* gimplify.c (find_single_pointer_decl_1): New static function.
[official-gcc.git] / gcc / expmed.c
blob19d972d2ad38c8367c8503486b5d471d014c907d
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
63 sequences. */
65 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
66 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
78 #endif
80 /* Reduce conditional compilation elsewhere. */
81 #ifndef HAVE_insv
82 #define HAVE_insv 0
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
85 #endif
86 #ifndef HAVE_extv
87 #define HAVE_extv 0
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
90 #endif
91 #ifndef HAVE_extzv
92 #define HAVE_extzv 0
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
95 #endif
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
99 static int zero_cost;
100 static int add_cost[NUM_MACHINE_MODES];
101 static int neg_cost[NUM_MACHINE_MODES];
102 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
103 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int mul_cost[NUM_MACHINE_MODES];
106 static int div_cost[NUM_MACHINE_MODES];
107 static int mul_widen_cost[NUM_MACHINE_MODES];
108 static int mul_highpart_cost[NUM_MACHINE_MODES];
110 void
111 init_expmed (void)
113 struct
115 struct rtx_def reg; rtunion reg_fld[2];
116 struct rtx_def plus; rtunion plus_fld1;
117 struct rtx_def neg;
118 struct rtx_def udiv; rtunion udiv_fld1;
119 struct rtx_def mult; rtunion mult_fld1;
120 struct rtx_def div; rtunion div_fld1;
121 struct rtx_def mod; rtunion mod_fld1;
122 struct rtx_def zext;
123 struct rtx_def wide_mult; rtunion wide_mult_fld1;
124 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
125 struct rtx_def wide_trunc;
126 struct rtx_def shift; rtunion shift_fld1;
127 struct rtx_def shift_mult; rtunion shift_mult_fld1;
128 struct rtx_def shift_add; rtunion shift_add_fld1;
129 struct rtx_def shift_sub; rtunion shift_sub_fld1;
130 } all;
132 rtx pow2[MAX_BITS_PER_WORD];
133 rtx cint[MAX_BITS_PER_WORD];
134 int m, n;
135 enum machine_mode mode, wider_mode;
137 zero_cost = rtx_cost (const0_rtx, 0);
139 for (m = 1; m < MAX_BITS_PER_WORD; m++)
141 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
142 cint[m] = GEN_INT (m);
145 memset (&all, 0, sizeof all);
147 PUT_CODE (&all.reg, REG);
148 /* Avoid using hard regs in ways which may be unsupported. */
149 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
151 PUT_CODE (&all.plus, PLUS);
152 XEXP (&all.plus, 0) = &all.reg;
153 XEXP (&all.plus, 1) = &all.reg;
155 PUT_CODE (&all.neg, NEG);
156 XEXP (&all.neg, 0) = &all.reg;
158 PUT_CODE (&all.udiv, UDIV);
159 XEXP (&all.udiv, 0) = &all.reg;
160 XEXP (&all.udiv, 1) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.div, DIV);
167 XEXP (&all.div, 0) = &all.reg;
168 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
170 PUT_CODE (&all.mod, MOD);
171 XEXP (&all.mod, 0) = &all.reg;
172 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
174 PUT_CODE (&all.zext, ZERO_EXTEND);
175 XEXP (&all.zext, 0) = &all.reg;
177 PUT_CODE (&all.wide_mult, MULT);
178 XEXP (&all.wide_mult, 0) = &all.zext;
179 XEXP (&all.wide_mult, 1) = &all.zext;
181 PUT_CODE (&all.wide_lshr, LSHIFTRT);
182 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
184 PUT_CODE (&all.wide_trunc, TRUNCATE);
185 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
187 PUT_CODE (&all.shift, ASHIFT);
188 XEXP (&all.shift, 0) = &all.reg;
190 PUT_CODE (&all.shift_mult, MULT);
191 XEXP (&all.shift_mult, 0) = &all.reg;
193 PUT_CODE (&all.shift_add, PLUS);
194 XEXP (&all.shift_add, 0) = &all.shift_mult;
195 XEXP (&all.shift_add, 1) = &all.reg;
197 PUT_CODE (&all.shift_sub, MINUS);
198 XEXP (&all.shift_sub, 0) = &all.shift_mult;
199 XEXP (&all.shift_sub, 1) = &all.reg;
201 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
202 mode != VOIDmode;
203 mode = GET_MODE_WIDER_MODE (mode))
205 PUT_MODE (&all.reg, mode);
206 PUT_MODE (&all.plus, mode);
207 PUT_MODE (&all.neg, mode);
208 PUT_MODE (&all.udiv, mode);
209 PUT_MODE (&all.mult, mode);
210 PUT_MODE (&all.div, mode);
211 PUT_MODE (&all.mod, mode);
212 PUT_MODE (&all.wide_trunc, mode);
213 PUT_MODE (&all.shift, mode);
214 PUT_MODE (&all.shift_mult, mode);
215 PUT_MODE (&all.shift_add, mode);
216 PUT_MODE (&all.shift_sub, mode);
218 add_cost[mode] = rtx_cost (&all.plus, SET);
219 neg_cost[mode] = rtx_cost (&all.neg, SET);
220 div_cost[mode] = rtx_cost (&all.udiv, SET);
221 mul_cost[mode] = rtx_cost (&all.mult, SET);
223 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
224 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
226 wider_mode = GET_MODE_WIDER_MODE (mode);
227 if (wider_mode != VOIDmode)
229 PUT_MODE (&all.zext, wider_mode);
230 PUT_MODE (&all.wide_mult, wider_mode);
231 PUT_MODE (&all.wide_lshr, wider_mode);
232 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
234 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
235 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
238 shift_cost[mode][0] = 0;
239 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
241 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
242 for (m = 1; m < n; m++)
244 XEXP (&all.shift, 1) = cint[m];
245 XEXP (&all.shift_mult, 1) = pow2[m];
247 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
248 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
249 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
254 /* Return an rtx representing minus the value of X.
255 MODE is the intended mode of the result,
256 useful if X is a CONST_INT. */
259 negate_rtx (enum machine_mode mode, rtx x)
261 rtx result = simplify_unary_operation (NEG, mode, x, mode);
263 if (result == 0)
264 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
266 return result;
269 /* Report on the availability of insv/extv/extzv and the desired mode
270 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
271 is false; else the mode of the specified operand. If OPNO is -1,
272 all the caller cares about is whether the insn is available. */
273 enum machine_mode
274 mode_for_extraction (enum extraction_pattern pattern, int opno)
276 const struct insn_data *data;
278 switch (pattern)
280 case EP_insv:
281 if (HAVE_insv)
283 data = &insn_data[CODE_FOR_insv];
284 break;
286 return MAX_MACHINE_MODE;
288 case EP_extv:
289 if (HAVE_extv)
291 data = &insn_data[CODE_FOR_extv];
292 break;
294 return MAX_MACHINE_MODE;
296 case EP_extzv:
297 if (HAVE_extzv)
299 data = &insn_data[CODE_FOR_extzv];
300 break;
302 return MAX_MACHINE_MODE;
304 default:
305 gcc_unreachable ();
308 if (opno == -1)
309 return VOIDmode;
311 /* Everyone who uses this function used to follow it with
312 if (result == VOIDmode) result = word_mode; */
313 if (data->operand[opno].mode == VOIDmode)
314 return word_mode;
315 return data->operand[opno].mode;
319 /* Generate code to store value from rtx VALUE
320 into a bit-field within structure STR_RTX
321 containing BITSIZE bits starting at bit BITNUM.
322 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
323 ALIGN is the alignment that STR_RTX is known to have.
324 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
326 /* ??? Note that there are two different ideas here for how
327 to determine the size to count bits within, for a register.
328 One is BITS_PER_WORD, and the other is the size of operand 3
329 of the insv pattern.
331 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
332 else, we use the mode of operand 3. */
335 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
336 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
337 rtx value)
339 unsigned int unit
340 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
341 unsigned HOST_WIDE_INT offset, bitpos;
342 rtx op0 = str_rtx;
343 int byte_offset;
344 rtx orig_value;
346 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
348 while (GET_CODE (op0) == SUBREG)
350 /* The following line once was done only if WORDS_BIG_ENDIAN,
351 but I think that is a mistake. WORDS_BIG_ENDIAN is
352 meaningful at a much higher level; when structures are copied
353 between memory and regs, the higher-numbered regs
354 always get higher addresses. */
355 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
356 op0 = SUBREG_REG (op0);
359 /* No action is needed if the target is a register and if the field
360 lies completely outside that register. This can occur if the source
361 code contains an out-of-bounds access to a small array. */
362 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
363 return value;
365 /* Use vec_set patterns for inserting parts of vectors whenever
366 available. */
367 if (VECTOR_MODE_P (GET_MODE (op0))
368 && !MEM_P (op0)
369 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
370 != CODE_FOR_nothing)
371 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
372 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
373 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
375 enum machine_mode outermode = GET_MODE (op0);
376 enum machine_mode innermode = GET_MODE_INNER (outermode);
377 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
378 int pos = bitnum / GET_MODE_BITSIZE (innermode);
379 rtx rtxpos = GEN_INT (pos);
380 rtx src = value;
381 rtx dest = op0;
382 rtx pat, seq;
383 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
384 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
385 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
387 start_sequence ();
389 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
390 src = copy_to_mode_reg (mode1, src);
392 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
393 rtxpos = copy_to_mode_reg (mode1, rtxpos);
395 /* We could handle this, but we should always be called with a pseudo
396 for our targets and all insns should take them as outputs. */
397 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
398 && (*insn_data[icode].operand[1].predicate) (src, mode1)
399 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
400 pat = GEN_FCN (icode) (dest, src, rtxpos);
401 seq = get_insns ();
402 end_sequence ();
403 if (pat)
405 emit_insn (seq);
406 emit_insn (pat);
407 return dest;
411 /* If the target is a register, overwriting the entire object, or storing
412 a full-word or multi-word field can be done with just a SUBREG.
414 If the target is memory, storing any naturally aligned field can be
415 done with a simple store. For targets that support fast unaligned
416 memory, any naturally sized, unit aligned field can be done directly. */
418 offset = bitnum / unit;
419 bitpos = bitnum % unit;
420 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
421 + (offset * UNITS_PER_WORD);
423 if (bitpos == 0
424 && bitsize == GET_MODE_BITSIZE (fieldmode)
425 && (!MEM_P (op0)
426 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
427 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
428 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
429 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
430 || (offset * BITS_PER_UNIT % bitsize == 0
431 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
433 if (GET_MODE (op0) != fieldmode)
435 if (MEM_P (op0))
436 op0 = adjust_address (op0, fieldmode, offset);
437 else
438 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
439 byte_offset);
441 emit_move_insn (op0, value);
442 return value;
445 /* Make sure we are playing with integral modes. Pun with subregs
446 if we aren't. This must come after the entire register case above,
447 since that case is valid for any mode. The following cases are only
448 valid for integral modes. */
450 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
451 if (imode != GET_MODE (op0))
453 if (MEM_P (op0))
454 op0 = adjust_address (op0, imode, 0);
455 else
457 gcc_assert (imode != BLKmode);
458 op0 = gen_lowpart (imode, op0);
463 /* We may be accessing data outside the field, which means
464 we can alias adjacent data. */
465 if (MEM_P (op0))
467 op0 = shallow_copy_rtx (op0);
468 set_mem_alias_set (op0, 0);
469 set_mem_expr (op0, 0);
472 /* If OP0 is a register, BITPOS must count within a word.
473 But as we have it, it counts within whatever size OP0 now has.
474 On a bigendian machine, these are not the same, so convert. */
475 if (BYTES_BIG_ENDIAN
476 && !MEM_P (op0)
477 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
478 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
480 /* Storing an lsb-aligned field in a register
481 can be done with a movestrict instruction. */
483 if (!MEM_P (op0)
484 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
485 && bitsize == GET_MODE_BITSIZE (fieldmode)
486 && (movstrict_optab->handlers[fieldmode].insn_code
487 != CODE_FOR_nothing))
489 int icode = movstrict_optab->handlers[fieldmode].insn_code;
491 /* Get appropriate low part of the value being stored. */
492 if (GET_CODE (value) == CONST_INT || REG_P (value))
493 value = gen_lowpart (fieldmode, value);
494 else if (!(GET_CODE (value) == SYMBOL_REF
495 || GET_CODE (value) == LABEL_REF
496 || GET_CODE (value) == CONST))
497 value = convert_to_mode (fieldmode, value, 0);
499 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
500 value = copy_to_mode_reg (fieldmode, value);
502 if (GET_CODE (op0) == SUBREG)
504 /* Else we've got some float mode source being extracted into
505 a different float mode destination -- this combination of
506 subregs results in Severe Tire Damage. */
507 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
508 || GET_MODE_CLASS (fieldmode) == MODE_INT
509 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
510 op0 = SUBREG_REG (op0);
513 emit_insn (GEN_FCN (icode)
514 (gen_rtx_SUBREG (fieldmode, op0,
515 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
516 + (offset * UNITS_PER_WORD)),
517 value));
519 return value;
522 /* Handle fields bigger than a word. */
524 if (bitsize > BITS_PER_WORD)
526 /* Here we transfer the words of the field
527 in the order least significant first.
528 This is because the most significant word is the one which may
529 be less than full.
530 However, only do that if the value is not BLKmode. */
532 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
533 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
534 unsigned int i;
536 /* This is the mode we must force value to, so that there will be enough
537 subwords to extract. Note that fieldmode will often (always?) be
538 VOIDmode, because that is what store_field uses to indicate that this
539 is a bit field, but passing VOIDmode to operand_subword_force
540 is not allowed. */
541 fieldmode = GET_MODE (value);
542 if (fieldmode == VOIDmode)
543 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
545 for (i = 0; i < nwords; i++)
547 /* If I is 0, use the low-order word in both field and target;
548 if I is 1, use the next to lowest word; and so on. */
549 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
550 unsigned int bit_offset = (backwards
551 ? MAX ((int) bitsize - ((int) i + 1)
552 * BITS_PER_WORD,
554 : (int) i * BITS_PER_WORD);
556 store_bit_field (op0, MIN (BITS_PER_WORD,
557 bitsize - i * BITS_PER_WORD),
558 bitnum + bit_offset, word_mode,
559 operand_subword_force (value, wordnum, fieldmode));
561 return value;
564 /* From here on we can assume that the field to be stored in is
565 a full-word (whatever type that is), since it is shorter than a word. */
567 /* OFFSET is the number of words or bytes (UNIT says which)
568 from STR_RTX to the first word or byte containing part of the field. */
570 if (!MEM_P (op0))
572 if (offset != 0
573 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
575 if (!REG_P (op0))
577 /* Since this is a destination (lvalue), we can't copy
578 it to a pseudo. We can remove a SUBREG that does not
579 change the size of the operand. Such a SUBREG may
580 have been added above. */
581 gcc_assert (GET_CODE (op0) == SUBREG
582 && (GET_MODE_SIZE (GET_MODE (op0))
583 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
584 op0 = SUBREG_REG (op0);
586 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
587 op0, (offset * UNITS_PER_WORD));
589 offset = 0;
592 /* If VALUE has a floating-point or complex mode, access it as an
593 integer of the corresponding size. This can occur on a machine
594 with 64 bit registers that uses SFmode for float. It can also
595 occur for unaligned float or complex fields. */
596 orig_value = value;
597 if (GET_MODE (value) != VOIDmode
598 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
599 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
601 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
602 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
605 /* Now OFFSET is nonzero only if OP0 is memory
606 and is therefore always measured in bytes. */
608 if (HAVE_insv
609 && GET_MODE (value) != BLKmode
610 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
611 /* Ensure insv's size is wide enough for this field. */
612 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
613 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
614 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
616 int xbitpos = bitpos;
617 rtx value1;
618 rtx xop0 = op0;
619 rtx last = get_last_insn ();
620 rtx pat;
621 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
622 int save_volatile_ok = volatile_ok;
624 volatile_ok = 1;
626 /* If this machine's insv can only insert into a register, copy OP0
627 into a register and save it back later. */
628 if (MEM_P (op0)
629 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
630 (op0, VOIDmode)))
632 rtx tempreg;
633 enum machine_mode bestmode;
635 /* Get the mode to use for inserting into this field. If OP0 is
636 BLKmode, get the smallest mode consistent with the alignment. If
637 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
638 mode. Otherwise, use the smallest mode containing the field. */
640 if (GET_MODE (op0) == BLKmode
641 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
642 bestmode
643 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
644 MEM_VOLATILE_P (op0));
645 else
646 bestmode = GET_MODE (op0);
648 if (bestmode == VOIDmode
649 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
650 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
651 goto insv_loses;
653 /* Adjust address to point to the containing unit of that mode.
654 Compute offset as multiple of this unit, counting in bytes. */
655 unit = GET_MODE_BITSIZE (bestmode);
656 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
657 bitpos = bitnum % unit;
658 op0 = adjust_address (op0, bestmode, offset);
660 /* Fetch that unit, store the bitfield in it, then store
661 the unit. */
662 tempreg = copy_to_reg (op0);
663 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
664 emit_move_insn (op0, tempreg);
665 return value;
667 volatile_ok = save_volatile_ok;
669 /* Add OFFSET into OP0's address. */
670 if (MEM_P (xop0))
671 xop0 = adjust_address (xop0, byte_mode, offset);
673 /* If xop0 is a register, we need it in MAXMODE
674 to make it acceptable to the format of insv. */
675 if (GET_CODE (xop0) == SUBREG)
676 /* We can't just change the mode, because this might clobber op0,
677 and we will need the original value of op0 if insv fails. */
678 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
679 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
680 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
682 /* On big-endian machines, we count bits from the most significant.
683 If the bit field insn does not, we must invert. */
685 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
686 xbitpos = unit - bitsize - xbitpos;
688 /* We have been counting XBITPOS within UNIT.
689 Count instead within the size of the register. */
690 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
691 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
693 unit = GET_MODE_BITSIZE (maxmode);
695 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
696 value1 = value;
697 if (GET_MODE (value) != maxmode)
699 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
701 /* Optimization: Don't bother really extending VALUE
702 if it has all the bits we will actually use. However,
703 if we must narrow it, be sure we do it correctly. */
705 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
707 rtx tmp;
709 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
710 if (! tmp)
711 tmp = simplify_gen_subreg (maxmode,
712 force_reg (GET_MODE (value),
713 value1),
714 GET_MODE (value), 0);
715 value1 = tmp;
717 else
718 value1 = gen_lowpart (maxmode, value1);
720 else if (GET_CODE (value) == CONST_INT)
721 value1 = gen_int_mode (INTVAL (value), maxmode);
722 else
723 /* Parse phase is supposed to make VALUE's data type
724 match that of the component reference, which is a type
725 at least as wide as the field; so VALUE should have
726 a mode that corresponds to that type. */
727 gcc_assert (CONSTANT_P (value));
730 /* If this machine's insv insists on a register,
731 get VALUE1 into a register. */
732 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
733 (value1, maxmode)))
734 value1 = force_reg (maxmode, value1);
736 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
737 if (pat)
738 emit_insn (pat);
739 else
741 delete_insns_since (last);
742 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
745 else
746 insv_loses:
747 /* Insv is not available; store using shifts and boolean ops. */
748 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
749 return value;
752 /* Use shifts and boolean operations to store VALUE
753 into a bit field of width BITSIZE
754 in a memory location specified by OP0 except offset by OFFSET bytes.
755 (OFFSET must be 0 if OP0 is a register.)
756 The field starts at position BITPOS within the byte.
757 (If OP0 is a register, it may be a full word or a narrower mode,
758 but BITPOS still counts within a full word,
759 which is significant on bigendian machines.) */
761 static void
762 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
763 unsigned HOST_WIDE_INT bitsize,
764 unsigned HOST_WIDE_INT bitpos, rtx value)
766 enum machine_mode mode;
767 unsigned int total_bits = BITS_PER_WORD;
768 rtx subtarget, temp;
769 int all_zero = 0;
770 int all_one = 0;
772 /* There is a case not handled here:
773 a structure with a known alignment of just a halfword
774 and a field split across two aligned halfwords within the structure.
775 Or likewise a structure with a known alignment of just a byte
776 and a field split across two bytes.
777 Such cases are not supposed to be able to occur. */
779 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
781 gcc_assert (!offset);
782 /* Special treatment for a bit field split across two registers. */
783 if (bitsize + bitpos > BITS_PER_WORD)
785 store_split_bit_field (op0, bitsize, bitpos, value);
786 return;
789 else
791 /* Get the proper mode to use for this field. We want a mode that
792 includes the entire field. If such a mode would be larger than
793 a word, we won't be doing the extraction the normal way.
794 We don't want a mode bigger than the destination. */
796 mode = GET_MODE (op0);
797 if (GET_MODE_BITSIZE (mode) == 0
798 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
799 mode = word_mode;
800 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
801 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
803 if (mode == VOIDmode)
805 /* The only way this should occur is if the field spans word
806 boundaries. */
807 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
808 value);
809 return;
812 total_bits = GET_MODE_BITSIZE (mode);
814 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
815 be in the range 0 to total_bits-1, and put any excess bytes in
816 OFFSET. */
817 if (bitpos >= total_bits)
819 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
820 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
821 * BITS_PER_UNIT);
824 /* Get ref to an aligned byte, halfword, or word containing the field.
825 Adjust BITPOS to be position within a word,
826 and OFFSET to be the offset of that word.
827 Then alter OP0 to refer to that word. */
828 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
829 offset -= (offset % (total_bits / BITS_PER_UNIT));
830 op0 = adjust_address (op0, mode, offset);
833 mode = GET_MODE (op0);
835 /* Now MODE is either some integral mode for a MEM as OP0,
836 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
837 The bit field is contained entirely within OP0.
838 BITPOS is the starting bit number within OP0.
839 (OP0's mode may actually be narrower than MODE.) */
841 if (BYTES_BIG_ENDIAN)
842 /* BITPOS is the distance between our msb
843 and that of the containing datum.
844 Convert it to the distance from the lsb. */
845 bitpos = total_bits - bitsize - bitpos;
847 /* Now BITPOS is always the distance between our lsb
848 and that of OP0. */
850 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
851 we must first convert its mode to MODE. */
853 if (GET_CODE (value) == CONST_INT)
855 HOST_WIDE_INT v = INTVAL (value);
857 if (bitsize < HOST_BITS_PER_WIDE_INT)
858 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
860 if (v == 0)
861 all_zero = 1;
862 else if ((bitsize < HOST_BITS_PER_WIDE_INT
863 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
864 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
865 all_one = 1;
867 value = lshift_value (mode, value, bitpos, bitsize);
869 else
871 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
872 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
874 if (GET_MODE (value) != mode)
876 if ((REG_P (value) || GET_CODE (value) == SUBREG)
877 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
878 value = gen_lowpart (mode, value);
879 else
880 value = convert_to_mode (mode, value, 1);
883 if (must_and)
884 value = expand_binop (mode, and_optab, value,
885 mask_rtx (mode, 0, bitsize, 0),
886 NULL_RTX, 1, OPTAB_LIB_WIDEN);
887 if (bitpos > 0)
888 value = expand_shift (LSHIFT_EXPR, mode, value,
889 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
892 /* Now clear the chosen bits in OP0,
893 except that if VALUE is -1 we need not bother. */
895 subtarget = op0;
897 if (! all_one)
899 temp = expand_binop (mode, and_optab, op0,
900 mask_rtx (mode, bitpos, bitsize, 1),
901 subtarget, 1, OPTAB_LIB_WIDEN);
902 subtarget = temp;
904 else
905 temp = op0;
907 /* Now logical-or VALUE into OP0, unless it is zero. */
909 if (! all_zero)
910 temp = expand_binop (mode, ior_optab, temp, value,
911 subtarget, 1, OPTAB_LIB_WIDEN);
912 if (op0 != temp)
913 emit_move_insn (op0, temp);
916 /* Store a bit field that is split across multiple accessible memory objects.
918 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
919 BITSIZE is the field width; BITPOS the position of its first bit
920 (within the word).
921 VALUE is the value to store.
923 This does not yet handle fields wider than BITS_PER_WORD. */
925 static void
926 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
927 unsigned HOST_WIDE_INT bitpos, rtx value)
929 unsigned int unit;
930 unsigned int bitsdone = 0;
932 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
933 much at a time. */
934 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
935 unit = BITS_PER_WORD;
936 else
937 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
939 /* If VALUE is a constant other than a CONST_INT, get it into a register in
940 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
941 that VALUE might be a floating-point constant. */
942 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
944 rtx word = gen_lowpart_common (word_mode, value);
946 if (word && (value != word))
947 value = word;
948 else
949 value = gen_lowpart_common (word_mode,
950 force_reg (GET_MODE (value) != VOIDmode
951 ? GET_MODE (value)
952 : word_mode, value));
955 while (bitsdone < bitsize)
957 unsigned HOST_WIDE_INT thissize;
958 rtx part, word;
959 unsigned HOST_WIDE_INT thispos;
960 unsigned HOST_WIDE_INT offset;
962 offset = (bitpos + bitsdone) / unit;
963 thispos = (bitpos + bitsdone) % unit;
965 /* THISSIZE must not overrun a word boundary. Otherwise,
966 store_fixed_bit_field will call us again, and we will mutually
967 recurse forever. */
968 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
969 thissize = MIN (thissize, unit - thispos);
971 if (BYTES_BIG_ENDIAN)
973 int total_bits;
975 /* We must do an endian conversion exactly the same way as it is
976 done in extract_bit_field, so that the two calls to
977 extract_fixed_bit_field will have comparable arguments. */
978 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
979 total_bits = BITS_PER_WORD;
980 else
981 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
983 /* Fetch successively less significant portions. */
984 if (GET_CODE (value) == CONST_INT)
985 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
986 >> (bitsize - bitsdone - thissize))
987 & (((HOST_WIDE_INT) 1 << thissize) - 1));
988 else
989 /* The args are chosen so that the last part includes the
990 lsb. Give extract_bit_field the value it needs (with
991 endianness compensation) to fetch the piece we want. */
992 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
993 total_bits - bitsize + bitsdone,
994 NULL_RTX, 1);
996 else
998 /* Fetch successively more significant portions. */
999 if (GET_CODE (value) == CONST_INT)
1000 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1001 >> bitsdone)
1002 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1003 else
1004 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1005 bitsdone, NULL_RTX, 1);
1008 /* If OP0 is a register, then handle OFFSET here.
1010 When handling multiword bitfields, extract_bit_field may pass
1011 down a word_mode SUBREG of a larger REG for a bitfield that actually
1012 crosses a word boundary. Thus, for a SUBREG, we must find
1013 the current word starting from the base register. */
1014 if (GET_CODE (op0) == SUBREG)
1016 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1017 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1018 GET_MODE (SUBREG_REG (op0)));
1019 offset = 0;
1021 else if (REG_P (op0))
1023 word = operand_subword_force (op0, offset, GET_MODE (op0));
1024 offset = 0;
1026 else
1027 word = op0;
1029 /* OFFSET is in UNITs, and UNIT is in bits.
1030 store_fixed_bit_field wants offset in bytes. */
1031 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1032 thispos, part);
1033 bitsdone += thissize;
1037 /* Generate code to extract a byte-field from STR_RTX
1038 containing BITSIZE bits, starting at BITNUM,
1039 and put it in TARGET if possible (if TARGET is nonzero).
1040 Regardless of TARGET, we return the rtx for where the value is placed.
1042 STR_RTX is the structure containing the byte (a REG or MEM).
1043 UNSIGNEDP is nonzero if this is an unsigned bit field.
1044 MODE is the natural mode of the field value once extracted.
1045 TMODE is the mode the caller would like the value to have;
1046 but the value may be returned with type MODE instead.
1048 TOTAL_SIZE is the size in bytes of the containing structure,
1049 or -1 if varying.
1051 If a TARGET is specified and we can store in it at no extra cost,
1052 we do so, and return TARGET.
1053 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1054 if they are equally easy. */
1057 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1058 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1059 enum machine_mode mode, enum machine_mode tmode)
1061 unsigned int unit
1062 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1063 unsigned HOST_WIDE_INT offset, bitpos;
1064 rtx op0 = str_rtx;
1065 rtx spec_target = target;
1066 rtx spec_target_subreg = 0;
1067 enum machine_mode int_mode;
1068 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1069 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1070 enum machine_mode mode1;
1071 int byte_offset;
1073 if (tmode == VOIDmode)
1074 tmode = mode;
1076 while (GET_CODE (op0) == SUBREG)
1078 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1079 op0 = SUBREG_REG (op0);
1082 /* If we have an out-of-bounds access to a register, just return an
1083 uninitialized register of the required mode. This can occur if the
1084 source code contains an out-of-bounds access to a small array. */
1085 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1086 return gen_reg_rtx (tmode);
1088 if (REG_P (op0)
1089 && mode == GET_MODE (op0)
1090 && bitnum == 0
1091 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1093 /* We're trying to extract a full register from itself. */
1094 return op0;
1097 /* Use vec_extract patterns for extracting parts of vectors whenever
1098 available. */
1099 if (VECTOR_MODE_P (GET_MODE (op0))
1100 && !MEM_P (op0)
1101 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1102 != CODE_FOR_nothing)
1103 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1104 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1106 enum machine_mode outermode = GET_MODE (op0);
1107 enum machine_mode innermode = GET_MODE_INNER (outermode);
1108 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1109 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1110 rtx rtxpos = GEN_INT (pos);
1111 rtx src = op0;
1112 rtx dest = NULL, pat, seq;
1113 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1114 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1115 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1117 if (innermode == tmode || innermode == mode)
1118 dest = target;
1120 if (!dest)
1121 dest = gen_reg_rtx (innermode);
1123 start_sequence ();
1125 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1126 dest = copy_to_mode_reg (mode0, dest);
1128 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1129 src = copy_to_mode_reg (mode1, src);
1131 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1132 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1134 /* We could handle this, but we should always be called with a pseudo
1135 for our targets and all insns should take them as outputs. */
1136 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1137 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1138 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1140 pat = GEN_FCN (icode) (dest, src, rtxpos);
1141 seq = get_insns ();
1142 end_sequence ();
1143 if (pat)
1145 emit_insn (seq);
1146 emit_insn (pat);
1147 return dest;
1151 /* Make sure we are playing with integral modes. Pun with subregs
1152 if we aren't. */
1154 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1155 if (imode != GET_MODE (op0))
1157 if (MEM_P (op0))
1158 op0 = adjust_address (op0, imode, 0);
1159 else
1161 gcc_assert (imode != BLKmode);
1162 op0 = gen_lowpart (imode, op0);
1164 /* If we got a SUBREG, force it into a register since we
1165 aren't going to be able to do another SUBREG on it. */
1166 if (GET_CODE (op0) == SUBREG)
1167 op0 = force_reg (imode, op0);
1172 /* We may be accessing data outside the field, which means
1173 we can alias adjacent data. */
1174 if (MEM_P (op0))
1176 op0 = shallow_copy_rtx (op0);
1177 set_mem_alias_set (op0, 0);
1178 set_mem_expr (op0, 0);
1181 /* Extraction of a full-word or multi-word value from a structure
1182 in a register or aligned memory can be done with just a SUBREG.
1183 A subword value in the least significant part of a register
1184 can also be extracted with a SUBREG. For this, we need the
1185 byte offset of the value in op0. */
1187 bitpos = bitnum % unit;
1188 offset = bitnum / unit;
1189 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1191 /* If OP0 is a register, BITPOS must count within a word.
1192 But as we have it, it counts within whatever size OP0 now has.
1193 On a bigendian machine, these are not the same, so convert. */
1194 if (BYTES_BIG_ENDIAN
1195 && !MEM_P (op0)
1196 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1197 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1199 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1200 If that's wrong, the solution is to test for it and set TARGET to 0
1201 if needed. */
1203 /* Only scalar integer modes can be converted via subregs. There is an
1204 additional problem for FP modes here in that they can have a precision
1205 which is different from the size. mode_for_size uses precision, but
1206 we want a mode based on the size, so we must avoid calling it for FP
1207 modes. */
1208 mode1 = (SCALAR_INT_MODE_P (tmode)
1209 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1210 : mode);
1212 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1213 && bitpos % BITS_PER_WORD == 0)
1214 || (mode1 != BLKmode
1215 /* ??? The big endian test here is wrong. This is correct
1216 if the value is in a register, and if mode_for_size is not
1217 the same mode as op0. This causes us to get unnecessarily
1218 inefficient code from the Thumb port when -mbig-endian. */
1219 && (BYTES_BIG_ENDIAN
1220 ? bitpos + bitsize == BITS_PER_WORD
1221 : bitpos == 0)))
1222 && ((!MEM_P (op0)
1223 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1224 GET_MODE_BITSIZE (GET_MODE (op0)))
1225 && GET_MODE_SIZE (mode1) != 0
1226 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1227 || (MEM_P (op0)
1228 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1229 || (offset * BITS_PER_UNIT % bitsize == 0
1230 && MEM_ALIGN (op0) % bitsize == 0)))))
1232 if (mode1 != GET_MODE (op0))
1234 if (MEM_P (op0))
1235 op0 = adjust_address (op0, mode1, offset);
1236 else
1238 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1239 byte_offset);
1240 if (sub == NULL)
1241 goto no_subreg_mode_swap;
1242 op0 = sub;
1245 if (mode1 != mode)
1246 return convert_to_mode (tmode, op0, unsignedp);
1247 return op0;
1249 no_subreg_mode_swap:
1251 /* Handle fields bigger than a word. */
1253 if (bitsize > BITS_PER_WORD)
1255 /* Here we transfer the words of the field
1256 in the order least significant first.
1257 This is because the most significant word is the one which may
1258 be less than full. */
1260 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1261 unsigned int i;
1263 if (target == 0 || !REG_P (target))
1264 target = gen_reg_rtx (mode);
1266 /* Indicate for flow that the entire target reg is being set. */
1267 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1269 for (i = 0; i < nwords; i++)
1271 /* If I is 0, use the low-order word in both field and target;
1272 if I is 1, use the next to lowest word; and so on. */
1273 /* Word number in TARGET to use. */
1274 unsigned int wordnum
1275 = (WORDS_BIG_ENDIAN
1276 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1277 : i);
1278 /* Offset from start of field in OP0. */
1279 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1280 ? MAX (0, ((int) bitsize - ((int) i + 1)
1281 * (int) BITS_PER_WORD))
1282 : (int) i * BITS_PER_WORD);
1283 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1284 rtx result_part
1285 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1286 bitsize - i * BITS_PER_WORD),
1287 bitnum + bit_offset, 1, target_part, mode,
1288 word_mode);
1290 gcc_assert (target_part);
1292 if (result_part != target_part)
1293 emit_move_insn (target_part, result_part);
1296 if (unsignedp)
1298 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1299 need to be zero'd out. */
1300 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1302 unsigned int i, total_words;
1304 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1305 for (i = nwords; i < total_words; i++)
1306 emit_move_insn
1307 (operand_subword (target,
1308 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1309 1, VOIDmode),
1310 const0_rtx);
1312 return target;
1315 /* Signed bit field: sign-extend with two arithmetic shifts. */
1316 target = expand_shift (LSHIFT_EXPR, mode, target,
1317 build_int_cst (NULL_TREE,
1318 GET_MODE_BITSIZE (mode) - bitsize),
1319 NULL_RTX, 0);
1320 return expand_shift (RSHIFT_EXPR, mode, target,
1321 build_int_cst (NULL_TREE,
1322 GET_MODE_BITSIZE (mode) - bitsize),
1323 NULL_RTX, 0);
1326 /* From here on we know the desired field is smaller than a word. */
1328 /* Check if there is a correspondingly-sized integer field, so we can
1329 safely extract it as one size of integer, if necessary; then
1330 truncate or extend to the size that is wanted; then use SUBREGs or
1331 convert_to_mode to get one of the modes we really wanted. */
1333 int_mode = int_mode_for_mode (tmode);
1334 if (int_mode == BLKmode)
1335 int_mode = int_mode_for_mode (mode);
1336 /* Should probably push op0 out to memory and then do a load. */
1337 gcc_assert (int_mode != BLKmode);
1339 /* OFFSET is the number of words or bytes (UNIT says which)
1340 from STR_RTX to the first word or byte containing part of the field. */
1341 if (!MEM_P (op0))
1343 if (offset != 0
1344 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1346 if (!REG_P (op0))
1347 op0 = copy_to_reg (op0);
1348 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1349 op0, (offset * UNITS_PER_WORD));
1351 offset = 0;
1354 /* Now OFFSET is nonzero only for memory operands. */
1356 if (unsignedp)
1358 if (HAVE_extzv
1359 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1360 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1361 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1363 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1364 rtx bitsize_rtx, bitpos_rtx;
1365 rtx last = get_last_insn ();
1366 rtx xop0 = op0;
1367 rtx xtarget = target;
1368 rtx xspec_target = spec_target;
1369 rtx xspec_target_subreg = spec_target_subreg;
1370 rtx pat;
1371 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1373 if (MEM_P (xop0))
1375 int save_volatile_ok = volatile_ok;
1376 volatile_ok = 1;
1378 /* Is the memory operand acceptable? */
1379 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1380 (xop0, GET_MODE (xop0))))
1382 /* No, load into a reg and extract from there. */
1383 enum machine_mode bestmode;
1385 /* Get the mode to use for inserting into this field. If
1386 OP0 is BLKmode, get the smallest mode consistent with the
1387 alignment. If OP0 is a non-BLKmode object that is no
1388 wider than MAXMODE, use its mode. Otherwise, use the
1389 smallest mode containing the field. */
1391 if (GET_MODE (xop0) == BLKmode
1392 || (GET_MODE_SIZE (GET_MODE (op0))
1393 > GET_MODE_SIZE (maxmode)))
1394 bestmode = get_best_mode (bitsize, bitnum,
1395 MEM_ALIGN (xop0), maxmode,
1396 MEM_VOLATILE_P (xop0));
1397 else
1398 bestmode = GET_MODE (xop0);
1400 if (bestmode == VOIDmode
1401 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1402 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1403 goto extzv_loses;
1405 /* Compute offset as multiple of this unit,
1406 counting in bytes. */
1407 unit = GET_MODE_BITSIZE (bestmode);
1408 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1409 xbitpos = bitnum % unit;
1410 xop0 = adjust_address (xop0, bestmode, xoffset);
1412 /* Fetch it to a register in that size. */
1413 xop0 = force_reg (bestmode, xop0);
1415 /* XBITPOS counts within UNIT, which is what is expected. */
1417 else
1418 /* Get ref to first byte containing part of the field. */
1419 xop0 = adjust_address (xop0, byte_mode, xoffset);
1421 volatile_ok = save_volatile_ok;
1424 /* If op0 is a register, we need it in MAXMODE (which is usually
1425 SImode). to make it acceptable to the format of extzv. */
1426 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1427 goto extzv_loses;
1428 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1429 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1431 /* On big-endian machines, we count bits from the most significant.
1432 If the bit field insn does not, we must invert. */
1433 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1434 xbitpos = unit - bitsize - xbitpos;
1436 /* Now convert from counting within UNIT to counting in MAXMODE. */
1437 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1438 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1440 unit = GET_MODE_BITSIZE (maxmode);
1442 if (xtarget == 0)
1443 xtarget = xspec_target = gen_reg_rtx (tmode);
1445 if (GET_MODE (xtarget) != maxmode)
1447 if (REG_P (xtarget))
1449 int wider = (GET_MODE_SIZE (maxmode)
1450 > GET_MODE_SIZE (GET_MODE (xtarget)));
1451 xtarget = gen_lowpart (maxmode, xtarget);
1452 if (wider)
1453 xspec_target_subreg = xtarget;
1455 else
1456 xtarget = gen_reg_rtx (maxmode);
1459 /* If this machine's extzv insists on a register target,
1460 make sure we have one. */
1461 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1462 (xtarget, maxmode)))
1463 xtarget = gen_reg_rtx (maxmode);
1465 bitsize_rtx = GEN_INT (bitsize);
1466 bitpos_rtx = GEN_INT (xbitpos);
1468 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1469 if (pat)
1471 emit_insn (pat);
1472 target = xtarget;
1473 spec_target = xspec_target;
1474 spec_target_subreg = xspec_target_subreg;
1476 else
1478 delete_insns_since (last);
1479 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1480 bitpos, target, 1);
1483 else
1484 extzv_loses:
1485 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1486 bitpos, target, 1);
1488 else
1490 if (HAVE_extv
1491 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1492 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1493 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1495 int xbitpos = bitpos, xoffset = offset;
1496 rtx bitsize_rtx, bitpos_rtx;
1497 rtx last = get_last_insn ();
1498 rtx xop0 = op0, xtarget = target;
1499 rtx xspec_target = spec_target;
1500 rtx xspec_target_subreg = spec_target_subreg;
1501 rtx pat;
1502 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1504 if (MEM_P (xop0))
1506 /* Is the memory operand acceptable? */
1507 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1508 (xop0, GET_MODE (xop0))))
1510 /* No, load into a reg and extract from there. */
1511 enum machine_mode bestmode;
1513 /* Get the mode to use for inserting into this field. If
1514 OP0 is BLKmode, get the smallest mode consistent with the
1515 alignment. If OP0 is a non-BLKmode object that is no
1516 wider than MAXMODE, use its mode. Otherwise, use the
1517 smallest mode containing the field. */
1519 if (GET_MODE (xop0) == BLKmode
1520 || (GET_MODE_SIZE (GET_MODE (op0))
1521 > GET_MODE_SIZE (maxmode)))
1522 bestmode = get_best_mode (bitsize, bitnum,
1523 MEM_ALIGN (xop0), maxmode,
1524 MEM_VOLATILE_P (xop0));
1525 else
1526 bestmode = GET_MODE (xop0);
1528 if (bestmode == VOIDmode
1529 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1530 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1531 goto extv_loses;
1533 /* Compute offset as multiple of this unit,
1534 counting in bytes. */
1535 unit = GET_MODE_BITSIZE (bestmode);
1536 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1537 xbitpos = bitnum % unit;
1538 xop0 = adjust_address (xop0, bestmode, xoffset);
1540 /* Fetch it to a register in that size. */
1541 xop0 = force_reg (bestmode, xop0);
1543 /* XBITPOS counts within UNIT, which is what is expected. */
1545 else
1546 /* Get ref to first byte containing part of the field. */
1547 xop0 = adjust_address (xop0, byte_mode, xoffset);
1550 /* If op0 is a register, we need it in MAXMODE (which is usually
1551 SImode) to make it acceptable to the format of extv. */
1552 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1553 goto extv_loses;
1554 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1555 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1557 /* On big-endian machines, we count bits from the most significant.
1558 If the bit field insn does not, we must invert. */
1559 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1560 xbitpos = unit - bitsize - xbitpos;
1562 /* XBITPOS counts within a size of UNIT.
1563 Adjust to count within a size of MAXMODE. */
1564 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1565 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1567 unit = GET_MODE_BITSIZE (maxmode);
1569 if (xtarget == 0)
1570 xtarget = xspec_target = gen_reg_rtx (tmode);
1572 if (GET_MODE (xtarget) != maxmode)
1574 if (REG_P (xtarget))
1576 int wider = (GET_MODE_SIZE (maxmode)
1577 > GET_MODE_SIZE (GET_MODE (xtarget)));
1578 xtarget = gen_lowpart (maxmode, xtarget);
1579 if (wider)
1580 xspec_target_subreg = xtarget;
1582 else
1583 xtarget = gen_reg_rtx (maxmode);
1586 /* If this machine's extv insists on a register target,
1587 make sure we have one. */
1588 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1589 (xtarget, maxmode)))
1590 xtarget = gen_reg_rtx (maxmode);
1592 bitsize_rtx = GEN_INT (bitsize);
1593 bitpos_rtx = GEN_INT (xbitpos);
1595 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1596 if (pat)
1598 emit_insn (pat);
1599 target = xtarget;
1600 spec_target = xspec_target;
1601 spec_target_subreg = xspec_target_subreg;
1603 else
1605 delete_insns_since (last);
1606 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1607 bitpos, target, 0);
1610 else
1611 extv_loses:
1612 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1613 bitpos, target, 0);
1615 if (target == spec_target)
1616 return target;
1617 if (target == spec_target_subreg)
1618 return spec_target;
1619 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1621 /* If the target mode is not a scalar integral, first convert to the
1622 integer mode of that size and then access it as a floating-point
1623 value via a SUBREG. */
1624 if (!SCALAR_INT_MODE_P (tmode))
1626 enum machine_mode smode
1627 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1628 target = convert_to_mode (smode, target, unsignedp);
1629 target = force_reg (smode, target);
1630 return gen_lowpart (tmode, target);
1633 return convert_to_mode (tmode, target, unsignedp);
1635 return target;
1638 /* Extract a bit field using shifts and boolean operations
1639 Returns an rtx to represent the value.
1640 OP0 addresses a register (word) or memory (byte).
1641 BITPOS says which bit within the word or byte the bit field starts in.
1642 OFFSET says how many bytes farther the bit field starts;
1643 it is 0 if OP0 is a register.
1644 BITSIZE says how many bits long the bit field is.
1645 (If OP0 is a register, it may be narrower than a full word,
1646 but BITPOS still counts within a full word,
1647 which is significant on bigendian machines.)
1649 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1650 If TARGET is nonzero, attempts to store the value there
1651 and return TARGET, but this is not guaranteed.
1652 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1654 static rtx
1655 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1656 unsigned HOST_WIDE_INT offset,
1657 unsigned HOST_WIDE_INT bitsize,
1658 unsigned HOST_WIDE_INT bitpos, rtx target,
1659 int unsignedp)
1661 unsigned int total_bits = BITS_PER_WORD;
1662 enum machine_mode mode;
1664 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1666 /* Special treatment for a bit field split across two registers. */
1667 if (bitsize + bitpos > BITS_PER_WORD)
1668 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1670 else
1672 /* Get the proper mode to use for this field. We want a mode that
1673 includes the entire field. If such a mode would be larger than
1674 a word, we won't be doing the extraction the normal way. */
1676 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1677 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1679 if (mode == VOIDmode)
1680 /* The only way this should occur is if the field spans word
1681 boundaries. */
1682 return extract_split_bit_field (op0, bitsize,
1683 bitpos + offset * BITS_PER_UNIT,
1684 unsignedp);
1686 total_bits = GET_MODE_BITSIZE (mode);
1688 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1689 be in the range 0 to total_bits-1, and put any excess bytes in
1690 OFFSET. */
1691 if (bitpos >= total_bits)
1693 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1694 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1695 * BITS_PER_UNIT);
1698 /* Get ref to an aligned byte, halfword, or word containing the field.
1699 Adjust BITPOS to be position within a word,
1700 and OFFSET to be the offset of that word.
1701 Then alter OP0 to refer to that word. */
1702 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1703 offset -= (offset % (total_bits / BITS_PER_UNIT));
1704 op0 = adjust_address (op0, mode, offset);
1707 mode = GET_MODE (op0);
1709 if (BYTES_BIG_ENDIAN)
1710 /* BITPOS is the distance between our msb and that of OP0.
1711 Convert it to the distance from the lsb. */
1712 bitpos = total_bits - bitsize - bitpos;
1714 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1715 We have reduced the big-endian case to the little-endian case. */
1717 if (unsignedp)
1719 if (bitpos)
1721 /* If the field does not already start at the lsb,
1722 shift it so it does. */
1723 tree amount = build_int_cst (NULL_TREE, bitpos);
1724 /* Maybe propagate the target for the shift. */
1725 /* But not if we will return it--could confuse integrate.c. */
1726 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1727 if (tmode != mode) subtarget = 0;
1728 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1730 /* Convert the value to the desired mode. */
1731 if (mode != tmode)
1732 op0 = convert_to_mode (tmode, op0, 1);
1734 /* Unless the msb of the field used to be the msb when we shifted,
1735 mask out the upper bits. */
1737 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1738 return expand_binop (GET_MODE (op0), and_optab, op0,
1739 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1740 target, 1, OPTAB_LIB_WIDEN);
1741 return op0;
1744 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1745 then arithmetic-shift its lsb to the lsb of the word. */
1746 op0 = force_reg (mode, op0);
1747 if (mode != tmode)
1748 target = 0;
1750 /* Find the narrowest integer mode that contains the field. */
1752 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1753 mode = GET_MODE_WIDER_MODE (mode))
1754 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1756 op0 = convert_to_mode (mode, op0, 0);
1757 break;
1760 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1762 tree amount
1763 = build_int_cst (NULL_TREE,
1764 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1765 /* Maybe propagate the target for the shift. */
1766 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1767 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1770 return expand_shift (RSHIFT_EXPR, mode, op0,
1771 build_int_cst (NULL_TREE,
1772 GET_MODE_BITSIZE (mode) - bitsize),
1773 target, 0);
1776 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1777 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1778 complement of that if COMPLEMENT. The mask is truncated if
1779 necessary to the width of mode MODE. The mask is zero-extended if
1780 BITSIZE+BITPOS is too small for MODE. */
1782 static rtx
1783 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1785 HOST_WIDE_INT masklow, maskhigh;
1787 if (bitsize == 0)
1788 masklow = 0;
1789 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1790 masklow = (HOST_WIDE_INT) -1 << bitpos;
1791 else
1792 masklow = 0;
1794 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1795 masklow &= ((unsigned HOST_WIDE_INT) -1
1796 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1798 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1799 maskhigh = -1;
1800 else
1801 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1803 if (bitsize == 0)
1804 maskhigh = 0;
1805 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1806 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1807 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1808 else
1809 maskhigh = 0;
1811 if (complement)
1813 maskhigh = ~maskhigh;
1814 masklow = ~masklow;
1817 return immed_double_const (masklow, maskhigh, mode);
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1821 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1823 static rtx
1824 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1826 unsigned HOST_WIDE_INT v = INTVAL (value);
1827 HOST_WIDE_INT low, high;
1829 if (bitsize < HOST_BITS_PER_WIDE_INT)
1830 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1832 if (bitpos < HOST_BITS_PER_WIDE_INT)
1834 low = v << bitpos;
1835 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1837 else
1839 low = 0;
1840 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1843 return immed_double_const (low, high, mode);
1846 /* Extract a bit field from a memory by forcing the alignment of the
1847 memory. This efficient only if the field spans at least 4 boundaries.
1849 OP0 is the MEM.
1850 BITSIZE is the field width; BITPOS is the position of the first bit.
1851 UNSIGNEDP is true if the result should be zero-extended. */
1853 static rtx
1854 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1855 unsigned HOST_WIDE_INT bitpos,
1856 int unsignedp)
1858 enum machine_mode mode, dmode;
1859 unsigned int m_bitsize, m_size;
1860 unsigned int sign_shift_up, sign_shift_dn;
1861 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1863 /* Choose a mode that will fit BITSIZE. */
1864 mode = smallest_mode_for_size (bitsize, MODE_INT);
1865 m_size = GET_MODE_SIZE (mode);
1866 m_bitsize = GET_MODE_BITSIZE (mode);
1868 /* Choose a mode twice as wide. Fail if no such mode exists. */
1869 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1870 if (dmode == BLKmode)
1871 return NULL;
1873 do_pending_stack_adjust ();
1874 start = get_last_insn ();
1876 /* At the end, we'll need an additional shift to deal with sign/zero
1877 extension. By default this will be a left+right shift of the
1878 appropriate size. But we may be able to eliminate one of them. */
1879 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1881 if (STRICT_ALIGNMENT)
1883 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1884 bitpos %= BITS_PER_UNIT;
1886 /* We load two values to be concatenate. There's an edge condition
1887 that bears notice -- an aligned value at the end of a page can
1888 only load one value lest we segfault. So the two values we load
1889 are at "base & -size" and "(base + size - 1) & -size". If base
1890 is unaligned, the addresses will be aligned and sequential; if
1891 base is aligned, the addresses will both be equal to base. */
1893 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1894 GEN_INT (-(HOST_WIDE_INT)m_size),
1895 NULL, true, OPTAB_LIB_WIDEN);
1896 mark_reg_pointer (a1, m_bitsize);
1897 v1 = gen_rtx_MEM (mode, a1);
1898 set_mem_align (v1, m_bitsize);
1899 v1 = force_reg (mode, validize_mem (v1));
1901 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1902 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1903 GEN_INT (-(HOST_WIDE_INT)m_size),
1904 NULL, true, OPTAB_LIB_WIDEN);
1905 v2 = gen_rtx_MEM (mode, a2);
1906 set_mem_align (v2, m_bitsize);
1907 v2 = force_reg (mode, validize_mem (v2));
1909 /* Combine these two values into a double-word value. */
1910 if (m_bitsize == BITS_PER_WORD)
1912 comb = gen_reg_rtx (dmode);
1913 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1914 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1915 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1917 else
1919 if (BYTES_BIG_ENDIAN)
1920 comb = v1, v1 = v2, v2 = comb;
1921 v1 = convert_modes (dmode, mode, v1, true);
1922 if (v1 == NULL)
1923 goto fail;
1924 v2 = convert_modes (dmode, mode, v2, true);
1925 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1926 NULL, true, OPTAB_LIB_WIDEN);
1927 if (v2 == NULL)
1928 goto fail;
1929 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1930 true, OPTAB_LIB_WIDEN);
1931 if (comb == NULL)
1932 goto fail;
1935 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1936 NULL, true, OPTAB_LIB_WIDEN);
1937 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1939 if (bitpos != 0)
1941 if (sign_shift_up <= bitpos)
1942 bitpos -= sign_shift_up, sign_shift_up = 0;
1943 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1944 NULL, true, OPTAB_LIB_WIDEN);
1947 else
1949 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1950 bitpos %= BITS_PER_UNIT;
1952 /* When strict alignment is not required, we can just load directly
1953 from memory without masking. If the remaining BITPOS offset is
1954 small enough, we may be able to do all operations in MODE as
1955 opposed to DMODE. */
1956 if (bitpos + bitsize <= m_bitsize)
1957 dmode = mode;
1958 comb = adjust_address (op0, dmode, offset);
1960 if (sign_shift_up <= bitpos)
1961 bitpos -= sign_shift_up, sign_shift_up = 0;
1962 shift = GEN_INT (bitpos);
1965 /* Shift down the double-word such that the requested value is at bit 0. */
1966 if (shift != const0_rtx)
1967 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1968 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1969 if (comb == NULL)
1970 goto fail;
1972 /* If the field exactly matches MODE, then all we need to do is return the
1973 lowpart. Otherwise, shift to get the sign bits set properly. */
1974 result = force_reg (mode, gen_lowpart (mode, comb));
1976 if (sign_shift_up)
1977 result = expand_simple_binop (mode, ASHIFT, result,
1978 GEN_INT (sign_shift_up),
1979 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1980 if (sign_shift_dn)
1981 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1982 result, GEN_INT (sign_shift_dn),
1983 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1985 return result;
1987 fail:
1988 delete_insns_since (start);
1989 return NULL;
1992 /* Extract a bit field that is split across two words
1993 and return an RTX for the result.
1995 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1996 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1997 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1999 static rtx
2000 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2001 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2003 unsigned int unit;
2004 unsigned int bitsdone = 0;
2005 rtx result = NULL_RTX;
2006 int first = 1;
2008 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2009 much at a time. */
2010 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2011 unit = BITS_PER_WORD;
2012 else
2014 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2015 if (0 && bitsize / unit > 2)
2017 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2018 unsignedp);
2019 if (tmp)
2020 return tmp;
2024 while (bitsdone < bitsize)
2026 unsigned HOST_WIDE_INT thissize;
2027 rtx part, word;
2028 unsigned HOST_WIDE_INT thispos;
2029 unsigned HOST_WIDE_INT offset;
2031 offset = (bitpos + bitsdone) / unit;
2032 thispos = (bitpos + bitsdone) % unit;
2034 /* THISSIZE must not overrun a word boundary. Otherwise,
2035 extract_fixed_bit_field will call us again, and we will mutually
2036 recurse forever. */
2037 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2038 thissize = MIN (thissize, unit - thispos);
2040 /* If OP0 is a register, then handle OFFSET here.
2042 When handling multiword bitfields, extract_bit_field may pass
2043 down a word_mode SUBREG of a larger REG for a bitfield that actually
2044 crosses a word boundary. Thus, for a SUBREG, we must find
2045 the current word starting from the base register. */
2046 if (GET_CODE (op0) == SUBREG)
2048 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2049 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2050 GET_MODE (SUBREG_REG (op0)));
2051 offset = 0;
2053 else if (REG_P (op0))
2055 word = operand_subword_force (op0, offset, GET_MODE (op0));
2056 offset = 0;
2058 else
2059 word = op0;
2061 /* Extract the parts in bit-counting order,
2062 whose meaning is determined by BYTES_PER_UNIT.
2063 OFFSET is in UNITs, and UNIT is in bits.
2064 extract_fixed_bit_field wants offset in bytes. */
2065 part = extract_fixed_bit_field (word_mode, word,
2066 offset * unit / BITS_PER_UNIT,
2067 thissize, thispos, 0, 1);
2068 bitsdone += thissize;
2070 /* Shift this part into place for the result. */
2071 if (BYTES_BIG_ENDIAN)
2073 if (bitsize != bitsdone)
2074 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2075 build_int_cst (NULL_TREE, bitsize - bitsdone),
2076 0, 1);
2078 else
2080 if (bitsdone != thissize)
2081 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2082 build_int_cst (NULL_TREE,
2083 bitsdone - thissize), 0, 1);
2086 if (first)
2087 result = part;
2088 else
2089 /* Combine the parts with bitwise or. This works
2090 because we extracted each part as an unsigned bit field. */
2091 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2092 OPTAB_LIB_WIDEN);
2094 first = 0;
2097 /* Unsigned bit field: we are done. */
2098 if (unsignedp)
2099 return result;
2100 /* Signed bit field: sign-extend with two arithmetic shifts. */
2101 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2102 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2103 NULL_RTX, 0);
2104 return expand_shift (RSHIFT_EXPR, word_mode, result,
2105 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2106 NULL_RTX, 0);
2109 /* Add INC into TARGET. */
2111 void
2112 expand_inc (rtx target, rtx inc)
2114 rtx value = expand_binop (GET_MODE (target), add_optab,
2115 target, inc,
2116 target, 0, OPTAB_LIB_WIDEN);
2117 if (value != target)
2118 emit_move_insn (target, value);
2121 /* Subtract DEC from TARGET. */
2123 void
2124 expand_dec (rtx target, rtx dec)
2126 rtx value = expand_binop (GET_MODE (target), sub_optab,
2127 target, dec,
2128 target, 0, OPTAB_LIB_WIDEN);
2129 if (value != target)
2130 emit_move_insn (target, value);
2133 /* Output a shift instruction for expression code CODE,
2134 with SHIFTED being the rtx for the value to shift,
2135 and AMOUNT the tree for the amount to shift by.
2136 Store the result in the rtx TARGET, if that is convenient.
2137 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2138 Return the rtx for where the value is. */
2141 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2142 tree amount, rtx target, int unsignedp)
2144 rtx op1, temp = 0;
2145 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2146 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2147 int try;
2149 /* Previously detected shift-counts computed by NEGATE_EXPR
2150 and shifted in the other direction; but that does not work
2151 on all machines. */
2153 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2155 if (SHIFT_COUNT_TRUNCATED)
2157 if (GET_CODE (op1) == CONST_INT
2158 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2159 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2160 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2161 % GET_MODE_BITSIZE (mode));
2162 else if (GET_CODE (op1) == SUBREG
2163 && subreg_lowpart_p (op1))
2164 op1 = SUBREG_REG (op1);
2167 if (op1 == const0_rtx)
2168 return shifted;
2170 /* Check whether its cheaper to implement a left shift by a constant
2171 bit count by a sequence of additions. */
2172 if (code == LSHIFT_EXPR
2173 && GET_CODE (op1) == CONST_INT
2174 && INTVAL (op1) > 0
2175 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2176 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2178 int i;
2179 for (i = 0; i < INTVAL (op1); i++)
2181 temp = force_reg (mode, shifted);
2182 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2183 unsignedp, OPTAB_LIB_WIDEN);
2185 return shifted;
2188 for (try = 0; temp == 0 && try < 3; try++)
2190 enum optab_methods methods;
2192 if (try == 0)
2193 methods = OPTAB_DIRECT;
2194 else if (try == 1)
2195 methods = OPTAB_WIDEN;
2196 else
2197 methods = OPTAB_LIB_WIDEN;
2199 if (rotate)
2201 /* Widening does not work for rotation. */
2202 if (methods == OPTAB_WIDEN)
2203 continue;
2204 else if (methods == OPTAB_LIB_WIDEN)
2206 /* If we have been unable to open-code this by a rotation,
2207 do it as the IOR of two shifts. I.e., to rotate A
2208 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2209 where C is the bitsize of A.
2211 It is theoretically possible that the target machine might
2212 not be able to perform either shift and hence we would
2213 be making two libcalls rather than just the one for the
2214 shift (similarly if IOR could not be done). We will allow
2215 this extremely unlikely lossage to avoid complicating the
2216 code below. */
2218 rtx subtarget = target == shifted ? 0 : target;
2219 rtx temp1;
2220 tree type = TREE_TYPE (amount);
2221 tree new_amount = make_tree (type, op1);
2222 tree other_amount
2223 = fold_build2 (MINUS_EXPR, type,
2224 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2225 amount);
2227 shifted = force_reg (mode, shifted);
2229 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2230 mode, shifted, new_amount, 0, 1);
2231 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2232 mode, shifted, other_amount, subtarget, 1);
2233 return expand_binop (mode, ior_optab, temp, temp1, target,
2234 unsignedp, methods);
2237 temp = expand_binop (mode,
2238 left ? rotl_optab : rotr_optab,
2239 shifted, op1, target, unsignedp, methods);
2241 else if (unsignedp)
2242 temp = expand_binop (mode,
2243 left ? ashl_optab : lshr_optab,
2244 shifted, op1, target, unsignedp, methods);
2246 /* Do arithmetic shifts.
2247 Also, if we are going to widen the operand, we can just as well
2248 use an arithmetic right-shift instead of a logical one. */
2249 if (temp == 0 && ! rotate
2250 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2252 enum optab_methods methods1 = methods;
2254 /* If trying to widen a log shift to an arithmetic shift,
2255 don't accept an arithmetic shift of the same size. */
2256 if (unsignedp)
2257 methods1 = OPTAB_MUST_WIDEN;
2259 /* Arithmetic shift */
2261 temp = expand_binop (mode,
2262 left ? ashl_optab : ashr_optab,
2263 shifted, op1, target, unsignedp, methods1);
2266 /* We used to try extzv here for logical right shifts, but that was
2267 only useful for one machine, the VAX, and caused poor code
2268 generation there for lshrdi3, so the code was deleted and a
2269 define_expand for lshrsi3 was added to vax.md. */
2272 gcc_assert (temp);
2273 return temp;
2276 enum alg_code {
2277 alg_unknown,
2278 alg_zero,
2279 alg_m, alg_shift,
2280 alg_add_t_m2,
2281 alg_sub_t_m2,
2282 alg_add_factor,
2283 alg_sub_factor,
2284 alg_add_t2_m,
2285 alg_sub_t2_m,
2286 alg_impossible
2289 /* This structure holds the "cost" of a multiply sequence. The
2290 "cost" field holds the total rtx_cost of every operator in the
2291 synthetic multiplication sequence, hence cost(a op b) is defined
2292 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2293 The "latency" field holds the minimum possible latency of the
2294 synthetic multiply, on a hypothetical infinitely parallel CPU.
2295 This is the critical path, or the maximum height, of the expression
2296 tree which is the sum of rtx_costs on the most expensive path from
2297 any leaf to the root. Hence latency(a op b) is defined as zero for
2298 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2300 struct mult_cost {
2301 short cost; /* Total rtx_cost of the multiplication sequence. */
2302 short latency; /* The latency of the multiplication sequence. */
2305 /* This macro is used to compare a pointer to a mult_cost against an
2306 single integer "rtx_cost" value. This is equivalent to the macro
2307 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2308 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2309 || ((X)->cost == (Y) && (X)->latency < (Y)))
2311 /* This macro is used to compare two pointers to mult_costs against
2312 each other. The macro returns true if X is cheaper than Y.
2313 Currently, the cheaper of two mult_costs is the one with the
2314 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2315 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2316 || ((X)->cost == (Y)->cost \
2317 && (X)->latency < (Y)->latency))
2319 /* This structure records a sequence of operations.
2320 `ops' is the number of operations recorded.
2321 `cost' is their total cost.
2322 The operations are stored in `op' and the corresponding
2323 logarithms of the integer coefficients in `log'.
2325 These are the operations:
2326 alg_zero total := 0;
2327 alg_m total := multiplicand;
2328 alg_shift total := total * coeff
2329 alg_add_t_m2 total := total + multiplicand * coeff;
2330 alg_sub_t_m2 total := total - multiplicand * coeff;
2331 alg_add_factor total := total * coeff + total;
2332 alg_sub_factor total := total * coeff - total;
2333 alg_add_t2_m total := total * coeff + multiplicand;
2334 alg_sub_t2_m total := total * coeff - multiplicand;
2336 The first operand must be either alg_zero or alg_m. */
2338 struct algorithm
2340 struct mult_cost cost;
2341 short ops;
2342 /* The size of the OP and LOG fields are not directly related to the
2343 word size, but the worst-case algorithms will be if we have few
2344 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2345 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2346 in total wordsize operations. */
2347 enum alg_code op[MAX_BITS_PER_WORD];
2348 char log[MAX_BITS_PER_WORD];
2351 /* The entry for our multiplication cache/hash table. */
2352 struct alg_hash_entry {
2353 /* The number we are multiplying by. */
2354 unsigned int t;
2356 /* The mode in which we are multiplying something by T. */
2357 enum machine_mode mode;
2359 /* The best multiplication algorithm for t. */
2360 enum alg_code alg;
2362 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2363 Otherwise, the cost within which multiplication by T is
2364 impossible. */
2365 struct mult_cost cost;
2368 /* The number of cache/hash entries. */
2369 #define NUM_ALG_HASH_ENTRIES 307
2371 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2372 actually a hash table. If we have a collision, that the older
2373 entry is kicked out. */
2374 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2376 /* Indicates the type of fixup needed after a constant multiplication.
2377 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2378 the result should be negated, and ADD_VARIANT means that the
2379 multiplicand should be added to the result. */
2380 enum mult_variant {basic_variant, negate_variant, add_variant};
2382 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2383 const struct mult_cost *, enum machine_mode mode);
2384 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2385 struct algorithm *, enum mult_variant *, int);
2386 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2387 const struct algorithm *, enum mult_variant);
2388 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2389 int, rtx *, int *, int *);
2390 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2391 static rtx extract_high_half (enum machine_mode, rtx);
2392 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2393 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2394 int, int);
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2401 static void
2402 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2403 const struct mult_cost *cost_limit, enum machine_mode mode)
2405 int m;
2406 struct algorithm *alg_in, *best_alg;
2407 struct mult_cost best_cost;
2408 struct mult_cost new_limit;
2409 int op_cost, op_latency;
2410 unsigned HOST_WIDE_INT q;
2411 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2412 int hash_index;
2413 bool cache_hit = false;
2414 enum alg_code cache_alg = alg_zero;
2416 /* Indicate that no algorithm is yet found. If no algorithm
2417 is found, this value will be returned and indicate failure. */
2418 alg_out->cost.cost = cost_limit->cost + 1;
2419 alg_out->cost.latency = cost_limit->latency + 1;
2421 if (cost_limit->cost < 0
2422 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2423 return;
2425 /* Restrict the bits of "t" to the multiplication's mode. */
2426 t &= GET_MODE_MASK (mode);
2428 /* t == 1 can be done in zero cost. */
2429 if (t == 1)
2431 alg_out->ops = 1;
2432 alg_out->cost.cost = 0;
2433 alg_out->cost.latency = 0;
2434 alg_out->op[0] = alg_m;
2435 return;
2438 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2439 fail now. */
2440 if (t == 0)
2442 if (MULT_COST_LESS (cost_limit, zero_cost))
2443 return;
2444 else
2446 alg_out->ops = 1;
2447 alg_out->cost.cost = zero_cost;
2448 alg_out->cost.latency = zero_cost;
2449 alg_out->op[0] = alg_zero;
2450 return;
2454 /* We'll be needing a couple extra algorithm structures now. */
2456 alg_in = alloca (sizeof (struct algorithm));
2457 best_alg = alloca (sizeof (struct algorithm));
2458 best_cost = *cost_limit;
2460 /* Compute the hash index. */
2461 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2463 /* See if we already know what to do for T. */
2464 if (alg_hash[hash_index].t == t
2465 && alg_hash[hash_index].mode == mode
2466 && alg_hash[hash_index].alg != alg_unknown)
2468 cache_alg = alg_hash[hash_index].alg;
2470 if (cache_alg == alg_impossible)
2472 /* The cache tells us that it's impossible to synthesize
2473 multiplication by T within alg_hash[hash_index].cost. */
2474 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2475 /* COST_LIMIT is at least as restrictive as the one
2476 recorded in the hash table, in which case we have no
2477 hope of synthesizing a multiplication. Just
2478 return. */
2479 return;
2481 /* If we get here, COST_LIMIT is less restrictive than the
2482 one recorded in the hash table, so we may be able to
2483 synthesize a multiplication. Proceed as if we didn't
2484 have the cache entry. */
2486 else
2488 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2489 /* The cached algorithm shows that this multiplication
2490 requires more cost than COST_LIMIT. Just return. This
2491 way, we don't clobber this cache entry with
2492 alg_impossible but retain useful information. */
2493 return;
2495 cache_hit = true;
2497 switch (cache_alg)
2499 case alg_shift:
2500 goto do_alg_shift;
2502 case alg_add_t_m2:
2503 case alg_sub_t_m2:
2504 goto do_alg_addsub_t_m2;
2506 case alg_add_factor:
2507 case alg_sub_factor:
2508 goto do_alg_addsub_factor;
2510 case alg_add_t2_m:
2511 goto do_alg_add_t2_m;
2513 case alg_sub_t2_m:
2514 goto do_alg_sub_t2_m;
2516 default:
2517 gcc_unreachable ();
2522 /* If we have a group of zero bits at the low-order part of T, try
2523 multiplying by the remaining bits and then doing a shift. */
2525 if ((t & 1) == 0)
2527 do_alg_shift:
2528 m = floor_log2 (t & -t); /* m = number of low zero bits */
2529 if (m < maxm)
2531 q = t >> m;
2532 /* The function expand_shift will choose between a shift and
2533 a sequence of additions, so the observed cost is given as
2534 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2535 op_cost = m * add_cost[mode];
2536 if (shift_cost[mode][m] < op_cost)
2537 op_cost = shift_cost[mode][m];
2538 new_limit.cost = best_cost.cost - op_cost;
2539 new_limit.latency = best_cost.latency - op_cost;
2540 synth_mult (alg_in, q, &new_limit, mode);
2542 alg_in->cost.cost += op_cost;
2543 alg_in->cost.latency += op_cost;
2544 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2546 struct algorithm *x;
2547 best_cost = alg_in->cost;
2548 x = alg_in, alg_in = best_alg, best_alg = x;
2549 best_alg->log[best_alg->ops] = m;
2550 best_alg->op[best_alg->ops] = alg_shift;
2553 if (cache_hit)
2554 goto done;
2557 /* If we have an odd number, add or subtract one. */
2558 if ((t & 1) != 0)
2560 unsigned HOST_WIDE_INT w;
2562 do_alg_addsub_t_m2:
2563 for (w = 1; (w & t) != 0; w <<= 1)
2565 /* If T was -1, then W will be zero after the loop. This is another
2566 case where T ends with ...111. Handling this with (T + 1) and
2567 subtract 1 produces slightly better code and results in algorithm
2568 selection much faster than treating it like the ...0111 case
2569 below. */
2570 if (w == 0
2571 || (w > 2
2572 /* Reject the case where t is 3.
2573 Thus we prefer addition in that case. */
2574 && t != 3))
2576 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2578 op_cost = add_cost[mode];
2579 new_limit.cost = best_cost.cost - op_cost;
2580 new_limit.latency = best_cost.latency - op_cost;
2581 synth_mult (alg_in, t + 1, &new_limit, mode);
2583 alg_in->cost.cost += op_cost;
2584 alg_in->cost.latency += op_cost;
2585 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2587 struct algorithm *x;
2588 best_cost = alg_in->cost;
2589 x = alg_in, alg_in = best_alg, best_alg = x;
2590 best_alg->log[best_alg->ops] = 0;
2591 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2594 else
2596 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2598 op_cost = add_cost[mode];
2599 new_limit.cost = best_cost.cost - op_cost;
2600 new_limit.latency = best_cost.latency - op_cost;
2601 synth_mult (alg_in, t - 1, &new_limit, mode);
2603 alg_in->cost.cost += op_cost;
2604 alg_in->cost.latency += op_cost;
2605 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2607 struct algorithm *x;
2608 best_cost = alg_in->cost;
2609 x = alg_in, alg_in = best_alg, best_alg = x;
2610 best_alg->log[best_alg->ops] = 0;
2611 best_alg->op[best_alg->ops] = alg_add_t_m2;
2614 if (cache_hit)
2615 goto done;
2618 /* Look for factors of t of the form
2619 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2620 If we find such a factor, we can multiply by t using an algorithm that
2621 multiplies by q, shift the result by m and add/subtract it to itself.
2623 We search for large factors first and loop down, even if large factors
2624 are less probable than small; if we find a large factor we will find a
2625 good sequence quickly, and therefore be able to prune (by decreasing
2626 COST_LIMIT) the search. */
2628 do_alg_addsub_factor:
2629 for (m = floor_log2 (t - 1); m >= 2; m--)
2631 unsigned HOST_WIDE_INT d;
2633 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2634 if (t % d == 0 && t > d && m < maxm
2635 && (!cache_hit || cache_alg == alg_add_factor))
2637 /* If the target has a cheap shift-and-add instruction use
2638 that in preference to a shift insn followed by an add insn.
2639 Assume that the shift-and-add is "atomic" with a latency
2640 equal to its cost, otherwise assume that on superscalar
2641 hardware the shift may be executed concurrently with the
2642 earlier steps in the algorithm. */
2643 op_cost = add_cost[mode] + shift_cost[mode][m];
2644 if (shiftadd_cost[mode][m] < op_cost)
2646 op_cost = shiftadd_cost[mode][m];
2647 op_latency = op_cost;
2649 else
2650 op_latency = add_cost[mode];
2652 new_limit.cost = best_cost.cost - op_cost;
2653 new_limit.latency = best_cost.latency - op_latency;
2654 synth_mult (alg_in, t / d, &new_limit, mode);
2656 alg_in->cost.cost += op_cost;
2657 alg_in->cost.latency += op_latency;
2658 if (alg_in->cost.latency < op_cost)
2659 alg_in->cost.latency = op_cost;
2660 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2662 struct algorithm *x;
2663 best_cost = alg_in->cost;
2664 x = alg_in, alg_in = best_alg, best_alg = x;
2665 best_alg->log[best_alg->ops] = m;
2666 best_alg->op[best_alg->ops] = alg_add_factor;
2668 /* Other factors will have been taken care of in the recursion. */
2669 break;
2672 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2673 if (t % d == 0 && t > d && m < maxm
2674 && (!cache_hit || cache_alg == alg_sub_factor))
2676 /* If the target has a cheap shift-and-subtract insn use
2677 that in preference to a shift insn followed by a sub insn.
2678 Assume that the shift-and-sub is "atomic" with a latency
2679 equal to it's cost, otherwise assume that on superscalar
2680 hardware the shift may be executed concurrently with the
2681 earlier steps in the algorithm. */
2682 op_cost = add_cost[mode] + shift_cost[mode][m];
2683 if (shiftsub_cost[mode][m] < op_cost)
2685 op_cost = shiftsub_cost[mode][m];
2686 op_latency = op_cost;
2688 else
2689 op_latency = add_cost[mode];
2691 new_limit.cost = best_cost.cost - op_cost;
2692 new_limit.latency = best_cost.latency - op_latency;
2693 synth_mult (alg_in, t / d, &new_limit, mode);
2695 alg_in->cost.cost += op_cost;
2696 alg_in->cost.latency += op_latency;
2697 if (alg_in->cost.latency < op_cost)
2698 alg_in->cost.latency = op_cost;
2699 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2701 struct algorithm *x;
2702 best_cost = alg_in->cost;
2703 x = alg_in, alg_in = best_alg, best_alg = x;
2704 best_alg->log[best_alg->ops] = m;
2705 best_alg->op[best_alg->ops] = alg_sub_factor;
2707 break;
2710 if (cache_hit)
2711 goto done;
2713 /* Try shift-and-add (load effective address) instructions,
2714 i.e. do a*3, a*5, a*9. */
2715 if ((t & 1) != 0)
2717 do_alg_add_t2_m:
2718 q = t - 1;
2719 q = q & -q;
2720 m = exact_log2 (q);
2721 if (m >= 0 && m < maxm)
2723 op_cost = shiftadd_cost[mode][m];
2724 new_limit.cost = best_cost.cost - op_cost;
2725 new_limit.latency = best_cost.latency - op_cost;
2726 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2728 alg_in->cost.cost += op_cost;
2729 alg_in->cost.latency += op_cost;
2730 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2732 struct algorithm *x;
2733 best_cost = alg_in->cost;
2734 x = alg_in, alg_in = best_alg, best_alg = x;
2735 best_alg->log[best_alg->ops] = m;
2736 best_alg->op[best_alg->ops] = alg_add_t2_m;
2739 if (cache_hit)
2740 goto done;
2742 do_alg_sub_t2_m:
2743 q = t + 1;
2744 q = q & -q;
2745 m = exact_log2 (q);
2746 if (m >= 0 && m < maxm)
2748 op_cost = shiftsub_cost[mode][m];
2749 new_limit.cost = best_cost.cost - op_cost;
2750 new_limit.latency = best_cost.latency - op_cost;
2751 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2753 alg_in->cost.cost += op_cost;
2754 alg_in->cost.latency += op_cost;
2755 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2757 struct algorithm *x;
2758 best_cost = alg_in->cost;
2759 x = alg_in, alg_in = best_alg, best_alg = x;
2760 best_alg->log[best_alg->ops] = m;
2761 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2764 if (cache_hit)
2765 goto done;
2768 done:
2769 /* If best_cost has not decreased, we have not found any algorithm. */
2770 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2772 /* We failed to find an algorithm. Record alg_impossible for
2773 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2774 we are asked to find an algorithm for T within the same or
2775 lower COST_LIMIT, we can immediately return to the
2776 caller. */
2777 alg_hash[hash_index].t = t;
2778 alg_hash[hash_index].mode = mode;
2779 alg_hash[hash_index].alg = alg_impossible;
2780 alg_hash[hash_index].cost = *cost_limit;
2781 return;
2784 /* Cache the result. */
2785 if (!cache_hit)
2787 alg_hash[hash_index].t = t;
2788 alg_hash[hash_index].mode = mode;
2789 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2790 alg_hash[hash_index].cost.cost = best_cost.cost;
2791 alg_hash[hash_index].cost.latency = best_cost.latency;
2794 /* If we are getting a too long sequence for `struct algorithm'
2795 to record, make this search fail. */
2796 if (best_alg->ops == MAX_BITS_PER_WORD)
2797 return;
2799 /* Copy the algorithm from temporary space to the space at alg_out.
2800 We avoid using structure assignment because the majority of
2801 best_alg is normally undefined, and this is a critical function. */
2802 alg_out->ops = best_alg->ops + 1;
2803 alg_out->cost = best_cost;
2804 memcpy (alg_out->op, best_alg->op,
2805 alg_out->ops * sizeof *alg_out->op);
2806 memcpy (alg_out->log, best_alg->log,
2807 alg_out->ops * sizeof *alg_out->log);
2810 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2811 Try three variations:
2813 - a shift/add sequence based on VAL itself
2814 - a shift/add sequence based on -VAL, followed by a negation
2815 - a shift/add sequence based on VAL - 1, followed by an addition.
2817 Return true if the cheapest of these cost less than MULT_COST,
2818 describing the algorithm in *ALG and final fixup in *VARIANT. */
2820 static bool
2821 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2822 struct algorithm *alg, enum mult_variant *variant,
2823 int mult_cost)
2825 struct algorithm alg2;
2826 struct mult_cost limit;
2827 int op_cost;
2829 *variant = basic_variant;
2830 limit.cost = mult_cost;
2831 limit.latency = mult_cost;
2832 synth_mult (alg, val, &limit, mode);
2834 /* This works only if the inverted value actually fits in an
2835 `unsigned int' */
2836 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2838 op_cost = neg_cost[mode];
2839 if (MULT_COST_LESS (&alg->cost, mult_cost))
2841 limit.cost = alg->cost.cost - op_cost;
2842 limit.latency = alg->cost.latency - op_cost;
2844 else
2846 limit.cost = mult_cost - op_cost;
2847 limit.latency = mult_cost - op_cost;
2850 synth_mult (&alg2, -val, &limit, mode);
2851 alg2.cost.cost += op_cost;
2852 alg2.cost.latency += op_cost;
2853 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2854 *alg = alg2, *variant = negate_variant;
2857 /* This proves very useful for division-by-constant. */
2858 op_cost = add_cost[mode];
2859 if (MULT_COST_LESS (&alg->cost, mult_cost))
2861 limit.cost = alg->cost.cost - op_cost;
2862 limit.latency = alg->cost.latency - op_cost;
2864 else
2866 limit.cost = mult_cost - op_cost;
2867 limit.latency = mult_cost - op_cost;
2870 synth_mult (&alg2, val - 1, &limit, mode);
2871 alg2.cost.cost += op_cost;
2872 alg2.cost.latency += op_cost;
2873 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2874 *alg = alg2, *variant = add_variant;
2876 return MULT_COST_LESS (&alg->cost, mult_cost);
2879 /* A subroutine of expand_mult, used for constant multiplications.
2880 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2881 convenient. Use the shift/add sequence described by ALG and apply
2882 the final fixup specified by VARIANT. */
2884 static rtx
2885 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2886 rtx target, const struct algorithm *alg,
2887 enum mult_variant variant)
2889 HOST_WIDE_INT val_so_far;
2890 rtx insn, accum, tem;
2891 int opno;
2892 enum machine_mode nmode;
2894 /* Avoid referencing memory over and over.
2895 For speed, but also for correctness when mem is volatile. */
2896 if (MEM_P (op0))
2897 op0 = force_reg (mode, op0);
2899 /* ACCUM starts out either as OP0 or as a zero, depending on
2900 the first operation. */
2902 if (alg->op[0] == alg_zero)
2904 accum = copy_to_mode_reg (mode, const0_rtx);
2905 val_so_far = 0;
2907 else if (alg->op[0] == alg_m)
2909 accum = copy_to_mode_reg (mode, op0);
2910 val_so_far = 1;
2912 else
2913 gcc_unreachable ();
2915 for (opno = 1; opno < alg->ops; opno++)
2917 int log = alg->log[opno];
2918 rtx shift_subtarget = optimize ? 0 : accum;
2919 rtx add_target
2920 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2921 && !optimize)
2922 ? target : 0;
2923 rtx accum_target = optimize ? 0 : accum;
2925 switch (alg->op[opno])
2927 case alg_shift:
2928 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2929 build_int_cst (NULL_TREE, log),
2930 NULL_RTX, 0);
2931 val_so_far <<= log;
2932 break;
2934 case alg_add_t_m2:
2935 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2936 build_int_cst (NULL_TREE, log),
2937 NULL_RTX, 0);
2938 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2939 add_target ? add_target : accum_target);
2940 val_so_far += (HOST_WIDE_INT) 1 << log;
2941 break;
2943 case alg_sub_t_m2:
2944 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2945 build_int_cst (NULL_TREE, log),
2946 NULL_RTX, 0);
2947 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2948 add_target ? add_target : accum_target);
2949 val_so_far -= (HOST_WIDE_INT) 1 << log;
2950 break;
2952 case alg_add_t2_m:
2953 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2954 build_int_cst (NULL_TREE, log),
2955 shift_subtarget,
2957 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2958 add_target ? add_target : accum_target);
2959 val_so_far = (val_so_far << log) + 1;
2960 break;
2962 case alg_sub_t2_m:
2963 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2964 build_int_cst (NULL_TREE, log),
2965 shift_subtarget, 0);
2966 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2967 add_target ? add_target : accum_target);
2968 val_so_far = (val_so_far << log) - 1;
2969 break;
2971 case alg_add_factor:
2972 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2973 build_int_cst (NULL_TREE, log),
2974 NULL_RTX, 0);
2975 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2976 add_target ? add_target : accum_target);
2977 val_so_far += val_so_far << log;
2978 break;
2980 case alg_sub_factor:
2981 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2982 build_int_cst (NULL_TREE, log),
2983 NULL_RTX, 0);
2984 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2985 (add_target
2986 ? add_target : (optimize ? 0 : tem)));
2987 val_so_far = (val_so_far << log) - val_so_far;
2988 break;
2990 default:
2991 gcc_unreachable ();
2994 /* Write a REG_EQUAL note on the last insn so that we can cse
2995 multiplication sequences. Note that if ACCUM is a SUBREG,
2996 we've set the inner register and must properly indicate
2997 that. */
2999 tem = op0, nmode = mode;
3000 if (GET_CODE (accum) == SUBREG)
3002 nmode = GET_MODE (SUBREG_REG (accum));
3003 tem = gen_lowpart (nmode, op0);
3006 insn = get_last_insn ();
3007 set_unique_reg_note (insn, REG_EQUAL,
3008 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
3011 if (variant == negate_variant)
3013 val_so_far = -val_so_far;
3014 accum = expand_unop (mode, neg_optab, accum, target, 0);
3016 else if (variant == add_variant)
3018 val_so_far = val_so_far + 1;
3019 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3022 /* Compare only the bits of val and val_so_far that are significant
3023 in the result mode, to avoid sign-/zero-extension confusion. */
3024 val &= GET_MODE_MASK (mode);
3025 val_so_far &= GET_MODE_MASK (mode);
3026 gcc_assert (val == val_so_far);
3028 return accum;
3031 /* Perform a multiplication and return an rtx for the result.
3032 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3033 TARGET is a suggestion for where to store the result (an rtx).
3035 We check specially for a constant integer as OP1.
3036 If you want this check for OP0 as well, then before calling
3037 you should swap the two operands if OP0 would be constant. */
3040 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3041 int unsignedp)
3043 enum mult_variant variant;
3044 struct algorithm algorithm;
3045 int max_cost;
3047 /* Handling const0_rtx here allows us to use zero as a rogue value for
3048 coeff below. */
3049 if (op1 == const0_rtx)
3050 return const0_rtx;
3051 if (op1 == const1_rtx)
3052 return op0;
3053 if (op1 == constm1_rtx)
3054 return expand_unop (mode,
3055 GET_MODE_CLASS (mode) == MODE_INT
3056 && !unsignedp && flag_trapv
3057 ? negv_optab : neg_optab,
3058 op0, target, 0);
3060 /* These are the operations that are potentially turned into a sequence
3061 of shifts and additions. */
3062 if (SCALAR_INT_MODE_P (mode)
3063 && (unsignedp || !flag_trapv))
3065 HOST_WIDE_INT coeff = 0;
3066 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3068 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3069 less than or equal in size to `unsigned int' this doesn't matter.
3070 If the mode is larger than `unsigned int', then synth_mult works
3071 only if the constant value exactly fits in an `unsigned int' without
3072 any truncation. This means that multiplying by negative values does
3073 not work; results are off by 2^32 on a 32 bit machine. */
3075 if (GET_CODE (op1) == CONST_INT)
3077 /* Attempt to handle multiplication of DImode values by negative
3078 coefficients, by performing the multiplication by a positive
3079 multiplier and then inverting the result. */
3080 if (INTVAL (op1) < 0
3081 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3083 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3084 result is interpreted as an unsigned coefficient.
3085 Exclude cost of op0 from max_cost to match the cost
3086 calculation of the synth_mult. */
3087 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3088 - neg_cost[mode];
3089 if (max_cost > 0
3090 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3091 &variant, max_cost))
3093 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3094 NULL_RTX, &algorithm,
3095 variant);
3096 return expand_unop (mode, neg_optab, temp, target, 0);
3099 else coeff = INTVAL (op1);
3101 else if (GET_CODE (op1) == CONST_DOUBLE)
3103 /* If we are multiplying in DImode, it may still be a win
3104 to try to work with shifts and adds. */
3105 if (CONST_DOUBLE_HIGH (op1) == 0)
3106 coeff = CONST_DOUBLE_LOW (op1);
3107 else if (CONST_DOUBLE_LOW (op1) == 0
3108 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3110 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3111 + HOST_BITS_PER_WIDE_INT;
3112 return expand_shift (LSHIFT_EXPR, mode, op0,
3113 build_int_cst (NULL_TREE, shift),
3114 target, unsignedp);
3118 /* We used to test optimize here, on the grounds that it's better to
3119 produce a smaller program when -O is not used. But this causes
3120 such a terrible slowdown sometimes that it seems better to always
3121 use synth_mult. */
3122 if (coeff != 0)
3124 /* Special case powers of two. */
3125 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3126 return expand_shift (LSHIFT_EXPR, mode, op0,
3127 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3128 target, unsignedp);
3130 /* Exclude cost of op0 from max_cost to match the cost
3131 calculation of the synth_mult. */
3132 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3133 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3134 max_cost))
3135 return expand_mult_const (mode, op0, coeff, target,
3136 &algorithm, variant);
3140 if (GET_CODE (op0) == CONST_DOUBLE)
3142 rtx temp = op0;
3143 op0 = op1;
3144 op1 = temp;
3147 /* Expand x*2.0 as x+x. */
3148 if (GET_CODE (op1) == CONST_DOUBLE
3149 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3151 REAL_VALUE_TYPE d;
3152 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3154 if (REAL_VALUES_EQUAL (d, dconst2))
3156 op0 = force_reg (GET_MODE (op0), op0);
3157 return expand_binop (mode, add_optab, op0, op0,
3158 target, unsignedp, OPTAB_LIB_WIDEN);
3162 /* This used to use umul_optab if unsigned, but for non-widening multiply
3163 there is no difference between signed and unsigned. */
3164 op0 = expand_binop (mode,
3165 ! unsignedp
3166 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3167 ? smulv_optab : smul_optab,
3168 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3169 gcc_assert (op0);
3170 return op0;
3173 /* Return the smallest n such that 2**n >= X. */
3176 ceil_log2 (unsigned HOST_WIDE_INT x)
3178 return floor_log2 (x - 1) + 1;
3181 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3182 replace division by D, and put the least significant N bits of the result
3183 in *MULTIPLIER_PTR and return the most significant bit.
3185 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3186 needed precision is in PRECISION (should be <= N).
3188 PRECISION should be as small as possible so this function can choose
3189 multiplier more freely.
3191 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3192 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3194 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3195 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3197 static
3198 unsigned HOST_WIDE_INT
3199 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3200 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3202 HOST_WIDE_INT mhigh_hi, mlow_hi;
3203 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3204 int lgup, post_shift;
3205 int pow, pow2;
3206 unsigned HOST_WIDE_INT nl, dummy1;
3207 HOST_WIDE_INT nh, dummy2;
3209 /* lgup = ceil(log2(divisor)); */
3210 lgup = ceil_log2 (d);
3212 gcc_assert (lgup <= n);
3214 pow = n + lgup;
3215 pow2 = n + lgup - precision;
3217 /* We could handle this with some effort, but this case is much
3218 better handled directly with a scc insn, so rely on caller using
3219 that. */
3220 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3222 /* mlow = 2^(N + lgup)/d */
3223 if (pow >= HOST_BITS_PER_WIDE_INT)
3225 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3226 nl = 0;
3228 else
3230 nh = 0;
3231 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3233 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3234 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3236 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3237 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3238 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3239 else
3240 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3241 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3242 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3244 gcc_assert (!mhigh_hi || nh - d < d);
3245 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3246 /* Assert that mlow < mhigh. */
3247 gcc_assert (mlow_hi < mhigh_hi
3248 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3250 /* If precision == N, then mlow, mhigh exceed 2^N
3251 (but they do not exceed 2^(N+1)). */
3253 /* Reduce to lowest terms. */
3254 for (post_shift = lgup; post_shift > 0; post_shift--)
3256 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3257 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3258 if (ml_lo >= mh_lo)
3259 break;
3261 mlow_hi = 0;
3262 mlow_lo = ml_lo;
3263 mhigh_hi = 0;
3264 mhigh_lo = mh_lo;
3267 *post_shift_ptr = post_shift;
3268 *lgup_ptr = lgup;
3269 if (n < HOST_BITS_PER_WIDE_INT)
3271 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3272 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3273 return mhigh_lo >= mask;
3275 else
3277 *multiplier_ptr = GEN_INT (mhigh_lo);
3278 return mhigh_hi;
3282 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3283 congruent to 1 (mod 2**N). */
3285 static unsigned HOST_WIDE_INT
3286 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3288 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3290 /* The algorithm notes that the choice y = x satisfies
3291 x*y == 1 mod 2^3, since x is assumed odd.
3292 Each iteration doubles the number of bits of significance in y. */
3294 unsigned HOST_WIDE_INT mask;
3295 unsigned HOST_WIDE_INT y = x;
3296 int nbit = 3;
3298 mask = (n == HOST_BITS_PER_WIDE_INT
3299 ? ~(unsigned HOST_WIDE_INT) 0
3300 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3302 while (nbit < n)
3304 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3305 nbit *= 2;
3307 return y;
3310 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3311 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3312 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3313 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3314 become signed.
3316 The result is put in TARGET if that is convenient.
3318 MODE is the mode of operation. */
3321 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3322 rtx op1, rtx target, int unsignedp)
3324 rtx tem;
3325 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3327 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3328 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3329 NULL_RTX, 0);
3330 tem = expand_and (mode, tem, op1, NULL_RTX);
3331 adj_operand
3332 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3333 adj_operand);
3335 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3336 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3337 NULL_RTX, 0);
3338 tem = expand_and (mode, tem, op0, NULL_RTX);
3339 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3340 target);
3342 return target;
3345 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3347 static rtx
3348 extract_high_half (enum machine_mode mode, rtx op)
3350 enum machine_mode wider_mode;
3352 if (mode == word_mode)
3353 return gen_highpart (mode, op);
3355 wider_mode = GET_MODE_WIDER_MODE (mode);
3356 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3357 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3358 return convert_modes (mode, wider_mode, op, 0);
3361 /* Like expand_mult_highpart, but only consider using a multiplication
3362 optab. OP1 is an rtx for the constant operand. */
3364 static rtx
3365 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3366 rtx target, int unsignedp, int max_cost)
3368 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3369 enum machine_mode wider_mode;
3370 optab moptab;
3371 rtx tem;
3372 int size;
3374 wider_mode = GET_MODE_WIDER_MODE (mode);
3375 size = GET_MODE_BITSIZE (mode);
3377 /* Firstly, try using a multiplication insn that only generates the needed
3378 high part of the product, and in the sign flavor of unsignedp. */
3379 if (mul_highpart_cost[mode] < max_cost)
3381 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3382 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3383 unsignedp, OPTAB_DIRECT);
3384 if (tem)
3385 return tem;
3388 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3389 Need to adjust the result after the multiplication. */
3390 if (size - 1 < BITS_PER_WORD
3391 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3392 + 4 * add_cost[mode] < max_cost))
3394 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3395 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3396 unsignedp, OPTAB_DIRECT);
3397 if (tem)
3398 /* We used the wrong signedness. Adjust the result. */
3399 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3400 tem, unsignedp);
3403 /* Try widening multiplication. */
3404 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3405 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3406 && mul_widen_cost[wider_mode] < max_cost)
3408 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3409 unsignedp, OPTAB_WIDEN);
3410 if (tem)
3411 return extract_high_half (mode, tem);
3414 /* Try widening the mode and perform a non-widening multiplication. */
3415 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3416 && size - 1 < BITS_PER_WORD
3417 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3419 rtx insns, wop0, wop1;
3421 /* We need to widen the operands, for example to ensure the
3422 constant multiplier is correctly sign or zero extended.
3423 Use a sequence to clean-up any instructions emitted by
3424 the conversions if things don't work out. */
3425 start_sequence ();
3426 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3427 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3428 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3429 unsignedp, OPTAB_WIDEN);
3430 insns = get_insns ();
3431 end_sequence ();
3433 if (tem)
3435 emit_insn (insns);
3436 return extract_high_half (mode, tem);
3440 /* Try widening multiplication of opposite signedness, and adjust. */
3441 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3442 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3443 && size - 1 < BITS_PER_WORD
3444 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3445 + 4 * add_cost[mode] < max_cost))
3447 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3448 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3449 if (tem != 0)
3451 tem = extract_high_half (mode, tem);
3452 /* We used the wrong signedness. Adjust the result. */
3453 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3454 target, unsignedp);
3458 return 0;
3461 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3462 putting the high half of the result in TARGET if that is convenient,
3463 and return where the result is. If the operation can not be performed,
3464 0 is returned.
3466 MODE is the mode of operation and result.
3468 UNSIGNEDP nonzero means unsigned multiply.
3470 MAX_COST is the total allowed cost for the expanded RTL. */
3472 static rtx
3473 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3474 rtx target, int unsignedp, int max_cost)
3476 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3477 unsigned HOST_WIDE_INT cnst1;
3478 int extra_cost;
3479 bool sign_adjust = false;
3480 enum mult_variant variant;
3481 struct algorithm alg;
3482 rtx tem;
3484 /* We can't support modes wider than HOST_BITS_PER_INT. */
3485 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3487 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3489 /* We can't optimize modes wider than BITS_PER_WORD.
3490 ??? We might be able to perform double-word arithmetic if
3491 mode == word_mode, however all the cost calculations in
3492 synth_mult etc. assume single-word operations. */
3493 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3494 return expand_mult_highpart_optab (mode, op0, op1, target,
3495 unsignedp, max_cost);
3497 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3499 /* Check whether we try to multiply by a negative constant. */
3500 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3502 sign_adjust = true;
3503 extra_cost += add_cost[mode];
3506 /* See whether shift/add multiplication is cheap enough. */
3507 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3508 max_cost - extra_cost))
3510 /* See whether the specialized multiplication optabs are
3511 cheaper than the shift/add version. */
3512 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3513 alg.cost.cost + extra_cost);
3514 if (tem)
3515 return tem;
3517 tem = convert_to_mode (wider_mode, op0, unsignedp);
3518 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3519 tem = extract_high_half (mode, tem);
3521 /* Adjust result for signedness. */
3522 if (sign_adjust)
3523 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3525 return tem;
3527 return expand_mult_highpart_optab (mode, op0, op1, target,
3528 unsignedp, max_cost);
3532 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3534 static rtx
3535 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3537 unsigned HOST_WIDE_INT masklow, maskhigh;
3538 rtx result, temp, shift, label;
3539 int logd;
3541 logd = floor_log2 (d);
3542 result = gen_reg_rtx (mode);
3544 /* Avoid conditional branches when they're expensive. */
3545 if (BRANCH_COST >= 2
3546 && !optimize_size)
3548 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3549 mode, 0, -1);
3550 if (signmask)
3552 signmask = force_reg (mode, signmask);
3553 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3554 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3556 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3557 which instruction sequence to use. If logical right shifts
3558 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3559 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3561 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3562 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3563 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3565 temp = expand_binop (mode, xor_optab, op0, signmask,
3566 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3567 temp = expand_binop (mode, sub_optab, temp, signmask,
3568 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3569 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3570 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3571 temp = expand_binop (mode, xor_optab, temp, signmask,
3572 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3573 temp = expand_binop (mode, sub_optab, temp, signmask,
3574 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3576 else
3578 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3579 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3580 signmask = force_reg (mode, signmask);
3582 temp = expand_binop (mode, add_optab, op0, signmask,
3583 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3584 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3585 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3586 temp = expand_binop (mode, sub_optab, temp, signmask,
3587 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3589 return temp;
3593 /* Mask contains the mode's signbit and the significant bits of the
3594 modulus. By including the signbit in the operation, many targets
3595 can avoid an explicit compare operation in the following comparison
3596 against zero. */
3598 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3599 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3601 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3602 maskhigh = -1;
3604 else
3605 maskhigh = (HOST_WIDE_INT) -1
3606 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3608 temp = expand_binop (mode, and_optab, op0,
3609 immed_double_const (masklow, maskhigh, mode),
3610 result, 1, OPTAB_LIB_WIDEN);
3611 if (temp != result)
3612 emit_move_insn (result, temp);
3614 label = gen_label_rtx ();
3615 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3617 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3618 0, OPTAB_LIB_WIDEN);
3619 masklow = (HOST_WIDE_INT) -1 << logd;
3620 maskhigh = -1;
3621 temp = expand_binop (mode, ior_optab, temp,
3622 immed_double_const (masklow, maskhigh, mode),
3623 result, 1, OPTAB_LIB_WIDEN);
3624 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3625 0, OPTAB_LIB_WIDEN);
3626 if (temp != result)
3627 emit_move_insn (result, temp);
3628 emit_label (label);
3629 return result;
3632 /* Expand signed division of OP0 by a power of two D in mode MODE.
3633 This routine is only called for positive values of D. */
3635 static rtx
3636 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3638 rtx temp, label;
3639 tree shift;
3640 int logd;
3642 logd = floor_log2 (d);
3643 shift = build_int_cst (NULL_TREE, logd);
3645 if (d == 2 && BRANCH_COST >= 1)
3647 temp = gen_reg_rtx (mode);
3648 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3649 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3650 0, OPTAB_LIB_WIDEN);
3651 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3654 #ifdef HAVE_conditional_move
3655 if (BRANCH_COST >= 2)
3657 rtx temp2;
3659 /* ??? emit_conditional_move forces a stack adjustment via
3660 compare_from_rtx so, if the sequence is discarded, it will
3661 be lost. Do it now instead. */
3662 do_pending_stack_adjust ();
3664 start_sequence ();
3665 temp2 = copy_to_mode_reg (mode, op0);
3666 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3667 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3668 temp = force_reg (mode, temp);
3670 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3671 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3672 mode, temp, temp2, mode, 0);
3673 if (temp2)
3675 rtx seq = get_insns ();
3676 end_sequence ();
3677 emit_insn (seq);
3678 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3680 end_sequence ();
3682 #endif
3684 if (BRANCH_COST >= 2)
3686 int ushift = GET_MODE_BITSIZE (mode) - logd;
3688 temp = gen_reg_rtx (mode);
3689 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3690 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3691 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3692 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3693 else
3694 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3695 build_int_cst (NULL_TREE, ushift),
3696 NULL_RTX, 1);
3697 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3698 0, OPTAB_LIB_WIDEN);
3699 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3702 label = gen_label_rtx ();
3703 temp = copy_to_mode_reg (mode, op0);
3704 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3705 expand_inc (temp, GEN_INT (d - 1));
3706 emit_label (label);
3707 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3710 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3711 if that is convenient, and returning where the result is.
3712 You may request either the quotient or the remainder as the result;
3713 specify REM_FLAG nonzero to get the remainder.
3715 CODE is the expression code for which kind of division this is;
3716 it controls how rounding is done. MODE is the machine mode to use.
3717 UNSIGNEDP nonzero means do unsigned division. */
3719 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3720 and then correct it by or'ing in missing high bits
3721 if result of ANDI is nonzero.
3722 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3723 This could optimize to a bfexts instruction.
3724 But C doesn't use these operations, so their optimizations are
3725 left for later. */
3726 /* ??? For modulo, we don't actually need the highpart of the first product,
3727 the low part will do nicely. And for small divisors, the second multiply
3728 can also be a low-part only multiply or even be completely left out.
3729 E.g. to calculate the remainder of a division by 3 with a 32 bit
3730 multiply, multiply with 0x55555556 and extract the upper two bits;
3731 the result is exact for inputs up to 0x1fffffff.
3732 The input range can be reduced by using cross-sum rules.
3733 For odd divisors >= 3, the following table gives right shift counts
3734 so that if a number is shifted by an integer multiple of the given
3735 amount, the remainder stays the same:
3736 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3737 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3738 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3739 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3740 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3742 Cross-sum rules for even numbers can be derived by leaving as many bits
3743 to the right alone as the divisor has zeros to the right.
3744 E.g. if x is an unsigned 32 bit number:
3745 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3749 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3750 rtx op0, rtx op1, rtx target, int unsignedp)
3752 enum machine_mode compute_mode;
3753 rtx tquotient;
3754 rtx quotient = 0, remainder = 0;
3755 rtx last;
3756 int size;
3757 rtx insn, set;
3758 optab optab1, optab2;
3759 int op1_is_constant, op1_is_pow2 = 0;
3760 int max_cost, extra_cost;
3761 static HOST_WIDE_INT last_div_const = 0;
3762 static HOST_WIDE_INT ext_op1;
3764 op1_is_constant = GET_CODE (op1) == CONST_INT;
3765 if (op1_is_constant)
3767 ext_op1 = INTVAL (op1);
3768 if (unsignedp)
3769 ext_op1 &= GET_MODE_MASK (mode);
3770 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3771 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3775 This is the structure of expand_divmod:
3777 First comes code to fix up the operands so we can perform the operations
3778 correctly and efficiently.
3780 Second comes a switch statement with code specific for each rounding mode.
3781 For some special operands this code emits all RTL for the desired
3782 operation, for other cases, it generates only a quotient and stores it in
3783 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3784 to indicate that it has not done anything.
3786 Last comes code that finishes the operation. If QUOTIENT is set and
3787 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3788 QUOTIENT is not set, it is computed using trunc rounding.
3790 We try to generate special code for division and remainder when OP1 is a
3791 constant. If |OP1| = 2**n we can use shifts and some other fast
3792 operations. For other values of OP1, we compute a carefully selected
3793 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3794 by m.
3796 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3797 half of the product. Different strategies for generating the product are
3798 implemented in expand_mult_highpart.
3800 If what we actually want is the remainder, we generate that by another
3801 by-constant multiplication and a subtraction. */
3803 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3804 code below will malfunction if we are, so check here and handle
3805 the special case if so. */
3806 if (op1 == const1_rtx)
3807 return rem_flag ? const0_rtx : op0;
3809 /* When dividing by -1, we could get an overflow.
3810 negv_optab can handle overflows. */
3811 if (! unsignedp && op1 == constm1_rtx)
3813 if (rem_flag)
3814 return const0_rtx;
3815 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3816 ? negv_optab : neg_optab, op0, target, 0);
3819 if (target
3820 /* Don't use the function value register as a target
3821 since we have to read it as well as write it,
3822 and function-inlining gets confused by this. */
3823 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3824 /* Don't clobber an operand while doing a multi-step calculation. */
3825 || ((rem_flag || op1_is_constant)
3826 && (reg_mentioned_p (target, op0)
3827 || (MEM_P (op0) && MEM_P (target))))
3828 || reg_mentioned_p (target, op1)
3829 || (MEM_P (op1) && MEM_P (target))))
3830 target = 0;
3832 /* Get the mode in which to perform this computation. Normally it will
3833 be MODE, but sometimes we can't do the desired operation in MODE.
3834 If so, pick a wider mode in which we can do the operation. Convert
3835 to that mode at the start to avoid repeated conversions.
3837 First see what operations we need. These depend on the expression
3838 we are evaluating. (We assume that divxx3 insns exist under the
3839 same conditions that modxx3 insns and that these insns don't normally
3840 fail. If these assumptions are not correct, we may generate less
3841 efficient code in some cases.)
3843 Then see if we find a mode in which we can open-code that operation
3844 (either a division, modulus, or shift). Finally, check for the smallest
3845 mode for which we can do the operation with a library call. */
3847 /* We might want to refine this now that we have division-by-constant
3848 optimization. Since expand_mult_highpart tries so many variants, it is
3849 not straightforward to generalize this. Maybe we should make an array
3850 of possible modes in init_expmed? Save this for GCC 2.7. */
3852 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3853 ? (unsignedp ? lshr_optab : ashr_optab)
3854 : (unsignedp ? udiv_optab : sdiv_optab));
3855 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3856 ? optab1
3857 : (unsignedp ? udivmod_optab : sdivmod_optab));
3859 for (compute_mode = mode; compute_mode != VOIDmode;
3860 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3861 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3862 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3863 break;
3865 if (compute_mode == VOIDmode)
3866 for (compute_mode = mode; compute_mode != VOIDmode;
3867 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3868 if (optab1->handlers[compute_mode].libfunc
3869 || optab2->handlers[compute_mode].libfunc)
3870 break;
3872 /* If we still couldn't find a mode, use MODE, but expand_binop will
3873 probably die. */
3874 if (compute_mode == VOIDmode)
3875 compute_mode = mode;
3877 if (target && GET_MODE (target) == compute_mode)
3878 tquotient = target;
3879 else
3880 tquotient = gen_reg_rtx (compute_mode);
3882 size = GET_MODE_BITSIZE (compute_mode);
3883 #if 0
3884 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3885 (mode), and thereby get better code when OP1 is a constant. Do that
3886 later. It will require going over all usages of SIZE below. */
3887 size = GET_MODE_BITSIZE (mode);
3888 #endif
3890 /* Only deduct something for a REM if the last divide done was
3891 for a different constant. Then set the constant of the last
3892 divide. */
3893 max_cost = div_cost[compute_mode]
3894 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3895 && INTVAL (op1) == last_div_const)
3896 ? mul_cost[compute_mode] + add_cost[compute_mode]
3897 : 0);
3899 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3901 /* Now convert to the best mode to use. */
3902 if (compute_mode != mode)
3904 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3905 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3907 /* convert_modes may have placed op1 into a register, so we
3908 must recompute the following. */
3909 op1_is_constant = GET_CODE (op1) == CONST_INT;
3910 op1_is_pow2 = (op1_is_constant
3911 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3912 || (! unsignedp
3913 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3916 /* If one of the operands is a volatile MEM, copy it into a register. */
3918 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3919 op0 = force_reg (compute_mode, op0);
3920 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3921 op1 = force_reg (compute_mode, op1);
3923 /* If we need the remainder or if OP1 is constant, we need to
3924 put OP0 in a register in case it has any queued subexpressions. */
3925 if (rem_flag || op1_is_constant)
3926 op0 = force_reg (compute_mode, op0);
3928 last = get_last_insn ();
3930 /* Promote floor rounding to trunc rounding for unsigned operations. */
3931 if (unsignedp)
3933 if (code == FLOOR_DIV_EXPR)
3934 code = TRUNC_DIV_EXPR;
3935 if (code == FLOOR_MOD_EXPR)
3936 code = TRUNC_MOD_EXPR;
3937 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3938 code = TRUNC_DIV_EXPR;
3941 if (op1 != const0_rtx)
3942 switch (code)
3944 case TRUNC_MOD_EXPR:
3945 case TRUNC_DIV_EXPR:
3946 if (op1_is_constant)
3948 if (unsignedp)
3950 unsigned HOST_WIDE_INT mh;
3951 int pre_shift, post_shift;
3952 int dummy;
3953 rtx ml;
3954 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3955 & GET_MODE_MASK (compute_mode));
3957 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3959 pre_shift = floor_log2 (d);
3960 if (rem_flag)
3962 remainder
3963 = expand_binop (compute_mode, and_optab, op0,
3964 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3965 remainder, 1,
3966 OPTAB_LIB_WIDEN);
3967 if (remainder)
3968 return gen_lowpart (mode, remainder);
3970 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3971 build_int_cst (NULL_TREE,
3972 pre_shift),
3973 tquotient, 1);
3975 else if (size <= HOST_BITS_PER_WIDE_INT)
3977 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3979 /* Most significant bit of divisor is set; emit an scc
3980 insn. */
3981 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3982 compute_mode, 1, 1);
3983 if (quotient == 0)
3984 goto fail1;
3986 else
3988 /* Find a suitable multiplier and right shift count
3989 instead of multiplying with D. */
3991 mh = choose_multiplier (d, size, size,
3992 &ml, &post_shift, &dummy);
3994 /* If the suggested multiplier is more than SIZE bits,
3995 we can do better for even divisors, using an
3996 initial right shift. */
3997 if (mh != 0 && (d & 1) == 0)
3999 pre_shift = floor_log2 (d & -d);
4000 mh = choose_multiplier (d >> pre_shift, size,
4001 size - pre_shift,
4002 &ml, &post_shift, &dummy);
4003 gcc_assert (!mh);
4005 else
4006 pre_shift = 0;
4008 if (mh != 0)
4010 rtx t1, t2, t3, t4;
4012 if (post_shift - 1 >= BITS_PER_WORD)
4013 goto fail1;
4015 extra_cost
4016 = (shift_cost[compute_mode][post_shift - 1]
4017 + shift_cost[compute_mode][1]
4018 + 2 * add_cost[compute_mode]);
4019 t1 = expand_mult_highpart (compute_mode, op0, ml,
4020 NULL_RTX, 1,
4021 max_cost - extra_cost);
4022 if (t1 == 0)
4023 goto fail1;
4024 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4025 op0, t1),
4026 NULL_RTX);
4027 t3 = expand_shift
4028 (RSHIFT_EXPR, compute_mode, t2,
4029 build_int_cst (NULL_TREE, 1),
4030 NULL_RTX,1);
4031 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4032 t1, t3),
4033 NULL_RTX);
4034 quotient = expand_shift
4035 (RSHIFT_EXPR, compute_mode, t4,
4036 build_int_cst (NULL_TREE, post_shift - 1),
4037 tquotient, 1);
4039 else
4041 rtx t1, t2;
4043 if (pre_shift >= BITS_PER_WORD
4044 || post_shift >= BITS_PER_WORD)
4045 goto fail1;
4047 t1 = expand_shift
4048 (RSHIFT_EXPR, compute_mode, op0,
4049 build_int_cst (NULL_TREE, pre_shift),
4050 NULL_RTX, 1);
4051 extra_cost
4052 = (shift_cost[compute_mode][pre_shift]
4053 + shift_cost[compute_mode][post_shift]);
4054 t2 = expand_mult_highpart (compute_mode, t1, ml,
4055 NULL_RTX, 1,
4056 max_cost - extra_cost);
4057 if (t2 == 0)
4058 goto fail1;
4059 quotient = expand_shift
4060 (RSHIFT_EXPR, compute_mode, t2,
4061 build_int_cst (NULL_TREE, post_shift),
4062 tquotient, 1);
4066 else /* Too wide mode to use tricky code */
4067 break;
4069 insn = get_last_insn ();
4070 if (insn != last
4071 && (set = single_set (insn)) != 0
4072 && SET_DEST (set) == quotient)
4073 set_unique_reg_note (insn,
4074 REG_EQUAL,
4075 gen_rtx_UDIV (compute_mode, op0, op1));
4077 else /* TRUNC_DIV, signed */
4079 unsigned HOST_WIDE_INT ml;
4080 int lgup, post_shift;
4081 rtx mlr;
4082 HOST_WIDE_INT d = INTVAL (op1);
4083 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4085 /* n rem d = n rem -d */
4086 if (rem_flag && d < 0)
4088 d = abs_d;
4089 op1 = gen_int_mode (abs_d, compute_mode);
4092 if (d == 1)
4093 quotient = op0;
4094 else if (d == -1)
4095 quotient = expand_unop (compute_mode, neg_optab, op0,
4096 tquotient, 0);
4097 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4099 /* This case is not handled correctly below. */
4100 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4101 compute_mode, 1, 1);
4102 if (quotient == 0)
4103 goto fail1;
4105 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4106 && (rem_flag ? smod_pow2_cheap[compute_mode]
4107 : sdiv_pow2_cheap[compute_mode])
4108 /* We assume that cheap metric is true if the
4109 optab has an expander for this mode. */
4110 && (((rem_flag ? smod_optab : sdiv_optab)
4111 ->handlers[compute_mode].insn_code
4112 != CODE_FOR_nothing)
4113 || (sdivmod_optab->handlers[compute_mode]
4114 .insn_code != CODE_FOR_nothing)))
4116 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4118 if (rem_flag)
4120 remainder = expand_smod_pow2 (compute_mode, op0, d);
4121 if (remainder)
4122 return gen_lowpart (mode, remainder);
4125 if (sdiv_pow2_cheap[compute_mode]
4126 && ((sdiv_optab->handlers[compute_mode].insn_code
4127 != CODE_FOR_nothing)
4128 || (sdivmod_optab->handlers[compute_mode].insn_code
4129 != CODE_FOR_nothing)))
4130 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4131 compute_mode, op0,
4132 gen_int_mode (abs_d,
4133 compute_mode),
4134 NULL_RTX, 0);
4135 else
4136 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4138 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4139 negate the quotient. */
4140 if (d < 0)
4142 insn = get_last_insn ();
4143 if (insn != last
4144 && (set = single_set (insn)) != 0
4145 && SET_DEST (set) == quotient
4146 && abs_d < ((unsigned HOST_WIDE_INT) 1
4147 << (HOST_BITS_PER_WIDE_INT - 1)))
4148 set_unique_reg_note (insn,
4149 REG_EQUAL,
4150 gen_rtx_DIV (compute_mode,
4151 op0,
4152 GEN_INT
4153 (trunc_int_for_mode
4154 (abs_d,
4155 compute_mode))));
4157 quotient = expand_unop (compute_mode, neg_optab,
4158 quotient, quotient, 0);
4161 else if (size <= HOST_BITS_PER_WIDE_INT)
4163 choose_multiplier (abs_d, size, size - 1,
4164 &mlr, &post_shift, &lgup);
4165 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4166 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4168 rtx t1, t2, t3;
4170 if (post_shift >= BITS_PER_WORD
4171 || size - 1 >= BITS_PER_WORD)
4172 goto fail1;
4174 extra_cost = (shift_cost[compute_mode][post_shift]
4175 + shift_cost[compute_mode][size - 1]
4176 + add_cost[compute_mode]);
4177 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4178 NULL_RTX, 0,
4179 max_cost - extra_cost);
4180 if (t1 == 0)
4181 goto fail1;
4182 t2 = expand_shift
4183 (RSHIFT_EXPR, compute_mode, t1,
4184 build_int_cst (NULL_TREE, post_shift),
4185 NULL_RTX, 0);
4186 t3 = expand_shift
4187 (RSHIFT_EXPR, compute_mode, op0,
4188 build_int_cst (NULL_TREE, size - 1),
4189 NULL_RTX, 0);
4190 if (d < 0)
4191 quotient
4192 = force_operand (gen_rtx_MINUS (compute_mode,
4193 t3, t2),
4194 tquotient);
4195 else
4196 quotient
4197 = force_operand (gen_rtx_MINUS (compute_mode,
4198 t2, t3),
4199 tquotient);
4201 else
4203 rtx t1, t2, t3, t4;
4205 if (post_shift >= BITS_PER_WORD
4206 || size - 1 >= BITS_PER_WORD)
4207 goto fail1;
4209 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4210 mlr = gen_int_mode (ml, compute_mode);
4211 extra_cost = (shift_cost[compute_mode][post_shift]
4212 + shift_cost[compute_mode][size - 1]
4213 + 2 * add_cost[compute_mode]);
4214 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4215 NULL_RTX, 0,
4216 max_cost - extra_cost);
4217 if (t1 == 0)
4218 goto fail1;
4219 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4220 t1, op0),
4221 NULL_RTX);
4222 t3 = expand_shift
4223 (RSHIFT_EXPR, compute_mode, t2,
4224 build_int_cst (NULL_TREE, post_shift),
4225 NULL_RTX, 0);
4226 t4 = expand_shift
4227 (RSHIFT_EXPR, compute_mode, op0,
4228 build_int_cst (NULL_TREE, size - 1),
4229 NULL_RTX, 0);
4230 if (d < 0)
4231 quotient
4232 = force_operand (gen_rtx_MINUS (compute_mode,
4233 t4, t3),
4234 tquotient);
4235 else
4236 quotient
4237 = force_operand (gen_rtx_MINUS (compute_mode,
4238 t3, t4),
4239 tquotient);
4242 else /* Too wide mode to use tricky code */
4243 break;
4245 insn = get_last_insn ();
4246 if (insn != last
4247 && (set = single_set (insn)) != 0
4248 && SET_DEST (set) == quotient)
4249 set_unique_reg_note (insn,
4250 REG_EQUAL,
4251 gen_rtx_DIV (compute_mode, op0, op1));
4253 break;
4255 fail1:
4256 delete_insns_since (last);
4257 break;
4259 case FLOOR_DIV_EXPR:
4260 case FLOOR_MOD_EXPR:
4261 /* We will come here only for signed operations. */
4262 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4264 unsigned HOST_WIDE_INT mh;
4265 int pre_shift, lgup, post_shift;
4266 HOST_WIDE_INT d = INTVAL (op1);
4267 rtx ml;
4269 if (d > 0)
4271 /* We could just as easily deal with negative constants here,
4272 but it does not seem worth the trouble for GCC 2.6. */
4273 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4275 pre_shift = floor_log2 (d);
4276 if (rem_flag)
4278 remainder = expand_binop (compute_mode, and_optab, op0,
4279 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4280 remainder, 0, OPTAB_LIB_WIDEN);
4281 if (remainder)
4282 return gen_lowpart (mode, remainder);
4284 quotient = expand_shift
4285 (RSHIFT_EXPR, compute_mode, op0,
4286 build_int_cst (NULL_TREE, pre_shift),
4287 tquotient, 0);
4289 else
4291 rtx t1, t2, t3, t4;
4293 mh = choose_multiplier (d, size, size - 1,
4294 &ml, &post_shift, &lgup);
4295 gcc_assert (!mh);
4297 if (post_shift < BITS_PER_WORD
4298 && size - 1 < BITS_PER_WORD)
4300 t1 = expand_shift
4301 (RSHIFT_EXPR, compute_mode, op0,
4302 build_int_cst (NULL_TREE, size - 1),
4303 NULL_RTX, 0);
4304 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4305 NULL_RTX, 0, OPTAB_WIDEN);
4306 extra_cost = (shift_cost[compute_mode][post_shift]
4307 + shift_cost[compute_mode][size - 1]
4308 + 2 * add_cost[compute_mode]);
4309 t3 = expand_mult_highpart (compute_mode, t2, ml,
4310 NULL_RTX, 1,
4311 max_cost - extra_cost);
4312 if (t3 != 0)
4314 t4 = expand_shift
4315 (RSHIFT_EXPR, compute_mode, t3,
4316 build_int_cst (NULL_TREE, post_shift),
4317 NULL_RTX, 1);
4318 quotient = expand_binop (compute_mode, xor_optab,
4319 t4, t1, tquotient, 0,
4320 OPTAB_WIDEN);
4325 else
4327 rtx nsign, t1, t2, t3, t4;
4328 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4329 op0, constm1_rtx), NULL_RTX);
4330 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4331 0, OPTAB_WIDEN);
4332 nsign = expand_shift
4333 (RSHIFT_EXPR, compute_mode, t2,
4334 build_int_cst (NULL_TREE, size - 1),
4335 NULL_RTX, 0);
4336 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4337 NULL_RTX);
4338 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4339 NULL_RTX, 0);
4340 if (t4)
4342 rtx t5;
4343 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4344 NULL_RTX, 0);
4345 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4346 t4, t5),
4347 tquotient);
4352 if (quotient != 0)
4353 break;
4354 delete_insns_since (last);
4356 /* Try using an instruction that produces both the quotient and
4357 remainder, using truncation. We can easily compensate the quotient
4358 or remainder to get floor rounding, once we have the remainder.
4359 Notice that we compute also the final remainder value here,
4360 and return the result right away. */
4361 if (target == 0 || GET_MODE (target) != compute_mode)
4362 target = gen_reg_rtx (compute_mode);
4364 if (rem_flag)
4366 remainder
4367 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4368 quotient = gen_reg_rtx (compute_mode);
4370 else
4372 quotient
4373 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4374 remainder = gen_reg_rtx (compute_mode);
4377 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4378 quotient, remainder, 0))
4380 /* This could be computed with a branch-less sequence.
4381 Save that for later. */
4382 rtx tem;
4383 rtx label = gen_label_rtx ();
4384 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4385 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4386 NULL_RTX, 0, OPTAB_WIDEN);
4387 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4388 expand_dec (quotient, const1_rtx);
4389 expand_inc (remainder, op1);
4390 emit_label (label);
4391 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4394 /* No luck with division elimination or divmod. Have to do it
4395 by conditionally adjusting op0 *and* the result. */
4397 rtx label1, label2, label3, label4, label5;
4398 rtx adjusted_op0;
4399 rtx tem;
4401 quotient = gen_reg_rtx (compute_mode);
4402 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4403 label1 = gen_label_rtx ();
4404 label2 = gen_label_rtx ();
4405 label3 = gen_label_rtx ();
4406 label4 = gen_label_rtx ();
4407 label5 = gen_label_rtx ();
4408 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4409 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4410 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4411 quotient, 0, OPTAB_LIB_WIDEN);
4412 if (tem != quotient)
4413 emit_move_insn (quotient, tem);
4414 emit_jump_insn (gen_jump (label5));
4415 emit_barrier ();
4416 emit_label (label1);
4417 expand_inc (adjusted_op0, const1_rtx);
4418 emit_jump_insn (gen_jump (label4));
4419 emit_barrier ();
4420 emit_label (label2);
4421 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4422 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4423 quotient, 0, OPTAB_LIB_WIDEN);
4424 if (tem != quotient)
4425 emit_move_insn (quotient, tem);
4426 emit_jump_insn (gen_jump (label5));
4427 emit_barrier ();
4428 emit_label (label3);
4429 expand_dec (adjusted_op0, const1_rtx);
4430 emit_label (label4);
4431 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4432 quotient, 0, OPTAB_LIB_WIDEN);
4433 if (tem != quotient)
4434 emit_move_insn (quotient, tem);
4435 expand_dec (quotient, const1_rtx);
4436 emit_label (label5);
4438 break;
4440 case CEIL_DIV_EXPR:
4441 case CEIL_MOD_EXPR:
4442 if (unsignedp)
4444 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4446 rtx t1, t2, t3;
4447 unsigned HOST_WIDE_INT d = INTVAL (op1);
4448 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4449 build_int_cst (NULL_TREE, floor_log2 (d)),
4450 tquotient, 1);
4451 t2 = expand_binop (compute_mode, and_optab, op0,
4452 GEN_INT (d - 1),
4453 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4454 t3 = gen_reg_rtx (compute_mode);
4455 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4456 compute_mode, 1, 1);
4457 if (t3 == 0)
4459 rtx lab;
4460 lab = gen_label_rtx ();
4461 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4462 expand_inc (t1, const1_rtx);
4463 emit_label (lab);
4464 quotient = t1;
4466 else
4467 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4468 t1, t3),
4469 tquotient);
4470 break;
4473 /* Try using an instruction that produces both the quotient and
4474 remainder, using truncation. We can easily compensate the
4475 quotient or remainder to get ceiling rounding, once we have the
4476 remainder. Notice that we compute also the final remainder
4477 value here, and return the result right away. */
4478 if (target == 0 || GET_MODE (target) != compute_mode)
4479 target = gen_reg_rtx (compute_mode);
4481 if (rem_flag)
4483 remainder = (REG_P (target)
4484 ? target : gen_reg_rtx (compute_mode));
4485 quotient = gen_reg_rtx (compute_mode);
4487 else
4489 quotient = (REG_P (target)
4490 ? target : gen_reg_rtx (compute_mode));
4491 remainder = gen_reg_rtx (compute_mode);
4494 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4495 remainder, 1))
4497 /* This could be computed with a branch-less sequence.
4498 Save that for later. */
4499 rtx label = gen_label_rtx ();
4500 do_cmp_and_jump (remainder, const0_rtx, EQ,
4501 compute_mode, label);
4502 expand_inc (quotient, const1_rtx);
4503 expand_dec (remainder, op1);
4504 emit_label (label);
4505 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4508 /* No luck with division elimination or divmod. Have to do it
4509 by conditionally adjusting op0 *and* the result. */
4511 rtx label1, label2;
4512 rtx adjusted_op0, tem;
4514 quotient = gen_reg_rtx (compute_mode);
4515 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4516 label1 = gen_label_rtx ();
4517 label2 = gen_label_rtx ();
4518 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4519 compute_mode, label1);
4520 emit_move_insn (quotient, const0_rtx);
4521 emit_jump_insn (gen_jump (label2));
4522 emit_barrier ();
4523 emit_label (label1);
4524 expand_dec (adjusted_op0, const1_rtx);
4525 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4526 quotient, 1, OPTAB_LIB_WIDEN);
4527 if (tem != quotient)
4528 emit_move_insn (quotient, tem);
4529 expand_inc (quotient, const1_rtx);
4530 emit_label (label2);
4533 else /* signed */
4535 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4536 && INTVAL (op1) >= 0)
4538 /* This is extremely similar to the code for the unsigned case
4539 above. For 2.7 we should merge these variants, but for
4540 2.6.1 I don't want to touch the code for unsigned since that
4541 get used in C. The signed case will only be used by other
4542 languages (Ada). */
4544 rtx t1, t2, t3;
4545 unsigned HOST_WIDE_INT d = INTVAL (op1);
4546 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4547 build_int_cst (NULL_TREE, floor_log2 (d)),
4548 tquotient, 0);
4549 t2 = expand_binop (compute_mode, and_optab, op0,
4550 GEN_INT (d - 1),
4551 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4552 t3 = gen_reg_rtx (compute_mode);
4553 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4554 compute_mode, 1, 1);
4555 if (t3 == 0)
4557 rtx lab;
4558 lab = gen_label_rtx ();
4559 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4560 expand_inc (t1, const1_rtx);
4561 emit_label (lab);
4562 quotient = t1;
4564 else
4565 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4566 t1, t3),
4567 tquotient);
4568 break;
4571 /* Try using an instruction that produces both the quotient and
4572 remainder, using truncation. We can easily compensate the
4573 quotient or remainder to get ceiling rounding, once we have the
4574 remainder. Notice that we compute also the final remainder
4575 value here, and return the result right away. */
4576 if (target == 0 || GET_MODE (target) != compute_mode)
4577 target = gen_reg_rtx (compute_mode);
4578 if (rem_flag)
4580 remainder= (REG_P (target)
4581 ? target : gen_reg_rtx (compute_mode));
4582 quotient = gen_reg_rtx (compute_mode);
4584 else
4586 quotient = (REG_P (target)
4587 ? target : gen_reg_rtx (compute_mode));
4588 remainder = gen_reg_rtx (compute_mode);
4591 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4592 remainder, 0))
4594 /* This could be computed with a branch-less sequence.
4595 Save that for later. */
4596 rtx tem;
4597 rtx label = gen_label_rtx ();
4598 do_cmp_and_jump (remainder, const0_rtx, EQ,
4599 compute_mode, label);
4600 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4601 NULL_RTX, 0, OPTAB_WIDEN);
4602 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4603 expand_inc (quotient, const1_rtx);
4604 expand_dec (remainder, op1);
4605 emit_label (label);
4606 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4609 /* No luck with division elimination or divmod. Have to do it
4610 by conditionally adjusting op0 *and* the result. */
4612 rtx label1, label2, label3, label4, label5;
4613 rtx adjusted_op0;
4614 rtx tem;
4616 quotient = gen_reg_rtx (compute_mode);
4617 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4618 label1 = gen_label_rtx ();
4619 label2 = gen_label_rtx ();
4620 label3 = gen_label_rtx ();
4621 label4 = gen_label_rtx ();
4622 label5 = gen_label_rtx ();
4623 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4624 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4625 compute_mode, label1);
4626 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4627 quotient, 0, OPTAB_LIB_WIDEN);
4628 if (tem != quotient)
4629 emit_move_insn (quotient, tem);
4630 emit_jump_insn (gen_jump (label5));
4631 emit_barrier ();
4632 emit_label (label1);
4633 expand_dec (adjusted_op0, const1_rtx);
4634 emit_jump_insn (gen_jump (label4));
4635 emit_barrier ();
4636 emit_label (label2);
4637 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4638 compute_mode, label3);
4639 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4640 quotient, 0, OPTAB_LIB_WIDEN);
4641 if (tem != quotient)
4642 emit_move_insn (quotient, tem);
4643 emit_jump_insn (gen_jump (label5));
4644 emit_barrier ();
4645 emit_label (label3);
4646 expand_inc (adjusted_op0, const1_rtx);
4647 emit_label (label4);
4648 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4649 quotient, 0, OPTAB_LIB_WIDEN);
4650 if (tem != quotient)
4651 emit_move_insn (quotient, tem);
4652 expand_inc (quotient, const1_rtx);
4653 emit_label (label5);
4656 break;
4658 case EXACT_DIV_EXPR:
4659 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4661 HOST_WIDE_INT d = INTVAL (op1);
4662 unsigned HOST_WIDE_INT ml;
4663 int pre_shift;
4664 rtx t1;
4666 pre_shift = floor_log2 (d & -d);
4667 ml = invert_mod2n (d >> pre_shift, size);
4668 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4669 build_int_cst (NULL_TREE, pre_shift),
4670 NULL_RTX, unsignedp);
4671 quotient = expand_mult (compute_mode, t1,
4672 gen_int_mode (ml, compute_mode),
4673 NULL_RTX, 1);
4675 insn = get_last_insn ();
4676 set_unique_reg_note (insn,
4677 REG_EQUAL,
4678 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4679 compute_mode,
4680 op0, op1));
4682 break;
4684 case ROUND_DIV_EXPR:
4685 case ROUND_MOD_EXPR:
4686 if (unsignedp)
4688 rtx tem;
4689 rtx label;
4690 label = gen_label_rtx ();
4691 quotient = gen_reg_rtx (compute_mode);
4692 remainder = gen_reg_rtx (compute_mode);
4693 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4695 rtx tem;
4696 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4697 quotient, 1, OPTAB_LIB_WIDEN);
4698 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4699 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4700 remainder, 1, OPTAB_LIB_WIDEN);
4702 tem = plus_constant (op1, -1);
4703 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4704 build_int_cst (NULL_TREE, 1),
4705 NULL_RTX, 1);
4706 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4707 expand_inc (quotient, const1_rtx);
4708 expand_dec (remainder, op1);
4709 emit_label (label);
4711 else
4713 rtx abs_rem, abs_op1, tem, mask;
4714 rtx label;
4715 label = gen_label_rtx ();
4716 quotient = gen_reg_rtx (compute_mode);
4717 remainder = gen_reg_rtx (compute_mode);
4718 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4720 rtx tem;
4721 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4722 quotient, 0, OPTAB_LIB_WIDEN);
4723 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4724 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4725 remainder, 0, OPTAB_LIB_WIDEN);
4727 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4728 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4729 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4730 build_int_cst (NULL_TREE, 1),
4731 NULL_RTX, 1);
4732 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4733 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4734 NULL_RTX, 0, OPTAB_WIDEN);
4735 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4736 build_int_cst (NULL_TREE, size - 1),
4737 NULL_RTX, 0);
4738 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4739 NULL_RTX, 0, OPTAB_WIDEN);
4740 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4741 NULL_RTX, 0, OPTAB_WIDEN);
4742 expand_inc (quotient, tem);
4743 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4744 NULL_RTX, 0, OPTAB_WIDEN);
4745 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4746 NULL_RTX, 0, OPTAB_WIDEN);
4747 expand_dec (remainder, tem);
4748 emit_label (label);
4750 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4752 default:
4753 gcc_unreachable ();
4756 if (quotient == 0)
4758 if (target && GET_MODE (target) != compute_mode)
4759 target = 0;
4761 if (rem_flag)
4763 /* Try to produce the remainder without producing the quotient.
4764 If we seem to have a divmod pattern that does not require widening,
4765 don't try widening here. We should really have a WIDEN argument
4766 to expand_twoval_binop, since what we'd really like to do here is
4767 1) try a mod insn in compute_mode
4768 2) try a divmod insn in compute_mode
4769 3) try a div insn in compute_mode and multiply-subtract to get
4770 remainder
4771 4) try the same things with widening allowed. */
4772 remainder
4773 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4774 op0, op1, target,
4775 unsignedp,
4776 ((optab2->handlers[compute_mode].insn_code
4777 != CODE_FOR_nothing)
4778 ? OPTAB_DIRECT : OPTAB_WIDEN));
4779 if (remainder == 0)
4781 /* No luck there. Can we do remainder and divide at once
4782 without a library call? */
4783 remainder = gen_reg_rtx (compute_mode);
4784 if (! expand_twoval_binop ((unsignedp
4785 ? udivmod_optab
4786 : sdivmod_optab),
4787 op0, op1,
4788 NULL_RTX, remainder, unsignedp))
4789 remainder = 0;
4792 if (remainder)
4793 return gen_lowpart (mode, remainder);
4796 /* Produce the quotient. Try a quotient insn, but not a library call.
4797 If we have a divmod in this mode, use it in preference to widening
4798 the div (for this test we assume it will not fail). Note that optab2
4799 is set to the one of the two optabs that the call below will use. */
4800 quotient
4801 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4802 op0, op1, rem_flag ? NULL_RTX : target,
4803 unsignedp,
4804 ((optab2->handlers[compute_mode].insn_code
4805 != CODE_FOR_nothing)
4806 ? OPTAB_DIRECT : OPTAB_WIDEN));
4808 if (quotient == 0)
4810 /* No luck there. Try a quotient-and-remainder insn,
4811 keeping the quotient alone. */
4812 quotient = gen_reg_rtx (compute_mode);
4813 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4814 op0, op1,
4815 quotient, NULL_RTX, unsignedp))
4817 quotient = 0;
4818 if (! rem_flag)
4819 /* Still no luck. If we are not computing the remainder,
4820 use a library call for the quotient. */
4821 quotient = sign_expand_binop (compute_mode,
4822 udiv_optab, sdiv_optab,
4823 op0, op1, target,
4824 unsignedp, OPTAB_LIB_WIDEN);
4829 if (rem_flag)
4831 if (target && GET_MODE (target) != compute_mode)
4832 target = 0;
4834 if (quotient == 0)
4836 /* No divide instruction either. Use library for remainder. */
4837 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4838 op0, op1, target,
4839 unsignedp, OPTAB_LIB_WIDEN);
4840 /* No remainder function. Try a quotient-and-remainder
4841 function, keeping the remainder. */
4842 if (!remainder)
4844 remainder = gen_reg_rtx (compute_mode);
4845 if (!expand_twoval_binop_libfunc
4846 (unsignedp ? udivmod_optab : sdivmod_optab,
4847 op0, op1,
4848 NULL_RTX, remainder,
4849 unsignedp ? UMOD : MOD))
4850 remainder = NULL_RTX;
4853 else
4855 /* We divided. Now finish doing X - Y * (X / Y). */
4856 remainder = expand_mult (compute_mode, quotient, op1,
4857 NULL_RTX, unsignedp);
4858 remainder = expand_binop (compute_mode, sub_optab, op0,
4859 remainder, target, unsignedp,
4860 OPTAB_LIB_WIDEN);
4864 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4867 /* Return a tree node with data type TYPE, describing the value of X.
4868 Usually this is an VAR_DECL, if there is no obvious better choice.
4869 X may be an expression, however we only support those expressions
4870 generated by loop.c. */
4872 tree
4873 make_tree (tree type, rtx x)
4875 tree t;
4877 switch (GET_CODE (x))
4879 case CONST_INT:
4881 HOST_WIDE_INT hi = 0;
4883 if (INTVAL (x) < 0
4884 && !(TYPE_UNSIGNED (type)
4885 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4886 < HOST_BITS_PER_WIDE_INT)))
4887 hi = -1;
4889 t = build_int_cst_wide (type, INTVAL (x), hi);
4891 return t;
4894 case CONST_DOUBLE:
4895 if (GET_MODE (x) == VOIDmode)
4896 t = build_int_cst_wide (type,
4897 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4898 else
4900 REAL_VALUE_TYPE d;
4902 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4903 t = build_real (type, d);
4906 return t;
4908 case CONST_VECTOR:
4910 int i, units;
4911 rtx elt;
4912 tree t = NULL_TREE;
4914 units = CONST_VECTOR_NUNITS (x);
4916 /* Build a tree with vector elements. */
4917 for (i = units - 1; i >= 0; --i)
4919 elt = CONST_VECTOR_ELT (x, i);
4920 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4923 return build_vector (type, t);
4926 case PLUS:
4927 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4928 make_tree (type, XEXP (x, 1)));
4930 case MINUS:
4931 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4932 make_tree (type, XEXP (x, 1)));
4934 case NEG:
4935 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4937 case MULT:
4938 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4939 make_tree (type, XEXP (x, 1)));
4941 case ASHIFT:
4942 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4943 make_tree (type, XEXP (x, 1)));
4945 case LSHIFTRT:
4946 t = lang_hooks.types.unsigned_type (type);
4947 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4948 make_tree (t, XEXP (x, 0)),
4949 make_tree (type, XEXP (x, 1))));
4951 case ASHIFTRT:
4952 t = lang_hooks.types.signed_type (type);
4953 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4954 make_tree (t, XEXP (x, 0)),
4955 make_tree (type, XEXP (x, 1))));
4957 case DIV:
4958 if (TREE_CODE (type) != REAL_TYPE)
4959 t = lang_hooks.types.signed_type (type);
4960 else
4961 t = type;
4963 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4964 make_tree (t, XEXP (x, 0)),
4965 make_tree (t, XEXP (x, 1))));
4966 case UDIV:
4967 t = lang_hooks.types.unsigned_type (type);
4968 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4969 make_tree (t, XEXP (x, 0)),
4970 make_tree (t, XEXP (x, 1))));
4972 case SIGN_EXTEND:
4973 case ZERO_EXTEND:
4974 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4975 GET_CODE (x) == ZERO_EXTEND);
4976 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4978 default:
4979 t = build_decl (VAR_DECL, NULL_TREE, type);
4981 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4982 ptr_mode. So convert. */
4983 if (POINTER_TYPE_P (type))
4984 x = convert_memory_address (TYPE_MODE (type), x);
4986 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4987 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4988 t->decl_with_rtl.rtl = x;
4990 return t;
4994 /* Check whether the multiplication X * MULT + ADD overflows.
4995 X, MULT and ADD must be CONST_*.
4996 MODE is the machine mode for the computation.
4997 X and MULT must have mode MODE. ADD may have a different mode.
4998 So can X (defaults to same as MODE).
4999 UNSIGNEDP is nonzero to do unsigned multiplication. */
5001 bool
5002 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
5003 enum machine_mode mode, int unsignedp)
5005 tree type, mult_type, add_type, result;
5007 type = lang_hooks.types.type_for_mode (mode, unsignedp);
5009 /* In order to get a proper overflow indication from an unsigned
5010 type, we have to pretend that it's a sizetype. */
5011 mult_type = type;
5012 if (unsignedp)
5014 /* FIXME:It would be nice if we could step directly from this
5015 type to its sizetype equivalent. */
5016 mult_type = build_distinct_type_copy (type);
5017 TYPE_IS_SIZETYPE (mult_type) = 1;
5020 add_type = (GET_MODE (add) == VOIDmode ? mult_type
5021 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
5023 result = fold_build2 (PLUS_EXPR, mult_type,
5024 fold_build2 (MULT_EXPR, mult_type,
5025 make_tree (mult_type, x),
5026 make_tree (mult_type, mult)),
5027 make_tree (add_type, add));
5029 return TREE_CONSTANT_OVERFLOW (result);
5032 /* Return an rtx representing the value of X * MULT + ADD.
5033 TARGET is a suggestion for where to store the result (an rtx).
5034 MODE is the machine mode for the computation.
5035 X and MULT must have mode MODE. ADD may have a different mode.
5036 So can X (defaults to same as MODE).
5037 UNSIGNEDP is nonzero to do unsigned multiplication.
5038 This may emit insns. */
5041 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
5042 int unsignedp)
5044 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
5045 tree add_type = (GET_MODE (add) == VOIDmode
5046 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
5047 unsignedp));
5048 tree result = fold_build2 (PLUS_EXPR, type,
5049 fold_build2 (MULT_EXPR, type,
5050 make_tree (type, x),
5051 make_tree (type, mult)),
5052 make_tree (add_type, add));
5054 return expand_expr (result, target, VOIDmode, 0);
5057 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5058 and returning TARGET.
5060 If TARGET is 0, a pseudo-register or constant is returned. */
5063 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5065 rtx tem = 0;
5067 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5068 tem = simplify_binary_operation (AND, mode, op0, op1);
5069 if (tem == 0)
5070 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5072 if (target == 0)
5073 target = tem;
5074 else if (tem != target)
5075 emit_move_insn (target, tem);
5076 return target;
5079 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5080 and storing in TARGET. Normally return TARGET.
5081 Return 0 if that cannot be done.
5083 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5084 it is VOIDmode, they cannot both be CONST_INT.
5086 UNSIGNEDP is for the case where we have to widen the operands
5087 to perform the operation. It says to use zero-extension.
5089 NORMALIZEP is 1 if we should convert the result to be either zero
5090 or one. Normalize is -1 if we should convert the result to be
5091 either zero or -1. If NORMALIZEP is zero, the result will be left
5092 "raw" out of the scc insn. */
5095 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5096 enum machine_mode mode, int unsignedp, int normalizep)
5098 rtx subtarget;
5099 enum insn_code icode;
5100 enum machine_mode compare_mode;
5101 enum machine_mode target_mode = GET_MODE (target);
5102 rtx tem;
5103 rtx last = get_last_insn ();
5104 rtx pattern, comparison;
5106 if (unsignedp)
5107 code = unsigned_condition (code);
5109 /* If one operand is constant, make it the second one. Only do this
5110 if the other operand is not constant as well. */
5112 if (swap_commutative_operands_p (op0, op1))
5114 tem = op0;
5115 op0 = op1;
5116 op1 = tem;
5117 code = swap_condition (code);
5120 if (mode == VOIDmode)
5121 mode = GET_MODE (op0);
5123 /* For some comparisons with 1 and -1, we can convert this to
5124 comparisons with zero. This will often produce more opportunities for
5125 store-flag insns. */
5127 switch (code)
5129 case LT:
5130 if (op1 == const1_rtx)
5131 op1 = const0_rtx, code = LE;
5132 break;
5133 case LE:
5134 if (op1 == constm1_rtx)
5135 op1 = const0_rtx, code = LT;
5136 break;
5137 case GE:
5138 if (op1 == const1_rtx)
5139 op1 = const0_rtx, code = GT;
5140 break;
5141 case GT:
5142 if (op1 == constm1_rtx)
5143 op1 = const0_rtx, code = GE;
5144 break;
5145 case GEU:
5146 if (op1 == const1_rtx)
5147 op1 = const0_rtx, code = NE;
5148 break;
5149 case LTU:
5150 if (op1 == const1_rtx)
5151 op1 = const0_rtx, code = EQ;
5152 break;
5153 default:
5154 break;
5157 /* If we are comparing a double-word integer with zero or -1, we can
5158 convert the comparison into one involving a single word. */
5159 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5160 && GET_MODE_CLASS (mode) == MODE_INT
5161 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5163 if ((code == EQ || code == NE)
5164 && (op1 == const0_rtx || op1 == constm1_rtx))
5166 rtx op00, op01, op0both;
5168 /* Do a logical OR or AND of the two words and compare the result. */
5169 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5170 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5171 op0both = expand_binop (word_mode,
5172 op1 == const0_rtx ? ior_optab : and_optab,
5173 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5175 if (op0both != 0)
5176 return emit_store_flag (target, code, op0both, op1, word_mode,
5177 unsignedp, normalizep);
5179 else if ((code == LT || code == GE) && op1 == const0_rtx)
5181 rtx op0h;
5183 /* If testing the sign bit, can just test on high word. */
5184 op0h = simplify_gen_subreg (word_mode, op0, mode,
5185 subreg_highpart_offset (word_mode, mode));
5186 return emit_store_flag (target, code, op0h, op1, word_mode,
5187 unsignedp, normalizep);
5191 /* From now on, we won't change CODE, so set ICODE now. */
5192 icode = setcc_gen_code[(int) code];
5194 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5195 complement of A (for GE) and shifting the sign bit to the low bit. */
5196 if (op1 == const0_rtx && (code == LT || code == GE)
5197 && GET_MODE_CLASS (mode) == MODE_INT
5198 && (normalizep || STORE_FLAG_VALUE == 1
5199 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5200 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5201 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5203 subtarget = target;
5205 /* If the result is to be wider than OP0, it is best to convert it
5206 first. If it is to be narrower, it is *incorrect* to convert it
5207 first. */
5208 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5210 op0 = convert_modes (target_mode, mode, op0, 0);
5211 mode = target_mode;
5214 if (target_mode != mode)
5215 subtarget = 0;
5217 if (code == GE)
5218 op0 = expand_unop (mode, one_cmpl_optab, op0,
5219 ((STORE_FLAG_VALUE == 1 || normalizep)
5220 ? 0 : subtarget), 0);
5222 if (STORE_FLAG_VALUE == 1 || normalizep)
5223 /* If we are supposed to produce a 0/1 value, we want to do
5224 a logical shift from the sign bit to the low-order bit; for
5225 a -1/0 value, we do an arithmetic shift. */
5226 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5227 size_int (GET_MODE_BITSIZE (mode) - 1),
5228 subtarget, normalizep != -1);
5230 if (mode != target_mode)
5231 op0 = convert_modes (target_mode, mode, op0, 0);
5233 return op0;
5236 if (icode != CODE_FOR_nothing)
5238 insn_operand_predicate_fn pred;
5240 /* We think we may be able to do this with a scc insn. Emit the
5241 comparison and then the scc insn. */
5243 do_pending_stack_adjust ();
5244 last = get_last_insn ();
5246 comparison
5247 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5248 if (CONSTANT_P (comparison))
5250 switch (GET_CODE (comparison))
5252 case CONST_INT:
5253 if (comparison == const0_rtx)
5254 return const0_rtx;
5255 break;
5257 #ifdef FLOAT_STORE_FLAG_VALUE
5258 case CONST_DOUBLE:
5259 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5260 return const0_rtx;
5261 break;
5262 #endif
5263 default:
5264 gcc_unreachable ();
5267 if (normalizep == 1)
5268 return const1_rtx;
5269 if (normalizep == -1)
5270 return constm1_rtx;
5271 return const_true_rtx;
5274 /* The code of COMPARISON may not match CODE if compare_from_rtx
5275 decided to swap its operands and reverse the original code.
5277 We know that compare_from_rtx returns either a CONST_INT or
5278 a new comparison code, so it is safe to just extract the
5279 code from COMPARISON. */
5280 code = GET_CODE (comparison);
5282 /* Get a reference to the target in the proper mode for this insn. */
5283 compare_mode = insn_data[(int) icode].operand[0].mode;
5284 subtarget = target;
5285 pred = insn_data[(int) icode].operand[0].predicate;
5286 if (optimize || ! (*pred) (subtarget, compare_mode))
5287 subtarget = gen_reg_rtx (compare_mode);
5289 pattern = GEN_FCN (icode) (subtarget);
5290 if (pattern)
5292 emit_insn (pattern);
5294 /* If we are converting to a wider mode, first convert to
5295 TARGET_MODE, then normalize. This produces better combining
5296 opportunities on machines that have a SIGN_EXTRACT when we are
5297 testing a single bit. This mostly benefits the 68k.
5299 If STORE_FLAG_VALUE does not have the sign bit set when
5300 interpreted in COMPARE_MODE, we can do this conversion as
5301 unsigned, which is usually more efficient. */
5302 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5304 convert_move (target, subtarget,
5305 (GET_MODE_BITSIZE (compare_mode)
5306 <= HOST_BITS_PER_WIDE_INT)
5307 && 0 == (STORE_FLAG_VALUE
5308 & ((HOST_WIDE_INT) 1
5309 << (GET_MODE_BITSIZE (compare_mode) -1))));
5310 op0 = target;
5311 compare_mode = target_mode;
5313 else
5314 op0 = subtarget;
5316 /* If we want to keep subexpressions around, don't reuse our
5317 last target. */
5319 if (optimize)
5320 subtarget = 0;
5322 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5323 we don't have to do anything. */
5324 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5326 /* STORE_FLAG_VALUE might be the most negative number, so write
5327 the comparison this way to avoid a compiler-time warning. */
5328 else if (- normalizep == STORE_FLAG_VALUE)
5329 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5331 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5332 makes it hard to use a value of just the sign bit due to
5333 ANSI integer constant typing rules. */
5334 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5335 && (STORE_FLAG_VALUE
5336 & ((HOST_WIDE_INT) 1
5337 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5338 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5339 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5340 subtarget, normalizep == 1);
5341 else
5343 gcc_assert (STORE_FLAG_VALUE & 1);
5345 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5346 if (normalizep == -1)
5347 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5350 /* If we were converting to a smaller mode, do the
5351 conversion now. */
5352 if (target_mode != compare_mode)
5354 convert_move (target, op0, 0);
5355 return target;
5357 else
5358 return op0;
5362 delete_insns_since (last);
5364 /* If optimizing, use different pseudo registers for each insn, instead
5365 of reusing the same pseudo. This leads to better CSE, but slows
5366 down the compiler, since there are more pseudos */
5367 subtarget = (!optimize
5368 && (target_mode == mode)) ? target : NULL_RTX;
5370 /* If we reached here, we can't do this with a scc insn. However, there
5371 are some comparisons that can be done directly. For example, if
5372 this is an equality comparison of integers, we can try to exclusive-or
5373 (or subtract) the two operands and use a recursive call to try the
5374 comparison with zero. Don't do any of these cases if branches are
5375 very cheap. */
5377 if (BRANCH_COST > 0
5378 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5379 && op1 != const0_rtx)
5381 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5382 OPTAB_WIDEN);
5384 if (tem == 0)
5385 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5386 OPTAB_WIDEN);
5387 if (tem != 0)
5388 tem = emit_store_flag (target, code, tem, const0_rtx,
5389 mode, unsignedp, normalizep);
5390 if (tem == 0)
5391 delete_insns_since (last);
5392 return tem;
5395 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5396 the constant zero. Reject all other comparisons at this point. Only
5397 do LE and GT if branches are expensive since they are expensive on
5398 2-operand machines. */
5400 if (BRANCH_COST == 0
5401 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5402 || (code != EQ && code != NE
5403 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5404 return 0;
5406 /* See what we need to return. We can only return a 1, -1, or the
5407 sign bit. */
5409 if (normalizep == 0)
5411 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5412 normalizep = STORE_FLAG_VALUE;
5414 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5415 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5416 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5418 else
5419 return 0;
5422 /* Try to put the result of the comparison in the sign bit. Assume we can't
5423 do the necessary operation below. */
5425 tem = 0;
5427 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5428 the sign bit set. */
5430 if (code == LE)
5432 /* This is destructive, so SUBTARGET can't be OP0. */
5433 if (rtx_equal_p (subtarget, op0))
5434 subtarget = 0;
5436 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5437 OPTAB_WIDEN);
5438 if (tem)
5439 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5440 OPTAB_WIDEN);
5443 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5444 number of bits in the mode of OP0, minus one. */
5446 if (code == GT)
5448 if (rtx_equal_p (subtarget, op0))
5449 subtarget = 0;
5451 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5452 size_int (GET_MODE_BITSIZE (mode) - 1),
5453 subtarget, 0);
5454 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5455 OPTAB_WIDEN);
5458 if (code == EQ || code == NE)
5460 /* For EQ or NE, one way to do the comparison is to apply an operation
5461 that converts the operand into a positive number if it is nonzero
5462 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5463 for NE we negate. This puts the result in the sign bit. Then we
5464 normalize with a shift, if needed.
5466 Two operations that can do the above actions are ABS and FFS, so try
5467 them. If that doesn't work, and MODE is smaller than a full word,
5468 we can use zero-extension to the wider mode (an unsigned conversion)
5469 as the operation. */
5471 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5472 that is compensated by the subsequent overflow when subtracting
5473 one / negating. */
5475 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5476 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5477 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5478 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5479 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5481 tem = convert_modes (word_mode, mode, op0, 1);
5482 mode = word_mode;
5485 if (tem != 0)
5487 if (code == EQ)
5488 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5489 0, OPTAB_WIDEN);
5490 else
5491 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5494 /* If we couldn't do it that way, for NE we can "or" the two's complement
5495 of the value with itself. For EQ, we take the one's complement of
5496 that "or", which is an extra insn, so we only handle EQ if branches
5497 are expensive. */
5499 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5501 if (rtx_equal_p (subtarget, op0))
5502 subtarget = 0;
5504 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5505 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5506 OPTAB_WIDEN);
5508 if (tem && code == EQ)
5509 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5513 if (tem && normalizep)
5514 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5515 size_int (GET_MODE_BITSIZE (mode) - 1),
5516 subtarget, normalizep == 1);
5518 if (tem)
5520 if (GET_MODE (tem) != target_mode)
5522 convert_move (target, tem, 0);
5523 tem = target;
5525 else if (!subtarget)
5527 emit_move_insn (target, tem);
5528 tem = target;
5531 else
5532 delete_insns_since (last);
5534 return tem;
5537 /* Like emit_store_flag, but always succeeds. */
5540 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5541 enum machine_mode mode, int unsignedp, int normalizep)
5543 rtx tem, label;
5545 /* First see if emit_store_flag can do the job. */
5546 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5547 if (tem != 0)
5548 return tem;
5550 if (normalizep == 0)
5551 normalizep = 1;
5553 /* If this failed, we have to do this with set/compare/jump/set code. */
5555 if (!REG_P (target)
5556 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5557 target = gen_reg_rtx (GET_MODE (target));
5559 emit_move_insn (target, const1_rtx);
5560 label = gen_label_rtx ();
5561 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5562 NULL_RTX, label);
5564 emit_move_insn (target, const0_rtx);
5565 emit_label (label);
5567 return target;
5570 /* Perform possibly multi-word comparison and conditional jump to LABEL
5571 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5573 The algorithm is based on the code in expr.c:do_jump.
5575 Note that this does not perform a general comparison. Only
5576 variants generated within expmed.c are correctly handled, others
5577 could be handled if needed. */
5579 static void
5580 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5581 rtx label)
5583 /* If this mode is an integer too wide to compare properly,
5584 compare word by word. Rely on cse to optimize constant cases. */
5586 if (GET_MODE_CLASS (mode) == MODE_INT
5587 && ! can_compare_p (op, mode, ccp_jump))
5589 rtx label2 = gen_label_rtx ();
5591 switch (op)
5593 case LTU:
5594 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5595 break;
5597 case LEU:
5598 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5599 break;
5601 case LT:
5602 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5603 break;
5605 case GT:
5606 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5607 break;
5609 case GE:
5610 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5611 break;
5613 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5614 that's the only equality operations we do */
5615 case EQ:
5616 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5617 do_jump_by_parts_equality_rtx (arg1, label2, label);
5618 break;
5620 case NE:
5621 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5622 do_jump_by_parts_equality_rtx (arg1, label, label2);
5623 break;
5625 default:
5626 gcc_unreachable ();
5629 emit_label (label2);
5631 else
5632 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);