Rebase.
[official-gcc.git] / gcc / config / arm / arm1136jfs.md
bloba3c61a83c815d7377d50d48aa439a828f1977be7
1 ;; ARM 1136J[F]-S Pipeline Description
2 ;; Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3.  If not see
19 ;; <http://www.gnu.org/licenses/>.  */
21 ;; These descriptions are based on the information contained in the
22 ;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM
23 ;; Limited.
26 ;; This automaton provides a pipeline description for the ARM
27 ;; 1136J-S and 1136JF-S cores.
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
31 ;; actually executed.
33 (define_automaton "arm1136jfs")
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36 ;; Pipelines
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39 ;; There are three distinct pipelines (page 1-26 and following):
41 ;; - A 4-stage decode pipeline, shared by all three.  It has fetch (1),
42 ;;   fetch (2), decode, and issue stages.  Since this is always involved,
43 ;;   we do not model it in the scheduler.
45 ;; - A 4-stage ALU pipeline.  It has shifter, ALU (main integer operations),
46 ;;   and saturation stages.  The fourth stage is writeback; see below.
48 ;; - A 4-stage multiply-accumulate pipeline.  It has three stages, called
49 ;;   MAC1 through MAC3, and a fourth writeback stage.
51 ;;   The 4th-stage writeback is shared between the ALU and MAC pipelines,
52 ;;   which operate in lockstep.  Results from either pipeline will be
53 ;;   moved into the writeback stage.  Because the two pipelines operate
54 ;;   in lockstep, we schedule them as a single "execute" pipeline.
56 ;; - A 4-stage LSU pipeline.  It has address generation, data cache (1),
57 ;;   data cache (2), and writeback stages.  (Note that this pipeline,
58 ;;   including the writeback stage, is independent from the ALU & LSU pipes.)  
60 (define_cpu_unit "e_1,e_2,e_3,e_wb" "arm1136jfs")     ; ALU and MAC
61 ; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3
62 (define_cpu_unit "l_a,l_dc1,l_dc2,l_wb" "arm1136jfs") ; Load/Store
64 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
65 ;; ALU Instructions
66 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
68 ;; ALU instructions require eight cycles to execute, and use the ALU
69 ;; pipeline in each of the eight stages.  The results are available
70 ;; after the alu stage has finished.
72 ;; If the destination register is the PC, the pipelines are stalled
73 ;; for several cycles.  That case is not modelled here.
75 ;; ALU operations with no shifted operand
76 (define_insn_reservation "11_alu_op" 2
77  (and (eq_attr "tune" "arm1136js,arm1136jfs")
78       (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
79                        alu_sreg,alus_sreg,logic_reg,logics_reg,\
80                        adc_imm,adcs_imm,adc_reg,adcs_reg,\
81                        adr,bfm,rev,\
82                        shift_imm,shift_reg,\
83                        mov_imm,mov_reg,mvn_imm,mvn_reg,\
84                        multiple,no_insn"))
85  "e_1,e_2,e_3,e_wb")
87 ;; ALU operations with a shift-by-constant operand
88 (define_insn_reservation "11_alu_shift_op" 2
89  (and (eq_attr "tune" "arm1136js,arm1136jfs")
90       (eq_attr "type" "alu_shift_imm,alus_shift_imm,\
91                        logic_shift_imm,logics_shift_imm,\
92                        extend,mov_shift,mvn_shift"))
93  "e_1,e_2,e_3,e_wb")
95 ;; ALU operations with a shift-by-register operand
96 ;; These really stall in the decoder, in order to read
97 ;; the shift value in a second cycle. Pretend we take two cycles in
98 ;; the shift stage.
99 (define_insn_reservation "11_alu_shift_reg_op" 3
100  (and (eq_attr "tune" "arm1136js,arm1136jfs")
101       (eq_attr "type" "alu_shift_reg,alus_shift_reg,\
102                        logic_shift_reg,logics_shift_reg,\
103                        mov_shift_reg,mvn_shift_reg"))
104  "e_1*2,e_2,e_3,e_wb")
106 ;; alu_ops can start sooner, if there is no shifter dependency
107 (define_bypass 1 "11_alu_op,11_alu_shift_op"
108                "11_alu_op")
109 (define_bypass 1 "11_alu_op,11_alu_shift_op"
110                "11_alu_shift_op"
111                "arm_no_early_alu_shift_value_dep")
112 (define_bypass 1 "11_alu_op,11_alu_shift_op"
113                "11_alu_shift_reg_op"
114                "arm_no_early_alu_shift_dep")
115 (define_bypass 2 "11_alu_shift_reg_op"
116                "11_alu_op")
117 (define_bypass 2 "11_alu_shift_reg_op"
118                "11_alu_shift_op"
119                "arm_no_early_alu_shift_value_dep")
120 (define_bypass 2 "11_alu_shift_reg_op"
121                "11_alu_shift_reg_op"
122                "arm_no_early_alu_shift_dep")
124 (define_bypass 1 "11_alu_op,11_alu_shift_op"
125                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
126                "arm_no_early_mul_dep")
127 (define_bypass 2 "11_alu_shift_reg_op"
128                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
129                "arm_no_early_mul_dep")
131 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
132 ;; Multiplication Instructions
133 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
135 ;; Multiplication instructions loop in the first two execute stages until
136 ;; the instruction has been passed through the multiplier array enough
137 ;; times.
139 ;; Multiply and multiply-accumulate results are available after four stages.
140 (define_insn_reservation "11_mult1" 4
141  (and (eq_attr "tune" "arm1136js,arm1136jfs")
142       (eq_attr "type" "mul,mla"))
143  "e_1*2,e_2,e_3,e_wb")
145 ;; The *S variants set the condition flags, which requires three more cycles.
146 (define_insn_reservation "11_mult2" 4
147  (and (eq_attr "tune" "arm1136js,arm1136jfs")
148       (eq_attr "type" "muls,mlas"))
149  "e_1*2,e_2,e_3,e_wb")
151 (define_bypass 3 "11_mult1,11_mult2"
152                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
153                "arm_no_early_mul_dep")
154 (define_bypass 3 "11_mult1,11_mult2"
155                "11_alu_op")
156 (define_bypass 3 "11_mult1,11_mult2"
157                "11_alu_shift_op"
158                "arm_no_early_alu_shift_value_dep")
159 (define_bypass 3 "11_mult1,11_mult2"
160                "11_alu_shift_reg_op"
161                "arm_no_early_alu_shift_dep")
162 (define_bypass 3 "11_mult1,11_mult2"
163                "11_store1"
164                "arm_no_early_store_addr_dep")
166 ;; Signed and unsigned multiply long results are available across two cycles;
167 ;; the less significant word is available one cycle before the more significant
168 ;; word.  Here we conservatively wait until both are available, which is
169 ;; after three iterations and the memory cycle.  The same is also true of
170 ;; the two multiply-accumulate instructions.
171 (define_insn_reservation "11_mult3" 5
172  (and (eq_attr "tune" "arm1136js,arm1136jfs")
173       (eq_attr "type" "smull,umull,smlal,umlal"))
174  "e_1*3,e_2,e_3,e_wb*2")
176 ;; The *S variants set the condition flags, which requires three more cycles.
177 (define_insn_reservation "11_mult4" 5
178  (and (eq_attr "tune" "arm1136js,arm1136jfs")
179       (eq_attr "type" "smulls,umulls,smlals,umlals"))
180  "e_1*3,e_2,e_3,e_wb*2")
182 (define_bypass 4 "11_mult3,11_mult4"
183                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
184                "arm_no_early_mul_dep")
185 (define_bypass 4 "11_mult3,11_mult4"
186                "11_alu_op")
187 (define_bypass 4 "11_mult3,11_mult4"
188                "11_alu_shift_op"
189                "arm_no_early_alu_shift_value_dep")
190 (define_bypass 4 "11_mult3,11_mult4"
191                "11_alu_shift_reg_op"
192                "arm_no_early_alu_shift_dep")
193 (define_bypass 4 "11_mult3,11_mult4"
194                "11_store1"
195                "arm_no_early_store_addr_dep")
197 ;; Various 16x16->32 multiplies and multiply-accumulates, using combinations
198 ;; of high and low halves of the argument registers.  They take a single
199 ;; pass through the pipeline and make the result available after three
200 ;; cycles.
201 (define_insn_reservation "11_mult5" 3
202  (and (eq_attr "tune" "arm1136js,arm1136jfs")
203       (eq_attr "type" "smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,\
204                        smusd,smusdx,smlsd,smlsdx"))
205  "e_1,e_2,e_3,e_wb")
207 (define_bypass 2 "11_mult5"
208                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
209                "arm_no_early_mul_dep")
210 (define_bypass 2 "11_mult5"
211                "11_alu_op")
212 (define_bypass 2 "11_mult5"
213                "11_alu_shift_op"
214                "arm_no_early_alu_shift_value_dep")
215 (define_bypass 2 "11_mult5"
216                "11_alu_shift_reg_op"
217                "arm_no_early_alu_shift_dep")
218 (define_bypass 2 "11_mult5"
219                "11_store1"
220                "arm_no_early_store_addr_dep")
222 ;; The same idea, then the 32-bit result is added to a 64-bit quantity.
223 (define_insn_reservation "11_mult6" 4
224  (and (eq_attr "tune" "arm1136js,arm1136jfs")
225       (eq_attr "type" "smlalxy"))
226  "e_1*2,e_2,e_3,e_wb*2")
228 ;; Signed 32x32 multiply, then the most significant 32 bits are extracted
229 ;; and are available after the memory stage.
230 (define_insn_reservation "11_mult7" 4
231  (and (eq_attr "tune" "arm1136js,arm1136jfs")
232       (eq_attr "type" "smmul,smmulr"))
233  "e_1*2,e_2,e_3,e_wb")
235 (define_bypass 3 "11_mult6,11_mult7"
236                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
237                "arm_no_early_mul_dep")
238 (define_bypass 3 "11_mult6,11_mult7"
239                "11_alu_op")
240 (define_bypass 3 "11_mult6,11_mult7"
241                "11_alu_shift_op"
242                "arm_no_early_alu_shift_value_dep")
243 (define_bypass 3 "11_mult6,11_mult7"
244                "11_alu_shift_reg_op"
245                "arm_no_early_alu_shift_dep")
246 (define_bypass 3 "11_mult6,11_mult7"
247                "11_store1"
248                "arm_no_early_store_addr_dep")
250 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
251 ;; Branch Instructions
252 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
254 ;; These vary greatly depending on their arguments and the results of
255 ;; stat prediction.  Cycle count ranges from zero (unconditional branch,
256 ;; folded dynamic prediction) to seven (incorrect predictions, etc).  We
257 ;; assume an optimal case for now, because the cost of a cache miss
258 ;; overwhelms the cost of everything else anyhow.
260 (define_insn_reservation "11_branches" 0
261  (and (eq_attr "tune" "arm1136js,arm1136jfs")
262       (eq_attr "type" "branch"))
263  "nothing")
265 ;; Call latencies are not predictable.  A semi-arbitrary very large
266 ;; number is used as "positive infinity" so that everything should be
267 ;; finished by the time of return.
268 (define_insn_reservation "11_call" 32
269  (and (eq_attr "tune" "arm1136js,arm1136jfs")
270       (eq_attr "type" "call"))
271  "nothing")
273 ;; Branches are predicted. A correctly predicted branch will be no
274 ;; cost, but we're conservative here, and use the timings a
275 ;; late-register would give us.
276 (define_bypass 1 "11_alu_op,11_alu_shift_op"
277                "11_branches")
278 (define_bypass 2 "11_alu_shift_reg_op"
279                "11_branches")
280 (define_bypass 2 "11_load1,11_load2"
281                "11_branches")
282 (define_bypass 3 "11_load34"
283                "11_branches")
285 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
286 ;; Load/Store Instructions
287 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
289 ;; The models for load/store instructions do not accurately describe
290 ;; the difference between operations with a base register writeback.
291 ;; These models assume that all memory references hit in dcache.  Also,
292 ;; if the PC is one of the registers involved, there are additional stalls
293 ;; not modelled here.  Addressing modes are also not modelled.
295 (define_insn_reservation "11_load1" 3
296  (and (eq_attr "tune" "arm1136js,arm1136jfs")
297       (eq_attr "type" "load1"))
298  "l_a+e_1,l_dc1,l_dc2,l_wb")
300 ;; Load byte results are not available until the writeback stage, where
301 ;; the correct byte is extracted.
303 (define_insn_reservation "11_loadb" 4
304  (and (eq_attr "tune" "arm1136js,arm1136jfs")
305       (eq_attr "type" "load_byte"))
306  "l_a+e_1,l_dc1,l_dc2,l_wb")
308 (define_insn_reservation "11_store1" 0
309  (and (eq_attr "tune" "arm1136js,arm1136jfs")
310       (eq_attr "type" "store1"))
311  "l_a+e_1,l_dc1,l_dc2,l_wb")
313 ;; Load/store double words into adjacent registers.  The timing and
314 ;; latencies are different depending on whether the address is 64-bit
315 ;; aligned.  This model assumes that it is.
316 (define_insn_reservation "11_load2" 3
317  (and (eq_attr "tune" "arm1136js,arm1136jfs")
318       (eq_attr "type" "load2"))
319  "l_a+e_1,l_dc1,l_dc2,l_wb")
321 (define_insn_reservation "11_store2" 0
322  (and (eq_attr "tune" "arm1136js,arm1136jfs")
323       (eq_attr "type" "store2"))
324  "l_a+e_1,l_dc1,l_dc2,l_wb")
326 ;; Load/store multiple registers.  Two registers are stored per cycle.
327 ;; Actual timing depends on how many registers are affected, so we
328 ;; optimistically schedule a low latency.
329 (define_insn_reservation "11_load34" 4
330  (and (eq_attr "tune" "arm1136js,arm1136jfs")
331       (eq_attr "type" "load3,load4"))
332  "l_a+e_1,l_dc1*2,l_dc2,l_wb")
334 (define_insn_reservation "11_store34" 0
335  (and (eq_attr "tune" "arm1136js,arm1136jfs")
336       (eq_attr "type" "store3,store4"))
337  "l_a+e_1,l_dc1*2,l_dc2,l_wb")
339 ;; A store can start immediately after an alu op, if that alu op does
340 ;; not provide part of the address to access.
341 (define_bypass 1 "11_alu_op,11_alu_shift_op"
342                "11_store1"
343                "arm_no_early_store_addr_dep")
344 (define_bypass 2 "11_alu_shift_reg_op"
345                "11_store1"
346                "arm_no_early_store_addr_dep")
348 ;; An alu op can start sooner after a load, if that alu op does not
349 ;; have an early register dependency on the load
350 (define_bypass 2 "11_load1"
351                "11_alu_op")
352 (define_bypass 2 "11_load1"
353                "11_alu_shift_op"
354                "arm_no_early_alu_shift_value_dep")
355 (define_bypass 2 "11_load1"
356                "11_alu_shift_reg_op"
357                "arm_no_early_alu_shift_dep")
359 (define_bypass 3 "11_loadb"
360                "11_alu_op")
361 (define_bypass 3 "11_loadb"
362                "11_alu_shift_op"
363                "arm_no_early_alu_shift_value_dep")
364 (define_bypass 3 "11_loadb"
365                "11_alu_shift_reg_op"
366                "arm_no_early_alu_shift_dep")
368 ;; A mul op can start sooner after a load, if that mul op does not
369 ;; have an early multiply dependency
370 (define_bypass 2 "11_load1"
371                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
372                "arm_no_early_mul_dep")
373 (define_bypass 3 "11_load34"
374                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
375                "arm_no_early_mul_dep")
376 (define_bypass 3 "11_loadb"
377                "11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7"
378                "arm_no_early_mul_dep")
380 ;; A store can start sooner after a load, if that load does not
381 ;; produce part of the address to access
382 (define_bypass 2 "11_load1"
383                "11_store1"
384                "arm_no_early_store_addr_dep")
385 (define_bypass 3 "11_loadb"
386                "11_store1"
387                "arm_no_early_store_addr_dep")