PR target/16201
[official-gcc.git] / gcc / reload.c
blob0b865a1925f2b86fa0c7bf3785448dea577633e7
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* True if C is a non-empty register class that has too few registers
118 to be safely used as a reload target class. */
119 #define SMALL_REGISTER_CLASS_P(C) \
120 (reg_class_size [(C)] == 1 \
121 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124 /* All reloads of the current insn are recorded here. See reload.h for
125 comments. */
126 int n_reloads;
127 struct reload rld[MAX_RELOADS];
129 /* All the "earlyclobber" operands of the current insn
130 are recorded here. */
131 int n_earlyclobbers;
132 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
134 int reload_n_operands;
136 /* Replacing reloads.
138 If `replace_reloads' is nonzero, then as each reload is recorded
139 an entry is made for it in the table `replacements'.
140 Then later `subst_reloads' can look through that table and
141 perform all the replacements needed. */
143 /* Nonzero means record the places to replace. */
144 static int replace_reloads;
146 /* Each replacement is recorded with a structure like this. */
147 struct replacement
149 rtx *where; /* Location to store in */
150 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
151 a SUBREG; 0 otherwise. */
152 int what; /* which reload this is for */
153 enum machine_mode mode; /* mode it must have */
156 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
158 /* Number of replacements currently recorded. */
159 static int n_replacements;
161 /* Used to track what is modified by an operand. */
162 struct decomposition
164 int reg_flag; /* Nonzero if referencing a register. */
165 int safe; /* Nonzero if this can't conflict with anything. */
166 rtx base; /* Base address for MEM. */
167 HOST_WIDE_INT start; /* Starting offset or register number. */
168 HOST_WIDE_INT end; /* Ending offset or register number. */
171 #ifdef SECONDARY_MEMORY_NEEDED
173 /* Save MEMs needed to copy from one class of registers to another. One MEM
174 is used per mode, but normally only one or two modes are ever used.
176 We keep two versions, before and after register elimination. The one
177 after register elimination is record separately for each operand. This
178 is done in case the address is not valid to be sure that we separately
179 reload each. */
181 static rtx secondary_memlocs[NUM_MACHINE_MODES];
182 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
183 static int secondary_memlocs_elim_used = 0;
184 #endif
186 /* The instruction we are doing reloads for;
187 so we can test whether a register dies in it. */
188 static rtx this_insn;
190 /* Nonzero if this instruction is a user-specified asm with operands. */
191 static int this_insn_is_asm;
193 /* If hard_regs_live_known is nonzero,
194 we can tell which hard regs are currently live,
195 at least enough to succeed in choosing dummy reloads. */
196 static int hard_regs_live_known;
198 /* Indexed by hard reg number,
199 element is nonnegative if hard reg has been spilled.
200 This vector is passed to `find_reloads' as an argument
201 and is not changed here. */
202 static short *static_reload_reg_p;
204 /* Set to 1 in subst_reg_equivs if it changes anything. */
205 static int subst_reg_equivs_changed;
207 /* On return from push_reload, holds the reload-number for the OUT
208 operand, which can be different for that from the input operand. */
209 static int output_reloadnum;
211 /* Compare two RTX's. */
212 #define MATCHES(x, y) \
213 (x == y || (x != 0 && (REG_P (x) \
214 ? REG_P (y) && REGNO (x) == REGNO (y) \
215 : rtx_equal_p (x, y) && ! side_effects_p (x))))
217 /* Indicates if two reloads purposes are for similar enough things that we
218 can merge their reloads. */
219 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
220 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
221 || ((when1) == (when2) && (op1) == (op2)) \
222 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
223 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
224 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
225 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
226 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
229 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
230 ((when1) != (when2) \
231 || ! ((op1) == (op2) \
232 || (when1) == RELOAD_FOR_INPUT \
233 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 /* If we are going to reload an address, compute the reload type to
237 use. */
238 #define ADDR_TYPE(type) \
239 ((type) == RELOAD_FOR_INPUT_ADDRESS \
240 ? RELOAD_FOR_INPADDR_ADDRESS \
241 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
242 ? RELOAD_FOR_OUTADDR_ADDRESS \
243 : (type)))
245 #ifdef HAVE_SECONDARY_RELOADS
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 enum machine_mode, enum reload_type,
248 enum insn_code *);
249 #endif
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
286 #ifdef HAVE_SECONDARY_RELOADS
288 /* Determine if any secondary reloads are needed for loading (if IN_P is
289 nonzero) or storing (if IN_P is zero) X to or from a reload register of
290 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
291 are needed, push them.
293 Return the reload number of the secondary reload we made, or -1 if
294 we didn't need one. *PICODE is set to the insn_code to use if we do
295 need a secondary reload. */
297 static int
298 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
299 enum reg_class reload_class,
300 enum machine_mode reload_mode, enum reload_type type,
301 enum insn_code *picode)
303 enum reg_class class = NO_REGS;
304 enum machine_mode mode = reload_mode;
305 enum insn_code icode = CODE_FOR_nothing;
306 enum reg_class t_class = NO_REGS;
307 enum machine_mode t_mode = VOIDmode;
308 enum insn_code t_icode = CODE_FOR_nothing;
309 enum reload_type secondary_type;
310 int s_reload, t_reload = -1;
312 if (type == RELOAD_FOR_INPUT_ADDRESS
313 || type == RELOAD_FOR_OUTPUT_ADDRESS
314 || type == RELOAD_FOR_INPADDR_ADDRESS
315 || type == RELOAD_FOR_OUTADDR_ADDRESS)
316 secondary_type = type;
317 else
318 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
320 *picode = CODE_FOR_nothing;
322 /* If X is a paradoxical SUBREG, use the inner value to determine both the
323 mode and object being reloaded. */
324 if (GET_CODE (x) == SUBREG
325 && (GET_MODE_SIZE (GET_MODE (x))
326 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
328 x = SUBREG_REG (x);
329 reload_mode = GET_MODE (x);
332 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
333 is still a pseudo-register by now, it *must* have an equivalent MEM
334 but we don't want to assume that), use that equivalent when seeing if
335 a secondary reload is needed since whether or not a reload is needed
336 might be sensitive to the form of the MEM. */
338 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
339 && reg_equiv_mem[REGNO (x)] != 0)
340 x = reg_equiv_mem[REGNO (x)];
342 #ifdef SECONDARY_INPUT_RELOAD_CLASS
343 if (in_p)
344 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
348 if (! in_p)
349 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
350 #endif
352 /* If we don't need any secondary registers, done. */
353 if (class == NO_REGS)
354 return -1;
356 /* Get a possible insn to use. If the predicate doesn't accept X, don't
357 use the insn. */
359 icode = (in_p ? reload_in_optab[(int) reload_mode]
360 : reload_out_optab[(int) reload_mode]);
362 if (icode != CODE_FOR_nothing
363 && insn_data[(int) icode].operand[in_p].predicate
364 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
365 icode = CODE_FOR_nothing;
367 /* If we will be using an insn, see if it can directly handle the reload
368 register we will be using. If it can, the secondary reload is for a
369 scratch register. If it can't, we will use the secondary reload for
370 an intermediate register and require a tertiary reload for the scratch
371 register. */
373 if (icode != CODE_FOR_nothing)
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
378 skip. */
380 enum reg_class insn_class;
382 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
383 insn_class = ALL_REGS;
384 else
386 const char *insn_constraint
387 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
388 char insn_letter = *insn_constraint;
389 insn_class
390 = (insn_letter == 'r' ? GENERAL_REGS
391 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
392 insn_constraint));
394 gcc_assert (insn_class != NO_REGS);
395 gcc_assert (!in_p
396 || insn_data[(int) icode].operand[!in_p].constraint[0]
397 == '=');
400 /* The scratch register's constraint must start with "=&". */
401 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
402 && insn_data[(int) icode].operand[2].constraint[1] == '&');
404 if (reg_class_subset_p (reload_class, insn_class))
405 mode = insn_data[(int) icode].operand[2].mode;
406 else
408 const char *t_constraint
409 = &insn_data[(int) icode].operand[2].constraint[2];
410 char t_letter = *t_constraint;
411 class = insn_class;
412 t_mode = insn_data[(int) icode].operand[2].mode;
413 t_class = (t_letter == 'r' ? GENERAL_REGS
414 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
415 t_constraint));
416 t_icode = icode;
417 icode = CODE_FOR_nothing;
421 /* This case isn't valid, so fail. Reload is allowed to use the same
422 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
423 in the case of a secondary register, we actually need two different
424 registers for correct code. We fail here to prevent the possibility of
425 silently generating incorrect code later.
427 The convention is that secondary input reloads are valid only if the
428 secondary_class is different from class. If you have such a case, you
429 can not use secondary reloads, you must work around the problem some
430 other way.
432 Allow this when a reload_in/out pattern is being used. I.e. assume
433 that the generated code handles this case. */
435 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
436 || t_icode != CODE_FOR_nothing);
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (SMALL_REGISTER_CLASS_P (t_class) || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
671 /* Find the largest class which has at least one register valid in
672 mode INNER, and which for every such register, that register number
673 plus N is also valid in OUTER (if in range) and is cheap to move
674 into REGNO. Abort if no such class exists. */
676 static enum reg_class
677 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
678 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
679 unsigned int dest_regno ATTRIBUTE_UNUSED)
681 int best_cost = -1;
682 int class;
683 int regno;
684 enum reg_class best_class = NO_REGS;
685 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
686 unsigned int best_size = 0;
687 int cost;
689 for (class = 1; class < N_REG_CLASSES; class++)
691 int bad = 0;
692 int good = 0;
693 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
694 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
696 if (HARD_REGNO_MODE_OK (regno, inner))
698 good = 1;
699 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
700 || ! HARD_REGNO_MODE_OK (regno + n, outer))
701 bad = 1;
705 if (bad || !good)
706 continue;
707 cost = REGISTER_MOVE_COST (outer, class, dest_class);
709 if ((reg_class_size[class] > best_size
710 && (best_cost < 0 || best_cost >= cost))
711 || best_cost > cost)
713 best_class = class;
714 best_size = reg_class_size[class];
715 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
719 gcc_assert (best_size != 0);
721 return best_class;
724 /* Return the number of a previously made reload that can be combined with
725 a new one, or n_reloads if none of the existing reloads can be used.
726 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
727 push_reload, they determine the kind of the new reload that we try to
728 combine. P_IN points to the corresponding value of IN, which can be
729 modified by this function.
730 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
732 static int
733 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
734 enum reload_type type, int opnum, int dont_share)
736 rtx in = *p_in;
737 int i;
738 /* We can't merge two reloads if the output of either one is
739 earlyclobbered. */
741 if (earlyclobber_operand_p (out))
742 return n_reloads;
744 /* We can use an existing reload if the class is right
745 and at least one of IN and OUT is a match
746 and the other is at worst neutral.
747 (A zero compared against anything is neutral.)
749 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
750 for the same thing since that can cause us to need more reload registers
751 than we otherwise would. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our class. */
757 && (rld[i].reg_rtx == 0
758 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
759 true_regnum (rld[i].reg_rtx)))
760 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
761 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
762 || (out != 0 && MATCHES (rld[i].out, out)
763 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
764 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
765 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
766 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
767 return i;
769 /* Reloading a plain reg for input can match a reload to postincrement
770 that reg, since the postincrement's value is the right value.
771 Likewise, it can match a preincrement reload, since we regard
772 the preincrementation as happening before any ref in this insn
773 to that register. */
774 for (i = 0; i < n_reloads; i++)
775 if ((reg_class_subset_p (class, rld[i].class)
776 || reg_class_subset_p (rld[i].class, class))
777 /* If the existing reload has a register, it must fit our
778 class. */
779 && (rld[i].reg_rtx == 0
780 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
781 true_regnum (rld[i].reg_rtx)))
782 && out == 0 && rld[i].out == 0 && rld[i].in != 0
783 && ((REG_P (in)
784 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
785 && MATCHES (XEXP (rld[i].in, 0), in))
786 || (REG_P (rld[i].in)
787 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
788 && MATCHES (XEXP (in, 0), rld[i].in)))
789 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
790 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
791 && MERGABLE_RELOADS (type, rld[i].when_needed,
792 opnum, rld[i].opnum))
794 /* Make sure reload_in ultimately has the increment,
795 not the plain register. */
796 if (REG_P (in))
797 *p_in = rld[i].in;
798 return i;
800 return n_reloads;
803 /* Return nonzero if X is a SUBREG which will require reloading of its
804 SUBREG_REG expression. */
806 static int
807 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
809 rtx inner;
811 /* Only SUBREGs are problematical. */
812 if (GET_CODE (x) != SUBREG)
813 return 0;
815 inner = SUBREG_REG (x);
817 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
818 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
819 return 1;
821 /* If INNER is not a hard register, then INNER will not need to
822 be reloaded. */
823 if (!REG_P (inner)
824 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
825 return 0;
827 /* If INNER is not ok for MODE, then INNER will need reloading. */
828 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
829 return 1;
831 /* If the outer part is a word or smaller, INNER larger than a
832 word and the number of regs for INNER is not the same as the
833 number of words in INNER, then INNER will need reloading. */
834 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
835 && output
836 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
837 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
838 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
841 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
842 requiring an extra reload register. The caller has already found that
843 IN contains some reference to REGNO, so check that we can produce the
844 new value in a single step. E.g. if we have
845 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
846 instruction that adds one to a register, this should succeed.
847 However, if we have something like
848 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
849 needs to be loaded into a register first, we need a separate reload
850 register.
851 Such PLUS reloads are generated by find_reload_address_part.
852 The out-of-range PLUS expressions are usually introduced in the instruction
853 patterns by register elimination and substituting pseudos without a home
854 by their function-invariant equivalences. */
855 static int
856 can_reload_into (rtx in, int regno, enum machine_mode mode)
858 rtx dst, test_insn;
859 int r = 0;
860 struct recog_data save_recog_data;
862 /* For matching constraints, we often get notional input reloads where
863 we want to use the original register as the reload register. I.e.
864 technically this is a non-optional input-output reload, but IN is
865 already a valid register, and has been chosen as the reload register.
866 Speed this up, since it trivially works. */
867 if (REG_P (in))
868 return 1;
870 /* To test MEMs properly, we'd have to take into account all the reloads
871 that are already scheduled, which can become quite complicated.
872 And since we've already handled address reloads for this MEM, it
873 should always succeed anyway. */
874 if (MEM_P (in))
875 return 1;
877 /* If we can make a simple SET insn that does the job, everything should
878 be fine. */
879 dst = gen_rtx_REG (mode, regno);
880 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
881 save_recog_data = recog_data;
882 if (recog_memoized (test_insn) >= 0)
884 extract_insn (test_insn);
885 r = constrain_operands (1);
887 recog_data = save_recog_data;
888 return r;
891 /* Record one reload that needs to be performed.
892 IN is an rtx saying where the data are to be found before this instruction.
893 OUT says where they must be stored after the instruction.
894 (IN is zero for data not read, and OUT is zero for data not written.)
895 INLOC and OUTLOC point to the places in the instructions where
896 IN and OUT were found.
897 If IN and OUT are both nonzero, it means the same register must be used
898 to reload both IN and OUT.
900 CLASS is a register class required for the reloaded data.
901 INMODE is the machine mode that the instruction requires
902 for the reg that replaces IN and OUTMODE is likewise for OUT.
904 If IN is zero, then OUT's location and mode should be passed as
905 INLOC and INMODE.
907 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
909 OPTIONAL nonzero means this reload does not need to be performed:
910 it can be discarded if that is more convenient.
912 OPNUM and TYPE say what the purpose of this reload is.
914 The return value is the reload-number for this reload.
916 If both IN and OUT are nonzero, in some rare cases we might
917 want to make two separate reloads. (Actually we never do this now.)
918 Therefore, the reload-number for OUT is stored in
919 output_reloadnum when we return; the return value applies to IN.
920 Usually (presently always), when IN and OUT are nonzero,
921 the two reload-numbers are equal, but the caller should be careful to
922 distinguish them. */
925 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
926 enum reg_class class, enum machine_mode inmode,
927 enum machine_mode outmode, int strict_low, int optional,
928 int opnum, enum reload_type type)
930 int i;
931 int dont_share = 0;
932 int dont_remove_subreg = 0;
933 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
934 int secondary_in_reload = -1, secondary_out_reload = -1;
935 enum insn_code secondary_in_icode = CODE_FOR_nothing;
936 enum insn_code secondary_out_icode = CODE_FOR_nothing;
938 /* INMODE and/or OUTMODE could be VOIDmode if no mode
939 has been specified for the operand. In that case,
940 use the operand's mode as the mode to reload. */
941 if (inmode == VOIDmode && in != 0)
942 inmode = GET_MODE (in);
943 if (outmode == VOIDmode && out != 0)
944 outmode = GET_MODE (out);
946 /* If IN is a pseudo register everywhere-equivalent to a constant, and
947 it is not in a hard register, reload straight from the constant,
948 since we want to get rid of such pseudo registers.
949 Often this is done earlier, but not always in find_reloads_address. */
950 if (in != 0 && REG_P (in))
952 int regno = REGNO (in);
954 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
955 && reg_equiv_constant[regno] != 0)
956 in = reg_equiv_constant[regno];
959 /* Likewise for OUT. Of course, OUT will never be equivalent to
960 an actual constant, but it might be equivalent to a memory location
961 (in the case of a parameter). */
962 if (out != 0 && REG_P (out))
964 int regno = REGNO (out);
966 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
967 && reg_equiv_constant[regno] != 0)
968 out = reg_equiv_constant[regno];
971 /* If we have a read-write operand with an address side-effect,
972 change either IN or OUT so the side-effect happens only once. */
973 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
974 switch (GET_CODE (XEXP (in, 0)))
976 case POST_INC: case POST_DEC: case POST_MODIFY:
977 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
978 break;
980 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
981 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
982 break;
984 default:
985 break;
988 /* If we are reloading a (SUBREG constant ...), really reload just the
989 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
990 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
991 a pseudo and hence will become a MEM) with M1 wider than M2 and the
992 register is a pseudo, also reload the inside expression.
993 For machines that extend byte loads, do this for any SUBREG of a pseudo
994 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
995 M2 is an integral mode that gets extended when loaded.
996 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
997 either M1 is not valid for R or M2 is wider than a word but we only
998 need one word to store an M2-sized quantity in R.
999 (However, if OUT is nonzero, we need to reload the reg *and*
1000 the subreg, so do nothing here, and let following statement handle it.)
1002 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1003 we can't handle it here because CONST_INT does not indicate a mode.
1005 Similarly, we must reload the inside expression if we have a
1006 STRICT_LOW_PART (presumably, in == out in the cas).
1008 Also reload the inner expression if it does not require a secondary
1009 reload but the SUBREG does.
1011 Finally, reload the inner expression if it is a register that is in
1012 the class whose registers cannot be referenced in a different size
1013 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1014 cannot reload just the inside since we might end up with the wrong
1015 register class. But if it is inside a STRICT_LOW_PART, we have
1016 no choice, so we hope we do get the right register class there. */
1018 if (in != 0 && GET_CODE (in) == SUBREG
1019 && (subreg_lowpart_p (in) || strict_low)
1020 #ifdef CANNOT_CHANGE_MODE_CLASS
1021 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1022 #endif
1023 && (CONSTANT_P (SUBREG_REG (in))
1024 || GET_CODE (SUBREG_REG (in)) == PLUS
1025 || strict_low
1026 || (((REG_P (SUBREG_REG (in))
1027 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1028 || MEM_P (SUBREG_REG (in)))
1029 && ((GET_MODE_SIZE (inmode)
1030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1031 #ifdef LOAD_EXTEND_OP
1032 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 <= UNITS_PER_WORD)
1035 && (GET_MODE_SIZE (inmode)
1036 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1037 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1038 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1039 #endif
1040 #ifdef WORD_REGISTER_OPERATIONS
1041 || ((GET_MODE_SIZE (inmode)
1042 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1043 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1044 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1045 / UNITS_PER_WORD)))
1046 #endif
1048 || (REG_P (SUBREG_REG (in))
1049 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1050 /* The case where out is nonzero
1051 is handled differently in the following statement. */
1052 && (out == 0 || subreg_lowpart_p (in))
1053 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1054 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1055 > UNITS_PER_WORD)
1056 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1057 / UNITS_PER_WORD)
1058 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1059 [GET_MODE (SUBREG_REG (in))]))
1060 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1061 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1062 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1063 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1064 GET_MODE (SUBREG_REG (in)),
1065 SUBREG_REG (in))
1066 == NO_REGS))
1067 #endif
1068 #ifdef CANNOT_CHANGE_MODE_CLASS
1069 || (REG_P (SUBREG_REG (in))
1070 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1071 && REG_CANNOT_CHANGE_MODE_P
1072 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1073 #endif
1076 in_subreg_loc = inloc;
1077 inloc = &SUBREG_REG (in);
1078 in = *inloc;
1079 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1080 if (MEM_P (in))
1081 /* This is supposed to happen only for paradoxical subregs made by
1082 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1083 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1084 #endif
1085 inmode = GET_MODE (in);
1088 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1089 either M1 is not valid for R or M2 is wider than a word but we only
1090 need one word to store an M2-sized quantity in R.
1092 However, we must reload the inner reg *as well as* the subreg in
1093 that case. */
1095 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1096 code above. This can happen if SUBREG_BYTE != 0. */
1098 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1100 enum reg_class in_class = class;
1102 if (REG_P (SUBREG_REG (in)))
1103 in_class
1104 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1105 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1106 GET_MODE (SUBREG_REG (in)),
1107 SUBREG_BYTE (in),
1108 GET_MODE (in)),
1109 REGNO (SUBREG_REG (in)));
1111 /* This relies on the fact that emit_reload_insns outputs the
1112 instructions for input reloads of type RELOAD_OTHER in the same
1113 order as the reloads. Thus if the outer reload is also of type
1114 RELOAD_OTHER, we are guaranteed that this inner reload will be
1115 output before the outer reload. */
1116 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1117 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1118 dont_remove_subreg = 1;
1121 /* Similarly for paradoxical and problematical SUBREGs on the output.
1122 Note that there is no reason we need worry about the previous value
1123 of SUBREG_REG (out); even if wider than out,
1124 storing in a subreg is entitled to clobber it all
1125 (except in the case of STRICT_LOW_PART,
1126 and in that case the constraint should label it input-output.) */
1127 if (out != 0 && GET_CODE (out) == SUBREG
1128 && (subreg_lowpart_p (out) || strict_low)
1129 #ifdef CANNOT_CHANGE_MODE_CLASS
1130 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1131 #endif
1132 && (CONSTANT_P (SUBREG_REG (out))
1133 || strict_low
1134 || (((REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1136 || MEM_P (SUBREG_REG (out)))
1137 && ((GET_MODE_SIZE (outmode)
1138 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1139 #ifdef WORD_REGISTER_OPERATIONS
1140 || ((GET_MODE_SIZE (outmode)
1141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1142 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1143 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1144 / UNITS_PER_WORD)))
1145 #endif
1147 || (REG_P (SUBREG_REG (out))
1148 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1149 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1150 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1151 > UNITS_PER_WORD)
1152 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1153 / UNITS_PER_WORD)
1154 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1155 [GET_MODE (SUBREG_REG (out))]))
1156 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1157 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1158 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1159 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1160 GET_MODE (SUBREG_REG (out)),
1161 SUBREG_REG (out))
1162 == NO_REGS))
1163 #endif
1164 #ifdef CANNOT_CHANGE_MODE_CLASS
1165 || (REG_P (SUBREG_REG (out))
1166 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1167 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1168 GET_MODE (SUBREG_REG (out)),
1169 outmode))
1170 #endif
1173 out_subreg_loc = outloc;
1174 outloc = &SUBREG_REG (out);
1175 out = *outloc;
1176 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1177 gcc_assert (!MEM_P (out)
1178 || GET_MODE_SIZE (GET_MODE (out))
1179 <= GET_MODE_SIZE (outmode));
1180 #endif
1181 outmode = GET_MODE (out);
1184 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1185 either M1 is not valid for R or M2 is wider than a word but we only
1186 need one word to store an M2-sized quantity in R.
1188 However, we must reload the inner reg *as well as* the subreg in
1189 that case. In this case, the inner reg is an in-out reload. */
1191 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1193 /* This relies on the fact that emit_reload_insns outputs the
1194 instructions for output reloads of type RELOAD_OTHER in reverse
1195 order of the reloads. Thus if the outer reload is also of type
1196 RELOAD_OTHER, we are guaranteed that this inner reload will be
1197 output after the outer reload. */
1198 dont_remove_subreg = 1;
1199 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1200 &SUBREG_REG (out),
1201 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1202 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1203 GET_MODE (SUBREG_REG (out)),
1204 SUBREG_BYTE (out),
1205 GET_MODE (out)),
1206 REGNO (SUBREG_REG (out))),
1207 VOIDmode, VOIDmode, 0, 0,
1208 opnum, RELOAD_OTHER);
1211 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1212 if (in != 0 && out != 0 && MEM_P (out)
1213 && (REG_P (in) || MEM_P (in))
1214 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1215 dont_share = 1;
1217 /* If IN is a SUBREG of a hard register, make a new REG. This
1218 simplifies some of the cases below. */
1220 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1221 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1222 && ! dont_remove_subreg)
1223 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1225 /* Similarly for OUT. */
1226 if (out != 0 && GET_CODE (out) == SUBREG
1227 && REG_P (SUBREG_REG (out))
1228 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1229 && ! dont_remove_subreg)
1230 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1232 /* Narrow down the class of register wanted if that is
1233 desirable on this machine for efficiency. */
1234 if (in != 0)
1235 class = PREFERRED_RELOAD_CLASS (in, class);
1237 /* Output reloads may need analogous treatment, different in detail. */
1238 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1239 if (out != 0)
1240 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1241 #endif
1243 /* Make sure we use a class that can handle the actual pseudo
1244 inside any subreg. For example, on the 386, QImode regs
1245 can appear within SImode subregs. Although GENERAL_REGS
1246 can handle SImode, QImode needs a smaller class. */
1247 #ifdef LIMIT_RELOAD_CLASS
1248 if (in_subreg_loc)
1249 class = LIMIT_RELOAD_CLASS (inmode, class);
1250 else if (in != 0 && GET_CODE (in) == SUBREG)
1251 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1253 if (out_subreg_loc)
1254 class = LIMIT_RELOAD_CLASS (outmode, class);
1255 if (out != 0 && GET_CODE (out) == SUBREG)
1256 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1257 #endif
1259 /* Verify that this class is at least possible for the mode that
1260 is specified. */
1261 if (this_insn_is_asm)
1263 enum machine_mode mode;
1264 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1265 mode = inmode;
1266 else
1267 mode = outmode;
1268 if (mode == VOIDmode)
1270 error_for_asm (this_insn, "cannot reload integer constant "
1271 "operand in %<asm%>");
1272 mode = word_mode;
1273 if (in != 0)
1274 inmode = word_mode;
1275 if (out != 0)
1276 outmode = word_mode;
1278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1279 if (HARD_REGNO_MODE_OK (i, mode)
1280 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1282 int nregs = hard_regno_nregs[i][mode];
1284 int j;
1285 for (j = 1; j < nregs; j++)
1286 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1287 break;
1288 if (j == nregs)
1289 break;
1291 if (i == FIRST_PSEUDO_REGISTER)
1293 error_for_asm (this_insn, "impossible register constraint "
1294 "in %<asm%>");
1295 class = ALL_REGS;
1299 /* Optional output reloads are always OK even if we have no register class,
1300 since the function of these reloads is only to have spill_reg_store etc.
1301 set, so that the storing insn can be deleted later. */
1302 gcc_assert (class != NO_REGS
1303 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1305 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1307 if (i == n_reloads)
1309 /* See if we need a secondary reload register to move between CLASS
1310 and IN or CLASS and OUT. Get the icode and push any required reloads
1311 needed for each of them if so. */
1313 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1314 if (in != 0)
1315 secondary_in_reload
1316 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1317 &secondary_in_icode);
1318 #endif
1320 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1321 if (out != 0 && GET_CODE (out) != SCRATCH)
1322 secondary_out_reload
1323 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1324 type, &secondary_out_icode);
1325 #endif
1327 /* We found no existing reload suitable for re-use.
1328 So add an additional reload. */
1330 #ifdef SECONDARY_MEMORY_NEEDED
1331 /* If a memory location is needed for the copy, make one. */
1332 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1333 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1334 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1335 class, inmode))
1336 get_secondary_mem (in, inmode, opnum, type);
1337 #endif
1339 i = n_reloads;
1340 rld[i].in = in;
1341 rld[i].out = out;
1342 rld[i].class = class;
1343 rld[i].inmode = inmode;
1344 rld[i].outmode = outmode;
1345 rld[i].reg_rtx = 0;
1346 rld[i].optional = optional;
1347 rld[i].inc = 0;
1348 rld[i].nocombine = 0;
1349 rld[i].in_reg = inloc ? *inloc : 0;
1350 rld[i].out_reg = outloc ? *outloc : 0;
1351 rld[i].opnum = opnum;
1352 rld[i].when_needed = type;
1353 rld[i].secondary_in_reload = secondary_in_reload;
1354 rld[i].secondary_out_reload = secondary_out_reload;
1355 rld[i].secondary_in_icode = secondary_in_icode;
1356 rld[i].secondary_out_icode = secondary_out_icode;
1357 rld[i].secondary_p = 0;
1359 n_reloads++;
1361 #ifdef SECONDARY_MEMORY_NEEDED
1362 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1363 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1364 && SECONDARY_MEMORY_NEEDED (class,
1365 REGNO_REG_CLASS (reg_or_subregno (out)),
1366 outmode))
1367 get_secondary_mem (out, outmode, opnum, type);
1368 #endif
1370 else
1372 /* We are reusing an existing reload,
1373 but we may have additional information for it.
1374 For example, we may now have both IN and OUT
1375 while the old one may have just one of them. */
1377 /* The modes can be different. If they are, we want to reload in
1378 the larger mode, so that the value is valid for both modes. */
1379 if (inmode != VOIDmode
1380 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1381 rld[i].inmode = inmode;
1382 if (outmode != VOIDmode
1383 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1384 rld[i].outmode = outmode;
1385 if (in != 0)
1387 rtx in_reg = inloc ? *inloc : 0;
1388 /* If we merge reloads for two distinct rtl expressions that
1389 are identical in content, there might be duplicate address
1390 reloads. Remove the extra set now, so that if we later find
1391 that we can inherit this reload, we can get rid of the
1392 address reloads altogether.
1394 Do not do this if both reloads are optional since the result
1395 would be an optional reload which could potentially leave
1396 unresolved address replacements.
1398 It is not sufficient to call transfer_replacements since
1399 choose_reload_regs will remove the replacements for address
1400 reloads of inherited reloads which results in the same
1401 problem. */
1402 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1403 && ! (rld[i].optional && optional))
1405 /* We must keep the address reload with the lower operand
1406 number alive. */
1407 if (opnum > rld[i].opnum)
1409 remove_address_replacements (in);
1410 in = rld[i].in;
1411 in_reg = rld[i].in_reg;
1413 else
1414 remove_address_replacements (rld[i].in);
1416 rld[i].in = in;
1417 rld[i].in_reg = in_reg;
1419 if (out != 0)
1421 rld[i].out = out;
1422 rld[i].out_reg = outloc ? *outloc : 0;
1424 if (reg_class_subset_p (class, rld[i].class))
1425 rld[i].class = class;
1426 rld[i].optional &= optional;
1427 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1428 opnum, rld[i].opnum))
1429 rld[i].when_needed = RELOAD_OTHER;
1430 rld[i].opnum = MIN (rld[i].opnum, opnum);
1433 /* If the ostensible rtx being reloaded differs from the rtx found
1434 in the location to substitute, this reload is not safe to combine
1435 because we cannot reliably tell whether it appears in the insn. */
1437 if (in != 0 && in != *inloc)
1438 rld[i].nocombine = 1;
1440 #if 0
1441 /* This was replaced by changes in find_reloads_address_1 and the new
1442 function inc_for_reload, which go with a new meaning of reload_inc. */
1444 /* If this is an IN/OUT reload in an insn that sets the CC,
1445 it must be for an autoincrement. It doesn't work to store
1446 the incremented value after the insn because that would clobber the CC.
1447 So we must do the increment of the value reloaded from,
1448 increment it, store it back, then decrement again. */
1449 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1451 out = 0;
1452 rld[i].out = 0;
1453 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1454 /* If we did not find a nonzero amount-to-increment-by,
1455 that contradicts the belief that IN is being incremented
1456 in an address in this insn. */
1457 gcc_assert (rld[i].inc != 0);
1459 #endif
1461 /* If we will replace IN and OUT with the reload-reg,
1462 record where they are located so that substitution need
1463 not do a tree walk. */
1465 if (replace_reloads)
1467 if (inloc != 0)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->subreg_loc = in_subreg_loc;
1472 r->where = inloc;
1473 r->mode = inmode;
1475 if (outloc != 0 && outloc != inloc)
1477 struct replacement *r = &replacements[n_replacements++];
1478 r->what = i;
1479 r->where = outloc;
1480 r->subreg_loc = out_subreg_loc;
1481 r->mode = outmode;
1485 /* If this reload is just being introduced and it has both
1486 an incoming quantity and an outgoing quantity that are
1487 supposed to be made to match, see if either one of the two
1488 can serve as the place to reload into.
1490 If one of them is acceptable, set rld[i].reg_rtx
1491 to that one. */
1493 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1495 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1496 inmode, outmode,
1497 rld[i].class, i,
1498 earlyclobber_operand_p (out));
1500 /* If the outgoing register already contains the same value
1501 as the incoming one, we can dispense with loading it.
1502 The easiest way to tell the caller that is to give a phony
1503 value for the incoming operand (same as outgoing one). */
1504 if (rld[i].reg_rtx == out
1505 && (REG_P (in) || CONSTANT_P (in))
1506 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1507 static_reload_reg_p, i, inmode))
1508 rld[i].in = out;
1511 /* If this is an input reload and the operand contains a register that
1512 dies in this insn and is used nowhere else, see if it is the right class
1513 to be used for this reload. Use it if so. (This occurs most commonly
1514 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1515 this if it is also an output reload that mentions the register unless
1516 the output is a SUBREG that clobbers an entire register.
1518 Note that the operand might be one of the spill regs, if it is a
1519 pseudo reg and we are in a block where spilling has not taken place.
1520 But if there is no spilling in this block, that is OK.
1521 An explicitly used hard reg cannot be a spill reg. */
1523 if (rld[i].reg_rtx == 0 && in != 0)
1525 rtx note;
1526 int regno;
1527 enum machine_mode rel_mode = inmode;
1529 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1530 rel_mode = outmode;
1532 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1533 if (REG_NOTE_KIND (note) == REG_DEAD
1534 && REG_P (XEXP (note, 0))
1535 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1536 && reg_mentioned_p (XEXP (note, 0), in)
1537 && ! refers_to_regno_for_reload_p (regno,
1538 (regno
1539 + hard_regno_nregs[regno]
1540 [rel_mode]),
1541 PATTERN (this_insn), inloc)
1542 /* If this is also an output reload, IN cannot be used as
1543 the reload register if it is set in this insn unless IN
1544 is also OUT. */
1545 && (out == 0 || in == out
1546 || ! hard_reg_set_here_p (regno,
1547 (regno
1548 + hard_regno_nregs[regno]
1549 [rel_mode]),
1550 PATTERN (this_insn)))
1551 /* ??? Why is this code so different from the previous?
1552 Is there any simple coherent way to describe the two together?
1553 What's going on here. */
1554 && (in != out
1555 || (GET_CODE (in) == SUBREG
1556 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1557 / UNITS_PER_WORD)
1558 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1560 /* Make sure the operand fits in the reg that dies. */
1561 && (GET_MODE_SIZE (rel_mode)
1562 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1563 && HARD_REGNO_MODE_OK (regno, inmode)
1564 && HARD_REGNO_MODE_OK (regno, outmode))
1566 unsigned int offs;
1567 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1568 hard_regno_nregs[regno][outmode]);
1570 for (offs = 0; offs < nregs; offs++)
1571 if (fixed_regs[regno + offs]
1572 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1573 regno + offs))
1574 break;
1576 if (offs == nregs
1577 && (! (refers_to_regno_for_reload_p
1578 (regno, (regno + hard_regno_nregs[regno][inmode]),
1579 in, (rtx *)0))
1580 || can_reload_into (in, regno, inmode)))
1582 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1583 break;
1588 if (out)
1589 output_reloadnum = i;
1591 return i;
1594 /* Record an additional place we must replace a value
1595 for which we have already recorded a reload.
1596 RELOADNUM is the value returned by push_reload
1597 when the reload was recorded.
1598 This is used in insn patterns that use match_dup. */
1600 static void
1601 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1603 if (replace_reloads)
1605 struct replacement *r = &replacements[n_replacements++];
1606 r->what = reloadnum;
1607 r->where = loc;
1608 r->subreg_loc = 0;
1609 r->mode = mode;
1613 /* Duplicate any replacement we have recorded to apply at
1614 location ORIG_LOC to also be performed at DUP_LOC.
1615 This is used in insn patterns that use match_dup. */
1617 static void
1618 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1620 int i, n = n_replacements;
1622 for (i = 0; i < n; i++)
1624 struct replacement *r = &replacements[i];
1625 if (r->where == orig_loc)
1626 push_replacement (dup_loc, r->what, r->mode);
1630 /* Transfer all replacements that used to be in reload FROM to be in
1631 reload TO. */
1633 void
1634 transfer_replacements (int to, int from)
1636 int i;
1638 for (i = 0; i < n_replacements; i++)
1639 if (replacements[i].what == from)
1640 replacements[i].what = to;
1643 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1644 or a subpart of it. If we have any replacements registered for IN_RTX,
1645 cancel the reloads that were supposed to load them.
1646 Return nonzero if we canceled any reloads. */
1648 remove_address_replacements (rtx in_rtx)
1650 int i, j;
1651 char reload_flags[MAX_RELOADS];
1652 int something_changed = 0;
1654 memset (reload_flags, 0, sizeof reload_flags);
1655 for (i = 0, j = 0; i < n_replacements; i++)
1657 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1658 reload_flags[replacements[i].what] |= 1;
1659 else
1661 replacements[j++] = replacements[i];
1662 reload_flags[replacements[i].what] |= 2;
1665 /* Note that the following store must be done before the recursive calls. */
1666 n_replacements = j;
1668 for (i = n_reloads - 1; i >= 0; i--)
1670 if (reload_flags[i] == 1)
1672 deallocate_reload_reg (i);
1673 remove_address_replacements (rld[i].in);
1674 rld[i].in = 0;
1675 something_changed = 1;
1678 return something_changed;
1681 /* If there is only one output reload, and it is not for an earlyclobber
1682 operand, try to combine it with a (logically unrelated) input reload
1683 to reduce the number of reload registers needed.
1685 This is safe if the input reload does not appear in
1686 the value being output-reloaded, because this implies
1687 it is not needed any more once the original insn completes.
1689 If that doesn't work, see we can use any of the registers that
1690 die in this insn as a reload register. We can if it is of the right
1691 class and does not appear in the value being output-reloaded. */
1693 static void
1694 combine_reloads (void)
1696 int i;
1697 int output_reload = -1;
1698 int secondary_out = -1;
1699 rtx note;
1701 /* Find the output reload; return unless there is exactly one
1702 and that one is mandatory. */
1704 for (i = 0; i < n_reloads; i++)
1705 if (rld[i].out != 0)
1707 if (output_reload >= 0)
1708 return;
1709 output_reload = i;
1712 if (output_reload < 0 || rld[output_reload].optional)
1713 return;
1715 /* An input-output reload isn't combinable. */
1717 if (rld[output_reload].in != 0)
1718 return;
1720 /* If this reload is for an earlyclobber operand, we can't do anything. */
1721 if (earlyclobber_operand_p (rld[output_reload].out))
1722 return;
1724 /* If there is a reload for part of the address of this operand, we would
1725 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1726 its life to the point where doing this combine would not lower the
1727 number of spill registers needed. */
1728 for (i = 0; i < n_reloads; i++)
1729 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1730 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1731 && rld[i].opnum == rld[output_reload].opnum)
1732 return;
1734 /* Check each input reload; can we combine it? */
1736 for (i = 0; i < n_reloads; i++)
1737 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1738 /* Life span of this reload must not extend past main insn. */
1739 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1740 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1741 && rld[i].when_needed != RELOAD_OTHER
1742 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1743 == CLASS_MAX_NREGS (rld[output_reload].class,
1744 rld[output_reload].outmode))
1745 && rld[i].inc == 0
1746 && rld[i].reg_rtx == 0
1747 #ifdef SECONDARY_MEMORY_NEEDED
1748 /* Don't combine two reloads with different secondary
1749 memory locations. */
1750 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1751 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1752 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1753 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1754 #endif
1755 && (SMALL_REGISTER_CLASSES
1756 ? (rld[i].class == rld[output_reload].class)
1757 : (reg_class_subset_p (rld[i].class,
1758 rld[output_reload].class)
1759 || reg_class_subset_p (rld[output_reload].class,
1760 rld[i].class)))
1761 && (MATCHES (rld[i].in, rld[output_reload].out)
1762 /* Args reversed because the first arg seems to be
1763 the one that we imagine being modified
1764 while the second is the one that might be affected. */
1765 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1766 rld[i].in)
1767 /* However, if the input is a register that appears inside
1768 the output, then we also can't share.
1769 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1770 If the same reload reg is used for both reg 69 and the
1771 result to be stored in memory, then that result
1772 will clobber the address of the memory ref. */
1773 && ! (REG_P (rld[i].in)
1774 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1775 rld[output_reload].out))))
1776 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1777 rld[i].when_needed != RELOAD_FOR_INPUT)
1778 && (reg_class_size[(int) rld[i].class]
1779 || SMALL_REGISTER_CLASSES)
1780 /* We will allow making things slightly worse by combining an
1781 input and an output, but no worse than that. */
1782 && (rld[i].when_needed == RELOAD_FOR_INPUT
1783 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1785 int j;
1787 /* We have found a reload to combine with! */
1788 rld[i].out = rld[output_reload].out;
1789 rld[i].out_reg = rld[output_reload].out_reg;
1790 rld[i].outmode = rld[output_reload].outmode;
1791 /* Mark the old output reload as inoperative. */
1792 rld[output_reload].out = 0;
1793 /* The combined reload is needed for the entire insn. */
1794 rld[i].when_needed = RELOAD_OTHER;
1795 /* If the output reload had a secondary reload, copy it. */
1796 if (rld[output_reload].secondary_out_reload != -1)
1798 rld[i].secondary_out_reload
1799 = rld[output_reload].secondary_out_reload;
1800 rld[i].secondary_out_icode
1801 = rld[output_reload].secondary_out_icode;
1804 #ifdef SECONDARY_MEMORY_NEEDED
1805 /* Copy any secondary MEM. */
1806 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1807 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1808 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1809 #endif
1810 /* If required, minimize the register class. */
1811 if (reg_class_subset_p (rld[output_reload].class,
1812 rld[i].class))
1813 rld[i].class = rld[output_reload].class;
1815 /* Transfer all replacements from the old reload to the combined. */
1816 for (j = 0; j < n_replacements; j++)
1817 if (replacements[j].what == output_reload)
1818 replacements[j].what = i;
1820 return;
1823 /* If this insn has only one operand that is modified or written (assumed
1824 to be the first), it must be the one corresponding to this reload. It
1825 is safe to use anything that dies in this insn for that output provided
1826 that it does not occur in the output (we already know it isn't an
1827 earlyclobber. If this is an asm insn, give up. */
1829 if (INSN_CODE (this_insn) == -1)
1830 return;
1832 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1833 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1834 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1835 return;
1837 /* See if some hard register that dies in this insn and is not used in
1838 the output is the right class. Only works if the register we pick
1839 up can fully hold our output reload. */
1840 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1841 if (REG_NOTE_KIND (note) == REG_DEAD
1842 && REG_P (XEXP (note, 0))
1843 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1844 rld[output_reload].out)
1845 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1846 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1847 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1848 REGNO (XEXP (note, 0)))
1849 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1850 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1851 /* Ensure that a secondary or tertiary reload for this output
1852 won't want this register. */
1853 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1854 || (! (TEST_HARD_REG_BIT
1855 (reg_class_contents[(int) rld[secondary_out].class],
1856 REGNO (XEXP (note, 0))))
1857 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1858 || ! (TEST_HARD_REG_BIT
1859 (reg_class_contents[(int) rld[secondary_out].class],
1860 REGNO (XEXP (note, 0)))))))
1861 && ! fixed_regs[REGNO (XEXP (note, 0))])
1863 rld[output_reload].reg_rtx
1864 = gen_rtx_REG (rld[output_reload].outmode,
1865 REGNO (XEXP (note, 0)));
1866 return;
1870 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1871 See if one of IN and OUT is a register that may be used;
1872 this is desirable since a spill-register won't be needed.
1873 If so, return the register rtx that proves acceptable.
1875 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1876 CLASS is the register class required for the reload.
1878 If FOR_REAL is >= 0, it is the number of the reload,
1879 and in some cases when it can be discovered that OUT doesn't need
1880 to be computed, clear out rld[FOR_REAL].out.
1882 If FOR_REAL is -1, this should not be done, because this call
1883 is just to see if a register can be found, not to find and install it.
1885 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1886 puts an additional constraint on being able to use IN for OUT since
1887 IN must not appear elsewhere in the insn (it is assumed that IN itself
1888 is safe from the earlyclobber). */
1890 static rtx
1891 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1892 enum machine_mode inmode, enum machine_mode outmode,
1893 enum reg_class class, int for_real, int earlyclobber)
1895 rtx in = real_in;
1896 rtx out = real_out;
1897 int in_offset = 0;
1898 int out_offset = 0;
1899 rtx value = 0;
1901 /* If operands exceed a word, we can't use either of them
1902 unless they have the same size. */
1903 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1904 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1905 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1906 return 0;
1908 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1909 respectively refers to a hard register. */
1911 /* Find the inside of any subregs. */
1912 while (GET_CODE (out) == SUBREG)
1914 if (REG_P (SUBREG_REG (out))
1915 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1916 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1917 GET_MODE (SUBREG_REG (out)),
1918 SUBREG_BYTE (out),
1919 GET_MODE (out));
1920 out = SUBREG_REG (out);
1922 while (GET_CODE (in) == SUBREG)
1924 if (REG_P (SUBREG_REG (in))
1925 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1926 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1927 GET_MODE (SUBREG_REG (in)),
1928 SUBREG_BYTE (in),
1929 GET_MODE (in));
1930 in = SUBREG_REG (in);
1933 /* Narrow down the reg class, the same way push_reload will;
1934 otherwise we might find a dummy now, but push_reload won't. */
1935 class = PREFERRED_RELOAD_CLASS (in, class);
1937 /* See if OUT will do. */
1938 if (REG_P (out)
1939 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1941 unsigned int regno = REGNO (out) + out_offset;
1942 unsigned int nwords = hard_regno_nregs[regno][outmode];
1943 rtx saved_rtx;
1945 /* When we consider whether the insn uses OUT,
1946 ignore references within IN. They don't prevent us
1947 from copying IN into OUT, because those refs would
1948 move into the insn that reloads IN.
1950 However, we only ignore IN in its role as this reload.
1951 If the insn uses IN elsewhere and it contains OUT,
1952 that counts. We can't be sure it's the "same" operand
1953 so it might not go through this reload. */
1954 saved_rtx = *inloc;
1955 *inloc = const0_rtx;
1957 if (regno < FIRST_PSEUDO_REGISTER
1958 && HARD_REGNO_MODE_OK (regno, outmode)
1959 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1960 PATTERN (this_insn), outloc))
1962 unsigned int i;
1964 for (i = 0; i < nwords; i++)
1965 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1966 regno + i))
1967 break;
1969 if (i == nwords)
1971 if (REG_P (real_out))
1972 value = real_out;
1973 else
1974 value = gen_rtx_REG (outmode, regno);
1978 *inloc = saved_rtx;
1981 /* Consider using IN if OUT was not acceptable
1982 or if OUT dies in this insn (like the quotient in a divmod insn).
1983 We can't use IN unless it is dies in this insn,
1984 which means we must know accurately which hard regs are live.
1985 Also, the result can't go in IN if IN is used within OUT,
1986 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1987 if (hard_regs_live_known
1988 && REG_P (in)
1989 && REGNO (in) < FIRST_PSEUDO_REGISTER
1990 && (value == 0
1991 || find_reg_note (this_insn, REG_UNUSED, real_out))
1992 && find_reg_note (this_insn, REG_DEAD, real_in)
1993 && !fixed_regs[REGNO (in)]
1994 && HARD_REGNO_MODE_OK (REGNO (in),
1995 /* The only case where out and real_out might
1996 have different modes is where real_out
1997 is a subreg, and in that case, out
1998 has a real mode. */
1999 (GET_MODE (out) != VOIDmode
2000 ? GET_MODE (out) : outmode)))
2002 unsigned int regno = REGNO (in) + in_offset;
2003 unsigned int nwords = hard_regno_nregs[regno][inmode];
2005 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2006 && ! hard_reg_set_here_p (regno, regno + nwords,
2007 PATTERN (this_insn))
2008 && (! earlyclobber
2009 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2010 PATTERN (this_insn), inloc)))
2012 unsigned int i;
2014 for (i = 0; i < nwords; i++)
2015 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2016 regno + i))
2017 break;
2019 if (i == nwords)
2021 /* If we were going to use OUT as the reload reg
2022 and changed our mind, it means OUT is a dummy that
2023 dies here. So don't bother copying value to it. */
2024 if (for_real >= 0 && value == real_out)
2025 rld[for_real].out = 0;
2026 if (REG_P (real_in))
2027 value = real_in;
2028 else
2029 value = gen_rtx_REG (inmode, regno);
2034 return value;
2037 /* This page contains subroutines used mainly for determining
2038 whether the IN or an OUT of a reload can serve as the
2039 reload register. */
2041 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2044 earlyclobber_operand_p (rtx x)
2046 int i;
2048 for (i = 0; i < n_earlyclobbers; i++)
2049 if (reload_earlyclobbers[i] == x)
2050 return 1;
2052 return 0;
2055 /* Return 1 if expression X alters a hard reg in the range
2056 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2057 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2058 X should be the body of an instruction. */
2060 static int
2061 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2063 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2065 rtx op0 = SET_DEST (x);
2067 while (GET_CODE (op0) == SUBREG)
2068 op0 = SUBREG_REG (op0);
2069 if (REG_P (op0))
2071 unsigned int r = REGNO (op0);
2073 /* See if this reg overlaps range under consideration. */
2074 if (r < end_regno
2075 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2076 return 1;
2079 else if (GET_CODE (x) == PARALLEL)
2081 int i = XVECLEN (x, 0) - 1;
2083 for (; i >= 0; i--)
2084 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2085 return 1;
2088 return 0;
2091 /* Return 1 if ADDR is a valid memory address for mode MODE,
2092 and check that each pseudo reg has the proper kind of
2093 hard reg. */
2096 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2098 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2099 return 0;
2101 win:
2102 return 1;
2105 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2106 if they are the same hard reg, and has special hacks for
2107 autoincrement and autodecrement.
2108 This is specifically intended for find_reloads to use
2109 in determining whether two operands match.
2110 X is the operand whose number is the lower of the two.
2112 The value is 2 if Y contains a pre-increment that matches
2113 a non-incrementing address in X. */
2115 /* ??? To be completely correct, we should arrange to pass
2116 for X the output operand and for Y the input operand.
2117 For now, we assume that the output operand has the lower number
2118 because that is natural in (SET output (... input ...)). */
2121 operands_match_p (rtx x, rtx y)
2123 int i;
2124 RTX_CODE code = GET_CODE (x);
2125 const char *fmt;
2126 int success_2;
2128 if (x == y)
2129 return 1;
2130 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2131 && (REG_P (y) || (GET_CODE (y) == SUBREG
2132 && REG_P (SUBREG_REG (y)))))
2134 int j;
2136 if (code == SUBREG)
2138 i = REGNO (SUBREG_REG (x));
2139 if (i >= FIRST_PSEUDO_REGISTER)
2140 goto slow;
2141 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2142 GET_MODE (SUBREG_REG (x)),
2143 SUBREG_BYTE (x),
2144 GET_MODE (x));
2146 else
2147 i = REGNO (x);
2149 if (GET_CODE (y) == SUBREG)
2151 j = REGNO (SUBREG_REG (y));
2152 if (j >= FIRST_PSEUDO_REGISTER)
2153 goto slow;
2154 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2155 GET_MODE (SUBREG_REG (y)),
2156 SUBREG_BYTE (y),
2157 GET_MODE (y));
2159 else
2160 j = REGNO (y);
2162 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2163 multiple hard register group, so that for example (reg:DI 0) and
2164 (reg:SI 1) will be considered the same register. */
2165 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2166 && i < FIRST_PSEUDO_REGISTER)
2167 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2168 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2169 && j < FIRST_PSEUDO_REGISTER)
2170 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2172 return i == j;
2174 /* If two operands must match, because they are really a single
2175 operand of an assembler insn, then two postincrements are invalid
2176 because the assembler insn would increment only once.
2177 On the other hand, a postincrement matches ordinary indexing
2178 if the postincrement is the output operand. */
2179 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2180 return operands_match_p (XEXP (x, 0), y);
2181 /* Two preincrements are invalid
2182 because the assembler insn would increment only once.
2183 On the other hand, a preincrement matches ordinary indexing
2184 if the preincrement is the input operand.
2185 In this case, return 2, since some callers need to do special
2186 things when this happens. */
2187 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2188 || GET_CODE (y) == PRE_MODIFY)
2189 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2191 slow:
2193 /* Now we have disposed of all the cases
2194 in which different rtx codes can match. */
2195 if (code != GET_CODE (y))
2196 return 0;
2197 if (code == LABEL_REF)
2198 return XEXP (x, 0) == XEXP (y, 0);
2199 if (code == SYMBOL_REF)
2200 return XSTR (x, 0) == XSTR (y, 0);
2202 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2204 if (GET_MODE (x) != GET_MODE (y))
2205 return 0;
2207 /* Compare the elements. If any pair of corresponding elements
2208 fail to match, return 0 for the whole things. */
2210 success_2 = 0;
2211 fmt = GET_RTX_FORMAT (code);
2212 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2214 int val, j;
2215 switch (fmt[i])
2217 case 'w':
2218 if (XWINT (x, i) != XWINT (y, i))
2219 return 0;
2220 break;
2222 case 'i':
2223 if (XINT (x, i) != XINT (y, i))
2224 return 0;
2225 break;
2227 case 'e':
2228 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2229 if (val == 0)
2230 return 0;
2231 /* If any subexpression returns 2,
2232 we should return 2 if we are successful. */
2233 if (val == 2)
2234 success_2 = 1;
2235 break;
2237 case '0':
2238 break;
2240 case 'E':
2241 if (XVECLEN (x, i) != XVECLEN (y, i))
2242 return 0;
2243 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2245 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2246 if (val == 0)
2247 return 0;
2248 if (val == 2)
2249 success_2 = 1;
2251 break;
2253 /* It is believed that rtx's at this level will never
2254 contain anything but integers and other rtx's,
2255 except for within LABEL_REFs and SYMBOL_REFs. */
2256 default:
2257 gcc_unreachable ();
2260 return 1 + success_2;
2263 /* Describe the range of registers or memory referenced by X.
2264 If X is a register, set REG_FLAG and put the first register
2265 number into START and the last plus one into END.
2266 If X is a memory reference, put a base address into BASE
2267 and a range of integer offsets into START and END.
2268 If X is pushing on the stack, we can assume it causes no trouble,
2269 so we set the SAFE field. */
2271 static struct decomposition
2272 decompose (rtx x)
2274 struct decomposition val;
2275 int all_const = 0;
2277 memset (&val, 0, sizeof (val));
2279 switch (GET_CODE (x))
2281 case MEM:
2283 rtx base = NULL_RTX, offset = 0;
2284 rtx addr = XEXP (x, 0);
2286 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2287 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2289 val.base = XEXP (addr, 0);
2290 val.start = -GET_MODE_SIZE (GET_MODE (x));
2291 val.end = GET_MODE_SIZE (GET_MODE (x));
2292 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2293 return val;
2296 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2298 if (GET_CODE (XEXP (addr, 1)) == PLUS
2299 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2300 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2302 val.base = XEXP (addr, 0);
2303 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2304 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2305 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2306 return val;
2310 if (GET_CODE (addr) == CONST)
2312 addr = XEXP (addr, 0);
2313 all_const = 1;
2315 if (GET_CODE (addr) == PLUS)
2317 if (CONSTANT_P (XEXP (addr, 0)))
2319 base = XEXP (addr, 1);
2320 offset = XEXP (addr, 0);
2322 else if (CONSTANT_P (XEXP (addr, 1)))
2324 base = XEXP (addr, 0);
2325 offset = XEXP (addr, 1);
2329 if (offset == 0)
2331 base = addr;
2332 offset = const0_rtx;
2334 if (GET_CODE (offset) == CONST)
2335 offset = XEXP (offset, 0);
2336 if (GET_CODE (offset) == PLUS)
2338 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2340 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2341 offset = XEXP (offset, 0);
2343 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2345 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2346 offset = XEXP (offset, 1);
2348 else
2350 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2351 offset = const0_rtx;
2354 else if (GET_CODE (offset) != CONST_INT)
2356 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2357 offset = const0_rtx;
2360 if (all_const && GET_CODE (base) == PLUS)
2361 base = gen_rtx_CONST (GET_MODE (base), base);
2363 gcc_assert (GET_CODE (offset) == CONST_INT);
2365 val.start = INTVAL (offset);
2366 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2367 val.base = base;
2369 break;
2371 case REG:
2372 val.reg_flag = 1;
2373 val.start = true_regnum (x);
2374 if (val.start < 0)
2376 /* A pseudo with no hard reg. */
2377 val.start = REGNO (x);
2378 val.end = val.start + 1;
2380 else
2381 /* A hard reg. */
2382 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2383 break;
2385 case SUBREG:
2386 if (!REG_P (SUBREG_REG (x)))
2387 /* This could be more precise, but it's good enough. */
2388 return decompose (SUBREG_REG (x));
2389 val.reg_flag = 1;
2390 val.start = true_regnum (x);
2391 if (val.start < 0)
2392 return decompose (SUBREG_REG (x));
2393 else
2394 /* A hard reg. */
2395 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2396 break;
2398 case SCRATCH:
2399 /* This hasn't been assigned yet, so it can't conflict yet. */
2400 val.safe = 1;
2401 break;
2403 default:
2404 gcc_assert (CONSTANT_P (x));
2405 val.safe = 1;
2406 break;
2408 return val;
2411 /* Return 1 if altering Y will not modify the value of X.
2412 Y is also described by YDATA, which should be decompose (Y). */
2414 static int
2415 immune_p (rtx x, rtx y, struct decomposition ydata)
2417 struct decomposition xdata;
2419 if (ydata.reg_flag)
2420 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2421 if (ydata.safe)
2422 return 1;
2424 gcc_assert (MEM_P (y));
2425 /* If Y is memory and X is not, Y can't affect X. */
2426 if (!MEM_P (x))
2427 return 1;
2429 xdata = decompose (x);
2431 if (! rtx_equal_p (xdata.base, ydata.base))
2433 /* If bases are distinct symbolic constants, there is no overlap. */
2434 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2435 return 1;
2436 /* Constants and stack slots never overlap. */
2437 if (CONSTANT_P (xdata.base)
2438 && (ydata.base == frame_pointer_rtx
2439 || ydata.base == hard_frame_pointer_rtx
2440 || ydata.base == stack_pointer_rtx))
2441 return 1;
2442 if (CONSTANT_P (ydata.base)
2443 && (xdata.base == frame_pointer_rtx
2444 || xdata.base == hard_frame_pointer_rtx
2445 || xdata.base == stack_pointer_rtx))
2446 return 1;
2447 /* If either base is variable, we don't know anything. */
2448 return 0;
2451 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2454 /* Similar, but calls decompose. */
2457 safe_from_earlyclobber (rtx op, rtx clobber)
2459 struct decomposition early_data;
2461 early_data = decompose (clobber);
2462 return immune_p (op, clobber, early_data);
2465 /* Main entry point of this file: search the body of INSN
2466 for values that need reloading and record them with push_reload.
2467 REPLACE nonzero means record also where the values occur
2468 so that subst_reloads can be used.
2470 IND_LEVELS says how many levels of indirection are supported by this
2471 machine; a value of zero means that a memory reference is not a valid
2472 memory address.
2474 LIVE_KNOWN says we have valid information about which hard
2475 regs are live at each point in the program; this is true when
2476 we are called from global_alloc but false when stupid register
2477 allocation has been done.
2479 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2480 which is nonnegative if the reg has been commandeered for reloading into.
2481 It is copied into STATIC_RELOAD_REG_P and referenced from there
2482 by various subroutines.
2484 Return TRUE if some operands need to be changed, because of swapping
2485 commutative operands, reg_equiv_address substitution, or whatever. */
2488 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2489 short *reload_reg_p)
2491 int insn_code_number;
2492 int i, j;
2493 int noperands;
2494 /* These start out as the constraints for the insn
2495 and they are chewed up as we consider alternatives. */
2496 char *constraints[MAX_RECOG_OPERANDS];
2497 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2498 a register. */
2499 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2500 char pref_or_nothing[MAX_RECOG_OPERANDS];
2501 /* Nonzero for a MEM operand whose entire address needs a reload.
2502 May be -1 to indicate the entire address may or may not need a reload. */
2503 int address_reloaded[MAX_RECOG_OPERANDS];
2504 /* Nonzero for an address operand that needs to be completely reloaded.
2505 May be -1 to indicate the entire operand may or may not need a reload. */
2506 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2507 /* Value of enum reload_type to use for operand. */
2508 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2509 /* Value of enum reload_type to use within address of operand. */
2510 enum reload_type address_type[MAX_RECOG_OPERANDS];
2511 /* Save the usage of each operand. */
2512 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2513 int no_input_reloads = 0, no_output_reloads = 0;
2514 int n_alternatives;
2515 int this_alternative[MAX_RECOG_OPERANDS];
2516 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2517 char this_alternative_win[MAX_RECOG_OPERANDS];
2518 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2519 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2520 int this_alternative_matches[MAX_RECOG_OPERANDS];
2521 int swapped;
2522 int goal_alternative[MAX_RECOG_OPERANDS];
2523 int this_alternative_number;
2524 int goal_alternative_number = 0;
2525 int operand_reloadnum[MAX_RECOG_OPERANDS];
2526 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2527 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2528 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2529 char goal_alternative_win[MAX_RECOG_OPERANDS];
2530 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2531 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2532 int goal_alternative_swapped;
2533 int best;
2534 int commutative;
2535 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2536 rtx substed_operand[MAX_RECOG_OPERANDS];
2537 rtx body = PATTERN (insn);
2538 rtx set = single_set (insn);
2539 int goal_earlyclobber = 0, this_earlyclobber;
2540 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2541 int retval = 0;
2543 this_insn = insn;
2544 n_reloads = 0;
2545 n_replacements = 0;
2546 n_earlyclobbers = 0;
2547 replace_reloads = replace;
2548 hard_regs_live_known = live_known;
2549 static_reload_reg_p = reload_reg_p;
2551 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2552 neither are insns that SET cc0. Insns that use CC0 are not allowed
2553 to have any input reloads. */
2554 if (JUMP_P (insn) || CALL_P (insn))
2555 no_output_reloads = 1;
2557 #ifdef HAVE_cc0
2558 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2559 no_input_reloads = 1;
2560 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2561 no_output_reloads = 1;
2562 #endif
2564 #ifdef SECONDARY_MEMORY_NEEDED
2565 /* The eliminated forms of any secondary memory locations are per-insn, so
2566 clear them out here. */
2568 if (secondary_memlocs_elim_used)
2570 memset (secondary_memlocs_elim, 0,
2571 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2572 secondary_memlocs_elim_used = 0;
2574 #endif
2576 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2577 is cheap to move between them. If it is not, there may not be an insn
2578 to do the copy, so we may need a reload. */
2579 if (GET_CODE (body) == SET
2580 && REG_P (SET_DEST (body))
2581 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2582 && REG_P (SET_SRC (body))
2583 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2584 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2585 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2586 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2587 return 0;
2589 extract_insn (insn);
2591 noperands = reload_n_operands = recog_data.n_operands;
2592 n_alternatives = recog_data.n_alternatives;
2594 /* Just return "no reloads" if insn has no operands with constraints. */
2595 if (noperands == 0 || n_alternatives == 0)
2596 return 0;
2598 insn_code_number = INSN_CODE (insn);
2599 this_insn_is_asm = insn_code_number < 0;
2601 memcpy (operand_mode, recog_data.operand_mode,
2602 noperands * sizeof (enum machine_mode));
2603 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2605 commutative = -1;
2607 /* If we will need to know, later, whether some pair of operands
2608 are the same, we must compare them now and save the result.
2609 Reloading the base and index registers will clobber them
2610 and afterward they will fail to match. */
2612 for (i = 0; i < noperands; i++)
2614 char *p;
2615 int c;
2617 substed_operand[i] = recog_data.operand[i];
2618 p = constraints[i];
2620 modified[i] = RELOAD_READ;
2622 /* Scan this operand's constraint to see if it is an output operand,
2623 an in-out operand, is commutative, or should match another. */
2625 while ((c = *p))
2627 p += CONSTRAINT_LEN (c, p);
2628 switch (c)
2630 case '=':
2631 modified[i] = RELOAD_WRITE;
2632 break;
2633 case '+':
2634 modified[i] = RELOAD_READ_WRITE;
2635 break;
2636 case '%':
2638 /* The last operand should not be marked commutative. */
2639 gcc_assert (i != noperands - 1);
2641 /* We currently only support one commutative pair of
2642 operands. Some existing asm code currently uses more
2643 than one pair. Previously, that would usually work,
2644 but sometimes it would crash the compiler. We
2645 continue supporting that case as well as we can by
2646 silently ignoring all but the first pair. In the
2647 future we may handle it correctly. */
2648 if (commutative < 0)
2649 commutative = i;
2650 else
2651 gcc_assert (this_insn_is_asm);
2653 break;
2654 /* Use of ISDIGIT is tempting here, but it may get expensive because
2655 of locale support we don't want. */
2656 case '0': case '1': case '2': case '3': case '4':
2657 case '5': case '6': case '7': case '8': case '9':
2659 c = strtoul (p - 1, &p, 10);
2661 operands_match[c][i]
2662 = operands_match_p (recog_data.operand[c],
2663 recog_data.operand[i]);
2665 /* An operand may not match itself. */
2666 gcc_assert (c != i);
2668 /* If C can be commuted with C+1, and C might need to match I,
2669 then C+1 might also need to match I. */
2670 if (commutative >= 0)
2672 if (c == commutative || c == commutative + 1)
2674 int other = c + (c == commutative ? 1 : -1);
2675 operands_match[other][i]
2676 = operands_match_p (recog_data.operand[other],
2677 recog_data.operand[i]);
2679 if (i == commutative || i == commutative + 1)
2681 int other = i + (i == commutative ? 1 : -1);
2682 operands_match[c][other]
2683 = operands_match_p (recog_data.operand[c],
2684 recog_data.operand[other]);
2686 /* Note that C is supposed to be less than I.
2687 No need to consider altering both C and I because in
2688 that case we would alter one into the other. */
2695 /* Examine each operand that is a memory reference or memory address
2696 and reload parts of the addresses into index registers.
2697 Also here any references to pseudo regs that didn't get hard regs
2698 but are equivalent to constants get replaced in the insn itself
2699 with those constants. Nobody will ever see them again.
2701 Finally, set up the preferred classes of each operand. */
2703 for (i = 0; i < noperands; i++)
2705 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2707 address_reloaded[i] = 0;
2708 address_operand_reloaded[i] = 0;
2709 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2710 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2711 : RELOAD_OTHER);
2712 address_type[i]
2713 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2714 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2715 : RELOAD_OTHER);
2717 if (*constraints[i] == 0)
2718 /* Ignore things like match_operator operands. */
2720 else if (constraints[i][0] == 'p'
2721 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2723 address_operand_reloaded[i]
2724 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2725 recog_data.operand[i],
2726 recog_data.operand_loc[i],
2727 i, operand_type[i], ind_levels, insn);
2729 /* If we now have a simple operand where we used to have a
2730 PLUS or MULT, re-recognize and try again. */
2731 if ((OBJECT_P (*recog_data.operand_loc[i])
2732 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2733 && (GET_CODE (recog_data.operand[i]) == MULT
2734 || GET_CODE (recog_data.operand[i]) == PLUS))
2736 INSN_CODE (insn) = -1;
2737 retval = find_reloads (insn, replace, ind_levels, live_known,
2738 reload_reg_p);
2739 return retval;
2742 recog_data.operand[i] = *recog_data.operand_loc[i];
2743 substed_operand[i] = recog_data.operand[i];
2745 /* Address operands are reloaded in their existing mode,
2746 no matter what is specified in the machine description. */
2747 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2749 else if (code == MEM)
2751 address_reloaded[i]
2752 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2753 recog_data.operand_loc[i],
2754 XEXP (recog_data.operand[i], 0),
2755 &XEXP (recog_data.operand[i], 0),
2756 i, address_type[i], ind_levels, insn);
2757 recog_data.operand[i] = *recog_data.operand_loc[i];
2758 substed_operand[i] = recog_data.operand[i];
2760 else if (code == SUBREG)
2762 rtx reg = SUBREG_REG (recog_data.operand[i]);
2763 rtx op
2764 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2765 ind_levels,
2766 set != 0
2767 && &SET_DEST (set) == recog_data.operand_loc[i],
2768 insn,
2769 &address_reloaded[i]);
2771 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2772 that didn't get a hard register, emit a USE with a REG_EQUAL
2773 note in front so that we might inherit a previous, possibly
2774 wider reload. */
2776 if (replace
2777 && MEM_P (op)
2778 && REG_P (reg)
2779 && (GET_MODE_SIZE (GET_MODE (reg))
2780 >= GET_MODE_SIZE (GET_MODE (op))))
2781 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2782 insn),
2783 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2785 substed_operand[i] = recog_data.operand[i] = op;
2787 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2788 /* We can get a PLUS as an "operand" as a result of register
2789 elimination. See eliminate_regs and gen_reload. We handle
2790 a unary operator by reloading the operand. */
2791 substed_operand[i] = recog_data.operand[i]
2792 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2793 ind_levels, 0, insn,
2794 &address_reloaded[i]);
2795 else if (code == REG)
2797 /* This is equivalent to calling find_reloads_toplev.
2798 The code is duplicated for speed.
2799 When we find a pseudo always equivalent to a constant,
2800 we replace it by the constant. We must be sure, however,
2801 that we don't try to replace it in the insn in which it
2802 is being set. */
2803 int regno = REGNO (recog_data.operand[i]);
2804 if (reg_equiv_constant[regno] != 0
2805 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2807 /* Record the existing mode so that the check if constants are
2808 allowed will work when operand_mode isn't specified. */
2810 if (operand_mode[i] == VOIDmode)
2811 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2813 substed_operand[i] = recog_data.operand[i]
2814 = reg_equiv_constant[regno];
2816 if (reg_equiv_memory_loc[regno] != 0
2817 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2818 /* We need not give a valid is_set_dest argument since the case
2819 of a constant equivalence was checked above. */
2820 substed_operand[i] = recog_data.operand[i]
2821 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2822 ind_levels, 0, insn,
2823 &address_reloaded[i]);
2825 /* If the operand is still a register (we didn't replace it with an
2826 equivalent), get the preferred class to reload it into. */
2827 code = GET_CODE (recog_data.operand[i]);
2828 preferred_class[i]
2829 = ((code == REG && REGNO (recog_data.operand[i])
2830 >= FIRST_PSEUDO_REGISTER)
2831 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2832 : NO_REGS);
2833 pref_or_nothing[i]
2834 = (code == REG
2835 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2836 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2839 /* If this is simply a copy from operand 1 to operand 0, merge the
2840 preferred classes for the operands. */
2841 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2842 && recog_data.operand[1] == SET_SRC (set))
2844 preferred_class[0] = preferred_class[1]
2845 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2846 pref_or_nothing[0] |= pref_or_nothing[1];
2847 pref_or_nothing[1] |= pref_or_nothing[0];
2850 /* Now see what we need for pseudo-regs that didn't get hard regs
2851 or got the wrong kind of hard reg. For this, we must consider
2852 all the operands together against the register constraints. */
2854 best = MAX_RECOG_OPERANDS * 2 + 600;
2856 swapped = 0;
2857 goal_alternative_swapped = 0;
2858 try_swapped:
2860 /* The constraints are made of several alternatives.
2861 Each operand's constraint looks like foo,bar,... with commas
2862 separating the alternatives. The first alternatives for all
2863 operands go together, the second alternatives go together, etc.
2865 First loop over alternatives. */
2867 for (this_alternative_number = 0;
2868 this_alternative_number < n_alternatives;
2869 this_alternative_number++)
2871 /* Loop over operands for one constraint alternative. */
2872 /* LOSERS counts those that don't fit this alternative
2873 and would require loading. */
2874 int losers = 0;
2875 /* BAD is set to 1 if it some operand can't fit this alternative
2876 even after reloading. */
2877 int bad = 0;
2878 /* REJECT is a count of how undesirable this alternative says it is
2879 if any reloading is required. If the alternative matches exactly
2880 then REJECT is ignored, but otherwise it gets this much
2881 counted against it in addition to the reloading needed. Each
2882 ? counts three times here since we want the disparaging caused by
2883 a bad register class to only count 1/3 as much. */
2884 int reject = 0;
2886 this_earlyclobber = 0;
2888 for (i = 0; i < noperands; i++)
2890 char *p = constraints[i];
2891 char *end;
2892 int len;
2893 int win = 0;
2894 int did_match = 0;
2895 /* 0 => this operand can be reloaded somehow for this alternative. */
2896 int badop = 1;
2897 /* 0 => this operand can be reloaded if the alternative allows regs. */
2898 int winreg = 0;
2899 int c;
2900 int m;
2901 rtx operand = recog_data.operand[i];
2902 int offset = 0;
2903 /* Nonzero means this is a MEM that must be reloaded into a reg
2904 regardless of what the constraint says. */
2905 int force_reload = 0;
2906 int offmemok = 0;
2907 /* Nonzero if a constant forced into memory would be OK for this
2908 operand. */
2909 int constmemok = 0;
2910 int earlyclobber = 0;
2912 /* If the predicate accepts a unary operator, it means that
2913 we need to reload the operand, but do not do this for
2914 match_operator and friends. */
2915 if (UNARY_P (operand) && *p != 0)
2916 operand = XEXP (operand, 0);
2918 /* If the operand is a SUBREG, extract
2919 the REG or MEM (or maybe even a constant) within.
2920 (Constants can occur as a result of reg_equiv_constant.) */
2922 while (GET_CODE (operand) == SUBREG)
2924 /* Offset only matters when operand is a REG and
2925 it is a hard reg. This is because it is passed
2926 to reg_fits_class_p if it is a REG and all pseudos
2927 return 0 from that function. */
2928 if (REG_P (SUBREG_REG (operand))
2929 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2931 if (!subreg_offset_representable_p
2932 (REGNO (SUBREG_REG (operand)),
2933 GET_MODE (SUBREG_REG (operand)),
2934 SUBREG_BYTE (operand),
2935 GET_MODE (operand)))
2936 force_reload = 1;
2937 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2938 GET_MODE (SUBREG_REG (operand)),
2939 SUBREG_BYTE (operand),
2940 GET_MODE (operand));
2942 operand = SUBREG_REG (operand);
2943 /* Force reload if this is a constant or PLUS or if there may
2944 be a problem accessing OPERAND in the outer mode. */
2945 if (CONSTANT_P (operand)
2946 || GET_CODE (operand) == PLUS
2947 /* We must force a reload of paradoxical SUBREGs
2948 of a MEM because the alignment of the inner value
2949 may not be enough to do the outer reference. On
2950 big-endian machines, it may also reference outside
2951 the object.
2953 On machines that extend byte operations and we have a
2954 SUBREG where both the inner and outer modes are no wider
2955 than a word and the inner mode is narrower, is integral,
2956 and gets extended when loaded from memory, combine.c has
2957 made assumptions about the behavior of the machine in such
2958 register access. If the data is, in fact, in memory we
2959 must always load using the size assumed to be in the
2960 register and let the insn do the different-sized
2961 accesses.
2963 This is doubly true if WORD_REGISTER_OPERATIONS. In
2964 this case eliminate_regs has left non-paradoxical
2965 subregs for push_reload to see. Make sure it does
2966 by forcing the reload.
2968 ??? When is it right at this stage to have a subreg
2969 of a mem that is _not_ to be handled specially? IMO
2970 those should have been reduced to just a mem. */
2971 || ((MEM_P (operand)
2972 || (REG_P (operand)
2973 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2974 #ifndef WORD_REGISTER_OPERATIONS
2975 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2976 < BIGGEST_ALIGNMENT)
2977 && (GET_MODE_SIZE (operand_mode[i])
2978 > GET_MODE_SIZE (GET_MODE (operand))))
2979 || BYTES_BIG_ENDIAN
2980 #ifdef LOAD_EXTEND_OP
2981 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2982 && (GET_MODE_SIZE (GET_MODE (operand))
2983 <= UNITS_PER_WORD)
2984 && (GET_MODE_SIZE (operand_mode[i])
2985 > GET_MODE_SIZE (GET_MODE (operand)))
2986 && INTEGRAL_MODE_P (GET_MODE (operand))
2987 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2988 #endif
2990 #endif
2993 force_reload = 1;
2996 this_alternative[i] = (int) NO_REGS;
2997 this_alternative_win[i] = 0;
2998 this_alternative_match_win[i] = 0;
2999 this_alternative_offmemok[i] = 0;
3000 this_alternative_earlyclobber[i] = 0;
3001 this_alternative_matches[i] = -1;
3003 /* An empty constraint or empty alternative
3004 allows anything which matched the pattern. */
3005 if (*p == 0 || *p == ',')
3006 win = 1, badop = 0;
3008 /* Scan this alternative's specs for this operand;
3009 set WIN if the operand fits any letter in this alternative.
3010 Otherwise, clear BADOP if this operand could
3011 fit some letter after reloads,
3012 or set WINREG if this operand could fit after reloads
3013 provided the constraint allows some registers. */
3016 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3018 case '\0':
3019 len = 0;
3020 break;
3021 case ',':
3022 c = '\0';
3023 break;
3025 case '=': case '+': case '*':
3026 break;
3028 case '%':
3029 /* We only support one commutative marker, the first
3030 one. We already set commutative above. */
3031 break;
3033 case '?':
3034 reject += 6;
3035 break;
3037 case '!':
3038 reject = 600;
3039 break;
3041 case '#':
3042 /* Ignore rest of this alternative as far as
3043 reloading is concerned. */
3045 p++;
3046 while (*p && *p != ',');
3047 len = 0;
3048 break;
3050 case '0': case '1': case '2': case '3': case '4':
3051 case '5': case '6': case '7': case '8': case '9':
3052 m = strtoul (p, &end, 10);
3053 p = end;
3054 len = 0;
3056 this_alternative_matches[i] = m;
3057 /* We are supposed to match a previous operand.
3058 If we do, we win if that one did.
3059 If we do not, count both of the operands as losers.
3060 (This is too conservative, since most of the time
3061 only a single reload insn will be needed to make
3062 the two operands win. As a result, this alternative
3063 may be rejected when it is actually desirable.) */
3064 if ((swapped && (m != commutative || i != commutative + 1))
3065 /* If we are matching as if two operands were swapped,
3066 also pretend that operands_match had been computed
3067 with swapped.
3068 But if I is the second of those and C is the first,
3069 don't exchange them, because operands_match is valid
3070 only on one side of its diagonal. */
3071 ? (operands_match
3072 [(m == commutative || m == commutative + 1)
3073 ? 2 * commutative + 1 - m : m]
3074 [(i == commutative || i == commutative + 1)
3075 ? 2 * commutative + 1 - i : i])
3076 : operands_match[m][i])
3078 /* If we are matching a non-offsettable address where an
3079 offsettable address was expected, then we must reject
3080 this combination, because we can't reload it. */
3081 if (this_alternative_offmemok[m]
3082 && MEM_P (recog_data.operand[m])
3083 && this_alternative[m] == (int) NO_REGS
3084 && ! this_alternative_win[m])
3085 bad = 1;
3087 did_match = this_alternative_win[m];
3089 else
3091 /* Operands don't match. */
3092 rtx value;
3093 int loc1, loc2;
3094 /* Retroactively mark the operand we had to match
3095 as a loser, if it wasn't already. */
3096 if (this_alternative_win[m])
3097 losers++;
3098 this_alternative_win[m] = 0;
3099 if (this_alternative[m] == (int) NO_REGS)
3100 bad = 1;
3101 /* But count the pair only once in the total badness of
3102 this alternative, if the pair can be a dummy reload.
3103 The pointers in operand_loc are not swapped; swap
3104 them by hand if necessary. */
3105 if (swapped && i == commutative)
3106 loc1 = commutative + 1;
3107 else if (swapped && i == commutative + 1)
3108 loc1 = commutative;
3109 else
3110 loc1 = i;
3111 if (swapped && m == commutative)
3112 loc2 = commutative + 1;
3113 else if (swapped && m == commutative + 1)
3114 loc2 = commutative;
3115 else
3116 loc2 = m;
3117 value
3118 = find_dummy_reload (recog_data.operand[i],
3119 recog_data.operand[m],
3120 recog_data.operand_loc[loc1],
3121 recog_data.operand_loc[loc2],
3122 operand_mode[i], operand_mode[m],
3123 this_alternative[m], -1,
3124 this_alternative_earlyclobber[m]);
3126 if (value != 0)
3127 losers--;
3129 /* This can be fixed with reloads if the operand
3130 we are supposed to match can be fixed with reloads. */
3131 badop = 0;
3132 this_alternative[i] = this_alternative[m];
3134 /* If we have to reload this operand and some previous
3135 operand also had to match the same thing as this
3136 operand, we don't know how to do that. So reject this
3137 alternative. */
3138 if (! did_match || force_reload)
3139 for (j = 0; j < i; j++)
3140 if (this_alternative_matches[j]
3141 == this_alternative_matches[i])
3142 badop = 1;
3143 break;
3145 case 'p':
3146 /* All necessary reloads for an address_operand
3147 were handled in find_reloads_address. */
3148 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3149 win = 1;
3150 badop = 0;
3151 break;
3153 case 'm':
3154 if (force_reload)
3155 break;
3156 if (MEM_P (operand)
3157 || (REG_P (operand)
3158 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3159 && reg_renumber[REGNO (operand)] < 0))
3160 win = 1;
3161 if (CONST_POOL_OK_P (operand))
3162 badop = 0;
3163 constmemok = 1;
3164 break;
3166 case '<':
3167 if (MEM_P (operand)
3168 && ! address_reloaded[i]
3169 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3170 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3171 win = 1;
3172 break;
3174 case '>':
3175 if (MEM_P (operand)
3176 && ! address_reloaded[i]
3177 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3178 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3179 win = 1;
3180 break;
3182 /* Memory operand whose address is not offsettable. */
3183 case 'V':
3184 if (force_reload)
3185 break;
3186 if (MEM_P (operand)
3187 && ! (ind_levels ? offsettable_memref_p (operand)
3188 : offsettable_nonstrict_memref_p (operand))
3189 /* Certain mem addresses will become offsettable
3190 after they themselves are reloaded. This is important;
3191 we don't want our own handling of unoffsettables
3192 to override the handling of reg_equiv_address. */
3193 && !(REG_P (XEXP (operand, 0))
3194 && (ind_levels == 0
3195 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3196 win = 1;
3197 break;
3199 /* Memory operand whose address is offsettable. */
3200 case 'o':
3201 if (force_reload)
3202 break;
3203 if ((MEM_P (operand)
3204 /* If IND_LEVELS, find_reloads_address won't reload a
3205 pseudo that didn't get a hard reg, so we have to
3206 reject that case. */
3207 && ((ind_levels ? offsettable_memref_p (operand)
3208 : offsettable_nonstrict_memref_p (operand))
3209 /* A reloaded address is offsettable because it is now
3210 just a simple register indirect. */
3211 || address_reloaded[i] == 1))
3212 || (REG_P (operand)
3213 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3214 && reg_renumber[REGNO (operand)] < 0
3215 /* If reg_equiv_address is nonzero, we will be
3216 loading it into a register; hence it will be
3217 offsettable, but we cannot say that reg_equiv_mem
3218 is offsettable without checking. */
3219 && ((reg_equiv_mem[REGNO (operand)] != 0
3220 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3221 || (reg_equiv_address[REGNO (operand)] != 0))))
3222 win = 1;
3223 if (CONST_POOL_OK_P (operand)
3224 || MEM_P (operand))
3225 badop = 0;
3226 constmemok = 1;
3227 offmemok = 1;
3228 break;
3230 case '&':
3231 /* Output operand that is stored before the need for the
3232 input operands (and their index registers) is over. */
3233 earlyclobber = 1, this_earlyclobber = 1;
3234 break;
3236 case 'E':
3237 case 'F':
3238 if (GET_CODE (operand) == CONST_DOUBLE
3239 || (GET_CODE (operand) == CONST_VECTOR
3240 && (GET_MODE_CLASS (GET_MODE (operand))
3241 == MODE_VECTOR_FLOAT)))
3242 win = 1;
3243 break;
3245 case 'G':
3246 case 'H':
3247 if (GET_CODE (operand) == CONST_DOUBLE
3248 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3249 win = 1;
3250 break;
3252 case 's':
3253 if (GET_CODE (operand) == CONST_INT
3254 || (GET_CODE (operand) == CONST_DOUBLE
3255 && GET_MODE (operand) == VOIDmode))
3256 break;
3257 case 'i':
3258 if (CONSTANT_P (operand)
3259 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3260 win = 1;
3261 break;
3263 case 'n':
3264 if (GET_CODE (operand) == CONST_INT
3265 || (GET_CODE (operand) == CONST_DOUBLE
3266 && GET_MODE (operand) == VOIDmode))
3267 win = 1;
3268 break;
3270 case 'I':
3271 case 'J':
3272 case 'K':
3273 case 'L':
3274 case 'M':
3275 case 'N':
3276 case 'O':
3277 case 'P':
3278 if (GET_CODE (operand) == CONST_INT
3279 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3280 win = 1;
3281 break;
3283 case 'X':
3284 win = 1;
3285 break;
3287 case 'g':
3288 if (! force_reload
3289 /* A PLUS is never a valid operand, but reload can make
3290 it from a register when eliminating registers. */
3291 && GET_CODE (operand) != PLUS
3292 /* A SCRATCH is not a valid operand. */
3293 && GET_CODE (operand) != SCRATCH
3294 && (! CONSTANT_P (operand)
3295 || ! flag_pic
3296 || LEGITIMATE_PIC_OPERAND_P (operand))
3297 && (GENERAL_REGS == ALL_REGS
3298 || !REG_P (operand)
3299 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3300 && reg_renumber[REGNO (operand)] < 0)))
3301 win = 1;
3302 /* Drop through into 'r' case. */
3304 case 'r':
3305 this_alternative[i]
3306 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3307 goto reg;
3309 default:
3310 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3312 #ifdef EXTRA_CONSTRAINT_STR
3313 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3315 if (force_reload)
3316 break;
3317 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3318 win = 1;
3319 /* If the address was already reloaded,
3320 we win as well. */
3321 else if (MEM_P (operand)
3322 && address_reloaded[i] == 1)
3323 win = 1;
3324 /* Likewise if the address will be reloaded because
3325 reg_equiv_address is nonzero. For reg_equiv_mem
3326 we have to check. */
3327 else if (REG_P (operand)
3328 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3329 && reg_renumber[REGNO (operand)] < 0
3330 && ((reg_equiv_mem[REGNO (operand)] != 0
3331 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3332 || (reg_equiv_address[REGNO (operand)] != 0)))
3333 win = 1;
3335 /* If we didn't already win, we can reload
3336 constants via force_const_mem, and other
3337 MEMs by reloading the address like for 'o'. */
3338 if (CONST_POOL_OK_P (operand)
3339 || MEM_P (operand))
3340 badop = 0;
3341 constmemok = 1;
3342 offmemok = 1;
3343 break;
3345 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3347 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3348 win = 1;
3350 /* If we didn't already win, we can reload
3351 the address into a base register. */
3352 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3353 badop = 0;
3354 break;
3357 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3358 win = 1;
3359 #endif
3360 break;
3363 this_alternative[i]
3364 = (int) (reg_class_subunion
3365 [this_alternative[i]]
3366 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3367 reg:
3368 if (GET_MODE (operand) == BLKmode)
3369 break;
3370 winreg = 1;
3371 if (REG_P (operand)
3372 && reg_fits_class_p (operand, this_alternative[i],
3373 offset, GET_MODE (recog_data.operand[i])))
3374 win = 1;
3375 break;
3377 while ((p += len), c);
3379 constraints[i] = p;
3381 /* If this operand could be handled with a reg,
3382 and some reg is allowed, then this operand can be handled. */
3383 if (winreg && this_alternative[i] != (int) NO_REGS)
3384 badop = 0;
3386 /* Record which operands fit this alternative. */
3387 this_alternative_earlyclobber[i] = earlyclobber;
3388 if (win && ! force_reload)
3389 this_alternative_win[i] = 1;
3390 else if (did_match && ! force_reload)
3391 this_alternative_match_win[i] = 1;
3392 else
3394 int const_to_mem = 0;
3396 this_alternative_offmemok[i] = offmemok;
3397 losers++;
3398 if (badop)
3399 bad = 1;
3400 /* Alternative loses if it has no regs for a reg operand. */
3401 if (REG_P (operand)
3402 && this_alternative[i] == (int) NO_REGS
3403 && this_alternative_matches[i] < 0)
3404 bad = 1;
3406 /* If this is a constant that is reloaded into the desired
3407 class by copying it to memory first, count that as another
3408 reload. This is consistent with other code and is
3409 required to avoid choosing another alternative when
3410 the constant is moved into memory by this function on
3411 an early reload pass. Note that the test here is
3412 precisely the same as in the code below that calls
3413 force_const_mem. */
3414 if (CONST_POOL_OK_P (operand)
3415 && ((PREFERRED_RELOAD_CLASS (operand,
3416 (enum reg_class) this_alternative[i])
3417 == NO_REGS)
3418 || no_input_reloads)
3419 && operand_mode[i] != VOIDmode)
3421 const_to_mem = 1;
3422 if (this_alternative[i] != (int) NO_REGS)
3423 losers++;
3426 /* If we can't reload this value at all, reject this
3427 alternative. Note that we could also lose due to
3428 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3429 here. */
3431 if (! CONSTANT_P (operand)
3432 && (enum reg_class) this_alternative[i] != NO_REGS
3433 && (PREFERRED_RELOAD_CLASS (operand,
3434 (enum reg_class) this_alternative[i])
3435 == NO_REGS))
3436 bad = 1;
3438 /* Alternative loses if it requires a type of reload not
3439 permitted for this insn. We can always reload SCRATCH
3440 and objects with a REG_UNUSED note. */
3441 else if (GET_CODE (operand) != SCRATCH
3442 && modified[i] != RELOAD_READ && no_output_reloads
3443 && ! find_reg_note (insn, REG_UNUSED, operand))
3444 bad = 1;
3445 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3446 && ! const_to_mem)
3447 bad = 1;
3449 /* We prefer to reload pseudos over reloading other things,
3450 since such reloads may be able to be eliminated later.
3451 If we are reloading a SCRATCH, we won't be generating any
3452 insns, just using a register, so it is also preferred.
3453 So bump REJECT in other cases. Don't do this in the
3454 case where we are forcing a constant into memory and
3455 it will then win since we don't want to have a different
3456 alternative match then. */
3457 if (! (REG_P (operand)
3458 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3459 && GET_CODE (operand) != SCRATCH
3460 && ! (const_to_mem && constmemok))
3461 reject += 2;
3463 /* Input reloads can be inherited more often than output
3464 reloads can be removed, so penalize output reloads. */
3465 if (operand_type[i] != RELOAD_FOR_INPUT
3466 && GET_CODE (operand) != SCRATCH)
3467 reject++;
3470 /* If this operand is a pseudo register that didn't get a hard
3471 reg and this alternative accepts some register, see if the
3472 class that we want is a subset of the preferred class for this
3473 register. If not, but it intersects that class, use the
3474 preferred class instead. If it does not intersect the preferred
3475 class, show that usage of this alternative should be discouraged;
3476 it will be discouraged more still if the register is `preferred
3477 or nothing'. We do this because it increases the chance of
3478 reusing our spill register in a later insn and avoiding a pair
3479 of memory stores and loads.
3481 Don't bother with this if this alternative will accept this
3482 operand.
3484 Don't do this for a multiword operand, since it is only a
3485 small win and has the risk of requiring more spill registers,
3486 which could cause a large loss.
3488 Don't do this if the preferred class has only one register
3489 because we might otherwise exhaust the class. */
3491 if (! win && ! did_match
3492 && this_alternative[i] != (int) NO_REGS
3493 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3494 && reg_class_size [(int) preferred_class[i]] > 0
3495 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3497 if (! reg_class_subset_p (this_alternative[i],
3498 preferred_class[i]))
3500 /* Since we don't have a way of forming the intersection,
3501 we just do something special if the preferred class
3502 is a subset of the class we have; that's the most
3503 common case anyway. */
3504 if (reg_class_subset_p (preferred_class[i],
3505 this_alternative[i]))
3506 this_alternative[i] = (int) preferred_class[i];
3507 else
3508 reject += (2 + 2 * pref_or_nothing[i]);
3513 /* Now see if any output operands that are marked "earlyclobber"
3514 in this alternative conflict with any input operands
3515 or any memory addresses. */
3517 for (i = 0; i < noperands; i++)
3518 if (this_alternative_earlyclobber[i]
3519 && (this_alternative_win[i] || this_alternative_match_win[i]))
3521 struct decomposition early_data;
3523 early_data = decompose (recog_data.operand[i]);
3525 gcc_assert (modified[i] != RELOAD_READ);
3527 if (this_alternative[i] == NO_REGS)
3529 this_alternative_earlyclobber[i] = 0;
3530 gcc_assert (this_insn_is_asm);
3531 error_for_asm (this_insn,
3532 "%<&%> constraint used with no register class");
3535 for (j = 0; j < noperands; j++)
3536 /* Is this an input operand or a memory ref? */
3537 if ((MEM_P (recog_data.operand[j])
3538 || modified[j] != RELOAD_WRITE)
3539 && j != i
3540 /* Ignore things like match_operator operands. */
3541 && *recog_data.constraints[j] != 0
3542 /* Don't count an input operand that is constrained to match
3543 the early clobber operand. */
3544 && ! (this_alternative_matches[j] == i
3545 && rtx_equal_p (recog_data.operand[i],
3546 recog_data.operand[j]))
3547 /* Is it altered by storing the earlyclobber operand? */
3548 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3549 early_data))
3551 /* If the output is in a non-empty few-regs class,
3552 it's costly to reload it, so reload the input instead. */
3553 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3554 && (REG_P (recog_data.operand[j])
3555 || GET_CODE (recog_data.operand[j]) == SUBREG))
3557 losers++;
3558 this_alternative_win[j] = 0;
3559 this_alternative_match_win[j] = 0;
3561 else
3562 break;
3564 /* If an earlyclobber operand conflicts with something,
3565 it must be reloaded, so request this and count the cost. */
3566 if (j != noperands)
3568 losers++;
3569 this_alternative_win[i] = 0;
3570 this_alternative_match_win[j] = 0;
3571 for (j = 0; j < noperands; j++)
3572 if (this_alternative_matches[j] == i
3573 && this_alternative_match_win[j])
3575 this_alternative_win[j] = 0;
3576 this_alternative_match_win[j] = 0;
3577 losers++;
3582 /* If one alternative accepts all the operands, no reload required,
3583 choose that alternative; don't consider the remaining ones. */
3584 if (losers == 0)
3586 /* Unswap these so that they are never swapped at `finish'. */
3587 if (commutative >= 0)
3589 recog_data.operand[commutative] = substed_operand[commutative];
3590 recog_data.operand[commutative + 1]
3591 = substed_operand[commutative + 1];
3593 for (i = 0; i < noperands; i++)
3595 goal_alternative_win[i] = this_alternative_win[i];
3596 goal_alternative_match_win[i] = this_alternative_match_win[i];
3597 goal_alternative[i] = this_alternative[i];
3598 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3599 goal_alternative_matches[i] = this_alternative_matches[i];
3600 goal_alternative_earlyclobber[i]
3601 = this_alternative_earlyclobber[i];
3603 goal_alternative_number = this_alternative_number;
3604 goal_alternative_swapped = swapped;
3605 goal_earlyclobber = this_earlyclobber;
3606 goto finish;
3609 /* REJECT, set by the ! and ? constraint characters and when a register
3610 would be reloaded into a non-preferred class, discourages the use of
3611 this alternative for a reload goal. REJECT is incremented by six
3612 for each ? and two for each non-preferred class. */
3613 losers = losers * 6 + reject;
3615 /* If this alternative can be made to work by reloading,
3616 and it needs less reloading than the others checked so far,
3617 record it as the chosen goal for reloading. */
3618 if (! bad && best > losers)
3620 for (i = 0; i < noperands; i++)
3622 goal_alternative[i] = this_alternative[i];
3623 goal_alternative_win[i] = this_alternative_win[i];
3624 goal_alternative_match_win[i] = this_alternative_match_win[i];
3625 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3626 goal_alternative_matches[i] = this_alternative_matches[i];
3627 goal_alternative_earlyclobber[i]
3628 = this_alternative_earlyclobber[i];
3630 goal_alternative_swapped = swapped;
3631 best = losers;
3632 goal_alternative_number = this_alternative_number;
3633 goal_earlyclobber = this_earlyclobber;
3637 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3638 then we need to try each alternative twice,
3639 the second time matching those two operands
3640 as if we had exchanged them.
3641 To do this, really exchange them in operands.
3643 If we have just tried the alternatives the second time,
3644 return operands to normal and drop through. */
3646 if (commutative >= 0)
3648 swapped = !swapped;
3649 if (swapped)
3651 enum reg_class tclass;
3652 int t;
3654 recog_data.operand[commutative] = substed_operand[commutative + 1];
3655 recog_data.operand[commutative + 1] = substed_operand[commutative];
3656 /* Swap the duplicates too. */
3657 for (i = 0; i < recog_data.n_dups; i++)
3658 if (recog_data.dup_num[i] == commutative
3659 || recog_data.dup_num[i] == commutative + 1)
3660 *recog_data.dup_loc[i]
3661 = recog_data.operand[(int) recog_data.dup_num[i]];
3663 tclass = preferred_class[commutative];
3664 preferred_class[commutative] = preferred_class[commutative + 1];
3665 preferred_class[commutative + 1] = tclass;
3667 t = pref_or_nothing[commutative];
3668 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3669 pref_or_nothing[commutative + 1] = t;
3671 memcpy (constraints, recog_data.constraints,
3672 noperands * sizeof (char *));
3673 goto try_swapped;
3675 else
3677 recog_data.operand[commutative] = substed_operand[commutative];
3678 recog_data.operand[commutative + 1]
3679 = substed_operand[commutative + 1];
3680 /* Unswap the duplicates too. */
3681 for (i = 0; i < recog_data.n_dups; i++)
3682 if (recog_data.dup_num[i] == commutative
3683 || recog_data.dup_num[i] == commutative + 1)
3684 *recog_data.dup_loc[i]
3685 = recog_data.operand[(int) recog_data.dup_num[i]];
3689 /* The operands don't meet the constraints.
3690 goal_alternative describes the alternative
3691 that we could reach by reloading the fewest operands.
3692 Reload so as to fit it. */
3694 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3696 /* No alternative works with reloads?? */
3697 if (insn_code_number >= 0)
3698 fatal_insn ("unable to generate reloads for:", insn);
3699 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3700 /* Avoid further trouble with this insn. */
3701 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3702 n_reloads = 0;
3703 return 0;
3706 /* Jump to `finish' from above if all operands are valid already.
3707 In that case, goal_alternative_win is all 1. */
3708 finish:
3710 /* Right now, for any pair of operands I and J that are required to match,
3711 with I < J,
3712 goal_alternative_matches[J] is I.
3713 Set up goal_alternative_matched as the inverse function:
3714 goal_alternative_matched[I] = J. */
3716 for (i = 0; i < noperands; i++)
3717 goal_alternative_matched[i] = -1;
3719 for (i = 0; i < noperands; i++)
3720 if (! goal_alternative_win[i]
3721 && goal_alternative_matches[i] >= 0)
3722 goal_alternative_matched[goal_alternative_matches[i]] = i;
3724 for (i = 0; i < noperands; i++)
3725 goal_alternative_win[i] |= goal_alternative_match_win[i];
3727 /* If the best alternative is with operands 1 and 2 swapped,
3728 consider them swapped before reporting the reloads. Update the
3729 operand numbers of any reloads already pushed. */
3731 if (goal_alternative_swapped)
3733 rtx tem;
3735 tem = substed_operand[commutative];
3736 substed_operand[commutative] = substed_operand[commutative + 1];
3737 substed_operand[commutative + 1] = tem;
3738 tem = recog_data.operand[commutative];
3739 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3740 recog_data.operand[commutative + 1] = tem;
3741 tem = *recog_data.operand_loc[commutative];
3742 *recog_data.operand_loc[commutative]
3743 = *recog_data.operand_loc[commutative + 1];
3744 *recog_data.operand_loc[commutative + 1] = tem;
3746 for (i = 0; i < n_reloads; i++)
3748 if (rld[i].opnum == commutative)
3749 rld[i].opnum = commutative + 1;
3750 else if (rld[i].opnum == commutative + 1)
3751 rld[i].opnum = commutative;
3755 for (i = 0; i < noperands; i++)
3757 operand_reloadnum[i] = -1;
3759 /* If this is an earlyclobber operand, we need to widen the scope.
3760 The reload must remain valid from the start of the insn being
3761 reloaded until after the operand is stored into its destination.
3762 We approximate this with RELOAD_OTHER even though we know that we
3763 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3765 One special case that is worth checking is when we have an
3766 output that is earlyclobber but isn't used past the insn (typically
3767 a SCRATCH). In this case, we only need have the reload live
3768 through the insn itself, but not for any of our input or output
3769 reloads.
3770 But we must not accidentally narrow the scope of an existing
3771 RELOAD_OTHER reload - leave these alone.
3773 In any case, anything needed to address this operand can remain
3774 however they were previously categorized. */
3776 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3777 operand_type[i]
3778 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3779 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3782 /* Any constants that aren't allowed and can't be reloaded
3783 into registers are here changed into memory references. */
3784 for (i = 0; i < noperands; i++)
3785 if (! goal_alternative_win[i]
3786 && CONST_POOL_OK_P (recog_data.operand[i])
3787 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3788 (enum reg_class) goal_alternative[i])
3789 == NO_REGS)
3790 || no_input_reloads)
3791 && operand_mode[i] != VOIDmode)
3793 substed_operand[i] = recog_data.operand[i]
3794 = find_reloads_toplev (force_const_mem (operand_mode[i],
3795 recog_data.operand[i]),
3796 i, address_type[i], ind_levels, 0, insn,
3797 NULL);
3798 if (alternative_allows_memconst (recog_data.constraints[i],
3799 goal_alternative_number))
3800 goal_alternative_win[i] = 1;
3803 /* Likewise any invalid constants appearing as operand of a PLUS
3804 that is to be reloaded. */
3805 for (i = 0; i < noperands; i++)
3806 if (! goal_alternative_win[i]
3807 && GET_CODE (recog_data.operand[i]) == PLUS
3808 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3809 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3810 (enum reg_class) goal_alternative[i])
3811 == NO_REGS)
3812 && operand_mode[i] != VOIDmode)
3814 rtx tem = force_const_mem (operand_mode[i],
3815 XEXP (recog_data.operand[i], 1));
3816 tem = gen_rtx_PLUS (operand_mode[i],
3817 XEXP (recog_data.operand[i], 0), tem);
3819 substed_operand[i] = recog_data.operand[i]
3820 = find_reloads_toplev (tem, i, address_type[i],
3821 ind_levels, 0, insn, NULL);
3824 /* Record the values of the earlyclobber operands for the caller. */
3825 if (goal_earlyclobber)
3826 for (i = 0; i < noperands; i++)
3827 if (goal_alternative_earlyclobber[i])
3828 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3830 /* Now record reloads for all the operands that need them. */
3831 for (i = 0; i < noperands; i++)
3832 if (! goal_alternative_win[i])
3834 /* Operands that match previous ones have already been handled. */
3835 if (goal_alternative_matches[i] >= 0)
3837 /* Handle an operand with a nonoffsettable address
3838 appearing where an offsettable address will do
3839 by reloading the address into a base register.
3841 ??? We can also do this when the operand is a register and
3842 reg_equiv_mem is not offsettable, but this is a bit tricky,
3843 so we don't bother with it. It may not be worth doing. */
3844 else if (goal_alternative_matched[i] == -1
3845 && goal_alternative_offmemok[i]
3846 && MEM_P (recog_data.operand[i]))
3848 operand_reloadnum[i]
3849 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3850 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3851 MODE_BASE_REG_CLASS (VOIDmode),
3852 GET_MODE (XEXP (recog_data.operand[i], 0)),
3853 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3854 rld[operand_reloadnum[i]].inc
3855 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3857 /* If this operand is an output, we will have made any
3858 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3859 now we are treating part of the operand as an input, so
3860 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3862 if (modified[i] == RELOAD_WRITE)
3864 for (j = 0; j < n_reloads; j++)
3866 if (rld[j].opnum == i)
3868 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3869 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3870 else if (rld[j].when_needed
3871 == RELOAD_FOR_OUTADDR_ADDRESS)
3872 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3877 else if (goal_alternative_matched[i] == -1)
3879 operand_reloadnum[i]
3880 = push_reload ((modified[i] != RELOAD_WRITE
3881 ? recog_data.operand[i] : 0),
3882 (modified[i] != RELOAD_READ
3883 ? recog_data.operand[i] : 0),
3884 (modified[i] != RELOAD_WRITE
3885 ? recog_data.operand_loc[i] : 0),
3886 (modified[i] != RELOAD_READ
3887 ? recog_data.operand_loc[i] : 0),
3888 (enum reg_class) goal_alternative[i],
3889 (modified[i] == RELOAD_WRITE
3890 ? VOIDmode : operand_mode[i]),
3891 (modified[i] == RELOAD_READ
3892 ? VOIDmode : operand_mode[i]),
3893 (insn_code_number < 0 ? 0
3894 : insn_data[insn_code_number].operand[i].strict_low),
3895 0, i, operand_type[i]);
3897 /* In a matching pair of operands, one must be input only
3898 and the other must be output only.
3899 Pass the input operand as IN and the other as OUT. */
3900 else if (modified[i] == RELOAD_READ
3901 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3903 operand_reloadnum[i]
3904 = push_reload (recog_data.operand[i],
3905 recog_data.operand[goal_alternative_matched[i]],
3906 recog_data.operand_loc[i],
3907 recog_data.operand_loc[goal_alternative_matched[i]],
3908 (enum reg_class) goal_alternative[i],
3909 operand_mode[i],
3910 operand_mode[goal_alternative_matched[i]],
3911 0, 0, i, RELOAD_OTHER);
3912 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3914 else if (modified[i] == RELOAD_WRITE
3915 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3917 operand_reloadnum[goal_alternative_matched[i]]
3918 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3919 recog_data.operand[i],
3920 recog_data.operand_loc[goal_alternative_matched[i]],
3921 recog_data.operand_loc[i],
3922 (enum reg_class) goal_alternative[i],
3923 operand_mode[goal_alternative_matched[i]],
3924 operand_mode[i],
3925 0, 0, i, RELOAD_OTHER);
3926 operand_reloadnum[i] = output_reloadnum;
3928 else
3930 gcc_assert (insn_code_number < 0);
3931 error_for_asm (insn, "inconsistent operand constraints "
3932 "in an %<asm%>");
3933 /* Avoid further trouble with this insn. */
3934 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3935 n_reloads = 0;
3936 return 0;
3939 else if (goal_alternative_matched[i] < 0
3940 && goal_alternative_matches[i] < 0
3941 && address_operand_reloaded[i] != 1
3942 && optimize)
3944 /* For each non-matching operand that's a MEM or a pseudo-register
3945 that didn't get a hard register, make an optional reload.
3946 This may get done even if the insn needs no reloads otherwise. */
3948 rtx operand = recog_data.operand[i];
3950 while (GET_CODE (operand) == SUBREG)
3951 operand = SUBREG_REG (operand);
3952 if ((MEM_P (operand)
3953 || (REG_P (operand)
3954 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3955 /* If this is only for an output, the optional reload would not
3956 actually cause us to use a register now, just note that
3957 something is stored here. */
3958 && ((enum reg_class) goal_alternative[i] != NO_REGS
3959 || modified[i] == RELOAD_WRITE)
3960 && ! no_input_reloads
3961 /* An optional output reload might allow to delete INSN later.
3962 We mustn't make in-out reloads on insns that are not permitted
3963 output reloads.
3964 If this is an asm, we can't delete it; we must not even call
3965 push_reload for an optional output reload in this case,
3966 because we can't be sure that the constraint allows a register,
3967 and push_reload verifies the constraints for asms. */
3968 && (modified[i] == RELOAD_READ
3969 || (! no_output_reloads && ! this_insn_is_asm)))
3970 operand_reloadnum[i]
3971 = push_reload ((modified[i] != RELOAD_WRITE
3972 ? recog_data.operand[i] : 0),
3973 (modified[i] != RELOAD_READ
3974 ? recog_data.operand[i] : 0),
3975 (modified[i] != RELOAD_WRITE
3976 ? recog_data.operand_loc[i] : 0),
3977 (modified[i] != RELOAD_READ
3978 ? recog_data.operand_loc[i] : 0),
3979 (enum reg_class) goal_alternative[i],
3980 (modified[i] == RELOAD_WRITE
3981 ? VOIDmode : operand_mode[i]),
3982 (modified[i] == RELOAD_READ
3983 ? VOIDmode : operand_mode[i]),
3984 (insn_code_number < 0 ? 0
3985 : insn_data[insn_code_number].operand[i].strict_low),
3986 1, i, operand_type[i]);
3987 /* If a memory reference remains (either as a MEM or a pseudo that
3988 did not get a hard register), yet we can't make an optional
3989 reload, check if this is actually a pseudo register reference;
3990 we then need to emit a USE and/or a CLOBBER so that reload
3991 inheritance will do the right thing. */
3992 else if (replace
3993 && (MEM_P (operand)
3994 || (REG_P (operand)
3995 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3996 && reg_renumber [REGNO (operand)] < 0)))
3998 operand = *recog_data.operand_loc[i];
4000 while (GET_CODE (operand) == SUBREG)
4001 operand = SUBREG_REG (operand);
4002 if (REG_P (operand))
4004 if (modified[i] != RELOAD_WRITE)
4005 /* We mark the USE with QImode so that we recognize
4006 it as one that can be safely deleted at the end
4007 of reload. */
4008 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4009 insn), QImode);
4010 if (modified[i] != RELOAD_READ)
4011 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4015 else if (goal_alternative_matches[i] >= 0
4016 && goal_alternative_win[goal_alternative_matches[i]]
4017 && modified[i] == RELOAD_READ
4018 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4019 && ! no_input_reloads && ! no_output_reloads
4020 && optimize)
4022 /* Similarly, make an optional reload for a pair of matching
4023 objects that are in MEM or a pseudo that didn't get a hard reg. */
4025 rtx operand = recog_data.operand[i];
4027 while (GET_CODE (operand) == SUBREG)
4028 operand = SUBREG_REG (operand);
4029 if ((MEM_P (operand)
4030 || (REG_P (operand)
4031 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4032 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4033 != NO_REGS))
4034 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4035 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4036 recog_data.operand[i],
4037 recog_data.operand_loc[goal_alternative_matches[i]],
4038 recog_data.operand_loc[i],
4039 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4040 operand_mode[goal_alternative_matches[i]],
4041 operand_mode[i],
4042 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4045 /* Perform whatever substitutions on the operands we are supposed
4046 to make due to commutativity or replacement of registers
4047 with equivalent constants or memory slots. */
4049 for (i = 0; i < noperands; i++)
4051 /* We only do this on the last pass through reload, because it is
4052 possible for some data (like reg_equiv_address) to be changed during
4053 later passes. Moreover, we loose the opportunity to get a useful
4054 reload_{in,out}_reg when we do these replacements. */
4056 if (replace)
4058 rtx substitution = substed_operand[i];
4060 *recog_data.operand_loc[i] = substitution;
4062 /* If we're replacing an operand with a LABEL_REF, we need
4063 to make sure that there's a REG_LABEL note attached to
4064 this instruction. */
4065 if (!JUMP_P (insn)
4066 && GET_CODE (substitution) == LABEL_REF
4067 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4068 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4069 XEXP (substitution, 0),
4070 REG_NOTES (insn));
4072 else
4073 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4076 /* If this insn pattern contains any MATCH_DUP's, make sure that
4077 they will be substituted if the operands they match are substituted.
4078 Also do now any substitutions we already did on the operands.
4080 Don't do this if we aren't making replacements because we might be
4081 propagating things allocated by frame pointer elimination into places
4082 it doesn't expect. */
4084 if (insn_code_number >= 0 && replace)
4085 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4087 int opno = recog_data.dup_num[i];
4088 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4089 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4092 #if 0
4093 /* This loses because reloading of prior insns can invalidate the equivalence
4094 (or at least find_equiv_reg isn't smart enough to find it any more),
4095 causing this insn to need more reload regs than it needed before.
4096 It may be too late to make the reload regs available.
4097 Now this optimization is done safely in choose_reload_regs. */
4099 /* For each reload of a reg into some other class of reg,
4100 search for an existing equivalent reg (same value now) in the right class.
4101 We can use it as long as we don't need to change its contents. */
4102 for (i = 0; i < n_reloads; i++)
4103 if (rld[i].reg_rtx == 0
4104 && rld[i].in != 0
4105 && REG_P (rld[i].in)
4106 && rld[i].out == 0)
4108 rld[i].reg_rtx
4109 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4110 static_reload_reg_p, 0, rld[i].inmode);
4111 /* Prevent generation of insn to load the value
4112 because the one we found already has the value. */
4113 if (rld[i].reg_rtx)
4114 rld[i].in = rld[i].reg_rtx;
4116 #endif
4118 /* Perhaps an output reload can be combined with another
4119 to reduce needs by one. */
4120 if (!goal_earlyclobber)
4121 combine_reloads ();
4123 /* If we have a pair of reloads for parts of an address, they are reloading
4124 the same object, the operands themselves were not reloaded, and they
4125 are for two operands that are supposed to match, merge the reloads and
4126 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4128 for (i = 0; i < n_reloads; i++)
4130 int k;
4132 for (j = i + 1; j < n_reloads; j++)
4133 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4134 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4135 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4136 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4137 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4138 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4139 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4140 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4141 && rtx_equal_p (rld[i].in, rld[j].in)
4142 && (operand_reloadnum[rld[i].opnum] < 0
4143 || rld[operand_reloadnum[rld[i].opnum]].optional)
4144 && (operand_reloadnum[rld[j].opnum] < 0
4145 || rld[operand_reloadnum[rld[j].opnum]].optional)
4146 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4147 || (goal_alternative_matches[rld[j].opnum]
4148 == rld[i].opnum)))
4150 for (k = 0; k < n_replacements; k++)
4151 if (replacements[k].what == j)
4152 replacements[k].what = i;
4154 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4155 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4156 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4157 else
4158 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4159 rld[j].in = 0;
4163 /* Scan all the reloads and update their type.
4164 If a reload is for the address of an operand and we didn't reload
4165 that operand, change the type. Similarly, change the operand number
4166 of a reload when two operands match. If a reload is optional, treat it
4167 as though the operand isn't reloaded.
4169 ??? This latter case is somewhat odd because if we do the optional
4170 reload, it means the object is hanging around. Thus we need only
4171 do the address reload if the optional reload was NOT done.
4173 Change secondary reloads to be the address type of their operand, not
4174 the normal type.
4176 If an operand's reload is now RELOAD_OTHER, change any
4177 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4178 RELOAD_FOR_OTHER_ADDRESS. */
4180 for (i = 0; i < n_reloads; i++)
4182 if (rld[i].secondary_p
4183 && rld[i].when_needed == operand_type[rld[i].opnum])
4184 rld[i].when_needed = address_type[rld[i].opnum];
4186 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4187 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4188 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4189 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4190 && (operand_reloadnum[rld[i].opnum] < 0
4191 || rld[operand_reloadnum[rld[i].opnum]].optional))
4193 /* If we have a secondary reload to go along with this reload,
4194 change its type to RELOAD_FOR_OPADDR_ADDR. */
4196 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4197 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4198 && rld[i].secondary_in_reload != -1)
4200 int secondary_in_reload = rld[i].secondary_in_reload;
4202 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4204 /* If there's a tertiary reload we have to change it also. */
4205 if (secondary_in_reload > 0
4206 && rld[secondary_in_reload].secondary_in_reload != -1)
4207 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4208 = RELOAD_FOR_OPADDR_ADDR;
4211 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4212 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4213 && rld[i].secondary_out_reload != -1)
4215 int secondary_out_reload = rld[i].secondary_out_reload;
4217 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4219 /* If there's a tertiary reload we have to change it also. */
4220 if (secondary_out_reload
4221 && rld[secondary_out_reload].secondary_out_reload != -1)
4222 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4223 = RELOAD_FOR_OPADDR_ADDR;
4226 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4227 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4228 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4229 else
4230 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4233 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4234 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4235 && operand_reloadnum[rld[i].opnum] >= 0
4236 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4237 == RELOAD_OTHER))
4238 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4240 if (goal_alternative_matches[rld[i].opnum] >= 0)
4241 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4244 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4245 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4246 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4248 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4249 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4250 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4251 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4252 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4253 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4254 This is complicated by the fact that a single operand can have more
4255 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4256 choose_reload_regs without affecting code quality, and cases that
4257 actually fail are extremely rare, so it turns out to be better to fix
4258 the problem here by not generating cases that choose_reload_regs will
4259 fail for. */
4260 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4261 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4262 a single operand.
4263 We can reduce the register pressure by exploiting that a
4264 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4265 does not conflict with any of them, if it is only used for the first of
4266 the RELOAD_FOR_X_ADDRESS reloads. */
4268 int first_op_addr_num = -2;
4269 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4270 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4271 int need_change = 0;
4272 /* We use last_op_addr_reload and the contents of the above arrays
4273 first as flags - -2 means no instance encountered, -1 means exactly
4274 one instance encountered.
4275 If more than one instance has been encountered, we store the reload
4276 number of the first reload of the kind in question; reload numbers
4277 are known to be non-negative. */
4278 for (i = 0; i < noperands; i++)
4279 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4280 for (i = n_reloads - 1; i >= 0; i--)
4282 switch (rld[i].when_needed)
4284 case RELOAD_FOR_OPERAND_ADDRESS:
4285 if (++first_op_addr_num >= 0)
4287 first_op_addr_num = i;
4288 need_change = 1;
4290 break;
4291 case RELOAD_FOR_INPUT_ADDRESS:
4292 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4294 first_inpaddr_num[rld[i].opnum] = i;
4295 need_change = 1;
4297 break;
4298 case RELOAD_FOR_OUTPUT_ADDRESS:
4299 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4301 first_outpaddr_num[rld[i].opnum] = i;
4302 need_change = 1;
4304 break;
4305 default:
4306 break;
4310 if (need_change)
4312 for (i = 0; i < n_reloads; i++)
4314 int first_num;
4315 enum reload_type type;
4317 switch (rld[i].when_needed)
4319 case RELOAD_FOR_OPADDR_ADDR:
4320 first_num = first_op_addr_num;
4321 type = RELOAD_FOR_OPERAND_ADDRESS;
4322 break;
4323 case RELOAD_FOR_INPADDR_ADDRESS:
4324 first_num = first_inpaddr_num[rld[i].opnum];
4325 type = RELOAD_FOR_INPUT_ADDRESS;
4326 break;
4327 case RELOAD_FOR_OUTADDR_ADDRESS:
4328 first_num = first_outpaddr_num[rld[i].opnum];
4329 type = RELOAD_FOR_OUTPUT_ADDRESS;
4330 break;
4331 default:
4332 continue;
4334 if (first_num < 0)
4335 continue;
4336 else if (i > first_num)
4337 rld[i].when_needed = type;
4338 else
4340 /* Check if the only TYPE reload that uses reload I is
4341 reload FIRST_NUM. */
4342 for (j = n_reloads - 1; j > first_num; j--)
4344 if (rld[j].when_needed == type
4345 && (rld[i].secondary_p
4346 ? rld[j].secondary_in_reload == i
4347 : reg_mentioned_p (rld[i].in, rld[j].in)))
4349 rld[i].when_needed = type;
4350 break;
4358 /* See if we have any reloads that are now allowed to be merged
4359 because we've changed when the reload is needed to
4360 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4361 check for the most common cases. */
4363 for (i = 0; i < n_reloads; i++)
4364 if (rld[i].in != 0 && rld[i].out == 0
4365 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4366 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4367 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4368 for (j = 0; j < n_reloads; j++)
4369 if (i != j && rld[j].in != 0 && rld[j].out == 0
4370 && rld[j].when_needed == rld[i].when_needed
4371 && MATCHES (rld[i].in, rld[j].in)
4372 && rld[i].class == rld[j].class
4373 && !rld[i].nocombine && !rld[j].nocombine
4374 && rld[i].reg_rtx == rld[j].reg_rtx)
4376 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4377 transfer_replacements (i, j);
4378 rld[j].in = 0;
4381 #ifdef HAVE_cc0
4382 /* If we made any reloads for addresses, see if they violate a
4383 "no input reloads" requirement for this insn. But loads that we
4384 do after the insn (such as for output addresses) are fine. */
4385 if (no_input_reloads)
4386 for (i = 0; i < n_reloads; i++)
4387 gcc_assert (rld[i].in == 0
4388 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4389 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4390 #endif
4392 /* Compute reload_mode and reload_nregs. */
4393 for (i = 0; i < n_reloads; i++)
4395 rld[i].mode
4396 = (rld[i].inmode == VOIDmode
4397 || (GET_MODE_SIZE (rld[i].outmode)
4398 > GET_MODE_SIZE (rld[i].inmode)))
4399 ? rld[i].outmode : rld[i].inmode;
4401 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4404 /* Special case a simple move with an input reload and a
4405 destination of a hard reg, if the hard reg is ok, use it. */
4406 for (i = 0; i < n_reloads; i++)
4407 if (rld[i].when_needed == RELOAD_FOR_INPUT
4408 && GET_CODE (PATTERN (insn)) == SET
4409 && REG_P (SET_DEST (PATTERN (insn)))
4410 && SET_SRC (PATTERN (insn)) == rld[i].in)
4412 rtx dest = SET_DEST (PATTERN (insn));
4413 unsigned int regno = REGNO (dest);
4415 if (regno < FIRST_PSEUDO_REGISTER
4416 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4417 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4419 int nr = hard_regno_nregs[regno][rld[i].mode];
4420 int ok = 1, nri;
4422 for (nri = 1; nri < nr; nri ++)
4423 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4424 ok = 0;
4426 if (ok)
4427 rld[i].reg_rtx = dest;
4431 return retval;
4434 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4435 accepts a memory operand with constant address. */
4437 static int
4438 alternative_allows_memconst (const char *constraint, int altnum)
4440 int c;
4441 /* Skip alternatives before the one requested. */
4442 while (altnum > 0)
4444 while (*constraint++ != ',');
4445 altnum--;
4447 /* Scan the requested alternative for 'm' or 'o'.
4448 If one of them is present, this alternative accepts memory constants. */
4449 for (; (c = *constraint) && c != ',' && c != '#';
4450 constraint += CONSTRAINT_LEN (c, constraint))
4451 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4452 return 1;
4453 return 0;
4456 /* Scan X for memory references and scan the addresses for reloading.
4457 Also checks for references to "constant" regs that we want to eliminate
4458 and replaces them with the values they stand for.
4459 We may alter X destructively if it contains a reference to such.
4460 If X is just a constant reg, we return the equivalent value
4461 instead of X.
4463 IND_LEVELS says how many levels of indirect addressing this machine
4464 supports.
4466 OPNUM and TYPE identify the purpose of the reload.
4468 IS_SET_DEST is true if X is the destination of a SET, which is not
4469 appropriate to be replaced by a constant.
4471 INSN, if nonzero, is the insn in which we do the reload. It is used
4472 to determine if we may generate output reloads, and where to put USEs
4473 for pseudos that we have to replace with stack slots.
4475 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4476 result of find_reloads_address. */
4478 static rtx
4479 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4480 int ind_levels, int is_set_dest, rtx insn,
4481 int *address_reloaded)
4483 RTX_CODE code = GET_CODE (x);
4485 const char *fmt = GET_RTX_FORMAT (code);
4486 int i;
4487 int copied;
4489 if (code == REG)
4491 /* This code is duplicated for speed in find_reloads. */
4492 int regno = REGNO (x);
4493 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4494 x = reg_equiv_constant[regno];
4495 #if 0
4496 /* This creates (subreg (mem...)) which would cause an unnecessary
4497 reload of the mem. */
4498 else if (reg_equiv_mem[regno] != 0)
4499 x = reg_equiv_mem[regno];
4500 #endif
4501 else if (reg_equiv_memory_loc[regno]
4502 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4504 rtx mem = make_memloc (x, regno);
4505 if (reg_equiv_address[regno]
4506 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4508 /* If this is not a toplevel operand, find_reloads doesn't see
4509 this substitution. We have to emit a USE of the pseudo so
4510 that delete_output_reload can see it. */
4511 if (replace_reloads && recog_data.operand[opnum] != x)
4512 /* We mark the USE with QImode so that we recognize it
4513 as one that can be safely deleted at the end of
4514 reload. */
4515 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4516 QImode);
4517 x = mem;
4518 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4519 opnum, type, ind_levels, insn);
4520 if (address_reloaded)
4521 *address_reloaded = i;
4524 return x;
4526 if (code == MEM)
4528 rtx tem = x;
4530 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4531 opnum, type, ind_levels, insn);
4532 if (address_reloaded)
4533 *address_reloaded = i;
4535 return tem;
4538 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4540 /* Check for SUBREG containing a REG that's equivalent to a constant.
4541 If the constant has a known value, truncate it right now.
4542 Similarly if we are extracting a single-word of a multi-word
4543 constant. If the constant is symbolic, allow it to be substituted
4544 normally. push_reload will strip the subreg later. If the
4545 constant is VOIDmode, abort because we will lose the mode of
4546 the register (this should never happen because one of the cases
4547 above should handle it). */
4549 int regno = REGNO (SUBREG_REG (x));
4550 rtx tem;
4552 if (subreg_lowpart_p (x)
4553 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4554 && reg_equiv_constant[regno] != 0
4555 && (tem = gen_lowpart_common (GET_MODE (x),
4556 reg_equiv_constant[regno])) != 0)
4557 return tem;
4559 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4560 && reg_equiv_constant[regno] != 0)
4562 tem =
4563 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4564 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4565 gcc_assert (tem);
4566 return tem;
4569 /* If the subreg contains a reg that will be converted to a mem,
4570 convert the subreg to a narrower memref now.
4571 Otherwise, we would get (subreg (mem ...) ...),
4572 which would force reload of the mem.
4574 We also need to do this if there is an equivalent MEM that is
4575 not offsettable. In that case, alter_subreg would produce an
4576 invalid address on big-endian machines.
4578 For machines that extend byte loads, we must not reload using
4579 a wider mode if we have a paradoxical SUBREG. find_reloads will
4580 force a reload in that case. So we should not do anything here. */
4582 else if (regno >= FIRST_PSEUDO_REGISTER
4583 #ifdef LOAD_EXTEND_OP
4584 && (GET_MODE_SIZE (GET_MODE (x))
4585 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4586 #endif
4587 && (reg_equiv_address[regno] != 0
4588 || (reg_equiv_mem[regno] != 0
4589 && (! strict_memory_address_p (GET_MODE (x),
4590 XEXP (reg_equiv_mem[regno], 0))
4591 || ! offsettable_memref_p (reg_equiv_mem[regno])
4592 || num_not_at_initial_offset))))
4593 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4594 insn);
4597 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4599 if (fmt[i] == 'e')
4601 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4602 ind_levels, is_set_dest, insn,
4603 address_reloaded);
4604 /* If we have replaced a reg with it's equivalent memory loc -
4605 that can still be handled here e.g. if it's in a paradoxical
4606 subreg - we must make the change in a copy, rather than using
4607 a destructive change. This way, find_reloads can still elect
4608 not to do the change. */
4609 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4611 x = shallow_copy_rtx (x);
4612 copied = 1;
4614 XEXP (x, i) = new_part;
4617 return x;
4620 /* Return a mem ref for the memory equivalent of reg REGNO.
4621 This mem ref is not shared with anything. */
4623 static rtx
4624 make_memloc (rtx ad, int regno)
4626 /* We must rerun eliminate_regs, in case the elimination
4627 offsets have changed. */
4628 rtx tem
4629 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4631 /* If TEM might contain a pseudo, we must copy it to avoid
4632 modifying it when we do the substitution for the reload. */
4633 if (rtx_varies_p (tem, 0))
4634 tem = copy_rtx (tem);
4636 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4637 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4639 /* Copy the result if it's still the same as the equivalence, to avoid
4640 modifying it when we do the substitution for the reload. */
4641 if (tem == reg_equiv_memory_loc[regno])
4642 tem = copy_rtx (tem);
4643 return tem;
4646 /* Returns true if AD could be turned into a valid memory reference
4647 to mode MODE by reloading the part pointed to by PART into a
4648 register. */
4650 static int
4651 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4653 int retv;
4654 rtx tem = *part;
4655 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4657 *part = reg;
4658 retv = memory_address_p (mode, ad);
4659 *part = tem;
4661 return retv;
4664 /* Record all reloads needed for handling memory address AD
4665 which appears in *LOC in a memory reference to mode MODE
4666 which itself is found in location *MEMREFLOC.
4667 Note that we take shortcuts assuming that no multi-reg machine mode
4668 occurs as part of an address.
4670 OPNUM and TYPE specify the purpose of this reload.
4672 IND_LEVELS says how many levels of indirect addressing this machine
4673 supports.
4675 INSN, if nonzero, is the insn in which we do the reload. It is used
4676 to determine if we may generate output reloads, and where to put USEs
4677 for pseudos that we have to replace with stack slots.
4679 Value is one if this address is reloaded or replaced as a whole; it is
4680 zero if the top level of this address was not reloaded or replaced, and
4681 it is -1 if it may or may not have been reloaded or replaced.
4683 Note that there is no verification that the address will be valid after
4684 this routine does its work. Instead, we rely on the fact that the address
4685 was valid when reload started. So we need only undo things that reload
4686 could have broken. These are wrong register types, pseudos not allocated
4687 to a hard register, and frame pointer elimination. */
4689 static int
4690 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4691 rtx *loc, int opnum, enum reload_type type,
4692 int ind_levels, rtx insn)
4694 int regno;
4695 int removed_and = 0;
4696 int op_index;
4697 rtx tem;
4699 /* If the address is a register, see if it is a legitimate address and
4700 reload if not. We first handle the cases where we need not reload
4701 or where we must reload in a non-standard way. */
4703 if (REG_P (ad))
4705 regno = REGNO (ad);
4707 /* If the register is equivalent to an invariant expression, substitute
4708 the invariant, and eliminate any eliminable register references. */
4709 tem = reg_equiv_constant[regno];
4710 if (tem != 0
4711 && (tem = eliminate_regs (tem, mode, insn))
4712 && strict_memory_address_p (mode, tem))
4714 *loc = ad = tem;
4715 return 0;
4718 tem = reg_equiv_memory_loc[regno];
4719 if (tem != 0)
4721 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4723 tem = make_memloc (ad, regno);
4724 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4726 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4727 &XEXP (tem, 0), opnum,
4728 ADDR_TYPE (type), ind_levels, insn);
4730 /* We can avoid a reload if the register's equivalent memory
4731 expression is valid as an indirect memory address.
4732 But not all addresses are valid in a mem used as an indirect
4733 address: only reg or reg+constant. */
4735 if (ind_levels > 0
4736 && strict_memory_address_p (mode, tem)
4737 && (REG_P (XEXP (tem, 0))
4738 || (GET_CODE (XEXP (tem, 0)) == PLUS
4739 && REG_P (XEXP (XEXP (tem, 0), 0))
4740 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4742 /* TEM is not the same as what we'll be replacing the
4743 pseudo with after reload, put a USE in front of INSN
4744 in the final reload pass. */
4745 if (replace_reloads
4746 && num_not_at_initial_offset
4747 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4749 *loc = tem;
4750 /* We mark the USE with QImode so that we
4751 recognize it as one that can be safely
4752 deleted at the end of reload. */
4753 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4754 insn), QImode);
4756 /* This doesn't really count as replacing the address
4757 as a whole, since it is still a memory access. */
4759 return 0;
4761 ad = tem;
4765 /* The only remaining case where we can avoid a reload is if this is a
4766 hard register that is valid as a base register and which is not the
4767 subject of a CLOBBER in this insn. */
4769 else if (regno < FIRST_PSEUDO_REGISTER
4770 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4771 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4772 return 0;
4774 /* If we do not have one of the cases above, we must do the reload. */
4775 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4776 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4777 return 1;
4780 if (strict_memory_address_p (mode, ad))
4782 /* The address appears valid, so reloads are not needed.
4783 But the address may contain an eliminable register.
4784 This can happen because a machine with indirect addressing
4785 may consider a pseudo register by itself a valid address even when
4786 it has failed to get a hard reg.
4787 So do a tree-walk to find and eliminate all such regs. */
4789 /* But first quickly dispose of a common case. */
4790 if (GET_CODE (ad) == PLUS
4791 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4792 && REG_P (XEXP (ad, 0))
4793 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4794 return 0;
4796 subst_reg_equivs_changed = 0;
4797 *loc = subst_reg_equivs (ad, insn);
4799 if (! subst_reg_equivs_changed)
4800 return 0;
4802 /* Check result for validity after substitution. */
4803 if (strict_memory_address_p (mode, ad))
4804 return 0;
4807 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4810 if (memrefloc)
4812 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4813 ind_levels, win);
4815 break;
4816 win:
4817 *memrefloc = copy_rtx (*memrefloc);
4818 XEXP (*memrefloc, 0) = ad;
4819 move_replacements (&ad, &XEXP (*memrefloc, 0));
4820 return -1;
4822 while (0);
4823 #endif
4825 /* The address is not valid. We have to figure out why. First see if
4826 we have an outer AND and remove it if so. Then analyze what's inside. */
4828 if (GET_CODE (ad) == AND)
4830 removed_and = 1;
4831 loc = &XEXP (ad, 0);
4832 ad = *loc;
4835 /* One possibility for why the address is invalid is that it is itself
4836 a MEM. This can happen when the frame pointer is being eliminated, a
4837 pseudo is not allocated to a hard register, and the offset between the
4838 frame and stack pointers is not its initial value. In that case the
4839 pseudo will have been replaced by a MEM referring to the
4840 stack pointer. */
4841 if (MEM_P (ad))
4843 /* First ensure that the address in this MEM is valid. Then, unless
4844 indirect addresses are valid, reload the MEM into a register. */
4845 tem = ad;
4846 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4847 opnum, ADDR_TYPE (type),
4848 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4850 /* If tem was changed, then we must create a new memory reference to
4851 hold it and store it back into memrefloc. */
4852 if (tem != ad && memrefloc)
4854 *memrefloc = copy_rtx (*memrefloc);
4855 copy_replacements (tem, XEXP (*memrefloc, 0));
4856 loc = &XEXP (*memrefloc, 0);
4857 if (removed_and)
4858 loc = &XEXP (*loc, 0);
4861 /* Check similar cases as for indirect addresses as above except
4862 that we can allow pseudos and a MEM since they should have been
4863 taken care of above. */
4865 if (ind_levels == 0
4866 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4867 || MEM_P (XEXP (tem, 0))
4868 || ! (REG_P (XEXP (tem, 0))
4869 || (GET_CODE (XEXP (tem, 0)) == PLUS
4870 && REG_P (XEXP (XEXP (tem, 0), 0))
4871 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4873 /* Must use TEM here, not AD, since it is the one that will
4874 have any subexpressions reloaded, if needed. */
4875 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4876 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4877 VOIDmode, 0,
4878 0, opnum, type);
4879 return ! removed_and;
4881 else
4882 return 0;
4885 /* If we have address of a stack slot but it's not valid because the
4886 displacement is too large, compute the sum in a register.
4887 Handle all base registers here, not just fp/ap/sp, because on some
4888 targets (namely SH) we can also get too large displacements from
4889 big-endian corrections. */
4890 else if (GET_CODE (ad) == PLUS
4891 && REG_P (XEXP (ad, 0))
4892 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4893 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4894 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4896 /* Unshare the MEM rtx so we can safely alter it. */
4897 if (memrefloc)
4899 *memrefloc = copy_rtx (*memrefloc);
4900 loc = &XEXP (*memrefloc, 0);
4901 if (removed_and)
4902 loc = &XEXP (*loc, 0);
4905 if (double_reg_address_ok)
4907 /* Unshare the sum as well. */
4908 *loc = ad = copy_rtx (ad);
4910 /* Reload the displacement into an index reg.
4911 We assume the frame pointer or arg pointer is a base reg. */
4912 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4913 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4914 type, ind_levels);
4915 return 0;
4917 else
4919 /* If the sum of two regs is not necessarily valid,
4920 reload the sum into a base reg.
4921 That will at least work. */
4922 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4923 Pmode, opnum, type, ind_levels);
4925 return ! removed_and;
4928 /* If we have an indexed stack slot, there are three possible reasons why
4929 it might be invalid: The index might need to be reloaded, the address
4930 might have been made by frame pointer elimination and hence have a
4931 constant out of range, or both reasons might apply.
4933 We can easily check for an index needing reload, but even if that is the
4934 case, we might also have an invalid constant. To avoid making the
4935 conservative assumption and requiring two reloads, we see if this address
4936 is valid when not interpreted strictly. If it is, the only problem is
4937 that the index needs a reload and find_reloads_address_1 will take care
4938 of it.
4940 Handle all base registers here, not just fp/ap/sp, because on some
4941 targets (namely SPARC) we can also get invalid addresses from preventive
4942 subreg big-endian corrections made by find_reloads_toplev. We
4943 can also get expressions involving LO_SUM (rather than PLUS) from
4944 find_reloads_subreg_address.
4946 If we decide to do something, it must be that `double_reg_address_ok'
4947 is true. We generate a reload of the base register + constant and
4948 rework the sum so that the reload register will be added to the index.
4949 This is safe because we know the address isn't shared.
4951 We check for the base register as both the first and second operand of
4952 the innermost PLUS and/or LO_SUM. */
4954 for (op_index = 0; op_index < 2; ++op_index)
4956 rtx operand;
4958 if (!(GET_CODE (ad) == PLUS
4959 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4960 && (GET_CODE (XEXP (ad, 0)) == PLUS
4961 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4962 continue;
4964 operand = XEXP (XEXP (ad, 0), op_index);
4965 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4966 continue;
4968 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4969 || operand == frame_pointer_rtx
4970 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4971 || operand == hard_frame_pointer_rtx
4972 #endif
4973 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4974 || operand == arg_pointer_rtx
4975 #endif
4976 || operand == stack_pointer_rtx)
4977 && ! maybe_memory_address_p (mode, ad,
4978 &XEXP (XEXP (ad, 0), 1 - op_index)))
4980 rtx offset_reg;
4981 rtx addend;
4983 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4984 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4986 /* Form the adjusted address. */
4987 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4988 ad = gen_rtx_PLUS (GET_MODE (ad),
4989 op_index == 0 ? offset_reg : addend,
4990 op_index == 0 ? addend : offset_reg);
4991 else
4992 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4993 op_index == 0 ? offset_reg : addend,
4994 op_index == 0 ? addend : offset_reg);
4995 *loc = ad;
4997 find_reloads_address_part (XEXP (ad, op_index),
4998 &XEXP (ad, op_index),
4999 MODE_BASE_REG_CLASS (mode),
5000 GET_MODE (ad), opnum, type, ind_levels);
5001 find_reloads_address_1 (mode,
5002 XEXP (ad, 1 - op_index), 1,
5003 &XEXP (ad, 1 - op_index), opnum,
5004 type, 0, insn);
5006 return 0;
5010 /* See if address becomes valid when an eliminable register
5011 in a sum is replaced. */
5013 tem = ad;
5014 if (GET_CODE (ad) == PLUS)
5015 tem = subst_indexed_address (ad);
5016 if (tem != ad && strict_memory_address_p (mode, tem))
5018 /* Ok, we win that way. Replace any additional eliminable
5019 registers. */
5021 subst_reg_equivs_changed = 0;
5022 tem = subst_reg_equivs (tem, insn);
5024 /* Make sure that didn't make the address invalid again. */
5026 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5028 *loc = tem;
5029 return 0;
5033 /* If constants aren't valid addresses, reload the constant address
5034 into a register. */
5035 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5037 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5038 Unshare it so we can safely alter it. */
5039 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5040 && CONSTANT_POOL_ADDRESS_P (ad))
5042 *memrefloc = copy_rtx (*memrefloc);
5043 loc = &XEXP (*memrefloc, 0);
5044 if (removed_and)
5045 loc = &XEXP (*loc, 0);
5048 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5049 Pmode, opnum, type, ind_levels);
5050 return ! removed_and;
5053 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5054 insn);
5057 /* Find all pseudo regs appearing in AD
5058 that are eliminable in favor of equivalent values
5059 and do not have hard regs; replace them by their equivalents.
5060 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5061 front of it for pseudos that we have to replace with stack slots. */
5063 static rtx
5064 subst_reg_equivs (rtx ad, rtx insn)
5066 RTX_CODE code = GET_CODE (ad);
5067 int i;
5068 const char *fmt;
5070 switch (code)
5072 case HIGH:
5073 case CONST_INT:
5074 case CONST:
5075 case CONST_DOUBLE:
5076 case CONST_VECTOR:
5077 case SYMBOL_REF:
5078 case LABEL_REF:
5079 case PC:
5080 case CC0:
5081 return ad;
5083 case REG:
5085 int regno = REGNO (ad);
5087 if (reg_equiv_constant[regno] != 0)
5089 subst_reg_equivs_changed = 1;
5090 return reg_equiv_constant[regno];
5092 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5094 rtx mem = make_memloc (ad, regno);
5095 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5097 subst_reg_equivs_changed = 1;
5098 /* We mark the USE with QImode so that we recognize it
5099 as one that can be safely deleted at the end of
5100 reload. */
5101 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5102 QImode);
5103 return mem;
5107 return ad;
5109 case PLUS:
5110 /* Quickly dispose of a common case. */
5111 if (XEXP (ad, 0) == frame_pointer_rtx
5112 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5113 return ad;
5114 break;
5116 default:
5117 break;
5120 fmt = GET_RTX_FORMAT (code);
5121 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5122 if (fmt[i] == 'e')
5123 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5124 return ad;
5127 /* Compute the sum of X and Y, making canonicalizations assumed in an
5128 address, namely: sum constant integers, surround the sum of two
5129 constants with a CONST, put the constant as the second operand, and
5130 group the constant on the outermost sum.
5132 This routine assumes both inputs are already in canonical form. */
5135 form_sum (rtx x, rtx y)
5137 rtx tem;
5138 enum machine_mode mode = GET_MODE (x);
5140 if (mode == VOIDmode)
5141 mode = GET_MODE (y);
5143 if (mode == VOIDmode)
5144 mode = Pmode;
5146 if (GET_CODE (x) == CONST_INT)
5147 return plus_constant (y, INTVAL (x));
5148 else if (GET_CODE (y) == CONST_INT)
5149 return plus_constant (x, INTVAL (y));
5150 else if (CONSTANT_P (x))
5151 tem = x, x = y, y = tem;
5153 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5154 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5156 /* Note that if the operands of Y are specified in the opposite
5157 order in the recursive calls below, infinite recursion will occur. */
5158 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5159 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5161 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5162 constant will have been placed second. */
5163 if (CONSTANT_P (x) && CONSTANT_P (y))
5165 if (GET_CODE (x) == CONST)
5166 x = XEXP (x, 0);
5167 if (GET_CODE (y) == CONST)
5168 y = XEXP (y, 0);
5170 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5173 return gen_rtx_PLUS (mode, x, y);
5176 /* If ADDR is a sum containing a pseudo register that should be
5177 replaced with a constant (from reg_equiv_constant),
5178 return the result of doing so, and also apply the associative
5179 law so that the result is more likely to be a valid address.
5180 (But it is not guaranteed to be one.)
5182 Note that at most one register is replaced, even if more are
5183 replaceable. Also, we try to put the result into a canonical form
5184 so it is more likely to be a valid address.
5186 In all other cases, return ADDR. */
5188 static rtx
5189 subst_indexed_address (rtx addr)
5191 rtx op0 = 0, op1 = 0, op2 = 0;
5192 rtx tem;
5193 int regno;
5195 if (GET_CODE (addr) == PLUS)
5197 /* Try to find a register to replace. */
5198 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5199 if (REG_P (op0)
5200 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5201 && reg_renumber[regno] < 0
5202 && reg_equiv_constant[regno] != 0)
5203 op0 = reg_equiv_constant[regno];
5204 else if (REG_P (op1)
5205 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5206 && reg_renumber[regno] < 0
5207 && reg_equiv_constant[regno] != 0)
5208 op1 = reg_equiv_constant[regno];
5209 else if (GET_CODE (op0) == PLUS
5210 && (tem = subst_indexed_address (op0)) != op0)
5211 op0 = tem;
5212 else if (GET_CODE (op1) == PLUS
5213 && (tem = subst_indexed_address (op1)) != op1)
5214 op1 = tem;
5215 else
5216 return addr;
5218 /* Pick out up to three things to add. */
5219 if (GET_CODE (op1) == PLUS)
5220 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5221 else if (GET_CODE (op0) == PLUS)
5222 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5224 /* Compute the sum. */
5225 if (op2 != 0)
5226 op1 = form_sum (op1, op2);
5227 if (op1 != 0)
5228 op0 = form_sum (op0, op1);
5230 return op0;
5232 return addr;
5235 /* Update the REG_INC notes for an insn. It updates all REG_INC
5236 notes for the instruction which refer to REGNO the to refer
5237 to the reload number.
5239 INSN is the insn for which any REG_INC notes need updating.
5241 REGNO is the register number which has been reloaded.
5243 RELOADNUM is the reload number. */
5245 static void
5246 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5247 int reloadnum ATTRIBUTE_UNUSED)
5249 #ifdef AUTO_INC_DEC
5250 rtx link;
5252 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5253 if (REG_NOTE_KIND (link) == REG_INC
5254 && (int) REGNO (XEXP (link, 0)) == regno)
5255 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5256 #endif
5259 /* Record the pseudo registers we must reload into hard registers in a
5260 subexpression of a would-be memory address, X referring to a value
5261 in mode MODE. (This function is not called if the address we find
5262 is strictly valid.)
5264 CONTEXT = 1 means we are considering regs as index regs,
5265 = 0 means we are considering them as base regs, = 2 means we
5266 are considering them as base regs for REG + REG.
5268 OPNUM and TYPE specify the purpose of any reloads made.
5270 IND_LEVELS says how many levels of indirect addressing are
5271 supported at this point in the address.
5273 INSN, if nonzero, is the insn in which we do the reload. It is used
5274 to determine if we may generate output reloads.
5276 We return nonzero if X, as a whole, is reloaded or replaced. */
5278 /* Note that we take shortcuts assuming that no multi-reg machine mode
5279 occurs as part of an address.
5280 Also, this is not fully machine-customizable; it works for machines
5281 such as VAXen and 68000's and 32000's, but other possible machines
5282 could have addressing modes that this does not handle right. */
5284 static int
5285 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5286 rtx *loc, int opnum, enum reload_type type,
5287 int ind_levels, rtx insn)
5289 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5290 ((CONTEXT) == 2 \
5291 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5292 : (CONTEXT) == 1 \
5293 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5294 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5296 enum reg_class context_reg_class;
5297 RTX_CODE code = GET_CODE (x);
5299 if (context == 2)
5300 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5301 else if (context == 1)
5302 context_reg_class = INDEX_REG_CLASS;
5303 else
5304 context_reg_class = MODE_BASE_REG_CLASS (mode);
5306 switch (code)
5308 case PLUS:
5310 rtx orig_op0 = XEXP (x, 0);
5311 rtx orig_op1 = XEXP (x, 1);
5312 RTX_CODE code0 = GET_CODE (orig_op0);
5313 RTX_CODE code1 = GET_CODE (orig_op1);
5314 rtx op0 = orig_op0;
5315 rtx op1 = orig_op1;
5317 if (GET_CODE (op0) == SUBREG)
5319 op0 = SUBREG_REG (op0);
5320 code0 = GET_CODE (op0);
5321 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5322 op0 = gen_rtx_REG (word_mode,
5323 (REGNO (op0) +
5324 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5325 GET_MODE (SUBREG_REG (orig_op0)),
5326 SUBREG_BYTE (orig_op0),
5327 GET_MODE (orig_op0))));
5330 if (GET_CODE (op1) == SUBREG)
5332 op1 = SUBREG_REG (op1);
5333 code1 = GET_CODE (op1);
5334 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5335 /* ??? Why is this given op1's mode and above for
5336 ??? op0 SUBREGs we use word_mode? */
5337 op1 = gen_rtx_REG (GET_MODE (op1),
5338 (REGNO (op1) +
5339 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5340 GET_MODE (SUBREG_REG (orig_op1)),
5341 SUBREG_BYTE (orig_op1),
5342 GET_MODE (orig_op1))));
5344 /* Plus in the index register may be created only as a result of
5345 register remateralization for expression like &localvar*4. Reload it.
5346 It may be possible to combine the displacement on the outer level,
5347 but it is probably not worthwhile to do so. */
5348 if (context == 1)
5350 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5351 opnum, ADDR_TYPE (type), ind_levels, insn);
5352 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5353 context_reg_class,
5354 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5355 return 1;
5358 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5359 || code0 == ZERO_EXTEND || code1 == MEM)
5361 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5362 type, ind_levels, insn);
5363 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5364 type, ind_levels, insn);
5367 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5368 || code1 == ZERO_EXTEND || code0 == MEM)
5370 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5371 type, ind_levels, insn);
5372 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5373 type, ind_levels, insn);
5376 else if (code0 == CONST_INT || code0 == CONST
5377 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5378 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5379 type, ind_levels, insn);
5381 else if (code1 == CONST_INT || code1 == CONST
5382 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5383 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5384 type, ind_levels, insn);
5386 else if (code0 == REG && code1 == REG)
5388 if (REG_OK_FOR_INDEX_P (op0)
5389 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5390 return 0;
5391 else if (REG_OK_FOR_INDEX_P (op1)
5392 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5393 return 0;
5394 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5395 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5396 type, ind_levels, insn);
5397 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5398 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5399 type, ind_levels, insn);
5400 else if (REG_OK_FOR_INDEX_P (op1))
5401 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5402 type, ind_levels, insn);
5403 else if (REG_OK_FOR_INDEX_P (op0))
5404 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5405 type, ind_levels, insn);
5406 else
5408 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5409 type, ind_levels, insn);
5410 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5411 type, ind_levels, insn);
5415 else if (code0 == REG)
5417 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5418 type, ind_levels, insn);
5419 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5420 type, ind_levels, insn);
5423 else if (code1 == REG)
5425 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5426 type, ind_levels, insn);
5427 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5428 type, ind_levels, insn);
5432 return 0;
5434 case POST_MODIFY:
5435 case PRE_MODIFY:
5437 rtx op0 = XEXP (x, 0);
5438 rtx op1 = XEXP (x, 1);
5439 int regno;
5440 int reloadnum;
5442 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5443 return 0;
5445 /* Currently, we only support {PRE,POST}_MODIFY constructs
5446 where a base register is {inc,dec}remented by the contents
5447 of another register or by a constant value. Thus, these
5448 operands must match. */
5449 gcc_assert (op0 == XEXP (op1, 0));
5451 /* Require index register (or constant). Let's just handle the
5452 register case in the meantime... If the target allows
5453 auto-modify by a constant then we could try replacing a pseudo
5454 register with its equivalent constant where applicable. */
5455 if (REG_P (XEXP (op1, 1)))
5456 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5457 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5458 opnum, type, ind_levels, insn);
5460 gcc_assert (REG_P (XEXP (op1, 0)));
5462 regno = REGNO (XEXP (op1, 0));
5464 /* A register that is incremented cannot be constant! */
5465 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5466 || reg_equiv_constant[regno] == 0);
5468 /* Handle a register that is equivalent to a memory location
5469 which cannot be addressed directly. */
5470 if (reg_equiv_memory_loc[regno] != 0
5471 && (reg_equiv_address[regno] != 0
5472 || num_not_at_initial_offset))
5474 rtx tem = make_memloc (XEXP (x, 0), regno);
5476 if (reg_equiv_address[regno]
5477 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5479 /* First reload the memory location's address.
5480 We can't use ADDR_TYPE (type) here, because we need to
5481 write back the value after reading it, hence we actually
5482 need two registers. */
5483 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5484 &XEXP (tem, 0), opnum,
5485 RELOAD_OTHER,
5486 ind_levels, insn);
5488 /* Then reload the memory location into a base
5489 register. */
5490 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5491 &XEXP (op1, 0),
5492 MODE_BASE_REG_CLASS (mode),
5493 GET_MODE (x), GET_MODE (x), 0,
5494 0, opnum, RELOAD_OTHER);
5496 update_auto_inc_notes (this_insn, regno, reloadnum);
5497 return 0;
5501 if (reg_renumber[regno] >= 0)
5502 regno = reg_renumber[regno];
5504 /* We require a base register here... */
5505 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5507 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5508 &XEXP (op1, 0), &XEXP (x, 0),
5509 MODE_BASE_REG_CLASS (mode),
5510 GET_MODE (x), GET_MODE (x), 0, 0,
5511 opnum, RELOAD_OTHER);
5513 update_auto_inc_notes (this_insn, regno, reloadnum);
5514 return 0;
5517 return 0;
5519 case POST_INC:
5520 case POST_DEC:
5521 case PRE_INC:
5522 case PRE_DEC:
5523 if (REG_P (XEXP (x, 0)))
5525 int regno = REGNO (XEXP (x, 0));
5526 int value = 0;
5527 rtx x_orig = x;
5529 /* A register that is incremented cannot be constant! */
5530 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5531 || reg_equiv_constant[regno] == 0);
5533 /* Handle a register that is equivalent to a memory location
5534 which cannot be addressed directly. */
5535 if (reg_equiv_memory_loc[regno] != 0
5536 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5538 rtx tem = make_memloc (XEXP (x, 0), regno);
5539 if (reg_equiv_address[regno]
5540 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5542 /* First reload the memory location's address.
5543 We can't use ADDR_TYPE (type) here, because we need to
5544 write back the value after reading it, hence we actually
5545 need two registers. */
5546 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5547 &XEXP (tem, 0), opnum, type,
5548 ind_levels, insn);
5549 /* Put this inside a new increment-expression. */
5550 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5551 /* Proceed to reload that, as if it contained a register. */
5555 /* If we have a hard register that is ok as an index,
5556 don't make a reload. If an autoincrement of a nice register
5557 isn't "valid", it must be that no autoincrement is "valid".
5558 If that is true and something made an autoincrement anyway,
5559 this must be a special context where one is allowed.
5560 (For example, a "push" instruction.)
5561 We can't improve this address, so leave it alone. */
5563 /* Otherwise, reload the autoincrement into a suitable hard reg
5564 and record how much to increment by. */
5566 if (reg_renumber[regno] >= 0)
5567 regno = reg_renumber[regno];
5568 if (regno >= FIRST_PSEUDO_REGISTER
5569 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5571 int reloadnum;
5573 /* If we can output the register afterwards, do so, this
5574 saves the extra update.
5575 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5576 CALL_INSN - and it does not set CC0.
5577 But don't do this if we cannot directly address the
5578 memory location, since this will make it harder to
5579 reuse address reloads, and increases register pressure.
5580 Also don't do this if we can probably update x directly. */
5581 rtx equiv = (MEM_P (XEXP (x, 0))
5582 ? XEXP (x, 0)
5583 : reg_equiv_mem[regno]);
5584 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5585 if (insn && NONJUMP_INSN_P (insn) && equiv
5586 && memory_operand (equiv, GET_MODE (equiv))
5587 #ifdef HAVE_cc0
5588 && ! sets_cc0_p (PATTERN (insn))
5589 #endif
5590 && ! (icode != CODE_FOR_nothing
5591 && ((*insn_data[icode].operand[0].predicate)
5592 (equiv, Pmode))
5593 && ((*insn_data[icode].operand[1].predicate)
5594 (equiv, Pmode))))
5596 /* We use the original pseudo for loc, so that
5597 emit_reload_insns() knows which pseudo this
5598 reload refers to and updates the pseudo rtx, not
5599 its equivalent memory location, as well as the
5600 corresponding entry in reg_last_reload_reg. */
5601 loc = &XEXP (x_orig, 0);
5602 x = XEXP (x, 0);
5603 reloadnum
5604 = push_reload (x, x, loc, loc,
5605 context_reg_class,
5606 GET_MODE (x), GET_MODE (x), 0, 0,
5607 opnum, RELOAD_OTHER);
5609 else
5611 reloadnum
5612 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5613 context_reg_class,
5614 GET_MODE (x), GET_MODE (x), 0, 0,
5615 opnum, type);
5616 rld[reloadnum].inc
5617 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5619 value = 1;
5622 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5623 reloadnum);
5625 return value;
5628 else if (MEM_P (XEXP (x, 0)))
5630 /* This is probably the result of a substitution, by eliminate_regs,
5631 of an equivalent address for a pseudo that was not allocated to a
5632 hard register. Verify that the specified address is valid and
5633 reload it into a register. */
5634 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5635 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5636 rtx link;
5637 int reloadnum;
5639 /* Since we know we are going to reload this item, don't decrement
5640 for the indirection level.
5642 Note that this is actually conservative: it would be slightly
5643 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5644 reload1.c here. */
5645 /* We can't use ADDR_TYPE (type) here, because we need to
5646 write back the value after reading it, hence we actually
5647 need two registers. */
5648 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5649 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5650 opnum, type, ind_levels, insn);
5652 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5653 context_reg_class,
5654 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5655 rld[reloadnum].inc
5656 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5658 link = FIND_REG_INC_NOTE (this_insn, tem);
5659 if (link != 0)
5660 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5662 return 1;
5664 return 0;
5666 case MEM:
5667 /* This is probably the result of a substitution, by eliminate_regs, of
5668 an equivalent address for a pseudo that was not allocated to a hard
5669 register. Verify that the specified address is valid and reload it
5670 into a register.
5672 Since we know we are going to reload this item, don't decrement for
5673 the indirection level.
5675 Note that this is actually conservative: it would be slightly more
5676 efficient to use the value of SPILL_INDIRECT_LEVELS from
5677 reload1.c here. */
5679 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5680 opnum, ADDR_TYPE (type), ind_levels, insn);
5681 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5682 context_reg_class,
5683 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5684 return 1;
5686 case REG:
5688 int regno = REGNO (x);
5690 if (reg_equiv_constant[regno] != 0)
5692 find_reloads_address_part (reg_equiv_constant[regno], loc,
5693 context_reg_class,
5694 GET_MODE (x), opnum, type, ind_levels);
5695 return 1;
5698 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5699 that feeds this insn. */
5700 if (reg_equiv_mem[regno] != 0)
5702 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5703 context_reg_class,
5704 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5705 return 1;
5707 #endif
5709 if (reg_equiv_memory_loc[regno]
5710 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5712 rtx tem = make_memloc (x, regno);
5713 if (reg_equiv_address[regno] != 0
5714 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5716 x = tem;
5717 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5718 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5719 ind_levels, insn);
5723 if (reg_renumber[regno] >= 0)
5724 regno = reg_renumber[regno];
5726 if (regno >= FIRST_PSEUDO_REGISTER
5727 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5729 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5730 context_reg_class,
5731 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5732 return 1;
5735 /* If a register appearing in an address is the subject of a CLOBBER
5736 in this insn, reload it into some other register to be safe.
5737 The CLOBBER is supposed to make the register unavailable
5738 from before this insn to after it. */
5739 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5741 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5742 context_reg_class,
5743 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5744 return 1;
5747 return 0;
5749 case SUBREG:
5750 if (REG_P (SUBREG_REG (x)))
5752 /* If this is a SUBREG of a hard register and the resulting register
5753 is of the wrong class, reload the whole SUBREG. This avoids
5754 needless copies if SUBREG_REG is multi-word. */
5755 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5757 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5759 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5761 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5762 context_reg_class,
5763 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5764 return 1;
5767 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5768 is larger than the class size, then reload the whole SUBREG. */
5769 else
5771 enum reg_class class = context_reg_class;
5772 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5773 > reg_class_size[class])
5775 x = find_reloads_subreg_address (x, 0, opnum, type,
5776 ind_levels, insn);
5777 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5778 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5779 return 1;
5783 break;
5785 default:
5786 break;
5790 const char *fmt = GET_RTX_FORMAT (code);
5791 int i;
5793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5795 if (fmt[i] == 'e')
5796 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5797 opnum, type, ind_levels, insn);
5801 #undef REG_OK_FOR_CONTEXT
5802 return 0;
5805 /* X, which is found at *LOC, is a part of an address that needs to be
5806 reloaded into a register of class CLASS. If X is a constant, or if
5807 X is a PLUS that contains a constant, check that the constant is a
5808 legitimate operand and that we are supposed to be able to load
5809 it into the register.
5811 If not, force the constant into memory and reload the MEM instead.
5813 MODE is the mode to use, in case X is an integer constant.
5815 OPNUM and TYPE describe the purpose of any reloads made.
5817 IND_LEVELS says how many levels of indirect addressing this machine
5818 supports. */
5820 static void
5821 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5822 enum machine_mode mode, int opnum,
5823 enum reload_type type, int ind_levels)
5825 if (CONSTANT_P (x)
5826 && (! LEGITIMATE_CONSTANT_P (x)
5827 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5829 rtx tem;
5831 tem = x = force_const_mem (mode, x);
5832 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5833 opnum, type, ind_levels, 0);
5836 else if (GET_CODE (x) == PLUS
5837 && CONSTANT_P (XEXP (x, 1))
5838 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5839 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5841 rtx tem;
5843 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5844 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5845 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5846 opnum, type, ind_levels, 0);
5849 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5850 mode, VOIDmode, 0, 0, opnum, type);
5853 /* X, a subreg of a pseudo, is a part of an address that needs to be
5854 reloaded.
5856 If the pseudo is equivalent to a memory location that cannot be directly
5857 addressed, make the necessary address reloads.
5859 If address reloads have been necessary, or if the address is changed
5860 by register elimination, return the rtx of the memory location;
5861 otherwise, return X.
5863 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5864 memory location.
5866 OPNUM and TYPE identify the purpose of the reload.
5868 IND_LEVELS says how many levels of indirect addressing are
5869 supported at this point in the address.
5871 INSN, if nonzero, is the insn in which we do the reload. It is used
5872 to determine where to put USEs for pseudos that we have to replace with
5873 stack slots. */
5875 static rtx
5876 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5877 enum reload_type type, int ind_levels, rtx insn)
5879 int regno = REGNO (SUBREG_REG (x));
5881 if (reg_equiv_memory_loc[regno])
5883 /* If the address is not directly addressable, or if the address is not
5884 offsettable, then it must be replaced. */
5885 if (! force_replace
5886 && (reg_equiv_address[regno]
5887 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5888 force_replace = 1;
5890 if (force_replace || num_not_at_initial_offset)
5892 rtx tem = make_memloc (SUBREG_REG (x), regno);
5894 /* If the address changes because of register elimination, then
5895 it must be replaced. */
5896 if (force_replace
5897 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5899 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5900 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5901 int offset;
5903 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5904 hold the correct (negative) byte offset. */
5905 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5906 offset = inner_size - outer_size;
5907 else
5908 offset = SUBREG_BYTE (x);
5910 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5911 PUT_MODE (tem, GET_MODE (x));
5913 /* If this was a paradoxical subreg that we replaced, the
5914 resulting memory must be sufficiently aligned to allow
5915 us to widen the mode of the memory. */
5916 if (outer_size > inner_size && STRICT_ALIGNMENT)
5918 rtx base;
5920 base = XEXP (tem, 0);
5921 if (GET_CODE (base) == PLUS)
5923 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5924 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5925 return x;
5926 base = XEXP (base, 0);
5928 if (!REG_P (base)
5929 || (REGNO_POINTER_ALIGN (REGNO (base))
5930 < outer_size * BITS_PER_UNIT))
5931 return x;
5934 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5935 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5936 ind_levels, insn);
5938 /* If this is not a toplevel operand, find_reloads doesn't see
5939 this substitution. We have to emit a USE of the pseudo so
5940 that delete_output_reload can see it. */
5941 if (replace_reloads && recog_data.operand[opnum] != x)
5942 /* We mark the USE with QImode so that we recognize it
5943 as one that can be safely deleted at the end of
5944 reload. */
5945 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5946 SUBREG_REG (x)),
5947 insn), QImode);
5948 x = tem;
5952 return x;
5955 /* Substitute into the current INSN the registers into which we have reloaded
5956 the things that need reloading. The array `replacements'
5957 contains the locations of all pointers that must be changed
5958 and says what to replace them with.
5960 Return the rtx that X translates into; usually X, but modified. */
5962 void
5963 subst_reloads (rtx insn)
5965 int i;
5967 for (i = 0; i < n_replacements; i++)
5969 struct replacement *r = &replacements[i];
5970 rtx reloadreg = rld[r->what].reg_rtx;
5971 if (reloadreg)
5973 #ifdef ENABLE_CHECKING
5974 /* Internal consistency test. Check that we don't modify
5975 anything in the equivalence arrays. Whenever something from
5976 those arrays needs to be reloaded, it must be unshared before
5977 being substituted into; the equivalence must not be modified.
5978 Otherwise, if the equivalence is used after that, it will
5979 have been modified, and the thing substituted (probably a
5980 register) is likely overwritten and not a usable equivalence. */
5981 int check_regno;
5983 for (check_regno = 0; check_regno < max_regno; check_regno++)
5985 #define CHECK_MODF(ARRAY) \
5986 gcc_assert (!ARRAY[check_regno] \
5987 || !loc_mentioned_in_p (r->where, \
5988 ARRAY[check_regno]))
5990 CHECK_MODF (reg_equiv_constant);
5991 CHECK_MODF (reg_equiv_memory_loc);
5992 CHECK_MODF (reg_equiv_address);
5993 CHECK_MODF (reg_equiv_mem);
5994 #undef CHECK_MODF
5996 #endif /* ENABLE_CHECKING */
5998 /* If we're replacing a LABEL_REF with a register, add a
5999 REG_LABEL note to indicate to flow which label this
6000 register refers to. */
6001 if (GET_CODE (*r->where) == LABEL_REF
6002 && JUMP_P (insn))
6003 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6004 XEXP (*r->where, 0),
6005 REG_NOTES (insn));
6007 /* Encapsulate RELOADREG so its machine mode matches what
6008 used to be there. Note that gen_lowpart_common will
6009 do the wrong thing if RELOADREG is multi-word. RELOADREG
6010 will always be a REG here. */
6011 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6012 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6014 /* If we are putting this into a SUBREG and RELOADREG is a
6015 SUBREG, we would be making nested SUBREGs, so we have to fix
6016 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6018 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6020 if (GET_MODE (*r->subreg_loc)
6021 == GET_MODE (SUBREG_REG (reloadreg)))
6022 *r->subreg_loc = SUBREG_REG (reloadreg);
6023 else
6025 int final_offset =
6026 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6028 /* When working with SUBREGs the rule is that the byte
6029 offset must be a multiple of the SUBREG's mode. */
6030 final_offset = (final_offset /
6031 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6032 final_offset = (final_offset *
6033 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6035 *r->where = SUBREG_REG (reloadreg);
6036 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6039 else
6040 *r->where = reloadreg;
6042 /* If reload got no reg and isn't optional, something's wrong. */
6043 else
6044 gcc_assert (rld[r->what].optional);
6048 /* Make a copy of any replacements being done into X and move those
6049 copies to locations in Y, a copy of X. */
6051 void
6052 copy_replacements (rtx x, rtx y)
6054 /* We can't support X being a SUBREG because we might then need to know its
6055 location if something inside it was replaced. */
6056 gcc_assert (GET_CODE (x) != SUBREG);
6058 copy_replacements_1 (&x, &y, n_replacements);
6061 static void
6062 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6064 int i, j;
6065 rtx x, y;
6066 struct replacement *r;
6067 enum rtx_code code;
6068 const char *fmt;
6070 for (j = 0; j < orig_replacements; j++)
6072 if (replacements[j].subreg_loc == px)
6074 r = &replacements[n_replacements++];
6075 r->where = replacements[j].where;
6076 r->subreg_loc = py;
6077 r->what = replacements[j].what;
6078 r->mode = replacements[j].mode;
6080 else if (replacements[j].where == px)
6082 r = &replacements[n_replacements++];
6083 r->where = py;
6084 r->subreg_loc = 0;
6085 r->what = replacements[j].what;
6086 r->mode = replacements[j].mode;
6090 x = *px;
6091 y = *py;
6092 code = GET_CODE (x);
6093 fmt = GET_RTX_FORMAT (code);
6095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6097 if (fmt[i] == 'e')
6098 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6099 else if (fmt[i] == 'E')
6100 for (j = XVECLEN (x, i); --j >= 0; )
6101 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6102 orig_replacements);
6106 /* Change any replacements being done to *X to be done to *Y. */
6108 void
6109 move_replacements (rtx *x, rtx *y)
6111 int i;
6113 for (i = 0; i < n_replacements; i++)
6114 if (replacements[i].subreg_loc == x)
6115 replacements[i].subreg_loc = y;
6116 else if (replacements[i].where == x)
6118 replacements[i].where = y;
6119 replacements[i].subreg_loc = 0;
6123 /* If LOC was scheduled to be replaced by something, return the replacement.
6124 Otherwise, return *LOC. */
6127 find_replacement (rtx *loc)
6129 struct replacement *r;
6131 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6133 rtx reloadreg = rld[r->what].reg_rtx;
6135 if (reloadreg && r->where == loc)
6137 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6138 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6140 return reloadreg;
6142 else if (reloadreg && r->subreg_loc == loc)
6144 /* RELOADREG must be either a REG or a SUBREG.
6146 ??? Is it actually still ever a SUBREG? If so, why? */
6148 if (REG_P (reloadreg))
6149 return gen_rtx_REG (GET_MODE (*loc),
6150 (REGNO (reloadreg) +
6151 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6152 GET_MODE (SUBREG_REG (*loc)),
6153 SUBREG_BYTE (*loc),
6154 GET_MODE (*loc))));
6155 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6156 return reloadreg;
6157 else
6159 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6161 /* When working with SUBREGs the rule is that the byte
6162 offset must be a multiple of the SUBREG's mode. */
6163 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6164 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6165 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6166 final_offset);
6171 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6172 what's inside and make a new rtl if so. */
6173 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6174 || GET_CODE (*loc) == MULT)
6176 rtx x = find_replacement (&XEXP (*loc, 0));
6177 rtx y = find_replacement (&XEXP (*loc, 1));
6179 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6180 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6183 return *loc;
6186 /* Return nonzero if register in range [REGNO, ENDREGNO)
6187 appears either explicitly or implicitly in X
6188 other than being stored into (except for earlyclobber operands).
6190 References contained within the substructure at LOC do not count.
6191 LOC may be zero, meaning don't ignore anything.
6193 This is similar to refers_to_regno_p in rtlanal.c except that we
6194 look at equivalences for pseudos that didn't get hard registers. */
6196 static int
6197 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6198 rtx x, rtx *loc)
6200 int i;
6201 unsigned int r;
6202 RTX_CODE code;
6203 const char *fmt;
6205 if (x == 0)
6206 return 0;
6208 repeat:
6209 code = GET_CODE (x);
6211 switch (code)
6213 case REG:
6214 r = REGNO (x);
6216 /* If this is a pseudo, a hard register must not have been allocated.
6217 X must therefore either be a constant or be in memory. */
6218 if (r >= FIRST_PSEUDO_REGISTER)
6220 if (reg_equiv_memory_loc[r])
6221 return refers_to_regno_for_reload_p (regno, endregno,
6222 reg_equiv_memory_loc[r],
6223 (rtx*) 0);
6225 gcc_assert (reg_equiv_constant[r]);
6226 return 0;
6229 return (endregno > r
6230 && regno < r + (r < FIRST_PSEUDO_REGISTER
6231 ? hard_regno_nregs[r][GET_MODE (x)]
6232 : 1));
6234 case SUBREG:
6235 /* If this is a SUBREG of a hard reg, we can see exactly which
6236 registers are being modified. Otherwise, handle normally. */
6237 if (REG_P (SUBREG_REG (x))
6238 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6240 unsigned int inner_regno = subreg_regno (x);
6241 unsigned int inner_endregno
6242 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6243 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6245 return endregno > inner_regno && regno < inner_endregno;
6247 break;
6249 case CLOBBER:
6250 case SET:
6251 if (&SET_DEST (x) != loc
6252 /* Note setting a SUBREG counts as referring to the REG it is in for
6253 a pseudo but not for hard registers since we can
6254 treat each word individually. */
6255 && ((GET_CODE (SET_DEST (x)) == SUBREG
6256 && loc != &SUBREG_REG (SET_DEST (x))
6257 && REG_P (SUBREG_REG (SET_DEST (x)))
6258 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6259 && refers_to_regno_for_reload_p (regno, endregno,
6260 SUBREG_REG (SET_DEST (x)),
6261 loc))
6262 /* If the output is an earlyclobber operand, this is
6263 a conflict. */
6264 || ((!REG_P (SET_DEST (x))
6265 || earlyclobber_operand_p (SET_DEST (x)))
6266 && refers_to_regno_for_reload_p (regno, endregno,
6267 SET_DEST (x), loc))))
6268 return 1;
6270 if (code == CLOBBER || loc == &SET_SRC (x))
6271 return 0;
6272 x = SET_SRC (x);
6273 goto repeat;
6275 default:
6276 break;
6279 /* X does not match, so try its subexpressions. */
6281 fmt = GET_RTX_FORMAT (code);
6282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6284 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6286 if (i == 0)
6288 x = XEXP (x, 0);
6289 goto repeat;
6291 else
6292 if (refers_to_regno_for_reload_p (regno, endregno,
6293 XEXP (x, i), loc))
6294 return 1;
6296 else if (fmt[i] == 'E')
6298 int j;
6299 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6300 if (loc != &XVECEXP (x, i, j)
6301 && refers_to_regno_for_reload_p (regno, endregno,
6302 XVECEXP (x, i, j), loc))
6303 return 1;
6306 return 0;
6309 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6310 we check if any register number in X conflicts with the relevant register
6311 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6312 contains a MEM (we don't bother checking for memory addresses that can't
6313 conflict because we expect this to be a rare case.
6315 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6316 that we look at equivalences for pseudos that didn't get hard registers. */
6319 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6321 int regno, endregno;
6323 /* Overly conservative. */
6324 if (GET_CODE (x) == STRICT_LOW_PART
6325 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6326 x = XEXP (x, 0);
6328 /* If either argument is a constant, then modifying X can not affect IN. */
6329 if (CONSTANT_P (x) || CONSTANT_P (in))
6330 return 0;
6331 else if (GET_CODE (x) == SUBREG)
6333 regno = REGNO (SUBREG_REG (x));
6334 if (regno < FIRST_PSEUDO_REGISTER)
6335 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6336 GET_MODE (SUBREG_REG (x)),
6337 SUBREG_BYTE (x),
6338 GET_MODE (x));
6340 else if (REG_P (x))
6342 regno = REGNO (x);
6344 /* If this is a pseudo, it must not have been assigned a hard register.
6345 Therefore, it must either be in memory or be a constant. */
6347 if (regno >= FIRST_PSEUDO_REGISTER)
6349 if (reg_equiv_memory_loc[regno])
6350 return refers_to_mem_for_reload_p (in);
6351 gcc_assert (reg_equiv_constant[regno]);
6352 return 0;
6355 else if (MEM_P (x))
6356 return refers_to_mem_for_reload_p (in);
6357 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6358 || GET_CODE (x) == CC0)
6359 return reg_mentioned_p (x, in);
6360 else
6362 gcc_assert (GET_CODE (x) == PLUS);
6364 /* We actually want to know if X is mentioned somewhere inside IN.
6365 We must not say that (plus (sp) (const_int 124)) is in
6366 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6367 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6368 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6369 while (MEM_P (in))
6370 in = XEXP (in, 0);
6371 if (REG_P (in))
6372 return 0;
6373 else if (GET_CODE (in) == PLUS)
6374 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6375 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6376 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6377 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6380 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6381 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6383 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6386 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6387 registers. */
6389 static int
6390 refers_to_mem_for_reload_p (rtx x)
6392 const char *fmt;
6393 int i;
6395 if (MEM_P (x))
6396 return 1;
6398 if (REG_P (x))
6399 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6400 && reg_equiv_memory_loc[REGNO (x)]);
6402 fmt = GET_RTX_FORMAT (GET_CODE (x));
6403 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6404 if (fmt[i] == 'e'
6405 && (MEM_P (XEXP (x, i))
6406 || refers_to_mem_for_reload_p (XEXP (x, i))))
6407 return 1;
6409 return 0;
6412 /* Check the insns before INSN to see if there is a suitable register
6413 containing the same value as GOAL.
6414 If OTHER is -1, look for a register in class CLASS.
6415 Otherwise, just see if register number OTHER shares GOAL's value.
6417 Return an rtx for the register found, or zero if none is found.
6419 If RELOAD_REG_P is (short *)1,
6420 we reject any hard reg that appears in reload_reg_rtx
6421 because such a hard reg is also needed coming into this insn.
6423 If RELOAD_REG_P is any other nonzero value,
6424 it is a vector indexed by hard reg number
6425 and we reject any hard reg whose element in the vector is nonnegative
6426 as well as any that appears in reload_reg_rtx.
6428 If GOAL is zero, then GOALREG is a register number; we look
6429 for an equivalent for that register.
6431 MODE is the machine mode of the value we want an equivalence for.
6432 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6434 This function is used by jump.c as well as in the reload pass.
6436 If GOAL is the sum of the stack pointer and a constant, we treat it
6437 as if it were a constant except that sp is required to be unchanging. */
6440 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6441 short *reload_reg_p, int goalreg, enum machine_mode mode)
6443 rtx p = insn;
6444 rtx goaltry, valtry, value, where;
6445 rtx pat;
6446 int regno = -1;
6447 int valueno;
6448 int goal_mem = 0;
6449 int goal_const = 0;
6450 int goal_mem_addr_varies = 0;
6451 int need_stable_sp = 0;
6452 int nregs;
6453 int valuenregs;
6454 int num = 0;
6456 if (goal == 0)
6457 regno = goalreg;
6458 else if (REG_P (goal))
6459 regno = REGNO (goal);
6460 else if (MEM_P (goal))
6462 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6463 if (MEM_VOLATILE_P (goal))
6464 return 0;
6465 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6466 return 0;
6467 /* An address with side effects must be reexecuted. */
6468 switch (code)
6470 case POST_INC:
6471 case PRE_INC:
6472 case POST_DEC:
6473 case PRE_DEC:
6474 case POST_MODIFY:
6475 case PRE_MODIFY:
6476 return 0;
6477 default:
6478 break;
6480 goal_mem = 1;
6482 else if (CONSTANT_P (goal))
6483 goal_const = 1;
6484 else if (GET_CODE (goal) == PLUS
6485 && XEXP (goal, 0) == stack_pointer_rtx
6486 && CONSTANT_P (XEXP (goal, 1)))
6487 goal_const = need_stable_sp = 1;
6488 else if (GET_CODE (goal) == PLUS
6489 && XEXP (goal, 0) == frame_pointer_rtx
6490 && CONSTANT_P (XEXP (goal, 1)))
6491 goal_const = 1;
6492 else
6493 return 0;
6495 num = 0;
6496 /* Scan insns back from INSN, looking for one that copies
6497 a value into or out of GOAL.
6498 Stop and give up if we reach a label. */
6500 while (1)
6502 p = PREV_INSN (p);
6503 num++;
6504 if (p == 0 || LABEL_P (p)
6505 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6506 return 0;
6508 if (NONJUMP_INSN_P (p)
6509 /* If we don't want spill regs ... */
6510 && (! (reload_reg_p != 0
6511 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6512 /* ... then ignore insns introduced by reload; they aren't
6513 useful and can cause results in reload_as_needed to be
6514 different from what they were when calculating the need for
6515 spills. If we notice an input-reload insn here, we will
6516 reject it below, but it might hide a usable equivalent.
6517 That makes bad code. It may even abort: perhaps no reg was
6518 spilled for this insn because it was assumed we would find
6519 that equivalent. */
6520 || INSN_UID (p) < reload_first_uid))
6522 rtx tem;
6523 pat = single_set (p);
6525 /* First check for something that sets some reg equal to GOAL. */
6526 if (pat != 0
6527 && ((regno >= 0
6528 && true_regnum (SET_SRC (pat)) == regno
6529 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6531 (regno >= 0
6532 && true_regnum (SET_DEST (pat)) == regno
6533 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6535 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6536 /* When looking for stack pointer + const,
6537 make sure we don't use a stack adjust. */
6538 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6539 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6540 || (goal_mem
6541 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6542 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6543 || (goal_mem
6544 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6545 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6546 /* If we are looking for a constant,
6547 and something equivalent to that constant was copied
6548 into a reg, we can use that reg. */
6549 || (goal_const && REG_NOTES (p) != 0
6550 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6551 && ((rtx_equal_p (XEXP (tem, 0), goal)
6552 && (valueno
6553 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6554 || (REG_P (SET_DEST (pat))
6555 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6556 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6557 == MODE_FLOAT)
6558 && GET_CODE (goal) == CONST_INT
6559 && 0 != (goaltry
6560 = operand_subword (XEXP (tem, 0), 0, 0,
6561 VOIDmode))
6562 && rtx_equal_p (goal, goaltry)
6563 && (valtry
6564 = operand_subword (SET_DEST (pat), 0, 0,
6565 VOIDmode))
6566 && (valueno = true_regnum (valtry)) >= 0)))
6567 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6568 NULL_RTX))
6569 && REG_P (SET_DEST (pat))
6570 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6571 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6572 == MODE_FLOAT)
6573 && GET_CODE (goal) == CONST_INT
6574 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6575 VOIDmode))
6576 && rtx_equal_p (goal, goaltry)
6577 && (valtry
6578 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6579 && (valueno = true_regnum (valtry)) >= 0)))
6581 if (other >= 0)
6583 if (valueno != other)
6584 continue;
6586 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6587 continue;
6588 else
6590 int i;
6592 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6593 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6594 valueno + i))
6595 break;
6596 if (i >= 0)
6597 continue;
6599 value = valtry;
6600 where = p;
6601 break;
6606 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6607 (or copying VALUE into GOAL, if GOAL is also a register).
6608 Now verify that VALUE is really valid. */
6610 /* VALUENO is the register number of VALUE; a hard register. */
6612 /* Don't try to re-use something that is killed in this insn. We want
6613 to be able to trust REG_UNUSED notes. */
6614 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6615 return 0;
6617 /* If we propose to get the value from the stack pointer or if GOAL is
6618 a MEM based on the stack pointer, we need a stable SP. */
6619 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6620 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6621 goal)))
6622 need_stable_sp = 1;
6624 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6625 if (GET_MODE (value) != mode)
6626 return 0;
6628 /* Reject VALUE if it was loaded from GOAL
6629 and is also a register that appears in the address of GOAL. */
6631 if (goal_mem && value == SET_DEST (single_set (where))
6632 && refers_to_regno_for_reload_p (valueno,
6633 (valueno
6634 + hard_regno_nregs[valueno][mode]),
6635 goal, (rtx*) 0))
6636 return 0;
6638 /* Reject registers that overlap GOAL. */
6640 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6641 nregs = hard_regno_nregs[regno][mode];
6642 else
6643 nregs = 1;
6644 valuenregs = hard_regno_nregs[valueno][mode];
6646 if (!goal_mem && !goal_const
6647 && regno + nregs > valueno && regno < valueno + valuenregs)
6648 return 0;
6650 /* Reject VALUE if it is one of the regs reserved for reloads.
6651 Reload1 knows how to reuse them anyway, and it would get
6652 confused if we allocated one without its knowledge.
6653 (Now that insns introduced by reload are ignored above,
6654 this case shouldn't happen, but I'm not positive.) */
6656 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6658 int i;
6659 for (i = 0; i < valuenregs; ++i)
6660 if (reload_reg_p[valueno + i] >= 0)
6661 return 0;
6664 /* Reject VALUE if it is a register being used for an input reload
6665 even if it is not one of those reserved. */
6667 if (reload_reg_p != 0)
6669 int i;
6670 for (i = 0; i < n_reloads; i++)
6671 if (rld[i].reg_rtx != 0 && rld[i].in)
6673 int regno1 = REGNO (rld[i].reg_rtx);
6674 int nregs1 = hard_regno_nregs[regno1]
6675 [GET_MODE (rld[i].reg_rtx)];
6676 if (regno1 < valueno + valuenregs
6677 && regno1 + nregs1 > valueno)
6678 return 0;
6682 if (goal_mem)
6683 /* We must treat frame pointer as varying here,
6684 since it can vary--in a nonlocal goto as generated by expand_goto. */
6685 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6687 /* Now verify that the values of GOAL and VALUE remain unaltered
6688 until INSN is reached. */
6690 p = insn;
6691 while (1)
6693 p = PREV_INSN (p);
6694 if (p == where)
6695 return value;
6697 /* Don't trust the conversion past a function call
6698 if either of the two is in a call-clobbered register, or memory. */
6699 if (CALL_P (p))
6701 int i;
6703 if (goal_mem || need_stable_sp)
6704 return 0;
6706 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6707 for (i = 0; i < nregs; ++i)
6708 if (call_used_regs[regno + i])
6709 return 0;
6711 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6712 for (i = 0; i < valuenregs; ++i)
6713 if (call_used_regs[valueno + i])
6714 return 0;
6717 if (INSN_P (p))
6719 pat = PATTERN (p);
6721 /* Watch out for unspec_volatile, and volatile asms. */
6722 if (volatile_insn_p (pat))
6723 return 0;
6725 /* If this insn P stores in either GOAL or VALUE, return 0.
6726 If GOAL is a memory ref and this insn writes memory, return 0.
6727 If GOAL is a memory ref and its address is not constant,
6728 and this insn P changes a register used in GOAL, return 0. */
6730 if (GET_CODE (pat) == COND_EXEC)
6731 pat = COND_EXEC_CODE (pat);
6732 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6734 rtx dest = SET_DEST (pat);
6735 while (GET_CODE (dest) == SUBREG
6736 || GET_CODE (dest) == ZERO_EXTRACT
6737 || GET_CODE (dest) == STRICT_LOW_PART)
6738 dest = XEXP (dest, 0);
6739 if (REG_P (dest))
6741 int xregno = REGNO (dest);
6742 int xnregs;
6743 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6744 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6745 else
6746 xnregs = 1;
6747 if (xregno < regno + nregs && xregno + xnregs > regno)
6748 return 0;
6749 if (xregno < valueno + valuenregs
6750 && xregno + xnregs > valueno)
6751 return 0;
6752 if (goal_mem_addr_varies
6753 && reg_overlap_mentioned_for_reload_p (dest, goal))
6754 return 0;
6755 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6756 return 0;
6758 else if (goal_mem && MEM_P (dest)
6759 && ! push_operand (dest, GET_MODE (dest)))
6760 return 0;
6761 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6762 && reg_equiv_memory_loc[regno] != 0)
6763 return 0;
6764 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6765 return 0;
6767 else if (GET_CODE (pat) == PARALLEL)
6769 int i;
6770 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6772 rtx v1 = XVECEXP (pat, 0, i);
6773 if (GET_CODE (v1) == COND_EXEC)
6774 v1 = COND_EXEC_CODE (v1);
6775 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6777 rtx dest = SET_DEST (v1);
6778 while (GET_CODE (dest) == SUBREG
6779 || GET_CODE (dest) == ZERO_EXTRACT
6780 || GET_CODE (dest) == STRICT_LOW_PART)
6781 dest = XEXP (dest, 0);
6782 if (REG_P (dest))
6784 int xregno = REGNO (dest);
6785 int xnregs;
6786 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6787 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6788 else
6789 xnregs = 1;
6790 if (xregno < regno + nregs
6791 && xregno + xnregs > regno)
6792 return 0;
6793 if (xregno < valueno + valuenregs
6794 && xregno + xnregs > valueno)
6795 return 0;
6796 if (goal_mem_addr_varies
6797 && reg_overlap_mentioned_for_reload_p (dest,
6798 goal))
6799 return 0;
6800 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6801 return 0;
6803 else if (goal_mem && MEM_P (dest)
6804 && ! push_operand (dest, GET_MODE (dest)))
6805 return 0;
6806 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6807 && reg_equiv_memory_loc[regno] != 0)
6808 return 0;
6809 else if (need_stable_sp
6810 && push_operand (dest, GET_MODE (dest)))
6811 return 0;
6816 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6818 rtx link;
6820 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6821 link = XEXP (link, 1))
6823 pat = XEXP (link, 0);
6824 if (GET_CODE (pat) == CLOBBER)
6826 rtx dest = SET_DEST (pat);
6828 if (REG_P (dest))
6830 int xregno = REGNO (dest);
6831 int xnregs
6832 = hard_regno_nregs[xregno][GET_MODE (dest)];
6834 if (xregno < regno + nregs
6835 && xregno + xnregs > regno)
6836 return 0;
6837 else if (xregno < valueno + valuenregs
6838 && xregno + xnregs > valueno)
6839 return 0;
6840 else if (goal_mem_addr_varies
6841 && reg_overlap_mentioned_for_reload_p (dest,
6842 goal))
6843 return 0;
6846 else if (goal_mem && MEM_P (dest)
6847 && ! push_operand (dest, GET_MODE (dest)))
6848 return 0;
6849 else if (need_stable_sp
6850 && push_operand (dest, GET_MODE (dest)))
6851 return 0;
6856 #ifdef AUTO_INC_DEC
6857 /* If this insn auto-increments or auto-decrements
6858 either regno or valueno, return 0 now.
6859 If GOAL is a memory ref and its address is not constant,
6860 and this insn P increments a register used in GOAL, return 0. */
6862 rtx link;
6864 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6865 if (REG_NOTE_KIND (link) == REG_INC
6866 && REG_P (XEXP (link, 0)))
6868 int incno = REGNO (XEXP (link, 0));
6869 if (incno < regno + nregs && incno >= regno)
6870 return 0;
6871 if (incno < valueno + valuenregs && incno >= valueno)
6872 return 0;
6873 if (goal_mem_addr_varies
6874 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6875 goal))
6876 return 0;
6879 #endif
6884 /* Find a place where INCED appears in an increment or decrement operator
6885 within X, and return the amount INCED is incremented or decremented by.
6886 The value is always positive. */
6888 static int
6889 find_inc_amount (rtx x, rtx inced)
6891 enum rtx_code code = GET_CODE (x);
6892 const char *fmt;
6893 int i;
6895 if (code == MEM)
6897 rtx addr = XEXP (x, 0);
6898 if ((GET_CODE (addr) == PRE_DEC
6899 || GET_CODE (addr) == POST_DEC
6900 || GET_CODE (addr) == PRE_INC
6901 || GET_CODE (addr) == POST_INC)
6902 && XEXP (addr, 0) == inced)
6903 return GET_MODE_SIZE (GET_MODE (x));
6904 else if ((GET_CODE (addr) == PRE_MODIFY
6905 || GET_CODE (addr) == POST_MODIFY)
6906 && GET_CODE (XEXP (addr, 1)) == PLUS
6907 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6908 && XEXP (addr, 0) == inced
6909 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6911 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6912 return i < 0 ? -i : i;
6916 fmt = GET_RTX_FORMAT (code);
6917 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6919 if (fmt[i] == 'e')
6921 int tem = find_inc_amount (XEXP (x, i), inced);
6922 if (tem != 0)
6923 return tem;
6925 if (fmt[i] == 'E')
6927 int j;
6928 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6930 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6931 if (tem != 0)
6932 return tem;
6937 return 0;
6940 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6941 If SETS is nonzero, also consider SETs. REGNO must refer to a hard
6942 register. */
6945 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6946 int sets)
6948 unsigned int nregs, endregno;
6950 /* regno must be a hard register. */
6951 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
6953 nregs = hard_regno_nregs[regno][mode];
6954 endregno = regno + nregs;
6956 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6957 || (sets && GET_CODE (PATTERN (insn)) == SET))
6958 && REG_P (XEXP (PATTERN (insn), 0)))
6960 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6962 return test >= regno && test < endregno;
6965 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6967 int i = XVECLEN (PATTERN (insn), 0) - 1;
6969 for (; i >= 0; i--)
6971 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6972 if ((GET_CODE (elt) == CLOBBER
6973 || (sets && GET_CODE (PATTERN (insn)) == SET))
6974 && REG_P (XEXP (elt, 0)))
6976 unsigned int test = REGNO (XEXP (elt, 0));
6978 if (test >= regno && test < endregno)
6979 return 1;
6984 return 0;
6987 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6989 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6991 int regno;
6993 if (GET_MODE (reloadreg) == mode)
6994 return reloadreg;
6996 regno = REGNO (reloadreg);
6998 if (WORDS_BIG_ENDIAN)
6999 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7000 - (int) hard_regno_nregs[regno][mode];
7002 return gen_rtx_REG (mode, regno);
7005 static const char *const reload_when_needed_name[] =
7007 "RELOAD_FOR_INPUT",
7008 "RELOAD_FOR_OUTPUT",
7009 "RELOAD_FOR_INSN",
7010 "RELOAD_FOR_INPUT_ADDRESS",
7011 "RELOAD_FOR_INPADDR_ADDRESS",
7012 "RELOAD_FOR_OUTPUT_ADDRESS",
7013 "RELOAD_FOR_OUTADDR_ADDRESS",
7014 "RELOAD_FOR_OPERAND_ADDRESS",
7015 "RELOAD_FOR_OPADDR_ADDR",
7016 "RELOAD_OTHER",
7017 "RELOAD_FOR_OTHER_ADDRESS"
7020 /* These functions are used to print the variables set by 'find_reloads' */
7022 void
7023 debug_reload_to_stream (FILE *f)
7025 int r;
7026 const char *prefix;
7028 if (! f)
7029 f = stderr;
7030 for (r = 0; r < n_reloads; r++)
7032 fprintf (f, "Reload %d: ", r);
7034 if (rld[r].in != 0)
7036 fprintf (f, "reload_in (%s) = ",
7037 GET_MODE_NAME (rld[r].inmode));
7038 print_inline_rtx (f, rld[r].in, 24);
7039 fprintf (f, "\n\t");
7042 if (rld[r].out != 0)
7044 fprintf (f, "reload_out (%s) = ",
7045 GET_MODE_NAME (rld[r].outmode));
7046 print_inline_rtx (f, rld[r].out, 24);
7047 fprintf (f, "\n\t");
7050 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7052 fprintf (f, "%s (opnum = %d)",
7053 reload_when_needed_name[(int) rld[r].when_needed],
7054 rld[r].opnum);
7056 if (rld[r].optional)
7057 fprintf (f, ", optional");
7059 if (rld[r].nongroup)
7060 fprintf (f, ", nongroup");
7062 if (rld[r].inc != 0)
7063 fprintf (f, ", inc by %d", rld[r].inc);
7065 if (rld[r].nocombine)
7066 fprintf (f, ", can't combine");
7068 if (rld[r].secondary_p)
7069 fprintf (f, ", secondary_reload_p");
7071 if (rld[r].in_reg != 0)
7073 fprintf (f, "\n\treload_in_reg: ");
7074 print_inline_rtx (f, rld[r].in_reg, 24);
7077 if (rld[r].out_reg != 0)
7079 fprintf (f, "\n\treload_out_reg: ");
7080 print_inline_rtx (f, rld[r].out_reg, 24);
7083 if (rld[r].reg_rtx != 0)
7085 fprintf (f, "\n\treload_reg_rtx: ");
7086 print_inline_rtx (f, rld[r].reg_rtx, 24);
7089 prefix = "\n\t";
7090 if (rld[r].secondary_in_reload != -1)
7092 fprintf (f, "%ssecondary_in_reload = %d",
7093 prefix, rld[r].secondary_in_reload);
7094 prefix = ", ";
7097 if (rld[r].secondary_out_reload != -1)
7098 fprintf (f, "%ssecondary_out_reload = %d\n",
7099 prefix, rld[r].secondary_out_reload);
7101 prefix = "\n\t";
7102 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7104 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7105 insn_data[rld[r].secondary_in_icode].name);
7106 prefix = ", ";
7109 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7110 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7111 insn_data[rld[r].secondary_out_icode].name);
7113 fprintf (f, "\n");
7117 void
7118 debug_reload (void)
7120 debug_reload_to_stream (stderr);