PR target/16201
[official-gcc.git] / gcc / ada / s-taprop-posix.adb
blob4d8057dc3d21dbc48aa8a57ec42dbcf14bc64e98
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a POSIX-like version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 -- Note: this file can only be used for POSIX compliant systems that
40 -- implement SCHED_FIFO and Ceiling Locking correctly.
42 -- For configurations where SCHED_FIFO and priority ceiling are not a
43 -- requirement, this file can also be used (e.g AiX threads)
45 pragma Polling (Off);
46 -- Turn off polling, we do not want ATC polling to take place during
47 -- tasking operations. It causes infinite loops and other problems.
49 with System.Tasking.Debug;
50 -- used for Known_Tasks
52 with System.Task_Info;
53 -- used for Task_Info_Type
55 with Interfaces.C;
56 -- used for int
57 -- size_t
59 with System.Interrupt_Management;
60 -- used for Keep_Unmasked
61 -- Abort_Task_Interrupt
62 -- Interrupt_ID
64 with System.Interrupt_Management.Operations;
65 -- used for Set_Interrupt_Mask
66 -- All_Tasks_Mask
67 pragma Elaborate_All (System.Interrupt_Management.Operations);
69 with System.Parameters;
70 -- used for Size_Type
72 with System.Tasking;
73 -- used for Ada_Task_Control_Block
74 -- Task_Id
76 with System.Soft_Links;
77 -- used for Defer/Undefer_Abort
79 -- Note that we do not use System.Tasking.Initialization directly since
80 -- this is a higher level package that we shouldn't depend on. For example
81 -- when using the restricted run time, it is replaced by
82 -- System.Tasking.Restricted.Stages.
84 with System.OS_Primitives;
85 -- used for Delay_Modes
87 with Unchecked_Conversion;
88 with Unchecked_Deallocation;
90 package body System.Task_Primitives.Operations is
92 use System.Tasking.Debug;
93 use System.Tasking;
94 use Interfaces.C;
95 use System.OS_Interface;
96 use System.Parameters;
97 use System.OS_Primitives;
99 package SSL renames System.Soft_Links;
101 ----------------
102 -- Local Data --
103 ----------------
105 -- The followings are logically constants, but need to be initialized
106 -- at run time.
108 Single_RTS_Lock : aliased RTS_Lock;
109 -- This is a lock to allow only one thread of control in the RTS at
110 -- a time; it is used to execute in mutual exclusion from all other tasks.
111 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
113 ATCB_Key : aliased pthread_key_t;
114 -- Key used to find the Ada Task_Id associated with a thread
116 Environment_Task_Id : Task_Id;
117 -- A variable to hold Task_Id for the environment task.
119 Locking_Policy : Character;
120 pragma Import (C, Locking_Policy, "__gl_locking_policy");
121 -- Value of the pragma Locking_Policy:
122 -- 'C' for Ceiling_Locking
123 -- 'I' for Inherit_Locking
124 -- ' ' for none.
126 Unblocked_Signal_Mask : aliased sigset_t;
127 -- The set of signals that should unblocked in all tasks
129 -- The followings are internal configuration constants needed.
131 Next_Serial_Number : Task_Serial_Number := 100;
132 -- We start at 100, to reserve some special values for
133 -- using in error checking.
135 Time_Slice_Val : Integer;
136 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
138 Dispatching_Policy : Character;
139 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
141 FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F';
142 -- Indicates whether FIFO_Within_Priorities is set.
144 Foreign_Task_Elaborated : aliased Boolean := True;
145 -- Used to identified fake tasks (i.e., non-Ada Threads).
147 --------------------
148 -- Local Packages --
149 --------------------
151 package Specific is
153 procedure Initialize (Environment_Task : Task_Id);
154 pragma Inline (Initialize);
155 -- Initialize various data needed by this package.
157 function Is_Valid_Task return Boolean;
158 pragma Inline (Is_Valid_Task);
159 -- Does executing thread have a TCB?
161 procedure Set (Self_Id : Task_Id);
162 pragma Inline (Set);
163 -- Set the self id for the current task.
165 function Self return Task_Id;
166 pragma Inline (Self);
167 -- Return a pointer to the Ada Task Control Block of the calling task.
169 end Specific;
171 package body Specific is separate;
172 -- The body of this package is target specific.
174 ---------------------------------
175 -- Support for foreign threads --
176 ---------------------------------
178 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
179 -- Allocate and Initialize a new ATCB for the current Thread.
181 function Register_Foreign_Thread
182 (Thread : Thread_Id) return Task_Id is separate;
184 -----------------------
185 -- Local Subprograms --
186 -----------------------
188 procedure Abort_Handler (Sig : Signal);
189 -- Signal handler used to implement asynchronous abort.
190 -- See also comment before body, below.
192 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
194 -------------------
195 -- Abort_Handler --
196 -------------------
198 -- Target-dependent binding of inter-thread Abort signal to
199 -- the raising of the Abort_Signal exception.
201 -- The technical issues and alternatives here are essentially
202 -- the same as for raising exceptions in response to other
203 -- signals (e.g. Storage_Error). See code and comments in
204 -- the package body System.Interrupt_Management.
206 -- Some implementations may not allow an exception to be propagated
207 -- out of a handler, and others might leave the signal or
208 -- interrupt that invoked this handler masked after the exceptional
209 -- return to the application code.
211 -- GNAT exceptions are originally implemented using setjmp()/longjmp().
212 -- On most UNIX systems, this will allow transfer out of a signal handler,
213 -- which is usually the only mechanism available for implementing
214 -- asynchronous handlers of this kind. However, some
215 -- systems do not restore the signal mask on longjmp(), leaving the
216 -- abort signal masked.
218 procedure Abort_Handler (Sig : Signal) is
219 pragma Warnings (Off, Sig);
221 T : constant Task_Id := Self;
222 Result : Interfaces.C.int;
223 Old_Set : aliased sigset_t;
225 begin
226 -- It is not safe to raise an exception when using ZCX and the GCC
227 -- exception handling mechanism.
229 if ZCX_By_Default and then GCC_ZCX_Support then
230 return;
231 end if;
233 if T.Deferral_Level = 0
234 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
235 not T.Aborting
236 then
237 T.Aborting := True;
239 -- Make sure signals used for RTS internal purpose are unmasked
241 Result := pthread_sigmask (SIG_UNBLOCK,
242 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
243 pragma Assert (Result = 0);
245 raise Standard'Abort_Signal;
246 end if;
247 end Abort_Handler;
249 -----------------
250 -- Stack_Guard --
251 -----------------
253 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
254 Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
255 Guard_Page_Address : Address;
257 Res : Interfaces.C.int;
259 begin
260 if Stack_Base_Available then
262 -- Compute the guard page address
264 Guard_Page_Address :=
265 Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
267 if On then
268 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON);
269 else
270 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF);
271 end if;
273 pragma Assert (Res = 0);
274 end if;
275 end Stack_Guard;
277 --------------------
278 -- Get_Thread_Id --
279 --------------------
281 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
282 begin
283 return T.Common.LL.Thread;
284 end Get_Thread_Id;
286 ----------
287 -- Self --
288 ----------
290 function Self return Task_Id renames Specific.Self;
292 ---------------------
293 -- Initialize_Lock --
294 ---------------------
296 -- Note: mutexes and cond_variables needed per-task basis are
297 -- initialized in Intialize_TCB and the Storage_Error is
298 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
299 -- used in RTS is initialized before any status change of RTS.
300 -- Therefore rasing Storage_Error in the following routines
301 -- should be able to be handled safely.
303 procedure Initialize_Lock
304 (Prio : System.Any_Priority;
305 L : access Lock)
307 Attributes : aliased pthread_mutexattr_t;
308 Result : Interfaces.C.int;
310 begin
311 Result := pthread_mutexattr_init (Attributes'Access);
312 pragma Assert (Result = 0 or else Result = ENOMEM);
314 if Result = ENOMEM then
315 raise Storage_Error;
316 end if;
318 if Locking_Policy = 'C' then
319 Result := pthread_mutexattr_setprotocol
320 (Attributes'Access, PTHREAD_PRIO_PROTECT);
321 pragma Assert (Result = 0);
323 Result := pthread_mutexattr_setprioceiling
324 (Attributes'Access, Interfaces.C.int (Prio));
325 pragma Assert (Result = 0);
327 elsif Locking_Policy = 'I' then
328 Result := pthread_mutexattr_setprotocol
329 (Attributes'Access, PTHREAD_PRIO_INHERIT);
330 pragma Assert (Result = 0);
331 end if;
333 Result := pthread_mutex_init (L, Attributes'Access);
334 pragma Assert (Result = 0 or else Result = ENOMEM);
336 if Result = ENOMEM then
337 raise Storage_Error;
338 end if;
340 Result := pthread_mutexattr_destroy (Attributes'Access);
341 pragma Assert (Result = 0);
342 end Initialize_Lock;
344 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
345 pragma Warnings (Off, Level);
347 Attributes : aliased pthread_mutexattr_t;
348 Result : Interfaces.C.int;
350 begin
351 Result := pthread_mutexattr_init (Attributes'Access);
352 pragma Assert (Result = 0 or else Result = ENOMEM);
354 if Result = ENOMEM then
355 raise Storage_Error;
356 end if;
358 if Locking_Policy = 'C' then
359 Result := pthread_mutexattr_setprotocol
360 (Attributes'Access, PTHREAD_PRIO_PROTECT);
361 pragma Assert (Result = 0);
363 Result := pthread_mutexattr_setprioceiling
364 (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
365 pragma Assert (Result = 0);
367 elsif Locking_Policy = 'I' then
368 Result := pthread_mutexattr_setprotocol
369 (Attributes'Access, PTHREAD_PRIO_INHERIT);
370 pragma Assert (Result = 0);
371 end if;
373 Result := pthread_mutex_init (L, Attributes'Access);
374 pragma Assert (Result = 0 or else Result = ENOMEM);
376 if Result = ENOMEM then
377 Result := pthread_mutexattr_destroy (Attributes'Access);
378 raise Storage_Error;
379 end if;
381 Result := pthread_mutexattr_destroy (Attributes'Access);
382 pragma Assert (Result = 0);
383 end Initialize_Lock;
385 -------------------
386 -- Finalize_Lock --
387 -------------------
389 procedure Finalize_Lock (L : access Lock) is
390 Result : Interfaces.C.int;
392 begin
393 Result := pthread_mutex_destroy (L);
394 pragma Assert (Result = 0);
395 end Finalize_Lock;
397 procedure Finalize_Lock (L : access RTS_Lock) is
398 Result : Interfaces.C.int;
400 begin
401 Result := pthread_mutex_destroy (L);
402 pragma Assert (Result = 0);
403 end Finalize_Lock;
405 ----------------
406 -- Write_Lock --
407 ----------------
409 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
410 Result : Interfaces.C.int;
412 begin
413 Result := pthread_mutex_lock (L);
415 -- Assume that the cause of EINVAL is a priority ceiling violation
417 Ceiling_Violation := (Result = EINVAL);
418 pragma Assert (Result = 0 or else Result = EINVAL);
419 end Write_Lock;
421 procedure Write_Lock
422 (L : access RTS_Lock;
423 Global_Lock : Boolean := False)
425 Result : Interfaces.C.int;
427 begin
428 if not Single_Lock or else Global_Lock then
429 Result := pthread_mutex_lock (L);
430 pragma Assert (Result = 0);
431 end if;
432 end Write_Lock;
434 procedure Write_Lock (T : Task_Id) is
435 Result : Interfaces.C.int;
437 begin
438 if not Single_Lock then
439 Result := pthread_mutex_lock (T.Common.LL.L'Access);
440 pragma Assert (Result = 0);
441 end if;
442 end Write_Lock;
444 ---------------
445 -- Read_Lock --
446 ---------------
448 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
449 begin
450 Write_Lock (L, Ceiling_Violation);
451 end Read_Lock;
453 ------------
454 -- Unlock --
455 ------------
457 procedure Unlock (L : access Lock) is
458 Result : Interfaces.C.int;
460 begin
461 Result := pthread_mutex_unlock (L);
462 pragma Assert (Result = 0);
463 end Unlock;
465 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
466 Result : Interfaces.C.int;
468 begin
469 if not Single_Lock or else Global_Lock then
470 Result := pthread_mutex_unlock (L);
471 pragma Assert (Result = 0);
472 end if;
473 end Unlock;
475 procedure Unlock (T : Task_Id) is
476 Result : Interfaces.C.int;
478 begin
479 if not Single_Lock then
480 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
481 pragma Assert (Result = 0);
482 end if;
483 end Unlock;
485 -----------
486 -- Sleep --
487 -----------
489 procedure Sleep
490 (Self_ID : Task_Id;
491 Reason : System.Tasking.Task_States)
493 pragma Warnings (Off, Reason);
495 Result : Interfaces.C.int;
497 begin
498 if Single_Lock then
499 Result := pthread_cond_wait
500 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
501 else
502 Result := pthread_cond_wait
503 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
504 end if;
506 -- EINTR is not considered a failure.
508 pragma Assert (Result = 0 or else Result = EINTR);
509 end Sleep;
511 -----------------
512 -- Timed_Sleep --
513 -----------------
515 -- This is for use within the run-time system, so abort is
516 -- assumed to be already deferred, and the caller should be
517 -- holding its own ATCB lock.
519 procedure Timed_Sleep
520 (Self_ID : Task_Id;
521 Time : Duration;
522 Mode : ST.Delay_Modes;
523 Reason : Task_States;
524 Timedout : out Boolean;
525 Yielded : out Boolean)
527 pragma Warnings (Off, Reason);
529 Check_Time : constant Duration := Monotonic_Clock;
530 Rel_Time : Duration;
531 Abs_Time : Duration;
532 Request : aliased timespec;
533 Result : Interfaces.C.int;
535 begin
536 Timedout := True;
537 Yielded := False;
539 if Mode = Relative then
540 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
542 if Relative_Timed_Wait then
543 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
544 end if;
546 else
547 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
549 if Relative_Timed_Wait then
550 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
551 end if;
552 end if;
554 if Abs_Time > Check_Time then
555 if Relative_Timed_Wait then
556 Request := To_Timespec (Rel_Time);
557 else
558 Request := To_Timespec (Abs_Time);
559 end if;
561 loop
562 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
563 or else Self_ID.Pending_Priority_Change;
565 if Single_Lock then
566 Result := pthread_cond_timedwait
567 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
568 Request'Access);
570 else
571 Result := pthread_cond_timedwait
572 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
573 Request'Access);
574 end if;
576 exit when Abs_Time <= Monotonic_Clock;
578 if Result = 0 or Result = EINTR then
580 -- Somebody may have called Wakeup for us
582 Timedout := False;
583 exit;
584 end if;
586 pragma Assert (Result = ETIMEDOUT);
587 end loop;
588 end if;
589 end Timed_Sleep;
591 -----------------
592 -- Timed_Delay --
593 -----------------
595 -- This is for use in implementing delay statements, so
596 -- we assume the caller is abort-deferred but is holding
597 -- no locks.
599 procedure Timed_Delay
600 (Self_ID : Task_Id;
601 Time : Duration;
602 Mode : ST.Delay_Modes)
604 Check_Time : constant Duration := Monotonic_Clock;
605 Abs_Time : Duration;
606 Rel_Time : Duration;
607 Request : aliased timespec;
608 Result : Interfaces.C.int;
610 begin
611 -- Only the little window between deferring abort and
612 -- locking Self_ID is the reason we need to
613 -- check for pending abort and priority change below! :(
615 SSL.Abort_Defer.all;
617 if Single_Lock then
618 Lock_RTS;
619 end if;
621 Write_Lock (Self_ID);
623 if Mode = Relative then
624 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
626 if Relative_Timed_Wait then
627 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
628 end if;
630 else
631 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
633 if Relative_Timed_Wait then
634 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
635 end if;
636 end if;
638 if Abs_Time > Check_Time then
639 if Relative_Timed_Wait then
640 Request := To_Timespec (Rel_Time);
641 else
642 Request := To_Timespec (Abs_Time);
643 end if;
645 Self_ID.Common.State := Delay_Sleep;
647 loop
648 if Self_ID.Pending_Priority_Change then
649 Self_ID.Pending_Priority_Change := False;
650 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
651 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
652 end if;
654 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
656 if Single_Lock then
657 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
658 Single_RTS_Lock'Access, Request'Access);
659 else
660 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
661 Self_ID.Common.LL.L'Access, Request'Access);
662 end if;
664 exit when Abs_Time <= Monotonic_Clock;
666 pragma Assert (Result = 0
667 or else Result = ETIMEDOUT
668 or else Result = EINTR);
669 end loop;
671 Self_ID.Common.State := Runnable;
672 end if;
674 Unlock (Self_ID);
676 if Single_Lock then
677 Unlock_RTS;
678 end if;
680 Result := sched_yield;
681 SSL.Abort_Undefer.all;
682 end Timed_Delay;
684 ---------------------
685 -- Monotonic_Clock --
686 ---------------------
688 function Monotonic_Clock return Duration is
689 TS : aliased timespec;
690 Result : Interfaces.C.int;
691 begin
692 Result := clock_gettime
693 (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access);
694 pragma Assert (Result = 0);
695 return To_Duration (TS);
696 end Monotonic_Clock;
698 -------------------
699 -- RT_Resolution --
700 -------------------
702 function RT_Resolution return Duration is
703 begin
704 return 10#1.0#E-6;
705 end RT_Resolution;
707 ------------
708 -- Wakeup --
709 ------------
711 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
712 pragma Warnings (Off, Reason);
713 Result : Interfaces.C.int;
714 begin
715 Result := pthread_cond_signal (T.Common.LL.CV'Access);
716 pragma Assert (Result = 0);
717 end Wakeup;
719 -----------
720 -- Yield --
721 -----------
723 procedure Yield (Do_Yield : Boolean := True) is
724 Result : Interfaces.C.int;
725 pragma Unreferenced (Result);
726 begin
727 if Do_Yield then
728 Result := sched_yield;
729 end if;
730 end Yield;
732 ------------------
733 -- Set_Priority --
734 ------------------
736 procedure Set_Priority
737 (T : Task_Id;
738 Prio : System.Any_Priority;
739 Loss_Of_Inheritance : Boolean := False)
741 pragma Warnings (Off, Loss_Of_Inheritance);
743 Result : Interfaces.C.int;
744 Param : aliased struct_sched_param;
746 begin
747 T.Common.Current_Priority := Prio;
748 Param.sched_priority := Interfaces.C.int (Prio);
750 if Time_Slice_Supported and then Time_Slice_Val > 0 then
751 Result := pthread_setschedparam
752 (T.Common.LL.Thread, SCHED_RR, Param'Access);
754 elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then
755 Result := pthread_setschedparam
756 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
758 else
759 Result := pthread_setschedparam
760 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
761 end if;
763 pragma Assert (Result = 0);
764 end Set_Priority;
766 ------------------
767 -- Get_Priority --
768 ------------------
770 function Get_Priority (T : Task_Id) return System.Any_Priority is
771 begin
772 return T.Common.Current_Priority;
773 end Get_Priority;
775 ----------------
776 -- Enter_Task --
777 ----------------
779 procedure Enter_Task (Self_ID : Task_Id) is
780 begin
781 Self_ID.Common.LL.Thread := pthread_self;
782 Self_ID.Common.LL.LWP := lwp_self;
784 Specific.Set (Self_ID);
786 Lock_RTS;
788 for J in Known_Tasks'Range loop
789 if Known_Tasks (J) = null then
790 Known_Tasks (J) := Self_ID;
791 Self_ID.Known_Tasks_Index := J;
792 exit;
793 end if;
794 end loop;
796 Unlock_RTS;
797 end Enter_Task;
799 --------------
800 -- New_ATCB --
801 --------------
803 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
804 begin
805 return new Ada_Task_Control_Block (Entry_Num);
806 end New_ATCB;
808 -------------------
809 -- Is_Valid_Task --
810 -------------------
812 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
814 -----------------------------
815 -- Register_Foreign_Thread --
816 -----------------------------
818 function Register_Foreign_Thread return Task_Id is
819 begin
820 if Is_Valid_Task then
821 return Self;
822 else
823 return Register_Foreign_Thread (pthread_self);
824 end if;
825 end Register_Foreign_Thread;
827 --------------------
828 -- Initialize_TCB --
829 --------------------
831 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
832 Mutex_Attr : aliased pthread_mutexattr_t;
833 Result : Interfaces.C.int;
834 Cond_Attr : aliased pthread_condattr_t;
836 begin
837 -- Give the task a unique serial number.
839 Self_ID.Serial_Number := Next_Serial_Number;
840 Next_Serial_Number := Next_Serial_Number + 1;
841 pragma Assert (Next_Serial_Number /= 0);
843 if not Single_Lock then
844 Result := pthread_mutexattr_init (Mutex_Attr'Access);
845 pragma Assert (Result = 0 or else Result = ENOMEM);
847 if Result = 0 then
848 if Locking_Policy = 'C' then
849 Result := pthread_mutexattr_setprotocol
850 (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
851 pragma Assert (Result = 0);
853 Result := pthread_mutexattr_setprioceiling
854 (Mutex_Attr'Access,
855 Interfaces.C.int (System.Any_Priority'Last));
856 pragma Assert (Result = 0);
858 elsif Locking_Policy = 'I' then
859 Result := pthread_mutexattr_setprotocol
860 (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
861 pragma Assert (Result = 0);
862 end if;
864 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
865 Mutex_Attr'Access);
866 pragma Assert (Result = 0 or else Result = ENOMEM);
867 end if;
869 if Result /= 0 then
870 Succeeded := False;
871 return;
872 end if;
874 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
875 pragma Assert (Result = 0);
876 end if;
878 Result := pthread_condattr_init (Cond_Attr'Access);
879 pragma Assert (Result = 0 or else Result = ENOMEM);
881 if Result = 0 then
882 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
883 Cond_Attr'Access);
884 pragma Assert (Result = 0 or else Result = ENOMEM);
885 end if;
887 if Result = 0 then
888 Succeeded := True;
889 else
890 if not Single_Lock then
891 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
892 pragma Assert (Result = 0);
893 end if;
895 Succeeded := False;
896 end if;
898 Result := pthread_condattr_destroy (Cond_Attr'Access);
899 pragma Assert (Result = 0);
900 end Initialize_TCB;
902 -----------------
903 -- Create_Task --
904 -----------------
906 procedure Create_Task
907 (T : Task_Id;
908 Wrapper : System.Address;
909 Stack_Size : System.Parameters.Size_Type;
910 Priority : System.Any_Priority;
911 Succeeded : out Boolean)
913 Attributes : aliased pthread_attr_t;
914 Adjusted_Stack_Size : Interfaces.C.size_t;
915 Result : Interfaces.C.int;
917 function Thread_Body_Access is new
918 Unchecked_Conversion (System.Address, Thread_Body);
920 use System.Task_Info;
922 begin
923 if Stack_Size = Unspecified_Size then
924 Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size);
926 elsif Stack_Size < Minimum_Stack_Size then
927 Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size);
929 else
930 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
931 end if;
933 if Stack_Base_Available then
934 -- If Stack Checking is supported then allocate 2 additional pages:
936 -- In the worst case, stack is allocated at something like
937 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
938 -- to be sure the effective stack size is greater than what
939 -- has been asked.
941 Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size;
942 end if;
944 Result := pthread_attr_init (Attributes'Access);
945 pragma Assert (Result = 0 or else Result = ENOMEM);
947 if Result /= 0 then
948 Succeeded := False;
949 return;
950 end if;
952 Result := pthread_attr_setdetachstate
953 (Attributes'Access, PTHREAD_CREATE_DETACHED);
954 pragma Assert (Result = 0);
956 Result := pthread_attr_setstacksize
957 (Attributes'Access, Adjusted_Stack_Size);
958 pragma Assert (Result = 0);
960 if T.Common.Task_Info /= Default_Scope then
962 -- We are assuming that Scope_Type has the same values than the
963 -- corresponding C macros
965 Result := pthread_attr_setscope
966 (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info));
967 pragma Assert (Result = 0);
968 end if;
970 -- Since the initial signal mask of a thread is inherited from the
971 -- creator, and the Environment task has all its signals masked, we
972 -- do not need to manipulate caller's signal mask at this point.
973 -- All tasks in RTS will have All_Tasks_Mask initially.
975 Result := pthread_create
976 (T.Common.LL.Thread'Access,
977 Attributes'Access,
978 Thread_Body_Access (Wrapper),
979 To_Address (T));
980 pragma Assert (Result = 0 or else Result = EAGAIN);
982 Succeeded := Result = 0;
984 Result := pthread_attr_destroy (Attributes'Access);
985 pragma Assert (Result = 0);
987 Set_Priority (T, Priority);
988 end Create_Task;
990 ------------------
991 -- Finalize_TCB --
992 ------------------
994 procedure Finalize_TCB (T : Task_Id) is
995 Result : Interfaces.C.int;
996 Tmp : Task_Id := T;
997 Is_Self : constant Boolean := T = Self;
999 procedure Free is new
1000 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
1002 begin
1003 if not Single_Lock then
1004 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
1005 pragma Assert (Result = 0);
1006 end if;
1008 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
1009 pragma Assert (Result = 0);
1011 if T.Known_Tasks_Index /= -1 then
1012 Known_Tasks (T.Known_Tasks_Index) := null;
1013 end if;
1015 Free (Tmp);
1017 if Is_Self then
1018 Specific.Set (null);
1019 end if;
1020 end Finalize_TCB;
1022 ---------------
1023 -- Exit_Task --
1024 ---------------
1026 procedure Exit_Task is
1027 begin
1028 -- Mark this task as unknown, so that if Self is called, it won't
1029 -- return a dangling pointer.
1031 Specific.Set (null);
1032 end Exit_Task;
1034 ----------------
1035 -- Abort_Task --
1036 ----------------
1038 procedure Abort_Task (T : Task_Id) is
1039 Result : Interfaces.C.int;
1041 begin
1042 Result := pthread_kill (T.Common.LL.Thread,
1043 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1044 pragma Assert (Result = 0);
1045 end Abort_Task;
1047 ----------------
1048 -- Check_Exit --
1049 ----------------
1051 -- Dummy version
1053 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1054 pragma Warnings (Off, Self_ID);
1055 begin
1056 return True;
1057 end Check_Exit;
1059 --------------------
1060 -- Check_No_Locks --
1061 --------------------
1063 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1064 pragma Warnings (Off, Self_ID);
1065 begin
1066 return True;
1067 end Check_No_Locks;
1069 ----------------------
1070 -- Environment_Task --
1071 ----------------------
1073 function Environment_Task return Task_Id is
1074 begin
1075 return Environment_Task_Id;
1076 end Environment_Task;
1078 --------------
1079 -- Lock_RTS --
1080 --------------
1082 procedure Lock_RTS is
1083 begin
1084 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1085 end Lock_RTS;
1087 ----------------
1088 -- Unlock_RTS --
1089 ----------------
1091 procedure Unlock_RTS is
1092 begin
1093 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1094 end Unlock_RTS;
1096 ------------------
1097 -- Suspend_Task --
1098 ------------------
1100 function Suspend_Task
1101 (T : ST.Task_Id;
1102 Thread_Self : Thread_Id) return Boolean
1104 pragma Warnings (Off, T);
1105 pragma Warnings (Off, Thread_Self);
1106 begin
1107 return False;
1108 end Suspend_Task;
1110 -----------------
1111 -- Resume_Task --
1112 -----------------
1114 function Resume_Task
1115 (T : ST.Task_Id;
1116 Thread_Self : Thread_Id) return Boolean
1118 pragma Warnings (Off, T);
1119 pragma Warnings (Off, Thread_Self);
1120 begin
1121 return False;
1122 end Resume_Task;
1124 ----------------
1125 -- Initialize --
1126 ----------------
1128 procedure Initialize (Environment_Task : Task_Id) is
1129 act : aliased struct_sigaction;
1130 old_act : aliased struct_sigaction;
1131 Tmp_Set : aliased sigset_t;
1132 Result : Interfaces.C.int;
1134 function State
1135 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1136 pragma Import (C, State, "__gnat_get_interrupt_state");
1137 -- Get interrupt state. Defined in a-init.c
1138 -- The input argument is the interrupt number,
1139 -- and the result is one of the following:
1141 Default : constant Character := 's';
1142 -- 'n' this interrupt not set by any Interrupt_State pragma
1143 -- 'u' Interrupt_State pragma set state to User
1144 -- 'r' Interrupt_State pragma set state to Runtime
1145 -- 's' Interrupt_State pragma set state to System (use "default"
1146 -- system handler)
1148 begin
1149 Environment_Task_Id := Environment_Task;
1151 -- Initialize the lock used to synchronize chain of all ATCBs.
1153 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1155 Specific.Initialize (Environment_Task);
1157 Enter_Task (Environment_Task);
1159 -- Install the abort-signal handler
1161 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1162 /= Default
1163 then
1164 act.sa_flags := 0;
1165 act.sa_handler := Abort_Handler'Address;
1167 Result := sigemptyset (Tmp_Set'Access);
1168 pragma Assert (Result = 0);
1169 act.sa_mask := Tmp_Set;
1171 Result :=
1172 sigaction
1173 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1174 act'Unchecked_Access,
1175 old_act'Unchecked_Access);
1176 pragma Assert (Result = 0);
1177 end if;
1178 end Initialize;
1180 begin
1181 declare
1182 Result : Interfaces.C.int;
1183 begin
1184 -- Mask Environment task for all signals. The original mask of the
1185 -- Environment task will be recovered by Interrupt_Server task
1186 -- during the elaboration of s-interr.adb.
1188 System.Interrupt_Management.Operations.Set_Interrupt_Mask
1189 (System.Interrupt_Management.Operations.All_Tasks_Mask'Access);
1191 -- Prepare the set of signals that should unblocked in all tasks
1193 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1194 pragma Assert (Result = 0);
1196 for J in Interrupt_Management.Interrupt_ID loop
1197 if System.Interrupt_Management.Keep_Unmasked (J) then
1198 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1199 pragma Assert (Result = 0);
1200 end if;
1201 end loop;
1202 end;
1203 end System.Task_Primitives.Operations;