PR target/16201
[official-gcc.git] / gcc / ada / checks.adb
blobb26e4d981db46e41a304c82afaa640c1f8438a74
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Util; use Exp_Util;
33 with Elists; use Elists;
34 with Eval_Fat; use Eval_Fat;
35 with Freeze; use Freeze;
36 with Lib; use Lib;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Eval; use Sem_Eval;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Res; use Sem_Res;
49 with Sem_Util; use Sem_Util;
50 with Sem_Warn; use Sem_Warn;
51 with Sinfo; use Sinfo;
52 with Sinput; use Sinput;
53 with Snames; use Snames;
54 with Sprint; use Sprint;
55 with Stand; use Stand;
56 with Targparm; use Targparm;
57 with Tbuild; use Tbuild;
58 with Ttypes; use Ttypes;
59 with Urealp; use Urealp;
60 with Validsw; use Validsw;
62 package body Checks is
64 -- General note: many of these routines are concerned with generating
65 -- checking code to make sure that constraint error is raised at runtime.
66 -- Clearly this code is only needed if the expander is active, since
67 -- otherwise we will not be generating code or going into the runtime
68 -- execution anyway.
70 -- We therefore disconnect most of these checks if the expander is
71 -- inactive. This has the additional benefit that we do not need to
72 -- worry about the tree being messed up by previous errors (since errors
73 -- turn off expansion anyway).
75 -- There are a few exceptions to the above rule. For instance routines
76 -- such as Apply_Scalar_Range_Check that do not insert any code can be
77 -- safely called even when the Expander is inactive (but Errors_Detected
78 -- is 0). The benefit of executing this code when expansion is off, is
79 -- the ability to emit constraint error warning for static expressions
80 -- even when we are not generating code.
82 -------------------------------------
83 -- Suppression of Redundant Checks --
84 -------------------------------------
86 -- This unit implements a limited circuit for removal of redundant
87 -- checks. The processing is based on a tracing of simple sequential
88 -- flow. For any sequence of statements, we save expressions that are
89 -- marked to be checked, and then if the same expression appears later
90 -- with the same check, then under certain circumstances, the second
91 -- check can be suppressed.
93 -- Basically, we can suppress the check if we know for certain that
94 -- the previous expression has been elaborated (together with its
95 -- check), and we know that the exception frame is the same, and that
96 -- nothing has happened to change the result of the exception.
98 -- Let us examine each of these three conditions in turn to describe
99 -- how we ensure that this condition is met.
101 -- First, we need to know for certain that the previous expression has
102 -- been executed. This is done principly by the mechanism of calling
103 -- Conditional_Statements_Begin at the start of any statement sequence
104 -- and Conditional_Statements_End at the end. The End call causes all
105 -- checks remembered since the Begin call to be discarded. This does
106 -- miss a few cases, notably the case of a nested BEGIN-END block with
107 -- no exception handlers. But the important thing is to be conservative.
108 -- The other protection is that all checks are discarded if a label
109 -- is encountered, since then the assumption of sequential execution
110 -- is violated, and we don't know enough about the flow.
112 -- Second, we need to know that the exception frame is the same. We
113 -- do this by killing all remembered checks when we enter a new frame.
114 -- Again, that's over-conservative, but generally the cases we can help
115 -- with are pretty local anyway (like the body of a loop for example).
117 -- Third, we must be sure to forget any checks which are no longer valid.
118 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
119 -- used to note any changes to local variables. We only attempt to deal
120 -- with checks involving local variables, so we do not need to worry
121 -- about global variables. Second, a call to any non-global procedure
122 -- causes us to abandon all stored checks, since such a all may affect
123 -- the values of any local variables.
125 -- The following define the data structures used to deal with remembering
126 -- checks so that redundant checks can be eliminated as described above.
128 -- Right now, the only expressions that we deal with are of the form of
129 -- simple local objects (either declared locally, or IN parameters) or
130 -- such objects plus/minus a compile time known constant. We can do
131 -- more later on if it seems worthwhile, but this catches many simple
132 -- cases in practice.
134 -- The following record type reflects a single saved check. An entry
135 -- is made in the stack of saved checks if and only if the expression
136 -- has been elaborated with the indicated checks.
138 type Saved_Check is record
139 Killed : Boolean;
140 -- Set True if entry is killed by Kill_Checks
142 Entity : Entity_Id;
143 -- The entity involved in the expression that is checked
145 Offset : Uint;
146 -- A compile time value indicating the result of adding or
147 -- subtracting a compile time value. This value is to be
148 -- added to the value of the Entity. A value of zero is
149 -- used for the case of a simple entity reference.
151 Check_Type : Character;
152 -- This is set to 'R' for a range check (in which case Target_Type
153 -- is set to the target type for the range check) or to 'O' for an
154 -- overflow check (in which case Target_Type is set to Empty).
156 Target_Type : Entity_Id;
157 -- Used only if Do_Range_Check is set. Records the target type for
158 -- the check. We need this, because a check is a duplicate only if
159 -- it has a the same target type (or more accurately one with a
160 -- range that is smaller or equal to the stored target type of a
161 -- saved check).
162 end record;
164 -- The following table keeps track of saved checks. Rather than use an
165 -- extensible table. We just use a table of fixed size, and we discard
166 -- any saved checks that do not fit. That's very unlikely to happen and
167 -- this is only an optimization in any case.
169 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
170 -- Array of saved checks
172 Num_Saved_Checks : Nat := 0;
173 -- Number of saved checks
175 -- The following stack keeps track of statement ranges. It is treated
176 -- as a stack. When Conditional_Statements_Begin is called, an entry
177 -- is pushed onto this stack containing the value of Num_Saved_Checks
178 -- at the time of the call. Then when Conditional_Statements_End is
179 -- called, this value is popped off and used to reset Num_Saved_Checks.
181 -- Note: again, this is a fixed length stack with a size that should
182 -- always be fine. If the value of the stack pointer goes above the
183 -- limit, then we just forget all saved checks.
185 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
186 Saved_Checks_TOS : Nat := 0;
188 -----------------------
189 -- Local Subprograms --
190 -----------------------
192 procedure Apply_Float_Conversion_Check
193 (Ck_Node : Node_Id;
194 Target_Typ : Entity_Id);
195 -- The checks on a conversion from a floating-point type to an integer
196 -- type are delicate. They have to be performed before conversion, they
197 -- have to raise an exception when the operand is a NaN, and rounding must
198 -- be taken into account to determine the safe bounds of the operand.
200 procedure Apply_Selected_Length_Checks
201 (Ck_Node : Node_Id;
202 Target_Typ : Entity_Id;
203 Source_Typ : Entity_Id;
204 Do_Static : Boolean);
205 -- This is the subprogram that does all the work for Apply_Length_Check
206 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
207 -- described for the above routines. The Do_Static flag indicates that
208 -- only a static check is to be done.
210 procedure Apply_Selected_Range_Checks
211 (Ck_Node : Node_Id;
212 Target_Typ : Entity_Id;
213 Source_Typ : Entity_Id;
214 Do_Static : Boolean);
215 -- This is the subprogram that does all the work for Apply_Range_Check.
216 -- Expr, Target_Typ and Source_Typ are as described for the above
217 -- routine. The Do_Static flag indicates that only a static check is
218 -- to be done.
220 procedure Find_Check
221 (Expr : Node_Id;
222 Check_Type : Character;
223 Target_Type : Entity_Id;
224 Entry_OK : out Boolean;
225 Check_Num : out Nat;
226 Ent : out Entity_Id;
227 Ofs : out Uint);
228 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
229 -- to see if a check is of the form for optimization, and if so, to see
230 -- if it has already been performed. Expr is the expression to check,
231 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
232 -- Target_Type is the target type for a range check, and Empty for an
233 -- overflow check. If the entry is not of the form for optimization,
234 -- then Entry_OK is set to False, and the remaining out parameters
235 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
236 -- entity and offset from the expression. Check_Num is the number of
237 -- a matching saved entry in Saved_Checks, or zero if no such entry
238 -- is located.
240 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
241 -- If a discriminal is used in constraining a prival, Return reference
242 -- to the discriminal of the protected body (which renames the parameter
243 -- of the enclosing protected operation). This clumsy transformation is
244 -- needed because privals are created too late and their actual subtypes
245 -- are not available when analysing the bodies of the protected operations.
246 -- To be cleaned up???
248 function Guard_Access
249 (Cond : Node_Id;
250 Loc : Source_Ptr;
251 Ck_Node : Node_Id) return Node_Id;
252 -- In the access type case, guard the test with a test to ensure
253 -- that the access value is non-null, since the checks do not
254 -- not apply to null access values.
256 procedure Install_Null_Excluding_Check (N : Node_Id);
257 -- Determines whether an access node requires a runtime access check and
258 -- if so inserts the appropriate run-time check
260 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
261 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
262 -- Constraint_Error node.
264 function Selected_Length_Checks
265 (Ck_Node : Node_Id;
266 Target_Typ : Entity_Id;
267 Source_Typ : Entity_Id;
268 Warn_Node : Node_Id) return Check_Result;
269 -- Like Apply_Selected_Length_Checks, except it doesn't modify
270 -- anything, just returns a list of nodes as described in the spec of
271 -- this package for the Range_Check function.
273 function Selected_Range_Checks
274 (Ck_Node : Node_Id;
275 Target_Typ : Entity_Id;
276 Source_Typ : Entity_Id;
277 Warn_Node : Node_Id) return Check_Result;
278 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
279 -- just returns a list of nodes as described in the spec of this package
280 -- for the Range_Check function.
282 ------------------------------
283 -- Access_Checks_Suppressed --
284 ------------------------------
286 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
287 begin
288 if Present (E) and then Checks_May_Be_Suppressed (E) then
289 return Is_Check_Suppressed (E, Access_Check);
290 else
291 return Scope_Suppress (Access_Check);
292 end if;
293 end Access_Checks_Suppressed;
295 -------------------------------------
296 -- Accessibility_Checks_Suppressed --
297 -------------------------------------
299 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
300 begin
301 if Present (E) and then Checks_May_Be_Suppressed (E) then
302 return Is_Check_Suppressed (E, Accessibility_Check);
303 else
304 return Scope_Suppress (Accessibility_Check);
305 end if;
306 end Accessibility_Checks_Suppressed;
308 -------------------------
309 -- Append_Range_Checks --
310 -------------------------
312 procedure Append_Range_Checks
313 (Checks : Check_Result;
314 Stmts : List_Id;
315 Suppress_Typ : Entity_Id;
316 Static_Sloc : Source_Ptr;
317 Flag_Node : Node_Id)
319 Internal_Flag_Node : constant Node_Id := Flag_Node;
320 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
322 Checks_On : constant Boolean :=
323 (not Index_Checks_Suppressed (Suppress_Typ))
324 or else
325 (not Range_Checks_Suppressed (Suppress_Typ));
327 begin
328 -- For now we just return if Checks_On is false, however this should
329 -- be enhanced to check for an always True value in the condition
330 -- and to generate a compilation warning???
332 if not Checks_On then
333 return;
334 end if;
336 for J in 1 .. 2 loop
337 exit when No (Checks (J));
339 if Nkind (Checks (J)) = N_Raise_Constraint_Error
340 and then Present (Condition (Checks (J)))
341 then
342 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
343 Append_To (Stmts, Checks (J));
344 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
345 end if;
347 else
348 Append_To
349 (Stmts,
350 Make_Raise_Constraint_Error (Internal_Static_Sloc,
351 Reason => CE_Range_Check_Failed));
352 end if;
353 end loop;
354 end Append_Range_Checks;
356 ------------------------
357 -- Apply_Access_Check --
358 ------------------------
360 procedure Apply_Access_Check (N : Node_Id) is
361 P : constant Node_Id := Prefix (N);
363 begin
364 if Inside_A_Generic then
365 return;
366 end if;
368 if Is_Entity_Name (P) then
369 Check_Unset_Reference (P);
370 end if;
372 -- We do not need access checks if prefix is known to be non-null
374 if Known_Non_Null (P) then
375 return;
377 -- We do not need access checks if they are suppressed on the type
379 elsif Access_Checks_Suppressed (Etype (P)) then
380 return;
382 -- We do not need checks if we are not generating code (i.e. the
383 -- expander is not active). This is not just an optimization, there
384 -- are cases (e.g. with pragma Debug) where generating the checks
385 -- can cause real trouble).
387 elsif not Expander_Active then
388 return;
389 end if;
391 -- Case where P is an entity name
393 if Is_Entity_Name (P) then
394 declare
395 Ent : constant Entity_Id := Entity (P);
397 begin
398 if Access_Checks_Suppressed (Ent) then
399 return;
400 end if;
402 -- Otherwise we are going to generate an access check, and
403 -- are we have done it, the entity will now be known non null
404 -- But we have to check for safe sequential semantics here!
406 if Safe_To_Capture_Value (N, Ent) then
407 Set_Is_Known_Non_Null (Ent);
408 end if;
409 end;
410 end if;
412 -- Access check is required
414 Install_Null_Excluding_Check (P);
415 end Apply_Access_Check;
417 -------------------------------
418 -- Apply_Accessibility_Check --
419 -------------------------------
421 procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
422 Loc : constant Source_Ptr := Sloc (N);
423 Param_Ent : constant Entity_Id := Param_Entity (N);
424 Param_Level : Node_Id;
425 Type_Level : Node_Id;
427 begin
428 if Inside_A_Generic then
429 return;
431 -- Only apply the run-time check if the access parameter
432 -- has an associated extra access level parameter and
433 -- when the level of the type is less deep than the level
434 -- of the access parameter.
436 elsif Present (Param_Ent)
437 and then Present (Extra_Accessibility (Param_Ent))
438 and then UI_Gt (Object_Access_Level (N),
439 Type_Access_Level (Typ))
440 and then not Accessibility_Checks_Suppressed (Param_Ent)
441 and then not Accessibility_Checks_Suppressed (Typ)
442 then
443 Param_Level :=
444 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
446 Type_Level :=
447 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
449 -- Raise Program_Error if the accessibility level of the
450 -- the access parameter is deeper than the level of the
451 -- target access type.
453 Insert_Action (N,
454 Make_Raise_Program_Error (Loc,
455 Condition =>
456 Make_Op_Gt (Loc,
457 Left_Opnd => Param_Level,
458 Right_Opnd => Type_Level),
459 Reason => PE_Accessibility_Check_Failed));
461 Analyze_And_Resolve (N);
462 end if;
463 end Apply_Accessibility_Check;
465 ---------------------------
466 -- Apply_Alignment_Check --
467 ---------------------------
469 procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id) is
470 AC : constant Node_Id := Address_Clause (E);
471 Typ : constant Entity_Id := Etype (E);
472 Expr : Node_Id;
473 Loc : Source_Ptr;
475 Alignment_Required : constant Boolean := Maximum_Alignment > 1;
476 -- Constant to show whether target requires alignment checks
478 begin
479 -- See if check needed. Note that we never need a check if the
480 -- maximum alignment is one, since the check will always succeed
482 if No (AC)
483 or else not Check_Address_Alignment (AC)
484 or else not Alignment_Required
485 then
486 return;
487 end if;
489 Loc := Sloc (AC);
490 Expr := Expression (AC);
492 if Nkind (Expr) = N_Unchecked_Type_Conversion then
493 Expr := Expression (Expr);
495 elsif Nkind (Expr) = N_Function_Call
496 and then Is_Entity_Name (Name (Expr))
497 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
498 then
499 Expr := First (Parameter_Associations (Expr));
501 if Nkind (Expr) = N_Parameter_Association then
502 Expr := Explicit_Actual_Parameter (Expr);
503 end if;
504 end if;
506 -- Here Expr is the address value. See if we know that the
507 -- value is unacceptable at compile time.
509 if Compile_Time_Known_Value (Expr)
510 and then (Known_Alignment (E) or else Known_Alignment (Typ))
511 then
512 declare
513 AL : Uint := Alignment (Typ);
515 begin
516 -- The object alignment might be more restrictive than the
517 -- type alignment.
519 if Known_Alignment (E) then
520 AL := Alignment (E);
521 end if;
523 if Expr_Value (Expr) mod AL /= 0 then
524 Insert_Action (N,
525 Make_Raise_Program_Error (Loc,
526 Reason => PE_Misaligned_Address_Value));
527 Error_Msg_NE
528 ("?specified address for& not " &
529 "consistent with alignment ('R'M 13.3(27))", Expr, E);
530 end if;
531 end;
533 -- Here we do not know if the value is acceptable, generate
534 -- code to raise PE if alignment is inappropriate.
536 else
537 -- Skip generation of this code if we don't want elab code
539 if not Restriction_Active (No_Elaboration_Code) then
540 Insert_After_And_Analyze (N,
541 Make_Raise_Program_Error (Loc,
542 Condition =>
543 Make_Op_Ne (Loc,
544 Left_Opnd =>
545 Make_Op_Mod (Loc,
546 Left_Opnd =>
547 Unchecked_Convert_To
548 (RTE (RE_Integer_Address),
549 Duplicate_Subexpr_No_Checks (Expr)),
550 Right_Opnd =>
551 Make_Attribute_Reference (Loc,
552 Prefix => New_Occurrence_Of (E, Loc),
553 Attribute_Name => Name_Alignment)),
554 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
555 Reason => PE_Misaligned_Address_Value),
556 Suppress => All_Checks);
557 end if;
558 end if;
560 return;
562 exception
563 when RE_Not_Available =>
564 return;
565 end Apply_Alignment_Check;
567 -------------------------------------
568 -- Apply_Arithmetic_Overflow_Check --
569 -------------------------------------
571 -- This routine is called only if the type is an integer type, and
572 -- a software arithmetic overflow check must be performed for op
573 -- (add, subtract, multiply). The check is performed only if
574 -- Software_Overflow_Checking is enabled and Do_Overflow_Check
575 -- is set. In this case we expand the operation into a more complex
576 -- sequence of tests that ensures that overflow is properly caught.
578 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
579 Loc : constant Source_Ptr := Sloc (N);
580 Typ : constant Entity_Id := Etype (N);
581 Rtyp : constant Entity_Id := Root_Type (Typ);
582 Siz : constant Int := UI_To_Int (Esize (Rtyp));
583 Dsiz : constant Int := Siz * 2;
584 Opnod : Node_Id;
585 Ctyp : Entity_Id;
586 Opnd : Node_Id;
587 Cent : RE_Id;
589 begin
590 -- Skip this if overflow checks are done in back end, or the overflow
591 -- flag is not set anyway, or we are not doing code expansion.
593 if Backend_Overflow_Checks_On_Target
594 or else not Do_Overflow_Check (N)
595 or else not Expander_Active
596 then
597 return;
598 end if;
600 -- Otherwise, we generate the full general code for front end overflow
601 -- detection, which works by doing arithmetic in a larger type:
603 -- x op y
605 -- is expanded into
607 -- Typ (Checktyp (x) op Checktyp (y));
609 -- where Typ is the type of the original expression, and Checktyp is
610 -- an integer type of sufficient length to hold the largest possible
611 -- result.
613 -- In the case where check type exceeds the size of Long_Long_Integer,
614 -- we use a different approach, expanding to:
616 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
618 -- where xxx is Add, Multiply or Subtract as appropriate
620 -- Find check type if one exists
622 if Dsiz <= Standard_Integer_Size then
623 Ctyp := Standard_Integer;
625 elsif Dsiz <= Standard_Long_Long_Integer_Size then
626 Ctyp := Standard_Long_Long_Integer;
628 -- No check type exists, use runtime call
630 else
631 if Nkind (N) = N_Op_Add then
632 Cent := RE_Add_With_Ovflo_Check;
634 elsif Nkind (N) = N_Op_Multiply then
635 Cent := RE_Multiply_With_Ovflo_Check;
637 else
638 pragma Assert (Nkind (N) = N_Op_Subtract);
639 Cent := RE_Subtract_With_Ovflo_Check;
640 end if;
642 Rewrite (N,
643 OK_Convert_To (Typ,
644 Make_Function_Call (Loc,
645 Name => New_Reference_To (RTE (Cent), Loc),
646 Parameter_Associations => New_List (
647 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
648 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
650 Analyze_And_Resolve (N, Typ);
651 return;
652 end if;
654 -- If we fall through, we have the case where we do the arithmetic in
655 -- the next higher type and get the check by conversion. In these cases
656 -- Ctyp is set to the type to be used as the check type.
658 Opnod := Relocate_Node (N);
660 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
662 Analyze (Opnd);
663 Set_Etype (Opnd, Ctyp);
664 Set_Analyzed (Opnd, True);
665 Set_Left_Opnd (Opnod, Opnd);
667 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
669 Analyze (Opnd);
670 Set_Etype (Opnd, Ctyp);
671 Set_Analyzed (Opnd, True);
672 Set_Right_Opnd (Opnod, Opnd);
674 -- The type of the operation changes to the base type of the check
675 -- type, and we reset the overflow check indication, since clearly
676 -- no overflow is possible now that we are using a double length
677 -- type. We also set the Analyzed flag to avoid a recursive attempt
678 -- to expand the node.
680 Set_Etype (Opnod, Base_Type (Ctyp));
681 Set_Do_Overflow_Check (Opnod, False);
682 Set_Analyzed (Opnod, True);
684 -- Now build the outer conversion
686 Opnd := OK_Convert_To (Typ, Opnod);
687 Analyze (Opnd);
688 Set_Etype (Opnd, Typ);
690 -- In the discrete type case, we directly generate the range check
691 -- for the outer operand. This range check will implement the required
692 -- overflow check.
694 if Is_Discrete_Type (Typ) then
695 Rewrite (N, Opnd);
696 Generate_Range_Check (Expression (N), Typ, CE_Overflow_Check_Failed);
698 -- For other types, we enable overflow checking on the conversion,
699 -- after setting the node as analyzed to prevent recursive attempts
700 -- to expand the conversion node.
702 else
703 Set_Analyzed (Opnd, True);
704 Enable_Overflow_Check (Opnd);
705 Rewrite (N, Opnd);
706 end if;
708 exception
709 when RE_Not_Available =>
710 return;
711 end Apply_Arithmetic_Overflow_Check;
713 ----------------------------
714 -- Apply_Array_Size_Check --
715 ----------------------------
717 -- Note: Really of course this entre check should be in the backend,
718 -- and perhaps this is not quite the right value, but it is good
719 -- enough to catch the normal cases (and the relevant ACVC tests!)
721 -- The situation is as follows. In GNAT 3 (GCC 2.x), the size in bits
722 -- is computed in 32 bits without an overflow check. That's a real
723 -- problem for Ada. So what we do in GNAT 3 is to approximate the
724 -- size of an array by manually multiplying the element size by the
725 -- number of elements, and comparing that against the allowed limits.
727 -- In GNAT 5, the size in byte is still computed in 32 bits without
728 -- an overflow check in the dynamic case, but the size in bits is
729 -- computed in 64 bits. We assume that's good enough, so we use the
730 -- size in bits for the test.
732 procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
733 Loc : constant Source_Ptr := Sloc (N);
734 Ctyp : constant Entity_Id := Component_Type (Typ);
735 Ent : constant Entity_Id := Defining_Identifier (N);
736 Decl : Node_Id;
737 Lo : Node_Id;
738 Hi : Node_Id;
739 Lob : Uint;
740 Hib : Uint;
741 Siz : Uint;
742 Xtyp : Entity_Id;
743 Indx : Node_Id;
744 Sizx : Node_Id;
745 Code : Node_Id;
747 Static : Boolean := True;
748 -- Set false if any index subtye bound is non-static
750 Umark : constant Uintp.Save_Mark := Uintp.Mark;
751 -- We can throw away all the Uint computations here, since they are
752 -- done only to generate boolean test results.
754 Check_Siz : Uint;
755 -- Size to check against
757 function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
758 -- Determines if Decl is an address clause or Import/Interface pragma
759 -- that references the defining identifier of the current declaration.
761 --------------------------
762 -- Is_Address_Or_Import --
763 --------------------------
765 function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
766 begin
767 if Nkind (Decl) = N_At_Clause then
768 return Chars (Identifier (Decl)) = Chars (Ent);
770 elsif Nkind (Decl) = N_Attribute_Definition_Clause then
771 return
772 Chars (Decl) = Name_Address
773 and then
774 Nkind (Name (Decl)) = N_Identifier
775 and then
776 Chars (Name (Decl)) = Chars (Ent);
778 elsif Nkind (Decl) = N_Pragma then
779 if (Chars (Decl) = Name_Import
780 or else
781 Chars (Decl) = Name_Interface)
782 and then Present (Pragma_Argument_Associations (Decl))
783 then
784 declare
785 F : constant Node_Id :=
786 First (Pragma_Argument_Associations (Decl));
788 begin
789 return
790 Present (F)
791 and then
792 Present (Next (F))
793 and then
794 Nkind (Expression (Next (F))) = N_Identifier
795 and then
796 Chars (Expression (Next (F))) = Chars (Ent);
797 end;
799 else
800 return False;
801 end if;
803 else
804 return False;
805 end if;
806 end Is_Address_Or_Import;
808 -- Start of processing for Apply_Array_Size_Check
810 begin
811 -- No need for a check if not expanding
813 if not Expander_Active then
814 return;
815 end if;
817 -- No need for a check if checks are suppressed
819 if Storage_Checks_Suppressed (Typ) then
820 return;
821 end if;
823 -- It is pointless to insert this check inside an init proc, because
824 -- that's too late, we have already built the object to be the right
825 -- size, and if it's too large, too bad!
827 if Inside_Init_Proc then
828 return;
829 end if;
831 -- Look head for pragma interface/import or address clause applying
832 -- to this entity. If found, we suppress the check entirely. For now
833 -- we only look ahead 20 declarations to stop this becoming too slow
834 -- Note that eventually this whole routine gets moved to gigi.
836 Decl := N;
837 for Ctr in 1 .. 20 loop
838 Next (Decl);
839 exit when No (Decl);
841 if Is_Address_Or_Import (Decl) then
842 return;
843 end if;
844 end loop;
846 -- GCC 3 case
848 if Opt.GCC_Version = 3 then
850 -- No problem if size is known at compile time (even if the front
851 -- end does not know it) because the back end does do overflow
852 -- checking on the size in bytes if it is compile time known.
854 if Size_Known_At_Compile_Time (Typ) then
855 return;
856 end if;
857 end if;
859 -- Following code is temporarily deleted, since GCC 3 is returning
860 -- zero for size in bits of large dynamic arrays. ???
862 -- -- Otherwise we check for the size in bits exceeding 2**31-1 * 8.
863 -- -- This is the case in which we could end up with problems from
864 -- -- an unnoticed overflow in computing the size in bytes
866 -- Check_Siz := (Uint_2 ** 31 - Uint_1) * Uint_8;
868 -- Sizx :=
869 -- Make_Attribute_Reference (Loc,
870 -- Prefix => New_Occurrence_Of (Typ, Loc),
871 -- Attribute_Name => Name_Size);
873 -- GCC 2 case (for now this is for GCC 3 dynamic case as well)
875 begin
876 -- First step is to calculate the maximum number of elements. For
877 -- this calculation, we use the actual size of the subtype if it is
878 -- static, and if a bound of a subtype is non-static, we go to the
879 -- bound of the base type.
881 Siz := Uint_1;
882 Indx := First_Index (Typ);
883 while Present (Indx) loop
884 Xtyp := Etype (Indx);
885 Lo := Type_Low_Bound (Xtyp);
886 Hi := Type_High_Bound (Xtyp);
888 -- If any bound raises constraint error, we will never get this
889 -- far, so there is no need to generate any kind of check.
891 if Raises_Constraint_Error (Lo)
892 or else
893 Raises_Constraint_Error (Hi)
894 then
895 Uintp.Release (Umark);
896 return;
897 end if;
899 -- Otherwise get bounds values
901 if Is_Static_Expression (Lo) then
902 Lob := Expr_Value (Lo);
903 else
904 Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
905 Static := False;
906 end if;
908 if Is_Static_Expression (Hi) then
909 Hib := Expr_Value (Hi);
910 else
911 Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
912 Static := False;
913 end if;
915 Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
916 Next_Index (Indx);
917 end loop;
919 -- Compute the limit against which we want to check. For subprograms,
920 -- where the array will go on the stack, we use 8*2**24, which (in
921 -- bits) is the size of a 16 megabyte array.
923 if Is_Subprogram (Scope (Ent)) then
924 Check_Siz := Uint_2 ** 27;
925 else
926 Check_Siz := Uint_2 ** 31;
927 end if;
929 -- If we have all static bounds and Siz is too large, then we know
930 -- we know we have a storage error right now, so generate message
932 if Static and then Siz >= Check_Siz then
933 Insert_Action (N,
934 Make_Raise_Storage_Error (Loc,
935 Reason => SE_Object_Too_Large));
936 Error_Msg_N ("?Storage_Error will be raised at run-time", N);
937 Uintp.Release (Umark);
938 return;
939 end if;
941 -- Case of component size known at compile time. If the array
942 -- size is definitely in range, then we do not need a check.
944 if Known_Esize (Ctyp)
945 and then Siz * Esize (Ctyp) < Check_Siz
946 then
947 Uintp.Release (Umark);
948 return;
949 end if;
951 -- Here if a dynamic check is required
953 -- What we do is to build an expression for the size of the array,
954 -- which is computed as the 'Size of the array component, times
955 -- the size of each dimension.
957 Uintp.Release (Umark);
959 Sizx :=
960 Make_Attribute_Reference (Loc,
961 Prefix => New_Occurrence_Of (Ctyp, Loc),
962 Attribute_Name => Name_Size);
964 Indx := First_Index (Typ);
965 for J in 1 .. Number_Dimensions (Typ) loop
966 if Sloc (Etype (Indx)) = Sloc (N) then
967 Ensure_Defined (Etype (Indx), N);
968 end if;
970 Sizx :=
971 Make_Op_Multiply (Loc,
972 Left_Opnd => Sizx,
973 Right_Opnd =>
974 Make_Attribute_Reference (Loc,
975 Prefix => New_Occurrence_Of (Typ, Loc),
976 Attribute_Name => Name_Length,
977 Expressions => New_List (
978 Make_Integer_Literal (Loc, J))));
979 Next_Index (Indx);
980 end loop;
981 end;
983 -- Common code to actually emit the check
985 Code :=
986 Make_Raise_Storage_Error (Loc,
987 Condition =>
988 Make_Op_Ge (Loc,
989 Left_Opnd => Sizx,
990 Right_Opnd =>
991 Make_Integer_Literal (Loc,
992 Intval => Check_Siz)),
993 Reason => SE_Object_Too_Large);
995 Set_Size_Check_Code (Defining_Identifier (N), Code);
996 Insert_Action (N, Code, Suppress => All_Checks);
997 end Apply_Array_Size_Check;
999 ----------------------------
1000 -- Apply_Constraint_Check --
1001 ----------------------------
1003 procedure Apply_Constraint_Check
1004 (N : Node_Id;
1005 Typ : Entity_Id;
1006 No_Sliding : Boolean := False)
1008 Desig_Typ : Entity_Id;
1010 begin
1011 if Inside_A_Generic then
1012 return;
1014 elsif Is_Scalar_Type (Typ) then
1015 Apply_Scalar_Range_Check (N, Typ);
1017 elsif Is_Array_Type (Typ) then
1019 -- A useful optimization: an aggregate with only an Others clause
1020 -- always has the right bounds.
1022 if Nkind (N) = N_Aggregate
1023 and then No (Expressions (N))
1024 and then Nkind
1025 (First (Choices (First (Component_Associations (N)))))
1026 = N_Others_Choice
1027 then
1028 return;
1029 end if;
1031 if Is_Constrained (Typ) then
1032 Apply_Length_Check (N, Typ);
1034 if No_Sliding then
1035 Apply_Range_Check (N, Typ);
1036 end if;
1037 else
1038 Apply_Range_Check (N, Typ);
1039 end if;
1041 elsif (Is_Record_Type (Typ)
1042 or else Is_Private_Type (Typ))
1043 and then Has_Discriminants (Base_Type (Typ))
1044 and then Is_Constrained (Typ)
1045 then
1046 Apply_Discriminant_Check (N, Typ);
1048 elsif Is_Access_Type (Typ) then
1050 Desig_Typ := Designated_Type (Typ);
1052 -- No checks necessary if expression statically null
1054 if Nkind (N) = N_Null then
1055 null;
1057 -- No sliding possible on access to arrays
1059 elsif Is_Array_Type (Desig_Typ) then
1060 if Is_Constrained (Desig_Typ) then
1061 Apply_Length_Check (N, Typ);
1062 end if;
1064 Apply_Range_Check (N, Typ);
1066 elsif Has_Discriminants (Base_Type (Desig_Typ))
1067 and then Is_Constrained (Desig_Typ)
1068 then
1069 Apply_Discriminant_Check (N, Typ);
1070 end if;
1072 if Can_Never_Be_Null (Typ)
1073 and then not Can_Never_Be_Null (Etype (N))
1074 then
1075 Install_Null_Excluding_Check (N);
1076 end if;
1077 end if;
1078 end Apply_Constraint_Check;
1080 ------------------------------
1081 -- Apply_Discriminant_Check --
1082 ------------------------------
1084 procedure Apply_Discriminant_Check
1085 (N : Node_Id;
1086 Typ : Entity_Id;
1087 Lhs : Node_Id := Empty)
1089 Loc : constant Source_Ptr := Sloc (N);
1090 Do_Access : constant Boolean := Is_Access_Type (Typ);
1091 S_Typ : Entity_Id := Etype (N);
1092 Cond : Node_Id;
1093 T_Typ : Entity_Id;
1095 function Is_Aliased_Unconstrained_Component return Boolean;
1096 -- It is possible for an aliased component to have a nominal
1097 -- unconstrained subtype (through instantiation). If this is a
1098 -- discriminated component assigned in the expansion of an aggregate
1099 -- in an initialization, the check must be suppressed. This unusual
1100 -- situation requires a predicate of its own (see 7503-008).
1102 ----------------------------------------
1103 -- Is_Aliased_Unconstrained_Component --
1104 ----------------------------------------
1106 function Is_Aliased_Unconstrained_Component return Boolean is
1107 Comp : Entity_Id;
1108 Pref : Node_Id;
1110 begin
1111 if Nkind (Lhs) /= N_Selected_Component then
1112 return False;
1113 else
1114 Comp := Entity (Selector_Name (Lhs));
1115 Pref := Prefix (Lhs);
1116 end if;
1118 if Ekind (Comp) /= E_Component
1119 or else not Is_Aliased (Comp)
1120 then
1121 return False;
1122 end if;
1124 return not Comes_From_Source (Pref)
1125 and then In_Instance
1126 and then not Is_Constrained (Etype (Comp));
1127 end Is_Aliased_Unconstrained_Component;
1129 -- Start of processing for Apply_Discriminant_Check
1131 begin
1132 if Do_Access then
1133 T_Typ := Designated_Type (Typ);
1134 else
1135 T_Typ := Typ;
1136 end if;
1138 -- Nothing to do if discriminant checks are suppressed or else no code
1139 -- is to be generated
1141 if not Expander_Active
1142 or else Discriminant_Checks_Suppressed (T_Typ)
1143 then
1144 return;
1145 end if;
1147 -- No discriminant checks necessary for access when expression
1148 -- is statically Null. This is not only an optimization, this is
1149 -- fundamental because otherwise discriminant checks may be generated
1150 -- in init procs for types containing an access to a non-frozen yet
1151 -- record, causing a deadly forward reference.
1153 -- Also, if the expression is of an access type whose designated
1154 -- type is incomplete, then the access value must be null and
1155 -- we suppress the check.
1157 if Nkind (N) = N_Null then
1158 return;
1160 elsif Is_Access_Type (S_Typ) then
1161 S_Typ := Designated_Type (S_Typ);
1163 if Ekind (S_Typ) = E_Incomplete_Type then
1164 return;
1165 end if;
1166 end if;
1168 -- If an assignment target is present, then we need to generate
1169 -- the actual subtype if the target is a parameter or aliased
1170 -- object with an unconstrained nominal subtype.
1172 if Present (Lhs)
1173 and then (Present (Param_Entity (Lhs))
1174 or else (not Is_Constrained (T_Typ)
1175 and then Is_Aliased_View (Lhs)
1176 and then not Is_Aliased_Unconstrained_Component))
1177 then
1178 T_Typ := Get_Actual_Subtype (Lhs);
1179 end if;
1181 -- Nothing to do if the type is unconstrained (this is the case
1182 -- where the actual subtype in the RM sense of N is unconstrained
1183 -- and no check is required).
1185 if not Is_Constrained (T_Typ) then
1186 return;
1187 end if;
1189 -- Nothing to do if the type is an Unchecked_Union
1191 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1192 return;
1193 end if;
1195 -- Suppress checks if the subtypes are the same.
1196 -- the check must be preserved in an assignment to a formal, because
1197 -- the constraint is given by the actual.
1199 if Nkind (Original_Node (N)) /= N_Allocator
1200 and then (No (Lhs)
1201 or else not Is_Entity_Name (Lhs)
1202 or else No (Param_Entity (Lhs)))
1203 then
1204 if (Etype (N) = Typ
1205 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1206 and then not Is_Aliased_View (Lhs)
1207 then
1208 return;
1209 end if;
1211 -- We can also eliminate checks on allocators with a subtype mark
1212 -- that coincides with the context type. The context type may be a
1213 -- subtype without a constraint (common case, a generic actual).
1215 elsif Nkind (Original_Node (N)) = N_Allocator
1216 and then Is_Entity_Name (Expression (Original_Node (N)))
1217 then
1218 declare
1219 Alloc_Typ : constant Entity_Id :=
1220 Entity (Expression (Original_Node (N)));
1222 begin
1223 if Alloc_Typ = T_Typ
1224 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1225 and then Is_Entity_Name (
1226 Subtype_Indication (Parent (T_Typ)))
1227 and then Alloc_Typ = Base_Type (T_Typ))
1229 then
1230 return;
1231 end if;
1232 end;
1233 end if;
1235 -- See if we have a case where the types are both constrained, and
1236 -- all the constraints are constants. In this case, we can do the
1237 -- check successfully at compile time.
1239 -- We skip this check for the case where the node is a rewritten`
1240 -- allocator, because it already carries the context subtype, and
1241 -- extracting the discriminants from the aggregate is messy.
1243 if Is_Constrained (S_Typ)
1244 and then Nkind (Original_Node (N)) /= N_Allocator
1245 then
1246 declare
1247 DconT : Elmt_Id;
1248 Discr : Entity_Id;
1249 DconS : Elmt_Id;
1250 ItemS : Node_Id;
1251 ItemT : Node_Id;
1253 begin
1254 -- S_Typ may not have discriminants in the case where it is a
1255 -- private type completed by a default discriminated type. In
1256 -- that case, we need to get the constraints from the
1257 -- underlying_type. If the underlying type is unconstrained (i.e.
1258 -- has no default discriminants) no check is needed.
1260 if Has_Discriminants (S_Typ) then
1261 Discr := First_Discriminant (S_Typ);
1262 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1264 else
1265 Discr := First_Discriminant (Underlying_Type (S_Typ));
1266 DconS :=
1267 First_Elmt
1268 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1270 if No (DconS) then
1271 return;
1272 end if;
1274 -- A further optimization: if T_Typ is derived from S_Typ
1275 -- without imposing a constraint, no check is needed.
1277 if Nkind (Original_Node (Parent (T_Typ))) =
1278 N_Full_Type_Declaration
1279 then
1280 declare
1281 Type_Def : constant Node_Id :=
1282 Type_Definition
1283 (Original_Node (Parent (T_Typ)));
1284 begin
1285 if Nkind (Type_Def) = N_Derived_Type_Definition
1286 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1287 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1288 then
1289 return;
1290 end if;
1291 end;
1292 end if;
1293 end if;
1295 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1297 while Present (Discr) loop
1298 ItemS := Node (DconS);
1299 ItemT := Node (DconT);
1301 exit when
1302 not Is_OK_Static_Expression (ItemS)
1303 or else
1304 not Is_OK_Static_Expression (ItemT);
1306 if Expr_Value (ItemS) /= Expr_Value (ItemT) then
1307 if Do_Access then -- needs run-time check.
1308 exit;
1309 else
1310 Apply_Compile_Time_Constraint_Error
1311 (N, "incorrect value for discriminant&?",
1312 CE_Discriminant_Check_Failed, Ent => Discr);
1313 return;
1314 end if;
1315 end if;
1317 Next_Elmt (DconS);
1318 Next_Elmt (DconT);
1319 Next_Discriminant (Discr);
1320 end loop;
1322 if No (Discr) then
1323 return;
1324 end if;
1325 end;
1326 end if;
1328 -- Here we need a discriminant check. First build the expression
1329 -- for the comparisons of the discriminants:
1331 -- (n.disc1 /= typ.disc1) or else
1332 -- (n.disc2 /= typ.disc2) or else
1333 -- ...
1334 -- (n.discn /= typ.discn)
1336 Cond := Build_Discriminant_Checks (N, T_Typ);
1338 -- If Lhs is set and is a parameter, then the condition is
1339 -- guarded by: lhs'constrained and then (condition built above)
1341 if Present (Param_Entity (Lhs)) then
1342 Cond :=
1343 Make_And_Then (Loc,
1344 Left_Opnd =>
1345 Make_Attribute_Reference (Loc,
1346 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1347 Attribute_Name => Name_Constrained),
1348 Right_Opnd => Cond);
1349 end if;
1351 if Do_Access then
1352 Cond := Guard_Access (Cond, Loc, N);
1353 end if;
1355 Insert_Action (N,
1356 Make_Raise_Constraint_Error (Loc,
1357 Condition => Cond,
1358 Reason => CE_Discriminant_Check_Failed));
1359 end Apply_Discriminant_Check;
1361 ------------------------
1362 -- Apply_Divide_Check --
1363 ------------------------
1365 procedure Apply_Divide_Check (N : Node_Id) is
1366 Loc : constant Source_Ptr := Sloc (N);
1367 Typ : constant Entity_Id := Etype (N);
1368 Left : constant Node_Id := Left_Opnd (N);
1369 Right : constant Node_Id := Right_Opnd (N);
1371 LLB : Uint;
1372 Llo : Uint;
1373 Lhi : Uint;
1374 LOK : Boolean;
1375 Rlo : Uint;
1376 Rhi : Uint;
1377 ROK : Boolean;
1379 begin
1380 if Expander_Active
1381 and not Backend_Divide_Checks_On_Target
1382 then
1383 Determine_Range (Right, ROK, Rlo, Rhi);
1385 -- See if division by zero possible, and if so generate test. This
1386 -- part of the test is not controlled by the -gnato switch.
1388 if Do_Division_Check (N) then
1389 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1390 Insert_Action (N,
1391 Make_Raise_Constraint_Error (Loc,
1392 Condition =>
1393 Make_Op_Eq (Loc,
1394 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1395 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1396 Reason => CE_Divide_By_Zero));
1397 end if;
1398 end if;
1400 -- Test for extremely annoying case of xxx'First divided by -1
1402 if Do_Overflow_Check (N) then
1404 if Nkind (N) = N_Op_Divide
1405 and then Is_Signed_Integer_Type (Typ)
1406 then
1407 Determine_Range (Left, LOK, Llo, Lhi);
1408 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1410 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1411 and then
1412 ((not LOK) or else (Llo = LLB))
1413 then
1414 Insert_Action (N,
1415 Make_Raise_Constraint_Error (Loc,
1416 Condition =>
1417 Make_And_Then (Loc,
1419 Make_Op_Eq (Loc,
1420 Left_Opnd =>
1421 Duplicate_Subexpr_Move_Checks (Left),
1422 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1424 Make_Op_Eq (Loc,
1425 Left_Opnd =>
1426 Duplicate_Subexpr (Right),
1427 Right_Opnd =>
1428 Make_Integer_Literal (Loc, -1))),
1429 Reason => CE_Overflow_Check_Failed));
1430 end if;
1431 end if;
1432 end if;
1433 end if;
1434 end Apply_Divide_Check;
1436 ----------------------------------
1437 -- Apply_Float_Conversion_Check --
1438 ----------------------------------
1440 -- Let F and I be the source and target types of the conversion.
1441 -- The Ada standard specifies that a floating-point value X is rounded
1442 -- to the nearest integer, with halfway cases being rounded away from
1443 -- zero. The rounded value of X is checked against I'Range.
1445 -- The catch in the above paragraph is that there is no good way
1446 -- to know whether the round-to-integer operation resulted in
1447 -- overflow. A remedy is to perform a range check in the floating-point
1448 -- domain instead, however:
1449 -- (1) The bounds may not be known at compile time
1450 -- (2) The check must take into account possible rounding.
1451 -- (3) The range of type I may not be exactly representable in F.
1452 -- (4) The end-points I'First - 0.5 and I'Last + 0.5 may or may
1453 -- not be in range, depending on the sign of I'First and I'Last.
1454 -- (5) X may be a NaN, which will fail any comparison
1456 -- The following steps take care of these issues converting X:
1457 -- (1) If either I'First or I'Last is not known at compile time, use
1458 -- I'Base instead of I in the next three steps and perform a
1459 -- regular range check against I'Range after conversion.
1460 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1461 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1462 -- F'Machine (T) and let Lo_OK be (Lo >= I'First). In other words,
1463 -- take one of the closest floating-point numbers to T, and see if
1464 -- it is in range or not.
1465 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1466 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1467 -- F'Rounding (T) and let Hi_OK be (Hi <= I'Last).
1468 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1469 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1471 procedure Apply_Float_Conversion_Check
1472 (Ck_Node : Node_Id;
1473 Target_Typ : Entity_Id)
1475 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1476 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1477 Loc : constant Source_Ptr := Sloc (Ck_Node);
1478 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1479 Target_Base : constant Entity_Id := Implementation_Base_Type
1480 (Target_Typ);
1481 Max_Bound : constant Uint := UI_Expon
1482 (Machine_Radix (Expr_Type),
1483 Machine_Mantissa (Expr_Type) - 1) - 1;
1484 -- Largest bound, so bound plus or minus half is a machine number of F
1486 Ifirst,
1487 Ilast : Uint; -- Bounds of integer type
1488 Lo, Hi : Ureal; -- Bounds to check in floating-point domain
1489 Lo_OK,
1490 Hi_OK : Boolean; -- True iff Lo resp. Hi belongs to I'Range
1492 Lo_Chk,
1493 Hi_Chk : Node_Id; -- Expressions that are False iff check fails
1495 Reason : RT_Exception_Code;
1497 begin
1498 if not Compile_Time_Known_Value (LB)
1499 or not Compile_Time_Known_Value (HB)
1500 then
1501 declare
1502 -- First check that the value falls in the range of the base
1503 -- type, to prevent overflow during conversion and then
1504 -- perform a regular range check against the (dynamic) bounds.
1506 Par : constant Node_Id := Parent (Ck_Node);
1508 pragma Assert (Target_Base /= Target_Typ);
1509 pragma Assert (Nkind (Par) = N_Type_Conversion);
1511 Temp : constant Entity_Id :=
1512 Make_Defining_Identifier (Loc,
1513 Chars => New_Internal_Name ('T'));
1515 begin
1516 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1517 Set_Etype (Temp, Target_Base);
1519 Insert_Action (Parent (Par),
1520 Make_Object_Declaration (Loc,
1521 Defining_Identifier => Temp,
1522 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1523 Expression => New_Copy_Tree (Par)),
1524 Suppress => All_Checks);
1526 Insert_Action (Par,
1527 Make_Raise_Constraint_Error (Loc,
1528 Condition =>
1529 Make_Not_In (Loc,
1530 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1531 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1532 Reason => CE_Range_Check_Failed));
1533 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1535 return;
1536 end;
1537 end if;
1539 -- Get the bounds of the target type
1541 Ifirst := Expr_Value (LB);
1542 Ilast := Expr_Value (HB);
1544 -- Check against lower bound
1546 if abs (Ifirst) < Max_Bound then
1547 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1548 Lo_OK := (Ifirst > 0);
1549 else
1550 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1551 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1552 end if;
1554 if Lo_OK then
1556 -- Lo_Chk := (X >= Lo)
1558 Lo_Chk := Make_Op_Ge (Loc,
1559 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1560 Right_Opnd => Make_Real_Literal (Loc, Lo));
1562 else
1563 -- Lo_Chk := (X > Lo)
1565 Lo_Chk := Make_Op_Gt (Loc,
1566 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1567 Right_Opnd => Make_Real_Literal (Loc, Lo));
1568 end if;
1570 -- Check against higher bound
1572 if abs (Ilast) < Max_Bound then
1573 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1574 Hi_OK := (Ilast < 0);
1575 else
1576 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1577 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1578 end if;
1580 if Hi_OK then
1582 -- Hi_Chk := (X <= Hi)
1584 Hi_Chk := Make_Op_Le (Loc,
1585 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1586 Right_Opnd => Make_Real_Literal (Loc, Hi));
1588 else
1589 -- Hi_Chk := (X < Hi)
1591 Hi_Chk := Make_Op_Lt (Loc,
1592 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1593 Right_Opnd => Make_Real_Literal (Loc, Hi));
1594 end if;
1596 -- If the bounds of the target type are the same as those of the
1597 -- base type, the check is an overflow check as a range check is
1598 -- not performed in these cases.
1600 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1601 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1602 then
1603 Reason := CE_Overflow_Check_Failed;
1604 else
1605 Reason := CE_Range_Check_Failed;
1606 end if;
1608 -- Raise CE if either conditions does not hold
1610 Insert_Action (Ck_Node,
1611 Make_Raise_Constraint_Error (Loc,
1612 Condition => Make_Op_Not (Loc, Make_Op_And (Loc, Lo_Chk, Hi_Chk)),
1613 Reason => Reason));
1614 end Apply_Float_Conversion_Check;
1616 ------------------------
1617 -- Apply_Length_Check --
1618 ------------------------
1620 procedure Apply_Length_Check
1621 (Ck_Node : Node_Id;
1622 Target_Typ : Entity_Id;
1623 Source_Typ : Entity_Id := Empty)
1625 begin
1626 Apply_Selected_Length_Checks
1627 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1628 end Apply_Length_Check;
1630 -----------------------
1631 -- Apply_Range_Check --
1632 -----------------------
1634 procedure Apply_Range_Check
1635 (Ck_Node : Node_Id;
1636 Target_Typ : Entity_Id;
1637 Source_Typ : Entity_Id := Empty)
1639 begin
1640 Apply_Selected_Range_Checks
1641 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1642 end Apply_Range_Check;
1644 ------------------------------
1645 -- Apply_Scalar_Range_Check --
1646 ------------------------------
1648 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
1649 -- flag off if it is already set on.
1651 procedure Apply_Scalar_Range_Check
1652 (Expr : Node_Id;
1653 Target_Typ : Entity_Id;
1654 Source_Typ : Entity_Id := Empty;
1655 Fixed_Int : Boolean := False)
1657 Parnt : constant Node_Id := Parent (Expr);
1658 S_Typ : Entity_Id;
1659 Arr : Node_Id := Empty; -- initialize to prevent warning
1660 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1661 OK : Boolean;
1663 Is_Subscr_Ref : Boolean;
1664 -- Set true if Expr is a subscript
1666 Is_Unconstrained_Subscr_Ref : Boolean;
1667 -- Set true if Expr is a subscript of an unconstrained array. In this
1668 -- case we do not attempt to do an analysis of the value against the
1669 -- range of the subscript, since we don't know the actual subtype.
1671 Int_Real : Boolean;
1672 -- Set to True if Expr should be regarded as a real value
1673 -- even though the type of Expr might be discrete.
1675 procedure Bad_Value;
1676 -- Procedure called if value is determined to be out of range
1678 ---------------
1679 -- Bad_Value --
1680 ---------------
1682 procedure Bad_Value is
1683 begin
1684 Apply_Compile_Time_Constraint_Error
1685 (Expr, "value not in range of}?", CE_Range_Check_Failed,
1686 Ent => Target_Typ,
1687 Typ => Target_Typ);
1688 end Bad_Value;
1690 -- Start of processing for Apply_Scalar_Range_Check
1692 begin
1693 if Inside_A_Generic then
1694 return;
1696 -- Return if check obviously not needed. Note that we do not check
1697 -- for the expander being inactive, since this routine does not
1698 -- insert any code, but it does generate useful warnings sometimes,
1699 -- which we would like even if we are in semantics only mode.
1701 elsif Target_Typ = Any_Type
1702 or else not Is_Scalar_Type (Target_Typ)
1703 or else Raises_Constraint_Error (Expr)
1704 then
1705 return;
1706 end if;
1708 -- Now, see if checks are suppressed
1710 Is_Subscr_Ref :=
1711 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1713 if Is_Subscr_Ref then
1714 Arr := Prefix (Parnt);
1715 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1716 end if;
1718 if not Do_Range_Check (Expr) then
1720 -- Subscript reference. Check for Index_Checks suppressed
1722 if Is_Subscr_Ref then
1724 -- Check array type and its base type
1726 if Index_Checks_Suppressed (Arr_Typ)
1727 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1728 then
1729 return;
1731 -- Check array itself if it is an entity name
1733 elsif Is_Entity_Name (Arr)
1734 and then Index_Checks_Suppressed (Entity (Arr))
1735 then
1736 return;
1738 -- Check expression itself if it is an entity name
1740 elsif Is_Entity_Name (Expr)
1741 and then Index_Checks_Suppressed (Entity (Expr))
1742 then
1743 return;
1744 end if;
1746 -- All other cases, check for Range_Checks suppressed
1748 else
1749 -- Check target type and its base type
1751 if Range_Checks_Suppressed (Target_Typ)
1752 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1753 then
1754 return;
1756 -- Check expression itself if it is an entity name
1758 elsif Is_Entity_Name (Expr)
1759 and then Range_Checks_Suppressed (Entity (Expr))
1760 then
1761 return;
1763 -- If Expr is part of an assignment statement, then check
1764 -- left side of assignment if it is an entity name.
1766 elsif Nkind (Parnt) = N_Assignment_Statement
1767 and then Is_Entity_Name (Name (Parnt))
1768 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1769 then
1770 return;
1771 end if;
1772 end if;
1773 end if;
1775 -- Do not set range checks if they are killed
1777 if Nkind (Expr) = N_Unchecked_Type_Conversion
1778 and then Kill_Range_Check (Expr)
1779 then
1780 return;
1781 end if;
1783 -- Do not set range checks for any values from System.Scalar_Values
1784 -- since the whole idea of such values is to avoid checking them!
1786 if Is_Entity_Name (Expr)
1787 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1788 then
1789 return;
1790 end if;
1792 -- Now see if we need a check
1794 if No (Source_Typ) then
1795 S_Typ := Etype (Expr);
1796 else
1797 S_Typ := Source_Typ;
1798 end if;
1800 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1801 return;
1802 end if;
1804 Is_Unconstrained_Subscr_Ref :=
1805 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1807 -- Always do a range check if the source type includes infinities
1808 -- and the target type does not include infinities. We do not do
1809 -- this if range checks are killed.
1811 if Is_Floating_Point_Type (S_Typ)
1812 and then Has_Infinities (S_Typ)
1813 and then not Has_Infinities (Target_Typ)
1814 then
1815 Enable_Range_Check (Expr);
1816 end if;
1818 -- Return if we know expression is definitely in the range of
1819 -- the target type as determined by Determine_Range. Right now
1820 -- we only do this for discrete types, and not fixed-point or
1821 -- floating-point types.
1823 -- The additional less-precise tests below catch these cases
1825 -- Note: skip this if we are given a source_typ, since the point
1826 -- of supplying a Source_Typ is to stop us looking at the expression.
1827 -- could sharpen this test to be out parameters only ???
1829 if Is_Discrete_Type (Target_Typ)
1830 and then Is_Discrete_Type (Etype (Expr))
1831 and then not Is_Unconstrained_Subscr_Ref
1832 and then No (Source_Typ)
1833 then
1834 declare
1835 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1836 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1837 Lo : Uint;
1838 Hi : Uint;
1840 begin
1841 if Compile_Time_Known_Value (Tlo)
1842 and then Compile_Time_Known_Value (Thi)
1843 then
1844 declare
1845 Lov : constant Uint := Expr_Value (Tlo);
1846 Hiv : constant Uint := Expr_Value (Thi);
1848 begin
1849 -- If range is null, we for sure have a constraint error
1850 -- (we don't even need to look at the value involved,
1851 -- since all possible values will raise CE).
1853 if Lov > Hiv then
1854 Bad_Value;
1855 return;
1856 end if;
1858 -- Otherwise determine range of value
1860 Determine_Range (Expr, OK, Lo, Hi);
1862 if OK then
1864 -- If definitely in range, all OK
1866 if Lo >= Lov and then Hi <= Hiv then
1867 return;
1869 -- If definitely not in range, warn
1871 elsif Lov > Hi or else Hiv < Lo then
1872 Bad_Value;
1873 return;
1875 -- Otherwise we don't know
1877 else
1878 null;
1879 end if;
1880 end if;
1881 end;
1882 end if;
1883 end;
1884 end if;
1886 Int_Real :=
1887 Is_Floating_Point_Type (S_Typ)
1888 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
1890 -- Check if we can determine at compile time whether Expr is in the
1891 -- range of the target type. Note that if S_Typ is within the bounds
1892 -- of Target_Typ then this must be the case. This check is meaningful
1893 -- only if this is not a conversion between integer and real types.
1895 if not Is_Unconstrained_Subscr_Ref
1896 and then
1897 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
1898 and then
1899 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
1900 or else
1901 Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
1902 then
1903 return;
1905 elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
1906 Bad_Value;
1907 return;
1909 -- In the floating-point case, we only do range checks if the
1910 -- type is constrained. We definitely do NOT want range checks
1911 -- for unconstrained types, since we want to have infinities
1913 elsif Is_Floating_Point_Type (S_Typ) then
1914 if Is_Constrained (S_Typ) then
1915 Enable_Range_Check (Expr);
1916 end if;
1918 -- For all other cases we enable a range check unconditionally
1920 else
1921 Enable_Range_Check (Expr);
1922 return;
1923 end if;
1924 end Apply_Scalar_Range_Check;
1926 ----------------------------------
1927 -- Apply_Selected_Length_Checks --
1928 ----------------------------------
1930 procedure Apply_Selected_Length_Checks
1931 (Ck_Node : Node_Id;
1932 Target_Typ : Entity_Id;
1933 Source_Typ : Entity_Id;
1934 Do_Static : Boolean)
1936 Cond : Node_Id;
1937 R_Result : Check_Result;
1938 R_Cno : Node_Id;
1940 Loc : constant Source_Ptr := Sloc (Ck_Node);
1941 Checks_On : constant Boolean :=
1942 (not Index_Checks_Suppressed (Target_Typ))
1943 or else
1944 (not Length_Checks_Suppressed (Target_Typ));
1946 begin
1947 if not Expander_Active then
1948 return;
1949 end if;
1951 R_Result :=
1952 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
1954 for J in 1 .. 2 loop
1955 R_Cno := R_Result (J);
1956 exit when No (R_Cno);
1958 -- A length check may mention an Itype which is attached to a
1959 -- subsequent node. At the top level in a package this can cause
1960 -- an order-of-elaboration problem, so we make sure that the itype
1961 -- is referenced now.
1963 if Ekind (Current_Scope) = E_Package
1964 and then Is_Compilation_Unit (Current_Scope)
1965 then
1966 Ensure_Defined (Target_Typ, Ck_Node);
1968 if Present (Source_Typ) then
1969 Ensure_Defined (Source_Typ, Ck_Node);
1971 elsif Is_Itype (Etype (Ck_Node)) then
1972 Ensure_Defined (Etype (Ck_Node), Ck_Node);
1973 end if;
1974 end if;
1976 -- If the item is a conditional raise of constraint error,
1977 -- then have a look at what check is being performed and
1978 -- ???
1980 if Nkind (R_Cno) = N_Raise_Constraint_Error
1981 and then Present (Condition (R_Cno))
1982 then
1983 Cond := Condition (R_Cno);
1985 if not Has_Dynamic_Length_Check (Ck_Node)
1986 and then Checks_On
1987 then
1988 Insert_Action (Ck_Node, R_Cno);
1990 if not Do_Static then
1991 Set_Has_Dynamic_Length_Check (Ck_Node);
1992 end if;
1993 end if;
1995 -- Output a warning if the condition is known to be True
1997 if Is_Entity_Name (Cond)
1998 and then Entity (Cond) = Standard_True
1999 then
2000 Apply_Compile_Time_Constraint_Error
2001 (Ck_Node, "wrong length for array of}?",
2002 CE_Length_Check_Failed,
2003 Ent => Target_Typ,
2004 Typ => Target_Typ);
2006 -- If we were only doing a static check, or if checks are not
2007 -- on, then we want to delete the check, since it is not needed.
2008 -- We do this by replacing the if statement by a null statement
2010 elsif Do_Static or else not Checks_On then
2011 Rewrite (R_Cno, Make_Null_Statement (Loc));
2012 end if;
2014 else
2015 Install_Static_Check (R_Cno, Loc);
2016 end if;
2018 end loop;
2020 end Apply_Selected_Length_Checks;
2022 ---------------------------------
2023 -- Apply_Selected_Range_Checks --
2024 ---------------------------------
2026 procedure Apply_Selected_Range_Checks
2027 (Ck_Node : Node_Id;
2028 Target_Typ : Entity_Id;
2029 Source_Typ : Entity_Id;
2030 Do_Static : Boolean)
2032 Cond : Node_Id;
2033 R_Result : Check_Result;
2034 R_Cno : Node_Id;
2036 Loc : constant Source_Ptr := Sloc (Ck_Node);
2037 Checks_On : constant Boolean :=
2038 (not Index_Checks_Suppressed (Target_Typ))
2039 or else
2040 (not Range_Checks_Suppressed (Target_Typ));
2042 begin
2043 if not Expander_Active or else not Checks_On then
2044 return;
2045 end if;
2047 R_Result :=
2048 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2050 for J in 1 .. 2 loop
2052 R_Cno := R_Result (J);
2053 exit when No (R_Cno);
2055 -- If the item is a conditional raise of constraint error,
2056 -- then have a look at what check is being performed and
2057 -- ???
2059 if Nkind (R_Cno) = N_Raise_Constraint_Error
2060 and then Present (Condition (R_Cno))
2061 then
2062 Cond := Condition (R_Cno);
2064 if not Has_Dynamic_Range_Check (Ck_Node) then
2065 Insert_Action (Ck_Node, R_Cno);
2067 if not Do_Static then
2068 Set_Has_Dynamic_Range_Check (Ck_Node);
2069 end if;
2070 end if;
2072 -- Output a warning if the condition is known to be True
2074 if Is_Entity_Name (Cond)
2075 and then Entity (Cond) = Standard_True
2076 then
2077 -- Since an N_Range is technically not an expression, we
2078 -- have to set one of the bounds to C_E and then just flag
2079 -- the N_Range. The warning message will point to the
2080 -- lower bound and complain about a range, which seems OK.
2082 if Nkind (Ck_Node) = N_Range then
2083 Apply_Compile_Time_Constraint_Error
2084 (Low_Bound (Ck_Node), "static range out of bounds of}?",
2085 CE_Range_Check_Failed,
2086 Ent => Target_Typ,
2087 Typ => Target_Typ);
2089 Set_Raises_Constraint_Error (Ck_Node);
2091 else
2092 Apply_Compile_Time_Constraint_Error
2093 (Ck_Node, "static value out of range of}?",
2094 CE_Range_Check_Failed,
2095 Ent => Target_Typ,
2096 Typ => Target_Typ);
2097 end if;
2099 -- If we were only doing a static check, or if checks are not
2100 -- on, then we want to delete the check, since it is not needed.
2101 -- We do this by replacing the if statement by a null statement
2103 elsif Do_Static or else not Checks_On then
2104 Rewrite (R_Cno, Make_Null_Statement (Loc));
2105 end if;
2107 else
2108 Install_Static_Check (R_Cno, Loc);
2109 end if;
2110 end loop;
2111 end Apply_Selected_Range_Checks;
2113 -------------------------------
2114 -- Apply_Static_Length_Check --
2115 -------------------------------
2117 procedure Apply_Static_Length_Check
2118 (Expr : Node_Id;
2119 Target_Typ : Entity_Id;
2120 Source_Typ : Entity_Id := Empty)
2122 begin
2123 Apply_Selected_Length_Checks
2124 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2125 end Apply_Static_Length_Check;
2127 -------------------------------------
2128 -- Apply_Subscript_Validity_Checks --
2129 -------------------------------------
2131 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2132 Sub : Node_Id;
2134 begin
2135 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2137 -- Loop through subscripts
2139 Sub := First (Expressions (Expr));
2140 while Present (Sub) loop
2142 -- Check one subscript. Note that we do not worry about
2143 -- enumeration type with holes, since we will convert the
2144 -- value to a Pos value for the subscript, and that convert
2145 -- will do the necessary validity check.
2147 Ensure_Valid (Sub, Holes_OK => True);
2149 -- Move to next subscript
2151 Sub := Next (Sub);
2152 end loop;
2153 end Apply_Subscript_Validity_Checks;
2155 ----------------------------------
2156 -- Apply_Type_Conversion_Checks --
2157 ----------------------------------
2159 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2160 Target_Type : constant Entity_Id := Etype (N);
2161 Target_Base : constant Entity_Id := Base_Type (Target_Type);
2162 Expr : constant Node_Id := Expression (N);
2163 Expr_Type : constant Entity_Id := Etype (Expr);
2165 begin
2166 if Inside_A_Generic then
2167 return;
2169 -- Skip these checks if serious errors detected, there are some nasty
2170 -- situations of incomplete trees that blow things up.
2172 elsif Serious_Errors_Detected > 0 then
2173 return;
2175 -- Scalar type conversions of the form Target_Type (Expr) require
2176 -- a range check if we cannot be sure that Expr is in the base type
2177 -- of Target_Typ and also that Expr is in the range of Target_Typ.
2178 -- These are not quite the same condition from an implementation
2179 -- point of view, but clearly the second includes the first.
2181 elsif Is_Scalar_Type (Target_Type) then
2182 declare
2183 Conv_OK : constant Boolean := Conversion_OK (N);
2184 -- If the Conversion_OK flag on the type conversion is set
2185 -- and no floating point type is involved in the type conversion
2186 -- then fixed point values must be read as integral values.
2188 Float_To_Int : constant Boolean :=
2189 Is_Floating_Point_Type (Expr_Type)
2190 and then Is_Integer_Type (Target_Type);
2192 begin
2193 if not Overflow_Checks_Suppressed (Target_Base)
2194 and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
2195 and then not Float_To_Int
2196 then
2197 Set_Do_Overflow_Check (N);
2198 end if;
2200 if not Range_Checks_Suppressed (Target_Type)
2201 and then not Range_Checks_Suppressed (Expr_Type)
2202 then
2203 if Float_To_Int then
2204 Apply_Float_Conversion_Check (Expr, Target_Type);
2205 else
2206 Apply_Scalar_Range_Check
2207 (Expr, Target_Type, Fixed_Int => Conv_OK);
2208 end if;
2209 end if;
2210 end;
2212 elsif Comes_From_Source (N)
2213 and then Is_Record_Type (Target_Type)
2214 and then Is_Derived_Type (Target_Type)
2215 and then not Is_Tagged_Type (Target_Type)
2216 and then not Is_Constrained (Target_Type)
2217 and then Present (Stored_Constraint (Target_Type))
2218 then
2219 -- An unconstrained derived type may have inherited discriminant
2220 -- Build an actual discriminant constraint list using the stored
2221 -- constraint, to verify that the expression of the parent type
2222 -- satisfies the constraints imposed by the (unconstrained!)
2223 -- derived type. This applies to value conversions, not to view
2224 -- conversions of tagged types.
2226 declare
2227 Loc : constant Source_Ptr := Sloc (N);
2228 Cond : Node_Id;
2229 Constraint : Elmt_Id;
2230 Discr_Value : Node_Id;
2231 Discr : Entity_Id;
2233 New_Constraints : constant Elist_Id := New_Elmt_List;
2234 Old_Constraints : constant Elist_Id :=
2235 Discriminant_Constraint (Expr_Type);
2237 begin
2238 Constraint := First_Elmt (Stored_Constraint (Target_Type));
2240 while Present (Constraint) loop
2241 Discr_Value := Node (Constraint);
2243 if Is_Entity_Name (Discr_Value)
2244 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2245 then
2246 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2248 if Present (Discr)
2249 and then Scope (Discr) = Base_Type (Expr_Type)
2250 then
2251 -- Parent is constrained by new discriminant. Obtain
2252 -- Value of original discriminant in expression. If
2253 -- the new discriminant has been used to constrain more
2254 -- than one of the stored discriminants, this will
2255 -- provide the required consistency check.
2257 Append_Elmt (
2258 Make_Selected_Component (Loc,
2259 Prefix =>
2260 Duplicate_Subexpr_No_Checks
2261 (Expr, Name_Req => True),
2262 Selector_Name =>
2263 Make_Identifier (Loc, Chars (Discr))),
2264 New_Constraints);
2266 else
2267 -- Discriminant of more remote ancestor ???
2269 return;
2270 end if;
2272 -- Derived type definition has an explicit value for
2273 -- this stored discriminant.
2275 else
2276 Append_Elmt
2277 (Duplicate_Subexpr_No_Checks (Discr_Value),
2278 New_Constraints);
2279 end if;
2281 Next_Elmt (Constraint);
2282 end loop;
2284 -- Use the unconstrained expression type to retrieve the
2285 -- discriminants of the parent, and apply momentarily the
2286 -- discriminant constraint synthesized above.
2288 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2289 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2290 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2292 Insert_Action (N,
2293 Make_Raise_Constraint_Error (Loc,
2294 Condition => Cond,
2295 Reason => CE_Discriminant_Check_Failed));
2296 end;
2298 -- For arrays, conversions are applied during expansion, to take
2299 -- into accounts changes of representation. The checks become range
2300 -- checks on the base type or length checks on the subtype, depending
2301 -- on whether the target type is unconstrained or constrained.
2303 else
2304 null;
2305 end if;
2306 end Apply_Type_Conversion_Checks;
2308 ----------------------------------------------
2309 -- Apply_Universal_Integer_Attribute_Checks --
2310 ----------------------------------------------
2312 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2313 Loc : constant Source_Ptr := Sloc (N);
2314 Typ : constant Entity_Id := Etype (N);
2316 begin
2317 if Inside_A_Generic then
2318 return;
2320 -- Nothing to do if checks are suppressed
2322 elsif Range_Checks_Suppressed (Typ)
2323 and then Overflow_Checks_Suppressed (Typ)
2324 then
2325 return;
2327 -- Nothing to do if the attribute does not come from source. The
2328 -- internal attributes we generate of this type do not need checks,
2329 -- and furthermore the attempt to check them causes some circular
2330 -- elaboration orders when dealing with packed types.
2332 elsif not Comes_From_Source (N) then
2333 return;
2335 -- If the prefix is a selected component that depends on a discriminant
2336 -- the check may improperly expose a discriminant instead of using
2337 -- the bounds of the object itself. Set the type of the attribute to
2338 -- the base type of the context, so that a check will be imposed when
2339 -- needed (e.g. if the node appears as an index).
2341 elsif Nkind (Prefix (N)) = N_Selected_Component
2342 and then Ekind (Typ) = E_Signed_Integer_Subtype
2343 and then Depends_On_Discriminant (Scalar_Range (Typ))
2344 then
2345 Set_Etype (N, Base_Type (Typ));
2347 -- Otherwise, replace the attribute node with a type conversion
2348 -- node whose expression is the attribute, retyped to universal
2349 -- integer, and whose subtype mark is the target type. The call
2350 -- to analyze this conversion will set range and overflow checks
2351 -- as required for proper detection of an out of range value.
2353 else
2354 Set_Etype (N, Universal_Integer);
2355 Set_Analyzed (N, True);
2357 Rewrite (N,
2358 Make_Type_Conversion (Loc,
2359 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2360 Expression => Relocate_Node (N)));
2362 Analyze_And_Resolve (N, Typ);
2363 return;
2364 end if;
2366 end Apply_Universal_Integer_Attribute_Checks;
2368 -------------------------------
2369 -- Build_Discriminant_Checks --
2370 -------------------------------
2372 function Build_Discriminant_Checks
2373 (N : Node_Id;
2374 T_Typ : Entity_Id) return Node_Id
2376 Loc : constant Source_Ptr := Sloc (N);
2377 Cond : Node_Id;
2378 Disc : Elmt_Id;
2379 Disc_Ent : Entity_Id;
2380 Dref : Node_Id;
2381 Dval : Node_Id;
2383 begin
2384 Cond := Empty;
2385 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2387 -- For a fully private type, use the discriminants of the parent type
2389 if Is_Private_Type (T_Typ)
2390 and then No (Full_View (T_Typ))
2391 then
2392 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2393 else
2394 Disc_Ent := First_Discriminant (T_Typ);
2395 end if;
2397 while Present (Disc) loop
2398 Dval := Node (Disc);
2400 if Nkind (Dval) = N_Identifier
2401 and then Ekind (Entity (Dval)) = E_Discriminant
2402 then
2403 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2404 else
2405 Dval := Duplicate_Subexpr_No_Checks (Dval);
2406 end if;
2408 -- If we have an Unchecked_Union node, we can infer the discriminants
2409 -- of the node.
2411 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2412 Dref := New_Copy (
2413 Get_Discriminant_Value (
2414 First_Discriminant (T_Typ),
2415 T_Typ,
2416 Stored_Constraint (T_Typ)));
2418 else
2419 Dref :=
2420 Make_Selected_Component (Loc,
2421 Prefix =>
2422 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2423 Selector_Name =>
2424 Make_Identifier (Loc, Chars (Disc_Ent)));
2426 Set_Is_In_Discriminant_Check (Dref);
2427 end if;
2429 Evolve_Or_Else (Cond,
2430 Make_Op_Ne (Loc,
2431 Left_Opnd => Dref,
2432 Right_Opnd => Dval));
2434 Next_Elmt (Disc);
2435 Next_Discriminant (Disc_Ent);
2436 end loop;
2438 return Cond;
2439 end Build_Discriminant_Checks;
2441 -----------------------------------
2442 -- Check_Valid_Lvalue_Subscripts --
2443 -----------------------------------
2445 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2446 begin
2447 -- Skip this if range checks are suppressed
2449 if Range_Checks_Suppressed (Etype (Expr)) then
2450 return;
2452 -- Only do this check for expressions that come from source. We
2453 -- assume that expander generated assignments explicitly include
2454 -- any necessary checks. Note that this is not just an optimization,
2455 -- it avoids infinite recursions!
2457 elsif not Comes_From_Source (Expr) then
2458 return;
2460 -- For a selected component, check the prefix
2462 elsif Nkind (Expr) = N_Selected_Component then
2463 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2464 return;
2466 -- Case of indexed component
2468 elsif Nkind (Expr) = N_Indexed_Component then
2469 Apply_Subscript_Validity_Checks (Expr);
2471 -- Prefix may itself be or contain an indexed component, and
2472 -- these subscripts need checking as well
2474 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2475 end if;
2476 end Check_Valid_Lvalue_Subscripts;
2478 ----------------------------------
2479 -- Null_Exclusion_Static_Checks --
2480 ----------------------------------
2482 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2483 K : constant Node_Kind := Nkind (N);
2484 Typ : Entity_Id;
2485 Related_Nod : Node_Id;
2486 Has_Null_Exclusion : Boolean := False;
2488 type Msg_Kind is (Components, Formals, Objects);
2489 Msg_K : Msg_Kind := Objects;
2490 -- Used by local subprograms to generate precise error messages
2492 procedure Check_Must_Be_Access
2493 (Typ : Entity_Id;
2494 Has_Null_Exclusion : Boolean);
2495 -- ??? local subprograms must have comment on spec
2497 procedure Check_Already_Null_Excluding_Type
2498 (Typ : Entity_Id;
2499 Has_Null_Exclusion : Boolean;
2500 Related_Nod : Node_Id);
2501 -- ??? local subprograms must have comment on spec
2503 procedure Check_Must_Be_Initialized
2504 (N : Node_Id;
2505 Related_Nod : Node_Id);
2506 -- ??? local subprograms must have comment on spec
2508 procedure Check_Null_Not_Allowed (N : Node_Id);
2509 -- ??? local subprograms must have comment on spec
2511 -- ??? following bodies lack comments
2513 --------------------------
2514 -- Check_Must_Be_Access --
2515 --------------------------
2517 procedure Check_Must_Be_Access
2518 (Typ : Entity_Id;
2519 Has_Null_Exclusion : Boolean)
2521 begin
2522 if Has_Null_Exclusion
2523 and then not Is_Access_Type (Typ)
2524 then
2525 Error_Msg_N ("(Ada 2005) must be an access type", Related_Nod);
2526 end if;
2527 end Check_Must_Be_Access;
2529 ---------------------------------------
2530 -- Check_Already_Null_Excluding_Type --
2531 ---------------------------------------
2533 procedure Check_Already_Null_Excluding_Type
2534 (Typ : Entity_Id;
2535 Has_Null_Exclusion : Boolean;
2536 Related_Nod : Node_Id)
2538 begin
2539 if Has_Null_Exclusion
2540 and then Can_Never_Be_Null (Typ)
2541 then
2542 Error_Msg_N
2543 ("(Ada 2005) already a null-excluding type", Related_Nod);
2544 end if;
2545 end Check_Already_Null_Excluding_Type;
2547 -------------------------------
2548 -- Check_Must_Be_Initialized --
2549 -------------------------------
2551 procedure Check_Must_Be_Initialized
2552 (N : Node_Id;
2553 Related_Nod : Node_Id)
2555 Expr : constant Node_Id := Expression (N);
2557 begin
2558 pragma Assert (Nkind (N) = N_Component_Declaration
2559 or else Nkind (N) = N_Object_Declaration);
2561 if not Present (Expr) then
2562 case Msg_K is
2563 when Components =>
2564 Error_Msg_N
2565 ("(Ada 2005) null-excluding components must be " &
2566 "initialized", Related_Nod);
2568 when Formals =>
2569 Error_Msg_N
2570 ("(Ada 2005) null-excluding formals must be initialized",
2571 Related_Nod);
2573 when Objects =>
2574 Error_Msg_N
2575 ("(Ada 2005) null-excluding objects must be initialized",
2576 Related_Nod);
2577 end case;
2578 end if;
2579 end Check_Must_Be_Initialized;
2581 ----------------------------
2582 -- Check_Null_Not_Allowed --
2583 ----------------------------
2585 procedure Check_Null_Not_Allowed (N : Node_Id) is
2586 Expr : constant Node_Id := Expression (N);
2588 begin
2589 if Present (Expr)
2590 and then Nkind (Expr) = N_Null
2591 then
2592 case Msg_K is
2593 when Components =>
2594 Error_Msg_N
2595 ("(Ada 2005) NULL not allowed in null-excluding " &
2596 "components", Expr);
2598 when Formals =>
2599 Error_Msg_N
2600 ("(Ada 2005) NULL not allowed in null-excluding formals",
2601 Expr);
2603 when Objects =>
2604 Error_Msg_N
2605 ("(Ada 2005) NULL not allowed in null-excluding objects",
2606 Expr);
2607 end case;
2608 end if;
2609 end Check_Null_Not_Allowed;
2611 -- Start of processing for Null_Exclusion_Static_Checks
2613 begin
2614 pragma Assert (K = N_Component_Declaration
2615 or else K = N_Parameter_Specification
2616 or else K = N_Object_Declaration
2617 or else K = N_Discriminant_Specification
2618 or else K = N_Allocator);
2620 case K is
2621 when N_Component_Declaration =>
2622 Msg_K := Components;
2624 if not Present (Access_Definition (Component_Definition (N))) then
2625 Has_Null_Exclusion := Null_Exclusion_Present
2626 (Component_Definition (N));
2627 Typ := Etype (Subtype_Indication (Component_Definition (N)));
2628 Related_Nod := Subtype_Indication (Component_Definition (N));
2629 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2630 Check_Already_Null_Excluding_Type
2631 (Typ, Has_Null_Exclusion, Related_Nod);
2632 Check_Must_Be_Initialized (N, Related_Nod);
2633 end if;
2635 Check_Null_Not_Allowed (N);
2637 when N_Parameter_Specification =>
2638 Msg_K := Formals;
2639 Has_Null_Exclusion := Null_Exclusion_Present (N);
2640 Typ := Entity (Parameter_Type (N));
2641 Related_Nod := Parameter_Type (N);
2642 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2643 Check_Already_Null_Excluding_Type
2644 (Typ, Has_Null_Exclusion, Related_Nod);
2645 Check_Null_Not_Allowed (N);
2647 when N_Object_Declaration =>
2648 Msg_K := Objects;
2649 Has_Null_Exclusion := Null_Exclusion_Present (N);
2650 Typ := Entity (Object_Definition (N));
2651 Related_Nod := Object_Definition (N);
2652 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2653 Check_Already_Null_Excluding_Type
2654 (Typ, Has_Null_Exclusion, Related_Nod);
2655 Check_Must_Be_Initialized (N, Related_Nod);
2656 Check_Null_Not_Allowed (N);
2658 when N_Discriminant_Specification =>
2659 Msg_K := Components;
2661 if Nkind (Discriminant_Type (N)) /= N_Access_Definition then
2662 Has_Null_Exclusion := Null_Exclusion_Present (N);
2663 Typ := Etype (Defining_Identifier (N));
2664 Related_Nod := Discriminant_Type (N);
2665 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2666 Check_Already_Null_Excluding_Type
2667 (Typ, Has_Null_Exclusion, Related_Nod);
2668 end if;
2670 Check_Null_Not_Allowed (N);
2672 when N_Allocator =>
2673 Msg_K := Objects;
2674 Has_Null_Exclusion := Null_Exclusion_Present (N);
2675 Typ := Etype (Expression (N));
2677 if Nkind (Expression (N)) = N_Qualified_Expression then
2678 Related_Nod := Subtype_Mark (Expression (N));
2679 else
2680 Related_Nod := Expression (N);
2681 end if;
2683 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2684 Check_Already_Null_Excluding_Type
2685 (Typ, Has_Null_Exclusion, Related_Nod);
2686 Check_Null_Not_Allowed (N);
2688 when others =>
2689 raise Program_Error;
2690 end case;
2691 end Null_Exclusion_Static_Checks;
2693 ----------------------------------
2694 -- Conditional_Statements_Begin --
2695 ----------------------------------
2697 procedure Conditional_Statements_Begin is
2698 begin
2699 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2701 -- If stack overflows, kill all checks, that way we know to
2702 -- simply reset the number of saved checks to zero on return.
2703 -- This should never occur in practice.
2705 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2706 Kill_All_Checks;
2708 -- In the normal case, we just make a new stack entry saving
2709 -- the current number of saved checks for a later restore.
2711 else
2712 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2714 if Debug_Flag_CC then
2715 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2716 Num_Saved_Checks);
2717 end if;
2718 end if;
2719 end Conditional_Statements_Begin;
2721 --------------------------------
2722 -- Conditional_Statements_End --
2723 --------------------------------
2725 procedure Conditional_Statements_End is
2726 begin
2727 pragma Assert (Saved_Checks_TOS > 0);
2729 -- If the saved checks stack overflowed, then we killed all
2730 -- checks, so setting the number of saved checks back to
2731 -- zero is correct. This should never occur in practice.
2733 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2734 Num_Saved_Checks := 0;
2736 -- In the normal case, restore the number of saved checks
2737 -- from the top stack entry.
2739 else
2740 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2741 if Debug_Flag_CC then
2742 w ("Conditional_Statements_End: Num_Saved_Checks = ",
2743 Num_Saved_Checks);
2744 end if;
2745 end if;
2747 Saved_Checks_TOS := Saved_Checks_TOS - 1;
2748 end Conditional_Statements_End;
2750 ---------------------
2751 -- Determine_Range --
2752 ---------------------
2754 Cache_Size : constant := 2 ** 10;
2755 type Cache_Index is range 0 .. Cache_Size - 1;
2756 -- Determine size of below cache (power of 2 is more efficient!)
2758 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
2759 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2760 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
2761 -- The above arrays are used to implement a small direct cache
2762 -- for Determine_Range calls. Because of the way Determine_Range
2763 -- recursively traces subexpressions, and because overflow checking
2764 -- calls the routine on the way up the tree, a quadratic behavior
2765 -- can otherwise be encountered in large expressions. The cache
2766 -- entry for node N is stored in the (N mod Cache_Size) entry, and
2767 -- can be validated by checking the actual node value stored there.
2769 procedure Determine_Range
2770 (N : Node_Id;
2771 OK : out Boolean;
2772 Lo : out Uint;
2773 Hi : out Uint)
2775 Typ : constant Entity_Id := Etype (N);
2777 Lo_Left : Uint;
2778 Hi_Left : Uint;
2779 -- Lo and Hi bounds of left operand
2781 Lo_Right : Uint;
2782 Hi_Right : Uint;
2783 -- Lo and Hi bounds of right (or only) operand
2785 Bound : Node_Id;
2786 -- Temp variable used to hold a bound node
2788 Hbound : Uint;
2789 -- High bound of base type of expression
2791 Lor : Uint;
2792 Hir : Uint;
2793 -- Refined values for low and high bounds, after tightening
2795 OK1 : Boolean;
2796 -- Used in lower level calls to indicate if call succeeded
2798 Cindex : Cache_Index;
2799 -- Used to search cache
2801 function OK_Operands return Boolean;
2802 -- Used for binary operators. Determines the ranges of the left and
2803 -- right operands, and if they are both OK, returns True, and puts
2804 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
2806 -----------------
2807 -- OK_Operands --
2808 -----------------
2810 function OK_Operands return Boolean is
2811 begin
2812 Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
2814 if not OK1 then
2815 return False;
2816 end if;
2818 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2819 return OK1;
2820 end OK_Operands;
2822 -- Start of processing for Determine_Range
2824 begin
2825 -- Prevent junk warnings by initializing range variables
2827 Lo := No_Uint;
2828 Hi := No_Uint;
2829 Lor := No_Uint;
2830 Hir := No_Uint;
2832 -- If the type is not discrete, or is undefined, then we can't
2833 -- do anything about determining the range.
2835 if No (Typ) or else not Is_Discrete_Type (Typ)
2836 or else Error_Posted (N)
2837 then
2838 OK := False;
2839 return;
2840 end if;
2842 -- For all other cases, we can determine the range
2844 OK := True;
2846 -- If value is compile time known, then the possible range is the
2847 -- one value that we know this expression definitely has!
2849 if Compile_Time_Known_Value (N) then
2850 Lo := Expr_Value (N);
2851 Hi := Lo;
2852 return;
2853 end if;
2855 -- Return if already in the cache
2857 Cindex := Cache_Index (N mod Cache_Size);
2859 if Determine_Range_Cache_N (Cindex) = N then
2860 Lo := Determine_Range_Cache_Lo (Cindex);
2861 Hi := Determine_Range_Cache_Hi (Cindex);
2862 return;
2863 end if;
2865 -- Otherwise, start by finding the bounds of the type of the
2866 -- expression, the value cannot be outside this range (if it
2867 -- is, then we have an overflow situation, which is a separate
2868 -- check, we are talking here only about the expression value).
2870 -- We use the actual bound unless it is dynamic, in which case
2871 -- use the corresponding base type bound if possible. If we can't
2872 -- get a bound then we figure we can't determine the range (a
2873 -- peculiar case, that perhaps cannot happen, but there is no
2874 -- point in bombing in this optimization circuit.
2876 -- First the low bound
2878 Bound := Type_Low_Bound (Typ);
2880 if Compile_Time_Known_Value (Bound) then
2881 Lo := Expr_Value (Bound);
2883 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
2884 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
2886 else
2887 OK := False;
2888 return;
2889 end if;
2891 -- Now the high bound
2893 Bound := Type_High_Bound (Typ);
2895 -- We need the high bound of the base type later on, and this should
2896 -- always be compile time known. Again, it is not clear that this
2897 -- can ever be false, but no point in bombing.
2899 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
2900 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
2901 Hi := Hbound;
2903 else
2904 OK := False;
2905 return;
2906 end if;
2908 -- If we have a static subtype, then that may have a tighter bound
2909 -- so use the upper bound of the subtype instead in this case.
2911 if Compile_Time_Known_Value (Bound) then
2912 Hi := Expr_Value (Bound);
2913 end if;
2915 -- We may be able to refine this value in certain situations. If
2916 -- refinement is possible, then Lor and Hir are set to possibly
2917 -- tighter bounds, and OK1 is set to True.
2919 case Nkind (N) is
2921 -- For unary plus, result is limited by range of operand
2923 when N_Op_Plus =>
2924 Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
2926 -- For unary minus, determine range of operand, and negate it
2928 when N_Op_Minus =>
2929 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2931 if OK1 then
2932 Lor := -Hi_Right;
2933 Hir := -Lo_Right;
2934 end if;
2936 -- For binary addition, get range of each operand and do the
2937 -- addition to get the result range.
2939 when N_Op_Add =>
2940 if OK_Operands then
2941 Lor := Lo_Left + Lo_Right;
2942 Hir := Hi_Left + Hi_Right;
2943 end if;
2945 -- Division is tricky. The only case we consider is where the
2946 -- right operand is a positive constant, and in this case we
2947 -- simply divide the bounds of the left operand
2949 when N_Op_Divide =>
2950 if OK_Operands then
2951 if Lo_Right = Hi_Right
2952 and then Lo_Right > 0
2953 then
2954 Lor := Lo_Left / Lo_Right;
2955 Hir := Hi_Left / Lo_Right;
2957 else
2958 OK1 := False;
2959 end if;
2960 end if;
2962 -- For binary subtraction, get range of each operand and do
2963 -- the worst case subtraction to get the result range.
2965 when N_Op_Subtract =>
2966 if OK_Operands then
2967 Lor := Lo_Left - Hi_Right;
2968 Hir := Hi_Left - Lo_Right;
2969 end if;
2971 -- For MOD, if right operand is a positive constant, then
2972 -- result must be in the allowable range of mod results.
2974 when N_Op_Mod =>
2975 if OK_Operands then
2976 if Lo_Right = Hi_Right
2977 and then Lo_Right /= 0
2978 then
2979 if Lo_Right > 0 then
2980 Lor := Uint_0;
2981 Hir := Lo_Right - 1;
2983 else -- Lo_Right < 0
2984 Lor := Lo_Right + 1;
2985 Hir := Uint_0;
2986 end if;
2988 else
2989 OK1 := False;
2990 end if;
2991 end if;
2993 -- For REM, if right operand is a positive constant, then
2994 -- result must be in the allowable range of mod results.
2996 when N_Op_Rem =>
2997 if OK_Operands then
2998 if Lo_Right = Hi_Right
2999 and then Lo_Right /= 0
3000 then
3001 declare
3002 Dval : constant Uint := (abs Lo_Right) - 1;
3004 begin
3005 -- The sign of the result depends on the sign of the
3006 -- dividend (but not on the sign of the divisor, hence
3007 -- the abs operation above).
3009 if Lo_Left < 0 then
3010 Lor := -Dval;
3011 else
3012 Lor := Uint_0;
3013 end if;
3015 if Hi_Left < 0 then
3016 Hir := Uint_0;
3017 else
3018 Hir := Dval;
3019 end if;
3020 end;
3022 else
3023 OK1 := False;
3024 end if;
3025 end if;
3027 -- Attribute reference cases
3029 when N_Attribute_Reference =>
3030 case Attribute_Name (N) is
3032 -- For Pos/Val attributes, we can refine the range using the
3033 -- possible range of values of the attribute expression
3035 when Name_Pos | Name_Val =>
3036 Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
3038 -- For Length attribute, use the bounds of the corresponding
3039 -- index type to refine the range.
3041 when Name_Length =>
3042 declare
3043 Atyp : Entity_Id := Etype (Prefix (N));
3044 Inum : Nat;
3045 Indx : Node_Id;
3047 LL, LU : Uint;
3048 UL, UU : Uint;
3050 begin
3051 if Is_Access_Type (Atyp) then
3052 Atyp := Designated_Type (Atyp);
3053 end if;
3055 -- For string literal, we know exact value
3057 if Ekind (Atyp) = E_String_Literal_Subtype then
3058 OK := True;
3059 Lo := String_Literal_Length (Atyp);
3060 Hi := String_Literal_Length (Atyp);
3061 return;
3062 end if;
3064 -- Otherwise check for expression given
3066 if No (Expressions (N)) then
3067 Inum := 1;
3068 else
3069 Inum :=
3070 UI_To_Int (Expr_Value (First (Expressions (N))));
3071 end if;
3073 Indx := First_Index (Atyp);
3074 for J in 2 .. Inum loop
3075 Indx := Next_Index (Indx);
3076 end loop;
3078 Determine_Range
3079 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
3081 if OK1 then
3082 Determine_Range
3083 (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
3085 if OK1 then
3087 -- The maximum value for Length is the biggest
3088 -- possible gap between the values of the bounds.
3089 -- But of course, this value cannot be negative.
3091 Hir := UI_Max (Uint_0, UU - LL);
3093 -- For constrained arrays, the minimum value for
3094 -- Length is taken from the actual value of the
3095 -- bounds, since the index will be exactly of
3096 -- this subtype.
3098 if Is_Constrained (Atyp) then
3099 Lor := UI_Max (Uint_0, UL - LU);
3101 -- For an unconstrained array, the minimum value
3102 -- for length is always zero.
3104 else
3105 Lor := Uint_0;
3106 end if;
3107 end if;
3108 end if;
3109 end;
3111 -- No special handling for other attributes
3112 -- Probably more opportunities exist here ???
3114 when others =>
3115 OK1 := False;
3117 end case;
3119 -- For type conversion from one discrete type to another, we
3120 -- can refine the range using the converted value.
3122 when N_Type_Conversion =>
3123 Determine_Range (Expression (N), OK1, Lor, Hir);
3125 -- Nothing special to do for all other expression kinds
3127 when others =>
3128 OK1 := False;
3129 Lor := No_Uint;
3130 Hir := No_Uint;
3131 end case;
3133 -- At this stage, if OK1 is true, then we know that the actual
3134 -- result of the computed expression is in the range Lor .. Hir.
3135 -- We can use this to restrict the possible range of results.
3137 if OK1 then
3139 -- If the refined value of the low bound is greater than the
3140 -- type high bound, then reset it to the more restrictive
3141 -- value. However, we do NOT do this for the case of a modular
3142 -- type where the possible upper bound on the value is above the
3143 -- base type high bound, because that means the result could wrap.
3145 if Lor > Lo
3146 and then not (Is_Modular_Integer_Type (Typ)
3147 and then Hir > Hbound)
3148 then
3149 Lo := Lor;
3150 end if;
3152 -- Similarly, if the refined value of the high bound is less
3153 -- than the value so far, then reset it to the more restrictive
3154 -- value. Again, we do not do this if the refined low bound is
3155 -- negative for a modular type, since this would wrap.
3157 if Hir < Hi
3158 and then not (Is_Modular_Integer_Type (Typ)
3159 and then Lor < Uint_0)
3160 then
3161 Hi := Hir;
3162 end if;
3163 end if;
3165 -- Set cache entry for future call and we are all done
3167 Determine_Range_Cache_N (Cindex) := N;
3168 Determine_Range_Cache_Lo (Cindex) := Lo;
3169 Determine_Range_Cache_Hi (Cindex) := Hi;
3170 return;
3172 -- If any exception occurs, it means that we have some bug in the compiler
3173 -- possibly triggered by a previous error, or by some unforseen peculiar
3174 -- occurrence. However, this is only an optimization attempt, so there is
3175 -- really no point in crashing the compiler. Instead we just decide, too
3176 -- bad, we can't figure out a range in this case after all.
3178 exception
3179 when others =>
3181 -- Debug flag K disables this behavior (useful for debugging)
3183 if Debug_Flag_K then
3184 raise;
3185 else
3186 OK := False;
3187 Lo := No_Uint;
3188 Hi := No_Uint;
3189 return;
3190 end if;
3191 end Determine_Range;
3193 ------------------------------------
3194 -- Discriminant_Checks_Suppressed --
3195 ------------------------------------
3197 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3198 begin
3199 if Present (E) then
3200 if Is_Unchecked_Union (E) then
3201 return True;
3202 elsif Checks_May_Be_Suppressed (E) then
3203 return Is_Check_Suppressed (E, Discriminant_Check);
3204 end if;
3205 end if;
3207 return Scope_Suppress (Discriminant_Check);
3208 end Discriminant_Checks_Suppressed;
3210 --------------------------------
3211 -- Division_Checks_Suppressed --
3212 --------------------------------
3214 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3215 begin
3216 if Present (E) and then Checks_May_Be_Suppressed (E) then
3217 return Is_Check_Suppressed (E, Division_Check);
3218 else
3219 return Scope_Suppress (Division_Check);
3220 end if;
3221 end Division_Checks_Suppressed;
3223 -----------------------------------
3224 -- Elaboration_Checks_Suppressed --
3225 -----------------------------------
3227 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3228 begin
3229 if Present (E) then
3230 if Kill_Elaboration_Checks (E) then
3231 return True;
3232 elsif Checks_May_Be_Suppressed (E) then
3233 return Is_Check_Suppressed (E, Elaboration_Check);
3234 end if;
3235 end if;
3237 return Scope_Suppress (Elaboration_Check);
3238 end Elaboration_Checks_Suppressed;
3240 ---------------------------
3241 -- Enable_Overflow_Check --
3242 ---------------------------
3244 procedure Enable_Overflow_Check (N : Node_Id) is
3245 Typ : constant Entity_Id := Base_Type (Etype (N));
3246 Chk : Nat;
3247 OK : Boolean;
3248 Ent : Entity_Id;
3249 Ofs : Uint;
3250 Lo : Uint;
3251 Hi : Uint;
3253 begin
3254 if Debug_Flag_CC then
3255 w ("Enable_Overflow_Check for node ", Int (N));
3256 Write_Str (" Source location = ");
3257 wl (Sloc (N));
3258 pg (N);
3259 end if;
3261 -- Nothing to do if the range of the result is known OK. We skip
3262 -- this for conversions, since the caller already did the check,
3263 -- and in any case the condition for deleting the check for a
3264 -- type conversion is different in any case.
3266 if Nkind (N) /= N_Type_Conversion then
3267 Determine_Range (N, OK, Lo, Hi);
3269 -- Note in the test below that we assume that if a bound of the
3270 -- range is equal to that of the type. That's not quite accurate
3271 -- but we do this for the following reasons:
3273 -- a) The way that Determine_Range works, it will typically report
3274 -- the bounds of the value as being equal to the bounds of the
3275 -- type, because it either can't tell anything more precise, or
3276 -- does not think it is worth the effort to be more precise.
3278 -- b) It is very unusual to have a situation in which this would
3279 -- generate an unnecessary overflow check (an example would be
3280 -- a subtype with a range 0 .. Integer'Last - 1 to which the
3281 -- literal value one is added.
3283 -- c) The alternative is a lot of special casing in this routine
3284 -- which would partially duplicate Determine_Range processing.
3286 if OK
3287 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3288 and then Hi < Expr_Value (Type_High_Bound (Typ))
3289 then
3290 if Debug_Flag_CC then
3291 w ("No overflow check required");
3292 end if;
3294 return;
3295 end if;
3296 end if;
3298 -- If not in optimizing mode, set flag and we are done. We are also
3299 -- done (and just set the flag) if the type is not a discrete type,
3300 -- since it is not worth the effort to eliminate checks for other
3301 -- than discrete types. In addition, we take this same path if we
3302 -- have stored the maximum number of checks possible already (a
3303 -- very unlikely situation, but we do not want to blow up!)
3305 if Optimization_Level = 0
3306 or else not Is_Discrete_Type (Etype (N))
3307 or else Num_Saved_Checks = Saved_Checks'Last
3308 then
3309 Set_Do_Overflow_Check (N, True);
3311 if Debug_Flag_CC then
3312 w ("Optimization off");
3313 end if;
3315 return;
3316 end if;
3318 -- Otherwise evaluate and check the expression
3320 Find_Check
3321 (Expr => N,
3322 Check_Type => 'O',
3323 Target_Type => Empty,
3324 Entry_OK => OK,
3325 Check_Num => Chk,
3326 Ent => Ent,
3327 Ofs => Ofs);
3329 if Debug_Flag_CC then
3330 w ("Called Find_Check");
3331 w (" OK = ", OK);
3333 if OK then
3334 w (" Check_Num = ", Chk);
3335 w (" Ent = ", Int (Ent));
3336 Write_Str (" Ofs = ");
3337 pid (Ofs);
3338 end if;
3339 end if;
3341 -- If check is not of form to optimize, then set flag and we are done
3343 if not OK then
3344 Set_Do_Overflow_Check (N, True);
3345 return;
3346 end if;
3348 -- If check is already performed, then return without setting flag
3350 if Chk /= 0 then
3351 if Debug_Flag_CC then
3352 w ("Check suppressed!");
3353 end if;
3355 return;
3356 end if;
3358 -- Here we will make a new entry for the new check
3360 Set_Do_Overflow_Check (N, True);
3361 Num_Saved_Checks := Num_Saved_Checks + 1;
3362 Saved_Checks (Num_Saved_Checks) :=
3363 (Killed => False,
3364 Entity => Ent,
3365 Offset => Ofs,
3366 Check_Type => 'O',
3367 Target_Type => Empty);
3369 if Debug_Flag_CC then
3370 w ("Make new entry, check number = ", Num_Saved_Checks);
3371 w (" Entity = ", Int (Ent));
3372 Write_Str (" Offset = ");
3373 pid (Ofs);
3374 w (" Check_Type = O");
3375 w (" Target_Type = Empty");
3376 end if;
3378 -- If we get an exception, then something went wrong, probably because
3379 -- of an error in the structure of the tree due to an incorrect program.
3380 -- Or it may be a bug in the optimization circuit. In either case the
3381 -- safest thing is simply to set the check flag unconditionally.
3383 exception
3384 when others =>
3385 Set_Do_Overflow_Check (N, True);
3387 if Debug_Flag_CC then
3388 w (" exception occurred, overflow flag set");
3389 end if;
3391 return;
3392 end Enable_Overflow_Check;
3394 ------------------------
3395 -- Enable_Range_Check --
3396 ------------------------
3398 procedure Enable_Range_Check (N : Node_Id) is
3399 Chk : Nat;
3400 OK : Boolean;
3401 Ent : Entity_Id;
3402 Ofs : Uint;
3403 Ttyp : Entity_Id;
3404 P : Node_Id;
3406 begin
3407 -- Return if unchecked type conversion with range check killed.
3408 -- In this case we never set the flag (that's what Kill_Range_Check
3409 -- is all about!)
3411 if Nkind (N) = N_Unchecked_Type_Conversion
3412 and then Kill_Range_Check (N)
3413 then
3414 return;
3415 end if;
3417 -- Debug trace output
3419 if Debug_Flag_CC then
3420 w ("Enable_Range_Check for node ", Int (N));
3421 Write_Str (" Source location = ");
3422 wl (Sloc (N));
3423 pg (N);
3424 end if;
3426 -- If not in optimizing mode, set flag and we are done. We are also
3427 -- done (and just set the flag) if the type is not a discrete type,
3428 -- since it is not worth the effort to eliminate checks for other
3429 -- than discrete types. In addition, we take this same path if we
3430 -- have stored the maximum number of checks possible already (a
3431 -- very unlikely situation, but we do not want to blow up!)
3433 if Optimization_Level = 0
3434 or else No (Etype (N))
3435 or else not Is_Discrete_Type (Etype (N))
3436 or else Num_Saved_Checks = Saved_Checks'Last
3437 then
3438 Set_Do_Range_Check (N, True);
3440 if Debug_Flag_CC then
3441 w ("Optimization off");
3442 end if;
3444 return;
3445 end if;
3447 -- Otherwise find out the target type
3449 P := Parent (N);
3451 -- For assignment, use left side subtype
3453 if Nkind (P) = N_Assignment_Statement
3454 and then Expression (P) = N
3455 then
3456 Ttyp := Etype (Name (P));
3458 -- For indexed component, use subscript subtype
3460 elsif Nkind (P) = N_Indexed_Component then
3461 declare
3462 Atyp : Entity_Id;
3463 Indx : Node_Id;
3464 Subs : Node_Id;
3466 begin
3467 Atyp := Etype (Prefix (P));
3469 if Is_Access_Type (Atyp) then
3470 Atyp := Designated_Type (Atyp);
3472 -- If the prefix is an access to an unconstrained array,
3473 -- perform check unconditionally: it depends on the bounds
3474 -- of an object and we cannot currently recognize whether
3475 -- the test may be redundant.
3477 if not Is_Constrained (Atyp) then
3478 Set_Do_Range_Check (N, True);
3479 return;
3480 end if;
3481 end if;
3483 Indx := First_Index (Atyp);
3484 Subs := First (Expressions (P));
3485 loop
3486 if Subs = N then
3487 Ttyp := Etype (Indx);
3488 exit;
3489 end if;
3491 Next_Index (Indx);
3492 Next (Subs);
3493 end loop;
3494 end;
3496 -- For now, ignore all other cases, they are not so interesting
3498 else
3499 if Debug_Flag_CC then
3500 w (" target type not found, flag set");
3501 end if;
3503 Set_Do_Range_Check (N, True);
3504 return;
3505 end if;
3507 -- Evaluate and check the expression
3509 Find_Check
3510 (Expr => N,
3511 Check_Type => 'R',
3512 Target_Type => Ttyp,
3513 Entry_OK => OK,
3514 Check_Num => Chk,
3515 Ent => Ent,
3516 Ofs => Ofs);
3518 if Debug_Flag_CC then
3519 w ("Called Find_Check");
3520 w ("Target_Typ = ", Int (Ttyp));
3521 w (" OK = ", OK);
3523 if OK then
3524 w (" Check_Num = ", Chk);
3525 w (" Ent = ", Int (Ent));
3526 Write_Str (" Ofs = ");
3527 pid (Ofs);
3528 end if;
3529 end if;
3531 -- If check is not of form to optimize, then set flag and we are done
3533 if not OK then
3534 if Debug_Flag_CC then
3535 w (" expression not of optimizable type, flag set");
3536 end if;
3538 Set_Do_Range_Check (N, True);
3539 return;
3540 end if;
3542 -- If check is already performed, then return without setting flag
3544 if Chk /= 0 then
3545 if Debug_Flag_CC then
3546 w ("Check suppressed!");
3547 end if;
3549 return;
3550 end if;
3552 -- Here we will make a new entry for the new check
3554 Set_Do_Range_Check (N, True);
3555 Num_Saved_Checks := Num_Saved_Checks + 1;
3556 Saved_Checks (Num_Saved_Checks) :=
3557 (Killed => False,
3558 Entity => Ent,
3559 Offset => Ofs,
3560 Check_Type => 'R',
3561 Target_Type => Ttyp);
3563 if Debug_Flag_CC then
3564 w ("Make new entry, check number = ", Num_Saved_Checks);
3565 w (" Entity = ", Int (Ent));
3566 Write_Str (" Offset = ");
3567 pid (Ofs);
3568 w (" Check_Type = R");
3569 w (" Target_Type = ", Int (Ttyp));
3570 pg (Ttyp);
3571 end if;
3573 -- If we get an exception, then something went wrong, probably because
3574 -- of an error in the structure of the tree due to an incorrect program.
3575 -- Or it may be a bug in the optimization circuit. In either case the
3576 -- safest thing is simply to set the check flag unconditionally.
3578 exception
3579 when others =>
3580 Set_Do_Range_Check (N, True);
3582 if Debug_Flag_CC then
3583 w (" exception occurred, range flag set");
3584 end if;
3586 return;
3587 end Enable_Range_Check;
3589 ------------------
3590 -- Ensure_Valid --
3591 ------------------
3593 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3594 Typ : constant Entity_Id := Etype (Expr);
3596 begin
3597 -- Ignore call if we are not doing any validity checking
3599 if not Validity_Checks_On then
3600 return;
3602 -- Ignore call if range checks suppressed on entity in question
3604 elsif Is_Entity_Name (Expr)
3605 and then Range_Checks_Suppressed (Entity (Expr))
3606 then
3607 return;
3609 -- No check required if expression is from the expander, we assume
3610 -- the expander will generate whatever checks are needed. Note that
3611 -- this is not just an optimization, it avoids infinite recursions!
3613 -- Unchecked conversions must be checked, unless they are initialized
3614 -- scalar values, as in a component assignment in an init proc.
3616 -- In addition, we force a check if Force_Validity_Checks is set
3618 elsif not Comes_From_Source (Expr)
3619 and then not Force_Validity_Checks
3620 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3621 or else Kill_Range_Check (Expr))
3622 then
3623 return;
3625 -- No check required if expression is known to have valid value
3627 elsif Expr_Known_Valid (Expr) then
3628 return;
3630 -- No check required if checks off
3632 elsif Range_Checks_Suppressed (Typ) then
3633 return;
3635 -- Ignore case of enumeration with holes where the flag is set not
3636 -- to worry about holes, since no special validity check is needed
3638 elsif Is_Enumeration_Type (Typ)
3639 and then Has_Non_Standard_Rep (Typ)
3640 and then Holes_OK
3641 then
3642 return;
3644 -- No check required on the left-hand side of an assignment
3646 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3647 and then Expr = Name (Parent (Expr))
3648 then
3649 return;
3651 -- An annoying special case. If this is an out parameter of a scalar
3652 -- type, then the value is not going to be accessed, therefore it is
3653 -- inappropriate to do any validity check at the call site.
3655 else
3656 -- Only need to worry about scalar types
3658 if Is_Scalar_Type (Typ) then
3659 declare
3660 P : Node_Id;
3661 N : Node_Id;
3662 E : Entity_Id;
3663 F : Entity_Id;
3664 A : Node_Id;
3665 L : List_Id;
3667 begin
3668 -- Find actual argument (which may be a parameter association)
3669 -- and the parent of the actual argument (the call statement)
3671 N := Expr;
3672 P := Parent (Expr);
3674 if Nkind (P) = N_Parameter_Association then
3675 N := P;
3676 P := Parent (N);
3677 end if;
3679 -- Only need to worry if we are argument of a procedure
3680 -- call since functions don't have out parameters. If this
3681 -- is an indirect or dispatching call, get signature from
3682 -- the subprogram type.
3684 if Nkind (P) = N_Procedure_Call_Statement then
3685 L := Parameter_Associations (P);
3687 if Is_Entity_Name (Name (P)) then
3688 E := Entity (Name (P));
3689 else
3690 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
3691 E := Etype (Name (P));
3692 end if;
3694 -- Only need to worry if there are indeed actuals, and
3695 -- if this could be a procedure call, otherwise we cannot
3696 -- get a match (either we are not an argument, or the
3697 -- mode of the formal is not OUT). This test also filters
3698 -- out the generic case.
3700 if Is_Non_Empty_List (L)
3701 and then Is_Subprogram (E)
3702 then
3703 -- This is the loop through parameters, looking to
3704 -- see if there is an OUT parameter for which we are
3705 -- the argument.
3707 F := First_Formal (E);
3708 A := First (L);
3710 while Present (F) loop
3711 if Ekind (F) = E_Out_Parameter and then A = N then
3712 return;
3713 end if;
3715 Next_Formal (F);
3716 Next (A);
3717 end loop;
3718 end if;
3719 end if;
3720 end;
3721 end if;
3722 end if;
3724 -- If we fall through, a validity check is required. Note that it would
3725 -- not be good to set Do_Range_Check, even in contexts where this is
3726 -- permissible, since this flag causes checking against the target type,
3727 -- not the source type in contexts such as assignments
3729 Insert_Valid_Check (Expr);
3730 end Ensure_Valid;
3732 ----------------------
3733 -- Expr_Known_Valid --
3734 ----------------------
3736 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
3737 Typ : constant Entity_Id := Etype (Expr);
3739 begin
3740 -- Non-scalar types are always considered valid, since they never
3741 -- give rise to the issues of erroneous or bounded error behavior
3742 -- that are the concern. In formal reference manual terms the
3743 -- notion of validity only applies to scalar types. Note that
3744 -- even when packed arrays are represented using modular types,
3745 -- they are still arrays semantically, so they are also always
3746 -- valid (in particular, the unused bits can be random rubbish
3747 -- without affecting the validity of the array value).
3749 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
3750 return True;
3752 -- If no validity checking, then everything is considered valid
3754 elsif not Validity_Checks_On then
3755 return True;
3757 -- Floating-point types are considered valid unless floating-point
3758 -- validity checks have been specifically turned on.
3760 elsif Is_Floating_Point_Type (Typ)
3761 and then not Validity_Check_Floating_Point
3762 then
3763 return True;
3765 -- If the expression is the value of an object that is known to
3766 -- be valid, then clearly the expression value itself is valid.
3768 elsif Is_Entity_Name (Expr)
3769 and then Is_Known_Valid (Entity (Expr))
3770 then
3771 return True;
3773 -- If the type is one for which all values are known valid, then
3774 -- we are sure that the value is valid except in the slightly odd
3775 -- case where the expression is a reference to a variable whose size
3776 -- has been explicitly set to a value greater than the object size.
3778 elsif Is_Known_Valid (Typ) then
3779 if Is_Entity_Name (Expr)
3780 and then Ekind (Entity (Expr)) = E_Variable
3781 and then Esize (Entity (Expr)) > Esize (Typ)
3782 then
3783 return False;
3784 else
3785 return True;
3786 end if;
3788 -- Integer and character literals always have valid values, where
3789 -- appropriate these will be range checked in any case.
3791 elsif Nkind (Expr) = N_Integer_Literal
3792 or else
3793 Nkind (Expr) = N_Character_Literal
3794 then
3795 return True;
3797 -- If we have a type conversion or a qualification of a known valid
3798 -- value, then the result will always be valid.
3800 elsif Nkind (Expr) = N_Type_Conversion
3801 or else
3802 Nkind (Expr) = N_Qualified_Expression
3803 then
3804 return Expr_Known_Valid (Expression (Expr));
3806 -- The result of any function call or operator is always considered
3807 -- valid, since we assume the necessary checks are done by the call.
3808 -- For operators on floating-point operations, we must also check
3809 -- when the operation is the right-hand side of an assignment, or
3810 -- is an actual in a call.
3812 elsif
3813 Nkind (Expr) in N_Binary_Op or else Nkind (Expr) in N_Unary_Op
3814 then
3815 if Is_Floating_Point_Type (Typ)
3816 and then Validity_Check_Floating_Point
3817 and then
3818 (Nkind (Parent (Expr)) = N_Assignment_Statement
3819 or else Nkind (Parent (Expr)) = N_Function_Call
3820 or else Nkind (Parent (Expr)) = N_Parameter_Association)
3821 then
3822 return False;
3823 else
3824 return True;
3825 end if;
3827 elsif Nkind (Expr) = N_Function_Call then
3828 return True;
3830 -- For all other cases, we do not know the expression is valid
3832 else
3833 return False;
3834 end if;
3835 end Expr_Known_Valid;
3837 ----------------
3838 -- Find_Check --
3839 ----------------
3841 procedure Find_Check
3842 (Expr : Node_Id;
3843 Check_Type : Character;
3844 Target_Type : Entity_Id;
3845 Entry_OK : out Boolean;
3846 Check_Num : out Nat;
3847 Ent : out Entity_Id;
3848 Ofs : out Uint)
3850 function Within_Range_Of
3851 (Target_Type : Entity_Id;
3852 Check_Type : Entity_Id) return Boolean;
3853 -- Given a requirement for checking a range against Target_Type, and
3854 -- and a range Check_Type against which a check has already been made,
3855 -- determines if the check against check type is sufficient to ensure
3856 -- that no check against Target_Type is required.
3858 ---------------------
3859 -- Within_Range_Of --
3860 ---------------------
3862 function Within_Range_Of
3863 (Target_Type : Entity_Id;
3864 Check_Type : Entity_Id) return Boolean
3866 begin
3867 if Target_Type = Check_Type then
3868 return True;
3870 else
3871 declare
3872 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
3873 Thi : constant Node_Id := Type_High_Bound (Target_Type);
3874 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
3875 Chi : constant Node_Id := Type_High_Bound (Check_Type);
3877 begin
3878 if (Tlo = Clo
3879 or else (Compile_Time_Known_Value (Tlo)
3880 and then
3881 Compile_Time_Known_Value (Clo)
3882 and then
3883 Expr_Value (Clo) >= Expr_Value (Tlo)))
3884 and then
3885 (Thi = Chi
3886 or else (Compile_Time_Known_Value (Thi)
3887 and then
3888 Compile_Time_Known_Value (Chi)
3889 and then
3890 Expr_Value (Chi) <= Expr_Value (Clo)))
3891 then
3892 return True;
3893 else
3894 return False;
3895 end if;
3896 end;
3897 end if;
3898 end Within_Range_Of;
3900 -- Start of processing for Find_Check
3902 begin
3903 -- Establish default, to avoid warnings from GCC
3905 Check_Num := 0;
3907 -- Case of expression is simple entity reference
3909 if Is_Entity_Name (Expr) then
3910 Ent := Entity (Expr);
3911 Ofs := Uint_0;
3913 -- Case of expression is entity + known constant
3915 elsif Nkind (Expr) = N_Op_Add
3916 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3917 and then Is_Entity_Name (Left_Opnd (Expr))
3918 then
3919 Ent := Entity (Left_Opnd (Expr));
3920 Ofs := Expr_Value (Right_Opnd (Expr));
3922 -- Case of expression is entity - known constant
3924 elsif Nkind (Expr) = N_Op_Subtract
3925 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3926 and then Is_Entity_Name (Left_Opnd (Expr))
3927 then
3928 Ent := Entity (Left_Opnd (Expr));
3929 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
3931 -- Any other expression is not of the right form
3933 else
3934 Ent := Empty;
3935 Ofs := Uint_0;
3936 Entry_OK := False;
3937 return;
3938 end if;
3940 -- Come here with expression of appropriate form, check if
3941 -- entity is an appropriate one for our purposes.
3943 if (Ekind (Ent) = E_Variable
3944 or else
3945 Ekind (Ent) = E_Constant
3946 or else
3947 Ekind (Ent) = E_Loop_Parameter
3948 or else
3949 Ekind (Ent) = E_In_Parameter)
3950 and then not Is_Library_Level_Entity (Ent)
3951 then
3952 Entry_OK := True;
3953 else
3954 Entry_OK := False;
3955 return;
3956 end if;
3958 -- See if there is matching check already
3960 for J in reverse 1 .. Num_Saved_Checks loop
3961 declare
3962 SC : Saved_Check renames Saved_Checks (J);
3964 begin
3965 if SC.Killed = False
3966 and then SC.Entity = Ent
3967 and then SC.Offset = Ofs
3968 and then SC.Check_Type = Check_Type
3969 and then Within_Range_Of (Target_Type, SC.Target_Type)
3970 then
3971 Check_Num := J;
3972 return;
3973 end if;
3974 end;
3975 end loop;
3977 -- If we fall through entry was not found
3979 Check_Num := 0;
3980 return;
3981 end Find_Check;
3983 ---------------------------------
3984 -- Generate_Discriminant_Check --
3985 ---------------------------------
3987 -- Note: the code for this procedure is derived from the
3988 -- emit_discriminant_check routine a-trans.c v1.659.
3990 procedure Generate_Discriminant_Check (N : Node_Id) is
3991 Loc : constant Source_Ptr := Sloc (N);
3992 Pref : constant Node_Id := Prefix (N);
3993 Sel : constant Node_Id := Selector_Name (N);
3995 Orig_Comp : constant Entity_Id :=
3996 Original_Record_Component (Entity (Sel));
3997 -- The original component to be checked
3999 Discr_Fct : constant Entity_Id :=
4000 Discriminant_Checking_Func (Orig_Comp);
4001 -- The discriminant checking function
4003 Discr : Entity_Id;
4004 -- One discriminant to be checked in the type
4006 Real_Discr : Entity_Id;
4007 -- Actual discriminant in the call
4009 Pref_Type : Entity_Id;
4010 -- Type of relevant prefix (ignoring private/access stuff)
4012 Args : List_Id;
4013 -- List of arguments for function call
4015 Formal : Entity_Id;
4016 -- Keep track of the formal corresponding to the actual we build
4017 -- for each discriminant, in order to be able to perform the
4018 -- necessary type conversions.
4020 Scomp : Node_Id;
4021 -- Selected component reference for checking function argument
4023 begin
4024 Pref_Type := Etype (Pref);
4026 -- Force evaluation of the prefix, so that it does not get evaluated
4027 -- twice (once for the check, once for the actual reference). Such a
4028 -- double evaluation is always a potential source of inefficiency,
4029 -- and is functionally incorrect in the volatile case, or when the
4030 -- prefix may have side-effects. An entity or a component of an
4031 -- entity requires no evaluation.
4033 if Is_Entity_Name (Pref) then
4034 if Treat_As_Volatile (Entity (Pref)) then
4035 Force_Evaluation (Pref, Name_Req => True);
4036 end if;
4038 elsif Treat_As_Volatile (Etype (Pref)) then
4039 Force_Evaluation (Pref, Name_Req => True);
4041 elsif Nkind (Pref) = N_Selected_Component
4042 and then Is_Entity_Name (Prefix (Pref))
4043 then
4044 null;
4046 else
4047 Force_Evaluation (Pref, Name_Req => True);
4048 end if;
4050 -- For a tagged type, use the scope of the original component to
4051 -- obtain the type, because ???
4053 if Is_Tagged_Type (Scope (Orig_Comp)) then
4054 Pref_Type := Scope (Orig_Comp);
4056 -- For an untagged derived type, use the discriminants of the
4057 -- parent which have been renamed in the derivation, possibly
4058 -- by a one-to-many discriminant constraint.
4059 -- For non-tagged type, initially get the Etype of the prefix
4061 else
4062 if Is_Derived_Type (Pref_Type)
4063 and then Number_Discriminants (Pref_Type) /=
4064 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4065 then
4066 Pref_Type := Etype (Base_Type (Pref_Type));
4067 end if;
4068 end if;
4070 -- We definitely should have a checking function, This routine should
4071 -- not be called if no discriminant checking function is present.
4073 pragma Assert (Present (Discr_Fct));
4075 -- Create the list of the actual parameters for the call. This list
4076 -- is the list of the discriminant fields of the record expression to
4077 -- be discriminant checked.
4079 Args := New_List;
4080 Formal := First_Formal (Discr_Fct);
4081 Discr := First_Discriminant (Pref_Type);
4082 while Present (Discr) loop
4084 -- If we have a corresponding discriminant field, and a parent
4085 -- subtype is present, then we want to use the corresponding
4086 -- discriminant since this is the one with the useful value.
4088 if Present (Corresponding_Discriminant (Discr))
4089 and then Ekind (Pref_Type) = E_Record_Type
4090 and then Present (Parent_Subtype (Pref_Type))
4091 then
4092 Real_Discr := Corresponding_Discriminant (Discr);
4093 else
4094 Real_Discr := Discr;
4095 end if;
4097 -- Construct the reference to the discriminant
4099 Scomp :=
4100 Make_Selected_Component (Loc,
4101 Prefix =>
4102 Unchecked_Convert_To (Pref_Type,
4103 Duplicate_Subexpr (Pref)),
4104 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4106 -- Manually analyze and resolve this selected component. We really
4107 -- want it just as it appears above, and do not want the expander
4108 -- playing discriminal games etc with this reference. Then we
4109 -- append the argument to the list we are gathering.
4111 Set_Etype (Scomp, Etype (Real_Discr));
4112 Set_Analyzed (Scomp, True);
4113 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4115 Next_Formal_With_Extras (Formal);
4116 Next_Discriminant (Discr);
4117 end loop;
4119 -- Now build and insert the call
4121 Insert_Action (N,
4122 Make_Raise_Constraint_Error (Loc,
4123 Condition =>
4124 Make_Function_Call (Loc,
4125 Name => New_Occurrence_Of (Discr_Fct, Loc),
4126 Parameter_Associations => Args),
4127 Reason => CE_Discriminant_Check_Failed));
4128 end Generate_Discriminant_Check;
4130 ---------------------------
4131 -- Generate_Index_Checks --
4132 ---------------------------
4134 procedure Generate_Index_Checks (N : Node_Id) is
4135 Loc : constant Source_Ptr := Sloc (N);
4136 A : constant Node_Id := Prefix (N);
4137 Sub : Node_Id;
4138 Ind : Nat;
4139 Num : List_Id;
4141 begin
4142 Sub := First (Expressions (N));
4143 Ind := 1;
4144 while Present (Sub) loop
4145 if Do_Range_Check (Sub) then
4146 Set_Do_Range_Check (Sub, False);
4148 -- Force evaluation except for the case of a simple name of
4149 -- a non-volatile entity.
4151 if not Is_Entity_Name (Sub)
4152 or else Treat_As_Volatile (Entity (Sub))
4153 then
4154 Force_Evaluation (Sub);
4155 end if;
4157 -- Generate a raise of constraint error with the appropriate
4158 -- reason and a condition of the form:
4160 -- Base_Type(Sub) not in array'range (subscript)
4162 -- Note that the reason we generate the conversion to the
4163 -- base type here is that we definitely want the range check
4164 -- to take place, even if it looks like the subtype is OK.
4165 -- Optimization considerations that allow us to omit the
4166 -- check have already been taken into account in the setting
4167 -- of the Do_Range_Check flag earlier on.
4169 if Ind = 1 then
4170 Num := No_List;
4171 else
4172 Num := New_List (Make_Integer_Literal (Loc, Ind));
4173 end if;
4175 Insert_Action (N,
4176 Make_Raise_Constraint_Error (Loc,
4177 Condition =>
4178 Make_Not_In (Loc,
4179 Left_Opnd =>
4180 Convert_To (Base_Type (Etype (Sub)),
4181 Duplicate_Subexpr_Move_Checks (Sub)),
4182 Right_Opnd =>
4183 Make_Attribute_Reference (Loc,
4184 Prefix => Duplicate_Subexpr_Move_Checks (A),
4185 Attribute_Name => Name_Range,
4186 Expressions => Num)),
4187 Reason => CE_Index_Check_Failed));
4188 end if;
4190 Ind := Ind + 1;
4191 Next (Sub);
4192 end loop;
4193 end Generate_Index_Checks;
4195 --------------------------
4196 -- Generate_Range_Check --
4197 --------------------------
4199 procedure Generate_Range_Check
4200 (N : Node_Id;
4201 Target_Type : Entity_Id;
4202 Reason : RT_Exception_Code)
4204 Loc : constant Source_Ptr := Sloc (N);
4205 Source_Type : constant Entity_Id := Etype (N);
4206 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4207 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4209 begin
4210 -- First special case, if the source type is already within the
4211 -- range of the target type, then no check is needed (probably we
4212 -- should have stopped Do_Range_Check from being set in the first
4213 -- place, but better late than later in preventing junk code!
4215 -- We do NOT apply this if the source node is a literal, since in
4216 -- this case the literal has already been labeled as having the
4217 -- subtype of the target.
4219 if In_Subrange_Of (Source_Type, Target_Type)
4220 and then not
4221 (Nkind (N) = N_Integer_Literal
4222 or else
4223 Nkind (N) = N_Real_Literal
4224 or else
4225 Nkind (N) = N_Character_Literal
4226 or else
4227 (Is_Entity_Name (N)
4228 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4229 then
4230 return;
4231 end if;
4233 -- We need a check, so force evaluation of the node, so that it does
4234 -- not get evaluated twice (once for the check, once for the actual
4235 -- reference). Such a double evaluation is always a potential source
4236 -- of inefficiency, and is functionally incorrect in the volatile case.
4238 if not Is_Entity_Name (N)
4239 or else Treat_As_Volatile (Entity (N))
4240 then
4241 Force_Evaluation (N);
4242 end if;
4244 -- The easiest case is when Source_Base_Type and Target_Base_Type
4245 -- are the same since in this case we can simply do a direct
4246 -- check of the value of N against the bounds of Target_Type.
4248 -- [constraint_error when N not in Target_Type]
4250 -- Note: this is by far the most common case, for example all cases of
4251 -- checks on the RHS of assignments are in this category, but not all
4252 -- cases are like this. Notably conversions can involve two types.
4254 if Source_Base_Type = Target_Base_Type then
4255 Insert_Action (N,
4256 Make_Raise_Constraint_Error (Loc,
4257 Condition =>
4258 Make_Not_In (Loc,
4259 Left_Opnd => Duplicate_Subexpr (N),
4260 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4261 Reason => Reason));
4263 -- Next test for the case where the target type is within the bounds
4264 -- of the base type of the source type, since in this case we can
4265 -- simply convert these bounds to the base type of T to do the test.
4267 -- [constraint_error when N not in
4268 -- Source_Base_Type (Target_Type'First)
4269 -- ..
4270 -- Source_Base_Type(Target_Type'Last))]
4272 -- The conversions will always work and need no check
4274 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4275 Insert_Action (N,
4276 Make_Raise_Constraint_Error (Loc,
4277 Condition =>
4278 Make_Not_In (Loc,
4279 Left_Opnd => Duplicate_Subexpr (N),
4281 Right_Opnd =>
4282 Make_Range (Loc,
4283 Low_Bound =>
4284 Convert_To (Source_Base_Type,
4285 Make_Attribute_Reference (Loc,
4286 Prefix =>
4287 New_Occurrence_Of (Target_Type, Loc),
4288 Attribute_Name => Name_First)),
4290 High_Bound =>
4291 Convert_To (Source_Base_Type,
4292 Make_Attribute_Reference (Loc,
4293 Prefix =>
4294 New_Occurrence_Of (Target_Type, Loc),
4295 Attribute_Name => Name_Last)))),
4296 Reason => Reason));
4298 -- Note that at this stage we now that the Target_Base_Type is
4299 -- not in the range of the Source_Base_Type (since even the
4300 -- Target_Type itself is not in this range). It could still be
4301 -- the case that the Source_Type is in range of the target base
4302 -- type, since we have not checked that case.
4304 -- If that is the case, we can freely convert the source to the
4305 -- target, and then test the target result against the bounds.
4307 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4309 -- We make a temporary to hold the value of the converted
4310 -- value (converted to the base type), and then we will
4311 -- do the test against this temporary.
4313 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4314 -- [constraint_error when Tnn not in Target_Type]
4316 -- Then the conversion itself is replaced by an occurrence of Tnn
4318 declare
4319 Tnn : constant Entity_Id :=
4320 Make_Defining_Identifier (Loc,
4321 Chars => New_Internal_Name ('T'));
4323 begin
4324 Insert_Actions (N, New_List (
4325 Make_Object_Declaration (Loc,
4326 Defining_Identifier => Tnn,
4327 Object_Definition =>
4328 New_Occurrence_Of (Target_Base_Type, Loc),
4329 Constant_Present => True,
4330 Expression =>
4331 Make_Type_Conversion (Loc,
4332 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4333 Expression => Duplicate_Subexpr (N))),
4335 Make_Raise_Constraint_Error (Loc,
4336 Condition =>
4337 Make_Not_In (Loc,
4338 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4339 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4341 Reason => Reason)));
4343 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4344 end;
4346 -- At this stage, we know that we have two scalar types, which are
4347 -- directly convertible, and where neither scalar type has a base
4348 -- range that is in the range of the other scalar type.
4350 -- The only way this can happen is with a signed and unsigned type.
4351 -- So test for these two cases:
4353 else
4354 -- Case of the source is unsigned and the target is signed
4356 if Is_Unsigned_Type (Source_Base_Type)
4357 and then not Is_Unsigned_Type (Target_Base_Type)
4358 then
4359 -- If the source is unsigned and the target is signed, then we
4360 -- know that the source is not shorter than the target (otherwise
4361 -- the source base type would be in the target base type range).
4363 -- In other words, the unsigned type is either the same size
4364 -- as the target, or it is larger. It cannot be smaller.
4366 pragma Assert
4367 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4369 -- We only need to check the low bound if the low bound of the
4370 -- target type is non-negative. If the low bound of the target
4371 -- type is negative, then we know that we will fit fine.
4373 -- If the high bound of the target type is negative, then we
4374 -- know we have a constraint error, since we can't possibly
4375 -- have a negative source.
4377 -- With these two checks out of the way, we can do the check
4378 -- using the source type safely
4380 -- This is definitely the most annoying case!
4382 -- [constraint_error
4383 -- when (Target_Type'First >= 0
4384 -- and then
4385 -- N < Source_Base_Type (Target_Type'First))
4386 -- or else Target_Type'Last < 0
4387 -- or else N > Source_Base_Type (Target_Type'Last)];
4389 -- We turn off all checks since we know that the conversions
4390 -- will work fine, given the guards for negative values.
4392 Insert_Action (N,
4393 Make_Raise_Constraint_Error (Loc,
4394 Condition =>
4395 Make_Or_Else (Loc,
4396 Make_Or_Else (Loc,
4397 Left_Opnd =>
4398 Make_And_Then (Loc,
4399 Left_Opnd => Make_Op_Ge (Loc,
4400 Left_Opnd =>
4401 Make_Attribute_Reference (Loc,
4402 Prefix =>
4403 New_Occurrence_Of (Target_Type, Loc),
4404 Attribute_Name => Name_First),
4405 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4407 Right_Opnd =>
4408 Make_Op_Lt (Loc,
4409 Left_Opnd => Duplicate_Subexpr (N),
4410 Right_Opnd =>
4411 Convert_To (Source_Base_Type,
4412 Make_Attribute_Reference (Loc,
4413 Prefix =>
4414 New_Occurrence_Of (Target_Type, Loc),
4415 Attribute_Name => Name_First)))),
4417 Right_Opnd =>
4418 Make_Op_Lt (Loc,
4419 Left_Opnd =>
4420 Make_Attribute_Reference (Loc,
4421 Prefix => New_Occurrence_Of (Target_Type, Loc),
4422 Attribute_Name => Name_Last),
4423 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4425 Right_Opnd =>
4426 Make_Op_Gt (Loc,
4427 Left_Opnd => Duplicate_Subexpr (N),
4428 Right_Opnd =>
4429 Convert_To (Source_Base_Type,
4430 Make_Attribute_Reference (Loc,
4431 Prefix => New_Occurrence_Of (Target_Type, Loc),
4432 Attribute_Name => Name_Last)))),
4434 Reason => Reason),
4435 Suppress => All_Checks);
4437 -- Only remaining possibility is that the source is signed and
4438 -- the target is unsigned
4440 else
4441 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4442 and then Is_Unsigned_Type (Target_Base_Type));
4444 -- If the source is signed and the target is unsigned, then
4445 -- we know that the target is not shorter than the source
4446 -- (otherwise the target base type would be in the source
4447 -- base type range).
4449 -- In other words, the unsigned type is either the same size
4450 -- as the target, or it is larger. It cannot be smaller.
4452 -- Clearly we have an error if the source value is negative
4453 -- since no unsigned type can have negative values. If the
4454 -- source type is non-negative, then the check can be done
4455 -- using the target type.
4457 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4459 -- [constraint_error
4460 -- when N < 0 or else Tnn not in Target_Type];
4462 -- We turn off all checks for the conversion of N to the
4463 -- target base type, since we generate the explicit check
4464 -- to ensure that the value is non-negative
4466 declare
4467 Tnn : constant Entity_Id :=
4468 Make_Defining_Identifier (Loc,
4469 Chars => New_Internal_Name ('T'));
4471 begin
4472 Insert_Actions (N, New_List (
4473 Make_Object_Declaration (Loc,
4474 Defining_Identifier => Tnn,
4475 Object_Definition =>
4476 New_Occurrence_Of (Target_Base_Type, Loc),
4477 Constant_Present => True,
4478 Expression =>
4479 Make_Type_Conversion (Loc,
4480 Subtype_Mark =>
4481 New_Occurrence_Of (Target_Base_Type, Loc),
4482 Expression => Duplicate_Subexpr (N))),
4484 Make_Raise_Constraint_Error (Loc,
4485 Condition =>
4486 Make_Or_Else (Loc,
4487 Left_Opnd =>
4488 Make_Op_Lt (Loc,
4489 Left_Opnd => Duplicate_Subexpr (N),
4490 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4492 Right_Opnd =>
4493 Make_Not_In (Loc,
4494 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4495 Right_Opnd =>
4496 New_Occurrence_Of (Target_Type, Loc))),
4498 Reason => Reason)),
4499 Suppress => All_Checks);
4501 -- Set the Etype explicitly, because Insert_Actions may
4502 -- have placed the declaration in the freeze list for an
4503 -- enclosing construct, and thus it is not analyzed yet.
4505 Set_Etype (Tnn, Target_Base_Type);
4506 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4507 end;
4508 end if;
4509 end if;
4510 end Generate_Range_Check;
4512 ---------------------
4513 -- Get_Discriminal --
4514 ---------------------
4516 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4517 Loc : constant Source_Ptr := Sloc (E);
4518 D : Entity_Id;
4519 Sc : Entity_Id;
4521 begin
4522 -- The entity E is the type of a private component of the protected
4523 -- type, or the type of a renaming of that component within a protected
4524 -- operation of that type.
4526 Sc := Scope (E);
4528 if Ekind (Sc) /= E_Protected_Type then
4529 Sc := Scope (Sc);
4531 if Ekind (Sc) /= E_Protected_Type then
4532 return Bound;
4533 end if;
4534 end if;
4536 D := First_Discriminant (Sc);
4538 while Present (D)
4539 and then Chars (D) /= Chars (Bound)
4540 loop
4541 Next_Discriminant (D);
4542 end loop;
4544 return New_Occurrence_Of (Discriminal (D), Loc);
4545 end Get_Discriminal;
4547 ------------------
4548 -- Guard_Access --
4549 ------------------
4551 function Guard_Access
4552 (Cond : Node_Id;
4553 Loc : Source_Ptr;
4554 Ck_Node : Node_Id) return Node_Id
4556 begin
4557 if Nkind (Cond) = N_Or_Else then
4558 Set_Paren_Count (Cond, 1);
4559 end if;
4561 if Nkind (Ck_Node) = N_Allocator then
4562 return Cond;
4563 else
4564 return
4565 Make_And_Then (Loc,
4566 Left_Opnd =>
4567 Make_Op_Ne (Loc,
4568 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
4569 Right_Opnd => Make_Null (Loc)),
4570 Right_Opnd => Cond);
4571 end if;
4572 end Guard_Access;
4574 -----------------------------
4575 -- Index_Checks_Suppressed --
4576 -----------------------------
4578 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
4579 begin
4580 if Present (E) and then Checks_May_Be_Suppressed (E) then
4581 return Is_Check_Suppressed (E, Index_Check);
4582 else
4583 return Scope_Suppress (Index_Check);
4584 end if;
4585 end Index_Checks_Suppressed;
4587 ----------------
4588 -- Initialize --
4589 ----------------
4591 procedure Initialize is
4592 begin
4593 for J in Determine_Range_Cache_N'Range loop
4594 Determine_Range_Cache_N (J) := Empty;
4595 end loop;
4596 end Initialize;
4598 -------------------------
4599 -- Insert_Range_Checks --
4600 -------------------------
4602 procedure Insert_Range_Checks
4603 (Checks : Check_Result;
4604 Node : Node_Id;
4605 Suppress_Typ : Entity_Id;
4606 Static_Sloc : Source_Ptr := No_Location;
4607 Flag_Node : Node_Id := Empty;
4608 Do_Before : Boolean := False)
4610 Internal_Flag_Node : Node_Id := Flag_Node;
4611 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
4613 Check_Node : Node_Id;
4614 Checks_On : constant Boolean :=
4615 (not Index_Checks_Suppressed (Suppress_Typ))
4616 or else
4617 (not Range_Checks_Suppressed (Suppress_Typ));
4619 begin
4620 -- For now we just return if Checks_On is false, however this should
4621 -- be enhanced to check for an always True value in the condition
4622 -- and to generate a compilation warning???
4624 if not Expander_Active or else not Checks_On then
4625 return;
4626 end if;
4628 if Static_Sloc = No_Location then
4629 Internal_Static_Sloc := Sloc (Node);
4630 end if;
4632 if No (Flag_Node) then
4633 Internal_Flag_Node := Node;
4634 end if;
4636 for J in 1 .. 2 loop
4637 exit when No (Checks (J));
4639 if Nkind (Checks (J)) = N_Raise_Constraint_Error
4640 and then Present (Condition (Checks (J)))
4641 then
4642 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
4643 Check_Node := Checks (J);
4644 Mark_Rewrite_Insertion (Check_Node);
4646 if Do_Before then
4647 Insert_Before_And_Analyze (Node, Check_Node);
4648 else
4649 Insert_After_And_Analyze (Node, Check_Node);
4650 end if;
4652 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
4653 end if;
4655 else
4656 Check_Node :=
4657 Make_Raise_Constraint_Error (Internal_Static_Sloc,
4658 Reason => CE_Range_Check_Failed);
4659 Mark_Rewrite_Insertion (Check_Node);
4661 if Do_Before then
4662 Insert_Before_And_Analyze (Node, Check_Node);
4663 else
4664 Insert_After_And_Analyze (Node, Check_Node);
4665 end if;
4666 end if;
4667 end loop;
4668 end Insert_Range_Checks;
4670 ------------------------
4671 -- Insert_Valid_Check --
4672 ------------------------
4674 procedure Insert_Valid_Check (Expr : Node_Id) is
4675 Loc : constant Source_Ptr := Sloc (Expr);
4676 Exp : Node_Id;
4678 begin
4679 -- Do not insert if checks off, or if not checking validity
4681 if Range_Checks_Suppressed (Etype (Expr))
4682 or else (not Validity_Checks_On)
4683 then
4684 return;
4685 end if;
4687 -- If we have a checked conversion, then validity check applies to
4688 -- the expression inside the conversion, not the result, since if
4689 -- the expression inside is valid, then so is the conversion result.
4691 Exp := Expr;
4692 while Nkind (Exp) = N_Type_Conversion loop
4693 Exp := Expression (Exp);
4694 end loop;
4696 -- Insert the validity check. Note that we do this with validity
4697 -- checks turned off, to avoid recursion, we do not want validity
4698 -- checks on the validity checking code itself!
4700 Validity_Checks_On := False;
4701 Insert_Action
4702 (Expr,
4703 Make_Raise_Constraint_Error (Loc,
4704 Condition =>
4705 Make_Op_Not (Loc,
4706 Right_Opnd =>
4707 Make_Attribute_Reference (Loc,
4708 Prefix =>
4709 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
4710 Attribute_Name => Name_Valid)),
4711 Reason => CE_Invalid_Data),
4712 Suppress => All_Checks);
4713 Validity_Checks_On := True;
4714 end Insert_Valid_Check;
4716 ----------------------------------
4717 -- Install_Null_Excluding_Check --
4718 ----------------------------------
4720 procedure Install_Null_Excluding_Check (N : Node_Id) is
4721 Loc : constant Source_Ptr := Sloc (N);
4722 Etyp : constant Entity_Id := Etype (N);
4724 begin
4725 pragma Assert (Is_Access_Type (Etyp));
4727 -- Don't need access check if: 1) we are analyzing a generic, 2) it is
4728 -- known to be non-null, or 3) the check was suppressed on the type
4730 if Inside_A_Generic
4731 or else Access_Checks_Suppressed (Etyp)
4732 then
4733 return;
4735 -- Otherwise install access check
4737 else
4738 Insert_Action (N,
4739 Make_Raise_Constraint_Error (Loc,
4740 Condition =>
4741 Make_Op_Eq (Loc,
4742 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
4743 Right_Opnd => Make_Null (Loc)),
4744 Reason => CE_Access_Check_Failed));
4745 end if;
4746 end Install_Null_Excluding_Check;
4748 --------------------------
4749 -- Install_Static_Check --
4750 --------------------------
4752 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
4753 Stat : constant Boolean := Is_Static_Expression (R_Cno);
4754 Typ : constant Entity_Id := Etype (R_Cno);
4756 begin
4757 Rewrite (R_Cno,
4758 Make_Raise_Constraint_Error (Loc,
4759 Reason => CE_Range_Check_Failed));
4760 Set_Analyzed (R_Cno);
4761 Set_Etype (R_Cno, Typ);
4762 Set_Raises_Constraint_Error (R_Cno);
4763 Set_Is_Static_Expression (R_Cno, Stat);
4764 end Install_Static_Check;
4766 ---------------------
4767 -- Kill_All_Checks --
4768 ---------------------
4770 procedure Kill_All_Checks is
4771 begin
4772 if Debug_Flag_CC then
4773 w ("Kill_All_Checks");
4774 end if;
4776 -- We reset the number of saved checks to zero, and also modify
4777 -- all stack entries for statement ranges to indicate that the
4778 -- number of checks at each level is now zero.
4780 Num_Saved_Checks := 0;
4782 for J in 1 .. Saved_Checks_TOS loop
4783 Saved_Checks_Stack (J) := 0;
4784 end loop;
4785 end Kill_All_Checks;
4787 -----------------
4788 -- Kill_Checks --
4789 -----------------
4791 procedure Kill_Checks (V : Entity_Id) is
4792 begin
4793 if Debug_Flag_CC then
4794 w ("Kill_Checks for entity", Int (V));
4795 end if;
4797 for J in 1 .. Num_Saved_Checks loop
4798 if Saved_Checks (J).Entity = V then
4799 if Debug_Flag_CC then
4800 w (" Checks killed for saved check ", J);
4801 end if;
4803 Saved_Checks (J).Killed := True;
4804 end if;
4805 end loop;
4806 end Kill_Checks;
4808 ------------------------------
4809 -- Length_Checks_Suppressed --
4810 ------------------------------
4812 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
4813 begin
4814 if Present (E) and then Checks_May_Be_Suppressed (E) then
4815 return Is_Check_Suppressed (E, Length_Check);
4816 else
4817 return Scope_Suppress (Length_Check);
4818 end if;
4819 end Length_Checks_Suppressed;
4821 --------------------------------
4822 -- Overflow_Checks_Suppressed --
4823 --------------------------------
4825 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
4826 begin
4827 if Present (E) and then Checks_May_Be_Suppressed (E) then
4828 return Is_Check_Suppressed (E, Overflow_Check);
4829 else
4830 return Scope_Suppress (Overflow_Check);
4831 end if;
4832 end Overflow_Checks_Suppressed;
4834 -----------------
4835 -- Range_Check --
4836 -----------------
4838 function Range_Check
4839 (Ck_Node : Node_Id;
4840 Target_Typ : Entity_Id;
4841 Source_Typ : Entity_Id := Empty;
4842 Warn_Node : Node_Id := Empty) return Check_Result
4844 begin
4845 return Selected_Range_Checks
4846 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4847 end Range_Check;
4849 -----------------------------
4850 -- Range_Checks_Suppressed --
4851 -----------------------------
4853 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
4854 begin
4855 if Present (E) then
4857 -- Note: for now we always suppress range checks on Vax float types,
4858 -- since Gigi does not know how to generate these checks.
4860 if Vax_Float (E) then
4861 return True;
4862 elsif Kill_Range_Checks (E) then
4863 return True;
4864 elsif Checks_May_Be_Suppressed (E) then
4865 return Is_Check_Suppressed (E, Range_Check);
4866 end if;
4867 end if;
4869 return Scope_Suppress (Range_Check);
4870 end Range_Checks_Suppressed;
4872 -------------------
4873 -- Remove_Checks --
4874 -------------------
4876 procedure Remove_Checks (Expr : Node_Id) is
4877 Discard : Traverse_Result;
4878 pragma Warnings (Off, Discard);
4880 function Process (N : Node_Id) return Traverse_Result;
4881 -- Process a single node during the traversal
4883 function Traverse is new Traverse_Func (Process);
4884 -- The traversal function itself
4886 -------------
4887 -- Process --
4888 -------------
4890 function Process (N : Node_Id) return Traverse_Result is
4891 begin
4892 if Nkind (N) not in N_Subexpr then
4893 return Skip;
4894 end if;
4896 Set_Do_Range_Check (N, False);
4898 case Nkind (N) is
4899 when N_And_Then =>
4900 Discard := Traverse (Left_Opnd (N));
4901 return Skip;
4903 when N_Attribute_Reference =>
4904 Set_Do_Overflow_Check (N, False);
4906 when N_Function_Call =>
4907 Set_Do_Tag_Check (N, False);
4909 when N_Op =>
4910 Set_Do_Overflow_Check (N, False);
4912 case Nkind (N) is
4913 when N_Op_Divide =>
4914 Set_Do_Division_Check (N, False);
4916 when N_Op_And =>
4917 Set_Do_Length_Check (N, False);
4919 when N_Op_Mod =>
4920 Set_Do_Division_Check (N, False);
4922 when N_Op_Or =>
4923 Set_Do_Length_Check (N, False);
4925 when N_Op_Rem =>
4926 Set_Do_Division_Check (N, False);
4928 when N_Op_Xor =>
4929 Set_Do_Length_Check (N, False);
4931 when others =>
4932 null;
4933 end case;
4935 when N_Or_Else =>
4936 Discard := Traverse (Left_Opnd (N));
4937 return Skip;
4939 when N_Selected_Component =>
4940 Set_Do_Discriminant_Check (N, False);
4942 when N_Type_Conversion =>
4943 Set_Do_Length_Check (N, False);
4944 Set_Do_Tag_Check (N, False);
4945 Set_Do_Overflow_Check (N, False);
4947 when others =>
4948 null;
4949 end case;
4951 return OK;
4952 end Process;
4954 -- Start of processing for Remove_Checks
4956 begin
4957 Discard := Traverse (Expr);
4958 end Remove_Checks;
4960 ----------------------------
4961 -- Selected_Length_Checks --
4962 ----------------------------
4964 function Selected_Length_Checks
4965 (Ck_Node : Node_Id;
4966 Target_Typ : Entity_Id;
4967 Source_Typ : Entity_Id;
4968 Warn_Node : Node_Id) return Check_Result
4970 Loc : constant Source_Ptr := Sloc (Ck_Node);
4971 S_Typ : Entity_Id;
4972 T_Typ : Entity_Id;
4973 Expr_Actual : Node_Id;
4974 Exptyp : Entity_Id;
4975 Cond : Node_Id := Empty;
4976 Do_Access : Boolean := False;
4977 Wnode : Node_Id := Warn_Node;
4978 Ret_Result : Check_Result := (Empty, Empty);
4979 Num_Checks : Natural := 0;
4981 procedure Add_Check (N : Node_Id);
4982 -- Adds the action given to Ret_Result if N is non-Empty
4984 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
4985 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
4986 -- Comments required ???
4988 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
4989 -- True for equal literals and for nodes that denote the same constant
4990 -- entity, even if its value is not a static constant. This includes the
4991 -- case of a discriminal reference within an init proc. Removes some
4992 -- obviously superfluous checks.
4994 function Length_E_Cond
4995 (Exptyp : Entity_Id;
4996 Typ : Entity_Id;
4997 Indx : Nat) return Node_Id;
4998 -- Returns expression to compute:
4999 -- Typ'Length /= Exptyp'Length
5001 function Length_N_Cond
5002 (Expr : Node_Id;
5003 Typ : Entity_Id;
5004 Indx : Nat) return Node_Id;
5005 -- Returns expression to compute:
5006 -- Typ'Length /= Expr'Length
5008 ---------------
5009 -- Add_Check --
5010 ---------------
5012 procedure Add_Check (N : Node_Id) is
5013 begin
5014 if Present (N) then
5016 -- For now, ignore attempt to place more than 2 checks ???
5018 if Num_Checks = 2 then
5019 return;
5020 end if;
5022 pragma Assert (Num_Checks <= 1);
5023 Num_Checks := Num_Checks + 1;
5024 Ret_Result (Num_Checks) := N;
5025 end if;
5026 end Add_Check;
5028 ------------------
5029 -- Get_E_Length --
5030 ------------------
5032 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
5033 Pt : constant Entity_Id := Scope (Scope (E));
5034 N : Node_Id;
5035 E1 : Entity_Id := E;
5037 begin
5038 if Ekind (Scope (E)) = E_Record_Type
5039 and then Has_Discriminants (Scope (E))
5040 then
5041 N := Build_Discriminal_Subtype_Of_Component (E);
5043 if Present (N) then
5044 Insert_Action (Ck_Node, N);
5045 E1 := Defining_Identifier (N);
5046 end if;
5047 end if;
5049 if Ekind (E1) = E_String_Literal_Subtype then
5050 return
5051 Make_Integer_Literal (Loc,
5052 Intval => String_Literal_Length (E1));
5054 elsif Ekind (Pt) = E_Protected_Type
5055 and then Has_Discriminants (Pt)
5056 and then Has_Completion (Pt)
5057 and then not Inside_Init_Proc
5058 then
5060 -- If the type whose length is needed is a private component
5061 -- constrained by a discriminant, we must expand the 'Length
5062 -- attribute into an explicit computation, using the discriminal
5063 -- of the current protected operation. This is because the actual
5064 -- type of the prival is constructed after the protected opera-
5065 -- tion has been fully expanded.
5067 declare
5068 Indx_Type : Node_Id;
5069 Lo : Node_Id;
5070 Hi : Node_Id;
5071 Do_Expand : Boolean := False;
5073 begin
5074 Indx_Type := First_Index (E);
5076 for J in 1 .. Indx - 1 loop
5077 Next_Index (Indx_Type);
5078 end loop;
5080 Get_Index_Bounds (Indx_Type, Lo, Hi);
5082 if Nkind (Lo) = N_Identifier
5083 and then Ekind (Entity (Lo)) = E_In_Parameter
5084 then
5085 Lo := Get_Discriminal (E, Lo);
5086 Do_Expand := True;
5087 end if;
5089 if Nkind (Hi) = N_Identifier
5090 and then Ekind (Entity (Hi)) = E_In_Parameter
5091 then
5092 Hi := Get_Discriminal (E, Hi);
5093 Do_Expand := True;
5094 end if;
5096 if Do_Expand then
5097 if not Is_Entity_Name (Lo) then
5098 Lo := Duplicate_Subexpr_No_Checks (Lo);
5099 end if;
5101 if not Is_Entity_Name (Hi) then
5102 Lo := Duplicate_Subexpr_No_Checks (Hi);
5103 end if;
5105 N :=
5106 Make_Op_Add (Loc,
5107 Left_Opnd =>
5108 Make_Op_Subtract (Loc,
5109 Left_Opnd => Hi,
5110 Right_Opnd => Lo),
5112 Right_Opnd => Make_Integer_Literal (Loc, 1));
5113 return N;
5115 else
5116 N :=
5117 Make_Attribute_Reference (Loc,
5118 Attribute_Name => Name_Length,
5119 Prefix =>
5120 New_Occurrence_Of (E1, Loc));
5122 if Indx > 1 then
5123 Set_Expressions (N, New_List (
5124 Make_Integer_Literal (Loc, Indx)));
5125 end if;
5127 return N;
5128 end if;
5129 end;
5131 else
5132 N :=
5133 Make_Attribute_Reference (Loc,
5134 Attribute_Name => Name_Length,
5135 Prefix =>
5136 New_Occurrence_Of (E1, Loc));
5138 if Indx > 1 then
5139 Set_Expressions (N, New_List (
5140 Make_Integer_Literal (Loc, Indx)));
5141 end if;
5143 return N;
5145 end if;
5146 end Get_E_Length;
5148 ------------------
5149 -- Get_N_Length --
5150 ------------------
5152 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5153 begin
5154 return
5155 Make_Attribute_Reference (Loc,
5156 Attribute_Name => Name_Length,
5157 Prefix =>
5158 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5159 Expressions => New_List (
5160 Make_Integer_Literal (Loc, Indx)));
5162 end Get_N_Length;
5164 -------------------
5165 -- Length_E_Cond --
5166 -------------------
5168 function Length_E_Cond
5169 (Exptyp : Entity_Id;
5170 Typ : Entity_Id;
5171 Indx : Nat) return Node_Id
5173 begin
5174 return
5175 Make_Op_Ne (Loc,
5176 Left_Opnd => Get_E_Length (Typ, Indx),
5177 Right_Opnd => Get_E_Length (Exptyp, Indx));
5179 end Length_E_Cond;
5181 -------------------
5182 -- Length_N_Cond --
5183 -------------------
5185 function Length_N_Cond
5186 (Expr : Node_Id;
5187 Typ : Entity_Id;
5188 Indx : Nat) return Node_Id
5190 begin
5191 return
5192 Make_Op_Ne (Loc,
5193 Left_Opnd => Get_E_Length (Typ, Indx),
5194 Right_Opnd => Get_N_Length (Expr, Indx));
5196 end Length_N_Cond;
5198 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5199 begin
5200 return
5201 (Nkind (L) = N_Integer_Literal
5202 and then Nkind (R) = N_Integer_Literal
5203 and then Intval (L) = Intval (R))
5205 or else
5206 (Is_Entity_Name (L)
5207 and then Ekind (Entity (L)) = E_Constant
5208 and then ((Is_Entity_Name (R)
5209 and then Entity (L) = Entity (R))
5210 or else
5211 (Nkind (R) = N_Type_Conversion
5212 and then Is_Entity_Name (Expression (R))
5213 and then Entity (L) = Entity (Expression (R)))))
5215 or else
5216 (Is_Entity_Name (R)
5217 and then Ekind (Entity (R)) = E_Constant
5218 and then Nkind (L) = N_Type_Conversion
5219 and then Is_Entity_Name (Expression (L))
5220 and then Entity (R) = Entity (Expression (L)))
5222 or else
5223 (Is_Entity_Name (L)
5224 and then Is_Entity_Name (R)
5225 and then Entity (L) = Entity (R)
5226 and then Ekind (Entity (L)) = E_In_Parameter
5227 and then Inside_Init_Proc);
5228 end Same_Bounds;
5230 -- Start of processing for Selected_Length_Checks
5232 begin
5233 if not Expander_Active then
5234 return Ret_Result;
5235 end if;
5237 if Target_Typ = Any_Type
5238 or else Target_Typ = Any_Composite
5239 or else Raises_Constraint_Error (Ck_Node)
5240 then
5241 return Ret_Result;
5242 end if;
5244 if No (Wnode) then
5245 Wnode := Ck_Node;
5246 end if;
5248 T_Typ := Target_Typ;
5250 if No (Source_Typ) then
5251 S_Typ := Etype (Ck_Node);
5252 else
5253 S_Typ := Source_Typ;
5254 end if;
5256 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5257 return Ret_Result;
5258 end if;
5260 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5261 S_Typ := Designated_Type (S_Typ);
5262 T_Typ := Designated_Type (T_Typ);
5263 Do_Access := True;
5265 -- A simple optimization
5267 if Nkind (Ck_Node) = N_Null then
5268 return Ret_Result;
5269 end if;
5270 end if;
5272 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5273 if Is_Constrained (T_Typ) then
5275 -- The checking code to be generated will freeze the
5276 -- corresponding array type. However, we must freeze the
5277 -- type now, so that the freeze node does not appear within
5278 -- the generated condional expression, but ahead of it.
5280 Freeze_Before (Ck_Node, T_Typ);
5282 Expr_Actual := Get_Referenced_Object (Ck_Node);
5283 Exptyp := Get_Actual_Subtype (Expr_Actual);
5285 if Is_Access_Type (Exptyp) then
5286 Exptyp := Designated_Type (Exptyp);
5287 end if;
5289 -- String_Literal case. This needs to be handled specially be-
5290 -- cause no index types are available for string literals. The
5291 -- condition is simply:
5293 -- T_Typ'Length = string-literal-length
5295 if Nkind (Expr_Actual) = N_String_Literal
5296 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
5297 then
5298 Cond :=
5299 Make_Op_Ne (Loc,
5300 Left_Opnd => Get_E_Length (T_Typ, 1),
5301 Right_Opnd =>
5302 Make_Integer_Literal (Loc,
5303 Intval =>
5304 String_Literal_Length (Etype (Expr_Actual))));
5306 -- General array case. Here we have a usable actual subtype for
5307 -- the expression, and the condition is built from the two types
5308 -- (Do_Length):
5310 -- T_Typ'Length /= Exptyp'Length or else
5311 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
5312 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
5313 -- ...
5315 elsif Is_Constrained (Exptyp) then
5316 declare
5317 Ndims : constant Nat := Number_Dimensions (T_Typ);
5319 L_Index : Node_Id;
5320 R_Index : Node_Id;
5321 L_Low : Node_Id;
5322 L_High : Node_Id;
5323 R_Low : Node_Id;
5324 R_High : Node_Id;
5325 L_Length : Uint;
5326 R_Length : Uint;
5327 Ref_Node : Node_Id;
5329 begin
5331 -- At the library level, we need to ensure that the
5332 -- type of the object is elaborated before the check
5333 -- itself is emitted. This is only done if the object
5334 -- is in the current compilation unit, otherwise the
5335 -- type is frozen and elaborated in its unit.
5337 if Is_Itype (Exptyp)
5338 and then
5339 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
5340 and then
5341 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
5342 and then In_Open_Scopes (Scope (Exptyp))
5343 then
5344 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
5345 Set_Itype (Ref_Node, Exptyp);
5346 Insert_Action (Ck_Node, Ref_Node);
5347 end if;
5349 L_Index := First_Index (T_Typ);
5350 R_Index := First_Index (Exptyp);
5352 for Indx in 1 .. Ndims loop
5353 if not (Nkind (L_Index) = N_Raise_Constraint_Error
5354 or else
5355 Nkind (R_Index) = N_Raise_Constraint_Error)
5356 then
5357 Get_Index_Bounds (L_Index, L_Low, L_High);
5358 Get_Index_Bounds (R_Index, R_Low, R_High);
5360 -- Deal with compile time length check. Note that we
5361 -- skip this in the access case, because the access
5362 -- value may be null, so we cannot know statically.
5364 if not Do_Access
5365 and then Compile_Time_Known_Value (L_Low)
5366 and then Compile_Time_Known_Value (L_High)
5367 and then Compile_Time_Known_Value (R_Low)
5368 and then Compile_Time_Known_Value (R_High)
5369 then
5370 if Expr_Value (L_High) >= Expr_Value (L_Low) then
5371 L_Length := Expr_Value (L_High) -
5372 Expr_Value (L_Low) + 1;
5373 else
5374 L_Length := UI_From_Int (0);
5375 end if;
5377 if Expr_Value (R_High) >= Expr_Value (R_Low) then
5378 R_Length := Expr_Value (R_High) -
5379 Expr_Value (R_Low) + 1;
5380 else
5381 R_Length := UI_From_Int (0);
5382 end if;
5384 if L_Length > R_Length then
5385 Add_Check
5386 (Compile_Time_Constraint_Error
5387 (Wnode, "too few elements for}?", T_Typ));
5389 elsif L_Length < R_Length then
5390 Add_Check
5391 (Compile_Time_Constraint_Error
5392 (Wnode, "too many elements for}?", T_Typ));
5393 end if;
5395 -- The comparison for an individual index subtype
5396 -- is omitted if the corresponding index subtypes
5397 -- statically match, since the result is known to
5398 -- be true. Note that this test is worth while even
5399 -- though we do static evaluation, because non-static
5400 -- subtypes can statically match.
5402 elsif not
5403 Subtypes_Statically_Match
5404 (Etype (L_Index), Etype (R_Index))
5406 and then not
5407 (Same_Bounds (L_Low, R_Low)
5408 and then Same_Bounds (L_High, R_High))
5409 then
5410 Evolve_Or_Else
5411 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
5412 end if;
5414 Next (L_Index);
5415 Next (R_Index);
5416 end if;
5417 end loop;
5418 end;
5420 -- Handle cases where we do not get a usable actual subtype that
5421 -- is constrained. This happens for example in the function call
5422 -- and explicit dereference cases. In these cases, we have to get
5423 -- the length or range from the expression itself, making sure we
5424 -- do not evaluate it more than once.
5426 -- Here Ck_Node is the original expression, or more properly the
5427 -- result of applying Duplicate_Expr to the original tree,
5428 -- forcing the result to be a name.
5430 else
5431 declare
5432 Ndims : constant Nat := Number_Dimensions (T_Typ);
5434 begin
5435 -- Build the condition for the explicit dereference case
5437 for Indx in 1 .. Ndims loop
5438 Evolve_Or_Else
5439 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
5440 end loop;
5441 end;
5442 end if;
5443 end if;
5444 end if;
5446 -- Construct the test and insert into the tree
5448 if Present (Cond) then
5449 if Do_Access then
5450 Cond := Guard_Access (Cond, Loc, Ck_Node);
5451 end if;
5453 Add_Check
5454 (Make_Raise_Constraint_Error (Loc,
5455 Condition => Cond,
5456 Reason => CE_Length_Check_Failed));
5457 end if;
5459 return Ret_Result;
5460 end Selected_Length_Checks;
5462 ---------------------------
5463 -- Selected_Range_Checks --
5464 ---------------------------
5466 function Selected_Range_Checks
5467 (Ck_Node : Node_Id;
5468 Target_Typ : Entity_Id;
5469 Source_Typ : Entity_Id;
5470 Warn_Node : Node_Id) return Check_Result
5472 Loc : constant Source_Ptr := Sloc (Ck_Node);
5473 S_Typ : Entity_Id;
5474 T_Typ : Entity_Id;
5475 Expr_Actual : Node_Id;
5476 Exptyp : Entity_Id;
5477 Cond : Node_Id := Empty;
5478 Do_Access : Boolean := False;
5479 Wnode : Node_Id := Warn_Node;
5480 Ret_Result : Check_Result := (Empty, Empty);
5481 Num_Checks : Integer := 0;
5483 procedure Add_Check (N : Node_Id);
5484 -- Adds the action given to Ret_Result if N is non-Empty
5486 function Discrete_Range_Cond
5487 (Expr : Node_Id;
5488 Typ : Entity_Id) return Node_Id;
5489 -- Returns expression to compute:
5490 -- Low_Bound (Expr) < Typ'First
5491 -- or else
5492 -- High_Bound (Expr) > Typ'Last
5494 function Discrete_Expr_Cond
5495 (Expr : Node_Id;
5496 Typ : Entity_Id) return Node_Id;
5497 -- Returns expression to compute:
5498 -- Expr < Typ'First
5499 -- or else
5500 -- Expr > Typ'Last
5502 function Get_E_First_Or_Last
5503 (E : Entity_Id;
5504 Indx : Nat;
5505 Nam : Name_Id) return Node_Id;
5506 -- Returns expression to compute:
5507 -- E'First or E'Last
5509 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
5510 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
5511 -- Returns expression to compute:
5512 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
5514 function Range_E_Cond
5515 (Exptyp : Entity_Id;
5516 Typ : Entity_Id;
5517 Indx : Nat)
5518 return Node_Id;
5519 -- Returns expression to compute:
5520 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
5522 function Range_Equal_E_Cond
5523 (Exptyp : Entity_Id;
5524 Typ : Entity_Id;
5525 Indx : Nat) return Node_Id;
5526 -- Returns expression to compute:
5527 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
5529 function Range_N_Cond
5530 (Expr : Node_Id;
5531 Typ : Entity_Id;
5532 Indx : Nat) return Node_Id;
5533 -- Return expression to compute:
5534 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
5536 ---------------
5537 -- Add_Check --
5538 ---------------
5540 procedure Add_Check (N : Node_Id) is
5541 begin
5542 if Present (N) then
5544 -- For now, ignore attempt to place more than 2 checks ???
5546 if Num_Checks = 2 then
5547 return;
5548 end if;
5550 pragma Assert (Num_Checks <= 1);
5551 Num_Checks := Num_Checks + 1;
5552 Ret_Result (Num_Checks) := N;
5553 end if;
5554 end Add_Check;
5556 -------------------------
5557 -- Discrete_Expr_Cond --
5558 -------------------------
5560 function Discrete_Expr_Cond
5561 (Expr : Node_Id;
5562 Typ : Entity_Id) return Node_Id
5564 begin
5565 return
5566 Make_Or_Else (Loc,
5567 Left_Opnd =>
5568 Make_Op_Lt (Loc,
5569 Left_Opnd =>
5570 Convert_To (Base_Type (Typ),
5571 Duplicate_Subexpr_No_Checks (Expr)),
5572 Right_Opnd =>
5573 Convert_To (Base_Type (Typ),
5574 Get_E_First_Or_Last (Typ, 0, Name_First))),
5576 Right_Opnd =>
5577 Make_Op_Gt (Loc,
5578 Left_Opnd =>
5579 Convert_To (Base_Type (Typ),
5580 Duplicate_Subexpr_No_Checks (Expr)),
5581 Right_Opnd =>
5582 Convert_To
5583 (Base_Type (Typ),
5584 Get_E_First_Or_Last (Typ, 0, Name_Last))));
5585 end Discrete_Expr_Cond;
5587 -------------------------
5588 -- Discrete_Range_Cond --
5589 -------------------------
5591 function Discrete_Range_Cond
5592 (Expr : Node_Id;
5593 Typ : Entity_Id) return Node_Id
5595 LB : Node_Id := Low_Bound (Expr);
5596 HB : Node_Id := High_Bound (Expr);
5598 Left_Opnd : Node_Id;
5599 Right_Opnd : Node_Id;
5601 begin
5602 if Nkind (LB) = N_Identifier
5603 and then Ekind (Entity (LB)) = E_Discriminant then
5604 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
5605 end if;
5607 if Nkind (HB) = N_Identifier
5608 and then Ekind (Entity (HB)) = E_Discriminant then
5609 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
5610 end if;
5612 Left_Opnd :=
5613 Make_Op_Lt (Loc,
5614 Left_Opnd =>
5615 Convert_To
5616 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
5618 Right_Opnd =>
5619 Convert_To
5620 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
5622 if Base_Type (Typ) = Typ then
5623 return Left_Opnd;
5625 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
5626 and then
5627 Compile_Time_Known_Value (High_Bound (Scalar_Range
5628 (Base_Type (Typ))))
5629 then
5630 if Is_Floating_Point_Type (Typ) then
5631 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
5632 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
5633 then
5634 return Left_Opnd;
5635 end if;
5637 else
5638 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
5639 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
5640 then
5641 return Left_Opnd;
5642 end if;
5643 end if;
5644 end if;
5646 Right_Opnd :=
5647 Make_Op_Gt (Loc,
5648 Left_Opnd =>
5649 Convert_To
5650 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
5652 Right_Opnd =>
5653 Convert_To
5654 (Base_Type (Typ),
5655 Get_E_First_Or_Last (Typ, 0, Name_Last)));
5657 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
5658 end Discrete_Range_Cond;
5660 -------------------------
5661 -- Get_E_First_Or_Last --
5662 -------------------------
5664 function Get_E_First_Or_Last
5665 (E : Entity_Id;
5666 Indx : Nat;
5667 Nam : Name_Id) return Node_Id
5669 N : Node_Id;
5670 LB : Node_Id;
5671 HB : Node_Id;
5672 Bound : Node_Id;
5674 begin
5675 if Is_Array_Type (E) then
5676 N := First_Index (E);
5678 for J in 2 .. Indx loop
5679 Next_Index (N);
5680 end loop;
5682 else
5683 N := Scalar_Range (E);
5684 end if;
5686 if Nkind (N) = N_Subtype_Indication then
5687 LB := Low_Bound (Range_Expression (Constraint (N)));
5688 HB := High_Bound (Range_Expression (Constraint (N)));
5690 elsif Is_Entity_Name (N) then
5691 LB := Type_Low_Bound (Etype (N));
5692 HB := Type_High_Bound (Etype (N));
5694 else
5695 LB := Low_Bound (N);
5696 HB := High_Bound (N);
5697 end if;
5699 if Nam = Name_First then
5700 Bound := LB;
5701 else
5702 Bound := HB;
5703 end if;
5705 if Nkind (Bound) = N_Identifier
5706 and then Ekind (Entity (Bound)) = E_Discriminant
5707 then
5708 -- If this is a task discriminant, and we are the body, we must
5709 -- retrieve the corresponding body discriminal. This is another
5710 -- consequence of the early creation of discriminals, and the
5711 -- need to generate constraint checks before their declarations
5712 -- are made visible.
5714 if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
5715 declare
5716 Tsk : constant Entity_Id :=
5717 Corresponding_Concurrent_Type
5718 (Scope (Entity (Bound)));
5719 Disc : Entity_Id;
5721 begin
5722 if In_Open_Scopes (Tsk)
5723 and then Has_Completion (Tsk)
5724 then
5725 -- Find discriminant of original task, and use its
5726 -- current discriminal, which is the renaming within
5727 -- the task body.
5729 Disc := First_Discriminant (Tsk);
5730 while Present (Disc) loop
5731 if Chars (Disc) = Chars (Entity (Bound)) then
5732 Set_Scope (Discriminal (Disc), Tsk);
5733 return New_Occurrence_Of (Discriminal (Disc), Loc);
5734 end if;
5736 Next_Discriminant (Disc);
5737 end loop;
5739 -- That loop should always succeed in finding a matching
5740 -- entry and returning. Fatal error if not.
5742 raise Program_Error;
5744 else
5745 return
5746 New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5747 end if;
5748 end;
5749 else
5750 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5751 end if;
5753 elsif Nkind (Bound) = N_Identifier
5754 and then Ekind (Entity (Bound)) = E_In_Parameter
5755 and then not Inside_Init_Proc
5756 then
5757 return Get_Discriminal (E, Bound);
5759 elsif Nkind (Bound) = N_Integer_Literal then
5760 return Make_Integer_Literal (Loc, Intval (Bound));
5762 else
5763 return Duplicate_Subexpr_No_Checks (Bound);
5764 end if;
5765 end Get_E_First_Or_Last;
5767 -----------------
5768 -- Get_N_First --
5769 -----------------
5771 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
5772 begin
5773 return
5774 Make_Attribute_Reference (Loc,
5775 Attribute_Name => Name_First,
5776 Prefix =>
5777 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5778 Expressions => New_List (
5779 Make_Integer_Literal (Loc, Indx)));
5780 end Get_N_First;
5782 ----------------
5783 -- Get_N_Last --
5784 ----------------
5786 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
5787 begin
5788 return
5789 Make_Attribute_Reference (Loc,
5790 Attribute_Name => Name_Last,
5791 Prefix =>
5792 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5793 Expressions => New_List (
5794 Make_Integer_Literal (Loc, Indx)));
5795 end Get_N_Last;
5797 ------------------
5798 -- Range_E_Cond --
5799 ------------------
5801 function Range_E_Cond
5802 (Exptyp : Entity_Id;
5803 Typ : Entity_Id;
5804 Indx : Nat) return Node_Id
5806 begin
5807 return
5808 Make_Or_Else (Loc,
5809 Left_Opnd =>
5810 Make_Op_Lt (Loc,
5811 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5812 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5814 Right_Opnd =>
5815 Make_Op_Gt (Loc,
5816 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5817 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5819 end Range_E_Cond;
5821 ------------------------
5822 -- Range_Equal_E_Cond --
5823 ------------------------
5825 function Range_Equal_E_Cond
5826 (Exptyp : Entity_Id;
5827 Typ : Entity_Id;
5828 Indx : Nat) return Node_Id
5830 begin
5831 return
5832 Make_Or_Else (Loc,
5833 Left_Opnd =>
5834 Make_Op_Ne (Loc,
5835 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5836 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5837 Right_Opnd =>
5838 Make_Op_Ne (Loc,
5839 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5840 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5841 end Range_Equal_E_Cond;
5843 ------------------
5844 -- Range_N_Cond --
5845 ------------------
5847 function Range_N_Cond
5848 (Expr : Node_Id;
5849 Typ : Entity_Id;
5850 Indx : Nat) return Node_Id
5852 begin
5853 return
5854 Make_Or_Else (Loc,
5855 Left_Opnd =>
5856 Make_Op_Lt (Loc,
5857 Left_Opnd => Get_N_First (Expr, Indx),
5858 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5860 Right_Opnd =>
5861 Make_Op_Gt (Loc,
5862 Left_Opnd => Get_N_Last (Expr, Indx),
5863 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5864 end Range_N_Cond;
5866 -- Start of processing for Selected_Range_Checks
5868 begin
5869 if not Expander_Active then
5870 return Ret_Result;
5871 end if;
5873 if Target_Typ = Any_Type
5874 or else Target_Typ = Any_Composite
5875 or else Raises_Constraint_Error (Ck_Node)
5876 then
5877 return Ret_Result;
5878 end if;
5880 if No (Wnode) then
5881 Wnode := Ck_Node;
5882 end if;
5884 T_Typ := Target_Typ;
5886 if No (Source_Typ) then
5887 S_Typ := Etype (Ck_Node);
5888 else
5889 S_Typ := Source_Typ;
5890 end if;
5892 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5893 return Ret_Result;
5894 end if;
5896 -- The order of evaluating T_Typ before S_Typ seems to be critical
5897 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
5898 -- in, and since Node can be an N_Range node, it might be invalid.
5899 -- Should there be an assert check somewhere for taking the Etype of
5900 -- an N_Range node ???
5902 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5903 S_Typ := Designated_Type (S_Typ);
5904 T_Typ := Designated_Type (T_Typ);
5905 Do_Access := True;
5907 -- A simple optimization
5909 if Nkind (Ck_Node) = N_Null then
5910 return Ret_Result;
5911 end if;
5912 end if;
5914 -- For an N_Range Node, check for a null range and then if not
5915 -- null generate a range check action.
5917 if Nkind (Ck_Node) = N_Range then
5919 -- There's no point in checking a range against itself
5921 if Ck_Node = Scalar_Range (T_Typ) then
5922 return Ret_Result;
5923 end if;
5925 declare
5926 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
5927 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
5928 LB : constant Node_Id := Low_Bound (Ck_Node);
5929 HB : constant Node_Id := High_Bound (Ck_Node);
5930 Null_Range : Boolean;
5932 Out_Of_Range_L : Boolean;
5933 Out_Of_Range_H : Boolean;
5935 begin
5936 -- Check for case where everything is static and we can
5937 -- do the check at compile time. This is skipped if we
5938 -- have an access type, since the access value may be null.
5940 -- ??? This code can be improved since you only need to know
5941 -- that the two respective bounds (LB & T_LB or HB & T_HB)
5942 -- are known at compile time to emit pertinent messages.
5944 if Compile_Time_Known_Value (LB)
5945 and then Compile_Time_Known_Value (HB)
5946 and then Compile_Time_Known_Value (T_LB)
5947 and then Compile_Time_Known_Value (T_HB)
5948 and then not Do_Access
5949 then
5950 -- Floating-point case
5952 if Is_Floating_Point_Type (S_Typ) then
5953 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
5954 Out_Of_Range_L :=
5955 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
5956 or else
5957 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
5959 Out_Of_Range_H :=
5960 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
5961 or else
5962 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
5964 -- Fixed or discrete type case
5966 else
5967 Null_Range := Expr_Value (HB) < Expr_Value (LB);
5968 Out_Of_Range_L :=
5969 (Expr_Value (LB) < Expr_Value (T_LB))
5970 or else
5971 (Expr_Value (LB) > Expr_Value (T_HB));
5973 Out_Of_Range_H :=
5974 (Expr_Value (HB) > Expr_Value (T_HB))
5975 or else
5976 (Expr_Value (HB) < Expr_Value (T_LB));
5977 end if;
5979 if not Null_Range then
5980 if Out_Of_Range_L then
5981 if No (Warn_Node) then
5982 Add_Check
5983 (Compile_Time_Constraint_Error
5984 (Low_Bound (Ck_Node),
5985 "static value out of range of}?", T_Typ));
5987 else
5988 Add_Check
5989 (Compile_Time_Constraint_Error
5990 (Wnode,
5991 "static range out of bounds of}?", T_Typ));
5992 end if;
5993 end if;
5995 if Out_Of_Range_H then
5996 if No (Warn_Node) then
5997 Add_Check
5998 (Compile_Time_Constraint_Error
5999 (High_Bound (Ck_Node),
6000 "static value out of range of}?", T_Typ));
6002 else
6003 Add_Check
6004 (Compile_Time_Constraint_Error
6005 (Wnode,
6006 "static range out of bounds of}?", T_Typ));
6007 end if;
6008 end if;
6010 end if;
6012 else
6013 declare
6014 LB : Node_Id := Low_Bound (Ck_Node);
6015 HB : Node_Id := High_Bound (Ck_Node);
6017 begin
6019 -- If either bound is a discriminant and we are within
6020 -- the record declaration, it is a use of the discriminant
6021 -- in a constraint of a component, and nothing can be
6022 -- checked here. The check will be emitted within the
6023 -- init proc. Before then, the discriminal has no real
6024 -- meaning.
6026 if Nkind (LB) = N_Identifier
6027 and then Ekind (Entity (LB)) = E_Discriminant
6028 then
6029 if Current_Scope = Scope (Entity (LB)) then
6030 return Ret_Result;
6031 else
6032 LB :=
6033 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6034 end if;
6035 end if;
6037 if Nkind (HB) = N_Identifier
6038 and then Ekind (Entity (HB)) = E_Discriminant
6039 then
6040 if Current_Scope = Scope (Entity (HB)) then
6041 return Ret_Result;
6042 else
6043 HB :=
6044 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6045 end if;
6046 end if;
6048 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6049 Set_Paren_Count (Cond, 1);
6051 Cond :=
6052 Make_And_Then (Loc,
6053 Left_Opnd =>
6054 Make_Op_Ge (Loc,
6055 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6056 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
6057 Right_Opnd => Cond);
6058 end;
6060 end if;
6061 end;
6063 elsif Is_Scalar_Type (S_Typ) then
6065 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6066 -- except the above simply sets a flag in the node and lets
6067 -- gigi generate the check base on the Etype of the expression.
6068 -- Sometimes, however we want to do a dynamic check against an
6069 -- arbitrary target type, so we do that here.
6071 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6072 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6074 -- For literals, we can tell if the constraint error will be
6075 -- raised at compile time, so we never need a dynamic check, but
6076 -- if the exception will be raised, then post the usual warning,
6077 -- and replace the literal with a raise constraint error
6078 -- expression. As usual, skip this for access types
6080 elsif Compile_Time_Known_Value (Ck_Node)
6081 and then not Do_Access
6082 then
6083 declare
6084 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6085 UB : constant Node_Id := Type_High_Bound (T_Typ);
6087 Out_Of_Range : Boolean;
6088 Static_Bounds : constant Boolean :=
6089 Compile_Time_Known_Value (LB)
6090 and Compile_Time_Known_Value (UB);
6092 begin
6093 -- Following range tests should use Sem_Eval routine ???
6095 if Static_Bounds then
6096 if Is_Floating_Point_Type (S_Typ) then
6097 Out_Of_Range :=
6098 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6099 or else
6100 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6102 else -- fixed or discrete type
6103 Out_Of_Range :=
6104 Expr_Value (Ck_Node) < Expr_Value (LB)
6105 or else
6106 Expr_Value (Ck_Node) > Expr_Value (UB);
6107 end if;
6109 -- Bounds of the type are static and the literal is
6110 -- out of range so make a warning message.
6112 if Out_Of_Range then
6113 if No (Warn_Node) then
6114 Add_Check
6115 (Compile_Time_Constraint_Error
6116 (Ck_Node,
6117 "static value out of range of}?", T_Typ));
6119 else
6120 Add_Check
6121 (Compile_Time_Constraint_Error
6122 (Wnode,
6123 "static value out of range of}?", T_Typ));
6124 end if;
6125 end if;
6127 else
6128 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6129 end if;
6130 end;
6132 -- Here for the case of a non-static expression, we need a runtime
6133 -- check unless the source type range is guaranteed to be in the
6134 -- range of the target type.
6136 else
6137 if not In_Subrange_Of (S_Typ, T_Typ) then
6138 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6139 end if;
6140 end if;
6141 end if;
6143 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6144 if Is_Constrained (T_Typ) then
6146 Expr_Actual := Get_Referenced_Object (Ck_Node);
6147 Exptyp := Get_Actual_Subtype (Expr_Actual);
6149 if Is_Access_Type (Exptyp) then
6150 Exptyp := Designated_Type (Exptyp);
6151 end if;
6153 -- String_Literal case. This needs to be handled specially be-
6154 -- cause no index types are available for string literals. The
6155 -- condition is simply:
6157 -- T_Typ'Length = string-literal-length
6159 if Nkind (Expr_Actual) = N_String_Literal then
6160 null;
6162 -- General array case. Here we have a usable actual subtype for
6163 -- the expression, and the condition is built from the two types
6165 -- T_Typ'First < Exptyp'First or else
6166 -- T_Typ'Last > Exptyp'Last or else
6167 -- T_Typ'First(1) < Exptyp'First(1) or else
6168 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6169 -- ...
6171 elsif Is_Constrained (Exptyp) then
6172 declare
6173 Ndims : constant Nat := Number_Dimensions (T_Typ);
6175 L_Index : Node_Id;
6176 R_Index : Node_Id;
6177 L_Low : Node_Id;
6178 L_High : Node_Id;
6179 R_Low : Node_Id;
6180 R_High : Node_Id;
6182 begin
6183 L_Index := First_Index (T_Typ);
6184 R_Index := First_Index (Exptyp);
6186 for Indx in 1 .. Ndims loop
6187 if not (Nkind (L_Index) = N_Raise_Constraint_Error
6188 or else
6189 Nkind (R_Index) = N_Raise_Constraint_Error)
6190 then
6191 Get_Index_Bounds (L_Index, L_Low, L_High);
6192 Get_Index_Bounds (R_Index, R_Low, R_High);
6194 -- Deal with compile time length check. Note that we
6195 -- skip this in the access case, because the access
6196 -- value may be null, so we cannot know statically.
6198 if not
6199 Subtypes_Statically_Match
6200 (Etype (L_Index), Etype (R_Index))
6201 then
6202 -- If the target type is constrained then we
6203 -- have to check for exact equality of bounds
6204 -- (required for qualified expressions).
6206 if Is_Constrained (T_Typ) then
6207 Evolve_Or_Else
6208 (Cond,
6209 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
6211 else
6212 Evolve_Or_Else
6213 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6214 end if;
6215 end if;
6217 Next (L_Index);
6218 Next (R_Index);
6220 end if;
6221 end loop;
6222 end;
6224 -- Handle cases where we do not get a usable actual subtype that
6225 -- is constrained. This happens for example in the function call
6226 -- and explicit dereference cases. In these cases, we have to get
6227 -- the length or range from the expression itself, making sure we
6228 -- do not evaluate it more than once.
6230 -- Here Ck_Node is the original expression, or more properly the
6231 -- result of applying Duplicate_Expr to the original tree,
6232 -- forcing the result to be a name.
6234 else
6235 declare
6236 Ndims : constant Nat := Number_Dimensions (T_Typ);
6238 begin
6239 -- Build the condition for the explicit dereference case
6241 for Indx in 1 .. Ndims loop
6242 Evolve_Or_Else
6243 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6244 end loop;
6245 end;
6247 end if;
6249 else
6250 -- Generate an Action to check that the bounds of the
6251 -- source value are within the constraints imposed by the
6252 -- target type for a conversion to an unconstrained type.
6253 -- Rule is 4.6(38).
6255 if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
6256 declare
6257 Opnd_Index : Node_Id;
6258 Targ_Index : Node_Id;
6260 begin
6261 Opnd_Index
6262 := First_Index (Get_Actual_Subtype (Ck_Node));
6263 Targ_Index := First_Index (T_Typ);
6265 while Opnd_Index /= Empty loop
6266 if Nkind (Opnd_Index) = N_Range then
6267 if Is_In_Range
6268 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6269 and then
6270 Is_In_Range
6271 (High_Bound (Opnd_Index), Etype (Targ_Index))
6272 then
6273 null;
6275 -- If null range, no check needed
6277 elsif
6278 Compile_Time_Known_Value (High_Bound (Opnd_Index))
6279 and then
6280 Compile_Time_Known_Value (Low_Bound (Opnd_Index))
6281 and then
6282 Expr_Value (High_Bound (Opnd_Index)) <
6283 Expr_Value (Low_Bound (Opnd_Index))
6284 then
6285 null;
6287 elsif Is_Out_Of_Range
6288 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6289 or else
6290 Is_Out_Of_Range
6291 (High_Bound (Opnd_Index), Etype (Targ_Index))
6292 then
6293 Add_Check
6294 (Compile_Time_Constraint_Error
6295 (Wnode, "value out of range of}?", T_Typ));
6297 else
6298 Evolve_Or_Else
6299 (Cond,
6300 Discrete_Range_Cond
6301 (Opnd_Index, Etype (Targ_Index)));
6302 end if;
6303 end if;
6305 Next_Index (Opnd_Index);
6306 Next_Index (Targ_Index);
6307 end loop;
6308 end;
6309 end if;
6310 end if;
6311 end if;
6313 -- Construct the test and insert into the tree
6315 if Present (Cond) then
6316 if Do_Access then
6317 Cond := Guard_Access (Cond, Loc, Ck_Node);
6318 end if;
6320 Add_Check
6321 (Make_Raise_Constraint_Error (Loc,
6322 Condition => Cond,
6323 Reason => CE_Range_Check_Failed));
6324 end if;
6326 return Ret_Result;
6327 end Selected_Range_Checks;
6329 -------------------------------
6330 -- Storage_Checks_Suppressed --
6331 -------------------------------
6333 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
6334 begin
6335 if Present (E) and then Checks_May_Be_Suppressed (E) then
6336 return Is_Check_Suppressed (E, Storage_Check);
6337 else
6338 return Scope_Suppress (Storage_Check);
6339 end if;
6340 end Storage_Checks_Suppressed;
6342 ---------------------------
6343 -- Tag_Checks_Suppressed --
6344 ---------------------------
6346 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6347 begin
6348 if Present (E) then
6349 if Kill_Tag_Checks (E) then
6350 return True;
6351 elsif Checks_May_Be_Suppressed (E) then
6352 return Is_Check_Suppressed (E, Tag_Check);
6353 end if;
6354 end if;
6356 return Scope_Suppress (Tag_Check);
6357 end Tag_Checks_Suppressed;
6359 end Checks;