Rebase.
[official-gcc.git] / gcc / ada / a-cihase.ads
blob05af6bf32ed3fddb5f6acb6b541e896eff0960dd
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.INDEFINITE_HASHED_SETS --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
21 -- --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
25 -- --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
30 -- --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada.Iterator_Interfaces;
36 private with Ada.Containers.Hash_Tables;
37 private with Ada.Streams;
38 private with Ada.Finalization;
40 generic
41 type Element_Type (<>) is private;
43 with function Hash (Element : Element_Type) return Hash_Type;
45 with function Equivalent_Elements (Left, Right : Element_Type)
46 return Boolean;
48 with function "=" (Left, Right : Element_Type) return Boolean is <>;
50 package Ada.Containers.Indefinite_Hashed_Sets is
51 pragma Preelaborate;
52 pragma Remote_Types;
54 type Set is tagged private
55 with Constant_Indexing => Constant_Reference,
56 Default_Iterator => Iterate,
57 Iterator_Element => Element_Type;
59 pragma Preelaborable_Initialization (Set);
61 type Cursor is private;
62 pragma Preelaborable_Initialization (Cursor);
64 Empty_Set : constant Set;
65 -- Set objects declared without an initialization expression are
66 -- initialized to the value Empty_Set.
68 No_Element : constant Cursor;
69 -- Cursor objects declared without an initialization expression are
70 -- initialized to the value No_Element.
72 function Has_Element (Position : Cursor) return Boolean;
73 -- Equivalent to Position /= No_Element
75 package Set_Iterator_Interfaces is new
76 Ada.Iterator_Interfaces (Cursor, Has_Element);
78 function "=" (Left, Right : Set) return Boolean;
79 -- For each element in Left, set equality attempts to find the equal
80 -- element in Right; if a search fails, then set equality immediately
81 -- returns False. The search works by calling Hash to find the bucket in
82 -- the Right set that corresponds to the Left element. If the bucket is
83 -- non-empty, the search calls the generic formal element equality operator
84 -- to compare the element (in Left) to the element of each node in the
85 -- bucket (in Right); the search terminates when a matching node in the
86 -- bucket is found, or the nodes in the bucket are exhausted. (Note that
87 -- element equality is called here, not Equivalent_Elements. Set equality
88 -- is the only operation in which element equality is used. Compare set
89 -- equality to Equivalent_Sets, which does call Equivalent_Elements.)
91 function Equivalent_Sets (Left, Right : Set) return Boolean;
92 -- Similar to set equality, with the difference that the element in Left is
93 -- compared to the elements in Right using the generic formal
94 -- Equivalent_Elements operation instead of element equality.
96 function To_Set (New_Item : Element_Type) return Set;
97 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to
98 -- determine the bucket for New_Item.
100 function Capacity (Container : Set) return Count_Type;
101 -- Returns the current capacity of the set. Capacity is the maximum length
102 -- before which rehashing in guaranteed not to occur.
104 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
105 -- Adjusts the current capacity, by allocating a new buckets array. If the
106 -- requested capacity is less than the current capacity, then the capacity
107 -- is contracted (to a value not less than the current length). If the
108 -- requested capacity is greater than the current capacity, then the
109 -- capacity is expanded (to a value not less than what is requested). In
110 -- either case, the nodes are rehashed from the old buckets array onto the
111 -- new buckets array (Hash is called once for each existing element in
112 -- order to compute the new index), and then the old buckets array is
113 -- deallocated.
115 function Length (Container : Set) return Count_Type;
116 -- Returns the number of items in the set
118 function Is_Empty (Container : Set) return Boolean;
119 -- Equivalent to Length (Container) = 0
121 procedure Clear (Container : in out Set);
122 -- Removes all of the items from the set
124 function Element (Position : Cursor) return Element_Type;
125 -- Returns the element of the node designated by the cursor
127 procedure Replace_Element
128 (Container : in out Set;
129 Position : Cursor;
130 New_Item : Element_Type);
131 -- If New_Item is equivalent (as determined by calling Equivalent_Elements)
132 -- to the element of the node designated by Position, then New_Element is
133 -- assigned to that element. Otherwise, it calls Hash to determine the
134 -- bucket for New_Item. If the bucket is not empty, then it calls
135 -- Equivalent_Elements for each node in that bucket to determine whether
136 -- New_Item is equivalent to an element in that bucket. If
137 -- Equivalent_Elements returns True then Program_Error is raised (because
138 -- an element may appear only once in the set); otherwise, New_Item is
139 -- assigned to the node designated by Position, and the node is moved to
140 -- its new bucket.
142 procedure Query_Element
143 (Position : Cursor;
144 Process : not null access procedure (Element : Element_Type));
145 -- Calls Process with the element (having only a constant view) of the node
146 -- designated by the cursor.
148 type Constant_Reference_Type
149 (Element : not null access constant Element_Type) is private
150 with Implicit_Dereference => Element;
152 function Constant_Reference
153 (Container : aliased Set;
154 Position : Cursor) return Constant_Reference_Type;
155 pragma Inline (Constant_Reference);
157 procedure Assign (Target : in out Set; Source : Set);
159 function Copy (Source : Set; Capacity : Count_Type := 0) return Set;
161 procedure Move (Target : in out Set; Source : in out Set);
162 -- Clears Target (if it's not empty), and then moves (not copies) the
163 -- buckets array and nodes from Source to Target.
165 procedure Insert
166 (Container : in out Set;
167 New_Item : Element_Type;
168 Position : out Cursor;
169 Inserted : out Boolean);
170 -- Conditionally inserts New_Item into the set. If New_Item is already in
171 -- the set, then Inserted returns False and Position designates the node
172 -- containing the existing element (which is not modified). If New_Item is
173 -- not already in the set, then Inserted returns True and Position
174 -- designates the newly-inserted node containing New_Item. The search for
175 -- an existing element works as follows. Hash is called to determine
176 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
177 -- is called to compare New_Item to the element of each node in that
178 -- bucket. If the bucket is empty, or there were no equivalent elements in
179 -- the bucket, the search "fails" and the New_Item is inserted in the set
180 -- (and Inserted returns True); otherwise, the search "succeeds" (and
181 -- Inserted returns False).
183 procedure Insert (Container : in out Set; New_Item : Element_Type);
184 -- Attempts to insert New_Item into the set, performing the usual insertion
185 -- search (which involves calling both Hash and Equivalent_Elements); if
186 -- the search succeeds (New_Item is equivalent to an element already in the
187 -- set, and so was not inserted), then this operation raises
188 -- Constraint_Error. (This version of Insert is similar to Replace, but
189 -- having the opposite exception behavior. It is intended for use when you
190 -- want to assert that the item is not already in the set.)
192 procedure Include (Container : in out Set; New_Item : Element_Type);
193 -- Attempts to insert New_Item into the set. If an element equivalent to
194 -- New_Item is already in the set (the insertion search succeeded, and
195 -- hence New_Item was not inserted), then the value of New_Item is assigned
196 -- to the existing element. (This insertion operation only raises an
197 -- exception if cursor tampering occurs. It is intended for use when you
198 -- want to insert the item in the set, and you don't care whether an
199 -- equivalent element is already present.)
201 procedure Replace (Container : in out Set; New_Item : Element_Type);
202 -- Searches for New_Item in the set; if the search fails (because an
203 -- equivalent element was not in the set), then it raises
204 -- Constraint_Error. Otherwise, the existing element is assigned the value
205 -- New_Item. (This is similar to Insert, but with the opposite exception
206 -- behavior. It is intended for use when you want to assert that the item
207 -- is already in the set.)
209 procedure Exclude (Container : in out Set; Item : Element_Type);
210 -- Searches for Item in the set, and if found, removes its node from the
211 -- set and then deallocates it. The search works as follows. The operation
212 -- calls Hash to determine the item's bucket; if the bucket is not empty,
213 -- it calls Equivalent_Elements to compare Item to the element of each node
214 -- in the bucket. (This is the deletion analog of Include. It is intended
215 -- for use when you want to remove the item from the set, but don't care
216 -- whether the item is already in the set.)
218 procedure Delete (Container : in out Set; Item : Element_Type);
219 -- Searches for Item in the set (which involves calling both Hash and
220 -- Equivalent_Elements). If the search fails, then the operation raises
221 -- Constraint_Error. Otherwise it removes the node from the set and then
222 -- deallocates it. (This is the deletion analog of non-conditional
223 -- Insert. It is intended for use when you want to assert that the item is
224 -- already in the set.)
226 procedure Delete (Container : in out Set; Position : in out Cursor);
227 -- Removes the node designated by Position from the set, and then
228 -- deallocates the node. The operation calls Hash to determine the bucket,
229 -- and then compares Position to each node in the bucket until there's a
230 -- match (it does not call Equivalent_Elements).
232 procedure Union (Target : in out Set; Source : Set);
233 -- The operation first calls Reserve_Capacity if the current capacity is
234 -- less than the sum of the lengths of Source and Target. It then iterates
235 -- over the Source set, and conditionally inserts each element into Target.
237 function Union (Left, Right : Set) return Set;
238 -- The operation first copies the Left set to the result, and then iterates
239 -- over the Right set to conditionally insert each element into the result.
241 function "or" (Left, Right : Set) return Set renames Union;
243 procedure Intersection (Target : in out Set; Source : Set);
244 -- Iterates over the Target set (calling First and Next), calling Find to
245 -- determine whether the element is in Source. If an equivalent element is
246 -- not found in Source, the element is deleted from Target.
248 function Intersection (Left, Right : Set) return Set;
249 -- Iterates over the Left set, calling Find to determine whether the
250 -- element is in Right. If an equivalent element is found, it is inserted
251 -- into the result set.
253 function "and" (Left, Right : Set) return Set renames Intersection;
255 procedure Difference (Target : in out Set; Source : Set);
256 -- Iterates over the Source (calling First and Next), calling Find to
257 -- determine whether the element is in Target. If an equivalent element is
258 -- found, it is deleted from Target.
260 function Difference (Left, Right : Set) return Set;
261 -- Iterates over the Left set, calling Find to determine whether the
262 -- element is in the Right set. If an equivalent element is not found, the
263 -- element is inserted into the result set.
265 function "-" (Left, Right : Set) return Set renames Difference;
267 procedure Symmetric_Difference (Target : in out Set; Source : Set);
268 -- The operation first calls Reserve_Capacity if the current capacity is
269 -- less than the sum of the lengths of Source and Target. It then iterates
270 -- over the Source set, searching for the element in Target (calling Hash
271 -- and Equivalent_Elements). If an equivalent element is found, it is
272 -- removed from Target; otherwise it is inserted into Target.
274 function Symmetric_Difference (Left, Right : Set) return Set;
275 -- The operation first iterates over the Left set. It calls Find to
276 -- determine whether the element is in the Right set. If no equivalent
277 -- element is found, the element from Left is inserted into the result. The
278 -- operation then iterates over the Right set, to determine whether the
279 -- element is in the Left set. If no equivalent element is found, the Right
280 -- element is inserted into the result.
282 function "xor" (Left, Right : Set) return Set
283 renames Symmetric_Difference;
285 function Overlap (Left, Right : Set) return Boolean;
286 -- Iterates over the Left set (calling First and Next), calling Find to
287 -- determine whether the element is in the Right set. If an equivalent
288 -- element is found, the operation immediately returns True. The operation
289 -- returns False if the iteration over Left terminates without finding any
290 -- equivalent element in Right.
292 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
293 -- Iterates over Subset (calling First and Next), calling Find to determine
294 -- whether the element is in Of_Set. If no equivalent element is found in
295 -- Of_Set, the operation immediately returns False. The operation returns
296 -- True if the iteration over Subset terminates without finding an element
297 -- not in Of_Set (that is, every element in Subset is equivalent to an
298 -- element in Of_Set).
300 function First (Container : Set) return Cursor;
301 -- Returns a cursor that designates the first non-empty bucket, by
302 -- searching from the beginning of the buckets array.
304 function Next (Position : Cursor) return Cursor;
305 -- Returns a cursor that designates the node that follows the current one
306 -- designated by Position. If Position designates the last node in its
307 -- bucket, the operation calls Hash to compute the index of this bucket,
308 -- and searches the buckets array for the first non-empty bucket, starting
309 -- from that index; otherwise, it simply follows the link to the next node
310 -- in the same bucket.
312 procedure Next (Position : in out Cursor);
313 -- Equivalent to Position := Next (Position)
315 function Find (Container : Set; Item : Element_Type) return Cursor;
316 -- Searches for Item in the set. Find calls Hash to determine the item's
317 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to
318 -- compare Item to each element in the bucket. If the search succeeds, Find
319 -- returns a cursor designating the node containing the equivalent element;
320 -- otherwise, it returns No_Element.
322 function Contains (Container : Set; Item : Element_Type) return Boolean;
323 -- Equivalent to Find (Container, Item) /= No_Element
325 function Equivalent_Elements (Left, Right : Cursor) return Boolean;
326 -- Returns the result of calling Equivalent_Elements with the elements of
327 -- the nodes designated by cursors Left and Right.
329 function Equivalent_Elements
330 (Left : Cursor;
331 Right : Element_Type) return Boolean;
332 -- Returns the result of calling Equivalent_Elements with element of the
333 -- node designated by Left and element Right.
335 function Equivalent_Elements
336 (Left : Element_Type;
337 Right : Cursor) return Boolean;
338 -- Returns the result of calling Equivalent_Elements with element Left and
339 -- the element of the node designated by Right.
341 procedure Iterate
342 (Container : Set;
343 Process : not null access procedure (Position : Cursor));
344 -- Calls Process for each node in the set
346 function Iterate (Container : Set)
347 return Set_Iterator_Interfaces.Forward_Iterator'Class;
349 generic
350 type Key_Type (<>) is private;
352 with function Key (Element : Element_Type) return Key_Type;
354 with function Hash (Key : Key_Type) return Hash_Type;
356 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
358 package Generic_Keys is
360 function Key (Position : Cursor) return Key_Type;
361 -- Applies generic formal operation Key to the element of the node
362 -- designated by Position.
364 function Element (Container : Set; Key : Key_Type) return Element_Type;
365 -- Searches (as per the key-based Find) for the node containing Key, and
366 -- returns the associated element.
368 procedure Replace
369 (Container : in out Set;
370 Key : Key_Type;
371 New_Item : Element_Type);
372 -- Searches (as per the key-based Find) for the node containing Key, and
373 -- then replaces the element of that node (as per the element-based
374 -- Replace_Element).
376 procedure Exclude (Container : in out Set; Key : Key_Type);
377 -- Searches for Key in the set, and if found, removes its node from the
378 -- set and then deallocates it. The search works by first calling Hash
379 -- (on Key) to determine the bucket; if the bucket is not empty, it
380 -- calls Equivalent_Keys to compare parameter Key to the value of
381 -- generic formal operation Key applied to element of each node in the
382 -- bucket.
384 procedure Delete (Container : in out Set; Key : Key_Type);
385 -- Deletes the node containing Key as per Exclude, with the difference
386 -- that Constraint_Error is raised if Key is not found.
388 function Find (Container : Set; Key : Key_Type) return Cursor;
389 -- Searches for the node containing Key, and returns a cursor
390 -- designating the node. The search works by first calling Hash (on Key)
391 -- to determine the bucket. If the bucket is not empty, the search
392 -- compares Key to the element of each node in the bucket, and returns
393 -- the matching node. The comparison itself works by applying the
394 -- generic formal Key operation to the element of the node, and then
395 -- calling generic formal operation Equivalent_Keys.
397 function Contains (Container : Set; Key : Key_Type) return Boolean;
398 -- Equivalent to Find (Container, Key) /= No_Element
400 procedure Update_Element_Preserving_Key
401 (Container : in out Set;
402 Position : Cursor;
403 Process : not null access
404 procedure (Element : in out Element_Type));
405 -- Calls Process with the element of the node designated by Position,
406 -- but with the restriction that the key-value of the element is not
407 -- modified. The operation first makes a copy of the value returned by
408 -- applying generic formal operation Key on the element of the node, and
409 -- then calls Process with the element. The operation verifies that the
410 -- key-part has not been modified by calling generic formal operation
411 -- Equivalent_Keys to compare the saved key-value to the value returned
412 -- by applying generic formal operation Key to the post-Process value of
413 -- element. If the key values compare equal then the operation
414 -- completes. Otherwise, the node is removed from the map and
415 -- Program_Error is raised.
417 type Reference_Type (Element : not null access Element_Type) is private
418 with Implicit_Dereference => Element;
420 function Reference_Preserving_Key
421 (Container : aliased in out Set;
422 Position : Cursor) return Reference_Type;
424 function Constant_Reference
425 (Container : aliased Set;
426 Key : Key_Type) return Constant_Reference_Type;
428 function Reference_Preserving_Key
429 (Container : aliased in out Set;
430 Key : Key_Type) return Reference_Type;
432 private
433 type Set_Access is access all Set;
434 for Set_Access'Storage_Size use 0;
436 type Reference_Control_Type is
437 new Ada.Finalization.Controlled with
438 record
439 Container : Set_Access;
440 Index : Hash_Type;
441 Old_Pos : Cursor;
442 Old_Hash : Hash_Type;
443 end record;
445 overriding procedure Adjust (Control : in out Reference_Control_Type);
446 pragma Inline (Adjust);
448 overriding procedure Finalize (Control : in out Reference_Control_Type);
449 pragma Inline (Finalize);
451 type Reference_Type (Element : not null access Element_Type) is record
452 Control : Reference_Control_Type;
453 end record;
455 use Ada.Streams;
457 procedure Read
458 (Stream : not null access Root_Stream_Type'Class;
459 Item : out Reference_Type);
461 for Reference_Type'Read use Read;
463 procedure Write
464 (Stream : not null access Root_Stream_Type'Class;
465 Item : Reference_Type);
467 for Reference_Type'Write use Write;
468 end Generic_Keys;
470 private
471 pragma Inline (Next);
473 type Node_Type;
474 type Node_Access is access Node_Type;
476 type Element_Access is access Element_Type;
478 type Node_Type is limited record
479 Element : Element_Access;
480 Next : Node_Access;
481 end record;
483 package HT_Types is
484 new Hash_Tables.Generic_Hash_Table_Types (Node_Type, Node_Access);
486 type Set is new Ada.Finalization.Controlled with record
487 HT : HT_Types.Hash_Table_Type;
488 end record;
490 overriding procedure Adjust (Container : in out Set);
492 overriding procedure Finalize (Container : in out Set);
494 use HT_Types;
495 use Ada.Finalization;
496 use Ada.Streams;
498 procedure Write
499 (Stream : not null access Root_Stream_Type'Class;
500 Container : Set);
502 for Set'Write use Write;
504 procedure Read
505 (Stream : not null access Root_Stream_Type'Class;
506 Container : out Set);
508 for Set'Read use Read;
510 type Set_Access is access all Set;
511 for Set_Access'Storage_Size use 0;
513 type Cursor is record
514 Container : Set_Access;
515 Node : Node_Access;
516 end record;
518 procedure Write
519 (Stream : not null access Root_Stream_Type'Class;
520 Item : Cursor);
522 for Cursor'Write use Write;
524 procedure Read
525 (Stream : not null access Root_Stream_Type'Class;
526 Item : out Cursor);
528 for Cursor'Read use Read;
530 type Reference_Control_Type is
531 new Controlled with record
532 Container : Set_Access;
533 end record;
535 overriding procedure Adjust (Control : in out Reference_Control_Type);
536 pragma Inline (Adjust);
538 overriding procedure Finalize (Control : in out Reference_Control_Type);
539 pragma Inline (Finalize);
541 type Constant_Reference_Type
542 (Element : not null access constant Element_Type) is
543 record
544 Control : Reference_Control_Type;
545 end record;
547 procedure Read
548 (Stream : not null access Root_Stream_Type'Class;
549 Item : out Constant_Reference_Type);
551 for Constant_Reference_Type'Read use Read;
553 procedure Write
554 (Stream : not null access Root_Stream_Type'Class;
555 Item : Constant_Reference_Type);
557 for Constant_Reference_Type'Write use Write;
559 Empty_Set : constant Set := (Controlled with HT => (null, 0, 0, 0));
561 No_Element : constant Cursor := (Container => null, Node => null);
563 type Iterator is new Limited_Controlled and
564 Set_Iterator_Interfaces.Forward_Iterator with
565 record
566 Container : Set_Access;
567 end record;
569 overriding procedure Finalize (Object : in out Iterator);
571 overriding function First (Object : Iterator) return Cursor;
573 overriding function Next
574 (Object : Iterator;
575 Position : Cursor) return Cursor;
577 end Ada.Containers.Indefinite_Hashed_Sets;