PR target/16201
[official-gcc.git] / gcc / cse.c
blobb5e15ca41477d2b54f72b16d1d8af0b25487adfe
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
75 Registers and "quantity numbers":
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `reg_qty' records what quantity a register is currently thought
84 of as containing.
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, reg_qty[N] will
88 equal -N - 1, which is always negative.
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
110 Constants and quantity numbers
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
130 Other expressions:
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
175 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
176 reg_tick[i] is incremented whenever a value is stored in register i.
177 reg_in_table[i] holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value reg_tick[i] had
179 when the references were entered. If we want to enter a reference
180 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
181 Until we want to enter a new entry, the mere fact that the two vectors
182 don't match makes the entries be ignored if anyone tries to match them.
184 Registers themselves are entered in the hash table as well as in
185 the equivalent-register chains. However, the vectors `reg_tick'
186 and `reg_in_table' do not apply to expressions which are simple
187 register references. These expressions are removed from the table
188 immediately when they become invalid, and this can be done even if
189 we do not immediately search for all the expressions that refer to
190 the register.
192 A CLOBBER rtx in an instruction invalidates its operand for further
193 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
194 invalidates everything that resides in memory.
196 Related expressions:
198 Constant expressions that differ only by an additive integer
199 are called related. When a constant expression is put in
200 the table, the related expression with no constant term
201 is also entered. These are made to point at each other
202 so that it is possible to find out if there exists any
203 register equivalent to an expression related to a given expression. */
205 /* Length of qty_table vector. We know in advance we will not need
206 a quantity number this big. */
208 static int max_qty;
210 /* Next quantity number to be allocated.
211 This is 1 + the largest number needed so far. */
213 static int next_qty;
215 /* Per-qty information tracking.
217 `first_reg' and `last_reg' track the head and tail of the
218 chain of registers which currently contain this quantity.
220 `mode' contains the machine mode of this quantity.
222 `const_rtx' holds the rtx of the constant value of this
223 quantity, if known. A summations of the frame/arg pointer
224 and a constant can also be entered here. When this holds
225 a known value, `const_insn' is the insn which stored the
226 constant value.
228 `comparison_{code,const,qty}' are used to track when a
229 comparison between a quantity and some constant or register has
230 been passed. In such a case, we know the results of the comparison
231 in case we see it again. These members record a comparison that
232 is known to be true. `comparison_code' holds the rtx code of such
233 a comparison, else it is set to UNKNOWN and the other two
234 comparison members are undefined. `comparison_const' holds
235 the constant being compared against, or zero if the comparison
236 is not against a constant. `comparison_qty' holds the quantity
237 being compared against when the result is known. If the comparison
238 is not with a register, `comparison_qty' is -1. */
240 struct qty_table_elem
242 rtx const_rtx;
243 rtx const_insn;
244 rtx comparison_const;
245 int comparison_qty;
246 unsigned int first_reg, last_reg;
247 /* The sizes of these fields should match the sizes of the
248 code and mode fields of struct rtx_def (see rtl.h). */
249 ENUM_BITFIELD(rtx_code) comparison_code : 16;
250 ENUM_BITFIELD(machine_mode) mode : 8;
253 /* The table of all qtys, indexed by qty number. */
254 static struct qty_table_elem *qty_table;
256 /* Structure used to pass arguments via for_each_rtx to function
257 cse_change_cc_mode. */
258 struct change_cc_mode_args
260 rtx insn;
261 rtx newreg;
264 #ifdef HAVE_cc0
265 /* For machines that have a CC0, we do not record its value in the hash
266 table since its use is guaranteed to be the insn immediately following
267 its definition and any other insn is presumed to invalidate it.
269 Instead, we store below the value last assigned to CC0. If it should
270 happen to be a constant, it is stored in preference to the actual
271 assigned value. In case it is a constant, we store the mode in which
272 the constant should be interpreted. */
274 static rtx prev_insn_cc0;
275 static enum machine_mode prev_insn_cc0_mode;
277 /* Previous actual insn. 0 if at first insn of basic block. */
279 static rtx prev_insn;
280 #endif
282 /* Insn being scanned. */
284 static rtx this_insn;
286 /* Index by register number, gives the number of the next (or
287 previous) register in the chain of registers sharing the same
288 value.
290 Or -1 if this register is at the end of the chain.
292 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
294 /* Per-register equivalence chain. */
295 struct reg_eqv_elem
297 int next, prev;
300 /* The table of all register equivalence chains. */
301 static struct reg_eqv_elem *reg_eqv_table;
303 struct cse_reg_info
305 /* The timestamp at which this register is initialized. */
306 unsigned int timestamp;
308 /* The quantity number of the register's current contents. */
309 int reg_qty;
311 /* The number of times the register has been altered in the current
312 basic block. */
313 int reg_tick;
315 /* The REG_TICK value at which rtx's containing this register are
316 valid in the hash table. If this does not equal the current
317 reg_tick value, such expressions existing in the hash table are
318 invalid. */
319 int reg_in_table;
321 /* The SUBREG that was set when REG_TICK was last incremented. Set
322 to -1 if the last store was to the whole register, not a subreg. */
323 unsigned int subreg_ticked;
326 /* A table of cse_reg_info indexed by register numbers. */
327 struct cse_reg_info *cse_reg_info_table;
329 /* The size of the above table. */
330 static unsigned int cse_reg_info_table_size;
332 /* The index of the first entry that has not been initialized. */
333 static unsigned int cse_reg_info_table_first_uninitialized;
335 /* The timestamp at the beginning of the current run of
336 cse_basic_block. We increment this variable at at the beginning of
337 the current run of cse_basic_block. The timestamp field of a
338 cse_reg_info entry matches the value of this variable if and only
339 if the entry has been initialized during the current run of
340 cse_basic_block. */
341 static unsigned int cse_reg_info_timestamp;
343 /* A HARD_REG_SET containing all the hard registers for which there is
344 currently a REG expression in the hash table. Note the difference
345 from the above variables, which indicate if the REG is mentioned in some
346 expression in the table. */
348 static HARD_REG_SET hard_regs_in_table;
350 /* CUID of insn that starts the basic block currently being cse-processed. */
352 static int cse_basic_block_start;
354 /* CUID of insn that ends the basic block currently being cse-processed. */
356 static int cse_basic_block_end;
358 /* Vector mapping INSN_UIDs to cuids.
359 The cuids are like uids but increase monotonically always.
360 We use them to see whether a reg is used outside a given basic block. */
362 static int *uid_cuid;
364 /* Highest UID in UID_CUID. */
365 static int max_uid;
367 /* Get the cuid of an insn. */
369 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
371 /* Nonzero if this pass has made changes, and therefore it's
372 worthwhile to run the garbage collector. */
374 static int cse_altered;
376 /* Nonzero if cse has altered conditional jump insns
377 in such a way that jump optimization should be redone. */
379 static int cse_jumps_altered;
381 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
382 REG_LABEL, we have to rerun jump after CSE to put in the note. */
383 static int recorded_label_ref;
385 /* canon_hash stores 1 in do_not_record
386 if it notices a reference to CC0, PC, or some other volatile
387 subexpression. */
389 static int do_not_record;
391 /* canon_hash stores 1 in hash_arg_in_memory
392 if it notices a reference to memory within the expression being hashed. */
394 static int hash_arg_in_memory;
396 /* The hash table contains buckets which are chains of `struct table_elt's,
397 each recording one expression's information.
398 That expression is in the `exp' field.
400 The canon_exp field contains a canonical (from the point of view of
401 alias analysis) version of the `exp' field.
403 Those elements with the same hash code are chained in both directions
404 through the `next_same_hash' and `prev_same_hash' fields.
406 Each set of expressions with equivalent values
407 are on a two-way chain through the `next_same_value'
408 and `prev_same_value' fields, and all point with
409 the `first_same_value' field at the first element in
410 that chain. The chain is in order of increasing cost.
411 Each element's cost value is in its `cost' field.
413 The `in_memory' field is nonzero for elements that
414 involve any reference to memory. These elements are removed
415 whenever a write is done to an unidentified location in memory.
416 To be safe, we assume that a memory address is unidentified unless
417 the address is either a symbol constant or a constant plus
418 the frame pointer or argument pointer.
420 The `related_value' field is used to connect related expressions
421 (that differ by adding an integer).
422 The related expressions are chained in a circular fashion.
423 `related_value' is zero for expressions for which this
424 chain is not useful.
426 The `cost' field stores the cost of this element's expression.
427 The `regcost' field stores the value returned by approx_reg_cost for
428 this element's expression.
430 The `is_const' flag is set if the element is a constant (including
431 a fixed address).
433 The `flag' field is used as a temporary during some search routines.
435 The `mode' field is usually the same as GET_MODE (`exp'), but
436 if `exp' is a CONST_INT and has no machine mode then the `mode'
437 field is the mode it was being used as. Each constant is
438 recorded separately for each mode it is used with. */
440 struct table_elt
442 rtx exp;
443 rtx canon_exp;
444 struct table_elt *next_same_hash;
445 struct table_elt *prev_same_hash;
446 struct table_elt *next_same_value;
447 struct table_elt *prev_same_value;
448 struct table_elt *first_same_value;
449 struct table_elt *related_value;
450 int cost;
451 int regcost;
452 /* The size of this field should match the size
453 of the mode field of struct rtx_def (see rtl.h). */
454 ENUM_BITFIELD(machine_mode) mode : 8;
455 char in_memory;
456 char is_const;
457 char flag;
460 /* We don't want a lot of buckets, because we rarely have very many
461 things stored in the hash table, and a lot of buckets slows
462 down a lot of loops that happen frequently. */
463 #define HASH_SHIFT 5
464 #define HASH_SIZE (1 << HASH_SHIFT)
465 #define HASH_MASK (HASH_SIZE - 1)
467 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
468 register (hard registers may require `do_not_record' to be set). */
470 #define HASH(X, M) \
471 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
472 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
473 : canon_hash (X, M)) & HASH_MASK)
475 /* Like HASH, but without side-effects. */
476 #define SAFE_HASH(X, M) \
477 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
478 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
479 : safe_hash (X, M)) & HASH_MASK)
481 /* Determine whether register number N is considered a fixed register for the
482 purpose of approximating register costs.
483 It is desirable to replace other regs with fixed regs, to reduce need for
484 non-fixed hard regs.
485 A reg wins if it is either the frame pointer or designated as fixed. */
486 #define FIXED_REGNO_P(N) \
487 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
488 || fixed_regs[N] || global_regs[N])
490 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
491 hard registers and pointers into the frame are the cheapest with a cost
492 of 0. Next come pseudos with a cost of one and other hard registers with
493 a cost of 2. Aside from these special cases, call `rtx_cost'. */
495 #define CHEAP_REGNO(N) \
496 (REGNO_PTR_FRAME_P(N) \
497 || (HARD_REGISTER_NUM_P (N) \
498 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
500 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
501 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
503 /* Get the number of times this register has been updated in this
504 basic block. */
506 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
508 /* Get the point at which REG was recorded in the table. */
510 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
512 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
513 SUBREG). */
515 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
517 /* Get the quantity number for REG. */
519 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
521 /* Determine if the quantity number for register X represents a valid index
522 into the qty_table. */
524 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
526 static struct table_elt *table[HASH_SIZE];
528 /* Chain of `struct table_elt's made so far for this function
529 but currently removed from the table. */
531 static struct table_elt *free_element_chain;
533 /* Set to the cost of a constant pool reference if one was found for a
534 symbolic constant. If this was found, it means we should try to
535 convert constants into constant pool entries if they don't fit in
536 the insn. */
538 static int constant_pool_entries_cost;
539 static int constant_pool_entries_regcost;
541 /* This data describes a block that will be processed by cse_basic_block. */
543 struct cse_basic_block_data
545 /* Lowest CUID value of insns in block. */
546 int low_cuid;
547 /* Highest CUID value of insns in block. */
548 int high_cuid;
549 /* Total number of SETs in block. */
550 int nsets;
551 /* Last insn in the block. */
552 rtx last;
553 /* Size of current branch path, if any. */
554 int path_size;
555 /* Current branch path, indicating which branches will be taken. */
556 struct branch_path
558 /* The branch insn. */
559 rtx branch;
560 /* Whether it should be taken or not. AROUND is the same as taken
561 except that it is used when the destination label is not preceded
562 by a BARRIER. */
563 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
564 } *path;
567 static bool fixed_base_plus_p (rtx x);
568 static int notreg_cost (rtx, enum rtx_code);
569 static int approx_reg_cost_1 (rtx *, void *);
570 static int approx_reg_cost (rtx);
571 static int preferable (int, int, int, int);
572 static void new_basic_block (void);
573 static void make_new_qty (unsigned int, enum machine_mode);
574 static void make_regs_eqv (unsigned int, unsigned int);
575 static void delete_reg_equiv (unsigned int);
576 static int mention_regs (rtx);
577 static int insert_regs (rtx, struct table_elt *, int);
578 static void remove_from_table (struct table_elt *, unsigned);
579 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
580 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
581 static rtx lookup_as_function (rtx, enum rtx_code);
582 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
583 enum machine_mode);
584 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
585 static void invalidate (rtx, enum machine_mode);
586 static int cse_rtx_varies_p (rtx, int);
587 static void remove_invalid_refs (unsigned int);
588 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
589 enum machine_mode);
590 static void rehash_using_reg (rtx);
591 static void invalidate_memory (void);
592 static void invalidate_for_call (void);
593 static rtx use_related_value (rtx, struct table_elt *);
595 static inline unsigned canon_hash (rtx, enum machine_mode);
596 static inline unsigned safe_hash (rtx, enum machine_mode);
597 static unsigned hash_rtx_string (const char *);
599 static rtx canon_reg (rtx, rtx);
600 static void find_best_addr (rtx, rtx *, enum machine_mode);
601 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
602 enum machine_mode *,
603 enum machine_mode *);
604 static rtx fold_rtx (rtx, rtx);
605 static rtx equiv_constant (rtx);
606 static void record_jump_equiv (rtx, int);
607 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
608 int);
609 static void cse_insn (rtx, rtx);
610 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
611 int, int);
612 static int addr_affects_sp_p (rtx);
613 static void invalidate_from_clobbers (rtx);
614 static rtx cse_process_notes (rtx, rtx);
615 static void invalidate_skipped_set (rtx, rtx, void *);
616 static void invalidate_skipped_block (rtx);
617 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
618 static void count_reg_usage (rtx, int *, int);
619 static int check_for_label_ref (rtx *, void *);
620 extern void dump_class (struct table_elt*);
621 static void get_cse_reg_info_1 (unsigned int regno);
622 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
623 static int check_dependence (rtx *, void *);
625 static void flush_hash_table (void);
626 static bool insn_live_p (rtx, int *);
627 static bool set_live_p (rtx, rtx, int *);
628 static bool dead_libcall_p (rtx, int *);
629 static int cse_change_cc_mode (rtx *, void *);
630 static void cse_change_cc_mode_insn (rtx, rtx);
631 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
632 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
635 #undef RTL_HOOKS_GEN_LOWPART
636 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
638 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
640 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
641 virtual regs here because the simplify_*_operation routines are called
642 by integrate.c, which is called before virtual register instantiation. */
644 static bool
645 fixed_base_plus_p (rtx x)
647 switch (GET_CODE (x))
649 case REG:
650 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
651 return true;
652 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
653 return true;
654 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
655 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
656 return true;
657 return false;
659 case PLUS:
660 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
661 return false;
662 return fixed_base_plus_p (XEXP (x, 0));
664 default:
665 return false;
669 /* Dump the expressions in the equivalence class indicated by CLASSP.
670 This function is used only for debugging. */
671 void
672 dump_class (struct table_elt *classp)
674 struct table_elt *elt;
676 fprintf (stderr, "Equivalence chain for ");
677 print_rtl (stderr, classp->exp);
678 fprintf (stderr, ": \n");
680 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
682 print_rtl (stderr, elt->exp);
683 fprintf (stderr, "\n");
687 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
689 static int
690 approx_reg_cost_1 (rtx *xp, void *data)
692 rtx x = *xp;
693 int *cost_p = data;
695 if (x && REG_P (x))
697 unsigned int regno = REGNO (x);
699 if (! CHEAP_REGNO (regno))
701 if (regno < FIRST_PSEUDO_REGISTER)
703 if (SMALL_REGISTER_CLASSES)
704 return 1;
705 *cost_p += 2;
707 else
708 *cost_p += 1;
712 return 0;
715 /* Return an estimate of the cost of the registers used in an rtx.
716 This is mostly the number of different REG expressions in the rtx;
717 however for some exceptions like fixed registers we use a cost of
718 0. If any other hard register reference occurs, return MAX_COST. */
720 static int
721 approx_reg_cost (rtx x)
723 int cost = 0;
725 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
726 return MAX_COST;
728 return cost;
731 /* Returns a canonical version of X for the address, from the point of view,
732 that all multiplications are represented as MULT instead of the multiply
733 by a power of 2 being represented as ASHIFT. */
735 static rtx
736 canon_for_address (rtx x)
738 enum rtx_code code;
739 enum machine_mode mode;
740 rtx new = 0;
741 int i;
742 const char *fmt;
744 if (!x)
745 return x;
747 code = GET_CODE (x);
748 mode = GET_MODE (x);
750 switch (code)
752 case ASHIFT:
753 if (GET_CODE (XEXP (x, 1)) == CONST_INT
754 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
755 && INTVAL (XEXP (x, 1)) >= 0)
757 new = canon_for_address (XEXP (x, 0));
758 new = gen_rtx_MULT (mode, new,
759 gen_int_mode ((HOST_WIDE_INT) 1
760 << INTVAL (XEXP (x, 1)),
761 mode));
763 break;
764 default:
765 break;
768 if (new)
769 return new;
771 /* Now recursively process each operand of this operation. */
772 fmt = GET_RTX_FORMAT (code);
773 for (i = 0; i < GET_RTX_LENGTH (code); i++)
774 if (fmt[i] == 'e')
776 new = canon_for_address (XEXP (x, i));
777 XEXP (x, i) = new;
779 return x;
782 /* Return a negative value if an rtx A, whose costs are given by COST_A
783 and REGCOST_A, is more desirable than an rtx B.
784 Return a positive value if A is less desirable, or 0 if the two are
785 equally good. */
786 static int
787 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
789 /* First, get rid of cases involving expressions that are entirely
790 unwanted. */
791 if (cost_a != cost_b)
793 if (cost_a == MAX_COST)
794 return 1;
795 if (cost_b == MAX_COST)
796 return -1;
799 /* Avoid extending lifetimes of hardregs. */
800 if (regcost_a != regcost_b)
802 if (regcost_a == MAX_COST)
803 return 1;
804 if (regcost_b == MAX_COST)
805 return -1;
808 /* Normal operation costs take precedence. */
809 if (cost_a != cost_b)
810 return cost_a - cost_b;
811 /* Only if these are identical consider effects on register pressure. */
812 if (regcost_a != regcost_b)
813 return regcost_a - regcost_b;
814 return 0;
817 /* Internal function, to compute cost when X is not a register; called
818 from COST macro to keep it simple. */
820 static int
821 notreg_cost (rtx x, enum rtx_code outer)
823 return ((GET_CODE (x) == SUBREG
824 && REG_P (SUBREG_REG (x))
825 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
826 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
827 && (GET_MODE_SIZE (GET_MODE (x))
828 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
829 && subreg_lowpart_p (x)
830 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
831 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
833 : rtx_cost (x, outer) * 2);
837 /* Initialize CSE_REG_INFO_TABLE. */
839 static void
840 init_cse_reg_info (unsigned int nregs)
842 /* Do we need to grow the table? */
843 if (nregs > cse_reg_info_table_size)
845 unsigned int new_size;
847 if (cse_reg_info_table_size < 2048)
849 /* Compute a new size that is a power of 2 and no smaller
850 than the large of NREGS and 64. */
851 new_size = (cse_reg_info_table_size
852 ? cse_reg_info_table_size : 64);
854 while (new_size < nregs)
855 new_size *= 2;
857 else
859 /* If we need a big table, allocate just enough to hold
860 NREGS registers. */
861 new_size = nregs;
864 /* Reallocate the table with NEW_SIZE entries. */
865 cse_reg_info_table = xrealloc (cse_reg_info_table,
866 (sizeof (struct cse_reg_info)
867 * new_size));
868 cse_reg_info_table_size = new_size;
871 /* Do we have all of the first NREGS entries initialized? */
872 if (cse_reg_info_table_first_uninitialized < nregs)
874 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
875 unsigned int i;
877 /* Put the old timestamp on newly allocated entries so that they
878 will all be considered out of date. We do not touch those
879 entries beyond the first NREGS entries to be nice to the
880 virtual memory. */
881 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
882 cse_reg_info_table[i].timestamp = old_timestamp;
884 cse_reg_info_table_first_uninitialized = nregs;
888 /* Given REGNO, ensure that a cse_reg_info entry exists for REGNO by
889 growing the cse_reg_info_table and/or initializing the entry for
890 REGNO. */
892 static void
893 get_cse_reg_info_1 (unsigned int regno)
895 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
896 entry will be considered to have been initialized. */
897 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
899 /* Initialize the rest of the entry. */
900 cse_reg_info_table[regno].reg_tick = 1;
901 cse_reg_info_table[regno].reg_in_table = -1;
902 cse_reg_info_table[regno].subreg_ticked = -1;
903 cse_reg_info_table[regno].reg_qty = -regno - 1;
906 /* Find a cse_reg_info entry for REGNO. */
908 static inline struct cse_reg_info *
909 get_cse_reg_info (unsigned int regno)
911 struct cse_reg_info *p = &cse_reg_info_table[regno];
913 /* If this entry has not been initialized, go ahead and initialize
914 it. */
915 if (p->timestamp != cse_reg_info_timestamp)
916 get_cse_reg_info_1 (regno);
918 return p;
921 /* Clear the hash table and initialize each register with its own quantity,
922 for a new basic block. */
924 static void
925 new_basic_block (void)
927 int i;
929 next_qty = 0;
931 /* Invalidate cse_reg_info_table and its cache. */
932 cse_reg_info_timestamp++;
934 /* Clear out hash table state for this pass. */
935 CLEAR_HARD_REG_SET (hard_regs_in_table);
937 /* The per-quantity values used to be initialized here, but it is
938 much faster to initialize each as it is made in `make_new_qty'. */
940 for (i = 0; i < HASH_SIZE; i++)
942 struct table_elt *first;
944 first = table[i];
945 if (first != NULL)
947 struct table_elt *last = first;
949 table[i] = NULL;
951 while (last->next_same_hash != NULL)
952 last = last->next_same_hash;
954 /* Now relink this hash entire chain into
955 the free element list. */
957 last->next_same_hash = free_element_chain;
958 free_element_chain = first;
962 #ifdef HAVE_cc0
963 prev_insn = 0;
964 prev_insn_cc0 = 0;
965 #endif
968 /* Say that register REG contains a quantity in mode MODE not in any
969 register before and initialize that quantity. */
971 static void
972 make_new_qty (unsigned int reg, enum machine_mode mode)
974 int q;
975 struct qty_table_elem *ent;
976 struct reg_eqv_elem *eqv;
978 gcc_assert (next_qty < max_qty);
980 q = REG_QTY (reg) = next_qty++;
981 ent = &qty_table[q];
982 ent->first_reg = reg;
983 ent->last_reg = reg;
984 ent->mode = mode;
985 ent->const_rtx = ent->const_insn = NULL_RTX;
986 ent->comparison_code = UNKNOWN;
988 eqv = &reg_eqv_table[reg];
989 eqv->next = eqv->prev = -1;
992 /* Make reg NEW equivalent to reg OLD.
993 OLD is not changing; NEW is. */
995 static void
996 make_regs_eqv (unsigned int new, unsigned int old)
998 unsigned int lastr, firstr;
999 int q = REG_QTY (old);
1000 struct qty_table_elem *ent;
1002 ent = &qty_table[q];
1004 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1005 gcc_assert (REGNO_QTY_VALID_P (old));
1007 REG_QTY (new) = q;
1008 firstr = ent->first_reg;
1009 lastr = ent->last_reg;
1011 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1012 hard regs. Among pseudos, if NEW will live longer than any other reg
1013 of the same qty, and that is beyond the current basic block,
1014 make it the new canonical replacement for this qty. */
1015 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1016 /* Certain fixed registers might be of the class NO_REGS. This means
1017 that not only can they not be allocated by the compiler, but
1018 they cannot be used in substitutions or canonicalizations
1019 either. */
1020 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1021 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1022 || (new >= FIRST_PSEUDO_REGISTER
1023 && (firstr < FIRST_PSEUDO_REGISTER
1024 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1025 || (uid_cuid[REGNO_FIRST_UID (new)]
1026 < cse_basic_block_start))
1027 && (uid_cuid[REGNO_LAST_UID (new)]
1028 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1030 reg_eqv_table[firstr].prev = new;
1031 reg_eqv_table[new].next = firstr;
1032 reg_eqv_table[new].prev = -1;
1033 ent->first_reg = new;
1035 else
1037 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1038 Otherwise, insert before any non-fixed hard regs that are at the
1039 end. Registers of class NO_REGS cannot be used as an
1040 equivalent for anything. */
1041 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1042 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1043 && new >= FIRST_PSEUDO_REGISTER)
1044 lastr = reg_eqv_table[lastr].prev;
1045 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1046 if (reg_eqv_table[lastr].next >= 0)
1047 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1048 else
1049 qty_table[q].last_reg = new;
1050 reg_eqv_table[lastr].next = new;
1051 reg_eqv_table[new].prev = lastr;
1055 /* Remove REG from its equivalence class. */
1057 static void
1058 delete_reg_equiv (unsigned int reg)
1060 struct qty_table_elem *ent;
1061 int q = REG_QTY (reg);
1062 int p, n;
1064 /* If invalid, do nothing. */
1065 if (! REGNO_QTY_VALID_P (reg))
1066 return;
1068 ent = &qty_table[q];
1070 p = reg_eqv_table[reg].prev;
1071 n = reg_eqv_table[reg].next;
1073 if (n != -1)
1074 reg_eqv_table[n].prev = p;
1075 else
1076 ent->last_reg = p;
1077 if (p != -1)
1078 reg_eqv_table[p].next = n;
1079 else
1080 ent->first_reg = n;
1082 REG_QTY (reg) = -reg - 1;
1085 /* Remove any invalid expressions from the hash table
1086 that refer to any of the registers contained in expression X.
1088 Make sure that newly inserted references to those registers
1089 as subexpressions will be considered valid.
1091 mention_regs is not called when a register itself
1092 is being stored in the table.
1094 Return 1 if we have done something that may have changed the hash code
1095 of X. */
1097 static int
1098 mention_regs (rtx x)
1100 enum rtx_code code;
1101 int i, j;
1102 const char *fmt;
1103 int changed = 0;
1105 if (x == 0)
1106 return 0;
1108 code = GET_CODE (x);
1109 if (code == REG)
1111 unsigned int regno = REGNO (x);
1112 unsigned int endregno
1113 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1114 : hard_regno_nregs[regno][GET_MODE (x)]);
1115 unsigned int i;
1117 for (i = regno; i < endregno; i++)
1119 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1120 remove_invalid_refs (i);
1122 REG_IN_TABLE (i) = REG_TICK (i);
1123 SUBREG_TICKED (i) = -1;
1126 return 0;
1129 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1130 pseudo if they don't use overlapping words. We handle only pseudos
1131 here for simplicity. */
1132 if (code == SUBREG && REG_P (SUBREG_REG (x))
1133 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1135 unsigned int i = REGNO (SUBREG_REG (x));
1137 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1139 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1140 the last store to this register really stored into this
1141 subreg, then remove the memory of this subreg.
1142 Otherwise, remove any memory of the entire register and
1143 all its subregs from the table. */
1144 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1145 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1146 remove_invalid_refs (i);
1147 else
1148 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1151 REG_IN_TABLE (i) = REG_TICK (i);
1152 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1153 return 0;
1156 /* If X is a comparison or a COMPARE and either operand is a register
1157 that does not have a quantity, give it one. This is so that a later
1158 call to record_jump_equiv won't cause X to be assigned a different
1159 hash code and not found in the table after that call.
1161 It is not necessary to do this here, since rehash_using_reg can
1162 fix up the table later, but doing this here eliminates the need to
1163 call that expensive function in the most common case where the only
1164 use of the register is in the comparison. */
1166 if (code == COMPARE || COMPARISON_P (x))
1168 if (REG_P (XEXP (x, 0))
1169 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1170 if (insert_regs (XEXP (x, 0), NULL, 0))
1172 rehash_using_reg (XEXP (x, 0));
1173 changed = 1;
1176 if (REG_P (XEXP (x, 1))
1177 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1178 if (insert_regs (XEXP (x, 1), NULL, 0))
1180 rehash_using_reg (XEXP (x, 1));
1181 changed = 1;
1185 fmt = GET_RTX_FORMAT (code);
1186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1187 if (fmt[i] == 'e')
1188 changed |= mention_regs (XEXP (x, i));
1189 else if (fmt[i] == 'E')
1190 for (j = 0; j < XVECLEN (x, i); j++)
1191 changed |= mention_regs (XVECEXP (x, i, j));
1193 return changed;
1196 /* Update the register quantities for inserting X into the hash table
1197 with a value equivalent to CLASSP.
1198 (If the class does not contain a REG, it is irrelevant.)
1199 If MODIFIED is nonzero, X is a destination; it is being modified.
1200 Note that delete_reg_equiv should be called on a register
1201 before insert_regs is done on that register with MODIFIED != 0.
1203 Nonzero value means that elements of reg_qty have changed
1204 so X's hash code may be different. */
1206 static int
1207 insert_regs (rtx x, struct table_elt *classp, int modified)
1209 if (REG_P (x))
1211 unsigned int regno = REGNO (x);
1212 int qty_valid;
1214 /* If REGNO is in the equivalence table already but is of the
1215 wrong mode for that equivalence, don't do anything here. */
1217 qty_valid = REGNO_QTY_VALID_P (regno);
1218 if (qty_valid)
1220 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1222 if (ent->mode != GET_MODE (x))
1223 return 0;
1226 if (modified || ! qty_valid)
1228 if (classp)
1229 for (classp = classp->first_same_value;
1230 classp != 0;
1231 classp = classp->next_same_value)
1232 if (REG_P (classp->exp)
1233 && GET_MODE (classp->exp) == GET_MODE (x))
1235 make_regs_eqv (regno, REGNO (classp->exp));
1236 return 1;
1239 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1240 than REG_IN_TABLE to find out if there was only a single preceding
1241 invalidation - for the SUBREG - or another one, which would be
1242 for the full register. However, if we find here that REG_TICK
1243 indicates that the register is invalid, it means that it has
1244 been invalidated in a separate operation. The SUBREG might be used
1245 now (then this is a recursive call), or we might use the full REG
1246 now and a SUBREG of it later. So bump up REG_TICK so that
1247 mention_regs will do the right thing. */
1248 if (! modified
1249 && REG_IN_TABLE (regno) >= 0
1250 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1251 REG_TICK (regno)++;
1252 make_new_qty (regno, GET_MODE (x));
1253 return 1;
1256 return 0;
1259 /* If X is a SUBREG, we will likely be inserting the inner register in the
1260 table. If that register doesn't have an assigned quantity number at
1261 this point but does later, the insertion that we will be doing now will
1262 not be accessible because its hash code will have changed. So assign
1263 a quantity number now. */
1265 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1266 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1268 insert_regs (SUBREG_REG (x), NULL, 0);
1269 mention_regs (x);
1270 return 1;
1272 else
1273 return mention_regs (x);
1276 /* Look in or update the hash table. */
1278 /* Remove table element ELT from use in the table.
1279 HASH is its hash code, made using the HASH macro.
1280 It's an argument because often that is known in advance
1281 and we save much time not recomputing it. */
1283 static void
1284 remove_from_table (struct table_elt *elt, unsigned int hash)
1286 if (elt == 0)
1287 return;
1289 /* Mark this element as removed. See cse_insn. */
1290 elt->first_same_value = 0;
1292 /* Remove the table element from its equivalence class. */
1295 struct table_elt *prev = elt->prev_same_value;
1296 struct table_elt *next = elt->next_same_value;
1298 if (next)
1299 next->prev_same_value = prev;
1301 if (prev)
1302 prev->next_same_value = next;
1303 else
1305 struct table_elt *newfirst = next;
1306 while (next)
1308 next->first_same_value = newfirst;
1309 next = next->next_same_value;
1314 /* Remove the table element from its hash bucket. */
1317 struct table_elt *prev = elt->prev_same_hash;
1318 struct table_elt *next = elt->next_same_hash;
1320 if (next)
1321 next->prev_same_hash = prev;
1323 if (prev)
1324 prev->next_same_hash = next;
1325 else if (table[hash] == elt)
1326 table[hash] = next;
1327 else
1329 /* This entry is not in the proper hash bucket. This can happen
1330 when two classes were merged by `merge_equiv_classes'. Search
1331 for the hash bucket that it heads. This happens only very
1332 rarely, so the cost is acceptable. */
1333 for (hash = 0; hash < HASH_SIZE; hash++)
1334 if (table[hash] == elt)
1335 table[hash] = next;
1339 /* Remove the table element from its related-value circular chain. */
1341 if (elt->related_value != 0 && elt->related_value != elt)
1343 struct table_elt *p = elt->related_value;
1345 while (p->related_value != elt)
1346 p = p->related_value;
1347 p->related_value = elt->related_value;
1348 if (p->related_value == p)
1349 p->related_value = 0;
1352 /* Now add it to the free element chain. */
1353 elt->next_same_hash = free_element_chain;
1354 free_element_chain = elt;
1357 /* Look up X in the hash table and return its table element,
1358 or 0 if X is not in the table.
1360 MODE is the machine-mode of X, or if X is an integer constant
1361 with VOIDmode then MODE is the mode with which X will be used.
1363 Here we are satisfied to find an expression whose tree structure
1364 looks like X. */
1366 static struct table_elt *
1367 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1369 struct table_elt *p;
1371 for (p = table[hash]; p; p = p->next_same_hash)
1372 if (mode == p->mode && ((x == p->exp && REG_P (x))
1373 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1374 return p;
1376 return 0;
1379 /* Like `lookup' but don't care whether the table element uses invalid regs.
1380 Also ignore discrepancies in the machine mode of a register. */
1382 static struct table_elt *
1383 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1385 struct table_elt *p;
1387 if (REG_P (x))
1389 unsigned int regno = REGNO (x);
1391 /* Don't check the machine mode when comparing registers;
1392 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1393 for (p = table[hash]; p; p = p->next_same_hash)
1394 if (REG_P (p->exp)
1395 && REGNO (p->exp) == regno)
1396 return p;
1398 else
1400 for (p = table[hash]; p; p = p->next_same_hash)
1401 if (mode == p->mode
1402 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1403 return p;
1406 return 0;
1409 /* Look for an expression equivalent to X and with code CODE.
1410 If one is found, return that expression. */
1412 static rtx
1413 lookup_as_function (rtx x, enum rtx_code code)
1415 struct table_elt *p
1416 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1418 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1419 long as we are narrowing. So if we looked in vain for a mode narrower
1420 than word_mode before, look for word_mode now. */
1421 if (p == 0 && code == CONST_INT
1422 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1424 x = copy_rtx (x);
1425 PUT_MODE (x, word_mode);
1426 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1429 if (p == 0)
1430 return 0;
1432 for (p = p->first_same_value; p; p = p->next_same_value)
1433 if (GET_CODE (p->exp) == code
1434 /* Make sure this is a valid entry in the table. */
1435 && exp_equiv_p (p->exp, p->exp, 1, false))
1436 return p->exp;
1438 return 0;
1441 /* Insert X in the hash table, assuming HASH is its hash code
1442 and CLASSP is an element of the class it should go in
1443 (or 0 if a new class should be made).
1444 It is inserted at the proper position to keep the class in
1445 the order cheapest first.
1447 MODE is the machine-mode of X, or if X is an integer constant
1448 with VOIDmode then MODE is the mode with which X will be used.
1450 For elements of equal cheapness, the most recent one
1451 goes in front, except that the first element in the list
1452 remains first unless a cheaper element is added. The order of
1453 pseudo-registers does not matter, as canon_reg will be called to
1454 find the cheapest when a register is retrieved from the table.
1456 The in_memory field in the hash table element is set to 0.
1457 The caller must set it nonzero if appropriate.
1459 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1460 and if insert_regs returns a nonzero value
1461 you must then recompute its hash code before calling here.
1463 If necessary, update table showing constant values of quantities. */
1465 #define CHEAPER(X, Y) \
1466 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1468 static struct table_elt *
1469 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1471 struct table_elt *elt;
1473 /* If X is a register and we haven't made a quantity for it,
1474 something is wrong. */
1475 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1477 /* If X is a hard register, show it is being put in the table. */
1478 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1480 unsigned int regno = REGNO (x);
1481 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1482 unsigned int i;
1484 for (i = regno; i < endregno; i++)
1485 SET_HARD_REG_BIT (hard_regs_in_table, i);
1488 /* Put an element for X into the right hash bucket. */
1490 elt = free_element_chain;
1491 if (elt)
1492 free_element_chain = elt->next_same_hash;
1493 else
1494 elt = xmalloc (sizeof (struct table_elt));
1496 elt->exp = x;
1497 elt->canon_exp = NULL_RTX;
1498 elt->cost = COST (x);
1499 elt->regcost = approx_reg_cost (x);
1500 elt->next_same_value = 0;
1501 elt->prev_same_value = 0;
1502 elt->next_same_hash = table[hash];
1503 elt->prev_same_hash = 0;
1504 elt->related_value = 0;
1505 elt->in_memory = 0;
1506 elt->mode = mode;
1507 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1509 if (table[hash])
1510 table[hash]->prev_same_hash = elt;
1511 table[hash] = elt;
1513 /* Put it into the proper value-class. */
1514 if (classp)
1516 classp = classp->first_same_value;
1517 if (CHEAPER (elt, classp))
1518 /* Insert at the head of the class. */
1520 struct table_elt *p;
1521 elt->next_same_value = classp;
1522 classp->prev_same_value = elt;
1523 elt->first_same_value = elt;
1525 for (p = classp; p; p = p->next_same_value)
1526 p->first_same_value = elt;
1528 else
1530 /* Insert not at head of the class. */
1531 /* Put it after the last element cheaper than X. */
1532 struct table_elt *p, *next;
1534 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1535 p = next);
1537 /* Put it after P and before NEXT. */
1538 elt->next_same_value = next;
1539 if (next)
1540 next->prev_same_value = elt;
1542 elt->prev_same_value = p;
1543 p->next_same_value = elt;
1544 elt->first_same_value = classp;
1547 else
1548 elt->first_same_value = elt;
1550 /* If this is a constant being set equivalent to a register or a register
1551 being set equivalent to a constant, note the constant equivalence.
1553 If this is a constant, it cannot be equivalent to a different constant,
1554 and a constant is the only thing that can be cheaper than a register. So
1555 we know the register is the head of the class (before the constant was
1556 inserted).
1558 If this is a register that is not already known equivalent to a
1559 constant, we must check the entire class.
1561 If this is a register that is already known equivalent to an insn,
1562 update the qtys `const_insn' to show that `this_insn' is the latest
1563 insn making that quantity equivalent to the constant. */
1565 if (elt->is_const && classp && REG_P (classp->exp)
1566 && !REG_P (x))
1568 int exp_q = REG_QTY (REGNO (classp->exp));
1569 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1571 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1572 exp_ent->const_insn = this_insn;
1575 else if (REG_P (x)
1576 && classp
1577 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1578 && ! elt->is_const)
1580 struct table_elt *p;
1582 for (p = classp; p != 0; p = p->next_same_value)
1584 if (p->is_const && !REG_P (p->exp))
1586 int x_q = REG_QTY (REGNO (x));
1587 struct qty_table_elem *x_ent = &qty_table[x_q];
1589 x_ent->const_rtx
1590 = gen_lowpart (GET_MODE (x), p->exp);
1591 x_ent->const_insn = this_insn;
1592 break;
1597 else if (REG_P (x)
1598 && qty_table[REG_QTY (REGNO (x))].const_rtx
1599 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1600 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1602 /* If this is a constant with symbolic value,
1603 and it has a term with an explicit integer value,
1604 link it up with related expressions. */
1605 if (GET_CODE (x) == CONST)
1607 rtx subexp = get_related_value (x);
1608 unsigned subhash;
1609 struct table_elt *subelt, *subelt_prev;
1611 if (subexp != 0)
1613 /* Get the integer-free subexpression in the hash table. */
1614 subhash = SAFE_HASH (subexp, mode);
1615 subelt = lookup (subexp, subhash, mode);
1616 if (subelt == 0)
1617 subelt = insert (subexp, NULL, subhash, mode);
1618 /* Initialize SUBELT's circular chain if it has none. */
1619 if (subelt->related_value == 0)
1620 subelt->related_value = subelt;
1621 /* Find the element in the circular chain that precedes SUBELT. */
1622 subelt_prev = subelt;
1623 while (subelt_prev->related_value != subelt)
1624 subelt_prev = subelt_prev->related_value;
1625 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1626 This way the element that follows SUBELT is the oldest one. */
1627 elt->related_value = subelt_prev->related_value;
1628 subelt_prev->related_value = elt;
1632 return elt;
1635 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1636 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1637 the two classes equivalent.
1639 CLASS1 will be the surviving class; CLASS2 should not be used after this
1640 call.
1642 Any invalid entries in CLASS2 will not be copied. */
1644 static void
1645 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1647 struct table_elt *elt, *next, *new;
1649 /* Ensure we start with the head of the classes. */
1650 class1 = class1->first_same_value;
1651 class2 = class2->first_same_value;
1653 /* If they were already equal, forget it. */
1654 if (class1 == class2)
1655 return;
1657 for (elt = class2; elt; elt = next)
1659 unsigned int hash;
1660 rtx exp = elt->exp;
1661 enum machine_mode mode = elt->mode;
1663 next = elt->next_same_value;
1665 /* Remove old entry, make a new one in CLASS1's class.
1666 Don't do this for invalid entries as we cannot find their
1667 hash code (it also isn't necessary). */
1668 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1670 bool need_rehash = false;
1672 hash_arg_in_memory = 0;
1673 hash = HASH (exp, mode);
1675 if (REG_P (exp))
1677 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1678 delete_reg_equiv (REGNO (exp));
1681 remove_from_table (elt, hash);
1683 if (insert_regs (exp, class1, 0) || need_rehash)
1685 rehash_using_reg (exp);
1686 hash = HASH (exp, mode);
1688 new = insert (exp, class1, hash, mode);
1689 new->in_memory = hash_arg_in_memory;
1694 /* Flush the entire hash table. */
1696 static void
1697 flush_hash_table (void)
1699 int i;
1700 struct table_elt *p;
1702 for (i = 0; i < HASH_SIZE; i++)
1703 for (p = table[i]; p; p = table[i])
1705 /* Note that invalidate can remove elements
1706 after P in the current hash chain. */
1707 if (REG_P (p->exp))
1708 invalidate (p->exp, p->mode);
1709 else
1710 remove_from_table (p, i);
1714 /* Function called for each rtx to check whether true dependence exist. */
1715 struct check_dependence_data
1717 enum machine_mode mode;
1718 rtx exp;
1719 rtx addr;
1722 static int
1723 check_dependence (rtx *x, void *data)
1725 struct check_dependence_data *d = (struct check_dependence_data *) data;
1726 if (*x && MEM_P (*x))
1727 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1728 cse_rtx_varies_p);
1729 else
1730 return 0;
1733 /* Remove from the hash table, or mark as invalid, all expressions whose
1734 values could be altered by storing in X. X is a register, a subreg, or
1735 a memory reference with nonvarying address (because, when a memory
1736 reference with a varying address is stored in, all memory references are
1737 removed by invalidate_memory so specific invalidation is superfluous).
1738 FULL_MODE, if not VOIDmode, indicates that this much should be
1739 invalidated instead of just the amount indicated by the mode of X. This
1740 is only used for bitfield stores into memory.
1742 A nonvarying address may be just a register or just a symbol reference,
1743 or it may be either of those plus a numeric offset. */
1745 static void
1746 invalidate (rtx x, enum machine_mode full_mode)
1748 int i;
1749 struct table_elt *p;
1750 rtx addr;
1752 switch (GET_CODE (x))
1754 case REG:
1756 /* If X is a register, dependencies on its contents are recorded
1757 through the qty number mechanism. Just change the qty number of
1758 the register, mark it as invalid for expressions that refer to it,
1759 and remove it itself. */
1760 unsigned int regno = REGNO (x);
1761 unsigned int hash = HASH (x, GET_MODE (x));
1763 /* Remove REGNO from any quantity list it might be on and indicate
1764 that its value might have changed. If it is a pseudo, remove its
1765 entry from the hash table.
1767 For a hard register, we do the first two actions above for any
1768 additional hard registers corresponding to X. Then, if any of these
1769 registers are in the table, we must remove any REG entries that
1770 overlap these registers. */
1772 delete_reg_equiv (regno);
1773 REG_TICK (regno)++;
1774 SUBREG_TICKED (regno) = -1;
1776 if (regno >= FIRST_PSEUDO_REGISTER)
1778 /* Because a register can be referenced in more than one mode,
1779 we might have to remove more than one table entry. */
1780 struct table_elt *elt;
1782 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1783 remove_from_table (elt, hash);
1785 else
1787 HOST_WIDE_INT in_table
1788 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1789 unsigned int endregno
1790 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1791 unsigned int tregno, tendregno, rn;
1792 struct table_elt *p, *next;
1794 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1796 for (rn = regno + 1; rn < endregno; rn++)
1798 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1799 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1800 delete_reg_equiv (rn);
1801 REG_TICK (rn)++;
1802 SUBREG_TICKED (rn) = -1;
1805 if (in_table)
1806 for (hash = 0; hash < HASH_SIZE; hash++)
1807 for (p = table[hash]; p; p = next)
1809 next = p->next_same_hash;
1811 if (!REG_P (p->exp)
1812 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1813 continue;
1815 tregno = REGNO (p->exp);
1816 tendregno
1817 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1818 if (tendregno > regno && tregno < endregno)
1819 remove_from_table (p, hash);
1823 return;
1825 case SUBREG:
1826 invalidate (SUBREG_REG (x), VOIDmode);
1827 return;
1829 case PARALLEL:
1830 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1831 invalidate (XVECEXP (x, 0, i), VOIDmode);
1832 return;
1834 case EXPR_LIST:
1835 /* This is part of a disjoint return value; extract the location in
1836 question ignoring the offset. */
1837 invalidate (XEXP (x, 0), VOIDmode);
1838 return;
1840 case MEM:
1841 addr = canon_rtx (get_addr (XEXP (x, 0)));
1842 /* Calculate the canonical version of X here so that
1843 true_dependence doesn't generate new RTL for X on each call. */
1844 x = canon_rtx (x);
1846 /* Remove all hash table elements that refer to overlapping pieces of
1847 memory. */
1848 if (full_mode == VOIDmode)
1849 full_mode = GET_MODE (x);
1851 for (i = 0; i < HASH_SIZE; i++)
1853 struct table_elt *next;
1855 for (p = table[i]; p; p = next)
1857 next = p->next_same_hash;
1858 if (p->in_memory)
1860 struct check_dependence_data d;
1862 /* Just canonicalize the expression once;
1863 otherwise each time we call invalidate
1864 true_dependence will canonicalize the
1865 expression again. */
1866 if (!p->canon_exp)
1867 p->canon_exp = canon_rtx (p->exp);
1868 d.exp = x;
1869 d.addr = addr;
1870 d.mode = full_mode;
1871 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1872 remove_from_table (p, i);
1876 return;
1878 default:
1879 gcc_unreachable ();
1883 /* Remove all expressions that refer to register REGNO,
1884 since they are already invalid, and we are about to
1885 mark that register valid again and don't want the old
1886 expressions to reappear as valid. */
1888 static void
1889 remove_invalid_refs (unsigned int regno)
1891 unsigned int i;
1892 struct table_elt *p, *next;
1894 for (i = 0; i < HASH_SIZE; i++)
1895 for (p = table[i]; p; p = next)
1897 next = p->next_same_hash;
1898 if (!REG_P (p->exp)
1899 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1900 remove_from_table (p, i);
1904 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1905 and mode MODE. */
1906 static void
1907 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1908 enum machine_mode mode)
1910 unsigned int i;
1911 struct table_elt *p, *next;
1912 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1914 for (i = 0; i < HASH_SIZE; i++)
1915 for (p = table[i]; p; p = next)
1917 rtx exp = p->exp;
1918 next = p->next_same_hash;
1920 if (!REG_P (exp)
1921 && (GET_CODE (exp) != SUBREG
1922 || !REG_P (SUBREG_REG (exp))
1923 || REGNO (SUBREG_REG (exp)) != regno
1924 || (((SUBREG_BYTE (exp)
1925 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1926 && SUBREG_BYTE (exp) <= end))
1927 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1928 remove_from_table (p, i);
1932 /* Recompute the hash codes of any valid entries in the hash table that
1933 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1935 This is called when we make a jump equivalence. */
1937 static void
1938 rehash_using_reg (rtx x)
1940 unsigned int i;
1941 struct table_elt *p, *next;
1942 unsigned hash;
1944 if (GET_CODE (x) == SUBREG)
1945 x = SUBREG_REG (x);
1947 /* If X is not a register or if the register is known not to be in any
1948 valid entries in the table, we have no work to do. */
1950 if (!REG_P (x)
1951 || REG_IN_TABLE (REGNO (x)) < 0
1952 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1953 return;
1955 /* Scan all hash chains looking for valid entries that mention X.
1956 If we find one and it is in the wrong hash chain, move it. */
1958 for (i = 0; i < HASH_SIZE; i++)
1959 for (p = table[i]; p; p = next)
1961 next = p->next_same_hash;
1962 if (reg_mentioned_p (x, p->exp)
1963 && exp_equiv_p (p->exp, p->exp, 1, false)
1964 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1966 if (p->next_same_hash)
1967 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1969 if (p->prev_same_hash)
1970 p->prev_same_hash->next_same_hash = p->next_same_hash;
1971 else
1972 table[i] = p->next_same_hash;
1974 p->next_same_hash = table[hash];
1975 p->prev_same_hash = 0;
1976 if (table[hash])
1977 table[hash]->prev_same_hash = p;
1978 table[hash] = p;
1983 /* Remove from the hash table any expression that is a call-clobbered
1984 register. Also update their TICK values. */
1986 static void
1987 invalidate_for_call (void)
1989 unsigned int regno, endregno;
1990 unsigned int i;
1991 unsigned hash;
1992 struct table_elt *p, *next;
1993 int in_table = 0;
1995 /* Go through all the hard registers. For each that is clobbered in
1996 a CALL_INSN, remove the register from quantity chains and update
1997 reg_tick if defined. Also see if any of these registers is currently
1998 in the table. */
2000 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2001 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2003 delete_reg_equiv (regno);
2004 if (REG_TICK (regno) >= 0)
2006 REG_TICK (regno)++;
2007 SUBREG_TICKED (regno) = -1;
2010 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2013 /* In the case where we have no call-clobbered hard registers in the
2014 table, we are done. Otherwise, scan the table and remove any
2015 entry that overlaps a call-clobbered register. */
2017 if (in_table)
2018 for (hash = 0; hash < HASH_SIZE; hash++)
2019 for (p = table[hash]; p; p = next)
2021 next = p->next_same_hash;
2023 if (!REG_P (p->exp)
2024 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2025 continue;
2027 regno = REGNO (p->exp);
2028 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2030 for (i = regno; i < endregno; i++)
2031 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2033 remove_from_table (p, hash);
2034 break;
2039 /* Given an expression X of type CONST,
2040 and ELT which is its table entry (or 0 if it
2041 is not in the hash table),
2042 return an alternate expression for X as a register plus integer.
2043 If none can be found, return 0. */
2045 static rtx
2046 use_related_value (rtx x, struct table_elt *elt)
2048 struct table_elt *relt = 0;
2049 struct table_elt *p, *q;
2050 HOST_WIDE_INT offset;
2052 /* First, is there anything related known?
2053 If we have a table element, we can tell from that.
2054 Otherwise, must look it up. */
2056 if (elt != 0 && elt->related_value != 0)
2057 relt = elt;
2058 else if (elt == 0 && GET_CODE (x) == CONST)
2060 rtx subexp = get_related_value (x);
2061 if (subexp != 0)
2062 relt = lookup (subexp,
2063 SAFE_HASH (subexp, GET_MODE (subexp)),
2064 GET_MODE (subexp));
2067 if (relt == 0)
2068 return 0;
2070 /* Search all related table entries for one that has an
2071 equivalent register. */
2073 p = relt;
2074 while (1)
2076 /* This loop is strange in that it is executed in two different cases.
2077 The first is when X is already in the table. Then it is searching
2078 the RELATED_VALUE list of X's class (RELT). The second case is when
2079 X is not in the table. Then RELT points to a class for the related
2080 value.
2082 Ensure that, whatever case we are in, that we ignore classes that have
2083 the same value as X. */
2085 if (rtx_equal_p (x, p->exp))
2086 q = 0;
2087 else
2088 for (q = p->first_same_value; q; q = q->next_same_value)
2089 if (REG_P (q->exp))
2090 break;
2092 if (q)
2093 break;
2095 p = p->related_value;
2097 /* We went all the way around, so there is nothing to be found.
2098 Alternatively, perhaps RELT was in the table for some other reason
2099 and it has no related values recorded. */
2100 if (p == relt || p == 0)
2101 break;
2104 if (q == 0)
2105 return 0;
2107 offset = (get_integer_term (x) - get_integer_term (p->exp));
2108 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2109 return plus_constant (q->exp, offset);
2112 /* Hash a string. Just add its bytes up. */
2113 static inline unsigned
2114 hash_rtx_string (const char *ps)
2116 unsigned hash = 0;
2117 const unsigned char *p = (const unsigned char *) ps;
2119 if (p)
2120 while (*p)
2121 hash += *p++;
2123 return hash;
2126 /* Hash an rtx. We are careful to make sure the value is never negative.
2127 Equivalent registers hash identically.
2128 MODE is used in hashing for CONST_INTs only;
2129 otherwise the mode of X is used.
2131 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2133 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2134 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2136 Note that cse_insn knows that the hash code of a MEM expression
2137 is just (int) MEM plus the hash code of the address. */
2139 unsigned
2140 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2141 int *hash_arg_in_memory_p, bool have_reg_qty)
2143 int i, j;
2144 unsigned hash = 0;
2145 enum rtx_code code;
2146 const char *fmt;
2148 /* Used to turn recursion into iteration. We can't rely on GCC's
2149 tail-recursion elimination since we need to keep accumulating values
2150 in HASH. */
2151 repeat:
2152 if (x == 0)
2153 return hash;
2155 code = GET_CODE (x);
2156 switch (code)
2158 case REG:
2160 unsigned int regno = REGNO (x);
2162 if (!reload_completed)
2164 /* On some machines, we can't record any non-fixed hard register,
2165 because extending its life will cause reload problems. We
2166 consider ap, fp, sp, gp to be fixed for this purpose.
2168 We also consider CCmode registers to be fixed for this purpose;
2169 failure to do so leads to failure to simplify 0<100 type of
2170 conditionals.
2172 On all machines, we can't record any global registers.
2173 Nor should we record any register that is in a small
2174 class, as defined by CLASS_LIKELY_SPILLED_P. */
2175 bool record;
2177 if (regno >= FIRST_PSEUDO_REGISTER)
2178 record = true;
2179 else if (x == frame_pointer_rtx
2180 || x == hard_frame_pointer_rtx
2181 || x == arg_pointer_rtx
2182 || x == stack_pointer_rtx
2183 || x == pic_offset_table_rtx)
2184 record = true;
2185 else if (global_regs[regno])
2186 record = false;
2187 else if (fixed_regs[regno])
2188 record = true;
2189 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2190 record = true;
2191 else if (SMALL_REGISTER_CLASSES)
2192 record = false;
2193 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2194 record = false;
2195 else
2196 record = true;
2198 if (!record)
2200 *do_not_record_p = 1;
2201 return 0;
2205 hash += ((unsigned int) REG << 7);
2206 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2207 return hash;
2210 /* We handle SUBREG of a REG specially because the underlying
2211 reg changes its hash value with every value change; we don't
2212 want to have to forget unrelated subregs when one subreg changes. */
2213 case SUBREG:
2215 if (REG_P (SUBREG_REG (x)))
2217 hash += (((unsigned int) SUBREG << 7)
2218 + REGNO (SUBREG_REG (x))
2219 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2220 return hash;
2222 break;
2225 case CONST_INT:
2226 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2227 + (unsigned int) INTVAL (x));
2228 return hash;
2230 case CONST_DOUBLE:
2231 /* This is like the general case, except that it only counts
2232 the integers representing the constant. */
2233 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2234 if (GET_MODE (x) != VOIDmode)
2235 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2236 else
2237 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2238 + (unsigned int) CONST_DOUBLE_HIGH (x));
2239 return hash;
2241 case CONST_VECTOR:
2243 int units;
2244 rtx elt;
2246 units = CONST_VECTOR_NUNITS (x);
2248 for (i = 0; i < units; ++i)
2250 elt = CONST_VECTOR_ELT (x, i);
2251 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2252 hash_arg_in_memory_p, have_reg_qty);
2255 return hash;
2258 /* Assume there is only one rtx object for any given label. */
2259 case LABEL_REF:
2260 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2261 differences and differences between each stage's debugging dumps. */
2262 hash += (((unsigned int) LABEL_REF << 7)
2263 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2264 return hash;
2266 case SYMBOL_REF:
2268 /* Don't hash on the symbol's address to avoid bootstrap differences.
2269 Different hash values may cause expressions to be recorded in
2270 different orders and thus different registers to be used in the
2271 final assembler. This also avoids differences in the dump files
2272 between various stages. */
2273 unsigned int h = 0;
2274 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2276 while (*p)
2277 h += (h << 7) + *p++; /* ??? revisit */
2279 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2280 return hash;
2283 case MEM:
2284 /* We don't record if marked volatile or if BLKmode since we don't
2285 know the size of the move. */
2286 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2288 *do_not_record_p = 1;
2289 return 0;
2291 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2292 *hash_arg_in_memory_p = 1;
2294 /* Now that we have already found this special case,
2295 might as well speed it up as much as possible. */
2296 hash += (unsigned) MEM;
2297 x = XEXP (x, 0);
2298 goto repeat;
2300 case USE:
2301 /* A USE that mentions non-volatile memory needs special
2302 handling since the MEM may be BLKmode which normally
2303 prevents an entry from being made. Pure calls are
2304 marked by a USE which mentions BLKmode memory.
2305 See calls.c:emit_call_1. */
2306 if (MEM_P (XEXP (x, 0))
2307 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2309 hash += (unsigned) USE;
2310 x = XEXP (x, 0);
2312 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2313 *hash_arg_in_memory_p = 1;
2315 /* Now that we have already found this special case,
2316 might as well speed it up as much as possible. */
2317 hash += (unsigned) MEM;
2318 x = XEXP (x, 0);
2319 goto repeat;
2321 break;
2323 case PRE_DEC:
2324 case PRE_INC:
2325 case POST_DEC:
2326 case POST_INC:
2327 case PRE_MODIFY:
2328 case POST_MODIFY:
2329 case PC:
2330 case CC0:
2331 case CALL:
2332 case UNSPEC_VOLATILE:
2333 *do_not_record_p = 1;
2334 return 0;
2336 case ASM_OPERANDS:
2337 if (MEM_VOLATILE_P (x))
2339 *do_not_record_p = 1;
2340 return 0;
2342 else
2344 /* We don't want to take the filename and line into account. */
2345 hash += (unsigned) code + (unsigned) GET_MODE (x)
2346 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2347 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2348 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2350 if (ASM_OPERANDS_INPUT_LENGTH (x))
2352 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2354 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2355 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2356 do_not_record_p, hash_arg_in_memory_p,
2357 have_reg_qty)
2358 + hash_rtx_string
2359 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2362 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2363 x = ASM_OPERANDS_INPUT (x, 0);
2364 mode = GET_MODE (x);
2365 goto repeat;
2368 return hash;
2370 break;
2372 default:
2373 break;
2376 i = GET_RTX_LENGTH (code) - 1;
2377 hash += (unsigned) code + (unsigned) GET_MODE (x);
2378 fmt = GET_RTX_FORMAT (code);
2379 for (; i >= 0; i--)
2381 switch (fmt[i])
2383 case 'e':
2384 /* If we are about to do the last recursive call
2385 needed at this level, change it into iteration.
2386 This function is called enough to be worth it. */
2387 if (i == 0)
2389 x = XEXP (x, i);
2390 goto repeat;
2393 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2394 hash_arg_in_memory_p, have_reg_qty);
2395 break;
2397 case 'E':
2398 for (j = 0; j < XVECLEN (x, i); j++)
2399 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2400 hash_arg_in_memory_p, have_reg_qty);
2401 break;
2403 case 's':
2404 hash += hash_rtx_string (XSTR (x, i));
2405 break;
2407 case 'i':
2408 hash += (unsigned int) XINT (x, i);
2409 break;
2411 case '0': case 't':
2412 /* Unused. */
2413 break;
2415 default:
2416 gcc_unreachable ();
2420 return hash;
2423 /* Hash an rtx X for cse via hash_rtx.
2424 Stores 1 in do_not_record if any subexpression is volatile.
2425 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2426 does not have the RTX_UNCHANGING_P bit set. */
2428 static inline unsigned
2429 canon_hash (rtx x, enum machine_mode mode)
2431 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2434 /* Like canon_hash but with no side effects, i.e. do_not_record
2435 and hash_arg_in_memory are not changed. */
2437 static inline unsigned
2438 safe_hash (rtx x, enum machine_mode mode)
2440 int dummy_do_not_record;
2441 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2444 /* Return 1 iff X and Y would canonicalize into the same thing,
2445 without actually constructing the canonicalization of either one.
2446 If VALIDATE is nonzero,
2447 we assume X is an expression being processed from the rtl
2448 and Y was found in the hash table. We check register refs
2449 in Y for being marked as valid.
2451 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2454 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2456 int i, j;
2457 enum rtx_code code;
2458 const char *fmt;
2460 /* Note: it is incorrect to assume an expression is equivalent to itself
2461 if VALIDATE is nonzero. */
2462 if (x == y && !validate)
2463 return 1;
2465 if (x == 0 || y == 0)
2466 return x == y;
2468 code = GET_CODE (x);
2469 if (code != GET_CODE (y))
2470 return 0;
2472 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2473 if (GET_MODE (x) != GET_MODE (y))
2474 return 0;
2476 switch (code)
2478 case PC:
2479 case CC0:
2480 case CONST_INT:
2481 return x == y;
2483 case LABEL_REF:
2484 return XEXP (x, 0) == XEXP (y, 0);
2486 case SYMBOL_REF:
2487 return XSTR (x, 0) == XSTR (y, 0);
2489 case REG:
2490 if (for_gcse)
2491 return REGNO (x) == REGNO (y);
2492 else
2494 unsigned int regno = REGNO (y);
2495 unsigned int i;
2496 unsigned int endregno
2497 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2498 : hard_regno_nregs[regno][GET_MODE (y)]);
2500 /* If the quantities are not the same, the expressions are not
2501 equivalent. If there are and we are not to validate, they
2502 are equivalent. Otherwise, ensure all regs are up-to-date. */
2504 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2505 return 0;
2507 if (! validate)
2508 return 1;
2510 for (i = regno; i < endregno; i++)
2511 if (REG_IN_TABLE (i) != REG_TICK (i))
2512 return 0;
2514 return 1;
2517 case MEM:
2518 if (for_gcse)
2520 /* Can't merge two expressions in different alias sets, since we
2521 can decide that the expression is transparent in a block when
2522 it isn't, due to it being set with the different alias set. */
2523 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2524 return 0;
2526 /* A volatile mem should not be considered equivalent to any
2527 other. */
2528 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2529 return 0;
2531 break;
2533 /* For commutative operations, check both orders. */
2534 case PLUS:
2535 case MULT:
2536 case AND:
2537 case IOR:
2538 case XOR:
2539 case NE:
2540 case EQ:
2541 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2542 validate, for_gcse)
2543 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2544 validate, for_gcse))
2545 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2546 validate, for_gcse)
2547 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2548 validate, for_gcse)));
2550 case ASM_OPERANDS:
2551 /* We don't use the generic code below because we want to
2552 disregard filename and line numbers. */
2554 /* A volatile asm isn't equivalent to any other. */
2555 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2556 return 0;
2558 if (GET_MODE (x) != GET_MODE (y)
2559 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2560 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2561 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2562 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2563 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2564 return 0;
2566 if (ASM_OPERANDS_INPUT_LENGTH (x))
2568 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2569 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2570 ASM_OPERANDS_INPUT (y, i),
2571 validate, for_gcse)
2572 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2573 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2574 return 0;
2577 return 1;
2579 default:
2580 break;
2583 /* Compare the elements. If any pair of corresponding elements
2584 fail to match, return 0 for the whole thing. */
2586 fmt = GET_RTX_FORMAT (code);
2587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2589 switch (fmt[i])
2591 case 'e':
2592 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2593 validate, for_gcse))
2594 return 0;
2595 break;
2597 case 'E':
2598 if (XVECLEN (x, i) != XVECLEN (y, i))
2599 return 0;
2600 for (j = 0; j < XVECLEN (x, i); j++)
2601 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2602 validate, for_gcse))
2603 return 0;
2604 break;
2606 case 's':
2607 if (strcmp (XSTR (x, i), XSTR (y, i)))
2608 return 0;
2609 break;
2611 case 'i':
2612 if (XINT (x, i) != XINT (y, i))
2613 return 0;
2614 break;
2616 case 'w':
2617 if (XWINT (x, i) != XWINT (y, i))
2618 return 0;
2619 break;
2621 case '0':
2622 case 't':
2623 break;
2625 default:
2626 gcc_unreachable ();
2630 return 1;
2633 /* Return 1 if X has a value that can vary even between two
2634 executions of the program. 0 means X can be compared reliably
2635 against certain constants or near-constants. */
2637 static int
2638 cse_rtx_varies_p (rtx x, int from_alias)
2640 /* We need not check for X and the equivalence class being of the same
2641 mode because if X is equivalent to a constant in some mode, it
2642 doesn't vary in any mode. */
2644 if (REG_P (x)
2645 && REGNO_QTY_VALID_P (REGNO (x)))
2647 int x_q = REG_QTY (REGNO (x));
2648 struct qty_table_elem *x_ent = &qty_table[x_q];
2650 if (GET_MODE (x) == x_ent->mode
2651 && x_ent->const_rtx != NULL_RTX)
2652 return 0;
2655 if (GET_CODE (x) == PLUS
2656 && GET_CODE (XEXP (x, 1)) == CONST_INT
2657 && REG_P (XEXP (x, 0))
2658 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2660 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2661 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2663 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2664 && x0_ent->const_rtx != NULL_RTX)
2665 return 0;
2668 /* This can happen as the result of virtual register instantiation, if
2669 the initial constant is too large to be a valid address. This gives
2670 us a three instruction sequence, load large offset into a register,
2671 load fp minus a constant into a register, then a MEM which is the
2672 sum of the two `constant' registers. */
2673 if (GET_CODE (x) == PLUS
2674 && REG_P (XEXP (x, 0))
2675 && REG_P (XEXP (x, 1))
2676 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2677 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2679 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2680 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2681 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2682 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2684 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2685 && x0_ent->const_rtx != NULL_RTX
2686 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2687 && x1_ent->const_rtx != NULL_RTX)
2688 return 0;
2691 return rtx_varies_p (x, from_alias);
2694 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2695 the result if necessary. INSN is as for canon_reg. */
2697 static void
2698 validate_canon_reg (rtx *xloc, rtx insn)
2700 rtx new = canon_reg (*xloc, insn);
2701 int insn_code;
2703 /* If replacing pseudo with hard reg or vice versa, ensure the
2704 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2705 if (insn != 0 && new != 0
2706 && REG_P (new) && REG_P (*xloc)
2707 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2708 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2709 || GET_MODE (new) != GET_MODE (*xloc)
2710 || (insn_code = recog_memoized (insn)) < 0
2711 || insn_data[insn_code].n_dups > 0))
2712 validate_change (insn, xloc, new, 1);
2713 else
2714 *xloc = new;
2717 /* Canonicalize an expression:
2718 replace each register reference inside it
2719 with the "oldest" equivalent register.
2721 If INSN is nonzero and we are replacing a pseudo with a hard register
2722 or vice versa, validate_change is used to ensure that INSN remains valid
2723 after we make our substitution. The calls are made with IN_GROUP nonzero
2724 so apply_change_group must be called upon the outermost return from this
2725 function (unless INSN is zero). The result of apply_change_group can
2726 generally be discarded since the changes we are making are optional. */
2728 static rtx
2729 canon_reg (rtx x, rtx insn)
2731 int i;
2732 enum rtx_code code;
2733 const char *fmt;
2735 if (x == 0)
2736 return x;
2738 code = GET_CODE (x);
2739 switch (code)
2741 case PC:
2742 case CC0:
2743 case CONST:
2744 case CONST_INT:
2745 case CONST_DOUBLE:
2746 case CONST_VECTOR:
2747 case SYMBOL_REF:
2748 case LABEL_REF:
2749 case ADDR_VEC:
2750 case ADDR_DIFF_VEC:
2751 return x;
2753 case REG:
2755 int first;
2756 int q;
2757 struct qty_table_elem *ent;
2759 /* Never replace a hard reg, because hard regs can appear
2760 in more than one machine mode, and we must preserve the mode
2761 of each occurrence. Also, some hard regs appear in
2762 MEMs that are shared and mustn't be altered. Don't try to
2763 replace any reg that maps to a reg of class NO_REGS. */
2764 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2765 || ! REGNO_QTY_VALID_P (REGNO (x)))
2766 return x;
2768 q = REG_QTY (REGNO (x));
2769 ent = &qty_table[q];
2770 first = ent->first_reg;
2771 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2772 : REGNO_REG_CLASS (first) == NO_REGS ? x
2773 : gen_rtx_REG (ent->mode, first));
2776 default:
2777 break;
2780 fmt = GET_RTX_FORMAT (code);
2781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2783 int j;
2785 if (fmt[i] == 'e')
2786 validate_canon_reg (&XEXP (x, i), insn);
2787 else if (fmt[i] == 'E')
2788 for (j = 0; j < XVECLEN (x, i); j++)
2789 validate_canon_reg (&XVECEXP (x, i, j), insn);
2792 return x;
2795 /* LOC is a location within INSN that is an operand address (the contents of
2796 a MEM). Find the best equivalent address to use that is valid for this
2797 insn.
2799 On most CISC machines, complicated address modes are costly, and rtx_cost
2800 is a good approximation for that cost. However, most RISC machines have
2801 only a few (usually only one) memory reference formats. If an address is
2802 valid at all, it is often just as cheap as any other address. Hence, for
2803 RISC machines, we use `address_cost' to compare the costs of various
2804 addresses. For two addresses of equal cost, choose the one with the
2805 highest `rtx_cost' value as that has the potential of eliminating the
2806 most insns. For equal costs, we choose the first in the equivalence
2807 class. Note that we ignore the fact that pseudo registers are cheaper than
2808 hard registers here because we would also prefer the pseudo registers. */
2810 static void
2811 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2813 struct table_elt *elt;
2814 rtx addr = *loc;
2815 struct table_elt *p;
2816 int found_better = 1;
2817 int save_do_not_record = do_not_record;
2818 int save_hash_arg_in_memory = hash_arg_in_memory;
2819 int addr_volatile;
2820 int regno;
2821 unsigned hash;
2823 /* Do not try to replace constant addresses or addresses of local and
2824 argument slots. These MEM expressions are made only once and inserted
2825 in many instructions, as well as being used to control symbol table
2826 output. It is not safe to clobber them.
2828 There are some uncommon cases where the address is already in a register
2829 for some reason, but we cannot take advantage of that because we have
2830 no easy way to unshare the MEM. In addition, looking up all stack
2831 addresses is costly. */
2832 if ((GET_CODE (addr) == PLUS
2833 && REG_P (XEXP (addr, 0))
2834 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2835 && (regno = REGNO (XEXP (addr, 0)),
2836 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2837 || regno == ARG_POINTER_REGNUM))
2838 || (REG_P (addr)
2839 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2840 || regno == HARD_FRAME_POINTER_REGNUM
2841 || regno == ARG_POINTER_REGNUM))
2842 || CONSTANT_ADDRESS_P (addr))
2843 return;
2845 /* If this address is not simply a register, try to fold it. This will
2846 sometimes simplify the expression. Many simplifications
2847 will not be valid, but some, usually applying the associative rule, will
2848 be valid and produce better code. */
2849 if (!REG_P (addr))
2851 rtx folded = fold_rtx (addr, NULL_RTX);
2852 if (folded != addr)
2854 int addr_folded_cost = address_cost (folded, mode);
2855 int addr_cost = address_cost (addr, mode);
2857 if ((addr_folded_cost < addr_cost
2858 || (addr_folded_cost == addr_cost
2859 /* ??? The rtx_cost comparison is left over from an older
2860 version of this code. It is probably no longer helpful.*/
2861 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2862 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2863 && validate_change (insn, loc, folded, 0))
2864 addr = folded;
2868 /* If this address is not in the hash table, we can't look for equivalences
2869 of the whole address. Also, ignore if volatile. */
2871 do_not_record = 0;
2872 hash = HASH (addr, Pmode);
2873 addr_volatile = do_not_record;
2874 do_not_record = save_do_not_record;
2875 hash_arg_in_memory = save_hash_arg_in_memory;
2877 if (addr_volatile)
2878 return;
2880 elt = lookup (addr, hash, Pmode);
2882 if (elt)
2884 /* We need to find the best (under the criteria documented above) entry
2885 in the class that is valid. We use the `flag' field to indicate
2886 choices that were invalid and iterate until we can't find a better
2887 one that hasn't already been tried. */
2889 for (p = elt->first_same_value; p; p = p->next_same_value)
2890 p->flag = 0;
2892 while (found_better)
2894 int best_addr_cost = address_cost (*loc, mode);
2895 int best_rtx_cost = (elt->cost + 1) >> 1;
2896 int exp_cost;
2897 struct table_elt *best_elt = elt;
2899 found_better = 0;
2900 for (p = elt->first_same_value; p; p = p->next_same_value)
2901 if (! p->flag)
2903 if ((REG_P (p->exp)
2904 || exp_equiv_p (p->exp, p->exp, 1, false))
2905 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2906 || (exp_cost == best_addr_cost
2907 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2909 found_better = 1;
2910 best_addr_cost = exp_cost;
2911 best_rtx_cost = (p->cost + 1) >> 1;
2912 best_elt = p;
2916 if (found_better)
2918 if (validate_change (insn, loc,
2919 canon_reg (copy_rtx (best_elt->exp),
2920 NULL_RTX), 0))
2921 return;
2922 else
2923 best_elt->flag = 1;
2928 /* If the address is a binary operation with the first operand a register
2929 and the second a constant, do the same as above, but looking for
2930 equivalences of the register. Then try to simplify before checking for
2931 the best address to use. This catches a few cases: First is when we
2932 have REG+const and the register is another REG+const. We can often merge
2933 the constants and eliminate one insn and one register. It may also be
2934 that a machine has a cheap REG+REG+const. Finally, this improves the
2935 code on the Alpha for unaligned byte stores. */
2937 if (flag_expensive_optimizations
2938 && ARITHMETIC_P (*loc)
2939 && REG_P (XEXP (*loc, 0)))
2941 rtx op1 = XEXP (*loc, 1);
2943 do_not_record = 0;
2944 hash = HASH (XEXP (*loc, 0), Pmode);
2945 do_not_record = save_do_not_record;
2946 hash_arg_in_memory = save_hash_arg_in_memory;
2948 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2949 if (elt == 0)
2950 return;
2952 /* We need to find the best (under the criteria documented above) entry
2953 in the class that is valid. We use the `flag' field to indicate
2954 choices that were invalid and iterate until we can't find a better
2955 one that hasn't already been tried. */
2957 for (p = elt->first_same_value; p; p = p->next_same_value)
2958 p->flag = 0;
2960 while (found_better)
2962 int best_addr_cost = address_cost (*loc, mode);
2963 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2964 struct table_elt *best_elt = elt;
2965 rtx best_rtx = *loc;
2966 int count;
2968 /* This is at worst case an O(n^2) algorithm, so limit our search
2969 to the first 32 elements on the list. This avoids trouble
2970 compiling code with very long basic blocks that can easily
2971 call simplify_gen_binary so many times that we run out of
2972 memory. */
2974 found_better = 0;
2975 for (p = elt->first_same_value, count = 0;
2976 p && count < 32;
2977 p = p->next_same_value, count++)
2978 if (! p->flag
2979 && (REG_P (p->exp)
2980 || exp_equiv_p (p->exp, p->exp, 1, false)))
2982 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
2983 p->exp, op1);
2984 int new_cost;
2986 /* Get the canonical version of the address so we can accept
2987 more. */
2988 new = canon_for_address (new);
2990 new_cost = address_cost (new, mode);
2992 if (new_cost < best_addr_cost
2993 || (new_cost == best_addr_cost
2994 && (COST (new) + 1) >> 1 > best_rtx_cost))
2996 found_better = 1;
2997 best_addr_cost = new_cost;
2998 best_rtx_cost = (COST (new) + 1) >> 1;
2999 best_elt = p;
3000 best_rtx = new;
3004 if (found_better)
3006 if (validate_change (insn, loc,
3007 canon_reg (copy_rtx (best_rtx),
3008 NULL_RTX), 0))
3009 return;
3010 else
3011 best_elt->flag = 1;
3017 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3018 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3019 what values are being compared.
3021 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3022 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3023 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3024 compared to produce cc0.
3026 The return value is the comparison operator and is either the code of
3027 A or the code corresponding to the inverse of the comparison. */
3029 static enum rtx_code
3030 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3031 enum machine_mode *pmode1, enum machine_mode *pmode2)
3033 rtx arg1, arg2;
3035 arg1 = *parg1, arg2 = *parg2;
3037 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3039 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3041 /* Set nonzero when we find something of interest. */
3042 rtx x = 0;
3043 int reverse_code = 0;
3044 struct table_elt *p = 0;
3046 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3047 On machines with CC0, this is the only case that can occur, since
3048 fold_rtx will return the COMPARE or item being compared with zero
3049 when given CC0. */
3051 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3052 x = arg1;
3054 /* If ARG1 is a comparison operator and CODE is testing for
3055 STORE_FLAG_VALUE, get the inner arguments. */
3057 else if (COMPARISON_P (arg1))
3059 #ifdef FLOAT_STORE_FLAG_VALUE
3060 REAL_VALUE_TYPE fsfv;
3061 #endif
3063 if (code == NE
3064 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3065 && code == LT && STORE_FLAG_VALUE == -1)
3066 #ifdef FLOAT_STORE_FLAG_VALUE
3067 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3068 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3069 REAL_VALUE_NEGATIVE (fsfv)))
3070 #endif
3072 x = arg1;
3073 else if (code == EQ
3074 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3075 && code == GE && STORE_FLAG_VALUE == -1)
3076 #ifdef FLOAT_STORE_FLAG_VALUE
3077 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3078 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3079 REAL_VALUE_NEGATIVE (fsfv)))
3080 #endif
3082 x = arg1, reverse_code = 1;
3085 /* ??? We could also check for
3087 (ne (and (eq (...) (const_int 1))) (const_int 0))
3089 and related forms, but let's wait until we see them occurring. */
3091 if (x == 0)
3092 /* Look up ARG1 in the hash table and see if it has an equivalence
3093 that lets us see what is being compared. */
3094 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3095 if (p)
3097 p = p->first_same_value;
3099 /* If what we compare is already known to be constant, that is as
3100 good as it gets.
3101 We need to break the loop in this case, because otherwise we
3102 can have an infinite loop when looking at a reg that is known
3103 to be a constant which is the same as a comparison of a reg
3104 against zero which appears later in the insn stream, which in
3105 turn is constant and the same as the comparison of the first reg
3106 against zero... */
3107 if (p->is_const)
3108 break;
3111 for (; p; p = p->next_same_value)
3113 enum machine_mode inner_mode = GET_MODE (p->exp);
3114 #ifdef FLOAT_STORE_FLAG_VALUE
3115 REAL_VALUE_TYPE fsfv;
3116 #endif
3118 /* If the entry isn't valid, skip it. */
3119 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3120 continue;
3122 if (GET_CODE (p->exp) == COMPARE
3123 /* Another possibility is that this machine has a compare insn
3124 that includes the comparison code. In that case, ARG1 would
3125 be equivalent to a comparison operation that would set ARG1 to
3126 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3127 ORIG_CODE is the actual comparison being done; if it is an EQ,
3128 we must reverse ORIG_CODE. On machine with a negative value
3129 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3130 || ((code == NE
3131 || (code == LT
3132 && GET_MODE_CLASS (inner_mode) == MODE_INT
3133 && (GET_MODE_BITSIZE (inner_mode)
3134 <= HOST_BITS_PER_WIDE_INT)
3135 && (STORE_FLAG_VALUE
3136 & ((HOST_WIDE_INT) 1
3137 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3138 #ifdef FLOAT_STORE_FLAG_VALUE
3139 || (code == LT
3140 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3141 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3142 REAL_VALUE_NEGATIVE (fsfv)))
3143 #endif
3145 && COMPARISON_P (p->exp)))
3147 x = p->exp;
3148 break;
3150 else if ((code == EQ
3151 || (code == GE
3152 && GET_MODE_CLASS (inner_mode) == MODE_INT
3153 && (GET_MODE_BITSIZE (inner_mode)
3154 <= HOST_BITS_PER_WIDE_INT)
3155 && (STORE_FLAG_VALUE
3156 & ((HOST_WIDE_INT) 1
3157 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3158 #ifdef FLOAT_STORE_FLAG_VALUE
3159 || (code == GE
3160 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3161 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3162 REAL_VALUE_NEGATIVE (fsfv)))
3163 #endif
3165 && COMPARISON_P (p->exp))
3167 reverse_code = 1;
3168 x = p->exp;
3169 break;
3172 /* If this non-trapping address, e.g. fp + constant, the
3173 equivalent is a better operand since it may let us predict
3174 the value of the comparison. */
3175 else if (!rtx_addr_can_trap_p (p->exp))
3177 arg1 = p->exp;
3178 continue;
3182 /* If we didn't find a useful equivalence for ARG1, we are done.
3183 Otherwise, set up for the next iteration. */
3184 if (x == 0)
3185 break;
3187 /* If we need to reverse the comparison, make sure that that is
3188 possible -- we can't necessarily infer the value of GE from LT
3189 with floating-point operands. */
3190 if (reverse_code)
3192 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3193 if (reversed == UNKNOWN)
3194 break;
3195 else
3196 code = reversed;
3198 else if (COMPARISON_P (x))
3199 code = GET_CODE (x);
3200 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3203 /* Return our results. Return the modes from before fold_rtx
3204 because fold_rtx might produce const_int, and then it's too late. */
3205 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3206 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3208 return code;
3211 /* If X is a nontrivial arithmetic operation on an argument
3212 for which a constant value can be determined, return
3213 the result of operating on that value, as a constant.
3214 Otherwise, return X, possibly with one or more operands
3215 modified by recursive calls to this function.
3217 If X is a register whose contents are known, we do NOT
3218 return those contents here. equiv_constant is called to
3219 perform that task.
3221 INSN is the insn that we may be modifying. If it is 0, make a copy
3222 of X before modifying it. */
3224 static rtx
3225 fold_rtx (rtx x, rtx insn)
3227 enum rtx_code code;
3228 enum machine_mode mode;
3229 const char *fmt;
3230 int i;
3231 rtx new = 0;
3232 int copied = 0;
3233 int must_swap = 0;
3235 /* Folded equivalents of first two operands of X. */
3236 rtx folded_arg0;
3237 rtx folded_arg1;
3239 /* Constant equivalents of first three operands of X;
3240 0 when no such equivalent is known. */
3241 rtx const_arg0;
3242 rtx const_arg1;
3243 rtx const_arg2;
3245 /* The mode of the first operand of X. We need this for sign and zero
3246 extends. */
3247 enum machine_mode mode_arg0;
3249 if (x == 0)
3250 return x;
3252 mode = GET_MODE (x);
3253 code = GET_CODE (x);
3254 switch (code)
3256 case CONST:
3257 case CONST_INT:
3258 case CONST_DOUBLE:
3259 case CONST_VECTOR:
3260 case SYMBOL_REF:
3261 case LABEL_REF:
3262 case REG:
3263 case PC:
3264 /* No use simplifying an EXPR_LIST
3265 since they are used only for lists of args
3266 in a function call's REG_EQUAL note. */
3267 case EXPR_LIST:
3268 return x;
3270 #ifdef HAVE_cc0
3271 case CC0:
3272 return prev_insn_cc0;
3273 #endif
3275 case SUBREG:
3276 /* See if we previously assigned a constant value to this SUBREG. */
3277 if ((new = lookup_as_function (x, CONST_INT)) != 0
3278 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3279 return new;
3281 /* If this is a paradoxical SUBREG, we have no idea what value the
3282 extra bits would have. However, if the operand is equivalent
3283 to a SUBREG whose operand is the same as our mode, and all the
3284 modes are within a word, we can just use the inner operand
3285 because these SUBREGs just say how to treat the register.
3287 Similarly if we find an integer constant. */
3289 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3291 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3292 struct table_elt *elt;
3294 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3295 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3296 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3297 imode)) != 0)
3298 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3300 if (CONSTANT_P (elt->exp)
3301 && GET_MODE (elt->exp) == VOIDmode)
3302 return elt->exp;
3304 if (GET_CODE (elt->exp) == SUBREG
3305 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3306 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3307 return copy_rtx (SUBREG_REG (elt->exp));
3310 return x;
3313 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3314 We might be able to if the SUBREG is extracting a single word in an
3315 integral mode or extracting the low part. */
3317 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3318 const_arg0 = equiv_constant (folded_arg0);
3319 if (const_arg0)
3320 folded_arg0 = const_arg0;
3322 if (folded_arg0 != SUBREG_REG (x))
3324 new = simplify_subreg (mode, folded_arg0,
3325 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3326 if (new)
3327 return new;
3330 if (REG_P (folded_arg0)
3331 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3333 struct table_elt *elt;
3335 elt = lookup (folded_arg0,
3336 HASH (folded_arg0, GET_MODE (folded_arg0)),
3337 GET_MODE (folded_arg0));
3339 if (elt)
3340 elt = elt->first_same_value;
3342 if (subreg_lowpart_p (x))
3343 /* If this is a narrowing SUBREG and our operand is a REG, see
3344 if we can find an equivalence for REG that is an arithmetic
3345 operation in a wider mode where both operands are paradoxical
3346 SUBREGs from objects of our result mode. In that case, we
3347 couldn-t report an equivalent value for that operation, since we
3348 don't know what the extra bits will be. But we can find an
3349 equivalence for this SUBREG by folding that operation in the
3350 narrow mode. This allows us to fold arithmetic in narrow modes
3351 when the machine only supports word-sized arithmetic.
3353 Also look for a case where we have a SUBREG whose operand
3354 is the same as our result. If both modes are smaller
3355 than a word, we are simply interpreting a register in
3356 different modes and we can use the inner value. */
3358 for (; elt; elt = elt->next_same_value)
3360 enum rtx_code eltcode = GET_CODE (elt->exp);
3362 /* Just check for unary and binary operations. */
3363 if (UNARY_P (elt->exp)
3364 && eltcode != SIGN_EXTEND
3365 && eltcode != ZERO_EXTEND
3366 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3367 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3368 && (GET_MODE_CLASS (mode)
3369 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3371 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3373 if (!REG_P (op0) && ! CONSTANT_P (op0))
3374 op0 = fold_rtx (op0, NULL_RTX);
3376 op0 = equiv_constant (op0);
3377 if (op0)
3378 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3379 op0, mode);
3381 else if (ARITHMETIC_P (elt->exp)
3382 && eltcode != DIV && eltcode != MOD
3383 && eltcode != UDIV && eltcode != UMOD
3384 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3385 && eltcode != ROTATE && eltcode != ROTATERT
3386 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3387 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3388 == mode))
3389 || CONSTANT_P (XEXP (elt->exp, 0)))
3390 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3391 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3392 == mode))
3393 || CONSTANT_P (XEXP (elt->exp, 1))))
3395 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3396 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3398 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3399 op0 = fold_rtx (op0, NULL_RTX);
3401 if (op0)
3402 op0 = equiv_constant (op0);
3404 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3405 op1 = fold_rtx (op1, NULL_RTX);
3407 if (op1)
3408 op1 = equiv_constant (op1);
3410 /* If we are looking for the low SImode part of
3411 (ashift:DI c (const_int 32)), it doesn't work
3412 to compute that in SImode, because a 32-bit shift
3413 in SImode is unpredictable. We know the value is 0. */
3414 if (op0 && op1
3415 && GET_CODE (elt->exp) == ASHIFT
3416 && GET_CODE (op1) == CONST_INT
3417 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3419 if (INTVAL (op1)
3420 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3421 /* If the count fits in the inner mode's width,
3422 but exceeds the outer mode's width,
3423 the value will get truncated to 0
3424 by the subreg. */
3425 new = CONST0_RTX (mode);
3426 else
3427 /* If the count exceeds even the inner mode's width,
3428 don't fold this expression. */
3429 new = 0;
3431 else if (op0 && op1)
3432 new = simplify_binary_operation (GET_CODE (elt->exp), mode, op0, op1);
3435 else if (GET_CODE (elt->exp) == SUBREG
3436 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3437 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3438 <= UNITS_PER_WORD)
3439 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3440 new = copy_rtx (SUBREG_REG (elt->exp));
3442 if (new)
3443 return new;
3445 else
3446 /* A SUBREG resulting from a zero extension may fold to zero if
3447 it extracts higher bits than the ZERO_EXTEND's source bits.
3448 FIXME: if combine tried to, er, combine these instructions,
3449 this transformation may be moved to simplify_subreg. */
3450 for (; elt; elt = elt->next_same_value)
3452 if (GET_CODE (elt->exp) == ZERO_EXTEND
3453 && subreg_lsb (x)
3454 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3455 return CONST0_RTX (mode);
3459 return x;
3461 case NOT:
3462 case NEG:
3463 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3464 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3465 new = lookup_as_function (XEXP (x, 0), code);
3466 if (new)
3467 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3468 break;
3470 case MEM:
3471 /* If we are not actually processing an insn, don't try to find the
3472 best address. Not only don't we care, but we could modify the
3473 MEM in an invalid way since we have no insn to validate against. */
3474 if (insn != 0)
3475 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3478 /* Even if we don't fold in the insn itself,
3479 we can safely do so here, in hopes of getting a constant. */
3480 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3481 rtx base = 0;
3482 HOST_WIDE_INT offset = 0;
3484 if (REG_P (addr)
3485 && REGNO_QTY_VALID_P (REGNO (addr)))
3487 int addr_q = REG_QTY (REGNO (addr));
3488 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3490 if (GET_MODE (addr) == addr_ent->mode
3491 && addr_ent->const_rtx != NULL_RTX)
3492 addr = addr_ent->const_rtx;
3495 /* If address is constant, split it into a base and integer offset. */
3496 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3497 base = addr;
3498 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3499 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3501 base = XEXP (XEXP (addr, 0), 0);
3502 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3504 else if (GET_CODE (addr) == LO_SUM
3505 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3506 base = XEXP (addr, 1);
3508 /* If this is a constant pool reference, we can fold it into its
3509 constant to allow better value tracking. */
3510 if (base && GET_CODE (base) == SYMBOL_REF
3511 && CONSTANT_POOL_ADDRESS_P (base))
3513 rtx constant = get_pool_constant (base);
3514 enum machine_mode const_mode = get_pool_mode (base);
3515 rtx new;
3517 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3519 constant_pool_entries_cost = COST (constant);
3520 constant_pool_entries_regcost = approx_reg_cost (constant);
3523 /* If we are loading the full constant, we have an equivalence. */
3524 if (offset == 0 && mode == const_mode)
3525 return constant;
3527 /* If this actually isn't a constant (weird!), we can't do
3528 anything. Otherwise, handle the two most common cases:
3529 extracting a word from a multi-word constant, and extracting
3530 the low-order bits. Other cases don't seem common enough to
3531 worry about. */
3532 if (! CONSTANT_P (constant))
3533 return x;
3535 if (GET_MODE_CLASS (mode) == MODE_INT
3536 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3537 && offset % UNITS_PER_WORD == 0
3538 && (new = operand_subword (constant,
3539 offset / UNITS_PER_WORD,
3540 0, const_mode)) != 0)
3541 return new;
3543 if (((BYTES_BIG_ENDIAN
3544 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3545 || (! BYTES_BIG_ENDIAN && offset == 0))
3546 && (new = gen_lowpart (mode, constant)) != 0)
3547 return new;
3550 /* If this is a reference to a label at a known position in a jump
3551 table, we also know its value. */
3552 if (base && GET_CODE (base) == LABEL_REF)
3554 rtx label = XEXP (base, 0);
3555 rtx table_insn = NEXT_INSN (label);
3557 if (table_insn && JUMP_P (table_insn)
3558 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3560 rtx table = PATTERN (table_insn);
3562 if (offset >= 0
3563 && (offset / GET_MODE_SIZE (GET_MODE (table))
3564 < XVECLEN (table, 0)))
3565 return XVECEXP (table, 0,
3566 offset / GET_MODE_SIZE (GET_MODE (table)));
3568 if (table_insn && JUMP_P (table_insn)
3569 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3571 rtx table = PATTERN (table_insn);
3573 if (offset >= 0
3574 && (offset / GET_MODE_SIZE (GET_MODE (table))
3575 < XVECLEN (table, 1)))
3577 offset /= GET_MODE_SIZE (GET_MODE (table));
3578 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3579 XEXP (table, 0));
3581 if (GET_MODE (table) != Pmode)
3582 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3584 /* Indicate this is a constant. This isn't a
3585 valid form of CONST, but it will only be used
3586 to fold the next insns and then discarded, so
3587 it should be safe.
3589 Note this expression must be explicitly discarded,
3590 by cse_insn, else it may end up in a REG_EQUAL note
3591 and "escape" to cause problems elsewhere. */
3592 return gen_rtx_CONST (GET_MODE (new), new);
3597 return x;
3600 #ifdef NO_FUNCTION_CSE
3601 case CALL:
3602 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3603 return x;
3604 break;
3605 #endif
3607 case ASM_OPERANDS:
3608 if (insn)
3610 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3611 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3612 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3614 break;
3616 default:
3617 break;
3620 const_arg0 = 0;
3621 const_arg1 = 0;
3622 const_arg2 = 0;
3623 mode_arg0 = VOIDmode;
3625 /* Try folding our operands.
3626 Then see which ones have constant values known. */
3628 fmt = GET_RTX_FORMAT (code);
3629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3630 if (fmt[i] == 'e')
3632 rtx arg = XEXP (x, i);
3633 rtx folded_arg = arg, const_arg = 0;
3634 enum machine_mode mode_arg = GET_MODE (arg);
3635 rtx cheap_arg, expensive_arg;
3636 rtx replacements[2];
3637 int j;
3638 int old_cost = COST_IN (XEXP (x, i), code);
3640 /* Most arguments are cheap, so handle them specially. */
3641 switch (GET_CODE (arg))
3643 case REG:
3644 /* This is the same as calling equiv_constant; it is duplicated
3645 here for speed. */
3646 if (REGNO_QTY_VALID_P (REGNO (arg)))
3648 int arg_q = REG_QTY (REGNO (arg));
3649 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3651 if (arg_ent->const_rtx != NULL_RTX
3652 && !REG_P (arg_ent->const_rtx)
3653 && GET_CODE (arg_ent->const_rtx) != PLUS)
3654 const_arg
3655 = gen_lowpart (GET_MODE (arg),
3656 arg_ent->const_rtx);
3658 break;
3660 case CONST:
3661 case CONST_INT:
3662 case SYMBOL_REF:
3663 case LABEL_REF:
3664 case CONST_DOUBLE:
3665 case CONST_VECTOR:
3666 const_arg = arg;
3667 break;
3669 #ifdef HAVE_cc0
3670 case CC0:
3671 folded_arg = prev_insn_cc0;
3672 mode_arg = prev_insn_cc0_mode;
3673 const_arg = equiv_constant (folded_arg);
3674 break;
3675 #endif
3677 default:
3678 folded_arg = fold_rtx (arg, insn);
3679 const_arg = equiv_constant (folded_arg);
3682 /* For the first three operands, see if the operand
3683 is constant or equivalent to a constant. */
3684 switch (i)
3686 case 0:
3687 folded_arg0 = folded_arg;
3688 const_arg0 = const_arg;
3689 mode_arg0 = mode_arg;
3690 break;
3691 case 1:
3692 folded_arg1 = folded_arg;
3693 const_arg1 = const_arg;
3694 break;
3695 case 2:
3696 const_arg2 = const_arg;
3697 break;
3700 /* Pick the least expensive of the folded argument and an
3701 equivalent constant argument. */
3702 if (const_arg == 0 || const_arg == folded_arg
3703 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3704 cheap_arg = folded_arg, expensive_arg = const_arg;
3705 else
3706 cheap_arg = const_arg, expensive_arg = folded_arg;
3708 /* Try to replace the operand with the cheapest of the two
3709 possibilities. If it doesn't work and this is either of the first
3710 two operands of a commutative operation, try swapping them.
3711 If THAT fails, try the more expensive, provided it is cheaper
3712 than what is already there. */
3714 if (cheap_arg == XEXP (x, i))
3715 continue;
3717 if (insn == 0 && ! copied)
3719 x = copy_rtx (x);
3720 copied = 1;
3723 /* Order the replacements from cheapest to most expensive. */
3724 replacements[0] = cheap_arg;
3725 replacements[1] = expensive_arg;
3727 for (j = 0; j < 2 && replacements[j]; j++)
3729 int new_cost = COST_IN (replacements[j], code);
3731 /* Stop if what existed before was cheaper. Prefer constants
3732 in the case of a tie. */
3733 if (new_cost > old_cost
3734 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3735 break;
3737 /* It's not safe to substitute the operand of a conversion
3738 operator with a constant, as the conversion's identity
3739 depends upon the mode of it's operand. This optimization
3740 is handled by the call to simplify_unary_operation. */
3741 if (GET_RTX_CLASS (code) == RTX_UNARY
3742 && GET_MODE (replacements[j]) != mode_arg0
3743 && (code == ZERO_EXTEND
3744 || code == SIGN_EXTEND
3745 || code == TRUNCATE
3746 || code == FLOAT_TRUNCATE
3747 || code == FLOAT_EXTEND
3748 || code == FLOAT
3749 || code == FIX
3750 || code == UNSIGNED_FLOAT
3751 || code == UNSIGNED_FIX))
3752 continue;
3754 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3755 break;
3757 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3758 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3760 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3761 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3763 if (apply_change_group ())
3765 /* Swap them back to be invalid so that this loop can
3766 continue and flag them to be swapped back later. */
3767 rtx tem;
3769 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3770 XEXP (x, 1) = tem;
3771 must_swap = 1;
3772 break;
3778 else
3780 if (fmt[i] == 'E')
3781 /* Don't try to fold inside of a vector of expressions.
3782 Doing nothing is harmless. */
3786 /* If a commutative operation, place a constant integer as the second
3787 operand unless the first operand is also a constant integer. Otherwise,
3788 place any constant second unless the first operand is also a constant. */
3790 if (COMMUTATIVE_P (x))
3792 if (must_swap
3793 || swap_commutative_operands_p (const_arg0 ? const_arg0
3794 : XEXP (x, 0),
3795 const_arg1 ? const_arg1
3796 : XEXP (x, 1)))
3798 rtx tem = XEXP (x, 0);
3800 if (insn == 0 && ! copied)
3802 x = copy_rtx (x);
3803 copied = 1;
3806 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3807 validate_change (insn, &XEXP (x, 1), tem, 1);
3808 if (apply_change_group ())
3810 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3811 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3816 /* If X is an arithmetic operation, see if we can simplify it. */
3818 switch (GET_RTX_CLASS (code))
3820 case RTX_UNARY:
3822 int is_const = 0;
3824 /* We can't simplify extension ops unless we know the
3825 original mode. */
3826 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3827 && mode_arg0 == VOIDmode)
3828 break;
3830 /* If we had a CONST, strip it off and put it back later if we
3831 fold. */
3832 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3833 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3835 new = simplify_unary_operation (code, mode,
3836 const_arg0 ? const_arg0 : folded_arg0,
3837 mode_arg0);
3838 /* NEG of PLUS could be converted into MINUS, but that causes
3839 expressions of the form
3840 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3841 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3842 FIXME: those ports should be fixed. */
3843 if (new != 0 && is_const
3844 && GET_CODE (new) == PLUS
3845 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3846 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3847 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3848 new = gen_rtx_CONST (mode, new);
3850 break;
3852 case RTX_COMPARE:
3853 case RTX_COMM_COMPARE:
3854 /* See what items are actually being compared and set FOLDED_ARG[01]
3855 to those values and CODE to the actual comparison code. If any are
3856 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3857 do anything if both operands are already known to be constant. */
3859 /* ??? Vector mode comparisons are not supported yet. */
3860 if (VECTOR_MODE_P (mode))
3861 break;
3863 if (const_arg0 == 0 || const_arg1 == 0)
3865 struct table_elt *p0, *p1;
3866 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3867 enum machine_mode mode_arg1;
3869 #ifdef FLOAT_STORE_FLAG_VALUE
3870 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3872 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3873 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3874 false_rtx = CONST0_RTX (mode);
3876 #endif
3878 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3879 &mode_arg0, &mode_arg1);
3881 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3882 what kinds of things are being compared, so we can't do
3883 anything with this comparison. */
3885 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3886 break;
3888 const_arg0 = equiv_constant (folded_arg0);
3889 const_arg1 = equiv_constant (folded_arg1);
3891 /* If we do not now have two constants being compared, see
3892 if we can nevertheless deduce some things about the
3893 comparison. */
3894 if (const_arg0 == 0 || const_arg1 == 0)
3896 /* Some addresses are known to be nonzero. We don't know
3897 their sign, but equality comparisons are known. */
3898 if (const_arg1 == const0_rtx
3899 && nonzero_address_p (folded_arg0))
3901 if (code == EQ)
3902 return false_rtx;
3903 else if (code == NE)
3904 return true_rtx;
3907 /* See if the two operands are the same. */
3909 if (folded_arg0 == folded_arg1
3910 || (REG_P (folded_arg0)
3911 && REG_P (folded_arg1)
3912 && (REG_QTY (REGNO (folded_arg0))
3913 == REG_QTY (REGNO (folded_arg1))))
3914 || ((p0 = lookup (folded_arg0,
3915 SAFE_HASH (folded_arg0, mode_arg0),
3916 mode_arg0))
3917 && (p1 = lookup (folded_arg1,
3918 SAFE_HASH (folded_arg1, mode_arg0),
3919 mode_arg0))
3920 && p0->first_same_value == p1->first_same_value))
3922 /* Sadly two equal NaNs are not equivalent. */
3923 if (!HONOR_NANS (mode_arg0))
3924 return ((code == EQ || code == LE || code == GE
3925 || code == LEU || code == GEU || code == UNEQ
3926 || code == UNLE || code == UNGE
3927 || code == ORDERED)
3928 ? true_rtx : false_rtx);
3929 /* Take care for the FP compares we can resolve. */
3930 if (code == UNEQ || code == UNLE || code == UNGE)
3931 return true_rtx;
3932 if (code == LTGT || code == LT || code == GT)
3933 return false_rtx;
3936 /* If FOLDED_ARG0 is a register, see if the comparison we are
3937 doing now is either the same as we did before or the reverse
3938 (we only check the reverse if not floating-point). */
3939 else if (REG_P (folded_arg0))
3941 int qty = REG_QTY (REGNO (folded_arg0));
3943 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3945 struct qty_table_elem *ent = &qty_table[qty];
3947 if ((comparison_dominates_p (ent->comparison_code, code)
3948 || (! FLOAT_MODE_P (mode_arg0)
3949 && comparison_dominates_p (ent->comparison_code,
3950 reverse_condition (code))))
3951 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3952 || (const_arg1
3953 && rtx_equal_p (ent->comparison_const,
3954 const_arg1))
3955 || (REG_P (folded_arg1)
3956 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3957 return (comparison_dominates_p (ent->comparison_code, code)
3958 ? true_rtx : false_rtx);
3964 /* If we are comparing against zero, see if the first operand is
3965 equivalent to an IOR with a constant. If so, we may be able to
3966 determine the result of this comparison. */
3968 if (const_arg1 == const0_rtx)
3970 rtx y = lookup_as_function (folded_arg0, IOR);
3971 rtx inner_const;
3973 if (y != 0
3974 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3975 && GET_CODE (inner_const) == CONST_INT
3976 && INTVAL (inner_const) != 0)
3978 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3979 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3980 && (INTVAL (inner_const)
3981 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3982 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3984 #ifdef FLOAT_STORE_FLAG_VALUE
3985 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3987 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3988 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3989 false_rtx = CONST0_RTX (mode);
3991 #endif
3993 switch (code)
3995 case EQ:
3996 return false_rtx;
3997 case NE:
3998 return true_rtx;
3999 case LT: case LE:
4000 if (has_sign)
4001 return true_rtx;
4002 break;
4003 case GT: case GE:
4004 if (has_sign)
4005 return false_rtx;
4006 break;
4007 default:
4008 break;
4014 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4015 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4016 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4018 break;
4020 case RTX_BIN_ARITH:
4021 case RTX_COMM_ARITH:
4022 switch (code)
4024 case PLUS:
4025 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4026 with that LABEL_REF as its second operand. If so, the result is
4027 the first operand of that MINUS. This handles switches with an
4028 ADDR_DIFF_VEC table. */
4029 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4031 rtx y
4032 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4033 : lookup_as_function (folded_arg0, MINUS);
4035 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4036 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4037 return XEXP (y, 0);
4039 /* Now try for a CONST of a MINUS like the above. */
4040 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4041 : lookup_as_function (folded_arg0, CONST))) != 0
4042 && GET_CODE (XEXP (y, 0)) == MINUS
4043 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4044 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4045 return XEXP (XEXP (y, 0), 0);
4048 /* Likewise if the operands are in the other order. */
4049 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4051 rtx y
4052 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4053 : lookup_as_function (folded_arg1, MINUS);
4055 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4056 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4057 return XEXP (y, 0);
4059 /* Now try for a CONST of a MINUS like the above. */
4060 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4061 : lookup_as_function (folded_arg1, CONST))) != 0
4062 && GET_CODE (XEXP (y, 0)) == MINUS
4063 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4064 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4065 return XEXP (XEXP (y, 0), 0);
4068 /* If second operand is a register equivalent to a negative
4069 CONST_INT, see if we can find a register equivalent to the
4070 positive constant. Make a MINUS if so. Don't do this for
4071 a non-negative constant since we might then alternate between
4072 choosing positive and negative constants. Having the positive
4073 constant previously-used is the more common case. Be sure
4074 the resulting constant is non-negative; if const_arg1 were
4075 the smallest negative number this would overflow: depending
4076 on the mode, this would either just be the same value (and
4077 hence not save anything) or be incorrect. */
4078 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4079 && INTVAL (const_arg1) < 0
4080 /* This used to test
4082 -INTVAL (const_arg1) >= 0
4084 But The Sun V5.0 compilers mis-compiled that test. So
4085 instead we test for the problematic value in a more direct
4086 manner and hope the Sun compilers get it correct. */
4087 && INTVAL (const_arg1) !=
4088 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4089 && REG_P (folded_arg1))
4091 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4092 struct table_elt *p
4093 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4095 if (p)
4096 for (p = p->first_same_value; p; p = p->next_same_value)
4097 if (REG_P (p->exp))
4098 return simplify_gen_binary (MINUS, mode, folded_arg0,
4099 canon_reg (p->exp, NULL_RTX));
4101 goto from_plus;
4103 case MINUS:
4104 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4105 If so, produce (PLUS Z C2-C). */
4106 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4108 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4109 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4110 return fold_rtx (plus_constant (copy_rtx (y),
4111 -INTVAL (const_arg1)),
4112 NULL_RTX);
4115 /* Fall through. */
4117 from_plus:
4118 case SMIN: case SMAX: case UMIN: case UMAX:
4119 case IOR: case AND: case XOR:
4120 case MULT:
4121 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4122 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4123 is known to be of similar form, we may be able to replace the
4124 operation with a combined operation. This may eliminate the
4125 intermediate operation if every use is simplified in this way.
4126 Note that the similar optimization done by combine.c only works
4127 if the intermediate operation's result has only one reference. */
4129 if (REG_P (folded_arg0)
4130 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4132 int is_shift
4133 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4134 rtx y = lookup_as_function (folded_arg0, code);
4135 rtx inner_const;
4136 enum rtx_code associate_code;
4137 rtx new_const;
4139 if (y == 0
4140 || 0 == (inner_const
4141 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4142 || GET_CODE (inner_const) != CONST_INT
4143 /* If we have compiled a statement like
4144 "if (x == (x & mask1))", and now are looking at
4145 "x & mask2", we will have a case where the first operand
4146 of Y is the same as our first operand. Unless we detect
4147 this case, an infinite loop will result. */
4148 || XEXP (y, 0) == folded_arg0)
4149 break;
4151 /* Don't associate these operations if they are a PLUS with the
4152 same constant and it is a power of two. These might be doable
4153 with a pre- or post-increment. Similarly for two subtracts of
4154 identical powers of two with post decrement. */
4156 if (code == PLUS && const_arg1 == inner_const
4157 && ((HAVE_PRE_INCREMENT
4158 && exact_log2 (INTVAL (const_arg1)) >= 0)
4159 || (HAVE_POST_INCREMENT
4160 && exact_log2 (INTVAL (const_arg1)) >= 0)
4161 || (HAVE_PRE_DECREMENT
4162 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4163 || (HAVE_POST_DECREMENT
4164 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4165 break;
4167 /* Compute the code used to compose the constants. For example,
4168 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4170 associate_code = (is_shift || code == MINUS ? PLUS : code);
4172 new_const = simplify_binary_operation (associate_code, mode,
4173 const_arg1, inner_const);
4175 if (new_const == 0)
4176 break;
4178 /* If we are associating shift operations, don't let this
4179 produce a shift of the size of the object or larger.
4180 This could occur when we follow a sign-extend by a right
4181 shift on a machine that does a sign-extend as a pair
4182 of shifts. */
4184 if (is_shift && GET_CODE (new_const) == CONST_INT
4185 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4187 /* As an exception, we can turn an ASHIFTRT of this
4188 form into a shift of the number of bits - 1. */
4189 if (code == ASHIFTRT)
4190 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4191 else
4192 break;
4195 y = copy_rtx (XEXP (y, 0));
4197 /* If Y contains our first operand (the most common way this
4198 can happen is if Y is a MEM), we would do into an infinite
4199 loop if we tried to fold it. So don't in that case. */
4201 if (! reg_mentioned_p (folded_arg0, y))
4202 y = fold_rtx (y, insn);
4204 return simplify_gen_binary (code, mode, y, new_const);
4206 break;
4208 case DIV: case UDIV:
4209 /* ??? The associative optimization performed immediately above is
4210 also possible for DIV and UDIV using associate_code of MULT.
4211 However, we would need extra code to verify that the
4212 multiplication does not overflow, that is, there is no overflow
4213 in the calculation of new_const. */
4214 break;
4216 default:
4217 break;
4220 new = simplify_binary_operation (code, mode,
4221 const_arg0 ? const_arg0 : folded_arg0,
4222 const_arg1 ? const_arg1 : folded_arg1);
4223 break;
4225 case RTX_OBJ:
4226 /* (lo_sum (high X) X) is simply X. */
4227 if (code == LO_SUM && const_arg0 != 0
4228 && GET_CODE (const_arg0) == HIGH
4229 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4230 return const_arg1;
4231 break;
4233 case RTX_TERNARY:
4234 case RTX_BITFIELD_OPS:
4235 new = simplify_ternary_operation (code, mode, mode_arg0,
4236 const_arg0 ? const_arg0 : folded_arg0,
4237 const_arg1 ? const_arg1 : folded_arg1,
4238 const_arg2 ? const_arg2 : XEXP (x, 2));
4239 break;
4241 default:
4242 break;
4245 return new ? new : x;
4248 /* Return a constant value currently equivalent to X.
4249 Return 0 if we don't know one. */
4251 static rtx
4252 equiv_constant (rtx x)
4254 if (REG_P (x)
4255 && REGNO_QTY_VALID_P (REGNO (x)))
4257 int x_q = REG_QTY (REGNO (x));
4258 struct qty_table_elem *x_ent = &qty_table[x_q];
4260 if (x_ent->const_rtx)
4261 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4264 if (x == 0 || CONSTANT_P (x))
4265 return x;
4267 /* If X is a MEM, try to fold it outside the context of any insn to see if
4268 it might be equivalent to a constant. That handles the case where it
4269 is a constant-pool reference. Then try to look it up in the hash table
4270 in case it is something whose value we have seen before. */
4272 if (MEM_P (x))
4274 struct table_elt *elt;
4276 x = fold_rtx (x, NULL_RTX);
4277 if (CONSTANT_P (x))
4278 return x;
4280 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4281 if (elt == 0)
4282 return 0;
4284 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4285 if (elt->is_const && CONSTANT_P (elt->exp))
4286 return elt->exp;
4289 return 0;
4292 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4293 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4294 least-significant part of X.
4295 MODE specifies how big a part of X to return.
4297 If the requested operation cannot be done, 0 is returned.
4299 This is similar to gen_lowpart_general in emit-rtl.c. */
4302 gen_lowpart_if_possible (enum machine_mode mode, rtx x)
4304 rtx result = gen_lowpart_common (mode, x);
4306 if (result)
4307 return result;
4308 else if (MEM_P (x))
4310 /* This is the only other case we handle. */
4311 int offset = 0;
4312 rtx new;
4314 if (WORDS_BIG_ENDIAN)
4315 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4316 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4317 if (BYTES_BIG_ENDIAN)
4318 /* Adjust the address so that the address-after-the-data is
4319 unchanged. */
4320 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4321 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4323 new = adjust_address_nv (x, mode, offset);
4324 if (! memory_address_p (mode, XEXP (new, 0)))
4325 return 0;
4327 return new;
4329 else
4330 return 0;
4333 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4334 branch. It will be zero if not.
4336 In certain cases, this can cause us to add an equivalence. For example,
4337 if we are following the taken case of
4338 if (i == 2)
4339 we can add the fact that `i' and '2' are now equivalent.
4341 In any case, we can record that this comparison was passed. If the same
4342 comparison is seen later, we will know its value. */
4344 static void
4345 record_jump_equiv (rtx insn, int taken)
4347 int cond_known_true;
4348 rtx op0, op1;
4349 rtx set;
4350 enum machine_mode mode, mode0, mode1;
4351 int reversed_nonequality = 0;
4352 enum rtx_code code;
4354 /* Ensure this is the right kind of insn. */
4355 if (! any_condjump_p (insn))
4356 return;
4357 set = pc_set (insn);
4359 /* See if this jump condition is known true or false. */
4360 if (taken)
4361 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4362 else
4363 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4365 /* Get the type of comparison being done and the operands being compared.
4366 If we had to reverse a non-equality condition, record that fact so we
4367 know that it isn't valid for floating-point. */
4368 code = GET_CODE (XEXP (SET_SRC (set), 0));
4369 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4370 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4372 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4373 if (! cond_known_true)
4375 code = reversed_comparison_code_parts (code, op0, op1, insn);
4377 /* Don't remember if we can't find the inverse. */
4378 if (code == UNKNOWN)
4379 return;
4382 /* The mode is the mode of the non-constant. */
4383 mode = mode0;
4384 if (mode1 != VOIDmode)
4385 mode = mode1;
4387 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4390 /* Yet another form of subreg creation. In this case, we want something in
4391 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4393 static rtx
4394 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4396 enum machine_mode op_mode = GET_MODE (op);
4397 if (op_mode == mode || op_mode == VOIDmode)
4398 return op;
4399 return lowpart_subreg (mode, op, op_mode);
4402 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4403 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4404 Make any useful entries we can with that information. Called from
4405 above function and called recursively. */
4407 static void
4408 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4409 rtx op1, int reversed_nonequality)
4411 unsigned op0_hash, op1_hash;
4412 int op0_in_memory, op1_in_memory;
4413 struct table_elt *op0_elt, *op1_elt;
4415 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4416 we know that they are also equal in the smaller mode (this is also
4417 true for all smaller modes whether or not there is a SUBREG, but
4418 is not worth testing for with no SUBREG). */
4420 /* Note that GET_MODE (op0) may not equal MODE. */
4421 if (code == EQ && GET_CODE (op0) == SUBREG
4422 && (GET_MODE_SIZE (GET_MODE (op0))
4423 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4425 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4426 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4427 if (tem)
4428 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4429 reversed_nonequality);
4432 if (code == EQ && GET_CODE (op1) == SUBREG
4433 && (GET_MODE_SIZE (GET_MODE (op1))
4434 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4436 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4437 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4438 if (tem)
4439 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4440 reversed_nonequality);
4443 /* Similarly, if this is an NE comparison, and either is a SUBREG
4444 making a smaller mode, we know the whole thing is also NE. */
4446 /* Note that GET_MODE (op0) may not equal MODE;
4447 if we test MODE instead, we can get an infinite recursion
4448 alternating between two modes each wider than MODE. */
4450 if (code == NE && GET_CODE (op0) == SUBREG
4451 && subreg_lowpart_p (op0)
4452 && (GET_MODE_SIZE (GET_MODE (op0))
4453 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4455 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4456 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4457 if (tem)
4458 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4459 reversed_nonequality);
4462 if (code == NE && GET_CODE (op1) == SUBREG
4463 && subreg_lowpart_p (op1)
4464 && (GET_MODE_SIZE (GET_MODE (op1))
4465 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4467 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4468 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4469 if (tem)
4470 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4471 reversed_nonequality);
4474 /* Hash both operands. */
4476 do_not_record = 0;
4477 hash_arg_in_memory = 0;
4478 op0_hash = HASH (op0, mode);
4479 op0_in_memory = hash_arg_in_memory;
4481 if (do_not_record)
4482 return;
4484 do_not_record = 0;
4485 hash_arg_in_memory = 0;
4486 op1_hash = HASH (op1, mode);
4487 op1_in_memory = hash_arg_in_memory;
4489 if (do_not_record)
4490 return;
4492 /* Look up both operands. */
4493 op0_elt = lookup (op0, op0_hash, mode);
4494 op1_elt = lookup (op1, op1_hash, mode);
4496 /* If both operands are already equivalent or if they are not in the
4497 table but are identical, do nothing. */
4498 if ((op0_elt != 0 && op1_elt != 0
4499 && op0_elt->first_same_value == op1_elt->first_same_value)
4500 || op0 == op1 || rtx_equal_p (op0, op1))
4501 return;
4503 /* If we aren't setting two things equal all we can do is save this
4504 comparison. Similarly if this is floating-point. In the latter
4505 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4506 If we record the equality, we might inadvertently delete code
4507 whose intent was to change -0 to +0. */
4509 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4511 struct qty_table_elem *ent;
4512 int qty;
4514 /* If we reversed a floating-point comparison, if OP0 is not a
4515 register, or if OP1 is neither a register or constant, we can't
4516 do anything. */
4518 if (!REG_P (op1))
4519 op1 = equiv_constant (op1);
4521 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4522 || !REG_P (op0) || op1 == 0)
4523 return;
4525 /* Put OP0 in the hash table if it isn't already. This gives it a
4526 new quantity number. */
4527 if (op0_elt == 0)
4529 if (insert_regs (op0, NULL, 0))
4531 rehash_using_reg (op0);
4532 op0_hash = HASH (op0, mode);
4534 /* If OP0 is contained in OP1, this changes its hash code
4535 as well. Faster to rehash than to check, except
4536 for the simple case of a constant. */
4537 if (! CONSTANT_P (op1))
4538 op1_hash = HASH (op1,mode);
4541 op0_elt = insert (op0, NULL, op0_hash, mode);
4542 op0_elt->in_memory = op0_in_memory;
4545 qty = REG_QTY (REGNO (op0));
4546 ent = &qty_table[qty];
4548 ent->comparison_code = code;
4549 if (REG_P (op1))
4551 /* Look it up again--in case op0 and op1 are the same. */
4552 op1_elt = lookup (op1, op1_hash, mode);
4554 /* Put OP1 in the hash table so it gets a new quantity number. */
4555 if (op1_elt == 0)
4557 if (insert_regs (op1, NULL, 0))
4559 rehash_using_reg (op1);
4560 op1_hash = HASH (op1, mode);
4563 op1_elt = insert (op1, NULL, op1_hash, mode);
4564 op1_elt->in_memory = op1_in_memory;
4567 ent->comparison_const = NULL_RTX;
4568 ent->comparison_qty = REG_QTY (REGNO (op1));
4570 else
4572 ent->comparison_const = op1;
4573 ent->comparison_qty = -1;
4576 return;
4579 /* If either side is still missing an equivalence, make it now,
4580 then merge the equivalences. */
4582 if (op0_elt == 0)
4584 if (insert_regs (op0, NULL, 0))
4586 rehash_using_reg (op0);
4587 op0_hash = HASH (op0, mode);
4590 op0_elt = insert (op0, NULL, op0_hash, mode);
4591 op0_elt->in_memory = op0_in_memory;
4594 if (op1_elt == 0)
4596 if (insert_regs (op1, NULL, 0))
4598 rehash_using_reg (op1);
4599 op1_hash = HASH (op1, mode);
4602 op1_elt = insert (op1, NULL, op1_hash, mode);
4603 op1_elt->in_memory = op1_in_memory;
4606 merge_equiv_classes (op0_elt, op1_elt);
4609 /* CSE processing for one instruction.
4610 First simplify sources and addresses of all assignments
4611 in the instruction, using previously-computed equivalents values.
4612 Then install the new sources and destinations in the table
4613 of available values.
4615 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4616 the insn. It means that INSN is inside libcall block. In this
4617 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4619 /* Data on one SET contained in the instruction. */
4621 struct set
4623 /* The SET rtx itself. */
4624 rtx rtl;
4625 /* The SET_SRC of the rtx (the original value, if it is changing). */
4626 rtx src;
4627 /* The hash-table element for the SET_SRC of the SET. */
4628 struct table_elt *src_elt;
4629 /* Hash value for the SET_SRC. */
4630 unsigned src_hash;
4631 /* Hash value for the SET_DEST. */
4632 unsigned dest_hash;
4633 /* The SET_DEST, with SUBREG, etc., stripped. */
4634 rtx inner_dest;
4635 /* Nonzero if the SET_SRC is in memory. */
4636 char src_in_memory;
4637 /* Nonzero if the SET_SRC contains something
4638 whose value cannot be predicted and understood. */
4639 char src_volatile;
4640 /* Original machine mode, in case it becomes a CONST_INT.
4641 The size of this field should match the size of the mode
4642 field of struct rtx_def (see rtl.h). */
4643 ENUM_BITFIELD(machine_mode) mode : 8;
4644 /* A constant equivalent for SET_SRC, if any. */
4645 rtx src_const;
4646 /* Original SET_SRC value used for libcall notes. */
4647 rtx orig_src;
4648 /* Hash value of constant equivalent for SET_SRC. */
4649 unsigned src_const_hash;
4650 /* Table entry for constant equivalent for SET_SRC, if any. */
4651 struct table_elt *src_const_elt;
4654 static void
4655 cse_insn (rtx insn, rtx libcall_insn)
4657 rtx x = PATTERN (insn);
4658 int i;
4659 rtx tem;
4660 int n_sets = 0;
4662 #ifdef HAVE_cc0
4663 /* Records what this insn does to set CC0. */
4664 rtx this_insn_cc0 = 0;
4665 enum machine_mode this_insn_cc0_mode = VOIDmode;
4666 #endif
4668 rtx src_eqv = 0;
4669 struct table_elt *src_eqv_elt = 0;
4670 int src_eqv_volatile = 0;
4671 int src_eqv_in_memory = 0;
4672 unsigned src_eqv_hash = 0;
4674 struct set *sets = (struct set *) 0;
4676 this_insn = insn;
4678 /* Find all the SETs and CLOBBERs in this instruction.
4679 Record all the SETs in the array `set' and count them.
4680 Also determine whether there is a CLOBBER that invalidates
4681 all memory references, or all references at varying addresses. */
4683 if (CALL_P (insn))
4685 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4687 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4688 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4689 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4693 if (GET_CODE (x) == SET)
4695 sets = alloca (sizeof (struct set));
4696 sets[0].rtl = x;
4698 /* Ignore SETs that are unconditional jumps.
4699 They never need cse processing, so this does not hurt.
4700 The reason is not efficiency but rather
4701 so that we can test at the end for instructions
4702 that have been simplified to unconditional jumps
4703 and not be misled by unchanged instructions
4704 that were unconditional jumps to begin with. */
4705 if (SET_DEST (x) == pc_rtx
4706 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4709 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4710 The hard function value register is used only once, to copy to
4711 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4712 Ensure we invalidate the destination register. On the 80386 no
4713 other code would invalidate it since it is a fixed_reg.
4714 We need not check the return of apply_change_group; see canon_reg. */
4716 else if (GET_CODE (SET_SRC (x)) == CALL)
4718 canon_reg (SET_SRC (x), insn);
4719 apply_change_group ();
4720 fold_rtx (SET_SRC (x), insn);
4721 invalidate (SET_DEST (x), VOIDmode);
4723 else
4724 n_sets = 1;
4726 else if (GET_CODE (x) == PARALLEL)
4728 int lim = XVECLEN (x, 0);
4730 sets = alloca (lim * sizeof (struct set));
4732 /* Find all regs explicitly clobbered in this insn,
4733 and ensure they are not replaced with any other regs
4734 elsewhere in this insn.
4735 When a reg that is clobbered is also used for input,
4736 we should presume that that is for a reason,
4737 and we should not substitute some other register
4738 which is not supposed to be clobbered.
4739 Therefore, this loop cannot be merged into the one below
4740 because a CALL may precede a CLOBBER and refer to the
4741 value clobbered. We must not let a canonicalization do
4742 anything in that case. */
4743 for (i = 0; i < lim; i++)
4745 rtx y = XVECEXP (x, 0, i);
4746 if (GET_CODE (y) == CLOBBER)
4748 rtx clobbered = XEXP (y, 0);
4750 if (REG_P (clobbered)
4751 || GET_CODE (clobbered) == SUBREG)
4752 invalidate (clobbered, VOIDmode);
4753 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4754 || GET_CODE (clobbered) == ZERO_EXTRACT)
4755 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4759 for (i = 0; i < lim; i++)
4761 rtx y = XVECEXP (x, 0, i);
4762 if (GET_CODE (y) == SET)
4764 /* As above, we ignore unconditional jumps and call-insns and
4765 ignore the result of apply_change_group. */
4766 if (GET_CODE (SET_SRC (y)) == CALL)
4768 canon_reg (SET_SRC (y), insn);
4769 apply_change_group ();
4770 fold_rtx (SET_SRC (y), insn);
4771 invalidate (SET_DEST (y), VOIDmode);
4773 else if (SET_DEST (y) == pc_rtx
4774 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4776 else
4777 sets[n_sets++].rtl = y;
4779 else if (GET_CODE (y) == CLOBBER)
4781 /* If we clobber memory, canon the address.
4782 This does nothing when a register is clobbered
4783 because we have already invalidated the reg. */
4784 if (MEM_P (XEXP (y, 0)))
4785 canon_reg (XEXP (y, 0), NULL_RTX);
4787 else if (GET_CODE (y) == USE
4788 && ! (REG_P (XEXP (y, 0))
4789 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4790 canon_reg (y, NULL_RTX);
4791 else if (GET_CODE (y) == CALL)
4793 /* The result of apply_change_group can be ignored; see
4794 canon_reg. */
4795 canon_reg (y, insn);
4796 apply_change_group ();
4797 fold_rtx (y, insn);
4801 else if (GET_CODE (x) == CLOBBER)
4803 if (MEM_P (XEXP (x, 0)))
4804 canon_reg (XEXP (x, 0), NULL_RTX);
4807 /* Canonicalize a USE of a pseudo register or memory location. */
4808 else if (GET_CODE (x) == USE
4809 && ! (REG_P (XEXP (x, 0))
4810 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4811 canon_reg (XEXP (x, 0), NULL_RTX);
4812 else if (GET_CODE (x) == CALL)
4814 /* The result of apply_change_group can be ignored; see canon_reg. */
4815 canon_reg (x, insn);
4816 apply_change_group ();
4817 fold_rtx (x, insn);
4820 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4821 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4822 is handled specially for this case, and if it isn't set, then there will
4823 be no equivalence for the destination. */
4824 if (n_sets == 1 && REG_NOTES (insn) != 0
4825 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4826 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4827 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4829 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4830 XEXP (tem, 0) = src_eqv;
4833 /* Canonicalize sources and addresses of destinations.
4834 We do this in a separate pass to avoid problems when a MATCH_DUP is
4835 present in the insn pattern. In that case, we want to ensure that
4836 we don't break the duplicate nature of the pattern. So we will replace
4837 both operands at the same time. Otherwise, we would fail to find an
4838 equivalent substitution in the loop calling validate_change below.
4840 We used to suppress canonicalization of DEST if it appears in SRC,
4841 but we don't do this any more. */
4843 for (i = 0; i < n_sets; i++)
4845 rtx dest = SET_DEST (sets[i].rtl);
4846 rtx src = SET_SRC (sets[i].rtl);
4847 rtx new = canon_reg (src, insn);
4848 int insn_code;
4850 sets[i].orig_src = src;
4851 if ((REG_P (new) && REG_P (src)
4852 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4853 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4854 || (insn_code = recog_memoized (insn)) < 0
4855 || insn_data[insn_code].n_dups > 0)
4856 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4857 else
4858 SET_SRC (sets[i].rtl) = new;
4860 if (GET_CODE (dest) == ZERO_EXTRACT)
4862 validate_change (insn, &XEXP (dest, 1),
4863 canon_reg (XEXP (dest, 1), insn), 1);
4864 validate_change (insn, &XEXP (dest, 2),
4865 canon_reg (XEXP (dest, 2), insn), 1);
4868 while (GET_CODE (dest) == SUBREG
4869 || GET_CODE (dest) == ZERO_EXTRACT
4870 || GET_CODE (dest) == STRICT_LOW_PART)
4871 dest = XEXP (dest, 0);
4873 if (MEM_P (dest))
4874 canon_reg (dest, insn);
4877 /* Now that we have done all the replacements, we can apply the change
4878 group and see if they all work. Note that this will cause some
4879 canonicalizations that would have worked individually not to be applied
4880 because some other canonicalization didn't work, but this should not
4881 occur often.
4883 The result of apply_change_group can be ignored; see canon_reg. */
4885 apply_change_group ();
4887 /* Set sets[i].src_elt to the class each source belongs to.
4888 Detect assignments from or to volatile things
4889 and set set[i] to zero so they will be ignored
4890 in the rest of this function.
4892 Nothing in this loop changes the hash table or the register chains. */
4894 for (i = 0; i < n_sets; i++)
4896 rtx src, dest;
4897 rtx src_folded;
4898 struct table_elt *elt = 0, *p;
4899 enum machine_mode mode;
4900 rtx src_eqv_here;
4901 rtx src_const = 0;
4902 rtx src_related = 0;
4903 struct table_elt *src_const_elt = 0;
4904 int src_cost = MAX_COST;
4905 int src_eqv_cost = MAX_COST;
4906 int src_folded_cost = MAX_COST;
4907 int src_related_cost = MAX_COST;
4908 int src_elt_cost = MAX_COST;
4909 int src_regcost = MAX_COST;
4910 int src_eqv_regcost = MAX_COST;
4911 int src_folded_regcost = MAX_COST;
4912 int src_related_regcost = MAX_COST;
4913 int src_elt_regcost = MAX_COST;
4914 /* Set nonzero if we need to call force_const_mem on with the
4915 contents of src_folded before using it. */
4916 int src_folded_force_flag = 0;
4918 dest = SET_DEST (sets[i].rtl);
4919 src = SET_SRC (sets[i].rtl);
4921 /* If SRC is a constant that has no machine mode,
4922 hash it with the destination's machine mode.
4923 This way we can keep different modes separate. */
4925 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4926 sets[i].mode = mode;
4928 if (src_eqv)
4930 enum machine_mode eqvmode = mode;
4931 if (GET_CODE (dest) == STRICT_LOW_PART)
4932 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4933 do_not_record = 0;
4934 hash_arg_in_memory = 0;
4935 src_eqv_hash = HASH (src_eqv, eqvmode);
4937 /* Find the equivalence class for the equivalent expression. */
4939 if (!do_not_record)
4940 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4942 src_eqv_volatile = do_not_record;
4943 src_eqv_in_memory = hash_arg_in_memory;
4946 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4947 value of the INNER register, not the destination. So it is not
4948 a valid substitution for the source. But save it for later. */
4949 if (GET_CODE (dest) == STRICT_LOW_PART)
4950 src_eqv_here = 0;
4951 else
4952 src_eqv_here = src_eqv;
4954 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4955 simplified result, which may not necessarily be valid. */
4956 src_folded = fold_rtx (src, insn);
4958 #if 0
4959 /* ??? This caused bad code to be generated for the m68k port with -O2.
4960 Suppose src is (CONST_INT -1), and that after truncation src_folded
4961 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4962 At the end we will add src and src_const to the same equivalence
4963 class. We now have 3 and -1 on the same equivalence class. This
4964 causes later instructions to be mis-optimized. */
4965 /* If storing a constant in a bitfield, pre-truncate the constant
4966 so we will be able to record it later. */
4967 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4969 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4971 if (GET_CODE (src) == CONST_INT
4972 && GET_CODE (width) == CONST_INT
4973 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4974 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4975 src_folded
4976 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4977 << INTVAL (width)) - 1));
4979 #endif
4981 /* Compute SRC's hash code, and also notice if it
4982 should not be recorded at all. In that case,
4983 prevent any further processing of this assignment. */
4984 do_not_record = 0;
4985 hash_arg_in_memory = 0;
4987 sets[i].src = src;
4988 sets[i].src_hash = HASH (src, mode);
4989 sets[i].src_volatile = do_not_record;
4990 sets[i].src_in_memory = hash_arg_in_memory;
4992 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4993 a pseudo, do not record SRC. Using SRC as a replacement for
4994 anything else will be incorrect in that situation. Note that
4995 this usually occurs only for stack slots, in which case all the
4996 RTL would be referring to SRC, so we don't lose any optimization
4997 opportunities by not having SRC in the hash table. */
4999 if (MEM_P (src)
5000 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5001 && REG_P (dest)
5002 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5003 sets[i].src_volatile = 1;
5005 #if 0
5006 /* It is no longer clear why we used to do this, but it doesn't
5007 appear to still be needed. So let's try without it since this
5008 code hurts cse'ing widened ops. */
5009 /* If source is a paradoxical subreg (such as QI treated as an SI),
5010 treat it as volatile. It may do the work of an SI in one context
5011 where the extra bits are not being used, but cannot replace an SI
5012 in general. */
5013 if (GET_CODE (src) == SUBREG
5014 && (GET_MODE_SIZE (GET_MODE (src))
5015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5016 sets[i].src_volatile = 1;
5017 #endif
5019 /* Locate all possible equivalent forms for SRC. Try to replace
5020 SRC in the insn with each cheaper equivalent.
5022 We have the following types of equivalents: SRC itself, a folded
5023 version, a value given in a REG_EQUAL note, or a value related
5024 to a constant.
5026 Each of these equivalents may be part of an additional class
5027 of equivalents (if more than one is in the table, they must be in
5028 the same class; we check for this).
5030 If the source is volatile, we don't do any table lookups.
5032 We note any constant equivalent for possible later use in a
5033 REG_NOTE. */
5035 if (!sets[i].src_volatile)
5036 elt = lookup (src, sets[i].src_hash, mode);
5038 sets[i].src_elt = elt;
5040 if (elt && src_eqv_here && src_eqv_elt)
5042 if (elt->first_same_value != src_eqv_elt->first_same_value)
5044 /* The REG_EQUAL is indicating that two formerly distinct
5045 classes are now equivalent. So merge them. */
5046 merge_equiv_classes (elt, src_eqv_elt);
5047 src_eqv_hash = HASH (src_eqv, elt->mode);
5048 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5051 src_eqv_here = 0;
5054 else if (src_eqv_elt)
5055 elt = src_eqv_elt;
5057 /* Try to find a constant somewhere and record it in `src_const'.
5058 Record its table element, if any, in `src_const_elt'. Look in
5059 any known equivalences first. (If the constant is not in the
5060 table, also set `sets[i].src_const_hash'). */
5061 if (elt)
5062 for (p = elt->first_same_value; p; p = p->next_same_value)
5063 if (p->is_const)
5065 src_const = p->exp;
5066 src_const_elt = elt;
5067 break;
5070 if (src_const == 0
5071 && (CONSTANT_P (src_folded)
5072 /* Consider (minus (label_ref L1) (label_ref L2)) as
5073 "constant" here so we will record it. This allows us
5074 to fold switch statements when an ADDR_DIFF_VEC is used. */
5075 || (GET_CODE (src_folded) == MINUS
5076 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5077 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5078 src_const = src_folded, src_const_elt = elt;
5079 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5080 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5082 /* If we don't know if the constant is in the table, get its
5083 hash code and look it up. */
5084 if (src_const && src_const_elt == 0)
5086 sets[i].src_const_hash = HASH (src_const, mode);
5087 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5090 sets[i].src_const = src_const;
5091 sets[i].src_const_elt = src_const_elt;
5093 /* If the constant and our source are both in the table, mark them as
5094 equivalent. Otherwise, if a constant is in the table but the source
5095 isn't, set ELT to it. */
5096 if (src_const_elt && elt
5097 && src_const_elt->first_same_value != elt->first_same_value)
5098 merge_equiv_classes (elt, src_const_elt);
5099 else if (src_const_elt && elt == 0)
5100 elt = src_const_elt;
5102 /* See if there is a register linearly related to a constant
5103 equivalent of SRC. */
5104 if (src_const
5105 && (GET_CODE (src_const) == CONST
5106 || (src_const_elt && src_const_elt->related_value != 0)))
5108 src_related = use_related_value (src_const, src_const_elt);
5109 if (src_related)
5111 struct table_elt *src_related_elt
5112 = lookup (src_related, HASH (src_related, mode), mode);
5113 if (src_related_elt && elt)
5115 if (elt->first_same_value
5116 != src_related_elt->first_same_value)
5117 /* This can occur when we previously saw a CONST
5118 involving a SYMBOL_REF and then see the SYMBOL_REF
5119 twice. Merge the involved classes. */
5120 merge_equiv_classes (elt, src_related_elt);
5122 src_related = 0;
5123 src_related_elt = 0;
5125 else if (src_related_elt && elt == 0)
5126 elt = src_related_elt;
5130 /* See if we have a CONST_INT that is already in a register in a
5131 wider mode. */
5133 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5134 && GET_MODE_CLASS (mode) == MODE_INT
5135 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5137 enum machine_mode wider_mode;
5139 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5140 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5141 && src_related == 0;
5142 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5144 struct table_elt *const_elt
5145 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5147 if (const_elt == 0)
5148 continue;
5150 for (const_elt = const_elt->first_same_value;
5151 const_elt; const_elt = const_elt->next_same_value)
5152 if (REG_P (const_elt->exp))
5154 src_related = gen_lowpart (mode,
5155 const_elt->exp);
5156 break;
5161 /* Another possibility is that we have an AND with a constant in
5162 a mode narrower than a word. If so, it might have been generated
5163 as part of an "if" which would narrow the AND. If we already
5164 have done the AND in a wider mode, we can use a SUBREG of that
5165 value. */
5167 if (flag_expensive_optimizations && ! src_related
5168 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5169 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5171 enum machine_mode tmode;
5172 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5174 for (tmode = GET_MODE_WIDER_MODE (mode);
5175 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5176 tmode = GET_MODE_WIDER_MODE (tmode))
5178 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5179 struct table_elt *larger_elt;
5181 if (inner)
5183 PUT_MODE (new_and, tmode);
5184 XEXP (new_and, 0) = inner;
5185 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5186 if (larger_elt == 0)
5187 continue;
5189 for (larger_elt = larger_elt->first_same_value;
5190 larger_elt; larger_elt = larger_elt->next_same_value)
5191 if (REG_P (larger_elt->exp))
5193 src_related
5194 = gen_lowpart (mode, larger_elt->exp);
5195 break;
5198 if (src_related)
5199 break;
5204 #ifdef LOAD_EXTEND_OP
5205 /* See if a MEM has already been loaded with a widening operation;
5206 if it has, we can use a subreg of that. Many CISC machines
5207 also have such operations, but this is only likely to be
5208 beneficial on these machines. */
5210 if (flag_expensive_optimizations && src_related == 0
5211 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5212 && GET_MODE_CLASS (mode) == MODE_INT
5213 && MEM_P (src) && ! do_not_record
5214 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5216 struct rtx_def memory_extend_buf;
5217 rtx memory_extend_rtx = &memory_extend_buf;
5218 enum machine_mode tmode;
5220 /* Set what we are trying to extend and the operation it might
5221 have been extended with. */
5222 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5223 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5224 XEXP (memory_extend_rtx, 0) = src;
5226 for (tmode = GET_MODE_WIDER_MODE (mode);
5227 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5228 tmode = GET_MODE_WIDER_MODE (tmode))
5230 struct table_elt *larger_elt;
5232 PUT_MODE (memory_extend_rtx, tmode);
5233 larger_elt = lookup (memory_extend_rtx,
5234 HASH (memory_extend_rtx, tmode), tmode);
5235 if (larger_elt == 0)
5236 continue;
5238 for (larger_elt = larger_elt->first_same_value;
5239 larger_elt; larger_elt = larger_elt->next_same_value)
5240 if (REG_P (larger_elt->exp))
5242 src_related = gen_lowpart (mode,
5243 larger_elt->exp);
5244 break;
5247 if (src_related)
5248 break;
5251 #endif /* LOAD_EXTEND_OP */
5253 if (src == src_folded)
5254 src_folded = 0;
5256 /* At this point, ELT, if nonzero, points to a class of expressions
5257 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5258 and SRC_RELATED, if nonzero, each contain additional equivalent
5259 expressions. Prune these latter expressions by deleting expressions
5260 already in the equivalence class.
5262 Check for an equivalent identical to the destination. If found,
5263 this is the preferred equivalent since it will likely lead to
5264 elimination of the insn. Indicate this by placing it in
5265 `src_related'. */
5267 if (elt)
5268 elt = elt->first_same_value;
5269 for (p = elt; p; p = p->next_same_value)
5271 enum rtx_code code = GET_CODE (p->exp);
5273 /* If the expression is not valid, ignore it. Then we do not
5274 have to check for validity below. In most cases, we can use
5275 `rtx_equal_p', since canonicalization has already been done. */
5276 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5277 continue;
5279 /* Also skip paradoxical subregs, unless that's what we're
5280 looking for. */
5281 if (code == SUBREG
5282 && (GET_MODE_SIZE (GET_MODE (p->exp))
5283 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5284 && ! (src != 0
5285 && GET_CODE (src) == SUBREG
5286 && GET_MODE (src) == GET_MODE (p->exp)
5287 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5288 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5289 continue;
5291 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5292 src = 0;
5293 else if (src_folded && GET_CODE (src_folded) == code
5294 && rtx_equal_p (src_folded, p->exp))
5295 src_folded = 0;
5296 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5297 && rtx_equal_p (src_eqv_here, p->exp))
5298 src_eqv_here = 0;
5299 else if (src_related && GET_CODE (src_related) == code
5300 && rtx_equal_p (src_related, p->exp))
5301 src_related = 0;
5303 /* This is the same as the destination of the insns, we want
5304 to prefer it. Copy it to src_related. The code below will
5305 then give it a negative cost. */
5306 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5307 src_related = dest;
5310 /* Find the cheapest valid equivalent, trying all the available
5311 possibilities. Prefer items not in the hash table to ones
5312 that are when they are equal cost. Note that we can never
5313 worsen an insn as the current contents will also succeed.
5314 If we find an equivalent identical to the destination, use it as best,
5315 since this insn will probably be eliminated in that case. */
5316 if (src)
5318 if (rtx_equal_p (src, dest))
5319 src_cost = src_regcost = -1;
5320 else
5322 src_cost = COST (src);
5323 src_regcost = approx_reg_cost (src);
5327 if (src_eqv_here)
5329 if (rtx_equal_p (src_eqv_here, dest))
5330 src_eqv_cost = src_eqv_regcost = -1;
5331 else
5333 src_eqv_cost = COST (src_eqv_here);
5334 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5338 if (src_folded)
5340 if (rtx_equal_p (src_folded, dest))
5341 src_folded_cost = src_folded_regcost = -1;
5342 else
5344 src_folded_cost = COST (src_folded);
5345 src_folded_regcost = approx_reg_cost (src_folded);
5349 if (src_related)
5351 if (rtx_equal_p (src_related, dest))
5352 src_related_cost = src_related_regcost = -1;
5353 else
5355 src_related_cost = COST (src_related);
5356 src_related_regcost = approx_reg_cost (src_related);
5360 /* If this was an indirect jump insn, a known label will really be
5361 cheaper even though it looks more expensive. */
5362 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5363 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5365 /* Terminate loop when replacement made. This must terminate since
5366 the current contents will be tested and will always be valid. */
5367 while (1)
5369 rtx trial;
5371 /* Skip invalid entries. */
5372 while (elt && !REG_P (elt->exp)
5373 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5374 elt = elt->next_same_value;
5376 /* A paradoxical subreg would be bad here: it'll be the right
5377 size, but later may be adjusted so that the upper bits aren't
5378 what we want. So reject it. */
5379 if (elt != 0
5380 && GET_CODE (elt->exp) == SUBREG
5381 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5382 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5383 /* It is okay, though, if the rtx we're trying to match
5384 will ignore any of the bits we can't predict. */
5385 && ! (src != 0
5386 && GET_CODE (src) == SUBREG
5387 && GET_MODE (src) == GET_MODE (elt->exp)
5388 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5389 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5391 elt = elt->next_same_value;
5392 continue;
5395 if (elt)
5397 src_elt_cost = elt->cost;
5398 src_elt_regcost = elt->regcost;
5401 /* Find cheapest and skip it for the next time. For items
5402 of equal cost, use this order:
5403 src_folded, src, src_eqv, src_related and hash table entry. */
5404 if (src_folded
5405 && preferable (src_folded_cost, src_folded_regcost,
5406 src_cost, src_regcost) <= 0
5407 && preferable (src_folded_cost, src_folded_regcost,
5408 src_eqv_cost, src_eqv_regcost) <= 0
5409 && preferable (src_folded_cost, src_folded_regcost,
5410 src_related_cost, src_related_regcost) <= 0
5411 && preferable (src_folded_cost, src_folded_regcost,
5412 src_elt_cost, src_elt_regcost) <= 0)
5414 trial = src_folded, src_folded_cost = MAX_COST;
5415 if (src_folded_force_flag)
5417 rtx forced = force_const_mem (mode, trial);
5418 if (forced)
5419 trial = forced;
5422 else if (src
5423 && preferable (src_cost, src_regcost,
5424 src_eqv_cost, src_eqv_regcost) <= 0
5425 && preferable (src_cost, src_regcost,
5426 src_related_cost, src_related_regcost) <= 0
5427 && preferable (src_cost, src_regcost,
5428 src_elt_cost, src_elt_regcost) <= 0)
5429 trial = src, src_cost = MAX_COST;
5430 else if (src_eqv_here
5431 && preferable (src_eqv_cost, src_eqv_regcost,
5432 src_related_cost, src_related_regcost) <= 0
5433 && preferable (src_eqv_cost, src_eqv_regcost,
5434 src_elt_cost, src_elt_regcost) <= 0)
5435 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5436 else if (src_related
5437 && preferable (src_related_cost, src_related_regcost,
5438 src_elt_cost, src_elt_regcost) <= 0)
5439 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5440 else
5442 trial = copy_rtx (elt->exp);
5443 elt = elt->next_same_value;
5444 src_elt_cost = MAX_COST;
5447 /* We don't normally have an insn matching (set (pc) (pc)), so
5448 check for this separately here. We will delete such an
5449 insn below.
5451 For other cases such as a table jump or conditional jump
5452 where we know the ultimate target, go ahead and replace the
5453 operand. While that may not make a valid insn, we will
5454 reemit the jump below (and also insert any necessary
5455 barriers). */
5456 if (n_sets == 1 && dest == pc_rtx
5457 && (trial == pc_rtx
5458 || (GET_CODE (trial) == LABEL_REF
5459 && ! condjump_p (insn))))
5461 /* Don't substitute non-local labels, this confuses CFG. */
5462 if (GET_CODE (trial) == LABEL_REF
5463 && LABEL_REF_NONLOCAL_P (trial))
5464 continue;
5466 SET_SRC (sets[i].rtl) = trial;
5467 cse_jumps_altered = 1;
5468 break;
5471 /* Look for a substitution that makes a valid insn. */
5472 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5474 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5476 /* If we just made a substitution inside a libcall, then we
5477 need to make the same substitution in any notes attached
5478 to the RETVAL insn. */
5479 if (libcall_insn
5480 && (REG_P (sets[i].orig_src)
5481 || GET_CODE (sets[i].orig_src) == SUBREG
5482 || MEM_P (sets[i].orig_src)))
5484 rtx note = find_reg_equal_equiv_note (libcall_insn);
5485 if (note != 0)
5486 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5487 sets[i].orig_src,
5488 copy_rtx (new));
5491 /* The result of apply_change_group can be ignored; see
5492 canon_reg. */
5494 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5495 apply_change_group ();
5496 break;
5499 /* If we previously found constant pool entries for
5500 constants and this is a constant, try making a
5501 pool entry. Put it in src_folded unless we already have done
5502 this since that is where it likely came from. */
5504 else if (constant_pool_entries_cost
5505 && CONSTANT_P (trial)
5506 /* Reject cases that will abort in decode_rtx_const.
5507 On the alpha when simplifying a switch, we get
5508 (const (truncate (minus (label_ref) (label_ref)))). */
5509 && ! (GET_CODE (trial) == CONST
5510 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5511 /* Likewise on IA-64, except without the truncate. */
5512 && ! (GET_CODE (trial) == CONST
5513 && GET_CODE (XEXP (trial, 0)) == MINUS
5514 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5515 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5516 && (src_folded == 0
5517 || (!MEM_P (src_folded)
5518 && ! src_folded_force_flag))
5519 && GET_MODE_CLASS (mode) != MODE_CC
5520 && mode != VOIDmode)
5522 src_folded_force_flag = 1;
5523 src_folded = trial;
5524 src_folded_cost = constant_pool_entries_cost;
5525 src_folded_regcost = constant_pool_entries_regcost;
5529 src = SET_SRC (sets[i].rtl);
5531 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5532 However, there is an important exception: If both are registers
5533 that are not the head of their equivalence class, replace SET_SRC
5534 with the head of the class. If we do not do this, we will have
5535 both registers live over a portion of the basic block. This way,
5536 their lifetimes will likely abut instead of overlapping. */
5537 if (REG_P (dest)
5538 && REGNO_QTY_VALID_P (REGNO (dest)))
5540 int dest_q = REG_QTY (REGNO (dest));
5541 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5543 if (dest_ent->mode == GET_MODE (dest)
5544 && dest_ent->first_reg != REGNO (dest)
5545 && REG_P (src) && REGNO (src) == REGNO (dest)
5546 /* Don't do this if the original insn had a hard reg as
5547 SET_SRC or SET_DEST. */
5548 && (!REG_P (sets[i].src)
5549 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5550 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5551 /* We can't call canon_reg here because it won't do anything if
5552 SRC is a hard register. */
5554 int src_q = REG_QTY (REGNO (src));
5555 struct qty_table_elem *src_ent = &qty_table[src_q];
5556 int first = src_ent->first_reg;
5557 rtx new_src
5558 = (first >= FIRST_PSEUDO_REGISTER
5559 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5561 /* We must use validate-change even for this, because this
5562 might be a special no-op instruction, suitable only to
5563 tag notes onto. */
5564 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5566 src = new_src;
5567 /* If we had a constant that is cheaper than what we are now
5568 setting SRC to, use that constant. We ignored it when we
5569 thought we could make this into a no-op. */
5570 if (src_const && COST (src_const) < COST (src)
5571 && validate_change (insn, &SET_SRC (sets[i].rtl),
5572 src_const, 0))
5573 src = src_const;
5578 /* If we made a change, recompute SRC values. */
5579 if (src != sets[i].src)
5581 cse_altered = 1;
5582 do_not_record = 0;
5583 hash_arg_in_memory = 0;
5584 sets[i].src = src;
5585 sets[i].src_hash = HASH (src, mode);
5586 sets[i].src_volatile = do_not_record;
5587 sets[i].src_in_memory = hash_arg_in_memory;
5588 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5591 /* If this is a single SET, we are setting a register, and we have an
5592 equivalent constant, we want to add a REG_NOTE. We don't want
5593 to write a REG_EQUAL note for a constant pseudo since verifying that
5594 that pseudo hasn't been eliminated is a pain. Such a note also
5595 won't help anything.
5597 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5598 which can be created for a reference to a compile time computable
5599 entry in a jump table. */
5601 if (n_sets == 1 && src_const && REG_P (dest)
5602 && !REG_P (src_const)
5603 && ! (GET_CODE (src_const) == CONST
5604 && GET_CODE (XEXP (src_const, 0)) == MINUS
5605 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5606 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5608 /* We only want a REG_EQUAL note if src_const != src. */
5609 if (! rtx_equal_p (src, src_const))
5611 /* Make sure that the rtx is not shared. */
5612 src_const = copy_rtx (src_const);
5614 /* Record the actual constant value in a REG_EQUAL note,
5615 making a new one if one does not already exist. */
5616 set_unique_reg_note (insn, REG_EQUAL, src_const);
5620 /* Now deal with the destination. */
5621 do_not_record = 0;
5623 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5624 while (GET_CODE (dest) == SUBREG
5625 || GET_CODE (dest) == ZERO_EXTRACT
5626 || GET_CODE (dest) == STRICT_LOW_PART)
5627 dest = XEXP (dest, 0);
5629 sets[i].inner_dest = dest;
5631 if (MEM_P (dest))
5633 #ifdef PUSH_ROUNDING
5634 /* Stack pushes invalidate the stack pointer. */
5635 rtx addr = XEXP (dest, 0);
5636 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5637 && XEXP (addr, 0) == stack_pointer_rtx)
5638 invalidate (stack_pointer_rtx, Pmode);
5639 #endif
5640 dest = fold_rtx (dest, insn);
5643 /* Compute the hash code of the destination now,
5644 before the effects of this instruction are recorded,
5645 since the register values used in the address computation
5646 are those before this instruction. */
5647 sets[i].dest_hash = HASH (dest, mode);
5649 /* Don't enter a bit-field in the hash table
5650 because the value in it after the store
5651 may not equal what was stored, due to truncation. */
5653 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5655 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5657 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5658 && GET_CODE (width) == CONST_INT
5659 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5660 && ! (INTVAL (src_const)
5661 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5662 /* Exception: if the value is constant,
5663 and it won't be truncated, record it. */
5665 else
5667 /* This is chosen so that the destination will be invalidated
5668 but no new value will be recorded.
5669 We must invalidate because sometimes constant
5670 values can be recorded for bitfields. */
5671 sets[i].src_elt = 0;
5672 sets[i].src_volatile = 1;
5673 src_eqv = 0;
5674 src_eqv_elt = 0;
5678 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5679 the insn. */
5680 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5682 /* One less use of the label this insn used to jump to. */
5683 delete_insn (insn);
5684 cse_jumps_altered = 1;
5685 /* No more processing for this set. */
5686 sets[i].rtl = 0;
5689 /* If this SET is now setting PC to a label, we know it used to
5690 be a conditional or computed branch. */
5691 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5692 && !LABEL_REF_NONLOCAL_P (src))
5694 /* Now emit a BARRIER after the unconditional jump. */
5695 if (NEXT_INSN (insn) == 0
5696 || !BARRIER_P (NEXT_INSN (insn)))
5697 emit_barrier_after (insn);
5699 /* We reemit the jump in as many cases as possible just in
5700 case the form of an unconditional jump is significantly
5701 different than a computed jump or conditional jump.
5703 If this insn has multiple sets, then reemitting the
5704 jump is nontrivial. So instead we just force rerecognition
5705 and hope for the best. */
5706 if (n_sets == 1)
5708 rtx new, note;
5710 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5711 JUMP_LABEL (new) = XEXP (src, 0);
5712 LABEL_NUSES (XEXP (src, 0))++;
5714 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5715 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5716 if (note)
5718 XEXP (note, 1) = NULL_RTX;
5719 REG_NOTES (new) = note;
5722 delete_insn (insn);
5723 insn = new;
5725 /* Now emit a BARRIER after the unconditional jump. */
5726 if (NEXT_INSN (insn) == 0
5727 || !BARRIER_P (NEXT_INSN (insn)))
5728 emit_barrier_after (insn);
5730 else
5731 INSN_CODE (insn) = -1;
5733 /* Do not bother deleting any unreachable code,
5734 let jump/flow do that. */
5736 cse_jumps_altered = 1;
5737 sets[i].rtl = 0;
5740 /* If destination is volatile, invalidate it and then do no further
5741 processing for this assignment. */
5743 else if (do_not_record)
5745 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5746 invalidate (dest, VOIDmode);
5747 else if (MEM_P (dest))
5748 invalidate (dest, VOIDmode);
5749 else if (GET_CODE (dest) == STRICT_LOW_PART
5750 || GET_CODE (dest) == ZERO_EXTRACT)
5751 invalidate (XEXP (dest, 0), GET_MODE (dest));
5752 sets[i].rtl = 0;
5755 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5756 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5758 #ifdef HAVE_cc0
5759 /* If setting CC0, record what it was set to, or a constant, if it
5760 is equivalent to a constant. If it is being set to a floating-point
5761 value, make a COMPARE with the appropriate constant of 0. If we
5762 don't do this, later code can interpret this as a test against
5763 const0_rtx, which can cause problems if we try to put it into an
5764 insn as a floating-point operand. */
5765 if (dest == cc0_rtx)
5767 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5768 this_insn_cc0_mode = mode;
5769 if (FLOAT_MODE_P (mode))
5770 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5771 CONST0_RTX (mode));
5773 #endif
5776 /* Now enter all non-volatile source expressions in the hash table
5777 if they are not already present.
5778 Record their equivalence classes in src_elt.
5779 This way we can insert the corresponding destinations into
5780 the same classes even if the actual sources are no longer in them
5781 (having been invalidated). */
5783 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5784 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5786 struct table_elt *elt;
5787 struct table_elt *classp = sets[0].src_elt;
5788 rtx dest = SET_DEST (sets[0].rtl);
5789 enum machine_mode eqvmode = GET_MODE (dest);
5791 if (GET_CODE (dest) == STRICT_LOW_PART)
5793 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5794 classp = 0;
5796 if (insert_regs (src_eqv, classp, 0))
5798 rehash_using_reg (src_eqv);
5799 src_eqv_hash = HASH (src_eqv, eqvmode);
5801 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5802 elt->in_memory = src_eqv_in_memory;
5803 src_eqv_elt = elt;
5805 /* Check to see if src_eqv_elt is the same as a set source which
5806 does not yet have an elt, and if so set the elt of the set source
5807 to src_eqv_elt. */
5808 for (i = 0; i < n_sets; i++)
5809 if (sets[i].rtl && sets[i].src_elt == 0
5810 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5811 sets[i].src_elt = src_eqv_elt;
5814 for (i = 0; i < n_sets; i++)
5815 if (sets[i].rtl && ! sets[i].src_volatile
5816 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5818 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5820 /* REG_EQUAL in setting a STRICT_LOW_PART
5821 gives an equivalent for the entire destination register,
5822 not just for the subreg being stored in now.
5823 This is a more interesting equivalence, so we arrange later
5824 to treat the entire reg as the destination. */
5825 sets[i].src_elt = src_eqv_elt;
5826 sets[i].src_hash = src_eqv_hash;
5828 else
5830 /* Insert source and constant equivalent into hash table, if not
5831 already present. */
5832 struct table_elt *classp = src_eqv_elt;
5833 rtx src = sets[i].src;
5834 rtx dest = SET_DEST (sets[i].rtl);
5835 enum machine_mode mode
5836 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5838 /* It's possible that we have a source value known to be
5839 constant but don't have a REG_EQUAL note on the insn.
5840 Lack of a note will mean src_eqv_elt will be NULL. This
5841 can happen where we've generated a SUBREG to access a
5842 CONST_INT that is already in a register in a wider mode.
5843 Ensure that the source expression is put in the proper
5844 constant class. */
5845 if (!classp)
5846 classp = sets[i].src_const_elt;
5848 if (sets[i].src_elt == 0)
5850 /* Don't put a hard register source into the table if this is
5851 the last insn of a libcall. In this case, we only need
5852 to put src_eqv_elt in src_elt. */
5853 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5855 struct table_elt *elt;
5857 /* Note that these insert_regs calls cannot remove
5858 any of the src_elt's, because they would have failed to
5859 match if not still valid. */
5860 if (insert_regs (src, classp, 0))
5862 rehash_using_reg (src);
5863 sets[i].src_hash = HASH (src, mode);
5865 elt = insert (src, classp, sets[i].src_hash, mode);
5866 elt->in_memory = sets[i].src_in_memory;
5867 sets[i].src_elt = classp = elt;
5869 else
5870 sets[i].src_elt = classp;
5872 if (sets[i].src_const && sets[i].src_const_elt == 0
5873 && src != sets[i].src_const
5874 && ! rtx_equal_p (sets[i].src_const, src))
5875 sets[i].src_elt = insert (sets[i].src_const, classp,
5876 sets[i].src_const_hash, mode);
5879 else if (sets[i].src_elt == 0)
5880 /* If we did not insert the source into the hash table (e.g., it was
5881 volatile), note the equivalence class for the REG_EQUAL value, if any,
5882 so that the destination goes into that class. */
5883 sets[i].src_elt = src_eqv_elt;
5885 invalidate_from_clobbers (x);
5887 /* Some registers are invalidated by subroutine calls. Memory is
5888 invalidated by non-constant calls. */
5890 if (CALL_P (insn))
5892 if (! CONST_OR_PURE_CALL_P (insn))
5893 invalidate_memory ();
5894 invalidate_for_call ();
5897 /* Now invalidate everything set by this instruction.
5898 If a SUBREG or other funny destination is being set,
5899 sets[i].rtl is still nonzero, so here we invalidate the reg
5900 a part of which is being set. */
5902 for (i = 0; i < n_sets; i++)
5903 if (sets[i].rtl)
5905 /* We can't use the inner dest, because the mode associated with
5906 a ZERO_EXTRACT is significant. */
5907 rtx dest = SET_DEST (sets[i].rtl);
5909 /* Needed for registers to remove the register from its
5910 previous quantity's chain.
5911 Needed for memory if this is a nonvarying address, unless
5912 we have just done an invalidate_memory that covers even those. */
5913 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5914 invalidate (dest, VOIDmode);
5915 else if (MEM_P (dest))
5916 invalidate (dest, VOIDmode);
5917 else if (GET_CODE (dest) == STRICT_LOW_PART
5918 || GET_CODE (dest) == ZERO_EXTRACT)
5919 invalidate (XEXP (dest, 0), GET_MODE (dest));
5922 /* A volatile ASM invalidates everything. */
5923 if (NONJUMP_INSN_P (insn)
5924 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5925 && MEM_VOLATILE_P (PATTERN (insn)))
5926 flush_hash_table ();
5928 /* Make sure registers mentioned in destinations
5929 are safe for use in an expression to be inserted.
5930 This removes from the hash table
5931 any invalid entry that refers to one of these registers.
5933 We don't care about the return value from mention_regs because
5934 we are going to hash the SET_DEST values unconditionally. */
5936 for (i = 0; i < n_sets; i++)
5938 if (sets[i].rtl)
5940 rtx x = SET_DEST (sets[i].rtl);
5942 if (!REG_P (x))
5943 mention_regs (x);
5944 else
5946 /* We used to rely on all references to a register becoming
5947 inaccessible when a register changes to a new quantity,
5948 since that changes the hash code. However, that is not
5949 safe, since after HASH_SIZE new quantities we get a
5950 hash 'collision' of a register with its own invalid
5951 entries. And since SUBREGs have been changed not to
5952 change their hash code with the hash code of the register,
5953 it wouldn't work any longer at all. So we have to check
5954 for any invalid references lying around now.
5955 This code is similar to the REG case in mention_regs,
5956 but it knows that reg_tick has been incremented, and
5957 it leaves reg_in_table as -1 . */
5958 unsigned int regno = REGNO (x);
5959 unsigned int endregno
5960 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5961 : hard_regno_nregs[regno][GET_MODE (x)]);
5962 unsigned int i;
5964 for (i = regno; i < endregno; i++)
5966 if (REG_IN_TABLE (i) >= 0)
5968 remove_invalid_refs (i);
5969 REG_IN_TABLE (i) = -1;
5976 /* We may have just removed some of the src_elt's from the hash table.
5977 So replace each one with the current head of the same class. */
5979 for (i = 0; i < n_sets; i++)
5980 if (sets[i].rtl)
5982 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5983 /* If elt was removed, find current head of same class,
5984 or 0 if nothing remains of that class. */
5986 struct table_elt *elt = sets[i].src_elt;
5988 while (elt && elt->prev_same_value)
5989 elt = elt->prev_same_value;
5991 while (elt && elt->first_same_value == 0)
5992 elt = elt->next_same_value;
5993 sets[i].src_elt = elt ? elt->first_same_value : 0;
5997 /* Now insert the destinations into their equivalence classes. */
5999 for (i = 0; i < n_sets; i++)
6000 if (sets[i].rtl)
6002 rtx dest = SET_DEST (sets[i].rtl);
6003 struct table_elt *elt;
6005 /* Don't record value if we are not supposed to risk allocating
6006 floating-point values in registers that might be wider than
6007 memory. */
6008 if ((flag_float_store
6009 && MEM_P (dest)
6010 && FLOAT_MODE_P (GET_MODE (dest)))
6011 /* Don't record BLKmode values, because we don't know the
6012 size of it, and can't be sure that other BLKmode values
6013 have the same or smaller size. */
6014 || GET_MODE (dest) == BLKmode
6015 /* Don't record values of destinations set inside a libcall block
6016 since we might delete the libcall. Things should have been set
6017 up so we won't want to reuse such a value, but we play it safe
6018 here. */
6019 || libcall_insn
6020 /* If we didn't put a REG_EQUAL value or a source into the hash
6021 table, there is no point is recording DEST. */
6022 || sets[i].src_elt == 0
6023 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6024 or SIGN_EXTEND, don't record DEST since it can cause
6025 some tracking to be wrong.
6027 ??? Think about this more later. */
6028 || (GET_CODE (dest) == SUBREG
6029 && (GET_MODE_SIZE (GET_MODE (dest))
6030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6031 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6032 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6033 continue;
6035 /* STRICT_LOW_PART isn't part of the value BEING set,
6036 and neither is the SUBREG inside it.
6037 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6038 if (GET_CODE (dest) == STRICT_LOW_PART)
6039 dest = SUBREG_REG (XEXP (dest, 0));
6041 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6042 /* Registers must also be inserted into chains for quantities. */
6043 if (insert_regs (dest, sets[i].src_elt, 1))
6045 /* If `insert_regs' changes something, the hash code must be
6046 recalculated. */
6047 rehash_using_reg (dest);
6048 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6051 elt = insert (dest, sets[i].src_elt,
6052 sets[i].dest_hash, GET_MODE (dest));
6054 elt->in_memory = (MEM_P (sets[i].inner_dest)
6055 && !MEM_READONLY_P (sets[i].inner_dest));
6057 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6058 narrower than M2, and both M1 and M2 are the same number of words,
6059 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6060 make that equivalence as well.
6062 However, BAR may have equivalences for which gen_lowpart
6063 will produce a simpler value than gen_lowpart applied to
6064 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6065 BAR's equivalences. If we don't get a simplified form, make
6066 the SUBREG. It will not be used in an equivalence, but will
6067 cause two similar assignments to be detected.
6069 Note the loop below will find SUBREG_REG (DEST) since we have
6070 already entered SRC and DEST of the SET in the table. */
6072 if (GET_CODE (dest) == SUBREG
6073 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6074 / UNITS_PER_WORD)
6075 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6076 && (GET_MODE_SIZE (GET_MODE (dest))
6077 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6078 && sets[i].src_elt != 0)
6080 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6081 struct table_elt *elt, *classp = 0;
6083 for (elt = sets[i].src_elt->first_same_value; elt;
6084 elt = elt->next_same_value)
6086 rtx new_src = 0;
6087 unsigned src_hash;
6088 struct table_elt *src_elt;
6089 int byte = 0;
6091 /* Ignore invalid entries. */
6092 if (!REG_P (elt->exp)
6093 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6094 continue;
6096 /* We may have already been playing subreg games. If the
6097 mode is already correct for the destination, use it. */
6098 if (GET_MODE (elt->exp) == new_mode)
6099 new_src = elt->exp;
6100 else
6102 /* Calculate big endian correction for the SUBREG_BYTE.
6103 We have already checked that M1 (GET_MODE (dest))
6104 is not narrower than M2 (new_mode). */
6105 if (BYTES_BIG_ENDIAN)
6106 byte = (GET_MODE_SIZE (GET_MODE (dest))
6107 - GET_MODE_SIZE (new_mode));
6109 new_src = simplify_gen_subreg (new_mode, elt->exp,
6110 GET_MODE (dest), byte);
6113 /* The call to simplify_gen_subreg fails if the value
6114 is VOIDmode, yet we can't do any simplification, e.g.
6115 for EXPR_LISTs denoting function call results.
6116 It is invalid to construct a SUBREG with a VOIDmode
6117 SUBREG_REG, hence a zero new_src means we can't do
6118 this substitution. */
6119 if (! new_src)
6120 continue;
6122 src_hash = HASH (new_src, new_mode);
6123 src_elt = lookup (new_src, src_hash, new_mode);
6125 /* Put the new source in the hash table is if isn't
6126 already. */
6127 if (src_elt == 0)
6129 if (insert_regs (new_src, classp, 0))
6131 rehash_using_reg (new_src);
6132 src_hash = HASH (new_src, new_mode);
6134 src_elt = insert (new_src, classp, src_hash, new_mode);
6135 src_elt->in_memory = elt->in_memory;
6137 else if (classp && classp != src_elt->first_same_value)
6138 /* Show that two things that we've seen before are
6139 actually the same. */
6140 merge_equiv_classes (src_elt, classp);
6142 classp = src_elt->first_same_value;
6143 /* Ignore invalid entries. */
6144 while (classp
6145 && !REG_P (classp->exp)
6146 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6147 classp = classp->next_same_value;
6152 /* Special handling for (set REG0 REG1) where REG0 is the
6153 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6154 be used in the sequel, so (if easily done) change this insn to
6155 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6156 that computed their value. Then REG1 will become a dead store
6157 and won't cloud the situation for later optimizations.
6159 Do not make this change if REG1 is a hard register, because it will
6160 then be used in the sequel and we may be changing a two-operand insn
6161 into a three-operand insn.
6163 Also do not do this if we are operating on a copy of INSN.
6165 Also don't do this if INSN ends a libcall; this would cause an unrelated
6166 register to be set in the middle of a libcall, and we then get bad code
6167 if the libcall is deleted. */
6169 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6170 && NEXT_INSN (PREV_INSN (insn)) == insn
6171 && REG_P (SET_SRC (sets[0].rtl))
6172 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6173 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6175 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6176 struct qty_table_elem *src_ent = &qty_table[src_q];
6178 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6179 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6181 rtx prev = insn;
6182 /* Scan for the previous nonnote insn, but stop at a basic
6183 block boundary. */
6186 prev = PREV_INSN (prev);
6188 while (prev && NOTE_P (prev)
6189 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6191 /* Do not swap the registers around if the previous instruction
6192 attaches a REG_EQUIV note to REG1.
6194 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6195 from the pseudo that originally shadowed an incoming argument
6196 to another register. Some uses of REG_EQUIV might rely on it
6197 being attached to REG1 rather than REG2.
6199 This section previously turned the REG_EQUIV into a REG_EQUAL
6200 note. We cannot do that because REG_EQUIV may provide an
6201 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6203 if (prev != 0 && NONJUMP_INSN_P (prev)
6204 && GET_CODE (PATTERN (prev)) == SET
6205 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6206 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6208 rtx dest = SET_DEST (sets[0].rtl);
6209 rtx src = SET_SRC (sets[0].rtl);
6210 rtx note;
6212 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6213 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6214 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6215 apply_change_group ();
6217 /* If INSN has a REG_EQUAL note, and this note mentions
6218 REG0, then we must delete it, because the value in
6219 REG0 has changed. If the note's value is REG1, we must
6220 also delete it because that is now this insn's dest. */
6221 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6222 if (note != 0
6223 && (reg_mentioned_p (dest, XEXP (note, 0))
6224 || rtx_equal_p (src, XEXP (note, 0))))
6225 remove_note (insn, note);
6230 /* If this is a conditional jump insn, record any known equivalences due to
6231 the condition being tested. */
6233 if (JUMP_P (insn)
6234 && n_sets == 1 && GET_CODE (x) == SET
6235 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6236 record_jump_equiv (insn, 0);
6238 #ifdef HAVE_cc0
6239 /* If the previous insn set CC0 and this insn no longer references CC0,
6240 delete the previous insn. Here we use the fact that nothing expects CC0
6241 to be valid over an insn, which is true until the final pass. */
6242 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6243 && (tem = single_set (prev_insn)) != 0
6244 && SET_DEST (tem) == cc0_rtx
6245 && ! reg_mentioned_p (cc0_rtx, x))
6246 delete_insn (prev_insn);
6248 prev_insn_cc0 = this_insn_cc0;
6249 prev_insn_cc0_mode = this_insn_cc0_mode;
6250 prev_insn = insn;
6251 #endif
6254 /* Remove from the hash table all expressions that reference memory. */
6256 static void
6257 invalidate_memory (void)
6259 int i;
6260 struct table_elt *p, *next;
6262 for (i = 0; i < HASH_SIZE; i++)
6263 for (p = table[i]; p; p = next)
6265 next = p->next_same_hash;
6266 if (p->in_memory)
6267 remove_from_table (p, i);
6271 /* If ADDR is an address that implicitly affects the stack pointer, return
6272 1 and update the register tables to show the effect. Else, return 0. */
6274 static int
6275 addr_affects_sp_p (rtx addr)
6277 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6278 && REG_P (XEXP (addr, 0))
6279 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6281 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6283 REG_TICK (STACK_POINTER_REGNUM)++;
6284 /* Is it possible to use a subreg of SP? */
6285 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6288 /* This should be *very* rare. */
6289 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6290 invalidate (stack_pointer_rtx, VOIDmode);
6292 return 1;
6295 return 0;
6298 /* Perform invalidation on the basis of everything about an insn
6299 except for invalidating the actual places that are SET in it.
6300 This includes the places CLOBBERed, and anything that might
6301 alias with something that is SET or CLOBBERed.
6303 X is the pattern of the insn. */
6305 static void
6306 invalidate_from_clobbers (rtx x)
6308 if (GET_CODE (x) == CLOBBER)
6310 rtx ref = XEXP (x, 0);
6311 if (ref)
6313 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6314 || MEM_P (ref))
6315 invalidate (ref, VOIDmode);
6316 else if (GET_CODE (ref) == STRICT_LOW_PART
6317 || GET_CODE (ref) == ZERO_EXTRACT)
6318 invalidate (XEXP (ref, 0), GET_MODE (ref));
6321 else if (GET_CODE (x) == PARALLEL)
6323 int i;
6324 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6326 rtx y = XVECEXP (x, 0, i);
6327 if (GET_CODE (y) == CLOBBER)
6329 rtx ref = XEXP (y, 0);
6330 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6331 || MEM_P (ref))
6332 invalidate (ref, VOIDmode);
6333 else if (GET_CODE (ref) == STRICT_LOW_PART
6334 || GET_CODE (ref) == ZERO_EXTRACT)
6335 invalidate (XEXP (ref, 0), GET_MODE (ref));
6341 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6342 and replace any registers in them with either an equivalent constant
6343 or the canonical form of the register. If we are inside an address,
6344 only do this if the address remains valid.
6346 OBJECT is 0 except when within a MEM in which case it is the MEM.
6348 Return the replacement for X. */
6350 static rtx
6351 cse_process_notes (rtx x, rtx object)
6353 enum rtx_code code = GET_CODE (x);
6354 const char *fmt = GET_RTX_FORMAT (code);
6355 int i;
6357 switch (code)
6359 case CONST_INT:
6360 case CONST:
6361 case SYMBOL_REF:
6362 case LABEL_REF:
6363 case CONST_DOUBLE:
6364 case CONST_VECTOR:
6365 case PC:
6366 case CC0:
6367 case LO_SUM:
6368 return x;
6370 case MEM:
6371 validate_change (x, &XEXP (x, 0),
6372 cse_process_notes (XEXP (x, 0), x), 0);
6373 return x;
6375 case EXPR_LIST:
6376 case INSN_LIST:
6377 if (REG_NOTE_KIND (x) == REG_EQUAL)
6378 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6379 if (XEXP (x, 1))
6380 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6381 return x;
6383 case SIGN_EXTEND:
6384 case ZERO_EXTEND:
6385 case SUBREG:
6387 rtx new = cse_process_notes (XEXP (x, 0), object);
6388 /* We don't substitute VOIDmode constants into these rtx,
6389 since they would impede folding. */
6390 if (GET_MODE (new) != VOIDmode)
6391 validate_change (object, &XEXP (x, 0), new, 0);
6392 return x;
6395 case REG:
6396 i = REG_QTY (REGNO (x));
6398 /* Return a constant or a constant register. */
6399 if (REGNO_QTY_VALID_P (REGNO (x)))
6401 struct qty_table_elem *ent = &qty_table[i];
6403 if (ent->const_rtx != NULL_RTX
6404 && (CONSTANT_P (ent->const_rtx)
6405 || REG_P (ent->const_rtx)))
6407 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6408 if (new)
6409 return new;
6413 /* Otherwise, canonicalize this register. */
6414 return canon_reg (x, NULL_RTX);
6416 default:
6417 break;
6420 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6421 if (fmt[i] == 'e')
6422 validate_change (object, &XEXP (x, i),
6423 cse_process_notes (XEXP (x, i), object), 0);
6425 return x;
6428 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6429 since they are done elsewhere. This function is called via note_stores. */
6431 static void
6432 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6434 enum rtx_code code = GET_CODE (dest);
6436 if (code == MEM
6437 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6438 /* There are times when an address can appear varying and be a PLUS
6439 during this scan when it would be a fixed address were we to know
6440 the proper equivalences. So invalidate all memory if there is
6441 a BLKmode or nonscalar memory reference or a reference to a
6442 variable address. */
6443 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6444 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6446 invalidate_memory ();
6447 return;
6450 if (GET_CODE (set) == CLOBBER
6451 || CC0_P (dest)
6452 || dest == pc_rtx)
6453 return;
6455 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6456 invalidate (XEXP (dest, 0), GET_MODE (dest));
6457 else if (code == REG || code == SUBREG || code == MEM)
6458 invalidate (dest, VOIDmode);
6461 /* Invalidate all insns from START up to the end of the function or the
6462 next label. This called when we wish to CSE around a block that is
6463 conditionally executed. */
6465 static void
6466 invalidate_skipped_block (rtx start)
6468 rtx insn;
6470 for (insn = start; insn && !LABEL_P (insn);
6471 insn = NEXT_INSN (insn))
6473 if (! INSN_P (insn))
6474 continue;
6476 if (CALL_P (insn))
6478 if (! CONST_OR_PURE_CALL_P (insn))
6479 invalidate_memory ();
6480 invalidate_for_call ();
6483 invalidate_from_clobbers (PATTERN (insn));
6484 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6488 /* Find the end of INSN's basic block and return its range,
6489 the total number of SETs in all the insns of the block, the last insn of the
6490 block, and the branch path.
6492 The branch path indicates which branches should be followed. If a nonzero
6493 path size is specified, the block should be rescanned and a different set
6494 of branches will be taken. The branch path is only used if
6495 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6497 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6498 used to describe the block. It is filled in with the information about
6499 the current block. The incoming structure's branch path, if any, is used
6500 to construct the output branch path. */
6502 static void
6503 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6504 int follow_jumps, int skip_blocks)
6506 rtx p = insn, q;
6507 int nsets = 0;
6508 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6509 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6510 int path_size = data->path_size;
6511 int path_entry = 0;
6512 int i;
6514 /* Update the previous branch path, if any. If the last branch was
6515 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6516 If it was previously PATH_NOT_TAKEN,
6517 shorten the path by one and look at the previous branch. We know that
6518 at least one branch must have been taken if PATH_SIZE is nonzero. */
6519 while (path_size > 0)
6521 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6523 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6524 break;
6526 else
6527 path_size--;
6530 /* If the first instruction is marked with QImode, that means we've
6531 already processed this block. Our caller will look at DATA->LAST
6532 to figure out where to go next. We want to return the next block
6533 in the instruction stream, not some branched-to block somewhere
6534 else. We accomplish this by pretending our called forbid us to
6535 follow jumps, or skip blocks. */
6536 if (GET_MODE (insn) == QImode)
6537 follow_jumps = skip_blocks = 0;
6539 /* Scan to end of this basic block. */
6540 while (p && !LABEL_P (p))
6542 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6543 the regs restored by the longjmp come from
6544 a later time than the setjmp. */
6545 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6546 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6547 break;
6549 /* A PARALLEL can have lots of SETs in it,
6550 especially if it is really an ASM_OPERANDS. */
6551 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6552 nsets += XVECLEN (PATTERN (p), 0);
6553 else if (!NOTE_P (p))
6554 nsets += 1;
6556 /* Ignore insns made by CSE; they cannot affect the boundaries of
6557 the basic block. */
6559 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6560 high_cuid = INSN_CUID (p);
6561 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6562 low_cuid = INSN_CUID (p);
6564 /* See if this insn is in our branch path. If it is and we are to
6565 take it, do so. */
6566 if (path_entry < path_size && data->path[path_entry].branch == p)
6568 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6569 p = JUMP_LABEL (p);
6571 /* Point to next entry in path, if any. */
6572 path_entry++;
6575 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6576 was specified, we haven't reached our maximum path length, there are
6577 insns following the target of the jump, this is the only use of the
6578 jump label, and the target label is preceded by a BARRIER.
6580 Alternatively, we can follow the jump if it branches around a
6581 block of code and there are no other branches into the block.
6582 In this case invalidate_skipped_block will be called to invalidate any
6583 registers set in the block when following the jump. */
6585 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6586 && JUMP_P (p)
6587 && GET_CODE (PATTERN (p)) == SET
6588 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6589 && JUMP_LABEL (p) != 0
6590 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6591 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6593 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6594 if ((!NOTE_P (q)
6595 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6596 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6597 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6598 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6599 break;
6601 /* If we ran into a BARRIER, this code is an extension of the
6602 basic block when the branch is taken. */
6603 if (follow_jumps && q != 0 && BARRIER_P (q))
6605 /* Don't allow ourself to keep walking around an
6606 always-executed loop. */
6607 if (next_real_insn (q) == next)
6609 p = NEXT_INSN (p);
6610 continue;
6613 /* Similarly, don't put a branch in our path more than once. */
6614 for (i = 0; i < path_entry; i++)
6615 if (data->path[i].branch == p)
6616 break;
6618 if (i != path_entry)
6619 break;
6621 data->path[path_entry].branch = p;
6622 data->path[path_entry++].status = PATH_TAKEN;
6624 /* This branch now ends our path. It was possible that we
6625 didn't see this branch the last time around (when the
6626 insn in front of the target was a JUMP_INSN that was
6627 turned into a no-op). */
6628 path_size = path_entry;
6630 p = JUMP_LABEL (p);
6631 /* Mark block so we won't scan it again later. */
6632 PUT_MODE (NEXT_INSN (p), QImode);
6634 /* Detect a branch around a block of code. */
6635 else if (skip_blocks && q != 0 && !LABEL_P (q))
6637 rtx tmp;
6639 if (next_real_insn (q) == next)
6641 p = NEXT_INSN (p);
6642 continue;
6645 for (i = 0; i < path_entry; i++)
6646 if (data->path[i].branch == p)
6647 break;
6649 if (i != path_entry)
6650 break;
6652 /* This is no_labels_between_p (p, q) with an added check for
6653 reaching the end of a function (in case Q precedes P). */
6654 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6655 if (LABEL_P (tmp))
6656 break;
6658 if (tmp == q)
6660 data->path[path_entry].branch = p;
6661 data->path[path_entry++].status = PATH_AROUND;
6663 path_size = path_entry;
6665 p = JUMP_LABEL (p);
6666 /* Mark block so we won't scan it again later. */
6667 PUT_MODE (NEXT_INSN (p), QImode);
6671 p = NEXT_INSN (p);
6674 data->low_cuid = low_cuid;
6675 data->high_cuid = high_cuid;
6676 data->nsets = nsets;
6677 data->last = p;
6679 /* If all jumps in the path are not taken, set our path length to zero
6680 so a rescan won't be done. */
6681 for (i = path_size - 1; i >= 0; i--)
6682 if (data->path[i].status != PATH_NOT_TAKEN)
6683 break;
6685 if (i == -1)
6686 data->path_size = 0;
6687 else
6688 data->path_size = path_size;
6690 /* End the current branch path. */
6691 data->path[path_size].branch = 0;
6694 /* Perform cse on the instructions of a function.
6695 F is the first instruction.
6696 NREGS is one plus the highest pseudo-reg number used in the instruction.
6698 Returns 1 if jump_optimize should be redone due to simplifications
6699 in conditional jump instructions. */
6702 cse_main (rtx f, int nregs, FILE *file)
6704 struct cse_basic_block_data val;
6705 rtx insn = f;
6706 int i;
6708 init_cse_reg_info (nregs);
6710 val.path = xmalloc (sizeof (struct branch_path)
6711 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6713 cse_jumps_altered = 0;
6714 recorded_label_ref = 0;
6715 constant_pool_entries_cost = 0;
6716 constant_pool_entries_regcost = 0;
6717 val.path_size = 0;
6718 rtl_hooks = cse_rtl_hooks;
6720 init_recog ();
6721 init_alias_analysis ();
6723 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
6725 /* Find the largest uid. */
6727 max_uid = get_max_uid ();
6728 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
6730 /* Compute the mapping from uids to cuids.
6731 CUIDs are numbers assigned to insns, like uids,
6732 except that cuids increase monotonically through the code.
6733 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6734 between two insns is not affected by -g. */
6736 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6738 if (!NOTE_P (insn)
6739 || NOTE_LINE_NUMBER (insn) < 0)
6740 INSN_CUID (insn) = ++i;
6741 else
6742 /* Give a line number note the same cuid as preceding insn. */
6743 INSN_CUID (insn) = i;
6746 /* Loop over basic blocks.
6747 Compute the maximum number of qty's needed for each basic block
6748 (which is 2 for each SET). */
6749 insn = f;
6750 while (insn)
6752 cse_altered = 0;
6753 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6754 flag_cse_skip_blocks);
6756 /* If this basic block was already processed or has no sets, skip it. */
6757 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6759 PUT_MODE (insn, VOIDmode);
6760 insn = (val.last ? NEXT_INSN (val.last) : 0);
6761 val.path_size = 0;
6762 continue;
6765 cse_basic_block_start = val.low_cuid;
6766 cse_basic_block_end = val.high_cuid;
6767 max_qty = val.nsets * 2;
6769 if (file)
6770 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
6771 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6772 val.nsets);
6774 /* Make MAX_QTY bigger to give us room to optimize
6775 past the end of this basic block, if that should prove useful. */
6776 if (max_qty < 500)
6777 max_qty = 500;
6779 /* If this basic block is being extended by following certain jumps,
6780 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6781 Otherwise, we start after this basic block. */
6782 if (val.path_size > 0)
6783 cse_basic_block (insn, val.last, val.path);
6784 else
6786 int old_cse_jumps_altered = cse_jumps_altered;
6787 rtx temp;
6789 /* When cse changes a conditional jump to an unconditional
6790 jump, we want to reprocess the block, since it will give
6791 us a new branch path to investigate. */
6792 cse_jumps_altered = 0;
6793 temp = cse_basic_block (insn, val.last, val.path);
6794 if (cse_jumps_altered == 0
6795 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6796 insn = temp;
6798 cse_jumps_altered |= old_cse_jumps_altered;
6801 if (cse_altered)
6802 ggc_collect ();
6804 #ifdef USE_C_ALLOCA
6805 alloca (0);
6806 #endif
6809 /* Clean up. */
6810 end_alias_analysis ();
6811 free (uid_cuid);
6812 free (reg_eqv_table);
6813 free (val.path);
6814 rtl_hooks = general_rtl_hooks;
6816 return cse_jumps_altered || recorded_label_ref;
6819 /* Process a single basic block. FROM and TO and the limits of the basic
6820 block. NEXT_BRANCH points to the branch path when following jumps or
6821 a null path when not following jumps. */
6823 static rtx
6824 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6826 rtx insn;
6827 int to_usage = 0;
6828 rtx libcall_insn = NULL_RTX;
6829 int num_insns = 0;
6830 int no_conflict = 0;
6832 /* Allocate the space needed by qty_table. */
6833 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
6835 new_basic_block ();
6837 /* TO might be a label. If so, protect it from being deleted. */
6838 if (to != 0 && LABEL_P (to))
6839 ++LABEL_NUSES (to);
6841 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6843 enum rtx_code code = GET_CODE (insn);
6845 /* If we have processed 1,000 insns, flush the hash table to
6846 avoid extreme quadratic behavior. We must not include NOTEs
6847 in the count since there may be more of them when generating
6848 debugging information. If we clear the table at different
6849 times, code generated with -g -O might be different than code
6850 generated with -O but not -g.
6852 ??? This is a real kludge and needs to be done some other way.
6853 Perhaps for 2.9. */
6854 if (code != NOTE && num_insns++ > 1000)
6856 flush_hash_table ();
6857 num_insns = 0;
6860 /* See if this is a branch that is part of the path. If so, and it is
6861 to be taken, do so. */
6862 if (next_branch->branch == insn)
6864 enum taken status = next_branch++->status;
6865 if (status != PATH_NOT_TAKEN)
6867 if (status == PATH_TAKEN)
6868 record_jump_equiv (insn, 1);
6869 else
6870 invalidate_skipped_block (NEXT_INSN (insn));
6872 /* Set the last insn as the jump insn; it doesn't affect cc0.
6873 Then follow this branch. */
6874 #ifdef HAVE_cc0
6875 prev_insn_cc0 = 0;
6876 prev_insn = insn;
6877 #endif
6878 insn = JUMP_LABEL (insn);
6879 continue;
6883 if (GET_MODE (insn) == QImode)
6884 PUT_MODE (insn, VOIDmode);
6886 if (GET_RTX_CLASS (code) == RTX_INSN)
6888 rtx p;
6890 /* Process notes first so we have all notes in canonical forms when
6891 looking for duplicate operations. */
6893 if (REG_NOTES (insn))
6894 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6896 /* Track when we are inside in LIBCALL block. Inside such a block,
6897 we do not want to record destinations. The last insn of a
6898 LIBCALL block is not considered to be part of the block, since
6899 its destination is the result of the block and hence should be
6900 recorded. */
6902 if (REG_NOTES (insn) != 0)
6904 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6905 libcall_insn = XEXP (p, 0);
6906 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6908 /* Keep libcall_insn for the last SET insn of a no-conflict
6909 block to prevent changing the destination. */
6910 if (! no_conflict)
6911 libcall_insn = 0;
6912 else
6913 no_conflict = -1;
6915 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6916 no_conflict = 1;
6919 cse_insn (insn, libcall_insn);
6921 if (no_conflict == -1)
6923 libcall_insn = 0;
6924 no_conflict = 0;
6927 /* If we haven't already found an insn where we added a LABEL_REF,
6928 check this one. */
6929 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6930 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6931 (void *) insn))
6932 recorded_label_ref = 1;
6935 /* If INSN is now an unconditional jump, skip to the end of our
6936 basic block by pretending that we just did the last insn in the
6937 basic block. If we are jumping to the end of our block, show
6938 that we can have one usage of TO. */
6940 if (any_uncondjump_p (insn))
6942 if (to == 0)
6944 free (qty_table);
6945 return 0;
6948 if (JUMP_LABEL (insn) == to)
6949 to_usage = 1;
6951 /* Maybe TO was deleted because the jump is unconditional.
6952 If so, there is nothing left in this basic block. */
6953 /* ??? Perhaps it would be smarter to set TO
6954 to whatever follows this insn,
6955 and pretend the basic block had always ended here. */
6956 if (INSN_DELETED_P (to))
6957 break;
6959 insn = PREV_INSN (to);
6962 /* See if it is ok to keep on going past the label
6963 which used to end our basic block. Remember that we incremented
6964 the count of that label, so we decrement it here. If we made
6965 a jump unconditional, TO_USAGE will be one; in that case, we don't
6966 want to count the use in that jump. */
6968 if (to != 0 && NEXT_INSN (insn) == to
6969 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
6971 struct cse_basic_block_data val;
6972 rtx prev;
6974 insn = NEXT_INSN (to);
6976 /* If TO was the last insn in the function, we are done. */
6977 if (insn == 0)
6979 free (qty_table);
6980 return 0;
6983 /* If TO was preceded by a BARRIER we are done with this block
6984 because it has no continuation. */
6985 prev = prev_nonnote_insn (to);
6986 if (prev && BARRIER_P (prev))
6988 free (qty_table);
6989 return insn;
6992 /* Find the end of the following block. Note that we won't be
6993 following branches in this case. */
6994 to_usage = 0;
6995 val.path_size = 0;
6996 val.path = xmalloc (sizeof (struct branch_path)
6997 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6998 cse_end_of_basic_block (insn, &val, 0, 0);
6999 free (val.path);
7001 /* If the tables we allocated have enough space left
7002 to handle all the SETs in the next basic block,
7003 continue through it. Otherwise, return,
7004 and that block will be scanned individually. */
7005 if (val.nsets * 2 + next_qty > max_qty)
7006 break;
7008 cse_basic_block_start = val.low_cuid;
7009 cse_basic_block_end = val.high_cuid;
7010 to = val.last;
7012 /* Prevent TO from being deleted if it is a label. */
7013 if (to != 0 && LABEL_P (to))
7014 ++LABEL_NUSES (to);
7016 /* Back up so we process the first insn in the extension. */
7017 insn = PREV_INSN (insn);
7021 gcc_assert (next_qty <= max_qty);
7023 free (qty_table);
7025 return to ? NEXT_INSN (to) : 0;
7028 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7029 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7031 static int
7032 check_for_label_ref (rtx *rtl, void *data)
7034 rtx insn = (rtx) data;
7036 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7037 we must rerun jump since it needs to place the note. If this is a
7038 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7039 since no REG_LABEL will be added. */
7040 return (GET_CODE (*rtl) == LABEL_REF
7041 && ! LABEL_REF_NONLOCAL_P (*rtl)
7042 && LABEL_P (XEXP (*rtl, 0))
7043 && INSN_UID (XEXP (*rtl, 0)) != 0
7044 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7047 /* Count the number of times registers are used (not set) in X.
7048 COUNTS is an array in which we accumulate the count, INCR is how much
7049 we count each register usage. */
7051 static void
7052 count_reg_usage (rtx x, int *counts, int incr)
7054 enum rtx_code code;
7055 rtx note;
7056 const char *fmt;
7057 int i, j;
7059 if (x == 0)
7060 return;
7062 switch (code = GET_CODE (x))
7064 case REG:
7065 counts[REGNO (x)] += incr;
7066 return;
7068 case PC:
7069 case CC0:
7070 case CONST:
7071 case CONST_INT:
7072 case CONST_DOUBLE:
7073 case CONST_VECTOR:
7074 case SYMBOL_REF:
7075 case LABEL_REF:
7076 return;
7078 case CLOBBER:
7079 /* If we are clobbering a MEM, mark any registers inside the address
7080 as being used. */
7081 if (MEM_P (XEXP (x, 0)))
7082 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7083 return;
7085 case SET:
7086 /* Unless we are setting a REG, count everything in SET_DEST. */
7087 if (!REG_P (SET_DEST (x)))
7088 count_reg_usage (SET_DEST (x), counts, incr);
7089 count_reg_usage (SET_SRC (x), counts, incr);
7090 return;
7092 case CALL_INSN:
7093 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
7094 /* Fall through. */
7096 case INSN:
7097 case JUMP_INSN:
7098 count_reg_usage (PATTERN (x), counts, incr);
7100 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7101 use them. */
7103 note = find_reg_equal_equiv_note (x);
7104 if (note)
7106 rtx eqv = XEXP (note, 0);
7108 if (GET_CODE (eqv) == EXPR_LIST)
7109 /* This REG_EQUAL note describes the result of a function call.
7110 Process all the arguments. */
7113 count_reg_usage (XEXP (eqv, 0), counts, incr);
7114 eqv = XEXP (eqv, 1);
7116 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7117 else
7118 count_reg_usage (eqv, counts, incr);
7120 return;
7122 case EXPR_LIST:
7123 if (REG_NOTE_KIND (x) == REG_EQUAL
7124 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7125 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7126 involving registers in the address. */
7127 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7128 count_reg_usage (XEXP (x, 0), counts, incr);
7130 count_reg_usage (XEXP (x, 1), counts, incr);
7131 return;
7133 case ASM_OPERANDS:
7134 /* Iterate over just the inputs, not the constraints as well. */
7135 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7136 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
7137 return;
7139 case INSN_LIST:
7140 gcc_unreachable ();
7142 default:
7143 break;
7146 fmt = GET_RTX_FORMAT (code);
7147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7149 if (fmt[i] == 'e')
7150 count_reg_usage (XEXP (x, i), counts, incr);
7151 else if (fmt[i] == 'E')
7152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7153 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7157 /* Return true if set is live. */
7158 static bool
7159 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7160 int *counts)
7162 #ifdef HAVE_cc0
7163 rtx tem;
7164 #endif
7166 if (set_noop_p (set))
7169 #ifdef HAVE_cc0
7170 else if (GET_CODE (SET_DEST (set)) == CC0
7171 && !side_effects_p (SET_SRC (set))
7172 && ((tem = next_nonnote_insn (insn)) == 0
7173 || !INSN_P (tem)
7174 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7175 return false;
7176 #endif
7177 else if (!REG_P (SET_DEST (set))
7178 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7179 || counts[REGNO (SET_DEST (set))] != 0
7180 || side_effects_p (SET_SRC (set)))
7181 return true;
7182 return false;
7185 /* Return true if insn is live. */
7187 static bool
7188 insn_live_p (rtx insn, int *counts)
7190 int i;
7191 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7192 return true;
7193 else if (GET_CODE (PATTERN (insn)) == SET)
7194 return set_live_p (PATTERN (insn), insn, counts);
7195 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7197 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7199 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7201 if (GET_CODE (elt) == SET)
7203 if (set_live_p (elt, insn, counts))
7204 return true;
7206 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7207 return true;
7209 return false;
7211 else
7212 return true;
7215 /* Return true if libcall is dead as a whole. */
7217 static bool
7218 dead_libcall_p (rtx insn, int *counts)
7220 rtx note, set, new;
7222 /* See if there's a REG_EQUAL note on this insn and try to
7223 replace the source with the REG_EQUAL expression.
7225 We assume that insns with REG_RETVALs can only be reg->reg
7226 copies at this point. */
7227 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7228 if (!note)
7229 return false;
7231 set = single_set (insn);
7232 if (!set)
7233 return false;
7235 new = simplify_rtx (XEXP (note, 0));
7236 if (!new)
7237 new = XEXP (note, 0);
7239 /* While changing insn, we must update the counts accordingly. */
7240 count_reg_usage (insn, counts, -1);
7242 if (validate_change (insn, &SET_SRC (set), new, 0))
7244 count_reg_usage (insn, counts, 1);
7245 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7246 remove_note (insn, note);
7247 return true;
7250 if (CONSTANT_P (new))
7252 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7253 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7255 count_reg_usage (insn, counts, 1);
7256 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7257 remove_note (insn, note);
7258 return true;
7262 count_reg_usage (insn, counts, 1);
7263 return false;
7266 /* Scan all the insns and delete any that are dead; i.e., they store a register
7267 that is never used or they copy a register to itself.
7269 This is used to remove insns made obviously dead by cse, loop or other
7270 optimizations. It improves the heuristics in loop since it won't try to
7271 move dead invariants out of loops or make givs for dead quantities. The
7272 remaining passes of the compilation are also sped up. */
7275 delete_trivially_dead_insns (rtx insns, int nreg)
7277 int *counts;
7278 rtx insn, prev;
7279 int in_libcall = 0, dead_libcall = 0;
7280 int ndead = 0;
7282 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7283 /* First count the number of times each register is used. */
7284 counts = xcalloc (nreg, sizeof (int));
7285 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7286 count_reg_usage (insn, counts, 1);
7288 /* Go from the last insn to the first and delete insns that only set unused
7289 registers or copy a register to itself. As we delete an insn, remove
7290 usage counts for registers it uses.
7292 The first jump optimization pass may leave a real insn as the last
7293 insn in the function. We must not skip that insn or we may end
7294 up deleting code that is not really dead. */
7295 insn = get_last_insn ();
7296 if (! INSN_P (insn))
7297 insn = prev_real_insn (insn);
7299 for (; insn; insn = prev)
7301 int live_insn = 0;
7303 prev = prev_real_insn (insn);
7305 /* Don't delete any insns that are part of a libcall block unless
7306 we can delete the whole libcall block.
7308 Flow or loop might get confused if we did that. Remember
7309 that we are scanning backwards. */
7310 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7312 in_libcall = 1;
7313 live_insn = 1;
7314 dead_libcall = dead_libcall_p (insn, counts);
7316 else if (in_libcall)
7317 live_insn = ! dead_libcall;
7318 else
7319 live_insn = insn_live_p (insn, counts);
7321 /* If this is a dead insn, delete it and show registers in it aren't
7322 being used. */
7324 if (! live_insn)
7326 count_reg_usage (insn, counts, -1);
7327 delete_insn_and_edges (insn);
7328 ndead++;
7331 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7333 in_libcall = 0;
7334 dead_libcall = 0;
7338 if (dump_file && ndead)
7339 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7340 ndead);
7341 /* Clean up. */
7342 free (counts);
7343 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7344 return ndead;
7347 /* This function is called via for_each_rtx. The argument, NEWREG, is
7348 a condition code register with the desired mode. If we are looking
7349 at the same register in a different mode, replace it with
7350 NEWREG. */
7352 static int
7353 cse_change_cc_mode (rtx *loc, void *data)
7355 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7357 if (*loc
7358 && REG_P (*loc)
7359 && REGNO (*loc) == REGNO (args->newreg)
7360 && GET_MODE (*loc) != GET_MODE (args->newreg))
7362 validate_change (args->insn, loc, args->newreg, 1);
7364 return -1;
7366 return 0;
7369 /* Change the mode of any reference to the register REGNO (NEWREG) to
7370 GET_MODE (NEWREG) in INSN. */
7372 static void
7373 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7375 struct change_cc_mode_args args;
7376 int success;
7378 if (!INSN_P (insn))
7379 return;
7381 args.insn = insn;
7382 args.newreg = newreg;
7384 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7385 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7387 /* If the following assertion was triggered, there is most probably
7388 something wrong with the cc_modes_compatible back end function.
7389 CC modes only can be considered compatible if the insn - with the mode
7390 replaced by any of the compatible modes - can still be recognized. */
7391 success = apply_change_group ();
7392 gcc_assert (success);
7395 /* Change the mode of any reference to the register REGNO (NEWREG) to
7396 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7397 any instruction which modifies NEWREG. */
7399 static void
7400 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7402 rtx insn;
7404 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7406 if (! INSN_P (insn))
7407 continue;
7409 if (reg_set_p (newreg, insn))
7410 return;
7412 cse_change_cc_mode_insn (insn, newreg);
7416 /* BB is a basic block which finishes with CC_REG as a condition code
7417 register which is set to CC_SRC. Look through the successors of BB
7418 to find blocks which have a single predecessor (i.e., this one),
7419 and look through those blocks for an assignment to CC_REG which is
7420 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7421 permitted to change the mode of CC_SRC to a compatible mode. This
7422 returns VOIDmode if no equivalent assignments were found.
7423 Otherwise it returns the mode which CC_SRC should wind up with.
7425 The main complexity in this function is handling the mode issues.
7426 We may have more than one duplicate which we can eliminate, and we
7427 try to find a mode which will work for multiple duplicates. */
7429 static enum machine_mode
7430 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7432 bool found_equiv;
7433 enum machine_mode mode;
7434 unsigned int insn_count;
7435 edge e;
7436 rtx insns[2];
7437 enum machine_mode modes[2];
7438 rtx last_insns[2];
7439 unsigned int i;
7440 rtx newreg;
7441 edge_iterator ei;
7443 /* We expect to have two successors. Look at both before picking
7444 the final mode for the comparison. If we have more successors
7445 (i.e., some sort of table jump, although that seems unlikely),
7446 then we require all beyond the first two to use the same
7447 mode. */
7449 found_equiv = false;
7450 mode = GET_MODE (cc_src);
7451 insn_count = 0;
7452 FOR_EACH_EDGE (e, ei, bb->succs)
7454 rtx insn;
7455 rtx end;
7457 if (e->flags & EDGE_COMPLEX)
7458 continue;
7460 if (EDGE_COUNT (e->dest->preds) != 1
7461 || e->dest == EXIT_BLOCK_PTR)
7462 continue;
7464 end = NEXT_INSN (BB_END (e->dest));
7465 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7467 rtx set;
7469 if (! INSN_P (insn))
7470 continue;
7472 /* If CC_SRC is modified, we have to stop looking for
7473 something which uses it. */
7474 if (modified_in_p (cc_src, insn))
7475 break;
7477 /* Check whether INSN sets CC_REG to CC_SRC. */
7478 set = single_set (insn);
7479 if (set
7480 && REG_P (SET_DEST (set))
7481 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7483 bool found;
7484 enum machine_mode set_mode;
7485 enum machine_mode comp_mode;
7487 found = false;
7488 set_mode = GET_MODE (SET_SRC (set));
7489 comp_mode = set_mode;
7490 if (rtx_equal_p (cc_src, SET_SRC (set)))
7491 found = true;
7492 else if (GET_CODE (cc_src) == COMPARE
7493 && GET_CODE (SET_SRC (set)) == COMPARE
7494 && mode != set_mode
7495 && rtx_equal_p (XEXP (cc_src, 0),
7496 XEXP (SET_SRC (set), 0))
7497 && rtx_equal_p (XEXP (cc_src, 1),
7498 XEXP (SET_SRC (set), 1)))
7501 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7502 if (comp_mode != VOIDmode
7503 && (can_change_mode || comp_mode == mode))
7504 found = true;
7507 if (found)
7509 found_equiv = true;
7510 if (insn_count < ARRAY_SIZE (insns))
7512 insns[insn_count] = insn;
7513 modes[insn_count] = set_mode;
7514 last_insns[insn_count] = end;
7515 ++insn_count;
7517 if (mode != comp_mode)
7519 gcc_assert (can_change_mode);
7520 mode = comp_mode;
7522 /* The modified insn will be re-recognized later. */
7523 PUT_MODE (cc_src, mode);
7526 else
7528 if (set_mode != mode)
7530 /* We found a matching expression in the
7531 wrong mode, but we don't have room to
7532 store it in the array. Punt. This case
7533 should be rare. */
7534 break;
7536 /* INSN sets CC_REG to a value equal to CC_SRC
7537 with the right mode. We can simply delete
7538 it. */
7539 delete_insn (insn);
7542 /* We found an instruction to delete. Keep looking,
7543 in the hopes of finding a three-way jump. */
7544 continue;
7547 /* We found an instruction which sets the condition
7548 code, so don't look any farther. */
7549 break;
7552 /* If INSN sets CC_REG in some other way, don't look any
7553 farther. */
7554 if (reg_set_p (cc_reg, insn))
7555 break;
7558 /* If we fell off the bottom of the block, we can keep looking
7559 through successors. We pass CAN_CHANGE_MODE as false because
7560 we aren't prepared to handle compatibility between the
7561 further blocks and this block. */
7562 if (insn == end)
7564 enum machine_mode submode;
7566 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7567 if (submode != VOIDmode)
7569 gcc_assert (submode == mode);
7570 found_equiv = true;
7571 can_change_mode = false;
7576 if (! found_equiv)
7577 return VOIDmode;
7579 /* Now INSN_COUNT is the number of instructions we found which set
7580 CC_REG to a value equivalent to CC_SRC. The instructions are in
7581 INSNS. The modes used by those instructions are in MODES. */
7583 newreg = NULL_RTX;
7584 for (i = 0; i < insn_count; ++i)
7586 if (modes[i] != mode)
7588 /* We need to change the mode of CC_REG in INSNS[i] and
7589 subsequent instructions. */
7590 if (! newreg)
7592 if (GET_MODE (cc_reg) == mode)
7593 newreg = cc_reg;
7594 else
7595 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7597 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7598 newreg);
7601 delete_insn (insns[i]);
7604 return mode;
7607 /* If we have a fixed condition code register (or two), walk through
7608 the instructions and try to eliminate duplicate assignments. */
7610 void
7611 cse_condition_code_reg (void)
7613 unsigned int cc_regno_1;
7614 unsigned int cc_regno_2;
7615 rtx cc_reg_1;
7616 rtx cc_reg_2;
7617 basic_block bb;
7619 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7620 return;
7622 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7623 if (cc_regno_2 != INVALID_REGNUM)
7624 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7625 else
7626 cc_reg_2 = NULL_RTX;
7628 FOR_EACH_BB (bb)
7630 rtx last_insn;
7631 rtx cc_reg;
7632 rtx insn;
7633 rtx cc_src_insn;
7634 rtx cc_src;
7635 enum machine_mode mode;
7636 enum machine_mode orig_mode;
7638 /* Look for blocks which end with a conditional jump based on a
7639 condition code register. Then look for the instruction which
7640 sets the condition code register. Then look through the
7641 successor blocks for instructions which set the condition
7642 code register to the same value. There are other possible
7643 uses of the condition code register, but these are by far the
7644 most common and the ones which we are most likely to be able
7645 to optimize. */
7647 last_insn = BB_END (bb);
7648 if (!JUMP_P (last_insn))
7649 continue;
7651 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7652 cc_reg = cc_reg_1;
7653 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7654 cc_reg = cc_reg_2;
7655 else
7656 continue;
7658 cc_src_insn = NULL_RTX;
7659 cc_src = NULL_RTX;
7660 for (insn = PREV_INSN (last_insn);
7661 insn && insn != PREV_INSN (BB_HEAD (bb));
7662 insn = PREV_INSN (insn))
7664 rtx set;
7666 if (! INSN_P (insn))
7667 continue;
7668 set = single_set (insn);
7669 if (set
7670 && REG_P (SET_DEST (set))
7671 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7673 cc_src_insn = insn;
7674 cc_src = SET_SRC (set);
7675 break;
7677 else if (reg_set_p (cc_reg, insn))
7678 break;
7681 if (! cc_src_insn)
7682 continue;
7684 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7685 continue;
7687 /* Now CC_REG is a condition code register used for a
7688 conditional jump at the end of the block, and CC_SRC, in
7689 CC_SRC_INSN, is the value to which that condition code
7690 register is set, and CC_SRC is still meaningful at the end of
7691 the basic block. */
7693 orig_mode = GET_MODE (cc_src);
7694 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7695 if (mode != VOIDmode)
7697 gcc_assert (mode == GET_MODE (cc_src));
7698 if (mode != orig_mode)
7700 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7702 cse_change_cc_mode_insn (cc_src_insn, newreg);
7704 /* Do the same in the following insns that use the
7705 current value of CC_REG within BB. */
7706 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7707 NEXT_INSN (last_insn),
7708 newreg);