PR target/16201
[official-gcc.git] / gcc / ada / sem_attr.adb
blob553fb7138a159fd48126340a65c41d70fe6524f5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
29 with Atree; use Atree;
30 with Checks; use Checks;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Expander; use Expander;
37 with Freeze; use Freeze;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sdefault; use Sdefault;
48 with Sem; use Sem;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Stand; use Stand;
58 with Sinfo; use Sinfo;
59 with Sinput; use Sinput;
60 with Snames; use Snames;
61 with Stand;
62 with Stringt; use Stringt;
63 with Targparm; use Targparm;
64 with Ttypes; use Ttypes;
65 with Ttypef; use Ttypef;
66 with Tbuild; use Tbuild;
67 with Uintp; use Uintp;
68 with Urealp; use Urealp;
69 with Widechar; use Widechar;
71 package body Sem_Attr is
73 True_Value : constant Uint := Uint_1;
74 False_Value : constant Uint := Uint_0;
75 -- Synonyms to be used when these constants are used as Boolean values
77 Bad_Attribute : exception;
78 -- Exception raised if an error is detected during attribute processing,
79 -- used so that we can abandon the processing so we don't run into
80 -- trouble with cascaded errors.
82 -- The following array is the list of attributes defined in the Ada 83 RM
84 Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
85 Attribute_Address |
86 Attribute_Aft |
87 Attribute_Alignment |
88 Attribute_Base |
89 Attribute_Callable |
90 Attribute_Constrained |
91 Attribute_Count |
92 Attribute_Delta |
93 Attribute_Digits |
94 Attribute_Emax |
95 Attribute_Epsilon |
96 Attribute_First |
97 Attribute_First_Bit |
98 Attribute_Fore |
99 Attribute_Image |
100 Attribute_Large |
101 Attribute_Last |
102 Attribute_Last_Bit |
103 Attribute_Leading_Part |
104 Attribute_Length |
105 Attribute_Machine_Emax |
106 Attribute_Machine_Emin |
107 Attribute_Machine_Mantissa |
108 Attribute_Machine_Overflows |
109 Attribute_Machine_Radix |
110 Attribute_Machine_Rounds |
111 Attribute_Mantissa |
112 Attribute_Pos |
113 Attribute_Position |
114 Attribute_Pred |
115 Attribute_Range |
116 Attribute_Safe_Emax |
117 Attribute_Safe_Large |
118 Attribute_Safe_Small |
119 Attribute_Size |
120 Attribute_Small |
121 Attribute_Storage_Size |
122 Attribute_Succ |
123 Attribute_Terminated |
124 Attribute_Val |
125 Attribute_Value |
126 Attribute_Width => True,
127 others => False);
129 -----------------------
130 -- Local_Subprograms --
131 -----------------------
133 procedure Eval_Attribute (N : Node_Id);
134 -- Performs compile time evaluation of attributes where possible, leaving
135 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
136 -- set, and replacing the node with a literal node if the value can be
137 -- computed at compile time. All static attribute references are folded,
138 -- as well as a number of cases of non-static attributes that can always
139 -- be computed at compile time (e.g. floating-point model attributes that
140 -- are applied to non-static subtypes). Of course in such cases, the
141 -- Is_Static_Expression flag will not be set on the resulting literal.
142 -- Note that the only required action of this procedure is to catch the
143 -- static expression cases as described in the RM. Folding of other cases
144 -- is done where convenient, but some additional non-static folding is in
145 -- N_Expand_Attribute_Reference in cases where this is more convenient.
147 function Is_Anonymous_Tagged_Base
148 (Anon : Entity_Id;
149 Typ : Entity_Id)
150 return Boolean;
151 -- For derived tagged types that constrain parent discriminants we build
152 -- an anonymous unconstrained base type. We need to recognize the relation
153 -- between the two when analyzing an access attribute for a constrained
154 -- component, before the full declaration for Typ has been analyzed, and
155 -- where therefore the prefix of the attribute does not match the enclosing
156 -- scope.
158 -----------------------
159 -- Analyze_Attribute --
160 -----------------------
162 procedure Analyze_Attribute (N : Node_Id) is
163 Loc : constant Source_Ptr := Sloc (N);
164 Aname : constant Name_Id := Attribute_Name (N);
165 P : constant Node_Id := Prefix (N);
166 Exprs : constant List_Id := Expressions (N);
167 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
168 E1 : Node_Id;
169 E2 : Node_Id;
171 P_Type : Entity_Id;
172 -- Type of prefix after analysis
174 P_Base_Type : Entity_Id;
175 -- Base type of prefix after analysis
177 -----------------------
178 -- Local Subprograms --
179 -----------------------
181 procedure Analyze_Access_Attribute;
182 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
183 -- Internally, Id distinguishes which of the three cases is involved.
185 procedure Check_Array_Or_Scalar_Type;
186 -- Common procedure used by First, Last, Range attribute to check
187 -- that the prefix is a constrained array or scalar type, or a name
188 -- of an array object, and that an argument appears only if appropriate
189 -- (i.e. only in the array case).
191 procedure Check_Array_Type;
192 -- Common semantic checks for all array attributes. Checks that the
193 -- prefix is a constrained array type or the name of an array object.
194 -- The error message for non-arrays is specialized appropriately.
196 procedure Check_Asm_Attribute;
197 -- Common semantic checks for Asm_Input and Asm_Output attributes
199 procedure Check_Component;
200 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
201 -- Position. Checks prefix is an appropriate selected component.
203 procedure Check_Decimal_Fixed_Point_Type;
204 -- Check that prefix of attribute N is a decimal fixed-point type
206 procedure Check_Dereference;
207 -- If the prefix of attribute is an object of an access type, then
208 -- introduce an explicit deference, and adjust P_Type accordingly.
210 procedure Check_Discrete_Type;
211 -- Verify that prefix of attribute N is a discrete type
213 procedure Check_E0;
214 -- Check that no attribute arguments are present
216 procedure Check_Either_E0_Or_E1;
217 -- Check that there are zero or one attribute arguments present
219 procedure Check_E1;
220 -- Check that exactly one attribute argument is present
222 procedure Check_E2;
223 -- Check that two attribute arguments are present
225 procedure Check_Enum_Image;
226 -- If the prefix type is an enumeration type, set all its literals
227 -- as referenced, since the image function could possibly end up
228 -- referencing any of the literals indirectly.
230 procedure Check_Fixed_Point_Type;
231 -- Verify that prefix of attribute N is a fixed type
233 procedure Check_Fixed_Point_Type_0;
234 -- Verify that prefix of attribute N is a fixed type and that
235 -- no attribute expressions are present
237 procedure Check_Floating_Point_Type;
238 -- Verify that prefix of attribute N is a float type
240 procedure Check_Floating_Point_Type_0;
241 -- Verify that prefix of attribute N is a float type and that
242 -- no attribute expressions are present
244 procedure Check_Floating_Point_Type_1;
245 -- Verify that prefix of attribute N is a float type and that
246 -- exactly one attribute expression is present
248 procedure Check_Floating_Point_Type_2;
249 -- Verify that prefix of attribute N is a float type and that
250 -- two attribute expressions are present
252 procedure Legal_Formal_Attribute;
253 -- Common processing for attributes Definite, Has_Access_Values,
254 -- and Has_Discriminants
256 procedure Check_Integer_Type;
257 -- Verify that prefix of attribute N is an integer type
259 procedure Check_Library_Unit;
260 -- Verify that prefix of attribute N is a library unit
262 procedure Check_Modular_Integer_Type;
263 -- Verify that prefix of attribute N is a modular integer type
265 procedure Check_Not_Incomplete_Type;
266 -- Check that P (the prefix of the attribute) is not an incomplete
267 -- type or a private type for which no full view has been given.
269 procedure Check_Object_Reference (P : Node_Id);
270 -- Check that P (the prefix of the attribute) is an object reference
272 procedure Check_Program_Unit;
273 -- Verify that prefix of attribute N is a program unit
275 procedure Check_Real_Type;
276 -- Verify that prefix of attribute N is fixed or float type
278 procedure Check_Scalar_Type;
279 -- Verify that prefix of attribute N is a scalar type
281 procedure Check_Standard_Prefix;
282 -- Verify that prefix of attribute N is package Standard
284 procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
285 -- Validity checking for stream attribute. Nam is the TSS name of the
286 -- corresponding possible defined attribute function (e.g. for the
287 -- Read attribute, Nam will be TSS_Stream_Read).
289 procedure Check_Task_Prefix;
290 -- Verify that prefix of attribute N is a task or task type
292 procedure Check_Type;
293 -- Verify that the prefix of attribute N is a type
295 procedure Check_Unit_Name (Nod : Node_Id);
296 -- Check that Nod is of the form of a library unit name, i.e that
297 -- it is an identifier, or a selected component whose prefix is
298 -- itself of the form of a library unit name. Note that this is
299 -- quite different from Check_Program_Unit, since it only checks
300 -- the syntactic form of the name, not the semantic identity. This
301 -- is because it is used with attributes (Elab_Body, Elab_Spec, and
302 -- UET_Address) which can refer to non-visible unit.
304 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
305 pragma No_Return (Error_Attr);
306 procedure Error_Attr;
307 pragma No_Return (Error_Attr);
308 -- Posts error using Error_Msg_N at given node, sets type of attribute
309 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
310 -- semantic processing. The message typically contains a % insertion
311 -- character which is replaced by the attribute name. The call with
312 -- no arguments is used when the caller has already generated the
313 -- required error messages.
315 procedure Standard_Attribute (Val : Int);
316 -- Used to process attributes whose prefix is package Standard which
317 -- yield values of type Universal_Integer. The attribute reference
318 -- node is rewritten with an integer literal of the given value.
320 procedure Unexpected_Argument (En : Node_Id);
321 -- Signal unexpected attribute argument (En is the argument)
323 procedure Validate_Non_Static_Attribute_Function_Call;
324 -- Called when processing an attribute that is a function call to a
325 -- non-static function, i.e. an attribute function that either takes
326 -- non-scalar arguments or returns a non-scalar result. Verifies that
327 -- such a call does not appear in a preelaborable context.
329 ------------------------------
330 -- Analyze_Access_Attribute --
331 ------------------------------
333 procedure Analyze_Access_Attribute is
334 Acc_Type : Entity_Id;
336 Scop : Entity_Id;
337 Typ : Entity_Id;
339 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
340 -- Build an access-to-object type whose designated type is DT,
341 -- and whose Ekind is appropriate to the attribute type. The
342 -- type that is constructed is returned as the result.
344 procedure Build_Access_Subprogram_Type (P : Node_Id);
345 -- Build an access to subprogram whose designated type is
346 -- the type of the prefix. If prefix is overloaded, so it the
347 -- node itself. The result is stored in Acc_Type.
349 ------------------------------
350 -- Build_Access_Object_Type --
351 ------------------------------
353 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
354 Typ : Entity_Id;
356 begin
357 if Aname = Name_Unrestricted_Access then
358 Typ :=
359 New_Internal_Entity
360 (E_Allocator_Type, Current_Scope, Loc, 'A');
361 else
362 Typ :=
363 New_Internal_Entity
364 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
365 end if;
367 Set_Etype (Typ, Typ);
368 Init_Size_Align (Typ);
369 Set_Is_Itype (Typ);
370 Set_Associated_Node_For_Itype (Typ, N);
371 Set_Directly_Designated_Type (Typ, DT);
372 return Typ;
373 end Build_Access_Object_Type;
375 ----------------------------------
376 -- Build_Access_Subprogram_Type --
377 ----------------------------------
379 procedure Build_Access_Subprogram_Type (P : Node_Id) is
380 Index : Interp_Index;
381 It : Interp;
383 function Get_Kind (E : Entity_Id) return Entity_Kind;
384 -- Distinguish between access to regular and protected
385 -- subprograms.
387 --------------
388 -- Get_Kind --
389 --------------
391 function Get_Kind (E : Entity_Id) return Entity_Kind is
392 begin
393 if Convention (E) = Convention_Protected then
394 return E_Access_Protected_Subprogram_Type;
395 else
396 return E_Access_Subprogram_Type;
397 end if;
398 end Get_Kind;
400 -- Start of processing for Build_Access_Subprogram_Type
402 begin
403 -- In the case of an access to subprogram, use the name of the
404 -- subprogram itself as the designated type. Type-checking in
405 -- this case compares the signatures of the designated types.
407 if not Is_Overloaded (P) then
408 Acc_Type :=
409 New_Internal_Entity
410 (Get_Kind (Entity (P)), Current_Scope, Loc, 'A');
411 Set_Etype (Acc_Type, Acc_Type);
412 Set_Directly_Designated_Type (Acc_Type, Entity (P));
413 Set_Etype (N, Acc_Type);
415 else
416 Get_First_Interp (P, Index, It);
417 Set_Etype (N, Any_Type);
419 while Present (It.Nam) loop
420 if not Is_Intrinsic_Subprogram (It.Nam) then
421 Acc_Type :=
422 New_Internal_Entity
423 (Get_Kind (It.Nam), Current_Scope, Loc, 'A');
424 Set_Etype (Acc_Type, Acc_Type);
425 Set_Directly_Designated_Type (Acc_Type, It.Nam);
426 Add_One_Interp (N, Acc_Type, Acc_Type);
427 end if;
429 Get_Next_Interp (Index, It);
430 end loop;
432 if Etype (N) = Any_Type then
433 Error_Attr ("prefix of % attribute cannot be intrinsic", P);
434 end if;
435 end if;
436 end Build_Access_Subprogram_Type;
438 -- Start of processing for Analyze_Access_Attribute
440 begin
441 Check_E0;
443 if Nkind (P) = N_Character_Literal then
444 Error_Attr
445 ("prefix of % attribute cannot be enumeration literal", P);
446 end if;
448 -- Case of access to subprogram
450 if Is_Entity_Name (P)
451 and then Is_Overloadable (Entity (P))
452 then
453 -- Not allowed for nested subprograms if No_Implicit_Dynamic_Code
454 -- restriction set (since in general a trampoline is required).
456 if not Is_Library_Level_Entity (Entity (P)) then
457 Check_Restriction (No_Implicit_Dynamic_Code, P);
458 end if;
460 -- Build the appropriate subprogram type
462 Build_Access_Subprogram_Type (P);
464 -- For unrestricted access, kill current values, since this
465 -- attribute allows a reference to a local subprogram that
466 -- could modify local variables to be passed out of scope
468 if Aname = Name_Unrestricted_Access then
469 Kill_Current_Values;
470 end if;
472 return;
474 -- Component is an operation of a protected type
476 elsif Nkind (P) = N_Selected_Component
477 and then Is_Overloadable (Entity (Selector_Name (P)))
478 then
479 if Ekind (Entity (Selector_Name (P))) = E_Entry then
480 Error_Attr ("prefix of % attribute must be subprogram", P);
481 end if;
483 Build_Access_Subprogram_Type (Selector_Name (P));
484 return;
485 end if;
487 -- Deal with incorrect reference to a type, but note that some
488 -- accesses are allowed (references to the current type instance).
490 if Is_Entity_Name (P) then
491 Scop := Current_Scope;
492 Typ := Entity (P);
494 if Is_Type (Typ) then
496 -- OK if we are within the scope of a limited type
497 -- let's mark the component as having per object constraint
499 if Is_Anonymous_Tagged_Base (Scop, Typ) then
500 Typ := Scop;
501 Set_Entity (P, Typ);
502 Set_Etype (P, Typ);
503 end if;
505 if Typ = Scop then
506 declare
507 Q : Node_Id := Parent (N);
509 begin
510 while Present (Q)
511 and then Nkind (Q) /= N_Component_Declaration
512 loop
513 Q := Parent (Q);
514 end loop;
515 if Present (Q) then
516 Set_Has_Per_Object_Constraint (
517 Defining_Identifier (Q), True);
518 end if;
519 end;
521 if Nkind (P) = N_Expanded_Name then
522 Error_Msg_N
523 ("current instance prefix must be a direct name", P);
524 end if;
526 -- If a current instance attribute appears within a
527 -- a component constraint it must appear alone; other
528 -- contexts (default expressions, within a task body)
529 -- are not subject to this restriction.
531 if not In_Default_Expression
532 and then not Has_Completion (Scop)
533 and then
534 Nkind (Parent (N)) /= N_Discriminant_Association
535 and then
536 Nkind (Parent (N)) /= N_Index_Or_Discriminant_Constraint
537 then
538 Error_Msg_N
539 ("current instance attribute must appear alone", N);
540 end if;
542 -- OK if we are in initialization procedure for the type
543 -- in question, in which case the reference to the type
544 -- is rewritten as a reference to the current object.
546 elsif Ekind (Scop) = E_Procedure
547 and then Is_Init_Proc (Scop)
548 and then Etype (First_Formal (Scop)) = Typ
549 then
550 Rewrite (N,
551 Make_Attribute_Reference (Loc,
552 Prefix => Make_Identifier (Loc, Name_uInit),
553 Attribute_Name => Name_Unrestricted_Access));
554 Analyze (N);
555 return;
557 -- OK if a task type, this test needs sharpening up ???
559 elsif Is_Task_Type (Typ) then
560 null;
562 -- Otherwise we have an error case
564 else
565 Error_Attr ("% attribute cannot be applied to type", P);
566 return;
567 end if;
568 end if;
569 end if;
571 -- If we fall through, we have a normal access to object case.
572 -- Unrestricted_Access is legal wherever an allocator would be
573 -- legal, so its Etype is set to E_Allocator. The expected type
574 -- of the other attributes is a general access type, and therefore
575 -- we label them with E_Access_Attribute_Type.
577 if not Is_Overloaded (P) then
578 Acc_Type := Build_Access_Object_Type (P_Type);
579 Set_Etype (N, Acc_Type);
580 else
581 declare
582 Index : Interp_Index;
583 It : Interp;
585 begin
586 Set_Etype (N, Any_Type);
587 Get_First_Interp (P, Index, It);
589 while Present (It.Typ) loop
590 Acc_Type := Build_Access_Object_Type (It.Typ);
591 Add_One_Interp (N, Acc_Type, Acc_Type);
592 Get_Next_Interp (Index, It);
593 end loop;
594 end;
595 end if;
597 -- If we have an access to an object, and the attribute comes
598 -- from source, then set the object as potentially source modified.
599 -- We do this because the resulting access pointer can be used to
600 -- modify the variable, and we might not detect this, leading to
601 -- some junk warnings.
603 if Is_Entity_Name (P) then
604 Set_Never_Set_In_Source (Entity (P), False);
605 end if;
607 -- Check for aliased view unless unrestricted case. We allow
608 -- a nonaliased prefix when within an instance because the
609 -- prefix may have been a tagged formal object, which is
610 -- defined to be aliased even when the actual might not be
611 -- (other instance cases will have been caught in the generic).
612 -- Similarly, within an inlined body we know that the attribute
613 -- is legal in the original subprogram, and therefore legal in
614 -- the expansion.
616 if Aname /= Name_Unrestricted_Access
617 and then not Is_Aliased_View (P)
618 and then not In_Instance
619 and then not In_Inlined_Body
620 then
621 Error_Attr ("prefix of % attribute must be aliased", P);
622 end if;
623 end Analyze_Access_Attribute;
625 --------------------------------
626 -- Check_Array_Or_Scalar_Type --
627 --------------------------------
629 procedure Check_Array_Or_Scalar_Type is
630 Index : Entity_Id;
632 D : Int;
633 -- Dimension number for array attributes.
635 begin
636 -- Case of string literal or string literal subtype. These cases
637 -- cannot arise from legal Ada code, but the expander is allowed
638 -- to generate them. They require special handling because string
639 -- literal subtypes do not have standard bounds (the whole idea
640 -- of these subtypes is to avoid having to generate the bounds)
642 if Ekind (P_Type) = E_String_Literal_Subtype then
643 Set_Etype (N, Etype (First_Index (P_Base_Type)));
644 return;
646 -- Scalar types
648 elsif Is_Scalar_Type (P_Type) then
649 Check_Type;
651 if Present (E1) then
652 Error_Attr ("invalid argument in % attribute", E1);
653 else
654 Set_Etype (N, P_Base_Type);
655 return;
656 end if;
658 -- The following is a special test to allow 'First to apply to
659 -- private scalar types if the attribute comes from generated
660 -- code. This occurs in the case of Normalize_Scalars code.
662 elsif Is_Private_Type (P_Type)
663 and then Present (Full_View (P_Type))
664 and then Is_Scalar_Type (Full_View (P_Type))
665 and then not Comes_From_Source (N)
666 then
667 Set_Etype (N, Implementation_Base_Type (P_Type));
669 -- Array types other than string literal subtypes handled above
671 else
672 Check_Array_Type;
674 -- We know prefix is an array type, or the name of an array
675 -- object, and that the expression, if present, is static
676 -- and within the range of the dimensions of the type.
678 pragma Assert (Is_Array_Type (P_Type));
679 Index := First_Index (P_Base_Type);
681 if No (E1) then
683 -- First dimension assumed
685 Set_Etype (N, Base_Type (Etype (Index)));
687 else
688 D := UI_To_Int (Intval (E1));
690 for J in 1 .. D - 1 loop
691 Next_Index (Index);
692 end loop;
694 Set_Etype (N, Base_Type (Etype (Index)));
695 Set_Etype (E1, Standard_Integer);
696 end if;
697 end if;
698 end Check_Array_Or_Scalar_Type;
700 ----------------------
701 -- Check_Array_Type --
702 ----------------------
704 procedure Check_Array_Type is
705 D : Int;
706 -- Dimension number for array attributes.
708 begin
709 -- If the type is a string literal type, then this must be generated
710 -- internally, and no further check is required on its legality.
712 if Ekind (P_Type) = E_String_Literal_Subtype then
713 return;
715 -- If the type is a composite, it is an illegal aggregate, no point
716 -- in going on.
718 elsif P_Type = Any_Composite then
719 raise Bad_Attribute;
720 end if;
722 -- Normal case of array type or subtype
724 Check_Either_E0_Or_E1;
725 Check_Dereference;
727 if Is_Array_Type (P_Type) then
728 if not Is_Constrained (P_Type)
729 and then Is_Entity_Name (P)
730 and then Is_Type (Entity (P))
731 then
732 -- Note: we do not call Error_Attr here, since we prefer to
733 -- continue, using the relevant index type of the array,
734 -- even though it is unconstrained. This gives better error
735 -- recovery behavior.
737 Error_Msg_Name_1 := Aname;
738 Error_Msg_N
739 ("prefix for % attribute must be constrained array", P);
740 end if;
742 D := Number_Dimensions (P_Type);
744 else
745 if Is_Private_Type (P_Type) then
746 Error_Attr
747 ("prefix for % attribute may not be private type", P);
749 elsif Is_Access_Type (P_Type)
750 and then Is_Array_Type (Designated_Type (P_Type))
751 and then Is_Entity_Name (P)
752 and then Is_Type (Entity (P))
753 then
754 Error_Attr ("prefix of % attribute cannot be access type", P);
756 elsif Attr_Id = Attribute_First
757 or else
758 Attr_Id = Attribute_Last
759 then
760 Error_Attr ("invalid prefix for % attribute", P);
762 else
763 Error_Attr ("prefix for % attribute must be array", P);
764 end if;
765 end if;
767 if Present (E1) then
768 Resolve (E1, Any_Integer);
769 Set_Etype (E1, Standard_Integer);
771 if not Is_Static_Expression (E1)
772 or else Raises_Constraint_Error (E1)
773 then
774 Flag_Non_Static_Expr
775 ("expression for dimension must be static!", E1);
776 Error_Attr;
778 elsif UI_To_Int (Expr_Value (E1)) > D
779 or else UI_To_Int (Expr_Value (E1)) < 1
780 then
781 Error_Attr ("invalid dimension number for array type", E1);
782 end if;
783 end if;
784 end Check_Array_Type;
786 -------------------------
787 -- Check_Asm_Attribute --
788 -------------------------
790 procedure Check_Asm_Attribute is
791 begin
792 Check_Type;
793 Check_E2;
795 -- Check first argument is static string expression
797 Analyze_And_Resolve (E1, Standard_String);
799 if Etype (E1) = Any_Type then
800 return;
802 elsif not Is_OK_Static_Expression (E1) then
803 Flag_Non_Static_Expr
804 ("constraint argument must be static string expression!", E1);
805 Error_Attr;
806 end if;
808 -- Check second argument is right type
810 Analyze_And_Resolve (E2, Entity (P));
812 -- Note: that is all we need to do, we don't need to check
813 -- that it appears in a correct context. The Ada type system
814 -- will do that for us.
816 end Check_Asm_Attribute;
818 ---------------------
819 -- Check_Component --
820 ---------------------
822 procedure Check_Component is
823 begin
824 Check_E0;
826 if Nkind (P) /= N_Selected_Component
827 or else
828 (Ekind (Entity (Selector_Name (P))) /= E_Component
829 and then
830 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
831 then
832 Error_Attr
833 ("prefix for % attribute must be selected component", P);
834 end if;
835 end Check_Component;
837 ------------------------------------
838 -- Check_Decimal_Fixed_Point_Type --
839 ------------------------------------
841 procedure Check_Decimal_Fixed_Point_Type is
842 begin
843 Check_Type;
845 if not Is_Decimal_Fixed_Point_Type (P_Type) then
846 Error_Attr
847 ("prefix of % attribute must be decimal type", P);
848 end if;
849 end Check_Decimal_Fixed_Point_Type;
851 -----------------------
852 -- Check_Dereference --
853 -----------------------
855 procedure Check_Dereference is
856 begin
858 -- Case of a subtype mark
860 if Is_Entity_Name (P)
861 and then Is_Type (Entity (P))
862 then
863 return;
864 end if;
866 -- Case of an expression
868 Resolve (P);
870 if Is_Access_Type (P_Type) then
872 -- If there is an implicit dereference, then we must freeze
873 -- the designated type of the access type, since the type of
874 -- the referenced array is this type (see AI95-00106).
876 Freeze_Before (N, Designated_Type (P_Type));
878 Rewrite (P,
879 Make_Explicit_Dereference (Sloc (P),
880 Prefix => Relocate_Node (P)));
882 Analyze_And_Resolve (P);
883 P_Type := Etype (P);
885 if P_Type = Any_Type then
886 raise Bad_Attribute;
887 end if;
889 P_Base_Type := Base_Type (P_Type);
890 end if;
891 end Check_Dereference;
893 -------------------------
894 -- Check_Discrete_Type --
895 -------------------------
897 procedure Check_Discrete_Type is
898 begin
899 Check_Type;
901 if not Is_Discrete_Type (P_Type) then
902 Error_Attr ("prefix of % attribute must be discrete type", P);
903 end if;
904 end Check_Discrete_Type;
906 --------------
907 -- Check_E0 --
908 --------------
910 procedure Check_E0 is
911 begin
912 if Present (E1) then
913 Unexpected_Argument (E1);
914 end if;
915 end Check_E0;
917 --------------
918 -- Check_E1 --
919 --------------
921 procedure Check_E1 is
922 begin
923 Check_Either_E0_Or_E1;
925 if No (E1) then
927 -- Special-case attributes that are functions and that appear as
928 -- the prefix of another attribute. Error is posted on parent.
930 if Nkind (Parent (N)) = N_Attribute_Reference
931 and then (Attribute_Name (Parent (N)) = Name_Address
932 or else
933 Attribute_Name (Parent (N)) = Name_Code_Address
934 or else
935 Attribute_Name (Parent (N)) = Name_Access)
936 then
937 Error_Msg_Name_1 := Attribute_Name (Parent (N));
938 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
939 Set_Etype (Parent (N), Any_Type);
940 Set_Entity (Parent (N), Any_Type);
941 raise Bad_Attribute;
943 else
944 Error_Attr ("missing argument for % attribute", N);
945 end if;
946 end if;
947 end Check_E1;
949 --------------
950 -- Check_E2 --
951 --------------
953 procedure Check_E2 is
954 begin
955 if No (E1) then
956 Error_Attr ("missing arguments for % attribute (2 required)", N);
957 elsif No (E2) then
958 Error_Attr ("missing argument for % attribute (2 required)", N);
959 end if;
960 end Check_E2;
962 ---------------------------
963 -- Check_Either_E0_Or_E1 --
964 ---------------------------
966 procedure Check_Either_E0_Or_E1 is
967 begin
968 if Present (E2) then
969 Unexpected_Argument (E2);
970 end if;
971 end Check_Either_E0_Or_E1;
973 ----------------------
974 -- Check_Enum_Image --
975 ----------------------
977 procedure Check_Enum_Image is
978 Lit : Entity_Id;
980 begin
981 if Is_Enumeration_Type (P_Base_Type) then
982 Lit := First_Literal (P_Base_Type);
983 while Present (Lit) loop
984 Set_Referenced (Lit);
985 Next_Literal (Lit);
986 end loop;
987 end if;
988 end Check_Enum_Image;
990 ----------------------------
991 -- Check_Fixed_Point_Type --
992 ----------------------------
994 procedure Check_Fixed_Point_Type is
995 begin
996 Check_Type;
998 if not Is_Fixed_Point_Type (P_Type) then
999 Error_Attr ("prefix of % attribute must be fixed point type", P);
1000 end if;
1001 end Check_Fixed_Point_Type;
1003 ------------------------------
1004 -- Check_Fixed_Point_Type_0 --
1005 ------------------------------
1007 procedure Check_Fixed_Point_Type_0 is
1008 begin
1009 Check_Fixed_Point_Type;
1010 Check_E0;
1011 end Check_Fixed_Point_Type_0;
1013 -------------------------------
1014 -- Check_Floating_Point_Type --
1015 -------------------------------
1017 procedure Check_Floating_Point_Type is
1018 begin
1019 Check_Type;
1021 if not Is_Floating_Point_Type (P_Type) then
1022 Error_Attr ("prefix of % attribute must be float type", P);
1023 end if;
1024 end Check_Floating_Point_Type;
1026 ---------------------------------
1027 -- Check_Floating_Point_Type_0 --
1028 ---------------------------------
1030 procedure Check_Floating_Point_Type_0 is
1031 begin
1032 Check_Floating_Point_Type;
1033 Check_E0;
1034 end Check_Floating_Point_Type_0;
1036 ---------------------------------
1037 -- Check_Floating_Point_Type_1 --
1038 ---------------------------------
1040 procedure Check_Floating_Point_Type_1 is
1041 begin
1042 Check_Floating_Point_Type;
1043 Check_E1;
1044 end Check_Floating_Point_Type_1;
1046 ---------------------------------
1047 -- Check_Floating_Point_Type_2 --
1048 ---------------------------------
1050 procedure Check_Floating_Point_Type_2 is
1051 begin
1052 Check_Floating_Point_Type;
1053 Check_E2;
1054 end Check_Floating_Point_Type_2;
1056 ------------------------
1057 -- Check_Integer_Type --
1058 ------------------------
1060 procedure Check_Integer_Type is
1061 begin
1062 Check_Type;
1064 if not Is_Integer_Type (P_Type) then
1065 Error_Attr ("prefix of % attribute must be integer type", P);
1066 end if;
1067 end Check_Integer_Type;
1069 ------------------------
1070 -- Check_Library_Unit --
1071 ------------------------
1073 procedure Check_Library_Unit is
1074 begin
1075 if not Is_Compilation_Unit (Entity (P)) then
1076 Error_Attr ("prefix of % attribute must be library unit", P);
1077 end if;
1078 end Check_Library_Unit;
1080 --------------------------------
1081 -- Check_Modular_Integer_Type --
1082 --------------------------------
1084 procedure Check_Modular_Integer_Type is
1085 begin
1086 Check_Type;
1088 if not Is_Modular_Integer_Type (P_Type) then
1089 Error_Attr
1090 ("prefix of % attribute must be modular integer type", P);
1091 end if;
1092 end Check_Modular_Integer_Type;
1094 -------------------------------
1095 -- Check_Not_Incomplete_Type --
1096 -------------------------------
1098 procedure Check_Not_Incomplete_Type is
1099 begin
1100 if not Is_Entity_Name (P)
1101 or else not Is_Type (Entity (P))
1102 or else In_Default_Expression
1103 then
1104 return;
1106 else
1107 Check_Fully_Declared (P_Type, P);
1108 end if;
1109 end Check_Not_Incomplete_Type;
1111 ----------------------------
1112 -- Check_Object_Reference --
1113 ----------------------------
1115 procedure Check_Object_Reference (P : Node_Id) is
1116 Rtyp : Entity_Id;
1118 begin
1119 -- If we need an object, and we have a prefix that is the name of
1120 -- a function entity, convert it into a function call.
1122 if Is_Entity_Name (P)
1123 and then Ekind (Entity (P)) = E_Function
1124 then
1125 Rtyp := Etype (Entity (P));
1127 Rewrite (P,
1128 Make_Function_Call (Sloc (P),
1129 Name => Relocate_Node (P)));
1131 Analyze_And_Resolve (P, Rtyp);
1133 -- Otherwise we must have an object reference
1135 elsif not Is_Object_Reference (P) then
1136 Error_Attr ("prefix of % attribute must be object", P);
1137 end if;
1138 end Check_Object_Reference;
1140 ------------------------
1141 -- Check_Program_Unit --
1142 ------------------------
1144 procedure Check_Program_Unit is
1145 begin
1146 if Is_Entity_Name (P) then
1147 declare
1148 K : constant Entity_Kind := Ekind (Entity (P));
1149 T : constant Entity_Id := Etype (Entity (P));
1151 begin
1152 if K in Subprogram_Kind
1153 or else K in Task_Kind
1154 or else K in Protected_Kind
1155 or else K = E_Package
1156 or else K in Generic_Unit_Kind
1157 or else (K = E_Variable
1158 and then
1159 (Is_Task_Type (T)
1160 or else
1161 Is_Protected_Type (T)))
1162 then
1163 return;
1164 end if;
1165 end;
1166 end if;
1168 Error_Attr ("prefix of % attribute must be program unit", P);
1169 end Check_Program_Unit;
1171 ---------------------
1172 -- Check_Real_Type --
1173 ---------------------
1175 procedure Check_Real_Type is
1176 begin
1177 Check_Type;
1179 if not Is_Real_Type (P_Type) then
1180 Error_Attr ("prefix of % attribute must be real type", P);
1181 end if;
1182 end Check_Real_Type;
1184 -----------------------
1185 -- Check_Scalar_Type --
1186 -----------------------
1188 procedure Check_Scalar_Type is
1189 begin
1190 Check_Type;
1192 if not Is_Scalar_Type (P_Type) then
1193 Error_Attr ("prefix of % attribute must be scalar type", P);
1194 end if;
1195 end Check_Scalar_Type;
1197 ---------------------------
1198 -- Check_Standard_Prefix --
1199 ---------------------------
1201 procedure Check_Standard_Prefix is
1202 begin
1203 Check_E0;
1205 if Nkind (P) /= N_Identifier
1206 or else Chars (P) /= Name_Standard
1207 then
1208 Error_Attr ("only allowed prefix for % attribute is Standard", P);
1209 end if;
1211 end Check_Standard_Prefix;
1213 ----------------------------
1214 -- Check_Stream_Attribute --
1215 ----------------------------
1217 procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
1218 Etyp : Entity_Id;
1219 Btyp : Entity_Id;
1221 begin
1222 Validate_Non_Static_Attribute_Function_Call;
1224 -- With the exception of 'Input, Stream attributes are procedures,
1225 -- and can only appear at the position of procedure calls. We check
1226 -- for this here, before they are rewritten, to give a more precise
1227 -- diagnostic.
1229 if Nam = TSS_Stream_Input then
1230 null;
1232 elsif Is_List_Member (N)
1233 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1234 and then Nkind (Parent (N)) /= N_Aggregate
1235 then
1236 null;
1238 else
1239 Error_Attr
1240 ("invalid context for attribute%, which is a procedure", N);
1241 end if;
1243 Check_Type;
1244 Btyp := Implementation_Base_Type (P_Type);
1246 -- Stream attributes not allowed on limited types unless the
1247 -- special OK_For_Stream flag is set.
1249 if Is_Limited_Type (P_Type)
1250 and then Comes_From_Source (N)
1251 and then not Present (TSS (Btyp, Nam))
1252 and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
1253 then
1254 Error_Msg_Name_1 := Aname;
1255 Error_Msg_NE
1256 ("limited type& has no% attribute", P, Btyp);
1257 Explain_Limited_Type (P_Type, P);
1258 end if;
1260 -- Check for violation of restriction No_Stream_Attributes
1262 if Is_RTE (P_Type, RE_Exception_Id)
1263 or else
1264 Is_RTE (P_Type, RE_Exception_Occurrence)
1265 then
1266 Check_Restriction (No_Exception_Registration, P);
1267 end if;
1269 -- Here we must check that the first argument is an access type
1270 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
1272 Analyze_And_Resolve (E1);
1273 Etyp := Etype (E1);
1275 -- Note: the double call to Root_Type here is needed because the
1276 -- root type of a class-wide type is the corresponding type (e.g.
1277 -- X for X'Class, and we really want to go to the root.
1279 if not Is_Access_Type (Etyp)
1280 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
1281 RTE (RE_Root_Stream_Type)
1282 then
1283 Error_Attr
1284 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
1285 end if;
1287 -- Check that the second argument is of the right type if there is
1288 -- one (the Input attribute has only one argument so this is skipped)
1290 if Present (E2) then
1291 Analyze (E2);
1293 if Nam = TSS_Stream_Read
1294 and then not Is_OK_Variable_For_Out_Formal (E2)
1295 then
1296 Error_Attr
1297 ("second argument of % attribute must be a variable", E2);
1298 end if;
1300 Resolve (E2, P_Type);
1301 end if;
1302 end Check_Stream_Attribute;
1304 -----------------------
1305 -- Check_Task_Prefix --
1306 -----------------------
1308 procedure Check_Task_Prefix is
1309 begin
1310 Analyze (P);
1312 if Is_Task_Type (Etype (P))
1313 or else (Is_Access_Type (Etype (P))
1314 and then Is_Task_Type (Designated_Type (Etype (P))))
1315 then
1316 Resolve (P);
1317 else
1318 Error_Attr ("prefix of % attribute must be a task", P);
1319 end if;
1320 end Check_Task_Prefix;
1322 ----------------
1323 -- Check_Type --
1324 ----------------
1326 -- The possibilities are an entity name denoting a type, or an
1327 -- attribute reference that denotes a type (Base or Class). If
1328 -- the type is incomplete, replace it with its full view.
1330 procedure Check_Type is
1331 begin
1332 if not Is_Entity_Name (P)
1333 or else not Is_Type (Entity (P))
1334 then
1335 Error_Attr ("prefix of % attribute must be a type", P);
1337 elsif Ekind (Entity (P)) = E_Incomplete_Type
1338 and then Present (Full_View (Entity (P)))
1339 then
1340 P_Type := Full_View (Entity (P));
1341 Set_Entity (P, P_Type);
1342 end if;
1343 end Check_Type;
1345 ---------------------
1346 -- Check_Unit_Name --
1347 ---------------------
1349 procedure Check_Unit_Name (Nod : Node_Id) is
1350 begin
1351 if Nkind (Nod) = N_Identifier then
1352 return;
1354 elsif Nkind (Nod) = N_Selected_Component then
1355 Check_Unit_Name (Prefix (Nod));
1357 if Nkind (Selector_Name (Nod)) = N_Identifier then
1358 return;
1359 end if;
1360 end if;
1362 Error_Attr ("argument for % attribute must be unit name", P);
1363 end Check_Unit_Name;
1365 ----------------
1366 -- Error_Attr --
1367 ----------------
1369 procedure Error_Attr is
1370 begin
1371 Set_Etype (N, Any_Type);
1372 Set_Entity (N, Any_Type);
1373 raise Bad_Attribute;
1374 end Error_Attr;
1376 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
1377 begin
1378 Error_Msg_Name_1 := Aname;
1379 Error_Msg_N (Msg, Error_Node);
1380 Error_Attr;
1381 end Error_Attr;
1383 ----------------------------
1384 -- Legal_Formal_Attribute --
1385 ----------------------------
1387 procedure Legal_Formal_Attribute is
1388 begin
1389 Check_E0;
1391 if not Is_Entity_Name (P)
1392 or else not Is_Type (Entity (P))
1393 then
1394 Error_Attr ("prefix of % attribute must be generic type", N);
1396 elsif Is_Generic_Actual_Type (Entity (P))
1397 or else In_Instance
1398 or else In_Inlined_Body
1399 then
1400 null;
1402 elsif Is_Generic_Type (Entity (P)) then
1403 if not Is_Indefinite_Subtype (Entity (P)) then
1404 Error_Attr
1405 ("prefix of % attribute must be indefinite generic type", N);
1406 end if;
1408 else
1409 Error_Attr
1410 ("prefix of % attribute must be indefinite generic type", N);
1411 end if;
1413 Set_Etype (N, Standard_Boolean);
1414 end Legal_Formal_Attribute;
1416 ------------------------
1417 -- Standard_Attribute --
1418 ------------------------
1420 procedure Standard_Attribute (Val : Int) is
1421 begin
1422 Check_Standard_Prefix;
1424 -- First a special check (more like a kludge really). For GNAT5
1425 -- on Windows, the alignments in GCC are severely mixed up. In
1426 -- particular, we have a situation where the maximum alignment
1427 -- that GCC thinks is possible is greater than the guaranteed
1428 -- alignment at run-time. That causes many problems. As a partial
1429 -- cure for this situation, we force a value of 4 for the maximum
1430 -- alignment attribute on this target. This still does not solve
1431 -- all problems, but it helps.
1433 -- A further (even more horrible) dimension to this kludge is now
1434 -- installed. There are two uses for Maximum_Alignment, one is to
1435 -- determine the maximum guaranteed alignment, that's the one we
1436 -- want the kludge to yield as 4. The other use is to maximally
1437 -- align objects, we can't use 4 here, since for example, long
1438 -- long integer has an alignment of 8, so we will get errors.
1440 -- It is of course impossible to determine which use the programmer
1441 -- has in mind, but an approximation for now is to disconnect the
1442 -- kludge if the attribute appears in an alignment clause.
1444 -- To be removed if GCC ever gets its act together here ???
1446 Alignment_Kludge : declare
1447 P : Node_Id;
1449 function On_X86 return Boolean;
1450 -- Determine if target is x86 (ia32), return True if so
1452 ------------
1453 -- On_X86 --
1454 ------------
1456 function On_X86 return Boolean is
1457 T : constant String := Sdefault.Target_Name.all;
1459 begin
1460 -- There is no clean way to check this. That's not surprising,
1461 -- the front end should not be doing this kind of test ???. The
1462 -- way we do it is test for either "86" or "pentium" being in
1463 -- the string for the target name.
1465 for J in T'First .. T'Last - 1 loop
1466 if T (J .. J + 1) = "86"
1467 or else (J <= T'Last - 6
1468 and then T (J .. J + 6) = "pentium")
1469 then
1470 return True;
1471 end if;
1472 end loop;
1474 return False;
1475 end On_X86;
1477 begin
1478 if Aname = Name_Maximum_Alignment and then On_X86 then
1479 P := Parent (N);
1481 while Nkind (P) in N_Subexpr loop
1482 P := Parent (P);
1483 end loop;
1485 if Nkind (P) /= N_Attribute_Definition_Clause
1486 or else Chars (P) /= Name_Alignment
1487 then
1488 Rewrite (N, Make_Integer_Literal (Loc, 4));
1489 Analyze (N);
1490 return;
1491 end if;
1492 end if;
1493 end Alignment_Kludge;
1495 -- Normally we get the value from gcc ???
1497 Rewrite (N, Make_Integer_Literal (Loc, Val));
1498 Analyze (N);
1499 end Standard_Attribute;
1501 -------------------------
1502 -- Unexpected Argument --
1503 -------------------------
1505 procedure Unexpected_Argument (En : Node_Id) is
1506 begin
1507 Error_Attr ("unexpected argument for % attribute", En);
1508 end Unexpected_Argument;
1510 -------------------------------------------------
1511 -- Validate_Non_Static_Attribute_Function_Call --
1512 -------------------------------------------------
1514 -- This function should be moved to Sem_Dist ???
1516 procedure Validate_Non_Static_Attribute_Function_Call is
1517 begin
1518 if In_Preelaborated_Unit
1519 and then not In_Subprogram_Or_Concurrent_Unit
1520 then
1521 Flag_Non_Static_Expr
1522 ("non-static function call in preelaborated unit!", N);
1523 end if;
1524 end Validate_Non_Static_Attribute_Function_Call;
1526 -----------------------------------------------
1527 -- Start of Processing for Analyze_Attribute --
1528 -----------------------------------------------
1530 begin
1531 -- Immediate return if unrecognized attribute (already diagnosed
1532 -- by parser, so there is nothing more that we need to do)
1534 if not Is_Attribute_Name (Aname) then
1535 raise Bad_Attribute;
1536 end if;
1538 -- Deal with Ada 83 and Features issues
1540 if Comes_From_Source (N) then
1541 if not Attribute_83 (Attr_Id) then
1542 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1543 Error_Msg_Name_1 := Aname;
1544 Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
1545 end if;
1547 if Attribute_Impl_Def (Attr_Id) then
1548 Check_Restriction (No_Implementation_Attributes, N);
1549 end if;
1550 end if;
1551 end if;
1553 -- Remote access to subprogram type access attribute reference needs
1554 -- unanalyzed copy for tree transformation. The analyzed copy is used
1555 -- for its semantic information (whether prefix is a remote subprogram
1556 -- name), the unanalyzed copy is used to construct new subtree rooted
1557 -- with N_Aggregate which represents a fat pointer aggregate.
1559 if Aname = Name_Access then
1560 Discard_Node (Copy_Separate_Tree (N));
1561 end if;
1563 -- Analyze prefix and exit if error in analysis. If the prefix is an
1564 -- incomplete type, use full view if available. A special case is
1565 -- that we never analyze the prefix of an Elab_Body or Elab_Spec
1566 -- or UET_Address attribute.
1568 if Aname /= Name_Elab_Body
1569 and then
1570 Aname /= Name_Elab_Spec
1571 and then
1572 Aname /= Name_UET_Address
1573 then
1574 Analyze (P);
1575 P_Type := Etype (P);
1577 if Is_Entity_Name (P)
1578 and then Present (Entity (P))
1579 and then Is_Type (Entity (P))
1580 and then Ekind (Entity (P)) = E_Incomplete_Type
1581 then
1582 P_Type := Get_Full_View (P_Type);
1583 Set_Entity (P, P_Type);
1584 Set_Etype (P, P_Type);
1585 end if;
1587 if P_Type = Any_Type then
1588 raise Bad_Attribute;
1589 end if;
1591 P_Base_Type := Base_Type (P_Type);
1592 end if;
1594 -- Analyze expressions that may be present, exiting if an error occurs
1596 if No (Exprs) then
1597 E1 := Empty;
1598 E2 := Empty;
1600 else
1601 E1 := First (Exprs);
1602 Analyze (E1);
1604 -- Check for missing or bad expression (result of previous error)
1606 if No (E1) or else Etype (E1) = Any_Type then
1607 raise Bad_Attribute;
1608 end if;
1610 E2 := Next (E1);
1612 if Present (E2) then
1613 Analyze (E2);
1615 if Etype (E2) = Any_Type then
1616 raise Bad_Attribute;
1617 end if;
1619 if Present (Next (E2)) then
1620 Unexpected_Argument (Next (E2));
1621 end if;
1622 end if;
1623 end if;
1625 if Is_Overloaded (P)
1626 and then Aname /= Name_Access
1627 and then Aname /= Name_Address
1628 and then Aname /= Name_Code_Address
1629 and then Aname /= Name_Count
1630 and then Aname /= Name_Unchecked_Access
1631 then
1632 Error_Attr ("ambiguous prefix for % attribute", P);
1633 end if;
1635 -- Remaining processing depends on attribute
1637 case Attr_Id is
1639 ------------------
1640 -- Abort_Signal --
1641 ------------------
1643 when Attribute_Abort_Signal =>
1644 Check_Standard_Prefix;
1645 Rewrite (N,
1646 New_Reference_To (Stand.Abort_Signal, Loc));
1647 Analyze (N);
1649 ------------
1650 -- Access --
1651 ------------
1653 when Attribute_Access =>
1654 Analyze_Access_Attribute;
1656 -------------
1657 -- Address --
1658 -------------
1660 when Attribute_Address =>
1661 Check_E0;
1663 -- Check for some junk cases, where we have to allow the address
1664 -- attribute but it does not make much sense, so at least for now
1665 -- just replace with Null_Address.
1667 -- We also do this if the prefix is a reference to the AST_Entry
1668 -- attribute. If expansion is active, the attribute will be
1669 -- replaced by a function call, and address will work fine and
1670 -- get the proper value, but if expansion is not active, then
1671 -- the check here allows proper semantic analysis of the reference.
1673 -- An Address attribute created by expansion is legal even when it
1674 -- applies to other entity-denoting expressions.
1676 if Is_Entity_Name (P) then
1677 declare
1678 Ent : constant Entity_Id := Entity (P);
1680 begin
1681 if Is_Subprogram (Ent) then
1682 if not Is_Library_Level_Entity (Ent) then
1683 Check_Restriction (No_Implicit_Dynamic_Code, P);
1684 end if;
1686 Set_Address_Taken (Ent);
1688 elsif Is_Object (Ent)
1689 or else Ekind (Ent) = E_Label
1690 then
1691 Set_Address_Taken (Ent);
1693 -- If we have an address of an object, and the attribute
1694 -- comes from source, then set the object as potentially
1695 -- source modified. We do this because the resulting address
1696 -- can potentially be used to modify the variable and we
1697 -- might not detect this, leading to some junk warnings.
1699 Set_Never_Set_In_Source (Ent, False);
1701 elsif (Is_Concurrent_Type (Etype (Ent))
1702 and then Etype (Ent) = Base_Type (Ent))
1703 or else Ekind (Ent) = E_Package
1704 or else Is_Generic_Unit (Ent)
1705 then
1706 Rewrite (N,
1707 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1709 else
1710 Error_Attr ("invalid prefix for % attribute", P);
1711 end if;
1712 end;
1714 elsif Nkind (P) = N_Attribute_Reference
1715 and then Attribute_Name (P) = Name_AST_Entry
1716 then
1717 Rewrite (N,
1718 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
1720 elsif Is_Object_Reference (P) then
1721 null;
1723 elsif Nkind (P) = N_Selected_Component
1724 and then Is_Subprogram (Entity (Selector_Name (P)))
1725 then
1726 null;
1728 -- What exactly are we allowing here ??? and is this properly
1729 -- documented in the sinfo documentation for this node ???
1731 elsif not Comes_From_Source (N) then
1732 null;
1734 else
1735 Error_Attr ("invalid prefix for % attribute", P);
1736 end if;
1738 Set_Etype (N, RTE (RE_Address));
1740 ------------------
1741 -- Address_Size --
1742 ------------------
1744 when Attribute_Address_Size =>
1745 Standard_Attribute (System_Address_Size);
1747 --------------
1748 -- Adjacent --
1749 --------------
1751 when Attribute_Adjacent =>
1752 Check_Floating_Point_Type_2;
1753 Set_Etype (N, P_Base_Type);
1754 Resolve (E1, P_Base_Type);
1755 Resolve (E2, P_Base_Type);
1757 ---------
1758 -- Aft --
1759 ---------
1761 when Attribute_Aft =>
1762 Check_Fixed_Point_Type_0;
1763 Set_Etype (N, Universal_Integer);
1765 ---------------
1766 -- Alignment --
1767 ---------------
1769 when Attribute_Alignment =>
1771 -- Don't we need more checking here, cf Size ???
1773 Check_E0;
1774 Check_Not_Incomplete_Type;
1775 Set_Etype (N, Universal_Integer);
1777 ---------------
1778 -- Asm_Input --
1779 ---------------
1781 when Attribute_Asm_Input =>
1782 Check_Asm_Attribute;
1783 Set_Etype (N, RTE (RE_Asm_Input_Operand));
1785 ----------------
1786 -- Asm_Output --
1787 ----------------
1789 when Attribute_Asm_Output =>
1790 Check_Asm_Attribute;
1792 if Etype (E2) = Any_Type then
1793 return;
1795 elsif Aname = Name_Asm_Output then
1796 if not Is_Variable (E2) then
1797 Error_Attr
1798 ("second argument for Asm_Output is not variable", E2);
1799 end if;
1800 end if;
1802 Note_Possible_Modification (E2);
1803 Set_Etype (N, RTE (RE_Asm_Output_Operand));
1805 ---------------
1806 -- AST_Entry --
1807 ---------------
1809 when Attribute_AST_Entry => AST_Entry : declare
1810 Ent : Entity_Id;
1811 Pref : Node_Id;
1812 Ptyp : Entity_Id;
1814 Indexed : Boolean;
1815 -- Indicates if entry family index is present. Note the coding
1816 -- here handles the entry family case, but in fact it cannot be
1817 -- executed currently, because pragma AST_Entry does not permit
1818 -- the specification of an entry family.
1820 procedure Bad_AST_Entry;
1821 -- Signal a bad AST_Entry pragma
1823 function OK_Entry (E : Entity_Id) return Boolean;
1824 -- Checks that E is of an appropriate entity kind for an entry
1825 -- (i.e. E_Entry if Index is False, or E_Entry_Family if Index
1826 -- is set True for the entry family case). In the True case,
1827 -- makes sure that Is_AST_Entry is set on the entry.
1829 procedure Bad_AST_Entry is
1830 begin
1831 Error_Attr ("prefix for % attribute must be task entry", P);
1832 end Bad_AST_Entry;
1834 function OK_Entry (E : Entity_Id) return Boolean is
1835 Result : Boolean;
1837 begin
1838 if Indexed then
1839 Result := (Ekind (E) = E_Entry_Family);
1840 else
1841 Result := (Ekind (E) = E_Entry);
1842 end if;
1844 if Result then
1845 if not Is_AST_Entry (E) then
1846 Error_Msg_Name_2 := Aname;
1847 Error_Attr
1848 ("% attribute requires previous % pragma", P);
1849 end if;
1850 end if;
1852 return Result;
1853 end OK_Entry;
1855 -- Start of processing for AST_Entry
1857 begin
1858 Check_VMS (N);
1859 Check_E0;
1861 -- Deal with entry family case
1863 if Nkind (P) = N_Indexed_Component then
1864 Pref := Prefix (P);
1865 Indexed := True;
1866 else
1867 Pref := P;
1868 Indexed := False;
1869 end if;
1871 Ptyp := Etype (Pref);
1873 if Ptyp = Any_Type or else Error_Posted (Pref) then
1874 return;
1875 end if;
1877 -- If the prefix is a selected component whose prefix is of an
1878 -- access type, then introduce an explicit dereference.
1879 -- ??? Could we reuse Check_Dereference here?
1881 if Nkind (Pref) = N_Selected_Component
1882 and then Is_Access_Type (Ptyp)
1883 then
1884 Rewrite (Pref,
1885 Make_Explicit_Dereference (Sloc (Pref),
1886 Relocate_Node (Pref)));
1887 Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
1888 end if;
1890 -- Prefix can be of the form a.b, where a is a task object
1891 -- and b is one of the entries of the corresponding task type.
1893 if Nkind (Pref) = N_Selected_Component
1894 and then OK_Entry (Entity (Selector_Name (Pref)))
1895 and then Is_Object_Reference (Prefix (Pref))
1896 and then Is_Task_Type (Etype (Prefix (Pref)))
1897 then
1898 null;
1900 -- Otherwise the prefix must be an entry of a containing task,
1901 -- or of a variable of the enclosing task type.
1903 else
1904 if Nkind (Pref) = N_Identifier
1905 or else Nkind (Pref) = N_Expanded_Name
1906 then
1907 Ent := Entity (Pref);
1909 if not OK_Entry (Ent)
1910 or else not In_Open_Scopes (Scope (Ent))
1911 then
1912 Bad_AST_Entry;
1913 end if;
1915 else
1916 Bad_AST_Entry;
1917 end if;
1918 end if;
1920 Set_Etype (N, RTE (RE_AST_Handler));
1921 end AST_Entry;
1923 ----------
1924 -- Base --
1925 ----------
1927 -- Note: when the base attribute appears in the context of a subtype
1928 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
1929 -- the following circuit.
1931 when Attribute_Base => Base : declare
1932 Typ : Entity_Id;
1934 begin
1935 Check_Either_E0_Or_E1;
1936 Find_Type (P);
1937 Typ := Entity (P);
1939 if Ada_Version >= Ada_95
1940 and then not Is_Scalar_Type (Typ)
1941 and then not Is_Generic_Type (Typ)
1942 then
1943 Error_Msg_N ("prefix of Base attribute must be scalar type", N);
1945 elsif Sloc (Typ) = Standard_Location
1946 and then Base_Type (Typ) = Typ
1947 and then Warn_On_Redundant_Constructs
1948 then
1949 Error_Msg_NE
1950 ("?redudant attribute, & is its own base type", N, Typ);
1951 end if;
1953 Set_Etype (N, Base_Type (Entity (P)));
1955 -- If we have an expression present, then really this is a conversion
1956 -- and the tree must be reformed. Note that this is one of the cases
1957 -- in which we do a replace rather than a rewrite, because the
1958 -- original tree is junk.
1960 if Present (E1) then
1961 Replace (N,
1962 Make_Type_Conversion (Loc,
1963 Subtype_Mark =>
1964 Make_Attribute_Reference (Loc,
1965 Prefix => Prefix (N),
1966 Attribute_Name => Name_Base),
1967 Expression => Relocate_Node (E1)));
1969 -- E1 may be overloaded, and its interpretations preserved.
1971 Save_Interps (E1, Expression (N));
1972 Analyze (N);
1974 -- For other cases, set the proper type as the entity of the
1975 -- attribute reference, and then rewrite the node to be an
1976 -- occurrence of the referenced base type. This way, no one
1977 -- else in the compiler has to worry about the base attribute.
1979 else
1980 Set_Entity (N, Base_Type (Entity (P)));
1981 Rewrite (N,
1982 New_Reference_To (Entity (N), Loc));
1983 Analyze (N);
1984 end if;
1985 end Base;
1987 ---------
1988 -- Bit --
1989 ---------
1991 when Attribute_Bit => Bit :
1992 begin
1993 Check_E0;
1995 if not Is_Object_Reference (P) then
1996 Error_Attr ("prefix for % attribute must be object", P);
1998 -- What about the access object cases ???
2000 else
2001 null;
2002 end if;
2004 Set_Etype (N, Universal_Integer);
2005 end Bit;
2007 ---------------
2008 -- Bit_Order --
2009 ---------------
2011 when Attribute_Bit_Order => Bit_Order :
2012 begin
2013 Check_E0;
2014 Check_Type;
2016 if not Is_Record_Type (P_Type) then
2017 Error_Attr ("prefix of % attribute must be record type", P);
2018 end if;
2020 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
2021 Rewrite (N,
2022 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
2023 else
2024 Rewrite (N,
2025 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
2026 end if;
2028 Set_Etype (N, RTE (RE_Bit_Order));
2029 Resolve (N);
2031 -- Reset incorrect indication of staticness
2033 Set_Is_Static_Expression (N, False);
2034 end Bit_Order;
2036 ------------------
2037 -- Bit_Position --
2038 ------------------
2040 -- Note: in generated code, we can have a Bit_Position attribute
2041 -- applied to a (naked) record component (i.e. the prefix is an
2042 -- identifier that references an E_Component or E_Discriminant
2043 -- entity directly, and this is interpreted as expected by Gigi.
2044 -- The following code will not tolerate such usage, but when the
2045 -- expander creates this special case, it marks it as analyzed
2046 -- immediately and sets an appropriate type.
2048 when Attribute_Bit_Position =>
2050 if Comes_From_Source (N) then
2051 Check_Component;
2052 end if;
2054 Set_Etype (N, Universal_Integer);
2056 ------------------
2057 -- Body_Version --
2058 ------------------
2060 when Attribute_Body_Version =>
2061 Check_E0;
2062 Check_Program_Unit;
2063 Set_Etype (N, RTE (RE_Version_String));
2065 --------------
2066 -- Callable --
2067 --------------
2069 when Attribute_Callable =>
2070 Check_E0;
2071 Set_Etype (N, Standard_Boolean);
2072 Check_Task_Prefix;
2074 ------------
2075 -- Caller --
2076 ------------
2078 when Attribute_Caller => Caller : declare
2079 Ent : Entity_Id;
2080 S : Entity_Id;
2082 begin
2083 Check_E0;
2085 if Nkind (P) = N_Identifier
2086 or else Nkind (P) = N_Expanded_Name
2087 then
2088 Ent := Entity (P);
2090 if not Is_Entry (Ent) then
2091 Error_Attr ("invalid entry name", N);
2092 end if;
2094 else
2095 Error_Attr ("invalid entry name", N);
2096 return;
2097 end if;
2099 for J in reverse 0 .. Scope_Stack.Last loop
2100 S := Scope_Stack.Table (J).Entity;
2102 if S = Scope (Ent) then
2103 Error_Attr ("Caller must appear in matching accept or body", N);
2104 elsif S = Ent then
2105 exit;
2106 end if;
2107 end loop;
2109 Set_Etype (N, RTE (RO_AT_Task_Id));
2110 end Caller;
2112 -------------
2113 -- Ceiling --
2114 -------------
2116 when Attribute_Ceiling =>
2117 Check_Floating_Point_Type_1;
2118 Set_Etype (N, P_Base_Type);
2119 Resolve (E1, P_Base_Type);
2121 -----------
2122 -- Class --
2123 -----------
2125 when Attribute_Class => Class : declare
2126 begin
2127 Check_Restriction (No_Dispatch, N);
2128 Check_Either_E0_Or_E1;
2130 -- If we have an expression present, then really this is a conversion
2131 -- and the tree must be reformed into a proper conversion. This is a
2132 -- Replace rather than a Rewrite, because the original tree is junk.
2133 -- If expression is overloaded, propagate interpretations to new one.
2135 if Present (E1) then
2136 Replace (N,
2137 Make_Type_Conversion (Loc,
2138 Subtype_Mark =>
2139 Make_Attribute_Reference (Loc,
2140 Prefix => Prefix (N),
2141 Attribute_Name => Name_Class),
2142 Expression => Relocate_Node (E1)));
2144 Save_Interps (E1, Expression (N));
2145 Analyze (N);
2147 -- Otherwise we just need to find the proper type
2149 else
2150 Find_Type (N);
2151 end if;
2153 end Class;
2155 ------------------
2156 -- Code_Address --
2157 ------------------
2159 when Attribute_Code_Address =>
2160 Check_E0;
2162 if Nkind (P) = N_Attribute_Reference
2163 and then (Attribute_Name (P) = Name_Elab_Body
2164 or else
2165 Attribute_Name (P) = Name_Elab_Spec)
2166 then
2167 null;
2169 elsif not Is_Entity_Name (P)
2170 or else (Ekind (Entity (P)) /= E_Function
2171 and then
2172 Ekind (Entity (P)) /= E_Procedure)
2173 then
2174 Error_Attr ("invalid prefix for % attribute", P);
2175 Set_Address_Taken (Entity (P));
2176 end if;
2178 Set_Etype (N, RTE (RE_Address));
2180 --------------------
2181 -- Component_Size --
2182 --------------------
2184 when Attribute_Component_Size =>
2185 Check_E0;
2186 Set_Etype (N, Universal_Integer);
2188 -- Note: unlike other array attributes, unconstrained arrays are OK
2190 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
2191 null;
2192 else
2193 Check_Array_Type;
2194 end if;
2196 -------------
2197 -- Compose --
2198 -------------
2200 when Attribute_Compose =>
2201 Check_Floating_Point_Type_2;
2202 Set_Etype (N, P_Base_Type);
2203 Resolve (E1, P_Base_Type);
2204 Resolve (E2, Any_Integer);
2206 -----------------
2207 -- Constrained --
2208 -----------------
2210 when Attribute_Constrained =>
2211 Check_E0;
2212 Set_Etype (N, Standard_Boolean);
2214 -- Case from RM J.4(2) of constrained applied to private type
2216 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
2217 Check_Restriction (No_Obsolescent_Features, N);
2219 if Warn_On_Obsolescent_Feature then
2220 Error_Msg_N
2221 ("constrained for private type is an " &
2222 "obsolescent feature ('R'M 'J.4)?", N);
2223 end if;
2225 -- If we are within an instance, the attribute must be legal
2226 -- because it was valid in the generic unit. Ditto if this is
2227 -- an inlining of a function declared in an instance.
2229 if In_Instance
2230 or else In_Inlined_Body
2231 then
2232 return;
2234 -- For sure OK if we have a real private type itself, but must
2235 -- be completed, cannot apply Constrained to incomplete type.
2237 elsif Is_Private_Type (Entity (P)) then
2239 -- Note: this is one of the Annex J features that does not
2240 -- generate a warning from -gnatwj, since in fact it seems
2241 -- very useful, and is used in the GNAT runtime.
2243 Check_Not_Incomplete_Type;
2244 return;
2245 end if;
2247 -- Normal (non-obsolescent case) of application to object of
2248 -- a discriminated type.
2250 else
2251 Check_Object_Reference (P);
2253 -- If N does not come from source, then we allow the
2254 -- the attribute prefix to be of a private type whose
2255 -- full type has discriminants. This occurs in cases
2256 -- involving expanded calls to stream attributes.
2258 if not Comes_From_Source (N) then
2259 P_Type := Underlying_Type (P_Type);
2260 end if;
2262 -- Must have discriminants or be an access type designating
2263 -- a type with discriminants. If it is a classwide type is
2264 -- has unknown discriminants.
2266 if Has_Discriminants (P_Type)
2267 or else Has_Unknown_Discriminants (P_Type)
2268 or else
2269 (Is_Access_Type (P_Type)
2270 and then Has_Discriminants (Designated_Type (P_Type)))
2271 then
2272 return;
2274 -- Also allow an object of a generic type if extensions allowed
2275 -- and allow this for any type at all.
2277 elsif (Is_Generic_Type (P_Type)
2278 or else Is_Generic_Actual_Type (P_Type))
2279 and then Extensions_Allowed
2280 then
2281 return;
2282 end if;
2283 end if;
2285 -- Fall through if bad prefix
2287 Error_Attr
2288 ("prefix of % attribute must be object of discriminated type", P);
2290 ---------------
2291 -- Copy_Sign --
2292 ---------------
2294 when Attribute_Copy_Sign =>
2295 Check_Floating_Point_Type_2;
2296 Set_Etype (N, P_Base_Type);
2297 Resolve (E1, P_Base_Type);
2298 Resolve (E2, P_Base_Type);
2300 -----------
2301 -- Count --
2302 -----------
2304 when Attribute_Count => Count :
2305 declare
2306 Ent : Entity_Id;
2307 S : Entity_Id;
2308 Tsk : Entity_Id;
2310 begin
2311 Check_E0;
2313 if Nkind (P) = N_Identifier
2314 or else Nkind (P) = N_Expanded_Name
2315 then
2316 Ent := Entity (P);
2318 if Ekind (Ent) /= E_Entry then
2319 Error_Attr ("invalid entry name", N);
2320 end if;
2322 elsif Nkind (P) = N_Indexed_Component then
2323 if not Is_Entity_Name (Prefix (P))
2324 or else No (Entity (Prefix (P)))
2325 or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
2326 then
2327 if Nkind (Prefix (P)) = N_Selected_Component
2328 and then Present (Entity (Selector_Name (Prefix (P))))
2329 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
2330 E_Entry_Family
2331 then
2332 Error_Attr
2333 ("attribute % must apply to entry of current task", P);
2335 else
2336 Error_Attr ("invalid entry family name", P);
2337 end if;
2338 return;
2340 else
2341 Ent := Entity (Prefix (P));
2342 end if;
2344 elsif Nkind (P) = N_Selected_Component
2345 and then Present (Entity (Selector_Name (P)))
2346 and then Ekind (Entity (Selector_Name (P))) = E_Entry
2347 then
2348 Error_Attr
2349 ("attribute % must apply to entry of current task", P);
2351 else
2352 Error_Attr ("invalid entry name", N);
2353 return;
2354 end if;
2356 for J in reverse 0 .. Scope_Stack.Last loop
2357 S := Scope_Stack.Table (J).Entity;
2359 if S = Scope (Ent) then
2360 if Nkind (P) = N_Expanded_Name then
2361 Tsk := Entity (Prefix (P));
2363 -- The prefix denotes either the task type, or else a
2364 -- single task whose task type is being analyzed.
2366 if (Is_Type (Tsk)
2367 and then Tsk = S)
2369 or else (not Is_Type (Tsk)
2370 and then Etype (Tsk) = S
2371 and then not (Comes_From_Source (S)))
2372 then
2373 null;
2374 else
2375 Error_Attr
2376 ("Attribute % must apply to entry of current task", N);
2377 end if;
2378 end if;
2380 exit;
2382 elsif Ekind (Scope (Ent)) in Task_Kind
2383 and then Ekind (S) /= E_Loop
2384 and then Ekind (S) /= E_Block
2385 and then Ekind (S) /= E_Entry
2386 and then Ekind (S) /= E_Entry_Family
2387 then
2388 Error_Attr ("Attribute % cannot appear in inner unit", N);
2390 elsif Ekind (Scope (Ent)) = E_Protected_Type
2391 and then not Has_Completion (Scope (Ent))
2392 then
2393 Error_Attr ("attribute % can only be used inside body", N);
2394 end if;
2395 end loop;
2397 if Is_Overloaded (P) then
2398 declare
2399 Index : Interp_Index;
2400 It : Interp;
2402 begin
2403 Get_First_Interp (P, Index, It);
2405 while Present (It.Nam) loop
2406 if It.Nam = Ent then
2407 null;
2409 else
2410 Error_Attr ("ambiguous entry name", N);
2411 end if;
2413 Get_Next_Interp (Index, It);
2414 end loop;
2415 end;
2416 end if;
2418 Set_Etype (N, Universal_Integer);
2419 end Count;
2421 -----------------------
2422 -- Default_Bit_Order --
2423 -----------------------
2425 when Attribute_Default_Bit_Order => Default_Bit_Order :
2426 begin
2427 Check_Standard_Prefix;
2428 Check_E0;
2430 if Bytes_Big_Endian then
2431 Rewrite (N,
2432 Make_Integer_Literal (Loc, False_Value));
2433 else
2434 Rewrite (N,
2435 Make_Integer_Literal (Loc, True_Value));
2436 end if;
2438 Set_Etype (N, Universal_Integer);
2439 Set_Is_Static_Expression (N);
2440 end Default_Bit_Order;
2442 --------------
2443 -- Definite --
2444 --------------
2446 when Attribute_Definite =>
2447 Legal_Formal_Attribute;
2449 -----------
2450 -- Delta --
2451 -----------
2453 when Attribute_Delta =>
2454 Check_Fixed_Point_Type_0;
2455 Set_Etype (N, Universal_Real);
2457 ------------
2458 -- Denorm --
2459 ------------
2461 when Attribute_Denorm =>
2462 Check_Floating_Point_Type_0;
2463 Set_Etype (N, Standard_Boolean);
2465 ------------
2466 -- Digits --
2467 ------------
2469 when Attribute_Digits =>
2470 Check_E0;
2471 Check_Type;
2473 if not Is_Floating_Point_Type (P_Type)
2474 and then not Is_Decimal_Fixed_Point_Type (P_Type)
2475 then
2476 Error_Attr
2477 ("prefix of % attribute must be float or decimal type", P);
2478 end if;
2480 Set_Etype (N, Universal_Integer);
2482 ---------------
2483 -- Elab_Body --
2484 ---------------
2486 -- Also handles processing for Elab_Spec
2488 when Attribute_Elab_Body | Attribute_Elab_Spec =>
2489 Check_E0;
2490 Check_Unit_Name (P);
2491 Set_Etype (N, Standard_Void_Type);
2493 -- We have to manually call the expander in this case to get
2494 -- the necessary expansion (normally attributes that return
2495 -- entities are not expanded).
2497 Expand (N);
2499 ---------------
2500 -- Elab_Spec --
2501 ---------------
2503 -- Shares processing with Elab_Body
2505 ----------------
2506 -- Elaborated --
2507 ----------------
2509 when Attribute_Elaborated =>
2510 Check_E0;
2511 Check_Library_Unit;
2512 Set_Etype (N, Standard_Boolean);
2514 ----------
2515 -- Emax --
2516 ----------
2518 when Attribute_Emax =>
2519 Check_Floating_Point_Type_0;
2520 Set_Etype (N, Universal_Integer);
2522 --------------
2523 -- Enum_Rep --
2524 --------------
2526 when Attribute_Enum_Rep => Enum_Rep : declare
2527 begin
2528 if Present (E1) then
2529 Check_E1;
2530 Check_Discrete_Type;
2531 Resolve (E1, P_Base_Type);
2533 else
2534 if not Is_Entity_Name (P)
2535 or else (not Is_Object (Entity (P))
2536 and then
2537 Ekind (Entity (P)) /= E_Enumeration_Literal)
2538 then
2539 Error_Attr
2540 ("prefix of %attribute must be " &
2541 "discrete type/object or enum literal", P);
2542 end if;
2543 end if;
2545 Set_Etype (N, Universal_Integer);
2546 end Enum_Rep;
2548 -------------
2549 -- Epsilon --
2550 -------------
2552 when Attribute_Epsilon =>
2553 Check_Floating_Point_Type_0;
2554 Set_Etype (N, Universal_Real);
2556 --------------
2557 -- Exponent --
2558 --------------
2560 when Attribute_Exponent =>
2561 Check_Floating_Point_Type_1;
2562 Set_Etype (N, Universal_Integer);
2563 Resolve (E1, P_Base_Type);
2565 ------------------
2566 -- External_Tag --
2567 ------------------
2569 when Attribute_External_Tag =>
2570 Check_E0;
2571 Check_Type;
2573 Set_Etype (N, Standard_String);
2575 if not Is_Tagged_Type (P_Type) then
2576 Error_Attr ("prefix of % attribute must be tagged", P);
2577 end if;
2579 -----------
2580 -- First --
2581 -----------
2583 when Attribute_First =>
2584 Check_Array_Or_Scalar_Type;
2586 ---------------
2587 -- First_Bit --
2588 ---------------
2590 when Attribute_First_Bit =>
2591 Check_Component;
2592 Set_Etype (N, Universal_Integer);
2594 -----------------
2595 -- Fixed_Value --
2596 -----------------
2598 when Attribute_Fixed_Value =>
2599 Check_E1;
2600 Check_Fixed_Point_Type;
2601 Resolve (E1, Any_Integer);
2602 Set_Etype (N, P_Base_Type);
2604 -----------
2605 -- Floor --
2606 -----------
2608 when Attribute_Floor =>
2609 Check_Floating_Point_Type_1;
2610 Set_Etype (N, P_Base_Type);
2611 Resolve (E1, P_Base_Type);
2613 ----------
2614 -- Fore --
2615 ----------
2617 when Attribute_Fore =>
2618 Check_Fixed_Point_Type_0;
2619 Set_Etype (N, Universal_Integer);
2621 --------------
2622 -- Fraction --
2623 --------------
2625 when Attribute_Fraction =>
2626 Check_Floating_Point_Type_1;
2627 Set_Etype (N, P_Base_Type);
2628 Resolve (E1, P_Base_Type);
2630 -----------------------
2631 -- Has_Access_Values --
2632 -----------------------
2634 when Attribute_Has_Access_Values =>
2635 Check_Type;
2636 Check_E0;
2637 Set_Etype (N, Standard_Boolean);
2639 -----------------------
2640 -- Has_Discriminants --
2641 -----------------------
2643 when Attribute_Has_Discriminants =>
2644 Legal_Formal_Attribute;
2646 --------------
2647 -- Identity --
2648 --------------
2650 when Attribute_Identity =>
2651 Check_E0;
2652 Analyze (P);
2654 if Etype (P) = Standard_Exception_Type then
2655 Set_Etype (N, RTE (RE_Exception_Id));
2657 elsif Is_Task_Type (Etype (P))
2658 or else (Is_Access_Type (Etype (P))
2659 and then Is_Task_Type (Designated_Type (Etype (P))))
2660 then
2661 Resolve (P);
2662 Set_Etype (N, RTE (RO_AT_Task_Id));
2664 else
2665 Error_Attr ("prefix of % attribute must be a task or an "
2666 & "exception", P);
2667 end if;
2669 -----------
2670 -- Image --
2671 -----------
2673 when Attribute_Image => Image :
2674 begin
2675 Set_Etype (N, Standard_String);
2676 Check_Scalar_Type;
2678 if Is_Real_Type (P_Type) then
2679 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2680 Error_Msg_Name_1 := Aname;
2681 Error_Msg_N
2682 ("(Ada 83) % attribute not allowed for real types", N);
2683 end if;
2684 end if;
2686 if Is_Enumeration_Type (P_Type) then
2687 Check_Restriction (No_Enumeration_Maps, N);
2688 end if;
2690 Check_E1;
2691 Resolve (E1, P_Base_Type);
2692 Check_Enum_Image;
2693 Validate_Non_Static_Attribute_Function_Call;
2694 end Image;
2696 ---------
2697 -- Img --
2698 ---------
2700 when Attribute_Img => Img :
2701 begin
2702 Set_Etype (N, Standard_String);
2704 if not Is_Scalar_Type (P_Type)
2705 or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
2706 then
2707 Error_Attr
2708 ("prefix of % attribute must be scalar object name", N);
2709 end if;
2711 Check_Enum_Image;
2712 end Img;
2714 -----------
2715 -- Input --
2716 -----------
2718 when Attribute_Input =>
2719 Check_E1;
2720 Check_Stream_Attribute (TSS_Stream_Input);
2721 Set_Etype (N, P_Base_Type);
2723 -------------------
2724 -- Integer_Value --
2725 -------------------
2727 when Attribute_Integer_Value =>
2728 Check_E1;
2729 Check_Integer_Type;
2730 Resolve (E1, Any_Fixed);
2731 Set_Etype (N, P_Base_Type);
2733 -----------
2734 -- Large --
2735 -----------
2737 when Attribute_Large =>
2738 Check_E0;
2739 Check_Real_Type;
2740 Set_Etype (N, Universal_Real);
2742 ----------
2743 -- Last --
2744 ----------
2746 when Attribute_Last =>
2747 Check_Array_Or_Scalar_Type;
2749 --------------
2750 -- Last_Bit --
2751 --------------
2753 when Attribute_Last_Bit =>
2754 Check_Component;
2755 Set_Etype (N, Universal_Integer);
2757 ------------------
2758 -- Leading_Part --
2759 ------------------
2761 when Attribute_Leading_Part =>
2762 Check_Floating_Point_Type_2;
2763 Set_Etype (N, P_Base_Type);
2764 Resolve (E1, P_Base_Type);
2765 Resolve (E2, Any_Integer);
2767 ------------
2768 -- Length --
2769 ------------
2771 when Attribute_Length =>
2772 Check_Array_Type;
2773 Set_Etype (N, Universal_Integer);
2775 -------------
2776 -- Machine --
2777 -------------
2779 when Attribute_Machine =>
2780 Check_Floating_Point_Type_1;
2781 Set_Etype (N, P_Base_Type);
2782 Resolve (E1, P_Base_Type);
2784 ------------------
2785 -- Machine_Emax --
2786 ------------------
2788 when Attribute_Machine_Emax =>
2789 Check_Floating_Point_Type_0;
2790 Set_Etype (N, Universal_Integer);
2792 ------------------
2793 -- Machine_Emin --
2794 ------------------
2796 when Attribute_Machine_Emin =>
2797 Check_Floating_Point_Type_0;
2798 Set_Etype (N, Universal_Integer);
2800 ----------------------
2801 -- Machine_Mantissa --
2802 ----------------------
2804 when Attribute_Machine_Mantissa =>
2805 Check_Floating_Point_Type_0;
2806 Set_Etype (N, Universal_Integer);
2808 -----------------------
2809 -- Machine_Overflows --
2810 -----------------------
2812 when Attribute_Machine_Overflows =>
2813 Check_Real_Type;
2814 Check_E0;
2815 Set_Etype (N, Standard_Boolean);
2817 -------------------
2818 -- Machine_Radix --
2819 -------------------
2821 when Attribute_Machine_Radix =>
2822 Check_Real_Type;
2823 Check_E0;
2824 Set_Etype (N, Universal_Integer);
2826 --------------------
2827 -- Machine_Rounds --
2828 --------------------
2830 when Attribute_Machine_Rounds =>
2831 Check_Real_Type;
2832 Check_E0;
2833 Set_Etype (N, Standard_Boolean);
2835 ------------------
2836 -- Machine_Size --
2837 ------------------
2839 when Attribute_Machine_Size =>
2840 Check_E0;
2841 Check_Type;
2842 Check_Not_Incomplete_Type;
2843 Set_Etype (N, Universal_Integer);
2845 --------------
2846 -- Mantissa --
2847 --------------
2849 when Attribute_Mantissa =>
2850 Check_E0;
2851 Check_Real_Type;
2852 Set_Etype (N, Universal_Integer);
2854 ---------
2855 -- Max --
2856 ---------
2858 when Attribute_Max =>
2859 Check_E2;
2860 Check_Scalar_Type;
2861 Resolve (E1, P_Base_Type);
2862 Resolve (E2, P_Base_Type);
2863 Set_Etype (N, P_Base_Type);
2865 ----------------------------------
2866 -- Max_Size_In_Storage_Elements --
2867 ----------------------------------
2869 when Attribute_Max_Size_In_Storage_Elements =>
2870 Check_E0;
2871 Check_Type;
2872 Check_Not_Incomplete_Type;
2873 Set_Etype (N, Universal_Integer);
2875 -----------------------
2876 -- Maximum_Alignment --
2877 -----------------------
2879 when Attribute_Maximum_Alignment =>
2880 Standard_Attribute (Ttypes.Maximum_Alignment);
2882 --------------------
2883 -- Mechanism_Code --
2884 --------------------
2886 when Attribute_Mechanism_Code =>
2887 if not Is_Entity_Name (P)
2888 or else not Is_Subprogram (Entity (P))
2889 then
2890 Error_Attr ("prefix of % attribute must be subprogram", P);
2891 end if;
2893 Check_Either_E0_Or_E1;
2895 if Present (E1) then
2896 Resolve (E1, Any_Integer);
2897 Set_Etype (E1, Standard_Integer);
2899 if not Is_Static_Expression (E1) then
2900 Flag_Non_Static_Expr
2901 ("expression for parameter number must be static!", E1);
2902 Error_Attr;
2904 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
2905 or else UI_To_Int (Intval (E1)) < 0
2906 then
2907 Error_Attr ("invalid parameter number for %attribute", E1);
2908 end if;
2909 end if;
2911 Set_Etype (N, Universal_Integer);
2913 ---------
2914 -- Min --
2915 ---------
2917 when Attribute_Min =>
2918 Check_E2;
2919 Check_Scalar_Type;
2920 Resolve (E1, P_Base_Type);
2921 Resolve (E2, P_Base_Type);
2922 Set_Etype (N, P_Base_Type);
2924 ---------
2925 -- Mod --
2926 ---------
2928 when Attribute_Mod =>
2930 -- Note: this attribute is only allowed in Ada 2005 mode, but
2931 -- we do not need to test that here, since Mod is only recognized
2932 -- as an attribute name in Ada 2005 mode during the parse.
2934 Check_E1;
2935 Check_Modular_Integer_Type;
2936 Resolve (E1, Any_Integer);
2937 Set_Etype (N, P_Base_Type);
2939 -----------
2940 -- Model --
2941 -----------
2943 when Attribute_Model =>
2944 Check_Floating_Point_Type_1;
2945 Set_Etype (N, P_Base_Type);
2946 Resolve (E1, P_Base_Type);
2948 ----------------
2949 -- Model_Emin --
2950 ----------------
2952 when Attribute_Model_Emin =>
2953 Check_Floating_Point_Type_0;
2954 Set_Etype (N, Universal_Integer);
2956 -------------------
2957 -- Model_Epsilon --
2958 -------------------
2960 when Attribute_Model_Epsilon =>
2961 Check_Floating_Point_Type_0;
2962 Set_Etype (N, Universal_Real);
2964 --------------------
2965 -- Model_Mantissa --
2966 --------------------
2968 when Attribute_Model_Mantissa =>
2969 Check_Floating_Point_Type_0;
2970 Set_Etype (N, Universal_Integer);
2972 -----------------
2973 -- Model_Small --
2974 -----------------
2976 when Attribute_Model_Small =>
2977 Check_Floating_Point_Type_0;
2978 Set_Etype (N, Universal_Real);
2980 -------------
2981 -- Modulus --
2982 -------------
2984 when Attribute_Modulus =>
2985 Check_E0;
2986 Check_Modular_Integer_Type;
2987 Set_Etype (N, Universal_Integer);
2989 --------------------
2990 -- Null_Parameter --
2991 --------------------
2993 when Attribute_Null_Parameter => Null_Parameter : declare
2994 Parnt : constant Node_Id := Parent (N);
2995 GParnt : constant Node_Id := Parent (Parnt);
2997 procedure Bad_Null_Parameter (Msg : String);
2998 -- Used if bad Null parameter attribute node is found. Issues
2999 -- given error message, and also sets the type to Any_Type to
3000 -- avoid blowups later on from dealing with a junk node.
3002 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
3003 -- Called to check that Proc_Ent is imported subprogram
3005 ------------------------
3006 -- Bad_Null_Parameter --
3007 ------------------------
3009 procedure Bad_Null_Parameter (Msg : String) is
3010 begin
3011 Error_Msg_N (Msg, N);
3012 Set_Etype (N, Any_Type);
3013 end Bad_Null_Parameter;
3015 ----------------------
3016 -- Must_Be_Imported --
3017 ----------------------
3019 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
3020 Pent : Entity_Id := Proc_Ent;
3022 begin
3023 while Present (Alias (Pent)) loop
3024 Pent := Alias (Pent);
3025 end loop;
3027 -- Ignore check if procedure not frozen yet (we will get
3028 -- another chance when the default parameter is reanalyzed)
3030 if not Is_Frozen (Pent) then
3031 return;
3033 elsif not Is_Imported (Pent) then
3034 Bad_Null_Parameter
3035 ("Null_Parameter can only be used with imported subprogram");
3037 else
3038 return;
3039 end if;
3040 end Must_Be_Imported;
3042 -- Start of processing for Null_Parameter
3044 begin
3045 Check_Type;
3046 Check_E0;
3047 Set_Etype (N, P_Type);
3049 -- Case of attribute used as default expression
3051 if Nkind (Parnt) = N_Parameter_Specification then
3052 Must_Be_Imported (Defining_Entity (GParnt));
3054 -- Case of attribute used as actual for subprogram (positional)
3056 elsif (Nkind (Parnt) = N_Procedure_Call_Statement
3057 or else
3058 Nkind (Parnt) = N_Function_Call)
3059 and then Is_Entity_Name (Name (Parnt))
3060 then
3061 Must_Be_Imported (Entity (Name (Parnt)));
3063 -- Case of attribute used as actual for subprogram (named)
3065 elsif Nkind (Parnt) = N_Parameter_Association
3066 and then (Nkind (GParnt) = N_Procedure_Call_Statement
3067 or else
3068 Nkind (GParnt) = N_Function_Call)
3069 and then Is_Entity_Name (Name (GParnt))
3070 then
3071 Must_Be_Imported (Entity (Name (GParnt)));
3073 -- Not an allowed case
3075 else
3076 Bad_Null_Parameter
3077 ("Null_Parameter must be actual or default parameter");
3078 end if;
3080 end Null_Parameter;
3082 -----------------
3083 -- Object_Size --
3084 -----------------
3086 when Attribute_Object_Size =>
3087 Check_E0;
3088 Check_Type;
3089 Check_Not_Incomplete_Type;
3090 Set_Etype (N, Universal_Integer);
3092 ------------
3093 -- Output --
3094 ------------
3096 when Attribute_Output =>
3097 Check_E2;
3098 Check_Stream_Attribute (TSS_Stream_Output);
3099 Set_Etype (N, Standard_Void_Type);
3100 Resolve (N, Standard_Void_Type);
3102 ------------------
3103 -- Partition_ID --
3104 ------------------
3106 when Attribute_Partition_ID =>
3107 Check_E0;
3109 if P_Type /= Any_Type then
3110 if not Is_Library_Level_Entity (Entity (P)) then
3111 Error_Attr
3112 ("prefix of % attribute must be library-level entity", P);
3114 -- The defining entity of prefix should not be declared inside
3115 -- a Pure unit. RM E.1(8).
3116 -- The Is_Pure flag has been set during declaration.
3118 elsif Is_Entity_Name (P)
3119 and then Is_Pure (Entity (P))
3120 then
3121 Error_Attr
3122 ("prefix of % attribute must not be declared pure", P);
3123 end if;
3124 end if;
3126 Set_Etype (N, Universal_Integer);
3128 -------------------------
3129 -- Passed_By_Reference --
3130 -------------------------
3132 when Attribute_Passed_By_Reference =>
3133 Check_E0;
3134 Check_Type;
3135 Set_Etype (N, Standard_Boolean);
3137 ------------------
3138 -- Pool_Address --
3139 ------------------
3141 when Attribute_Pool_Address =>
3142 Check_E0;
3143 Set_Etype (N, RTE (RE_Address));
3145 ---------
3146 -- Pos --
3147 ---------
3149 when Attribute_Pos =>
3150 Check_Discrete_Type;
3151 Check_E1;
3152 Resolve (E1, P_Base_Type);
3153 Set_Etype (N, Universal_Integer);
3155 --------------
3156 -- Position --
3157 --------------
3159 when Attribute_Position =>
3160 Check_Component;
3161 Set_Etype (N, Universal_Integer);
3163 ----------
3164 -- Pred --
3165 ----------
3167 when Attribute_Pred =>
3168 Check_Scalar_Type;
3169 Check_E1;
3170 Resolve (E1, P_Base_Type);
3171 Set_Etype (N, P_Base_Type);
3173 -- Nothing to do for real type case
3175 if Is_Real_Type (P_Type) then
3176 null;
3178 -- If not modular type, test for overflow check required
3180 else
3181 if not Is_Modular_Integer_Type (P_Type)
3182 and then not Range_Checks_Suppressed (P_Base_Type)
3183 then
3184 Enable_Range_Check (E1);
3185 end if;
3186 end if;
3188 -----------
3189 -- Range --
3190 -----------
3192 when Attribute_Range =>
3193 Check_Array_Or_Scalar_Type;
3195 if Ada_Version = Ada_83
3196 and then Is_Scalar_Type (P_Type)
3197 and then Comes_From_Source (N)
3198 then
3199 Error_Attr
3200 ("(Ada 83) % attribute not allowed for scalar type", P);
3201 end if;
3203 ------------------
3204 -- Range_Length --
3205 ------------------
3207 when Attribute_Range_Length =>
3208 Check_Discrete_Type;
3209 Set_Etype (N, Universal_Integer);
3211 ----------
3212 -- Read --
3213 ----------
3215 when Attribute_Read =>
3216 Check_E2;
3217 Check_Stream_Attribute (TSS_Stream_Read);
3218 Set_Etype (N, Standard_Void_Type);
3219 Resolve (N, Standard_Void_Type);
3220 Note_Possible_Modification (E2);
3222 ---------------
3223 -- Remainder --
3224 ---------------
3226 when Attribute_Remainder =>
3227 Check_Floating_Point_Type_2;
3228 Set_Etype (N, P_Base_Type);
3229 Resolve (E1, P_Base_Type);
3230 Resolve (E2, P_Base_Type);
3232 -----------
3233 -- Round --
3234 -----------
3236 when Attribute_Round =>
3237 Check_E1;
3238 Check_Decimal_Fixed_Point_Type;
3239 Set_Etype (N, P_Base_Type);
3241 -- Because the context is universal_real (3.5.10(12)) it is a legal
3242 -- context for a universal fixed expression. This is the only
3243 -- attribute whose functional description involves U_R.
3245 if Etype (E1) = Universal_Fixed then
3246 declare
3247 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3248 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
3249 Expression => Relocate_Node (E1));
3251 begin
3252 Rewrite (E1, Conv);
3253 Analyze (E1);
3254 end;
3255 end if;
3257 Resolve (E1, Any_Real);
3259 --------------
3260 -- Rounding --
3261 --------------
3263 when Attribute_Rounding =>
3264 Check_Floating_Point_Type_1;
3265 Set_Etype (N, P_Base_Type);
3266 Resolve (E1, P_Base_Type);
3268 ---------------
3269 -- Safe_Emax --
3270 ---------------
3272 when Attribute_Safe_Emax =>
3273 Check_Floating_Point_Type_0;
3274 Set_Etype (N, Universal_Integer);
3276 ----------------
3277 -- Safe_First --
3278 ----------------
3280 when Attribute_Safe_First =>
3281 Check_Floating_Point_Type_0;
3282 Set_Etype (N, Universal_Real);
3284 ----------------
3285 -- Safe_Large --
3286 ----------------
3288 when Attribute_Safe_Large =>
3289 Check_E0;
3290 Check_Real_Type;
3291 Set_Etype (N, Universal_Real);
3293 ---------------
3294 -- Safe_Last --
3295 ---------------
3297 when Attribute_Safe_Last =>
3298 Check_Floating_Point_Type_0;
3299 Set_Etype (N, Universal_Real);
3301 ----------------
3302 -- Safe_Small --
3303 ----------------
3305 when Attribute_Safe_Small =>
3306 Check_E0;
3307 Check_Real_Type;
3308 Set_Etype (N, Universal_Real);
3310 -----------
3311 -- Scale --
3312 -----------
3314 when Attribute_Scale =>
3315 Check_E0;
3316 Check_Decimal_Fixed_Point_Type;
3317 Set_Etype (N, Universal_Integer);
3319 -------------
3320 -- Scaling --
3321 -------------
3323 when Attribute_Scaling =>
3324 Check_Floating_Point_Type_2;
3325 Set_Etype (N, P_Base_Type);
3326 Resolve (E1, P_Base_Type);
3328 ------------------
3329 -- Signed_Zeros --
3330 ------------------
3332 when Attribute_Signed_Zeros =>
3333 Check_Floating_Point_Type_0;
3334 Set_Etype (N, Standard_Boolean);
3336 ----------
3337 -- Size --
3338 ----------
3340 when Attribute_Size | Attribute_VADS_Size =>
3341 Check_E0;
3343 -- If prefix is parameterless function call, rewrite and resolve
3344 -- as such.
3346 if Is_Entity_Name (P)
3347 and then Ekind (Entity (P)) = E_Function
3348 then
3349 Resolve (P);
3351 -- Similar processing for a protected function call
3353 elsif Nkind (P) = N_Selected_Component
3354 and then Ekind (Entity (Selector_Name (P))) = E_Function
3355 then
3356 Resolve (P);
3357 end if;
3359 if Is_Object_Reference (P) then
3360 Check_Object_Reference (P);
3362 elsif Is_Entity_Name (P)
3363 and then Is_Type (Entity (P))
3364 then
3365 null;
3367 elsif Nkind (P) = N_Type_Conversion
3368 and then not Comes_From_Source (P)
3369 then
3370 null;
3372 else
3373 Error_Attr ("invalid prefix for % attribute", P);
3374 end if;
3376 Check_Not_Incomplete_Type;
3377 Set_Etype (N, Universal_Integer);
3379 -----------
3380 -- Small --
3381 -----------
3383 when Attribute_Small =>
3384 Check_E0;
3385 Check_Real_Type;
3386 Set_Etype (N, Universal_Real);
3388 ------------------
3389 -- Storage_Pool --
3390 ------------------
3392 when Attribute_Storage_Pool =>
3393 if Is_Access_Type (P_Type) then
3394 Check_E0;
3396 -- Set appropriate entity
3398 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
3399 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
3400 else
3401 Set_Entity (N, RTE (RE_Global_Pool_Object));
3402 end if;
3404 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
3406 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3407 -- Storage_Pool since this attribute is not defined for such
3408 -- types (RM E.2.3(22)).
3410 Validate_Remote_Access_To_Class_Wide_Type (N);
3412 else
3413 Error_Attr ("prefix of % attribute must be access type", P);
3414 end if;
3416 ------------------
3417 -- Storage_Size --
3418 ------------------
3420 when Attribute_Storage_Size =>
3422 if Is_Task_Type (P_Type) then
3423 Check_E0;
3424 Set_Etype (N, Universal_Integer);
3426 elsif Is_Access_Type (P_Type) then
3427 if Is_Entity_Name (P)
3428 and then Is_Type (Entity (P))
3429 then
3430 Check_E0;
3431 Check_Type;
3432 Set_Etype (N, Universal_Integer);
3434 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
3435 -- Storage_Size since this attribute is not defined for
3436 -- such types (RM E.2.3(22)).
3438 Validate_Remote_Access_To_Class_Wide_Type (N);
3440 -- The prefix is allowed to be an implicit dereference
3441 -- of an access value designating a task.
3443 else
3444 Check_E0;
3445 Check_Task_Prefix;
3446 Set_Etype (N, Universal_Integer);
3447 end if;
3449 else
3450 Error_Attr
3451 ("prefix of % attribute must be access or task type", P);
3452 end if;
3454 ------------------
3455 -- Storage_Unit --
3456 ------------------
3458 when Attribute_Storage_Unit =>
3459 Standard_Attribute (Ttypes.System_Storage_Unit);
3461 ----------
3462 -- Succ --
3463 ----------
3465 when Attribute_Succ =>
3466 Check_Scalar_Type;
3467 Check_E1;
3468 Resolve (E1, P_Base_Type);
3469 Set_Etype (N, P_Base_Type);
3471 -- Nothing to do for real type case
3473 if Is_Real_Type (P_Type) then
3474 null;
3476 -- If not modular type, test for overflow check required.
3478 else
3479 if not Is_Modular_Integer_Type (P_Type)
3480 and then not Range_Checks_Suppressed (P_Base_Type)
3481 then
3482 Enable_Range_Check (E1);
3483 end if;
3484 end if;
3486 ---------
3487 -- Tag --
3488 ---------
3490 when Attribute_Tag =>
3491 Check_E0;
3492 Check_Dereference;
3494 if not Is_Tagged_Type (P_Type) then
3495 Error_Attr ("prefix of % attribute must be tagged", P);
3497 -- Next test does not apply to generated code
3498 -- why not, and what does the illegal reference mean???
3500 elsif Is_Object_Reference (P)
3501 and then not Is_Class_Wide_Type (P_Type)
3502 and then Comes_From_Source (N)
3503 then
3504 Error_Attr
3505 ("% attribute can only be applied to objects of class-wide type",
3507 end if;
3509 Set_Etype (N, RTE (RE_Tag));
3511 -----------------
3512 -- Target_Name --
3513 -----------------
3515 when Attribute_Target_Name => Target_Name : declare
3516 TN : constant String := Sdefault.Target_Name.all;
3517 TL : Natural;
3519 begin
3520 Check_Standard_Prefix;
3521 Check_E0;
3523 TL := TN'Last;
3525 if TN (TL) = '/' or else TN (TL) = '\' then
3526 TL := TL - 1;
3527 end if;
3529 Rewrite (N,
3530 Make_String_Literal (Loc,
3531 Strval => TN (TN'First .. TL)));
3532 Analyze_And_Resolve (N, Standard_String);
3533 end Target_Name;
3535 ----------------
3536 -- Terminated --
3537 ----------------
3539 when Attribute_Terminated =>
3540 Check_E0;
3541 Set_Etype (N, Standard_Boolean);
3542 Check_Task_Prefix;
3544 ----------------
3545 -- To_Address --
3546 ----------------
3548 when Attribute_To_Address =>
3549 Check_E1;
3550 Analyze (P);
3552 if Nkind (P) /= N_Identifier
3553 or else Chars (P) /= Name_System
3554 then
3555 Error_Attr ("prefix of %attribute must be System", P);
3556 end if;
3558 Generate_Reference (RTE (RE_Address), P);
3559 Analyze_And_Resolve (E1, Any_Integer);
3560 Set_Etype (N, RTE (RE_Address));
3562 ----------------
3563 -- Truncation --
3564 ----------------
3566 when Attribute_Truncation =>
3567 Check_Floating_Point_Type_1;
3568 Resolve (E1, P_Base_Type);
3569 Set_Etype (N, P_Base_Type);
3571 ----------------
3572 -- Type_Class --
3573 ----------------
3575 when Attribute_Type_Class =>
3576 Check_E0;
3577 Check_Type;
3578 Check_Not_Incomplete_Type;
3579 Set_Etype (N, RTE (RE_Type_Class));
3581 -----------------
3582 -- UET_Address --
3583 -----------------
3585 when Attribute_UET_Address =>
3586 Check_E0;
3587 Check_Unit_Name (P);
3588 Set_Etype (N, RTE (RE_Address));
3590 -----------------------
3591 -- Unbiased_Rounding --
3592 -----------------------
3594 when Attribute_Unbiased_Rounding =>
3595 Check_Floating_Point_Type_1;
3596 Set_Etype (N, P_Base_Type);
3597 Resolve (E1, P_Base_Type);
3599 ----------------------
3600 -- Unchecked_Access --
3601 ----------------------
3603 when Attribute_Unchecked_Access =>
3604 if Comes_From_Source (N) then
3605 Check_Restriction (No_Unchecked_Access, N);
3606 end if;
3608 Analyze_Access_Attribute;
3610 -------------------------
3611 -- Unconstrained_Array --
3612 -------------------------
3614 when Attribute_Unconstrained_Array =>
3615 Check_E0;
3616 Check_Type;
3617 Check_Not_Incomplete_Type;
3618 Set_Etype (N, Standard_Boolean);
3620 ------------------------------
3621 -- Universal_Literal_String --
3622 ------------------------------
3624 -- This is a GNAT specific attribute whose prefix must be a named
3625 -- number where the expression is either a single numeric literal,
3626 -- or a numeric literal immediately preceded by a minus sign. The
3627 -- result is equivalent to a string literal containing the text of
3628 -- the literal as it appeared in the source program with a possible
3629 -- leading minus sign.
3631 when Attribute_Universal_Literal_String => Universal_Literal_String :
3632 begin
3633 Check_E0;
3635 if not Is_Entity_Name (P)
3636 or else Ekind (Entity (P)) not in Named_Kind
3637 then
3638 Error_Attr ("prefix for % attribute must be named number", P);
3640 else
3641 declare
3642 Expr : Node_Id;
3643 Negative : Boolean;
3644 S : Source_Ptr;
3645 Src : Source_Buffer_Ptr;
3647 begin
3648 Expr := Original_Node (Expression (Parent (Entity (P))));
3650 if Nkind (Expr) = N_Op_Minus then
3651 Negative := True;
3652 Expr := Original_Node (Right_Opnd (Expr));
3653 else
3654 Negative := False;
3655 end if;
3657 if Nkind (Expr) /= N_Integer_Literal
3658 and then Nkind (Expr) /= N_Real_Literal
3659 then
3660 Error_Attr
3661 ("named number for % attribute must be simple literal", N);
3662 end if;
3664 -- Build string literal corresponding to source literal text
3666 Start_String;
3668 if Negative then
3669 Store_String_Char (Get_Char_Code ('-'));
3670 end if;
3672 S := Sloc (Expr);
3673 Src := Source_Text (Get_Source_File_Index (S));
3675 while Src (S) /= ';' and then Src (S) /= ' ' loop
3676 Store_String_Char (Get_Char_Code (Src (S)));
3677 S := S + 1;
3678 end loop;
3680 -- Now we rewrite the attribute with the string literal
3682 Rewrite (N,
3683 Make_String_Literal (Loc, End_String));
3684 Analyze (N);
3685 end;
3686 end if;
3687 end Universal_Literal_String;
3689 -------------------------
3690 -- Unrestricted_Access --
3691 -------------------------
3693 -- This is a GNAT specific attribute which is like Access except that
3694 -- all scope checks and checks for aliased views are omitted.
3696 when Attribute_Unrestricted_Access =>
3697 if Comes_From_Source (N) then
3698 Check_Restriction (No_Unchecked_Access, N);
3699 end if;
3701 if Is_Entity_Name (P) then
3702 Set_Address_Taken (Entity (P));
3703 end if;
3705 Analyze_Access_Attribute;
3707 ---------
3708 -- Val --
3709 ---------
3711 when Attribute_Val => Val : declare
3712 begin
3713 Check_E1;
3714 Check_Discrete_Type;
3715 Resolve (E1, Any_Integer);
3716 Set_Etype (N, P_Base_Type);
3718 -- Note, we need a range check in general, but we wait for the
3719 -- Resolve call to do this, since we want to let Eval_Attribute
3720 -- have a chance to find an static illegality first!
3721 end Val;
3723 -----------
3724 -- Valid --
3725 -----------
3727 when Attribute_Valid =>
3728 Check_E0;
3730 -- Ignore check for object if we have a 'Valid reference generated
3731 -- by the expanded code, since in some cases valid checks can occur
3732 -- on items that are names, but are not objects (e.g. attributes).
3734 if Comes_From_Source (N) then
3735 Check_Object_Reference (P);
3736 end if;
3738 if not Is_Scalar_Type (P_Type) then
3739 Error_Attr ("object for % attribute must be of scalar type", P);
3740 end if;
3742 Set_Etype (N, Standard_Boolean);
3744 -----------
3745 -- Value --
3746 -----------
3748 when Attribute_Value => Value :
3749 begin
3750 Check_E1;
3751 Check_Scalar_Type;
3753 if Is_Enumeration_Type (P_Type) then
3754 Check_Restriction (No_Enumeration_Maps, N);
3755 end if;
3757 -- Set Etype before resolving expression because expansion of
3758 -- expression may require enclosing type. Note that the type
3759 -- returned by 'Value is the base type of the prefix type.
3761 Set_Etype (N, P_Base_Type);
3762 Validate_Non_Static_Attribute_Function_Call;
3763 end Value;
3765 ----------------
3766 -- Value_Size --
3767 ----------------
3769 when Attribute_Value_Size =>
3770 Check_E0;
3771 Check_Type;
3772 Check_Not_Incomplete_Type;
3773 Set_Etype (N, Universal_Integer);
3775 -------------
3776 -- Version --
3777 -------------
3779 when Attribute_Version =>
3780 Check_E0;
3781 Check_Program_Unit;
3782 Set_Etype (N, RTE (RE_Version_String));
3784 ------------------
3785 -- Wchar_T_Size --
3786 ------------------
3788 when Attribute_Wchar_T_Size =>
3789 Standard_Attribute (Interfaces_Wchar_T_Size);
3791 ----------------
3792 -- Wide_Image --
3793 ----------------
3795 when Attribute_Wide_Image => Wide_Image :
3796 begin
3797 Check_Scalar_Type;
3798 Set_Etype (N, Standard_Wide_String);
3799 Check_E1;
3800 Resolve (E1, P_Base_Type);
3801 Validate_Non_Static_Attribute_Function_Call;
3802 end Wide_Image;
3804 ----------------
3805 -- Wide_Value --
3806 ----------------
3808 when Attribute_Wide_Value => Wide_Value :
3809 begin
3810 Check_E1;
3811 Check_Scalar_Type;
3813 -- Set Etype before resolving expression because expansion
3814 -- of expression may require enclosing type.
3816 Set_Etype (N, P_Type);
3817 Validate_Non_Static_Attribute_Function_Call;
3818 end Wide_Value;
3820 ----------------
3821 -- Wide_Width --
3822 ----------------
3824 when Attribute_Wide_Width =>
3825 Check_E0;
3826 Check_Scalar_Type;
3827 Set_Etype (N, Universal_Integer);
3829 -----------
3830 -- Width --
3831 -----------
3833 when Attribute_Width =>
3834 Check_E0;
3835 Check_Scalar_Type;
3836 Set_Etype (N, Universal_Integer);
3838 ---------------
3839 -- Word_Size --
3840 ---------------
3842 when Attribute_Word_Size =>
3843 Standard_Attribute (System_Word_Size);
3845 -----------
3846 -- Write --
3847 -----------
3849 when Attribute_Write =>
3850 Check_E2;
3851 Check_Stream_Attribute (TSS_Stream_Write);
3852 Set_Etype (N, Standard_Void_Type);
3853 Resolve (N, Standard_Void_Type);
3855 end case;
3857 -- All errors raise Bad_Attribute, so that we get out before any further
3858 -- damage occurs when an error is detected (for example, if we check for
3859 -- one attribute expression, and the check succeeds, we want to be able
3860 -- to proceed securely assuming that an expression is in fact present.
3862 -- Note: we set the attribute analyzed in this case to prevent any
3863 -- attempt at reanalysis which could generate spurious error msgs.
3865 exception
3866 when Bad_Attribute =>
3867 Set_Analyzed (N);
3868 Set_Etype (N, Any_Type);
3869 return;
3870 end Analyze_Attribute;
3872 --------------------
3873 -- Eval_Attribute --
3874 --------------------
3876 procedure Eval_Attribute (N : Node_Id) is
3877 Loc : constant Source_Ptr := Sloc (N);
3878 Aname : constant Name_Id := Attribute_Name (N);
3879 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
3880 P : constant Node_Id := Prefix (N);
3882 C_Type : constant Entity_Id := Etype (N);
3883 -- The type imposed by the context.
3885 E1 : Node_Id;
3886 -- First expression, or Empty if none
3888 E2 : Node_Id;
3889 -- Second expression, or Empty if none
3891 P_Entity : Entity_Id;
3892 -- Entity denoted by prefix
3894 P_Type : Entity_Id;
3895 -- The type of the prefix
3897 P_Base_Type : Entity_Id;
3898 -- The base type of the prefix type
3900 P_Root_Type : Entity_Id;
3901 -- The root type of the prefix type
3903 Static : Boolean;
3904 -- True if the result is Static. This is set by the general processing
3905 -- to true if the prefix is static, and all expressions are static. It
3906 -- can be reset as processing continues for particular attributes
3908 Lo_Bound, Hi_Bound : Node_Id;
3909 -- Expressions for low and high bounds of type or array index referenced
3910 -- by First, Last, or Length attribute for array, set by Set_Bounds.
3912 CE_Node : Node_Id;
3913 -- Constraint error node used if we have an attribute reference has
3914 -- an argument that raises a constraint error. In this case we replace
3915 -- the attribute with a raise constraint_error node. This is important
3916 -- processing, since otherwise gigi might see an attribute which it is
3917 -- unprepared to deal with.
3919 function Aft_Value return Nat;
3920 -- Computes Aft value for current attribute prefix (used by Aft itself
3921 -- and also by Width for computing the Width of a fixed point type).
3923 procedure Check_Expressions;
3924 -- In case where the attribute is not foldable, the expressions, if
3925 -- any, of the attribute, are in a non-static context. This procedure
3926 -- performs the required additional checks.
3928 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
3929 -- Determines if the given type has compile time known bounds. Note
3930 -- that we enter the case statement even in cases where the prefix
3931 -- type does NOT have known bounds, so it is important to guard any
3932 -- attempt to evaluate both bounds with a call to this function.
3934 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
3935 -- This procedure is called when the attribute N has a non-static
3936 -- but compile time known value given by Val. It includes the
3937 -- necessary checks for out of range values.
3939 procedure Float_Attribute_Universal_Integer
3940 (IEEES_Val : Int;
3941 IEEEL_Val : Int;
3942 IEEEX_Val : Int;
3943 VAXFF_Val : Int;
3944 VAXDF_Val : Int;
3945 VAXGF_Val : Int;
3946 AAMPS_Val : Int;
3947 AAMPL_Val : Int);
3948 -- This procedure evaluates a float attribute with no arguments that
3949 -- returns a universal integer result. The parameters give the values
3950 -- for the possible floating-point root types. See ttypef for details.
3951 -- The prefix type is a float type (and is thus not a generic type).
3953 procedure Float_Attribute_Universal_Real
3954 (IEEES_Val : String;
3955 IEEEL_Val : String;
3956 IEEEX_Val : String;
3957 VAXFF_Val : String;
3958 VAXDF_Val : String;
3959 VAXGF_Val : String;
3960 AAMPS_Val : String;
3961 AAMPL_Val : String);
3962 -- This procedure evaluates a float attribute with no arguments that
3963 -- returns a universal real result. The parameters give the values
3964 -- required for the possible floating-point root types in string
3965 -- format as real literals with a possible leading minus sign.
3966 -- The prefix type is a float type (and is thus not a generic type).
3968 function Fore_Value return Nat;
3969 -- Computes the Fore value for the current attribute prefix, which is
3970 -- known to be a static fixed-point type. Used by Fore and Width.
3972 function Mantissa return Uint;
3973 -- Returns the Mantissa value for the prefix type
3975 procedure Set_Bounds;
3976 -- Used for First, Last and Length attributes applied to an array or
3977 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
3978 -- and high bound expressions for the index referenced by the attribute
3979 -- designator (i.e. the first index if no expression is present, and
3980 -- the N'th index if the value N is present as an expression). Also
3981 -- used for First and Last of scalar types. Static is reset to False
3982 -- if the type or index type is not statically constrained.
3984 ---------------
3985 -- Aft_Value --
3986 ---------------
3988 function Aft_Value return Nat is
3989 Result : Nat;
3990 Delta_Val : Ureal;
3992 begin
3993 Result := 1;
3994 Delta_Val := Delta_Value (P_Type);
3996 while Delta_Val < Ureal_Tenth loop
3997 Delta_Val := Delta_Val * Ureal_10;
3998 Result := Result + 1;
3999 end loop;
4001 return Result;
4002 end Aft_Value;
4004 -----------------------
4005 -- Check_Expressions --
4006 -----------------------
4008 procedure Check_Expressions is
4009 E : Node_Id := E1;
4011 begin
4012 while Present (E) loop
4013 Check_Non_Static_Context (E);
4014 Next (E);
4015 end loop;
4016 end Check_Expressions;
4018 ----------------------------------
4019 -- Compile_Time_Known_Attribute --
4020 ----------------------------------
4022 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
4023 T : constant Entity_Id := Etype (N);
4025 begin
4026 Fold_Uint (N, Val, False);
4028 -- Check that result is in bounds of the type if it is static
4030 if Is_In_Range (N, T) then
4031 null;
4033 elsif Is_Out_Of_Range (N, T) then
4034 Apply_Compile_Time_Constraint_Error
4035 (N, "value not in range of}?", CE_Range_Check_Failed);
4037 elsif not Range_Checks_Suppressed (T) then
4038 Enable_Range_Check (N);
4040 else
4041 Set_Do_Range_Check (N, False);
4042 end if;
4043 end Compile_Time_Known_Attribute;
4045 -------------------------------
4046 -- Compile_Time_Known_Bounds --
4047 -------------------------------
4049 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
4050 begin
4051 return
4052 Compile_Time_Known_Value (Type_Low_Bound (Typ))
4053 and then
4054 Compile_Time_Known_Value (Type_High_Bound (Typ));
4055 end Compile_Time_Known_Bounds;
4057 ---------------------------------------
4058 -- Float_Attribute_Universal_Integer --
4059 ---------------------------------------
4061 procedure Float_Attribute_Universal_Integer
4062 (IEEES_Val : Int;
4063 IEEEL_Val : Int;
4064 IEEEX_Val : Int;
4065 VAXFF_Val : Int;
4066 VAXDF_Val : Int;
4067 VAXGF_Val : Int;
4068 AAMPS_Val : Int;
4069 AAMPL_Val : Int)
4071 Val : Int;
4072 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
4074 begin
4075 if Vax_Float (P_Base_Type) then
4076 if Digs = VAXFF_Digits then
4077 Val := VAXFF_Val;
4078 elsif Digs = VAXDF_Digits then
4079 Val := VAXDF_Val;
4080 else pragma Assert (Digs = VAXGF_Digits);
4081 Val := VAXGF_Val;
4082 end if;
4084 elsif Is_AAMP_Float (P_Base_Type) then
4085 if Digs = AAMPS_Digits then
4086 Val := AAMPS_Val;
4087 else pragma Assert (Digs = AAMPL_Digits);
4088 Val := AAMPL_Val;
4089 end if;
4091 else
4092 if Digs = IEEES_Digits then
4093 Val := IEEES_Val;
4094 elsif Digs = IEEEL_Digits then
4095 Val := IEEEL_Val;
4096 else pragma Assert (Digs = IEEEX_Digits);
4097 Val := IEEEX_Val;
4098 end if;
4099 end if;
4101 Fold_Uint (N, UI_From_Int (Val), True);
4102 end Float_Attribute_Universal_Integer;
4104 ------------------------------------
4105 -- Float_Attribute_Universal_Real --
4106 ------------------------------------
4108 procedure Float_Attribute_Universal_Real
4109 (IEEES_Val : String;
4110 IEEEL_Val : String;
4111 IEEEX_Val : String;
4112 VAXFF_Val : String;
4113 VAXDF_Val : String;
4114 VAXGF_Val : String;
4115 AAMPS_Val : String;
4116 AAMPL_Val : String)
4118 Val : Node_Id;
4119 Digs : constant Nat := UI_To_Int (Digits_Value (P_Base_Type));
4121 begin
4122 if Vax_Float (P_Base_Type) then
4123 if Digs = VAXFF_Digits then
4124 Val := Real_Convert (VAXFF_Val);
4125 elsif Digs = VAXDF_Digits then
4126 Val := Real_Convert (VAXDF_Val);
4127 else pragma Assert (Digs = VAXGF_Digits);
4128 Val := Real_Convert (VAXGF_Val);
4129 end if;
4131 elsif Is_AAMP_Float (P_Base_Type) then
4132 if Digs = AAMPS_Digits then
4133 Val := Real_Convert (AAMPS_Val);
4134 else pragma Assert (Digs = AAMPL_Digits);
4135 Val := Real_Convert (AAMPL_Val);
4136 end if;
4138 else
4139 if Digs = IEEES_Digits then
4140 Val := Real_Convert (IEEES_Val);
4141 elsif Digs = IEEEL_Digits then
4142 Val := Real_Convert (IEEEL_Val);
4143 else pragma Assert (Digs = IEEEX_Digits);
4144 Val := Real_Convert (IEEEX_Val);
4145 end if;
4146 end if;
4148 Set_Sloc (Val, Loc);
4149 Rewrite (N, Val);
4150 Set_Is_Static_Expression (N, Static);
4151 Analyze_And_Resolve (N, C_Type);
4152 end Float_Attribute_Universal_Real;
4154 ----------------
4155 -- Fore_Value --
4156 ----------------
4158 -- Note that the Fore calculation is based on the actual values
4159 -- of the bounds, and does not take into account possible rounding.
4161 function Fore_Value return Nat is
4162 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
4163 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
4164 Small : constant Ureal := Small_Value (P_Type);
4165 Lo_Real : constant Ureal := Lo * Small;
4166 Hi_Real : constant Ureal := Hi * Small;
4167 T : Ureal;
4168 R : Nat;
4170 begin
4171 -- Bounds are given in terms of small units, so first compute
4172 -- proper values as reals.
4174 T := UR_Max (abs Lo_Real, abs Hi_Real);
4175 R := 2;
4177 -- Loop to compute proper value if more than one digit required
4179 while T >= Ureal_10 loop
4180 R := R + 1;
4181 T := T / Ureal_10;
4182 end loop;
4184 return R;
4185 end Fore_Value;
4187 --------------
4188 -- Mantissa --
4189 --------------
4191 -- Table of mantissa values accessed by function Computed using
4192 -- the relation:
4194 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
4196 -- where D is T'Digits (RM83 3.5.7)
4198 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
4199 1 => 5,
4200 2 => 8,
4201 3 => 11,
4202 4 => 15,
4203 5 => 18,
4204 6 => 21,
4205 7 => 25,
4206 8 => 28,
4207 9 => 31,
4208 10 => 35,
4209 11 => 38,
4210 12 => 41,
4211 13 => 45,
4212 14 => 48,
4213 15 => 51,
4214 16 => 55,
4215 17 => 58,
4216 18 => 61,
4217 19 => 65,
4218 20 => 68,
4219 21 => 71,
4220 22 => 75,
4221 23 => 78,
4222 24 => 81,
4223 25 => 85,
4224 26 => 88,
4225 27 => 91,
4226 28 => 95,
4227 29 => 98,
4228 30 => 101,
4229 31 => 104,
4230 32 => 108,
4231 33 => 111,
4232 34 => 114,
4233 35 => 118,
4234 36 => 121,
4235 37 => 124,
4236 38 => 128,
4237 39 => 131,
4238 40 => 134);
4240 function Mantissa return Uint is
4241 begin
4242 return
4243 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
4244 end Mantissa;
4246 ----------------
4247 -- Set_Bounds --
4248 ----------------
4250 procedure Set_Bounds is
4251 Ndim : Nat;
4252 Indx : Node_Id;
4253 Ityp : Entity_Id;
4255 begin
4256 -- For a string literal subtype, we have to construct the bounds.
4257 -- Valid Ada code never applies attributes to string literals, but
4258 -- it is convenient to allow the expander to generate attribute
4259 -- references of this type (e.g. First and Last applied to a string
4260 -- literal).
4262 -- Note that the whole point of the E_String_Literal_Subtype is to
4263 -- avoid this construction of bounds, but the cases in which we
4264 -- have to materialize them are rare enough that we don't worry!
4266 -- The low bound is simply the low bound of the base type. The
4267 -- high bound is computed from the length of the string and this
4268 -- low bound.
4270 if Ekind (P_Type) = E_String_Literal_Subtype then
4271 Ityp := Etype (First_Index (Base_Type (P_Type)));
4272 Lo_Bound := Type_Low_Bound (Ityp);
4274 Hi_Bound :=
4275 Make_Integer_Literal (Sloc (P),
4276 Intval =>
4277 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
4279 Set_Parent (Hi_Bound, P);
4280 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
4281 return;
4283 -- For non-array case, just get bounds of scalar type
4285 elsif Is_Scalar_Type (P_Type) then
4286 Ityp := P_Type;
4288 -- For a fixed-point type, we must freeze to get the attributes
4289 -- of the fixed-point type set now so we can reference them.
4291 if Is_Fixed_Point_Type (P_Type)
4292 and then not Is_Frozen (Base_Type (P_Type))
4293 and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
4294 and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
4295 then
4296 Freeze_Fixed_Point_Type (Base_Type (P_Type));
4297 end if;
4299 -- For array case, get type of proper index
4301 else
4302 if No (E1) then
4303 Ndim := 1;
4304 else
4305 Ndim := UI_To_Int (Expr_Value (E1));
4306 end if;
4308 Indx := First_Index (P_Type);
4309 for J in 1 .. Ndim - 1 loop
4310 Next_Index (Indx);
4311 end loop;
4313 -- If no index type, get out (some other error occurred, and
4314 -- we don't have enough information to complete the job!)
4316 if No (Indx) then
4317 Lo_Bound := Error;
4318 Hi_Bound := Error;
4319 return;
4320 end if;
4322 Ityp := Etype (Indx);
4323 end if;
4325 -- A discrete range in an index constraint is allowed to be a
4326 -- subtype indication. This is syntactically a pain, but should
4327 -- not propagate to the entity for the corresponding index subtype.
4328 -- After checking that the subtype indication is legal, the range
4329 -- of the subtype indication should be transfered to the entity.
4330 -- The attributes for the bounds should remain the simple retrievals
4331 -- that they are now.
4333 Lo_Bound := Type_Low_Bound (Ityp);
4334 Hi_Bound := Type_High_Bound (Ityp);
4336 if not Is_Static_Subtype (Ityp) then
4337 Static := False;
4338 end if;
4339 end Set_Bounds;
4341 -- Start of processing for Eval_Attribute
4343 begin
4344 -- Acquire first two expressions (at the moment, no attributes
4345 -- take more than two expressions in any case).
4347 if Present (Expressions (N)) then
4348 E1 := First (Expressions (N));
4349 E2 := Next (E1);
4350 else
4351 E1 := Empty;
4352 E2 := Empty;
4353 end if;
4355 -- Special processing for cases where the prefix is an object. For
4356 -- this purpose, a string literal counts as an object (attributes
4357 -- of string literals can only appear in generated code).
4359 if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
4361 -- For Component_Size, the prefix is an array object, and we apply
4362 -- the attribute to the type of the object. This is allowed for
4363 -- both unconstrained and constrained arrays, since the bounds
4364 -- have no influence on the value of this attribute.
4366 if Id = Attribute_Component_Size then
4367 P_Entity := Etype (P);
4369 -- For First and Last, the prefix is an array object, and we apply
4370 -- the attribute to the type of the array, but we need a constrained
4371 -- type for this, so we use the actual subtype if available.
4373 elsif Id = Attribute_First
4374 or else
4375 Id = Attribute_Last
4376 or else
4377 Id = Attribute_Length
4378 then
4379 declare
4380 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
4382 begin
4383 if Present (AS) and then Is_Constrained (AS) then
4384 P_Entity := AS;
4386 -- If we have an unconstrained type, cannot fold
4388 else
4389 Check_Expressions;
4390 return;
4391 end if;
4392 end;
4394 -- For Size, give size of object if available, otherwise we
4395 -- cannot fold Size.
4397 elsif Id = Attribute_Size then
4398 if Is_Entity_Name (P)
4399 and then Known_Esize (Entity (P))
4400 then
4401 Compile_Time_Known_Attribute (N, Esize (Entity (P)));
4402 return;
4404 else
4405 Check_Expressions;
4406 return;
4407 end if;
4409 -- For Alignment, give size of object if available, otherwise we
4410 -- cannot fold Alignment.
4412 elsif Id = Attribute_Alignment then
4413 if Is_Entity_Name (P)
4414 and then Known_Alignment (Entity (P))
4415 then
4416 Fold_Uint (N, Alignment (Entity (P)), False);
4417 return;
4419 else
4420 Check_Expressions;
4421 return;
4422 end if;
4424 -- No other attributes for objects are folded
4426 else
4427 Check_Expressions;
4428 return;
4429 end if;
4431 -- Cases where P is not an object. Cannot do anything if P is
4432 -- not the name of an entity.
4434 elsif not Is_Entity_Name (P) then
4435 Check_Expressions;
4436 return;
4438 -- Otherwise get prefix entity
4440 else
4441 P_Entity := Entity (P);
4442 end if;
4444 -- At this stage P_Entity is the entity to which the attribute
4445 -- is to be applied. This is usually simply the entity of the
4446 -- prefix, except in some cases of attributes for objects, where
4447 -- as described above, we apply the attribute to the object type.
4449 -- First foldable possibility is a scalar or array type (RM 4.9(7))
4450 -- that is not generic (generic types are eliminated by RM 4.9(25)).
4451 -- Note we allow non-static non-generic types at this stage as further
4452 -- described below.
4454 if Is_Type (P_Entity)
4455 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
4456 and then (not Is_Generic_Type (P_Entity))
4457 then
4458 P_Type := P_Entity;
4460 -- Second foldable possibility is an array object (RM 4.9(8))
4462 elsif (Ekind (P_Entity) = E_Variable
4463 or else
4464 Ekind (P_Entity) = E_Constant)
4465 and then Is_Array_Type (Etype (P_Entity))
4466 and then (not Is_Generic_Type (Etype (P_Entity)))
4467 then
4468 P_Type := Etype (P_Entity);
4470 -- If the entity is an array constant with an unconstrained
4471 -- nominal subtype then get the type from the initial value.
4472 -- If the value has been expanded into assignments, the expression
4473 -- is not present and the attribute reference remains dynamic.
4474 -- We could do better here and retrieve the type ???
4476 if Ekind (P_Entity) = E_Constant
4477 and then not Is_Constrained (P_Type)
4478 then
4479 if No (Constant_Value (P_Entity)) then
4480 return;
4481 else
4482 P_Type := Etype (Constant_Value (P_Entity));
4483 end if;
4484 end if;
4486 -- Definite must be folded if the prefix is not a generic type,
4487 -- that is to say if we are within an instantiation. Same processing
4488 -- applies to the GNAT attributes Has_Discriminants, Type_Class,
4489 -- and Unconstrained_Array.
4491 elsif (Id = Attribute_Definite
4492 or else
4493 Id = Attribute_Has_Access_Values
4494 or else
4495 Id = Attribute_Has_Discriminants
4496 or else
4497 Id = Attribute_Type_Class
4498 or else
4499 Id = Attribute_Unconstrained_Array)
4500 and then not Is_Generic_Type (P_Entity)
4501 then
4502 P_Type := P_Entity;
4504 -- We can fold 'Size applied to a type if the size is known
4505 -- (as happens for a size from an attribute definition clause).
4506 -- At this stage, this can happen only for types (e.g. record
4507 -- types) for which the size is always non-static. We exclude
4508 -- generic types from consideration (since they have bogus
4509 -- sizes set within templates).
4511 elsif Id = Attribute_Size
4512 and then Is_Type (P_Entity)
4513 and then (not Is_Generic_Type (P_Entity))
4514 and then Known_Static_RM_Size (P_Entity)
4515 then
4516 Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
4517 return;
4519 -- We can fold 'Alignment applied to a type if the alignment is known
4520 -- (as happens for an alignment from an attribute definition clause).
4521 -- At this stage, this can happen only for types (e.g. record
4522 -- types) for which the size is always non-static. We exclude
4523 -- generic types from consideration (since they have bogus
4524 -- sizes set within templates).
4526 elsif Id = Attribute_Alignment
4527 and then Is_Type (P_Entity)
4528 and then (not Is_Generic_Type (P_Entity))
4529 and then Known_Alignment (P_Entity)
4530 then
4531 Compile_Time_Known_Attribute (N, Alignment (P_Entity));
4532 return;
4534 -- If this is an access attribute that is known to fail accessibility
4535 -- check, rewrite accordingly.
4537 elsif Attribute_Name (N) = Name_Access
4538 and then Raises_Constraint_Error (N)
4539 then
4540 Rewrite (N,
4541 Make_Raise_Program_Error (Loc,
4542 Reason => PE_Accessibility_Check_Failed));
4543 Set_Etype (N, C_Type);
4544 return;
4546 -- No other cases are foldable (they certainly aren't static, and at
4547 -- the moment we don't try to fold any cases other than these three).
4549 else
4550 Check_Expressions;
4551 return;
4552 end if;
4554 -- If either attribute or the prefix is Any_Type, then propagate
4555 -- Any_Type to the result and don't do anything else at all.
4557 if P_Type = Any_Type
4558 or else (Present (E1) and then Etype (E1) = Any_Type)
4559 or else (Present (E2) and then Etype (E2) = Any_Type)
4560 then
4561 Set_Etype (N, Any_Type);
4562 return;
4563 end if;
4565 -- Scalar subtype case. We have not yet enforced the static requirement
4566 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
4567 -- of non-static attribute references (e.g. S'Digits for a non-static
4568 -- floating-point type, which we can compute at compile time).
4570 -- Note: this folding of non-static attributes is not simply a case of
4571 -- optimization. For many of the attributes affected, Gigi cannot handle
4572 -- the attribute and depends on the front end having folded them away.
4574 -- Note: although we don't require staticness at this stage, we do set
4575 -- the Static variable to record the staticness, for easy reference by
4576 -- those attributes where it matters (e.g. Succ and Pred), and also to
4577 -- be used to ensure that non-static folded things are not marked as
4578 -- being static (a check that is done right at the end).
4580 P_Root_Type := Root_Type (P_Type);
4581 P_Base_Type := Base_Type (P_Type);
4583 -- If the root type or base type is generic, then we cannot fold. This
4584 -- test is needed because subtypes of generic types are not always
4585 -- marked as being generic themselves (which seems odd???)
4587 if Is_Generic_Type (P_Root_Type)
4588 or else Is_Generic_Type (P_Base_Type)
4589 then
4590 return;
4591 end if;
4593 if Is_Scalar_Type (P_Type) then
4594 Static := Is_OK_Static_Subtype (P_Type);
4596 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
4597 -- since we can't do anything with unconstrained arrays. In addition,
4598 -- only the First, Last and Length attributes are possibly static.
4599 -- In addition Component_Size is possibly foldable, even though it
4600 -- can never be static.
4602 -- Definite, Has_Access_Values, Has_Discriminants, Type_Class, and
4603 -- Unconstrained_Array are again exceptions, because they apply as
4604 -- well to unconstrained types.
4606 elsif Id = Attribute_Definite
4607 or else
4608 Id = Attribute_Has_Access_Values
4609 or else
4610 Id = Attribute_Has_Discriminants
4611 or else
4612 Id = Attribute_Type_Class
4613 or else
4614 Id = Attribute_Unconstrained_Array
4615 then
4616 Static := False;
4618 else
4619 if not Is_Constrained (P_Type)
4620 or else (Id /= Attribute_Component_Size and then
4621 Id /= Attribute_First and then
4622 Id /= Attribute_Last and then
4623 Id /= Attribute_Length)
4624 then
4625 Check_Expressions;
4626 return;
4627 end if;
4629 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
4630 -- scalar case, we hold off on enforcing staticness, since there are
4631 -- cases which we can fold at compile time even though they are not
4632 -- static (e.g. 'Length applied to a static index, even though other
4633 -- non-static indexes make the array type non-static). This is only
4634 -- an optimization, but it falls out essentially free, so why not.
4635 -- Again we compute the variable Static for easy reference later
4636 -- (note that no array attributes are static in Ada 83).
4638 Static := Ada_Version >= Ada_95;
4640 declare
4641 N : Node_Id;
4643 begin
4644 N := First_Index (P_Type);
4645 while Present (N) loop
4646 Static := Static and then Is_Static_Subtype (Etype (N));
4648 -- If however the index type is generic, attributes cannot
4649 -- be folded.
4651 if Is_Generic_Type (Etype (N))
4652 and then Id /= Attribute_Component_Size
4653 then
4654 return;
4655 end if;
4657 Next_Index (N);
4658 end loop;
4659 end;
4660 end if;
4662 -- Check any expressions that are present. Note that these expressions,
4663 -- depending on the particular attribute type, are either part of the
4664 -- attribute designator, or they are arguments in a case where the
4665 -- attribute reference returns a function. In the latter case, the
4666 -- rule in (RM 4.9(22)) applies and in particular requires the type
4667 -- of the expressions to be scalar in order for the attribute to be
4668 -- considered to be static.
4670 declare
4671 E : Node_Id;
4673 begin
4674 E := E1;
4675 while Present (E) loop
4677 -- If expression is not static, then the attribute reference
4678 -- result certainly cannot be static.
4680 if not Is_Static_Expression (E) then
4681 Static := False;
4682 end if;
4684 -- If the result is not known at compile time, or is not of
4685 -- a scalar type, then the result is definitely not static,
4686 -- so we can quit now.
4688 if not Compile_Time_Known_Value (E)
4689 or else not Is_Scalar_Type (Etype (E))
4690 then
4691 -- An odd special case, if this is a Pos attribute, this
4692 -- is where we need to apply a range check since it does
4693 -- not get done anywhere else.
4695 if Id = Attribute_Pos then
4696 if Is_Integer_Type (Etype (E)) then
4697 Apply_Range_Check (E, Etype (N));
4698 end if;
4699 end if;
4701 Check_Expressions;
4702 return;
4704 -- If the expression raises a constraint error, then so does
4705 -- the attribute reference. We keep going in this case because
4706 -- we are still interested in whether the attribute reference
4707 -- is static even if it is not static.
4709 elsif Raises_Constraint_Error (E) then
4710 Set_Raises_Constraint_Error (N);
4711 end if;
4713 Next (E);
4714 end loop;
4716 if Raises_Constraint_Error (Prefix (N)) then
4717 return;
4718 end if;
4719 end;
4721 -- Deal with the case of a static attribute reference that raises
4722 -- constraint error. The Raises_Constraint_Error flag will already
4723 -- have been set, and the Static flag shows whether the attribute
4724 -- reference is static. In any case we certainly can't fold such an
4725 -- attribute reference.
4727 -- Note that the rewriting of the attribute node with the constraint
4728 -- error node is essential in this case, because otherwise Gigi might
4729 -- blow up on one of the attributes it never expects to see.
4731 -- The constraint_error node must have the type imposed by the context,
4732 -- to avoid spurious errors in the enclosing expression.
4734 if Raises_Constraint_Error (N) then
4735 CE_Node :=
4736 Make_Raise_Constraint_Error (Sloc (N),
4737 Reason => CE_Range_Check_Failed);
4738 Set_Etype (CE_Node, Etype (N));
4739 Set_Raises_Constraint_Error (CE_Node);
4740 Check_Expressions;
4741 Rewrite (N, Relocate_Node (CE_Node));
4742 Set_Is_Static_Expression (N, Static);
4743 return;
4744 end if;
4746 -- At this point we have a potentially foldable attribute reference.
4747 -- If Static is set, then the attribute reference definitely obeys
4748 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
4749 -- folded. If Static is not set, then the attribute may or may not
4750 -- be foldable, and the individual attribute processing routines
4751 -- test Static as required in cases where it makes a difference.
4753 -- In the case where Static is not set, we do know that all the
4754 -- expressions present are at least known at compile time (we
4755 -- assumed above that if this was not the case, then there was
4756 -- no hope of static evaluation). However, we did not require
4757 -- that the bounds of the prefix type be compile time known,
4758 -- let alone static). That's because there are many attributes
4759 -- that can be computed at compile time on non-static subtypes,
4760 -- even though such references are not static expressions.
4762 case Id is
4764 --------------
4765 -- Adjacent --
4766 --------------
4768 when Attribute_Adjacent =>
4769 Fold_Ureal (N,
4770 Eval_Fat.Adjacent
4771 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
4773 ---------
4774 -- Aft --
4775 ---------
4777 when Attribute_Aft =>
4778 Fold_Uint (N, UI_From_Int (Aft_Value), True);
4780 ---------------
4781 -- Alignment --
4782 ---------------
4784 when Attribute_Alignment => Alignment_Block : declare
4785 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
4787 begin
4788 -- Fold if alignment is set and not otherwise
4790 if Known_Alignment (P_TypeA) then
4791 Fold_Uint (N, Alignment (P_TypeA), Is_Discrete_Type (P_TypeA));
4792 end if;
4793 end Alignment_Block;
4795 ---------------
4796 -- AST_Entry --
4797 ---------------
4799 -- Can only be folded in No_Ast_Handler case
4801 when Attribute_AST_Entry =>
4802 if not Is_AST_Entry (P_Entity) then
4803 Rewrite (N,
4804 New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
4805 else
4806 null;
4807 end if;
4809 ---------
4810 -- Bit --
4811 ---------
4813 -- Bit can never be folded
4815 when Attribute_Bit =>
4816 null;
4818 ------------------
4819 -- Body_Version --
4820 ------------------
4822 -- Body_version can never be static
4824 when Attribute_Body_Version =>
4825 null;
4827 -------------
4828 -- Ceiling --
4829 -------------
4831 when Attribute_Ceiling =>
4832 Fold_Ureal (N,
4833 Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)), Static);
4835 --------------------
4836 -- Component_Size --
4837 --------------------
4839 when Attribute_Component_Size =>
4840 if Known_Static_Component_Size (P_Type) then
4841 Fold_Uint (N, Component_Size (P_Type), False);
4842 end if;
4844 -------------
4845 -- Compose --
4846 -------------
4848 when Attribute_Compose =>
4849 Fold_Ureal (N,
4850 Eval_Fat.Compose
4851 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)),
4852 Static);
4854 -----------------
4855 -- Constrained --
4856 -----------------
4858 -- Constrained is never folded for now, there may be cases that
4859 -- could be handled at compile time. to be looked at later.
4861 when Attribute_Constrained =>
4862 null;
4864 ---------------
4865 -- Copy_Sign --
4866 ---------------
4868 when Attribute_Copy_Sign =>
4869 Fold_Ureal (N,
4870 Eval_Fat.Copy_Sign
4871 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
4873 -----------
4874 -- Delta --
4875 -----------
4877 when Attribute_Delta =>
4878 Fold_Ureal (N, Delta_Value (P_Type), True);
4880 --------------
4881 -- Definite --
4882 --------------
4884 when Attribute_Definite =>
4885 Rewrite (N, New_Occurrence_Of (
4886 Boolean_Literals (not Is_Indefinite_Subtype (P_Entity)), Loc));
4887 Analyze_And_Resolve (N, Standard_Boolean);
4889 ------------
4890 -- Denorm --
4891 ------------
4893 when Attribute_Denorm =>
4894 Fold_Uint
4895 (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)), True);
4897 ------------
4898 -- Digits --
4899 ------------
4901 when Attribute_Digits =>
4902 Fold_Uint (N, Digits_Value (P_Type), True);
4904 ----------
4905 -- Emax --
4906 ----------
4908 when Attribute_Emax =>
4910 -- Ada 83 attribute is defined as (RM83 3.5.8)
4912 -- T'Emax = 4 * T'Mantissa
4914 Fold_Uint (N, 4 * Mantissa, True);
4916 --------------
4917 -- Enum_Rep --
4918 --------------
4920 when Attribute_Enum_Rep =>
4922 -- For an enumeration type with a non-standard representation
4923 -- use the Enumeration_Rep field of the proper constant. Note
4924 -- that this would not work for types Character/Wide_Character,
4925 -- since no real entities are created for the enumeration
4926 -- literals, but that does not matter since these two types
4927 -- do not have non-standard representations anyway.
4929 if Is_Enumeration_Type (P_Type)
4930 and then Has_Non_Standard_Rep (P_Type)
4931 then
4932 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)), Static);
4934 -- For enumeration types with standard representations and all
4935 -- other cases (i.e. all integer and modular types), Enum_Rep
4936 -- is equivalent to Pos.
4938 else
4939 Fold_Uint (N, Expr_Value (E1), Static);
4940 end if;
4942 -------------
4943 -- Epsilon --
4944 -------------
4946 when Attribute_Epsilon =>
4948 -- Ada 83 attribute is defined as (RM83 3.5.8)
4950 -- T'Epsilon = 2.0**(1 - T'Mantissa)
4952 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
4954 --------------
4955 -- Exponent --
4956 --------------
4958 when Attribute_Exponent =>
4959 Fold_Uint (N,
4960 Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)), Static);
4962 -----------
4963 -- First --
4964 -----------
4966 when Attribute_First => First_Attr :
4967 begin
4968 Set_Bounds;
4970 if Compile_Time_Known_Value (Lo_Bound) then
4971 if Is_Real_Type (P_Type) then
4972 Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
4973 else
4974 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
4975 end if;
4976 end if;
4977 end First_Attr;
4979 -----------------
4980 -- Fixed_Value --
4981 -----------------
4983 when Attribute_Fixed_Value =>
4984 null;
4986 -----------
4987 -- Floor --
4988 -----------
4990 when Attribute_Floor =>
4991 Fold_Ureal (N,
4992 Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)), Static);
4994 ----------
4995 -- Fore --
4996 ----------
4998 when Attribute_Fore =>
4999 if Compile_Time_Known_Bounds (P_Type) then
5000 Fold_Uint (N, UI_From_Int (Fore_Value), Static);
5001 end if;
5003 --------------
5004 -- Fraction --
5005 --------------
5007 when Attribute_Fraction =>
5008 Fold_Ureal (N,
5009 Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)), Static);
5011 -----------------------
5012 -- Has_Access_Values --
5013 -----------------------
5015 when Attribute_Has_Access_Values =>
5016 Rewrite (N, New_Occurrence_Of
5017 (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
5018 Analyze_And_Resolve (N, Standard_Boolean);
5020 -----------------------
5021 -- Has_Discriminants --
5022 -----------------------
5024 when Attribute_Has_Discriminants =>
5025 Rewrite (N, New_Occurrence_Of (
5026 Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
5027 Analyze_And_Resolve (N, Standard_Boolean);
5029 --------------
5030 -- Identity --
5031 --------------
5033 when Attribute_Identity =>
5034 null;
5036 -----------
5037 -- Image --
5038 -----------
5040 -- Image is a scalar attribute, but is never static, because it is
5041 -- not a static function (having a non-scalar argument (RM 4.9(22))
5043 when Attribute_Image =>
5044 null;
5046 ---------
5047 -- Img --
5048 ---------
5050 -- Img is a scalar attribute, but is never static, because it is
5051 -- not a static function (having a non-scalar argument (RM 4.9(22))
5053 when Attribute_Img =>
5054 null;
5056 -------------------
5057 -- Integer_Value --
5058 -------------------
5060 when Attribute_Integer_Value =>
5061 null;
5063 -----------
5064 -- Large --
5065 -----------
5067 when Attribute_Large =>
5069 -- For fixed-point, we use the identity:
5071 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
5073 if Is_Fixed_Point_Type (P_Type) then
5074 Rewrite (N,
5075 Make_Op_Multiply (Loc,
5076 Left_Opnd =>
5077 Make_Op_Subtract (Loc,
5078 Left_Opnd =>
5079 Make_Op_Expon (Loc,
5080 Left_Opnd =>
5081 Make_Real_Literal (Loc, Ureal_2),
5082 Right_Opnd =>
5083 Make_Attribute_Reference (Loc,
5084 Prefix => P,
5085 Attribute_Name => Name_Mantissa)),
5086 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
5088 Right_Opnd =>
5089 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
5091 Analyze_And_Resolve (N, C_Type);
5093 -- Floating-point (Ada 83 compatibility)
5095 else
5096 -- Ada 83 attribute is defined as (RM83 3.5.8)
5098 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
5100 -- where
5102 -- T'Emax = 4 * T'Mantissa
5104 Fold_Ureal (N,
5105 Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
5106 True);
5107 end if;
5109 ----------
5110 -- Last --
5111 ----------
5113 when Attribute_Last => Last :
5114 begin
5115 Set_Bounds;
5117 if Compile_Time_Known_Value (Hi_Bound) then
5118 if Is_Real_Type (P_Type) then
5119 Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
5120 else
5121 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
5122 end if;
5123 end if;
5124 end Last;
5126 ------------------
5127 -- Leading_Part --
5128 ------------------
5130 when Attribute_Leading_Part =>
5131 Fold_Ureal (N,
5132 Eval_Fat.Leading_Part
5133 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
5135 ------------
5136 -- Length --
5137 ------------
5139 when Attribute_Length => Length : declare
5140 Ind : Node_Id;
5142 begin
5143 -- In the case of a generic index type, the bounds may
5144 -- appear static but the computation is not meaningful,
5145 -- and may generate a spurious warning.
5147 Ind := First_Index (P_Type);
5149 while Present (Ind) loop
5150 if Is_Generic_Type (Etype (Ind)) then
5151 return;
5152 end if;
5154 Next_Index (Ind);
5155 end loop;
5157 Set_Bounds;
5159 if Compile_Time_Known_Value (Lo_Bound)
5160 and then Compile_Time_Known_Value (Hi_Bound)
5161 then
5162 Fold_Uint (N,
5163 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
5164 True);
5165 end if;
5166 end Length;
5168 -------------
5169 -- Machine --
5170 -------------
5172 when Attribute_Machine =>
5173 Fold_Ureal (N,
5174 Eval_Fat.Machine
5175 (P_Root_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
5176 Static);
5178 ------------------
5179 -- Machine_Emax --
5180 ------------------
5182 when Attribute_Machine_Emax =>
5183 Float_Attribute_Universal_Integer (
5184 IEEES_Machine_Emax,
5185 IEEEL_Machine_Emax,
5186 IEEEX_Machine_Emax,
5187 VAXFF_Machine_Emax,
5188 VAXDF_Machine_Emax,
5189 VAXGF_Machine_Emax,
5190 AAMPS_Machine_Emax,
5191 AAMPL_Machine_Emax);
5193 ------------------
5194 -- Machine_Emin --
5195 ------------------
5197 when Attribute_Machine_Emin =>
5198 Float_Attribute_Universal_Integer (
5199 IEEES_Machine_Emin,
5200 IEEEL_Machine_Emin,
5201 IEEEX_Machine_Emin,
5202 VAXFF_Machine_Emin,
5203 VAXDF_Machine_Emin,
5204 VAXGF_Machine_Emin,
5205 AAMPS_Machine_Emin,
5206 AAMPL_Machine_Emin);
5208 ----------------------
5209 -- Machine_Mantissa --
5210 ----------------------
5212 when Attribute_Machine_Mantissa =>
5213 Float_Attribute_Universal_Integer (
5214 IEEES_Machine_Mantissa,
5215 IEEEL_Machine_Mantissa,
5216 IEEEX_Machine_Mantissa,
5217 VAXFF_Machine_Mantissa,
5218 VAXDF_Machine_Mantissa,
5219 VAXGF_Machine_Mantissa,
5220 AAMPS_Machine_Mantissa,
5221 AAMPL_Machine_Mantissa);
5223 -----------------------
5224 -- Machine_Overflows --
5225 -----------------------
5227 when Attribute_Machine_Overflows =>
5229 -- Always true for fixed-point
5231 if Is_Fixed_Point_Type (P_Type) then
5232 Fold_Uint (N, True_Value, True);
5234 -- Floating point case
5236 else
5237 Fold_Uint (N,
5238 UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
5239 True);
5240 end if;
5242 -------------------
5243 -- Machine_Radix --
5244 -------------------
5246 when Attribute_Machine_Radix =>
5247 if Is_Fixed_Point_Type (P_Type) then
5248 if Is_Decimal_Fixed_Point_Type (P_Type)
5249 and then Machine_Radix_10 (P_Type)
5250 then
5251 Fold_Uint (N, Uint_10, True);
5252 else
5253 Fold_Uint (N, Uint_2, True);
5254 end if;
5256 -- All floating-point type always have radix 2
5258 else
5259 Fold_Uint (N, Uint_2, True);
5260 end if;
5262 --------------------
5263 -- Machine_Rounds --
5264 --------------------
5266 when Attribute_Machine_Rounds =>
5268 -- Always False for fixed-point
5270 if Is_Fixed_Point_Type (P_Type) then
5271 Fold_Uint (N, False_Value, True);
5273 -- Else yield proper floating-point result
5275 else
5276 Fold_Uint
5277 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)), True);
5278 end if;
5280 ------------------
5281 -- Machine_Size --
5282 ------------------
5284 -- Note: Machine_Size is identical to Object_Size
5286 when Attribute_Machine_Size => Machine_Size : declare
5287 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5289 begin
5290 if Known_Esize (P_TypeA) then
5291 Fold_Uint (N, Esize (P_TypeA), True);
5292 end if;
5293 end Machine_Size;
5295 --------------
5296 -- Mantissa --
5297 --------------
5299 when Attribute_Mantissa =>
5301 -- Fixed-point mantissa
5303 if Is_Fixed_Point_Type (P_Type) then
5305 -- Compile time foldable case
5307 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
5308 and then
5309 Compile_Time_Known_Value (Type_High_Bound (P_Type))
5310 then
5311 -- The calculation of the obsolete Ada 83 attribute Mantissa
5312 -- is annoying, because of AI00143, quoted here:
5314 -- !question 84-01-10
5316 -- Consider the model numbers for F:
5318 -- type F is delta 1.0 range -7.0 .. 8.0;
5320 -- The wording requires that F'MANTISSA be the SMALLEST
5321 -- integer number for which each bound of the specified
5322 -- range is either a model number or lies at most small
5323 -- distant from a model number. This means F'MANTISSA
5324 -- is required to be 3 since the range -7.0 .. 7.0 fits
5325 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
5326 -- number, namely, 7. Is this analysis correct? Note that
5327 -- this implies the upper bound of the range is not
5328 -- represented as a model number.
5330 -- !response 84-03-17
5332 -- The analysis is correct. The upper and lower bounds for
5333 -- a fixed point type can lie outside the range of model
5334 -- numbers.
5336 declare
5337 Siz : Uint;
5338 LBound : Ureal;
5339 UBound : Ureal;
5340 Bound : Ureal;
5341 Max_Man : Uint;
5343 begin
5344 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
5345 UBound := Expr_Value_R (Type_High_Bound (P_Type));
5346 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
5347 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
5349 -- If the Bound is exactly a model number, i.e. a multiple
5350 -- of Small, then we back it off by one to get the integer
5351 -- value that must be representable.
5353 if Small_Value (P_Type) * Max_Man = Bound then
5354 Max_Man := Max_Man - 1;
5355 end if;
5357 -- Now find corresponding size = Mantissa value
5359 Siz := Uint_0;
5360 while 2 ** Siz < Max_Man loop
5361 Siz := Siz + 1;
5362 end loop;
5364 Fold_Uint (N, Siz, True);
5365 end;
5367 else
5368 -- The case of dynamic bounds cannot be evaluated at compile
5369 -- time. Instead we use a runtime routine (see Exp_Attr).
5371 null;
5372 end if;
5374 -- Floating-point Mantissa
5376 else
5377 Fold_Uint (N, Mantissa, True);
5378 end if;
5380 ---------
5381 -- Max --
5382 ---------
5384 when Attribute_Max => Max :
5385 begin
5386 if Is_Real_Type (P_Type) then
5387 Fold_Ureal
5388 (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
5389 else
5390 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
5391 end if;
5392 end Max;
5394 ----------------------------------
5395 -- Max_Size_In_Storage_Elements --
5396 ----------------------------------
5398 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
5399 -- Storage_Unit boundary. We can fold any cases for which the size
5400 -- is known by the front end.
5402 when Attribute_Max_Size_In_Storage_Elements =>
5403 if Known_Esize (P_Type) then
5404 Fold_Uint (N,
5405 (Esize (P_Type) + System_Storage_Unit - 1) /
5406 System_Storage_Unit,
5407 Static);
5408 end if;
5410 --------------------
5411 -- Mechanism_Code --
5412 --------------------
5414 when Attribute_Mechanism_Code =>
5415 declare
5416 Val : Int;
5417 Formal : Entity_Id;
5418 Mech : Mechanism_Type;
5420 begin
5421 if No (E1) then
5422 Mech := Mechanism (P_Entity);
5424 else
5425 Val := UI_To_Int (Expr_Value (E1));
5427 Formal := First_Formal (P_Entity);
5428 for J in 1 .. Val - 1 loop
5429 Next_Formal (Formal);
5430 end loop;
5431 Mech := Mechanism (Formal);
5432 end if;
5434 if Mech < 0 then
5435 Fold_Uint (N, UI_From_Int (Int (-Mech)), True);
5436 end if;
5437 end;
5439 ---------
5440 -- Min --
5441 ---------
5443 when Attribute_Min => Min :
5444 begin
5445 if Is_Real_Type (P_Type) then
5446 Fold_Ureal
5447 (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
5448 else
5449 Fold_Uint
5450 (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
5451 end if;
5452 end Min;
5454 ---------
5455 -- Mod --
5456 ---------
5458 when Attribute_Mod =>
5459 Fold_Uint
5460 (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
5462 -----------
5463 -- Model --
5464 -----------
5466 when Attribute_Model =>
5467 Fold_Ureal (N,
5468 Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)), Static);
5470 ----------------
5471 -- Model_Emin --
5472 ----------------
5474 when Attribute_Model_Emin =>
5475 Float_Attribute_Universal_Integer (
5476 IEEES_Model_Emin,
5477 IEEEL_Model_Emin,
5478 IEEEX_Model_Emin,
5479 VAXFF_Model_Emin,
5480 VAXDF_Model_Emin,
5481 VAXGF_Model_Emin,
5482 AAMPS_Model_Emin,
5483 AAMPL_Model_Emin);
5485 -------------------
5486 -- Model_Epsilon --
5487 -------------------
5489 when Attribute_Model_Epsilon =>
5490 Float_Attribute_Universal_Real (
5491 IEEES_Model_Epsilon'Universal_Literal_String,
5492 IEEEL_Model_Epsilon'Universal_Literal_String,
5493 IEEEX_Model_Epsilon'Universal_Literal_String,
5494 VAXFF_Model_Epsilon'Universal_Literal_String,
5495 VAXDF_Model_Epsilon'Universal_Literal_String,
5496 VAXGF_Model_Epsilon'Universal_Literal_String,
5497 AAMPS_Model_Epsilon'Universal_Literal_String,
5498 AAMPL_Model_Epsilon'Universal_Literal_String);
5500 --------------------
5501 -- Model_Mantissa --
5502 --------------------
5504 when Attribute_Model_Mantissa =>
5505 Float_Attribute_Universal_Integer (
5506 IEEES_Model_Mantissa,
5507 IEEEL_Model_Mantissa,
5508 IEEEX_Model_Mantissa,
5509 VAXFF_Model_Mantissa,
5510 VAXDF_Model_Mantissa,
5511 VAXGF_Model_Mantissa,
5512 AAMPS_Model_Mantissa,
5513 AAMPL_Model_Mantissa);
5515 -----------------
5516 -- Model_Small --
5517 -----------------
5519 when Attribute_Model_Small =>
5520 Float_Attribute_Universal_Real (
5521 IEEES_Model_Small'Universal_Literal_String,
5522 IEEEL_Model_Small'Universal_Literal_String,
5523 IEEEX_Model_Small'Universal_Literal_String,
5524 VAXFF_Model_Small'Universal_Literal_String,
5525 VAXDF_Model_Small'Universal_Literal_String,
5526 VAXGF_Model_Small'Universal_Literal_String,
5527 AAMPS_Model_Small'Universal_Literal_String,
5528 AAMPL_Model_Small'Universal_Literal_String);
5530 -------------
5531 -- Modulus --
5532 -------------
5534 when Attribute_Modulus =>
5535 Fold_Uint (N, Modulus (P_Type), True);
5537 --------------------
5538 -- Null_Parameter --
5539 --------------------
5541 -- Cannot fold, we know the value sort of, but the whole point is
5542 -- that there is no way to talk about this imaginary value except
5543 -- by using the attribute, so we leave it the way it is.
5545 when Attribute_Null_Parameter =>
5546 null;
5548 -----------------
5549 -- Object_Size --
5550 -----------------
5552 -- The Object_Size attribute for a type returns the Esize of the
5553 -- type and can be folded if this value is known.
5555 when Attribute_Object_Size => Object_Size : declare
5556 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5558 begin
5559 if Known_Esize (P_TypeA) then
5560 Fold_Uint (N, Esize (P_TypeA), True);
5561 end if;
5562 end Object_Size;
5564 -------------------------
5565 -- Passed_By_Reference --
5566 -------------------------
5568 -- Scalar types are never passed by reference
5570 when Attribute_Passed_By_Reference =>
5571 Fold_Uint (N, False_Value, True);
5573 ---------
5574 -- Pos --
5575 ---------
5577 when Attribute_Pos =>
5578 Fold_Uint (N, Expr_Value (E1), True);
5580 ----------
5581 -- Pred --
5582 ----------
5584 when Attribute_Pred => Pred :
5585 begin
5586 -- Floating-point case
5588 if Is_Floating_Point_Type (P_Type) then
5589 Fold_Ureal (N,
5590 Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)), Static);
5592 -- Fixed-point case
5594 elsif Is_Fixed_Point_Type (P_Type) then
5595 Fold_Ureal (N,
5596 Expr_Value_R (E1) - Small_Value (P_Type), True);
5598 -- Modular integer case (wraps)
5600 elsif Is_Modular_Integer_Type (P_Type) then
5601 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
5603 -- Other scalar cases
5605 else
5606 pragma Assert (Is_Scalar_Type (P_Type));
5608 if Is_Enumeration_Type (P_Type)
5609 and then Expr_Value (E1) =
5610 Expr_Value (Type_Low_Bound (P_Base_Type))
5611 then
5612 Apply_Compile_Time_Constraint_Error
5613 (N, "Pred of `&''First`",
5614 CE_Overflow_Check_Failed,
5615 Ent => P_Base_Type,
5616 Warn => not Static);
5618 Check_Expressions;
5619 return;
5620 end if;
5622 Fold_Uint (N, Expr_Value (E1) - 1, Static);
5623 end if;
5624 end Pred;
5626 -----------
5627 -- Range --
5628 -----------
5630 -- No processing required, because by this stage, Range has been
5631 -- replaced by First .. Last, so this branch can never be taken.
5633 when Attribute_Range =>
5634 raise Program_Error;
5636 ------------------
5637 -- Range_Length --
5638 ------------------
5640 when Attribute_Range_Length =>
5641 Set_Bounds;
5643 if Compile_Time_Known_Value (Hi_Bound)
5644 and then Compile_Time_Known_Value (Lo_Bound)
5645 then
5646 Fold_Uint (N,
5647 UI_Max
5648 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
5649 Static);
5650 end if;
5652 ---------------
5653 -- Remainder --
5654 ---------------
5656 when Attribute_Remainder =>
5657 Fold_Ureal (N,
5658 Eval_Fat.Remainder
5659 (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
5660 Static);
5662 -----------
5663 -- Round --
5664 -----------
5666 when Attribute_Round => Round :
5667 declare
5668 Sr : Ureal;
5669 Si : Uint;
5671 begin
5672 -- First we get the (exact result) in units of small
5674 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
5676 -- Now round that exactly to an integer
5678 Si := UR_To_Uint (Sr);
5680 -- Finally the result is obtained by converting back to real
5682 Fold_Ureal (N, Si * Small_Value (C_Type), Static);
5683 end Round;
5685 --------------
5686 -- Rounding --
5687 --------------
5689 when Attribute_Rounding =>
5690 Fold_Ureal (N,
5691 Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
5693 ---------------
5694 -- Safe_Emax --
5695 ---------------
5697 when Attribute_Safe_Emax =>
5698 Float_Attribute_Universal_Integer (
5699 IEEES_Safe_Emax,
5700 IEEEL_Safe_Emax,
5701 IEEEX_Safe_Emax,
5702 VAXFF_Safe_Emax,
5703 VAXDF_Safe_Emax,
5704 VAXGF_Safe_Emax,
5705 AAMPS_Safe_Emax,
5706 AAMPL_Safe_Emax);
5708 ----------------
5709 -- Safe_First --
5710 ----------------
5712 when Attribute_Safe_First =>
5713 Float_Attribute_Universal_Real (
5714 IEEES_Safe_First'Universal_Literal_String,
5715 IEEEL_Safe_First'Universal_Literal_String,
5716 IEEEX_Safe_First'Universal_Literal_String,
5717 VAXFF_Safe_First'Universal_Literal_String,
5718 VAXDF_Safe_First'Universal_Literal_String,
5719 VAXGF_Safe_First'Universal_Literal_String,
5720 AAMPS_Safe_First'Universal_Literal_String,
5721 AAMPL_Safe_First'Universal_Literal_String);
5723 ----------------
5724 -- Safe_Large --
5725 ----------------
5727 when Attribute_Safe_Large =>
5728 if Is_Fixed_Point_Type (P_Type) then
5729 Fold_Ureal
5730 (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
5731 else
5732 Float_Attribute_Universal_Real (
5733 IEEES_Safe_Large'Universal_Literal_String,
5734 IEEEL_Safe_Large'Universal_Literal_String,
5735 IEEEX_Safe_Large'Universal_Literal_String,
5736 VAXFF_Safe_Large'Universal_Literal_String,
5737 VAXDF_Safe_Large'Universal_Literal_String,
5738 VAXGF_Safe_Large'Universal_Literal_String,
5739 AAMPS_Safe_Large'Universal_Literal_String,
5740 AAMPL_Safe_Large'Universal_Literal_String);
5741 end if;
5743 ---------------
5744 -- Safe_Last --
5745 ---------------
5747 when Attribute_Safe_Last =>
5748 Float_Attribute_Universal_Real (
5749 IEEES_Safe_Last'Universal_Literal_String,
5750 IEEEL_Safe_Last'Universal_Literal_String,
5751 IEEEX_Safe_Last'Universal_Literal_String,
5752 VAXFF_Safe_Last'Universal_Literal_String,
5753 VAXDF_Safe_Last'Universal_Literal_String,
5754 VAXGF_Safe_Last'Universal_Literal_String,
5755 AAMPS_Safe_Last'Universal_Literal_String,
5756 AAMPL_Safe_Last'Universal_Literal_String);
5758 ----------------
5759 -- Safe_Small --
5760 ----------------
5762 when Attribute_Safe_Small =>
5764 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
5765 -- for fixed-point, since is the same as Small, but we implement
5766 -- it for backwards compatibility.
5768 if Is_Fixed_Point_Type (P_Type) then
5769 Fold_Ureal (N, Small_Value (P_Type), Static);
5771 -- Ada 83 Safe_Small for floating-point cases
5773 else
5774 Float_Attribute_Universal_Real (
5775 IEEES_Safe_Small'Universal_Literal_String,
5776 IEEEL_Safe_Small'Universal_Literal_String,
5777 IEEEX_Safe_Small'Universal_Literal_String,
5778 VAXFF_Safe_Small'Universal_Literal_String,
5779 VAXDF_Safe_Small'Universal_Literal_String,
5780 VAXGF_Safe_Small'Universal_Literal_String,
5781 AAMPS_Safe_Small'Universal_Literal_String,
5782 AAMPL_Safe_Small'Universal_Literal_String);
5783 end if;
5785 -----------
5786 -- Scale --
5787 -----------
5789 when Attribute_Scale =>
5790 Fold_Uint (N, Scale_Value (P_Type), True);
5792 -------------
5793 -- Scaling --
5794 -------------
5796 when Attribute_Scaling =>
5797 Fold_Ureal (N,
5798 Eval_Fat.Scaling
5799 (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
5801 ------------------
5802 -- Signed_Zeros --
5803 ------------------
5805 when Attribute_Signed_Zeros =>
5806 Fold_Uint
5807 (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)), Static);
5809 ----------
5810 -- Size --
5811 ----------
5813 -- Size attribute returns the RM size. All scalar types can be folded,
5814 -- as well as any types for which the size is known by the front end,
5815 -- including any type for which a size attribute is specified.
5817 when Attribute_Size | Attribute_VADS_Size => Size : declare
5818 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
5820 begin
5821 if RM_Size (P_TypeA) /= Uint_0 then
5823 -- VADS_Size case
5825 if Id = Attribute_VADS_Size or else Use_VADS_Size then
5826 declare
5827 S : constant Node_Id := Size_Clause (P_TypeA);
5829 begin
5830 -- If a size clause applies, then use the size from it.
5831 -- This is one of the rare cases where we can use the
5832 -- Size_Clause field for a subtype when Has_Size_Clause
5833 -- is False. Consider:
5835 -- type x is range 1 .. 64; g
5836 -- for x'size use 12;
5837 -- subtype y is x range 0 .. 3;
5839 -- Here y has a size clause inherited from x, but normally
5840 -- it does not apply, and y'size is 2. However, y'VADS_Size
5841 -- is indeed 12 and not 2.
5843 if Present (S)
5844 and then Is_OK_Static_Expression (Expression (S))
5845 then
5846 Fold_Uint (N, Expr_Value (Expression (S)), True);
5848 -- If no size is specified, then we simply use the object
5849 -- size in the VADS_Size case (e.g. Natural'Size is equal
5850 -- to Integer'Size, not one less).
5852 else
5853 Fold_Uint (N, Esize (P_TypeA), True);
5854 end if;
5855 end;
5857 -- Normal case (Size) in which case we want the RM_Size
5859 else
5860 Fold_Uint (N,
5861 RM_Size (P_TypeA),
5862 Static and then Is_Discrete_Type (P_TypeA));
5863 end if;
5864 end if;
5865 end Size;
5867 -----------
5868 -- Small --
5869 -----------
5871 when Attribute_Small =>
5873 -- The floating-point case is present only for Ada 83 compatability.
5874 -- Note that strictly this is an illegal addition, since we are
5875 -- extending an Ada 95 defined attribute, but we anticipate an
5876 -- ARG ruling that will permit this.
5878 if Is_Floating_Point_Type (P_Type) then
5880 -- Ada 83 attribute is defined as (RM83 3.5.8)
5882 -- T'Small = 2.0**(-T'Emax - 1)
5884 -- where
5886 -- T'Emax = 4 * T'Mantissa
5888 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
5890 -- Normal Ada 95 fixed-point case
5892 else
5893 Fold_Ureal (N, Small_Value (P_Type), True);
5894 end if;
5896 ----------
5897 -- Succ --
5898 ----------
5900 when Attribute_Succ => Succ :
5901 begin
5902 -- Floating-point case
5904 if Is_Floating_Point_Type (P_Type) then
5905 Fold_Ureal (N,
5906 Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)), Static);
5908 -- Fixed-point case
5910 elsif Is_Fixed_Point_Type (P_Type) then
5911 Fold_Ureal (N,
5912 Expr_Value_R (E1) + Small_Value (P_Type), Static);
5914 -- Modular integer case (wraps)
5916 elsif Is_Modular_Integer_Type (P_Type) then
5917 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
5919 -- Other scalar cases
5921 else
5922 pragma Assert (Is_Scalar_Type (P_Type));
5924 if Is_Enumeration_Type (P_Type)
5925 and then Expr_Value (E1) =
5926 Expr_Value (Type_High_Bound (P_Base_Type))
5927 then
5928 Apply_Compile_Time_Constraint_Error
5929 (N, "Succ of `&''Last`",
5930 CE_Overflow_Check_Failed,
5931 Ent => P_Base_Type,
5932 Warn => not Static);
5934 Check_Expressions;
5935 return;
5936 else
5937 Fold_Uint (N, Expr_Value (E1) + 1, Static);
5938 end if;
5939 end if;
5940 end Succ;
5942 ----------------
5943 -- Truncation --
5944 ----------------
5946 when Attribute_Truncation =>
5947 Fold_Ureal (N,
5948 Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)), Static);
5950 ----------------
5951 -- Type_Class --
5952 ----------------
5954 when Attribute_Type_Class => Type_Class : declare
5955 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
5956 Id : RE_Id;
5958 begin
5959 if Is_Descendent_Of_Address (Typ) then
5960 Id := RE_Type_Class_Address;
5962 elsif Is_Enumeration_Type (Typ) then
5963 Id := RE_Type_Class_Enumeration;
5965 elsif Is_Integer_Type (Typ) then
5966 Id := RE_Type_Class_Integer;
5968 elsif Is_Fixed_Point_Type (Typ) then
5969 Id := RE_Type_Class_Fixed_Point;
5971 elsif Is_Floating_Point_Type (Typ) then
5972 Id := RE_Type_Class_Floating_Point;
5974 elsif Is_Array_Type (Typ) then
5975 Id := RE_Type_Class_Array;
5977 elsif Is_Record_Type (Typ) then
5978 Id := RE_Type_Class_Record;
5980 elsif Is_Access_Type (Typ) then
5981 Id := RE_Type_Class_Access;
5983 elsif Is_Enumeration_Type (Typ) then
5984 Id := RE_Type_Class_Enumeration;
5986 elsif Is_Task_Type (Typ) then
5987 Id := RE_Type_Class_Task;
5989 -- We treat protected types like task types. It would make more
5990 -- sense to have another enumeration value, but after all the
5991 -- whole point of this feature is to be exactly DEC compatible,
5992 -- and changing the type Type_Clas would not meet this requirement.
5994 elsif Is_Protected_Type (Typ) then
5995 Id := RE_Type_Class_Task;
5997 -- Not clear if there are any other possibilities, but if there
5998 -- are, then we will treat them as the address case.
6000 else
6001 Id := RE_Type_Class_Address;
6002 end if;
6004 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
6006 end Type_Class;
6008 -----------------------
6009 -- Unbiased_Rounding --
6010 -----------------------
6012 when Attribute_Unbiased_Rounding =>
6013 Fold_Ureal (N,
6014 Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)),
6015 Static);
6017 -------------------------
6018 -- Unconstrained_Array --
6019 -------------------------
6021 when Attribute_Unconstrained_Array => Unconstrained_Array : declare
6022 Typ : constant Entity_Id := Underlying_Type (P_Type);
6024 begin
6025 Rewrite (N, New_Occurrence_Of (
6026 Boolean_Literals (
6027 Is_Array_Type (P_Type)
6028 and then not Is_Constrained (Typ)), Loc));
6030 -- Analyze and resolve as boolean, note that this attribute is
6031 -- a static attribute in GNAT.
6033 Analyze_And_Resolve (N, Standard_Boolean);
6034 Static := True;
6035 end Unconstrained_Array;
6037 ---------------
6038 -- VADS_Size --
6039 ---------------
6041 -- Processing is shared with Size
6043 ---------
6044 -- Val --
6045 ---------
6047 when Attribute_Val => Val :
6048 begin
6049 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
6050 or else
6051 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
6052 then
6053 Apply_Compile_Time_Constraint_Error
6054 (N, "Val expression out of range",
6055 CE_Range_Check_Failed,
6056 Warn => not Static);
6058 Check_Expressions;
6059 return;
6061 else
6062 Fold_Uint (N, Expr_Value (E1), Static);
6063 end if;
6064 end Val;
6066 ----------------
6067 -- Value_Size --
6068 ----------------
6070 -- The Value_Size attribute for a type returns the RM size of the
6071 -- type. This an always be folded for scalar types, and can also
6072 -- be folded for non-scalar types if the size is set.
6074 when Attribute_Value_Size => Value_Size : declare
6075 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
6077 begin
6078 if RM_Size (P_TypeA) /= Uint_0 then
6079 Fold_Uint (N, RM_Size (P_TypeA), True);
6080 end if;
6082 end Value_Size;
6084 -------------
6085 -- Version --
6086 -------------
6088 -- Version can never be static
6090 when Attribute_Version =>
6091 null;
6093 ----------------
6094 -- Wide_Image --
6095 ----------------
6097 -- Wide_Image is a scalar attribute, but is never static, because it
6098 -- is not a static function (having a non-scalar argument (RM 4.9(22))
6100 when Attribute_Wide_Image =>
6101 null;
6103 ----------------
6104 -- Wide_Width --
6105 ----------------
6107 -- Processing for Wide_Width is combined with Width
6109 -----------
6110 -- Width --
6111 -----------
6113 -- This processing also handles the case of Wide_Width
6115 when Attribute_Width | Attribute_Wide_Width => Width :
6116 begin
6117 if Compile_Time_Known_Bounds (P_Type) then
6119 -- Floating-point types
6121 if Is_Floating_Point_Type (P_Type) then
6123 -- Width is zero for a null range (RM 3.5 (38))
6125 if Expr_Value_R (Type_High_Bound (P_Type)) <
6126 Expr_Value_R (Type_Low_Bound (P_Type))
6127 then
6128 Fold_Uint (N, Uint_0, True);
6130 else
6131 -- For floating-point, we have +N.dddE+nnn where length
6132 -- of ddd is determined by type'Digits - 1, but is one
6133 -- if Digits is one (RM 3.5 (33)).
6135 -- nnn is set to 2 for Short_Float and Float (32 bit
6136 -- floats), and 3 for Long_Float and Long_Long_Float.
6137 -- This is not quite right, but is good enough.
6139 declare
6140 Len : Int :=
6141 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
6143 begin
6144 if Esize (P_Type) <= 32 then
6145 Len := Len + 6;
6146 else
6147 Len := Len + 7;
6148 end if;
6150 Fold_Uint (N, UI_From_Int (Len), True);
6151 end;
6152 end if;
6154 -- Fixed-point types
6156 elsif Is_Fixed_Point_Type (P_Type) then
6158 -- Width is zero for a null range (RM 3.5 (38))
6160 if Expr_Value (Type_High_Bound (P_Type)) <
6161 Expr_Value (Type_Low_Bound (P_Type))
6162 then
6163 Fold_Uint (N, Uint_0, True);
6165 -- The non-null case depends on the specific real type
6167 else
6168 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
6170 Fold_Uint
6171 (N, UI_From_Int (Fore_Value + 1 + Aft_Value), True);
6172 end if;
6174 -- Discrete types
6176 else
6177 declare
6178 R : constant Entity_Id := Root_Type (P_Type);
6179 Lo : constant Uint :=
6180 Expr_Value (Type_Low_Bound (P_Type));
6181 Hi : constant Uint :=
6182 Expr_Value (Type_High_Bound (P_Type));
6183 W : Nat;
6184 Wt : Nat;
6185 T : Uint;
6186 L : Node_Id;
6187 C : Character;
6189 begin
6190 -- Empty ranges
6192 if Lo > Hi then
6193 W := 0;
6195 -- Width for types derived from Standard.Character
6196 -- and Standard.Wide_Character.
6198 elsif R = Standard_Character
6199 or else R = Standard_Wide_Character
6200 then
6201 W := 0;
6203 -- Set W larger if needed
6205 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
6207 -- Assume all wide-character escape sequences are
6208 -- same length, so we can quit when we reach one.
6210 if J > 255 then
6211 if Id = Attribute_Wide_Width then
6212 W := Int'Max (W, 3);
6213 exit;
6214 else
6215 W := Int'Max (W, Length_Wide);
6216 exit;
6217 end if;
6219 else
6220 C := Character'Val (J);
6222 -- Test for all cases where Character'Image
6223 -- yields an image that is longer than three
6224 -- characters. First the cases of Reserved_xxx
6225 -- names (length = 12).
6227 case C is
6228 when Reserved_128 | Reserved_129 |
6229 Reserved_132 | Reserved_153
6231 => Wt := 12;
6233 when BS | HT | LF | VT | FF | CR |
6234 SO | SI | EM | FS | GS | RS |
6235 US | RI | MW | ST | PM
6237 => Wt := 2;
6239 when NUL | SOH | STX | ETX | EOT |
6240 ENQ | ACK | BEL | DLE | DC1 |
6241 DC2 | DC3 | DC4 | NAK | SYN |
6242 ETB | CAN | SUB | ESC | DEL |
6243 BPH | NBH | NEL | SSA | ESA |
6244 HTS | HTJ | VTS | PLD | PLU |
6245 SS2 | SS3 | DCS | PU1 | PU2 |
6246 STS | CCH | SPA | EPA | SOS |
6247 SCI | CSI | OSC | APC
6249 => Wt := 3;
6251 when Space .. Tilde |
6252 No_Break_Space .. LC_Y_Diaeresis
6254 => Wt := 3;
6255 end case;
6257 W := Int'Max (W, Wt);
6258 end if;
6259 end loop;
6261 -- Width for types derived from Standard.Boolean
6263 elsif R = Standard_Boolean then
6264 if Lo = 0 then
6265 W := 5; -- FALSE
6266 else
6267 W := 4; -- TRUE
6268 end if;
6270 -- Width for integer types
6272 elsif Is_Integer_Type (P_Type) then
6273 T := UI_Max (abs Lo, abs Hi);
6275 W := 2;
6276 while T >= 10 loop
6277 W := W + 1;
6278 T := T / 10;
6279 end loop;
6281 -- Only remaining possibility is user declared enum type
6283 else
6284 pragma Assert (Is_Enumeration_Type (P_Type));
6286 W := 0;
6287 L := First_Literal (P_Type);
6289 while Present (L) loop
6291 -- Only pay attention to in range characters
6293 if Lo <= Enumeration_Pos (L)
6294 and then Enumeration_Pos (L) <= Hi
6295 then
6296 -- For Width case, use decoded name
6298 if Id = Attribute_Width then
6299 Get_Decoded_Name_String (Chars (L));
6300 Wt := Nat (Name_Len);
6302 -- For Wide_Width, use encoded name, and then
6303 -- adjust for the encoding.
6305 else
6306 Get_Name_String (Chars (L));
6308 -- Character literals are always of length 3
6310 if Name_Buffer (1) = 'Q' then
6311 Wt := 3;
6313 -- Otherwise loop to adjust for upper/wide chars
6315 else
6316 Wt := Nat (Name_Len);
6318 for J in 1 .. Name_Len loop
6319 if Name_Buffer (J) = 'U' then
6320 Wt := Wt - 2;
6321 elsif Name_Buffer (J) = 'W' then
6322 Wt := Wt - 4;
6323 end if;
6324 end loop;
6325 end if;
6326 end if;
6328 W := Int'Max (W, Wt);
6329 end if;
6331 Next_Literal (L);
6332 end loop;
6333 end if;
6335 Fold_Uint (N, UI_From_Int (W), True);
6336 end;
6337 end if;
6338 end if;
6339 end Width;
6341 -- The following attributes can never be folded, and furthermore we
6342 -- should not even have entered the case statement for any of these.
6343 -- Note that in some cases, the values have already been folded as
6344 -- a result of the processing in Analyze_Attribute.
6346 when Attribute_Abort_Signal |
6347 Attribute_Access |
6348 Attribute_Address |
6349 Attribute_Address_Size |
6350 Attribute_Asm_Input |
6351 Attribute_Asm_Output |
6352 Attribute_Base |
6353 Attribute_Bit_Order |
6354 Attribute_Bit_Position |
6355 Attribute_Callable |
6356 Attribute_Caller |
6357 Attribute_Class |
6358 Attribute_Code_Address |
6359 Attribute_Count |
6360 Attribute_Default_Bit_Order |
6361 Attribute_Elaborated |
6362 Attribute_Elab_Body |
6363 Attribute_Elab_Spec |
6364 Attribute_External_Tag |
6365 Attribute_First_Bit |
6366 Attribute_Input |
6367 Attribute_Last_Bit |
6368 Attribute_Maximum_Alignment |
6369 Attribute_Output |
6370 Attribute_Partition_ID |
6371 Attribute_Pool_Address |
6372 Attribute_Position |
6373 Attribute_Read |
6374 Attribute_Storage_Pool |
6375 Attribute_Storage_Size |
6376 Attribute_Storage_Unit |
6377 Attribute_Tag |
6378 Attribute_Target_Name |
6379 Attribute_Terminated |
6380 Attribute_To_Address |
6381 Attribute_UET_Address |
6382 Attribute_Unchecked_Access |
6383 Attribute_Universal_Literal_String |
6384 Attribute_Unrestricted_Access |
6385 Attribute_Valid |
6386 Attribute_Value |
6387 Attribute_Wchar_T_Size |
6388 Attribute_Wide_Value |
6389 Attribute_Word_Size |
6390 Attribute_Write =>
6392 raise Program_Error;
6394 end case;
6396 -- At the end of the case, one more check. If we did a static evaluation
6397 -- so that the result is now a literal, then set Is_Static_Expression
6398 -- in the constant only if the prefix type is a static subtype. For
6399 -- non-static subtypes, the folding is still OK, but not static.
6401 -- An exception is the GNAT attribute Constrained_Array which is
6402 -- defined to be a static attribute in all cases.
6404 if Nkind (N) = N_Integer_Literal
6405 or else Nkind (N) = N_Real_Literal
6406 or else Nkind (N) = N_Character_Literal
6407 or else Nkind (N) = N_String_Literal
6408 or else (Is_Entity_Name (N)
6409 and then Ekind (Entity (N)) = E_Enumeration_Literal)
6410 then
6411 Set_Is_Static_Expression (N, Static);
6413 -- If this is still an attribute reference, then it has not been folded
6414 -- and that means that its expressions are in a non-static context.
6416 elsif Nkind (N) = N_Attribute_Reference then
6417 Check_Expressions;
6419 -- Note: the else case not covered here are odd cases where the
6420 -- processing has transformed the attribute into something other
6421 -- than a constant. Nothing more to do in such cases.
6423 else
6424 null;
6425 end if;
6427 end Eval_Attribute;
6429 ------------------------------
6430 -- Is_Anonymous_Tagged_Base --
6431 ------------------------------
6433 function Is_Anonymous_Tagged_Base
6434 (Anon : Entity_Id;
6435 Typ : Entity_Id)
6436 return Boolean
6438 begin
6439 return
6440 Anon = Current_Scope
6441 and then Is_Itype (Anon)
6442 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
6443 end Is_Anonymous_Tagged_Base;
6445 -----------------------
6446 -- Resolve_Attribute --
6447 -----------------------
6449 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
6450 Loc : constant Source_Ptr := Sloc (N);
6451 P : constant Node_Id := Prefix (N);
6452 Aname : constant Name_Id := Attribute_Name (N);
6453 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
6454 Btyp : constant Entity_Id := Base_Type (Typ);
6455 Index : Interp_Index;
6456 It : Interp;
6457 Nom_Subt : Entity_Id;
6459 procedure Accessibility_Message;
6460 -- Error, or warning within an instance, if the static accessibility
6461 -- rules of 3.10.2 are violated.
6463 ---------------------------
6464 -- Accessibility_Message --
6465 ---------------------------
6467 procedure Accessibility_Message is
6468 Indic : Node_Id := Parent (Parent (N));
6470 begin
6471 -- In an instance, this is a runtime check, but one we
6472 -- know will fail, so generate an appropriate warning.
6474 if In_Instance_Body then
6475 Error_Msg_N
6476 ("?non-local pointer cannot point to local object", P);
6477 Error_Msg_N
6478 ("?Program_Error will be raised at run time", P);
6479 Rewrite (N,
6480 Make_Raise_Program_Error (Loc,
6481 Reason => PE_Accessibility_Check_Failed));
6482 Set_Etype (N, Typ);
6483 return;
6485 else
6486 Error_Msg_N
6487 ("non-local pointer cannot point to local object", P);
6489 -- Check for case where we have a missing access definition
6491 if Is_Record_Type (Current_Scope)
6492 and then
6493 (Nkind (Parent (N)) = N_Discriminant_Association
6494 or else
6495 Nkind (Parent (N)) = N_Index_Or_Discriminant_Constraint)
6496 then
6497 Indic := Parent (Parent (N));
6498 while Present (Indic)
6499 and then Nkind (Indic) /= N_Subtype_Indication
6500 loop
6501 Indic := Parent (Indic);
6502 end loop;
6504 if Present (Indic) then
6505 Error_Msg_NE
6506 ("\use an access definition for" &
6507 " the access discriminant of&", N,
6508 Entity (Subtype_Mark (Indic)));
6509 end if;
6510 end if;
6511 end if;
6512 end Accessibility_Message;
6514 -- Start of processing for Resolve_Attribute
6516 begin
6517 -- If error during analysis, no point in continuing, except for
6518 -- array types, where we get better recovery by using unconstrained
6519 -- indices than nothing at all (see Check_Array_Type).
6521 if Error_Posted (N)
6522 and then Attr_Id /= Attribute_First
6523 and then Attr_Id /= Attribute_Last
6524 and then Attr_Id /= Attribute_Length
6525 and then Attr_Id /= Attribute_Range
6526 then
6527 return;
6528 end if;
6530 -- If attribute was universal type, reset to actual type
6532 if Etype (N) = Universal_Integer
6533 or else Etype (N) = Universal_Real
6534 then
6535 Set_Etype (N, Typ);
6536 end if;
6538 -- Remaining processing depends on attribute
6540 case Attr_Id is
6542 ------------
6543 -- Access --
6544 ------------
6546 -- For access attributes, if the prefix denotes an entity, it is
6547 -- interpreted as a name, never as a call. It may be overloaded,
6548 -- in which case resolution uses the profile of the context type.
6549 -- Otherwise prefix must be resolved.
6551 when Attribute_Access
6552 | Attribute_Unchecked_Access
6553 | Attribute_Unrestricted_Access =>
6555 if Is_Variable (P) then
6556 Note_Possible_Modification (P);
6557 end if;
6559 if Is_Entity_Name (P) then
6560 if Is_Overloaded (P) then
6561 Get_First_Interp (P, Index, It);
6563 while Present (It.Nam) loop
6565 if Type_Conformant (Designated_Type (Typ), It.Nam) then
6566 Set_Entity (P, It.Nam);
6568 -- The prefix is definitely NOT overloaded anymore
6569 -- at this point, so we reset the Is_Overloaded
6570 -- flag to avoid any confusion when reanalyzing
6571 -- the node.
6573 Set_Is_Overloaded (P, False);
6574 Generate_Reference (Entity (P), P);
6575 exit;
6576 end if;
6578 Get_Next_Interp (Index, It);
6579 end loop;
6581 -- If it is a subprogram name or a type, there is nothing
6582 -- to resolve.
6584 elsif not Is_Overloadable (Entity (P))
6585 and then not Is_Type (Entity (P))
6586 then
6587 Resolve (P);
6588 end if;
6590 Error_Msg_Name_1 := Aname;
6592 if not Is_Entity_Name (P) then
6593 null;
6595 elsif Is_Abstract (Entity (P))
6596 and then Is_Overloadable (Entity (P))
6597 then
6598 Error_Msg_N ("prefix of % attribute cannot be abstract", P);
6599 Set_Etype (N, Any_Type);
6601 elsif Convention (Entity (P)) = Convention_Intrinsic then
6602 if Ekind (Entity (P)) = E_Enumeration_Literal then
6603 Error_Msg_N
6604 ("prefix of % attribute cannot be enumeration literal",
6606 else
6607 Error_Msg_N
6608 ("prefix of % attribute cannot be intrinsic", P);
6609 end if;
6611 Set_Etype (N, Any_Type);
6613 elsif Is_Thread_Body (Entity (P)) then
6614 Error_Msg_N
6615 ("prefix of % attribute cannot be a thread body", P);
6616 end if;
6618 -- Assignments, return statements, components of aggregates,
6619 -- generic instantiations will require convention checks if
6620 -- the type is an access to subprogram. Given that there will
6621 -- also be accessibility checks on those, this is where the
6622 -- checks can eventually be centralized ???
6624 if Ekind (Btyp) = E_Access_Subprogram_Type
6625 or else
6626 Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
6627 or else
6628 Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
6629 then
6630 if Convention (Btyp) /= Convention (Entity (P)) then
6631 Error_Msg_N
6632 ("subprogram has invalid convention for context", P);
6634 else
6635 Check_Subtype_Conformant
6636 (New_Id => Entity (P),
6637 Old_Id => Designated_Type (Btyp),
6638 Err_Loc => P);
6639 end if;
6641 if Attr_Id = Attribute_Unchecked_Access then
6642 Error_Msg_Name_1 := Aname;
6643 Error_Msg_N
6644 ("attribute% cannot be applied to a subprogram", P);
6646 elsif Aname = Name_Unrestricted_Access then
6647 null; -- Nothing to check
6649 -- Check the static accessibility rule of 3.10.2(32)
6650 -- In an instance body, if subprogram and type are both
6651 -- local, other rules prevent dangling references, and no
6652 -- warning is needed.
6654 elsif Attr_Id = Attribute_Access
6655 and then Subprogram_Access_Level (Entity (P)) >
6656 Type_Access_Level (Btyp)
6657 and then Ekind (Btyp) /=
6658 E_Anonymous_Access_Subprogram_Type
6659 and then Ekind (Btyp) /=
6660 E_Anonymous_Access_Protected_Subprogram_Type
6661 then
6662 if not In_Instance_Body then
6663 Error_Msg_N
6664 ("subprogram must not be deeper than access type",
6667 elsif Scope (Entity (P)) /= Scope (Btyp) then
6668 Error_Msg_N
6669 ("subprogram must not be deeper than access type?",
6671 Error_Msg_N
6672 ("Constraint_Error will be raised ?", P);
6673 Set_Raises_Constraint_Error (N);
6674 end if;
6676 -- Check the restriction of 3.10.2(32) that disallows
6677 -- the type of the access attribute to be declared
6678 -- outside a generic body when the subprogram is declared
6679 -- within that generic body.
6681 -- Ada2005: If the expected type is for an access
6682 -- parameter, this clause does not apply.
6684 elsif Present (Enclosing_Generic_Body (Entity (P)))
6685 and then Enclosing_Generic_Body (Entity (P)) /=
6686 Enclosing_Generic_Body (Btyp)
6687 and then
6688 Ekind (Btyp) /= E_Anonymous_Access_Subprogram_Type
6689 then
6690 Error_Msg_N
6691 ("access type must not be outside generic body", P);
6692 end if;
6693 end if;
6695 -- If this is a renaming, an inherited operation, or a
6696 -- subprogram instance, use the original entity.
6698 if Is_Entity_Name (P)
6699 and then Is_Overloadable (Entity (P))
6700 and then Present (Alias (Entity (P)))
6701 then
6702 Rewrite (P,
6703 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
6704 end if;
6706 elsif Nkind (P) = N_Selected_Component
6707 and then Is_Overloadable (Entity (Selector_Name (P)))
6708 then
6709 -- Protected operation. If operation is overloaded, must
6710 -- disambiguate. Prefix that denotes protected object itself
6711 -- is resolved with its own type.
6713 if Attr_Id = Attribute_Unchecked_Access then
6714 Error_Msg_Name_1 := Aname;
6715 Error_Msg_N
6716 ("attribute% cannot be applied to protected operation", P);
6717 end if;
6719 Resolve (Prefix (P));
6720 Generate_Reference (Entity (Selector_Name (P)), P);
6722 elsif Is_Overloaded (P) then
6724 -- Use the designated type of the context to disambiguate
6725 -- Note that this was not strictly conformant to Ada 95,
6726 -- but was the implementation adopted by most Ada 95 compilers.
6727 -- The use of the context type to resolve an Access attribute
6728 -- reference is now mandated in AI-235 for Ada 2005.
6730 declare
6731 Index : Interp_Index;
6732 It : Interp;
6734 begin
6735 Get_First_Interp (P, Index, It);
6736 while Present (It.Typ) loop
6737 if Covers (Designated_Type (Typ), It.Typ) then
6738 Resolve (P, It.Typ);
6739 exit;
6740 end if;
6742 Get_Next_Interp (Index, It);
6743 end loop;
6744 end;
6745 else
6746 Resolve (P);
6747 end if;
6749 -- X'Access is illegal if X denotes a constant and the access
6750 -- type is access-to-variable. Same for 'Unchecked_Access.
6751 -- The rule does not apply to 'Unrestricted_Access.
6753 if not (Ekind (Btyp) = E_Access_Subprogram_Type
6754 or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
6755 or else (Is_Record_Type (Btyp) and then
6756 Present (Corresponding_Remote_Type (Btyp)))
6757 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6758 or else Ekind (Btyp)
6759 = E_Anonymous_Access_Protected_Subprogram_Type
6760 or else Is_Access_Constant (Btyp)
6761 or else Is_Variable (P)
6762 or else Attr_Id = Attribute_Unrestricted_Access)
6763 then
6764 if Comes_From_Source (N) then
6765 Error_Msg_N ("access-to-variable designates constant", P);
6766 end if;
6767 end if;
6769 if (Attr_Id = Attribute_Access
6770 or else
6771 Attr_Id = Attribute_Unchecked_Access)
6772 and then (Ekind (Btyp) = E_General_Access_Type
6773 or else Ekind (Btyp) = E_Anonymous_Access_Type)
6774 then
6775 -- Ada 2005 (AI-230): Check the accessibility of anonymous
6776 -- access types in record and array components. For a
6777 -- component definition the level is the same of the
6778 -- enclosing composite type.
6780 if Ada_Version >= Ada_05
6781 and then Ekind (Btyp) = E_Anonymous_Access_Type
6782 and then (Is_Array_Type (Scope (Btyp))
6783 or else Ekind (Scope (Btyp)) = E_Record_Type)
6784 and then Object_Access_Level (P) > Type_Access_Level (Btyp)
6785 then
6786 -- In an instance, this is a runtime check, but one we
6787 -- know will fail, so generate an appropriate warning.
6789 if In_Instance_Body then
6790 Error_Msg_N
6791 ("?non-local pointer cannot point to local object", P);
6792 Error_Msg_N
6793 ("?Program_Error will be raised at run time", P);
6794 Rewrite (N,
6795 Make_Raise_Program_Error (Loc,
6796 Reason => PE_Accessibility_Check_Failed));
6797 Set_Etype (N, Typ);
6798 else
6799 Error_Msg_N
6800 ("non-local pointer cannot point to local object", P);
6801 end if;
6802 end if;
6804 if Is_Dependent_Component_Of_Mutable_Object (P) then
6805 Error_Msg_N
6806 ("illegal attribute for discriminant-dependent component",
6808 end if;
6810 -- Check the static matching rule of 3.10.2(27). The
6811 -- nominal subtype of the prefix must statically
6812 -- match the designated type.
6814 Nom_Subt := Etype (P);
6816 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
6817 Nom_Subt := Etype (Nom_Subt);
6818 end if;
6820 if Is_Tagged_Type (Designated_Type (Typ)) then
6822 -- If the attribute is in the context of an access
6823 -- parameter, then the prefix is allowed to be of
6824 -- the class-wide type (by AI-127).
6826 if Ekind (Typ) = E_Anonymous_Access_Type then
6827 if not Covers (Designated_Type (Typ), Nom_Subt)
6828 and then not Covers (Nom_Subt, Designated_Type (Typ))
6829 then
6830 declare
6831 Desig : Entity_Id;
6833 begin
6834 Desig := Designated_Type (Typ);
6836 if Is_Class_Wide_Type (Desig) then
6837 Desig := Etype (Desig);
6838 end if;
6840 if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
6841 null;
6843 else
6844 Error_Msg_NE
6845 ("type of prefix: & not compatible",
6846 P, Nom_Subt);
6847 Error_Msg_NE
6848 ("\with &, the expected designated type",
6849 P, Designated_Type (Typ));
6850 end if;
6851 end;
6852 end if;
6854 elsif not Covers (Designated_Type (Typ), Nom_Subt)
6855 or else
6856 (not Is_Class_Wide_Type (Designated_Type (Typ))
6857 and then Is_Class_Wide_Type (Nom_Subt))
6858 then
6859 Error_Msg_NE
6860 ("type of prefix: & is not covered", P, Nom_Subt);
6861 Error_Msg_NE
6862 ("\by &, the expected designated type" &
6863 " ('R'M 3.10.2 (27))", P, Designated_Type (Typ));
6864 end if;
6866 if Is_Class_Wide_Type (Designated_Type (Typ))
6867 and then Has_Discriminants (Etype (Designated_Type (Typ)))
6868 and then Is_Constrained (Etype (Designated_Type (Typ)))
6869 and then Designated_Type (Typ) /= Nom_Subt
6870 then
6871 Apply_Discriminant_Check
6872 (N, Etype (Designated_Type (Typ)));
6873 end if;
6875 elsif not Subtypes_Statically_Match
6876 (Designated_Type (Base_Type (Typ)), Nom_Subt)
6877 and then
6878 not (Has_Discriminants (Designated_Type (Typ))
6879 and then
6880 not Is_Constrained
6881 (Designated_Type (Base_Type (Typ))))
6882 then
6883 Error_Msg_N
6884 ("object subtype must statically match "
6885 & "designated subtype", P);
6887 if Is_Entity_Name (P)
6888 and then Is_Array_Type (Designated_Type (Typ))
6889 then
6891 declare
6892 D : constant Node_Id := Declaration_Node (Entity (P));
6894 begin
6895 Error_Msg_N ("aliased object has explicit bounds?",
6897 Error_Msg_N ("\declare without bounds"
6898 & " (and with explicit initialization)?", D);
6899 Error_Msg_N ("\for use with unconstrained access?", D);
6900 end;
6901 end if;
6902 end if;
6904 -- Check the static accessibility rule of 3.10.2(28).
6905 -- Note that this check is not performed for the
6906 -- case of an anonymous access type, since the access
6907 -- attribute is always legal in such a context.
6909 if Attr_Id /= Attribute_Unchecked_Access
6910 and then Object_Access_Level (P) > Type_Access_Level (Btyp)
6911 and then Ekind (Btyp) = E_General_Access_Type
6912 then
6913 Accessibility_Message;
6914 return;
6915 end if;
6916 end if;
6918 if Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6919 or else
6920 Ekind (Btyp) = E_Anonymous_Access_Protected_Subprogram_Type
6921 then
6922 if Is_Entity_Name (P)
6923 and then not Is_Protected_Type (Scope (Entity (P)))
6924 then
6925 Error_Msg_N ("context requires a protected subprogram", P);
6927 -- Check accessibility of protected object against that
6928 -- of the access type, but only on user code, because
6929 -- the expander creates access references for handlers.
6930 -- If the context is an anonymous_access_to_protected,
6931 -- there are no accessibility checks either.
6933 elsif Object_Access_Level (P) > Type_Access_Level (Btyp)
6934 and then Comes_From_Source (N)
6935 and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
6936 and then No (Original_Access_Type (Typ))
6937 then
6938 Accessibility_Message;
6939 return;
6940 end if;
6942 elsif (Ekind (Btyp) = E_Access_Subprogram_Type
6943 or else
6944 Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type)
6945 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
6946 then
6947 Error_Msg_N ("context requires a non-protected subprogram", P);
6948 end if;
6950 -- The context cannot be a pool-specific type, but this is a
6951 -- legality rule, not a resolution rule, so it must be checked
6952 -- separately, after possibly disambiguation (see AI-245).
6954 if Ekind (Btyp) = E_Access_Type
6955 and then Attr_Id /= Attribute_Unrestricted_Access
6956 then
6957 Wrong_Type (N, Typ);
6958 end if;
6960 Set_Etype (N, Typ);
6962 -- Check for incorrect atomic/volatile reference (RM C.6(12))
6964 if Attr_Id /= Attribute_Unrestricted_Access then
6965 if Is_Atomic_Object (P)
6966 and then not Is_Atomic (Designated_Type (Typ))
6967 then
6968 Error_Msg_N
6969 ("access to atomic object cannot yield access-to-" &
6970 "non-atomic type", P);
6972 elsif Is_Volatile_Object (P)
6973 and then not Is_Volatile (Designated_Type (Typ))
6974 then
6975 Error_Msg_N
6976 ("access to volatile object cannot yield access-to-" &
6977 "non-volatile type", P);
6978 end if;
6979 end if;
6981 -------------
6982 -- Address --
6983 -------------
6985 -- Deal with resolving the type for Address attribute, overloading
6986 -- is not permitted here, since there is no context to resolve it.
6988 when Attribute_Address | Attribute_Code_Address =>
6990 -- To be safe, assume that if the address of a variable is taken,
6991 -- it may be modified via this address, so note modification.
6993 if Is_Variable (P) then
6994 Note_Possible_Modification (P);
6995 end if;
6997 if Nkind (P) in N_Subexpr
6998 and then Is_Overloaded (P)
6999 then
7000 Get_First_Interp (P, Index, It);
7001 Get_Next_Interp (Index, It);
7003 if Present (It.Nam) then
7004 Error_Msg_Name_1 := Aname;
7005 Error_Msg_N
7006 ("prefix of % attribute cannot be overloaded", N);
7007 return;
7008 end if;
7009 end if;
7011 if not Is_Entity_Name (P)
7012 or else not Is_Overloadable (Entity (P))
7013 then
7014 if not Is_Task_Type (Etype (P))
7015 or else Nkind (P) = N_Explicit_Dereference
7016 then
7017 Resolve (P);
7018 end if;
7019 end if;
7021 -- If this is the name of a derived subprogram, or that of a
7022 -- generic actual, the address is that of the original entity.
7024 if Is_Entity_Name (P)
7025 and then Is_Overloadable (Entity (P))
7026 and then Present (Alias (Entity (P)))
7027 then
7028 Rewrite (P,
7029 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
7030 end if;
7032 ---------------
7033 -- AST_Entry --
7034 ---------------
7036 -- Prefix of the AST_Entry attribute is an entry name which must
7037 -- not be resolved, since this is definitely not an entry call.
7039 when Attribute_AST_Entry =>
7040 null;
7042 ------------------
7043 -- Body_Version --
7044 ------------------
7046 -- Prefix of Body_Version attribute can be a subprogram name which
7047 -- must not be resolved, since this is not a call.
7049 when Attribute_Body_Version =>
7050 null;
7052 ------------
7053 -- Caller --
7054 ------------
7056 -- Prefix of Caller attribute is an entry name which must not
7057 -- be resolved, since this is definitely not an entry call.
7059 when Attribute_Caller =>
7060 null;
7062 ------------------
7063 -- Code_Address --
7064 ------------------
7066 -- Shares processing with Address attribute
7068 -----------
7069 -- Count --
7070 -----------
7072 -- If the prefix of the Count attribute is an entry name it must not
7073 -- be resolved, since this is definitely not an entry call. However,
7074 -- if it is an element of an entry family, the index itself may
7075 -- have to be resolved because it can be a general expression.
7077 when Attribute_Count =>
7078 if Nkind (P) = N_Indexed_Component
7079 and then Is_Entity_Name (Prefix (P))
7080 then
7081 declare
7082 Indx : constant Node_Id := First (Expressions (P));
7083 Fam : constant Entity_Id := Entity (Prefix (P));
7084 begin
7085 Resolve (Indx, Entry_Index_Type (Fam));
7086 Apply_Range_Check (Indx, Entry_Index_Type (Fam));
7087 end;
7088 end if;
7090 ----------------
7091 -- Elaborated --
7092 ----------------
7094 -- Prefix of the Elaborated attribute is a subprogram name which
7095 -- must not be resolved, since this is definitely not a call. Note
7096 -- that it is a library unit, so it cannot be overloaded here.
7098 when Attribute_Elaborated =>
7099 null;
7101 --------------------
7102 -- Mechanism_Code --
7103 --------------------
7105 -- Prefix of the Mechanism_Code attribute is a function name
7106 -- which must not be resolved. Should we check for overloaded ???
7108 when Attribute_Mechanism_Code =>
7109 null;
7111 ------------------
7112 -- Partition_ID --
7113 ------------------
7115 -- Most processing is done in sem_dist, after determining the
7116 -- context type. Node is rewritten as a conversion to a runtime call.
7118 when Attribute_Partition_ID =>
7119 Process_Partition_Id (N);
7120 return;
7122 when Attribute_Pool_Address =>
7123 Resolve (P);
7125 -----------
7126 -- Range --
7127 -----------
7129 -- We replace the Range attribute node with a range expression
7130 -- whose bounds are the 'First and 'Last attributes applied to the
7131 -- same prefix. The reason that we do this transformation here
7132 -- instead of in the expander is that it simplifies other parts of
7133 -- the semantic analysis which assume that the Range has been
7134 -- replaced; thus it must be done even when in semantic-only mode
7135 -- (note that the RM specifically mentions this equivalence, we
7136 -- take care that the prefix is only evaluated once).
7138 when Attribute_Range => Range_Attribute :
7139 declare
7140 LB : Node_Id;
7141 HB : Node_Id;
7143 function Check_Discriminated_Prival
7144 (N : Node_Id)
7145 return Node_Id;
7146 -- The range of a private component constrained by a
7147 -- discriminant is rewritten to make the discriminant
7148 -- explicit. This solves some complex visibility problems
7149 -- related to the use of privals.
7151 --------------------------------
7152 -- Check_Discriminated_Prival --
7153 --------------------------------
7155 function Check_Discriminated_Prival
7156 (N : Node_Id)
7157 return Node_Id
7159 begin
7160 if Is_Entity_Name (N)
7161 and then Ekind (Entity (N)) = E_In_Parameter
7162 and then not Within_Init_Proc
7163 then
7164 return Make_Identifier (Sloc (N), Chars (Entity (N)));
7165 else
7166 return Duplicate_Subexpr (N);
7167 end if;
7168 end Check_Discriminated_Prival;
7170 -- Start of processing for Range_Attribute
7172 begin
7173 if not Is_Entity_Name (P)
7174 or else not Is_Type (Entity (P))
7175 then
7176 Resolve (P);
7177 end if;
7179 -- Check whether prefix is (renaming of) private component
7180 -- of protected type.
7182 if Is_Entity_Name (P)
7183 and then Comes_From_Source (N)
7184 and then Is_Array_Type (Etype (P))
7185 and then Number_Dimensions (Etype (P)) = 1
7186 and then (Ekind (Scope (Entity (P))) = E_Protected_Type
7187 or else
7188 Ekind (Scope (Scope (Entity (P)))) =
7189 E_Protected_Type)
7190 then
7191 LB :=
7192 Check_Discriminated_Prival
7193 (Type_Low_Bound (Etype (First_Index (Etype (P)))));
7195 HB :=
7196 Check_Discriminated_Prival
7197 (Type_High_Bound (Etype (First_Index (Etype (P)))));
7199 else
7200 HB :=
7201 Make_Attribute_Reference (Loc,
7202 Prefix => Duplicate_Subexpr (P),
7203 Attribute_Name => Name_Last,
7204 Expressions => Expressions (N));
7206 LB :=
7207 Make_Attribute_Reference (Loc,
7208 Prefix => P,
7209 Attribute_Name => Name_First,
7210 Expressions => Expressions (N));
7211 end if;
7213 -- If the original was marked as Must_Not_Freeze (see code
7214 -- in Sem_Ch3.Make_Index), then make sure the rewriting
7215 -- does not freeze either.
7217 if Must_Not_Freeze (N) then
7218 Set_Must_Not_Freeze (HB);
7219 Set_Must_Not_Freeze (LB);
7220 Set_Must_Not_Freeze (Prefix (HB));
7221 Set_Must_Not_Freeze (Prefix (LB));
7222 end if;
7224 if Raises_Constraint_Error (Prefix (N)) then
7226 -- Preserve Sloc of prefix in the new bounds, so that
7227 -- the posted warning can be removed if we are within
7228 -- unreachable code.
7230 Set_Sloc (LB, Sloc (Prefix (N)));
7231 Set_Sloc (HB, Sloc (Prefix (N)));
7232 end if;
7234 Rewrite (N, Make_Range (Loc, LB, HB));
7235 Analyze_And_Resolve (N, Typ);
7237 -- Normally after resolving attribute nodes, Eval_Attribute
7238 -- is called to do any possible static evaluation of the node.
7239 -- However, here since the Range attribute has just been
7240 -- transformed into a range expression it is no longer an
7241 -- attribute node and therefore the call needs to be avoided
7242 -- and is accomplished by simply returning from the procedure.
7244 return;
7245 end Range_Attribute;
7247 -----------------
7248 -- UET_Address --
7249 -----------------
7251 -- Prefix must not be resolved in this case, since it is not a
7252 -- real entity reference. No action of any kind is require!
7254 when Attribute_UET_Address =>
7255 return;
7257 ----------------------
7258 -- Unchecked_Access --
7259 ----------------------
7261 -- Processing is shared with Access
7263 -------------------------
7264 -- Unrestricted_Access --
7265 -------------------------
7267 -- Processing is shared with Access
7269 ---------
7270 -- Val --
7271 ---------
7273 -- Apply range check. Note that we did not do this during the
7274 -- analysis phase, since we wanted Eval_Attribute to have a
7275 -- chance at finding an illegal out of range value.
7277 when Attribute_Val =>
7279 -- Note that we do our own Eval_Attribute call here rather than
7280 -- use the common one, because we need to do processing after
7281 -- the call, as per above comment.
7283 Eval_Attribute (N);
7285 -- Eval_Attribute may replace the node with a raise CE, or
7286 -- fold it to a constant. Obviously we only apply a scalar
7287 -- range check if this did not happen!
7289 if Nkind (N) = N_Attribute_Reference
7290 and then Attribute_Name (N) = Name_Val
7291 then
7292 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
7293 end if;
7295 return;
7297 -------------
7298 -- Version --
7299 -------------
7301 -- Prefix of Version attribute can be a subprogram name which
7302 -- must not be resolved, since this is not a call.
7304 when Attribute_Version =>
7305 null;
7307 ----------------------
7308 -- Other Attributes --
7309 ----------------------
7311 -- For other attributes, resolve prefix unless it is a type. If
7312 -- the attribute reference itself is a type name ('Base and 'Class)
7313 -- then this is only legal within a task or protected record.
7315 when others =>
7316 if not Is_Entity_Name (P)
7317 or else not Is_Type (Entity (P))
7318 then
7319 Resolve (P);
7320 end if;
7322 -- If the attribute reference itself is a type name ('Base,
7323 -- 'Class) then this is only legal within a task or protected
7324 -- record. What is this all about ???
7326 if Is_Entity_Name (N)
7327 and then Is_Type (Entity (N))
7328 then
7329 if Is_Concurrent_Type (Entity (N))
7330 and then In_Open_Scopes (Entity (P))
7331 then
7332 null;
7333 else
7334 Error_Msg_N
7335 ("invalid use of subtype name in expression or call", N);
7336 end if;
7337 end if;
7339 -- For attributes whose argument may be a string, complete
7340 -- resolution of argument now. This avoids premature expansion
7341 -- (and the creation of transient scopes) before the attribute
7342 -- reference is resolved.
7344 case Attr_Id is
7345 when Attribute_Value =>
7346 Resolve (First (Expressions (N)), Standard_String);
7348 when Attribute_Wide_Value =>
7349 Resolve (First (Expressions (N)), Standard_Wide_String);
7351 when others => null;
7352 end case;
7353 end case;
7355 -- Normally the Freezing is done by Resolve but sometimes the Prefix
7356 -- is not resolved, in which case the freezing must be done now.
7358 Freeze_Expression (P);
7360 -- Finally perform static evaluation on the attribute reference
7362 Eval_Attribute (N);
7363 end Resolve_Attribute;
7365 end Sem_Attr;