Rebase.
[official-gcc.git] / gcc / modulo-sched.c
blob1ae7c16f6bef97670744e54ecac36812b01d0c2a
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "function.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "except.h"
36 #include "recog.h"
37 #include "sched-int.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "gcov-io.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "df.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx insn;
161 typedef struct ps_reg_move_info ps_reg_move_info;
163 /* Holds the partial schedule as an array of II rows. Each entry of the
164 array points to a linked list of PS_INSNs, which represents the
165 instructions that are scheduled for that row. */
166 struct partial_schedule
168 int ii; /* Number of rows in the partial schedule. */
169 int history; /* Threshold for conflict checking using DFA. */
171 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
172 ps_insn_ptr *rows;
174 /* All the moves added for this partial schedule. Index X has
175 a ps_insn id of X + g->num_nodes. */
176 vec<ps_reg_move_info> reg_moves;
178 /* rows_length[i] holds the number of instructions in the row.
179 It is used only (as an optimization) to back off quickly from
180 trying to schedule a node in a full row; that is, to avoid running
181 through futile DFA state transitions. */
182 int *rows_length;
184 /* The earliest absolute cycle of an insn in the partial schedule. */
185 int min_cycle;
187 /* The latest absolute cycle of an insn in the partial schedule. */
188 int max_cycle;
190 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
192 int stage_count; /* The stage count of the partial schedule. */
196 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
197 static void free_partial_schedule (partial_schedule_ptr);
198 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
199 void print_partial_schedule (partial_schedule_ptr, FILE *);
200 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
201 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
202 int, int, sbitmap, sbitmap);
203 static void rotate_partial_schedule (partial_schedule_ptr, int);
204 void set_row_column_for_ps (partial_schedule_ptr);
205 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
206 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
209 /* This page defines constants and structures for the modulo scheduling
210 driver. */
212 static int sms_order_nodes (ddg_ptr, int, int *, int *);
213 static void set_node_sched_params (ddg_ptr);
214 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
215 static void permute_partial_schedule (partial_schedule_ptr, rtx);
216 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
217 rtx, rtx);
218 static int calculate_stage_count (partial_schedule_ptr, int);
219 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
220 int, int, sbitmap, sbitmap, sbitmap);
221 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
222 sbitmap, int, int *, int *, int *);
223 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
224 sbitmap, int *, sbitmap, sbitmap);
225 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
227 #define NODE_ASAP(node) ((node)->aux.count)
229 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
230 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
231 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
232 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
233 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
235 /* The scheduling parameters held for each node. */
236 typedef struct node_sched_params
238 int time; /* The absolute scheduling cycle. */
240 int row; /* Holds time % ii. */
241 int stage; /* Holds time / ii. */
243 /* The column of a node inside the ps. If nodes u, v are on the same row,
244 u will precede v if column (u) < column (v). */
245 int column;
246 } *node_sched_params_ptr;
248 typedef struct node_sched_params node_sched_params;
250 /* The following three functions are copied from the current scheduler
251 code in order to use sched_analyze() for computing the dependencies.
252 They are used when initializing the sched_info structure. */
253 static const char *
254 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
256 static char tmp[80];
258 sprintf (tmp, "i%4d", INSN_UID (insn));
259 return tmp;
262 static void
263 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
264 regset used ATTRIBUTE_UNUSED)
268 static struct common_sched_info_def sms_common_sched_info;
270 static struct sched_deps_info_def sms_sched_deps_info =
272 compute_jump_reg_dependencies,
273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
274 NULL,
275 0, 0, 0
278 static struct haifa_sched_info sms_sched_info =
280 NULL,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 sms_print_insn,
286 NULL,
287 NULL, /* insn_finishes_block_p */
288 NULL, NULL,
289 NULL, NULL,
290 0, 0,
292 NULL, NULL, NULL, NULL,
293 NULL, NULL,
297 /* Partial schedule instruction ID in PS is a register move. Return
298 information about it. */
299 static struct ps_reg_move_info *
300 ps_reg_move (partial_schedule_ptr ps, int id)
302 gcc_checking_assert (id >= ps->g->num_nodes);
303 return &ps->reg_moves[id - ps->g->num_nodes];
306 /* Return the rtl instruction that is being scheduled by partial schedule
307 instruction ID, which belongs to schedule PS. */
308 static rtx
309 ps_rtl_insn (partial_schedule_ptr ps, int id)
311 if (id < ps->g->num_nodes)
312 return ps->g->nodes[id].insn;
313 else
314 return ps_reg_move (ps, id)->insn;
317 /* Partial schedule instruction ID, which belongs to PS, occurred in
318 the original (unscheduled) loop. Return the first instruction
319 in the loop that was associated with ps_rtl_insn (PS, ID).
320 If the instruction had some notes before it, this is the first
321 of those notes. */
322 static rtx
323 ps_first_note (partial_schedule_ptr ps, int id)
325 gcc_assert (id < ps->g->num_nodes);
326 return ps->g->nodes[id].first_note;
329 /* Return the number of consecutive stages that are occupied by
330 partial schedule instruction ID in PS. */
331 static int
332 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
334 if (id < ps->g->num_nodes)
335 return 1;
336 else
337 return ps_reg_move (ps, id)->num_consecutive_stages;
340 /* Given HEAD and TAIL which are the first and last insns in a loop;
341 return the register which controls the loop. Return zero if it has
342 more than one occurrence in the loop besides the control part or the
343 do-loop pattern is not of the form we expect. */
344 static rtx
345 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
347 #ifdef HAVE_doloop_end
348 rtx reg, condition, insn, first_insn_not_to_check;
350 if (!JUMP_P (tail))
351 return NULL_RTX;
353 /* TODO: Free SMS's dependence on doloop_condition_get. */
354 condition = doloop_condition_get (tail);
355 if (! condition)
356 return NULL_RTX;
358 if (REG_P (XEXP (condition, 0)))
359 reg = XEXP (condition, 0);
360 else if (GET_CODE (XEXP (condition, 0)) == PLUS
361 && REG_P (XEXP (XEXP (condition, 0), 0)))
362 reg = XEXP (XEXP (condition, 0), 0);
363 else
364 gcc_unreachable ();
366 /* Check that the COUNT_REG has no other occurrences in the loop
367 until the decrement. We assume the control part consists of
368 either a single (parallel) branch-on-count or a (non-parallel)
369 branch immediately preceded by a single (decrement) insn. */
370 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
371 : prev_nondebug_insn (tail));
373 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
374 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
376 if (dump_file)
378 fprintf (dump_file, "SMS count_reg found ");
379 print_rtl_single (dump_file, reg);
380 fprintf (dump_file, " outside control in insn:\n");
381 print_rtl_single (dump_file, insn);
384 return NULL_RTX;
387 return reg;
388 #else
389 return NULL_RTX;
390 #endif
393 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
394 that the number of iterations is a compile-time constant. If so,
395 return the rtx that sets COUNT_REG to a constant, and set COUNT to
396 this constant. Otherwise return 0. */
397 static rtx
398 const_iteration_count (rtx count_reg, basic_block pre_header,
399 int64_t * count)
401 rtx insn;
402 rtx head, tail;
404 if (! pre_header)
405 return NULL_RTX;
407 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
409 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
410 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
411 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
413 rtx pat = single_set (insn);
415 if (CONST_INT_P (SET_SRC (pat)))
417 *count = INTVAL (SET_SRC (pat));
418 return insn;
421 return NULL_RTX;
424 return NULL_RTX;
427 /* A very simple resource-based lower bound on the initiation interval.
428 ??? Improve the accuracy of this bound by considering the
429 utilization of various units. */
430 static int
431 res_MII (ddg_ptr g)
433 if (targetm.sched.sms_res_mii)
434 return targetm.sched.sms_res_mii (g);
436 return ((g->num_nodes - g->num_debug) / issue_rate);
440 /* A vector that contains the sched data for each ps_insn. */
441 static vec<node_sched_params> node_sched_param_vec;
443 /* Allocate sched_params for each node and initialize it. */
444 static void
445 set_node_sched_params (ddg_ptr g)
447 node_sched_param_vec.truncate (0);
448 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
451 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
452 static void
453 extend_node_sched_params (partial_schedule_ptr ps)
455 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
456 + ps->reg_moves.length ());
459 /* Update the sched_params (time, row and stage) for node U using the II,
460 the CYCLE of U and MIN_CYCLE.
461 We're not simply taking the following
462 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
463 because the stages may not be aligned on cycle 0. */
464 static void
465 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
467 int sc_until_cycle_zero;
468 int stage;
470 SCHED_TIME (u) = cycle;
471 SCHED_ROW (u) = SMODULO (cycle, ii);
473 /* The calculation of stage count is done adding the number
474 of stages before cycle zero and after cycle zero. */
475 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
477 if (SCHED_TIME (u) < 0)
479 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
482 else
484 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
485 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
489 static void
490 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
492 int i;
494 if (! file)
495 return;
496 for (i = 0; i < num_nodes; i++)
498 node_sched_params_ptr nsp = SCHED_PARAMS (i);
500 fprintf (file, "Node = %d; INSN = %d\n", i,
501 INSN_UID (ps_rtl_insn (ps, i)));
502 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
503 fprintf (file, " time = %d:\n", nsp->time);
504 fprintf (file, " stage = %d:\n", nsp->stage);
508 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
509 static void
510 set_columns_for_row (partial_schedule_ptr ps, int row)
512 ps_insn_ptr cur_insn;
513 int column;
515 column = 0;
516 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
517 SCHED_COLUMN (cur_insn->id) = column++;
520 /* Set SCHED_COLUMN for each instruction in PS. */
521 static void
522 set_columns_for_ps (partial_schedule_ptr ps)
524 int row;
526 for (row = 0; row < ps->ii; row++)
527 set_columns_for_row (ps, row);
530 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
531 Its single predecessor has already been scheduled, as has its
532 ddg node successors. (The move may have also another move as its
533 successor, in which case that successor will be scheduled later.)
535 The move is part of a chain that satisfies register dependencies
536 between a producing ddg node and various consuming ddg nodes.
537 If some of these dependencies have a distance of 1 (meaning that
538 the use is upward-exposed) then DISTANCE1_USES is nonnull and
539 contains the set of uses with distance-1 dependencies.
540 DISTANCE1_USES is null otherwise.
542 MUST_FOLLOW is a scratch bitmap that is big enough to hold
543 all current ps_insn ids.
545 Return true on success. */
546 static bool
547 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
548 sbitmap distance1_uses, sbitmap must_follow)
550 unsigned int u;
551 int this_time, this_distance, this_start, this_end, this_latency;
552 int start, end, c, ii;
553 sbitmap_iterator sbi;
554 ps_reg_move_info *move;
555 rtx this_insn;
556 ps_insn_ptr psi;
558 move = ps_reg_move (ps, i_reg_move);
559 ii = ps->ii;
560 if (dump_file)
562 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
563 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
564 PS_MIN_CYCLE (ps));
565 print_rtl_single (dump_file, move->insn);
566 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
567 fprintf (dump_file, "=========== =========== =====\n");
570 start = INT_MIN;
571 end = INT_MAX;
573 /* For dependencies of distance 1 between a producer ddg node A
574 and consumer ddg node B, we have a chain of dependencies:
576 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
578 where Mi is the ith move. For dependencies of distance 0 between
579 a producer ddg node A and consumer ddg node C, we have a chain of
580 dependencies:
582 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
584 where Mi' occupies the same position as Mi but occurs a stage later.
585 We can only schedule each move once, so if we have both types of
586 chain, we model the second as:
588 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
590 First handle the dependencies between the previously-scheduled
591 predecessor and the move. */
592 this_insn = ps_rtl_insn (ps, move->def);
593 this_latency = insn_latency (this_insn, move->insn);
594 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
595 this_time = SCHED_TIME (move->def) - this_distance * ii;
596 this_start = this_time + this_latency;
597 this_end = this_time + ii;
598 if (dump_file)
599 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
600 this_start, this_end, SCHED_TIME (move->def),
601 INSN_UID (this_insn), this_latency, this_distance,
602 INSN_UID (move->insn));
604 if (start < this_start)
605 start = this_start;
606 if (end > this_end)
607 end = this_end;
609 /* Handle the dependencies between the move and previously-scheduled
610 successors. */
611 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
613 this_insn = ps_rtl_insn (ps, u);
614 this_latency = insn_latency (move->insn, this_insn);
615 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
616 this_distance = -1;
617 else
618 this_distance = 0;
619 this_time = SCHED_TIME (u) + this_distance * ii;
620 this_start = this_time - ii;
621 this_end = this_time - this_latency;
622 if (dump_file)
623 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
624 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
625 this_latency, this_distance, INSN_UID (this_insn));
627 if (start < this_start)
628 start = this_start;
629 if (end > this_end)
630 end = this_end;
633 if (dump_file)
635 fprintf (dump_file, "----------- ----------- -----\n");
636 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
639 bitmap_clear (must_follow);
640 bitmap_set_bit (must_follow, move->def);
642 start = MAX (start, end - (ii - 1));
643 for (c = end; c >= start; c--)
645 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
646 move->uses, must_follow);
647 if (psi)
649 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
650 if (dump_file)
651 fprintf (dump_file, "\nScheduled register move INSN %d at"
652 " time %d, row %d\n\n", INSN_UID (move->insn), c,
653 SCHED_ROW (i_reg_move));
654 return true;
658 if (dump_file)
659 fprintf (dump_file, "\nNo available slot\n\n");
661 return false;
665 Breaking intra-loop register anti-dependences:
666 Each intra-loop register anti-dependence implies a cross-iteration true
667 dependence of distance 1. Therefore, we can remove such false dependencies
668 and figure out if the partial schedule broke them by checking if (for a
669 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
670 if so generate a register move. The number of such moves is equal to:
671 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
672 nreg_moves = ----------------------------------- + 1 - { dependence.
673 ii { 1 if not.
675 static bool
676 schedule_reg_moves (partial_schedule_ptr ps)
678 ddg_ptr g = ps->g;
679 int ii = ps->ii;
680 int i;
682 for (i = 0; i < g->num_nodes; i++)
684 ddg_node_ptr u = &g->nodes[i];
685 ddg_edge_ptr e;
686 int nreg_moves = 0, i_reg_move;
687 rtx prev_reg, old_reg;
688 int first_move;
689 int distances[2];
690 sbitmap must_follow;
691 sbitmap distance1_uses;
692 rtx set = single_set (u->insn);
694 /* Skip instructions that do not set a register. */
695 if ((set && !REG_P (SET_DEST (set))))
696 continue;
698 /* Compute the number of reg_moves needed for u, by looking at life
699 ranges started at u (excluding self-loops). */
700 distances[0] = distances[1] = false;
701 for (e = u->out; e; e = e->next_out)
702 if (e->type == TRUE_DEP && e->dest != e->src)
704 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
705 - SCHED_TIME (e->src->cuid)) / ii;
707 if (e->distance == 1)
708 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
709 - SCHED_TIME (e->src->cuid) + ii) / ii;
711 /* If dest precedes src in the schedule of the kernel, then dest
712 will read before src writes and we can save one reg_copy. */
713 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
714 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
715 nreg_moves4e--;
717 if (nreg_moves4e >= 1)
719 /* !single_set instructions are not supported yet and
720 thus we do not except to encounter them in the loop
721 except from the doloop part. For the latter case
722 we assume no regmoves are generated as the doloop
723 instructions are tied to the branch with an edge. */
724 gcc_assert (set);
725 /* If the instruction contains auto-inc register then
726 validate that the regmov is being generated for the
727 target regsiter rather then the inc'ed register. */
728 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
731 if (nreg_moves4e)
733 gcc_assert (e->distance < 2);
734 distances[e->distance] = true;
736 nreg_moves = MAX (nreg_moves, nreg_moves4e);
739 if (nreg_moves == 0)
740 continue;
742 /* Create NREG_MOVES register moves. */
743 first_move = ps->reg_moves.length ();
744 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
745 extend_node_sched_params (ps);
747 /* Record the moves associated with this node. */
748 first_move += ps->g->num_nodes;
750 /* Generate each move. */
751 old_reg = prev_reg = SET_DEST (single_set (u->insn));
752 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
754 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
756 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
757 move->uses = sbitmap_alloc (first_move + nreg_moves);
758 move->old_reg = old_reg;
759 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
760 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
761 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
762 bitmap_clear (move->uses);
764 prev_reg = move->new_reg;
767 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
769 if (distance1_uses)
770 bitmap_clear (distance1_uses);
772 /* Every use of the register defined by node may require a different
773 copy of this register, depending on the time the use is scheduled.
774 Record which uses require which move results. */
775 for (e = u->out; e; e = e->next_out)
776 if (e->type == TRUE_DEP && e->dest != e->src)
778 int dest_copy = (SCHED_TIME (e->dest->cuid)
779 - SCHED_TIME (e->src->cuid)) / ii;
781 if (e->distance == 1)
782 dest_copy = (SCHED_TIME (e->dest->cuid)
783 - SCHED_TIME (e->src->cuid) + ii) / ii;
785 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
786 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
787 dest_copy--;
789 if (dest_copy)
791 ps_reg_move_info *move;
793 move = ps_reg_move (ps, first_move + dest_copy - 1);
794 bitmap_set_bit (move->uses, e->dest->cuid);
795 if (e->distance == 1)
796 bitmap_set_bit (distance1_uses, e->dest->cuid);
800 must_follow = sbitmap_alloc (first_move + nreg_moves);
801 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
802 if (!schedule_reg_move (ps, first_move + i_reg_move,
803 distance1_uses, must_follow))
804 break;
805 sbitmap_free (must_follow);
806 if (distance1_uses)
807 sbitmap_free (distance1_uses);
808 if (i_reg_move < nreg_moves)
809 return false;
811 return true;
814 /* Emit the moves associatied with PS. Apply the substitutions
815 associated with them. */
816 static void
817 apply_reg_moves (partial_schedule_ptr ps)
819 ps_reg_move_info *move;
820 int i;
822 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
824 unsigned int i_use;
825 sbitmap_iterator sbi;
827 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
829 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
830 df_insn_rescan (ps->g->nodes[i_use].insn);
835 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
836 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
837 will move to cycle zero. */
838 static void
839 reset_sched_times (partial_schedule_ptr ps, int amount)
841 int row;
842 int ii = ps->ii;
843 ps_insn_ptr crr_insn;
845 for (row = 0; row < ii; row++)
846 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
848 int u = crr_insn->id;
849 int normalized_time = SCHED_TIME (u) - amount;
850 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
852 if (dump_file)
854 /* Print the scheduling times after the rotation. */
855 rtx insn = ps_rtl_insn (ps, u);
857 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
858 "crr_insn->cycle=%d, min_cycle=%d", u,
859 INSN_UID (insn), normalized_time, new_min_cycle);
860 if (JUMP_P (insn))
861 fprintf (dump_file, " (branch)");
862 fprintf (dump_file, "\n");
865 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
866 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
868 crr_insn->cycle = normalized_time;
869 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
873 /* Permute the insns according to their order in PS, from row 0 to
874 row ii-1, and position them right before LAST. This schedules
875 the insns of the loop kernel. */
876 static void
877 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
879 int ii = ps->ii;
880 int row;
881 ps_insn_ptr ps_ij;
883 for (row = 0; row < ii ; row++)
884 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
886 rtx insn = ps_rtl_insn (ps, ps_ij->id);
888 if (PREV_INSN (last) != insn)
890 if (ps_ij->id < ps->g->num_nodes)
891 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
892 PREV_INSN (last));
893 else
894 add_insn_before (insn, last, NULL);
899 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
900 respectively only if cycle C falls on the border of the scheduling
901 window boundaries marked by START and END cycles. STEP is the
902 direction of the window. */
903 static inline void
904 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
905 sbitmap *tmp_precede, sbitmap must_precede, int c,
906 int start, int end, int step)
908 *tmp_precede = NULL;
909 *tmp_follow = NULL;
911 if (c == start)
913 if (step == 1)
914 *tmp_precede = must_precede;
915 else /* step == -1. */
916 *tmp_follow = must_follow;
918 if (c == end - step)
920 if (step == 1)
921 *tmp_follow = must_follow;
922 else /* step == -1. */
923 *tmp_precede = must_precede;
928 /* Return True if the branch can be moved to row ii-1 while
929 normalizing the partial schedule PS to start from cycle zero and thus
930 optimize the SC. Otherwise return False. */
931 static bool
932 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
934 int amount = PS_MIN_CYCLE (ps);
935 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
936 int start, end, step;
937 int ii = ps->ii;
938 bool ok = false;
939 int stage_count, stage_count_curr;
941 /* Compare the SC after normalization and SC after bringing the branch
942 to row ii-1. If they are equal just bail out. */
943 stage_count = calculate_stage_count (ps, amount);
944 stage_count_curr =
945 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
947 if (stage_count == stage_count_curr)
949 if (dump_file)
950 fprintf (dump_file, "SMS SC already optimized.\n");
952 ok = false;
953 goto clear;
956 if (dump_file)
958 fprintf (dump_file, "SMS Trying to optimize branch location\n");
959 fprintf (dump_file, "SMS partial schedule before trial:\n");
960 print_partial_schedule (ps, dump_file);
963 /* First, normalize the partial scheduling. */
964 reset_sched_times (ps, amount);
965 rotate_partial_schedule (ps, amount);
966 if (dump_file)
968 fprintf (dump_file,
969 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
970 ii, stage_count);
971 print_partial_schedule (ps, dump_file);
974 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
976 ok = true;
977 goto clear;
980 bitmap_ones (sched_nodes);
982 /* Calculate the new placement of the branch. It should be in row
983 ii-1 and fall into it's scheduling window. */
984 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
985 &step, &end) == 0)
987 bool success;
988 ps_insn_ptr next_ps_i;
989 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
990 int row = SMODULO (branch_cycle, ps->ii);
991 int num_splits = 0;
992 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
993 int c;
995 if (dump_file)
996 fprintf (dump_file, "\nTrying to schedule node %d "
997 "INSN = %d in (%d .. %d) step %d\n",
998 g->closing_branch->cuid,
999 (INSN_UID (g->closing_branch->insn)), start, end, step);
1001 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1002 if (step == 1)
1004 c = start + ii - SMODULO (start, ii) - 1;
1005 gcc_assert (c >= start);
1006 if (c >= end)
1008 ok = false;
1009 if (dump_file)
1010 fprintf (dump_file,
1011 "SMS failed to schedule branch at cycle: %d\n", c);
1012 goto clear;
1015 else
1017 c = start - SMODULO (start, ii) - 1;
1018 gcc_assert (c <= start);
1020 if (c <= end)
1022 if (dump_file)
1023 fprintf (dump_file,
1024 "SMS failed to schedule branch at cycle: %d\n", c);
1025 ok = false;
1026 goto clear;
1030 must_precede = sbitmap_alloc (g->num_nodes);
1031 must_follow = sbitmap_alloc (g->num_nodes);
1033 /* Try to schedule the branch is it's new cycle. */
1034 calculate_must_precede_follow (g->closing_branch, start, end,
1035 step, ii, sched_nodes,
1036 must_precede, must_follow);
1038 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1039 must_precede, c, start, end, step);
1041 /* Find the element in the partial schedule related to the closing
1042 branch so we can remove it from it's current cycle. */
1043 for (next_ps_i = ps->rows[row];
1044 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1045 if (next_ps_i->id == g->closing_branch->cuid)
1046 break;
1048 remove_node_from_ps (ps, next_ps_i);
1049 success =
1050 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1051 sched_nodes, &num_splits,
1052 tmp_precede, tmp_follow);
1053 gcc_assert (num_splits == 0);
1054 if (!success)
1056 if (dump_file)
1057 fprintf (dump_file,
1058 "SMS failed to schedule branch at cycle: %d, "
1059 "bringing it back to cycle %d\n", c, branch_cycle);
1061 /* The branch was failed to be placed in row ii - 1.
1062 Put it back in it's original place in the partial
1063 schedualing. */
1064 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1065 must_precede, branch_cycle, start, end,
1066 step);
1067 success =
1068 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1069 branch_cycle, sched_nodes,
1070 &num_splits, tmp_precede,
1071 tmp_follow);
1072 gcc_assert (success && (num_splits == 0));
1073 ok = false;
1075 else
1077 /* The branch is placed in row ii - 1. */
1078 if (dump_file)
1079 fprintf (dump_file,
1080 "SMS success in moving branch to cycle %d\n", c);
1082 update_node_sched_params (g->closing_branch->cuid, ii, c,
1083 PS_MIN_CYCLE (ps));
1084 ok = true;
1087 free (must_precede);
1088 free (must_follow);
1091 clear:
1092 free (sched_nodes);
1093 return ok;
1096 static void
1097 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1098 int to_stage, rtx count_reg)
1100 int row;
1101 ps_insn_ptr ps_ij;
1103 for (row = 0; row < ps->ii; row++)
1104 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1106 int u = ps_ij->id;
1107 int first_u, last_u;
1108 rtx u_insn;
1110 /* Do not duplicate any insn which refers to count_reg as it
1111 belongs to the control part.
1112 The closing branch is scheduled as well and thus should
1113 be ignored.
1114 TODO: This should be done by analyzing the control part of
1115 the loop. */
1116 u_insn = ps_rtl_insn (ps, u);
1117 if (reg_mentioned_p (count_reg, u_insn)
1118 || JUMP_P (u_insn))
1119 continue;
1121 first_u = SCHED_STAGE (u);
1122 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1123 if (from_stage <= last_u && to_stage >= first_u)
1125 if (u < ps->g->num_nodes)
1126 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1127 else
1128 emit_insn (copy_rtx (PATTERN (u_insn)));
1134 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1135 static void
1136 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1137 rtx count_reg, rtx count_init)
1139 int i;
1140 int last_stage = PS_STAGE_COUNT (ps) - 1;
1141 edge e;
1143 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1144 start_sequence ();
1146 if (!count_init)
1148 /* Generate instructions at the beginning of the prolog to
1149 adjust the loop count by STAGE_COUNT. If loop count is constant
1150 (count_init), this constant is adjusted by STAGE_COUNT in
1151 generate_prolog_epilog function. */
1152 rtx sub_reg = NULL_RTX;
1154 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1155 gen_int_mode (last_stage,
1156 GET_MODE (count_reg)),
1157 count_reg, 1, OPTAB_DIRECT);
1158 gcc_assert (REG_P (sub_reg));
1159 if (REGNO (sub_reg) != REGNO (count_reg))
1160 emit_move_insn (count_reg, sub_reg);
1163 for (i = 0; i < last_stage; i++)
1164 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1166 /* Put the prolog on the entry edge. */
1167 e = loop_preheader_edge (loop);
1168 split_edge_and_insert (e, get_insns ());
1169 if (!flag_resched_modulo_sched)
1170 e->dest->flags |= BB_DISABLE_SCHEDULE;
1172 end_sequence ();
1174 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1175 start_sequence ();
1177 for (i = 0; i < last_stage; i++)
1178 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1180 /* Put the epilogue on the exit edge. */
1181 gcc_assert (single_exit (loop));
1182 e = single_exit (loop);
1183 split_edge_and_insert (e, get_insns ());
1184 if (!flag_resched_modulo_sched)
1185 e->dest->flags |= BB_DISABLE_SCHEDULE;
1187 end_sequence ();
1190 /* Mark LOOP as software pipelined so the later
1191 scheduling passes don't touch it. */
1192 static void
1193 mark_loop_unsched (struct loop *loop)
1195 unsigned i;
1196 basic_block *bbs = get_loop_body (loop);
1198 for (i = 0; i < loop->num_nodes; i++)
1199 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1201 free (bbs);
1204 /* Return true if all the BBs of the loop are empty except the
1205 loop header. */
1206 static bool
1207 loop_single_full_bb_p (struct loop *loop)
1209 unsigned i;
1210 basic_block *bbs = get_loop_body (loop);
1212 for (i = 0; i < loop->num_nodes ; i++)
1214 rtx head, tail;
1215 bool empty_bb = true;
1217 if (bbs[i] == loop->header)
1218 continue;
1220 /* Make sure that basic blocks other than the header
1221 have only notes labels or jumps. */
1222 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1223 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1225 if (NOTE_P (head) || LABEL_P (head)
1226 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1227 continue;
1228 empty_bb = false;
1229 break;
1232 if (! empty_bb)
1234 free (bbs);
1235 return false;
1238 free (bbs);
1239 return true;
1242 /* Dump file:line from INSN's location info to dump_file. */
1244 static void
1245 dump_insn_location (rtx insn)
1247 if (dump_file && INSN_HAS_LOCATION (insn))
1249 expanded_location xloc = insn_location (insn);
1250 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1254 /* A simple loop from SMS point of view; it is a loop that is composed of
1255 either a single basic block or two BBs - a header and a latch. */
1256 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1257 && (EDGE_COUNT (loop->latch->preds) == 1) \
1258 && (EDGE_COUNT (loop->latch->succs) == 1))
1260 /* Return true if the loop is in its canonical form and false if not.
1261 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1262 static bool
1263 loop_canon_p (struct loop *loop)
1266 if (loop->inner || !loop_outer (loop))
1268 if (dump_file)
1269 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1270 return false;
1273 if (!single_exit (loop))
1275 if (dump_file)
1277 rtx insn = BB_END (loop->header);
1279 fprintf (dump_file, "SMS loop many exits");
1280 dump_insn_location (insn);
1281 fprintf (dump_file, "\n");
1283 return false;
1286 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1288 if (dump_file)
1290 rtx insn = BB_END (loop->header);
1292 fprintf (dump_file, "SMS loop many BBs.");
1293 dump_insn_location (insn);
1294 fprintf (dump_file, "\n");
1296 return false;
1299 return true;
1302 /* If there are more than one entry for the loop,
1303 make it one by splitting the first entry edge and
1304 redirecting the others to the new BB. */
1305 static void
1306 canon_loop (struct loop *loop)
1308 edge e;
1309 edge_iterator i;
1311 /* Avoid annoying special cases of edges going to exit
1312 block. */
1313 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1314 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1315 split_edge (e);
1317 if (loop->latch == loop->header
1318 || EDGE_COUNT (loop->latch->succs) > 1)
1320 FOR_EACH_EDGE (e, i, loop->header->preds)
1321 if (e->src == loop->latch)
1322 break;
1323 split_edge (e);
1327 /* Setup infos. */
1328 static void
1329 setup_sched_infos (void)
1331 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1332 sizeof (sms_common_sched_info));
1333 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1334 common_sched_info = &sms_common_sched_info;
1336 sched_deps_info = &sms_sched_deps_info;
1337 current_sched_info = &sms_sched_info;
1340 /* Probability in % that the sms-ed loop rolls enough so that optimized
1341 version may be entered. Just a guess. */
1342 #define PROB_SMS_ENOUGH_ITERATIONS 80
1344 /* Used to calculate the upper bound of ii. */
1345 #define MAXII_FACTOR 2
1347 /* Main entry point, perform SMS scheduling on the loops of the function
1348 that consist of single basic blocks. */
1349 static void
1350 sms_schedule (void)
1352 rtx insn;
1353 ddg_ptr *g_arr, g;
1354 int * node_order;
1355 int maxii, max_asap;
1356 partial_schedule_ptr ps;
1357 basic_block bb = NULL;
1358 struct loop *loop;
1359 basic_block condition_bb = NULL;
1360 edge latch_edge;
1361 gcov_type trip_count = 0;
1363 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1364 | LOOPS_HAVE_RECORDED_EXITS);
1365 if (number_of_loops (cfun) <= 1)
1367 loop_optimizer_finalize ();
1368 return; /* There are no loops to schedule. */
1371 /* Initialize issue_rate. */
1372 if (targetm.sched.issue_rate)
1374 int temp = reload_completed;
1376 reload_completed = 1;
1377 issue_rate = targetm.sched.issue_rate ();
1378 reload_completed = temp;
1380 else
1381 issue_rate = 1;
1383 /* Initialize the scheduler. */
1384 setup_sched_infos ();
1385 haifa_sched_init ();
1387 /* Allocate memory to hold the DDG array one entry for each loop.
1388 We use loop->num as index into this array. */
1389 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1391 if (dump_file)
1393 fprintf (dump_file, "\n\nSMS analysis phase\n");
1394 fprintf (dump_file, "===================\n\n");
1397 /* Build DDGs for all the relevant loops and hold them in G_ARR
1398 indexed by the loop index. */
1399 FOR_EACH_LOOP (loop, 0)
1401 rtx head, tail;
1402 rtx count_reg;
1404 /* For debugging. */
1405 if (dbg_cnt (sms_sched_loop) == false)
1407 if (dump_file)
1408 fprintf (dump_file, "SMS reached max limit... \n");
1410 break;
1413 if (dump_file)
1415 rtx insn = BB_END (loop->header);
1417 fprintf (dump_file, "SMS loop num: %d", loop->num);
1418 dump_insn_location (insn);
1419 fprintf (dump_file, "\n");
1422 if (! loop_canon_p (loop))
1423 continue;
1425 if (! loop_single_full_bb_p (loop))
1427 if (dump_file)
1428 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1429 continue;
1432 bb = loop->header;
1434 get_ebb_head_tail (bb, bb, &head, &tail);
1435 latch_edge = loop_latch_edge (loop);
1436 gcc_assert (single_exit (loop));
1437 if (single_exit (loop)->count)
1438 trip_count = latch_edge->count / single_exit (loop)->count;
1440 /* Perform SMS only on loops that their average count is above threshold. */
1442 if ( latch_edge->count
1443 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1445 if (dump_file)
1447 dump_insn_location (tail);
1448 fprintf (dump_file, "\nSMS single-bb-loop\n");
1449 if (profile_info && flag_branch_probabilities)
1451 fprintf (dump_file, "SMS loop-count ");
1452 fprintf (dump_file, "%"PRId64,
1453 (int64_t) bb->count);
1454 fprintf (dump_file, "\n");
1455 fprintf (dump_file, "SMS trip-count ");
1456 fprintf (dump_file, "%"PRId64,
1457 (int64_t) trip_count);
1458 fprintf (dump_file, "\n");
1459 fprintf (dump_file, "SMS profile-sum-max ");
1460 fprintf (dump_file, "%"PRId64,
1461 (int64_t) profile_info->sum_max);
1462 fprintf (dump_file, "\n");
1465 continue;
1468 /* Make sure this is a doloop. */
1469 if ( !(count_reg = doloop_register_get (head, tail)))
1471 if (dump_file)
1472 fprintf (dump_file, "SMS doloop_register_get failed\n");
1473 continue;
1476 /* Don't handle BBs with calls or barriers
1477 or !single_set with the exception of instructions that include
1478 count_reg---these instructions are part of the control part
1479 that do-loop recognizes.
1480 ??? Should handle insns defining subregs. */
1481 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1483 rtx set;
1485 if (CALL_P (insn)
1486 || BARRIER_P (insn)
1487 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1488 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1489 && !reg_mentioned_p (count_reg, insn))
1490 || (INSN_P (insn) && (set = single_set (insn))
1491 && GET_CODE (SET_DEST (set)) == SUBREG))
1492 break;
1495 if (insn != NEXT_INSN (tail))
1497 if (dump_file)
1499 if (CALL_P (insn))
1500 fprintf (dump_file, "SMS loop-with-call\n");
1501 else if (BARRIER_P (insn))
1502 fprintf (dump_file, "SMS loop-with-barrier\n");
1503 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1504 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1505 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1506 else
1507 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1508 print_rtl_single (dump_file, insn);
1511 continue;
1514 /* Always schedule the closing branch with the rest of the
1515 instructions. The branch is rotated to be in row ii-1 at the
1516 end of the scheduling procedure to make sure it's the last
1517 instruction in the iteration. */
1518 if (! (g = create_ddg (bb, 1)))
1520 if (dump_file)
1521 fprintf (dump_file, "SMS create_ddg failed\n");
1522 continue;
1525 g_arr[loop->num] = g;
1526 if (dump_file)
1527 fprintf (dump_file, "...OK\n");
1530 if (dump_file)
1532 fprintf (dump_file, "\nSMS transformation phase\n");
1533 fprintf (dump_file, "=========================\n\n");
1536 /* We don't want to perform SMS on new loops - created by versioning. */
1537 FOR_EACH_LOOP (loop, 0)
1539 rtx head, tail;
1540 rtx count_reg, count_init;
1541 int mii, rec_mii, stage_count, min_cycle;
1542 int64_t loop_count = 0;
1543 bool opt_sc_p;
1545 if (! (g = g_arr[loop->num]))
1546 continue;
1548 if (dump_file)
1550 rtx insn = BB_END (loop->header);
1552 fprintf (dump_file, "SMS loop num: %d", loop->num);
1553 dump_insn_location (insn);
1554 fprintf (dump_file, "\n");
1556 print_ddg (dump_file, g);
1559 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1561 latch_edge = loop_latch_edge (loop);
1562 gcc_assert (single_exit (loop));
1563 if (single_exit (loop)->count)
1564 trip_count = latch_edge->count / single_exit (loop)->count;
1566 if (dump_file)
1568 dump_insn_location (tail);
1569 fprintf (dump_file, "\nSMS single-bb-loop\n");
1570 if (profile_info && flag_branch_probabilities)
1572 fprintf (dump_file, "SMS loop-count ");
1573 fprintf (dump_file, "%"PRId64,
1574 (int64_t) bb->count);
1575 fprintf (dump_file, "\n");
1576 fprintf (dump_file, "SMS profile-sum-max ");
1577 fprintf (dump_file, "%"PRId64,
1578 (int64_t) profile_info->sum_max);
1579 fprintf (dump_file, "\n");
1581 fprintf (dump_file, "SMS doloop\n");
1582 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1583 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1584 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1588 /* In case of th loop have doloop register it gets special
1589 handling. */
1590 count_init = NULL_RTX;
1591 if ((count_reg = doloop_register_get (head, tail)))
1593 basic_block pre_header;
1595 pre_header = loop_preheader_edge (loop)->src;
1596 count_init = const_iteration_count (count_reg, pre_header,
1597 &loop_count);
1599 gcc_assert (count_reg);
1601 if (dump_file && count_init)
1603 fprintf (dump_file, "SMS const-doloop ");
1604 fprintf (dump_file, "%"PRId64,
1605 loop_count);
1606 fprintf (dump_file, "\n");
1609 node_order = XNEWVEC (int, g->num_nodes);
1611 mii = 1; /* Need to pass some estimate of mii. */
1612 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1613 mii = MAX (res_MII (g), rec_mii);
1614 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1616 if (dump_file)
1617 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1618 rec_mii, mii, maxii);
1620 for (;;)
1622 set_node_sched_params (g);
1624 stage_count = 0;
1625 opt_sc_p = false;
1626 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1628 if (ps)
1630 /* Try to achieve optimized SC by normalizing the partial
1631 schedule (having the cycles start from cycle zero).
1632 The branch location must be placed in row ii-1 in the
1633 final scheduling. If failed, shift all instructions to
1634 position the branch in row ii-1. */
1635 opt_sc_p = optimize_sc (ps, g);
1636 if (opt_sc_p)
1637 stage_count = calculate_stage_count (ps, 0);
1638 else
1640 /* Bring the branch to cycle ii-1. */
1641 int amount = (SCHED_TIME (g->closing_branch->cuid)
1642 - (ps->ii - 1));
1644 if (dump_file)
1645 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1647 stage_count = calculate_stage_count (ps, amount);
1650 gcc_assert (stage_count >= 1);
1653 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1654 1 means that there is no interleaving between iterations thus
1655 we let the scheduling passes do the job in this case. */
1656 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1657 || (count_init && (loop_count <= stage_count))
1658 || (flag_branch_probabilities && (trip_count <= stage_count)))
1660 if (dump_file)
1662 fprintf (dump_file, "SMS failed... \n");
1663 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1664 " loop-count=", stage_count);
1665 fprintf (dump_file, "%"PRId64, loop_count);
1666 fprintf (dump_file, ", trip-count=");
1667 fprintf (dump_file, "%"PRId64, trip_count);
1668 fprintf (dump_file, ")\n");
1670 break;
1673 if (!opt_sc_p)
1675 /* Rotate the partial schedule to have the branch in row ii-1. */
1676 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1678 reset_sched_times (ps, amount);
1679 rotate_partial_schedule (ps, amount);
1682 set_columns_for_ps (ps);
1684 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1685 if (!schedule_reg_moves (ps))
1687 mii = ps->ii + 1;
1688 free_partial_schedule (ps);
1689 continue;
1692 /* Moves that handle incoming values might have been added
1693 to a new first stage. Bump the stage count if so.
1695 ??? Perhaps we could consider rotating the schedule here
1696 instead? */
1697 if (PS_MIN_CYCLE (ps) < min_cycle)
1699 reset_sched_times (ps, 0);
1700 stage_count++;
1703 /* The stage count should now be correct without rotation. */
1704 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1705 PS_STAGE_COUNT (ps) = stage_count;
1707 canon_loop (loop);
1709 if (dump_file)
1711 dump_insn_location (tail);
1712 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1713 ps->ii, stage_count);
1714 print_partial_schedule (ps, dump_file);
1717 /* case the BCT count is not known , Do loop-versioning */
1718 if (count_reg && ! count_init)
1720 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1721 gen_int_mode (stage_count,
1722 GET_MODE (count_reg)));
1723 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1724 * REG_BR_PROB_BASE) / 100;
1726 loop_version (loop, comp_rtx, &condition_bb,
1727 prob, prob, REG_BR_PROB_BASE - prob,
1728 true);
1731 /* Set new iteration count of loop kernel. */
1732 if (count_reg && count_init)
1733 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1734 - stage_count + 1);
1736 /* Now apply the scheduled kernel to the RTL of the loop. */
1737 permute_partial_schedule (ps, g->closing_branch->first_note);
1739 /* Mark this loop as software pipelined so the later
1740 scheduling passes don't touch it. */
1741 if (! flag_resched_modulo_sched)
1742 mark_loop_unsched (loop);
1744 /* The life-info is not valid any more. */
1745 df_set_bb_dirty (g->bb);
1747 apply_reg_moves (ps);
1748 if (dump_file)
1749 print_node_sched_params (dump_file, g->num_nodes, ps);
1750 /* Generate prolog and epilog. */
1751 generate_prolog_epilog (ps, loop, count_reg, count_init);
1752 break;
1755 free_partial_schedule (ps);
1756 node_sched_param_vec.release ();
1757 free (node_order);
1758 free_ddg (g);
1761 free (g_arr);
1763 /* Release scheduler data, needed until now because of DFA. */
1764 haifa_sched_finish ();
1765 loop_optimizer_finalize ();
1768 /* The SMS scheduling algorithm itself
1769 -----------------------------------
1770 Input: 'O' an ordered list of insns of a loop.
1771 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1773 'Q' is the empty Set
1774 'PS' is the partial schedule; it holds the currently scheduled nodes with
1775 their cycle/slot.
1776 'PSP' previously scheduled predecessors.
1777 'PSS' previously scheduled successors.
1778 't(u)' the cycle where u is scheduled.
1779 'l(u)' is the latency of u.
1780 'd(v,u)' is the dependence distance from v to u.
1781 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1782 the node ordering phase.
1783 'check_hardware_resources_conflicts(u, PS, c)'
1784 run a trace around cycle/slot through DFA model
1785 to check resource conflicts involving instruction u
1786 at cycle c given the partial schedule PS.
1787 'add_to_partial_schedule_at_time(u, PS, c)'
1788 Add the node/instruction u to the partial schedule
1789 PS at time c.
1790 'calculate_register_pressure(PS)'
1791 Given a schedule of instructions, calculate the register
1792 pressure it implies. One implementation could be the
1793 maximum number of overlapping live ranges.
1794 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1795 registers available in the hardware.
1797 1. II = MII.
1798 2. PS = empty list
1799 3. for each node u in O in pre-computed order
1800 4. if (PSP(u) != Q && PSS(u) == Q) then
1801 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1802 6. start = Early_start; end = Early_start + II - 1; step = 1
1803 11. else if (PSP(u) == Q && PSS(u) != Q) then
1804 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1805 13. start = Late_start; end = Late_start - II + 1; step = -1
1806 14. else if (PSP(u) != Q && PSS(u) != Q) then
1807 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1808 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1809 17. start = Early_start;
1810 18. end = min(Early_start + II - 1 , Late_start);
1811 19. step = 1
1812 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1813 21. start = ASAP(u); end = start + II - 1; step = 1
1814 22. endif
1816 23. success = false
1817 24. for (c = start ; c != end ; c += step)
1818 25. if check_hardware_resources_conflicts(u, PS, c) then
1819 26. add_to_partial_schedule_at_time(u, PS, c)
1820 27. success = true
1821 28. break
1822 29. endif
1823 30. endfor
1824 31. if (success == false) then
1825 32. II = II + 1
1826 33. if (II > maxII) then
1827 34. finish - failed to schedule
1828 35. endif
1829 36. goto 2.
1830 37. endif
1831 38. endfor
1832 39. if (calculate_register_pressure(PS) > maxRP) then
1833 40. goto 32.
1834 41. endif
1835 42. compute epilogue & prologue
1836 43. finish - succeeded to schedule
1838 ??? The algorithm restricts the scheduling window to II cycles.
1839 In rare cases, it may be better to allow windows of II+1 cycles.
1840 The window would then start and end on the same row, but with
1841 different "must precede" and "must follow" requirements. */
1843 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1844 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1845 set to 0 to save compile time. */
1846 #define DFA_HISTORY SMS_DFA_HISTORY
1848 /* A threshold for the number of repeated unsuccessful attempts to insert
1849 an empty row, before we flush the partial schedule and start over. */
1850 #define MAX_SPLIT_NUM 10
1851 /* Given the partial schedule PS, this function calculates and returns the
1852 cycles in which we can schedule the node with the given index I.
1853 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1854 noticed that there are several cases in which we fail to SMS the loop
1855 because the sched window of a node is empty due to tight data-deps. In
1856 such cases we want to unschedule some of the predecessors/successors
1857 until we get non-empty scheduling window. It returns -1 if the
1858 scheduling window is empty and zero otherwise. */
1860 static int
1861 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1862 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1863 int *end_p)
1865 int start, step, end;
1866 int early_start, late_start;
1867 ddg_edge_ptr e;
1868 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1869 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1870 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1871 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1872 int psp_not_empty;
1873 int pss_not_empty;
1874 int count_preds;
1875 int count_succs;
1877 /* 1. compute sched window for u (start, end, step). */
1878 bitmap_clear (psp);
1879 bitmap_clear (pss);
1880 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1881 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1883 /* We first compute a forward range (start <= end), then decide whether
1884 to reverse it. */
1885 early_start = INT_MIN;
1886 late_start = INT_MAX;
1887 start = INT_MIN;
1888 end = INT_MAX;
1889 step = 1;
1891 count_preds = 0;
1892 count_succs = 0;
1894 if (dump_file && (psp_not_empty || pss_not_empty))
1896 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1897 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1898 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1899 "start", "early start", "late start", "end", "time");
1900 fprintf (dump_file, "=========== =========== =========== ==========="
1901 " =====\n");
1903 /* Calculate early_start and limit end. Both bounds are inclusive. */
1904 if (psp_not_empty)
1905 for (e = u_node->in; e != 0; e = e->next_in)
1907 int v = e->src->cuid;
1909 if (bitmap_bit_p (sched_nodes, v))
1911 int p_st = SCHED_TIME (v);
1912 int earliest = p_st + e->latency - (e->distance * ii);
1913 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1915 if (dump_file)
1917 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1918 "", earliest, "", latest, p_st);
1919 print_ddg_edge (dump_file, e);
1920 fprintf (dump_file, "\n");
1923 early_start = MAX (early_start, earliest);
1924 end = MIN (end, latest);
1926 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1927 count_preds++;
1931 /* Calculate late_start and limit start. Both bounds are inclusive. */
1932 if (pss_not_empty)
1933 for (e = u_node->out; e != 0; e = e->next_out)
1935 int v = e->dest->cuid;
1937 if (bitmap_bit_p (sched_nodes, v))
1939 int s_st = SCHED_TIME (v);
1940 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1941 int latest = s_st - e->latency + (e->distance * ii);
1943 if (dump_file)
1945 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1946 earliest, "", latest, "", s_st);
1947 print_ddg_edge (dump_file, e);
1948 fprintf (dump_file, "\n");
1951 start = MAX (start, earliest);
1952 late_start = MIN (late_start, latest);
1954 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1955 count_succs++;
1959 if (dump_file && (psp_not_empty || pss_not_empty))
1961 fprintf (dump_file, "----------- ----------- ----------- -----------"
1962 " -----\n");
1963 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1964 start, early_start, late_start, end, "",
1965 "(max, max, min, min)");
1968 /* Get a target scheduling window no bigger than ii. */
1969 if (early_start == INT_MIN && late_start == INT_MAX)
1970 early_start = NODE_ASAP (u_node);
1971 else if (early_start == INT_MIN)
1972 early_start = late_start - (ii - 1);
1973 late_start = MIN (late_start, early_start + (ii - 1));
1975 /* Apply memory dependence limits. */
1976 start = MAX (start, early_start);
1977 end = MIN (end, late_start);
1979 if (dump_file && (psp_not_empty || pss_not_empty))
1980 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1981 "", start, end, "", "");
1983 /* If there are at least as many successors as predecessors, schedule the
1984 node close to its successors. */
1985 if (pss_not_empty && count_succs >= count_preds)
1987 int tmp = end;
1988 end = start;
1989 start = tmp;
1990 step = -1;
1993 /* Now that we've finalized the window, make END an exclusive rather
1994 than an inclusive bound. */
1995 end += step;
1997 *start_p = start;
1998 *step_p = step;
1999 *end_p = end;
2000 sbitmap_free (psp);
2001 sbitmap_free (pss);
2003 if ((start >= end && step == 1) || (start <= end && step == -1))
2005 if (dump_file)
2006 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2007 start, end, step);
2008 return -1;
2011 return 0;
2014 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2015 node currently been scheduled. At the end of the calculation
2016 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2017 U_NODE which are (1) already scheduled in the first/last row of
2018 U_NODE's scheduling window, (2) whose dependence inequality with U
2019 becomes an equality when U is scheduled in this same row, and (3)
2020 whose dependence latency is zero.
2022 The first and last rows are calculated using the following parameters:
2023 START/END rows - The cycles that begins/ends the traversal on the window;
2024 searching for an empty cycle to schedule U_NODE.
2025 STEP - The direction in which we traverse the window.
2026 II - The initiation interval. */
2028 static void
2029 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2030 int step, int ii, sbitmap sched_nodes,
2031 sbitmap must_precede, sbitmap must_follow)
2033 ddg_edge_ptr e;
2034 int first_cycle_in_window, last_cycle_in_window;
2036 gcc_assert (must_precede && must_follow);
2038 /* Consider the following scheduling window:
2039 {first_cycle_in_window, first_cycle_in_window+1, ...,
2040 last_cycle_in_window}. If step is 1 then the following will be
2041 the order we traverse the window: {start=first_cycle_in_window,
2042 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2043 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2044 end=first_cycle_in_window-1} if step is -1. */
2045 first_cycle_in_window = (step == 1) ? start : end - step;
2046 last_cycle_in_window = (step == 1) ? end - step : start;
2048 bitmap_clear (must_precede);
2049 bitmap_clear (must_follow);
2051 if (dump_file)
2052 fprintf (dump_file, "\nmust_precede: ");
2054 /* Instead of checking if:
2055 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2056 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2057 first_cycle_in_window)
2058 && e->latency == 0
2059 we use the fact that latency is non-negative:
2060 SCHED_TIME (e->src) - (e->distance * ii) <=
2061 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2062 first_cycle_in_window
2063 and check only if
2064 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2065 for (e = u_node->in; e != 0; e = e->next_in)
2066 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2067 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2068 first_cycle_in_window))
2070 if (dump_file)
2071 fprintf (dump_file, "%d ", e->src->cuid);
2073 bitmap_set_bit (must_precede, e->src->cuid);
2076 if (dump_file)
2077 fprintf (dump_file, "\nmust_follow: ");
2079 /* Instead of checking if:
2080 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2081 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2082 last_cycle_in_window)
2083 && e->latency == 0
2084 we use the fact that latency is non-negative:
2085 SCHED_TIME (e->dest) + (e->distance * ii) >=
2086 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2087 last_cycle_in_window
2088 and check only if
2089 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2090 for (e = u_node->out; e != 0; e = e->next_out)
2091 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2092 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2093 last_cycle_in_window))
2095 if (dump_file)
2096 fprintf (dump_file, "%d ", e->dest->cuid);
2098 bitmap_set_bit (must_follow, e->dest->cuid);
2101 if (dump_file)
2102 fprintf (dump_file, "\n");
2105 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2106 parameters to decide if that's possible:
2107 PS - The partial schedule.
2108 U - The serial number of U_NODE.
2109 NUM_SPLITS - The number of row splits made so far.
2110 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2111 the first row of the scheduling window)
2112 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2113 last row of the scheduling window) */
2115 static bool
2116 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2117 int u, int cycle, sbitmap sched_nodes,
2118 int *num_splits, sbitmap must_precede,
2119 sbitmap must_follow)
2121 ps_insn_ptr psi;
2122 bool success = 0;
2124 verify_partial_schedule (ps, sched_nodes);
2125 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2126 if (psi)
2128 SCHED_TIME (u) = cycle;
2129 bitmap_set_bit (sched_nodes, u);
2130 success = 1;
2131 *num_splits = 0;
2132 if (dump_file)
2133 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2137 return success;
2140 /* This function implements the scheduling algorithm for SMS according to the
2141 above algorithm. */
2142 static partial_schedule_ptr
2143 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2145 int ii = mii;
2146 int i, c, success, num_splits = 0;
2147 int flush_and_start_over = true;
2148 int num_nodes = g->num_nodes;
2149 int start, end, step; /* Place together into one struct? */
2150 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2151 sbitmap must_precede = sbitmap_alloc (num_nodes);
2152 sbitmap must_follow = sbitmap_alloc (num_nodes);
2153 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2155 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2157 bitmap_ones (tobe_scheduled);
2158 bitmap_clear (sched_nodes);
2160 while (flush_and_start_over && (ii < maxii))
2163 if (dump_file)
2164 fprintf (dump_file, "Starting with ii=%d\n", ii);
2165 flush_and_start_over = false;
2166 bitmap_clear (sched_nodes);
2168 for (i = 0; i < num_nodes; i++)
2170 int u = nodes_order[i];
2171 ddg_node_ptr u_node = &ps->g->nodes[u];
2172 rtx insn = u_node->insn;
2174 if (!NONDEBUG_INSN_P (insn))
2176 bitmap_clear_bit (tobe_scheduled, u);
2177 continue;
2180 if (bitmap_bit_p (sched_nodes, u))
2181 continue;
2183 /* Try to get non-empty scheduling window. */
2184 success = 0;
2185 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2186 &step, &end) == 0)
2188 if (dump_file)
2189 fprintf (dump_file, "\nTrying to schedule node %d "
2190 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2191 (g->nodes[u].insn)), start, end, step);
2193 gcc_assert ((step > 0 && start < end)
2194 || (step < 0 && start > end));
2196 calculate_must_precede_follow (u_node, start, end, step, ii,
2197 sched_nodes, must_precede,
2198 must_follow);
2200 for (c = start; c != end; c += step)
2202 sbitmap tmp_precede, tmp_follow;
2204 set_must_precede_follow (&tmp_follow, must_follow,
2205 &tmp_precede, must_precede,
2206 c, start, end, step);
2207 success =
2208 try_scheduling_node_in_cycle (ps, u, c,
2209 sched_nodes,
2210 &num_splits, tmp_precede,
2211 tmp_follow);
2212 if (success)
2213 break;
2216 verify_partial_schedule (ps, sched_nodes);
2218 if (!success)
2220 int split_row;
2222 if (ii++ == maxii)
2223 break;
2225 if (num_splits >= MAX_SPLIT_NUM)
2227 num_splits = 0;
2228 flush_and_start_over = true;
2229 verify_partial_schedule (ps, sched_nodes);
2230 reset_partial_schedule (ps, ii);
2231 verify_partial_schedule (ps, sched_nodes);
2232 break;
2235 num_splits++;
2236 /* The scheduling window is exclusive of 'end'
2237 whereas compute_split_window() expects an inclusive,
2238 ordered range. */
2239 if (step == 1)
2240 split_row = compute_split_row (sched_nodes, start, end - 1,
2241 ps->ii, u_node);
2242 else
2243 split_row = compute_split_row (sched_nodes, end + 1, start,
2244 ps->ii, u_node);
2246 ps_insert_empty_row (ps, split_row, sched_nodes);
2247 i--; /* Go back and retry node i. */
2249 if (dump_file)
2250 fprintf (dump_file, "num_splits=%d\n", num_splits);
2253 /* ??? If (success), check register pressure estimates. */
2254 } /* Continue with next node. */
2255 } /* While flush_and_start_over. */
2256 if (ii >= maxii)
2258 free_partial_schedule (ps);
2259 ps = NULL;
2261 else
2262 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2264 sbitmap_free (sched_nodes);
2265 sbitmap_free (must_precede);
2266 sbitmap_free (must_follow);
2267 sbitmap_free (tobe_scheduled);
2269 return ps;
2272 /* This function inserts a new empty row into PS at the position
2273 according to SPLITROW, keeping all already scheduled instructions
2274 intact and updating their SCHED_TIME and cycle accordingly. */
2275 static void
2276 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2277 sbitmap sched_nodes)
2279 ps_insn_ptr crr_insn;
2280 ps_insn_ptr *rows_new;
2281 int ii = ps->ii;
2282 int new_ii = ii + 1;
2283 int row;
2284 int *rows_length_new;
2286 verify_partial_schedule (ps, sched_nodes);
2288 /* We normalize sched_time and rotate ps to have only non-negative sched
2289 times, for simplicity of updating cycles after inserting new row. */
2290 split_row -= ps->min_cycle;
2291 split_row = SMODULO (split_row, ii);
2292 if (dump_file)
2293 fprintf (dump_file, "split_row=%d\n", split_row);
2295 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2296 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2298 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2299 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2300 for (row = 0; row < split_row; row++)
2302 rows_new[row] = ps->rows[row];
2303 rows_length_new[row] = ps->rows_length[row];
2304 ps->rows[row] = NULL;
2305 for (crr_insn = rows_new[row];
2306 crr_insn; crr_insn = crr_insn->next_in_row)
2308 int u = crr_insn->id;
2309 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2311 SCHED_TIME (u) = new_time;
2312 crr_insn->cycle = new_time;
2313 SCHED_ROW (u) = new_time % new_ii;
2314 SCHED_STAGE (u) = new_time / new_ii;
2319 rows_new[split_row] = NULL;
2321 for (row = split_row; row < ii; row++)
2323 rows_new[row + 1] = ps->rows[row];
2324 rows_length_new[row + 1] = ps->rows_length[row];
2325 ps->rows[row] = NULL;
2326 for (crr_insn = rows_new[row + 1];
2327 crr_insn; crr_insn = crr_insn->next_in_row)
2329 int u = crr_insn->id;
2330 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2332 SCHED_TIME (u) = new_time;
2333 crr_insn->cycle = new_time;
2334 SCHED_ROW (u) = new_time % new_ii;
2335 SCHED_STAGE (u) = new_time / new_ii;
2339 /* Updating ps. */
2340 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2341 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2342 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2343 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2344 free (ps->rows);
2345 ps->rows = rows_new;
2346 free (ps->rows_length);
2347 ps->rows_length = rows_length_new;
2348 ps->ii = new_ii;
2349 gcc_assert (ps->min_cycle >= 0);
2351 verify_partial_schedule (ps, sched_nodes);
2353 if (dump_file)
2354 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2355 ps->max_cycle);
2358 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2359 UP which are the boundaries of it's scheduling window; compute using
2360 SCHED_NODES and II a row in the partial schedule that can be split
2361 which will separate a critical predecessor from a critical successor
2362 thereby expanding the window, and return it. */
2363 static int
2364 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2365 ddg_node_ptr u_node)
2367 ddg_edge_ptr e;
2368 int lower = INT_MIN, upper = INT_MAX;
2369 int crit_pred = -1;
2370 int crit_succ = -1;
2371 int crit_cycle;
2373 for (e = u_node->in; e != 0; e = e->next_in)
2375 int v = e->src->cuid;
2377 if (bitmap_bit_p (sched_nodes, v)
2378 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2379 if (SCHED_TIME (v) > lower)
2381 crit_pred = v;
2382 lower = SCHED_TIME (v);
2386 if (crit_pred >= 0)
2388 crit_cycle = SCHED_TIME (crit_pred) + 1;
2389 return SMODULO (crit_cycle, ii);
2392 for (e = u_node->out; e != 0; e = e->next_out)
2394 int v = e->dest->cuid;
2396 if (bitmap_bit_p (sched_nodes, v)
2397 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2398 if (SCHED_TIME (v) < upper)
2400 crit_succ = v;
2401 upper = SCHED_TIME (v);
2405 if (crit_succ >= 0)
2407 crit_cycle = SCHED_TIME (crit_succ);
2408 return SMODULO (crit_cycle, ii);
2411 if (dump_file)
2412 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2414 return SMODULO ((low + up + 1) / 2, ii);
2417 static void
2418 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2420 int row;
2421 ps_insn_ptr crr_insn;
2423 for (row = 0; row < ps->ii; row++)
2425 int length = 0;
2427 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2429 int u = crr_insn->id;
2431 length++;
2432 gcc_assert (bitmap_bit_p (sched_nodes, u));
2433 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2434 popcount (sched_nodes) == number of insns in ps. */
2435 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2436 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2439 gcc_assert (ps->rows_length[row] == length);
2444 /* This page implements the algorithm for ordering the nodes of a DDG
2445 for modulo scheduling, activated through the
2446 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2448 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2449 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2450 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2451 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2452 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2453 #define DEPTH(x) (ASAP ((x)))
2455 typedef struct node_order_params * nopa;
2457 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2458 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2459 static nopa calculate_order_params (ddg_ptr, int, int *);
2460 static int find_max_asap (ddg_ptr, sbitmap);
2461 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2462 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2464 enum sms_direction {BOTTOMUP, TOPDOWN};
2466 struct node_order_params
2468 int asap;
2469 int alap;
2470 int height;
2473 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2474 static void
2475 check_nodes_order (int *node_order, int num_nodes)
2477 int i;
2478 sbitmap tmp = sbitmap_alloc (num_nodes);
2480 bitmap_clear (tmp);
2482 if (dump_file)
2483 fprintf (dump_file, "SMS final nodes order: \n");
2485 for (i = 0; i < num_nodes; i++)
2487 int u = node_order[i];
2489 if (dump_file)
2490 fprintf (dump_file, "%d ", u);
2491 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2493 bitmap_set_bit (tmp, u);
2496 if (dump_file)
2497 fprintf (dump_file, "\n");
2499 sbitmap_free (tmp);
2502 /* Order the nodes of G for scheduling and pass the result in
2503 NODE_ORDER. Also set aux.count of each node to ASAP.
2504 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2505 static int
2506 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2508 int i;
2509 int rec_mii = 0;
2510 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2512 nopa nops = calculate_order_params (g, mii, pmax_asap);
2514 if (dump_file)
2515 print_sccs (dump_file, sccs, g);
2517 order_nodes_of_sccs (sccs, node_order);
2519 if (sccs->num_sccs > 0)
2520 /* First SCC has the largest recurrence_length. */
2521 rec_mii = sccs->sccs[0]->recurrence_length;
2523 /* Save ASAP before destroying node_order_params. */
2524 for (i = 0; i < g->num_nodes; i++)
2526 ddg_node_ptr v = &g->nodes[i];
2527 v->aux.count = ASAP (v);
2530 free (nops);
2531 free_ddg_all_sccs (sccs);
2532 check_nodes_order (node_order, g->num_nodes);
2534 return rec_mii;
2537 static void
2538 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2540 int i, pos = 0;
2541 ddg_ptr g = all_sccs->ddg;
2542 int num_nodes = g->num_nodes;
2543 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2544 sbitmap on_path = sbitmap_alloc (num_nodes);
2545 sbitmap tmp = sbitmap_alloc (num_nodes);
2546 sbitmap ones = sbitmap_alloc (num_nodes);
2548 bitmap_clear (prev_sccs);
2549 bitmap_ones (ones);
2551 /* Perform the node ordering starting from the SCC with the highest recMII.
2552 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2553 for (i = 0; i < all_sccs->num_sccs; i++)
2555 ddg_scc_ptr scc = all_sccs->sccs[i];
2557 /* Add nodes on paths from previous SCCs to the current SCC. */
2558 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2559 bitmap_ior (tmp, scc->nodes, on_path);
2561 /* Add nodes on paths from the current SCC to previous SCCs. */
2562 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2563 bitmap_ior (tmp, tmp, on_path);
2565 /* Remove nodes of previous SCCs from current extended SCC. */
2566 bitmap_and_compl (tmp, tmp, prev_sccs);
2568 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2569 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2572 /* Handle the remaining nodes that do not belong to any scc. Each call
2573 to order_nodes_in_scc handles a single connected component. */
2574 while (pos < g->num_nodes)
2576 bitmap_and_compl (tmp, ones, prev_sccs);
2577 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2579 sbitmap_free (prev_sccs);
2580 sbitmap_free (on_path);
2581 sbitmap_free (tmp);
2582 sbitmap_free (ones);
2585 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2586 static struct node_order_params *
2587 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2589 int u;
2590 int max_asap;
2591 int num_nodes = g->num_nodes;
2592 ddg_edge_ptr e;
2593 /* Allocate a place to hold ordering params for each node in the DDG. */
2594 nopa node_order_params_arr;
2596 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2597 node_order_params_arr = (nopa) xcalloc (num_nodes,
2598 sizeof (struct node_order_params));
2600 /* Set the aux pointer of each node to point to its order_params structure. */
2601 for (u = 0; u < num_nodes; u++)
2602 g->nodes[u].aux.info = &node_order_params_arr[u];
2604 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2605 calculate ASAP, ALAP, mobility, distance, and height for each node
2606 in the dependence (direct acyclic) graph. */
2608 /* We assume that the nodes in the array are in topological order. */
2610 max_asap = 0;
2611 for (u = 0; u < num_nodes; u++)
2613 ddg_node_ptr u_node = &g->nodes[u];
2615 ASAP (u_node) = 0;
2616 for (e = u_node->in; e; e = e->next_in)
2617 if (e->distance == 0)
2618 ASAP (u_node) = MAX (ASAP (u_node),
2619 ASAP (e->src) + e->latency);
2620 max_asap = MAX (max_asap, ASAP (u_node));
2623 for (u = num_nodes - 1; u > -1; u--)
2625 ddg_node_ptr u_node = &g->nodes[u];
2627 ALAP (u_node) = max_asap;
2628 HEIGHT (u_node) = 0;
2629 for (e = u_node->out; e; e = e->next_out)
2630 if (e->distance == 0)
2632 ALAP (u_node) = MIN (ALAP (u_node),
2633 ALAP (e->dest) - e->latency);
2634 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2635 HEIGHT (e->dest) + e->latency);
2638 if (dump_file)
2640 fprintf (dump_file, "\nOrder params\n");
2641 for (u = 0; u < num_nodes; u++)
2643 ddg_node_ptr u_node = &g->nodes[u];
2645 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2646 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2650 *pmax_asap = max_asap;
2651 return node_order_params_arr;
2654 static int
2655 find_max_asap (ddg_ptr g, sbitmap nodes)
2657 unsigned int u = 0;
2658 int max_asap = -1;
2659 int result = -1;
2660 sbitmap_iterator sbi;
2662 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2664 ddg_node_ptr u_node = &g->nodes[u];
2666 if (max_asap < ASAP (u_node))
2668 max_asap = ASAP (u_node);
2669 result = u;
2672 return result;
2675 static int
2676 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2678 unsigned int u = 0;
2679 int max_hv = -1;
2680 int min_mob = INT_MAX;
2681 int result = -1;
2682 sbitmap_iterator sbi;
2684 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2686 ddg_node_ptr u_node = &g->nodes[u];
2688 if (max_hv < HEIGHT (u_node))
2690 max_hv = HEIGHT (u_node);
2691 min_mob = MOB (u_node);
2692 result = u;
2694 else if ((max_hv == HEIGHT (u_node))
2695 && (min_mob > MOB (u_node)))
2697 min_mob = MOB (u_node);
2698 result = u;
2701 return result;
2704 static int
2705 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2707 unsigned int u = 0;
2708 int max_dv = -1;
2709 int min_mob = INT_MAX;
2710 int result = -1;
2711 sbitmap_iterator sbi;
2713 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2715 ddg_node_ptr u_node = &g->nodes[u];
2717 if (max_dv < DEPTH (u_node))
2719 max_dv = DEPTH (u_node);
2720 min_mob = MOB (u_node);
2721 result = u;
2723 else if ((max_dv == DEPTH (u_node))
2724 && (min_mob > MOB (u_node)))
2726 min_mob = MOB (u_node);
2727 result = u;
2730 return result;
2733 /* Places the nodes of SCC into the NODE_ORDER array starting
2734 at position POS, according to the SMS ordering algorithm.
2735 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2736 the NODE_ORDER array, starting from position zero. */
2737 static int
2738 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2739 int * node_order, int pos)
2741 enum sms_direction dir;
2742 int num_nodes = g->num_nodes;
2743 sbitmap workset = sbitmap_alloc (num_nodes);
2744 sbitmap tmp = sbitmap_alloc (num_nodes);
2745 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2746 sbitmap predecessors = sbitmap_alloc (num_nodes);
2747 sbitmap successors = sbitmap_alloc (num_nodes);
2749 bitmap_clear (predecessors);
2750 find_predecessors (predecessors, g, nodes_ordered);
2752 bitmap_clear (successors);
2753 find_successors (successors, g, nodes_ordered);
2755 bitmap_clear (tmp);
2756 if (bitmap_and (tmp, predecessors, scc))
2758 bitmap_copy (workset, tmp);
2759 dir = BOTTOMUP;
2761 else if (bitmap_and (tmp, successors, scc))
2763 bitmap_copy (workset, tmp);
2764 dir = TOPDOWN;
2766 else
2768 int u;
2770 bitmap_clear (workset);
2771 if ((u = find_max_asap (g, scc)) >= 0)
2772 bitmap_set_bit (workset, u);
2773 dir = BOTTOMUP;
2776 bitmap_clear (zero_bitmap);
2777 while (!bitmap_equal_p (workset, zero_bitmap))
2779 int v;
2780 ddg_node_ptr v_node;
2781 sbitmap v_node_preds;
2782 sbitmap v_node_succs;
2784 if (dir == TOPDOWN)
2786 while (!bitmap_equal_p (workset, zero_bitmap))
2788 v = find_max_hv_min_mob (g, workset);
2789 v_node = &g->nodes[v];
2790 node_order[pos++] = v;
2791 v_node_succs = NODE_SUCCESSORS (v_node);
2792 bitmap_and (tmp, v_node_succs, scc);
2794 /* Don't consider the already ordered successors again. */
2795 bitmap_and_compl (tmp, tmp, nodes_ordered);
2796 bitmap_ior (workset, workset, tmp);
2797 bitmap_clear_bit (workset, v);
2798 bitmap_set_bit (nodes_ordered, v);
2800 dir = BOTTOMUP;
2801 bitmap_clear (predecessors);
2802 find_predecessors (predecessors, g, nodes_ordered);
2803 bitmap_and (workset, predecessors, scc);
2805 else
2807 while (!bitmap_equal_p (workset, zero_bitmap))
2809 v = find_max_dv_min_mob (g, workset);
2810 v_node = &g->nodes[v];
2811 node_order[pos++] = v;
2812 v_node_preds = NODE_PREDECESSORS (v_node);
2813 bitmap_and (tmp, v_node_preds, scc);
2815 /* Don't consider the already ordered predecessors again. */
2816 bitmap_and_compl (tmp, tmp, nodes_ordered);
2817 bitmap_ior (workset, workset, tmp);
2818 bitmap_clear_bit (workset, v);
2819 bitmap_set_bit (nodes_ordered, v);
2821 dir = TOPDOWN;
2822 bitmap_clear (successors);
2823 find_successors (successors, g, nodes_ordered);
2824 bitmap_and (workset, successors, scc);
2827 sbitmap_free (tmp);
2828 sbitmap_free (workset);
2829 sbitmap_free (zero_bitmap);
2830 sbitmap_free (predecessors);
2831 sbitmap_free (successors);
2832 return pos;
2836 /* This page contains functions for manipulating partial-schedules during
2837 modulo scheduling. */
2839 /* Create a partial schedule and allocate a memory to hold II rows. */
2841 static partial_schedule_ptr
2842 create_partial_schedule (int ii, ddg_ptr g, int history)
2844 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2845 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2846 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2847 ps->reg_moves.create (0);
2848 ps->ii = ii;
2849 ps->history = history;
2850 ps->min_cycle = INT_MAX;
2851 ps->max_cycle = INT_MIN;
2852 ps->g = g;
2854 return ps;
2857 /* Free the PS_INSNs in rows array of the given partial schedule.
2858 ??? Consider caching the PS_INSN's. */
2859 static void
2860 free_ps_insns (partial_schedule_ptr ps)
2862 int i;
2864 for (i = 0; i < ps->ii; i++)
2866 while (ps->rows[i])
2868 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2870 free (ps->rows[i]);
2871 ps->rows[i] = ps_insn;
2873 ps->rows[i] = NULL;
2877 /* Free all the memory allocated to the partial schedule. */
2879 static void
2880 free_partial_schedule (partial_schedule_ptr ps)
2882 ps_reg_move_info *move;
2883 unsigned int i;
2885 if (!ps)
2886 return;
2888 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2889 sbitmap_free (move->uses);
2890 ps->reg_moves.release ();
2892 free_ps_insns (ps);
2893 free (ps->rows);
2894 free (ps->rows_length);
2895 free (ps);
2898 /* Clear the rows array with its PS_INSNs, and create a new one with
2899 NEW_II rows. */
2901 static void
2902 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2904 if (!ps)
2905 return;
2906 free_ps_insns (ps);
2907 if (new_ii == ps->ii)
2908 return;
2909 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2910 * sizeof (ps_insn_ptr));
2911 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2912 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2913 memset (ps->rows_length, 0, new_ii * sizeof (int));
2914 ps->ii = new_ii;
2915 ps->min_cycle = INT_MAX;
2916 ps->max_cycle = INT_MIN;
2919 /* Prints the partial schedule as an ii rows array, for each rows
2920 print the ids of the insns in it. */
2921 void
2922 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2924 int i;
2926 for (i = 0; i < ps->ii; i++)
2928 ps_insn_ptr ps_i = ps->rows[i];
2930 fprintf (dump, "\n[ROW %d ]: ", i);
2931 while (ps_i)
2933 rtx insn = ps_rtl_insn (ps, ps_i->id);
2935 if (JUMP_P (insn))
2936 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2937 else
2938 fprintf (dump, "%d, ", INSN_UID (insn));
2940 ps_i = ps_i->next_in_row;
2945 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2946 static ps_insn_ptr
2947 create_ps_insn (int id, int cycle)
2949 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2951 ps_i->id = id;
2952 ps_i->next_in_row = NULL;
2953 ps_i->prev_in_row = NULL;
2954 ps_i->cycle = cycle;
2956 return ps_i;
2960 /* Removes the given PS_INSN from the partial schedule. */
2961 static void
2962 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2964 int row;
2966 gcc_assert (ps && ps_i);
2968 row = SMODULO (ps_i->cycle, ps->ii);
2969 if (! ps_i->prev_in_row)
2971 gcc_assert (ps_i == ps->rows[row]);
2972 ps->rows[row] = ps_i->next_in_row;
2973 if (ps->rows[row])
2974 ps->rows[row]->prev_in_row = NULL;
2976 else
2978 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2979 if (ps_i->next_in_row)
2980 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2983 ps->rows_length[row] -= 1;
2984 free (ps_i);
2985 return;
2988 /* Unlike what literature describes for modulo scheduling (which focuses
2989 on VLIW machines) the order of the instructions inside a cycle is
2990 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2991 where the current instruction should go relative to the already
2992 scheduled instructions in the given cycle. Go over these
2993 instructions and find the first possible column to put it in. */
2994 static bool
2995 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2996 sbitmap must_precede, sbitmap must_follow)
2998 ps_insn_ptr next_ps_i;
2999 ps_insn_ptr first_must_follow = NULL;
3000 ps_insn_ptr last_must_precede = NULL;
3001 ps_insn_ptr last_in_row = NULL;
3002 int row;
3004 if (! ps_i)
3005 return false;
3007 row = SMODULO (ps_i->cycle, ps->ii);
3009 /* Find the first must follow and the last must precede
3010 and insert the node immediately after the must precede
3011 but make sure that it there is no must follow after it. */
3012 for (next_ps_i = ps->rows[row];
3013 next_ps_i;
3014 next_ps_i = next_ps_i->next_in_row)
3016 if (must_follow
3017 && bitmap_bit_p (must_follow, next_ps_i->id)
3018 && ! first_must_follow)
3019 first_must_follow = next_ps_i;
3020 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3022 /* If we have already met a node that must follow, then
3023 there is no possible column. */
3024 if (first_must_follow)
3025 return false;
3026 else
3027 last_must_precede = next_ps_i;
3029 /* The closing branch must be the last in the row. */
3030 if (must_precede
3031 && bitmap_bit_p (must_precede, next_ps_i->id)
3032 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3033 return false;
3035 last_in_row = next_ps_i;
3038 /* The closing branch is scheduled as well. Make sure there is no
3039 dependent instruction after it as the branch should be the last
3040 instruction in the row. */
3041 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3043 if (first_must_follow)
3044 return false;
3045 if (last_in_row)
3047 /* Make the branch the last in the row. New instructions
3048 will be inserted at the beginning of the row or after the
3049 last must_precede instruction thus the branch is guaranteed
3050 to remain the last instruction in the row. */
3051 last_in_row->next_in_row = ps_i;
3052 ps_i->prev_in_row = last_in_row;
3053 ps_i->next_in_row = NULL;
3055 else
3056 ps->rows[row] = ps_i;
3057 return true;
3060 /* Now insert the node after INSERT_AFTER_PSI. */
3062 if (! last_must_precede)
3064 ps_i->next_in_row = ps->rows[row];
3065 ps_i->prev_in_row = NULL;
3066 if (ps_i->next_in_row)
3067 ps_i->next_in_row->prev_in_row = ps_i;
3068 ps->rows[row] = ps_i;
3070 else
3072 ps_i->next_in_row = last_must_precede->next_in_row;
3073 last_must_precede->next_in_row = ps_i;
3074 ps_i->prev_in_row = last_must_precede;
3075 if (ps_i->next_in_row)
3076 ps_i->next_in_row->prev_in_row = ps_i;
3079 return true;
3082 /* Advances the PS_INSN one column in its current row; returns false
3083 in failure and true in success. Bit N is set in MUST_FOLLOW if
3084 the node with cuid N must be come after the node pointed to by
3085 PS_I when scheduled in the same cycle. */
3086 static int
3087 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3088 sbitmap must_follow)
3090 ps_insn_ptr prev, next;
3091 int row;
3093 if (!ps || !ps_i)
3094 return false;
3096 row = SMODULO (ps_i->cycle, ps->ii);
3098 if (! ps_i->next_in_row)
3099 return false;
3101 /* Check if next_in_row is dependent on ps_i, both having same sched
3102 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3103 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3104 return false;
3106 /* Advance PS_I over its next_in_row in the doubly linked list. */
3107 prev = ps_i->prev_in_row;
3108 next = ps_i->next_in_row;
3110 if (ps_i == ps->rows[row])
3111 ps->rows[row] = next;
3113 ps_i->next_in_row = next->next_in_row;
3115 if (next->next_in_row)
3116 next->next_in_row->prev_in_row = ps_i;
3118 next->next_in_row = ps_i;
3119 ps_i->prev_in_row = next;
3121 next->prev_in_row = prev;
3122 if (prev)
3123 prev->next_in_row = next;
3125 return true;
3128 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3129 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3130 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3131 before/after (respectively) the node pointed to by PS_I when scheduled
3132 in the same cycle. */
3133 static ps_insn_ptr
3134 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3135 sbitmap must_precede, sbitmap must_follow)
3137 ps_insn_ptr ps_i;
3138 int row = SMODULO (cycle, ps->ii);
3140 if (ps->rows_length[row] >= issue_rate)
3141 return NULL;
3143 ps_i = create_ps_insn (id, cycle);
3145 /* Finds and inserts PS_I according to MUST_FOLLOW and
3146 MUST_PRECEDE. */
3147 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3149 free (ps_i);
3150 return NULL;
3153 ps->rows_length[row] += 1;
3154 return ps_i;
3157 /* Advance time one cycle. Assumes DFA is being used. */
3158 static void
3159 advance_one_cycle (void)
3161 if (targetm.sched.dfa_pre_cycle_insn)
3162 state_transition (curr_state,
3163 targetm.sched.dfa_pre_cycle_insn ());
3165 state_transition (curr_state, NULL);
3167 if (targetm.sched.dfa_post_cycle_insn)
3168 state_transition (curr_state,
3169 targetm.sched.dfa_post_cycle_insn ());
3174 /* Checks if PS has resource conflicts according to DFA, starting from
3175 FROM cycle to TO cycle; returns true if there are conflicts and false
3176 if there are no conflicts. Assumes DFA is being used. */
3177 static int
3178 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3180 int cycle;
3182 state_reset (curr_state);
3184 for (cycle = from; cycle <= to; cycle++)
3186 ps_insn_ptr crr_insn;
3187 /* Holds the remaining issue slots in the current row. */
3188 int can_issue_more = issue_rate;
3190 /* Walk through the DFA for the current row. */
3191 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3192 crr_insn;
3193 crr_insn = crr_insn->next_in_row)
3195 rtx insn = ps_rtl_insn (ps, crr_insn->id);
3197 if (!NONDEBUG_INSN_P (insn))
3198 continue;
3200 /* Check if there is room for the current insn. */
3201 if (!can_issue_more || state_dead_lock_p (curr_state))
3202 return true;
3204 /* Update the DFA state and return with failure if the DFA found
3205 resource conflicts. */
3206 if (state_transition (curr_state, insn) >= 0)
3207 return true;
3209 if (targetm.sched.variable_issue)
3210 can_issue_more =
3211 targetm.sched.variable_issue (sched_dump, sched_verbose,
3212 insn, can_issue_more);
3213 /* A naked CLOBBER or USE generates no instruction, so don't
3214 let them consume issue slots. */
3215 else if (GET_CODE (PATTERN (insn)) != USE
3216 && GET_CODE (PATTERN (insn)) != CLOBBER)
3217 can_issue_more--;
3220 /* Advance the DFA to the next cycle. */
3221 advance_one_cycle ();
3223 return false;
3226 /* Checks if the given node causes resource conflicts when added to PS at
3227 cycle C. If not the node is added to PS and returned; otherwise zero
3228 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3229 cuid N must be come before/after (respectively) the node pointed to by
3230 PS_I when scheduled in the same cycle. */
3231 ps_insn_ptr
3232 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3233 int c, sbitmap must_precede,
3234 sbitmap must_follow)
3236 int has_conflicts = 0;
3237 ps_insn_ptr ps_i;
3239 /* First add the node to the PS, if this succeeds check for
3240 conflicts, trying different issue slots in the same row. */
3241 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3242 return NULL; /* Failed to insert the node at the given cycle. */
3244 has_conflicts = ps_has_conflicts (ps, c, c)
3245 || (ps->history > 0
3246 && ps_has_conflicts (ps,
3247 c - ps->history,
3248 c + ps->history));
3250 /* Try different issue slots to find one that the given node can be
3251 scheduled in without conflicts. */
3252 while (has_conflicts)
3254 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3255 break;
3256 has_conflicts = ps_has_conflicts (ps, c, c)
3257 || (ps->history > 0
3258 && ps_has_conflicts (ps,
3259 c - ps->history,
3260 c + ps->history));
3263 if (has_conflicts)
3265 remove_node_from_ps (ps, ps_i);
3266 return NULL;
3269 ps->min_cycle = MIN (ps->min_cycle, c);
3270 ps->max_cycle = MAX (ps->max_cycle, c);
3271 return ps_i;
3274 /* Calculate the stage count of the partial schedule PS. The calculation
3275 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3277 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3279 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3280 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3281 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3283 /* The calculation of stage count is done adding the number of stages
3284 before cycle zero and after cycle zero. */
3285 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3287 return stage_count;
3290 /* Rotate the rows of PS such that insns scheduled at time
3291 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3292 void
3293 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3295 int i, row, backward_rotates;
3296 int last_row = ps->ii - 1;
3298 if (start_cycle == 0)
3299 return;
3301 backward_rotates = SMODULO (start_cycle, ps->ii);
3303 /* Revisit later and optimize this into a single loop. */
3304 for (i = 0; i < backward_rotates; i++)
3306 ps_insn_ptr first_row = ps->rows[0];
3307 int first_row_length = ps->rows_length[0];
3309 for (row = 0; row < last_row; row++)
3311 ps->rows[row] = ps->rows[row + 1];
3312 ps->rows_length[row] = ps->rows_length[row + 1];
3315 ps->rows[last_row] = first_row;
3316 ps->rows_length[last_row] = first_row_length;
3319 ps->max_cycle -= start_cycle;
3320 ps->min_cycle -= start_cycle;
3323 #endif /* INSN_SCHEDULING */
3325 /* Run instruction scheduler. */
3326 /* Perform SMS module scheduling. */
3328 namespace {
3330 const pass_data pass_data_sms =
3332 RTL_PASS, /* type */
3333 "sms", /* name */
3334 OPTGROUP_NONE, /* optinfo_flags */
3335 TV_SMS, /* tv_id */
3336 0, /* properties_required */
3337 0, /* properties_provided */
3338 0, /* properties_destroyed */
3339 0, /* todo_flags_start */
3340 TODO_df_finish, /* todo_flags_finish */
3343 class pass_sms : public rtl_opt_pass
3345 public:
3346 pass_sms (gcc::context *ctxt)
3347 : rtl_opt_pass (pass_data_sms, ctxt)
3350 /* opt_pass methods: */
3351 virtual bool gate (function *)
3353 return (optimize > 0 && flag_modulo_sched);
3356 virtual unsigned int execute (function *);
3358 }; // class pass_sms
3360 unsigned int
3361 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3363 #ifdef INSN_SCHEDULING
3364 basic_block bb;
3366 /* Collect loop information to be used in SMS. */
3367 cfg_layout_initialize (0);
3368 sms_schedule ();
3370 /* Update the life information, because we add pseudos. */
3371 max_regno = max_reg_num ();
3373 /* Finalize layout changes. */
3374 FOR_EACH_BB_FN (bb, fun)
3375 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3376 bb->aux = bb->next_bb;
3377 free_dominance_info (CDI_DOMINATORS);
3378 cfg_layout_finalize ();
3379 #endif /* INSN_SCHEDULING */
3380 return 0;
3383 } // anon namespace
3385 rtl_opt_pass *
3386 make_pass_sms (gcc::context *ctxt)
3388 return new pass_sms (ctxt);