offset;
3299 sad.assignment_lhs = lhs;
3300 sad.assignment_rhs = rhs;
3301 sad.top_racc = racc;
3302 sad.old_gsi = *gsi;
3303 sad.new_gsi = gsi;
3304 sad.loc = gimple_location (stmt);
3305 sad.refreshed = SRA_UDH_NONE;
3307 if (lacc->grp_read && !lacc->grp_covered)
3308 handle_unscalarized_data_in_subtree (&sad);
3310 load_assign_lhs_subreplacements (lacc, &sad);
3311 if (sad.refreshed != SRA_UDH_RIGHT)
3313 gsi_next (gsi);
3314 unlink_stmt_vdef (stmt);
3315 gsi_remove (&sad.old_gsi, true);
3316 release_defs (stmt);
3317 sra_stats.deleted++;
3318 return SRA_AM_REMOVED;
3321 else
3323 if (access_has_children_p (racc)
3324 && !racc->grp_unscalarized_data)
3326 if (dump_file)
3328 fprintf (dump_file, "Removing load: ");
3329 print_gimple_stmt (dump_file, stmt, 0, 0);
3331 generate_subtree_copies (racc->first_child, lhs,
3332 racc->offset, 0, 0, gsi,
3333 false, false, loc);
3334 gcc_assert (stmt == gsi_stmt (*gsi));
3335 unlink_stmt_vdef (stmt);
3336 gsi_remove (gsi, true);
3337 release_defs (stmt);
3338 sra_stats.deleted++;
3339 return SRA_AM_REMOVED;
3341 /* Restore the aggregate RHS from its components so the
3342 prevailing aggregate copy does the right thing. */
3343 if (access_has_children_p (racc))
3344 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3345 gsi, false, false, loc);
3346 /* Re-load the components of the aggregate copy destination.
3347 But use the RHS aggregate to load from to expose more
3348 optimization opportunities. */
3349 if (access_has_children_p (lacc))
3350 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3351 0, 0, gsi, true, true, loc);
3354 return SRA_AM_NONE;
3358 /* Traverse the function body and all modifications as decided in
3359 analyze_all_variable_accesses. Return true iff the CFG has been
3360 changed. */
3362 static bool
3363 sra_modify_function_body (void)
3365 bool cfg_changed = false;
3366 basic_block bb;
3368 FOR_EACH_BB_FN (bb, cfun)
3370 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3371 while (!gsi_end_p (gsi))
3373 gimple stmt = gsi_stmt (gsi);
3374 enum assignment_mod_result assign_result;
3375 bool modified = false, deleted = false;
3376 tree *t;
3377 unsigned i;
3379 switch (gimple_code (stmt))
3381 case GIMPLE_RETURN:
3382 t = gimple_return_retval_ptr (stmt);
3383 if (*t != NULL_TREE)
3384 modified |= sra_modify_expr (t, &gsi, false);
3385 break;
3387 case GIMPLE_ASSIGN:
3388 assign_result = sra_modify_assign (stmt, &gsi);
3389 modified |= assign_result == SRA_AM_MODIFIED;
3390 deleted = assign_result == SRA_AM_REMOVED;
3391 break;
3393 case GIMPLE_CALL:
3394 /* Operands must be processed before the lhs. */
3395 for (i = 0; i < gimple_call_num_args (stmt); i++)
3397 t = gimple_call_arg_ptr (stmt, i);
3398 modified |= sra_modify_expr (t, &gsi, false);
3401 if (gimple_call_lhs (stmt))
3403 t = gimple_call_lhs_ptr (stmt);
3404 modified |= sra_modify_expr (t, &gsi, true);
3406 break;
3408 case GIMPLE_ASM:
3409 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3411 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3412 modified |= sra_modify_expr (t, &gsi, false);
3414 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3416 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3417 modified |= sra_modify_expr (t, &gsi, true);
3419 break;
3421 default:
3422 break;
3425 if (modified)
3427 update_stmt (stmt);
3428 if (maybe_clean_eh_stmt (stmt)
3429 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3430 cfg_changed = true;
3432 if (!deleted)
3433 gsi_next (&gsi);
3437 gsi_commit_edge_inserts ();
3438 return cfg_changed;
3441 /* Generate statements initializing scalar replacements of parts of function
3442 parameters. */
3444 static void
3445 initialize_parameter_reductions (void)
3447 gimple_stmt_iterator gsi;
3448 gimple_seq seq = NULL;
3449 tree parm;
3451 gsi = gsi_start (seq);
3452 for (parm = DECL_ARGUMENTS (current_function_decl);
3453 parm;
3454 parm = DECL_CHAIN (parm))
3456 vec<access_p> *access_vec;
3457 struct access *access;
3459 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3460 continue;
3461 access_vec = get_base_access_vector (parm);
3462 if (!access_vec)
3463 continue;
3465 for (access = (*access_vec)[0];
3466 access;
3467 access = access->next_grp)
3468 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3469 EXPR_LOCATION (parm));
3472 seq = gsi_seq (gsi);
3473 if (seq)
3474 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
3477 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3478 it reveals there are components of some aggregates to be scalarized, it runs
3479 the required transformations. */
3480 static unsigned int
3481 perform_intra_sra (void)
3483 int ret = 0;
3484 sra_initialize ();
3486 if (!find_var_candidates ())
3487 goto out;
3489 if (!scan_function ())
3490 goto out;
3492 if (!analyze_all_variable_accesses ())
3493 goto out;
3495 if (sra_modify_function_body ())
3496 ret = TODO_update_ssa | TODO_cleanup_cfg;
3497 else
3498 ret = TODO_update_ssa;
3499 initialize_parameter_reductions ();
3501 statistics_counter_event (cfun, "Scalar replacements created",
3502 sra_stats.replacements);
3503 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3504 statistics_counter_event (cfun, "Subtree copy stmts",
3505 sra_stats.subtree_copies);
3506 statistics_counter_event (cfun, "Subreplacement stmts",
3507 sra_stats.subreplacements);
3508 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3509 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3510 sra_stats.separate_lhs_rhs_handling);
3512 out:
3513 sra_deinitialize ();
3514 return ret;
3517 /* Perform early intraprocedural SRA. */
3518 static unsigned int
3519 early_intra_sra (void)
3521 sra_mode = SRA_MODE_EARLY_INTRA;
3522 return perform_intra_sra ();
3525 /* Perform "late" intraprocedural SRA. */
3526 static unsigned int
3527 late_intra_sra (void)
3529 sra_mode = SRA_MODE_INTRA;
3530 return perform_intra_sra ();
3534 static bool
3535 gate_intra_sra (void)
3537 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3541 namespace {
3543 const pass_data pass_data_sra_early =
3545 GIMPLE_PASS, /* type */
3546 "esra", /* name */
3547 OPTGROUP_NONE, /* optinfo_flags */
3548 TV_TREE_SRA, /* tv_id */
3549 ( PROP_cfg | PROP_ssa ), /* properties_required */
3550 0, /* properties_provided */
3551 0, /* properties_destroyed */
3552 0, /* todo_flags_start */
3553 TODO_update_ssa, /* todo_flags_finish */
3556 class pass_sra_early : public gimple_opt_pass
3558 public:
3559 pass_sra_early (gcc::context *ctxt)
3560 : gimple_opt_pass (pass_data_sra_early, ctxt)
3563 /* opt_pass methods: */
3564 virtual bool gate (function *) { return gate_intra_sra (); }
3565 virtual unsigned int execute (function *) { return early_intra_sra (); }
3567 }; // class pass_sra_early
3569 } // anon namespace
3571 gimple_opt_pass *
3572 make_pass_sra_early (gcc::context *ctxt)
3574 return new pass_sra_early (ctxt);
3577 namespace {
3579 const pass_data pass_data_sra =
3581 GIMPLE_PASS, /* type */
3582 "sra", /* name */
3583 OPTGROUP_NONE, /* optinfo_flags */
3584 TV_TREE_SRA, /* tv_id */
3585 ( PROP_cfg | PROP_ssa ), /* properties_required */
3586 0, /* properties_provided */
3587 0, /* properties_destroyed */
3588 TODO_update_address_taken, /* todo_flags_start */
3589 TODO_update_ssa, /* todo_flags_finish */
3592 class pass_sra : public gimple_opt_pass
3594 public:
3595 pass_sra (gcc::context *ctxt)
3596 : gimple_opt_pass (pass_data_sra, ctxt)
3599 /* opt_pass methods: */
3600 virtual bool gate (function *) { return gate_intra_sra (); }
3601 virtual unsigned int execute (function *) { return late_intra_sra (); }
3603 }; // class pass_sra
3605 } // anon namespace
3607 gimple_opt_pass *
3608 make_pass_sra (gcc::context *ctxt)
3610 return new pass_sra (ctxt);
3614 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3615 parameter. */
3617 static bool
3618 is_unused_scalar_param (tree parm)
3620 tree name;
3621 return (is_gimple_reg (parm)
3622 && (!(name = ssa_default_def (cfun, parm))
3623 || has_zero_uses (name)));
3626 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3627 examine whether there are any direct or otherwise infeasible ones. If so,
3628 return true, otherwise return false. PARM must be a gimple register with a
3629 non-NULL default definition. */
3631 static bool
3632 ptr_parm_has_direct_uses (tree parm)
3634 imm_use_iterator ui;
3635 gimple stmt;
3636 tree name = ssa_default_def (cfun, parm);
3637 bool ret = false;
3639 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3641 int uses_ok = 0;
3642 use_operand_p use_p;
3644 if (is_gimple_debug (stmt))
3645 continue;
3647 /* Valid uses include dereferences on the lhs and the rhs. */
3648 if (gimple_has_lhs (stmt))
3650 tree lhs = gimple_get_lhs (stmt);
3651 while (handled_component_p (lhs))
3652 lhs = TREE_OPERAND (lhs, 0);
3653 if (TREE_CODE (lhs) == MEM_REF
3654 && TREE_OPERAND (lhs, 0) == name
3655 && integer_zerop (TREE_OPERAND (lhs, 1))
3656 && types_compatible_p (TREE_TYPE (lhs),
3657 TREE_TYPE (TREE_TYPE (name)))
3658 && !TREE_THIS_VOLATILE (lhs))
3659 uses_ok++;
3661 if (gimple_assign_single_p (stmt))
3663 tree rhs = gimple_assign_rhs1 (stmt);
3664 while (handled_component_p (rhs))
3665 rhs = TREE_OPERAND (rhs, 0);
3666 if (TREE_CODE (rhs) == MEM_REF
3667 && TREE_OPERAND (rhs, 0) == name
3668 && integer_zerop (TREE_OPERAND (rhs, 1))
3669 && types_compatible_p (TREE_TYPE (rhs),
3670 TREE_TYPE (TREE_TYPE (name)))
3671 && !TREE_THIS_VOLATILE (rhs))
3672 uses_ok++;
3674 else if (is_gimple_call (stmt))
3676 unsigned i;
3677 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3679 tree arg = gimple_call_arg (stmt, i);
3680 while (handled_component_p (arg))
3681 arg = TREE_OPERAND (arg, 0);
3682 if (TREE_CODE (arg) == MEM_REF
3683 && TREE_OPERAND (arg, 0) == name
3684 && integer_zerop (TREE_OPERAND (arg, 1))
3685 && types_compatible_p (TREE_TYPE (arg),
3686 TREE_TYPE (TREE_TYPE (name)))
3687 && !TREE_THIS_VOLATILE (arg))
3688 uses_ok++;
3692 /* If the number of valid uses does not match the number of
3693 uses in this stmt there is an unhandled use. */
3694 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3695 --uses_ok;
3697 if (uses_ok != 0)
3698 ret = true;
3700 if (ret)
3701 BREAK_FROM_IMM_USE_STMT (ui);
3704 return ret;
3707 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3708 them in candidate_bitmap. Note that these do not necessarily include
3709 parameter which are unused and thus can be removed. Return true iff any
3710 such candidate has been found. */
3712 static bool
3713 find_param_candidates (void)
3715 tree parm;
3716 int count = 0;
3717 bool ret = false;
3718 const char *msg;
3720 for (parm = DECL_ARGUMENTS (current_function_decl);
3721 parm;
3722 parm = DECL_CHAIN (parm))
3724 tree type = TREE_TYPE (parm);
3725 tree_node **slot;
3727 count++;
3729 if (TREE_THIS_VOLATILE (parm)
3730 || TREE_ADDRESSABLE (parm)
3731 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3732 continue;
3734 if (is_unused_scalar_param (parm))
3736 ret = true;
3737 continue;
3740 if (POINTER_TYPE_P (type))
3742 type = TREE_TYPE (type);
3744 if (TREE_CODE (type) == FUNCTION_TYPE
3745 || TYPE_VOLATILE (type)
3746 || (TREE_CODE (type) == ARRAY_TYPE
3747 && TYPE_NONALIASED_COMPONENT (type))
3748 || !is_gimple_reg (parm)
3749 || is_va_list_type (type)
3750 || ptr_parm_has_direct_uses (parm))
3751 continue;
3753 else if (!AGGREGATE_TYPE_P (type))
3754 continue;
3756 if (!COMPLETE_TYPE_P (type)
3757 || !tree_fits_uhwi_p (TYPE_SIZE (type))
3758 || tree_to_uhwi (TYPE_SIZE (type)) == 0
3759 || (AGGREGATE_TYPE_P (type)
3760 && type_internals_preclude_sra_p (type, &msg)))
3761 continue;
3763 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3764 slot = candidates->find_slot_with_hash (parm, DECL_UID (parm), INSERT);
3765 *slot = parm;
3767 ret = true;
3768 if (dump_file && (dump_flags & TDF_DETAILS))
3770 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3771 print_generic_expr (dump_file, parm, 0);
3772 fprintf (dump_file, "\n");
3776 func_param_count = count;
3777 return ret;
3780 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3781 maybe_modified. */
3783 static bool
3784 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3785 void *data)
3787 struct access *repr = (struct access *) data;
3789 repr->grp_maybe_modified = 1;
3790 return true;
3793 /* Analyze what representatives (in linked lists accessible from
3794 REPRESENTATIVES) can be modified by side effects of statements in the
3795 current function. */
3797 static void
3798 analyze_modified_params (vec<access_p> representatives)
3800 int i;
3802 for (i = 0; i < func_param_count; i++)
3804 struct access *repr;
3806 for (repr = representatives[i];
3807 repr;
3808 repr = repr->next_grp)
3810 struct access *access;
3811 bitmap visited;
3812 ao_ref ar;
3814 if (no_accesses_p (repr))
3815 continue;
3816 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3817 || repr->grp_maybe_modified)
3818 continue;
3820 ao_ref_init (&ar, repr->expr);
3821 visited = BITMAP_ALLOC (NULL);
3822 for (access = repr; access; access = access->next_sibling)
3824 /* All accesses are read ones, otherwise grp_maybe_modified would
3825 be trivially set. */
3826 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3827 mark_maybe_modified, repr, &visited);
3828 if (repr->grp_maybe_modified)
3829 break;
3831 BITMAP_FREE (visited);
3836 /* Propagate distances in bb_dereferences in the opposite direction than the
3837 control flow edges, in each step storing the maximum of the current value
3838 and the minimum of all successors. These steps are repeated until the table
3839 stabilizes. Note that BBs which might terminate the functions (according to
3840 final_bbs bitmap) never updated in this way. */
3842 static void
3843 propagate_dereference_distances (void)
3845 basic_block bb;
3847 auto_vec<basic_block> queue (last_basic_block_for_fn (cfun));
3848 queue.quick_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3849 FOR_EACH_BB_FN (bb, cfun)
3851 queue.quick_push (bb);
3852 bb->aux = bb;
3855 while (!queue.is_empty ())
3857 edge_iterator ei;
3858 edge e;
3859 bool change = false;
3860 int i;
3862 bb = queue.pop ();
3863 bb->aux = NULL;
3865 if (bitmap_bit_p (final_bbs, bb->index))
3866 continue;
3868 for (i = 0; i < func_param_count; i++)
3870 int idx = bb->index * func_param_count + i;
3871 bool first = true;
3872 HOST_WIDE_INT inh = 0;
3874 FOR_EACH_EDGE (e, ei, bb->succs)
3876 int succ_idx = e->dest->index * func_param_count + i;
3878 if (e->src == EXIT_BLOCK_PTR_FOR_FN (cfun))
3879 continue;
3881 if (first)
3883 first = false;
3884 inh = bb_dereferences [succ_idx];
3886 else if (bb_dereferences [succ_idx] < inh)
3887 inh = bb_dereferences [succ_idx];
3890 if (!first && bb_dereferences[idx] < inh)
3892 bb_dereferences[idx] = inh;
3893 change = true;
3897 if (change && !bitmap_bit_p (final_bbs, bb->index))
3898 FOR_EACH_EDGE (e, ei, bb->preds)
3900 if (e->src->aux)
3901 continue;
3903 e->src->aux = e->src;
3904 queue.quick_push (e->src);
3909 /* Dump a dereferences TABLE with heading STR to file F. */
3911 static void
3912 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3914 basic_block bb;
3916 fprintf (dump_file, str);
3917 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
3918 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
3920 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3921 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3923 int i;
3924 for (i = 0; i < func_param_count; i++)
3926 int idx = bb->index * func_param_count + i;
3927 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3930 fprintf (f, "\n");
3932 fprintf (dump_file, "\n");
3935 /* Determine what (parts of) parameters passed by reference that are not
3936 assigned to are not certainly dereferenced in this function and thus the
3937 dereferencing cannot be safely moved to the caller without potentially
3938 introducing a segfault. Mark such REPRESENTATIVES as
3939 grp_not_necessarilly_dereferenced.
3941 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3942 part is calculated rather than simple booleans are calculated for each
3943 pointer parameter to handle cases when only a fraction of the whole
3944 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3945 an example).
3947 The maximum dereference distances for each pointer parameter and BB are
3948 already stored in bb_dereference. This routine simply propagates these
3949 values upwards by propagate_dereference_distances and then compares the
3950 distances of individual parameters in the ENTRY BB to the equivalent
3951 distances of each representative of a (fraction of a) parameter. */
3953 static void
3954 analyze_caller_dereference_legality (vec<access_p> representatives)
3956 int i;
3958 if (dump_file && (dump_flags & TDF_DETAILS))
3959 dump_dereferences_table (dump_file,
3960 "Dereference table before propagation:\n",
3961 bb_dereferences);
3963 propagate_dereference_distances ();
3965 if (dump_file && (dump_flags & TDF_DETAILS))
3966 dump_dereferences_table (dump_file,
3967 "Dereference table after propagation:\n",
3968 bb_dereferences);
3970 for (i = 0; i < func_param_count; i++)
3972 struct access *repr = representatives[i];
3973 int idx = ENTRY_BLOCK_PTR_FOR_FN (cfun)->index * func_param_count + i;
3975 if (!repr || no_accesses_p (repr))
3976 continue;
3980 if ((repr->offset + repr->size) > bb_dereferences[idx])
3981 repr->grp_not_necessarilly_dereferenced = 1;
3982 repr = repr->next_grp;
3984 while (repr);
3988 /* Return the representative access for the parameter declaration PARM if it is
3989 a scalar passed by reference which is not written to and the pointer value
3990 is not used directly. Thus, if it is legal to dereference it in the caller
3991 and we can rule out modifications through aliases, such parameter should be
3992 turned into one passed by value. Return NULL otherwise. */
3994 static struct access *
3995 unmodified_by_ref_scalar_representative (tree parm)
3997 int i, access_count;
3998 struct access *repr;
3999 vec<access_p> *access_vec;
4001 access_vec = get_base_access_vector (parm);
4002 gcc_assert (access_vec);
4003 repr = (*access_vec)[0];
4004 if (repr->write)
4005 return NULL;
4006 repr->group_representative = repr;
4008 access_count = access_vec->length ();
4009 for (i = 1; i < access_count; i++)
4011 struct access *access = (*access_vec)[i];
4012 if (access->write)
4013 return NULL;
4014 access->group_representative = repr;
4015 access->next_sibling = repr->next_sibling;
4016 repr->next_sibling = access;
4019 repr->grp_read = 1;
4020 repr->grp_scalar_ptr = 1;
4021 return repr;
4024 /* Return true iff this ACCESS precludes IPA-SRA of the parameter it is
4025 associated with. REQ_ALIGN is the minimum required alignment. */
4027 static bool
4028 access_precludes_ipa_sra_p (struct access *access, unsigned int req_align)
4030 unsigned int exp_align;
4031 /* Avoid issues such as the second simple testcase in PR 42025. The problem
4032 is incompatible assign in a call statement (and possibly even in asm
4033 statements). This can be relaxed by using a new temporary but only for
4034 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
4035 intraprocedural SRA we deal with this by keeping the old aggregate around,
4036 something we cannot do in IPA-SRA.) */
4037 if (access->write
4038 && (is_gimple_call (access->stmt)
4039 || gimple_code (access->stmt) == GIMPLE_ASM))
4040 return true;
4042 exp_align = get_object_alignment (access->expr);
4043 if (exp_align < req_align)
4044 return true;
4046 return false;
4050 /* Sort collected accesses for parameter PARM, identify representatives for
4051 each accessed region and link them together. Return NULL if there are
4052 different but overlapping accesses, return the special ptr value meaning
4053 there are no accesses for this parameter if that is the case and return the
4054 first representative otherwise. Set *RO_GRP if there is a group of accesses
4055 with only read (i.e. no write) accesses. */
4057 static struct access *
4058 splice_param_accesses (tree parm, bool *ro_grp)
4060 int i, j, access_count, group_count;
4061 int agg_size, total_size = 0;
4062 struct access *access, *res, **prev_acc_ptr = &res;
4063 vec<access_p> *access_vec;
4065 access_vec = get_base_access_vector (parm);
4066 if (!access_vec)
4067 return &no_accesses_representant;
4068 access_count = access_vec->length ();
4070 access_vec->qsort (compare_access_positions);
4072 i = 0;
4073 total_size = 0;
4074 group_count = 0;
4075 while (i < access_count)
4077 bool modification;
4078 tree a1_alias_type;
4079 access = (*access_vec)[i];
4080 modification = access->write;
4081 if (access_precludes_ipa_sra_p (access, TYPE_ALIGN (access->type)))
4082 return NULL;
4083 a1_alias_type = reference_alias_ptr_type (access->expr);
4085 /* Access is about to become group representative unless we find some
4086 nasty overlap which would preclude us from breaking this parameter
4087 apart. */
4089 j = i + 1;
4090 while (j < access_count)
4092 struct access *ac2 = (*access_vec)[j];
4093 if (ac2->offset != access->offset)
4095 /* All or nothing law for parameters. */
4096 if (access->offset + access->size > ac2->offset)
4097 return NULL;
4098 else
4099 break;
4101 else if (ac2->size != access->size)
4102 return NULL;
4104 if (access_precludes_ipa_sra_p (ac2, TYPE_ALIGN (access->type))
4105 || (ac2->type != access->type
4106 && (TREE_ADDRESSABLE (ac2->type)
4107 || TREE_ADDRESSABLE (access->type)))
4108 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
4109 return NULL;
4111 modification |= ac2->write;
4112 ac2->group_representative = access;
4113 ac2->next_sibling = access->next_sibling;
4114 access->next_sibling = ac2;
4115 j++;
4118 group_count++;
4119 access->grp_maybe_modified = modification;
4120 if (!modification)
4121 *ro_grp = true;
4122 *prev_acc_ptr = access;
4123 prev_acc_ptr = &access->next_grp;
4124 total_size += access->size;
4125 i = j;
4128 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4129 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4130 else
4131 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4132 if (total_size >= agg_size)
4133 return NULL;
4135 gcc_assert (group_count > 0);
4136 return res;
4139 /* Decide whether parameters with representative accesses given by REPR should
4140 be reduced into components. */
4142 static int
4143 decide_one_param_reduction (struct access *repr)
4145 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
4146 bool by_ref;
4147 tree parm;
4149 parm = repr->base;
4150 cur_parm_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4151 gcc_assert (cur_parm_size > 0);
4153 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4155 by_ref = true;
4156 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4158 else
4160 by_ref = false;
4161 agg_size = cur_parm_size;
4164 if (dump_file)
4166 struct access *acc;
4167 fprintf (dump_file, "Evaluating PARAM group sizes for ");
4168 print_generic_expr (dump_file, parm, 0);
4169 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
4170 for (acc = repr; acc; acc = acc->next_grp)
4171 dump_access (dump_file, acc, true);
4174 total_size = 0;
4175 new_param_count = 0;
4177 for (; repr; repr = repr->next_grp)
4179 gcc_assert (parm == repr->base);
4181 /* Taking the address of a non-addressable field is verboten. */
4182 if (by_ref && repr->non_addressable)
4183 return 0;
4185 /* Do not decompose a non-BLKmode param in a way that would
4186 create BLKmode params. Especially for by-reference passing
4187 (thus, pointer-type param) this is hardly worthwhile. */
4188 if (DECL_MODE (parm) != BLKmode
4189 && TYPE_MODE (repr->type) == BLKmode)
4190 return 0;
4192 if (!by_ref || (!repr->grp_maybe_modified
4193 && !repr->grp_not_necessarilly_dereferenced))
4194 total_size += repr->size;
4195 else
4196 total_size += cur_parm_size;
4198 new_param_count++;
4201 gcc_assert (new_param_count > 0);
4203 if (optimize_function_for_size_p (cfun))
4204 parm_size_limit = cur_parm_size;
4205 else
4206 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
4207 * cur_parm_size);
4209 if (total_size < agg_size
4210 && total_size <= parm_size_limit)
4212 if (dump_file)
4213 fprintf (dump_file, " ....will be split into %i components\n",
4214 new_param_count);
4215 return new_param_count;
4217 else
4218 return 0;
4221 /* The order of the following enums is important, we need to do extra work for
4222 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4223 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
4224 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
4226 /* Identify representatives of all accesses to all candidate parameters for
4227 IPA-SRA. Return result based on what representatives have been found. */
4229 static enum ipa_splicing_result
4230 splice_all_param_accesses (vec<access_p> &representatives)
4232 enum ipa_splicing_result result = NO_GOOD_ACCESS;
4233 tree parm;
4234 struct access *repr;
4236 representatives.create (func_param_count);
4238 for (parm = DECL_ARGUMENTS (current_function_decl);
4239 parm;
4240 parm = DECL_CHAIN (parm))
4242 if (is_unused_scalar_param (parm))
4244 representatives.quick_push (&no_accesses_representant);
4245 if (result == NO_GOOD_ACCESS)
4246 result = UNUSED_PARAMS;
4248 else if (POINTER_TYPE_P (TREE_TYPE (parm))
4249 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
4250 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4252 repr = unmodified_by_ref_scalar_representative (parm);
4253 representatives.quick_push (repr);
4254 if (repr)
4255 result = UNMODIF_BY_REF_ACCESSES;
4257 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4259 bool ro_grp = false;
4260 repr = splice_param_accesses (parm, &ro_grp);
4261 representatives.quick_push (repr);
4263 if (repr && !no_accesses_p (repr))
4265 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4267 if (ro_grp)
4268 result = UNMODIF_BY_REF_ACCESSES;
4269 else if (result < MODIF_BY_REF_ACCESSES)
4270 result = MODIF_BY_REF_ACCESSES;
4272 else if (result < BY_VAL_ACCESSES)
4273 result = BY_VAL_ACCESSES;
4275 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
4276 result = UNUSED_PARAMS;
4278 else
4279 representatives.quick_push (NULL);
4282 if (result == NO_GOOD_ACCESS)
4284 representatives.release ();
4285 return NO_GOOD_ACCESS;
4288 return result;
4291 /* Return the index of BASE in PARMS. Abort if it is not found. */
4293 static inline int
4294 get_param_index (tree base, vec<tree> parms)
4296 int i, len;
4298 len = parms.length ();
4299 for (i = 0; i < len; i++)
4300 if (parms[i] == base)
4301 return i;
4302 gcc_unreachable ();
4305 /* Convert the decisions made at the representative level into compact
4306 parameter adjustments. REPRESENTATIVES are pointers to first
4307 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4308 final number of adjustments. */
4310 static ipa_parm_adjustment_vec
4311 turn_representatives_into_adjustments (vec<access_p> representatives,
4312 int adjustments_count)
4314 vec<tree> parms;
4315 ipa_parm_adjustment_vec adjustments;
4316 tree parm;
4317 int i;
4319 gcc_assert (adjustments_count > 0);
4320 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4321 adjustments.create (adjustments_count);
4322 parm = DECL_ARGUMENTS (current_function_decl);
4323 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4325 struct access *repr = representatives[i];
4327 if (!repr || no_accesses_p (repr))
4329 struct ipa_parm_adjustment adj;
4331 memset (&adj, 0, sizeof (adj));
4332 adj.base_index = get_param_index (parm, parms);
4333 adj.base = parm;
4334 if (!repr)
4335 adj.op = IPA_PARM_OP_COPY;
4336 else
4337 adj.op = IPA_PARM_OP_REMOVE;
4338 adj.arg_prefix = "ISRA";
4339 adjustments.quick_push (adj);
4341 else
4343 struct ipa_parm_adjustment adj;
4344 int index = get_param_index (parm, parms);
4346 for (; repr; repr = repr->next_grp)
4348 memset (&adj, 0, sizeof (adj));
4349 gcc_assert (repr->base == parm);
4350 adj.base_index = index;
4351 adj.base = repr->base;
4352 adj.type = repr->type;
4353 adj.alias_ptr_type = reference_alias_ptr_type (repr->expr);
4354 adj.offset = repr->offset;
4355 adj.by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4356 && (repr->grp_maybe_modified
4357 || repr->grp_not_necessarilly_dereferenced));
4358 adj.arg_prefix = "ISRA";
4359 adjustments.quick_push (adj);
4363 parms.release ();
4364 return adjustments;
4367 /* Analyze the collected accesses and produce a plan what to do with the
4368 parameters in the form of adjustments, NULL meaning nothing. */
4370 static ipa_parm_adjustment_vec
4371 analyze_all_param_acesses (void)
4373 enum ipa_splicing_result repr_state;
4374 bool proceed = false;
4375 int i, adjustments_count = 0;
4376 vec<access_p> representatives;
4377 ipa_parm_adjustment_vec adjustments;
4379 repr_state = splice_all_param_accesses (representatives);
4380 if (repr_state == NO_GOOD_ACCESS)
4381 return ipa_parm_adjustment_vec ();
4383 /* If there are any parameters passed by reference which are not modified
4384 directly, we need to check whether they can be modified indirectly. */
4385 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4387 analyze_caller_dereference_legality (representatives);
4388 analyze_modified_params (representatives);
4391 for (i = 0; i < func_param_count; i++)
4393 struct access *repr = representatives[i];
4395 if (repr && !no_accesses_p (repr))
4397 if (repr->grp_scalar_ptr)
4399 adjustments_count++;
4400 if (repr->grp_not_necessarilly_dereferenced
4401 || repr->grp_maybe_modified)
4402 representatives[i] = NULL;
4403 else
4405 proceed = true;
4406 sra_stats.scalar_by_ref_to_by_val++;
4409 else
4411 int new_components = decide_one_param_reduction (repr);
4413 if (new_components == 0)
4415 representatives[i] = NULL;
4416 adjustments_count++;
4418 else
4420 adjustments_count += new_components;
4421 sra_stats.aggregate_params_reduced++;
4422 sra_stats.param_reductions_created += new_components;
4423 proceed = true;
4427 else
4429 if (no_accesses_p (repr))
4431 proceed = true;
4432 sra_stats.deleted_unused_parameters++;
4434 adjustments_count++;
4438 if (!proceed && dump_file)
4439 fprintf (dump_file, "NOT proceeding to change params.\n");
4441 if (proceed)
4442 adjustments = turn_representatives_into_adjustments (representatives,
4443 adjustments_count);
4444 else
4445 adjustments = ipa_parm_adjustment_vec ();
4447 representatives.release ();
4448 return adjustments;
4451 /* If a parameter replacement identified by ADJ does not yet exist in the form
4452 of declaration, create it and record it, otherwise return the previously
4453 created one. */
4455 static tree
4456 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4458 tree repl;
4459 if (!adj->new_ssa_base)
4461 char *pretty_name = make_fancy_name (adj->base);
4463 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4464 DECL_NAME (repl) = get_identifier (pretty_name);
4465 obstack_free (&name_obstack, pretty_name);
4467 adj->new_ssa_base = repl;
4469 else
4470 repl = adj->new_ssa_base;
4471 return repl;
4474 /* Find the first adjustment for a particular parameter BASE in a vector of
4475 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4476 adjustment. */
4478 static struct ipa_parm_adjustment *
4479 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4481 int i, len;
4483 len = adjustments.length ();
4484 for (i = 0; i < len; i++)
4486 struct ipa_parm_adjustment *adj;
4488 adj = &adjustments[i];
4489 if (adj->op != IPA_PARM_OP_COPY && adj->base == base)
4490 return adj;
4493 return NULL;
4496 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4497 removed because its value is not used, replace the SSA_NAME with a one
4498 relating to a created VAR_DECL together all of its uses and return true.
4499 ADJUSTMENTS is a pointer to an adjustments vector. */
4501 static bool
4502 replace_removed_params_ssa_names (gimple stmt,
4503 ipa_parm_adjustment_vec adjustments)
4505 struct ipa_parm_adjustment *adj;
4506 tree lhs, decl, repl, name;
4508 if (gimple_code (stmt) == GIMPLE_PHI)
4509 lhs = gimple_phi_result (stmt);
4510 else if (is_gimple_assign (stmt))
4511 lhs = gimple_assign_lhs (stmt);
4512 else if (is_gimple_call (stmt))
4513 lhs = gimple_call_lhs (stmt);
4514 else
4515 gcc_unreachable ();
4517 if (TREE_CODE (lhs) != SSA_NAME)
4518 return false;
4520 decl = SSA_NAME_VAR (lhs);
4521 if (decl == NULL_TREE
4522 || TREE_CODE (decl) != PARM_DECL)
4523 return false;
4525 adj = get_adjustment_for_base (adjustments, decl);
4526 if (!adj)
4527 return false;
4529 repl = get_replaced_param_substitute (adj);
4530 name = make_ssa_name (repl, stmt);
4532 if (dump_file)
4534 fprintf (dump_file, "replacing an SSA name of a removed param ");
4535 print_generic_expr (dump_file, lhs, 0);
4536 fprintf (dump_file, " with ");
4537 print_generic_expr (dump_file, name, 0);
4538 fprintf (dump_file, "\n");
4541 if (is_gimple_assign (stmt))
4542 gimple_assign_set_lhs (stmt, name);
4543 else if (is_gimple_call (stmt))
4544 gimple_call_set_lhs (stmt, name);
4545 else
4546 gimple_phi_set_result (stmt, name);
4548 replace_uses_by (lhs, name);
4549 release_ssa_name (lhs);
4550 return true;
4553 /* If the statement STMT contains any expressions that need to replaced with a
4554 different one as noted by ADJUSTMENTS, do so. Handle any potential type
4555 incompatibilities (GSI is used to accommodate conversion statements and must
4556 point to the statement). Return true iff the statement was modified. */
4558 static bool
4559 sra_ipa_modify_assign (gimple stmt, gimple_stmt_iterator *gsi,
4560 ipa_parm_adjustment_vec adjustments)
4562 tree *lhs_p, *rhs_p;
4563 bool any;
4565 if (!gimple_assign_single_p (stmt))
4566 return false;
4568 rhs_p = gimple_assign_rhs1_ptr (stmt);
4569 lhs_p = gimple_assign_lhs_ptr (stmt);
4571 any = ipa_modify_expr (rhs_p, false, adjustments);
4572 any |= ipa_modify_expr (lhs_p, false, adjustments);
4573 if (any)
4575 tree new_rhs = NULL_TREE;
4577 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4579 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4581 /* V_C_Es of constructors can cause trouble (PR 42714). */
4582 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4583 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4584 else
4585 *rhs_p = build_constructor (TREE_TYPE (*lhs_p),
4586 NULL);
4588 else
4589 new_rhs = fold_build1_loc (gimple_location (stmt),
4590 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4591 *rhs_p);
4593 else if (REFERENCE_CLASS_P (*rhs_p)
4594 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4595 && !is_gimple_reg (*lhs_p))
4596 /* This can happen when an assignment in between two single field
4597 structures is turned into an assignment in between two pointers to
4598 scalars (PR 42237). */
4599 new_rhs = *rhs_p;
4601 if (new_rhs)
4603 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4604 true, GSI_SAME_STMT);
4606 gimple_assign_set_rhs_from_tree (gsi, tmp);
4609 return true;
4612 return false;
4615 /* Traverse the function body and all modifications as described in
4616 ADJUSTMENTS. Return true iff the CFG has been changed. */
4618 bool
4619 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4621 bool cfg_changed = false;
4622 basic_block bb;
4624 FOR_EACH_BB_FN (bb, cfun)
4626 gimple_stmt_iterator gsi;
4628 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4629 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4631 gsi = gsi_start_bb (bb);
4632 while (!gsi_end_p (gsi))
4634 gimple stmt = gsi_stmt (gsi);
4635 bool modified = false;
4636 tree *t;
4637 unsigned i;
4639 switch (gimple_code (stmt))
4641 case GIMPLE_RETURN:
4642 t = gimple_return_retval_ptr (stmt);
4643 if (*t != NULL_TREE)
4644 modified |= ipa_modify_expr (t, true, adjustments);
4645 break;
4647 case GIMPLE_ASSIGN:
4648 modified |= sra_ipa_modify_assign (stmt, &gsi, adjustments);
4649 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4650 break;
4652 case GIMPLE_CALL:
4653 /* Operands must be processed before the lhs. */
4654 for (i = 0; i < gimple_call_num_args (stmt); i++)
4656 t = gimple_call_arg_ptr (stmt, i);
4657 modified |= ipa_modify_expr (t, true, adjustments);
4660 if (gimple_call_lhs (stmt))
4662 t = gimple_call_lhs_ptr (stmt);
4663 modified |= ipa_modify_expr (t, false, adjustments);
4664 modified |= replace_removed_params_ssa_names (stmt,
4665 adjustments);
4667 break;
4669 case GIMPLE_ASM:
4670 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4672 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4673 modified |= ipa_modify_expr (t, true, adjustments);
4675 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4677 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4678 modified |= ipa_modify_expr (t, false, adjustments);
4680 break;
4682 default:
4683 break;
4686 if (modified)
4688 update_stmt (stmt);
4689 if (maybe_clean_eh_stmt (stmt)
4690 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4691 cfg_changed = true;
4693 gsi_next (&gsi);
4697 return cfg_changed;
4700 /* Call gimple_debug_bind_reset_value on all debug statements describing
4701 gimple register parameters that are being removed or replaced. */
4703 static void
4704 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4706 int i, len;
4707 gimple_stmt_iterator *gsip = NULL, gsi;
4709 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
4711 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4712 gsip = &gsi;
4714 len = adjustments.length ();
4715 for (i = 0; i < len; i++)
4717 struct ipa_parm_adjustment *adj;
4718 imm_use_iterator ui;
4719 gimple stmt, def_temp;
4720 tree name, vexpr, copy = NULL_TREE;
4721 use_operand_p use_p;
4723 adj = &adjustments[i];
4724 if (adj->op == IPA_PARM_OP_COPY || !is_gimple_reg (adj->base))
4725 continue;
4726 name = ssa_default_def (cfun, adj->base);
4727 vexpr = NULL;
4728 if (name)
4729 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4731 if (gimple_clobber_p (stmt))
4733 gimple_stmt_iterator cgsi = gsi_for_stmt (stmt);
4734 unlink_stmt_vdef (stmt);
4735 gsi_remove (&cgsi, true);
4736 release_defs (stmt);
4737 continue;
4739 /* All other users must have been removed by
4740 ipa_sra_modify_function_body. */
4741 gcc_assert (is_gimple_debug (stmt));
4742 if (vexpr == NULL && gsip != NULL)
4744 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4745 vexpr = make_node (DEBUG_EXPR_DECL);
4746 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4747 NULL);
4748 DECL_ARTIFICIAL (vexpr) = 1;
4749 TREE_TYPE (vexpr) = TREE_TYPE (name);
4750 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4751 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4753 if (vexpr)
4755 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4756 SET_USE (use_p, vexpr);
4758 else
4759 gimple_debug_bind_reset_value (stmt);
4760 update_stmt (stmt);
4762 /* Create a VAR_DECL for debug info purposes. */
4763 if (!DECL_IGNORED_P (adj->base))
4765 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4766 VAR_DECL, DECL_NAME (adj->base),
4767 TREE_TYPE (adj->base));
4768 if (DECL_PT_UID_SET_P (adj->base))
4769 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4770 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4771 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4772 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4773 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4774 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4775 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4776 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4777 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4778 SET_DECL_RTL (copy, 0);
4779 TREE_USED (copy) = 1;
4780 DECL_CONTEXT (copy) = current_function_decl;
4781 add_local_decl (cfun, copy);
4782 DECL_CHAIN (copy) =
4783 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4784 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4786 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4788 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4789 if (vexpr)
4790 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4791 else
4792 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4793 NULL);
4794 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4799 /* Return false if all callers have at least as many actual arguments as there
4800 are formal parameters in the current function and that their types
4801 match. */
4803 static bool
4804 some_callers_have_mismatched_arguments_p (struct cgraph_node *node,
4805 void *data ATTRIBUTE_UNUSED)
4807 struct cgraph_edge *cs;
4808 for (cs = node->callers; cs; cs = cs->next_caller)
4809 if (!callsite_arguments_match_p (cs->call_stmt))
4810 return true;
4812 return false;
4815 /* Convert all callers of NODE. */
4817 static bool
4818 convert_callers_for_node (struct cgraph_node *node,
4819 void *data)
4821 ipa_parm_adjustment_vec *adjustments = (ipa_parm_adjustment_vec *) data;
4822 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4823 struct cgraph_edge *cs;
4825 for (cs = node->callers; cs; cs = cs->next_caller)
4827 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4829 if (dump_file)
4830 fprintf (dump_file, "Adjusting call %s/%i -> %s/%i\n",
4831 xstrdup (cs->caller->name ()),
4832 cs->caller->order,
4833 xstrdup (cs->callee->name ()),
4834 cs->callee->order);
4836 ipa_modify_call_arguments (cs, cs->call_stmt, *adjustments);
4838 pop_cfun ();
4841 for (cs = node->callers; cs; cs = cs->next_caller)
4842 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4843 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4844 compute_inline_parameters (cs->caller, true);
4845 BITMAP_FREE (recomputed_callers);
4847 return true;
4850 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4852 static void
4853 convert_callers (struct cgraph_node *node, tree old_decl,
4854 ipa_parm_adjustment_vec adjustments)
4856 basic_block this_block;
4858 node->call_for_symbol_thunks_and_aliases (convert_callers_for_node,
4859 &adjustments, false);
4861 if (!encountered_recursive_call)
4862 return;
4864 FOR_EACH_BB_FN (this_block, cfun)
4866 gimple_stmt_iterator gsi;
4868 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4870 gimple stmt = gsi_stmt (gsi);
4871 tree call_fndecl;
4872 if (gimple_code (stmt) != GIMPLE_CALL)
4873 continue;
4874 call_fndecl = gimple_call_fndecl (stmt);
4875 if (call_fndecl == old_decl)
4877 if (dump_file)
4878 fprintf (dump_file, "Adjusting recursive call");
4879 gimple_call_set_fndecl (stmt, node->decl);
4880 ipa_modify_call_arguments (NULL, stmt, adjustments);
4885 return;
4888 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4889 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4891 static bool
4892 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4894 struct cgraph_node *new_node;
4895 bool cfg_changed;
4897 rebuild_cgraph_edges ();
4898 free_dominance_info (CDI_DOMINATORS);
4899 pop_cfun ();
4901 /* This must be done after rebuilding cgraph edges for node above.
4902 Otherwise any recursive calls to node that are recorded in
4903 redirect_callers will be corrupted. */
4904 vec<cgraph_edge *> redirect_callers = node->collect_callers ();
4905 new_node = node->create_version_clone_with_body (redirect_callers, NULL,
4906 NULL, false, NULL, NULL,
4907 "isra");
4908 redirect_callers.release ();
4910 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4911 ipa_modify_formal_parameters (current_function_decl, adjustments);
4912 cfg_changed = ipa_sra_modify_function_body (adjustments);
4913 sra_ipa_reset_debug_stmts (adjustments);
4914 convert_callers (new_node, node->decl, adjustments);
4915 new_node->make_local ();
4916 return cfg_changed;
4919 /* If NODE has a caller, return true. */
4921 static bool
4922 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
4924 if (node->callers)
4925 return true;
4926 return false;
4929 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4930 attributes, return true otherwise. NODE is the cgraph node of the current
4931 function. */
4933 static bool
4934 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4936 if (!node->can_be_local_p ())
4938 if (dump_file)
4939 fprintf (dump_file, "Function not local to this compilation unit.\n");
4940 return false;
4943 if (!node->local.can_change_signature)
4945 if (dump_file)
4946 fprintf (dump_file, "Function can not change signature.\n");
4947 return false;
4950 if (!tree_versionable_function_p (node->decl))
4952 if (dump_file)
4953 fprintf (dump_file, "Function is not versionable.\n");
4954 return false;
4957 if (!opt_for_fn (node->decl, optimize)
4958 || !opt_for_fn (node->decl, flag_ipa_sra))
4960 if (dump_file)
4961 fprintf (dump_file, "Function not optimized.\n");
4962 return false;
4965 if (DECL_VIRTUAL_P (current_function_decl))
4967 if (dump_file)
4968 fprintf (dump_file, "Function is a virtual method.\n");
4969 return false;
4972 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4973 && inline_summary (node)->size >= MAX_INLINE_INSNS_AUTO)
4975 if (dump_file)
4976 fprintf (dump_file, "Function too big to be made truly local.\n");
4977 return false;
4980 if (!node->call_for_symbol_thunks_and_aliases (has_caller_p, NULL, true))
4982 if (dump_file)
4983 fprintf (dump_file,
4984 "Function has no callers in this compilation unit.\n");
4985 return false;
4988 if (cfun->stdarg)
4990 if (dump_file)
4991 fprintf (dump_file, "Function uses stdarg. \n");
4992 return false;
4995 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4996 return false;
4998 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
5000 if (dump_file)
5001 fprintf (dump_file, "Always inline function will be inlined "
5002 "anyway. \n");
5003 return false;
5006 return true;
5009 /* Perform early interprocedural SRA. */
5011 static unsigned int
5012 ipa_early_sra (void)
5014 struct cgraph_node *node = cgraph_node::get (current_function_decl);
5015 ipa_parm_adjustment_vec adjustments;
5016 int ret = 0;
5018 if (!ipa_sra_preliminary_function_checks (node))
5019 return 0;
5021 sra_initialize ();
5022 sra_mode = SRA_MODE_EARLY_IPA;
5024 if (!find_param_candidates ())
5026 if (dump_file)
5027 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
5028 goto simple_out;
5031 if (node->call_for_symbol_thunks_and_aliases
5032 (some_callers_have_mismatched_arguments_p, NULL, true))
5034 if (dump_file)
5035 fprintf (dump_file, "There are callers with insufficient number of "
5036 "arguments or arguments with type mismatches.\n");
5037 goto simple_out;
5040 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
5041 func_param_count
5042 * last_basic_block_for_fn (cfun));
5043 final_bbs = BITMAP_ALLOC (NULL);
5045 scan_function ();
5046 if (encountered_apply_args)
5048 if (dump_file)
5049 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
5050 goto out;
5053 if (encountered_unchangable_recursive_call)
5055 if (dump_file)
5056 fprintf (dump_file, "Function calls itself with insufficient "
5057 "number of arguments.\n");
5058 goto out;
5061 adjustments = analyze_all_param_acesses ();
5062 if (!adjustments.exists ())
5063 goto out;
5064 if (dump_file)
5065 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
5067 if (modify_function (node, adjustments))
5068 ret = TODO_update_ssa | TODO_cleanup_cfg;
5069 else
5070 ret = TODO_update_ssa;
5071 adjustments.release ();
5073 statistics_counter_event (cfun, "Unused parameters deleted",
5074 sra_stats.deleted_unused_parameters);
5075 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
5076 sra_stats.scalar_by_ref_to_by_val);
5077 statistics_counter_event (cfun, "Aggregate parameters broken up",
5078 sra_stats.aggregate_params_reduced);
5079 statistics_counter_event (cfun, "Aggregate parameter components created",
5080 sra_stats.param_reductions_created);
5082 out:
5083 BITMAP_FREE (final_bbs);
5084 free (bb_dereferences);
5085 simple_out:
5086 sra_deinitialize ();
5087 return ret;
5090 namespace {
5092 const pass_data pass_data_early_ipa_sra =
5094 GIMPLE_PASS, /* type */
5095 "eipa_sra", /* name */
5096 OPTGROUP_NONE, /* optinfo_flags */
5097 TV_IPA_SRA, /* tv_id */
5098 0, /* properties_required */
5099 0, /* properties_provided */
5100 0, /* properties_destroyed */
5101 0, /* todo_flags_start */
5102 TODO_dump_symtab, /* todo_flags_finish */
5105 class pass_early_ipa_sra : public gimple_opt_pass
5107 public:
5108 pass_early_ipa_sra (gcc::context *ctxt)
5109 : gimple_opt_pass (pass_data_early_ipa_sra, ctxt)
5112 /* opt_pass methods: */
5113 virtual bool gate (function *) { return flag_ipa_sra && dbg_cnt (eipa_sra); }
5114 virtual unsigned int execute (function *) { return ipa_early_sra (); }
5116 }; // class pass_early_ipa_sra
5118 } // anon namespace
5120 gimple_opt_pass *
5121 make_pass_early_ipa_sra (gcc::context *ctxt)
5123 return new pass_early_ipa_sra (ctxt);