Convert STARTING_FRAME_OFFSET to a hook
[official-gcc.git] / gcc / reload1.c
blobe2ee2feda93b3122e0d650cb6741991fb4aa68da
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
848 maybe_fix_stack_asms ();
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
863 int from = ep->from;
864 int can_eliminate = 0;
867 can_eliminate |= ep->can_eliminate;
868 ep++;
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
878 finish_spills (global);
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
889 int something_changed;
890 HOST_WIDE_INT starting_frame_size;
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
955 if (caller_save_needed)
956 setup_save_areas ();
958 if (starting_frame_size && crtl->stack_alignment_needed)
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled || starting_frame_size != get_frame_size ())
973 if (update_eliminables_and_spill ())
974 finish_spills (0);
975 continue;
978 if (caller_save_needed)
980 save_call_clobbered_regs ();
981 /* That might have allocated new insn_chain structures. */
982 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
985 calculate_needs_all_insns (global);
987 if (! ira_conflicts_p)
988 /* Don't do it for IRA. We need this info because we don't
989 change live_throughout and dead_or_set for chains when IRA
990 is used. */
991 CLEAR_REG_SET (&spilled_pseudos);
993 something_changed = 0;
995 /* If we allocated any new memory locations, make another pass
996 since it might have changed elimination offsets. */
997 if (something_was_spilled || starting_frame_size != get_frame_size ())
998 something_changed = 1;
1000 /* Even if the frame size remained the same, we might still have
1001 changed elimination offsets, e.g. if find_reloads called
1002 force_const_mem requiring the back end to allocate a constant
1003 pool base register that needs to be saved on the stack. */
1004 else if (!verify_initial_elim_offsets ())
1005 something_changed = 1;
1007 if (update_eliminables_and_spill ())
1009 finish_spills (0);
1010 something_changed = 1;
1012 else
1014 select_reload_regs ();
1015 if (failure)
1016 goto failed;
1017 if (insns_need_reload)
1018 something_changed |= finish_spills (global);
1021 if (! something_changed)
1022 break;
1024 if (caller_save_needed)
1025 delete_caller_save_insns ();
1027 obstack_free (&reload_obstack, reload_firstobj);
1030 /* If global-alloc was run, notify it of any register eliminations we have
1031 done. */
1032 if (global)
1033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1034 if (ep->can_eliminate)
1035 mark_elimination (ep->from, ep->to);
1037 remove_init_insns ();
1039 /* Use the reload registers where necessary
1040 by generating move instructions to move the must-be-register
1041 values into or out of the reload registers. */
1043 if (insns_need_reload != 0 || something_needs_elimination
1044 || something_needs_operands_changed)
1046 HOST_WIDE_INT old_frame_size = get_frame_size ();
1048 reload_as_needed (global);
1050 gcc_assert (old_frame_size == get_frame_size ());
1052 gcc_assert (verify_initial_elim_offsets ());
1055 /* If we were able to eliminate the frame pointer, show that it is no
1056 longer live at the start of any basic block. If it ls live by
1057 virtue of being in a pseudo, that pseudo will be marked live
1058 and hence the frame pointer will be known to be live via that
1059 pseudo. */
1061 if (! frame_pointer_needed)
1062 FOR_EACH_BB_FN (bb, cfun)
1063 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1065 /* Come here (with failure set nonzero) if we can't get enough spill
1066 regs. */
1067 failed:
1069 CLEAR_REG_SET (&changed_allocation_pseudos);
1070 CLEAR_REG_SET (&spilled_pseudos);
1071 reload_in_progress = 0;
1073 /* Now eliminate all pseudo regs by modifying them into
1074 their equivalent memory references.
1075 The REG-rtx's for the pseudos are modified in place,
1076 so all insns that used to refer to them now refer to memory.
1078 For a reg that has a reg_equiv_address, all those insns
1079 were changed by reloading so that no insns refer to it any longer;
1080 but the DECL_RTL of a variable decl may refer to it,
1081 and if so this causes the debugging info to mention the variable. */
1083 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1085 rtx addr = 0;
1087 if (reg_equiv_mem (i))
1088 addr = XEXP (reg_equiv_mem (i), 0);
1090 if (reg_equiv_address (i))
1091 addr = reg_equiv_address (i);
1093 if (addr)
1095 if (reg_renumber[i] < 0)
1097 rtx reg = regno_reg_rtx[i];
1099 REG_USERVAR_P (reg) = 0;
1100 PUT_CODE (reg, MEM);
1101 XEXP (reg, 0) = addr;
1102 if (reg_equiv_memory_loc (i))
1103 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1104 else
1105 MEM_ATTRS (reg) = 0;
1106 MEM_NOTRAP_P (reg) = 1;
1108 else if (reg_equiv_mem (i))
1109 XEXP (reg_equiv_mem (i), 0) = addr;
1112 /* We don't want complex addressing modes in debug insns
1113 if simpler ones will do, so delegitimize equivalences
1114 in debug insns. */
1115 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1117 rtx reg = regno_reg_rtx[i];
1118 rtx equiv = 0;
1119 df_ref use, next;
1121 if (reg_equiv_constant (i))
1122 equiv = reg_equiv_constant (i);
1123 else if (reg_equiv_invariant (i))
1124 equiv = reg_equiv_invariant (i);
1125 else if (reg && MEM_P (reg))
1126 equiv = targetm.delegitimize_address (reg);
1127 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1128 equiv = reg;
1130 if (equiv == reg)
1131 continue;
1133 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1135 insn = DF_REF_INSN (use);
1137 /* Make sure the next ref is for a different instruction,
1138 so that we're not affected by the rescan. */
1139 next = DF_REF_NEXT_REG (use);
1140 while (next && DF_REF_INSN (next) == insn)
1141 next = DF_REF_NEXT_REG (next);
1143 if (DEBUG_INSN_P (insn))
1145 if (!equiv)
1147 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1148 df_insn_rescan_debug_internal (insn);
1150 else
1151 INSN_VAR_LOCATION_LOC (insn)
1152 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1153 reg, equiv);
1159 /* We must set reload_completed now since the cleanup_subreg_operands call
1160 below will re-recognize each insn and reload may have generated insns
1161 which are only valid during and after reload. */
1162 reload_completed = 1;
1164 /* Make a pass over all the insns and delete all USEs which we inserted
1165 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1166 notes. Delete all CLOBBER insns, except those that refer to the return
1167 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1168 from misarranging variable-array code, and simplify (subreg (reg))
1169 operands. Strip and regenerate REG_INC notes that may have been moved
1170 around. */
1172 for (insn = first; insn; insn = NEXT_INSN (insn))
1173 if (INSN_P (insn))
1175 rtx *pnote;
1177 if (CALL_P (insn))
1178 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1179 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1181 if ((GET_CODE (PATTERN (insn)) == USE
1182 /* We mark with QImode USEs introduced by reload itself. */
1183 && (GET_MODE (insn) == QImode
1184 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1185 || (GET_CODE (PATTERN (insn)) == CLOBBER
1186 && (!MEM_P (XEXP (PATTERN (insn), 0))
1187 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1188 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1189 && XEXP (XEXP (PATTERN (insn), 0), 0)
1190 != stack_pointer_rtx))
1191 && (!REG_P (XEXP (PATTERN (insn), 0))
1192 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1194 delete_insn (insn);
1195 continue;
1198 /* Some CLOBBERs may survive until here and still reference unassigned
1199 pseudos with const equivalent, which may in turn cause ICE in later
1200 passes if the reference remains in place. */
1201 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1202 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1203 VOIDmode, PATTERN (insn));
1205 /* Discard obvious no-ops, even without -O. This optimization
1206 is fast and doesn't interfere with debugging. */
1207 if (NONJUMP_INSN_P (insn)
1208 && GET_CODE (PATTERN (insn)) == SET
1209 && REG_P (SET_SRC (PATTERN (insn)))
1210 && REG_P (SET_DEST (PATTERN (insn)))
1211 && (REGNO (SET_SRC (PATTERN (insn)))
1212 == REGNO (SET_DEST (PATTERN (insn)))))
1214 delete_insn (insn);
1215 continue;
1218 pnote = &REG_NOTES (insn);
1219 while (*pnote != 0)
1221 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 || REG_NOTE_KIND (*pnote) == REG_INC)
1224 *pnote = XEXP (*pnote, 1);
1225 else
1226 pnote = &XEXP (*pnote, 1);
1229 if (AUTO_INC_DEC)
1230 add_auto_inc_notes (insn, PATTERN (insn));
1232 /* Simplify (subreg (reg)) if it appears as an operand. */
1233 cleanup_subreg_operands (insn);
1235 /* Clean up invalid ASMs so that they don't confuse later passes.
1236 See PR 21299. */
1237 if (asm_noperands (PATTERN (insn)) >= 0)
1239 extract_insn (insn);
1240 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1242 error_for_asm (insn,
1243 "%<asm%> operand has impossible constraints");
1244 delete_insn (insn);
1245 continue;
1250 free (temp_pseudo_reg_arr);
1252 /* Indicate that we no longer have known memory locations or constants. */
1253 free_reg_equiv ();
1255 free (reg_max_ref_width);
1256 free (reg_old_renumber);
1257 free (pseudo_previous_regs);
1258 free (pseudo_forbidden_regs);
1260 CLEAR_HARD_REG_SET (used_spill_regs);
1261 for (i = 0; i < n_spills; i++)
1262 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1264 /* Free all the insn_chain structures at once. */
1265 obstack_free (&reload_obstack, reload_startobj);
1266 unused_insn_chains = 0;
1268 inserted = fixup_abnormal_edges ();
1270 /* We've possibly turned single trapping insn into multiple ones. */
1271 if (cfun->can_throw_non_call_exceptions)
1273 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1274 bitmap_ones (blocks);
1275 find_many_sub_basic_blocks (blocks);
1278 if (inserted)
1279 commit_edge_insertions ();
1281 /* Replacing pseudos with their memory equivalents might have
1282 created shared rtx. Subsequent passes would get confused
1283 by this, so unshare everything here. */
1284 unshare_all_rtl_again (first);
1286 #ifdef STACK_BOUNDARY
1287 /* init_emit has set the alignment of the hard frame pointer
1288 to STACK_BOUNDARY. It is very likely no longer valid if
1289 the hard frame pointer was used for register allocation. */
1290 if (!frame_pointer_needed)
1291 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1292 #endif
1294 substitute_stack.release ();
1296 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1298 reload_completed = !failure;
1300 return need_dce;
1303 /* Yet another special case. Unfortunately, reg-stack forces people to
1304 write incorrect clobbers in asm statements. These clobbers must not
1305 cause the register to appear in bad_spill_regs, otherwise we'll call
1306 fatal_insn later. We clear the corresponding regnos in the live
1307 register sets to avoid this.
1308 The whole thing is rather sick, I'm afraid. */
1310 static void
1311 maybe_fix_stack_asms (void)
1313 #ifdef STACK_REGS
1314 const char *constraints[MAX_RECOG_OPERANDS];
1315 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1316 struct insn_chain *chain;
1318 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1320 int i, noperands;
1321 HARD_REG_SET clobbered, allowed;
1322 rtx pat;
1324 if (! INSN_P (chain->insn)
1325 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1326 continue;
1327 pat = PATTERN (chain->insn);
1328 if (GET_CODE (pat) != PARALLEL)
1329 continue;
1331 CLEAR_HARD_REG_SET (clobbered);
1332 CLEAR_HARD_REG_SET (allowed);
1334 /* First, make a mask of all stack regs that are clobbered. */
1335 for (i = 0; i < XVECLEN (pat, 0); i++)
1337 rtx t = XVECEXP (pat, 0, i);
1338 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1339 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 /* Get the operand values and constraints out of the insn. */
1343 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1344 constraints, operand_mode, NULL);
1346 /* For every operand, see what registers are allowed. */
1347 for (i = 0; i < noperands; i++)
1349 const char *p = constraints[i];
1350 /* For every alternative, we compute the class of registers allowed
1351 for reloading in CLS, and merge its contents into the reg set
1352 ALLOWED. */
1353 int cls = (int) NO_REGS;
1355 for (;;)
1357 char c = *p;
1359 if (c == '\0' || c == ',' || c == '#')
1361 /* End of one alternative - mark the regs in the current
1362 class, and reset the class. */
1363 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1364 cls = NO_REGS;
1365 p++;
1366 if (c == '#')
1367 do {
1368 c = *p++;
1369 } while (c != '\0' && c != ',');
1370 if (c == '\0')
1371 break;
1372 continue;
1375 switch (c)
1377 case 'g':
1378 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1379 break;
1381 default:
1382 enum constraint_num cn = lookup_constraint (p);
1383 if (insn_extra_address_constraint (cn))
1384 cls = (int) reg_class_subunion[cls]
1385 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1386 ADDRESS, SCRATCH)];
1387 else
1388 cls = (int) reg_class_subunion[cls]
1389 [reg_class_for_constraint (cn)];
1390 break;
1392 p += CONSTRAINT_LEN (c, p);
1395 /* Those of the registers which are clobbered, but allowed by the
1396 constraints, must be usable as reload registers. So clear them
1397 out of the life information. */
1398 AND_HARD_REG_SET (allowed, clobbered);
1399 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1400 if (TEST_HARD_REG_BIT (allowed, i))
1402 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1403 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1407 #endif
1410 /* Copy the global variables n_reloads and rld into the corresponding elts
1411 of CHAIN. */
1412 static void
1413 copy_reloads (struct insn_chain *chain)
1415 chain->n_reloads = n_reloads;
1416 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1417 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422 and/or eliminations. Build the corresponding insns_need_reload list, and
1423 set something_needs_elimination as appropriate. */
1424 static void
1425 calculate_needs_all_insns (int global)
1427 struct insn_chain **pprev_reload = &insns_need_reload;
1428 struct insn_chain *chain, *next = 0;
1430 something_needs_elimination = 0;
1432 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1433 for (chain = reload_insn_chain; chain != 0; chain = next)
1435 rtx_insn *insn = chain->insn;
1437 next = chain->next;
1439 /* Clear out the shortcuts. */
1440 chain->n_reloads = 0;
1441 chain->need_elim = 0;
1442 chain->need_reload = 0;
1443 chain->need_operand_change = 0;
1445 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1446 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1447 what effects this has on the known offsets at labels. */
1449 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1450 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1451 set_label_offsets (insn, insn, 0);
1453 if (INSN_P (insn))
1455 rtx old_body = PATTERN (insn);
1456 int old_code = INSN_CODE (insn);
1457 rtx old_notes = REG_NOTES (insn);
1458 int did_elimination = 0;
1459 int operands_changed = 0;
1461 /* Skip insns that only set an equivalence. */
1462 if (will_delete_init_insn_p (insn))
1463 continue;
1465 /* If needed, eliminate any eliminable registers. */
1466 if (num_eliminable || num_eliminable_invariants)
1467 did_elimination = eliminate_regs_in_insn (insn, 0);
1469 /* Analyze the instruction. */
1470 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1471 global, spill_reg_order);
1473 /* If a no-op set needs more than one reload, this is likely
1474 to be something that needs input address reloads. We
1475 can't get rid of this cleanly later, and it is of no use
1476 anyway, so discard it now.
1477 We only do this when expensive_optimizations is enabled,
1478 since this complements reload inheritance / output
1479 reload deletion, and it can make debugging harder. */
1480 if (flag_expensive_optimizations && n_reloads > 1)
1482 rtx set = single_set (insn);
1483 if (set
1485 ((SET_SRC (set) == SET_DEST (set)
1486 && REG_P (SET_SRC (set))
1487 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1488 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1489 && reg_renumber[REGNO (SET_SRC (set))] < 0
1490 && reg_renumber[REGNO (SET_DEST (set))] < 0
1491 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1492 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1493 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1494 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1496 if (ira_conflicts_p)
1497 /* Inform IRA about the insn deletion. */
1498 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1499 REGNO (SET_SRC (set)));
1500 delete_insn (insn);
1501 /* Delete it from the reload chain. */
1502 if (chain->prev)
1503 chain->prev->next = next;
1504 else
1505 reload_insn_chain = next;
1506 if (next)
1507 next->prev = chain->prev;
1508 chain->next = unused_insn_chains;
1509 unused_insn_chains = chain;
1510 continue;
1513 if (num_eliminable)
1514 update_eliminable_offsets ();
1516 /* Remember for later shortcuts which insns had any reloads or
1517 register eliminations. */
1518 chain->need_elim = did_elimination;
1519 chain->need_reload = n_reloads > 0;
1520 chain->need_operand_change = operands_changed;
1522 /* Discard any register replacements done. */
1523 if (did_elimination)
1525 obstack_free (&reload_obstack, reload_insn_firstobj);
1526 PATTERN (insn) = old_body;
1527 INSN_CODE (insn) = old_code;
1528 REG_NOTES (insn) = old_notes;
1529 something_needs_elimination = 1;
1532 something_needs_operands_changed |= operands_changed;
1534 if (n_reloads != 0)
1536 copy_reloads (chain);
1537 *pprev_reload = chain;
1538 pprev_reload = &chain->next_need_reload;
1542 *pprev_reload = 0;
1545 /* This function is called from the register allocator to set up estimates
1546 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1547 an invariant. The structure is similar to calculate_needs_all_insns. */
1549 void
1550 calculate_elim_costs_all_insns (void)
1552 int *reg_equiv_init_cost;
1553 basic_block bb;
1554 int i;
1556 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1557 init_elim_table ();
1558 init_eliminable_invariants (get_insns (), false);
1560 set_initial_elim_offsets ();
1561 set_initial_label_offsets ();
1563 FOR_EACH_BB_FN (bb, cfun)
1565 rtx_insn *insn;
1566 elim_bb = bb;
1568 FOR_BB_INSNS (bb, insn)
1570 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1571 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1572 what effects this has on the known offsets at labels. */
1574 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1575 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1576 set_label_offsets (insn, insn, 0);
1578 if (INSN_P (insn))
1580 rtx set = single_set (insn);
1582 /* Skip insns that only set an equivalence. */
1583 if (set && REG_P (SET_DEST (set))
1584 && reg_renumber[REGNO (SET_DEST (set))] < 0
1585 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1586 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1588 unsigned regno = REGNO (SET_DEST (set));
1589 rtx_insn_list *init = reg_equiv_init (regno);
1590 if (init)
1592 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1593 false, true);
1594 machine_mode mode = GET_MODE (SET_DEST (set));
1595 int cost = set_src_cost (t, mode,
1596 optimize_bb_for_speed_p (bb));
1597 int freq = REG_FREQ_FROM_BB (bb);
1599 reg_equiv_init_cost[regno] = cost * freq;
1600 continue;
1603 /* If needed, eliminate any eliminable registers. */
1604 if (num_eliminable || num_eliminable_invariants)
1605 elimination_costs_in_insn (insn);
1607 if (num_eliminable)
1608 update_eliminable_offsets ();
1612 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1614 if (reg_equiv_invariant (i))
1616 if (reg_equiv_init (i))
1618 int cost = reg_equiv_init_cost[i];
1619 if (dump_file)
1620 fprintf (dump_file,
1621 "Reg %d has equivalence, initial gains %d\n", i, cost);
1622 if (cost != 0)
1623 ira_adjust_equiv_reg_cost (i, cost);
1625 else
1627 if (dump_file)
1628 fprintf (dump_file,
1629 "Reg %d had equivalence, but can't be eliminated\n",
1631 ira_adjust_equiv_reg_cost (i, 0);
1636 free (reg_equiv_init_cost);
1637 free (offsets_known_at);
1638 free (offsets_at);
1639 offsets_at = NULL;
1640 offsets_known_at = NULL;
1643 /* Comparison function for qsort to decide which of two reloads
1644 should be handled first. *P1 and *P2 are the reload numbers. */
1646 static int
1647 reload_reg_class_lower (const void *r1p, const void *r2p)
1649 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1650 int t;
1652 /* Consider required reloads before optional ones. */
1653 t = rld[r1].optional - rld[r2].optional;
1654 if (t != 0)
1655 return t;
1657 /* Count all solitary classes before non-solitary ones. */
1658 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1659 - (reg_class_size[(int) rld[r1].rclass] == 1));
1660 if (t != 0)
1661 return t;
1663 /* Aside from solitaires, consider all multi-reg groups first. */
1664 t = rld[r2].nregs - rld[r1].nregs;
1665 if (t != 0)
1666 return t;
1668 /* Consider reloads in order of increasing reg-class number. */
1669 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1670 if (t != 0)
1671 return t;
1673 /* If reloads are equally urgent, sort by reload number,
1674 so that the results of qsort leave nothing to chance. */
1675 return r1 - r2;
1678 /* The cost of spilling each hard reg. */
1679 static int spill_cost[FIRST_PSEUDO_REGISTER];
1681 /* When spilling multiple hard registers, we use SPILL_COST for the first
1682 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1683 only the first hard reg for a multi-reg pseudo. */
1684 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1686 /* Map of hard regno to pseudo regno currently occupying the hard
1687 reg. */
1688 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1690 /* Update the spill cost arrays, considering that pseudo REG is live. */
1692 static void
1693 count_pseudo (int reg)
1695 int freq = REG_FREQ (reg);
1696 int r = reg_renumber[reg];
1697 int nregs;
1699 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1700 if (ira_conflicts_p && r < 0)
1701 return;
1703 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1704 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1705 return;
1707 SET_REGNO_REG_SET (&pseudos_counted, reg);
1709 gcc_assert (r >= 0);
1711 spill_add_cost[r] += freq;
1712 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1713 while (nregs-- > 0)
1715 hard_regno_to_pseudo_regno[r + nregs] = reg;
1716 spill_cost[r + nregs] += freq;
1720 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1721 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1723 static void
1724 order_regs_for_reload (struct insn_chain *chain)
1726 unsigned i;
1727 HARD_REG_SET used_by_pseudos;
1728 HARD_REG_SET used_by_pseudos2;
1729 reg_set_iterator rsi;
1731 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1733 memset (spill_cost, 0, sizeof spill_cost);
1734 memset (spill_add_cost, 0, sizeof spill_add_cost);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736 hard_regno_to_pseudo_regno[i] = -1;
1738 /* Count number of uses of each hard reg by pseudo regs allocated to it
1739 and then order them by decreasing use. First exclude hard registers
1740 that are live in or across this insn. */
1742 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1743 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1744 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1745 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1747 /* Now find out which pseudos are allocated to it, and update
1748 hard_reg_n_uses. */
1749 CLEAR_REG_SET (&pseudos_counted);
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1754 count_pseudo (i);
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1759 count_pseudo (i);
1761 CLEAR_REG_SET (&pseudos_counted);
1764 /* Vector of reload-numbers showing the order in which the reloads should
1765 be processed. */
1766 static short reload_order[MAX_RELOADS];
1768 /* This is used to keep track of the spill regs used in one insn. */
1769 static HARD_REG_SET used_spill_regs_local;
1771 /* We decided to spill hard register SPILLED, which has a size of
1772 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1773 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1774 update SPILL_COST/SPILL_ADD_COST. */
1776 static void
1777 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1779 int freq = REG_FREQ (reg);
1780 int r = reg_renumber[reg];
1781 int nregs;
1783 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1784 if (ira_conflicts_p && r < 0)
1785 return;
1787 gcc_assert (r >= 0);
1789 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1791 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1792 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1793 return;
1795 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1797 spill_add_cost[r] -= freq;
1798 while (nregs-- > 0)
1800 hard_regno_to_pseudo_regno[r + nregs] = -1;
1801 spill_cost[r + nregs] -= freq;
1805 /* Find reload register to use for reload number ORDER. */
1807 static int
1808 find_reg (struct insn_chain *chain, int order)
1810 int rnum = reload_order[order];
1811 struct reload *rl = rld + rnum;
1812 int best_cost = INT_MAX;
1813 int best_reg = -1;
1814 unsigned int i, j, n;
1815 int k;
1816 HARD_REG_SET not_usable;
1817 HARD_REG_SET used_by_other_reload;
1818 reg_set_iterator rsi;
1819 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1820 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1823 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1824 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1826 CLEAR_HARD_REG_SET (used_by_other_reload);
1827 for (k = 0; k < order; k++)
1829 int other = reload_order[k];
1831 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1832 for (j = 0; j < rld[other].nregs; j++)
1833 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1838 #ifdef REG_ALLOC_ORDER
1839 unsigned int regno = reg_alloc_order[i];
1840 #else
1841 unsigned int regno = i;
1842 #endif
1844 if (! TEST_HARD_REG_BIT (not_usable, regno)
1845 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1846 && targetm.hard_regno_mode_ok (regno, rl->mode))
1848 int this_cost = spill_cost[regno];
1849 int ok = 1;
1850 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1852 for (j = 1; j < this_nregs; j++)
1854 this_cost += spill_add_cost[regno + j];
1855 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1856 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1857 ok = 0;
1859 if (! ok)
1860 continue;
1862 if (ira_conflicts_p)
1864 /* Ask IRA to find a better pseudo-register for
1865 spilling. */
1866 for (n = j = 0; j < this_nregs; j++)
1868 int r = hard_regno_to_pseudo_regno[regno + j];
1870 if (r < 0)
1871 continue;
1872 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1873 regno_pseudo_regs[n++] = r;
1875 regno_pseudo_regs[n++] = -1;
1876 if (best_reg < 0
1877 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1878 best_regno_pseudo_regs,
1879 rl->in, rl->out,
1880 chain->insn))
1882 best_reg = regno;
1883 for (j = 0;; j++)
1885 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1886 if (regno_pseudo_regs[j] < 0)
1887 break;
1890 continue;
1893 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1894 this_cost--;
1895 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1896 this_cost--;
1897 if (this_cost < best_cost
1898 /* Among registers with equal cost, prefer caller-saved ones, or
1899 use REG_ALLOC_ORDER if it is defined. */
1900 || (this_cost == best_cost
1901 #ifdef REG_ALLOC_ORDER
1902 && (inv_reg_alloc_order[regno]
1903 < inv_reg_alloc_order[best_reg])
1904 #else
1905 && call_used_regs[regno]
1906 && ! call_used_regs[best_reg]
1907 #endif
1910 best_reg = regno;
1911 best_cost = this_cost;
1915 if (best_reg == -1)
1916 return 0;
1918 if (dump_file)
1919 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1921 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1922 rl->regno = best_reg;
1924 EXECUTE_IF_SET_IN_REG_SET
1925 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1927 count_spilled_pseudo (best_reg, rl->nregs, j);
1930 EXECUTE_IF_SET_IN_REG_SET
1931 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1933 count_spilled_pseudo (best_reg, rl->nregs, j);
1936 for (i = 0; i < rl->nregs; i++)
1938 gcc_assert (spill_cost[best_reg + i] == 0);
1939 gcc_assert (spill_add_cost[best_reg + i] == 0);
1940 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1941 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1943 return 1;
1946 /* Find more reload regs to satisfy the remaining need of an insn, which
1947 is given by CHAIN.
1948 Do it by ascending class number, since otherwise a reg
1949 might be spilled for a big class and might fail to count
1950 for a smaller class even though it belongs to that class. */
1952 static void
1953 find_reload_regs (struct insn_chain *chain)
1955 int i;
1957 /* In order to be certain of getting the registers we need,
1958 we must sort the reloads into order of increasing register class.
1959 Then our grabbing of reload registers will parallel the process
1960 that provided the reload registers. */
1961 for (i = 0; i < chain->n_reloads; i++)
1963 /* Show whether this reload already has a hard reg. */
1964 if (chain->rld[i].reg_rtx)
1966 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1967 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1969 else
1970 chain->rld[i].regno = -1;
1971 reload_order[i] = i;
1974 n_reloads = chain->n_reloads;
1975 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1977 CLEAR_HARD_REG_SET (used_spill_regs_local);
1979 if (dump_file)
1980 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1982 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1984 /* Compute the order of preference for hard registers to spill. */
1986 order_regs_for_reload (chain);
1988 for (i = 0; i < n_reloads; i++)
1990 int r = reload_order[i];
1992 /* Ignore reloads that got marked inoperative. */
1993 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1994 && ! rld[r].optional
1995 && rld[r].regno == -1)
1996 if (! find_reg (chain, i))
1998 if (dump_file)
1999 fprintf (dump_file, "reload failure for reload %d\n", r);
2000 spill_failure (chain->insn, rld[r].rclass);
2001 failure = 1;
2002 return;
2006 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2007 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2009 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2012 static void
2013 select_reload_regs (void)
2015 struct insn_chain *chain;
2017 /* Try to satisfy the needs for each insn. */
2018 for (chain = insns_need_reload; chain != 0;
2019 chain = chain->next_need_reload)
2020 find_reload_regs (chain);
2023 /* Delete all insns that were inserted by emit_caller_save_insns during
2024 this iteration. */
2025 static void
2026 delete_caller_save_insns (void)
2028 struct insn_chain *c = reload_insn_chain;
2030 while (c != 0)
2032 while (c != 0 && c->is_caller_save_insn)
2034 struct insn_chain *next = c->next;
2035 rtx_insn *insn = c->insn;
2037 if (c == reload_insn_chain)
2038 reload_insn_chain = next;
2039 delete_insn (insn);
2041 if (next)
2042 next->prev = c->prev;
2043 if (c->prev)
2044 c->prev->next = next;
2045 c->next = unused_insn_chains;
2046 unused_insn_chains = c;
2047 c = next;
2049 if (c != 0)
2050 c = c->next;
2054 /* Handle the failure to find a register to spill.
2055 INSN should be one of the insns which needed this particular spill reg. */
2057 static void
2058 spill_failure (rtx_insn *insn, enum reg_class rclass)
2060 if (asm_noperands (PATTERN (insn)) >= 0)
2061 error_for_asm (insn, "can%'t find a register in class %qs while "
2062 "reloading %<asm%>",
2063 reg_class_names[rclass]);
2064 else
2066 error ("unable to find a register to spill in class %qs",
2067 reg_class_names[rclass]);
2069 if (dump_file)
2071 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2072 debug_reload_to_stream (dump_file);
2074 fatal_insn ("this is the insn:", insn);
2078 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2079 data that is dead in INSN. */
2081 static void
2082 delete_dead_insn (rtx_insn *insn)
2084 rtx_insn *prev = prev_active_insn (insn);
2085 rtx prev_dest;
2087 /* If the previous insn sets a register that dies in our insn make
2088 a note that we want to run DCE immediately after reload.
2090 We used to delete the previous insn & recurse, but that's wrong for
2091 block local equivalences. Instead of trying to figure out the exact
2092 circumstances where we can delete the potentially dead insns, just
2093 let DCE do the job. */
2094 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2095 && GET_CODE (PATTERN (prev)) == SET
2096 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2097 && reg_mentioned_p (prev_dest, PATTERN (insn))
2098 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2099 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2100 need_dce = 1;
2102 SET_INSN_DELETED (insn);
2105 /* Modify the home of pseudo-reg I.
2106 The new home is present in reg_renumber[I].
2108 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2109 or it may be -1, meaning there is none or it is not relevant.
2110 This is used so that all pseudos spilled from a given hard reg
2111 can share one stack slot. */
2113 static void
2114 alter_reg (int i, int from_reg, bool dont_share_p)
2116 /* When outputting an inline function, this can happen
2117 for a reg that isn't actually used. */
2118 if (regno_reg_rtx[i] == 0)
2119 return;
2121 /* If the reg got changed to a MEM at rtl-generation time,
2122 ignore it. */
2123 if (!REG_P (regno_reg_rtx[i]))
2124 return;
2126 /* Modify the reg-rtx to contain the new hard reg
2127 number or else to contain its pseudo reg number. */
2128 SET_REGNO (regno_reg_rtx[i],
2129 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2131 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2132 allocate a stack slot for it. */
2134 if (reg_renumber[i] < 0
2135 && REG_N_REFS (i) > 0
2136 && reg_equiv_constant (i) == 0
2137 && (reg_equiv_invariant (i) == 0
2138 || reg_equiv_init (i) == 0)
2139 && reg_equiv_memory_loc (i) == 0)
2141 rtx x = NULL_RTX;
2142 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2143 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2144 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2145 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2146 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2147 int adjust = 0;
2149 something_was_spilled = true;
2151 if (ira_conflicts_p)
2153 /* Mark the spill for IRA. */
2154 SET_REGNO_REG_SET (&spilled_pseudos, i);
2155 if (!dont_share_p)
2156 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2159 if (x)
2162 /* Each pseudo reg has an inherent size which comes from its own mode,
2163 and a total size which provides room for paradoxical subregs
2164 which refer to the pseudo reg in wider modes.
2166 We can use a slot already allocated if it provides both
2167 enough inherent space and enough total space.
2168 Otherwise, we allocate a new slot, making sure that it has no less
2169 inherent space, and no less total space, then the previous slot. */
2170 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2172 rtx stack_slot;
2174 /* No known place to spill from => no slot to reuse. */
2175 x = assign_stack_local (mode, total_size,
2176 min_align > inherent_align
2177 || total_size > inherent_size ? -1 : 0);
2179 stack_slot = x;
2181 /* Cancel the big-endian correction done in assign_stack_local.
2182 Get the address of the beginning of the slot. This is so we
2183 can do a big-endian correction unconditionally below. */
2184 if (BYTES_BIG_ENDIAN)
2186 adjust = inherent_size - total_size;
2187 if (adjust)
2189 unsigned int total_bits = total_size * BITS_PER_UNIT;
2190 machine_mode mem_mode
2191 = int_mode_for_size (total_bits, 1).else_blk ();
2192 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2196 if (! dont_share_p && ira_conflicts_p)
2197 /* Inform IRA about allocation a new stack slot. */
2198 ira_mark_new_stack_slot (stack_slot, i, total_size);
2201 /* Reuse a stack slot if possible. */
2202 else if (spill_stack_slot[from_reg] != 0
2203 && spill_stack_slot_width[from_reg] >= total_size
2204 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2205 >= inherent_size)
2206 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2207 x = spill_stack_slot[from_reg];
2209 /* Allocate a bigger slot. */
2210 else
2212 /* Compute maximum size needed, both for inherent size
2213 and for total size. */
2214 rtx stack_slot;
2216 if (spill_stack_slot[from_reg])
2218 if (partial_subreg_p (mode,
2219 GET_MODE (spill_stack_slot[from_reg])))
2220 mode = GET_MODE (spill_stack_slot[from_reg]);
2221 if (spill_stack_slot_width[from_reg] > total_size)
2222 total_size = spill_stack_slot_width[from_reg];
2223 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2224 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2227 /* Make a slot with that size. */
2228 x = assign_stack_local (mode, total_size,
2229 min_align > inherent_align
2230 || total_size > inherent_size ? -1 : 0);
2231 stack_slot = x;
2233 /* Cancel the big-endian correction done in assign_stack_local.
2234 Get the address of the beginning of the slot. This is so we
2235 can do a big-endian correction unconditionally below. */
2236 if (BYTES_BIG_ENDIAN)
2238 adjust = GET_MODE_SIZE (mode) - total_size;
2239 if (adjust)
2241 unsigned int total_bits = total_size * BITS_PER_UNIT;
2242 machine_mode mem_mode
2243 = int_mode_for_size (total_bits, 1).else_blk ();
2244 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2248 spill_stack_slot[from_reg] = stack_slot;
2249 spill_stack_slot_width[from_reg] = total_size;
2252 /* On a big endian machine, the "address" of the slot
2253 is the address of the low part that fits its inherent mode. */
2254 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2256 /* If we have any adjustment to make, or if the stack slot is the
2257 wrong mode, make a new stack slot. */
2258 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2260 /* Set all of the memory attributes as appropriate for a spill. */
2261 set_mem_attrs_for_spill (x);
2263 /* Save the stack slot for later. */
2264 reg_equiv_memory_loc (i) = x;
2268 /* Mark the slots in regs_ever_live for the hard regs used by
2269 pseudo-reg number REGNO, accessed in MODE. */
2271 static void
2272 mark_home_live_1 (int regno, machine_mode mode)
2274 int i, lim;
2276 i = reg_renumber[regno];
2277 if (i < 0)
2278 return;
2279 lim = end_hard_regno (mode, i);
2280 while (i < lim)
2281 df_set_regs_ever_live (i++, true);
2284 /* Mark the slots in regs_ever_live for the hard regs
2285 used by pseudo-reg number REGNO. */
2287 void
2288 mark_home_live (int regno)
2290 if (reg_renumber[regno] >= 0)
2291 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2294 /* This function handles the tracking of elimination offsets around branches.
2296 X is a piece of RTL being scanned.
2298 INSN is the insn that it came from, if any.
2300 INITIAL_P is nonzero if we are to set the offset to be the initial
2301 offset and zero if we are setting the offset of the label to be the
2302 current offset. */
2304 static void
2305 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2307 enum rtx_code code = GET_CODE (x);
2308 rtx tem;
2309 unsigned int i;
2310 struct elim_table *p;
2312 switch (code)
2314 case LABEL_REF:
2315 if (LABEL_REF_NONLOCAL_P (x))
2316 return;
2318 x = label_ref_label (x);
2320 /* fall through */
2322 case CODE_LABEL:
2323 /* If we know nothing about this label, set the desired offsets. Note
2324 that this sets the offset at a label to be the offset before a label
2325 if we don't know anything about the label. This is not correct for
2326 the label after a BARRIER, but is the best guess we can make. If
2327 we guessed wrong, we will suppress an elimination that might have
2328 been possible had we been able to guess correctly. */
2330 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2332 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2333 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2334 = (initial_p ? reg_eliminate[i].initial_offset
2335 : reg_eliminate[i].offset);
2336 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2339 /* Otherwise, if this is the definition of a label and it is
2340 preceded by a BARRIER, set our offsets to the known offset of
2341 that label. */
2343 else if (x == insn
2344 && (tem = prev_nonnote_insn (insn)) != 0
2345 && BARRIER_P (tem))
2346 set_offsets_for_label (insn);
2347 else
2348 /* If neither of the above cases is true, compare each offset
2349 with those previously recorded and suppress any eliminations
2350 where the offsets disagree. */
2352 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2353 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2354 != (initial_p ? reg_eliminate[i].initial_offset
2355 : reg_eliminate[i].offset))
2356 reg_eliminate[i].can_eliminate = 0;
2358 return;
2360 case JUMP_TABLE_DATA:
2361 set_label_offsets (PATTERN (insn), insn, initial_p);
2362 return;
2364 case JUMP_INSN:
2365 set_label_offsets (PATTERN (insn), insn, initial_p);
2367 /* fall through */
2369 case INSN:
2370 case CALL_INSN:
2371 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2372 to indirectly and hence must have all eliminations at their
2373 initial offsets. */
2374 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2375 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2376 set_label_offsets (XEXP (tem, 0), insn, 1);
2377 return;
2379 case PARALLEL:
2380 case ADDR_VEC:
2381 case ADDR_DIFF_VEC:
2382 /* Each of the labels in the parallel or address vector must be
2383 at their initial offsets. We want the first field for PARALLEL
2384 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2386 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2387 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2388 insn, initial_p);
2389 return;
2391 case SET:
2392 /* We only care about setting PC. If the source is not RETURN,
2393 IF_THEN_ELSE, or a label, disable any eliminations not at
2394 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2395 isn't one of those possibilities. For branches to a label,
2396 call ourselves recursively.
2398 Note that this can disable elimination unnecessarily when we have
2399 a non-local goto since it will look like a non-constant jump to
2400 someplace in the current function. This isn't a significant
2401 problem since such jumps will normally be when all elimination
2402 pairs are back to their initial offsets. */
2404 if (SET_DEST (x) != pc_rtx)
2405 return;
2407 switch (GET_CODE (SET_SRC (x)))
2409 case PC:
2410 case RETURN:
2411 return;
2413 case LABEL_REF:
2414 set_label_offsets (SET_SRC (x), insn, initial_p);
2415 return;
2417 case IF_THEN_ELSE:
2418 tem = XEXP (SET_SRC (x), 1);
2419 if (GET_CODE (tem) == LABEL_REF)
2420 set_label_offsets (label_ref_label (tem), insn, initial_p);
2421 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2422 break;
2424 tem = XEXP (SET_SRC (x), 2);
2425 if (GET_CODE (tem) == LABEL_REF)
2426 set_label_offsets (label_ref_label (tem), insn, initial_p);
2427 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2428 break;
2429 return;
2431 default:
2432 break;
2435 /* If we reach here, all eliminations must be at their initial
2436 offset because we are doing a jump to a variable address. */
2437 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2438 if (p->offset != p->initial_offset)
2439 p->can_eliminate = 0;
2440 break;
2442 default:
2443 break;
2447 /* This function examines every reg that occurs in X and adjusts the
2448 costs for its elimination which are gathered by IRA. INSN is the
2449 insn in which X occurs. We do not recurse into MEM expressions. */
2451 static void
2452 note_reg_elim_costly (const_rtx x, rtx insn)
2454 subrtx_iterator::array_type array;
2455 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2457 const_rtx x = *iter;
2458 if (MEM_P (x))
2459 iter.skip_subrtxes ();
2460 else if (REG_P (x)
2461 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2462 && reg_equiv_init (REGNO (x))
2463 && reg_equiv_invariant (REGNO (x)))
2465 rtx t = reg_equiv_invariant (REGNO (x));
2466 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2467 int cost = set_src_cost (new_rtx, Pmode,
2468 optimize_bb_for_speed_p (elim_bb));
2469 int freq = REG_FREQ_FROM_BB (elim_bb);
2471 if (cost != 0)
2472 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2477 /* Scan X and replace any eliminable registers (such as fp) with a
2478 replacement (such as sp), plus an offset.
2480 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2481 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2482 MEM, we are allowed to replace a sum of a register and the constant zero
2483 with the register, which we cannot do outside a MEM. In addition, we need
2484 to record the fact that a register is referenced outside a MEM.
2486 If INSN is an insn, it is the insn containing X. If we replace a REG
2487 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2488 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2489 the REG is being modified.
2491 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2492 That's used when we eliminate in expressions stored in notes.
2493 This means, do not set ref_outside_mem even if the reference
2494 is outside of MEMs.
2496 If FOR_COSTS is true, we are being called before reload in order to
2497 estimate the costs of keeping registers with an equivalence unallocated.
2499 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2500 replacements done assuming all offsets are at their initial values. If
2501 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2502 encounter, return the actual location so that find_reloads will do
2503 the proper thing. */
2505 static rtx
2506 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2507 bool may_use_invariant, bool for_costs)
2509 enum rtx_code code = GET_CODE (x);
2510 struct elim_table *ep;
2511 int regno;
2512 rtx new_rtx;
2513 int i, j;
2514 const char *fmt;
2515 int copied = 0;
2517 if (! current_function_decl)
2518 return x;
2520 switch (code)
2522 CASE_CONST_ANY:
2523 case CONST:
2524 case SYMBOL_REF:
2525 case CODE_LABEL:
2526 case PC:
2527 case CC0:
2528 case ASM_INPUT:
2529 case ADDR_VEC:
2530 case ADDR_DIFF_VEC:
2531 case RETURN:
2532 return x;
2534 case REG:
2535 regno = REGNO (x);
2537 /* First handle the case where we encounter a bare register that
2538 is eliminable. Replace it with a PLUS. */
2539 if (regno < FIRST_PSEUDO_REGISTER)
2541 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2542 ep++)
2543 if (ep->from_rtx == x && ep->can_eliminate)
2544 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2547 else if (reg_renumber && reg_renumber[regno] < 0
2548 && reg_equivs
2549 && reg_equiv_invariant (regno))
2551 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2552 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2553 mem_mode, insn, true, for_costs);
2554 /* There exists at least one use of REGNO that cannot be
2555 eliminated. Prevent the defining insn from being deleted. */
2556 reg_equiv_init (regno) = NULL;
2557 if (!for_costs)
2558 alter_reg (regno, -1, true);
2560 return x;
2562 /* You might think handling MINUS in a manner similar to PLUS is a
2563 good idea. It is not. It has been tried multiple times and every
2564 time the change has had to have been reverted.
2566 Other parts of reload know a PLUS is special (gen_reload for example)
2567 and require special code to handle code a reloaded PLUS operand.
2569 Also consider backends where the flags register is clobbered by a
2570 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2571 lea instruction comes to mind). If we try to reload a MINUS, we
2572 may kill the flags register that was holding a useful value.
2574 So, please before trying to handle MINUS, consider reload as a
2575 whole instead of this little section as well as the backend issues. */
2576 case PLUS:
2577 /* If this is the sum of an eliminable register and a constant, rework
2578 the sum. */
2579 if (REG_P (XEXP (x, 0))
2580 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2581 && CONSTANT_P (XEXP (x, 1)))
2583 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2584 ep++)
2585 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2587 /* The only time we want to replace a PLUS with a REG (this
2588 occurs when the constant operand of the PLUS is the negative
2589 of the offset) is when we are inside a MEM. We won't want
2590 to do so at other times because that would change the
2591 structure of the insn in a way that reload can't handle.
2592 We special-case the commonest situation in
2593 eliminate_regs_in_insn, so just replace a PLUS with a
2594 PLUS here, unless inside a MEM. */
2595 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2596 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2597 return ep->to_rtx;
2598 else
2599 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2600 plus_constant (Pmode, XEXP (x, 1),
2601 ep->previous_offset));
2604 /* If the register is not eliminable, we are done since the other
2605 operand is a constant. */
2606 return x;
2609 /* If this is part of an address, we want to bring any constant to the
2610 outermost PLUS. We will do this by doing register replacement in
2611 our operands and seeing if a constant shows up in one of them.
2613 Note that there is no risk of modifying the structure of the insn,
2614 since we only get called for its operands, thus we are either
2615 modifying the address inside a MEM, or something like an address
2616 operand of a load-address insn. */
2619 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2620 for_costs);
2621 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2622 for_costs);
2624 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2626 /* If one side is a PLUS and the other side is a pseudo that
2627 didn't get a hard register but has a reg_equiv_constant,
2628 we must replace the constant here since it may no longer
2629 be in the position of any operand. */
2630 if (GET_CODE (new0) == PLUS && REG_P (new1)
2631 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2632 && reg_renumber[REGNO (new1)] < 0
2633 && reg_equivs
2634 && reg_equiv_constant (REGNO (new1)) != 0)
2635 new1 = reg_equiv_constant (REGNO (new1));
2636 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2637 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2638 && reg_renumber[REGNO (new0)] < 0
2639 && reg_equiv_constant (REGNO (new0)) != 0)
2640 new0 = reg_equiv_constant (REGNO (new0));
2642 new_rtx = form_sum (GET_MODE (x), new0, new1);
2644 /* As above, if we are not inside a MEM we do not want to
2645 turn a PLUS into something else. We might try to do so here
2646 for an addition of 0 if we aren't optimizing. */
2647 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2648 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2649 else
2650 return new_rtx;
2653 return x;
2655 case MULT:
2656 /* If this is the product of an eliminable register and a
2657 constant, apply the distribute law and move the constant out
2658 so that we have (plus (mult ..) ..). This is needed in order
2659 to keep load-address insns valid. This case is pathological.
2660 We ignore the possibility of overflow here. */
2661 if (REG_P (XEXP (x, 0))
2662 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2663 && CONST_INT_P (XEXP (x, 1)))
2664 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2665 ep++)
2666 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2668 if (! mem_mode
2669 /* Refs inside notes or in DEBUG_INSNs don't count for
2670 this purpose. */
2671 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2672 || GET_CODE (insn) == INSN_LIST
2673 || DEBUG_INSN_P (insn))))
2674 ep->ref_outside_mem = 1;
2676 return
2677 plus_constant (Pmode,
2678 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2679 ep->previous_offset * INTVAL (XEXP (x, 1)));
2682 /* fall through */
2684 case CALL:
2685 case COMPARE:
2686 /* See comments before PLUS about handling MINUS. */
2687 case MINUS:
2688 case DIV: case UDIV:
2689 case MOD: case UMOD:
2690 case AND: case IOR: case XOR:
2691 case ROTATERT: case ROTATE:
2692 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2693 case NE: case EQ:
2694 case GE: case GT: case GEU: case GTU:
2695 case LE: case LT: case LEU: case LTU:
2697 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2698 for_costs);
2699 rtx new1 = XEXP (x, 1)
2700 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2701 for_costs) : 0;
2703 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2704 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2706 return x;
2708 case EXPR_LIST:
2709 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2710 if (XEXP (x, 0))
2712 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2713 for_costs);
2714 if (new_rtx != XEXP (x, 0))
2716 /* If this is a REG_DEAD note, it is not valid anymore.
2717 Using the eliminated version could result in creating a
2718 REG_DEAD note for the stack or frame pointer. */
2719 if (REG_NOTE_KIND (x) == REG_DEAD)
2720 return (XEXP (x, 1)
2721 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2722 for_costs)
2723 : NULL_RTX);
2725 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2729 /* fall through */
2731 case INSN_LIST:
2732 case INT_LIST:
2733 /* Now do eliminations in the rest of the chain. If this was
2734 an EXPR_LIST, this might result in allocating more memory than is
2735 strictly needed, but it simplifies the code. */
2736 if (XEXP (x, 1))
2738 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2739 for_costs);
2740 if (new_rtx != XEXP (x, 1))
2741 return
2742 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2744 return x;
2746 case PRE_INC:
2747 case POST_INC:
2748 case PRE_DEC:
2749 case POST_DEC:
2750 /* We do not support elimination of a register that is modified.
2751 elimination_effects has already make sure that this does not
2752 happen. */
2753 return x;
2755 case PRE_MODIFY:
2756 case POST_MODIFY:
2757 /* We do not support elimination of a register that is modified.
2758 elimination_effects has already make sure that this does not
2759 happen. The only remaining case we need to consider here is
2760 that the increment value may be an eliminable register. */
2761 if (GET_CODE (XEXP (x, 1)) == PLUS
2762 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2764 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2765 insn, true, for_costs);
2767 if (new_rtx != XEXP (XEXP (x, 1), 1))
2768 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2769 gen_rtx_PLUS (GET_MODE (x),
2770 XEXP (x, 0), new_rtx));
2772 return x;
2774 case STRICT_LOW_PART:
2775 case NEG: case NOT:
2776 case SIGN_EXTEND: case ZERO_EXTEND:
2777 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2778 case FLOAT: case FIX:
2779 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2780 case ABS:
2781 case SQRT:
2782 case FFS:
2783 case CLZ:
2784 case CTZ:
2785 case POPCOUNT:
2786 case PARITY:
2787 case BSWAP:
2788 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2789 for_costs);
2790 if (new_rtx != XEXP (x, 0))
2791 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2792 return x;
2794 case SUBREG:
2795 /* Similar to above processing, but preserve SUBREG_BYTE.
2796 Convert (subreg (mem)) to (mem) if not paradoxical.
2797 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2798 pseudo didn't get a hard reg, we must replace this with the
2799 eliminated version of the memory location because push_reload
2800 may do the replacement in certain circumstances. */
2801 if (REG_P (SUBREG_REG (x))
2802 && !paradoxical_subreg_p (x)
2803 && reg_equivs
2804 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2806 new_rtx = SUBREG_REG (x);
2808 else
2809 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2811 if (new_rtx != SUBREG_REG (x))
2813 int x_size = GET_MODE_SIZE (GET_MODE (x));
2814 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2816 if (MEM_P (new_rtx)
2817 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2818 /* On RISC machines, combine can create rtl of the form
2819 (set (subreg:m1 (reg:m2 R) 0) ...)
2820 where m1 < m2, and expects something interesting to
2821 happen to the entire word. Moreover, it will use the
2822 (reg:m2 R) later, expecting all bits to be preserved.
2823 So if the number of words is the same, preserve the
2824 subreg so that push_reload can see it. */
2825 && !(WORD_REGISTER_OPERATIONS
2826 && (x_size - 1) / UNITS_PER_WORD
2827 == (new_size -1 ) / UNITS_PER_WORD))
2828 || x_size == new_size)
2830 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2831 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2832 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2833 else
2834 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2837 return x;
2839 case MEM:
2840 /* Our only special processing is to pass the mode of the MEM to our
2841 recursive call and copy the flags. While we are here, handle this
2842 case more efficiently. */
2844 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2845 for_costs);
2846 if (for_costs
2847 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2848 && !memory_address_p (GET_MODE (x), new_rtx))
2849 note_reg_elim_costly (XEXP (x, 0), insn);
2851 return replace_equiv_address_nv (x, new_rtx);
2853 case USE:
2854 /* Handle insn_list USE that a call to a pure function may generate. */
2855 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2856 for_costs);
2857 if (new_rtx != XEXP (x, 0))
2858 return gen_rtx_USE (GET_MODE (x), new_rtx);
2859 return x;
2861 case CLOBBER:
2862 case ASM_OPERANDS:
2863 gcc_assert (insn && DEBUG_INSN_P (insn));
2864 break;
2866 case SET:
2867 gcc_unreachable ();
2869 default:
2870 break;
2873 /* Process each of our operands recursively. If any have changed, make a
2874 copy of the rtx. */
2875 fmt = GET_RTX_FORMAT (code);
2876 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2878 if (*fmt == 'e')
2880 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2881 for_costs);
2882 if (new_rtx != XEXP (x, i) && ! copied)
2884 x = shallow_copy_rtx (x);
2885 copied = 1;
2887 XEXP (x, i) = new_rtx;
2889 else if (*fmt == 'E')
2891 int copied_vec = 0;
2892 for (j = 0; j < XVECLEN (x, i); j++)
2894 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2895 for_costs);
2896 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2898 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2899 XVEC (x, i)->elem);
2900 if (! copied)
2902 x = shallow_copy_rtx (x);
2903 copied = 1;
2905 XVEC (x, i) = new_v;
2906 copied_vec = 1;
2908 XVECEXP (x, i, j) = new_rtx;
2913 return x;
2917 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2919 if (reg_eliminate == NULL)
2921 gcc_assert (targetm.no_register_allocation);
2922 return x;
2924 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2927 /* Scan rtx X for modifications of elimination target registers. Update
2928 the table of eliminables to reflect the changed state. MEM_MODE is
2929 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2931 static void
2932 elimination_effects (rtx x, machine_mode mem_mode)
2934 enum rtx_code code = GET_CODE (x);
2935 struct elim_table *ep;
2936 int regno;
2937 int i, j;
2938 const char *fmt;
2940 switch (code)
2942 CASE_CONST_ANY:
2943 case CONST:
2944 case SYMBOL_REF:
2945 case CODE_LABEL:
2946 case PC:
2947 case CC0:
2948 case ASM_INPUT:
2949 case ADDR_VEC:
2950 case ADDR_DIFF_VEC:
2951 case RETURN:
2952 return;
2954 case REG:
2955 regno = REGNO (x);
2957 /* First handle the case where we encounter a bare register that
2958 is eliminable. Replace it with a PLUS. */
2959 if (regno < FIRST_PSEUDO_REGISTER)
2961 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2962 ep++)
2963 if (ep->from_rtx == x && ep->can_eliminate)
2965 if (! mem_mode)
2966 ep->ref_outside_mem = 1;
2967 return;
2971 else if (reg_renumber[regno] < 0
2972 && reg_equivs
2973 && reg_equiv_constant (regno)
2974 && ! function_invariant_p (reg_equiv_constant (regno)))
2975 elimination_effects (reg_equiv_constant (regno), mem_mode);
2976 return;
2978 case PRE_INC:
2979 case POST_INC:
2980 case PRE_DEC:
2981 case POST_DEC:
2982 case POST_MODIFY:
2983 case PRE_MODIFY:
2984 /* If we modify the source of an elimination rule, disable it. */
2985 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2986 if (ep->from_rtx == XEXP (x, 0))
2987 ep->can_eliminate = 0;
2989 /* If we modify the target of an elimination rule by adding a constant,
2990 update its offset. If we modify the target in any other way, we'll
2991 have to disable the rule as well. */
2992 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2993 if (ep->to_rtx == XEXP (x, 0))
2995 int size = GET_MODE_SIZE (mem_mode);
2997 /* If more bytes than MEM_MODE are pushed, account for them. */
2998 #ifdef PUSH_ROUNDING
2999 if (ep->to_rtx == stack_pointer_rtx)
3000 size = PUSH_ROUNDING (size);
3001 #endif
3002 if (code == PRE_DEC || code == POST_DEC)
3003 ep->offset += size;
3004 else if (code == PRE_INC || code == POST_INC)
3005 ep->offset -= size;
3006 else if (code == PRE_MODIFY || code == POST_MODIFY)
3008 if (GET_CODE (XEXP (x, 1)) == PLUS
3009 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3010 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3011 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3012 else
3013 ep->can_eliminate = 0;
3017 /* These two aren't unary operators. */
3018 if (code == POST_MODIFY || code == PRE_MODIFY)
3019 break;
3021 /* Fall through to generic unary operation case. */
3022 gcc_fallthrough ();
3023 case STRICT_LOW_PART:
3024 case NEG: case NOT:
3025 case SIGN_EXTEND: case ZERO_EXTEND:
3026 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3027 case FLOAT: case FIX:
3028 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3029 case ABS:
3030 case SQRT:
3031 case FFS:
3032 case CLZ:
3033 case CTZ:
3034 case POPCOUNT:
3035 case PARITY:
3036 case BSWAP:
3037 elimination_effects (XEXP (x, 0), mem_mode);
3038 return;
3040 case SUBREG:
3041 if (REG_P (SUBREG_REG (x))
3042 && !paradoxical_subreg_p (x)
3043 && reg_equivs
3044 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3045 return;
3047 elimination_effects (SUBREG_REG (x), mem_mode);
3048 return;
3050 case USE:
3051 /* If using a register that is the source of an eliminate we still
3052 think can be performed, note it cannot be performed since we don't
3053 know how this register is used. */
3054 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3055 if (ep->from_rtx == XEXP (x, 0))
3056 ep->can_eliminate = 0;
3058 elimination_effects (XEXP (x, 0), mem_mode);
3059 return;
3061 case CLOBBER:
3062 /* If clobbering a register that is the replacement register for an
3063 elimination we still think can be performed, note that it cannot
3064 be performed. Otherwise, we need not be concerned about it. */
3065 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3066 if (ep->to_rtx == XEXP (x, 0))
3067 ep->can_eliminate = 0;
3069 elimination_effects (XEXP (x, 0), mem_mode);
3070 return;
3072 case SET:
3073 /* Check for setting a register that we know about. */
3074 if (REG_P (SET_DEST (x)))
3076 /* See if this is setting the replacement register for an
3077 elimination.
3079 If DEST is the hard frame pointer, we do nothing because we
3080 assume that all assignments to the frame pointer are for
3081 non-local gotos and are being done at a time when they are valid
3082 and do not disturb anything else. Some machines want to
3083 eliminate a fake argument pointer (or even a fake frame pointer)
3084 with either the real frame or the stack pointer. Assignments to
3085 the hard frame pointer must not prevent this elimination. */
3087 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3088 ep++)
3089 if (ep->to_rtx == SET_DEST (x)
3090 && SET_DEST (x) != hard_frame_pointer_rtx)
3092 /* If it is being incremented, adjust the offset. Otherwise,
3093 this elimination can't be done. */
3094 rtx src = SET_SRC (x);
3096 if (GET_CODE (src) == PLUS
3097 && XEXP (src, 0) == SET_DEST (x)
3098 && CONST_INT_P (XEXP (src, 1)))
3099 ep->offset -= INTVAL (XEXP (src, 1));
3100 else
3101 ep->can_eliminate = 0;
3105 elimination_effects (SET_DEST (x), VOIDmode);
3106 elimination_effects (SET_SRC (x), VOIDmode);
3107 return;
3109 case MEM:
3110 /* Our only special processing is to pass the mode of the MEM to our
3111 recursive call. */
3112 elimination_effects (XEXP (x, 0), GET_MODE (x));
3113 return;
3115 default:
3116 break;
3119 fmt = GET_RTX_FORMAT (code);
3120 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3122 if (*fmt == 'e')
3123 elimination_effects (XEXP (x, i), mem_mode);
3124 else if (*fmt == 'E')
3125 for (j = 0; j < XVECLEN (x, i); j++)
3126 elimination_effects (XVECEXP (x, i, j), mem_mode);
3130 /* Descend through rtx X and verify that no references to eliminable registers
3131 remain. If any do remain, mark the involved register as not
3132 eliminable. */
3134 static void
3135 check_eliminable_occurrences (rtx x)
3137 const char *fmt;
3138 int i;
3139 enum rtx_code code;
3141 if (x == 0)
3142 return;
3144 code = GET_CODE (x);
3146 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3148 struct elim_table *ep;
3150 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3151 if (ep->from_rtx == x)
3152 ep->can_eliminate = 0;
3153 return;
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3159 if (*fmt == 'e')
3160 check_eliminable_occurrences (XEXP (x, i));
3161 else if (*fmt == 'E')
3163 int j;
3164 for (j = 0; j < XVECLEN (x, i); j++)
3165 check_eliminable_occurrences (XVECEXP (x, i, j));
3170 /* Scan INSN and eliminate all eliminable registers in it.
3172 If REPLACE is nonzero, do the replacement destructively. Also
3173 delete the insn as dead it if it is setting an eliminable register.
3175 If REPLACE is zero, do all our allocations in reload_obstack.
3177 If no eliminations were done and this insn doesn't require any elimination
3178 processing (these are not identical conditions: it might be updating sp,
3179 but not referencing fp; this needs to be seen during reload_as_needed so
3180 that the offset between fp and sp can be taken into consideration), zero
3181 is returned. Otherwise, 1 is returned. */
3183 static int
3184 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3186 int icode = recog_memoized (insn);
3187 rtx old_body = PATTERN (insn);
3188 int insn_is_asm = asm_noperands (old_body) >= 0;
3189 rtx old_set = single_set (insn);
3190 rtx new_body;
3191 int val = 0;
3192 int i;
3193 rtx substed_operand[MAX_RECOG_OPERANDS];
3194 rtx orig_operand[MAX_RECOG_OPERANDS];
3195 struct elim_table *ep;
3196 rtx plus_src, plus_cst_src;
3198 if (! insn_is_asm && icode < 0)
3200 gcc_assert (DEBUG_INSN_P (insn)
3201 || GET_CODE (PATTERN (insn)) == USE
3202 || GET_CODE (PATTERN (insn)) == CLOBBER
3203 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3204 if (DEBUG_INSN_P (insn))
3205 INSN_VAR_LOCATION_LOC (insn)
3206 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3207 return 0;
3210 if (old_set != 0 && REG_P (SET_DEST (old_set))
3211 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3213 /* Check for setting an eliminable register. */
3214 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3215 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3217 /* If this is setting the frame pointer register to the
3218 hardware frame pointer register and this is an elimination
3219 that will be done (tested above), this insn is really
3220 adjusting the frame pointer downward to compensate for
3221 the adjustment done before a nonlocal goto. */
3222 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3223 && ep->from == FRAME_POINTER_REGNUM
3224 && ep->to == HARD_FRAME_POINTER_REGNUM)
3226 rtx base = SET_SRC (old_set);
3227 rtx_insn *base_insn = insn;
3228 HOST_WIDE_INT offset = 0;
3230 while (base != ep->to_rtx)
3232 rtx_insn *prev_insn;
3233 rtx prev_set;
3235 if (GET_CODE (base) == PLUS
3236 && CONST_INT_P (XEXP (base, 1)))
3238 offset += INTVAL (XEXP (base, 1));
3239 base = XEXP (base, 0);
3241 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3242 && (prev_set = single_set (prev_insn)) != 0
3243 && rtx_equal_p (SET_DEST (prev_set), base))
3245 base = SET_SRC (prev_set);
3246 base_insn = prev_insn;
3248 else
3249 break;
3252 if (base == ep->to_rtx)
3254 rtx src = plus_constant (Pmode, ep->to_rtx,
3255 offset - ep->offset);
3257 new_body = old_body;
3258 if (! replace)
3260 new_body = copy_insn (old_body);
3261 if (REG_NOTES (insn))
3262 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3264 PATTERN (insn) = new_body;
3265 old_set = single_set (insn);
3267 /* First see if this insn remains valid when we
3268 make the change. If not, keep the INSN_CODE
3269 the same and let reload fit it up. */
3270 validate_change (insn, &SET_SRC (old_set), src, 1);
3271 validate_change (insn, &SET_DEST (old_set),
3272 ep->to_rtx, 1);
3273 if (! apply_change_group ())
3275 SET_SRC (old_set) = src;
3276 SET_DEST (old_set) = ep->to_rtx;
3279 val = 1;
3280 goto done;
3284 /* In this case this insn isn't serving a useful purpose. We
3285 will delete it in reload_as_needed once we know that this
3286 elimination is, in fact, being done.
3288 If REPLACE isn't set, we can't delete this insn, but needn't
3289 process it since it won't be used unless something changes. */
3290 if (replace)
3292 delete_dead_insn (insn);
3293 return 1;
3295 val = 1;
3296 goto done;
3300 /* We allow one special case which happens to work on all machines we
3301 currently support: a single set with the source or a REG_EQUAL
3302 note being a PLUS of an eliminable register and a constant. */
3303 plus_src = plus_cst_src = 0;
3304 if (old_set && REG_P (SET_DEST (old_set)))
3306 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3307 plus_src = SET_SRC (old_set);
3308 /* First see if the source is of the form (plus (...) CST). */
3309 if (plus_src
3310 && CONST_INT_P (XEXP (plus_src, 1)))
3311 plus_cst_src = plus_src;
3312 else if (REG_P (SET_SRC (old_set))
3313 || plus_src)
3315 /* Otherwise, see if we have a REG_EQUAL note of the form
3316 (plus (...) CST). */
3317 rtx links;
3318 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3320 if ((REG_NOTE_KIND (links) == REG_EQUAL
3321 || REG_NOTE_KIND (links) == REG_EQUIV)
3322 && GET_CODE (XEXP (links, 0)) == PLUS
3323 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3325 plus_cst_src = XEXP (links, 0);
3326 break;
3331 /* Check that the first operand of the PLUS is a hard reg or
3332 the lowpart subreg of one. */
3333 if (plus_cst_src)
3335 rtx reg = XEXP (plus_cst_src, 0);
3336 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3337 reg = SUBREG_REG (reg);
3339 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3340 plus_cst_src = 0;
3343 if (plus_cst_src)
3345 rtx reg = XEXP (plus_cst_src, 0);
3346 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3348 if (GET_CODE (reg) == SUBREG)
3349 reg = SUBREG_REG (reg);
3351 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3352 if (ep->from_rtx == reg && ep->can_eliminate)
3354 rtx to_rtx = ep->to_rtx;
3355 offset += ep->offset;
3356 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3358 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3359 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3360 to_rtx);
3361 /* If we have a nonzero offset, and the source is already
3362 a simple REG, the following transformation would
3363 increase the cost of the insn by replacing a simple REG
3364 with (plus (reg sp) CST). So try only when we already
3365 had a PLUS before. */
3366 if (offset == 0 || plus_src)
3368 rtx new_src = plus_constant (GET_MODE (to_rtx),
3369 to_rtx, offset);
3371 new_body = old_body;
3372 if (! replace)
3374 new_body = copy_insn (old_body);
3375 if (REG_NOTES (insn))
3376 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3378 PATTERN (insn) = new_body;
3379 old_set = single_set (insn);
3381 /* First see if this insn remains valid when we make the
3382 change. If not, try to replace the whole pattern with
3383 a simple set (this may help if the original insn was a
3384 PARALLEL that was only recognized as single_set due to
3385 REG_UNUSED notes). If this isn't valid either, keep
3386 the INSN_CODE the same and let reload fix it up. */
3387 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3389 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3391 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3392 SET_SRC (old_set) = new_src;
3395 else
3396 break;
3398 val = 1;
3399 /* This can't have an effect on elimination offsets, so skip right
3400 to the end. */
3401 goto done;
3405 /* Determine the effects of this insn on elimination offsets. */
3406 elimination_effects (old_body, VOIDmode);
3408 /* Eliminate all eliminable registers occurring in operands that
3409 can be handled by reload. */
3410 extract_insn (insn);
3411 for (i = 0; i < recog_data.n_operands; i++)
3413 orig_operand[i] = recog_data.operand[i];
3414 substed_operand[i] = recog_data.operand[i];
3416 /* For an asm statement, every operand is eliminable. */
3417 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3419 bool is_set_src, in_plus;
3421 /* Check for setting a register that we know about. */
3422 if (recog_data.operand_type[i] != OP_IN
3423 && REG_P (orig_operand[i]))
3425 /* If we are assigning to a register that can be eliminated, it
3426 must be as part of a PARALLEL, since the code above handles
3427 single SETs. We must indicate that we can no longer
3428 eliminate this reg. */
3429 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3430 ep++)
3431 if (ep->from_rtx == orig_operand[i])
3432 ep->can_eliminate = 0;
3435 /* Companion to the above plus substitution, we can allow
3436 invariants as the source of a plain move. */
3437 is_set_src = false;
3438 if (old_set
3439 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3440 is_set_src = true;
3441 in_plus = false;
3442 if (plus_src
3443 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3444 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3445 in_plus = true;
3447 substed_operand[i]
3448 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3449 replace ? insn : NULL_RTX,
3450 is_set_src || in_plus, false);
3451 if (substed_operand[i] != orig_operand[i])
3452 val = 1;
3453 /* Terminate the search in check_eliminable_occurrences at
3454 this point. */
3455 *recog_data.operand_loc[i] = 0;
3457 /* If an output operand changed from a REG to a MEM and INSN is an
3458 insn, write a CLOBBER insn. */
3459 if (recog_data.operand_type[i] != OP_IN
3460 && REG_P (orig_operand[i])
3461 && MEM_P (substed_operand[i])
3462 && replace)
3463 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3467 for (i = 0; i < recog_data.n_dups; i++)
3468 *recog_data.dup_loc[i]
3469 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3471 /* If any eliminable remain, they aren't eliminable anymore. */
3472 check_eliminable_occurrences (old_body);
3474 /* Substitute the operands; the new values are in the substed_operand
3475 array. */
3476 for (i = 0; i < recog_data.n_operands; i++)
3477 *recog_data.operand_loc[i] = substed_operand[i];
3478 for (i = 0; i < recog_data.n_dups; i++)
3479 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3481 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3482 re-recognize the insn. We do this in case we had a simple addition
3483 but now can do this as a load-address. This saves an insn in this
3484 common case.
3485 If re-recognition fails, the old insn code number will still be used,
3486 and some register operands may have changed into PLUS expressions.
3487 These will be handled by find_reloads by loading them into a register
3488 again. */
3490 if (val)
3492 /* If we aren't replacing things permanently and we changed something,
3493 make another copy to ensure that all the RTL is new. Otherwise
3494 things can go wrong if find_reload swaps commutative operands
3495 and one is inside RTL that has been copied while the other is not. */
3496 new_body = old_body;
3497 if (! replace)
3499 new_body = copy_insn (old_body);
3500 if (REG_NOTES (insn))
3501 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3503 PATTERN (insn) = new_body;
3505 /* If we had a move insn but now we don't, rerecognize it. This will
3506 cause spurious re-recognition if the old move had a PARALLEL since
3507 the new one still will, but we can't call single_set without
3508 having put NEW_BODY into the insn and the re-recognition won't
3509 hurt in this rare case. */
3510 /* ??? Why this huge if statement - why don't we just rerecognize the
3511 thing always? */
3512 if (! insn_is_asm
3513 && old_set != 0
3514 && ((REG_P (SET_SRC (old_set))
3515 && (GET_CODE (new_body) != SET
3516 || !REG_P (SET_SRC (new_body))))
3517 /* If this was a load from or store to memory, compare
3518 the MEM in recog_data.operand to the one in the insn.
3519 If they are not equal, then rerecognize the insn. */
3520 || (old_set != 0
3521 && ((MEM_P (SET_SRC (old_set))
3522 && SET_SRC (old_set) != recog_data.operand[1])
3523 || (MEM_P (SET_DEST (old_set))
3524 && SET_DEST (old_set) != recog_data.operand[0])))
3525 /* If this was an add insn before, rerecognize. */
3526 || GET_CODE (SET_SRC (old_set)) == PLUS))
3528 int new_icode = recog (PATTERN (insn), insn, 0);
3529 if (new_icode >= 0)
3530 INSN_CODE (insn) = new_icode;
3534 /* Restore the old body. If there were any changes to it, we made a copy
3535 of it while the changes were still in place, so we'll correctly return
3536 a modified insn below. */
3537 if (! replace)
3539 /* Restore the old body. */
3540 for (i = 0; i < recog_data.n_operands; i++)
3541 /* Restoring a top-level match_parallel would clobber the new_body
3542 we installed in the insn. */
3543 if (recog_data.operand_loc[i] != &PATTERN (insn))
3544 *recog_data.operand_loc[i] = orig_operand[i];
3545 for (i = 0; i < recog_data.n_dups; i++)
3546 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3549 /* Update all elimination pairs to reflect the status after the current
3550 insn. The changes we make were determined by the earlier call to
3551 elimination_effects.
3553 We also detect cases where register elimination cannot be done,
3554 namely, if a register would be both changed and referenced outside a MEM
3555 in the resulting insn since such an insn is often undefined and, even if
3556 not, we cannot know what meaning will be given to it. Note that it is
3557 valid to have a register used in an address in an insn that changes it
3558 (presumably with a pre- or post-increment or decrement).
3560 If anything changes, return nonzero. */
3562 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3564 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3565 ep->can_eliminate = 0;
3567 ep->ref_outside_mem = 0;
3569 if (ep->previous_offset != ep->offset)
3570 val = 1;
3573 done:
3574 /* If we changed something, perform elimination in REG_NOTES. This is
3575 needed even when REPLACE is zero because a REG_DEAD note might refer
3576 to a register that we eliminate and could cause a different number
3577 of spill registers to be needed in the final reload pass than in
3578 the pre-passes. */
3579 if (val && REG_NOTES (insn) != 0)
3580 REG_NOTES (insn)
3581 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3582 false);
3584 return val;
3587 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3588 register allocator. INSN is the instruction we need to examine, we perform
3589 eliminations in its operands and record cases where eliminating a reg with
3590 an invariant equivalence would add extra cost. */
3592 #pragma GCC diagnostic push
3593 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3594 static void
3595 elimination_costs_in_insn (rtx_insn *insn)
3597 int icode = recog_memoized (insn);
3598 rtx old_body = PATTERN (insn);
3599 int insn_is_asm = asm_noperands (old_body) >= 0;
3600 rtx old_set = single_set (insn);
3601 int i;
3602 rtx orig_operand[MAX_RECOG_OPERANDS];
3603 rtx orig_dup[MAX_RECOG_OPERANDS];
3604 struct elim_table *ep;
3605 rtx plus_src, plus_cst_src;
3606 bool sets_reg_p;
3608 if (! insn_is_asm && icode < 0)
3610 gcc_assert (DEBUG_INSN_P (insn)
3611 || GET_CODE (PATTERN (insn)) == USE
3612 || GET_CODE (PATTERN (insn)) == CLOBBER
3613 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3614 return;
3617 if (old_set != 0 && REG_P (SET_DEST (old_set))
3618 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3620 /* Check for setting an eliminable register. */
3621 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3622 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3623 return;
3626 /* We allow one special case which happens to work on all machines we
3627 currently support: a single set with the source or a REG_EQUAL
3628 note being a PLUS of an eliminable register and a constant. */
3629 plus_src = plus_cst_src = 0;
3630 sets_reg_p = false;
3631 if (old_set && REG_P (SET_DEST (old_set)))
3633 sets_reg_p = true;
3634 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3635 plus_src = SET_SRC (old_set);
3636 /* First see if the source is of the form (plus (...) CST). */
3637 if (plus_src
3638 && CONST_INT_P (XEXP (plus_src, 1)))
3639 plus_cst_src = plus_src;
3640 else if (REG_P (SET_SRC (old_set))
3641 || plus_src)
3643 /* Otherwise, see if we have a REG_EQUAL note of the form
3644 (plus (...) CST). */
3645 rtx links;
3646 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3648 if ((REG_NOTE_KIND (links) == REG_EQUAL
3649 || REG_NOTE_KIND (links) == REG_EQUIV)
3650 && GET_CODE (XEXP (links, 0)) == PLUS
3651 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3653 plus_cst_src = XEXP (links, 0);
3654 break;
3660 /* Determine the effects of this insn on elimination offsets. */
3661 elimination_effects (old_body, VOIDmode);
3663 /* Eliminate all eliminable registers occurring in operands that
3664 can be handled by reload. */
3665 extract_insn (insn);
3666 int n_dups = recog_data.n_dups;
3667 for (i = 0; i < n_dups; i++)
3668 orig_dup[i] = *recog_data.dup_loc[i];
3670 int n_operands = recog_data.n_operands;
3671 for (i = 0; i < n_operands; i++)
3673 orig_operand[i] = recog_data.operand[i];
3675 /* For an asm statement, every operand is eliminable. */
3676 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3678 bool is_set_src, in_plus;
3680 /* Check for setting a register that we know about. */
3681 if (recog_data.operand_type[i] != OP_IN
3682 && REG_P (orig_operand[i]))
3684 /* If we are assigning to a register that can be eliminated, it
3685 must be as part of a PARALLEL, since the code above handles
3686 single SETs. We must indicate that we can no longer
3687 eliminate this reg. */
3688 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3689 ep++)
3690 if (ep->from_rtx == orig_operand[i])
3691 ep->can_eliminate = 0;
3694 /* Companion to the above plus substitution, we can allow
3695 invariants as the source of a plain move. */
3696 is_set_src = false;
3697 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3698 is_set_src = true;
3699 if (is_set_src && !sets_reg_p)
3700 note_reg_elim_costly (SET_SRC (old_set), insn);
3701 in_plus = false;
3702 if (plus_src && sets_reg_p
3703 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3704 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3705 in_plus = true;
3707 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3708 NULL_RTX,
3709 is_set_src || in_plus, true);
3710 /* Terminate the search in check_eliminable_occurrences at
3711 this point. */
3712 *recog_data.operand_loc[i] = 0;
3716 for (i = 0; i < n_dups; i++)
3717 *recog_data.dup_loc[i]
3718 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3720 /* If any eliminable remain, they aren't eliminable anymore. */
3721 check_eliminable_occurrences (old_body);
3723 /* Restore the old body. */
3724 for (i = 0; i < n_operands; i++)
3725 *recog_data.operand_loc[i] = orig_operand[i];
3726 for (i = 0; i < n_dups; i++)
3727 *recog_data.dup_loc[i] = orig_dup[i];
3729 /* Update all elimination pairs to reflect the status after the current
3730 insn. The changes we make were determined by the earlier call to
3731 elimination_effects. */
3733 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3735 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3736 ep->can_eliminate = 0;
3738 ep->ref_outside_mem = 0;
3741 return;
3743 #pragma GCC diagnostic pop
3745 /* Loop through all elimination pairs.
3746 Recalculate the number not at initial offset.
3748 Compute the maximum offset (minimum offset if the stack does not
3749 grow downward) for each elimination pair. */
3751 static void
3752 update_eliminable_offsets (void)
3754 struct elim_table *ep;
3756 num_not_at_initial_offset = 0;
3757 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3759 ep->previous_offset = ep->offset;
3760 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3761 num_not_at_initial_offset++;
3765 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3766 replacement we currently believe is valid, mark it as not eliminable if X
3767 modifies DEST in any way other than by adding a constant integer to it.
3769 If DEST is the frame pointer, we do nothing because we assume that
3770 all assignments to the hard frame pointer are nonlocal gotos and are being
3771 done at a time when they are valid and do not disturb anything else.
3772 Some machines want to eliminate a fake argument pointer with either the
3773 frame or stack pointer. Assignments to the hard frame pointer must not
3774 prevent this elimination.
3776 Called via note_stores from reload before starting its passes to scan
3777 the insns of the function. */
3779 static void
3780 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3782 unsigned int i;
3784 /* A SUBREG of a hard register here is just changing its mode. We should
3785 not see a SUBREG of an eliminable hard register, but check just in
3786 case. */
3787 if (GET_CODE (dest) == SUBREG)
3788 dest = SUBREG_REG (dest);
3790 if (dest == hard_frame_pointer_rtx)
3791 return;
3793 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3794 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3795 && (GET_CODE (x) != SET
3796 || GET_CODE (SET_SRC (x)) != PLUS
3797 || XEXP (SET_SRC (x), 0) != dest
3798 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3800 reg_eliminate[i].can_eliminate_previous
3801 = reg_eliminate[i].can_eliminate = 0;
3802 num_eliminable--;
3806 /* Verify that the initial elimination offsets did not change since the
3807 last call to set_initial_elim_offsets. This is used to catch cases
3808 where something illegal happened during reload_as_needed that could
3809 cause incorrect code to be generated if we did not check for it. */
3811 static bool
3812 verify_initial_elim_offsets (void)
3814 HOST_WIDE_INT t;
3815 struct elim_table *ep;
3817 if (!num_eliminable)
3818 return true;
3820 targetm.compute_frame_layout ();
3821 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3823 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3824 if (t != ep->initial_offset)
3825 return false;
3828 return true;
3831 /* Reset all offsets on eliminable registers to their initial values. */
3833 static void
3834 set_initial_elim_offsets (void)
3836 struct elim_table *ep = reg_eliminate;
3838 targetm.compute_frame_layout ();
3839 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3841 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3842 ep->previous_offset = ep->offset = ep->initial_offset;
3845 num_not_at_initial_offset = 0;
3848 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3850 static void
3851 set_initial_eh_label_offset (rtx label)
3853 set_label_offsets (label, NULL, 1);
3856 /* Initialize the known label offsets.
3857 Set a known offset for each forced label to be at the initial offset
3858 of each elimination. We do this because we assume that all
3859 computed jumps occur from a location where each elimination is
3860 at its initial offset.
3861 For all other labels, show that we don't know the offsets. */
3863 static void
3864 set_initial_label_offsets (void)
3866 memset (offsets_known_at, 0, num_labels);
3868 unsigned int i;
3869 rtx_insn *insn;
3870 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3871 set_label_offsets (insn, NULL, 1);
3873 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3874 if (x->insn ())
3875 set_label_offsets (x->insn (), NULL, 1);
3877 for_each_eh_label (set_initial_eh_label_offset);
3880 /* Set all elimination offsets to the known values for the code label given
3881 by INSN. */
3883 static void
3884 set_offsets_for_label (rtx_insn *insn)
3886 unsigned int i;
3887 int label_nr = CODE_LABEL_NUMBER (insn);
3888 struct elim_table *ep;
3890 num_not_at_initial_offset = 0;
3891 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3893 ep->offset = ep->previous_offset
3894 = offsets_at[label_nr - first_label_num][i];
3895 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3896 num_not_at_initial_offset++;
3900 /* See if anything that happened changes which eliminations are valid.
3901 For example, on the SPARC, whether or not the frame pointer can
3902 be eliminated can depend on what registers have been used. We need
3903 not check some conditions again (such as flag_omit_frame_pointer)
3904 since they can't have changed. */
3906 static void
3907 update_eliminables (HARD_REG_SET *pset)
3909 int previous_frame_pointer_needed = frame_pointer_needed;
3910 struct elim_table *ep;
3912 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3913 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3914 && targetm.frame_pointer_required ())
3915 || ! targetm.can_eliminate (ep->from, ep->to)
3917 ep->can_eliminate = 0;
3919 /* Look for the case where we have discovered that we can't replace
3920 register A with register B and that means that we will now be
3921 trying to replace register A with register C. This means we can
3922 no longer replace register C with register B and we need to disable
3923 such an elimination, if it exists. This occurs often with A == ap,
3924 B == sp, and C == fp. */
3926 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3928 struct elim_table *op;
3929 int new_to = -1;
3931 if (! ep->can_eliminate && ep->can_eliminate_previous)
3933 /* Find the current elimination for ep->from, if there is a
3934 new one. */
3935 for (op = reg_eliminate;
3936 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3937 if (op->from == ep->from && op->can_eliminate)
3939 new_to = op->to;
3940 break;
3943 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3944 disable it. */
3945 for (op = reg_eliminate;
3946 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3947 if (op->from == new_to && op->to == ep->to)
3948 op->can_eliminate = 0;
3952 /* See if any registers that we thought we could eliminate the previous
3953 time are no longer eliminable. If so, something has changed and we
3954 must spill the register. Also, recompute the number of eliminable
3955 registers and see if the frame pointer is needed; it is if there is
3956 no elimination of the frame pointer that we can perform. */
3958 frame_pointer_needed = 1;
3959 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3961 if (ep->can_eliminate
3962 && ep->from == FRAME_POINTER_REGNUM
3963 && ep->to != HARD_FRAME_POINTER_REGNUM
3964 && (! SUPPORTS_STACK_ALIGNMENT
3965 || ! crtl->stack_realign_needed))
3966 frame_pointer_needed = 0;
3968 if (! ep->can_eliminate && ep->can_eliminate_previous)
3970 ep->can_eliminate_previous = 0;
3971 SET_HARD_REG_BIT (*pset, ep->from);
3972 num_eliminable--;
3976 /* If we didn't need a frame pointer last time, but we do now, spill
3977 the hard frame pointer. */
3978 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3979 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3982 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3983 Return true iff a register was spilled. */
3985 static bool
3986 update_eliminables_and_spill (void)
3988 int i;
3989 bool did_spill = false;
3990 HARD_REG_SET to_spill;
3991 CLEAR_HARD_REG_SET (to_spill);
3992 update_eliminables (&to_spill);
3993 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3995 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3996 if (TEST_HARD_REG_BIT (to_spill, i))
3998 spill_hard_reg (i, 1);
3999 did_spill = true;
4001 /* Regardless of the state of spills, if we previously had
4002 a register that we thought we could eliminate, but now can
4003 not eliminate, we must run another pass.
4005 Consider pseudos which have an entry in reg_equiv_* which
4006 reference an eliminable register. We must make another pass
4007 to update reg_equiv_* so that we do not substitute in the
4008 old value from when we thought the elimination could be
4009 performed. */
4011 return did_spill;
4014 /* Return true if X is used as the target register of an elimination. */
4016 bool
4017 elimination_target_reg_p (rtx x)
4019 struct elim_table *ep;
4021 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4022 if (ep->to_rtx == x && ep->can_eliminate)
4023 return true;
4025 return false;
4028 /* Initialize the table of registers to eliminate.
4029 Pre-condition: global flag frame_pointer_needed has been set before
4030 calling this function. */
4032 static void
4033 init_elim_table (void)
4035 struct elim_table *ep;
4036 const struct elim_table_1 *ep1;
4038 if (!reg_eliminate)
4039 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4041 num_eliminable = 0;
4043 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4044 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4046 ep->from = ep1->from;
4047 ep->to = ep1->to;
4048 ep->can_eliminate = ep->can_eliminate_previous
4049 = (targetm.can_eliminate (ep->from, ep->to)
4050 && ! (ep->to == STACK_POINTER_REGNUM
4051 && frame_pointer_needed
4052 && (! SUPPORTS_STACK_ALIGNMENT
4053 || ! stack_realign_fp)));
4056 /* Count the number of eliminable registers and build the FROM and TO
4057 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4058 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4059 We depend on this. */
4060 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4062 num_eliminable += ep->can_eliminate;
4063 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4064 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4068 /* Find all the pseudo registers that didn't get hard regs
4069 but do have known equivalent constants or memory slots.
4070 These include parameters (known equivalent to parameter slots)
4071 and cse'd or loop-moved constant memory addresses.
4073 Record constant equivalents in reg_equiv_constant
4074 so they will be substituted by find_reloads.
4075 Record memory equivalents in reg_mem_equiv so they can
4076 be substituted eventually by altering the REG-rtx's. */
4078 static void
4079 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4081 int i;
4082 rtx_insn *insn;
4084 grow_reg_equivs ();
4085 if (do_subregs)
4086 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4087 else
4088 reg_max_ref_width = NULL;
4090 num_eliminable_invariants = 0;
4092 first_label_num = get_first_label_num ();
4093 num_labels = max_label_num () - first_label_num;
4095 /* Allocate the tables used to store offset information at labels. */
4096 offsets_known_at = XNEWVEC (char, num_labels);
4097 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4099 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4100 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4101 find largest such for each pseudo. FIRST is the head of the insn
4102 list. */
4104 for (insn = first; insn; insn = NEXT_INSN (insn))
4106 rtx set = single_set (insn);
4108 /* We may introduce USEs that we want to remove at the end, so
4109 we'll mark them with QImode. Make sure there are no
4110 previously-marked insns left by say regmove. */
4111 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4112 && GET_MODE (insn) != VOIDmode)
4113 PUT_MODE (insn, VOIDmode);
4115 if (do_subregs && NONDEBUG_INSN_P (insn))
4116 scan_paradoxical_subregs (PATTERN (insn));
4118 if (set != 0 && REG_P (SET_DEST (set)))
4120 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4121 rtx x;
4123 if (! note)
4124 continue;
4126 i = REGNO (SET_DEST (set));
4127 x = XEXP (note, 0);
4129 if (i <= LAST_VIRTUAL_REGISTER)
4130 continue;
4132 /* If flag_pic and we have constant, verify it's legitimate. */
4133 if (!CONSTANT_P (x)
4134 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4136 /* It can happen that a REG_EQUIV note contains a MEM
4137 that is not a legitimate memory operand. As later
4138 stages of reload assume that all addresses found
4139 in the reg_equiv_* arrays were originally legitimate,
4140 we ignore such REG_EQUIV notes. */
4141 if (memory_operand (x, VOIDmode))
4143 /* Always unshare the equivalence, so we can
4144 substitute into this insn without touching the
4145 equivalence. */
4146 reg_equiv_memory_loc (i) = copy_rtx (x);
4148 else if (function_invariant_p (x))
4150 machine_mode mode;
4152 mode = GET_MODE (SET_DEST (set));
4153 if (GET_CODE (x) == PLUS)
4155 /* This is PLUS of frame pointer and a constant,
4156 and might be shared. Unshare it. */
4157 reg_equiv_invariant (i) = copy_rtx (x);
4158 num_eliminable_invariants++;
4160 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4162 reg_equiv_invariant (i) = x;
4163 num_eliminable_invariants++;
4165 else if (targetm.legitimate_constant_p (mode, x))
4166 reg_equiv_constant (i) = x;
4167 else
4169 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4170 if (! reg_equiv_memory_loc (i))
4171 reg_equiv_init (i) = NULL;
4174 else
4176 reg_equiv_init (i) = NULL;
4177 continue;
4180 else
4181 reg_equiv_init (i) = NULL;
4185 if (dump_file)
4186 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4187 if (reg_equiv_init (i))
4189 fprintf (dump_file, "init_insns for %u: ", i);
4190 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4191 fprintf (dump_file, "\n");
4195 /* Indicate that we no longer have known memory locations or constants.
4196 Free all data involved in tracking these. */
4198 static void
4199 free_reg_equiv (void)
4201 int i;
4203 free (offsets_known_at);
4204 free (offsets_at);
4205 offsets_at = 0;
4206 offsets_known_at = 0;
4208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4209 if (reg_equiv_alt_mem_list (i))
4210 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4211 vec_free (reg_equivs);
4214 /* Kick all pseudos out of hard register REGNO.
4216 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4217 because we found we can't eliminate some register. In the case, no pseudos
4218 are allowed to be in the register, even if they are only in a block that
4219 doesn't require spill registers, unlike the case when we are spilling this
4220 hard reg to produce another spill register.
4222 Return nonzero if any pseudos needed to be kicked out. */
4224 static void
4225 spill_hard_reg (unsigned int regno, int cant_eliminate)
4227 int i;
4229 if (cant_eliminate)
4231 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4232 df_set_regs_ever_live (regno, true);
4235 /* Spill every pseudo reg that was allocated to this reg
4236 or to something that overlaps this reg. */
4238 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4239 if (reg_renumber[i] >= 0
4240 && (unsigned int) reg_renumber[i] <= regno
4241 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4242 SET_REGNO_REG_SET (&spilled_pseudos, i);
4245 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4246 insns that need reloads, this function is used to actually spill pseudo
4247 registers and try to reallocate them. It also sets up the spill_regs
4248 array for use by choose_reload_regs.
4250 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4251 that we displace from hard registers. */
4253 static int
4254 finish_spills (int global)
4256 struct insn_chain *chain;
4257 int something_changed = 0;
4258 unsigned i;
4259 reg_set_iterator rsi;
4261 /* Build the spill_regs array for the function. */
4262 /* If there are some registers still to eliminate and one of the spill regs
4263 wasn't ever used before, additional stack space may have to be
4264 allocated to store this register. Thus, we may have changed the offset
4265 between the stack and frame pointers, so mark that something has changed.
4267 One might think that we need only set VAL to 1 if this is a call-used
4268 register. However, the set of registers that must be saved by the
4269 prologue is not identical to the call-used set. For example, the
4270 register used by the call insn for the return PC is a call-used register,
4271 but must be saved by the prologue. */
4273 n_spills = 0;
4274 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4275 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4277 spill_reg_order[i] = n_spills;
4278 spill_regs[n_spills++] = i;
4279 if (num_eliminable && ! df_regs_ever_live_p (i))
4280 something_changed = 1;
4281 df_set_regs_ever_live (i, true);
4283 else
4284 spill_reg_order[i] = -1;
4286 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4287 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4289 /* Record the current hard register the pseudo is allocated to
4290 in pseudo_previous_regs so we avoid reallocating it to the
4291 same hard reg in a later pass. */
4292 gcc_assert (reg_renumber[i] >= 0);
4294 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4295 /* Mark it as no longer having a hard register home. */
4296 reg_renumber[i] = -1;
4297 if (ira_conflicts_p)
4298 /* Inform IRA about the change. */
4299 ira_mark_allocation_change (i);
4300 /* We will need to scan everything again. */
4301 something_changed = 1;
4304 /* Retry global register allocation if possible. */
4305 if (global && ira_conflicts_p)
4307 unsigned int n;
4309 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4310 /* For every insn that needs reloads, set the registers used as spill
4311 regs in pseudo_forbidden_regs for every pseudo live across the
4312 insn. */
4313 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4315 EXECUTE_IF_SET_IN_REG_SET
4316 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4318 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4319 chain->used_spill_regs);
4321 EXECUTE_IF_SET_IN_REG_SET
4322 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4324 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4325 chain->used_spill_regs);
4329 /* Retry allocating the pseudos spilled in IRA and the
4330 reload. For each reg, merge the various reg sets that
4331 indicate which hard regs can't be used, and call
4332 ira_reassign_pseudos. */
4333 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4334 if (reg_old_renumber[i] != reg_renumber[i])
4336 if (reg_renumber[i] < 0)
4337 temp_pseudo_reg_arr[n++] = i;
4338 else
4339 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4341 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4342 bad_spill_regs_global,
4343 pseudo_forbidden_regs, pseudo_previous_regs,
4344 &spilled_pseudos))
4345 something_changed = 1;
4347 /* Fix up the register information in the insn chain.
4348 This involves deleting those of the spilled pseudos which did not get
4349 a new hard register home from the live_{before,after} sets. */
4350 for (chain = reload_insn_chain; chain; chain = chain->next)
4352 HARD_REG_SET used_by_pseudos;
4353 HARD_REG_SET used_by_pseudos2;
4355 if (! ira_conflicts_p)
4357 /* Don't do it for IRA because IRA and the reload still can
4358 assign hard registers to the spilled pseudos on next
4359 reload iterations. */
4360 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4361 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4363 /* Mark any unallocated hard regs as available for spills. That
4364 makes inheritance work somewhat better. */
4365 if (chain->need_reload)
4367 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4368 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4369 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4371 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4372 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4373 /* Value of chain->used_spill_regs from previous iteration
4374 may be not included in the value calculated here because
4375 of possible removing caller-saves insns (see function
4376 delete_caller_save_insns. */
4377 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4378 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4382 CLEAR_REG_SET (&changed_allocation_pseudos);
4383 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4384 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4386 int regno = reg_renumber[i];
4387 if (reg_old_renumber[i] == regno)
4388 continue;
4390 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4392 alter_reg (i, reg_old_renumber[i], false);
4393 reg_old_renumber[i] = regno;
4394 if (dump_file)
4396 if (regno == -1)
4397 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4398 else
4399 fprintf (dump_file, " Register %d now in %d.\n\n",
4400 i, reg_renumber[i]);
4404 return something_changed;
4407 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4409 static void
4410 scan_paradoxical_subregs (rtx x)
4412 int i;
4413 const char *fmt;
4414 enum rtx_code code = GET_CODE (x);
4416 switch (code)
4418 case REG:
4419 case CONST:
4420 case SYMBOL_REF:
4421 case LABEL_REF:
4422 CASE_CONST_ANY:
4423 case CC0:
4424 case PC:
4425 case USE:
4426 case CLOBBER:
4427 return;
4429 case SUBREG:
4430 if (REG_P (SUBREG_REG (x))
4431 && (GET_MODE_SIZE (GET_MODE (x))
4432 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4434 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4435 = GET_MODE_SIZE (GET_MODE (x));
4436 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4438 return;
4440 default:
4441 break;
4444 fmt = GET_RTX_FORMAT (code);
4445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4447 if (fmt[i] == 'e')
4448 scan_paradoxical_subregs (XEXP (x, i));
4449 else if (fmt[i] == 'E')
4451 int j;
4452 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4453 scan_paradoxical_subregs (XVECEXP (x, i, j));
4458 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4459 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4460 and apply the corresponding narrowing subreg to *OTHER_PTR.
4461 Return true if the operands were changed, false otherwise. */
4463 static bool
4464 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4466 rtx op, inner, other, tem;
4468 op = *op_ptr;
4469 if (!paradoxical_subreg_p (op))
4470 return false;
4471 inner = SUBREG_REG (op);
4473 other = *other_ptr;
4474 tem = gen_lowpart_common (GET_MODE (inner), other);
4475 if (!tem)
4476 return false;
4478 /* If the lowpart operation turned a hard register into a subreg,
4479 rather than simplifying it to another hard register, then the
4480 mode change cannot be properly represented. For example, OTHER
4481 might be valid in its current mode, but not in the new one. */
4482 if (GET_CODE (tem) == SUBREG
4483 && REG_P (other)
4484 && HARD_REGISTER_P (other))
4485 return false;
4487 *op_ptr = inner;
4488 *other_ptr = tem;
4489 return true;
4492 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4493 examine all of the reload insns between PREV and NEXT exclusive, and
4494 annotate all that may trap. */
4496 static void
4497 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4499 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4500 if (note == NULL)
4501 return;
4502 if (!insn_could_throw_p (insn))
4503 remove_note (insn, note);
4504 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4507 /* Reload pseudo-registers into hard regs around each insn as needed.
4508 Additional register load insns are output before the insn that needs it
4509 and perhaps store insns after insns that modify the reloaded pseudo reg.
4511 reg_last_reload_reg and reg_reloaded_contents keep track of
4512 which registers are already available in reload registers.
4513 We update these for the reloads that we perform,
4514 as the insns are scanned. */
4516 static void
4517 reload_as_needed (int live_known)
4519 struct insn_chain *chain;
4520 #if AUTO_INC_DEC
4521 int i;
4522 #endif
4523 rtx_note *marker;
4525 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4526 memset (spill_reg_store, 0, sizeof spill_reg_store);
4527 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4528 INIT_REG_SET (&reg_has_output_reload);
4529 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4530 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4532 set_initial_elim_offsets ();
4534 /* Generate a marker insn that we will move around. */
4535 marker = emit_note (NOTE_INSN_DELETED);
4536 unlink_insn_chain (marker, marker);
4538 for (chain = reload_insn_chain; chain; chain = chain->next)
4540 rtx_insn *prev = 0;
4541 rtx_insn *insn = chain->insn;
4542 rtx_insn *old_next = NEXT_INSN (insn);
4543 #if AUTO_INC_DEC
4544 rtx_insn *old_prev = PREV_INSN (insn);
4545 #endif
4547 if (will_delete_init_insn_p (insn))
4548 continue;
4550 /* If we pass a label, copy the offsets from the label information
4551 into the current offsets of each elimination. */
4552 if (LABEL_P (insn))
4553 set_offsets_for_label (insn);
4555 else if (INSN_P (insn))
4557 regset_head regs_to_forget;
4558 INIT_REG_SET (&regs_to_forget);
4559 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4561 /* If this is a USE and CLOBBER of a MEM, ensure that any
4562 references to eliminable registers have been removed. */
4564 if ((GET_CODE (PATTERN (insn)) == USE
4565 || GET_CODE (PATTERN (insn)) == CLOBBER)
4566 && MEM_P (XEXP (PATTERN (insn), 0)))
4567 XEXP (XEXP (PATTERN (insn), 0), 0)
4568 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4569 GET_MODE (XEXP (PATTERN (insn), 0)),
4570 NULL_RTX);
4572 /* If we need to do register elimination processing, do so.
4573 This might delete the insn, in which case we are done. */
4574 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4576 eliminate_regs_in_insn (insn, 1);
4577 if (NOTE_P (insn))
4579 update_eliminable_offsets ();
4580 CLEAR_REG_SET (&regs_to_forget);
4581 continue;
4585 /* If need_elim is nonzero but need_reload is zero, one might think
4586 that we could simply set n_reloads to 0. However, find_reloads
4587 could have done some manipulation of the insn (such as swapping
4588 commutative operands), and these manipulations are lost during
4589 the first pass for every insn that needs register elimination.
4590 So the actions of find_reloads must be redone here. */
4592 if (! chain->need_elim && ! chain->need_reload
4593 && ! chain->need_operand_change)
4594 n_reloads = 0;
4595 /* First find the pseudo regs that must be reloaded for this insn.
4596 This info is returned in the tables reload_... (see reload.h).
4597 Also modify the body of INSN by substituting RELOAD
4598 rtx's for those pseudo regs. */
4599 else
4601 CLEAR_REG_SET (&reg_has_output_reload);
4602 CLEAR_HARD_REG_SET (reg_is_output_reload);
4604 find_reloads (insn, 1, spill_indirect_levels, live_known,
4605 spill_reg_order);
4608 if (n_reloads > 0)
4610 rtx_insn *next = NEXT_INSN (insn);
4612 /* ??? PREV can get deleted by reload inheritance.
4613 Work around this by emitting a marker note. */
4614 prev = PREV_INSN (insn);
4615 reorder_insns_nobb (marker, marker, prev);
4617 /* Now compute which reload regs to reload them into. Perhaps
4618 reusing reload regs from previous insns, or else output
4619 load insns to reload them. Maybe output store insns too.
4620 Record the choices of reload reg in reload_reg_rtx. */
4621 choose_reload_regs (chain);
4623 /* Generate the insns to reload operands into or out of
4624 their reload regs. */
4625 emit_reload_insns (chain);
4627 /* Substitute the chosen reload regs from reload_reg_rtx
4628 into the insn's body (or perhaps into the bodies of other
4629 load and store insn that we just made for reloading
4630 and that we moved the structure into). */
4631 subst_reloads (insn);
4633 prev = PREV_INSN (marker);
4634 unlink_insn_chain (marker, marker);
4636 /* Adjust the exception region notes for loads and stores. */
4637 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4638 fixup_eh_region_note (insn, prev, next);
4640 /* Adjust the location of REG_ARGS_SIZE. */
4641 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4642 if (p)
4644 remove_note (insn, p);
4645 fixup_args_size_notes (prev, PREV_INSN (next),
4646 INTVAL (XEXP (p, 0)));
4649 /* If this was an ASM, make sure that all the reload insns
4650 we have generated are valid. If not, give an error
4651 and delete them. */
4652 if (asm_noperands (PATTERN (insn)) >= 0)
4653 for (rtx_insn *p = NEXT_INSN (prev);
4654 p != next;
4655 p = NEXT_INSN (p))
4656 if (p != insn && INSN_P (p)
4657 && GET_CODE (PATTERN (p)) != USE
4658 && (recog_memoized (p) < 0
4659 || (extract_insn (p),
4660 !(constrain_operands (1,
4661 get_enabled_alternatives (p))))))
4663 error_for_asm (insn,
4664 "%<asm%> operand requires "
4665 "impossible reload");
4666 delete_insn (p);
4670 if (num_eliminable && chain->need_elim)
4671 update_eliminable_offsets ();
4673 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4674 is no longer validly lying around to save a future reload.
4675 Note that this does not detect pseudos that were reloaded
4676 for this insn in order to be stored in
4677 (obeying register constraints). That is correct; such reload
4678 registers ARE still valid. */
4679 forget_marked_reloads (&regs_to_forget);
4680 CLEAR_REG_SET (&regs_to_forget);
4682 /* There may have been CLOBBER insns placed after INSN. So scan
4683 between INSN and NEXT and use them to forget old reloads. */
4684 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4685 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4686 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4688 #if AUTO_INC_DEC
4689 /* Likewise for regs altered by auto-increment in this insn.
4690 REG_INC notes have been changed by reloading:
4691 find_reloads_address_1 records substitutions for them,
4692 which have been performed by subst_reloads above. */
4693 for (i = n_reloads - 1; i >= 0; i--)
4695 rtx in_reg = rld[i].in_reg;
4696 if (in_reg)
4698 enum rtx_code code = GET_CODE (in_reg);
4699 /* PRE_INC / PRE_DEC will have the reload register ending up
4700 with the same value as the stack slot, but that doesn't
4701 hold true for POST_INC / POST_DEC. Either we have to
4702 convert the memory access to a true POST_INC / POST_DEC,
4703 or we can't use the reload register for inheritance. */
4704 if ((code == POST_INC || code == POST_DEC)
4705 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4706 REGNO (rld[i].reg_rtx))
4707 /* Make sure it is the inc/dec pseudo, and not
4708 some other (e.g. output operand) pseudo. */
4709 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4710 == REGNO (XEXP (in_reg, 0))))
4713 rtx reload_reg = rld[i].reg_rtx;
4714 machine_mode mode = GET_MODE (reload_reg);
4715 int n = 0;
4716 rtx_insn *p;
4718 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4720 /* We really want to ignore REG_INC notes here, so
4721 use PATTERN (p) as argument to reg_set_p . */
4722 if (reg_set_p (reload_reg, PATTERN (p)))
4723 break;
4724 n = count_occurrences (PATTERN (p), reload_reg, 0);
4725 if (! n)
4726 continue;
4727 if (n == 1)
4729 rtx replace_reg
4730 = gen_rtx_fmt_e (code, mode, reload_reg);
4732 validate_replace_rtx_group (reload_reg,
4733 replace_reg, p);
4734 n = verify_changes (0);
4736 /* We must also verify that the constraints
4737 are met after the replacement. Make sure
4738 extract_insn is only called for an insn
4739 where the replacements were found to be
4740 valid so far. */
4741 if (n)
4743 extract_insn (p);
4744 n = constrain_operands (1,
4745 get_enabled_alternatives (p));
4748 /* If the constraints were not met, then
4749 undo the replacement, else confirm it. */
4750 if (!n)
4751 cancel_changes (0);
4752 else
4753 confirm_change_group ();
4755 break;
4757 if (n == 1)
4759 add_reg_note (p, REG_INC, reload_reg);
4760 /* Mark this as having an output reload so that the
4761 REG_INC processing code below won't invalidate
4762 the reload for inheritance. */
4763 SET_HARD_REG_BIT (reg_is_output_reload,
4764 REGNO (reload_reg));
4765 SET_REGNO_REG_SET (&reg_has_output_reload,
4766 REGNO (XEXP (in_reg, 0)));
4768 else
4769 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4770 NULL);
4772 else if ((code == PRE_INC || code == PRE_DEC)
4773 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4774 REGNO (rld[i].reg_rtx))
4775 /* Make sure it is the inc/dec pseudo, and not
4776 some other (e.g. output operand) pseudo. */
4777 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4778 == REGNO (XEXP (in_reg, 0))))
4780 SET_HARD_REG_BIT (reg_is_output_reload,
4781 REGNO (rld[i].reg_rtx));
4782 SET_REGNO_REG_SET (&reg_has_output_reload,
4783 REGNO (XEXP (in_reg, 0)));
4785 else if (code == PRE_INC || code == PRE_DEC
4786 || code == POST_INC || code == POST_DEC)
4788 int in_regno = REGNO (XEXP (in_reg, 0));
4790 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4792 int in_hard_regno;
4793 bool forget_p = true;
4795 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4796 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4797 in_hard_regno))
4799 for (rtx_insn *x = (old_prev ?
4800 NEXT_INSN (old_prev) : insn);
4801 x != old_next;
4802 x = NEXT_INSN (x))
4803 if (x == reg_reloaded_insn[in_hard_regno])
4805 forget_p = false;
4806 break;
4809 /* If for some reasons, we didn't set up
4810 reg_last_reload_reg in this insn,
4811 invalidate inheritance from previous
4812 insns for the incremented/decremented
4813 register. Such registers will be not in
4814 reg_has_output_reload. Invalidate it
4815 also if the corresponding element in
4816 reg_reloaded_insn is also
4817 invalidated. */
4818 if (forget_p)
4819 forget_old_reloads_1 (XEXP (in_reg, 0),
4820 NULL_RTX, NULL);
4825 /* If a pseudo that got a hard register is auto-incremented,
4826 we must purge records of copying it into pseudos without
4827 hard registers. */
4828 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4829 if (REG_NOTE_KIND (x) == REG_INC)
4831 /* See if this pseudo reg was reloaded in this insn.
4832 If so, its last-reload info is still valid
4833 because it is based on this insn's reload. */
4834 for (i = 0; i < n_reloads; i++)
4835 if (rld[i].out == XEXP (x, 0))
4836 break;
4838 if (i == n_reloads)
4839 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4841 #endif
4843 /* A reload reg's contents are unknown after a label. */
4844 if (LABEL_P (insn))
4845 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4847 /* Don't assume a reload reg is still good after a call insn
4848 if it is a call-used reg, or if it contains a value that will
4849 be partially clobbered by the call. */
4850 else if (CALL_P (insn))
4852 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4853 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4855 /* If this is a call to a setjmp-type function, we must not
4856 reuse any reload reg contents across the call; that will
4857 just be clobbered by other uses of the register in later
4858 code, before the longjmp. */
4859 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4860 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4864 /* Clean up. */
4865 free (reg_last_reload_reg);
4866 CLEAR_REG_SET (&reg_has_output_reload);
4869 /* Discard all record of any value reloaded from X,
4870 or reloaded in X from someplace else;
4871 unless X is an output reload reg of the current insn.
4873 X may be a hard reg (the reload reg)
4874 or it may be a pseudo reg that was reloaded from.
4876 When DATA is non-NULL just mark the registers in regset
4877 to be forgotten later. */
4879 static void
4880 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4881 void *data)
4883 unsigned int regno;
4884 unsigned int nr;
4885 regset regs = (regset) data;
4887 /* note_stores does give us subregs of hard regs,
4888 subreg_regno_offset requires a hard reg. */
4889 while (GET_CODE (x) == SUBREG)
4891 /* We ignore the subreg offset when calculating the regno,
4892 because we are using the entire underlying hard register
4893 below. */
4894 x = SUBREG_REG (x);
4897 if (!REG_P (x))
4898 return;
4900 regno = REGNO (x);
4902 if (regno >= FIRST_PSEUDO_REGISTER)
4903 nr = 1;
4904 else
4906 unsigned int i;
4908 nr = REG_NREGS (x);
4909 /* Storing into a spilled-reg invalidates its contents.
4910 This can happen if a block-local pseudo is allocated to that reg
4911 and it wasn't spilled because this block's total need is 0.
4912 Then some insn might have an optional reload and use this reg. */
4913 if (!regs)
4914 for (i = 0; i < nr; i++)
4915 /* But don't do this if the reg actually serves as an output
4916 reload reg in the current instruction. */
4917 if (n_reloads == 0
4918 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4920 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4921 spill_reg_store[regno + i] = 0;
4925 if (regs)
4926 while (nr-- > 0)
4927 SET_REGNO_REG_SET (regs, regno + nr);
4928 else
4930 /* Since value of X has changed,
4931 forget any value previously copied from it. */
4933 while (nr-- > 0)
4934 /* But don't forget a copy if this is the output reload
4935 that establishes the copy's validity. */
4936 if (n_reloads == 0
4937 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4938 reg_last_reload_reg[regno + nr] = 0;
4942 /* Forget the reloads marked in regset by previous function. */
4943 static void
4944 forget_marked_reloads (regset regs)
4946 unsigned int reg;
4947 reg_set_iterator rsi;
4948 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4950 if (reg < FIRST_PSEUDO_REGISTER
4951 /* But don't do this if the reg actually serves as an output
4952 reload reg in the current instruction. */
4953 && (n_reloads == 0
4954 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4956 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4957 spill_reg_store[reg] = 0;
4959 if (n_reloads == 0
4960 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4961 reg_last_reload_reg[reg] = 0;
4965 /* The following HARD_REG_SETs indicate when each hard register is
4966 used for a reload of various parts of the current insn. */
4968 /* If reg is unavailable for all reloads. */
4969 static HARD_REG_SET reload_reg_unavailable;
4970 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4971 static HARD_REG_SET reload_reg_used;
4972 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4973 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4974 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4975 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4976 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4977 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4978 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4979 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4980 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4981 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4982 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4983 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4984 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4985 static HARD_REG_SET reload_reg_used_in_op_addr;
4986 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4987 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4988 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4989 static HARD_REG_SET reload_reg_used_in_insn;
4990 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4991 static HARD_REG_SET reload_reg_used_in_other_addr;
4993 /* If reg is in use as a reload reg for any sort of reload. */
4994 static HARD_REG_SET reload_reg_used_at_all;
4996 /* If reg is use as an inherited reload. We just mark the first register
4997 in the group. */
4998 static HARD_REG_SET reload_reg_used_for_inherit;
5000 /* Records which hard regs are used in any way, either as explicit use or
5001 by being allocated to a pseudo during any point of the current insn. */
5002 static HARD_REG_SET reg_used_in_insn;
5004 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5005 TYPE. MODE is used to indicate how many consecutive regs are
5006 actually used. */
5008 static void
5009 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5010 machine_mode mode)
5012 switch (type)
5014 case RELOAD_OTHER:
5015 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5016 break;
5018 case RELOAD_FOR_INPUT_ADDRESS:
5019 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5020 break;
5022 case RELOAD_FOR_INPADDR_ADDRESS:
5023 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5024 break;
5026 case RELOAD_FOR_OUTPUT_ADDRESS:
5027 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5028 break;
5030 case RELOAD_FOR_OUTADDR_ADDRESS:
5031 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5032 break;
5034 case RELOAD_FOR_OPERAND_ADDRESS:
5035 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5036 break;
5038 case RELOAD_FOR_OPADDR_ADDR:
5039 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5040 break;
5042 case RELOAD_FOR_OTHER_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5044 break;
5046 case RELOAD_FOR_INPUT:
5047 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5048 break;
5050 case RELOAD_FOR_OUTPUT:
5051 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5052 break;
5054 case RELOAD_FOR_INSN:
5055 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5056 break;
5059 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5062 /* Similarly, but show REGNO is no longer in use for a reload. */
5064 static void
5065 clear_reload_reg_in_use (unsigned int regno, int opnum,
5066 enum reload_type type, machine_mode mode)
5068 unsigned int nregs = hard_regno_nregs (regno, mode);
5069 unsigned int start_regno, end_regno, r;
5070 int i;
5071 /* A complication is that for some reload types, inheritance might
5072 allow multiple reloads of the same types to share a reload register.
5073 We set check_opnum if we have to check only reloads with the same
5074 operand number, and check_any if we have to check all reloads. */
5075 int check_opnum = 0;
5076 int check_any = 0;
5077 HARD_REG_SET *used_in_set;
5079 switch (type)
5081 case RELOAD_OTHER:
5082 used_in_set = &reload_reg_used;
5083 break;
5085 case RELOAD_FOR_INPUT_ADDRESS:
5086 used_in_set = &reload_reg_used_in_input_addr[opnum];
5087 break;
5089 case RELOAD_FOR_INPADDR_ADDRESS:
5090 check_opnum = 1;
5091 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5092 break;
5094 case RELOAD_FOR_OUTPUT_ADDRESS:
5095 used_in_set = &reload_reg_used_in_output_addr[opnum];
5096 break;
5098 case RELOAD_FOR_OUTADDR_ADDRESS:
5099 check_opnum = 1;
5100 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5101 break;
5103 case RELOAD_FOR_OPERAND_ADDRESS:
5104 used_in_set = &reload_reg_used_in_op_addr;
5105 break;
5107 case RELOAD_FOR_OPADDR_ADDR:
5108 check_any = 1;
5109 used_in_set = &reload_reg_used_in_op_addr_reload;
5110 break;
5112 case RELOAD_FOR_OTHER_ADDRESS:
5113 used_in_set = &reload_reg_used_in_other_addr;
5114 check_any = 1;
5115 break;
5117 case RELOAD_FOR_INPUT:
5118 used_in_set = &reload_reg_used_in_input[opnum];
5119 break;
5121 case RELOAD_FOR_OUTPUT:
5122 used_in_set = &reload_reg_used_in_output[opnum];
5123 break;
5125 case RELOAD_FOR_INSN:
5126 used_in_set = &reload_reg_used_in_insn;
5127 break;
5128 default:
5129 gcc_unreachable ();
5131 /* We resolve conflicts with remaining reloads of the same type by
5132 excluding the intervals of reload registers by them from the
5133 interval of freed reload registers. Since we only keep track of
5134 one set of interval bounds, we might have to exclude somewhat
5135 more than what would be necessary if we used a HARD_REG_SET here.
5136 But this should only happen very infrequently, so there should
5137 be no reason to worry about it. */
5139 start_regno = regno;
5140 end_regno = regno + nregs;
5141 if (check_opnum || check_any)
5143 for (i = n_reloads - 1; i >= 0; i--)
5145 if (rld[i].when_needed == type
5146 && (check_any || rld[i].opnum == opnum)
5147 && rld[i].reg_rtx)
5149 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5150 unsigned int conflict_end
5151 = end_hard_regno (rld[i].mode, conflict_start);
5153 /* If there is an overlap with the first to-be-freed register,
5154 adjust the interval start. */
5155 if (conflict_start <= start_regno && conflict_end > start_regno)
5156 start_regno = conflict_end;
5157 /* Otherwise, if there is a conflict with one of the other
5158 to-be-freed registers, adjust the interval end. */
5159 if (conflict_start > start_regno && conflict_start < end_regno)
5160 end_regno = conflict_start;
5165 for (r = start_regno; r < end_regno; r++)
5166 CLEAR_HARD_REG_BIT (*used_in_set, r);
5169 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5170 specified by OPNUM and TYPE. */
5172 static int
5173 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5175 int i;
5177 /* In use for a RELOAD_OTHER means it's not available for anything. */
5178 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5179 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5180 return 0;
5182 switch (type)
5184 case RELOAD_OTHER:
5185 /* In use for anything means we can't use it for RELOAD_OTHER. */
5186 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5187 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5188 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5190 return 0;
5192 for (i = 0; i < reload_n_operands; i++)
5193 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5194 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5195 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5199 return 0;
5201 return 1;
5203 case RELOAD_FOR_INPUT:
5204 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5205 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5206 return 0;
5208 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5209 return 0;
5211 /* If it is used for some other input, can't use it. */
5212 for (i = 0; i < reload_n_operands; i++)
5213 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5214 return 0;
5216 /* If it is used in a later operand's address, can't use it. */
5217 for (i = opnum + 1; i < reload_n_operands; i++)
5218 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5220 return 0;
5222 return 1;
5224 case RELOAD_FOR_INPUT_ADDRESS:
5225 /* Can't use a register if it is used for an input address for this
5226 operand or used as an input in an earlier one. */
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5228 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5229 return 0;
5231 for (i = 0; i < opnum; i++)
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5233 return 0;
5235 return 1;
5237 case RELOAD_FOR_INPADDR_ADDRESS:
5238 /* Can't use a register if it is used for an input address
5239 for this operand or used as an input in an earlier
5240 one. */
5241 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5242 return 0;
5244 for (i = 0; i < opnum; i++)
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5246 return 0;
5248 return 1;
5250 case RELOAD_FOR_OUTPUT_ADDRESS:
5251 /* Can't use a register if it is used for an output address for this
5252 operand or used as an output in this or a later operand. Note
5253 that multiple output operands are emitted in reverse order, so
5254 the conflicting ones are those with lower indices. */
5255 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5256 return 0;
5258 for (i = 0; i <= opnum; i++)
5259 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5260 return 0;
5262 return 1;
5264 case RELOAD_FOR_OUTADDR_ADDRESS:
5265 /* Can't use a register if it is used for an output address
5266 for this operand or used as an output in this or a
5267 later operand. Note that multiple output operands are
5268 emitted in reverse order, so the conflicting ones are
5269 those with lower indices. */
5270 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5271 return 0;
5273 for (i = 0; i <= opnum; i++)
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5275 return 0;
5277 return 1;
5279 case RELOAD_FOR_OPERAND_ADDRESS:
5280 for (i = 0; i < reload_n_operands; i++)
5281 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5282 return 0;
5284 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5285 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5287 case RELOAD_FOR_OPADDR_ADDR:
5288 for (i = 0; i < reload_n_operands; i++)
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5290 return 0;
5292 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5294 case RELOAD_FOR_OUTPUT:
5295 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5296 outputs, or an operand address for this or an earlier output.
5297 Note that multiple output operands are emitted in reverse order,
5298 so the conflicting ones are those with higher indices. */
5299 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5300 return 0;
5302 for (i = 0; i < reload_n_operands; i++)
5303 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5304 return 0;
5306 for (i = opnum; i < reload_n_operands; i++)
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5308 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5309 return 0;
5311 return 1;
5313 case RELOAD_FOR_INSN:
5314 for (i = 0; i < reload_n_operands; i++)
5315 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5316 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5317 return 0;
5319 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5320 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5322 case RELOAD_FOR_OTHER_ADDRESS:
5323 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5325 default:
5326 gcc_unreachable ();
5330 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5331 the number RELOADNUM, is still available in REGNO at the end of the insn.
5333 We can assume that the reload reg was already tested for availability
5334 at the time it is needed, and we should not check this again,
5335 in case the reg has already been marked in use. */
5337 static int
5338 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5340 int opnum = rld[reloadnum].opnum;
5341 enum reload_type type = rld[reloadnum].when_needed;
5342 int i;
5344 /* See if there is a reload with the same type for this operand, using
5345 the same register. This case is not handled by the code below. */
5346 for (i = reloadnum + 1; i < n_reloads; i++)
5348 rtx reg;
5350 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5351 continue;
5352 reg = rld[i].reg_rtx;
5353 if (reg == NULL_RTX)
5354 continue;
5355 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5356 return 0;
5359 switch (type)
5361 case RELOAD_OTHER:
5362 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5363 its value must reach the end. */
5364 return 1;
5366 /* If this use is for part of the insn,
5367 its value reaches if no subsequent part uses the same register.
5368 Just like the above function, don't try to do this with lots
5369 of fallthroughs. */
5371 case RELOAD_FOR_OTHER_ADDRESS:
5372 /* Here we check for everything else, since these don't conflict
5373 with anything else and everything comes later. */
5375 for (i = 0; i < reload_n_operands; i++)
5376 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5377 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5378 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5379 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5382 return 0;
5384 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5385 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5386 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5387 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5389 case RELOAD_FOR_INPUT_ADDRESS:
5390 case RELOAD_FOR_INPADDR_ADDRESS:
5391 /* Similar, except that we check only for this and subsequent inputs
5392 and the address of only subsequent inputs and we do not need
5393 to check for RELOAD_OTHER objects since they are known not to
5394 conflict. */
5396 for (i = opnum; i < reload_n_operands; i++)
5397 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5398 return 0;
5400 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5401 could be killed if the register is also used by reload with type
5402 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5403 if (type == RELOAD_FOR_INPADDR_ADDRESS
5404 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5405 return 0;
5407 for (i = opnum + 1; i < reload_n_operands; i++)
5408 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5409 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5410 return 0;
5412 for (i = 0; i < reload_n_operands; i++)
5413 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5414 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5415 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5416 return 0;
5418 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5419 return 0;
5421 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5422 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5423 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5425 case RELOAD_FOR_INPUT:
5426 /* Similar to input address, except we start at the next operand for
5427 both input and input address and we do not check for
5428 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5429 would conflict. */
5431 for (i = opnum + 1; i < reload_n_operands; i++)
5432 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5433 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5434 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5435 return 0;
5437 /* ... fall through ... */
5439 case RELOAD_FOR_OPERAND_ADDRESS:
5440 /* Check outputs and their addresses. */
5442 for (i = 0; i < reload_n_operands; i++)
5443 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5444 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5445 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5446 return 0;
5448 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5450 case RELOAD_FOR_OPADDR_ADDR:
5451 for (i = 0; i < reload_n_operands; i++)
5452 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5453 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5454 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5455 return 0;
5457 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5458 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5459 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5461 case RELOAD_FOR_INSN:
5462 /* These conflict with other outputs with RELOAD_OTHER. So
5463 we need only check for output addresses. */
5465 opnum = reload_n_operands;
5467 /* fall through */
5469 case RELOAD_FOR_OUTPUT:
5470 case RELOAD_FOR_OUTPUT_ADDRESS:
5471 case RELOAD_FOR_OUTADDR_ADDRESS:
5472 /* We already know these can't conflict with a later output. So the
5473 only thing to check are later output addresses.
5474 Note that multiple output operands are emitted in reverse order,
5475 so the conflicting ones are those with lower indices. */
5476 for (i = 0; i < opnum; i++)
5477 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5478 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5479 return 0;
5481 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5482 could be killed if the register is also used by reload with type
5483 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5484 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5485 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5486 return 0;
5488 return 1;
5490 default:
5491 gcc_unreachable ();
5495 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5496 every register in REG. */
5498 static bool
5499 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5501 unsigned int i;
5503 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5504 if (!reload_reg_reaches_end_p (i, reloadnum))
5505 return false;
5506 return true;
5510 /* Returns whether R1 and R2 are uniquely chained: the value of one
5511 is used by the other, and that value is not used by any other
5512 reload for this insn. This is used to partially undo the decision
5513 made in find_reloads when in the case of multiple
5514 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5515 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5516 reloads. This code tries to avoid the conflict created by that
5517 change. It might be cleaner to explicitly keep track of which
5518 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5519 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5520 this after the fact. */
5521 static bool
5522 reloads_unique_chain_p (int r1, int r2)
5524 int i;
5526 /* We only check input reloads. */
5527 if (! rld[r1].in || ! rld[r2].in)
5528 return false;
5530 /* Avoid anything with output reloads. */
5531 if (rld[r1].out || rld[r2].out)
5532 return false;
5534 /* "chained" means one reload is a component of the other reload,
5535 not the same as the other reload. */
5536 if (rld[r1].opnum != rld[r2].opnum
5537 || rtx_equal_p (rld[r1].in, rld[r2].in)
5538 || rld[r1].optional || rld[r2].optional
5539 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5540 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5541 return false;
5543 /* The following loop assumes that r1 is the reload that feeds r2. */
5544 if (r1 > r2)
5545 std::swap (r1, r2);
5547 for (i = 0; i < n_reloads; i ++)
5548 /* Look for input reloads that aren't our two */
5549 if (i != r1 && i != r2 && rld[i].in)
5551 /* If our reload is mentioned at all, it isn't a simple chain. */
5552 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5553 return false;
5555 return true;
5558 /* The recursive function change all occurrences of WHAT in *WHERE
5559 to REPL. */
5560 static void
5561 substitute (rtx *where, const_rtx what, rtx repl)
5563 const char *fmt;
5564 int i;
5565 enum rtx_code code;
5567 if (*where == 0)
5568 return;
5570 if (*where == what || rtx_equal_p (*where, what))
5572 /* Record the location of the changed rtx. */
5573 substitute_stack.safe_push (where);
5574 *where = repl;
5575 return;
5578 code = GET_CODE (*where);
5579 fmt = GET_RTX_FORMAT (code);
5580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5582 if (fmt[i] == 'E')
5584 int j;
5586 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5587 substitute (&XVECEXP (*where, i, j), what, repl);
5589 else if (fmt[i] == 'e')
5590 substitute (&XEXP (*where, i), what, repl);
5594 /* The function returns TRUE if chain of reload R1 and R2 (in any
5595 order) can be evaluated without usage of intermediate register for
5596 the reload containing another reload. It is important to see
5597 gen_reload to understand what the function is trying to do. As an
5598 example, let us have reload chain
5600 r2: const
5601 r1: <something> + const
5603 and reload R2 got reload reg HR. The function returns true if
5604 there is a correct insn HR = HR + <something>. Otherwise,
5605 gen_reload will use intermediate register (and this is the reload
5606 reg for R1) to reload <something>.
5608 We need this function to find a conflict for chain reloads. In our
5609 example, if HR = HR + <something> is incorrect insn, then we cannot
5610 use HR as a reload register for R2. If we do use it then we get a
5611 wrong code:
5613 HR = const
5614 HR = <something>
5615 HR = HR + HR
5618 static bool
5619 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5621 /* Assume other cases in gen_reload are not possible for
5622 chain reloads or do need an intermediate hard registers. */
5623 bool result = true;
5624 int regno, code;
5625 rtx out, in;
5626 rtx_insn *insn;
5627 rtx_insn *last = get_last_insn ();
5629 /* Make r2 a component of r1. */
5630 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5631 std::swap (r1, r2);
5633 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5634 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5635 gcc_assert (regno >= 0);
5636 out = gen_rtx_REG (rld[r1].mode, regno);
5637 in = rld[r1].in;
5638 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5640 /* If IN is a paradoxical SUBREG, remove it and try to put the
5641 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5642 strip_paradoxical_subreg (&in, &out);
5644 if (GET_CODE (in) == PLUS
5645 && (REG_P (XEXP (in, 0))
5646 || GET_CODE (XEXP (in, 0)) == SUBREG
5647 || MEM_P (XEXP (in, 0)))
5648 && (REG_P (XEXP (in, 1))
5649 || GET_CODE (XEXP (in, 1)) == SUBREG
5650 || CONSTANT_P (XEXP (in, 1))
5651 || MEM_P (XEXP (in, 1))))
5653 insn = emit_insn (gen_rtx_SET (out, in));
5654 code = recog_memoized (insn);
5655 result = false;
5657 if (code >= 0)
5659 extract_insn (insn);
5660 /* We want constrain operands to treat this insn strictly in
5661 its validity determination, i.e., the way it would after
5662 reload has completed. */
5663 result = constrain_operands (1, get_enabled_alternatives (insn));
5666 delete_insns_since (last);
5669 /* Restore the original value at each changed address within R1. */
5670 while (!substitute_stack.is_empty ())
5672 rtx *where = substitute_stack.pop ();
5673 *where = rld[r2].in;
5676 return result;
5679 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5680 Return 0 otherwise.
5682 This function uses the same algorithm as reload_reg_free_p above. */
5684 static int
5685 reloads_conflict (int r1, int r2)
5687 enum reload_type r1_type = rld[r1].when_needed;
5688 enum reload_type r2_type = rld[r2].when_needed;
5689 int r1_opnum = rld[r1].opnum;
5690 int r2_opnum = rld[r2].opnum;
5692 /* RELOAD_OTHER conflicts with everything. */
5693 if (r2_type == RELOAD_OTHER)
5694 return 1;
5696 /* Otherwise, check conflicts differently for each type. */
5698 switch (r1_type)
5700 case RELOAD_FOR_INPUT:
5701 return (r2_type == RELOAD_FOR_INSN
5702 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5703 || r2_type == RELOAD_FOR_OPADDR_ADDR
5704 || r2_type == RELOAD_FOR_INPUT
5705 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5706 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5707 && r2_opnum > r1_opnum));
5709 case RELOAD_FOR_INPUT_ADDRESS:
5710 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5711 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5713 case RELOAD_FOR_INPADDR_ADDRESS:
5714 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5715 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5717 case RELOAD_FOR_OUTPUT_ADDRESS:
5718 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5719 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5721 case RELOAD_FOR_OUTADDR_ADDRESS:
5722 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5723 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5725 case RELOAD_FOR_OPERAND_ADDRESS:
5726 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5727 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5728 && (!reloads_unique_chain_p (r1, r2)
5729 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5731 case RELOAD_FOR_OPADDR_ADDR:
5732 return (r2_type == RELOAD_FOR_INPUT
5733 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5735 case RELOAD_FOR_OUTPUT:
5736 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5737 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5738 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5739 && r2_opnum >= r1_opnum));
5741 case RELOAD_FOR_INSN:
5742 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5743 || r2_type == RELOAD_FOR_INSN
5744 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5746 case RELOAD_FOR_OTHER_ADDRESS:
5747 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5749 case RELOAD_OTHER:
5750 return 1;
5752 default:
5753 gcc_unreachable ();
5757 /* Indexed by reload number, 1 if incoming value
5758 inherited from previous insns. */
5759 static char reload_inherited[MAX_RELOADS];
5761 /* For an inherited reload, this is the insn the reload was inherited from,
5762 if we know it. Otherwise, this is 0. */
5763 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5765 /* If nonzero, this is a place to get the value of the reload,
5766 rather than using reload_in. */
5767 static rtx reload_override_in[MAX_RELOADS];
5769 /* For each reload, the hard register number of the register used,
5770 or -1 if we did not need a register for this reload. */
5771 static int reload_spill_index[MAX_RELOADS];
5773 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5774 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5776 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5777 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5779 /* Subroutine of free_for_value_p, used to check a single register.
5780 START_REGNO is the starting regno of the full reload register
5781 (possibly comprising multiple hard registers) that we are considering. */
5783 static int
5784 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5785 enum reload_type type, rtx value, rtx out,
5786 int reloadnum, int ignore_address_reloads)
5788 int time1;
5789 /* Set if we see an input reload that must not share its reload register
5790 with any new earlyclobber, but might otherwise share the reload
5791 register with an output or input-output reload. */
5792 int check_earlyclobber = 0;
5793 int i;
5794 int copy = 0;
5796 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5797 return 0;
5799 if (out == const0_rtx)
5801 copy = 1;
5802 out = NULL_RTX;
5805 /* We use some pseudo 'time' value to check if the lifetimes of the
5806 new register use would overlap with the one of a previous reload
5807 that is not read-only or uses a different value.
5808 The 'time' used doesn't have to be linear in any shape or form, just
5809 monotonic.
5810 Some reload types use different 'buckets' for each operand.
5811 So there are MAX_RECOG_OPERANDS different time values for each
5812 such reload type.
5813 We compute TIME1 as the time when the register for the prospective
5814 new reload ceases to be live, and TIME2 for each existing
5815 reload as the time when that the reload register of that reload
5816 becomes live.
5817 Where there is little to be gained by exact lifetime calculations,
5818 we just make conservative assumptions, i.e. a longer lifetime;
5819 this is done in the 'default:' cases. */
5820 switch (type)
5822 case RELOAD_FOR_OTHER_ADDRESS:
5823 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5824 time1 = copy ? 0 : 1;
5825 break;
5826 case RELOAD_OTHER:
5827 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5828 break;
5829 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5830 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5831 respectively, to the time values for these, we get distinct time
5832 values. To get distinct time values for each operand, we have to
5833 multiply opnum by at least three. We round that up to four because
5834 multiply by four is often cheaper. */
5835 case RELOAD_FOR_INPADDR_ADDRESS:
5836 time1 = opnum * 4 + 2;
5837 break;
5838 case RELOAD_FOR_INPUT_ADDRESS:
5839 time1 = opnum * 4 + 3;
5840 break;
5841 case RELOAD_FOR_INPUT:
5842 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5843 executes (inclusive). */
5844 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5845 break;
5846 case RELOAD_FOR_OPADDR_ADDR:
5847 /* opnum * 4 + 4
5848 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5849 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5850 break;
5851 case RELOAD_FOR_OPERAND_ADDRESS:
5852 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5853 is executed. */
5854 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5855 break;
5856 case RELOAD_FOR_OUTADDR_ADDRESS:
5857 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5858 break;
5859 case RELOAD_FOR_OUTPUT_ADDRESS:
5860 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5861 break;
5862 default:
5863 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5866 for (i = 0; i < n_reloads; i++)
5868 rtx reg = rld[i].reg_rtx;
5869 if (reg && REG_P (reg)
5870 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5871 && i != reloadnum)
5873 rtx other_input = rld[i].in;
5875 /* If the other reload loads the same input value, that
5876 will not cause a conflict only if it's loading it into
5877 the same register. */
5878 if (true_regnum (reg) != start_regno)
5879 other_input = NULL_RTX;
5880 if (! other_input || ! rtx_equal_p (other_input, value)
5881 || rld[i].out || out)
5883 int time2;
5884 switch (rld[i].when_needed)
5886 case RELOAD_FOR_OTHER_ADDRESS:
5887 time2 = 0;
5888 break;
5889 case RELOAD_FOR_INPADDR_ADDRESS:
5890 /* find_reloads makes sure that a
5891 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5892 by at most one - the first -
5893 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5894 address reload is inherited, the address address reload
5895 goes away, so we can ignore this conflict. */
5896 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5897 && ignore_address_reloads
5898 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5899 Then the address address is still needed to store
5900 back the new address. */
5901 && ! rld[reloadnum].out)
5902 continue;
5903 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5904 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5905 reloads go away. */
5906 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5907 && ignore_address_reloads
5908 /* Unless we are reloading an auto_inc expression. */
5909 && ! rld[reloadnum].out)
5910 continue;
5911 time2 = rld[i].opnum * 4 + 2;
5912 break;
5913 case RELOAD_FOR_INPUT_ADDRESS:
5914 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5915 && ignore_address_reloads
5916 && ! rld[reloadnum].out)
5917 continue;
5918 time2 = rld[i].opnum * 4 + 3;
5919 break;
5920 case RELOAD_FOR_INPUT:
5921 time2 = rld[i].opnum * 4 + 4;
5922 check_earlyclobber = 1;
5923 break;
5924 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5925 == MAX_RECOG_OPERAND * 4 */
5926 case RELOAD_FOR_OPADDR_ADDR:
5927 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5928 && ignore_address_reloads
5929 && ! rld[reloadnum].out)
5930 continue;
5931 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5932 break;
5933 case RELOAD_FOR_OPERAND_ADDRESS:
5934 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5935 check_earlyclobber = 1;
5936 break;
5937 case RELOAD_FOR_INSN:
5938 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5939 break;
5940 case RELOAD_FOR_OUTPUT:
5941 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5942 instruction is executed. */
5943 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5944 break;
5945 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5946 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5947 value. */
5948 case RELOAD_FOR_OUTADDR_ADDRESS:
5949 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5950 && ignore_address_reloads
5951 && ! rld[reloadnum].out)
5952 continue;
5953 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5954 break;
5955 case RELOAD_FOR_OUTPUT_ADDRESS:
5956 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5957 break;
5958 case RELOAD_OTHER:
5959 /* If there is no conflict in the input part, handle this
5960 like an output reload. */
5961 if (! rld[i].in || rtx_equal_p (other_input, value))
5963 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5964 /* Earlyclobbered outputs must conflict with inputs. */
5965 if (earlyclobber_operand_p (rld[i].out))
5966 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5968 break;
5970 time2 = 1;
5971 /* RELOAD_OTHER might be live beyond instruction execution,
5972 but this is not obvious when we set time2 = 1. So check
5973 here if there might be a problem with the new reload
5974 clobbering the register used by the RELOAD_OTHER. */
5975 if (out)
5976 return 0;
5977 break;
5978 default:
5979 return 0;
5981 if ((time1 >= time2
5982 && (! rld[i].in || rld[i].out
5983 || ! rtx_equal_p (other_input, value)))
5984 || (out && rld[reloadnum].out_reg
5985 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5986 return 0;
5991 /* Earlyclobbered outputs must conflict with inputs. */
5992 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5993 return 0;
5995 return 1;
5998 /* Return 1 if the value in reload reg REGNO, as used by a reload
5999 needed for the part of the insn specified by OPNUM and TYPE,
6000 may be used to load VALUE into it.
6002 MODE is the mode in which the register is used, this is needed to
6003 determine how many hard regs to test.
6005 Other read-only reloads with the same value do not conflict
6006 unless OUT is nonzero and these other reloads have to live while
6007 output reloads live.
6008 If OUT is CONST0_RTX, this is a special case: it means that the
6009 test should not be for using register REGNO as reload register, but
6010 for copying from register REGNO into the reload register.
6012 RELOADNUM is the number of the reload we want to load this value for;
6013 a reload does not conflict with itself.
6015 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6016 reloads that load an address for the very reload we are considering.
6018 The caller has to make sure that there is no conflict with the return
6019 register. */
6021 static int
6022 free_for_value_p (int regno, machine_mode mode, int opnum,
6023 enum reload_type type, rtx value, rtx out, int reloadnum,
6024 int ignore_address_reloads)
6026 int nregs = hard_regno_nregs (regno, mode);
6027 while (nregs-- > 0)
6028 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6029 value, out, reloadnum,
6030 ignore_address_reloads))
6031 return 0;
6032 return 1;
6035 /* Return nonzero if the rtx X is invariant over the current function. */
6036 /* ??? Actually, the places where we use this expect exactly what is
6037 tested here, and not everything that is function invariant. In
6038 particular, the frame pointer and arg pointer are special cased;
6039 pic_offset_table_rtx is not, and we must not spill these things to
6040 memory. */
6043 function_invariant_p (const_rtx x)
6045 if (CONSTANT_P (x))
6046 return 1;
6047 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6048 return 1;
6049 if (GET_CODE (x) == PLUS
6050 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6051 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6052 return 1;
6053 return 0;
6056 /* Determine whether the reload reg X overlaps any rtx'es used for
6057 overriding inheritance. Return nonzero if so. */
6059 static int
6060 conflicts_with_override (rtx x)
6062 int i;
6063 for (i = 0; i < n_reloads; i++)
6064 if (reload_override_in[i]
6065 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6066 return 1;
6067 return 0;
6070 /* Give an error message saying we failed to find a reload for INSN,
6071 and clear out reload R. */
6072 static void
6073 failed_reload (rtx_insn *insn, int r)
6075 if (asm_noperands (PATTERN (insn)) < 0)
6076 /* It's the compiler's fault. */
6077 fatal_insn ("could not find a spill register", insn);
6079 /* It's the user's fault; the operand's mode and constraint
6080 don't match. Disable this reload so we don't crash in final. */
6081 error_for_asm (insn,
6082 "%<asm%> operand constraint incompatible with operand size");
6083 rld[r].in = 0;
6084 rld[r].out = 0;
6085 rld[r].reg_rtx = 0;
6086 rld[r].optional = 1;
6087 rld[r].secondary_p = 1;
6090 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6091 for reload R. If it's valid, get an rtx for it. Return nonzero if
6092 successful. */
6093 static int
6094 set_reload_reg (int i, int r)
6096 int regno;
6097 rtx reg = spill_reg_rtx[i];
6099 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6100 spill_reg_rtx[i] = reg
6101 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6103 regno = true_regnum (reg);
6105 /* Detect when the reload reg can't hold the reload mode.
6106 This used to be one `if', but Sequent compiler can't handle that. */
6107 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6109 machine_mode test_mode = VOIDmode;
6110 if (rld[r].in)
6111 test_mode = GET_MODE (rld[r].in);
6112 /* If rld[r].in has VOIDmode, it means we will load it
6113 in whatever mode the reload reg has: to wit, rld[r].mode.
6114 We have already tested that for validity. */
6115 /* Aside from that, we need to test that the expressions
6116 to reload from or into have modes which are valid for this
6117 reload register. Otherwise the reload insns would be invalid. */
6118 if (! (rld[r].in != 0 && test_mode != VOIDmode
6119 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6120 if (! (rld[r].out != 0
6121 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6123 /* The reg is OK. */
6124 last_spill_reg = i;
6126 /* Mark as in use for this insn the reload regs we use
6127 for this. */
6128 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6129 rld[r].when_needed, rld[r].mode);
6131 rld[r].reg_rtx = reg;
6132 reload_spill_index[r] = spill_regs[i];
6133 return 1;
6136 return 0;
6139 /* Find a spill register to use as a reload register for reload R.
6140 LAST_RELOAD is nonzero if this is the last reload for the insn being
6141 processed.
6143 Set rld[R].reg_rtx to the register allocated.
6145 We return 1 if successful, or 0 if we couldn't find a spill reg and
6146 we didn't change anything. */
6148 static int
6149 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6150 int last_reload)
6152 int i, pass, count;
6154 /* If we put this reload ahead, thinking it is a group,
6155 then insist on finding a group. Otherwise we can grab a
6156 reg that some other reload needs.
6157 (That can happen when we have a 68000 DATA_OR_FP_REG
6158 which is a group of data regs or one fp reg.)
6159 We need not be so restrictive if there are no more reloads
6160 for this insn.
6162 ??? Really it would be nicer to have smarter handling
6163 for that kind of reg class, where a problem like this is normal.
6164 Perhaps those classes should be avoided for reloading
6165 by use of more alternatives. */
6167 int force_group = rld[r].nregs > 1 && ! last_reload;
6169 /* If we want a single register and haven't yet found one,
6170 take any reg in the right class and not in use.
6171 If we want a consecutive group, here is where we look for it.
6173 We use three passes so we can first look for reload regs to
6174 reuse, which are already in use for other reloads in this insn,
6175 and only then use additional registers which are not "bad", then
6176 finally any register.
6178 I think that maximizing reuse is needed to make sure we don't
6179 run out of reload regs. Suppose we have three reloads, and
6180 reloads A and B can share regs. These need two regs.
6181 Suppose A and B are given different regs.
6182 That leaves none for C. */
6183 for (pass = 0; pass < 3; pass++)
6185 /* I is the index in spill_regs.
6186 We advance it round-robin between insns to use all spill regs
6187 equally, so that inherited reloads have a chance
6188 of leapfrogging each other. */
6190 i = last_spill_reg;
6192 for (count = 0; count < n_spills; count++)
6194 int rclass = (int) rld[r].rclass;
6195 int regnum;
6197 i++;
6198 if (i >= n_spills)
6199 i -= n_spills;
6200 regnum = spill_regs[i];
6202 if ((reload_reg_free_p (regnum, rld[r].opnum,
6203 rld[r].when_needed)
6204 || (rld[r].in
6205 /* We check reload_reg_used to make sure we
6206 don't clobber the return register. */
6207 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6208 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6209 rld[r].when_needed, rld[r].in,
6210 rld[r].out, r, 1)))
6211 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6212 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6213 /* Look first for regs to share, then for unshared. But
6214 don't share regs used for inherited reloads; they are
6215 the ones we want to preserve. */
6216 && (pass
6217 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6218 regnum)
6219 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6220 regnum))))
6222 int nr = hard_regno_nregs (regnum, rld[r].mode);
6224 /* During the second pass we want to avoid reload registers
6225 which are "bad" for this reload. */
6226 if (pass == 1
6227 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6228 continue;
6230 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6231 (on 68000) got us two FP regs. If NR is 1,
6232 we would reject both of them. */
6233 if (force_group)
6234 nr = rld[r].nregs;
6235 /* If we need only one reg, we have already won. */
6236 if (nr == 1)
6238 /* But reject a single reg if we demand a group. */
6239 if (force_group)
6240 continue;
6241 break;
6243 /* Otherwise check that as many consecutive regs as we need
6244 are available here. */
6245 while (nr > 1)
6247 int regno = regnum + nr - 1;
6248 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6249 && spill_reg_order[regno] >= 0
6250 && reload_reg_free_p (regno, rld[r].opnum,
6251 rld[r].when_needed)))
6252 break;
6253 nr--;
6255 if (nr == 1)
6256 break;
6260 /* If we found something on the current pass, omit later passes. */
6261 if (count < n_spills)
6262 break;
6265 /* We should have found a spill register by now. */
6266 if (count >= n_spills)
6267 return 0;
6269 /* I is the index in SPILL_REG_RTX of the reload register we are to
6270 allocate. Get an rtx for it and find its register number. */
6272 return set_reload_reg (i, r);
6275 /* Initialize all the tables needed to allocate reload registers.
6276 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6277 is the array we use to restore the reg_rtx field for every reload. */
6279 static void
6280 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6282 int i;
6284 for (i = 0; i < n_reloads; i++)
6285 rld[i].reg_rtx = save_reload_reg_rtx[i];
6287 memset (reload_inherited, 0, MAX_RELOADS);
6288 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6289 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6291 CLEAR_HARD_REG_SET (reload_reg_used);
6292 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6293 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6294 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6295 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6296 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6298 CLEAR_HARD_REG_SET (reg_used_in_insn);
6300 HARD_REG_SET tmp;
6301 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6302 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6303 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6304 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6305 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6306 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6309 for (i = 0; i < reload_n_operands; i++)
6311 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6312 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6314 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6315 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6316 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6319 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6321 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6323 for (i = 0; i < n_reloads; i++)
6324 /* If we have already decided to use a certain register,
6325 don't use it in another way. */
6326 if (rld[i].reg_rtx)
6327 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6328 rld[i].when_needed, rld[i].mode);
6331 /* If X is not a subreg, return it unmodified. If it is a subreg,
6332 look up whether we made a replacement for the SUBREG_REG. Return
6333 either the replacement or the SUBREG_REG. */
6335 static rtx
6336 replaced_subreg (rtx x)
6338 if (GET_CODE (x) == SUBREG)
6339 return find_replacement (&SUBREG_REG (x));
6340 return x;
6343 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6344 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6345 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6346 otherwise it is NULL. */
6348 static int
6349 compute_reload_subreg_offset (machine_mode outermode,
6350 rtx subreg,
6351 machine_mode innermode)
6353 int outer_offset;
6354 machine_mode middlemode;
6356 if (!subreg)
6357 return subreg_lowpart_offset (outermode, innermode);
6359 outer_offset = SUBREG_BYTE (subreg);
6360 middlemode = GET_MODE (SUBREG_REG (subreg));
6362 /* If SUBREG is paradoxical then return the normal lowpart offset
6363 for OUTERMODE and INNERMODE. Our caller has already checked
6364 that OUTERMODE fits in INNERMODE. */
6365 if (paradoxical_subreg_p (outermode, middlemode))
6366 return subreg_lowpart_offset (outermode, innermode);
6368 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6369 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6370 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6373 /* Assign hard reg targets for the pseudo-registers we must reload
6374 into hard regs for this insn.
6375 Also output the instructions to copy them in and out of the hard regs.
6377 For machines with register classes, we are responsible for
6378 finding a reload reg in the proper class. */
6380 static void
6381 choose_reload_regs (struct insn_chain *chain)
6383 rtx_insn *insn = chain->insn;
6384 int i, j;
6385 unsigned int max_group_size = 1;
6386 enum reg_class group_class = NO_REGS;
6387 int pass, win, inheritance;
6389 rtx save_reload_reg_rtx[MAX_RELOADS];
6391 /* In order to be certain of getting the registers we need,
6392 we must sort the reloads into order of increasing register class.
6393 Then our grabbing of reload registers will parallel the process
6394 that provided the reload registers.
6396 Also note whether any of the reloads wants a consecutive group of regs.
6397 If so, record the maximum size of the group desired and what
6398 register class contains all the groups needed by this insn. */
6400 for (j = 0; j < n_reloads; j++)
6402 reload_order[j] = j;
6403 if (rld[j].reg_rtx != NULL_RTX)
6405 gcc_assert (REG_P (rld[j].reg_rtx)
6406 && HARD_REGISTER_P (rld[j].reg_rtx));
6407 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6409 else
6410 reload_spill_index[j] = -1;
6412 if (rld[j].nregs > 1)
6414 max_group_size = MAX (rld[j].nregs, max_group_size);
6415 group_class
6416 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6419 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6422 if (n_reloads > 1)
6423 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6425 /* If -O, try first with inheritance, then turning it off.
6426 If not -O, don't do inheritance.
6427 Using inheritance when not optimizing leads to paradoxes
6428 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6429 because one side of the comparison might be inherited. */
6430 win = 0;
6431 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6433 choose_reload_regs_init (chain, save_reload_reg_rtx);
6435 /* Process the reloads in order of preference just found.
6436 Beyond this point, subregs can be found in reload_reg_rtx.
6438 This used to look for an existing reloaded home for all of the
6439 reloads, and only then perform any new reloads. But that could lose
6440 if the reloads were done out of reg-class order because a later
6441 reload with a looser constraint might have an old home in a register
6442 needed by an earlier reload with a tighter constraint.
6444 To solve this, we make two passes over the reloads, in the order
6445 described above. In the first pass we try to inherit a reload
6446 from a previous insn. If there is a later reload that needs a
6447 class that is a proper subset of the class being processed, we must
6448 also allocate a spill register during the first pass.
6450 Then make a second pass over the reloads to allocate any reloads
6451 that haven't been given registers yet. */
6453 for (j = 0; j < n_reloads; j++)
6455 int r = reload_order[j];
6456 rtx search_equiv = NULL_RTX;
6458 /* Ignore reloads that got marked inoperative. */
6459 if (rld[r].out == 0 && rld[r].in == 0
6460 && ! rld[r].secondary_p)
6461 continue;
6463 /* If find_reloads chose to use reload_in or reload_out as a reload
6464 register, we don't need to chose one. Otherwise, try even if it
6465 found one since we might save an insn if we find the value lying
6466 around.
6467 Try also when reload_in is a pseudo without a hard reg. */
6468 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6469 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6470 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6471 && !MEM_P (rld[r].in)
6472 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6473 continue;
6475 #if 0 /* No longer needed for correct operation.
6476 It might give better code, or might not; worth an experiment? */
6477 /* If this is an optional reload, we can't inherit from earlier insns
6478 until we are sure that any non-optional reloads have been allocated.
6479 The following code takes advantage of the fact that optional reloads
6480 are at the end of reload_order. */
6481 if (rld[r].optional != 0)
6482 for (i = 0; i < j; i++)
6483 if ((rld[reload_order[i]].out != 0
6484 || rld[reload_order[i]].in != 0
6485 || rld[reload_order[i]].secondary_p)
6486 && ! rld[reload_order[i]].optional
6487 && rld[reload_order[i]].reg_rtx == 0)
6488 allocate_reload_reg (chain, reload_order[i], 0);
6489 #endif
6491 /* First see if this pseudo is already available as reloaded
6492 for a previous insn. We cannot try to inherit for reloads
6493 that are smaller than the maximum number of registers needed
6494 for groups unless the register we would allocate cannot be used
6495 for the groups.
6497 We could check here to see if this is a secondary reload for
6498 an object that is already in a register of the desired class.
6499 This would avoid the need for the secondary reload register.
6500 But this is complex because we can't easily determine what
6501 objects might want to be loaded via this reload. So let a
6502 register be allocated here. In `emit_reload_insns' we suppress
6503 one of the loads in the case described above. */
6505 if (inheritance)
6507 int byte = 0;
6508 int regno = -1;
6509 machine_mode mode = VOIDmode;
6510 rtx subreg = NULL_RTX;
6512 if (rld[r].in == 0)
6514 else if (REG_P (rld[r].in))
6516 regno = REGNO (rld[r].in);
6517 mode = GET_MODE (rld[r].in);
6519 else if (REG_P (rld[r].in_reg))
6521 regno = REGNO (rld[r].in_reg);
6522 mode = GET_MODE (rld[r].in_reg);
6524 else if (GET_CODE (rld[r].in_reg) == SUBREG
6525 && REG_P (SUBREG_REG (rld[r].in_reg)))
6527 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6528 if (regno < FIRST_PSEUDO_REGISTER)
6529 regno = subreg_regno (rld[r].in_reg);
6530 else
6532 subreg = rld[r].in_reg;
6533 byte = SUBREG_BYTE (subreg);
6535 mode = GET_MODE (rld[r].in_reg);
6537 #if AUTO_INC_DEC
6538 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6539 && REG_P (XEXP (rld[r].in_reg, 0)))
6541 regno = REGNO (XEXP (rld[r].in_reg, 0));
6542 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6543 rld[r].out = rld[r].in;
6545 #endif
6546 #if 0
6547 /* This won't work, since REGNO can be a pseudo reg number.
6548 Also, it takes much more hair to keep track of all the things
6549 that can invalidate an inherited reload of part of a pseudoreg. */
6550 else if (GET_CODE (rld[r].in) == SUBREG
6551 && REG_P (SUBREG_REG (rld[r].in)))
6552 regno = subreg_regno (rld[r].in);
6553 #endif
6555 if (regno >= 0
6556 && reg_last_reload_reg[regno] != 0
6557 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6558 >= GET_MODE_SIZE (mode) + byte)
6559 /* Verify that the register it's in can be used in
6560 mode MODE. */
6561 && (REG_CAN_CHANGE_MODE_P
6562 (REGNO (reg_last_reload_reg[regno]),
6563 GET_MODE (reg_last_reload_reg[regno]),
6564 mode)))
6566 enum reg_class rclass = rld[r].rclass, last_class;
6567 rtx last_reg = reg_last_reload_reg[regno];
6569 i = REGNO (last_reg);
6570 byte = compute_reload_subreg_offset (mode,
6571 subreg,
6572 GET_MODE (last_reg));
6573 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6574 last_class = REGNO_REG_CLASS (i);
6576 if (reg_reloaded_contents[i] == regno
6577 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6578 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6579 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6580 /* Even if we can't use this register as a reload
6581 register, we might use it for reload_override_in,
6582 if copying it to the desired class is cheap
6583 enough. */
6584 || ((register_move_cost (mode, last_class, rclass)
6585 < memory_move_cost (mode, rclass, true))
6586 && (secondary_reload_class (1, rclass, mode,
6587 last_reg)
6588 == NO_REGS)
6589 && !(targetm.secondary_memory_needed
6590 (mode, last_class, rclass))))
6591 && (rld[r].nregs == max_group_size
6592 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6594 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6595 rld[r].when_needed, rld[r].in,
6596 const0_rtx, r, 1))
6598 /* If a group is needed, verify that all the subsequent
6599 registers still have their values intact. */
6600 int nr = hard_regno_nregs (i, rld[r].mode);
6601 int k;
6603 for (k = 1; k < nr; k++)
6604 if (reg_reloaded_contents[i + k] != regno
6605 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6606 break;
6608 if (k == nr)
6610 int i1;
6611 int bad_for_class;
6613 last_reg = (GET_MODE (last_reg) == mode
6614 ? last_reg : gen_rtx_REG (mode, i));
6616 bad_for_class = 0;
6617 for (k = 0; k < nr; k++)
6618 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6619 i+k);
6621 /* We found a register that contains the
6622 value we need. If this register is the
6623 same as an `earlyclobber' operand of the
6624 current insn, just mark it as a place to
6625 reload from since we can't use it as the
6626 reload register itself. */
6628 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6629 if (reg_overlap_mentioned_for_reload_p
6630 (reg_last_reload_reg[regno],
6631 reload_earlyclobbers[i1]))
6632 break;
6634 if (i1 != n_earlyclobbers
6635 || ! (free_for_value_p (i, rld[r].mode,
6636 rld[r].opnum,
6637 rld[r].when_needed, rld[r].in,
6638 rld[r].out, r, 1))
6639 /* Don't use it if we'd clobber a pseudo reg. */
6640 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6641 && rld[r].out
6642 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6643 /* Don't clobber the frame pointer. */
6644 || (i == HARD_FRAME_POINTER_REGNUM
6645 && frame_pointer_needed
6646 && rld[r].out)
6647 /* Don't really use the inherited spill reg
6648 if we need it wider than we've got it. */
6649 || paradoxical_subreg_p (rld[r].mode, mode)
6650 || bad_for_class
6652 /* If find_reloads chose reload_out as reload
6653 register, stay with it - that leaves the
6654 inherited register for subsequent reloads. */
6655 || (rld[r].out && rld[r].reg_rtx
6656 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6658 if (! rld[r].optional)
6660 reload_override_in[r] = last_reg;
6661 reload_inheritance_insn[r]
6662 = reg_reloaded_insn[i];
6665 else
6667 int k;
6668 /* We can use this as a reload reg. */
6669 /* Mark the register as in use for this part of
6670 the insn. */
6671 mark_reload_reg_in_use (i,
6672 rld[r].opnum,
6673 rld[r].when_needed,
6674 rld[r].mode);
6675 rld[r].reg_rtx = last_reg;
6676 reload_inherited[r] = 1;
6677 reload_inheritance_insn[r]
6678 = reg_reloaded_insn[i];
6679 reload_spill_index[r] = i;
6680 for (k = 0; k < nr; k++)
6681 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6682 i + k);
6689 /* Here's another way to see if the value is already lying around. */
6690 if (inheritance
6691 && rld[r].in != 0
6692 && ! reload_inherited[r]
6693 && rld[r].out == 0
6694 && (CONSTANT_P (rld[r].in)
6695 || GET_CODE (rld[r].in) == PLUS
6696 || REG_P (rld[r].in)
6697 || MEM_P (rld[r].in))
6698 && (rld[r].nregs == max_group_size
6699 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6700 search_equiv = rld[r].in;
6702 if (search_equiv)
6704 rtx equiv
6705 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6706 -1, NULL, 0, rld[r].mode);
6707 int regno = 0;
6709 if (equiv != 0)
6711 if (REG_P (equiv))
6712 regno = REGNO (equiv);
6713 else
6715 /* This must be a SUBREG of a hard register.
6716 Make a new REG since this might be used in an
6717 address and not all machines support SUBREGs
6718 there. */
6719 gcc_assert (GET_CODE (equiv) == SUBREG);
6720 regno = subreg_regno (equiv);
6721 equiv = gen_rtx_REG (rld[r].mode, regno);
6722 /* If we choose EQUIV as the reload register, but the
6723 loop below decides to cancel the inheritance, we'll
6724 end up reloading EQUIV in rld[r].mode, not the mode
6725 it had originally. That isn't safe when EQUIV isn't
6726 available as a spill register since its value might
6727 still be live at this point. */
6728 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6729 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6730 equiv = 0;
6734 /* If we found a spill reg, reject it unless it is free
6735 and of the desired class. */
6736 if (equiv != 0)
6738 int regs_used = 0;
6739 int bad_for_class = 0;
6740 int max_regno = regno + rld[r].nregs;
6742 for (i = regno; i < max_regno; i++)
6744 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6746 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6750 if ((regs_used
6751 && ! free_for_value_p (regno, rld[r].mode,
6752 rld[r].opnum, rld[r].when_needed,
6753 rld[r].in, rld[r].out, r, 1))
6754 || bad_for_class)
6755 equiv = 0;
6758 if (equiv != 0
6759 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6760 equiv = 0;
6762 /* We found a register that contains the value we need.
6763 If this register is the same as an `earlyclobber' operand
6764 of the current insn, just mark it as a place to reload from
6765 since we can't use it as the reload register itself. */
6767 if (equiv != 0)
6768 for (i = 0; i < n_earlyclobbers; i++)
6769 if (reg_overlap_mentioned_for_reload_p (equiv,
6770 reload_earlyclobbers[i]))
6772 if (! rld[r].optional)
6773 reload_override_in[r] = equiv;
6774 equiv = 0;
6775 break;
6778 /* If the equiv register we have found is explicitly clobbered
6779 in the current insn, it depends on the reload type if we
6780 can use it, use it for reload_override_in, or not at all.
6781 In particular, we then can't use EQUIV for a
6782 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6784 if (equiv != 0)
6786 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6787 switch (rld[r].when_needed)
6789 case RELOAD_FOR_OTHER_ADDRESS:
6790 case RELOAD_FOR_INPADDR_ADDRESS:
6791 case RELOAD_FOR_INPUT_ADDRESS:
6792 case RELOAD_FOR_OPADDR_ADDR:
6793 break;
6794 case RELOAD_OTHER:
6795 case RELOAD_FOR_INPUT:
6796 case RELOAD_FOR_OPERAND_ADDRESS:
6797 if (! rld[r].optional)
6798 reload_override_in[r] = equiv;
6799 /* Fall through. */
6800 default:
6801 equiv = 0;
6802 break;
6804 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6805 switch (rld[r].when_needed)
6807 case RELOAD_FOR_OTHER_ADDRESS:
6808 case RELOAD_FOR_INPADDR_ADDRESS:
6809 case RELOAD_FOR_INPUT_ADDRESS:
6810 case RELOAD_FOR_OPADDR_ADDR:
6811 case RELOAD_FOR_OPERAND_ADDRESS:
6812 case RELOAD_FOR_INPUT:
6813 break;
6814 case RELOAD_OTHER:
6815 if (! rld[r].optional)
6816 reload_override_in[r] = equiv;
6817 /* Fall through. */
6818 default:
6819 equiv = 0;
6820 break;
6824 /* If we found an equivalent reg, say no code need be generated
6825 to load it, and use it as our reload reg. */
6826 if (equiv != 0
6827 && (regno != HARD_FRAME_POINTER_REGNUM
6828 || !frame_pointer_needed))
6830 int nr = hard_regno_nregs (regno, rld[r].mode);
6831 int k;
6832 rld[r].reg_rtx = equiv;
6833 reload_spill_index[r] = regno;
6834 reload_inherited[r] = 1;
6836 /* If reg_reloaded_valid is not set for this register,
6837 there might be a stale spill_reg_store lying around.
6838 We must clear it, since otherwise emit_reload_insns
6839 might delete the store. */
6840 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6841 spill_reg_store[regno] = NULL;
6842 /* If any of the hard registers in EQUIV are spill
6843 registers, mark them as in use for this insn. */
6844 for (k = 0; k < nr; k++)
6846 i = spill_reg_order[regno + k];
6847 if (i >= 0)
6849 mark_reload_reg_in_use (regno, rld[r].opnum,
6850 rld[r].when_needed,
6851 rld[r].mode);
6852 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6853 regno + k);
6859 /* If we found a register to use already, or if this is an optional
6860 reload, we are done. */
6861 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6862 continue;
6864 #if 0
6865 /* No longer needed for correct operation. Might or might
6866 not give better code on the average. Want to experiment? */
6868 /* See if there is a later reload that has a class different from our
6869 class that intersects our class or that requires less register
6870 than our reload. If so, we must allocate a register to this
6871 reload now, since that reload might inherit a previous reload
6872 and take the only available register in our class. Don't do this
6873 for optional reloads since they will force all previous reloads
6874 to be allocated. Also don't do this for reloads that have been
6875 turned off. */
6877 for (i = j + 1; i < n_reloads; i++)
6879 int s = reload_order[i];
6881 if ((rld[s].in == 0 && rld[s].out == 0
6882 && ! rld[s].secondary_p)
6883 || rld[s].optional)
6884 continue;
6886 if ((rld[s].rclass != rld[r].rclass
6887 && reg_classes_intersect_p (rld[r].rclass,
6888 rld[s].rclass))
6889 || rld[s].nregs < rld[r].nregs)
6890 break;
6893 if (i == n_reloads)
6894 continue;
6896 allocate_reload_reg (chain, r, j == n_reloads - 1);
6897 #endif
6900 /* Now allocate reload registers for anything non-optional that
6901 didn't get one yet. */
6902 for (j = 0; j < n_reloads; j++)
6904 int r = reload_order[j];
6906 /* Ignore reloads that got marked inoperative. */
6907 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6908 continue;
6910 /* Skip reloads that already have a register allocated or are
6911 optional. */
6912 if (rld[r].reg_rtx != 0 || rld[r].optional)
6913 continue;
6915 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6916 break;
6919 /* If that loop got all the way, we have won. */
6920 if (j == n_reloads)
6922 win = 1;
6923 break;
6926 /* Loop around and try without any inheritance. */
6929 if (! win)
6931 /* First undo everything done by the failed attempt
6932 to allocate with inheritance. */
6933 choose_reload_regs_init (chain, save_reload_reg_rtx);
6935 /* Some sanity tests to verify that the reloads found in the first
6936 pass are identical to the ones we have now. */
6937 gcc_assert (chain->n_reloads == n_reloads);
6939 for (i = 0; i < n_reloads; i++)
6941 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6942 continue;
6943 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6944 for (j = 0; j < n_spills; j++)
6945 if (spill_regs[j] == chain->rld[i].regno)
6946 if (! set_reload_reg (j, i))
6947 failed_reload (chain->insn, i);
6951 /* If we thought we could inherit a reload, because it seemed that
6952 nothing else wanted the same reload register earlier in the insn,
6953 verify that assumption, now that all reloads have been assigned.
6954 Likewise for reloads where reload_override_in has been set. */
6956 /* If doing expensive optimizations, do one preliminary pass that doesn't
6957 cancel any inheritance, but removes reloads that have been needed only
6958 for reloads that we know can be inherited. */
6959 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6961 for (j = 0; j < n_reloads; j++)
6963 int r = reload_order[j];
6964 rtx check_reg;
6965 rtx tem;
6966 if (reload_inherited[r] && rld[r].reg_rtx)
6967 check_reg = rld[r].reg_rtx;
6968 else if (reload_override_in[r]
6969 && (REG_P (reload_override_in[r])
6970 || GET_CODE (reload_override_in[r]) == SUBREG))
6971 check_reg = reload_override_in[r];
6972 else
6973 continue;
6974 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6975 rld[r].opnum, rld[r].when_needed, rld[r].in,
6976 (reload_inherited[r]
6977 ? rld[r].out : const0_rtx),
6978 r, 1))
6980 if (pass)
6981 continue;
6982 reload_inherited[r] = 0;
6983 reload_override_in[r] = 0;
6985 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6986 reload_override_in, then we do not need its related
6987 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6988 likewise for other reload types.
6989 We handle this by removing a reload when its only replacement
6990 is mentioned in reload_in of the reload we are going to inherit.
6991 A special case are auto_inc expressions; even if the input is
6992 inherited, we still need the address for the output. We can
6993 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6994 If we succeeded removing some reload and we are doing a preliminary
6995 pass just to remove such reloads, make another pass, since the
6996 removal of one reload might allow us to inherit another one. */
6997 else if (rld[r].in
6998 && rld[r].out != rld[r].in
6999 && remove_address_replacements (rld[r].in))
7001 if (pass)
7002 pass = 2;
7004 /* If we needed a memory location for the reload, we also have to
7005 remove its related reloads. */
7006 else if (rld[r].in
7007 && rld[r].out != rld[r].in
7008 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7009 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7010 && (targetm.secondary_memory_needed
7011 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
7012 rld[r].rclass))
7013 && remove_address_replacements
7014 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7015 rld[r].when_needed)))
7017 if (pass)
7018 pass = 2;
7023 /* Now that reload_override_in is known valid,
7024 actually override reload_in. */
7025 for (j = 0; j < n_reloads; j++)
7026 if (reload_override_in[j])
7027 rld[j].in = reload_override_in[j];
7029 /* If this reload won't be done because it has been canceled or is
7030 optional and not inherited, clear reload_reg_rtx so other
7031 routines (such as subst_reloads) don't get confused. */
7032 for (j = 0; j < n_reloads; j++)
7033 if (rld[j].reg_rtx != 0
7034 && ((rld[j].optional && ! reload_inherited[j])
7035 || (rld[j].in == 0 && rld[j].out == 0
7036 && ! rld[j].secondary_p)))
7038 int regno = true_regnum (rld[j].reg_rtx);
7040 if (spill_reg_order[regno] >= 0)
7041 clear_reload_reg_in_use (regno, rld[j].opnum,
7042 rld[j].when_needed, rld[j].mode);
7043 rld[j].reg_rtx = 0;
7044 reload_spill_index[j] = -1;
7047 /* Record which pseudos and which spill regs have output reloads. */
7048 for (j = 0; j < n_reloads; j++)
7050 int r = reload_order[j];
7052 i = reload_spill_index[r];
7054 /* I is nonneg if this reload uses a register.
7055 If rld[r].reg_rtx is 0, this is an optional reload
7056 that we opted to ignore. */
7057 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7058 && rld[r].reg_rtx != 0)
7060 int nregno = REGNO (rld[r].out_reg);
7061 int nr = 1;
7063 if (nregno < FIRST_PSEUDO_REGISTER)
7064 nr = hard_regno_nregs (nregno, rld[r].mode);
7066 while (--nr >= 0)
7067 SET_REGNO_REG_SET (&reg_has_output_reload,
7068 nregno + nr);
7070 if (i >= 0)
7071 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7073 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7074 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7075 || rld[r].when_needed == RELOAD_FOR_INSN);
7080 /* Deallocate the reload register for reload R. This is called from
7081 remove_address_replacements. */
7083 void
7084 deallocate_reload_reg (int r)
7086 int regno;
7088 if (! rld[r].reg_rtx)
7089 return;
7090 regno = true_regnum (rld[r].reg_rtx);
7091 rld[r].reg_rtx = 0;
7092 if (spill_reg_order[regno] >= 0)
7093 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7094 rld[r].mode);
7095 reload_spill_index[r] = -1;
7098 /* These arrays are filled by emit_reload_insns and its subroutines. */
7099 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7100 static rtx_insn *other_input_address_reload_insns = 0;
7101 static rtx_insn *other_input_reload_insns = 0;
7102 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7103 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7104 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7105 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7106 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7107 static rtx_insn *operand_reload_insns = 0;
7108 static rtx_insn *other_operand_reload_insns = 0;
7109 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7111 /* Values to be put in spill_reg_store are put here first. Instructions
7112 must only be placed here if the associated reload register reaches
7113 the end of the instruction's reload sequence. */
7114 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7115 static HARD_REG_SET reg_reloaded_died;
7117 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7118 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7119 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7120 adjusted register, and return true. Otherwise, return false. */
7121 static bool
7122 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7123 enum reg_class new_class,
7124 machine_mode new_mode)
7127 rtx reg;
7129 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7131 unsigned regno = REGNO (reg);
7133 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7134 continue;
7135 if (GET_MODE (reg) != new_mode)
7137 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7138 continue;
7139 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7140 continue;
7141 reg = reload_adjust_reg_for_mode (reg, new_mode);
7143 *reload_reg = reg;
7144 return true;
7146 return false;
7149 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7150 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7151 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7152 adjusted register, and return true. Otherwise, return false. */
7153 static bool
7154 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7155 enum insn_code icode)
7158 enum reg_class new_class = scratch_reload_class (icode);
7159 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7161 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7162 new_class, new_mode);
7165 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7166 has the number J. OLD contains the value to be used as input. */
7168 static void
7169 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7170 rtx old, int j)
7172 rtx_insn *insn = chain->insn;
7173 rtx reloadreg;
7174 rtx oldequiv_reg = 0;
7175 rtx oldequiv = 0;
7176 int special = 0;
7177 machine_mode mode;
7178 rtx_insn **where;
7180 /* delete_output_reload is only invoked properly if old contains
7181 the original pseudo register. Since this is replaced with a
7182 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7183 find the pseudo in RELOAD_IN_REG. This is also used to
7184 determine whether a secondary reload is needed. */
7185 if (reload_override_in[j]
7186 && (REG_P (rl->in_reg)
7187 || (GET_CODE (rl->in_reg) == SUBREG
7188 && REG_P (SUBREG_REG (rl->in_reg)))))
7190 oldequiv = old;
7191 old = rl->in_reg;
7193 if (oldequiv == 0)
7194 oldequiv = old;
7195 else if (REG_P (oldequiv))
7196 oldequiv_reg = oldequiv;
7197 else if (GET_CODE (oldequiv) == SUBREG)
7198 oldequiv_reg = SUBREG_REG (oldequiv);
7200 reloadreg = reload_reg_rtx_for_input[j];
7201 mode = GET_MODE (reloadreg);
7203 /* If we are reloading from a register that was recently stored in
7204 with an output-reload, see if we can prove there was
7205 actually no need to store the old value in it. */
7207 if (optimize && REG_P (oldequiv)
7208 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7209 && spill_reg_store[REGNO (oldequiv)]
7210 && REG_P (old)
7211 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7212 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7213 rl->out_reg)))
7214 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7216 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7217 OLDEQUIV. */
7219 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7220 oldequiv = SUBREG_REG (oldequiv);
7221 if (GET_MODE (oldequiv) != VOIDmode
7222 && mode != GET_MODE (oldequiv))
7223 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7225 /* Switch to the right place to emit the reload insns. */
7226 switch (rl->when_needed)
7228 case RELOAD_OTHER:
7229 where = &other_input_reload_insns;
7230 break;
7231 case RELOAD_FOR_INPUT:
7232 where = &input_reload_insns[rl->opnum];
7233 break;
7234 case RELOAD_FOR_INPUT_ADDRESS:
7235 where = &input_address_reload_insns[rl->opnum];
7236 break;
7237 case RELOAD_FOR_INPADDR_ADDRESS:
7238 where = &inpaddr_address_reload_insns[rl->opnum];
7239 break;
7240 case RELOAD_FOR_OUTPUT_ADDRESS:
7241 where = &output_address_reload_insns[rl->opnum];
7242 break;
7243 case RELOAD_FOR_OUTADDR_ADDRESS:
7244 where = &outaddr_address_reload_insns[rl->opnum];
7245 break;
7246 case RELOAD_FOR_OPERAND_ADDRESS:
7247 where = &operand_reload_insns;
7248 break;
7249 case RELOAD_FOR_OPADDR_ADDR:
7250 where = &other_operand_reload_insns;
7251 break;
7252 case RELOAD_FOR_OTHER_ADDRESS:
7253 where = &other_input_address_reload_insns;
7254 break;
7255 default:
7256 gcc_unreachable ();
7259 push_to_sequence (*where);
7261 /* Auto-increment addresses must be reloaded in a special way. */
7262 if (rl->out && ! rl->out_reg)
7264 /* We are not going to bother supporting the case where a
7265 incremented register can't be copied directly from
7266 OLDEQUIV since this seems highly unlikely. */
7267 gcc_assert (rl->secondary_in_reload < 0);
7269 if (reload_inherited[j])
7270 oldequiv = reloadreg;
7272 old = XEXP (rl->in_reg, 0);
7274 /* Prevent normal processing of this reload. */
7275 special = 1;
7276 /* Output a special code sequence for this case. */
7277 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7280 /* If we are reloading a pseudo-register that was set by the previous
7281 insn, see if we can get rid of that pseudo-register entirely
7282 by redirecting the previous insn into our reload register. */
7284 else if (optimize && REG_P (old)
7285 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7286 && dead_or_set_p (insn, old)
7287 /* This is unsafe if some other reload
7288 uses the same reg first. */
7289 && ! conflicts_with_override (reloadreg)
7290 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7291 rl->when_needed, old, rl->out, j, 0))
7293 rtx_insn *temp = PREV_INSN (insn);
7294 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7295 temp = PREV_INSN (temp);
7296 if (temp
7297 && NONJUMP_INSN_P (temp)
7298 && GET_CODE (PATTERN (temp)) == SET
7299 && SET_DEST (PATTERN (temp)) == old
7300 /* Make sure we can access insn_operand_constraint. */
7301 && asm_noperands (PATTERN (temp)) < 0
7302 /* This is unsafe if operand occurs more than once in current
7303 insn. Perhaps some occurrences aren't reloaded. */
7304 && count_occurrences (PATTERN (insn), old, 0) == 1)
7306 rtx old = SET_DEST (PATTERN (temp));
7307 /* Store into the reload register instead of the pseudo. */
7308 SET_DEST (PATTERN (temp)) = reloadreg;
7310 /* Verify that resulting insn is valid.
7312 Note that we have replaced the destination of TEMP with
7313 RELOADREG. If TEMP references RELOADREG within an
7314 autoincrement addressing mode, then the resulting insn
7315 is ill-formed and we must reject this optimization. */
7316 extract_insn (temp);
7317 if (constrain_operands (1, get_enabled_alternatives (temp))
7318 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7320 /* If the previous insn is an output reload, the source is
7321 a reload register, and its spill_reg_store entry will
7322 contain the previous destination. This is now
7323 invalid. */
7324 if (REG_P (SET_SRC (PATTERN (temp)))
7325 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7327 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7328 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7331 /* If these are the only uses of the pseudo reg,
7332 pretend for GDB it lives in the reload reg we used. */
7333 if (REG_N_DEATHS (REGNO (old)) == 1
7334 && REG_N_SETS (REGNO (old)) == 1)
7336 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7337 if (ira_conflicts_p)
7338 /* Inform IRA about the change. */
7339 ira_mark_allocation_change (REGNO (old));
7340 alter_reg (REGNO (old), -1, false);
7342 special = 1;
7344 /* Adjust any debug insns between temp and insn. */
7345 while ((temp = NEXT_INSN (temp)) != insn)
7346 if (DEBUG_INSN_P (temp))
7347 INSN_VAR_LOCATION_LOC (temp)
7348 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7349 old, reloadreg);
7350 else
7351 gcc_assert (NOTE_P (temp));
7353 else
7355 SET_DEST (PATTERN (temp)) = old;
7360 /* We can't do that, so output an insn to load RELOADREG. */
7362 /* If we have a secondary reload, pick up the secondary register
7363 and icode, if any. If OLDEQUIV and OLD are different or
7364 if this is an in-out reload, recompute whether or not we
7365 still need a secondary register and what the icode should
7366 be. If we still need a secondary register and the class or
7367 icode is different, go back to reloading from OLD if using
7368 OLDEQUIV means that we got the wrong type of register. We
7369 cannot have different class or icode due to an in-out reload
7370 because we don't make such reloads when both the input and
7371 output need secondary reload registers. */
7373 if (! special && rl->secondary_in_reload >= 0)
7375 rtx second_reload_reg = 0;
7376 rtx third_reload_reg = 0;
7377 int secondary_reload = rl->secondary_in_reload;
7378 rtx real_oldequiv = oldequiv;
7379 rtx real_old = old;
7380 rtx tmp;
7381 enum insn_code icode;
7382 enum insn_code tertiary_icode = CODE_FOR_nothing;
7384 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7385 and similarly for OLD.
7386 See comments in get_secondary_reload in reload.c. */
7387 /* If it is a pseudo that cannot be replaced with its
7388 equivalent MEM, we must fall back to reload_in, which
7389 will have all the necessary substitutions registered.
7390 Likewise for a pseudo that can't be replaced with its
7391 equivalent constant.
7393 Take extra care for subregs of such pseudos. Note that
7394 we cannot use reg_equiv_mem in this case because it is
7395 not in the right mode. */
7397 tmp = oldequiv;
7398 if (GET_CODE (tmp) == SUBREG)
7399 tmp = SUBREG_REG (tmp);
7400 if (REG_P (tmp)
7401 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7402 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7403 || reg_equiv_constant (REGNO (tmp)) != 0))
7405 if (! reg_equiv_mem (REGNO (tmp))
7406 || num_not_at_initial_offset
7407 || GET_CODE (oldequiv) == SUBREG)
7408 real_oldequiv = rl->in;
7409 else
7410 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7413 tmp = old;
7414 if (GET_CODE (tmp) == SUBREG)
7415 tmp = SUBREG_REG (tmp);
7416 if (REG_P (tmp)
7417 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7418 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7419 || reg_equiv_constant (REGNO (tmp)) != 0))
7421 if (! reg_equiv_mem (REGNO (tmp))
7422 || num_not_at_initial_offset
7423 || GET_CODE (old) == SUBREG)
7424 real_old = rl->in;
7425 else
7426 real_old = reg_equiv_mem (REGNO (tmp));
7429 second_reload_reg = rld[secondary_reload].reg_rtx;
7430 if (rld[secondary_reload].secondary_in_reload >= 0)
7432 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7434 third_reload_reg = rld[tertiary_reload].reg_rtx;
7435 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7436 /* We'd have to add more code for quartary reloads. */
7437 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7439 icode = rl->secondary_in_icode;
7441 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7442 || (rl->in != 0 && rl->out != 0))
7444 secondary_reload_info sri, sri2;
7445 enum reg_class new_class, new_t_class;
7447 sri.icode = CODE_FOR_nothing;
7448 sri.prev_sri = NULL;
7449 new_class
7450 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7451 rl->rclass, mode,
7452 &sri);
7454 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7455 second_reload_reg = 0;
7456 else if (new_class == NO_REGS)
7458 if (reload_adjust_reg_for_icode (&second_reload_reg,
7459 third_reload_reg,
7460 (enum insn_code) sri.icode))
7462 icode = (enum insn_code) sri.icode;
7463 third_reload_reg = 0;
7465 else
7467 oldequiv = old;
7468 real_oldequiv = real_old;
7471 else if (sri.icode != CODE_FOR_nothing)
7472 /* We currently lack a way to express this in reloads. */
7473 gcc_unreachable ();
7474 else
7476 sri2.icode = CODE_FOR_nothing;
7477 sri2.prev_sri = &sri;
7478 new_t_class
7479 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7480 new_class, mode,
7481 &sri);
7482 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7484 if (reload_adjust_reg_for_temp (&second_reload_reg,
7485 third_reload_reg,
7486 new_class, mode))
7488 third_reload_reg = 0;
7489 tertiary_icode = (enum insn_code) sri2.icode;
7491 else
7493 oldequiv = old;
7494 real_oldequiv = real_old;
7497 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7499 rtx intermediate = second_reload_reg;
7501 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7502 new_class, mode)
7503 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7504 ((enum insn_code)
7505 sri2.icode)))
7507 second_reload_reg = intermediate;
7508 tertiary_icode = (enum insn_code) sri2.icode;
7510 else
7512 oldequiv = old;
7513 real_oldequiv = real_old;
7516 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7518 rtx intermediate = second_reload_reg;
7520 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7521 new_class, mode)
7522 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7523 new_t_class, mode))
7525 second_reload_reg = intermediate;
7526 tertiary_icode = (enum insn_code) sri2.icode;
7528 else
7530 oldequiv = old;
7531 real_oldequiv = real_old;
7534 else
7536 /* This could be handled more intelligently too. */
7537 oldequiv = old;
7538 real_oldequiv = real_old;
7543 /* If we still need a secondary reload register, check
7544 to see if it is being used as a scratch or intermediate
7545 register and generate code appropriately. If we need
7546 a scratch register, use REAL_OLDEQUIV since the form of
7547 the insn may depend on the actual address if it is
7548 a MEM. */
7550 if (second_reload_reg)
7552 if (icode != CODE_FOR_nothing)
7554 /* We'd have to add extra code to handle this case. */
7555 gcc_assert (!third_reload_reg);
7557 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7558 second_reload_reg));
7559 special = 1;
7561 else
7563 /* See if we need a scratch register to load the
7564 intermediate register (a tertiary reload). */
7565 if (tertiary_icode != CODE_FOR_nothing)
7567 emit_insn ((GEN_FCN (tertiary_icode)
7568 (second_reload_reg, real_oldequiv,
7569 third_reload_reg)));
7571 else if (third_reload_reg)
7573 gen_reload (third_reload_reg, real_oldequiv,
7574 rl->opnum,
7575 rl->when_needed);
7576 gen_reload (second_reload_reg, third_reload_reg,
7577 rl->opnum,
7578 rl->when_needed);
7580 else
7581 gen_reload (second_reload_reg, real_oldequiv,
7582 rl->opnum,
7583 rl->when_needed);
7585 oldequiv = second_reload_reg;
7590 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7592 rtx real_oldequiv = oldequiv;
7594 if ((REG_P (oldequiv)
7595 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7596 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7597 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7598 || (GET_CODE (oldequiv) == SUBREG
7599 && REG_P (SUBREG_REG (oldequiv))
7600 && (REGNO (SUBREG_REG (oldequiv))
7601 >= FIRST_PSEUDO_REGISTER)
7602 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7603 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7604 || (CONSTANT_P (oldequiv)
7605 && (targetm.preferred_reload_class (oldequiv,
7606 REGNO_REG_CLASS (REGNO (reloadreg)))
7607 == NO_REGS)))
7608 real_oldequiv = rl->in;
7609 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7610 rl->when_needed);
7613 if (cfun->can_throw_non_call_exceptions)
7614 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7616 /* End this sequence. */
7617 *where = get_insns ();
7618 end_sequence ();
7620 /* Update reload_override_in so that delete_address_reloads_1
7621 can see the actual register usage. */
7622 if (oldequiv_reg)
7623 reload_override_in[j] = oldequiv;
7626 /* Generate insns to for the output reload RL, which is for the insn described
7627 by CHAIN and has the number J. */
7628 static void
7629 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7630 int j)
7632 rtx reloadreg;
7633 rtx_insn *insn = chain->insn;
7634 int special = 0;
7635 rtx old = rl->out;
7636 machine_mode mode;
7637 rtx_insn *p;
7638 rtx rl_reg_rtx;
7640 if (rl->when_needed == RELOAD_OTHER)
7641 start_sequence ();
7642 else
7643 push_to_sequence (output_reload_insns[rl->opnum]);
7645 rl_reg_rtx = reload_reg_rtx_for_output[j];
7646 mode = GET_MODE (rl_reg_rtx);
7648 reloadreg = rl_reg_rtx;
7650 /* If we need two reload regs, set RELOADREG to the intermediate
7651 one, since it will be stored into OLD. We might need a secondary
7652 register only for an input reload, so check again here. */
7654 if (rl->secondary_out_reload >= 0)
7656 rtx real_old = old;
7657 int secondary_reload = rl->secondary_out_reload;
7658 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7660 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7661 && reg_equiv_mem (REGNO (old)) != 0)
7662 real_old = reg_equiv_mem (REGNO (old));
7664 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7666 rtx second_reloadreg = reloadreg;
7667 reloadreg = rld[secondary_reload].reg_rtx;
7669 /* See if RELOADREG is to be used as a scratch register
7670 or as an intermediate register. */
7671 if (rl->secondary_out_icode != CODE_FOR_nothing)
7673 /* We'd have to add extra code to handle this case. */
7674 gcc_assert (tertiary_reload < 0);
7676 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7677 (real_old, second_reloadreg, reloadreg)));
7678 special = 1;
7680 else
7682 /* See if we need both a scratch and intermediate reload
7683 register. */
7685 enum insn_code tertiary_icode
7686 = rld[secondary_reload].secondary_out_icode;
7688 /* We'd have to add more code for quartary reloads. */
7689 gcc_assert (tertiary_reload < 0
7690 || rld[tertiary_reload].secondary_out_reload < 0);
7692 if (GET_MODE (reloadreg) != mode)
7693 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7695 if (tertiary_icode != CODE_FOR_nothing)
7697 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7699 /* Copy primary reload reg to secondary reload reg.
7700 (Note that these have been swapped above, then
7701 secondary reload reg to OLD using our insn.) */
7703 /* If REAL_OLD is a paradoxical SUBREG, remove it
7704 and try to put the opposite SUBREG on
7705 RELOADREG. */
7706 strip_paradoxical_subreg (&real_old, &reloadreg);
7708 gen_reload (reloadreg, second_reloadreg,
7709 rl->opnum, rl->when_needed);
7710 emit_insn ((GEN_FCN (tertiary_icode)
7711 (real_old, reloadreg, third_reloadreg)));
7712 special = 1;
7715 else
7717 /* Copy between the reload regs here and then to
7718 OUT later. */
7720 gen_reload (reloadreg, second_reloadreg,
7721 rl->opnum, rl->when_needed);
7722 if (tertiary_reload >= 0)
7724 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7726 gen_reload (third_reloadreg, reloadreg,
7727 rl->opnum, rl->when_needed);
7728 reloadreg = third_reloadreg;
7735 /* Output the last reload insn. */
7736 if (! special)
7738 rtx set;
7740 /* Don't output the last reload if OLD is not the dest of
7741 INSN and is in the src and is clobbered by INSN. */
7742 if (! flag_expensive_optimizations
7743 || !REG_P (old)
7744 || !(set = single_set (insn))
7745 || rtx_equal_p (old, SET_DEST (set))
7746 || !reg_mentioned_p (old, SET_SRC (set))
7747 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7748 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7749 gen_reload (old, reloadreg, rl->opnum,
7750 rl->when_needed);
7753 /* Look at all insns we emitted, just to be safe. */
7754 for (p = get_insns (); p; p = NEXT_INSN (p))
7755 if (INSN_P (p))
7757 rtx pat = PATTERN (p);
7759 /* If this output reload doesn't come from a spill reg,
7760 clear any memory of reloaded copies of the pseudo reg.
7761 If this output reload comes from a spill reg,
7762 reg_has_output_reload will make this do nothing. */
7763 note_stores (pat, forget_old_reloads_1, NULL);
7765 if (reg_mentioned_p (rl_reg_rtx, pat))
7767 rtx set = single_set (insn);
7768 if (reload_spill_index[j] < 0
7769 && set
7770 && SET_SRC (set) == rl_reg_rtx)
7772 int src = REGNO (SET_SRC (set));
7774 reload_spill_index[j] = src;
7775 SET_HARD_REG_BIT (reg_is_output_reload, src);
7776 if (find_regno_note (insn, REG_DEAD, src))
7777 SET_HARD_REG_BIT (reg_reloaded_died, src);
7779 if (HARD_REGISTER_P (rl_reg_rtx))
7781 int s = rl->secondary_out_reload;
7782 set = single_set (p);
7783 /* If this reload copies only to the secondary reload
7784 register, the secondary reload does the actual
7785 store. */
7786 if (s >= 0 && set == NULL_RTX)
7787 /* We can't tell what function the secondary reload
7788 has and where the actual store to the pseudo is
7789 made; leave new_spill_reg_store alone. */
7791 else if (s >= 0
7792 && SET_SRC (set) == rl_reg_rtx
7793 && SET_DEST (set) == rld[s].reg_rtx)
7795 /* Usually the next instruction will be the
7796 secondary reload insn; if we can confirm
7797 that it is, setting new_spill_reg_store to
7798 that insn will allow an extra optimization. */
7799 rtx s_reg = rld[s].reg_rtx;
7800 rtx_insn *next = NEXT_INSN (p);
7801 rld[s].out = rl->out;
7802 rld[s].out_reg = rl->out_reg;
7803 set = single_set (next);
7804 if (set && SET_SRC (set) == s_reg
7805 && reload_reg_rtx_reaches_end_p (s_reg, s))
7807 SET_HARD_REG_BIT (reg_is_output_reload,
7808 REGNO (s_reg));
7809 new_spill_reg_store[REGNO (s_reg)] = next;
7812 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7813 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7818 if (rl->when_needed == RELOAD_OTHER)
7820 emit_insn (other_output_reload_insns[rl->opnum]);
7821 other_output_reload_insns[rl->opnum] = get_insns ();
7823 else
7824 output_reload_insns[rl->opnum] = get_insns ();
7826 if (cfun->can_throw_non_call_exceptions)
7827 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7829 end_sequence ();
7832 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7833 and has the number J. */
7834 static void
7835 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7837 rtx_insn *insn = chain->insn;
7838 rtx old = (rl->in && MEM_P (rl->in)
7839 ? rl->in_reg : rl->in);
7840 rtx reg_rtx = rl->reg_rtx;
7842 if (old && reg_rtx)
7844 machine_mode mode;
7846 /* Determine the mode to reload in.
7847 This is very tricky because we have three to choose from.
7848 There is the mode the insn operand wants (rl->inmode).
7849 There is the mode of the reload register RELOADREG.
7850 There is the intrinsic mode of the operand, which we could find
7851 by stripping some SUBREGs.
7852 It turns out that RELOADREG's mode is irrelevant:
7853 we can change that arbitrarily.
7855 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7856 then the reload reg may not support QImode moves, so use SImode.
7857 If foo is in memory due to spilling a pseudo reg, this is safe,
7858 because the QImode value is in the least significant part of a
7859 slot big enough for a SImode. If foo is some other sort of
7860 memory reference, then it is impossible to reload this case,
7861 so previous passes had better make sure this never happens.
7863 Then consider a one-word union which has SImode and one of its
7864 members is a float, being fetched as (SUBREG:SF union:SI).
7865 We must fetch that as SFmode because we could be loading into
7866 a float-only register. In this case OLD's mode is correct.
7868 Consider an immediate integer: it has VOIDmode. Here we need
7869 to get a mode from something else.
7871 In some cases, there is a fourth mode, the operand's
7872 containing mode. If the insn specifies a containing mode for
7873 this operand, it overrides all others.
7875 I am not sure whether the algorithm here is always right,
7876 but it does the right things in those cases. */
7878 mode = GET_MODE (old);
7879 if (mode == VOIDmode)
7880 mode = rl->inmode;
7882 /* We cannot use gen_lowpart_common since it can do the wrong thing
7883 when REG_RTX has a multi-word mode. Note that REG_RTX must
7884 always be a REG here. */
7885 if (GET_MODE (reg_rtx) != mode)
7886 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7888 reload_reg_rtx_for_input[j] = reg_rtx;
7890 if (old != 0
7891 /* AUTO_INC reloads need to be handled even if inherited. We got an
7892 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7893 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7894 && ! rtx_equal_p (reg_rtx, old)
7895 && reg_rtx != 0)
7896 emit_input_reload_insns (chain, rld + j, old, j);
7898 /* When inheriting a wider reload, we have a MEM in rl->in,
7899 e.g. inheriting a SImode output reload for
7900 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7901 if (optimize && reload_inherited[j] && rl->in
7902 && MEM_P (rl->in)
7903 && MEM_P (rl->in_reg)
7904 && reload_spill_index[j] >= 0
7905 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7906 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7908 /* If we are reloading a register that was recently stored in with an
7909 output-reload, see if we can prove there was
7910 actually no need to store the old value in it. */
7912 if (optimize
7913 && (reload_inherited[j] || reload_override_in[j])
7914 && reg_rtx
7915 && REG_P (reg_rtx)
7916 && spill_reg_store[REGNO (reg_rtx)] != 0
7917 #if 0
7918 /* There doesn't seem to be any reason to restrict this to pseudos
7919 and doing so loses in the case where we are copying from a
7920 register of the wrong class. */
7921 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7922 #endif
7923 /* The insn might have already some references to stackslots
7924 replaced by MEMs, while reload_out_reg still names the
7925 original pseudo. */
7926 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7927 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7928 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7931 /* Do output reloading for reload RL, which is for the insn described by
7932 CHAIN and has the number J.
7933 ??? At some point we need to support handling output reloads of
7934 JUMP_INSNs or insns that set cc0. */
7935 static void
7936 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7938 rtx note, old;
7939 rtx_insn *insn = chain->insn;
7940 /* If this is an output reload that stores something that is
7941 not loaded in this same reload, see if we can eliminate a previous
7942 store. */
7943 rtx pseudo = rl->out_reg;
7944 rtx reg_rtx = rl->reg_rtx;
7946 if (rl->out && reg_rtx)
7948 machine_mode mode;
7950 /* Determine the mode to reload in.
7951 See comments above (for input reloading). */
7952 mode = GET_MODE (rl->out);
7953 if (mode == VOIDmode)
7955 /* VOIDmode should never happen for an output. */
7956 if (asm_noperands (PATTERN (insn)) < 0)
7957 /* It's the compiler's fault. */
7958 fatal_insn ("VOIDmode on an output", insn);
7959 error_for_asm (insn, "output operand is constant in %<asm%>");
7960 /* Prevent crash--use something we know is valid. */
7961 mode = word_mode;
7962 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7964 if (GET_MODE (reg_rtx) != mode)
7965 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7967 reload_reg_rtx_for_output[j] = reg_rtx;
7969 if (pseudo
7970 && optimize
7971 && REG_P (pseudo)
7972 && ! rtx_equal_p (rl->in_reg, pseudo)
7973 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7974 && reg_last_reload_reg[REGNO (pseudo)])
7976 int pseudo_no = REGNO (pseudo);
7977 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7979 /* We don't need to test full validity of last_regno for
7980 inherit here; we only want to know if the store actually
7981 matches the pseudo. */
7982 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7983 && reg_reloaded_contents[last_regno] == pseudo_no
7984 && spill_reg_store[last_regno]
7985 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7986 delete_output_reload (insn, j, last_regno, reg_rtx);
7989 old = rl->out_reg;
7990 if (old == 0
7991 || reg_rtx == 0
7992 || rtx_equal_p (old, reg_rtx))
7993 return;
7995 /* An output operand that dies right away does need a reload,
7996 but need not be copied from it. Show the new location in the
7997 REG_UNUSED note. */
7998 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7999 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8001 XEXP (note, 0) = reg_rtx;
8002 return;
8004 /* Likewise for a SUBREG of an operand that dies. */
8005 else if (GET_CODE (old) == SUBREG
8006 && REG_P (SUBREG_REG (old))
8007 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8008 SUBREG_REG (old))))
8010 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8011 return;
8013 else if (GET_CODE (old) == SCRATCH)
8014 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8015 but we don't want to make an output reload. */
8016 return;
8018 /* If is a JUMP_INSN, we can't support output reloads yet. */
8019 gcc_assert (NONJUMP_INSN_P (insn));
8021 emit_output_reload_insns (chain, rld + j, j);
8024 /* A reload copies values of MODE from register SRC to register DEST.
8025 Return true if it can be treated for inheritance purposes like a
8026 group of reloads, each one reloading a single hard register. The
8027 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8028 occupy the same number of hard registers. */
8030 static bool
8031 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8032 int src ATTRIBUTE_UNUSED,
8033 machine_mode mode ATTRIBUTE_UNUSED)
8035 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8036 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8039 /* Output insns to reload values in and out of the chosen reload regs. */
8041 static void
8042 emit_reload_insns (struct insn_chain *chain)
8044 rtx_insn *insn = chain->insn;
8046 int j;
8048 CLEAR_HARD_REG_SET (reg_reloaded_died);
8050 for (j = 0; j < reload_n_operands; j++)
8051 input_reload_insns[j] = input_address_reload_insns[j]
8052 = inpaddr_address_reload_insns[j]
8053 = output_reload_insns[j] = output_address_reload_insns[j]
8054 = outaddr_address_reload_insns[j]
8055 = other_output_reload_insns[j] = 0;
8056 other_input_address_reload_insns = 0;
8057 other_input_reload_insns = 0;
8058 operand_reload_insns = 0;
8059 other_operand_reload_insns = 0;
8061 /* Dump reloads into the dump file. */
8062 if (dump_file)
8064 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8065 debug_reload_to_stream (dump_file);
8068 for (j = 0; j < n_reloads; j++)
8069 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8071 unsigned int i;
8073 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8074 new_spill_reg_store[i] = 0;
8077 /* Now output the instructions to copy the data into and out of the
8078 reload registers. Do these in the order that the reloads were reported,
8079 since reloads of base and index registers precede reloads of operands
8080 and the operands may need the base and index registers reloaded. */
8082 for (j = 0; j < n_reloads; j++)
8084 do_input_reload (chain, rld + j, j);
8085 do_output_reload (chain, rld + j, j);
8088 /* Now write all the insns we made for reloads in the order expected by
8089 the allocation functions. Prior to the insn being reloaded, we write
8090 the following reloads:
8092 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8094 RELOAD_OTHER reloads.
8096 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8097 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8098 RELOAD_FOR_INPUT reload for the operand.
8100 RELOAD_FOR_OPADDR_ADDRS reloads.
8102 RELOAD_FOR_OPERAND_ADDRESS reloads.
8104 After the insn being reloaded, we write the following:
8106 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8107 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8108 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8109 reloads for the operand. The RELOAD_OTHER output reloads are
8110 output in descending order by reload number. */
8112 emit_insn_before (other_input_address_reload_insns, insn);
8113 emit_insn_before (other_input_reload_insns, insn);
8115 for (j = 0; j < reload_n_operands; j++)
8117 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8118 emit_insn_before (input_address_reload_insns[j], insn);
8119 emit_insn_before (input_reload_insns[j], insn);
8122 emit_insn_before (other_operand_reload_insns, insn);
8123 emit_insn_before (operand_reload_insns, insn);
8125 for (j = 0; j < reload_n_operands; j++)
8127 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8128 x = emit_insn_after (output_address_reload_insns[j], x);
8129 x = emit_insn_after (output_reload_insns[j], x);
8130 emit_insn_after (other_output_reload_insns[j], x);
8133 /* For all the spill regs newly reloaded in this instruction,
8134 record what they were reloaded from, so subsequent instructions
8135 can inherit the reloads.
8137 Update spill_reg_store for the reloads of this insn.
8138 Copy the elements that were updated in the loop above. */
8140 for (j = 0; j < n_reloads; j++)
8142 int r = reload_order[j];
8143 int i = reload_spill_index[r];
8145 /* If this is a non-inherited input reload from a pseudo, we must
8146 clear any memory of a previous store to the same pseudo. Only do
8147 something if there will not be an output reload for the pseudo
8148 being reloaded. */
8149 if (rld[r].in_reg != 0
8150 && ! (reload_inherited[r] || reload_override_in[r]))
8152 rtx reg = rld[r].in_reg;
8154 if (GET_CODE (reg) == SUBREG)
8155 reg = SUBREG_REG (reg);
8157 if (REG_P (reg)
8158 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8159 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8161 int nregno = REGNO (reg);
8163 if (reg_last_reload_reg[nregno])
8165 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8167 if (reg_reloaded_contents[last_regno] == nregno)
8168 spill_reg_store[last_regno] = 0;
8173 /* I is nonneg if this reload used a register.
8174 If rld[r].reg_rtx is 0, this is an optional reload
8175 that we opted to ignore. */
8177 if (i >= 0 && rld[r].reg_rtx != 0)
8179 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8180 int k;
8182 /* For a multi register reload, we need to check if all or part
8183 of the value lives to the end. */
8184 for (k = 0; k < nr; k++)
8185 if (reload_reg_reaches_end_p (i + k, r))
8186 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8188 /* Maybe the spill reg contains a copy of reload_out. */
8189 if (rld[r].out != 0
8190 && (REG_P (rld[r].out)
8191 || (rld[r].out_reg
8192 ? REG_P (rld[r].out_reg)
8193 /* The reload value is an auto-modification of
8194 some kind. For PRE_INC, POST_INC, PRE_DEC
8195 and POST_DEC, we record an equivalence
8196 between the reload register and the operand
8197 on the optimistic assumption that we can make
8198 the equivalence hold. reload_as_needed must
8199 then either make it hold or invalidate the
8200 equivalence.
8202 PRE_MODIFY and POST_MODIFY addresses are reloaded
8203 somewhat differently, and allowing them here leads
8204 to problems. */
8205 : (GET_CODE (rld[r].out) != POST_MODIFY
8206 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8208 rtx reg;
8210 reg = reload_reg_rtx_for_output[r];
8211 if (reload_reg_rtx_reaches_end_p (reg, r))
8213 machine_mode mode = GET_MODE (reg);
8214 int regno = REGNO (reg);
8215 int nregs = REG_NREGS (reg);
8216 rtx out = (REG_P (rld[r].out)
8217 ? rld[r].out
8218 : rld[r].out_reg
8219 ? rld[r].out_reg
8220 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8221 int out_regno = REGNO (out);
8222 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8223 : hard_regno_nregs (out_regno, mode));
8224 bool piecemeal;
8226 spill_reg_store[regno] = new_spill_reg_store[regno];
8227 spill_reg_stored_to[regno] = out;
8228 reg_last_reload_reg[out_regno] = reg;
8230 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8231 && nregs == out_nregs
8232 && inherit_piecemeal_p (out_regno, regno, mode));
8234 /* If OUT_REGNO is a hard register, it may occupy more than
8235 one register. If it does, say what is in the
8236 rest of the registers assuming that both registers
8237 agree on how many words the object takes. If not,
8238 invalidate the subsequent registers. */
8240 if (HARD_REGISTER_NUM_P (out_regno))
8241 for (k = 1; k < out_nregs; k++)
8242 reg_last_reload_reg[out_regno + k]
8243 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8245 /* Now do the inverse operation. */
8246 for (k = 0; k < nregs; k++)
8248 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8249 reg_reloaded_contents[regno + k]
8250 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8251 ? out_regno
8252 : out_regno + k);
8253 reg_reloaded_insn[regno + k] = insn;
8254 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8255 if (targetm.hard_regno_call_part_clobbered (regno + k,
8256 mode))
8257 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8258 regno + k);
8259 else
8260 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8261 regno + k);
8265 /* Maybe the spill reg contains a copy of reload_in. Only do
8266 something if there will not be an output reload for
8267 the register being reloaded. */
8268 else if (rld[r].out_reg == 0
8269 && rld[r].in != 0
8270 && ((REG_P (rld[r].in)
8271 && !HARD_REGISTER_P (rld[r].in)
8272 && !REGNO_REG_SET_P (&reg_has_output_reload,
8273 REGNO (rld[r].in)))
8274 || (REG_P (rld[r].in_reg)
8275 && !REGNO_REG_SET_P (&reg_has_output_reload,
8276 REGNO (rld[r].in_reg))))
8277 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8279 rtx reg;
8281 reg = reload_reg_rtx_for_input[r];
8282 if (reload_reg_rtx_reaches_end_p (reg, r))
8284 machine_mode mode;
8285 int regno;
8286 int nregs;
8287 int in_regno;
8288 int in_nregs;
8289 rtx in;
8290 bool piecemeal;
8292 mode = GET_MODE (reg);
8293 regno = REGNO (reg);
8294 nregs = REG_NREGS (reg);
8295 if (REG_P (rld[r].in)
8296 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8297 in = rld[r].in;
8298 else if (REG_P (rld[r].in_reg))
8299 in = rld[r].in_reg;
8300 else
8301 in = XEXP (rld[r].in_reg, 0);
8302 in_regno = REGNO (in);
8304 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8305 : hard_regno_nregs (in_regno, mode));
8307 reg_last_reload_reg[in_regno] = reg;
8309 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8310 && nregs == in_nregs
8311 && inherit_piecemeal_p (regno, in_regno, mode));
8313 if (HARD_REGISTER_NUM_P (in_regno))
8314 for (k = 1; k < in_nregs; k++)
8315 reg_last_reload_reg[in_regno + k]
8316 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8318 /* Unless we inherited this reload, show we haven't
8319 recently done a store.
8320 Previous stores of inherited auto_inc expressions
8321 also have to be discarded. */
8322 if (! reload_inherited[r]
8323 || (rld[r].out && ! rld[r].out_reg))
8324 spill_reg_store[regno] = 0;
8326 for (k = 0; k < nregs; k++)
8328 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8329 reg_reloaded_contents[regno + k]
8330 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8331 ? in_regno
8332 : in_regno + k);
8333 reg_reloaded_insn[regno + k] = insn;
8334 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8335 if (targetm.hard_regno_call_part_clobbered (regno + k,
8336 mode))
8337 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8338 regno + k);
8339 else
8340 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8341 regno + k);
8347 /* The following if-statement was #if 0'd in 1.34 (or before...).
8348 It's reenabled in 1.35 because supposedly nothing else
8349 deals with this problem. */
8351 /* If a register gets output-reloaded from a non-spill register,
8352 that invalidates any previous reloaded copy of it.
8353 But forget_old_reloads_1 won't get to see it, because
8354 it thinks only about the original insn. So invalidate it here.
8355 Also do the same thing for RELOAD_OTHER constraints where the
8356 output is discarded. */
8357 if (i < 0
8358 && ((rld[r].out != 0
8359 && (REG_P (rld[r].out)
8360 || (MEM_P (rld[r].out)
8361 && REG_P (rld[r].out_reg))))
8362 || (rld[r].out == 0 && rld[r].out_reg
8363 && REG_P (rld[r].out_reg))))
8365 rtx out = ((rld[r].out && REG_P (rld[r].out))
8366 ? rld[r].out : rld[r].out_reg);
8367 int out_regno = REGNO (out);
8368 machine_mode mode = GET_MODE (out);
8370 /* REG_RTX is now set or clobbered by the main instruction.
8371 As the comment above explains, forget_old_reloads_1 only
8372 sees the original instruction, and there is no guarantee
8373 that the original instruction also clobbered REG_RTX.
8374 For example, if find_reloads sees that the input side of
8375 a matched operand pair dies in this instruction, it may
8376 use the input register as the reload register.
8378 Calling forget_old_reloads_1 is a waste of effort if
8379 REG_RTX is also the output register.
8381 If we know that REG_RTX holds the value of a pseudo
8382 register, the code after the call will record that fact. */
8383 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8384 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8386 if (!HARD_REGISTER_NUM_P (out_regno))
8388 rtx src_reg;
8389 rtx_insn *store_insn = NULL;
8391 reg_last_reload_reg[out_regno] = 0;
8393 /* If we can find a hard register that is stored, record
8394 the storing insn so that we may delete this insn with
8395 delete_output_reload. */
8396 src_reg = reload_reg_rtx_for_output[r];
8398 if (src_reg)
8400 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8401 store_insn = new_spill_reg_store[REGNO (src_reg)];
8402 else
8403 src_reg = NULL_RTX;
8405 else
8407 /* If this is an optional reload, try to find the
8408 source reg from an input reload. */
8409 rtx set = single_set (insn);
8410 if (set && SET_DEST (set) == rld[r].out)
8412 int k;
8414 src_reg = SET_SRC (set);
8415 store_insn = insn;
8416 for (k = 0; k < n_reloads; k++)
8418 if (rld[k].in == src_reg)
8420 src_reg = reload_reg_rtx_for_input[k];
8421 break;
8426 if (src_reg && REG_P (src_reg)
8427 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8429 int src_regno, src_nregs, k;
8430 rtx note;
8432 gcc_assert (GET_MODE (src_reg) == mode);
8433 src_regno = REGNO (src_reg);
8434 src_nregs = hard_regno_nregs (src_regno, mode);
8435 /* The place where to find a death note varies with
8436 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8437 necessarily checked exactly in the code that moves
8438 notes, so just check both locations. */
8439 note = find_regno_note (insn, REG_DEAD, src_regno);
8440 if (! note && store_insn)
8441 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8442 for (k = 0; k < src_nregs; k++)
8444 spill_reg_store[src_regno + k] = store_insn;
8445 spill_reg_stored_to[src_regno + k] = out;
8446 reg_reloaded_contents[src_regno + k] = out_regno;
8447 reg_reloaded_insn[src_regno + k] = store_insn;
8448 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8449 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8450 if (targetm.hard_regno_call_part_clobbered
8451 (src_regno + k, mode))
8452 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8453 src_regno + k);
8454 else
8455 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8456 src_regno + k);
8457 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8458 if (note)
8459 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8460 else
8461 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8463 reg_last_reload_reg[out_regno] = src_reg;
8464 /* We have to set reg_has_output_reload here, or else
8465 forget_old_reloads_1 will clear reg_last_reload_reg
8466 right away. */
8467 SET_REGNO_REG_SET (&reg_has_output_reload,
8468 out_regno);
8471 else
8473 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8475 for (k = 0; k < out_nregs; k++)
8476 reg_last_reload_reg[out_regno + k] = 0;
8480 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8483 /* Go through the motions to emit INSN and test if it is strictly valid.
8484 Return the emitted insn if valid, else return NULL. */
8486 static rtx_insn *
8487 emit_insn_if_valid_for_reload (rtx pat)
8489 rtx_insn *last = get_last_insn ();
8490 int code;
8492 rtx_insn *insn = emit_insn (pat);
8493 code = recog_memoized (insn);
8495 if (code >= 0)
8497 extract_insn (insn);
8498 /* We want constrain operands to treat this insn strictly in its
8499 validity determination, i.e., the way it would after reload has
8500 completed. */
8501 if (constrain_operands (1, get_enabled_alternatives (insn)))
8502 return insn;
8505 delete_insns_since (last);
8506 return NULL;
8509 /* Emit code to perform a reload from IN (which may be a reload register) to
8510 OUT (which may also be a reload register). IN or OUT is from operand
8511 OPNUM with reload type TYPE.
8513 Returns first insn emitted. */
8515 static rtx_insn *
8516 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8518 rtx_insn *last = get_last_insn ();
8519 rtx_insn *tem;
8520 rtx tem1, tem2;
8522 /* If IN is a paradoxical SUBREG, remove it and try to put the
8523 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8524 if (!strip_paradoxical_subreg (&in, &out))
8525 strip_paradoxical_subreg (&out, &in);
8527 /* How to do this reload can get quite tricky. Normally, we are being
8528 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8529 register that didn't get a hard register. In that case we can just
8530 call emit_move_insn.
8532 We can also be asked to reload a PLUS that adds a register or a MEM to
8533 another register, constant or MEM. This can occur during frame pointer
8534 elimination and while reloading addresses. This case is handled by
8535 trying to emit a single insn to perform the add. If it is not valid,
8536 we use a two insn sequence.
8538 Or we can be asked to reload an unary operand that was a fragment of
8539 an addressing mode, into a register. If it isn't recognized as-is,
8540 we try making the unop operand and the reload-register the same:
8541 (set reg:X (unop:X expr:Y))
8542 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8544 Finally, we could be called to handle an 'o' constraint by putting
8545 an address into a register. In that case, we first try to do this
8546 with a named pattern of "reload_load_address". If no such pattern
8547 exists, we just emit a SET insn and hope for the best (it will normally
8548 be valid on machines that use 'o').
8550 This entire process is made complex because reload will never
8551 process the insns we generate here and so we must ensure that
8552 they will fit their constraints and also by the fact that parts of
8553 IN might be being reloaded separately and replaced with spill registers.
8554 Because of this, we are, in some sense, just guessing the right approach
8555 here. The one listed above seems to work.
8557 ??? At some point, this whole thing needs to be rethought. */
8559 if (GET_CODE (in) == PLUS
8560 && (REG_P (XEXP (in, 0))
8561 || GET_CODE (XEXP (in, 0)) == SUBREG
8562 || MEM_P (XEXP (in, 0)))
8563 && (REG_P (XEXP (in, 1))
8564 || GET_CODE (XEXP (in, 1)) == SUBREG
8565 || CONSTANT_P (XEXP (in, 1))
8566 || MEM_P (XEXP (in, 1))))
8568 /* We need to compute the sum of a register or a MEM and another
8569 register, constant, or MEM, and put it into the reload
8570 register. The best possible way of doing this is if the machine
8571 has a three-operand ADD insn that accepts the required operands.
8573 The simplest approach is to try to generate such an insn and see if it
8574 is recognized and matches its constraints. If so, it can be used.
8576 It might be better not to actually emit the insn unless it is valid,
8577 but we need to pass the insn as an operand to `recog' and
8578 `extract_insn' and it is simpler to emit and then delete the insn if
8579 not valid than to dummy things up. */
8581 rtx op0, op1, tem;
8582 rtx_insn *insn;
8583 enum insn_code code;
8585 op0 = find_replacement (&XEXP (in, 0));
8586 op1 = find_replacement (&XEXP (in, 1));
8588 /* Since constraint checking is strict, commutativity won't be
8589 checked, so we need to do that here to avoid spurious failure
8590 if the add instruction is two-address and the second operand
8591 of the add is the same as the reload reg, which is frequently
8592 the case. If the insn would be A = B + A, rearrange it so
8593 it will be A = A + B as constrain_operands expects. */
8595 if (REG_P (XEXP (in, 1))
8596 && REGNO (out) == REGNO (XEXP (in, 1)))
8597 tem = op0, op0 = op1, op1 = tem;
8599 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8600 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8602 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8603 if (insn)
8604 return insn;
8606 /* If that failed, we must use a conservative two-insn sequence.
8608 Use a move to copy one operand into the reload register. Prefer
8609 to reload a constant, MEM or pseudo since the move patterns can
8610 handle an arbitrary operand. If OP1 is not a constant, MEM or
8611 pseudo and OP1 is not a valid operand for an add instruction, then
8612 reload OP1.
8614 After reloading one of the operands into the reload register, add
8615 the reload register to the output register.
8617 If there is another way to do this for a specific machine, a
8618 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8619 we emit below. */
8621 code = optab_handler (add_optab, GET_MODE (out));
8623 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8624 || (REG_P (op1)
8625 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8626 || (code != CODE_FOR_nothing
8627 && !insn_operand_matches (code, 2, op1)))
8628 tem = op0, op0 = op1, op1 = tem;
8630 gen_reload (out, op0, opnum, type);
8632 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8633 This fixes a problem on the 32K where the stack pointer cannot
8634 be used as an operand of an add insn. */
8636 if (rtx_equal_p (op0, op1))
8637 op1 = out;
8639 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8640 if (insn)
8642 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8643 set_dst_reg_note (insn, REG_EQUIV, in, out);
8644 return insn;
8647 /* If that failed, copy the address register to the reload register.
8648 Then add the constant to the reload register. */
8650 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8651 gen_reload (out, op1, opnum, type);
8652 insn = emit_insn (gen_add2_insn (out, op0));
8653 set_dst_reg_note (insn, REG_EQUIV, in, out);
8656 /* If we need a memory location to do the move, do it that way. */
8657 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8658 (REG_P (tem1) && REG_P (tem2)))
8659 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8660 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8661 && targetm.secondary_memory_needed (GET_MODE (out),
8662 REGNO_REG_CLASS (REGNO (tem1)),
8663 REGNO_REG_CLASS (REGNO (tem2))))
8665 /* Get the memory to use and rewrite both registers to its mode. */
8666 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8668 if (GET_MODE (loc) != GET_MODE (out))
8669 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8671 if (GET_MODE (loc) != GET_MODE (in))
8672 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8674 gen_reload (loc, in, opnum, type);
8675 gen_reload (out, loc, opnum, type);
8677 else if (REG_P (out) && UNARY_P (in))
8679 rtx op1;
8680 rtx out_moded;
8681 rtx_insn *set;
8683 op1 = find_replacement (&XEXP (in, 0));
8684 if (op1 != XEXP (in, 0))
8685 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8687 /* First, try a plain SET. */
8688 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8689 if (set)
8690 return set;
8692 /* If that failed, move the inner operand to the reload
8693 register, and try the same unop with the inner expression
8694 replaced with the reload register. */
8696 if (GET_MODE (op1) != GET_MODE (out))
8697 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8698 else
8699 out_moded = out;
8701 gen_reload (out_moded, op1, opnum, type);
8703 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8704 out_moded));
8705 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8706 if (insn)
8708 set_unique_reg_note (insn, REG_EQUIV, in);
8709 return insn;
8712 fatal_insn ("failure trying to reload:", set);
8714 /* If IN is a simple operand, use gen_move_insn. */
8715 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8717 tem = emit_insn (gen_move_insn (out, in));
8718 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8719 mark_jump_label (in, tem, 0);
8722 else if (targetm.have_reload_load_address ())
8723 emit_insn (targetm.gen_reload_load_address (out, in));
8725 /* Otherwise, just write (set OUT IN) and hope for the best. */
8726 else
8727 emit_insn (gen_rtx_SET (out, in));
8729 /* Return the first insn emitted.
8730 We can not just return get_last_insn, because there may have
8731 been multiple instructions emitted. Also note that gen_move_insn may
8732 emit more than one insn itself, so we can not assume that there is one
8733 insn emitted per emit_insn_before call. */
8735 return last ? NEXT_INSN (last) : get_insns ();
8738 /* Delete a previously made output-reload whose result we now believe
8739 is not needed. First we double-check.
8741 INSN is the insn now being processed.
8742 LAST_RELOAD_REG is the hard register number for which we want to delete
8743 the last output reload.
8744 J is the reload-number that originally used REG. The caller has made
8745 certain that reload J doesn't use REG any longer for input.
8746 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8748 static void
8749 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8750 rtx new_reload_reg)
8752 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8753 rtx reg = spill_reg_stored_to[last_reload_reg];
8754 int k;
8755 int n_occurrences;
8756 int n_inherited = 0;
8757 rtx substed;
8758 unsigned regno;
8759 int nregs;
8761 /* It is possible that this reload has been only used to set another reload
8762 we eliminated earlier and thus deleted this instruction too. */
8763 if (output_reload_insn->deleted ())
8764 return;
8766 /* Get the raw pseudo-register referred to. */
8768 while (GET_CODE (reg) == SUBREG)
8769 reg = SUBREG_REG (reg);
8770 substed = reg_equiv_memory_loc (REGNO (reg));
8772 /* This is unsafe if the operand occurs more often in the current
8773 insn than it is inherited. */
8774 for (k = n_reloads - 1; k >= 0; k--)
8776 rtx reg2 = rld[k].in;
8777 if (! reg2)
8778 continue;
8779 if (MEM_P (reg2) || reload_override_in[k])
8780 reg2 = rld[k].in_reg;
8782 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8783 reg2 = XEXP (rld[k].in_reg, 0);
8785 while (GET_CODE (reg2) == SUBREG)
8786 reg2 = SUBREG_REG (reg2);
8787 if (rtx_equal_p (reg2, reg))
8789 if (reload_inherited[k] || reload_override_in[k] || k == j)
8790 n_inherited++;
8791 else
8792 return;
8795 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8796 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8797 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8798 reg, 0);
8799 if (substed)
8800 n_occurrences += count_occurrences (PATTERN (insn),
8801 eliminate_regs (substed, VOIDmode,
8802 NULL_RTX), 0);
8803 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8805 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8806 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8808 if (n_occurrences > n_inherited)
8809 return;
8811 regno = REGNO (reg);
8812 nregs = REG_NREGS (reg);
8814 /* If the pseudo-reg we are reloading is no longer referenced
8815 anywhere between the store into it and here,
8816 and we're within the same basic block, then the value can only
8817 pass through the reload reg and end up here.
8818 Otherwise, give up--return. */
8819 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8820 i1 != insn; i1 = NEXT_INSN (i1))
8822 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8823 return;
8824 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8825 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8827 /* If this is USE in front of INSN, we only have to check that
8828 there are no more references than accounted for by inheritance. */
8829 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8831 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8832 i1 = NEXT_INSN (i1);
8834 if (n_occurrences <= n_inherited && i1 == insn)
8835 break;
8836 return;
8840 /* We will be deleting the insn. Remove the spill reg information. */
8841 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8843 spill_reg_store[last_reload_reg + k] = 0;
8844 spill_reg_stored_to[last_reload_reg + k] = 0;
8847 /* The caller has already checked that REG dies or is set in INSN.
8848 It has also checked that we are optimizing, and thus some
8849 inaccuracies in the debugging information are acceptable.
8850 So we could just delete output_reload_insn. But in some cases
8851 we can improve the debugging information without sacrificing
8852 optimization - maybe even improving the code: See if the pseudo
8853 reg has been completely replaced with reload regs. If so, delete
8854 the store insn and forget we had a stack slot for the pseudo. */
8855 if (rld[j].out != rld[j].in
8856 && REG_N_DEATHS (REGNO (reg)) == 1
8857 && REG_N_SETS (REGNO (reg)) == 1
8858 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8859 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8861 rtx_insn *i2;
8863 /* We know that it was used only between here and the beginning of
8864 the current basic block. (We also know that the last use before
8865 INSN was the output reload we are thinking of deleting, but never
8866 mind that.) Search that range; see if any ref remains. */
8867 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8869 rtx set = single_set (i2);
8871 /* Uses which just store in the pseudo don't count,
8872 since if they are the only uses, they are dead. */
8873 if (set != 0 && SET_DEST (set) == reg)
8874 continue;
8875 if (LABEL_P (i2) || JUMP_P (i2))
8876 break;
8877 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8878 && reg_mentioned_p (reg, PATTERN (i2)))
8880 /* Some other ref remains; just delete the output reload we
8881 know to be dead. */
8882 delete_address_reloads (output_reload_insn, insn);
8883 delete_insn (output_reload_insn);
8884 return;
8888 /* Delete the now-dead stores into this pseudo. Note that this
8889 loop also takes care of deleting output_reload_insn. */
8890 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8892 rtx set = single_set (i2);
8894 if (set != 0 && SET_DEST (set) == reg)
8896 delete_address_reloads (i2, insn);
8897 delete_insn (i2);
8899 if (LABEL_P (i2) || JUMP_P (i2))
8900 break;
8903 /* For the debugging info, say the pseudo lives in this reload reg. */
8904 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8905 if (ira_conflicts_p)
8906 /* Inform IRA about the change. */
8907 ira_mark_allocation_change (REGNO (reg));
8908 alter_reg (REGNO (reg), -1, false);
8910 else
8912 delete_address_reloads (output_reload_insn, insn);
8913 delete_insn (output_reload_insn);
8917 /* We are going to delete DEAD_INSN. Recursively delete loads of
8918 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8919 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8920 static void
8921 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8923 rtx set = single_set (dead_insn);
8924 rtx set2, dst;
8925 rtx_insn *prev, *next;
8926 if (set)
8928 rtx dst = SET_DEST (set);
8929 if (MEM_P (dst))
8930 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8932 /* If we deleted the store from a reloaded post_{in,de}c expression,
8933 we can delete the matching adds. */
8934 prev = PREV_INSN (dead_insn);
8935 next = NEXT_INSN (dead_insn);
8936 if (! prev || ! next)
8937 return;
8938 set = single_set (next);
8939 set2 = single_set (prev);
8940 if (! set || ! set2
8941 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8942 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8943 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8944 return;
8945 dst = SET_DEST (set);
8946 if (! rtx_equal_p (dst, SET_DEST (set2))
8947 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8948 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8949 || (INTVAL (XEXP (SET_SRC (set), 1))
8950 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8951 return;
8952 delete_related_insns (prev);
8953 delete_related_insns (next);
8956 /* Subfunction of delete_address_reloads: process registers found in X. */
8957 static void
8958 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8960 rtx_insn *prev, *i2;
8961 rtx set, dst;
8962 int i, j;
8963 enum rtx_code code = GET_CODE (x);
8965 if (code != REG)
8967 const char *fmt = GET_RTX_FORMAT (code);
8968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8970 if (fmt[i] == 'e')
8971 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8972 else if (fmt[i] == 'E')
8974 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8975 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8976 current_insn);
8979 return;
8982 if (spill_reg_order[REGNO (x)] < 0)
8983 return;
8985 /* Scan backwards for the insn that sets x. This might be a way back due
8986 to inheritance. */
8987 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8989 code = GET_CODE (prev);
8990 if (code == CODE_LABEL || code == JUMP_INSN)
8991 return;
8992 if (!INSN_P (prev))
8993 continue;
8994 if (reg_set_p (x, PATTERN (prev)))
8995 break;
8996 if (reg_referenced_p (x, PATTERN (prev)))
8997 return;
8999 if (! prev || INSN_UID (prev) < reload_first_uid)
9000 return;
9001 /* Check that PREV only sets the reload register. */
9002 set = single_set (prev);
9003 if (! set)
9004 return;
9005 dst = SET_DEST (set);
9006 if (!REG_P (dst)
9007 || ! rtx_equal_p (dst, x))
9008 return;
9009 if (! reg_set_p (dst, PATTERN (dead_insn)))
9011 /* Check if DST was used in a later insn -
9012 it might have been inherited. */
9013 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9015 if (LABEL_P (i2))
9016 break;
9017 if (! INSN_P (i2))
9018 continue;
9019 if (reg_referenced_p (dst, PATTERN (i2)))
9021 /* If there is a reference to the register in the current insn,
9022 it might be loaded in a non-inherited reload. If no other
9023 reload uses it, that means the register is set before
9024 referenced. */
9025 if (i2 == current_insn)
9027 for (j = n_reloads - 1; j >= 0; j--)
9028 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9029 || reload_override_in[j] == dst)
9030 return;
9031 for (j = n_reloads - 1; j >= 0; j--)
9032 if (rld[j].in && rld[j].reg_rtx == dst)
9033 break;
9034 if (j >= 0)
9035 break;
9037 return;
9039 if (JUMP_P (i2))
9040 break;
9041 /* If DST is still live at CURRENT_INSN, check if it is used for
9042 any reload. Note that even if CURRENT_INSN sets DST, we still
9043 have to check the reloads. */
9044 if (i2 == current_insn)
9046 for (j = n_reloads - 1; j >= 0; j--)
9047 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9048 || reload_override_in[j] == dst)
9049 return;
9050 /* ??? We can't finish the loop here, because dst might be
9051 allocated to a pseudo in this block if no reload in this
9052 block needs any of the classes containing DST - see
9053 spill_hard_reg. There is no easy way to tell this, so we
9054 have to scan till the end of the basic block. */
9056 if (reg_set_p (dst, PATTERN (i2)))
9057 break;
9060 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9061 reg_reloaded_contents[REGNO (dst)] = -1;
9062 delete_insn (prev);
9065 /* Output reload-insns to reload VALUE into RELOADREG.
9066 VALUE is an autoincrement or autodecrement RTX whose operand
9067 is a register or memory location;
9068 so reloading involves incrementing that location.
9069 IN is either identical to VALUE, or some cheaper place to reload from.
9071 INC_AMOUNT is the number to increment or decrement by (always positive).
9072 This cannot be deduced from VALUE. */
9074 static void
9075 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9077 /* REG or MEM to be copied and incremented. */
9078 rtx incloc = find_replacement (&XEXP (value, 0));
9079 /* Nonzero if increment after copying. */
9080 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9081 || GET_CODE (value) == POST_MODIFY);
9082 rtx_insn *last;
9083 rtx inc;
9084 rtx_insn *add_insn;
9085 int code;
9086 rtx real_in = in == value ? incloc : in;
9088 /* No hard register is equivalent to this register after
9089 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9090 we could inc/dec that register as well (maybe even using it for
9091 the source), but I'm not sure it's worth worrying about. */
9092 if (REG_P (incloc))
9093 reg_last_reload_reg[REGNO (incloc)] = 0;
9095 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9097 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9098 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9100 else
9102 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9103 inc_amount = -inc_amount;
9105 inc = GEN_INT (inc_amount);
9108 /* If this is post-increment, first copy the location to the reload reg. */
9109 if (post && real_in != reloadreg)
9110 emit_insn (gen_move_insn (reloadreg, real_in));
9112 if (in == value)
9114 /* See if we can directly increment INCLOC. Use a method similar to
9115 that in gen_reload. */
9117 last = get_last_insn ();
9118 add_insn = emit_insn (gen_rtx_SET (incloc,
9119 gen_rtx_PLUS (GET_MODE (incloc),
9120 incloc, inc)));
9122 code = recog_memoized (add_insn);
9123 if (code >= 0)
9125 extract_insn (add_insn);
9126 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9128 /* If this is a pre-increment and we have incremented the value
9129 where it lives, copy the incremented value to RELOADREG to
9130 be used as an address. */
9132 if (! post)
9133 emit_insn (gen_move_insn (reloadreg, incloc));
9134 return;
9137 delete_insns_since (last);
9140 /* If couldn't do the increment directly, must increment in RELOADREG.
9141 The way we do this depends on whether this is pre- or post-increment.
9142 For pre-increment, copy INCLOC to the reload register, increment it
9143 there, then save back. */
9145 if (! post)
9147 if (in != reloadreg)
9148 emit_insn (gen_move_insn (reloadreg, real_in));
9149 emit_insn (gen_add2_insn (reloadreg, inc));
9150 emit_insn (gen_move_insn (incloc, reloadreg));
9152 else
9154 /* Postincrement.
9155 Because this might be a jump insn or a compare, and because RELOADREG
9156 may not be available after the insn in an input reload, we must do
9157 the incrementation before the insn being reloaded for.
9159 We have already copied IN to RELOADREG. Increment the copy in
9160 RELOADREG, save that back, then decrement RELOADREG so it has
9161 the original value. */
9163 emit_insn (gen_add2_insn (reloadreg, inc));
9164 emit_insn (gen_move_insn (incloc, reloadreg));
9165 if (CONST_INT_P (inc))
9166 emit_insn (gen_add2_insn (reloadreg,
9167 gen_int_mode (-INTVAL (inc),
9168 GET_MODE (reloadreg))));
9169 else
9170 emit_insn (gen_sub2_insn (reloadreg, inc));
9174 static void
9175 add_auto_inc_notes (rtx_insn *insn, rtx x)
9177 enum rtx_code code = GET_CODE (x);
9178 const char *fmt;
9179 int i, j;
9181 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9183 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9184 return;
9187 /* Scan all the operand sub-expressions. */
9188 fmt = GET_RTX_FORMAT (code);
9189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9191 if (fmt[i] == 'e')
9192 add_auto_inc_notes (insn, XEXP (x, i));
9193 else if (fmt[i] == 'E')
9194 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9195 add_auto_inc_notes (insn, XVECEXP (x, i, j));