Rebase.
[official-gcc.git] / gcc / ada / sem_eval.adb
blobe49c51c86718bce4dd3b634206166fb5a7d2c14a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Namet; use Namet;
37 with Nmake; use Nmake;
38 with Nlists; use Nlists;
39 with Opt; use Opt;
40 with Par_SCO; use Par_SCO;
41 with Rtsfind; use Rtsfind;
42 with Sem; use Sem;
43 with Sem_Aux; use Sem_Aux;
44 with Sem_Cat; use Sem_Cat;
45 with Sem_Ch6; use Sem_Ch6;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Res; use Sem_Res;
48 with Sem_Util; use Sem_Util;
49 with Sem_Type; use Sem_Type;
50 with Sem_Warn; use Sem_Warn;
51 with Sinfo; use Sinfo;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Tbuild; use Tbuild;
57 package body Sem_Eval is
59 -----------------------------------------
60 -- Handling of Compile Time Evaluation --
61 -----------------------------------------
63 -- The compile time evaluation of expressions is distributed over several
64 -- Eval_xxx procedures. These procedures are called immediately after
65 -- a subexpression is resolved and is therefore accomplished in a bottom
66 -- up fashion. The flags are synthesized using the following approach.
68 -- Is_Static_Expression is determined by following the detailed rules
69 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
70 -- flag of the operands in many cases.
72 -- Raises_Constraint_Error is set if any of the operands have the flag
73 -- set or if an attempt to compute the value of the current expression
74 -- results in detection of a runtime constraint error.
76 -- As described in the spec, the requirement is that Is_Static_Expression
77 -- be accurately set, and in addition for nodes for which this flag is set,
78 -- Raises_Constraint_Error must also be set. Furthermore a node which has
79 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
80 -- requirement is that the expression value must be precomputed, and the
81 -- node is either a literal, or the name of a constant entity whose value
82 -- is a static expression.
84 -- The general approach is as follows. First compute Is_Static_Expression.
85 -- If the node is not static, then the flag is left off in the node and
86 -- we are all done. Otherwise for a static node, we test if any of the
87 -- operands will raise constraint error, and if so, propagate the flag
88 -- Raises_Constraint_Error to the result node and we are done (since the
89 -- error was already posted at a lower level).
91 -- For the case of a static node whose operands do not raise constraint
92 -- error, we attempt to evaluate the node. If this evaluation succeeds,
93 -- then the node is replaced by the result of this computation. If the
94 -- evaluation raises constraint error, then we rewrite the node with
95 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
96 -- to post appropriate error messages.
98 ----------------
99 -- Local Data --
100 ----------------
102 type Bits is array (Nat range <>) of Boolean;
103 -- Used to convert unsigned (modular) values for folding logical ops
105 -- The following declarations are used to maintain a cache of nodes that
106 -- have compile time known values. The cache is maintained only for
107 -- discrete types (the most common case), and is populated by calls to
108 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
109 -- since it is possible for the status to change (in particular it is
110 -- possible for a node to get replaced by a constraint error node).
112 CV_Bits : constant := 5;
113 -- Number of low order bits of Node_Id value used to reference entries
114 -- in the cache table.
116 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
117 -- Size of cache for compile time values
119 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
121 type CV_Entry is record
122 N : Node_Id;
123 V : Uint;
124 end record;
126 type Match_Result is (Match, No_Match, Non_Static);
127 -- Result returned from functions that test for a matching result. If the
128 -- operands are not OK_Static then Non_Static will be returned. Otherwise
129 -- Match/No_Match is returned depending on whether the match succeeds.
131 type CV_Cache_Array is array (CV_Range) of CV_Entry;
133 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
134 -- This is the actual cache, with entries consisting of node/value pairs,
135 -- and the impossible value Node_High_Bound used for unset entries.
137 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
138 -- Range membership may either be statically known to be in range or out
139 -- of range, or not statically known. Used for Test_In_Range below.
141 -----------------------
142 -- Local Subprograms --
143 -----------------------
145 function Choice_Matches
146 (Expr : Node_Id;
147 Choice : Node_Id) return Match_Result;
148 -- Determines whether given value Expr matches the given Choice. The Expr
149 -- can be of discrete, real, or string type and must be a compile time
150 -- known value (it is an error to make the call if these conditions are
151 -- not met). The choice can be a range, subtype name, subtype indication,
152 -- or expression. The returned result is Non_Static if Choice is not
153 -- OK_Static, otherwise either Match or No_Match is returned depending
154 -- on whether Choice matches Expr. This is used for case expression
155 -- alternatives, and also for membership tests. In each case, more
156 -- possibilities are tested than the syntax allows (e.g. membership allows
157 -- subtype indications and non-discrete types, and case allows an OTHERS
158 -- choice), but it does not matter, since we have already done a full
159 -- semantic and syntax check of the construct, so the extra possibilities
160 -- just will not arise for correct expressions.
162 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
163 -- a reference to a type, one of whose bounds raises Constraint_Error, then
164 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
166 function Choices_Match
167 (Expr : Node_Id;
168 Choices : List_Id) return Match_Result;
169 -- This function applies Choice_Matches to each element of Choices. If the
170 -- result is No_Match, then it continues and checks the next element. If
171 -- the result is Match or Non_Static, this result is immediately given
172 -- as the result without checking the rest of the list. Expr can be of
173 -- discrete, real, or string type and must be a compile time known value
174 -- (it is an error to make the call if these conditions are not met).
176 function From_Bits (B : Bits; T : Entity_Id) return Uint;
177 -- Converts a bit string of length B'Length to a Uint value to be used for
178 -- a target of type T, which is a modular type. This procedure includes the
179 -- necessary reduction by the modulus in the case of a non-binary modulus
180 -- (for a binary modulus, the bit string is the right length any way so all
181 -- is well).
183 function Is_Static_Choice (Choice : Node_Id) return Boolean;
184 -- Given a choice (from a case expression or membership test), returns
185 -- True if the choice is static. No test is made for raising of constraint
186 -- error, so this function is used only for legality tests.
188 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
189 -- Given a choice list (from a case expression or membership test), return
190 -- True if all choices are static in the sense of Is_Static_Choice.
192 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
193 -- Given a choice (from a case expression or membership test), returns
194 -- True if the choice is static and does not raise a Constraint_Error.
196 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
197 -- Given a choice list (from a case expression or membership test), return
198 -- True if all choices are static in the sense of Is_OK_Static_Choice.
200 function Is_Static_Range (N : Node_Id) return Boolean;
201 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
202 -- argument is an N_Range node (but note that the semantic analysis of
203 -- equivalent range attribute references already turned them into the
204 -- equivalent range). This differs from Is_OK_Static_Range (which is what
205 -- must be used by clients) in that it does not care whether the bounds
206 -- raise Constraint_Error or not. Used for checking whether expressions are
207 -- static in the 4.9 sense (without worrying about exceptions).
209 function Get_String_Val (N : Node_Id) return Node_Id;
210 -- Given a tree node for a folded string or character value, returns the
211 -- corresponding string literal or character literal (one of the two must
212 -- be available, or the operand would not have been marked as foldable in
213 -- the earlier analysis of the operation).
215 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
216 -- Bits represents the number of bits in an integer value to be computed
217 -- (but the value has not been computed yet). If this value in Bits is
218 -- reasonable, a result of True is returned, with the implication that the
219 -- caller should go ahead and complete the calculation. If the value in
220 -- Bits is unreasonably large, then an error is posted on node N, and
221 -- False is returned (and the caller skips the proposed calculation).
223 procedure Out_Of_Range (N : Node_Id);
224 -- This procedure is called if it is determined that node N, which appears
225 -- in a non-static context, is a compile time known value which is outside
226 -- its range, i.e. the range of Etype. This is used in contexts where
227 -- this is an illegality if N is static, and should generate a warning
228 -- otherwise.
230 function Real_Or_String_Static_Predicate_Matches
231 (Val : Node_Id;
232 Typ : Entity_Id) return Boolean;
233 -- This is the function used to evaluate real or string static predicates.
234 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
235 -- represents the value to be tested against the predicate. Typ is the
236 -- type with the predicate, from which the predicate expression can be
237 -- extracted. The result returned is True if the given value satisfies
238 -- the predicate.
240 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
241 -- N and Exp are nodes representing an expression, Exp is known to raise
242 -- CE. N is rewritten in term of Exp in the optimal way.
244 function String_Type_Len (Stype : Entity_Id) return Uint;
245 -- Given a string type, determines the length of the index type, or, if
246 -- this index type is non-static, the length of the base type of this index
247 -- type. Note that if the string type is itself static, then the index type
248 -- is static, so the second case applies only if the string type passed is
249 -- non-static.
251 function Test (Cond : Boolean) return Uint;
252 pragma Inline (Test);
253 -- This function simply returns the appropriate Boolean'Pos value
254 -- corresponding to the value of Cond as a universal integer. It is
255 -- used for producing the result of the static evaluation of the
256 -- logical operators
258 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
259 -- Check whether an arithmetic operation with universal operands which is a
260 -- rewritten function call with an explicit scope indication is ambiguous:
261 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
262 -- type declared in P and the context does not impose a type on the result
263 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
264 -- error and return Empty, else return the result type of the operator.
266 procedure Test_Expression_Is_Foldable
267 (N : Node_Id;
268 Op1 : Node_Id;
269 Stat : out Boolean;
270 Fold : out Boolean);
271 -- Tests to see if expression N whose single operand is Op1 is foldable,
272 -- i.e. the operand value is known at compile time. If the operation is
273 -- foldable, then Fold is True on return, and Stat indicates whether the
274 -- result is static (i.e. the operand was static). Note that it is quite
275 -- possible for Fold to be True, and Stat to be False, since there are
276 -- cases in which we know the value of an operand even though it is not
277 -- technically static (e.g. the static lower bound of a range whose upper
278 -- bound is non-static).
280 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
281 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
282 -- return, then all processing is complete, and the caller should return,
283 -- since there is nothing else to do.
285 -- If Stat is set True on return, then Is_Static_Expression is also set
286 -- true in node N. There are some cases where this is over-enthusiastic,
287 -- e.g. in the two operand case below, for string comparison, the result is
288 -- not static even though the two operands are static. In such cases, the
289 -- caller must reset the Is_Static_Expression flag in N.
291 -- If Fold and Stat are both set to False then this routine performs also
292 -- the following extra actions:
294 -- If either operand is Any_Type then propagate it to result to prevent
295 -- cascaded errors.
297 -- If some operand raises constraint error, then replace the node N
298 -- with the raise constraint error node. This replacement inherits the
299 -- Is_Static_Expression flag from the operands.
301 procedure Test_Expression_Is_Foldable
302 (N : Node_Id;
303 Op1 : Node_Id;
304 Op2 : Node_Id;
305 Stat : out Boolean;
306 Fold : out Boolean;
307 CRT_Safe : Boolean := False);
308 -- Same processing, except applies to an expression N with two operands
309 -- Op1 and Op2. The result is static only if both operands are static. If
310 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
311 -- for the tests that the two operands are known at compile time. See
312 -- spec of this routine for further details.
314 function Test_In_Range
315 (N : Node_Id;
316 Typ : Entity_Id;
317 Assume_Valid : Boolean;
318 Fixed_Int : Boolean;
319 Int_Real : Boolean) return Range_Membership;
320 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
321 -- or Out_Of_Range if it can be guaranteed at compile time that expression
322 -- N is known to be in or out of range of the subtype Typ. If not compile
323 -- time known, Unknown is returned. See documentation of Is_In_Range for
324 -- complete description of parameters.
326 procedure To_Bits (U : Uint; B : out Bits);
327 -- Converts a Uint value to a bit string of length B'Length
329 -----------------------------------------------
330 -- Check_Expression_Against_Static_Predicate --
331 -----------------------------------------------
333 procedure Check_Expression_Against_Static_Predicate
334 (Expr : Node_Id;
335 Typ : Entity_Id)
337 begin
338 -- Nothing to do if expression is not known at compile time, or the
339 -- type has no static predicate set (will be the case for all non-scalar
340 -- types, so no need to make a special test for that).
342 if not (Has_Static_Predicate (Typ)
343 and then Compile_Time_Known_Value (Expr))
344 then
345 return;
346 end if;
348 -- Here we have a static predicate (note that it could have arisen from
349 -- an explicitly specified Dynamic_Predicate whose expression met the
350 -- rules for being predicate-static).
352 -- Case of real static predicate
354 if Is_Real_Type (Typ) then
355 if Real_Or_String_Static_Predicate_Matches
356 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
357 Typ => Typ)
358 then
359 return;
360 end if;
362 -- Case of string static predicate
364 elsif Is_String_Type (Typ) then
365 if Real_Or_String_Static_Predicate_Matches
366 (Val => Expr_Value_S (Expr), Typ => Typ)
367 then
368 return;
369 end if;
371 -- Case of discrete static predicate
373 else
374 pragma Assert (Is_Discrete_Type (Typ));
376 -- If static predicate matches, nothing to do
378 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
379 return;
380 end if;
381 end if;
383 -- Here we know that the predicate will fail
385 -- Special case of static expression failing a predicate (other than one
386 -- that was explicitly specified with a Dynamic_Predicate aspect). This
387 -- is the case where the expression is no longer considered static.
389 if Is_Static_Expression (Expr)
390 and then not Has_Dynamic_Predicate_Aspect (Typ)
391 then
392 Error_Msg_NE
393 ("??static expression fails static predicate check on &",
394 Expr, Typ);
395 Error_Msg_N
396 ("\??expression is no longer considered static", Expr);
397 Set_Is_Static_Expression (Expr, False);
399 -- In all other cases, this is just a warning that a test will fail.
400 -- It does not matter if the expression is static or not, or if the
401 -- predicate comes from a dynamic predicate aspect or not.
403 else
404 Error_Msg_NE
405 ("??expression fails predicate check on &", Expr, Typ);
406 end if;
407 end Check_Expression_Against_Static_Predicate;
409 ------------------------------
410 -- Check_Non_Static_Context --
411 ------------------------------
413 procedure Check_Non_Static_Context (N : Node_Id) is
414 T : constant Entity_Id := Etype (N);
415 Checks_On : constant Boolean :=
416 not Index_Checks_Suppressed (T)
417 and not Range_Checks_Suppressed (T);
419 begin
420 -- Ignore cases of non-scalar types, error types, or universal real
421 -- types that have no usable bounds.
423 if T = Any_Type
424 or else not Is_Scalar_Type (T)
425 or else T = Universal_Fixed
426 or else T = Universal_Real
427 then
428 return;
429 end if;
431 -- At this stage we have a scalar type. If we have an expression that
432 -- raises CE, then we already issued a warning or error msg so there is
433 -- nothing more to be done in this routine.
435 if Raises_Constraint_Error (N) then
436 return;
437 end if;
439 -- Now we have a scalar type which is not marked as raising a constraint
440 -- error exception. The main purpose of this routine is to deal with
441 -- static expressions appearing in a non-static context. That means
442 -- that if we do not have a static expression then there is not much
443 -- to do. The one case that we deal with here is that if we have a
444 -- floating-point value that is out of range, then we post a warning
445 -- that an infinity will result.
447 if not Is_Static_Expression (N) then
448 if Is_Floating_Point_Type (T)
449 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
450 then
451 Error_Msg_N
452 ("??float value out of range, infinity will be generated", N);
453 end if;
455 return;
456 end if;
458 -- Here we have the case of outer level static expression of scalar
459 -- type, where the processing of this procedure is needed.
461 -- For real types, this is where we convert the value to a machine
462 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
463 -- need to do this if the parent is a constant declaration, since in
464 -- other cases, gigi should do the necessary conversion correctly, but
465 -- experimentation shows that this is not the case on all machines, in
466 -- particular if we do not convert all literals to machine values in
467 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
468 -- and SGI/Irix.
470 if Nkind (N) = N_Real_Literal
471 and then not Is_Machine_Number (N)
472 and then not Is_Generic_Type (Etype (N))
473 and then Etype (N) /= Universal_Real
474 then
475 -- Check that value is in bounds before converting to machine
476 -- number, so as not to lose case where value overflows in the
477 -- least significant bit or less. See B490001.
479 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
480 Out_Of_Range (N);
481 return;
482 end if;
484 -- Note: we have to copy the node, to avoid problems with conformance
485 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
487 Rewrite (N, New_Copy (N));
489 if not Is_Floating_Point_Type (T) then
490 Set_Realval
491 (N, Corresponding_Integer_Value (N) * Small_Value (T));
493 elsif not UR_Is_Zero (Realval (N)) then
495 -- Note: even though RM 4.9(38) specifies biased rounding, this
496 -- has been modified by AI-100 in order to prevent confusing
497 -- differences in rounding between static and non-static
498 -- expressions. AI-100 specifies that the effect of such rounding
499 -- is implementation dependent, and in GNAT we round to nearest
500 -- even to match the run-time behavior.
502 Set_Realval
503 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
504 end if;
506 Set_Is_Machine_Number (N);
507 end if;
509 -- Check for out of range universal integer. This is a non-static
510 -- context, so the integer value must be in range of the runtime
511 -- representation of universal integers.
513 -- We do this only within an expression, because that is the only
514 -- case in which non-static universal integer values can occur, and
515 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
516 -- called in contexts like the expression of a number declaration where
517 -- we certainly want to allow out of range values.
519 if Etype (N) = Universal_Integer
520 and then Nkind (N) = N_Integer_Literal
521 and then Nkind (Parent (N)) in N_Subexpr
522 and then
523 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
524 or else
525 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
526 then
527 Apply_Compile_Time_Constraint_Error
528 (N, "non-static universal integer value out of range<<",
529 CE_Range_Check_Failed);
531 -- Check out of range of base type
533 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
534 Out_Of_Range (N);
536 -- Give warning if outside subtype (where one or both of the bounds of
537 -- the subtype is static). This warning is omitted if the expression
538 -- appears in a range that could be null (warnings are handled elsewhere
539 -- for this case).
541 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
542 if Is_In_Range (N, T, Assume_Valid => True) then
543 null;
545 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
546 Apply_Compile_Time_Constraint_Error
547 (N, "value not in range of}<<", CE_Range_Check_Failed);
549 elsif Checks_On then
550 Enable_Range_Check (N);
552 else
553 Set_Do_Range_Check (N, False);
554 end if;
555 end if;
556 end Check_Non_Static_Context;
558 ---------------------------------
559 -- Check_String_Literal_Length --
560 ---------------------------------
562 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
563 begin
564 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
565 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
566 then
567 Apply_Compile_Time_Constraint_Error
568 (N, "string length wrong for}??",
569 CE_Length_Check_Failed,
570 Ent => Ttype,
571 Typ => Ttype);
572 end if;
573 end if;
574 end Check_String_Literal_Length;
576 --------------------
577 -- Choice_Matches --
578 --------------------
580 function Choice_Matches
581 (Expr : Node_Id;
582 Choice : Node_Id) return Match_Result
584 Etyp : constant Entity_Id := Etype (Expr);
585 Val : Uint;
586 ValR : Ureal;
587 ValS : Node_Id;
589 begin
590 pragma Assert (Compile_Time_Known_Value (Expr));
591 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
593 if not Is_OK_Static_Choice (Choice) then
594 Set_Raises_Constraint_Error (Choice);
595 return Non_Static;
597 -- Discrete type case
599 elsif Is_Discrete_Type (Etype (Expr)) then
600 Val := Expr_Value (Expr);
602 if Nkind (Choice) = N_Range then
603 if Val >= Expr_Value (Low_Bound (Choice))
604 and then
605 Val <= Expr_Value (High_Bound (Choice))
606 then
607 return Match;
608 else
609 return No_Match;
610 end if;
612 elsif Nkind (Choice) = N_Subtype_Indication
613 or else
614 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
615 then
616 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
617 and then
618 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
619 then
620 return Match;
621 else
622 return No_Match;
623 end if;
625 elsif Nkind (Choice) = N_Others_Choice then
626 return Match;
628 else
629 if Val = Expr_Value (Choice) then
630 return Match;
631 else
632 return No_Match;
633 end if;
634 end if;
636 -- Real type case
638 elsif Is_Real_Type (Etype (Expr)) then
639 ValR := Expr_Value_R (Expr);
641 if Nkind (Choice) = N_Range then
642 if ValR >= Expr_Value_R (Low_Bound (Choice))
643 and then
644 ValR <= Expr_Value_R (High_Bound (Choice))
645 then
646 return Match;
647 else
648 return No_Match;
649 end if;
651 elsif Nkind (Choice) = N_Subtype_Indication
652 or else
653 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
654 then
655 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
656 and then
657 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
658 then
659 return Match;
660 else
661 return No_Match;
662 end if;
664 else
665 if ValR = Expr_Value_R (Choice) then
666 return Match;
667 else
668 return No_Match;
669 end if;
670 end if;
672 -- String type cases
674 else
675 pragma Assert (Is_String_Type (Etype (Expr)));
676 ValS := Expr_Value_S (Expr);
678 if Nkind (Choice) = N_Subtype_Indication
679 or else
680 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
681 then
682 if not Is_Constrained (Etype (Choice)) then
683 return Match;
685 else
686 declare
687 Typlen : constant Uint :=
688 String_Type_Len (Etype (Choice));
689 Strlen : constant Uint :=
690 UI_From_Int (String_Length (Strval (ValS)));
691 begin
692 if Typlen = Strlen then
693 return Match;
694 else
695 return No_Match;
696 end if;
697 end;
698 end if;
700 else
701 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
702 then
703 return Match;
704 else
705 return No_Match;
706 end if;
707 end if;
708 end if;
709 end Choice_Matches;
711 -------------------
712 -- Choices_Match --
713 -------------------
715 function Choices_Match
716 (Expr : Node_Id;
717 Choices : List_Id) return Match_Result
719 Choice : Node_Id;
720 Result : Match_Result;
722 begin
723 Choice := First (Choices);
724 while Present (Choice) loop
725 Result := Choice_Matches (Expr, Choice);
727 if Result /= No_Match then
728 return Result;
729 end if;
731 Next (Choice);
732 end loop;
734 return No_Match;
735 end Choices_Match;
737 --------------------------
738 -- Compile_Time_Compare --
739 --------------------------
741 function Compile_Time_Compare
742 (L, R : Node_Id;
743 Assume_Valid : Boolean) return Compare_Result
745 Discard : aliased Uint;
746 begin
747 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
748 end Compile_Time_Compare;
750 function Compile_Time_Compare
751 (L, R : Node_Id;
752 Diff : access Uint;
753 Assume_Valid : Boolean;
754 Rec : Boolean := False) return Compare_Result
756 Ltyp : Entity_Id := Underlying_Type (Etype (L));
757 Rtyp : Entity_Id := Underlying_Type (Etype (R));
758 -- These get reset to the base type for the case of entities where
759 -- Is_Known_Valid is not set. This takes care of handling possible
760 -- invalid representations using the value of the base type, in
761 -- accordance with RM 13.9.1(10).
763 Discard : aliased Uint;
765 procedure Compare_Decompose
766 (N : Node_Id;
767 R : out Node_Id;
768 V : out Uint);
769 -- This procedure decomposes the node N into an expression node and a
770 -- signed offset, so that the value of N is equal to the value of R plus
771 -- the value V (which may be negative). If no such decomposition is
772 -- possible, then on return R is a copy of N, and V is set to zero.
774 function Compare_Fixup (N : Node_Id) return Node_Id;
775 -- This function deals with replacing 'Last and 'First references with
776 -- their corresponding type bounds, which we then can compare. The
777 -- argument is the original node, the result is the identity, unless we
778 -- have a 'Last/'First reference in which case the value returned is the
779 -- appropriate type bound.
781 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
782 -- Even if the context does not assume that values are valid, some
783 -- simple cases can be recognized.
785 function Is_Same_Value (L, R : Node_Id) return Boolean;
786 -- Returns True iff L and R represent expressions that definitely have
787 -- identical (but not necessarily compile time known) values Indeed the
788 -- caller is expected to have already dealt with the cases of compile
789 -- time known values, so these are not tested here.
791 -----------------------
792 -- Compare_Decompose --
793 -----------------------
795 procedure Compare_Decompose
796 (N : Node_Id;
797 R : out Node_Id;
798 V : out Uint)
800 begin
801 if Nkind (N) = N_Op_Add
802 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
803 then
804 R := Left_Opnd (N);
805 V := Intval (Right_Opnd (N));
806 return;
808 elsif Nkind (N) = N_Op_Subtract
809 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
810 then
811 R := Left_Opnd (N);
812 V := UI_Negate (Intval (Right_Opnd (N)));
813 return;
815 elsif Nkind (N) = N_Attribute_Reference then
816 if Attribute_Name (N) = Name_Succ then
817 R := First (Expressions (N));
818 V := Uint_1;
819 return;
821 elsif Attribute_Name (N) = Name_Pred then
822 R := First (Expressions (N));
823 V := Uint_Minus_1;
824 return;
825 end if;
826 end if;
828 R := N;
829 V := Uint_0;
830 end Compare_Decompose;
832 -------------------
833 -- Compare_Fixup --
834 -------------------
836 function Compare_Fixup (N : Node_Id) return Node_Id is
837 Indx : Node_Id;
838 Xtyp : Entity_Id;
839 Subs : Nat;
841 begin
842 -- Fixup only required for First/Last attribute reference
844 if Nkind (N) = N_Attribute_Reference
845 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
846 then
847 Xtyp := Etype (Prefix (N));
849 -- If we have no type, then just abandon the attempt to do
850 -- a fixup, this is probably the result of some other error.
852 if No (Xtyp) then
853 return N;
854 end if;
856 -- Dereference an access type
858 if Is_Access_Type (Xtyp) then
859 Xtyp := Designated_Type (Xtyp);
860 end if;
862 -- If we don't have an array type at this stage, something is
863 -- peculiar, e.g. another error, and we abandon the attempt at
864 -- a fixup.
866 if not Is_Array_Type (Xtyp) then
867 return N;
868 end if;
870 -- Ignore unconstrained array, since bounds are not meaningful
872 if not Is_Constrained (Xtyp) then
873 return N;
874 end if;
876 if Ekind (Xtyp) = E_String_Literal_Subtype then
877 if Attribute_Name (N) = Name_First then
878 return String_Literal_Low_Bound (Xtyp);
879 else
880 return
881 Make_Integer_Literal (Sloc (N),
882 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
883 String_Literal_Length (Xtyp));
884 end if;
885 end if;
887 -- Find correct index type
889 Indx := First_Index (Xtyp);
891 if Present (Expressions (N)) then
892 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
894 for J in 2 .. Subs loop
895 Indx := Next_Index (Indx);
896 end loop;
897 end if;
899 Xtyp := Etype (Indx);
901 if Attribute_Name (N) = Name_First then
902 return Type_Low_Bound (Xtyp);
903 else
904 return Type_High_Bound (Xtyp);
905 end if;
906 end if;
908 return N;
909 end Compare_Fixup;
911 ----------------------------
912 -- Is_Known_Valid_Operand --
913 ----------------------------
915 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
916 begin
917 return (Is_Entity_Name (Opnd)
918 and then
919 (Is_Known_Valid (Entity (Opnd))
920 or else Ekind (Entity (Opnd)) = E_In_Parameter
921 or else
922 (Ekind (Entity (Opnd)) in Object_Kind
923 and then Present (Current_Value (Entity (Opnd))))))
924 or else Is_OK_Static_Expression (Opnd);
925 end Is_Known_Valid_Operand;
927 -------------------
928 -- Is_Same_Value --
929 -------------------
931 function Is_Same_Value (L, R : Node_Id) return Boolean is
932 Lf : constant Node_Id := Compare_Fixup (L);
933 Rf : constant Node_Id := Compare_Fixup (R);
935 function Is_Same_Subscript (L, R : List_Id) return Boolean;
936 -- L, R are the Expressions values from two attribute nodes for First
937 -- or Last attributes. Either may be set to No_List if no expressions
938 -- are present (indicating subscript 1). The result is True if both
939 -- expressions represent the same subscript (note one case is where
940 -- one subscript is missing and the other is explicitly set to 1).
942 -----------------------
943 -- Is_Same_Subscript --
944 -----------------------
946 function Is_Same_Subscript (L, R : List_Id) return Boolean is
947 begin
948 if L = No_List then
949 if R = No_List then
950 return True;
951 else
952 return Expr_Value (First (R)) = Uint_1;
953 end if;
955 else
956 if R = No_List then
957 return Expr_Value (First (L)) = Uint_1;
958 else
959 return Expr_Value (First (L)) = Expr_Value (First (R));
960 end if;
961 end if;
962 end Is_Same_Subscript;
964 -- Start of processing for Is_Same_Value
966 begin
967 -- Values are the same if they refer to the same entity and the
968 -- entity is non-volatile. This does not however apply to Float
969 -- types, since we may have two NaN values and they should never
970 -- compare equal.
972 -- If the entity is a discriminant, the two expressions may be bounds
973 -- of components of objects of the same discriminated type. The
974 -- values of the discriminants are not static, and therefore the
975 -- result is unknown.
977 -- It would be better to comment individual branches of this test ???
979 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
980 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
981 and then Entity (Lf) = Entity (Rf)
982 and then Ekind (Entity (Lf)) /= E_Discriminant
983 and then Present (Entity (Lf))
984 and then not Is_Floating_Point_Type (Etype (L))
985 and then not Is_Volatile_Reference (L)
986 and then not Is_Volatile_Reference (R)
987 then
988 return True;
990 -- Or if they are compile time known and identical
992 elsif Compile_Time_Known_Value (Lf)
993 and then
994 Compile_Time_Known_Value (Rf)
995 and then Expr_Value (Lf) = Expr_Value (Rf)
996 then
997 return True;
999 -- False if Nkind of the two nodes is different for remaining cases
1001 elsif Nkind (Lf) /= Nkind (Rf) then
1002 return False;
1004 -- True if both 'First or 'Last values applying to the same entity
1005 -- (first and last don't change even if value does). Note that we
1006 -- need this even with the calls to Compare_Fixup, to handle the
1007 -- case of unconstrained array attributes where Compare_Fixup
1008 -- cannot find useful bounds.
1010 elsif Nkind (Lf) = N_Attribute_Reference
1011 and then Attribute_Name (Lf) = Attribute_Name (Rf)
1012 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
1013 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1014 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
1015 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
1016 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
1017 then
1018 return True;
1020 -- True if the same selected component from the same record
1022 elsif Nkind (Lf) = N_Selected_Component
1023 and then Selector_Name (Lf) = Selector_Name (Rf)
1024 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1025 then
1026 return True;
1028 -- True if the same unary operator applied to the same operand
1030 elsif Nkind (Lf) in N_Unary_Op
1031 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1032 then
1033 return True;
1035 -- True if the same binary operator applied to the same operands
1037 elsif Nkind (Lf) in N_Binary_Op
1038 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1039 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1040 then
1041 return True;
1043 -- All other cases, we can't tell, so return False
1045 else
1046 return False;
1047 end if;
1048 end Is_Same_Value;
1050 -- Start of processing for Compile_Time_Compare
1052 begin
1053 Diff.all := No_Uint;
1055 -- In preanalysis mode, always return Unknown unless the expression
1056 -- is static. It is too early to be thinking we know the result of a
1057 -- comparison, save that judgment for the full analysis. This is
1058 -- particularly important in the case of pre and postconditions, which
1059 -- otherwise can be prematurely collapsed into having True or False
1060 -- conditions when this is inappropriate.
1062 if not (Full_Analysis
1063 or else (Is_OK_Static_Expression (L)
1064 and then
1065 Is_OK_Static_Expression (R)))
1066 then
1067 return Unknown;
1068 end if;
1070 -- If either operand could raise constraint error, then we cannot
1071 -- know the result at compile time (since CE may be raised).
1073 if not (Cannot_Raise_Constraint_Error (L)
1074 and then
1075 Cannot_Raise_Constraint_Error (R))
1076 then
1077 return Unknown;
1078 end if;
1080 -- Identical operands are most certainly equal
1082 if L = R then
1083 return EQ;
1085 -- If expressions have no types, then do not attempt to determine if
1086 -- they are the same, since something funny is going on. One case in
1087 -- which this happens is during generic template analysis, when bounds
1088 -- are not fully analyzed.
1090 elsif No (Ltyp) or else No (Rtyp) then
1091 return Unknown;
1093 -- We do not attempt comparisons for packed arrays arrays represented as
1094 -- modular types, where the semantics of comparison is quite different.
1096 elsif Is_Packed_Array_Impl_Type (Ltyp)
1097 and then Is_Modular_Integer_Type (Ltyp)
1098 then
1099 return Unknown;
1101 -- For access types, the only time we know the result at compile time
1102 -- (apart from identical operands, which we handled already) is if we
1103 -- know one operand is null and the other is not, or both operands are
1104 -- known null.
1106 elsif Is_Access_Type (Ltyp) then
1107 if Known_Null (L) then
1108 if Known_Null (R) then
1109 return EQ;
1110 elsif Known_Non_Null (R) then
1111 return NE;
1112 else
1113 return Unknown;
1114 end if;
1116 elsif Known_Non_Null (L) and then Known_Null (R) then
1117 return NE;
1119 else
1120 return Unknown;
1121 end if;
1123 -- Case where comparison involves two compile time known values
1125 elsif Compile_Time_Known_Value (L)
1126 and then
1127 Compile_Time_Known_Value (R)
1128 then
1129 -- For the floating-point case, we have to be a little careful, since
1130 -- at compile time we are dealing with universal exact values, but at
1131 -- runtime, these will be in non-exact target form. That's why the
1132 -- returned results are LE and GE below instead of LT and GT.
1134 if Is_Floating_Point_Type (Ltyp)
1135 or else
1136 Is_Floating_Point_Type (Rtyp)
1137 then
1138 declare
1139 Lo : constant Ureal := Expr_Value_R (L);
1140 Hi : constant Ureal := Expr_Value_R (R);
1141 begin
1142 if Lo < Hi then
1143 return LE;
1144 elsif Lo = Hi then
1145 return EQ;
1146 else
1147 return GE;
1148 end if;
1149 end;
1151 -- For string types, we have two string literals and we proceed to
1152 -- compare them using the Ada style dictionary string comparison.
1154 elsif not Is_Scalar_Type (Ltyp) then
1155 declare
1156 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1157 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1158 Llen : constant Nat := String_Length (Lstring);
1159 Rlen : constant Nat := String_Length (Rstring);
1161 begin
1162 for J in 1 .. Nat'Min (Llen, Rlen) loop
1163 declare
1164 LC : constant Char_Code := Get_String_Char (Lstring, J);
1165 RC : constant Char_Code := Get_String_Char (Rstring, J);
1166 begin
1167 if LC < RC then
1168 return LT;
1169 elsif LC > RC then
1170 return GT;
1171 end if;
1172 end;
1173 end loop;
1175 if Llen < Rlen then
1176 return LT;
1177 elsif Llen > Rlen then
1178 return GT;
1179 else
1180 return EQ;
1181 end if;
1182 end;
1184 -- For remaining scalar cases we know exactly (note that this does
1185 -- include the fixed-point case, where we know the run time integer
1186 -- values now).
1188 else
1189 declare
1190 Lo : constant Uint := Expr_Value (L);
1191 Hi : constant Uint := Expr_Value (R);
1192 begin
1193 if Lo < Hi then
1194 Diff.all := Hi - Lo;
1195 return LT;
1196 elsif Lo = Hi then
1197 return EQ;
1198 else
1199 Diff.all := Lo - Hi;
1200 return GT;
1201 end if;
1202 end;
1203 end if;
1205 -- Cases where at least one operand is not known at compile time
1207 else
1208 -- Remaining checks apply only for discrete types
1210 if not Is_Discrete_Type (Ltyp)
1211 or else
1212 not Is_Discrete_Type (Rtyp)
1213 then
1214 return Unknown;
1215 end if;
1217 -- Defend against generic types, or actually any expressions that
1218 -- contain a reference to a generic type from within a generic
1219 -- template. We don't want to do any range analysis of such
1220 -- expressions for two reasons. First, the bounds of a generic type
1221 -- itself are junk and cannot be used for any kind of analysis.
1222 -- Second, we may have a case where the range at run time is indeed
1223 -- known, but we don't want to do compile time analysis in the
1224 -- template based on that range since in an instance the value may be
1225 -- static, and able to be elaborated without reference to the bounds
1226 -- of types involved. As an example, consider:
1228 -- (F'Pos (F'Last) + 1) > Integer'Last
1230 -- The expression on the left side of > is Universal_Integer and thus
1231 -- acquires the type Integer for evaluation at run time, and at run
1232 -- time it is true that this condition is always False, but within
1233 -- an instance F may be a type with a static range greater than the
1234 -- range of Integer, and the expression statically evaluates to True.
1236 if References_Generic_Formal_Type (L)
1237 or else
1238 References_Generic_Formal_Type (R)
1239 then
1240 return Unknown;
1241 end if;
1243 -- Replace types by base types for the case of values which are not
1244 -- known to have valid representations. This takes care of properly
1245 -- dealing with invalid representations.
1247 if not Assume_Valid then
1248 if not (Is_Entity_Name (L)
1249 and then (Is_Known_Valid (Entity (L))
1250 or else Assume_No_Invalid_Values))
1251 then
1252 Ltyp := Underlying_Type (Base_Type (Ltyp));
1253 end if;
1255 if not (Is_Entity_Name (R)
1256 and then (Is_Known_Valid (Entity (R))
1257 or else Assume_No_Invalid_Values))
1258 then
1259 Rtyp := Underlying_Type (Base_Type (Rtyp));
1260 end if;
1261 end if;
1263 -- First attempt is to decompose the expressions to extract a
1264 -- constant offset resulting from the use of any of the forms:
1266 -- expr + literal
1267 -- expr - literal
1268 -- typ'Succ (expr)
1269 -- typ'Pred (expr)
1271 -- Then we see if the two expressions are the same value, and if so
1272 -- the result is obtained by comparing the offsets.
1274 -- Note: the reason we do this test first is that it returns only
1275 -- decisive results (with diff set), where other tests, like the
1276 -- range test, may not be as so decisive. Consider for example
1277 -- J .. J + 1. This code can conclude LT with a difference of 1,
1278 -- even if the range of J is not known.
1280 declare
1281 Lnode : Node_Id;
1282 Loffs : Uint;
1283 Rnode : Node_Id;
1284 Roffs : Uint;
1286 begin
1287 Compare_Decompose (L, Lnode, Loffs);
1288 Compare_Decompose (R, Rnode, Roffs);
1290 if Is_Same_Value (Lnode, Rnode) then
1291 if Loffs = Roffs then
1292 return EQ;
1293 elsif Loffs < Roffs then
1294 Diff.all := Roffs - Loffs;
1295 return LT;
1296 else
1297 Diff.all := Loffs - Roffs;
1298 return GT;
1299 end if;
1300 end if;
1301 end;
1303 -- Next, try range analysis and see if operand ranges are disjoint
1305 declare
1306 LOK, ROK : Boolean;
1307 LLo, LHi : Uint;
1308 RLo, RHi : Uint;
1310 Single : Boolean;
1311 -- True if each range is a single point
1313 begin
1314 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1315 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1317 if LOK and ROK then
1318 Single := (LLo = LHi) and then (RLo = RHi);
1320 if LHi < RLo then
1321 if Single and Assume_Valid then
1322 Diff.all := RLo - LLo;
1323 end if;
1325 return LT;
1327 elsif RHi < LLo then
1328 if Single and Assume_Valid then
1329 Diff.all := LLo - RLo;
1330 end if;
1332 return GT;
1334 elsif Single and then LLo = RLo then
1336 -- If the range includes a single literal and we can assume
1337 -- validity then the result is known even if an operand is
1338 -- not static.
1340 if Assume_Valid then
1341 return EQ;
1342 else
1343 return Unknown;
1344 end if;
1346 elsif LHi = RLo then
1347 return LE;
1349 elsif RHi = LLo then
1350 return GE;
1352 elsif not Is_Known_Valid_Operand (L)
1353 and then not Assume_Valid
1354 then
1355 if Is_Same_Value (L, R) then
1356 return EQ;
1357 else
1358 return Unknown;
1359 end if;
1360 end if;
1362 -- If the range of either operand cannot be determined, nothing
1363 -- further can be inferred.
1365 else
1366 return Unknown;
1367 end if;
1368 end;
1370 -- Here is where we check for comparisons against maximum bounds of
1371 -- types, where we know that no value can be outside the bounds of
1372 -- the subtype. Note that this routine is allowed to assume that all
1373 -- expressions are within their subtype bounds. Callers wishing to
1374 -- deal with possibly invalid values must in any case take special
1375 -- steps (e.g. conversions to larger types) to avoid this kind of
1376 -- optimization, which is always considered to be valid. We do not
1377 -- attempt this optimization with generic types, since the type
1378 -- bounds may not be meaningful in this case.
1380 -- We are in danger of an infinite recursion here. It does not seem
1381 -- useful to go more than one level deep, so the parameter Rec is
1382 -- used to protect ourselves against this infinite recursion.
1384 if not Rec then
1386 -- See if we can get a decisive check against one operand and a
1387 -- bound of the other operand (four possible tests here). Note
1388 -- that we avoid testing junk bounds of a generic type.
1390 if not Is_Generic_Type (Rtyp) then
1391 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1392 Discard'Access,
1393 Assume_Valid, Rec => True)
1395 when LT => return LT;
1396 when LE => return LE;
1397 when EQ => return LE;
1398 when others => null;
1399 end case;
1401 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1402 Discard'Access,
1403 Assume_Valid, Rec => True)
1405 when GT => return GT;
1406 when GE => return GE;
1407 when EQ => return GE;
1408 when others => null;
1409 end case;
1410 end if;
1412 if not Is_Generic_Type (Ltyp) then
1413 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1414 Discard'Access,
1415 Assume_Valid, Rec => True)
1417 when GT => return GT;
1418 when GE => return GE;
1419 when EQ => return GE;
1420 when others => null;
1421 end case;
1423 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1424 Discard'Access,
1425 Assume_Valid, Rec => True)
1427 when LT => return LT;
1428 when LE => return LE;
1429 when EQ => return LE;
1430 when others => null;
1431 end case;
1432 end if;
1433 end if;
1435 -- Next attempt is to see if we have an entity compared with a
1436 -- compile time known value, where there is a current value
1437 -- conditional for the entity which can tell us the result.
1439 declare
1440 Var : Node_Id;
1441 -- Entity variable (left operand)
1443 Val : Uint;
1444 -- Value (right operand)
1446 Inv : Boolean;
1447 -- If False, we have reversed the operands
1449 Op : Node_Kind;
1450 -- Comparison operator kind from Get_Current_Value_Condition call
1452 Opn : Node_Id;
1453 -- Value from Get_Current_Value_Condition call
1455 Opv : Uint;
1456 -- Value of Opn
1458 Result : Compare_Result;
1459 -- Known result before inversion
1461 begin
1462 if Is_Entity_Name (L)
1463 and then Compile_Time_Known_Value (R)
1464 then
1465 Var := L;
1466 Val := Expr_Value (R);
1467 Inv := False;
1469 elsif Is_Entity_Name (R)
1470 and then Compile_Time_Known_Value (L)
1471 then
1472 Var := R;
1473 Val := Expr_Value (L);
1474 Inv := True;
1476 -- That was the last chance at finding a compile time result
1478 else
1479 return Unknown;
1480 end if;
1482 Get_Current_Value_Condition (Var, Op, Opn);
1484 -- That was the last chance, so if we got nothing return
1486 if No (Opn) then
1487 return Unknown;
1488 end if;
1490 Opv := Expr_Value (Opn);
1492 -- We got a comparison, so we might have something interesting
1494 -- Convert LE to LT and GE to GT, just so we have fewer cases
1496 if Op = N_Op_Le then
1497 Op := N_Op_Lt;
1498 Opv := Opv + 1;
1500 elsif Op = N_Op_Ge then
1501 Op := N_Op_Gt;
1502 Opv := Opv - 1;
1503 end if;
1505 -- Deal with equality case
1507 if Op = N_Op_Eq then
1508 if Val = Opv then
1509 Result := EQ;
1510 elsif Opv < Val then
1511 Result := LT;
1512 else
1513 Result := GT;
1514 end if;
1516 -- Deal with inequality case
1518 elsif Op = N_Op_Ne then
1519 if Val = Opv then
1520 Result := NE;
1521 else
1522 return Unknown;
1523 end if;
1525 -- Deal with greater than case
1527 elsif Op = N_Op_Gt then
1528 if Opv >= Val then
1529 Result := GT;
1530 elsif Opv = Val - 1 then
1531 Result := GE;
1532 else
1533 return Unknown;
1534 end if;
1536 -- Deal with less than case
1538 else pragma Assert (Op = N_Op_Lt);
1539 if Opv <= Val then
1540 Result := LT;
1541 elsif Opv = Val + 1 then
1542 Result := LE;
1543 else
1544 return Unknown;
1545 end if;
1546 end if;
1548 -- Deal with inverting result
1550 if Inv then
1551 case Result is
1552 when GT => return LT;
1553 when GE => return LE;
1554 when LT => return GT;
1555 when LE => return GE;
1556 when others => return Result;
1557 end case;
1558 end if;
1560 return Result;
1561 end;
1562 end if;
1563 end Compile_Time_Compare;
1565 -------------------------------
1566 -- Compile_Time_Known_Bounds --
1567 -------------------------------
1569 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1570 Indx : Node_Id;
1571 Typ : Entity_Id;
1573 begin
1574 if T = Any_Composite or else not Is_Array_Type (T) then
1575 return False;
1576 end if;
1578 Indx := First_Index (T);
1579 while Present (Indx) loop
1580 Typ := Underlying_Type (Etype (Indx));
1582 -- Never look at junk bounds of a generic type
1584 if Is_Generic_Type (Typ) then
1585 return False;
1586 end if;
1588 -- Otherwise check bounds for compile time known
1590 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1591 return False;
1592 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1593 return False;
1594 else
1595 Next_Index (Indx);
1596 end if;
1597 end loop;
1599 return True;
1600 end Compile_Time_Known_Bounds;
1602 ------------------------------
1603 -- Compile_Time_Known_Value --
1604 ------------------------------
1606 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1607 K : constant Node_Kind := Nkind (Op);
1608 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1610 begin
1611 -- Never known at compile time if bad type or raises constraint error
1612 -- or empty (latter case occurs only as a result of a previous error).
1614 if No (Op) then
1615 Check_Error_Detected;
1616 return False;
1618 elsif Op = Error
1619 or else Etype (Op) = Any_Type
1620 or else Raises_Constraint_Error (Op)
1621 then
1622 return False;
1623 end if;
1625 -- If we have an entity name, then see if it is the name of a constant
1626 -- and if so, test the corresponding constant value, or the name of
1627 -- an enumeration literal, which is always a constant.
1629 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1630 declare
1631 E : constant Entity_Id := Entity (Op);
1632 V : Node_Id;
1634 begin
1635 -- Never known at compile time if it is a packed array value.
1636 -- We might want to try to evaluate these at compile time one
1637 -- day, but we do not make that attempt now.
1639 if Is_Packed_Array_Impl_Type (Etype (Op)) then
1640 return False;
1641 end if;
1643 if Ekind (E) = E_Enumeration_Literal then
1644 return True;
1646 elsif Ekind (E) = E_Constant then
1647 V := Constant_Value (E);
1648 return Present (V) and then Compile_Time_Known_Value (V);
1649 end if;
1650 end;
1652 -- We have a value, see if it is compile time known
1654 else
1655 -- Integer literals are worth storing in the cache
1657 if K = N_Integer_Literal then
1658 CV_Ent.N := Op;
1659 CV_Ent.V := Intval (Op);
1660 return True;
1662 -- Other literals and NULL are known at compile time
1664 elsif
1665 Nkind_In (K, N_Character_Literal,
1666 N_Real_Literal,
1667 N_String_Literal,
1668 N_Null)
1669 then
1670 return True;
1671 end if;
1672 end if;
1674 -- If we fall through, not known at compile time
1676 return False;
1678 -- If we get an exception while trying to do this test, then some error
1679 -- has occurred, and we simply say that the value is not known after all
1681 exception
1682 when others =>
1683 return False;
1684 end Compile_Time_Known_Value;
1686 --------------------------------------
1687 -- Compile_Time_Known_Value_Or_Aggr --
1688 --------------------------------------
1690 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1691 begin
1692 -- If we have an entity name, then see if it is the name of a constant
1693 -- and if so, test the corresponding constant value, or the name of
1694 -- an enumeration literal, which is always a constant.
1696 if Is_Entity_Name (Op) then
1697 declare
1698 E : constant Entity_Id := Entity (Op);
1699 V : Node_Id;
1701 begin
1702 if Ekind (E) = E_Enumeration_Literal then
1703 return True;
1705 elsif Ekind (E) /= E_Constant then
1706 return False;
1708 else
1709 V := Constant_Value (E);
1710 return Present (V)
1711 and then Compile_Time_Known_Value_Or_Aggr (V);
1712 end if;
1713 end;
1715 -- We have a value, see if it is compile time known
1717 else
1718 if Compile_Time_Known_Value (Op) then
1719 return True;
1721 elsif Nkind (Op) = N_Aggregate then
1723 if Present (Expressions (Op)) then
1724 declare
1725 Expr : Node_Id;
1726 begin
1727 Expr := First (Expressions (Op));
1728 while Present (Expr) loop
1729 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1730 return False;
1731 else
1732 Next (Expr);
1733 end if;
1734 end loop;
1735 end;
1736 end if;
1738 if Present (Component_Associations (Op)) then
1739 declare
1740 Cass : Node_Id;
1742 begin
1743 Cass := First (Component_Associations (Op));
1744 while Present (Cass) loop
1745 if not
1746 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1747 then
1748 return False;
1749 end if;
1751 Next (Cass);
1752 end loop;
1753 end;
1754 end if;
1756 return True;
1758 -- All other types of values are not known at compile time
1760 else
1761 return False;
1762 end if;
1764 end if;
1765 end Compile_Time_Known_Value_Or_Aggr;
1767 ---------------------------------------
1768 -- CRT_Safe_Compile_Time_Known_Value --
1769 ---------------------------------------
1771 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1772 begin
1773 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1774 and then not Is_OK_Static_Expression (Op)
1775 then
1776 return False;
1777 else
1778 return Compile_Time_Known_Value (Op);
1779 end if;
1780 end CRT_Safe_Compile_Time_Known_Value;
1782 -----------------
1783 -- Eval_Actual --
1784 -----------------
1786 -- This is only called for actuals of functions that are not predefined
1787 -- operators (which have already been rewritten as operators at this
1788 -- stage), so the call can never be folded, and all that needs doing for
1789 -- the actual is to do the check for a non-static context.
1791 procedure Eval_Actual (N : Node_Id) is
1792 begin
1793 Check_Non_Static_Context (N);
1794 end Eval_Actual;
1796 --------------------
1797 -- Eval_Allocator --
1798 --------------------
1800 -- Allocators are never static, so all we have to do is to do the
1801 -- check for a non-static context if an expression is present.
1803 procedure Eval_Allocator (N : Node_Id) is
1804 Expr : constant Node_Id := Expression (N);
1805 begin
1806 if Nkind (Expr) = N_Qualified_Expression then
1807 Check_Non_Static_Context (Expression (Expr));
1808 end if;
1809 end Eval_Allocator;
1811 ------------------------
1812 -- Eval_Arithmetic_Op --
1813 ------------------------
1815 -- Arithmetic operations are static functions, so the result is static
1816 -- if both operands are static (RM 4.9(7), 4.9(20)).
1818 procedure Eval_Arithmetic_Op (N : Node_Id) is
1819 Left : constant Node_Id := Left_Opnd (N);
1820 Right : constant Node_Id := Right_Opnd (N);
1821 Ltype : constant Entity_Id := Etype (Left);
1822 Rtype : constant Entity_Id := Etype (Right);
1823 Otype : Entity_Id := Empty;
1824 Stat : Boolean;
1825 Fold : Boolean;
1827 begin
1828 -- If not foldable we are done
1830 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1832 if not Fold then
1833 return;
1834 end if;
1836 -- Otherwise attempt to fold
1838 if Is_Universal_Numeric_Type (Etype (Left))
1839 and then
1840 Is_Universal_Numeric_Type (Etype (Right))
1841 then
1842 Otype := Find_Universal_Operator_Type (N);
1843 end if;
1845 -- Fold for cases where both operands are of integer type
1847 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1848 declare
1849 Left_Int : constant Uint := Expr_Value (Left);
1850 Right_Int : constant Uint := Expr_Value (Right);
1851 Result : Uint;
1853 begin
1854 case Nkind (N) is
1855 when N_Op_Add =>
1856 Result := Left_Int + Right_Int;
1858 when N_Op_Subtract =>
1859 Result := Left_Int - Right_Int;
1861 when N_Op_Multiply =>
1862 if OK_Bits
1863 (N, UI_From_Int
1864 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1865 then
1866 Result := Left_Int * Right_Int;
1867 else
1868 Result := Left_Int;
1869 end if;
1871 when N_Op_Divide =>
1873 -- The exception Constraint_Error is raised by integer
1874 -- division, rem and mod if the right operand is zero.
1876 if Right_Int = 0 then
1877 Apply_Compile_Time_Constraint_Error
1878 (N, "division by zero", CE_Divide_By_Zero,
1879 Warn => not Stat);
1880 Set_Raises_Constraint_Error (N);
1881 return;
1883 -- Otherwise we can do the division
1885 else
1886 Result := Left_Int / Right_Int;
1887 end if;
1889 when N_Op_Mod =>
1891 -- The exception Constraint_Error is raised by integer
1892 -- division, rem and mod if the right operand is zero.
1894 if Right_Int = 0 then
1895 Apply_Compile_Time_Constraint_Error
1896 (N, "mod with zero divisor", CE_Divide_By_Zero,
1897 Warn => not Stat);
1898 return;
1899 else
1900 Result := Left_Int mod Right_Int;
1901 end if;
1903 when N_Op_Rem =>
1905 -- The exception Constraint_Error is raised by integer
1906 -- division, rem and mod if the right operand is zero.
1908 if Right_Int = 0 then
1909 Apply_Compile_Time_Constraint_Error
1910 (N, "rem with zero divisor", CE_Divide_By_Zero,
1911 Warn => not Stat);
1912 return;
1914 else
1915 Result := Left_Int rem Right_Int;
1916 end if;
1918 when others =>
1919 raise Program_Error;
1920 end case;
1922 -- Adjust the result by the modulus if the type is a modular type
1924 if Is_Modular_Integer_Type (Ltype) then
1925 Result := Result mod Modulus (Ltype);
1927 -- For a signed integer type, check non-static overflow
1929 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1930 declare
1931 BT : constant Entity_Id := Base_Type (Ltype);
1932 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1933 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1934 begin
1935 if Result < Lo or else Result > Hi then
1936 Apply_Compile_Time_Constraint_Error
1937 (N, "value not in range of }??",
1938 CE_Overflow_Check_Failed,
1939 Ent => BT);
1940 return;
1941 end if;
1942 end;
1943 end if;
1945 -- If we get here we can fold the result
1947 Fold_Uint (N, Result, Stat);
1948 end;
1950 -- Cases where at least one operand is a real. We handle the cases of
1951 -- both reals, or mixed/real integer cases (the latter happen only for
1952 -- divide and multiply, and the result is always real).
1954 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1955 declare
1956 Left_Real : Ureal;
1957 Right_Real : Ureal;
1958 Result : Ureal;
1960 begin
1961 if Is_Real_Type (Ltype) then
1962 Left_Real := Expr_Value_R (Left);
1963 else
1964 Left_Real := UR_From_Uint (Expr_Value (Left));
1965 end if;
1967 if Is_Real_Type (Rtype) then
1968 Right_Real := Expr_Value_R (Right);
1969 else
1970 Right_Real := UR_From_Uint (Expr_Value (Right));
1971 end if;
1973 if Nkind (N) = N_Op_Add then
1974 Result := Left_Real + Right_Real;
1976 elsif Nkind (N) = N_Op_Subtract then
1977 Result := Left_Real - Right_Real;
1979 elsif Nkind (N) = N_Op_Multiply then
1980 Result := Left_Real * Right_Real;
1982 else pragma Assert (Nkind (N) = N_Op_Divide);
1983 if UR_Is_Zero (Right_Real) then
1984 Apply_Compile_Time_Constraint_Error
1985 (N, "division by zero", CE_Divide_By_Zero);
1986 return;
1987 end if;
1989 Result := Left_Real / Right_Real;
1990 end if;
1992 Fold_Ureal (N, Result, Stat);
1993 end;
1994 end if;
1996 -- If the operator was resolved to a specific type, make sure that type
1997 -- is frozen even if the expression is folded into a literal (which has
1998 -- a universal type).
2000 if Present (Otype) then
2001 Freeze_Before (N, Otype);
2002 end if;
2003 end Eval_Arithmetic_Op;
2005 ----------------------------
2006 -- Eval_Character_Literal --
2007 ----------------------------
2009 -- Nothing to be done
2011 procedure Eval_Character_Literal (N : Node_Id) is
2012 pragma Warnings (Off, N);
2013 begin
2014 null;
2015 end Eval_Character_Literal;
2017 ---------------
2018 -- Eval_Call --
2019 ---------------
2021 -- Static function calls are either calls to predefined operators
2022 -- with static arguments, or calls to functions that rename a literal.
2023 -- Only the latter case is handled here, predefined operators are
2024 -- constant-folded elsewhere.
2026 -- If the function is itself inherited (see 7423-001) the literal of
2027 -- the parent type must be explicitly converted to the return type
2028 -- of the function.
2030 procedure Eval_Call (N : Node_Id) is
2031 Loc : constant Source_Ptr := Sloc (N);
2032 Typ : constant Entity_Id := Etype (N);
2033 Lit : Entity_Id;
2035 begin
2036 if Nkind (N) = N_Function_Call
2037 and then No (Parameter_Associations (N))
2038 and then Is_Entity_Name (Name (N))
2039 and then Present (Alias (Entity (Name (N))))
2040 and then Is_Enumeration_Type (Base_Type (Typ))
2041 then
2042 Lit := Ultimate_Alias (Entity (Name (N)));
2044 if Ekind (Lit) = E_Enumeration_Literal then
2045 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2046 Rewrite
2047 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2048 else
2049 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2050 end if;
2052 Resolve (N, Typ);
2053 end if;
2054 end if;
2055 end Eval_Call;
2057 --------------------------
2058 -- Eval_Case_Expression --
2059 --------------------------
2061 -- A conditional expression is static if all its conditions and dependent
2062 -- expressions are static. Note that we do not care if the dependent
2063 -- expressions raise CE, except for the one that will be selected.
2065 procedure Eval_Case_Expression (N : Node_Id) is
2066 Alt : Node_Id;
2067 Choice : Node_Id;
2069 begin
2070 Set_Is_Static_Expression (N, False);
2072 if not Is_Static_Expression (Expression (N)) then
2073 Check_Non_Static_Context (Expression (N));
2074 return;
2075 end if;
2077 -- First loop, make sure all the alternatives are static expressions
2078 -- none of which raise Constraint_Error. We make the constraint error
2079 -- check because part of the legality condition for a correct static
2080 -- case expression is that the cases are covered, like any other case
2081 -- expression. And we can't do that if any of the conditions raise an
2082 -- exception, so we don't even try to evaluate if that is the case.
2084 Alt := First (Alternatives (N));
2085 while Present (Alt) loop
2087 -- The expression must be static, but we don't care at this stage
2088 -- if it raises Constraint_Error (the alternative might not match,
2089 -- in which case the expression is statically unevaluated anyway).
2091 if not Is_Static_Expression (Expression (Alt)) then
2092 Check_Non_Static_Context (Expression (Alt));
2093 return;
2094 end if;
2096 -- The choices of a case always have to be static, and cannot raise
2097 -- an exception. If this condition is not met, then the expression
2098 -- is plain illegal, so just abandon evaluation attempts. No need
2099 -- to check non-static context when we have something illegal anyway.
2101 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2102 return;
2103 end if;
2105 Next (Alt);
2106 end loop;
2108 -- OK, if the above loop gets through it means that all choices are OK
2109 -- static (don't raise exceptions), so the whole case is static, and we
2110 -- can find the matching alternative.
2112 Set_Is_Static_Expression (N);
2114 -- Now to deal with propagating a possible constraint error
2116 -- If the selecting expression raises CE, propagate and we are done
2118 if Raises_Constraint_Error (Expression (N)) then
2119 Set_Raises_Constraint_Error (N);
2121 -- Otherwise we need to check the alternatives to find the matching
2122 -- one. CE's in other than the matching one are not relevant. But we
2123 -- do need to check the matching one. Unlike the first loop, we do not
2124 -- have to go all the way through, when we find the matching one, quit.
2126 else
2127 Alt := First (Alternatives (N));
2128 Search : loop
2130 -- We must find a match among the alternatives. If not, this must
2131 -- be due to other errors, so just ignore, leaving as non-static.
2133 if No (Alt) then
2134 Set_Is_Static_Expression (N, False);
2135 return;
2136 end if;
2138 -- Otherwise loop through choices of this alternative
2140 Choice := First (Discrete_Choices (Alt));
2141 while Present (Choice) loop
2143 -- If we find a matching choice, then the Expression of this
2144 -- alternative replaces N (Raises_Constraint_Error flag is
2145 -- included, so we don't have to special case that).
2147 if Choice_Matches (Expression (N), Choice) = Match then
2148 Rewrite (N, Relocate_Node (Expression (Alt)));
2149 return;
2150 end if;
2152 Next (Choice);
2153 end loop;
2155 Next (Alt);
2156 end loop Search;
2157 end if;
2158 end Eval_Case_Expression;
2160 ------------------------
2161 -- Eval_Concatenation --
2162 ------------------------
2164 -- Concatenation is a static function, so the result is static if both
2165 -- operands are static (RM 4.9(7), 4.9(21)).
2167 procedure Eval_Concatenation (N : Node_Id) is
2168 Left : constant Node_Id := Left_Opnd (N);
2169 Right : constant Node_Id := Right_Opnd (N);
2170 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
2171 Stat : Boolean;
2172 Fold : Boolean;
2174 begin
2175 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2176 -- non-static context.
2178 if Ada_Version = Ada_83
2179 and then Comes_From_Source (N)
2180 then
2181 Check_Non_Static_Context (Left);
2182 Check_Non_Static_Context (Right);
2183 return;
2184 end if;
2186 -- If not foldable we are done. In principle concatenation that yields
2187 -- any string type is static (i.e. an array type of character types).
2188 -- However, character types can include enumeration literals, and
2189 -- concatenation in that case cannot be described by a literal, so we
2190 -- only consider the operation static if the result is an array of
2191 -- (a descendant of) a predefined character type.
2193 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2195 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
2196 Set_Is_Static_Expression (N, False);
2197 return;
2198 end if;
2200 -- Compile time string concatenation
2202 -- ??? Note that operands that are aggregates can be marked as static,
2203 -- so we should attempt at a later stage to fold concatenations with
2204 -- such aggregates.
2206 declare
2207 Left_Str : constant Node_Id := Get_String_Val (Left);
2208 Left_Len : Nat;
2209 Right_Str : constant Node_Id := Get_String_Val (Right);
2210 Folded_Val : String_Id;
2212 begin
2213 -- Establish new string literal, and store left operand. We make
2214 -- sure to use the special Start_String that takes an operand if
2215 -- the left operand is a string literal. Since this is optimized
2216 -- in the case where that is the most recently created string
2217 -- literal, we ensure efficient time/space behavior for the
2218 -- case of a concatenation of a series of string literals.
2220 if Nkind (Left_Str) = N_String_Literal then
2221 Left_Len := String_Length (Strval (Left_Str));
2223 -- If the left operand is the empty string, and the right operand
2224 -- is a string literal (the case of "" & "..."), the result is the
2225 -- value of the right operand. This optimization is important when
2226 -- Is_Folded_In_Parser, to avoid copying an enormous right
2227 -- operand.
2229 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2230 Folded_Val := Strval (Right_Str);
2231 else
2232 Start_String (Strval (Left_Str));
2233 end if;
2235 else
2236 Start_String;
2237 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
2238 Left_Len := 1;
2239 end if;
2241 -- Now append the characters of the right operand, unless we
2242 -- optimized the "" & "..." case above.
2244 if Nkind (Right_Str) = N_String_Literal then
2245 if Left_Len /= 0 then
2246 Store_String_Chars (Strval (Right_Str));
2247 Folded_Val := End_String;
2248 end if;
2249 else
2250 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
2251 Folded_Val := End_String;
2252 end if;
2254 Set_Is_Static_Expression (N, Stat);
2256 -- If left operand is the empty string, the result is the
2257 -- right operand, including its bounds if anomalous.
2259 if Left_Len = 0
2260 and then Is_Array_Type (Etype (Right))
2261 and then Etype (Right) /= Any_String
2262 then
2263 Set_Etype (N, Etype (Right));
2264 end if;
2266 Fold_Str (N, Folded_Val, Static => Stat);
2267 end;
2268 end Eval_Concatenation;
2270 ----------------------
2271 -- Eval_Entity_Name --
2272 ----------------------
2274 -- This procedure is used for identifiers and expanded names other than
2275 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2276 -- static if they denote a static constant (RM 4.9(6)) or if the name
2277 -- denotes an enumeration literal (RM 4.9(22)).
2279 procedure Eval_Entity_Name (N : Node_Id) is
2280 Def_Id : constant Entity_Id := Entity (N);
2281 Val : Node_Id;
2283 begin
2284 -- Enumeration literals are always considered to be constants
2285 -- and cannot raise constraint error (RM 4.9(22)).
2287 if Ekind (Def_Id) = E_Enumeration_Literal then
2288 Set_Is_Static_Expression (N);
2289 return;
2291 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2292 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2293 -- it does not violate 10.2.1(8) here, since this is not a variable.
2295 elsif Ekind (Def_Id) = E_Constant then
2297 -- Deferred constants must always be treated as nonstatic outside the
2298 -- scope of their full view.
2300 if Present (Full_View (Def_Id))
2301 and then not In_Open_Scopes (Scope (Def_Id))
2302 then
2303 Val := Empty;
2304 else
2305 Val := Constant_Value (Def_Id);
2306 end if;
2308 if Present (Val) then
2309 Set_Is_Static_Expression
2310 (N, Is_Static_Expression (Val)
2311 and then Is_Static_Subtype (Etype (Def_Id)));
2312 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2314 if not Is_Static_Expression (N)
2315 and then not Is_Generic_Type (Etype (N))
2316 then
2317 Validate_Static_Object_Name (N);
2318 end if;
2320 -- Mark constant condition in SCOs
2322 if Generate_SCO
2323 and then Comes_From_Source (N)
2324 and then Is_Boolean_Type (Etype (Def_Id))
2325 and then Compile_Time_Known_Value (N)
2326 then
2327 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2328 end if;
2330 return;
2331 end if;
2332 end if;
2334 -- Fall through if the name is not static
2336 Validate_Static_Object_Name (N);
2337 end Eval_Entity_Name;
2339 ------------------------
2340 -- Eval_If_Expression --
2341 ------------------------
2343 -- We can fold to a static expression if the condition and both dependent
2344 -- expressions are static. Otherwise, the only required processing is to do
2345 -- the check for non-static context for the then and else expressions.
2347 procedure Eval_If_Expression (N : Node_Id) is
2348 Condition : constant Node_Id := First (Expressions (N));
2349 Then_Expr : constant Node_Id := Next (Condition);
2350 Else_Expr : constant Node_Id := Next (Then_Expr);
2351 Result : Node_Id;
2352 Non_Result : Node_Id;
2354 Rstat : constant Boolean :=
2355 Is_Static_Expression (Condition)
2356 and then
2357 Is_Static_Expression (Then_Expr)
2358 and then
2359 Is_Static_Expression (Else_Expr);
2360 -- True if result is static
2362 begin
2363 -- If result not static, nothing to do, otherwise set static result
2365 if not Rstat then
2366 return;
2367 else
2368 Set_Is_Static_Expression (N);
2369 end if;
2371 -- If any operand is Any_Type, just propagate to result and do not try
2372 -- to fold, this prevents cascaded errors.
2374 if Etype (Condition) = Any_Type or else
2375 Etype (Then_Expr) = Any_Type or else
2376 Etype (Else_Expr) = Any_Type
2377 then
2378 Set_Etype (N, Any_Type);
2379 Set_Is_Static_Expression (N, False);
2380 return;
2381 end if;
2383 -- If condition raises constraint error then we have already signaled
2384 -- an error, and we just propagate to the result and do not fold.
2386 if Raises_Constraint_Error (Condition) then
2387 Set_Raises_Constraint_Error (N);
2388 return;
2389 end if;
2391 -- Static case where we can fold. Note that we don't try to fold cases
2392 -- where the condition is known at compile time, but the result is
2393 -- non-static. This avoids possible cases of infinite recursion where
2394 -- the expander puts in a redundant test and we remove it. Instead we
2395 -- deal with these cases in the expander.
2397 -- Select result operand
2399 if Is_True (Expr_Value (Condition)) then
2400 Result := Then_Expr;
2401 Non_Result := Else_Expr;
2402 else
2403 Result := Else_Expr;
2404 Non_Result := Then_Expr;
2405 end if;
2407 -- Note that it does not matter if the non-result operand raises a
2408 -- Constraint_Error, but if the result raises constraint error then we
2409 -- replace the node with a raise constraint error. This will properly
2410 -- propagate Raises_Constraint_Error since this flag is set in Result.
2412 if Raises_Constraint_Error (Result) then
2413 Rewrite_In_Raise_CE (N, Result);
2414 Check_Non_Static_Context (Non_Result);
2416 -- Otherwise the result operand replaces the original node
2418 else
2419 Rewrite (N, Relocate_Node (Result));
2420 Set_Is_Static_Expression (N);
2421 end if;
2422 end Eval_If_Expression;
2424 ----------------------------
2425 -- Eval_Indexed_Component --
2426 ----------------------------
2428 -- Indexed components are never static, so we need to perform the check
2429 -- for non-static context on the index values. Then, we check if the
2430 -- value can be obtained at compile time, even though it is non-static.
2432 procedure Eval_Indexed_Component (N : Node_Id) is
2433 Expr : Node_Id;
2435 begin
2436 -- Check for non-static context on index values
2438 Expr := First (Expressions (N));
2439 while Present (Expr) loop
2440 Check_Non_Static_Context (Expr);
2441 Next (Expr);
2442 end loop;
2444 -- If the indexed component appears in an object renaming declaration
2445 -- then we do not want to try to evaluate it, since in this case we
2446 -- need the identity of the array element.
2448 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2449 return;
2451 -- Similarly if the indexed component appears as the prefix of an
2452 -- attribute we don't want to evaluate it, because at least for
2453 -- some cases of attributes we need the identify (e.g. Access, Size)
2455 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2456 return;
2457 end if;
2459 -- Note: there are other cases, such as the left side of an assignment,
2460 -- or an OUT parameter for a call, where the replacement results in the
2461 -- illegal use of a constant, But these cases are illegal in the first
2462 -- place, so the replacement, though silly, is harmless.
2464 -- Now see if this is a constant array reference
2466 if List_Length (Expressions (N)) = 1
2467 and then Is_Entity_Name (Prefix (N))
2468 and then Ekind (Entity (Prefix (N))) = E_Constant
2469 and then Present (Constant_Value (Entity (Prefix (N))))
2470 then
2471 declare
2472 Loc : constant Source_Ptr := Sloc (N);
2473 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2474 Sub : constant Node_Id := First (Expressions (N));
2476 Atyp : Entity_Id;
2477 -- Type of array
2479 Lin : Nat;
2480 -- Linear one's origin subscript value for array reference
2482 Lbd : Node_Id;
2483 -- Lower bound of the first array index
2485 Elm : Node_Id;
2486 -- Value from constant array
2488 begin
2489 Atyp := Etype (Arr);
2491 if Is_Access_Type (Atyp) then
2492 Atyp := Designated_Type (Atyp);
2493 end if;
2495 -- If we have an array type (we should have but perhaps there are
2496 -- error cases where this is not the case), then see if we can do
2497 -- a constant evaluation of the array reference.
2499 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2500 if Ekind (Atyp) = E_String_Literal_Subtype then
2501 Lbd := String_Literal_Low_Bound (Atyp);
2502 else
2503 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2504 end if;
2506 if Compile_Time_Known_Value (Sub)
2507 and then Nkind (Arr) = N_Aggregate
2508 and then Compile_Time_Known_Value (Lbd)
2509 and then Is_Discrete_Type (Component_Type (Atyp))
2510 then
2511 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2513 if List_Length (Expressions (Arr)) >= Lin then
2514 Elm := Pick (Expressions (Arr), Lin);
2516 -- If the resulting expression is compile time known,
2517 -- then we can rewrite the indexed component with this
2518 -- value, being sure to mark the result as non-static.
2519 -- We also reset the Sloc, in case this generates an
2520 -- error later on (e.g. 136'Access).
2522 if Compile_Time_Known_Value (Elm) then
2523 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2524 Set_Is_Static_Expression (N, False);
2525 Set_Sloc (N, Loc);
2526 end if;
2527 end if;
2529 -- We can also constant-fold if the prefix is a string literal.
2530 -- This will be useful in an instantiation or an inlining.
2532 elsif Compile_Time_Known_Value (Sub)
2533 and then Nkind (Arr) = N_String_Literal
2534 and then Compile_Time_Known_Value (Lbd)
2535 and then Expr_Value (Lbd) = 1
2536 and then Expr_Value (Sub) <=
2537 String_Literal_Length (Etype (Arr))
2538 then
2539 declare
2540 C : constant Char_Code :=
2541 Get_String_Char (Strval (Arr),
2542 UI_To_Int (Expr_Value (Sub)));
2543 begin
2544 Set_Character_Literal_Name (C);
2546 Elm :=
2547 Make_Character_Literal (Loc,
2548 Chars => Name_Find,
2549 Char_Literal_Value => UI_From_CC (C));
2550 Set_Etype (Elm, Component_Type (Atyp));
2551 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2552 Set_Is_Static_Expression (N, False);
2553 end;
2554 end if;
2555 end if;
2556 end;
2557 end if;
2558 end Eval_Indexed_Component;
2560 --------------------------
2561 -- Eval_Integer_Literal --
2562 --------------------------
2564 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2565 -- as static by the analyzer. The reason we did it that early is to allow
2566 -- the possibility of turning off the Is_Static_Expression flag after
2567 -- analysis, but before resolution, when integer literals are generated in
2568 -- the expander that do not correspond to static expressions.
2570 procedure Eval_Integer_Literal (N : Node_Id) is
2571 T : constant Entity_Id := Etype (N);
2573 function In_Any_Integer_Context return Boolean;
2574 -- If the literal is resolved with a specific type in a context where
2575 -- the expected type is Any_Integer, there are no range checks on the
2576 -- literal. By the time the literal is evaluated, it carries the type
2577 -- imposed by the enclosing expression, and we must recover the context
2578 -- to determine that Any_Integer is meant.
2580 ----------------------------
2581 -- In_Any_Integer_Context --
2582 ----------------------------
2584 function In_Any_Integer_Context return Boolean is
2585 Par : constant Node_Id := Parent (N);
2586 K : constant Node_Kind := Nkind (Par);
2588 begin
2589 -- Any_Integer also appears in digits specifications for real types,
2590 -- but those have bounds smaller that those of any integer base type,
2591 -- so we can safely ignore these cases.
2593 return Nkind_In (K, N_Number_Declaration,
2594 N_Attribute_Reference,
2595 N_Attribute_Definition_Clause,
2596 N_Modular_Type_Definition,
2597 N_Signed_Integer_Type_Definition);
2598 end In_Any_Integer_Context;
2600 -- Start of processing for Eval_Integer_Literal
2602 begin
2604 -- If the literal appears in a non-expression context, then it is
2605 -- certainly appearing in a non-static context, so check it. This is
2606 -- actually a redundant check, since Check_Non_Static_Context would
2607 -- check it, but it seems worth while avoiding the call.
2609 if Nkind (Parent (N)) not in N_Subexpr
2610 and then not In_Any_Integer_Context
2611 then
2612 Check_Non_Static_Context (N);
2613 end if;
2615 -- Modular integer literals must be in their base range
2617 if Is_Modular_Integer_Type (T)
2618 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2619 then
2620 Out_Of_Range (N);
2621 end if;
2622 end Eval_Integer_Literal;
2624 ---------------------
2625 -- Eval_Logical_Op --
2626 ---------------------
2628 -- Logical operations are static functions, so the result is potentially
2629 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2631 procedure Eval_Logical_Op (N : Node_Id) is
2632 Left : constant Node_Id := Left_Opnd (N);
2633 Right : constant Node_Id := Right_Opnd (N);
2634 Stat : Boolean;
2635 Fold : Boolean;
2637 begin
2638 -- If not foldable we are done
2640 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2642 if not Fold then
2643 return;
2644 end if;
2646 -- Compile time evaluation of logical operation
2648 declare
2649 Left_Int : constant Uint := Expr_Value (Left);
2650 Right_Int : constant Uint := Expr_Value (Right);
2652 begin
2653 if Is_Modular_Integer_Type (Etype (N)) then
2654 declare
2655 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2656 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2658 begin
2659 To_Bits (Left_Int, Left_Bits);
2660 To_Bits (Right_Int, Right_Bits);
2662 -- Note: should really be able to use array ops instead of
2663 -- these loops, but they weren't working at the time ???
2665 if Nkind (N) = N_Op_And then
2666 for J in Left_Bits'Range loop
2667 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2668 end loop;
2670 elsif Nkind (N) = N_Op_Or then
2671 for J in Left_Bits'Range loop
2672 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2673 end loop;
2675 else
2676 pragma Assert (Nkind (N) = N_Op_Xor);
2678 for J in Left_Bits'Range loop
2679 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2680 end loop;
2681 end if;
2683 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2684 end;
2686 else
2687 pragma Assert (Is_Boolean_Type (Etype (N)));
2689 if Nkind (N) = N_Op_And then
2690 Fold_Uint (N,
2691 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2693 elsif Nkind (N) = N_Op_Or then
2694 Fold_Uint (N,
2695 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2697 else
2698 pragma Assert (Nkind (N) = N_Op_Xor);
2699 Fold_Uint (N,
2700 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2701 end if;
2702 end if;
2703 end;
2704 end Eval_Logical_Op;
2706 ------------------------
2707 -- Eval_Membership_Op --
2708 ------------------------
2710 -- A membership test is potentially static if the expression is static, and
2711 -- the range is a potentially static range, or is a subtype mark denoting a
2712 -- static subtype (RM 4.9(12)).
2714 procedure Eval_Membership_Op (N : Node_Id) is
2715 Left : constant Node_Id := Left_Opnd (N);
2716 Right : constant Node_Id := Right_Opnd (N);
2717 Alts : constant List_Id := Alternatives (N);
2718 Result : Match_Result;
2720 begin
2721 -- Ignore if error in either operand, except to make sure that Any_Type
2722 -- is properly propagated to avoid junk cascaded errors.
2724 if Etype (Left) = Any_Type
2725 or else (Present (Right) and then Etype (Right) = Any_Type)
2726 then
2727 Set_Etype (N, Any_Type);
2728 return;
2729 end if;
2731 -- Ignore if types involved have predicates
2732 -- Is this right for static predicates ???
2733 -- And what about the alternatives ???
2735 if Present (Predicate_Function (Etype (Left)))
2736 or else (Present (Right)
2737 and then Present (Predicate_Function (Etype (Right))))
2738 then
2739 return;
2740 end if;
2742 -- If left operand non-static, then nothing to do
2744 if not Is_Static_Expression (Left) then
2745 return;
2746 end if;
2748 -- If choice is non-static, left operand is in non-static context
2750 if (Present (Right) and then not Is_Static_Choice (Right))
2751 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2752 then
2753 Check_Non_Static_Context (Left);
2754 return;
2755 end if;
2757 -- Otherwise we definitely have a static expression
2759 Set_Is_Static_Expression (N);
2761 -- If left operand raises constraint error, propagate and we are done
2763 if Raises_Constraint_Error (Left) then
2764 Set_Raises_Constraint_Error (N, True);
2766 -- See if we match
2768 else
2769 if Present (Right) then
2770 Result := Choice_Matches (Left, Right);
2771 else
2772 Result := Choices_Match (Left, Alts);
2773 end if;
2775 -- If result is Non_Static, it means that we raise Constraint_Error,
2776 -- since we already tested that the operands were themselves static.
2778 if Result = Non_Static then
2779 Set_Raises_Constraint_Error (N);
2781 -- Otherwise we have our result (flipped if NOT IN case)
2783 else
2784 Fold_Uint
2785 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2786 Warn_On_Known_Condition (N);
2787 end if;
2788 end if;
2789 end Eval_Membership_Op;
2791 ------------------------
2792 -- Eval_Named_Integer --
2793 ------------------------
2795 procedure Eval_Named_Integer (N : Node_Id) is
2796 begin
2797 Fold_Uint (N,
2798 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2799 end Eval_Named_Integer;
2801 ---------------------
2802 -- Eval_Named_Real --
2803 ---------------------
2805 procedure Eval_Named_Real (N : Node_Id) is
2806 begin
2807 Fold_Ureal (N,
2808 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2809 end Eval_Named_Real;
2811 -------------------
2812 -- Eval_Op_Expon --
2813 -------------------
2815 -- Exponentiation is a static functions, so the result is potentially
2816 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2818 procedure Eval_Op_Expon (N : Node_Id) is
2819 Left : constant Node_Id := Left_Opnd (N);
2820 Right : constant Node_Id := Right_Opnd (N);
2821 Stat : Boolean;
2822 Fold : Boolean;
2824 begin
2825 -- If not foldable we are done
2827 Test_Expression_Is_Foldable
2828 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2830 -- Return if not foldable
2832 if not Fold then
2833 return;
2834 end if;
2836 if Configurable_Run_Time_Mode and not Stat then
2837 return;
2838 end if;
2840 -- Fold exponentiation operation
2842 declare
2843 Right_Int : constant Uint := Expr_Value (Right);
2845 begin
2846 -- Integer case
2848 if Is_Integer_Type (Etype (Left)) then
2849 declare
2850 Left_Int : constant Uint := Expr_Value (Left);
2851 Result : Uint;
2853 begin
2854 -- Exponentiation of an integer raises Constraint_Error for a
2855 -- negative exponent (RM 4.5.6).
2857 if Right_Int < 0 then
2858 Apply_Compile_Time_Constraint_Error
2859 (N, "integer exponent negative", CE_Range_Check_Failed,
2860 Warn => not Stat);
2861 return;
2863 else
2864 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2865 Result := Left_Int ** Right_Int;
2866 else
2867 Result := Left_Int;
2868 end if;
2870 if Is_Modular_Integer_Type (Etype (N)) then
2871 Result := Result mod Modulus (Etype (N));
2872 end if;
2874 Fold_Uint (N, Result, Stat);
2875 end if;
2876 end;
2878 -- Real case
2880 else
2881 declare
2882 Left_Real : constant Ureal := Expr_Value_R (Left);
2884 begin
2885 -- Cannot have a zero base with a negative exponent
2887 if UR_Is_Zero (Left_Real) then
2889 if Right_Int < 0 then
2890 Apply_Compile_Time_Constraint_Error
2891 (N, "zero ** negative integer", CE_Range_Check_Failed,
2892 Warn => not Stat);
2893 return;
2894 else
2895 Fold_Ureal (N, Ureal_0, Stat);
2896 end if;
2898 else
2899 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2900 end if;
2901 end;
2902 end if;
2903 end;
2904 end Eval_Op_Expon;
2906 -----------------
2907 -- Eval_Op_Not --
2908 -----------------
2910 -- The not operation is a static functions, so the result is potentially
2911 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2913 procedure Eval_Op_Not (N : Node_Id) is
2914 Right : constant Node_Id := Right_Opnd (N);
2915 Stat : Boolean;
2916 Fold : Boolean;
2918 begin
2919 -- If not foldable we are done
2921 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2923 if not Fold then
2924 return;
2925 end if;
2927 -- Fold not operation
2929 declare
2930 Rint : constant Uint := Expr_Value (Right);
2931 Typ : constant Entity_Id := Etype (N);
2933 begin
2934 -- Negation is equivalent to subtracting from the modulus minus one.
2935 -- For a binary modulus this is equivalent to the ones-complement of
2936 -- the original value. For non-binary modulus this is an arbitrary
2937 -- but consistent definition.
2939 if Is_Modular_Integer_Type (Typ) then
2940 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
2941 else pragma Assert (Is_Boolean_Type (Typ));
2942 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
2943 end if;
2945 Set_Is_Static_Expression (N, Stat);
2946 end;
2947 end Eval_Op_Not;
2949 -------------------------------
2950 -- Eval_Qualified_Expression --
2951 -------------------------------
2953 -- A qualified expression is potentially static if its subtype mark denotes
2954 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2956 procedure Eval_Qualified_Expression (N : Node_Id) is
2957 Operand : constant Node_Id := Expression (N);
2958 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2960 Stat : Boolean;
2961 Fold : Boolean;
2962 Hex : Boolean;
2964 begin
2965 -- Can only fold if target is string or scalar and subtype is static.
2966 -- Also, do not fold if our parent is an allocator (this is because the
2967 -- qualified expression is really part of the syntactic structure of an
2968 -- allocator, and we do not want to end up with something that
2969 -- corresponds to "new 1" where the 1 is the result of folding a
2970 -- qualified expression).
2972 if not Is_Static_Subtype (Target_Type)
2973 or else Nkind (Parent (N)) = N_Allocator
2974 then
2975 Check_Non_Static_Context (Operand);
2977 -- If operand is known to raise constraint_error, set the flag on the
2978 -- expression so it does not get optimized away.
2980 if Nkind (Operand) = N_Raise_Constraint_Error then
2981 Set_Raises_Constraint_Error (N);
2982 end if;
2984 return;
2985 end if;
2987 -- If not foldable we are done
2989 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2991 if not Fold then
2992 return;
2994 -- Don't try fold if target type has constraint error bounds
2996 elsif not Is_OK_Static_Subtype (Target_Type) then
2997 Set_Raises_Constraint_Error (N);
2998 return;
2999 end if;
3001 -- Here we will fold, save Print_In_Hex indication
3003 Hex := Nkind (Operand) = N_Integer_Literal
3004 and then Print_In_Hex (Operand);
3006 -- Fold the result of qualification
3008 if Is_Discrete_Type (Target_Type) then
3009 Fold_Uint (N, Expr_Value (Operand), Stat);
3011 -- Preserve Print_In_Hex indication
3013 if Hex and then Nkind (N) = N_Integer_Literal then
3014 Set_Print_In_Hex (N);
3015 end if;
3017 elsif Is_Real_Type (Target_Type) then
3018 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
3020 else
3021 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
3023 if not Stat then
3024 Set_Is_Static_Expression (N, False);
3025 else
3026 Check_String_Literal_Length (N, Target_Type);
3027 end if;
3029 return;
3030 end if;
3032 -- The expression may be foldable but not static
3034 Set_Is_Static_Expression (N, Stat);
3036 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3037 Out_Of_Range (N);
3038 end if;
3039 end Eval_Qualified_Expression;
3041 -----------------------
3042 -- Eval_Real_Literal --
3043 -----------------------
3045 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3046 -- as static by the analyzer. The reason we did it that early is to allow
3047 -- the possibility of turning off the Is_Static_Expression flag after
3048 -- analysis, but before resolution, when integer literals are generated
3049 -- in the expander that do not correspond to static expressions.
3051 procedure Eval_Real_Literal (N : Node_Id) is
3052 PK : constant Node_Kind := Nkind (Parent (N));
3054 begin
3055 -- If the literal appears in a non-expression context and not as part of
3056 -- a number declaration, then it is appearing in a non-static context,
3057 -- so check it.
3059 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
3060 Check_Non_Static_Context (N);
3061 end if;
3062 end Eval_Real_Literal;
3064 ------------------------
3065 -- Eval_Relational_Op --
3066 ------------------------
3068 -- Relational operations are static functions, so the result is static if
3069 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3070 -- the result is never static, even if the operands are.
3072 -- However, for internally generated nodes, we allow string equality and
3073 -- inequality to be static. This is because we rewrite A in "ABC" as an
3074 -- equality test A = "ABC", and the former is definitely static.
3076 procedure Eval_Relational_Op (N : Node_Id) is
3077 Left : constant Node_Id := Left_Opnd (N);
3078 Right : constant Node_Id := Right_Opnd (N);
3079 Typ : constant Entity_Id := Etype (Left);
3080 Otype : Entity_Id := Empty;
3081 Result : Boolean;
3083 begin
3084 -- One special case to deal with first. If we can tell that the result
3085 -- will be false because the lengths of one or more index subtypes are
3086 -- compile time known and different, then we can replace the entire
3087 -- result by False. We only do this for one dimensional arrays, because
3088 -- the case of multi-dimensional arrays is rare and too much trouble. If
3089 -- one of the operands is an illegal aggregate, its type might still be
3090 -- an arbitrary composite type, so nothing to do.
3092 if Is_Array_Type (Typ)
3093 and then Typ /= Any_Composite
3094 and then Number_Dimensions (Typ) = 1
3095 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
3096 then
3097 if Raises_Constraint_Error (Left)
3098 or else
3099 Raises_Constraint_Error (Right)
3100 then
3101 return;
3102 end if;
3104 -- OK, we have the case where we may be able to do this fold
3106 Length_Mismatch : declare
3107 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
3108 -- If Op is an expression for a constrained array with a known at
3109 -- compile time length, then Len is set to this (non-negative
3110 -- length). Otherwise Len is set to minus 1.
3112 -----------------------
3113 -- Get_Static_Length --
3114 -----------------------
3116 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
3117 T : Entity_Id;
3119 begin
3120 -- First easy case string literal
3122 if Nkind (Op) = N_String_Literal then
3123 Len := UI_From_Int (String_Length (Strval (Op)));
3124 return;
3125 end if;
3127 -- Second easy case, not constrained subtype, so no length
3129 if not Is_Constrained (Etype (Op)) then
3130 Len := Uint_Minus_1;
3131 return;
3132 end if;
3134 -- General case
3136 T := Etype (First_Index (Etype (Op)));
3138 -- The simple case, both bounds are known at compile time
3140 if Is_Discrete_Type (T)
3141 and then Compile_Time_Known_Value (Type_Low_Bound (T))
3142 and then Compile_Time_Known_Value (Type_High_Bound (T))
3143 then
3144 Len := UI_Max (Uint_0,
3145 Expr_Value (Type_High_Bound (T)) -
3146 Expr_Value (Type_Low_Bound (T)) + 1);
3147 return;
3148 end if;
3150 -- A more complex case, where the bounds are of the form
3151 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
3152 -- either A'First or A'Last (with A an entity name), or X is an
3153 -- entity name, and the two X's are the same and K1 and K2 are
3154 -- known at compile time, in this case, the length can also be
3155 -- computed at compile time, even though the bounds are not
3156 -- known. A common case of this is e.g. (X'First .. X'First+5).
3158 Extract_Length : declare
3159 procedure Decompose_Expr
3160 (Expr : Node_Id;
3161 Ent : out Entity_Id;
3162 Kind : out Character;
3163 Cons : out Uint);
3164 -- Given an expression see if it is of the form given above,
3165 -- X [+/- K]. If so Ent is set to the entity in X, Kind is
3166 -- 'F','L','E' for 'First/'Last/simple entity, and Cons is
3167 -- the value of K. If the expression is not of the required
3168 -- form, Ent is set to Empty.
3170 --------------------
3171 -- Decompose_Expr --
3172 --------------------
3174 procedure Decompose_Expr
3175 (Expr : Node_Id;
3176 Ent : out Entity_Id;
3177 Kind : out Character;
3178 Cons : out Uint)
3180 Exp : Node_Id;
3182 begin
3183 if Nkind (Expr) = N_Op_Add
3184 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3185 then
3186 Exp := Left_Opnd (Expr);
3187 Cons := Expr_Value (Right_Opnd (Expr));
3189 elsif Nkind (Expr) = N_Op_Subtract
3190 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3191 then
3192 Exp := Left_Opnd (Expr);
3193 Cons := -Expr_Value (Right_Opnd (Expr));
3195 -- If the bound is a constant created to remove side
3196 -- effects, recover original expression to see if it has
3197 -- one of the recognizable forms.
3199 elsif Nkind (Expr) = N_Identifier
3200 and then not Comes_From_Source (Entity (Expr))
3201 and then Ekind (Entity (Expr)) = E_Constant
3202 and then
3203 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3204 then
3205 Exp := Expression (Parent (Entity (Expr)));
3206 Decompose_Expr (Exp, Ent, Kind, Cons);
3208 -- If original expression includes an entity, create a
3209 -- reference to it for use below.
3211 if Present (Ent) then
3212 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3213 end if;
3215 else
3216 Exp := Expr;
3217 Cons := Uint_0;
3218 end if;
3220 -- At this stage Exp is set to the potential X
3222 if Nkind (Exp) = N_Attribute_Reference then
3223 if Attribute_Name (Exp) = Name_First then
3224 Kind := 'F';
3225 elsif Attribute_Name (Exp) = Name_Last then
3226 Kind := 'L';
3227 else
3228 Ent := Empty;
3229 return;
3230 end if;
3232 Exp := Prefix (Exp);
3234 else
3235 Kind := 'E';
3236 end if;
3238 if Is_Entity_Name (Exp) and then Present (Entity (Exp))
3239 then
3240 Ent := Entity (Exp);
3241 else
3242 Ent := Empty;
3243 end if;
3244 end Decompose_Expr;
3246 -- Local Variables
3248 Ent1, Ent2 : Entity_Id;
3249 Kind1, Kind2 : Character;
3250 Cons1, Cons2 : Uint;
3252 -- Start of processing for Extract_Length
3254 begin
3255 Decompose_Expr
3256 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
3257 Decompose_Expr
3258 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
3260 if Present (Ent1)
3261 and then Kind1 = Kind2
3262 and then Ent1 = Ent2
3263 then
3264 Len := Cons2 - Cons1 + 1;
3265 else
3266 Len := Uint_Minus_1;
3267 end if;
3268 end Extract_Length;
3269 end Get_Static_Length;
3271 -- Local Variables
3273 Len_L : Uint;
3274 Len_R : Uint;
3276 -- Start of processing for Length_Mismatch
3278 begin
3279 Get_Static_Length (Left, Len_L);
3280 Get_Static_Length (Right, Len_R);
3282 if Len_L /= Uint_Minus_1
3283 and then Len_R /= Uint_Minus_1
3284 and then Len_L /= Len_R
3285 then
3286 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3287 Warn_On_Known_Condition (N);
3288 return;
3289 end if;
3290 end Length_Mismatch;
3291 end if;
3293 declare
3294 Is_Static_Expression : Boolean;
3296 Is_Foldable : Boolean;
3297 pragma Unreferenced (Is_Foldable);
3299 begin
3300 -- Initialize the value of Is_Static_Expression. The value of
3301 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3302 -- since, even when some operand is a variable, we can still perform
3303 -- the static evaluation of the expression in some cases (for
3304 -- example, for a variable of a subtype of Integer we statically
3305 -- know that any value stored in such variable is smaller than
3306 -- Integer'Last).
3308 Test_Expression_Is_Foldable
3309 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3311 -- Only comparisons of scalars can give static results. In
3312 -- particular, comparisons of strings never yield a static
3313 -- result, even if both operands are static strings, except that
3314 -- as noted above, we allow equality/inequality for strings.
3316 if Is_String_Type (Typ)
3317 and then not Comes_From_Source (N)
3318 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3319 then
3320 null;
3322 elsif not Is_Scalar_Type (Typ) then
3323 Is_Static_Expression := False;
3324 Set_Is_Static_Expression (N, False);
3325 end if;
3327 -- For operators on universal numeric types called as functions with
3328 -- an explicit scope, determine appropriate specific numeric type,
3329 -- and diagnose possible ambiguity.
3331 if Is_Universal_Numeric_Type (Etype (Left))
3332 and then
3333 Is_Universal_Numeric_Type (Etype (Right))
3334 then
3335 Otype := Find_Universal_Operator_Type (N);
3336 end if;
3338 -- For static real type expressions, do not use Compile_Time_Compare
3339 -- since it worries about run-time results which are not exact.
3341 if Is_Static_Expression and then Is_Real_Type (Typ) then
3342 declare
3343 Left_Real : constant Ureal := Expr_Value_R (Left);
3344 Right_Real : constant Ureal := Expr_Value_R (Right);
3346 begin
3347 case Nkind (N) is
3348 when N_Op_Eq => Result := (Left_Real = Right_Real);
3349 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3350 when N_Op_Lt => Result := (Left_Real < Right_Real);
3351 when N_Op_Le => Result := (Left_Real <= Right_Real);
3352 when N_Op_Gt => Result := (Left_Real > Right_Real);
3353 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3355 when others =>
3356 raise Program_Error;
3357 end case;
3359 Fold_Uint (N, Test (Result), True);
3360 end;
3362 -- For all other cases, we use Compile_Time_Compare to do the compare
3364 else
3365 declare
3366 CR : constant Compare_Result :=
3367 Compile_Time_Compare
3368 (Left, Right, Assume_Valid => False);
3370 begin
3371 if CR = Unknown then
3372 return;
3373 end if;
3375 case Nkind (N) is
3376 when N_Op_Eq =>
3377 if CR = EQ then
3378 Result := True;
3379 elsif CR = NE or else CR = GT or else CR = LT then
3380 Result := False;
3381 else
3382 return;
3383 end if;
3385 when N_Op_Ne =>
3386 if CR = NE or else CR = GT or else CR = LT then
3387 Result := True;
3388 elsif CR = EQ then
3389 Result := False;
3390 else
3391 return;
3392 end if;
3394 when N_Op_Lt =>
3395 if CR = LT then
3396 Result := True;
3397 elsif CR = EQ or else CR = GT or else CR = GE then
3398 Result := False;
3399 else
3400 return;
3401 end if;
3403 when N_Op_Le =>
3404 if CR = LT or else CR = EQ or else CR = LE then
3405 Result := True;
3406 elsif CR = GT then
3407 Result := False;
3408 else
3409 return;
3410 end if;
3412 when N_Op_Gt =>
3413 if CR = GT then
3414 Result := True;
3415 elsif CR = EQ or else CR = LT or else CR = LE then
3416 Result := False;
3417 else
3418 return;
3419 end if;
3421 when N_Op_Ge =>
3422 if CR = GT or else CR = EQ or else CR = GE then
3423 Result := True;
3424 elsif CR = LT then
3425 Result := False;
3426 else
3427 return;
3428 end if;
3430 when others =>
3431 raise Program_Error;
3432 end case;
3433 end;
3435 Fold_Uint (N, Test (Result), Is_Static_Expression);
3436 end if;
3437 end;
3439 -- For the case of a folded relational operator on a specific numeric
3440 -- type, freeze operand type now.
3442 if Present (Otype) then
3443 Freeze_Before (N, Otype);
3444 end if;
3446 Warn_On_Known_Condition (N);
3447 end Eval_Relational_Op;
3449 ----------------
3450 -- Eval_Shift --
3451 ----------------
3453 -- Shift operations are intrinsic operations that can never be static, so
3454 -- the only processing required is to perform the required check for a non
3455 -- static context for the two operands.
3457 -- Actually we could do some compile time evaluation here some time ???
3459 procedure Eval_Shift (N : Node_Id) is
3460 begin
3461 Check_Non_Static_Context (Left_Opnd (N));
3462 Check_Non_Static_Context (Right_Opnd (N));
3463 end Eval_Shift;
3465 ------------------------
3466 -- Eval_Short_Circuit --
3467 ------------------------
3469 -- A short circuit operation is potentially static if both operands are
3470 -- potentially static (RM 4.9 (13)).
3472 procedure Eval_Short_Circuit (N : Node_Id) is
3473 Kind : constant Node_Kind := Nkind (N);
3474 Left : constant Node_Id := Left_Opnd (N);
3475 Right : constant Node_Id := Right_Opnd (N);
3476 Left_Int : Uint;
3478 Rstat : constant Boolean :=
3479 Is_Static_Expression (Left)
3480 and then
3481 Is_Static_Expression (Right);
3483 begin
3484 -- Short circuit operations are never static in Ada 83
3486 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3487 Check_Non_Static_Context (Left);
3488 Check_Non_Static_Context (Right);
3489 return;
3490 end if;
3492 -- Now look at the operands, we can't quite use the normal call to
3493 -- Test_Expression_Is_Foldable here because short circuit operations
3494 -- are a special case, they can still be foldable, even if the right
3495 -- operand raises constraint error.
3497 -- If either operand is Any_Type, just propagate to result and do not
3498 -- try to fold, this prevents cascaded errors.
3500 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3501 Set_Etype (N, Any_Type);
3502 return;
3504 -- If left operand raises constraint error, then replace node N with
3505 -- the raise constraint error node, and we are obviously not foldable.
3506 -- Is_Static_Expression is set from the two operands in the normal way,
3507 -- and we check the right operand if it is in a non-static context.
3509 elsif Raises_Constraint_Error (Left) then
3510 if not Rstat then
3511 Check_Non_Static_Context (Right);
3512 end if;
3514 Rewrite_In_Raise_CE (N, Left);
3515 Set_Is_Static_Expression (N, Rstat);
3516 return;
3518 -- If the result is not static, then we won't in any case fold
3520 elsif not Rstat then
3521 Check_Non_Static_Context (Left);
3522 Check_Non_Static_Context (Right);
3523 return;
3524 end if;
3526 -- Here the result is static, note that, unlike the normal processing
3527 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3528 -- the right operand raises constraint error, that's because it is not
3529 -- significant if the left operand is decisive.
3531 Set_Is_Static_Expression (N);
3533 -- It does not matter if the right operand raises constraint error if
3534 -- it will not be evaluated. So deal specially with the cases where
3535 -- the right operand is not evaluated. Note that we will fold these
3536 -- cases even if the right operand is non-static, which is fine, but
3537 -- of course in these cases the result is not potentially static.
3539 Left_Int := Expr_Value (Left);
3541 if (Kind = N_And_Then and then Is_False (Left_Int))
3542 or else
3543 (Kind = N_Or_Else and then Is_True (Left_Int))
3544 then
3545 Fold_Uint (N, Left_Int, Rstat);
3546 return;
3547 end if;
3549 -- If first operand not decisive, then it does matter if the right
3550 -- operand raises constraint error, since it will be evaluated, so
3551 -- we simply replace the node with the right operand. Note that this
3552 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3553 -- (both are set to True in Right).
3555 if Raises_Constraint_Error (Right) then
3556 Rewrite_In_Raise_CE (N, Right);
3557 Check_Non_Static_Context (Left);
3558 return;
3559 end if;
3561 -- Otherwise the result depends on the right operand
3563 Fold_Uint (N, Expr_Value (Right), Rstat);
3564 return;
3565 end Eval_Short_Circuit;
3567 ----------------
3568 -- Eval_Slice --
3569 ----------------
3571 -- Slices can never be static, so the only processing required is to check
3572 -- for non-static context if an explicit range is given.
3574 procedure Eval_Slice (N : Node_Id) is
3575 Drange : constant Node_Id := Discrete_Range (N);
3577 begin
3578 if Nkind (Drange) = N_Range then
3579 Check_Non_Static_Context (Low_Bound (Drange));
3580 Check_Non_Static_Context (High_Bound (Drange));
3581 end if;
3583 -- A slice of the form A (subtype), when the subtype is the index of
3584 -- the type of A, is redundant, the slice can be replaced with A, and
3585 -- this is worth a warning.
3587 if Is_Entity_Name (Prefix (N)) then
3588 declare
3589 E : constant Entity_Id := Entity (Prefix (N));
3590 T : constant Entity_Id := Etype (E);
3592 begin
3593 if Ekind (E) = E_Constant
3594 and then Is_Array_Type (T)
3595 and then Is_Entity_Name (Drange)
3596 then
3597 if Is_Entity_Name (Original_Node (First_Index (T)))
3598 and then Entity (Original_Node (First_Index (T)))
3599 = Entity (Drange)
3600 then
3601 if Warn_On_Redundant_Constructs then
3602 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3603 end if;
3605 -- The following might be a useful optimization???
3607 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3608 end if;
3609 end if;
3610 end;
3611 end if;
3612 end Eval_Slice;
3614 -------------------------
3615 -- Eval_String_Literal --
3616 -------------------------
3618 procedure Eval_String_Literal (N : Node_Id) is
3619 Typ : constant Entity_Id := Etype (N);
3620 Bas : constant Entity_Id := Base_Type (Typ);
3621 Xtp : Entity_Id;
3622 Len : Nat;
3623 Lo : Node_Id;
3625 begin
3626 -- Nothing to do if error type (handles cases like default expressions
3627 -- or generics where we have not yet fully resolved the type).
3629 if Bas = Any_Type or else Bas = Any_String then
3630 return;
3631 end if;
3633 -- String literals are static if the subtype is static (RM 4.9(2)), so
3634 -- reset the static expression flag (it was set unconditionally in
3635 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3636 -- the subtype is static by looking at the lower bound.
3638 if Ekind (Typ) = E_String_Literal_Subtype then
3639 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3640 Set_Is_Static_Expression (N, False);
3641 return;
3642 end if;
3644 -- Here if Etype of string literal is normal Etype (not yet possible,
3645 -- but may be possible in future).
3647 elsif not Is_OK_Static_Expression
3648 (Type_Low_Bound (Etype (First_Index (Typ))))
3649 then
3650 Set_Is_Static_Expression (N, False);
3651 return;
3652 end if;
3654 -- If original node was a type conversion, then result if non-static
3656 if Nkind (Original_Node (N)) = N_Type_Conversion then
3657 Set_Is_Static_Expression (N, False);
3658 return;
3659 end if;
3661 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3662 -- if its bounds are outside the index base type and this index type is
3663 -- static. This can happen in only two ways. Either the string literal
3664 -- is too long, or it is null, and the lower bound is type'First. Either
3665 -- way it is the upper bound that is out of range of the index type.
3667 if Ada_Version >= Ada_95 then
3668 if Is_Standard_String_Type (Bas) then
3669 Xtp := Standard_Positive;
3670 else
3671 Xtp := Etype (First_Index (Bas));
3672 end if;
3674 if Ekind (Typ) = E_String_Literal_Subtype then
3675 Lo := String_Literal_Low_Bound (Typ);
3676 else
3677 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3678 end if;
3680 -- Check for string too long
3682 Len := String_Length (Strval (N));
3684 if UI_From_Int (Len) > String_Type_Len (Bas) then
3686 -- Issue message. Note that this message is a warning if the
3687 -- string literal is not marked as static (happens in some cases
3688 -- of folding strings known at compile time, but not static).
3689 -- Furthermore in such cases, we reword the message, since there
3690 -- is no string literal in the source program.
3692 if Is_Static_Expression (N) then
3693 Apply_Compile_Time_Constraint_Error
3694 (N, "string literal too long for}", CE_Length_Check_Failed,
3695 Ent => Bas,
3696 Typ => First_Subtype (Bas));
3697 else
3698 Apply_Compile_Time_Constraint_Error
3699 (N, "string value too long for}", CE_Length_Check_Failed,
3700 Ent => Bas,
3701 Typ => First_Subtype (Bas),
3702 Warn => True);
3703 end if;
3705 -- Test for null string not allowed
3707 elsif Len = 0
3708 and then not Is_Generic_Type (Xtp)
3709 and then
3710 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3711 then
3712 -- Same specialization of message
3714 if Is_Static_Expression (N) then
3715 Apply_Compile_Time_Constraint_Error
3716 (N, "null string literal not allowed for}",
3717 CE_Length_Check_Failed,
3718 Ent => Bas,
3719 Typ => First_Subtype (Bas));
3720 else
3721 Apply_Compile_Time_Constraint_Error
3722 (N, "null string value not allowed for}",
3723 CE_Length_Check_Failed,
3724 Ent => Bas,
3725 Typ => First_Subtype (Bas),
3726 Warn => True);
3727 end if;
3728 end if;
3729 end if;
3730 end Eval_String_Literal;
3732 --------------------------
3733 -- Eval_Type_Conversion --
3734 --------------------------
3736 -- A type conversion is potentially static if its subtype mark is for a
3737 -- static scalar subtype, and its operand expression is potentially static
3738 -- (RM 4.9(10)).
3740 procedure Eval_Type_Conversion (N : Node_Id) is
3741 Operand : constant Node_Id := Expression (N);
3742 Source_Type : constant Entity_Id := Etype (Operand);
3743 Target_Type : constant Entity_Id := Etype (N);
3745 Stat : Boolean;
3746 Fold : Boolean;
3748 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3749 -- Returns true if type T is an integer type, or if it is a fixed-point
3750 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3751 -- on the conversion node).
3753 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3754 -- Returns true if type T is a floating-point type, or if it is a
3755 -- fixed-point type that is not to be treated as an integer (i.e. the
3756 -- flag Conversion_OK is not set on the conversion node).
3758 ------------------------------
3759 -- To_Be_Treated_As_Integer --
3760 ------------------------------
3762 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3763 begin
3764 return
3765 Is_Integer_Type (T)
3766 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3767 end To_Be_Treated_As_Integer;
3769 ---------------------------
3770 -- To_Be_Treated_As_Real --
3771 ---------------------------
3773 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3774 begin
3775 return
3776 Is_Floating_Point_Type (T)
3777 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3778 end To_Be_Treated_As_Real;
3780 -- Start of processing for Eval_Type_Conversion
3782 begin
3783 -- Cannot fold if target type is non-static or if semantic error
3785 if not Is_Static_Subtype (Target_Type) then
3786 Check_Non_Static_Context (Operand);
3787 return;
3788 elsif Error_Posted (N) then
3789 return;
3790 end if;
3792 -- If not foldable we are done
3794 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3796 if not Fold then
3797 return;
3799 -- Don't try fold if target type has constraint error bounds
3801 elsif not Is_OK_Static_Subtype (Target_Type) then
3802 Set_Raises_Constraint_Error (N);
3803 return;
3804 end if;
3806 -- Remaining processing depends on operand types. Note that in the
3807 -- following type test, fixed-point counts as real unless the flag
3808 -- Conversion_OK is set, in which case it counts as integer.
3810 -- Fold conversion, case of string type. The result is not static
3812 if Is_String_Type (Target_Type) then
3813 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3814 return;
3816 -- Fold conversion, case of integer target type
3818 elsif To_Be_Treated_As_Integer (Target_Type) then
3819 declare
3820 Result : Uint;
3822 begin
3823 -- Integer to integer conversion
3825 if To_Be_Treated_As_Integer (Source_Type) then
3826 Result := Expr_Value (Operand);
3828 -- Real to integer conversion
3830 else
3831 Result := UR_To_Uint (Expr_Value_R (Operand));
3832 end if;
3834 -- If fixed-point type (Conversion_OK must be set), then the
3835 -- result is logically an integer, but we must replace the
3836 -- conversion with the corresponding real literal, since the
3837 -- type from a semantic point of view is still fixed-point.
3839 if Is_Fixed_Point_Type (Target_Type) then
3840 Fold_Ureal
3841 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3843 -- Otherwise result is integer literal
3845 else
3846 Fold_Uint (N, Result, Stat);
3847 end if;
3848 end;
3850 -- Fold conversion, case of real target type
3852 elsif To_Be_Treated_As_Real (Target_Type) then
3853 declare
3854 Result : Ureal;
3856 begin
3857 if To_Be_Treated_As_Real (Source_Type) then
3858 Result := Expr_Value_R (Operand);
3859 else
3860 Result := UR_From_Uint (Expr_Value (Operand));
3861 end if;
3863 Fold_Ureal (N, Result, Stat);
3864 end;
3866 -- Enumeration types
3868 else
3869 Fold_Uint (N, Expr_Value (Operand), Stat);
3870 end if;
3872 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3873 Out_Of_Range (N);
3874 end if;
3876 end Eval_Type_Conversion;
3878 -------------------
3879 -- Eval_Unary_Op --
3880 -------------------
3882 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3883 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3885 procedure Eval_Unary_Op (N : Node_Id) is
3886 Right : constant Node_Id := Right_Opnd (N);
3887 Otype : Entity_Id := Empty;
3888 Stat : Boolean;
3889 Fold : Boolean;
3891 begin
3892 -- If not foldable we are done
3894 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3896 if not Fold then
3897 return;
3898 end if;
3900 if Etype (Right) = Universal_Integer
3901 or else
3902 Etype (Right) = Universal_Real
3903 then
3904 Otype := Find_Universal_Operator_Type (N);
3905 end if;
3907 -- Fold for integer case
3909 if Is_Integer_Type (Etype (N)) then
3910 declare
3911 Rint : constant Uint := Expr_Value (Right);
3912 Result : Uint;
3914 begin
3915 -- In the case of modular unary plus and abs there is no need
3916 -- to adjust the result of the operation since if the original
3917 -- operand was in bounds the result will be in the bounds of the
3918 -- modular type. However, in the case of modular unary minus the
3919 -- result may go out of the bounds of the modular type and needs
3920 -- adjustment.
3922 if Nkind (N) = N_Op_Plus then
3923 Result := Rint;
3925 elsif Nkind (N) = N_Op_Minus then
3926 if Is_Modular_Integer_Type (Etype (N)) then
3927 Result := (-Rint) mod Modulus (Etype (N));
3928 else
3929 Result := (-Rint);
3930 end if;
3932 else
3933 pragma Assert (Nkind (N) = N_Op_Abs);
3934 Result := abs Rint;
3935 end if;
3937 Fold_Uint (N, Result, Stat);
3938 end;
3940 -- Fold for real case
3942 elsif Is_Real_Type (Etype (N)) then
3943 declare
3944 Rreal : constant Ureal := Expr_Value_R (Right);
3945 Result : Ureal;
3947 begin
3948 if Nkind (N) = N_Op_Plus then
3949 Result := Rreal;
3950 elsif Nkind (N) = N_Op_Minus then
3951 Result := UR_Negate (Rreal);
3952 else
3953 pragma Assert (Nkind (N) = N_Op_Abs);
3954 Result := abs Rreal;
3955 end if;
3957 Fold_Ureal (N, Result, Stat);
3958 end;
3959 end if;
3961 -- If the operator was resolved to a specific type, make sure that type
3962 -- is frozen even if the expression is folded into a literal (which has
3963 -- a universal type).
3965 if Present (Otype) then
3966 Freeze_Before (N, Otype);
3967 end if;
3968 end Eval_Unary_Op;
3970 -------------------------------
3971 -- Eval_Unchecked_Conversion --
3972 -------------------------------
3974 -- Unchecked conversions can never be static, so the only required
3975 -- processing is to check for a non-static context for the operand.
3977 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3978 begin
3979 Check_Non_Static_Context (Expression (N));
3980 end Eval_Unchecked_Conversion;
3982 --------------------
3983 -- Expr_Rep_Value --
3984 --------------------
3986 function Expr_Rep_Value (N : Node_Id) return Uint is
3987 Kind : constant Node_Kind := Nkind (N);
3988 Ent : Entity_Id;
3990 begin
3991 if Is_Entity_Name (N) then
3992 Ent := Entity (N);
3994 -- An enumeration literal that was either in the source or created
3995 -- as a result of static evaluation.
3997 if Ekind (Ent) = E_Enumeration_Literal then
3998 return Enumeration_Rep (Ent);
4000 -- A user defined static constant
4002 else
4003 pragma Assert (Ekind (Ent) = E_Constant);
4004 return Expr_Rep_Value (Constant_Value (Ent));
4005 end if;
4007 -- An integer literal that was either in the source or created as a
4008 -- result of static evaluation.
4010 elsif Kind = N_Integer_Literal then
4011 return Intval (N);
4013 -- A real literal for a fixed-point type. This must be the fixed-point
4014 -- case, either the literal is of a fixed-point type, or it is a bound
4015 -- of a fixed-point type, with type universal real. In either case we
4016 -- obtain the desired value from Corresponding_Integer_Value.
4018 elsif Kind = N_Real_Literal then
4019 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4020 return Corresponding_Integer_Value (N);
4022 -- Otherwise must be character literal
4024 else
4025 pragma Assert (Kind = N_Character_Literal);
4026 Ent := Entity (N);
4028 -- Since Character literals of type Standard.Character don't have any
4029 -- defining character literals built for them, they do not have their
4030 -- Entity set, so just use their Char code. Otherwise for user-
4031 -- defined character literals use their Pos value as usual which is
4032 -- the same as the Rep value.
4034 if No (Ent) then
4035 return Char_Literal_Value (N);
4036 else
4037 return Enumeration_Rep (Ent);
4038 end if;
4039 end if;
4040 end Expr_Rep_Value;
4042 ----------------
4043 -- Expr_Value --
4044 ----------------
4046 function Expr_Value (N : Node_Id) return Uint is
4047 Kind : constant Node_Kind := Nkind (N);
4048 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4049 Ent : Entity_Id;
4050 Val : Uint;
4052 begin
4053 -- If already in cache, then we know it's compile time known and we can
4054 -- return the value that was previously stored in the cache since
4055 -- compile time known values cannot change.
4057 if CV_Ent.N = N then
4058 return CV_Ent.V;
4059 end if;
4061 -- Otherwise proceed to test value
4063 if Is_Entity_Name (N) then
4064 Ent := Entity (N);
4066 -- An enumeration literal that was either in the source or created as
4067 -- a result of static evaluation.
4069 if Ekind (Ent) = E_Enumeration_Literal then
4070 Val := Enumeration_Pos (Ent);
4072 -- A user defined static constant
4074 else
4075 pragma Assert (Ekind (Ent) = E_Constant);
4076 Val := Expr_Value (Constant_Value (Ent));
4077 end if;
4079 -- An integer literal that was either in the source or created as a
4080 -- result of static evaluation.
4082 elsif Kind = N_Integer_Literal then
4083 Val := Intval (N);
4085 -- A real literal for a fixed-point type. This must be the fixed-point
4086 -- case, either the literal is of a fixed-point type, or it is a bound
4087 -- of a fixed-point type, with type universal real. In either case we
4088 -- obtain the desired value from Corresponding_Integer_Value.
4090 elsif Kind = N_Real_Literal then
4091 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4092 Val := Corresponding_Integer_Value (N);
4094 -- Otherwise must be character literal
4096 else
4097 pragma Assert (Kind = N_Character_Literal);
4098 Ent := Entity (N);
4100 -- Since Character literals of type Standard.Character don't
4101 -- have any defining character literals built for them, they
4102 -- do not have their Entity set, so just use their Char
4103 -- code. Otherwise for user-defined character literals use
4104 -- their Pos value as usual.
4106 if No (Ent) then
4107 Val := Char_Literal_Value (N);
4108 else
4109 Val := Enumeration_Pos (Ent);
4110 end if;
4111 end if;
4113 -- Come here with Val set to value to be returned, set cache
4115 CV_Ent.N := N;
4116 CV_Ent.V := Val;
4117 return Val;
4118 end Expr_Value;
4120 ------------------
4121 -- Expr_Value_E --
4122 ------------------
4124 function Expr_Value_E (N : Node_Id) return Entity_Id is
4125 Ent : constant Entity_Id := Entity (N);
4126 begin
4127 if Ekind (Ent) = E_Enumeration_Literal then
4128 return Ent;
4129 else
4130 pragma Assert (Ekind (Ent) = E_Constant);
4131 return Expr_Value_E (Constant_Value (Ent));
4132 end if;
4133 end Expr_Value_E;
4135 ------------------
4136 -- Expr_Value_R --
4137 ------------------
4139 function Expr_Value_R (N : Node_Id) return Ureal is
4140 Kind : constant Node_Kind := Nkind (N);
4141 Ent : Entity_Id;
4143 begin
4144 if Kind = N_Real_Literal then
4145 return Realval (N);
4147 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4148 Ent := Entity (N);
4149 pragma Assert (Ekind (Ent) = E_Constant);
4150 return Expr_Value_R (Constant_Value (Ent));
4152 elsif Kind = N_Integer_Literal then
4153 return UR_From_Uint (Expr_Value (N));
4155 -- Here, we have a node that cannot be interpreted as a compile time
4156 -- constant. That is definitely an error.
4158 else
4159 raise Program_Error;
4160 end if;
4161 end Expr_Value_R;
4163 ------------------
4164 -- Expr_Value_S --
4165 ------------------
4167 function Expr_Value_S (N : Node_Id) return Node_Id is
4168 begin
4169 if Nkind (N) = N_String_Literal then
4170 return N;
4171 else
4172 pragma Assert (Ekind (Entity (N)) = E_Constant);
4173 return Expr_Value_S (Constant_Value (Entity (N)));
4174 end if;
4175 end Expr_Value_S;
4177 ----------------------------------
4178 -- Find_Universal_Operator_Type --
4179 ----------------------------------
4181 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4182 PN : constant Node_Id := Parent (N);
4183 Call : constant Node_Id := Original_Node (N);
4184 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4186 Is_Fix : constant Boolean :=
4187 Nkind (N) in N_Binary_Op
4188 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4189 -- A mixed-mode operation in this context indicates the presence of
4190 -- fixed-point type in the designated package.
4192 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4193 -- Case where N is a relational (or membership) operator (else it is an
4194 -- arithmetic one).
4196 In_Membership : constant Boolean :=
4197 Nkind (PN) in N_Membership_Test
4198 and then
4199 Nkind (Right_Opnd (PN)) = N_Range
4200 and then
4201 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4202 and then
4203 Is_Universal_Numeric_Type
4204 (Etype (Low_Bound (Right_Opnd (PN))))
4205 and then
4206 Is_Universal_Numeric_Type
4207 (Etype (High_Bound (Right_Opnd (PN))));
4208 -- Case where N is part of a membership test with a universal range
4210 E : Entity_Id;
4211 Pack : Entity_Id;
4212 Typ1 : Entity_Id := Empty;
4213 Priv_E : Entity_Id;
4215 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
4216 -- Check whether one operand is a mixed-mode operation that requires the
4217 -- presence of a fixed-point type. Given that all operands are universal
4218 -- and have been constant-folded, retrieve the original function call.
4220 ---------------------------
4221 -- Is_Mixed_Mode_Operand --
4222 ---------------------------
4224 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
4225 Onod : constant Node_Id := Original_Node (Op);
4226 begin
4227 return Nkind (Onod) = N_Function_Call
4228 and then Present (Next_Actual (First_Actual (Onod)))
4229 and then Etype (First_Actual (Onod)) /=
4230 Etype (Next_Actual (First_Actual (Onod)));
4231 end Is_Mixed_Mode_Operand;
4233 -- Start of processing for Find_Universal_Operator_Type
4235 begin
4236 if Nkind (Call) /= N_Function_Call
4237 or else Nkind (Name (Call)) /= N_Expanded_Name
4238 then
4239 return Empty;
4241 -- There are several cases where the context does not imply the type of
4242 -- the operands:
4243 -- - the universal expression appears in a type conversion;
4244 -- - the expression is a relational operator applied to universal
4245 -- operands;
4246 -- - the expression is a membership test with a universal operand
4247 -- and a range with universal bounds.
4249 elsif Nkind (Parent (N)) = N_Type_Conversion
4250 or else Is_Relational
4251 or else In_Membership
4252 then
4253 Pack := Entity (Prefix (Name (Call)));
4255 -- If the prefix is a package declared elsewhere, iterate over its
4256 -- visible entities, otherwise iterate over all declarations in the
4257 -- designated scope.
4259 if Ekind (Pack) = E_Package
4260 and then not In_Open_Scopes (Pack)
4261 then
4262 Priv_E := First_Private_Entity (Pack);
4263 else
4264 Priv_E := Empty;
4265 end if;
4267 Typ1 := Empty;
4268 E := First_Entity (Pack);
4269 while Present (E) and then E /= Priv_E loop
4270 if Is_Numeric_Type (E)
4271 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4272 and then Comes_From_Source (E)
4273 and then Is_Integer_Type (E) = Is_Int
4274 and then (Nkind (N) in N_Unary_Op
4275 or else Is_Relational
4276 or else Is_Fixed_Point_Type (E) = Is_Fix)
4277 then
4278 if No (Typ1) then
4279 Typ1 := E;
4281 -- Before emitting an error, check for the presence of a
4282 -- mixed-mode operation that specifies a fixed point type.
4284 elsif Is_Relational
4285 and then
4286 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4287 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4288 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4290 then
4291 if Is_Fixed_Point_Type (E) then
4292 Typ1 := E;
4293 end if;
4295 else
4296 -- More than one type of the proper class declared in P
4298 Error_Msg_N ("ambiguous operation", N);
4299 Error_Msg_Sloc := Sloc (Typ1);
4300 Error_Msg_N ("\possible interpretation (inherited)#", N);
4301 Error_Msg_Sloc := Sloc (E);
4302 Error_Msg_N ("\possible interpretation (inherited)#", N);
4303 return Empty;
4304 end if;
4305 end if;
4307 Next_Entity (E);
4308 end loop;
4309 end if;
4311 return Typ1;
4312 end Find_Universal_Operator_Type;
4314 --------------------------
4315 -- Flag_Non_Static_Expr --
4316 --------------------------
4318 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4319 begin
4320 if Error_Posted (Expr) and then not All_Errors_Mode then
4321 return;
4322 else
4323 Error_Msg_F (Msg, Expr);
4324 Why_Not_Static (Expr);
4325 end if;
4326 end Flag_Non_Static_Expr;
4328 --------------
4329 -- Fold_Str --
4330 --------------
4332 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4333 Loc : constant Source_Ptr := Sloc (N);
4334 Typ : constant Entity_Id := Etype (N);
4336 begin
4337 if Raises_Constraint_Error (N) then
4338 Set_Is_Static_Expression (N, Static);
4339 return;
4340 end if;
4342 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4344 -- We now have the literal with the right value, both the actual type
4345 -- and the expected type of this literal are taken from the expression
4346 -- that was evaluated. So now we do the Analyze and Resolve.
4348 -- Note that we have to reset Is_Static_Expression both after the
4349 -- analyze step (because Resolve will evaluate the literal, which
4350 -- will cause semantic errors if it is marked as static), and after
4351 -- the Resolve step (since Resolve in some cases resets this flag).
4353 Analyze (N);
4354 Set_Is_Static_Expression (N, Static);
4355 Set_Etype (N, Typ);
4356 Resolve (N);
4357 Set_Is_Static_Expression (N, Static);
4358 end Fold_Str;
4360 ---------------
4361 -- Fold_Uint --
4362 ---------------
4364 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4365 Loc : constant Source_Ptr := Sloc (N);
4366 Typ : Entity_Id := Etype (N);
4367 Ent : Entity_Id;
4369 begin
4370 if Raises_Constraint_Error (N) then
4371 Set_Is_Static_Expression (N, Static);
4372 return;
4373 end if;
4375 -- If we are folding a named number, retain the entity in the literal,
4376 -- for ASIS use.
4378 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
4379 Ent := Entity (N);
4380 else
4381 Ent := Empty;
4382 end if;
4384 if Is_Private_Type (Typ) then
4385 Typ := Full_View (Typ);
4386 end if;
4388 -- For a result of type integer, substitute an N_Integer_Literal node
4389 -- for the result of the compile time evaluation of the expression.
4390 -- For ASIS use, set a link to the original named number when not in
4391 -- a generic context.
4393 if Is_Integer_Type (Typ) then
4394 Rewrite (N, Make_Integer_Literal (Loc, Val));
4395 Set_Original_Entity (N, Ent);
4397 -- Otherwise we have an enumeration type, and we substitute either
4398 -- an N_Identifier or N_Character_Literal to represent the enumeration
4399 -- literal corresponding to the given value, which must always be in
4400 -- range, because appropriate tests have already been made for this.
4402 else pragma Assert (Is_Enumeration_Type (Typ));
4403 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4404 end if;
4406 -- We now have the literal with the right value, both the actual type
4407 -- and the expected type of this literal are taken from the expression
4408 -- that was evaluated. So now we do the Analyze and Resolve.
4410 -- Note that we have to reset Is_Static_Expression both after the
4411 -- analyze step (because Resolve will evaluate the literal, which
4412 -- will cause semantic errors if it is marked as static), and after
4413 -- the Resolve step (since Resolve in some cases sets this flag).
4415 Analyze (N);
4416 Set_Is_Static_Expression (N, Static);
4417 Set_Etype (N, Typ);
4418 Resolve (N);
4419 Set_Is_Static_Expression (N, Static);
4420 end Fold_Uint;
4422 ----------------
4423 -- Fold_Ureal --
4424 ----------------
4426 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4427 Loc : constant Source_Ptr := Sloc (N);
4428 Typ : constant Entity_Id := Etype (N);
4429 Ent : Entity_Id;
4431 begin
4432 if Raises_Constraint_Error (N) then
4433 Set_Is_Static_Expression (N, Static);
4434 return;
4435 end if;
4437 -- If we are folding a named number, retain the entity in the literal,
4438 -- for ASIS use.
4440 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
4441 Ent := Entity (N);
4442 else
4443 Ent := Empty;
4444 end if;
4446 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4448 -- Set link to original named number, for ASIS use
4450 Set_Original_Entity (N, Ent);
4452 -- We now have the literal with the right value, both the actual type
4453 -- and the expected type of this literal are taken from the expression
4454 -- that was evaluated. So now we do the Analyze and Resolve.
4456 -- Note that we have to reset Is_Static_Expression both after the
4457 -- analyze step (because Resolve will evaluate the literal, which
4458 -- will cause semantic errors if it is marked as static), and after
4459 -- the Resolve step (since Resolve in some cases sets this flag).
4461 Analyze (N);
4462 Set_Is_Static_Expression (N, Static);
4463 Set_Etype (N, Typ);
4464 Resolve (N);
4465 Set_Is_Static_Expression (N, Static);
4466 end Fold_Ureal;
4468 ---------------
4469 -- From_Bits --
4470 ---------------
4472 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4473 V : Uint := Uint_0;
4475 begin
4476 for J in 0 .. B'Last loop
4477 if B (J) then
4478 V := V + 2 ** J;
4479 end if;
4480 end loop;
4482 if Non_Binary_Modulus (T) then
4483 V := V mod Modulus (T);
4484 end if;
4486 return V;
4487 end From_Bits;
4489 --------------------
4490 -- Get_String_Val --
4491 --------------------
4493 function Get_String_Val (N : Node_Id) return Node_Id is
4494 begin
4495 if Nkind_In (N, N_String_Literal, N_Character_Literal) then
4496 return N;
4497 else
4498 pragma Assert (Is_Entity_Name (N));
4499 return Get_String_Val (Constant_Value (Entity (N)));
4500 end if;
4501 end Get_String_Val;
4503 ----------------
4504 -- Initialize --
4505 ----------------
4507 procedure Initialize is
4508 begin
4509 CV_Cache := (others => (Node_High_Bound, Uint_0));
4510 end Initialize;
4512 --------------------
4513 -- In_Subrange_Of --
4514 --------------------
4516 function In_Subrange_Of
4517 (T1 : Entity_Id;
4518 T2 : Entity_Id;
4519 Fixed_Int : Boolean := False) return Boolean
4521 L1 : Node_Id;
4522 H1 : Node_Id;
4524 L2 : Node_Id;
4525 H2 : Node_Id;
4527 begin
4528 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4529 return True;
4531 -- Never in range if both types are not scalar. Don't know if this can
4532 -- actually happen, but just in case.
4534 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4535 return False;
4537 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4538 -- definitely not compatible with T2.
4540 elsif Is_Floating_Point_Type (T1)
4541 and then Has_Infinities (T1)
4542 and then Is_Floating_Point_Type (T2)
4543 and then not Has_Infinities (T2)
4544 then
4545 return False;
4547 else
4548 L1 := Type_Low_Bound (T1);
4549 H1 := Type_High_Bound (T1);
4551 L2 := Type_Low_Bound (T2);
4552 H2 := Type_High_Bound (T2);
4554 -- Check bounds to see if comparison possible at compile time
4556 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4557 and then
4558 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4559 then
4560 return True;
4561 end if;
4563 -- If bounds not comparable at compile time, then the bounds of T2
4564 -- must be compile time known or we cannot answer the query.
4566 if not Compile_Time_Known_Value (L2)
4567 or else not Compile_Time_Known_Value (H2)
4568 then
4569 return False;
4570 end if;
4572 -- If the bounds of T1 are know at compile time then use these
4573 -- ones, otherwise use the bounds of the base type (which are of
4574 -- course always static).
4576 if not Compile_Time_Known_Value (L1) then
4577 L1 := Type_Low_Bound (Base_Type (T1));
4578 end if;
4580 if not Compile_Time_Known_Value (H1) then
4581 H1 := Type_High_Bound (Base_Type (T1));
4582 end if;
4584 -- Fixed point types should be considered as such only if
4585 -- flag Fixed_Int is set to False.
4587 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4588 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4589 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4590 then
4591 return
4592 Expr_Value_R (L2) <= Expr_Value_R (L1)
4593 and then
4594 Expr_Value_R (H2) >= Expr_Value_R (H1);
4596 else
4597 return
4598 Expr_Value (L2) <= Expr_Value (L1)
4599 and then
4600 Expr_Value (H2) >= Expr_Value (H1);
4602 end if;
4603 end if;
4605 -- If any exception occurs, it means that we have some bug in the compiler
4606 -- possibly triggered by a previous error, or by some unforeseen peculiar
4607 -- occurrence. However, this is only an optimization attempt, so there is
4608 -- really no point in crashing the compiler. Instead we just decide, too
4609 -- bad, we can't figure out the answer in this case after all.
4611 exception
4612 when others =>
4614 -- Debug flag K disables this behavior (useful for debugging)
4616 if Debug_Flag_K then
4617 raise;
4618 else
4619 return False;
4620 end if;
4621 end In_Subrange_Of;
4623 -----------------
4624 -- Is_In_Range --
4625 -----------------
4627 function Is_In_Range
4628 (N : Node_Id;
4629 Typ : Entity_Id;
4630 Assume_Valid : Boolean := False;
4631 Fixed_Int : Boolean := False;
4632 Int_Real : Boolean := False) return Boolean
4634 begin
4635 return
4636 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
4637 end Is_In_Range;
4639 -------------------
4640 -- Is_Null_Range --
4641 -------------------
4643 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4644 Typ : constant Entity_Id := Etype (Lo);
4646 begin
4647 if not Compile_Time_Known_Value (Lo)
4648 or else not Compile_Time_Known_Value (Hi)
4649 then
4650 return False;
4651 end if;
4653 if Is_Discrete_Type (Typ) then
4654 return Expr_Value (Lo) > Expr_Value (Hi);
4655 else pragma Assert (Is_Real_Type (Typ));
4656 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4657 end if;
4658 end Is_Null_Range;
4660 -------------------------
4661 -- Is_OK_Static_Choice --
4662 -------------------------
4664 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4665 begin
4666 -- Check various possibilities for choice
4668 -- Note: for membership tests, we test more cases than are possible
4669 -- (in particular subtype indication), but it doesn't matter because
4670 -- it just won't occur (we have already done a syntax check).
4672 if Nkind (Choice) = N_Others_Choice then
4673 return True;
4675 elsif Nkind (Choice) = N_Range then
4676 return Is_OK_Static_Range (Choice);
4678 elsif Nkind (Choice) = N_Subtype_Indication
4679 or else
4680 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4681 then
4682 return Is_OK_Static_Subtype (Etype (Choice));
4684 else
4685 return Is_OK_Static_Expression (Choice);
4686 end if;
4687 end Is_OK_Static_Choice;
4689 ------------------------------
4690 -- Is_OK_Static_Choice_List --
4691 ------------------------------
4693 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4694 Choice : Node_Id;
4696 begin
4697 if not Is_Static_Choice_List (Choices) then
4698 return False;
4699 end if;
4701 Choice := First (Choices);
4702 while Present (Choice) loop
4703 if not Is_OK_Static_Choice (Choice) then
4704 Set_Raises_Constraint_Error (Choice);
4705 return False;
4706 end if;
4708 Next (Choice);
4709 end loop;
4711 return True;
4712 end Is_OK_Static_Choice_List;
4714 -----------------------------
4715 -- Is_OK_Static_Expression --
4716 -----------------------------
4718 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4719 begin
4720 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
4721 end Is_OK_Static_Expression;
4723 ------------------------
4724 -- Is_OK_Static_Range --
4725 ------------------------
4727 -- A static range is a range whose bounds are static expressions, or a
4728 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4729 -- We have already converted range attribute references, so we get the
4730 -- "or" part of this rule without needing a special test.
4732 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4733 begin
4734 return Is_OK_Static_Expression (Low_Bound (N))
4735 and then Is_OK_Static_Expression (High_Bound (N));
4736 end Is_OK_Static_Range;
4738 --------------------------
4739 -- Is_OK_Static_Subtype --
4740 --------------------------
4742 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4743 -- neither bound raises constraint error when evaluated.
4745 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4746 Base_T : constant Entity_Id := Base_Type (Typ);
4747 Anc_Subt : Entity_Id;
4749 begin
4750 -- First a quick check on the non static subtype flag. As described
4751 -- in further detail in Einfo, this flag is not decisive in all cases,
4752 -- but if it is set, then the subtype is definitely non-static.
4754 if Is_Non_Static_Subtype (Typ) then
4755 return False;
4756 end if;
4758 Anc_Subt := Ancestor_Subtype (Typ);
4760 if Anc_Subt = Empty then
4761 Anc_Subt := Base_T;
4762 end if;
4764 if Is_Generic_Type (Root_Type (Base_T))
4765 or else Is_Generic_Actual_Type (Base_T)
4766 then
4767 return False;
4769 -- String types
4771 elsif Is_String_Type (Typ) then
4772 return
4773 Ekind (Typ) = E_String_Literal_Subtype
4774 or else
4775 (Is_OK_Static_Subtype (Component_Type (Typ))
4776 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4778 -- Scalar types
4780 elsif Is_Scalar_Type (Typ) then
4781 if Base_T = Typ then
4782 return True;
4784 else
4785 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4786 -- Get_Type_{Low,High}_Bound.
4788 return Is_OK_Static_Subtype (Anc_Subt)
4789 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4790 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4791 end if;
4793 -- Types other than string and scalar types are never static
4795 else
4796 return False;
4797 end if;
4798 end Is_OK_Static_Subtype;
4800 ---------------------
4801 -- Is_Out_Of_Range --
4802 ---------------------
4804 function Is_Out_Of_Range
4805 (N : Node_Id;
4806 Typ : Entity_Id;
4807 Assume_Valid : Boolean := False;
4808 Fixed_Int : Boolean := False;
4809 Int_Real : Boolean := False) return Boolean
4811 begin
4812 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
4813 Out_Of_Range;
4814 end Is_Out_Of_Range;
4816 ----------------------
4817 -- Is_Static_Choice --
4818 ----------------------
4820 function Is_Static_Choice (Choice : Node_Id) return Boolean is
4821 begin
4822 -- Check various possibilities for choice
4824 -- Note: for membership tests, we test more cases than are possible
4825 -- (in particular subtype indication), but it doesn't matter because
4826 -- it just won't occur (we have already done a syntax check).
4828 if Nkind (Choice) = N_Others_Choice then
4829 return True;
4831 elsif Nkind (Choice) = N_Range then
4832 return Is_Static_Range (Choice);
4834 elsif Nkind (Choice) = N_Subtype_Indication
4835 or else
4836 (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4837 then
4838 return Is_Static_Subtype (Etype (Choice));
4840 else
4841 return Is_Static_Expression (Choice);
4842 end if;
4843 end Is_Static_Choice;
4845 ---------------------------
4846 -- Is_Static_Choice_List --
4847 ---------------------------
4849 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
4850 Choice : Node_Id;
4852 begin
4853 Choice := First (Choices);
4854 while Present (Choice) loop
4855 if not Is_Static_Choice (Choice) then
4856 return False;
4857 end if;
4859 Next (Choice);
4860 end loop;
4862 return True;
4863 end Is_Static_Choice_List;
4865 ---------------------
4866 -- Is_Static_Range --
4867 ---------------------
4869 -- A static range is a range whose bounds are static expressions, or a
4870 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4871 -- We have already converted range attribute references, so we get the
4872 -- "or" part of this rule without needing a special test.
4874 function Is_Static_Range (N : Node_Id) return Boolean is
4875 begin
4876 return Is_Static_Expression (Low_Bound (N))
4877 and then
4878 Is_Static_Expression (High_Bound (N));
4879 end Is_Static_Range;
4881 -----------------------
4882 -- Is_Static_Subtype --
4883 -----------------------
4885 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4887 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4888 Base_T : constant Entity_Id := Base_Type (Typ);
4889 Anc_Subt : Entity_Id;
4891 begin
4892 -- First a quick check on the non static subtype flag. As described
4893 -- in further detail in Einfo, this flag is not decisive in all cases,
4894 -- but if it is set, then the subtype is definitely non-static.
4896 if Is_Non_Static_Subtype (Typ) then
4897 return False;
4898 end if;
4900 Anc_Subt := Ancestor_Subtype (Typ);
4902 if Anc_Subt = Empty then
4903 Anc_Subt := Base_T;
4904 end if;
4906 if Is_Generic_Type (Root_Type (Base_T))
4907 or else Is_Generic_Actual_Type (Base_T)
4908 then
4909 return False;
4911 -- String types
4913 elsif Is_String_Type (Typ) then
4914 return
4915 Ekind (Typ) = E_String_Literal_Subtype
4916 or else (Is_Static_Subtype (Component_Type (Typ))
4917 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4919 -- Scalar types
4921 elsif Is_Scalar_Type (Typ) then
4922 if Base_T = Typ then
4923 return True;
4925 else
4926 return Is_Static_Subtype (Anc_Subt)
4927 and then Is_Static_Expression (Type_Low_Bound (Typ))
4928 and then Is_Static_Expression (Type_High_Bound (Typ));
4929 end if;
4931 -- Types other than string and scalar types are never static
4933 else
4934 return False;
4935 end if;
4936 end Is_Static_Subtype;
4938 -------------------------------
4939 -- Is_Statically_Unevaluated --
4940 -------------------------------
4942 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
4943 function Check_Case_Expr_Alternative
4944 (CEA : Node_Id) return Match_Result;
4945 -- We have a message emanating from the Expression of a case expression
4946 -- alternative. We examine this alternative, as follows:
4948 -- If the selecting expression of the parent case is non-static, or
4949 -- if any of the discrete choices of the given case alternative are
4950 -- non-static or raise Constraint_Error, return Non_Static.
4952 -- Otherwise check if the selecting expression matches any of the given
4953 -- discrete choices. If so, the alternative is executed and we return
4954 -- Match, otherwise, the alternative can never be executed, and so we
4955 -- return No_Match.
4957 ---------------------------------
4958 -- Check_Case_Expr_Alternative --
4959 ---------------------------------
4961 function Check_Case_Expr_Alternative
4962 (CEA : Node_Id) return Match_Result
4964 Case_Exp : constant Node_Id := Parent (CEA);
4965 Choice : Node_Id;
4966 Prev_CEA : Node_Id;
4968 begin
4969 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
4971 -- Check that selecting expression is static
4973 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
4974 return Non_Static;
4975 end if;
4977 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
4978 return Non_Static;
4979 end if;
4981 -- All choices are now known to be static. Now see if alternative
4982 -- matches one of the choices.
4984 Choice := First (Discrete_Choices (CEA));
4985 while Present (Choice) loop
4987 -- Check various possibilities for choice, returning Match if we
4988 -- find the selecting value matches any of the choices. Note that
4989 -- we know we are the last choice, so we don't have to keep going.
4991 if Nkind (Choice) = N_Others_Choice then
4993 -- Others choice is a bit annoying, it matches if none of the
4994 -- previous alternatives matches (note that we know we are the
4995 -- last alternative in this case, so we can just go backwards
4996 -- from us to see if any previous one matches).
4998 Prev_CEA := Prev (CEA);
4999 while Present (Prev_CEA) loop
5000 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5001 return No_Match;
5002 end if;
5004 Prev (Prev_CEA);
5005 end loop;
5007 return Match;
5009 -- Else we have a normal static choice
5011 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5012 return Match;
5013 end if;
5015 -- If we fall through, it means that the discrete choice did not
5016 -- match the selecting expression, so continue.
5018 Next (Choice);
5019 end loop;
5021 -- If we get through that loop then all choices were static, and none
5022 -- of them matched the selecting expression. So return No_Match.
5024 return No_Match;
5025 end Check_Case_Expr_Alternative;
5027 -- Local variables
5029 P : Node_Id;
5030 OldP : Node_Id;
5031 Choice : Node_Id;
5033 -- Start of processing for Is_Statically_Unevaluated
5035 begin
5036 -- The (32.x) references here are from RM section 4.9
5038 -- (32.1) An expression is statically unevaluated if it is part of ...
5040 -- This means we have to climb the tree looking for one of the cases
5042 P := Expr;
5043 loop
5044 OldP := P;
5045 P := Parent (P);
5047 -- (32.2) The right operand of a static short-circuit control form
5048 -- whose value is determined by its left operand.
5050 -- AND THEN with False as left operand
5052 if Nkind (P) = N_And_Then
5053 and then Compile_Time_Known_Value (Left_Opnd (P))
5054 and then Is_False (Expr_Value (Left_Opnd (P)))
5055 then
5056 return True;
5058 -- OR ELSE with True as left operand
5060 elsif Nkind (P) = N_Or_Else
5061 and then Compile_Time_Known_Value (Left_Opnd (P))
5062 and then Is_True (Expr_Value (Left_Opnd (P)))
5063 then
5064 return True;
5066 -- (32.3) A dependent_expression of an if_expression whose associated
5067 -- condition is static and equals False.
5069 elsif Nkind (P) = N_If_Expression then
5070 declare
5071 Cond : constant Node_Id := First (Expressions (P));
5072 Texp : constant Node_Id := Next (Cond);
5073 Fexp : constant Node_Id := Next (Texp);
5075 begin
5076 if Compile_Time_Known_Value (Cond) then
5078 -- Condition is True and we are in the right operand
5080 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5081 return True;
5083 -- Condition is False and we are in the left operand
5085 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5086 return True;
5087 end if;
5088 end if;
5089 end;
5091 -- (32.4) A condition or dependent_expression of an if_expression
5092 -- where the condition corresponding to at least one preceding
5093 -- dependent_expression of the if_expression is static and equals
5094 -- True.
5096 -- This refers to cases like
5098 -- (if True then 1 elsif 1/0=2 then 2 else 3)
5100 -- But we expand elsif's out anyway, so the above looks like:
5102 -- (if True then 1 else (if 1/0=2 then 2 else 3))
5104 -- So for us this is caught by the above check for the 32.3 case.
5106 -- (32.5) A dependent_expression of a case_expression whose
5107 -- selecting_expression is static and whose value is not covered
5108 -- by the corresponding discrete_choice_list.
5110 elsif Nkind (P) = N_Case_Expression_Alternative then
5112 -- First, we have to be in the expression to suppress messages.
5113 -- If we are within one of the choices, we want the message.
5115 if OldP = Expression (P) then
5117 -- Statically unevaluated if alternative does not match
5119 if Check_Case_Expr_Alternative (P) = No_Match then
5120 return True;
5121 end if;
5122 end if;
5124 -- (32.6) A choice_expression (or a simple_expression of a range
5125 -- that occurs as a membership_choice of a membership_choice_list)
5126 -- of a static membership test that is preceded in the enclosing
5127 -- membership_choice_list by another item whose individual
5128 -- membership test (see (RM 4.5.2)) statically yields True.
5130 elsif Nkind (P) in N_Membership_Test then
5132 -- Only possibly unevaluated if simple expression is static
5134 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5135 null;
5137 -- All members of the choice list must be static
5139 elsif (Present (Right_Opnd (P))
5140 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5141 or else (Present (Alternatives (P))
5142 and then
5143 not Is_OK_Static_Choice_List (Alternatives (P)))
5144 then
5145 null;
5147 -- If expression is the one and only alternative, then it is
5148 -- definitely not statically unevaluated, so we only have to
5149 -- test the case where there are alternatives present.
5151 elsif Present (Alternatives (P)) then
5153 -- Look for previous matching Choice
5155 Choice := First (Alternatives (P));
5156 while Present (Choice) loop
5158 -- If we reached us and no previous choices matched, this
5159 -- is not the case where we are statically unevaluated.
5161 exit when OldP = Choice;
5163 -- If a previous choice matches, then that is the case where
5164 -- we know our choice is statically unevaluated.
5166 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5167 return True;
5168 end if;
5170 Next (Choice);
5171 end loop;
5173 -- If we fall through the loop, we were not one of the choices,
5174 -- we must have been the expression, so that is not covered by
5175 -- this rule, and we keep going.
5177 null;
5178 end if;
5179 end if;
5181 -- OK, not statically unevaluated at this level, see if we should
5182 -- keep climbing to look for a higher level reason.
5184 -- Special case for component association in aggregates, where
5185 -- we want to keep climbing up to the parent aggregate.
5187 if Nkind (P) = N_Component_Association
5188 and then Nkind (Parent (P)) = N_Aggregate
5189 then
5190 null;
5192 -- All done if not still within subexpression
5194 else
5195 exit when Nkind (P) not in N_Subexpr;
5196 end if;
5197 end loop;
5199 -- If we fall through the loop, not one of the cases covered!
5201 return False;
5202 end Is_Statically_Unevaluated;
5204 --------------------
5205 -- Not_Null_Range --
5206 --------------------
5208 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5209 Typ : constant Entity_Id := Etype (Lo);
5211 begin
5212 if not Compile_Time_Known_Value (Lo)
5213 or else not Compile_Time_Known_Value (Hi)
5214 then
5215 return False;
5216 end if;
5218 if Is_Discrete_Type (Typ) then
5219 return Expr_Value (Lo) <= Expr_Value (Hi);
5220 else pragma Assert (Is_Real_Type (Typ));
5221 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5222 end if;
5223 end Not_Null_Range;
5225 -------------
5226 -- OK_Bits --
5227 -------------
5229 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5230 begin
5231 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5233 if Bits < 500_000 then
5234 return True;
5236 -- Error if this maximum is exceeded
5238 else
5239 Error_Msg_N ("static value too large, capacity exceeded", N);
5240 return False;
5241 end if;
5242 end OK_Bits;
5244 ------------------
5245 -- Out_Of_Range --
5246 ------------------
5248 procedure Out_Of_Range (N : Node_Id) is
5249 begin
5250 -- If we have the static expression case, then this is an illegality
5251 -- in Ada 95 mode, except that in an instance, we never generate an
5252 -- error (if the error is legitimate, it was already diagnosed in the
5253 -- template).
5255 if Is_Static_Expression (N)
5256 and then not In_Instance
5257 and then not In_Inlined_Body
5258 and then Ada_Version >= Ada_95
5259 then
5260 -- No message if we are statically unevaluated
5262 if Is_Statically_Unevaluated (N) then
5263 null;
5265 -- The expression to compute the length of a packed array is attached
5266 -- to the array type itself, and deserves a separate message.
5268 elsif Nkind (Parent (N)) = N_Defining_Identifier
5269 and then Is_Array_Type (Parent (N))
5270 and then Present (Packed_Array_Impl_Type (Parent (N)))
5271 and then Present (First_Rep_Item (Parent (N)))
5272 then
5273 Error_Msg_N
5274 ("length of packed array must not exceed Integer''Last",
5275 First_Rep_Item (Parent (N)));
5276 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5278 -- All cases except the special array case
5280 else
5281 Apply_Compile_Time_Constraint_Error
5282 (N, "value not in range of}", CE_Range_Check_Failed);
5283 end if;
5285 -- Here we generate a warning for the Ada 83 case, or when we are in an
5286 -- instance, or when we have a non-static expression case.
5288 else
5289 Apply_Compile_Time_Constraint_Error
5290 (N, "value not in range of}??", CE_Range_Check_Failed);
5291 end if;
5292 end Out_Of_Range;
5294 ----------------------
5295 -- Predicates_Match --
5296 ----------------------
5298 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5299 Pred1 : Node_Id;
5300 Pred2 : Node_Id;
5302 begin
5303 if Ada_Version < Ada_2012 then
5304 return True;
5306 -- Both types must have predicates or lack them
5308 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5309 return False;
5311 -- Check matching predicates
5313 else
5314 Pred1 :=
5315 Get_Rep_Item
5316 (T1, Name_Static_Predicate, Check_Parents => False);
5317 Pred2 :=
5318 Get_Rep_Item
5319 (T2, Name_Static_Predicate, Check_Parents => False);
5321 -- Subtypes statically match if the predicate comes from the
5322 -- same declaration, which can only happen if one is a subtype
5323 -- of the other and has no explicit predicate.
5325 -- Suppress warnings on order of actuals, which is otherwise
5326 -- triggered by one of the two calls below.
5328 pragma Warnings (Off);
5329 return Pred1 = Pred2
5330 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5331 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5332 pragma Warnings (On);
5333 end if;
5334 end Predicates_Match;
5336 ---------------------------------------------
5337 -- Real_Or_String_Static_Predicate_Matches --
5338 ---------------------------------------------
5340 function Real_Or_String_Static_Predicate_Matches
5341 (Val : Node_Id;
5342 Typ : Entity_Id) return Boolean
5344 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5345 -- The predicate expression from the type
5347 Pfun : constant Entity_Id := Predicate_Function (Typ);
5348 -- The entity for the predicate function
5350 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5351 -- The name of the formal of the predicate function. Occurrences of the
5352 -- type name in Expr have been rewritten as references to this formal,
5353 -- and it has a unique name, so we can identify references by this name.
5355 Copy : Node_Id;
5356 -- Copy of the predicate function tree
5358 function Process (N : Node_Id) return Traverse_Result;
5359 -- Function used to process nodes during the traversal in which we will
5360 -- find occurrences of the entity name, and replace such occurrences
5361 -- by a real literal with the value to be tested.
5363 procedure Traverse is new Traverse_Proc (Process);
5364 -- The actual traversal procedure
5366 -------------
5367 -- Process --
5368 -------------
5370 function Process (N : Node_Id) return Traverse_Result is
5371 begin
5372 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5373 declare
5374 Nod : constant Node_Id := New_Copy (Val);
5375 begin
5376 Set_Sloc (Nod, Sloc (N));
5377 Rewrite (N, Nod);
5378 return Skip;
5379 end;
5381 else
5382 return OK;
5383 end if;
5384 end Process;
5386 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5388 begin
5389 -- First deal with special case of inherited predicate, where the
5390 -- predicate expression looks like:
5392 -- Expr and then xxPredicate (typ (Ent))
5394 -- where Expr is the predicate expression for this level, and the
5395 -- right operand is the call to evaluate the inherited predicate.
5397 if Nkind (Expr) = N_And_Then
5398 and then Nkind (Right_Opnd (Expr)) = N_Function_Call
5399 then
5400 -- OK we have the inherited case, so make a call to evaluate the
5401 -- inherited predicate. If that fails, so do we!
5403 if not
5404 Real_Or_String_Static_Predicate_Matches
5405 (Val => Val,
5406 Typ => Etype (First_Formal (Entity (Name (Right_Opnd (Expr))))))
5407 then
5408 return False;
5409 end if;
5411 -- Use the left operand for the continued processing
5413 Copy := Copy_Separate_Tree (Left_Opnd (Expr));
5415 -- Case where call to predicate function appears on its own
5417 elsif Nkind (Expr) = N_Function_Call then
5419 -- Here the result is just the result of calling the inner predicate
5421 return
5422 Real_Or_String_Static_Predicate_Matches
5423 (Val => Val,
5424 Typ => Etype (First_Formal (Entity (Name (Expr)))));
5426 -- If no inherited predicate, copy whole expression
5428 else
5429 Copy := Copy_Separate_Tree (Expr);
5430 end if;
5432 -- Now we replace occurrences of the entity by the value
5434 Traverse (Copy);
5436 -- And analyze the resulting static expression to see if it is True
5438 Analyze_And_Resolve (Copy, Standard_Boolean);
5439 return Is_True (Expr_Value (Copy));
5440 end Real_Or_String_Static_Predicate_Matches;
5442 -------------------------
5443 -- Rewrite_In_Raise_CE --
5444 -------------------------
5446 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
5447 Typ : constant Entity_Id := Etype (N);
5448 Stat : constant Boolean := Is_Static_Expression (N);
5450 begin
5451 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5452 -- can just clear the condition if the reason is appropriate. We do
5453 -- not do this operation if the parent has a reason other than range
5454 -- check failed, because otherwise we would change the reason.
5456 if Present (Parent (N))
5457 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
5458 and then Reason (Parent (N)) =
5459 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
5460 then
5461 Set_Condition (Parent (N), Empty);
5463 -- Else build an explicit N_Raise_CE
5465 else
5466 Rewrite (N,
5467 Make_Raise_Constraint_Error (Sloc (Exp),
5468 Reason => CE_Range_Check_Failed));
5469 Set_Raises_Constraint_Error (N);
5470 Set_Etype (N, Typ);
5471 end if;
5473 -- Set proper flags in result
5475 Set_Raises_Constraint_Error (N, True);
5476 Set_Is_Static_Expression (N, Stat);
5477 end Rewrite_In_Raise_CE;
5479 ---------------------
5480 -- String_Type_Len --
5481 ---------------------
5483 function String_Type_Len (Stype : Entity_Id) return Uint is
5484 NT : constant Entity_Id := Etype (First_Index (Stype));
5485 T : Entity_Id;
5487 begin
5488 if Is_OK_Static_Subtype (NT) then
5489 T := NT;
5490 else
5491 T := Base_Type (NT);
5492 end if;
5494 return Expr_Value (Type_High_Bound (T)) -
5495 Expr_Value (Type_Low_Bound (T)) + 1;
5496 end String_Type_Len;
5498 ------------------------------------
5499 -- Subtypes_Statically_Compatible --
5500 ------------------------------------
5502 function Subtypes_Statically_Compatible
5503 (T1 : Entity_Id;
5504 T2 : Entity_Id;
5505 Formal_Derived_Matching : Boolean := False) return Boolean
5507 begin
5508 -- Scalar types
5510 if Is_Scalar_Type (T1) then
5512 -- Definitely compatible if we match
5514 if Subtypes_Statically_Match (T1, T2) then
5515 return True;
5517 -- If either subtype is nonstatic then they're not compatible
5519 elsif not Is_OK_Static_Subtype (T1)
5520 or else
5521 not Is_OK_Static_Subtype (T2)
5522 then
5523 return False;
5525 -- If either type has constraint error bounds, then consider that
5526 -- they match to avoid junk cascaded errors here.
5528 elsif not Is_OK_Static_Subtype (T1)
5529 or else not Is_OK_Static_Subtype (T2)
5530 then
5531 return True;
5533 -- Base types must match, but we don't check that (should we???) but
5534 -- we do at least check that both types are real, or both types are
5535 -- not real.
5537 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
5538 return False;
5540 -- Here we check the bounds
5542 else
5543 declare
5544 LB1 : constant Node_Id := Type_Low_Bound (T1);
5545 HB1 : constant Node_Id := Type_High_Bound (T1);
5546 LB2 : constant Node_Id := Type_Low_Bound (T2);
5547 HB2 : constant Node_Id := Type_High_Bound (T2);
5549 begin
5550 if Is_Real_Type (T1) then
5551 return
5552 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
5553 or else
5554 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5555 and then
5556 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
5558 else
5559 return
5560 (Expr_Value (LB1) > Expr_Value (HB1))
5561 or else
5562 (Expr_Value (LB2) <= Expr_Value (LB1)
5563 and then
5564 Expr_Value (HB1) <= Expr_Value (HB2));
5565 end if;
5566 end;
5567 end if;
5569 -- Access types
5571 elsif Is_Access_Type (T1) then
5572 return (not Is_Constrained (T2)
5573 or else (Subtypes_Statically_Match
5574 (Designated_Type (T1), Designated_Type (T2))))
5575 and then not (Can_Never_Be_Null (T2)
5576 and then not Can_Never_Be_Null (T1));
5578 -- All other cases
5580 else
5581 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
5582 or else Subtypes_Statically_Match (T1, T2, Formal_Derived_Matching);
5583 end if;
5584 end Subtypes_Statically_Compatible;
5586 -------------------------------
5587 -- Subtypes_Statically_Match --
5588 -------------------------------
5590 -- Subtypes statically match if they have statically matching constraints
5591 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5592 -- they are the same identical constraint, or if they are static and the
5593 -- values match (RM 4.9.1(1)).
5595 -- In addition, in GNAT, the object size (Esize) values of the types must
5596 -- match if they are set (unless checking an actual for a formal derived
5597 -- type). The use of 'Object_Size can cause this to be false even if the
5598 -- types would otherwise match in the RM sense.
5600 function Subtypes_Statically_Match
5601 (T1 : Entity_Id;
5602 T2 : Entity_Id;
5603 Formal_Derived_Matching : Boolean := False) return Boolean
5605 begin
5606 -- A type always statically matches itself
5608 if T1 = T2 then
5609 return True;
5611 -- No match if sizes different (from use of 'Object_Size). This test
5612 -- is excluded if Formal_Derived_Matching is True, as the base types
5613 -- can be different in that case and typically have different sizes
5614 -- (and Esizes can be set when Frontend_Layout_On_Target is True).
5616 elsif not Formal_Derived_Matching
5617 and then Known_Static_Esize (T1)
5618 and then Known_Static_Esize (T2)
5619 and then Esize (T1) /= Esize (T2)
5620 then
5621 return False;
5623 -- No match if predicates do not match
5625 elsif not Predicates_Match (T1, T2) then
5626 return False;
5628 -- Scalar types
5630 elsif Is_Scalar_Type (T1) then
5632 -- Base types must be the same
5634 if Base_Type (T1) /= Base_Type (T2) then
5635 return False;
5636 end if;
5638 -- A constrained numeric subtype never matches an unconstrained
5639 -- subtype, i.e. both types must be constrained or unconstrained.
5641 -- To understand the requirement for this test, see RM 4.9.1(1).
5642 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5643 -- a constrained subtype with constraint bounds matching the bounds
5644 -- of its corresponding unconstrained base type. In this situation,
5645 -- Integer and Integer'Base do not statically match, even though
5646 -- they have the same bounds.
5648 -- We only apply this test to types in Standard and types that appear
5649 -- in user programs. That way, we do not have to be too careful about
5650 -- setting Is_Constrained right for Itypes.
5652 if Is_Numeric_Type (T1)
5653 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5654 and then (Scope (T1) = Standard_Standard
5655 or else Comes_From_Source (T1))
5656 and then (Scope (T2) = Standard_Standard
5657 or else Comes_From_Source (T2))
5658 then
5659 return False;
5661 -- A generic scalar type does not statically match its base type
5662 -- (AI-311). In this case we make sure that the formals, which are
5663 -- first subtypes of their bases, are constrained.
5665 elsif Is_Generic_Type (T1)
5666 and then Is_Generic_Type (T2)
5667 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5668 then
5669 return False;
5670 end if;
5672 -- If there was an error in either range, then just assume the types
5673 -- statically match to avoid further junk errors.
5675 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5676 or else Error_Posted (Scalar_Range (T1))
5677 or else Error_Posted (Scalar_Range (T2))
5678 then
5679 return True;
5680 end if;
5682 -- Otherwise both types have bounds that can be compared
5684 declare
5685 LB1 : constant Node_Id := Type_Low_Bound (T1);
5686 HB1 : constant Node_Id := Type_High_Bound (T1);
5687 LB2 : constant Node_Id := Type_Low_Bound (T2);
5688 HB2 : constant Node_Id := Type_High_Bound (T2);
5690 begin
5691 -- If the bounds are the same tree node, then match (common case)
5693 if LB1 = LB2 and then HB1 = HB2 then
5694 return True;
5696 -- Otherwise bounds must be static and identical value
5698 else
5699 if not Is_OK_Static_Subtype (T1)
5700 or else not Is_OK_Static_Subtype (T2)
5701 then
5702 return False;
5704 -- If either type has constraint error bounds, then say that
5705 -- they match to avoid junk cascaded errors here.
5707 elsif not Is_OK_Static_Subtype (T1)
5708 or else not Is_OK_Static_Subtype (T2)
5709 then
5710 return True;
5712 elsif Is_Real_Type (T1) then
5713 return
5714 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
5715 and then
5716 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
5718 else
5719 return
5720 Expr_Value (LB1) = Expr_Value (LB2)
5721 and then
5722 Expr_Value (HB1) = Expr_Value (HB2);
5723 end if;
5724 end if;
5725 end;
5727 -- Type with discriminants
5729 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
5731 -- Because of view exchanges in multiple instantiations, conformance
5732 -- checking might try to match a partial view of a type with no
5733 -- discriminants with a full view that has defaulted discriminants.
5734 -- In such a case, use the discriminant constraint of the full view,
5735 -- which must exist because we know that the two subtypes have the
5736 -- same base type.
5738 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
5739 if In_Instance then
5740 if Is_Private_Type (T2)
5741 and then Present (Full_View (T2))
5742 and then Has_Discriminants (Full_View (T2))
5743 then
5744 return Subtypes_Statically_Match (T1, Full_View (T2));
5746 elsif Is_Private_Type (T1)
5747 and then Present (Full_View (T1))
5748 and then Has_Discriminants (Full_View (T1))
5749 then
5750 return Subtypes_Statically_Match (Full_View (T1), T2);
5752 else
5753 return False;
5754 end if;
5755 else
5756 return False;
5757 end if;
5758 end if;
5760 declare
5761 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5762 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5764 DA1 : Elmt_Id;
5765 DA2 : Elmt_Id;
5767 begin
5768 if DL1 = DL2 then
5769 return True;
5770 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5771 return False;
5772 end if;
5774 -- Now loop through the discriminant constraints
5776 -- Note: the guard here seems necessary, since it is possible at
5777 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5779 if Present (DL1) and then Present (DL2) then
5780 DA1 := First_Elmt (DL1);
5781 DA2 := First_Elmt (DL2);
5782 while Present (DA1) loop
5783 declare
5784 Expr1 : constant Node_Id := Node (DA1);
5785 Expr2 : constant Node_Id := Node (DA2);
5787 begin
5788 if not Is_OK_Static_Expression (Expr1)
5789 or else not Is_OK_Static_Expression (Expr2)
5790 then
5791 return False;
5793 -- If either expression raised a constraint error,
5794 -- consider the expressions as matching, since this
5795 -- helps to prevent cascading errors.
5797 elsif Raises_Constraint_Error (Expr1)
5798 or else Raises_Constraint_Error (Expr2)
5799 then
5800 null;
5802 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5803 return False;
5804 end if;
5805 end;
5807 Next_Elmt (DA1);
5808 Next_Elmt (DA2);
5809 end loop;
5810 end if;
5811 end;
5813 return True;
5815 -- A definite type does not match an indefinite or classwide type.
5816 -- However, a generic type with unknown discriminants may be
5817 -- instantiated with a type with no discriminants, and conformance
5818 -- checking on an inherited operation may compare the actual with the
5819 -- subtype that renames it in the instance.
5821 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5822 then
5823 return
5824 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
5826 -- Array type
5828 elsif Is_Array_Type (T1) then
5830 -- If either subtype is unconstrained then both must be, and if both
5831 -- are unconstrained then no further checking is needed.
5833 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5834 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5835 end if;
5837 -- Both subtypes are constrained, so check that the index subtypes
5838 -- statically match.
5840 declare
5841 Index1 : Node_Id := First_Index (T1);
5842 Index2 : Node_Id := First_Index (T2);
5844 begin
5845 while Present (Index1) loop
5846 if not
5847 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5848 then
5849 return False;
5850 end if;
5852 Next_Index (Index1);
5853 Next_Index (Index2);
5854 end loop;
5856 return True;
5857 end;
5859 elsif Is_Access_Type (T1) then
5860 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5861 return False;
5863 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5864 E_Anonymous_Access_Subprogram_Type)
5865 then
5866 return
5867 Subtype_Conformant
5868 (Designated_Type (T1),
5869 Designated_Type (T2));
5870 else
5871 return
5872 Subtypes_Statically_Match
5873 (Designated_Type (T1),
5874 Designated_Type (T2))
5875 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5876 end if;
5878 -- All other types definitely match
5880 else
5881 return True;
5882 end if;
5883 end Subtypes_Statically_Match;
5885 ----------
5886 -- Test --
5887 ----------
5889 function Test (Cond : Boolean) return Uint is
5890 begin
5891 if Cond then
5892 return Uint_1;
5893 else
5894 return Uint_0;
5895 end if;
5896 end Test;
5898 ---------------------------------
5899 -- Test_Expression_Is_Foldable --
5900 ---------------------------------
5902 -- One operand case
5904 procedure Test_Expression_Is_Foldable
5905 (N : Node_Id;
5906 Op1 : Node_Id;
5907 Stat : out Boolean;
5908 Fold : out Boolean)
5910 begin
5911 Stat := False;
5912 Fold := False;
5914 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5915 return;
5916 end if;
5918 -- If operand is Any_Type, just propagate to result and do not
5919 -- try to fold, this prevents cascaded errors.
5921 if Etype (Op1) = Any_Type then
5922 Set_Etype (N, Any_Type);
5923 return;
5925 -- If operand raises constraint error, then replace node N with the
5926 -- raise constraint error node, and we are obviously not foldable.
5927 -- Note that this replacement inherits the Is_Static_Expression flag
5928 -- from the operand.
5930 elsif Raises_Constraint_Error (Op1) then
5931 Rewrite_In_Raise_CE (N, Op1);
5932 return;
5934 -- If the operand is not static, then the result is not static, and
5935 -- all we have to do is to check the operand since it is now known
5936 -- to appear in a non-static context.
5938 elsif not Is_Static_Expression (Op1) then
5939 Check_Non_Static_Context (Op1);
5940 Fold := Compile_Time_Known_Value (Op1);
5941 return;
5943 -- An expression of a formal modular type is not foldable because
5944 -- the modulus is unknown.
5946 elsif Is_Modular_Integer_Type (Etype (Op1))
5947 and then Is_Generic_Type (Etype (Op1))
5948 then
5949 Check_Non_Static_Context (Op1);
5950 return;
5952 -- Here we have the case of an operand whose type is OK, which is
5953 -- static, and which does not raise constraint error, we can fold.
5955 else
5956 Set_Is_Static_Expression (N);
5957 Fold := True;
5958 Stat := True;
5959 end if;
5960 end Test_Expression_Is_Foldable;
5962 -- Two operand case
5964 procedure Test_Expression_Is_Foldable
5965 (N : Node_Id;
5966 Op1 : Node_Id;
5967 Op2 : Node_Id;
5968 Stat : out Boolean;
5969 Fold : out Boolean;
5970 CRT_Safe : Boolean := False)
5972 Rstat : constant Boolean := Is_Static_Expression (Op1)
5973 and then
5974 Is_Static_Expression (Op2);
5976 begin
5977 Stat := False;
5978 Fold := False;
5980 -- Inhibit folding if -gnatd.f flag set
5982 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5983 return;
5984 end if;
5986 -- If either operand is Any_Type, just propagate to result and
5987 -- do not try to fold, this prevents cascaded errors.
5989 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5990 Set_Etype (N, Any_Type);
5991 return;
5993 -- If left operand raises constraint error, then replace node N with the
5994 -- Raise_Constraint_Error node, and we are obviously not foldable.
5995 -- Is_Static_Expression is set from the two operands in the normal way,
5996 -- and we check the right operand if it is in a non-static context.
5998 elsif Raises_Constraint_Error (Op1) then
5999 if not Rstat then
6000 Check_Non_Static_Context (Op2);
6001 end if;
6003 Rewrite_In_Raise_CE (N, Op1);
6004 Set_Is_Static_Expression (N, Rstat);
6005 return;
6007 -- Similar processing for the case of the right operand. Note that we
6008 -- don't use this routine for the short-circuit case, so we do not have
6009 -- to worry about that special case here.
6011 elsif Raises_Constraint_Error (Op2) then
6012 if not Rstat then
6013 Check_Non_Static_Context (Op1);
6014 end if;
6016 Rewrite_In_Raise_CE (N, Op2);
6017 Set_Is_Static_Expression (N, Rstat);
6018 return;
6020 -- Exclude expressions of a generic modular type, as above
6022 elsif Is_Modular_Integer_Type (Etype (Op1))
6023 and then Is_Generic_Type (Etype (Op1))
6024 then
6025 Check_Non_Static_Context (Op1);
6026 return;
6028 -- If result is not static, then check non-static contexts on operands
6029 -- since one of them may be static and the other one may not be static.
6031 elsif not Rstat then
6032 Check_Non_Static_Context (Op1);
6033 Check_Non_Static_Context (Op2);
6035 if CRT_Safe then
6036 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6037 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6038 else
6039 Fold := Compile_Time_Known_Value (Op1)
6040 and then Compile_Time_Known_Value (Op2);
6041 end if;
6043 return;
6045 -- Else result is static and foldable. Both operands are static, and
6046 -- neither raises constraint error, so we can definitely fold.
6048 else
6049 Set_Is_Static_Expression (N);
6050 Fold := True;
6051 Stat := True;
6052 return;
6053 end if;
6054 end Test_Expression_Is_Foldable;
6056 -------------------
6057 -- Test_In_Range --
6058 -------------------
6060 function Test_In_Range
6061 (N : Node_Id;
6062 Typ : Entity_Id;
6063 Assume_Valid : Boolean;
6064 Fixed_Int : Boolean;
6065 Int_Real : Boolean) return Range_Membership
6067 Val : Uint;
6068 Valr : Ureal;
6070 pragma Warnings (Off, Assume_Valid);
6071 -- For now Assume_Valid is unreferenced since the current implementation
6072 -- always returns Unknown if N is not a compile time known value, but we
6073 -- keep the parameter to allow for future enhancements in which we try
6074 -- to get the information in the variable case as well.
6076 begin
6077 -- If an error was posted on expression, then return Unknown, we do not
6078 -- want cascaded errors based on some false analysis of a junk node.
6080 if Error_Posted (N) then
6081 return Unknown;
6083 -- Expression that raises constraint error is an odd case. We certainly
6084 -- do not want to consider it to be in range. It might make sense to
6085 -- consider it always out of range, but this causes incorrect error
6086 -- messages about static expressions out of range. So we just return
6087 -- Unknown, which is always safe.
6089 elsif Raises_Constraint_Error (N) then
6090 return Unknown;
6092 -- Universal types have no range limits, so always in range
6094 elsif Typ = Universal_Integer or else Typ = Universal_Real then
6095 return In_Range;
6097 -- Never known if not scalar type. Don't know if this can actually
6098 -- happen, but our spec allows it, so we must check.
6100 elsif not Is_Scalar_Type (Typ) then
6101 return Unknown;
6103 -- Never known if this is a generic type, since the bounds of generic
6104 -- types are junk. Note that if we only checked for static expressions
6105 -- (instead of compile time known values) below, we would not need this
6106 -- check, because values of a generic type can never be static, but they
6107 -- can be known at compile time.
6109 elsif Is_Generic_Type (Typ) then
6110 return Unknown;
6112 -- Case of a known compile time value, where we can check if it is in
6113 -- the bounds of the given type.
6115 elsif Compile_Time_Known_Value (N) then
6116 declare
6117 Lo : Node_Id;
6118 Hi : Node_Id;
6120 LB_Known : Boolean;
6121 HB_Known : Boolean;
6123 begin
6124 Lo := Type_Low_Bound (Typ);
6125 Hi := Type_High_Bound (Typ);
6127 LB_Known := Compile_Time_Known_Value (Lo);
6128 HB_Known := Compile_Time_Known_Value (Hi);
6130 -- Fixed point types should be considered as such only if flag
6131 -- Fixed_Int is set to False.
6133 if Is_Floating_Point_Type (Typ)
6134 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6135 or else Int_Real
6136 then
6137 Valr := Expr_Value_R (N);
6139 if LB_Known and HB_Known then
6140 if Valr >= Expr_Value_R (Lo)
6141 and then
6142 Valr <= Expr_Value_R (Hi)
6143 then
6144 return In_Range;
6145 else
6146 return Out_Of_Range;
6147 end if;
6149 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6150 or else
6151 (HB_Known and then Valr > Expr_Value_R (Hi))
6152 then
6153 return Out_Of_Range;
6155 else
6156 return Unknown;
6157 end if;
6159 else
6160 Val := Expr_Value (N);
6162 if LB_Known and HB_Known then
6163 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
6164 then
6165 return In_Range;
6166 else
6167 return Out_Of_Range;
6168 end if;
6170 elsif (LB_Known and then Val < Expr_Value (Lo))
6171 or else
6172 (HB_Known and then Val > Expr_Value (Hi))
6173 then
6174 return Out_Of_Range;
6176 else
6177 return Unknown;
6178 end if;
6179 end if;
6180 end;
6182 -- Here for value not known at compile time. Case of expression subtype
6183 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6184 -- In this case we know it is in range without knowing its value.
6186 elsif Assume_Valid
6187 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6188 then
6189 return In_Range;
6191 -- Another special case. For signed integer types, if the target type
6192 -- has Is_Known_Valid set, and the source type does not have a larger
6193 -- size, then the source value must be in range. We exclude biased
6194 -- types, because they bizarrely can generate out of range values.
6196 elsif Is_Signed_Integer_Type (Etype (N))
6197 and then Is_Known_Valid (Typ)
6198 and then Esize (Etype (N)) <= Esize (Typ)
6199 and then not Has_Biased_Representation (Etype (N))
6200 then
6201 return In_Range;
6203 -- For all other cases, result is unknown
6205 else
6206 return Unknown;
6207 end if;
6208 end Test_In_Range;
6210 --------------
6211 -- To_Bits --
6212 --------------
6214 procedure To_Bits (U : Uint; B : out Bits) is
6215 begin
6216 for J in 0 .. B'Last loop
6217 B (J) := (U / (2 ** J)) mod 2 /= 0;
6218 end loop;
6219 end To_Bits;
6221 --------------------
6222 -- Why_Not_Static --
6223 --------------------
6225 procedure Why_Not_Static (Expr : Node_Id) is
6226 N : constant Node_Id := Original_Node (Expr);
6227 Typ : Entity_Id;
6228 E : Entity_Id;
6229 Alt : Node_Id;
6230 Exp : Node_Id;
6232 procedure Why_Not_Static_List (L : List_Id);
6233 -- A version that can be called on a list of expressions. Finds all
6234 -- non-static violations in any element of the list.
6236 -------------------------
6237 -- Why_Not_Static_List --
6238 -------------------------
6240 procedure Why_Not_Static_List (L : List_Id) is
6241 N : Node_Id;
6242 begin
6243 if Is_Non_Empty_List (L) then
6244 N := First (L);
6245 while Present (N) loop
6246 Why_Not_Static (N);
6247 Next (N);
6248 end loop;
6249 end if;
6250 end Why_Not_Static_List;
6252 -- Start of processing for Why_Not_Static
6254 begin
6255 -- Ignore call on error or empty node
6257 if No (Expr) or else Nkind (Expr) = N_Error then
6258 return;
6259 end if;
6261 -- Preprocessing for sub expressions
6263 if Nkind (Expr) in N_Subexpr then
6265 -- Nothing to do if expression is static
6267 if Is_OK_Static_Expression (Expr) then
6268 return;
6269 end if;
6271 -- Test for constraint error raised
6273 if Raises_Constraint_Error (Expr) then
6275 -- Special case membership to find out which piece to flag
6277 if Nkind (N) in N_Membership_Test then
6278 if Raises_Constraint_Error (Left_Opnd (N)) then
6279 Why_Not_Static (Left_Opnd (N));
6280 return;
6282 elsif Present (Right_Opnd (N))
6283 and then Raises_Constraint_Error (Right_Opnd (N))
6284 then
6285 Why_Not_Static (Right_Opnd (N));
6286 return;
6288 else
6289 pragma Assert (Present (Alternatives (N)));
6291 Alt := First (Alternatives (N));
6292 while Present (Alt) loop
6293 if Raises_Constraint_Error (Alt) then
6294 Why_Not_Static (Alt);
6295 return;
6296 else
6297 Next (Alt);
6298 end if;
6299 end loop;
6300 end if;
6302 -- Special case a range to find out which bound to flag
6304 elsif Nkind (N) = N_Range then
6305 if Raises_Constraint_Error (Low_Bound (N)) then
6306 Why_Not_Static (Low_Bound (N));
6307 return;
6309 elsif Raises_Constraint_Error (High_Bound (N)) then
6310 Why_Not_Static (High_Bound (N));
6311 return;
6312 end if;
6314 -- Special case attribute to see which part to flag
6316 elsif Nkind (N) = N_Attribute_Reference then
6317 if Raises_Constraint_Error (Prefix (N)) then
6318 Why_Not_Static (Prefix (N));
6319 return;
6320 end if;
6322 if Present (Expressions (N)) then
6323 Exp := First (Expressions (N));
6324 while Present (Exp) loop
6325 if Raises_Constraint_Error (Exp) then
6326 Why_Not_Static (Exp);
6327 return;
6328 end if;
6330 Next (Exp);
6331 end loop;
6332 end if;
6334 -- Special case a subtype name
6336 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6337 Error_Msg_NE
6338 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6339 return;
6340 end if;
6342 -- End of special cases
6344 Error_Msg_N
6345 ("!expression raises exception, cannot be static (RM 4.9(34))",
6347 return;
6348 end if;
6350 -- If no type, then something is pretty wrong, so ignore
6352 Typ := Etype (Expr);
6354 if No (Typ) then
6355 return;
6356 end if;
6358 -- Type must be scalar or string type (but allow Bignum, since this
6359 -- is really a scalar type from our point of view in this diagnosis).
6361 if not Is_Scalar_Type (Typ)
6362 and then not Is_String_Type (Typ)
6363 and then not Is_RTE (Typ, RE_Bignum)
6364 then
6365 Error_Msg_N
6366 ("!static expression must have scalar or string type " &
6367 "(RM 4.9(2))", N);
6368 return;
6369 end if;
6370 end if;
6372 -- If we got through those checks, test particular node kind
6374 case Nkind (N) is
6376 -- Entity name
6378 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
6379 E := Entity (N);
6381 if Is_Named_Number (E) then
6382 null;
6384 elsif Ekind (E) = E_Constant then
6386 -- One case we can give a metter message is when we have a
6387 -- string literal created by concatenating an aggregate with
6388 -- an others expression.
6390 Entity_Case : declare
6391 CV : constant Node_Id := Constant_Value (E);
6392 CO : constant Node_Id := Original_Node (CV);
6394 function Is_Aggregate (N : Node_Id) return Boolean;
6395 -- See if node N came from an others aggregate, if so
6396 -- return True and set Error_Msg_Sloc to aggregate.
6398 ------------------
6399 -- Is_Aggregate --
6400 ------------------
6402 function Is_Aggregate (N : Node_Id) return Boolean is
6403 begin
6404 if Nkind (Original_Node (N)) = N_Aggregate then
6405 Error_Msg_Sloc := Sloc (Original_Node (N));
6406 return True;
6408 elsif Is_Entity_Name (N)
6409 and then Ekind (Entity (N)) = E_Constant
6410 and then
6411 Nkind (Original_Node (Constant_Value (Entity (N)))) =
6412 N_Aggregate
6413 then
6414 Error_Msg_Sloc :=
6415 Sloc (Original_Node (Constant_Value (Entity (N))));
6416 return True;
6418 else
6419 return False;
6420 end if;
6421 end Is_Aggregate;
6423 -- Start of processing for Entity_Case
6425 begin
6426 if Is_Aggregate (CV)
6427 or else (Nkind (CO) = N_Op_Concat
6428 and then (Is_Aggregate (Left_Opnd (CO))
6429 or else
6430 Is_Aggregate (Right_Opnd (CO))))
6431 then
6432 Error_Msg_N ("!aggregate (#) is never static", N);
6434 elsif No (CV) or else not Is_Static_Expression (CV) then
6435 Error_Msg_NE
6436 ("!& is not a static constant (RM 4.9(5))", N, E);
6437 end if;
6438 end Entity_Case;
6440 elsif Is_Type (E) then
6441 Error_Msg_NE
6442 ("!& is not a static subtype (RM 4.9(26))", N, E);
6444 else
6445 Error_Msg_NE
6446 ("!& is not static constant or named number "
6447 & "(RM 4.9(5))", N, E);
6448 end if;
6450 -- Binary operator
6452 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
6453 if Nkind (N) in N_Op_Shift then
6454 Error_Msg_N
6455 ("!shift functions are never static (RM 4.9(6,18))", N);
6456 else
6457 Why_Not_Static (Left_Opnd (N));
6458 Why_Not_Static (Right_Opnd (N));
6459 end if;
6461 -- Unary operator
6463 when N_Unary_Op =>
6464 Why_Not_Static (Right_Opnd (N));
6466 -- Attribute reference
6468 when N_Attribute_Reference =>
6469 Why_Not_Static_List (Expressions (N));
6471 E := Etype (Prefix (N));
6473 if E = Standard_Void_Type then
6474 return;
6475 end if;
6477 -- Special case non-scalar'Size since this is a common error
6479 if Attribute_Name (N) = Name_Size then
6480 Error_Msg_N
6481 ("!size attribute is only static for static scalar type "
6482 & "(RM 4.9(7,8))", N);
6484 -- Flag array cases
6486 elsif Is_Array_Type (E) then
6487 if not Nam_In (Attribute_Name (N), Name_First,
6488 Name_Last,
6489 Name_Length)
6490 then
6491 Error_Msg_N
6492 ("!static array attribute must be Length, First, or Last "
6493 & "(RM 4.9(8))", N);
6495 -- Since we know the expression is not-static (we already
6496 -- tested for this, must mean array is not static).
6498 else
6499 Error_Msg_N
6500 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
6501 end if;
6503 return;
6505 -- Special case generic types, since again this is a common source
6506 -- of confusion.
6508 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
6509 Error_Msg_N
6510 ("!attribute of generic type is never static "
6511 & "(RM 4.9(7,8))", N);
6513 elsif Is_OK_Static_Subtype (E) then
6514 null;
6516 elsif Is_Scalar_Type (E) then
6517 Error_Msg_N
6518 ("!prefix type for attribute is not static scalar subtype "
6519 & "(RM 4.9(7))", N);
6521 else
6522 Error_Msg_N
6523 ("!static attribute must apply to array/scalar type "
6524 & "(RM 4.9(7,8))", N);
6525 end if;
6527 -- String literal
6529 when N_String_Literal =>
6530 Error_Msg_N
6531 ("!subtype of string literal is non-static (RM 4.9(4))", N);
6533 -- Explicit dereference
6535 when N_Explicit_Dereference =>
6536 Error_Msg_N
6537 ("!explicit dereference is never static (RM 4.9)", N);
6539 -- Function call
6541 when N_Function_Call =>
6542 Why_Not_Static_List (Parameter_Associations (N));
6544 -- Complain about non-static function call unless we have Bignum
6545 -- which means that the underlying expression is really some
6546 -- scalar arithmetic operation.
6548 if not Is_RTE (Typ, RE_Bignum) then
6549 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
6550 end if;
6552 -- Parameter assocation (test actual parameter)
6554 when N_Parameter_Association =>
6555 Why_Not_Static (Explicit_Actual_Parameter (N));
6557 -- Indexed component
6559 when N_Indexed_Component =>
6560 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
6562 -- Procedure call
6564 when N_Procedure_Call_Statement =>
6565 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
6567 -- Qualified expression (test expression)
6569 when N_Qualified_Expression =>
6570 Why_Not_Static (Expression (N));
6572 -- Aggregate
6574 when N_Aggregate | N_Extension_Aggregate =>
6575 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
6577 -- Range
6579 when N_Range =>
6580 Why_Not_Static (Low_Bound (N));
6581 Why_Not_Static (High_Bound (N));
6583 -- Range constraint, test range expression
6585 when N_Range_Constraint =>
6586 Why_Not_Static (Range_Expression (N));
6588 -- Subtype indication, test constraint
6590 when N_Subtype_Indication =>
6591 Why_Not_Static (Constraint (N));
6593 -- Selected component
6595 when N_Selected_Component =>
6596 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
6598 -- Slice
6600 when N_Slice =>
6601 Error_Msg_N ("!slice is never static (RM 4.9)", N);
6603 when N_Type_Conversion =>
6604 Why_Not_Static (Expression (N));
6606 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
6607 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
6608 then
6609 Error_Msg_N
6610 ("!static conversion requires static scalar subtype result "
6611 & "(RM 4.9(9))", N);
6612 end if;
6614 -- Unchecked type conversion
6616 when N_Unchecked_Type_Conversion =>
6617 Error_Msg_N
6618 ("!unchecked type conversion is never static (RM 4.9)", N);
6620 -- All other cases, no reason to give
6622 when others =>
6623 null;
6625 end case;
6626 end Why_Not_Static;
6628 end Sem_Eval;