Convert STARTING_FRAME_OFFSET to a hook
[official-gcc.git] / gcc / config / rs6000 / rs6000.c
blob06713ad2b32acddee5936bd46afcff5dde554cde
1 /* Subroutines used for code generation on IBM RS/6000.
2 Copyright (C) 1991-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "memmodel.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "cfgloop.h"
31 #include "df.h"
32 #include "tm_p.h"
33 #include "stringpool.h"
34 #include "expmed.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "ira.h"
38 #include "recog.h"
39 #include "cgraph.h"
40 #include "diagnostic-core.h"
41 #include "insn-attr.h"
42 #include "flags.h"
43 #include "alias.h"
44 #include "fold-const.h"
45 #include "attribs.h"
46 #include "stor-layout.h"
47 #include "calls.h"
48 #include "print-tree.h"
49 #include "varasm.h"
50 #include "explow.h"
51 #include "expr.h"
52 #include "output.h"
53 #include "dbxout.h"
54 #include "common/common-target.h"
55 #include "langhooks.h"
56 #include "reload.h"
57 #include "sched-int.h"
58 #include "gimplify.h"
59 #include "gimple-fold.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "gimple-walk.h"
63 #include "intl.h"
64 #include "params.h"
65 #include "tm-constrs.h"
66 #include "tree-vectorizer.h"
67 #include "target-globals.h"
68 #include "builtins.h"
69 #include "context.h"
70 #include "tree-pass.h"
71 #include "except.h"
72 #if TARGET_XCOFF
73 #include "xcoffout.h" /* get declarations of xcoff_*_section_name */
74 #endif
75 #if TARGET_MACHO
76 #include "gstab.h" /* for N_SLINE */
77 #endif
78 #include "case-cfn-macros.h"
79 #include "ppc-auxv.h"
80 #include "tree-ssa-propagate.h"
82 /* This file should be included last. */
83 #include "target-def.h"
85 #ifndef TARGET_NO_PROTOTYPE
86 #define TARGET_NO_PROTOTYPE 0
87 #endif
89 #define min(A,B) ((A) < (B) ? (A) : (B))
90 #define max(A,B) ((A) > (B) ? (A) : (B))
92 static pad_direction rs6000_function_arg_padding (machine_mode, const_tree);
94 /* Structure used to define the rs6000 stack */
95 typedef struct rs6000_stack {
96 int reload_completed; /* stack info won't change from here on */
97 int first_gp_reg_save; /* first callee saved GP register used */
98 int first_fp_reg_save; /* first callee saved FP register used */
99 int first_altivec_reg_save; /* first callee saved AltiVec register used */
100 int lr_save_p; /* true if the link reg needs to be saved */
101 int cr_save_p; /* true if the CR reg needs to be saved */
102 unsigned int vrsave_mask; /* mask of vec registers to save */
103 int push_p; /* true if we need to allocate stack space */
104 int calls_p; /* true if the function makes any calls */
105 int world_save_p; /* true if we're saving *everything*:
106 r13-r31, cr, f14-f31, vrsave, v20-v31 */
107 enum rs6000_abi abi; /* which ABI to use */
108 int gp_save_offset; /* offset to save GP regs from initial SP */
109 int fp_save_offset; /* offset to save FP regs from initial SP */
110 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
111 int lr_save_offset; /* offset to save LR from initial SP */
112 int cr_save_offset; /* offset to save CR from initial SP */
113 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
114 int varargs_save_offset; /* offset to save the varargs registers */
115 int ehrd_offset; /* offset to EH return data */
116 int ehcr_offset; /* offset to EH CR field data */
117 int reg_size; /* register size (4 or 8) */
118 HOST_WIDE_INT vars_size; /* variable save area size */
119 int parm_size; /* outgoing parameter size */
120 int save_size; /* save area size */
121 int fixed_size; /* fixed size of stack frame */
122 int gp_size; /* size of saved GP registers */
123 int fp_size; /* size of saved FP registers */
124 int altivec_size; /* size of saved AltiVec registers */
125 int cr_size; /* size to hold CR if not in fixed area */
126 int vrsave_size; /* size to hold VRSAVE */
127 int altivec_padding_size; /* size of altivec alignment padding */
128 HOST_WIDE_INT total_size; /* total bytes allocated for stack */
129 int savres_strategy;
130 } rs6000_stack_t;
132 /* A C structure for machine-specific, per-function data.
133 This is added to the cfun structure. */
134 typedef struct GTY(()) machine_function
136 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
137 int ra_needs_full_frame;
138 /* Flags if __builtin_return_address (0) was used. */
139 int ra_need_lr;
140 /* Cache lr_save_p after expansion of builtin_eh_return. */
141 int lr_save_state;
142 /* Whether we need to save the TOC to the reserved stack location in the
143 function prologue. */
144 bool save_toc_in_prologue;
145 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
146 varargs save area. */
147 HOST_WIDE_INT varargs_save_offset;
148 /* Alternative internal arg pointer for -fsplit-stack. */
149 rtx split_stack_arg_pointer;
150 bool split_stack_argp_used;
151 /* Flag if r2 setup is needed with ELFv2 ABI. */
152 bool r2_setup_needed;
153 /* The number of components we use for separate shrink-wrapping. */
154 int n_components;
155 /* The components already handled by separate shrink-wrapping, which should
156 not be considered by the prologue and epilogue. */
157 bool gpr_is_wrapped_separately[32];
158 bool fpr_is_wrapped_separately[32];
159 bool lr_is_wrapped_separately;
160 } machine_function;
162 /* Support targetm.vectorize.builtin_mask_for_load. */
163 static GTY(()) tree altivec_builtin_mask_for_load;
165 /* Set to nonzero once AIX common-mode calls have been defined. */
166 static GTY(()) int common_mode_defined;
168 /* Label number of label created for -mrelocatable, to call to so we can
169 get the address of the GOT section */
170 static int rs6000_pic_labelno;
172 #ifdef USING_ELFOS_H
173 /* Counter for labels which are to be placed in .fixup. */
174 int fixuplabelno = 0;
175 #endif
177 /* Whether to use variant of AIX ABI for PowerPC64 Linux. */
178 int dot_symbols;
180 /* Specify the machine mode that pointers have. After generation of rtl, the
181 compiler makes no further distinction between pointers and any other objects
182 of this machine mode. */
183 scalar_int_mode rs6000_pmode;
185 /* Width in bits of a pointer. */
186 unsigned rs6000_pointer_size;
188 #ifdef HAVE_AS_GNU_ATTRIBUTE
189 # ifndef HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE
190 # define HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE 0
191 # endif
192 /* Flag whether floating point values have been passed/returned.
193 Note that this doesn't say whether fprs are used, since the
194 Tag_GNU_Power_ABI_FP .gnu.attributes value this flag controls
195 should be set for soft-float values passed in gprs and ieee128
196 values passed in vsx registers. */
197 static bool rs6000_passes_float;
198 static bool rs6000_passes_long_double;
199 /* Flag whether vector values have been passed/returned. */
200 static bool rs6000_passes_vector;
201 /* Flag whether small (<= 8 byte) structures have been returned. */
202 static bool rs6000_returns_struct;
203 #endif
205 /* Value is TRUE if register/mode pair is acceptable. */
206 static bool rs6000_hard_regno_mode_ok_p
207 [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
209 /* Maximum number of registers needed for a given register class and mode. */
210 unsigned char rs6000_class_max_nregs[NUM_MACHINE_MODES][LIM_REG_CLASSES];
212 /* How many registers are needed for a given register and mode. */
213 unsigned char rs6000_hard_regno_nregs[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
215 /* Map register number to register class. */
216 enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
218 static int dbg_cost_ctrl;
220 /* Built in types. */
221 tree rs6000_builtin_types[RS6000_BTI_MAX];
222 tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
224 /* Flag to say the TOC is initialized */
225 int toc_initialized, need_toc_init;
226 char toc_label_name[10];
228 /* Cached value of rs6000_variable_issue. This is cached in
229 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
230 static short cached_can_issue_more;
232 static GTY(()) section *read_only_data_section;
233 static GTY(()) section *private_data_section;
234 static GTY(()) section *tls_data_section;
235 static GTY(()) section *tls_private_data_section;
236 static GTY(()) section *read_only_private_data_section;
237 static GTY(()) section *sdata2_section;
238 static GTY(()) section *toc_section;
240 struct builtin_description
242 const HOST_WIDE_INT mask;
243 const enum insn_code icode;
244 const char *const name;
245 const enum rs6000_builtins code;
248 /* Describe the vector unit used for modes. */
249 enum rs6000_vector rs6000_vector_unit[NUM_MACHINE_MODES];
250 enum rs6000_vector rs6000_vector_mem[NUM_MACHINE_MODES];
252 /* Register classes for various constraints that are based on the target
253 switches. */
254 enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
256 /* Describe the alignment of a vector. */
257 int rs6000_vector_align[NUM_MACHINE_MODES];
259 /* Map selected modes to types for builtins. */
260 static GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];
262 /* What modes to automatically generate reciprocal divide estimate (fre) and
263 reciprocal sqrt (frsqrte) for. */
264 unsigned char rs6000_recip_bits[MAX_MACHINE_MODE];
266 /* Masks to determine which reciprocal esitmate instructions to generate
267 automatically. */
268 enum rs6000_recip_mask {
269 RECIP_SF_DIV = 0x001, /* Use divide estimate */
270 RECIP_DF_DIV = 0x002,
271 RECIP_V4SF_DIV = 0x004,
272 RECIP_V2DF_DIV = 0x008,
274 RECIP_SF_RSQRT = 0x010, /* Use reciprocal sqrt estimate. */
275 RECIP_DF_RSQRT = 0x020,
276 RECIP_V4SF_RSQRT = 0x040,
277 RECIP_V2DF_RSQRT = 0x080,
279 /* Various combination of flags for -mrecip=xxx. */
280 RECIP_NONE = 0,
281 RECIP_ALL = (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
282 | RECIP_V2DF_DIV | RECIP_SF_RSQRT | RECIP_DF_RSQRT
283 | RECIP_V4SF_RSQRT | RECIP_V2DF_RSQRT),
285 RECIP_HIGH_PRECISION = RECIP_ALL,
287 /* On low precision machines like the power5, don't enable double precision
288 reciprocal square root estimate, since it isn't accurate enough. */
289 RECIP_LOW_PRECISION = (RECIP_ALL & ~(RECIP_DF_RSQRT | RECIP_V2DF_RSQRT))
292 /* -mrecip options. */
293 static struct
295 const char *string; /* option name */
296 unsigned int mask; /* mask bits to set */
297 } recip_options[] = {
298 { "all", RECIP_ALL },
299 { "none", RECIP_NONE },
300 { "div", (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
301 | RECIP_V2DF_DIV) },
302 { "divf", (RECIP_SF_DIV | RECIP_V4SF_DIV) },
303 { "divd", (RECIP_DF_DIV | RECIP_V2DF_DIV) },
304 { "rsqrt", (RECIP_SF_RSQRT | RECIP_DF_RSQRT | RECIP_V4SF_RSQRT
305 | RECIP_V2DF_RSQRT) },
306 { "rsqrtf", (RECIP_SF_RSQRT | RECIP_V4SF_RSQRT) },
307 { "rsqrtd", (RECIP_DF_RSQRT | RECIP_V2DF_RSQRT) },
310 /* Used by __builtin_cpu_is(), mapping from PLATFORM names to values. */
311 static const struct
313 const char *cpu;
314 unsigned int cpuid;
315 } cpu_is_info[] = {
316 { "power9", PPC_PLATFORM_POWER9 },
317 { "power8", PPC_PLATFORM_POWER8 },
318 { "power7", PPC_PLATFORM_POWER7 },
319 { "power6x", PPC_PLATFORM_POWER6X },
320 { "power6", PPC_PLATFORM_POWER6 },
321 { "power5+", PPC_PLATFORM_POWER5_PLUS },
322 { "power5", PPC_PLATFORM_POWER5 },
323 { "ppc970", PPC_PLATFORM_PPC970 },
324 { "power4", PPC_PLATFORM_POWER4 },
325 { "ppca2", PPC_PLATFORM_PPCA2 },
326 { "ppc476", PPC_PLATFORM_PPC476 },
327 { "ppc464", PPC_PLATFORM_PPC464 },
328 { "ppc440", PPC_PLATFORM_PPC440 },
329 { "ppc405", PPC_PLATFORM_PPC405 },
330 { "ppc-cell-be", PPC_PLATFORM_CELL_BE }
333 /* Used by __builtin_cpu_supports(), mapping from HWCAP names to masks. */
334 static const struct
336 const char *hwcap;
337 int mask;
338 unsigned int id;
339 } cpu_supports_info[] = {
340 /* AT_HWCAP masks. */
341 { "4xxmac", PPC_FEATURE_HAS_4xxMAC, 0 },
342 { "altivec", PPC_FEATURE_HAS_ALTIVEC, 0 },
343 { "arch_2_05", PPC_FEATURE_ARCH_2_05, 0 },
344 { "arch_2_06", PPC_FEATURE_ARCH_2_06, 0 },
345 { "archpmu", PPC_FEATURE_PERFMON_COMPAT, 0 },
346 { "booke", PPC_FEATURE_BOOKE, 0 },
347 { "cellbe", PPC_FEATURE_CELL_BE, 0 },
348 { "dfp", PPC_FEATURE_HAS_DFP, 0 },
349 { "efpdouble", PPC_FEATURE_HAS_EFP_DOUBLE, 0 },
350 { "efpsingle", PPC_FEATURE_HAS_EFP_SINGLE, 0 },
351 { "fpu", PPC_FEATURE_HAS_FPU, 0 },
352 { "ic_snoop", PPC_FEATURE_ICACHE_SNOOP, 0 },
353 { "mmu", PPC_FEATURE_HAS_MMU, 0 },
354 { "notb", PPC_FEATURE_NO_TB, 0 },
355 { "pa6t", PPC_FEATURE_PA6T, 0 },
356 { "power4", PPC_FEATURE_POWER4, 0 },
357 { "power5", PPC_FEATURE_POWER5, 0 },
358 { "power5+", PPC_FEATURE_POWER5_PLUS, 0 },
359 { "power6x", PPC_FEATURE_POWER6_EXT, 0 },
360 { "ppc32", PPC_FEATURE_32, 0 },
361 { "ppc601", PPC_FEATURE_601_INSTR, 0 },
362 { "ppc64", PPC_FEATURE_64, 0 },
363 { "ppcle", PPC_FEATURE_PPC_LE, 0 },
364 { "smt", PPC_FEATURE_SMT, 0 },
365 { "spe", PPC_FEATURE_HAS_SPE, 0 },
366 { "true_le", PPC_FEATURE_TRUE_LE, 0 },
367 { "ucache", PPC_FEATURE_UNIFIED_CACHE, 0 },
368 { "vsx", PPC_FEATURE_HAS_VSX, 0 },
370 /* AT_HWCAP2 masks. */
371 { "arch_2_07", PPC_FEATURE2_ARCH_2_07, 1 },
372 { "dscr", PPC_FEATURE2_HAS_DSCR, 1 },
373 { "ebb", PPC_FEATURE2_HAS_EBB, 1 },
374 { "htm", PPC_FEATURE2_HAS_HTM, 1 },
375 { "htm-nosc", PPC_FEATURE2_HTM_NOSC, 1 },
376 { "isel", PPC_FEATURE2_HAS_ISEL, 1 },
377 { "tar", PPC_FEATURE2_HAS_TAR, 1 },
378 { "vcrypto", PPC_FEATURE2_HAS_VEC_CRYPTO, 1 },
379 { "arch_3_00", PPC_FEATURE2_ARCH_3_00, 1 },
380 { "ieee128", PPC_FEATURE2_HAS_IEEE128, 1 },
381 { "darn", PPC_FEATURE2_DARN, 1 },
382 { "scv", PPC_FEATURE2_SCV, 1 }
385 /* On PowerPC, we have a limited number of target clones that we care about
386 which means we can use an array to hold the options, rather than having more
387 elaborate data structures to identify each possible variation. Order the
388 clones from the default to the highest ISA. */
389 enum {
390 CLONE_DEFAULT = 0, /* default clone. */
391 CLONE_ISA_2_05, /* ISA 2.05 (power6). */
392 CLONE_ISA_2_06, /* ISA 2.06 (power7). */
393 CLONE_ISA_2_07, /* ISA 2.07 (power8). */
394 CLONE_ISA_3_00, /* ISA 3.00 (power9). */
395 CLONE_MAX
398 /* Map compiler ISA bits into HWCAP names. */
399 struct clone_map {
400 HOST_WIDE_INT isa_mask; /* rs6000_isa mask */
401 const char *name; /* name to use in __builtin_cpu_supports. */
404 static const struct clone_map rs6000_clone_map[CLONE_MAX] = {
405 { 0, "" }, /* Default options. */
406 { OPTION_MASK_CMPB, "arch_2_05" }, /* ISA 2.05 (power6). */
407 { OPTION_MASK_POPCNTD, "arch_2_06" }, /* ISA 2.06 (power7). */
408 { OPTION_MASK_P8_VECTOR, "arch_2_07" }, /* ISA 2.07 (power8). */
409 { OPTION_MASK_P9_VECTOR, "arch_3_00" }, /* ISA 3.00 (power9). */
413 /* Newer LIBCs explicitly export this symbol to declare that they provide
414 the AT_PLATFORM and AT_HWCAP/AT_HWCAP2 values in the TCB. We emit a
415 reference to this symbol whenever we expand a CPU builtin, so that
416 we never link against an old LIBC. */
417 const char *tcb_verification_symbol = "__parse_hwcap_and_convert_at_platform";
419 /* True if we have expanded a CPU builtin. */
420 bool cpu_builtin_p;
422 /* Pointer to function (in rs6000-c.c) that can define or undefine target
423 macros that have changed. Languages that don't support the preprocessor
424 don't link in rs6000-c.c, so we can't call it directly. */
425 void (*rs6000_target_modify_macros_ptr) (bool, HOST_WIDE_INT, HOST_WIDE_INT);
427 /* Simplfy register classes into simpler classifications. We assume
428 GPR_REG_TYPE - FPR_REG_TYPE are ordered so that we can use a simple range
429 check for standard register classes (gpr/floating/altivec/vsx) and
430 floating/vector classes (float/altivec/vsx). */
432 enum rs6000_reg_type {
433 NO_REG_TYPE,
434 PSEUDO_REG_TYPE,
435 GPR_REG_TYPE,
436 VSX_REG_TYPE,
437 ALTIVEC_REG_TYPE,
438 FPR_REG_TYPE,
439 SPR_REG_TYPE,
440 CR_REG_TYPE
443 /* Map register class to register type. */
444 static enum rs6000_reg_type reg_class_to_reg_type[N_REG_CLASSES];
446 /* First/last register type for the 'normal' register types (i.e. general
447 purpose, floating point, altivec, and VSX registers). */
448 #define IS_STD_REG_TYPE(RTYPE) IN_RANGE(RTYPE, GPR_REG_TYPE, FPR_REG_TYPE)
450 #define IS_FP_VECT_REG_TYPE(RTYPE) IN_RANGE(RTYPE, VSX_REG_TYPE, FPR_REG_TYPE)
453 /* Register classes we care about in secondary reload or go if legitimate
454 address. We only need to worry about GPR, FPR, and Altivec registers here,
455 along an ANY field that is the OR of the 3 register classes. */
457 enum rs6000_reload_reg_type {
458 RELOAD_REG_GPR, /* General purpose registers. */
459 RELOAD_REG_FPR, /* Traditional floating point regs. */
460 RELOAD_REG_VMX, /* Altivec (VMX) registers. */
461 RELOAD_REG_ANY, /* OR of GPR, FPR, Altivec masks. */
462 N_RELOAD_REG
465 /* For setting up register classes, loop through the 3 register classes mapping
466 into real registers, and skip the ANY class, which is just an OR of the
467 bits. */
468 #define FIRST_RELOAD_REG_CLASS RELOAD_REG_GPR
469 #define LAST_RELOAD_REG_CLASS RELOAD_REG_VMX
471 /* Map reload register type to a register in the register class. */
472 struct reload_reg_map_type {
473 const char *name; /* Register class name. */
474 int reg; /* Register in the register class. */
477 static const struct reload_reg_map_type reload_reg_map[N_RELOAD_REG] = {
478 { "Gpr", FIRST_GPR_REGNO }, /* RELOAD_REG_GPR. */
479 { "Fpr", FIRST_FPR_REGNO }, /* RELOAD_REG_FPR. */
480 { "VMX", FIRST_ALTIVEC_REGNO }, /* RELOAD_REG_VMX. */
481 { "Any", -1 }, /* RELOAD_REG_ANY. */
484 /* Mask bits for each register class, indexed per mode. Historically the
485 compiler has been more restrictive which types can do PRE_MODIFY instead of
486 PRE_INC and PRE_DEC, so keep track of sepaate bits for these two. */
487 typedef unsigned char addr_mask_type;
489 #define RELOAD_REG_VALID 0x01 /* Mode valid in register.. */
490 #define RELOAD_REG_MULTIPLE 0x02 /* Mode takes multiple registers. */
491 #define RELOAD_REG_INDEXED 0x04 /* Reg+reg addressing. */
492 #define RELOAD_REG_OFFSET 0x08 /* Reg+offset addressing. */
493 #define RELOAD_REG_PRE_INCDEC 0x10 /* PRE_INC/PRE_DEC valid. */
494 #define RELOAD_REG_PRE_MODIFY 0x20 /* PRE_MODIFY valid. */
495 #define RELOAD_REG_AND_M16 0x40 /* AND -16 addressing. */
496 #define RELOAD_REG_QUAD_OFFSET 0x80 /* quad offset is limited. */
498 /* Register type masks based on the type, of valid addressing modes. */
499 struct rs6000_reg_addr {
500 enum insn_code reload_load; /* INSN to reload for loading. */
501 enum insn_code reload_store; /* INSN to reload for storing. */
502 enum insn_code reload_fpr_gpr; /* INSN to move from FPR to GPR. */
503 enum insn_code reload_gpr_vsx; /* INSN to move from GPR to VSX. */
504 enum insn_code reload_vsx_gpr; /* INSN to move from VSX to GPR. */
505 enum insn_code fusion_gpr_ld; /* INSN for fusing gpr ADDIS/loads. */
506 /* INSNs for fusing addi with loads
507 or stores for each reg. class. */
508 enum insn_code fusion_addi_ld[(int)N_RELOAD_REG];
509 enum insn_code fusion_addi_st[(int)N_RELOAD_REG];
510 /* INSNs for fusing addis with loads
511 or stores for each reg. class. */
512 enum insn_code fusion_addis_ld[(int)N_RELOAD_REG];
513 enum insn_code fusion_addis_st[(int)N_RELOAD_REG];
514 addr_mask_type addr_mask[(int)N_RELOAD_REG]; /* Valid address masks. */
515 bool scalar_in_vmx_p; /* Scalar value can go in VMX. */
516 bool fused_toc; /* Mode supports TOC fusion. */
519 static struct rs6000_reg_addr reg_addr[NUM_MACHINE_MODES];
521 /* Helper function to say whether a mode supports PRE_INC or PRE_DEC. */
522 static inline bool
523 mode_supports_pre_incdec_p (machine_mode mode)
525 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_INCDEC)
526 != 0);
529 /* Helper function to say whether a mode supports PRE_MODIFY. */
530 static inline bool
531 mode_supports_pre_modify_p (machine_mode mode)
533 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_MODIFY)
534 != 0);
537 /* Given that there exists at least one variable that is set (produced)
538 by OUT_INSN and read (consumed) by IN_INSN, return true iff
539 IN_INSN represents one or more memory store operations and none of
540 the variables set by OUT_INSN is used by IN_INSN as the address of a
541 store operation. If either IN_INSN or OUT_INSN does not represent
542 a "single" RTL SET expression (as loosely defined by the
543 implementation of the single_set function) or a PARALLEL with only
544 SETs, CLOBBERs, and USEs inside, this function returns false.
546 This rs6000-specific version of store_data_bypass_p checks for
547 certain conditions that result in assertion failures (and internal
548 compiler errors) in the generic store_data_bypass_p function and
549 returns false rather than calling store_data_bypass_p if one of the
550 problematic conditions is detected. */
553 rs6000_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
555 rtx out_set, in_set;
556 rtx out_pat, in_pat;
557 rtx out_exp, in_exp;
558 int i, j;
560 in_set = single_set (in_insn);
561 if (in_set)
563 if (MEM_P (SET_DEST (in_set)))
565 out_set = single_set (out_insn);
566 if (!out_set)
568 out_pat = PATTERN (out_insn);
569 if (GET_CODE (out_pat) == PARALLEL)
571 for (i = 0; i < XVECLEN (out_pat, 0); i++)
573 out_exp = XVECEXP (out_pat, 0, i);
574 if ((GET_CODE (out_exp) == CLOBBER)
575 || (GET_CODE (out_exp) == USE))
576 continue;
577 else if (GET_CODE (out_exp) != SET)
578 return false;
584 else
586 in_pat = PATTERN (in_insn);
587 if (GET_CODE (in_pat) != PARALLEL)
588 return false;
590 for (i = 0; i < XVECLEN (in_pat, 0); i++)
592 in_exp = XVECEXP (in_pat, 0, i);
593 if ((GET_CODE (in_exp) == CLOBBER) || (GET_CODE (in_exp) == USE))
594 continue;
595 else if (GET_CODE (in_exp) != SET)
596 return false;
598 if (MEM_P (SET_DEST (in_exp)))
600 out_set = single_set (out_insn);
601 if (!out_set)
603 out_pat = PATTERN (out_insn);
604 if (GET_CODE (out_pat) != PARALLEL)
605 return false;
606 for (j = 0; j < XVECLEN (out_pat, 0); j++)
608 out_exp = XVECEXP (out_pat, 0, j);
609 if ((GET_CODE (out_exp) == CLOBBER)
610 || (GET_CODE (out_exp) == USE))
611 continue;
612 else if (GET_CODE (out_exp) != SET)
613 return false;
619 return store_data_bypass_p (out_insn, in_insn);
622 /* Return true if we have D-form addressing in altivec registers. */
623 static inline bool
624 mode_supports_vmx_dform (machine_mode mode)
626 return ((reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_OFFSET) != 0);
629 /* Return true if we have D-form addressing in VSX registers. This addressing
630 is more limited than normal d-form addressing in that the offset must be
631 aligned on a 16-byte boundary. */
632 static inline bool
633 mode_supports_vsx_dform_quad (machine_mode mode)
635 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_QUAD_OFFSET)
636 != 0);
640 /* Processor costs (relative to an add) */
642 const struct processor_costs *rs6000_cost;
644 /* Instruction size costs on 32bit processors. */
645 static const
646 struct processor_costs size32_cost = {
647 COSTS_N_INSNS (1), /* mulsi */
648 COSTS_N_INSNS (1), /* mulsi_const */
649 COSTS_N_INSNS (1), /* mulsi_const9 */
650 COSTS_N_INSNS (1), /* muldi */
651 COSTS_N_INSNS (1), /* divsi */
652 COSTS_N_INSNS (1), /* divdi */
653 COSTS_N_INSNS (1), /* fp */
654 COSTS_N_INSNS (1), /* dmul */
655 COSTS_N_INSNS (1), /* sdiv */
656 COSTS_N_INSNS (1), /* ddiv */
657 32, /* cache line size */
658 0, /* l1 cache */
659 0, /* l2 cache */
660 0, /* streams */
661 0, /* SF->DF convert */
664 /* Instruction size costs on 64bit processors. */
665 static const
666 struct processor_costs size64_cost = {
667 COSTS_N_INSNS (1), /* mulsi */
668 COSTS_N_INSNS (1), /* mulsi_const */
669 COSTS_N_INSNS (1), /* mulsi_const9 */
670 COSTS_N_INSNS (1), /* muldi */
671 COSTS_N_INSNS (1), /* divsi */
672 COSTS_N_INSNS (1), /* divdi */
673 COSTS_N_INSNS (1), /* fp */
674 COSTS_N_INSNS (1), /* dmul */
675 COSTS_N_INSNS (1), /* sdiv */
676 COSTS_N_INSNS (1), /* ddiv */
677 128, /* cache line size */
678 0, /* l1 cache */
679 0, /* l2 cache */
680 0, /* streams */
681 0, /* SF->DF convert */
684 /* Instruction costs on RS64A processors. */
685 static const
686 struct processor_costs rs64a_cost = {
687 COSTS_N_INSNS (20), /* mulsi */
688 COSTS_N_INSNS (12), /* mulsi_const */
689 COSTS_N_INSNS (8), /* mulsi_const9 */
690 COSTS_N_INSNS (34), /* muldi */
691 COSTS_N_INSNS (65), /* divsi */
692 COSTS_N_INSNS (67), /* divdi */
693 COSTS_N_INSNS (4), /* fp */
694 COSTS_N_INSNS (4), /* dmul */
695 COSTS_N_INSNS (31), /* sdiv */
696 COSTS_N_INSNS (31), /* ddiv */
697 128, /* cache line size */
698 128, /* l1 cache */
699 2048, /* l2 cache */
700 1, /* streams */
701 0, /* SF->DF convert */
704 /* Instruction costs on MPCCORE processors. */
705 static const
706 struct processor_costs mpccore_cost = {
707 COSTS_N_INSNS (2), /* mulsi */
708 COSTS_N_INSNS (2), /* mulsi_const */
709 COSTS_N_INSNS (2), /* mulsi_const9 */
710 COSTS_N_INSNS (2), /* muldi */
711 COSTS_N_INSNS (6), /* divsi */
712 COSTS_N_INSNS (6), /* divdi */
713 COSTS_N_INSNS (4), /* fp */
714 COSTS_N_INSNS (5), /* dmul */
715 COSTS_N_INSNS (10), /* sdiv */
716 COSTS_N_INSNS (17), /* ddiv */
717 32, /* cache line size */
718 4, /* l1 cache */
719 16, /* l2 cache */
720 1, /* streams */
721 0, /* SF->DF convert */
724 /* Instruction costs on PPC403 processors. */
725 static const
726 struct processor_costs ppc403_cost = {
727 COSTS_N_INSNS (4), /* mulsi */
728 COSTS_N_INSNS (4), /* mulsi_const */
729 COSTS_N_INSNS (4), /* mulsi_const9 */
730 COSTS_N_INSNS (4), /* muldi */
731 COSTS_N_INSNS (33), /* divsi */
732 COSTS_N_INSNS (33), /* divdi */
733 COSTS_N_INSNS (11), /* fp */
734 COSTS_N_INSNS (11), /* dmul */
735 COSTS_N_INSNS (11), /* sdiv */
736 COSTS_N_INSNS (11), /* ddiv */
737 32, /* cache line size */
738 4, /* l1 cache */
739 16, /* l2 cache */
740 1, /* streams */
741 0, /* SF->DF convert */
744 /* Instruction costs on PPC405 processors. */
745 static const
746 struct processor_costs ppc405_cost = {
747 COSTS_N_INSNS (5), /* mulsi */
748 COSTS_N_INSNS (4), /* mulsi_const */
749 COSTS_N_INSNS (3), /* mulsi_const9 */
750 COSTS_N_INSNS (5), /* muldi */
751 COSTS_N_INSNS (35), /* divsi */
752 COSTS_N_INSNS (35), /* divdi */
753 COSTS_N_INSNS (11), /* fp */
754 COSTS_N_INSNS (11), /* dmul */
755 COSTS_N_INSNS (11), /* sdiv */
756 COSTS_N_INSNS (11), /* ddiv */
757 32, /* cache line size */
758 16, /* l1 cache */
759 128, /* l2 cache */
760 1, /* streams */
761 0, /* SF->DF convert */
764 /* Instruction costs on PPC440 processors. */
765 static const
766 struct processor_costs ppc440_cost = {
767 COSTS_N_INSNS (3), /* mulsi */
768 COSTS_N_INSNS (2), /* mulsi_const */
769 COSTS_N_INSNS (2), /* mulsi_const9 */
770 COSTS_N_INSNS (3), /* muldi */
771 COSTS_N_INSNS (34), /* divsi */
772 COSTS_N_INSNS (34), /* divdi */
773 COSTS_N_INSNS (5), /* fp */
774 COSTS_N_INSNS (5), /* dmul */
775 COSTS_N_INSNS (19), /* sdiv */
776 COSTS_N_INSNS (33), /* ddiv */
777 32, /* cache line size */
778 32, /* l1 cache */
779 256, /* l2 cache */
780 1, /* streams */
781 0, /* SF->DF convert */
784 /* Instruction costs on PPC476 processors. */
785 static const
786 struct processor_costs ppc476_cost = {
787 COSTS_N_INSNS (4), /* mulsi */
788 COSTS_N_INSNS (4), /* mulsi_const */
789 COSTS_N_INSNS (4), /* mulsi_const9 */
790 COSTS_N_INSNS (4), /* muldi */
791 COSTS_N_INSNS (11), /* divsi */
792 COSTS_N_INSNS (11), /* divdi */
793 COSTS_N_INSNS (6), /* fp */
794 COSTS_N_INSNS (6), /* dmul */
795 COSTS_N_INSNS (19), /* sdiv */
796 COSTS_N_INSNS (33), /* ddiv */
797 32, /* l1 cache line size */
798 32, /* l1 cache */
799 512, /* l2 cache */
800 1, /* streams */
801 0, /* SF->DF convert */
804 /* Instruction costs on PPC601 processors. */
805 static const
806 struct processor_costs ppc601_cost = {
807 COSTS_N_INSNS (5), /* mulsi */
808 COSTS_N_INSNS (5), /* mulsi_const */
809 COSTS_N_INSNS (5), /* mulsi_const9 */
810 COSTS_N_INSNS (5), /* muldi */
811 COSTS_N_INSNS (36), /* divsi */
812 COSTS_N_INSNS (36), /* divdi */
813 COSTS_N_INSNS (4), /* fp */
814 COSTS_N_INSNS (5), /* dmul */
815 COSTS_N_INSNS (17), /* sdiv */
816 COSTS_N_INSNS (31), /* ddiv */
817 32, /* cache line size */
818 32, /* l1 cache */
819 256, /* l2 cache */
820 1, /* streams */
821 0, /* SF->DF convert */
824 /* Instruction costs on PPC603 processors. */
825 static const
826 struct processor_costs ppc603_cost = {
827 COSTS_N_INSNS (5), /* mulsi */
828 COSTS_N_INSNS (3), /* mulsi_const */
829 COSTS_N_INSNS (2), /* mulsi_const9 */
830 COSTS_N_INSNS (5), /* muldi */
831 COSTS_N_INSNS (37), /* divsi */
832 COSTS_N_INSNS (37), /* divdi */
833 COSTS_N_INSNS (3), /* fp */
834 COSTS_N_INSNS (4), /* dmul */
835 COSTS_N_INSNS (18), /* sdiv */
836 COSTS_N_INSNS (33), /* ddiv */
837 32, /* cache line size */
838 8, /* l1 cache */
839 64, /* l2 cache */
840 1, /* streams */
841 0, /* SF->DF convert */
844 /* Instruction costs on PPC604 processors. */
845 static const
846 struct processor_costs ppc604_cost = {
847 COSTS_N_INSNS (4), /* mulsi */
848 COSTS_N_INSNS (4), /* mulsi_const */
849 COSTS_N_INSNS (4), /* mulsi_const9 */
850 COSTS_N_INSNS (4), /* muldi */
851 COSTS_N_INSNS (20), /* divsi */
852 COSTS_N_INSNS (20), /* divdi */
853 COSTS_N_INSNS (3), /* fp */
854 COSTS_N_INSNS (3), /* dmul */
855 COSTS_N_INSNS (18), /* sdiv */
856 COSTS_N_INSNS (32), /* ddiv */
857 32, /* cache line size */
858 16, /* l1 cache */
859 512, /* l2 cache */
860 1, /* streams */
861 0, /* SF->DF convert */
864 /* Instruction costs on PPC604e processors. */
865 static const
866 struct processor_costs ppc604e_cost = {
867 COSTS_N_INSNS (2), /* mulsi */
868 COSTS_N_INSNS (2), /* mulsi_const */
869 COSTS_N_INSNS (2), /* mulsi_const9 */
870 COSTS_N_INSNS (2), /* muldi */
871 COSTS_N_INSNS (20), /* divsi */
872 COSTS_N_INSNS (20), /* divdi */
873 COSTS_N_INSNS (3), /* fp */
874 COSTS_N_INSNS (3), /* dmul */
875 COSTS_N_INSNS (18), /* sdiv */
876 COSTS_N_INSNS (32), /* ddiv */
877 32, /* cache line size */
878 32, /* l1 cache */
879 1024, /* l2 cache */
880 1, /* streams */
881 0, /* SF->DF convert */
884 /* Instruction costs on PPC620 processors. */
885 static const
886 struct processor_costs ppc620_cost = {
887 COSTS_N_INSNS (5), /* mulsi */
888 COSTS_N_INSNS (4), /* mulsi_const */
889 COSTS_N_INSNS (3), /* mulsi_const9 */
890 COSTS_N_INSNS (7), /* muldi */
891 COSTS_N_INSNS (21), /* divsi */
892 COSTS_N_INSNS (37), /* divdi */
893 COSTS_N_INSNS (3), /* fp */
894 COSTS_N_INSNS (3), /* dmul */
895 COSTS_N_INSNS (18), /* sdiv */
896 COSTS_N_INSNS (32), /* ddiv */
897 128, /* cache line size */
898 32, /* l1 cache */
899 1024, /* l2 cache */
900 1, /* streams */
901 0, /* SF->DF convert */
904 /* Instruction costs on PPC630 processors. */
905 static const
906 struct processor_costs ppc630_cost = {
907 COSTS_N_INSNS (5), /* mulsi */
908 COSTS_N_INSNS (4), /* mulsi_const */
909 COSTS_N_INSNS (3), /* mulsi_const9 */
910 COSTS_N_INSNS (7), /* muldi */
911 COSTS_N_INSNS (21), /* divsi */
912 COSTS_N_INSNS (37), /* divdi */
913 COSTS_N_INSNS (3), /* fp */
914 COSTS_N_INSNS (3), /* dmul */
915 COSTS_N_INSNS (17), /* sdiv */
916 COSTS_N_INSNS (21), /* ddiv */
917 128, /* cache line size */
918 64, /* l1 cache */
919 1024, /* l2 cache */
920 1, /* streams */
921 0, /* SF->DF convert */
924 /* Instruction costs on Cell processor. */
925 /* COSTS_N_INSNS (1) ~ one add. */
926 static const
927 struct processor_costs ppccell_cost = {
928 COSTS_N_INSNS (9/2)+2, /* mulsi */
929 COSTS_N_INSNS (6/2), /* mulsi_const */
930 COSTS_N_INSNS (6/2), /* mulsi_const9 */
931 COSTS_N_INSNS (15/2)+2, /* muldi */
932 COSTS_N_INSNS (38/2), /* divsi */
933 COSTS_N_INSNS (70/2), /* divdi */
934 COSTS_N_INSNS (10/2), /* fp */
935 COSTS_N_INSNS (10/2), /* dmul */
936 COSTS_N_INSNS (74/2), /* sdiv */
937 COSTS_N_INSNS (74/2), /* ddiv */
938 128, /* cache line size */
939 32, /* l1 cache */
940 512, /* l2 cache */
941 6, /* streams */
942 0, /* SF->DF convert */
945 /* Instruction costs on PPC750 and PPC7400 processors. */
946 static const
947 struct processor_costs ppc750_cost = {
948 COSTS_N_INSNS (5), /* mulsi */
949 COSTS_N_INSNS (3), /* mulsi_const */
950 COSTS_N_INSNS (2), /* mulsi_const9 */
951 COSTS_N_INSNS (5), /* muldi */
952 COSTS_N_INSNS (17), /* divsi */
953 COSTS_N_INSNS (17), /* divdi */
954 COSTS_N_INSNS (3), /* fp */
955 COSTS_N_INSNS (3), /* dmul */
956 COSTS_N_INSNS (17), /* sdiv */
957 COSTS_N_INSNS (31), /* ddiv */
958 32, /* cache line size */
959 32, /* l1 cache */
960 512, /* l2 cache */
961 1, /* streams */
962 0, /* SF->DF convert */
965 /* Instruction costs on PPC7450 processors. */
966 static const
967 struct processor_costs ppc7450_cost = {
968 COSTS_N_INSNS (4), /* mulsi */
969 COSTS_N_INSNS (3), /* mulsi_const */
970 COSTS_N_INSNS (3), /* mulsi_const9 */
971 COSTS_N_INSNS (4), /* muldi */
972 COSTS_N_INSNS (23), /* divsi */
973 COSTS_N_INSNS (23), /* divdi */
974 COSTS_N_INSNS (5), /* fp */
975 COSTS_N_INSNS (5), /* dmul */
976 COSTS_N_INSNS (21), /* sdiv */
977 COSTS_N_INSNS (35), /* ddiv */
978 32, /* cache line size */
979 32, /* l1 cache */
980 1024, /* l2 cache */
981 1, /* streams */
982 0, /* SF->DF convert */
985 /* Instruction costs on PPC8540 processors. */
986 static const
987 struct processor_costs ppc8540_cost = {
988 COSTS_N_INSNS (4), /* mulsi */
989 COSTS_N_INSNS (4), /* mulsi_const */
990 COSTS_N_INSNS (4), /* mulsi_const9 */
991 COSTS_N_INSNS (4), /* muldi */
992 COSTS_N_INSNS (19), /* divsi */
993 COSTS_N_INSNS (19), /* divdi */
994 COSTS_N_INSNS (4), /* fp */
995 COSTS_N_INSNS (4), /* dmul */
996 COSTS_N_INSNS (29), /* sdiv */
997 COSTS_N_INSNS (29), /* ddiv */
998 32, /* cache line size */
999 32, /* l1 cache */
1000 256, /* l2 cache */
1001 1, /* prefetch streams /*/
1002 0, /* SF->DF convert */
1005 /* Instruction costs on E300C2 and E300C3 cores. */
1006 static const
1007 struct processor_costs ppce300c2c3_cost = {
1008 COSTS_N_INSNS (4), /* mulsi */
1009 COSTS_N_INSNS (4), /* mulsi_const */
1010 COSTS_N_INSNS (4), /* mulsi_const9 */
1011 COSTS_N_INSNS (4), /* muldi */
1012 COSTS_N_INSNS (19), /* divsi */
1013 COSTS_N_INSNS (19), /* divdi */
1014 COSTS_N_INSNS (3), /* fp */
1015 COSTS_N_INSNS (4), /* dmul */
1016 COSTS_N_INSNS (18), /* sdiv */
1017 COSTS_N_INSNS (33), /* ddiv */
1019 16, /* l1 cache */
1020 16, /* l2 cache */
1021 1, /* prefetch streams /*/
1022 0, /* SF->DF convert */
1025 /* Instruction costs on PPCE500MC processors. */
1026 static const
1027 struct processor_costs ppce500mc_cost = {
1028 COSTS_N_INSNS (4), /* mulsi */
1029 COSTS_N_INSNS (4), /* mulsi_const */
1030 COSTS_N_INSNS (4), /* mulsi_const9 */
1031 COSTS_N_INSNS (4), /* muldi */
1032 COSTS_N_INSNS (14), /* divsi */
1033 COSTS_N_INSNS (14), /* divdi */
1034 COSTS_N_INSNS (8), /* fp */
1035 COSTS_N_INSNS (10), /* dmul */
1036 COSTS_N_INSNS (36), /* sdiv */
1037 COSTS_N_INSNS (66), /* ddiv */
1038 64, /* cache line size */
1039 32, /* l1 cache */
1040 128, /* l2 cache */
1041 1, /* prefetch streams /*/
1042 0, /* SF->DF convert */
1045 /* Instruction costs on PPCE500MC64 processors. */
1046 static const
1047 struct processor_costs ppce500mc64_cost = {
1048 COSTS_N_INSNS (4), /* mulsi */
1049 COSTS_N_INSNS (4), /* mulsi_const */
1050 COSTS_N_INSNS (4), /* mulsi_const9 */
1051 COSTS_N_INSNS (4), /* muldi */
1052 COSTS_N_INSNS (14), /* divsi */
1053 COSTS_N_INSNS (14), /* divdi */
1054 COSTS_N_INSNS (4), /* fp */
1055 COSTS_N_INSNS (10), /* dmul */
1056 COSTS_N_INSNS (36), /* sdiv */
1057 COSTS_N_INSNS (66), /* ddiv */
1058 64, /* cache line size */
1059 32, /* l1 cache */
1060 128, /* l2 cache */
1061 1, /* prefetch streams /*/
1062 0, /* SF->DF convert */
1065 /* Instruction costs on PPCE5500 processors. */
1066 static const
1067 struct processor_costs ppce5500_cost = {
1068 COSTS_N_INSNS (5), /* mulsi */
1069 COSTS_N_INSNS (5), /* mulsi_const */
1070 COSTS_N_INSNS (4), /* mulsi_const9 */
1071 COSTS_N_INSNS (5), /* muldi */
1072 COSTS_N_INSNS (14), /* divsi */
1073 COSTS_N_INSNS (14), /* divdi */
1074 COSTS_N_INSNS (7), /* fp */
1075 COSTS_N_INSNS (10), /* dmul */
1076 COSTS_N_INSNS (36), /* sdiv */
1077 COSTS_N_INSNS (66), /* ddiv */
1078 64, /* cache line size */
1079 32, /* l1 cache */
1080 128, /* l2 cache */
1081 1, /* prefetch streams /*/
1082 0, /* SF->DF convert */
1085 /* Instruction costs on PPCE6500 processors. */
1086 static const
1087 struct processor_costs ppce6500_cost = {
1088 COSTS_N_INSNS (5), /* mulsi */
1089 COSTS_N_INSNS (5), /* mulsi_const */
1090 COSTS_N_INSNS (4), /* mulsi_const9 */
1091 COSTS_N_INSNS (5), /* muldi */
1092 COSTS_N_INSNS (14), /* divsi */
1093 COSTS_N_INSNS (14), /* divdi */
1094 COSTS_N_INSNS (7), /* fp */
1095 COSTS_N_INSNS (10), /* dmul */
1096 COSTS_N_INSNS (36), /* sdiv */
1097 COSTS_N_INSNS (66), /* ddiv */
1098 64, /* cache line size */
1099 32, /* l1 cache */
1100 128, /* l2 cache */
1101 1, /* prefetch streams /*/
1102 0, /* SF->DF convert */
1105 /* Instruction costs on AppliedMicro Titan processors. */
1106 static const
1107 struct processor_costs titan_cost = {
1108 COSTS_N_INSNS (5), /* mulsi */
1109 COSTS_N_INSNS (5), /* mulsi_const */
1110 COSTS_N_INSNS (5), /* mulsi_const9 */
1111 COSTS_N_INSNS (5), /* muldi */
1112 COSTS_N_INSNS (18), /* divsi */
1113 COSTS_N_INSNS (18), /* divdi */
1114 COSTS_N_INSNS (10), /* fp */
1115 COSTS_N_INSNS (10), /* dmul */
1116 COSTS_N_INSNS (46), /* sdiv */
1117 COSTS_N_INSNS (72), /* ddiv */
1118 32, /* cache line size */
1119 32, /* l1 cache */
1120 512, /* l2 cache */
1121 1, /* prefetch streams /*/
1122 0, /* SF->DF convert */
1125 /* Instruction costs on POWER4 and POWER5 processors. */
1126 static const
1127 struct processor_costs power4_cost = {
1128 COSTS_N_INSNS (3), /* mulsi */
1129 COSTS_N_INSNS (2), /* mulsi_const */
1130 COSTS_N_INSNS (2), /* mulsi_const9 */
1131 COSTS_N_INSNS (4), /* muldi */
1132 COSTS_N_INSNS (18), /* divsi */
1133 COSTS_N_INSNS (34), /* divdi */
1134 COSTS_N_INSNS (3), /* fp */
1135 COSTS_N_INSNS (3), /* dmul */
1136 COSTS_N_INSNS (17), /* sdiv */
1137 COSTS_N_INSNS (17), /* ddiv */
1138 128, /* cache line size */
1139 32, /* l1 cache */
1140 1024, /* l2 cache */
1141 8, /* prefetch streams /*/
1142 0, /* SF->DF convert */
1145 /* Instruction costs on POWER6 processors. */
1146 static const
1147 struct processor_costs power6_cost = {
1148 COSTS_N_INSNS (8), /* mulsi */
1149 COSTS_N_INSNS (8), /* mulsi_const */
1150 COSTS_N_INSNS (8), /* mulsi_const9 */
1151 COSTS_N_INSNS (8), /* muldi */
1152 COSTS_N_INSNS (22), /* divsi */
1153 COSTS_N_INSNS (28), /* divdi */
1154 COSTS_N_INSNS (3), /* fp */
1155 COSTS_N_INSNS (3), /* dmul */
1156 COSTS_N_INSNS (13), /* sdiv */
1157 COSTS_N_INSNS (16), /* ddiv */
1158 128, /* cache line size */
1159 64, /* l1 cache */
1160 2048, /* l2 cache */
1161 16, /* prefetch streams */
1162 0, /* SF->DF convert */
1165 /* Instruction costs on POWER7 processors. */
1166 static const
1167 struct processor_costs power7_cost = {
1168 COSTS_N_INSNS (2), /* mulsi */
1169 COSTS_N_INSNS (2), /* mulsi_const */
1170 COSTS_N_INSNS (2), /* mulsi_const9 */
1171 COSTS_N_INSNS (2), /* muldi */
1172 COSTS_N_INSNS (18), /* divsi */
1173 COSTS_N_INSNS (34), /* divdi */
1174 COSTS_N_INSNS (3), /* fp */
1175 COSTS_N_INSNS (3), /* dmul */
1176 COSTS_N_INSNS (13), /* sdiv */
1177 COSTS_N_INSNS (16), /* ddiv */
1178 128, /* cache line size */
1179 32, /* l1 cache */
1180 256, /* l2 cache */
1181 12, /* prefetch streams */
1182 COSTS_N_INSNS (3), /* SF->DF convert */
1185 /* Instruction costs on POWER8 processors. */
1186 static const
1187 struct processor_costs power8_cost = {
1188 COSTS_N_INSNS (3), /* mulsi */
1189 COSTS_N_INSNS (3), /* mulsi_const */
1190 COSTS_N_INSNS (3), /* mulsi_const9 */
1191 COSTS_N_INSNS (3), /* muldi */
1192 COSTS_N_INSNS (19), /* divsi */
1193 COSTS_N_INSNS (35), /* divdi */
1194 COSTS_N_INSNS (3), /* fp */
1195 COSTS_N_INSNS (3), /* dmul */
1196 COSTS_N_INSNS (14), /* sdiv */
1197 COSTS_N_INSNS (17), /* ddiv */
1198 128, /* cache line size */
1199 32, /* l1 cache */
1200 256, /* l2 cache */
1201 12, /* prefetch streams */
1202 COSTS_N_INSNS (3), /* SF->DF convert */
1205 /* Instruction costs on POWER9 processors. */
1206 static const
1207 struct processor_costs power9_cost = {
1208 COSTS_N_INSNS (3), /* mulsi */
1209 COSTS_N_INSNS (3), /* mulsi_const */
1210 COSTS_N_INSNS (3), /* mulsi_const9 */
1211 COSTS_N_INSNS (3), /* muldi */
1212 COSTS_N_INSNS (8), /* divsi */
1213 COSTS_N_INSNS (12), /* divdi */
1214 COSTS_N_INSNS (3), /* fp */
1215 COSTS_N_INSNS (3), /* dmul */
1216 COSTS_N_INSNS (13), /* sdiv */
1217 COSTS_N_INSNS (18), /* ddiv */
1218 128, /* cache line size */
1219 32, /* l1 cache */
1220 512, /* l2 cache */
1221 8, /* prefetch streams */
1222 COSTS_N_INSNS (3), /* SF->DF convert */
1225 /* Instruction costs on POWER A2 processors. */
1226 static const
1227 struct processor_costs ppca2_cost = {
1228 COSTS_N_INSNS (16), /* mulsi */
1229 COSTS_N_INSNS (16), /* mulsi_const */
1230 COSTS_N_INSNS (16), /* mulsi_const9 */
1231 COSTS_N_INSNS (16), /* muldi */
1232 COSTS_N_INSNS (22), /* divsi */
1233 COSTS_N_INSNS (28), /* divdi */
1234 COSTS_N_INSNS (3), /* fp */
1235 COSTS_N_INSNS (3), /* dmul */
1236 COSTS_N_INSNS (59), /* sdiv */
1237 COSTS_N_INSNS (72), /* ddiv */
1239 16, /* l1 cache */
1240 2048, /* l2 cache */
1241 16, /* prefetch streams */
1242 0, /* SF->DF convert */
1246 /* Table that classifies rs6000 builtin functions (pure, const, etc.). */
1247 #undef RS6000_BUILTIN_0
1248 #undef RS6000_BUILTIN_1
1249 #undef RS6000_BUILTIN_2
1250 #undef RS6000_BUILTIN_3
1251 #undef RS6000_BUILTIN_A
1252 #undef RS6000_BUILTIN_D
1253 #undef RS6000_BUILTIN_H
1254 #undef RS6000_BUILTIN_P
1255 #undef RS6000_BUILTIN_Q
1256 #undef RS6000_BUILTIN_X
1258 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) \
1259 { NAME, ICODE, MASK, ATTR },
1261 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) \
1262 { NAME, ICODE, MASK, ATTR },
1264 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) \
1265 { NAME, ICODE, MASK, ATTR },
1267 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) \
1268 { NAME, ICODE, MASK, ATTR },
1270 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) \
1271 { NAME, ICODE, MASK, ATTR },
1273 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) \
1274 { NAME, ICODE, MASK, ATTR },
1276 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) \
1277 { NAME, ICODE, MASK, ATTR },
1279 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) \
1280 { NAME, ICODE, MASK, ATTR },
1282 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) \
1283 { NAME, ICODE, MASK, ATTR },
1285 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) \
1286 { NAME, ICODE, MASK, ATTR },
1288 struct rs6000_builtin_info_type {
1289 const char *name;
1290 const enum insn_code icode;
1291 const HOST_WIDE_INT mask;
1292 const unsigned attr;
1295 static const struct rs6000_builtin_info_type rs6000_builtin_info[] =
1297 #include "rs6000-builtin.def"
1300 #undef RS6000_BUILTIN_0
1301 #undef RS6000_BUILTIN_1
1302 #undef RS6000_BUILTIN_2
1303 #undef RS6000_BUILTIN_3
1304 #undef RS6000_BUILTIN_A
1305 #undef RS6000_BUILTIN_D
1306 #undef RS6000_BUILTIN_H
1307 #undef RS6000_BUILTIN_P
1308 #undef RS6000_BUILTIN_Q
1309 #undef RS6000_BUILTIN_X
1311 /* Support for -mveclibabi=<xxx> to control which vector library to use. */
1312 static tree (*rs6000_veclib_handler) (combined_fn, tree, tree);
1315 static bool rs6000_debug_legitimate_address_p (machine_mode, rtx, bool);
1316 static struct machine_function * rs6000_init_machine_status (void);
1317 static int rs6000_ra_ever_killed (void);
1318 static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
1319 static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
1320 static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
1321 static tree rs6000_builtin_vectorized_libmass (combined_fn, tree, tree);
1322 static void rs6000_emit_set_long_const (rtx, HOST_WIDE_INT);
1323 static int rs6000_memory_move_cost (machine_mode, reg_class_t, bool);
1324 static bool rs6000_debug_rtx_costs (rtx, machine_mode, int, int, int *, bool);
1325 static int rs6000_debug_address_cost (rtx, machine_mode, addr_space_t,
1326 bool);
1327 static int rs6000_debug_adjust_cost (rtx_insn *, int, rtx_insn *, int,
1328 unsigned int);
1329 static bool is_microcoded_insn (rtx_insn *);
1330 static bool is_nonpipeline_insn (rtx_insn *);
1331 static bool is_cracked_insn (rtx_insn *);
1332 static bool is_load_insn (rtx, rtx *);
1333 static bool is_store_insn (rtx, rtx *);
1334 static bool set_to_load_agen (rtx_insn *,rtx_insn *);
1335 static bool insn_terminates_group_p (rtx_insn *, enum group_termination);
1336 static bool insn_must_be_first_in_group (rtx_insn *);
1337 static bool insn_must_be_last_in_group (rtx_insn *);
1338 static void altivec_init_builtins (void);
1339 static tree builtin_function_type (machine_mode, machine_mode,
1340 machine_mode, machine_mode,
1341 enum rs6000_builtins, const char *name);
1342 static void rs6000_common_init_builtins (void);
1343 static void paired_init_builtins (void);
1344 static rtx paired_expand_predicate_builtin (enum insn_code, tree, rtx);
1345 static void htm_init_builtins (void);
1346 static int rs6000_emit_int_cmove (rtx, rtx, rtx, rtx);
1347 static rs6000_stack_t *rs6000_stack_info (void);
1348 static void is_altivec_return_reg (rtx, void *);
1349 int easy_vector_constant (rtx, machine_mode);
1350 static rtx rs6000_debug_legitimize_address (rtx, rtx, machine_mode);
1351 static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
1352 static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree,
1353 bool, bool);
1354 #if TARGET_MACHO
1355 static void macho_branch_islands (void);
1356 #endif
1357 static rtx rs6000_legitimize_reload_address (rtx, machine_mode, int, int,
1358 int, int *);
1359 static rtx rs6000_debug_legitimize_reload_address (rtx, machine_mode, int,
1360 int, int, int *);
1361 static bool rs6000_mode_dependent_address (const_rtx);
1362 static bool rs6000_debug_mode_dependent_address (const_rtx);
1363 static enum reg_class rs6000_secondary_reload_class (enum reg_class,
1364 machine_mode, rtx);
1365 static enum reg_class rs6000_debug_secondary_reload_class (enum reg_class,
1366 machine_mode,
1367 rtx);
1368 static enum reg_class rs6000_preferred_reload_class (rtx, enum reg_class);
1369 static enum reg_class rs6000_debug_preferred_reload_class (rtx,
1370 enum reg_class);
1371 static bool rs6000_debug_secondary_memory_needed (machine_mode,
1372 reg_class_t,
1373 reg_class_t);
1374 static bool rs6000_debug_can_change_mode_class (machine_mode,
1375 machine_mode,
1376 reg_class_t);
1377 static bool rs6000_save_toc_in_prologue_p (void);
1378 static rtx rs6000_internal_arg_pointer (void);
1380 rtx (*rs6000_legitimize_reload_address_ptr) (rtx, machine_mode, int, int,
1381 int, int *)
1382 = rs6000_legitimize_reload_address;
1384 static bool (*rs6000_mode_dependent_address_ptr) (const_rtx)
1385 = rs6000_mode_dependent_address;
1387 enum reg_class (*rs6000_secondary_reload_class_ptr) (enum reg_class,
1388 machine_mode, rtx)
1389 = rs6000_secondary_reload_class;
1391 enum reg_class (*rs6000_preferred_reload_class_ptr) (rtx, enum reg_class)
1392 = rs6000_preferred_reload_class;
1394 const int INSN_NOT_AVAILABLE = -1;
1396 static void rs6000_print_isa_options (FILE *, int, const char *,
1397 HOST_WIDE_INT);
1398 static void rs6000_print_builtin_options (FILE *, int, const char *,
1399 HOST_WIDE_INT);
1400 static HOST_WIDE_INT rs6000_disable_incompatible_switches (void);
1402 static enum rs6000_reg_type register_to_reg_type (rtx, bool *);
1403 static bool rs6000_secondary_reload_move (enum rs6000_reg_type,
1404 enum rs6000_reg_type,
1405 machine_mode,
1406 secondary_reload_info *,
1407 bool);
1408 rtl_opt_pass *make_pass_analyze_swaps (gcc::context*);
1409 static bool rs6000_keep_leaf_when_profiled () __attribute__ ((unused));
1410 static tree rs6000_fold_builtin (tree, int, tree *, bool);
1412 /* Hash table stuff for keeping track of TOC entries. */
1414 struct GTY((for_user)) toc_hash_struct
1416 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
1417 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
1418 rtx key;
1419 machine_mode key_mode;
1420 int labelno;
1423 struct toc_hasher : ggc_ptr_hash<toc_hash_struct>
1425 static hashval_t hash (toc_hash_struct *);
1426 static bool equal (toc_hash_struct *, toc_hash_struct *);
1429 static GTY (()) hash_table<toc_hasher> *toc_hash_table;
1431 /* Hash table to keep track of the argument types for builtin functions. */
1433 struct GTY((for_user)) builtin_hash_struct
1435 tree type;
1436 machine_mode mode[4]; /* return value + 3 arguments. */
1437 unsigned char uns_p[4]; /* and whether the types are unsigned. */
1440 struct builtin_hasher : ggc_ptr_hash<builtin_hash_struct>
1442 static hashval_t hash (builtin_hash_struct *);
1443 static bool equal (builtin_hash_struct *, builtin_hash_struct *);
1446 static GTY (()) hash_table<builtin_hasher> *builtin_hash_table;
1449 /* Default register names. */
1450 char rs6000_reg_names[][8] =
1452 "0", "1", "2", "3", "4", "5", "6", "7",
1453 "8", "9", "10", "11", "12", "13", "14", "15",
1454 "16", "17", "18", "19", "20", "21", "22", "23",
1455 "24", "25", "26", "27", "28", "29", "30", "31",
1456 "0", "1", "2", "3", "4", "5", "6", "7",
1457 "8", "9", "10", "11", "12", "13", "14", "15",
1458 "16", "17", "18", "19", "20", "21", "22", "23",
1459 "24", "25", "26", "27", "28", "29", "30", "31",
1460 "mq", "lr", "ctr","ap",
1461 "0", "1", "2", "3", "4", "5", "6", "7",
1462 "ca",
1463 /* AltiVec registers. */
1464 "0", "1", "2", "3", "4", "5", "6", "7",
1465 "8", "9", "10", "11", "12", "13", "14", "15",
1466 "16", "17", "18", "19", "20", "21", "22", "23",
1467 "24", "25", "26", "27", "28", "29", "30", "31",
1468 "vrsave", "vscr",
1469 /* Soft frame pointer. */
1470 "sfp",
1471 /* HTM SPR registers. */
1472 "tfhar", "tfiar", "texasr"
1475 #ifdef TARGET_REGNAMES
1476 static const char alt_reg_names[][8] =
1478 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1479 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1480 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1481 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1482 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1483 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1484 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1485 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1486 "mq", "lr", "ctr", "ap",
1487 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
1488 "ca",
1489 /* AltiVec registers. */
1490 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
1491 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1492 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1493 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1494 "vrsave", "vscr",
1495 /* Soft frame pointer. */
1496 "sfp",
1497 /* HTM SPR registers. */
1498 "tfhar", "tfiar", "texasr"
1500 #endif
1502 /* Table of valid machine attributes. */
1504 static const struct attribute_spec rs6000_attribute_table[] =
1506 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
1507 affects_type_identity } */
1508 { "altivec", 1, 1, false, true, false, rs6000_handle_altivec_attribute,
1509 false },
1510 { "longcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute,
1511 false },
1512 { "shortcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute,
1513 false },
1514 { "ms_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute,
1515 false },
1516 { "gcc_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute,
1517 false },
1518 #ifdef SUBTARGET_ATTRIBUTE_TABLE
1519 SUBTARGET_ATTRIBUTE_TABLE,
1520 #endif
1521 { NULL, 0, 0, false, false, false, NULL, false }
1524 #ifndef TARGET_PROFILE_KERNEL
1525 #define TARGET_PROFILE_KERNEL 0
1526 #endif
1528 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1529 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
1531 /* Initialize the GCC target structure. */
1532 #undef TARGET_ATTRIBUTE_TABLE
1533 #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
1534 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1535 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
1536 #undef TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P
1537 #define TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P rs6000_attribute_takes_identifier_p
1539 #undef TARGET_ASM_ALIGNED_DI_OP
1540 #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1542 /* Default unaligned ops are only provided for ELF. Find the ops needed
1543 for non-ELF systems. */
1544 #ifndef OBJECT_FORMAT_ELF
1545 #if TARGET_XCOFF
1546 /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
1547 64-bit targets. */
1548 #undef TARGET_ASM_UNALIGNED_HI_OP
1549 #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1550 #undef TARGET_ASM_UNALIGNED_SI_OP
1551 #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1552 #undef TARGET_ASM_UNALIGNED_DI_OP
1553 #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1554 #else
1555 /* For Darwin. */
1556 #undef TARGET_ASM_UNALIGNED_HI_OP
1557 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1558 #undef TARGET_ASM_UNALIGNED_SI_OP
1559 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
1560 #undef TARGET_ASM_UNALIGNED_DI_OP
1561 #define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1562 #undef TARGET_ASM_ALIGNED_DI_OP
1563 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
1564 #endif
1565 #endif
1567 /* This hook deals with fixups for relocatable code and DI-mode objects
1568 in 64-bit code. */
1569 #undef TARGET_ASM_INTEGER
1570 #define TARGET_ASM_INTEGER rs6000_assemble_integer
1572 #if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
1573 #undef TARGET_ASM_ASSEMBLE_VISIBILITY
1574 #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1575 #endif
1577 #undef TARGET_SET_UP_BY_PROLOGUE
1578 #define TARGET_SET_UP_BY_PROLOGUE rs6000_set_up_by_prologue
1580 #undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
1581 #define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS rs6000_get_separate_components
1582 #undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
1583 #define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB rs6000_components_for_bb
1584 #undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
1585 #define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS rs6000_disqualify_components
1586 #undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
1587 #define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS rs6000_emit_prologue_components
1588 #undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
1589 #define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS rs6000_emit_epilogue_components
1590 #undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
1591 #define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS rs6000_set_handled_components
1593 #undef TARGET_EXTRA_LIVE_ON_ENTRY
1594 #define TARGET_EXTRA_LIVE_ON_ENTRY rs6000_live_on_entry
1596 #undef TARGET_INTERNAL_ARG_POINTER
1597 #define TARGET_INTERNAL_ARG_POINTER rs6000_internal_arg_pointer
1599 #undef TARGET_HAVE_TLS
1600 #define TARGET_HAVE_TLS HAVE_AS_TLS
1602 #undef TARGET_CANNOT_FORCE_CONST_MEM
1603 #define TARGET_CANNOT_FORCE_CONST_MEM rs6000_cannot_force_const_mem
1605 #undef TARGET_DELEGITIMIZE_ADDRESS
1606 #define TARGET_DELEGITIMIZE_ADDRESS rs6000_delegitimize_address
1608 #undef TARGET_CONST_NOT_OK_FOR_DEBUG_P
1609 #define TARGET_CONST_NOT_OK_FOR_DEBUG_P rs6000_const_not_ok_for_debug_p
1611 #undef TARGET_LEGITIMATE_COMBINED_INSN
1612 #define TARGET_LEGITIMATE_COMBINED_INSN rs6000_legitimate_combined_insn
1614 #undef TARGET_ASM_FUNCTION_PROLOGUE
1615 #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1616 #undef TARGET_ASM_FUNCTION_EPILOGUE
1617 #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1619 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
1620 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA rs6000_output_addr_const_extra
1622 #undef TARGET_LEGITIMIZE_ADDRESS
1623 #define TARGET_LEGITIMIZE_ADDRESS rs6000_legitimize_address
1625 #undef TARGET_SCHED_VARIABLE_ISSUE
1626 #define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1628 #undef TARGET_SCHED_ISSUE_RATE
1629 #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1630 #undef TARGET_SCHED_ADJUST_COST
1631 #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1632 #undef TARGET_SCHED_ADJUST_PRIORITY
1633 #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
1634 #undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
1635 #define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
1636 #undef TARGET_SCHED_INIT
1637 #define TARGET_SCHED_INIT rs6000_sched_init
1638 #undef TARGET_SCHED_FINISH
1639 #define TARGET_SCHED_FINISH rs6000_sched_finish
1640 #undef TARGET_SCHED_REORDER
1641 #define TARGET_SCHED_REORDER rs6000_sched_reorder
1642 #undef TARGET_SCHED_REORDER2
1643 #define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
1645 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1646 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1648 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1649 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1651 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1652 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1653 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
1654 #define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1655 #undef TARGET_SCHED_SET_SCHED_CONTEXT
1656 #define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1657 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
1658 #define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1660 #undef TARGET_SCHED_CAN_SPECULATE_INSN
1661 #define TARGET_SCHED_CAN_SPECULATE_INSN rs6000_sched_can_speculate_insn
1663 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1664 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
1665 #undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
1666 #define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
1667 rs6000_builtin_support_vector_misalignment
1668 #undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
1669 #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1670 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
1671 #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
1672 rs6000_builtin_vectorization_cost
1673 #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
1674 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \
1675 rs6000_preferred_simd_mode
1676 #undef TARGET_VECTORIZE_INIT_COST
1677 #define TARGET_VECTORIZE_INIT_COST rs6000_init_cost
1678 #undef TARGET_VECTORIZE_ADD_STMT_COST
1679 #define TARGET_VECTORIZE_ADD_STMT_COST rs6000_add_stmt_cost
1680 #undef TARGET_VECTORIZE_FINISH_COST
1681 #define TARGET_VECTORIZE_FINISH_COST rs6000_finish_cost
1682 #undef TARGET_VECTORIZE_DESTROY_COST_DATA
1683 #define TARGET_VECTORIZE_DESTROY_COST_DATA rs6000_destroy_cost_data
1685 #undef TARGET_INIT_BUILTINS
1686 #define TARGET_INIT_BUILTINS rs6000_init_builtins
1687 #undef TARGET_BUILTIN_DECL
1688 #define TARGET_BUILTIN_DECL rs6000_builtin_decl
1690 #undef TARGET_FOLD_BUILTIN
1691 #define TARGET_FOLD_BUILTIN rs6000_fold_builtin
1692 #undef TARGET_GIMPLE_FOLD_BUILTIN
1693 #define TARGET_GIMPLE_FOLD_BUILTIN rs6000_gimple_fold_builtin
1695 #undef TARGET_EXPAND_BUILTIN
1696 #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1698 #undef TARGET_MANGLE_TYPE
1699 #define TARGET_MANGLE_TYPE rs6000_mangle_type
1701 #undef TARGET_INIT_LIBFUNCS
1702 #define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1704 #if TARGET_MACHO
1705 #undef TARGET_BINDS_LOCAL_P
1706 #define TARGET_BINDS_LOCAL_P darwin_binds_local_p
1707 #endif
1709 #undef TARGET_MS_BITFIELD_LAYOUT_P
1710 #define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1712 #undef TARGET_ASM_OUTPUT_MI_THUNK
1713 #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1715 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1716 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1718 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1719 #define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1721 #undef TARGET_REGISTER_MOVE_COST
1722 #define TARGET_REGISTER_MOVE_COST rs6000_register_move_cost
1723 #undef TARGET_MEMORY_MOVE_COST
1724 #define TARGET_MEMORY_MOVE_COST rs6000_memory_move_cost
1725 #undef TARGET_CANNOT_COPY_INSN_P
1726 #define TARGET_CANNOT_COPY_INSN_P rs6000_cannot_copy_insn_p
1727 #undef TARGET_RTX_COSTS
1728 #define TARGET_RTX_COSTS rs6000_rtx_costs
1729 #undef TARGET_ADDRESS_COST
1730 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
1731 #undef TARGET_INSN_COST
1732 #define TARGET_INSN_COST rs6000_insn_cost
1734 #undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1735 #define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1737 #undef TARGET_PROMOTE_FUNCTION_MODE
1738 #define TARGET_PROMOTE_FUNCTION_MODE rs6000_promote_function_mode
1740 #undef TARGET_RETURN_IN_MEMORY
1741 #define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1743 #undef TARGET_RETURN_IN_MSB
1744 #define TARGET_RETURN_IN_MSB rs6000_return_in_msb
1746 #undef TARGET_SETUP_INCOMING_VARARGS
1747 #define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1749 /* Always strict argument naming on rs6000. */
1750 #undef TARGET_STRICT_ARGUMENT_NAMING
1751 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1752 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1753 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
1754 #undef TARGET_SPLIT_COMPLEX_ARG
1755 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
1756 #undef TARGET_MUST_PASS_IN_STACK
1757 #define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
1758 #undef TARGET_PASS_BY_REFERENCE
1759 #define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
1760 #undef TARGET_ARG_PARTIAL_BYTES
1761 #define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
1762 #undef TARGET_FUNCTION_ARG_ADVANCE
1763 #define TARGET_FUNCTION_ARG_ADVANCE rs6000_function_arg_advance
1764 #undef TARGET_FUNCTION_ARG
1765 #define TARGET_FUNCTION_ARG rs6000_function_arg
1766 #undef TARGET_FUNCTION_ARG_PADDING
1767 #define TARGET_FUNCTION_ARG_PADDING rs6000_function_arg_padding
1768 #undef TARGET_FUNCTION_ARG_BOUNDARY
1769 #define TARGET_FUNCTION_ARG_BOUNDARY rs6000_function_arg_boundary
1771 #undef TARGET_BUILD_BUILTIN_VA_LIST
1772 #define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1774 #undef TARGET_EXPAND_BUILTIN_VA_START
1775 #define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1777 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1778 #define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1780 #undef TARGET_EH_RETURN_FILTER_MODE
1781 #define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1783 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1784 #define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1786 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1787 #define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1789 #undef TARGET_FLOATN_MODE
1790 #define TARGET_FLOATN_MODE rs6000_floatn_mode
1792 #undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1793 #define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1795 #undef TARGET_ASM_LOOP_ALIGN_MAX_SKIP
1796 #define TARGET_ASM_LOOP_ALIGN_MAX_SKIP rs6000_loop_align_max_skip
1798 #undef TARGET_MD_ASM_ADJUST
1799 #define TARGET_MD_ASM_ADJUST rs6000_md_asm_adjust
1801 #undef TARGET_OPTION_OVERRIDE
1802 #define TARGET_OPTION_OVERRIDE rs6000_option_override
1804 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
1805 #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
1806 rs6000_builtin_vectorized_function
1808 #undef TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION
1809 #define TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION \
1810 rs6000_builtin_md_vectorized_function
1812 #undef TARGET_STACK_PROTECT_GUARD
1813 #define TARGET_STACK_PROTECT_GUARD rs6000_init_stack_protect_guard
1815 #if !TARGET_MACHO
1816 #undef TARGET_STACK_PROTECT_FAIL
1817 #define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1818 #endif
1820 #ifdef HAVE_AS_TLS
1821 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1822 #define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1823 #endif
1825 /* Use a 32-bit anchor range. This leads to sequences like:
1827 addis tmp,anchor,high
1828 add dest,tmp,low
1830 where tmp itself acts as an anchor, and can be shared between
1831 accesses to the same 64k page. */
1832 #undef TARGET_MIN_ANCHOR_OFFSET
1833 #define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1834 #undef TARGET_MAX_ANCHOR_OFFSET
1835 #define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1836 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1837 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1838 #undef TARGET_USE_BLOCKS_FOR_DECL_P
1839 #define TARGET_USE_BLOCKS_FOR_DECL_P rs6000_use_blocks_for_decl_p
1841 #undef TARGET_BUILTIN_RECIPROCAL
1842 #define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1844 #undef TARGET_SECONDARY_RELOAD
1845 #define TARGET_SECONDARY_RELOAD rs6000_secondary_reload
1846 #undef TARGET_SECONDARY_MEMORY_NEEDED
1847 #define TARGET_SECONDARY_MEMORY_NEEDED rs6000_secondary_memory_needed
1848 #undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
1849 #define TARGET_SECONDARY_MEMORY_NEEDED_MODE rs6000_secondary_memory_needed_mode
1851 #undef TARGET_LEGITIMATE_ADDRESS_P
1852 #define TARGET_LEGITIMATE_ADDRESS_P rs6000_legitimate_address_p
1854 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
1855 #define TARGET_MODE_DEPENDENT_ADDRESS_P rs6000_mode_dependent_address_p
1857 #undef TARGET_COMPUTE_PRESSURE_CLASSES
1858 #define TARGET_COMPUTE_PRESSURE_CLASSES rs6000_compute_pressure_classes
1860 #undef TARGET_CAN_ELIMINATE
1861 #define TARGET_CAN_ELIMINATE rs6000_can_eliminate
1863 #undef TARGET_CONDITIONAL_REGISTER_USAGE
1864 #define TARGET_CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage
1866 #undef TARGET_SCHED_REASSOCIATION_WIDTH
1867 #define TARGET_SCHED_REASSOCIATION_WIDTH rs6000_reassociation_width
1869 #undef TARGET_TRAMPOLINE_INIT
1870 #define TARGET_TRAMPOLINE_INIT rs6000_trampoline_init
1872 #undef TARGET_FUNCTION_VALUE
1873 #define TARGET_FUNCTION_VALUE rs6000_function_value
1875 #undef TARGET_OPTION_VALID_ATTRIBUTE_P
1876 #define TARGET_OPTION_VALID_ATTRIBUTE_P rs6000_valid_attribute_p
1878 #undef TARGET_OPTION_SAVE
1879 #define TARGET_OPTION_SAVE rs6000_function_specific_save
1881 #undef TARGET_OPTION_RESTORE
1882 #define TARGET_OPTION_RESTORE rs6000_function_specific_restore
1884 #undef TARGET_OPTION_PRINT
1885 #define TARGET_OPTION_PRINT rs6000_function_specific_print
1887 #undef TARGET_CAN_INLINE_P
1888 #define TARGET_CAN_INLINE_P rs6000_can_inline_p
1890 #undef TARGET_SET_CURRENT_FUNCTION
1891 #define TARGET_SET_CURRENT_FUNCTION rs6000_set_current_function
1893 #undef TARGET_LEGITIMATE_CONSTANT_P
1894 #define TARGET_LEGITIMATE_CONSTANT_P rs6000_legitimate_constant_p
1896 #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
1897 #define TARGET_VECTORIZE_VEC_PERM_CONST_OK rs6000_vectorize_vec_perm_const_ok
1899 #undef TARGET_CAN_USE_DOLOOP_P
1900 #define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost
1902 #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
1903 #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV rs6000_atomic_assign_expand_fenv
1905 #undef TARGET_LIBGCC_CMP_RETURN_MODE
1906 #define TARGET_LIBGCC_CMP_RETURN_MODE rs6000_abi_word_mode
1907 #undef TARGET_LIBGCC_SHIFT_COUNT_MODE
1908 #define TARGET_LIBGCC_SHIFT_COUNT_MODE rs6000_abi_word_mode
1909 #undef TARGET_UNWIND_WORD_MODE
1910 #define TARGET_UNWIND_WORD_MODE rs6000_abi_word_mode
1912 #undef TARGET_OFFLOAD_OPTIONS
1913 #define TARGET_OFFLOAD_OPTIONS rs6000_offload_options
1915 #undef TARGET_C_MODE_FOR_SUFFIX
1916 #define TARGET_C_MODE_FOR_SUFFIX rs6000_c_mode_for_suffix
1918 #undef TARGET_INVALID_BINARY_OP
1919 #define TARGET_INVALID_BINARY_OP rs6000_invalid_binary_op
1921 #undef TARGET_OPTAB_SUPPORTED_P
1922 #define TARGET_OPTAB_SUPPORTED_P rs6000_optab_supported_p
1924 #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
1925 #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
1927 #undef TARGET_COMPARE_VERSION_PRIORITY
1928 #define TARGET_COMPARE_VERSION_PRIORITY rs6000_compare_version_priority
1930 #undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
1931 #define TARGET_GENERATE_VERSION_DISPATCHER_BODY \
1932 rs6000_generate_version_dispatcher_body
1934 #undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
1935 #define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \
1936 rs6000_get_function_versions_dispatcher
1938 #undef TARGET_OPTION_FUNCTION_VERSIONS
1939 #define TARGET_OPTION_FUNCTION_VERSIONS common_function_versions
1941 #undef TARGET_HARD_REGNO_NREGS
1942 #define TARGET_HARD_REGNO_NREGS rs6000_hard_regno_nregs_hook
1943 #undef TARGET_HARD_REGNO_MODE_OK
1944 #define TARGET_HARD_REGNO_MODE_OK rs6000_hard_regno_mode_ok
1946 #undef TARGET_MODES_TIEABLE_P
1947 #define TARGET_MODES_TIEABLE_P rs6000_modes_tieable_p
1949 #undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
1950 #define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
1951 rs6000_hard_regno_call_part_clobbered
1953 #undef TARGET_SLOW_UNALIGNED_ACCESS
1954 #define TARGET_SLOW_UNALIGNED_ACCESS rs6000_slow_unaligned_access
1956 #undef TARGET_CAN_CHANGE_MODE_CLASS
1957 #define TARGET_CAN_CHANGE_MODE_CLASS rs6000_can_change_mode_class
1959 #undef TARGET_CONSTANT_ALIGNMENT
1960 #define TARGET_CONSTANT_ALIGNMENT rs6000_constant_alignment
1962 #undef TARGET_STARTING_FRAME_OFFSET
1963 #define TARGET_STARTING_FRAME_OFFSET rs6000_starting_frame_offset
1966 /* Processor table. */
1967 struct rs6000_ptt
1969 const char *const name; /* Canonical processor name. */
1970 const enum processor_type processor; /* Processor type enum value. */
1971 const HOST_WIDE_INT target_enable; /* Target flags to enable. */
1974 static struct rs6000_ptt const processor_target_table[] =
1976 #define RS6000_CPU(NAME, CPU, FLAGS) { NAME, CPU, FLAGS },
1977 #include "rs6000-cpus.def"
1978 #undef RS6000_CPU
1981 /* Look up a processor name for -mcpu=xxx and -mtune=xxx. Return -1 if the
1982 name is invalid. */
1984 static int
1985 rs6000_cpu_name_lookup (const char *name)
1987 size_t i;
1989 if (name != NULL)
1991 for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
1992 if (! strcmp (name, processor_target_table[i].name))
1993 return (int)i;
1996 return -1;
2000 /* Return number of consecutive hard regs needed starting at reg REGNO
2001 to hold something of mode MODE.
2002 This is ordinarily the length in words of a value of mode MODE
2003 but can be less for certain modes in special long registers.
2005 POWER and PowerPC GPRs hold 32 bits worth;
2006 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
2008 static int
2009 rs6000_hard_regno_nregs_internal (int regno, machine_mode mode)
2011 unsigned HOST_WIDE_INT reg_size;
2013 /* 128-bit floating point usually takes 2 registers, unless it is IEEE
2014 128-bit floating point that can go in vector registers, which has VSX
2015 memory addressing. */
2016 if (FP_REGNO_P (regno))
2017 reg_size = (VECTOR_MEM_VSX_P (mode) || FLOAT128_VECTOR_P (mode)
2018 ? UNITS_PER_VSX_WORD
2019 : UNITS_PER_FP_WORD);
2021 else if (ALTIVEC_REGNO_P (regno))
2022 reg_size = UNITS_PER_ALTIVEC_WORD;
2024 else
2025 reg_size = UNITS_PER_WORD;
2027 return (GET_MODE_SIZE (mode) + reg_size - 1) / reg_size;
2030 /* Value is 1 if hard register REGNO can hold a value of machine-mode
2031 MODE. */
2032 static int
2033 rs6000_hard_regno_mode_ok_uncached (int regno, machine_mode mode)
2035 int last_regno = regno + rs6000_hard_regno_nregs[mode][regno] - 1;
2037 if (COMPLEX_MODE_P (mode))
2038 mode = GET_MODE_INNER (mode);
2040 /* PTImode can only go in GPRs. Quad word memory operations require even/odd
2041 register combinations, and use PTImode where we need to deal with quad
2042 word memory operations. Don't allow quad words in the argument or frame
2043 pointer registers, just registers 0..31. */
2044 if (mode == PTImode)
2045 return (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
2046 && IN_RANGE (last_regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
2047 && ((regno & 1) == 0));
2049 /* VSX registers that overlap the FPR registers are larger than for non-VSX
2050 implementations. Don't allow an item to be split between a FP register
2051 and an Altivec register. Allow TImode in all VSX registers if the user
2052 asked for it. */
2053 if (TARGET_VSX && VSX_REGNO_P (regno)
2054 && (VECTOR_MEM_VSX_P (mode)
2055 || FLOAT128_VECTOR_P (mode)
2056 || reg_addr[mode].scalar_in_vmx_p
2057 || mode == TImode
2058 || (TARGET_VADDUQM && mode == V1TImode)))
2060 if (FP_REGNO_P (regno))
2061 return FP_REGNO_P (last_regno);
2063 if (ALTIVEC_REGNO_P (regno))
2065 if (GET_MODE_SIZE (mode) != 16 && !reg_addr[mode].scalar_in_vmx_p)
2066 return 0;
2068 return ALTIVEC_REGNO_P (last_regno);
2072 /* The GPRs can hold any mode, but values bigger than one register
2073 cannot go past R31. */
2074 if (INT_REGNO_P (regno))
2075 return INT_REGNO_P (last_regno);
2077 /* The float registers (except for VSX vector modes) can only hold floating
2078 modes and DImode. */
2079 if (FP_REGNO_P (regno))
2081 if (FLOAT128_VECTOR_P (mode))
2082 return false;
2084 if (SCALAR_FLOAT_MODE_P (mode)
2085 && (mode != TDmode || (regno % 2) == 0)
2086 && FP_REGNO_P (last_regno))
2087 return 1;
2089 if (GET_MODE_CLASS (mode) == MODE_INT)
2091 if(GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
2092 return 1;
2094 if (TARGET_P8_VECTOR && (mode == SImode))
2095 return 1;
2097 if (TARGET_P9_VECTOR && (mode == QImode || mode == HImode))
2098 return 1;
2101 if (PAIRED_SIMD_REGNO_P (regno) && TARGET_PAIRED_FLOAT
2102 && PAIRED_VECTOR_MODE (mode))
2103 return 1;
2105 return 0;
2108 /* The CR register can only hold CC modes. */
2109 if (CR_REGNO_P (regno))
2110 return GET_MODE_CLASS (mode) == MODE_CC;
2112 if (CA_REGNO_P (regno))
2113 return mode == Pmode || mode == SImode;
2115 /* AltiVec only in AldyVec registers. */
2116 if (ALTIVEC_REGNO_P (regno))
2117 return (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
2118 || mode == V1TImode);
2120 /* We cannot put non-VSX TImode or PTImode anywhere except general register
2121 and it must be able to fit within the register set. */
2123 return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
2126 /* Implement TARGET_HARD_REGNO_NREGS. */
2128 static unsigned int
2129 rs6000_hard_regno_nregs_hook (unsigned int regno, machine_mode mode)
2131 return rs6000_hard_regno_nregs[mode][regno];
2134 /* Implement TARGET_HARD_REGNO_MODE_OK. */
2136 static bool
2137 rs6000_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
2139 return rs6000_hard_regno_mode_ok_p[mode][regno];
2142 /* Implement TARGET_MODES_TIEABLE_P.
2144 PTImode cannot tie with other modes because PTImode is restricted to even
2145 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
2146 57744).
2148 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
2149 128-bit floating point on VSX systems ties with other vectors. */
2151 static bool
2152 rs6000_modes_tieable_p (machine_mode mode1, machine_mode mode2)
2154 if (mode1 == PTImode)
2155 return mode2 == PTImode;
2156 if (mode2 == PTImode)
2157 return false;
2159 if (ALTIVEC_OR_VSX_VECTOR_MODE (mode1))
2160 return ALTIVEC_OR_VSX_VECTOR_MODE (mode2);
2161 if (ALTIVEC_OR_VSX_VECTOR_MODE (mode2))
2162 return false;
2164 if (SCALAR_FLOAT_MODE_P (mode1))
2165 return SCALAR_FLOAT_MODE_P (mode2);
2166 if (SCALAR_FLOAT_MODE_P (mode2))
2167 return false;
2169 if (GET_MODE_CLASS (mode1) == MODE_CC)
2170 return GET_MODE_CLASS (mode2) == MODE_CC;
2171 if (GET_MODE_CLASS (mode2) == MODE_CC)
2172 return false;
2174 if (PAIRED_VECTOR_MODE (mode1))
2175 return PAIRED_VECTOR_MODE (mode2);
2176 if (PAIRED_VECTOR_MODE (mode2))
2177 return false;
2179 return true;
2182 /* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. */
2184 static bool
2185 rs6000_hard_regno_call_part_clobbered (unsigned int regno, machine_mode mode)
2187 if (TARGET_32BIT
2188 && TARGET_POWERPC64
2189 && GET_MODE_SIZE (mode) > 4
2190 && INT_REGNO_P (regno))
2191 return true;
2193 if (TARGET_VSX
2194 && FP_REGNO_P (regno)
2195 && GET_MODE_SIZE (mode) > 8
2196 && !FLOAT128_2REG_P (mode))
2197 return true;
2199 return false;
2202 /* Print interesting facts about registers. */
2203 static void
2204 rs6000_debug_reg_print (int first_regno, int last_regno, const char *reg_name)
2206 int r, m;
2208 for (r = first_regno; r <= last_regno; ++r)
2210 const char *comma = "";
2211 int len;
2213 if (first_regno == last_regno)
2214 fprintf (stderr, "%s:\t", reg_name);
2215 else
2216 fprintf (stderr, "%s%d:\t", reg_name, r - first_regno);
2218 len = 8;
2219 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2220 if (rs6000_hard_regno_mode_ok_p[m][r] && rs6000_hard_regno_nregs[m][r])
2222 if (len > 70)
2224 fprintf (stderr, ",\n\t");
2225 len = 8;
2226 comma = "";
2229 if (rs6000_hard_regno_nregs[m][r] > 1)
2230 len += fprintf (stderr, "%s%s/%d", comma, GET_MODE_NAME (m),
2231 rs6000_hard_regno_nregs[m][r]);
2232 else
2233 len += fprintf (stderr, "%s%s", comma, GET_MODE_NAME (m));
2235 comma = ", ";
2238 if (call_used_regs[r])
2240 if (len > 70)
2242 fprintf (stderr, ",\n\t");
2243 len = 8;
2244 comma = "";
2247 len += fprintf (stderr, "%s%s", comma, "call-used");
2248 comma = ", ";
2251 if (fixed_regs[r])
2253 if (len > 70)
2255 fprintf (stderr, ",\n\t");
2256 len = 8;
2257 comma = "";
2260 len += fprintf (stderr, "%s%s", comma, "fixed");
2261 comma = ", ";
2264 if (len > 70)
2266 fprintf (stderr, ",\n\t");
2267 comma = "";
2270 len += fprintf (stderr, "%sreg-class = %s", comma,
2271 reg_class_names[(int)rs6000_regno_regclass[r]]);
2272 comma = ", ";
2274 if (len > 70)
2276 fprintf (stderr, ",\n\t");
2277 comma = "";
2280 fprintf (stderr, "%sregno = %d\n", comma, r);
2284 static const char *
2285 rs6000_debug_vector_unit (enum rs6000_vector v)
2287 const char *ret;
2289 switch (v)
2291 case VECTOR_NONE: ret = "none"; break;
2292 case VECTOR_ALTIVEC: ret = "altivec"; break;
2293 case VECTOR_VSX: ret = "vsx"; break;
2294 case VECTOR_P8_VECTOR: ret = "p8_vector"; break;
2295 case VECTOR_PAIRED: ret = "paired"; break;
2296 case VECTOR_OTHER: ret = "other"; break;
2297 default: ret = "unknown"; break;
2300 return ret;
2303 /* Inner function printing just the address mask for a particular reload
2304 register class. */
2305 DEBUG_FUNCTION char *
2306 rs6000_debug_addr_mask (addr_mask_type mask, bool keep_spaces)
2308 static char ret[8];
2309 char *p = ret;
2311 if ((mask & RELOAD_REG_VALID) != 0)
2312 *p++ = 'v';
2313 else if (keep_spaces)
2314 *p++ = ' ';
2316 if ((mask & RELOAD_REG_MULTIPLE) != 0)
2317 *p++ = 'm';
2318 else if (keep_spaces)
2319 *p++ = ' ';
2321 if ((mask & RELOAD_REG_INDEXED) != 0)
2322 *p++ = 'i';
2323 else if (keep_spaces)
2324 *p++ = ' ';
2326 if ((mask & RELOAD_REG_QUAD_OFFSET) != 0)
2327 *p++ = 'O';
2328 else if ((mask & RELOAD_REG_OFFSET) != 0)
2329 *p++ = 'o';
2330 else if (keep_spaces)
2331 *p++ = ' ';
2333 if ((mask & RELOAD_REG_PRE_INCDEC) != 0)
2334 *p++ = '+';
2335 else if (keep_spaces)
2336 *p++ = ' ';
2338 if ((mask & RELOAD_REG_PRE_MODIFY) != 0)
2339 *p++ = '+';
2340 else if (keep_spaces)
2341 *p++ = ' ';
2343 if ((mask & RELOAD_REG_AND_M16) != 0)
2344 *p++ = '&';
2345 else if (keep_spaces)
2346 *p++ = ' ';
2348 *p = '\0';
2350 return ret;
2353 /* Print the address masks in a human readble fashion. */
2354 DEBUG_FUNCTION void
2355 rs6000_debug_print_mode (ssize_t m)
2357 ssize_t rc;
2358 int spaces = 0;
2359 bool fuse_extra_p;
2361 fprintf (stderr, "Mode: %-5s", GET_MODE_NAME (m));
2362 for (rc = 0; rc < N_RELOAD_REG; rc++)
2363 fprintf (stderr, " %s: %s", reload_reg_map[rc].name,
2364 rs6000_debug_addr_mask (reg_addr[m].addr_mask[rc], true));
2366 if ((reg_addr[m].reload_store != CODE_FOR_nothing)
2367 || (reg_addr[m].reload_load != CODE_FOR_nothing))
2368 fprintf (stderr, " Reload=%c%c",
2369 (reg_addr[m].reload_store != CODE_FOR_nothing) ? 's' : '*',
2370 (reg_addr[m].reload_load != CODE_FOR_nothing) ? 'l' : '*');
2371 else
2372 spaces += sizeof (" Reload=sl") - 1;
2374 if (reg_addr[m].scalar_in_vmx_p)
2376 fprintf (stderr, "%*s Upper=y", spaces, "");
2377 spaces = 0;
2379 else
2380 spaces += sizeof (" Upper=y") - 1;
2382 fuse_extra_p = ((reg_addr[m].fusion_gpr_ld != CODE_FOR_nothing)
2383 || reg_addr[m].fused_toc);
2384 if (!fuse_extra_p)
2386 for (rc = 0; rc < N_RELOAD_REG; rc++)
2388 if (rc != RELOAD_REG_ANY)
2390 if (reg_addr[m].fusion_addi_ld[rc] != CODE_FOR_nothing
2391 || reg_addr[m].fusion_addi_ld[rc] != CODE_FOR_nothing
2392 || reg_addr[m].fusion_addi_st[rc] != CODE_FOR_nothing
2393 || reg_addr[m].fusion_addis_ld[rc] != CODE_FOR_nothing
2394 || reg_addr[m].fusion_addis_st[rc] != CODE_FOR_nothing)
2396 fuse_extra_p = true;
2397 break;
2403 if (fuse_extra_p)
2405 fprintf (stderr, "%*s Fuse:", spaces, "");
2406 spaces = 0;
2408 for (rc = 0; rc < N_RELOAD_REG; rc++)
2410 if (rc != RELOAD_REG_ANY)
2412 char load, store;
2414 if (reg_addr[m].fusion_addis_ld[rc] != CODE_FOR_nothing)
2415 load = 'l';
2416 else if (reg_addr[m].fusion_addi_ld[rc] != CODE_FOR_nothing)
2417 load = 'L';
2418 else
2419 load = '-';
2421 if (reg_addr[m].fusion_addis_st[rc] != CODE_FOR_nothing)
2422 store = 's';
2423 else if (reg_addr[m].fusion_addi_st[rc] != CODE_FOR_nothing)
2424 store = 'S';
2425 else
2426 store = '-';
2428 if (load == '-' && store == '-')
2429 spaces += 5;
2430 else
2432 fprintf (stderr, "%*s%c=%c%c", (spaces + 1), "",
2433 reload_reg_map[rc].name[0], load, store);
2434 spaces = 0;
2439 if (reg_addr[m].fusion_gpr_ld != CODE_FOR_nothing)
2441 fprintf (stderr, "%*sP8gpr", (spaces + 1), "");
2442 spaces = 0;
2444 else
2445 spaces += sizeof (" P8gpr") - 1;
2447 if (reg_addr[m].fused_toc)
2449 fprintf (stderr, "%*sToc", (spaces + 1), "");
2450 spaces = 0;
2452 else
2453 spaces += sizeof (" Toc") - 1;
2455 else
2456 spaces += sizeof (" Fuse: G=ls F=ls v=ls P8gpr Toc") - 1;
2458 if (rs6000_vector_unit[m] != VECTOR_NONE
2459 || rs6000_vector_mem[m] != VECTOR_NONE)
2461 fprintf (stderr, "%*s vector: arith=%-10s mem=%s",
2462 spaces, "",
2463 rs6000_debug_vector_unit (rs6000_vector_unit[m]),
2464 rs6000_debug_vector_unit (rs6000_vector_mem[m]));
2467 fputs ("\n", stderr);
2470 #define DEBUG_FMT_ID "%-32s= "
2471 #define DEBUG_FMT_D DEBUG_FMT_ID "%d\n"
2472 #define DEBUG_FMT_WX DEBUG_FMT_ID "%#.12" HOST_WIDE_INT_PRINT "x: "
2473 #define DEBUG_FMT_S DEBUG_FMT_ID "%s\n"
2475 /* Print various interesting information with -mdebug=reg. */
2476 static void
2477 rs6000_debug_reg_global (void)
2479 static const char *const tf[2] = { "false", "true" };
2480 const char *nl = (const char *)0;
2481 int m;
2482 size_t m1, m2, v;
2483 char costly_num[20];
2484 char nop_num[20];
2485 char flags_buffer[40];
2486 const char *costly_str;
2487 const char *nop_str;
2488 const char *trace_str;
2489 const char *abi_str;
2490 const char *cmodel_str;
2491 struct cl_target_option cl_opts;
2493 /* Modes we want tieable information on. */
2494 static const machine_mode print_tieable_modes[] = {
2495 QImode,
2496 HImode,
2497 SImode,
2498 DImode,
2499 TImode,
2500 PTImode,
2501 SFmode,
2502 DFmode,
2503 TFmode,
2504 IFmode,
2505 KFmode,
2506 SDmode,
2507 DDmode,
2508 TDmode,
2509 V2SImode,
2510 V16QImode,
2511 V8HImode,
2512 V4SImode,
2513 V2DImode,
2514 V1TImode,
2515 V32QImode,
2516 V16HImode,
2517 V8SImode,
2518 V4DImode,
2519 V2TImode,
2520 V2SFmode,
2521 V4SFmode,
2522 V2DFmode,
2523 V8SFmode,
2524 V4DFmode,
2525 CCmode,
2526 CCUNSmode,
2527 CCEQmode,
2530 /* Virtual regs we are interested in. */
2531 const static struct {
2532 int regno; /* register number. */
2533 const char *name; /* register name. */
2534 } virtual_regs[] = {
2535 { STACK_POINTER_REGNUM, "stack pointer:" },
2536 { TOC_REGNUM, "toc: " },
2537 { STATIC_CHAIN_REGNUM, "static chain: " },
2538 { RS6000_PIC_OFFSET_TABLE_REGNUM, "pic offset: " },
2539 { HARD_FRAME_POINTER_REGNUM, "hard frame: " },
2540 { ARG_POINTER_REGNUM, "arg pointer: " },
2541 { FRAME_POINTER_REGNUM, "frame pointer:" },
2542 { FIRST_PSEUDO_REGISTER, "first pseudo: " },
2543 { FIRST_VIRTUAL_REGISTER, "first virtual:" },
2544 { VIRTUAL_INCOMING_ARGS_REGNUM, "incoming_args:" },
2545 { VIRTUAL_STACK_VARS_REGNUM, "stack_vars: " },
2546 { VIRTUAL_STACK_DYNAMIC_REGNUM, "stack_dynamic:" },
2547 { VIRTUAL_OUTGOING_ARGS_REGNUM, "outgoing_args:" },
2548 { VIRTUAL_CFA_REGNUM, "cfa (frame): " },
2549 { VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM, "stack boundry:" },
2550 { LAST_VIRTUAL_REGISTER, "last virtual: " },
2553 fputs ("\nHard register information:\n", stderr);
2554 rs6000_debug_reg_print (FIRST_GPR_REGNO, LAST_GPR_REGNO, "gr");
2555 rs6000_debug_reg_print (FIRST_FPR_REGNO, LAST_FPR_REGNO, "fp");
2556 rs6000_debug_reg_print (FIRST_ALTIVEC_REGNO,
2557 LAST_ALTIVEC_REGNO,
2558 "vs");
2559 rs6000_debug_reg_print (LR_REGNO, LR_REGNO, "lr");
2560 rs6000_debug_reg_print (CTR_REGNO, CTR_REGNO, "ctr");
2561 rs6000_debug_reg_print (CR0_REGNO, CR7_REGNO, "cr");
2562 rs6000_debug_reg_print (CA_REGNO, CA_REGNO, "ca");
2563 rs6000_debug_reg_print (VRSAVE_REGNO, VRSAVE_REGNO, "vrsave");
2564 rs6000_debug_reg_print (VSCR_REGNO, VSCR_REGNO, "vscr");
2566 fputs ("\nVirtual/stack/frame registers:\n", stderr);
2567 for (v = 0; v < ARRAY_SIZE (virtual_regs); v++)
2568 fprintf (stderr, "%s regno = %3d\n", virtual_regs[v].name, virtual_regs[v].regno);
2570 fprintf (stderr,
2571 "\n"
2572 "d reg_class = %s\n"
2573 "f reg_class = %s\n"
2574 "v reg_class = %s\n"
2575 "wa reg_class = %s\n"
2576 "wb reg_class = %s\n"
2577 "wd reg_class = %s\n"
2578 "we reg_class = %s\n"
2579 "wf reg_class = %s\n"
2580 "wg reg_class = %s\n"
2581 "wh reg_class = %s\n"
2582 "wi reg_class = %s\n"
2583 "wj reg_class = %s\n"
2584 "wk reg_class = %s\n"
2585 "wl reg_class = %s\n"
2586 "wm reg_class = %s\n"
2587 "wo reg_class = %s\n"
2588 "wp reg_class = %s\n"
2589 "wq reg_class = %s\n"
2590 "wr reg_class = %s\n"
2591 "ws reg_class = %s\n"
2592 "wt reg_class = %s\n"
2593 "wu reg_class = %s\n"
2594 "wv reg_class = %s\n"
2595 "ww reg_class = %s\n"
2596 "wx reg_class = %s\n"
2597 "wy reg_class = %s\n"
2598 "wz reg_class = %s\n"
2599 "wA reg_class = %s\n"
2600 "wH reg_class = %s\n"
2601 "wI reg_class = %s\n"
2602 "wJ reg_class = %s\n"
2603 "wK reg_class = %s\n"
2604 "\n",
2605 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_d]],
2606 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_f]],
2607 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_v]],
2608 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wa]],
2609 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wb]],
2610 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wd]],
2611 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_we]],
2612 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wf]],
2613 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wg]],
2614 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wh]],
2615 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wi]],
2616 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wj]],
2617 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wk]],
2618 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wl]],
2619 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wm]],
2620 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wo]],
2621 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wp]],
2622 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wq]],
2623 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wr]],
2624 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ws]],
2625 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wt]],
2626 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wu]],
2627 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wv]],
2628 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ww]],
2629 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wx]],
2630 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wy]],
2631 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wz]],
2632 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wA]],
2633 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wH]],
2634 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wI]],
2635 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wJ]],
2636 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wK]]);
2638 nl = "\n";
2639 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2640 rs6000_debug_print_mode (m);
2642 fputs ("\n", stderr);
2644 for (m1 = 0; m1 < ARRAY_SIZE (print_tieable_modes); m1++)
2646 machine_mode mode1 = print_tieable_modes[m1];
2647 bool first_time = true;
2649 nl = (const char *)0;
2650 for (m2 = 0; m2 < ARRAY_SIZE (print_tieable_modes); m2++)
2652 machine_mode mode2 = print_tieable_modes[m2];
2653 if (mode1 != mode2 && rs6000_modes_tieable_p (mode1, mode2))
2655 if (first_time)
2657 fprintf (stderr, "Tieable modes %s:", GET_MODE_NAME (mode1));
2658 nl = "\n";
2659 first_time = false;
2662 fprintf (stderr, " %s", GET_MODE_NAME (mode2));
2666 if (!first_time)
2667 fputs ("\n", stderr);
2670 if (nl)
2671 fputs (nl, stderr);
2673 if (rs6000_recip_control)
2675 fprintf (stderr, "\nReciprocal mask = 0x%x\n", rs6000_recip_control);
2677 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2678 if (rs6000_recip_bits[m])
2680 fprintf (stderr,
2681 "Reciprocal estimate mode: %-5s divide: %s rsqrt: %s\n",
2682 GET_MODE_NAME (m),
2683 (RS6000_RECIP_AUTO_RE_P (m)
2684 ? "auto"
2685 : (RS6000_RECIP_HAVE_RE_P (m) ? "have" : "none")),
2686 (RS6000_RECIP_AUTO_RSQRTE_P (m)
2687 ? "auto"
2688 : (RS6000_RECIP_HAVE_RSQRTE_P (m) ? "have" : "none")));
2691 fputs ("\n", stderr);
2694 if (rs6000_cpu_index >= 0)
2696 const char *name = processor_target_table[rs6000_cpu_index].name;
2697 HOST_WIDE_INT flags
2698 = processor_target_table[rs6000_cpu_index].target_enable;
2700 sprintf (flags_buffer, "-mcpu=%s flags", name);
2701 rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
2703 else
2704 fprintf (stderr, DEBUG_FMT_S, "cpu", "<none>");
2706 if (rs6000_tune_index >= 0)
2708 const char *name = processor_target_table[rs6000_tune_index].name;
2709 HOST_WIDE_INT flags
2710 = processor_target_table[rs6000_tune_index].target_enable;
2712 sprintf (flags_buffer, "-mtune=%s flags", name);
2713 rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
2715 else
2716 fprintf (stderr, DEBUG_FMT_S, "tune", "<none>");
2718 cl_target_option_save (&cl_opts, &global_options);
2719 rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags",
2720 rs6000_isa_flags);
2722 rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags_explicit",
2723 rs6000_isa_flags_explicit);
2725 rs6000_print_builtin_options (stderr, 0, "rs6000_builtin_mask",
2726 rs6000_builtin_mask);
2728 rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);
2730 fprintf (stderr, DEBUG_FMT_S, "--with-cpu default",
2731 OPTION_TARGET_CPU_DEFAULT ? OPTION_TARGET_CPU_DEFAULT : "<none>");
2733 switch (rs6000_sched_costly_dep)
2735 case max_dep_latency:
2736 costly_str = "max_dep_latency";
2737 break;
2739 case no_dep_costly:
2740 costly_str = "no_dep_costly";
2741 break;
2743 case all_deps_costly:
2744 costly_str = "all_deps_costly";
2745 break;
2747 case true_store_to_load_dep_costly:
2748 costly_str = "true_store_to_load_dep_costly";
2749 break;
2751 case store_to_load_dep_costly:
2752 costly_str = "store_to_load_dep_costly";
2753 break;
2755 default:
2756 costly_str = costly_num;
2757 sprintf (costly_num, "%d", (int)rs6000_sched_costly_dep);
2758 break;
2761 fprintf (stderr, DEBUG_FMT_S, "sched_costly_dep", costly_str);
2763 switch (rs6000_sched_insert_nops)
2765 case sched_finish_regroup_exact:
2766 nop_str = "sched_finish_regroup_exact";
2767 break;
2769 case sched_finish_pad_groups:
2770 nop_str = "sched_finish_pad_groups";
2771 break;
2773 case sched_finish_none:
2774 nop_str = "sched_finish_none";
2775 break;
2777 default:
2778 nop_str = nop_num;
2779 sprintf (nop_num, "%d", (int)rs6000_sched_insert_nops);
2780 break;
2783 fprintf (stderr, DEBUG_FMT_S, "sched_insert_nops", nop_str);
2785 switch (rs6000_sdata)
2787 default:
2788 case SDATA_NONE:
2789 break;
2791 case SDATA_DATA:
2792 fprintf (stderr, DEBUG_FMT_S, "sdata", "data");
2793 break;
2795 case SDATA_SYSV:
2796 fprintf (stderr, DEBUG_FMT_S, "sdata", "sysv");
2797 break;
2799 case SDATA_EABI:
2800 fprintf (stderr, DEBUG_FMT_S, "sdata", "eabi");
2801 break;
2805 switch (rs6000_traceback)
2807 case traceback_default: trace_str = "default"; break;
2808 case traceback_none: trace_str = "none"; break;
2809 case traceback_part: trace_str = "part"; break;
2810 case traceback_full: trace_str = "full"; break;
2811 default: trace_str = "unknown"; break;
2814 fprintf (stderr, DEBUG_FMT_S, "traceback", trace_str);
2816 switch (rs6000_current_cmodel)
2818 case CMODEL_SMALL: cmodel_str = "small"; break;
2819 case CMODEL_MEDIUM: cmodel_str = "medium"; break;
2820 case CMODEL_LARGE: cmodel_str = "large"; break;
2821 default: cmodel_str = "unknown"; break;
2824 fprintf (stderr, DEBUG_FMT_S, "cmodel", cmodel_str);
2826 switch (rs6000_current_abi)
2828 case ABI_NONE: abi_str = "none"; break;
2829 case ABI_AIX: abi_str = "aix"; break;
2830 case ABI_ELFv2: abi_str = "ELFv2"; break;
2831 case ABI_V4: abi_str = "V4"; break;
2832 case ABI_DARWIN: abi_str = "darwin"; break;
2833 default: abi_str = "unknown"; break;
2836 fprintf (stderr, DEBUG_FMT_S, "abi", abi_str);
2838 if (rs6000_altivec_abi)
2839 fprintf (stderr, DEBUG_FMT_S, "altivec_abi", "true");
2841 if (rs6000_darwin64_abi)
2842 fprintf (stderr, DEBUG_FMT_S, "darwin64_abi", "true");
2844 fprintf (stderr, DEBUG_FMT_S, "single_float",
2845 (TARGET_SINGLE_FLOAT ? "true" : "false"));
2847 fprintf (stderr, DEBUG_FMT_S, "double_float",
2848 (TARGET_DOUBLE_FLOAT ? "true" : "false"));
2850 fprintf (stderr, DEBUG_FMT_S, "soft_float",
2851 (TARGET_SOFT_FLOAT ? "true" : "false"));
2853 if (TARGET_LINK_STACK)
2854 fprintf (stderr, DEBUG_FMT_S, "link_stack", "true");
2856 if (TARGET_P8_FUSION)
2858 char options[80];
2860 strcpy (options, (TARGET_P9_FUSION) ? "power9" : "power8");
2861 if (TARGET_TOC_FUSION)
2862 strcat (options, ", toc");
2864 if (TARGET_P8_FUSION_SIGN)
2865 strcat (options, ", sign");
2867 fprintf (stderr, DEBUG_FMT_S, "fusion", options);
2870 fprintf (stderr, DEBUG_FMT_S, "plt-format",
2871 TARGET_SECURE_PLT ? "secure" : "bss");
2872 fprintf (stderr, DEBUG_FMT_S, "struct-return",
2873 aix_struct_return ? "aix" : "sysv");
2874 fprintf (stderr, DEBUG_FMT_S, "always_hint", tf[!!rs6000_always_hint]);
2875 fprintf (stderr, DEBUG_FMT_S, "sched_groups", tf[!!rs6000_sched_groups]);
2876 fprintf (stderr, DEBUG_FMT_S, "align_branch",
2877 tf[!!rs6000_align_branch_targets]);
2878 fprintf (stderr, DEBUG_FMT_D, "tls_size", rs6000_tls_size);
2879 fprintf (stderr, DEBUG_FMT_D, "long_double_size",
2880 rs6000_long_double_type_size);
2881 fprintf (stderr, DEBUG_FMT_D, "sched_restricted_insns_priority",
2882 (int)rs6000_sched_restricted_insns_priority);
2883 fprintf (stderr, DEBUG_FMT_D, "Number of standard builtins",
2884 (int)END_BUILTINS);
2885 fprintf (stderr, DEBUG_FMT_D, "Number of rs6000 builtins",
2886 (int)RS6000_BUILTIN_COUNT);
2888 fprintf (stderr, DEBUG_FMT_D, "Enable float128 on VSX",
2889 (int)TARGET_FLOAT128_ENABLE_TYPE);
2891 if (TARGET_VSX)
2892 fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit scalar element",
2893 (int)VECTOR_ELEMENT_SCALAR_64BIT);
2895 if (TARGET_DIRECT_MOVE_128)
2896 fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit mfvsrld element",
2897 (int)VECTOR_ELEMENT_MFVSRLD_64BIT);
2901 /* Update the addr mask bits in reg_addr to help secondary reload and go if
2902 legitimate address support to figure out the appropriate addressing to
2903 use. */
2905 static void
2906 rs6000_setup_reg_addr_masks (void)
2908 ssize_t rc, reg, m, nregs;
2909 addr_mask_type any_addr_mask, addr_mask;
2911 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2913 machine_mode m2 = (machine_mode) m;
2914 bool complex_p = false;
2915 bool small_int_p = (m2 == QImode || m2 == HImode || m2 == SImode);
2916 size_t msize;
2918 if (COMPLEX_MODE_P (m2))
2920 complex_p = true;
2921 m2 = GET_MODE_INNER (m2);
2924 msize = GET_MODE_SIZE (m2);
2926 /* SDmode is special in that we want to access it only via REG+REG
2927 addressing on power7 and above, since we want to use the LFIWZX and
2928 STFIWZX instructions to load it. */
2929 bool indexed_only_p = (m == SDmode && TARGET_NO_SDMODE_STACK);
2931 any_addr_mask = 0;
2932 for (rc = FIRST_RELOAD_REG_CLASS; rc <= LAST_RELOAD_REG_CLASS; rc++)
2934 addr_mask = 0;
2935 reg = reload_reg_map[rc].reg;
2937 /* Can mode values go in the GPR/FPR/Altivec registers? */
2938 if (reg >= 0 && rs6000_hard_regno_mode_ok_p[m][reg])
2940 bool small_int_vsx_p = (small_int_p
2941 && (rc == RELOAD_REG_FPR
2942 || rc == RELOAD_REG_VMX));
2944 nregs = rs6000_hard_regno_nregs[m][reg];
2945 addr_mask |= RELOAD_REG_VALID;
2947 /* Indicate if the mode takes more than 1 physical register. If
2948 it takes a single register, indicate it can do REG+REG
2949 addressing. Small integers in VSX registers can only do
2950 REG+REG addressing. */
2951 if (small_int_vsx_p)
2952 addr_mask |= RELOAD_REG_INDEXED;
2953 else if (nregs > 1 || m == BLKmode || complex_p)
2954 addr_mask |= RELOAD_REG_MULTIPLE;
2955 else
2956 addr_mask |= RELOAD_REG_INDEXED;
2958 /* Figure out if we can do PRE_INC, PRE_DEC, or PRE_MODIFY
2959 addressing. If we allow scalars into Altivec registers,
2960 don't allow PRE_INC, PRE_DEC, or PRE_MODIFY. */
2962 if (TARGET_UPDATE
2963 && (rc == RELOAD_REG_GPR || rc == RELOAD_REG_FPR)
2964 && msize <= 8
2965 && !VECTOR_MODE_P (m2)
2966 && !FLOAT128_VECTOR_P (m2)
2967 && !complex_p
2968 && !small_int_vsx_p)
2970 addr_mask |= RELOAD_REG_PRE_INCDEC;
2972 /* PRE_MODIFY is more restricted than PRE_INC/PRE_DEC in that
2973 we don't allow PRE_MODIFY for some multi-register
2974 operations. */
2975 switch (m)
2977 default:
2978 addr_mask |= RELOAD_REG_PRE_MODIFY;
2979 break;
2981 case E_DImode:
2982 if (TARGET_POWERPC64)
2983 addr_mask |= RELOAD_REG_PRE_MODIFY;
2984 break;
2986 case E_DFmode:
2987 case E_DDmode:
2988 if (TARGET_DF_INSN)
2989 addr_mask |= RELOAD_REG_PRE_MODIFY;
2990 break;
2995 /* GPR and FPR registers can do REG+OFFSET addressing, except
2996 possibly for SDmode. ISA 3.0 (i.e. power9) adds D-form addressing
2997 for 64-bit scalars and 32-bit SFmode to altivec registers. */
2998 if ((addr_mask != 0) && !indexed_only_p
2999 && msize <= 8
3000 && (rc == RELOAD_REG_GPR
3001 || ((msize == 8 || m2 == SFmode)
3002 && (rc == RELOAD_REG_FPR
3003 || (rc == RELOAD_REG_VMX && TARGET_P9_VECTOR)))))
3004 addr_mask |= RELOAD_REG_OFFSET;
3006 /* VSX registers can do REG+OFFSET addresssing if ISA 3.0
3007 instructions are enabled. The offset for 128-bit VSX registers is
3008 only 12-bits. While GPRs can handle the full offset range, VSX
3009 registers can only handle the restricted range. */
3010 else if ((addr_mask != 0) && !indexed_only_p
3011 && msize == 16 && TARGET_P9_VECTOR
3012 && (ALTIVEC_OR_VSX_VECTOR_MODE (m2)
3013 || (m2 == TImode && TARGET_VSX)))
3015 addr_mask |= RELOAD_REG_OFFSET;
3016 if (rc == RELOAD_REG_FPR || rc == RELOAD_REG_VMX)
3017 addr_mask |= RELOAD_REG_QUAD_OFFSET;
3020 /* VMX registers can do (REG & -16) and ((REG+REG) & -16)
3021 addressing on 128-bit types. */
3022 if (rc == RELOAD_REG_VMX && msize == 16
3023 && (addr_mask & RELOAD_REG_VALID) != 0)
3024 addr_mask |= RELOAD_REG_AND_M16;
3026 reg_addr[m].addr_mask[rc] = addr_mask;
3027 any_addr_mask |= addr_mask;
3030 reg_addr[m].addr_mask[RELOAD_REG_ANY] = any_addr_mask;
3035 /* Initialize the various global tables that are based on register size. */
3036 static void
3037 rs6000_init_hard_regno_mode_ok (bool global_init_p)
3039 ssize_t r, m, c;
3040 int align64;
3041 int align32;
3043 /* Precalculate REGNO_REG_CLASS. */
3044 rs6000_regno_regclass[0] = GENERAL_REGS;
3045 for (r = 1; r < 32; ++r)
3046 rs6000_regno_regclass[r] = BASE_REGS;
3048 for (r = 32; r < 64; ++r)
3049 rs6000_regno_regclass[r] = FLOAT_REGS;
3051 for (r = 64; r < FIRST_PSEUDO_REGISTER; ++r)
3052 rs6000_regno_regclass[r] = NO_REGS;
3054 for (r = FIRST_ALTIVEC_REGNO; r <= LAST_ALTIVEC_REGNO; ++r)
3055 rs6000_regno_regclass[r] = ALTIVEC_REGS;
3057 rs6000_regno_regclass[CR0_REGNO] = CR0_REGS;
3058 for (r = CR1_REGNO; r <= CR7_REGNO; ++r)
3059 rs6000_regno_regclass[r] = CR_REGS;
3061 rs6000_regno_regclass[LR_REGNO] = LINK_REGS;
3062 rs6000_regno_regclass[CTR_REGNO] = CTR_REGS;
3063 rs6000_regno_regclass[CA_REGNO] = NO_REGS;
3064 rs6000_regno_regclass[VRSAVE_REGNO] = VRSAVE_REGS;
3065 rs6000_regno_regclass[VSCR_REGNO] = VRSAVE_REGS;
3066 rs6000_regno_regclass[TFHAR_REGNO] = SPR_REGS;
3067 rs6000_regno_regclass[TFIAR_REGNO] = SPR_REGS;
3068 rs6000_regno_regclass[TEXASR_REGNO] = SPR_REGS;
3069 rs6000_regno_regclass[ARG_POINTER_REGNUM] = BASE_REGS;
3070 rs6000_regno_regclass[FRAME_POINTER_REGNUM] = BASE_REGS;
3072 /* Precalculate register class to simpler reload register class. We don't
3073 need all of the register classes that are combinations of different
3074 classes, just the simple ones that have constraint letters. */
3075 for (c = 0; c < N_REG_CLASSES; c++)
3076 reg_class_to_reg_type[c] = NO_REG_TYPE;
3078 reg_class_to_reg_type[(int)GENERAL_REGS] = GPR_REG_TYPE;
3079 reg_class_to_reg_type[(int)BASE_REGS] = GPR_REG_TYPE;
3080 reg_class_to_reg_type[(int)VSX_REGS] = VSX_REG_TYPE;
3081 reg_class_to_reg_type[(int)VRSAVE_REGS] = SPR_REG_TYPE;
3082 reg_class_to_reg_type[(int)VSCR_REGS] = SPR_REG_TYPE;
3083 reg_class_to_reg_type[(int)LINK_REGS] = SPR_REG_TYPE;
3084 reg_class_to_reg_type[(int)CTR_REGS] = SPR_REG_TYPE;
3085 reg_class_to_reg_type[(int)LINK_OR_CTR_REGS] = SPR_REG_TYPE;
3086 reg_class_to_reg_type[(int)CR_REGS] = CR_REG_TYPE;
3087 reg_class_to_reg_type[(int)CR0_REGS] = CR_REG_TYPE;
3089 if (TARGET_VSX)
3091 reg_class_to_reg_type[(int)FLOAT_REGS] = VSX_REG_TYPE;
3092 reg_class_to_reg_type[(int)ALTIVEC_REGS] = VSX_REG_TYPE;
3094 else
3096 reg_class_to_reg_type[(int)FLOAT_REGS] = FPR_REG_TYPE;
3097 reg_class_to_reg_type[(int)ALTIVEC_REGS] = ALTIVEC_REG_TYPE;
3100 /* Precalculate the valid memory formats as well as the vector information,
3101 this must be set up before the rs6000_hard_regno_nregs_internal calls
3102 below. */
3103 gcc_assert ((int)VECTOR_NONE == 0);
3104 memset ((void *) &rs6000_vector_unit[0], '\0', sizeof (rs6000_vector_unit));
3105 memset ((void *) &rs6000_vector_mem[0], '\0', sizeof (rs6000_vector_unit));
3107 gcc_assert ((int)CODE_FOR_nothing == 0);
3108 memset ((void *) &reg_addr[0], '\0', sizeof (reg_addr));
3110 gcc_assert ((int)NO_REGS == 0);
3111 memset ((void *) &rs6000_constraints[0], '\0', sizeof (rs6000_constraints));
3113 /* The VSX hardware allows native alignment for vectors, but control whether the compiler
3114 believes it can use native alignment or still uses 128-bit alignment. */
3115 if (TARGET_VSX && !TARGET_VSX_ALIGN_128)
3117 align64 = 64;
3118 align32 = 32;
3120 else
3122 align64 = 128;
3123 align32 = 128;
3126 /* KF mode (IEEE 128-bit in VSX registers). We do not have arithmetic, so
3127 only set the memory modes. Include TFmode if -mabi=ieeelongdouble. */
3128 if (TARGET_FLOAT128_TYPE)
3130 rs6000_vector_mem[KFmode] = VECTOR_VSX;
3131 rs6000_vector_align[KFmode] = 128;
3133 if (FLOAT128_IEEE_P (TFmode))
3135 rs6000_vector_mem[TFmode] = VECTOR_VSX;
3136 rs6000_vector_align[TFmode] = 128;
3140 /* V2DF mode, VSX only. */
3141 if (TARGET_VSX)
3143 rs6000_vector_unit[V2DFmode] = VECTOR_VSX;
3144 rs6000_vector_mem[V2DFmode] = VECTOR_VSX;
3145 rs6000_vector_align[V2DFmode] = align64;
3148 /* V4SF mode, either VSX or Altivec. */
3149 if (TARGET_VSX)
3151 rs6000_vector_unit[V4SFmode] = VECTOR_VSX;
3152 rs6000_vector_mem[V4SFmode] = VECTOR_VSX;
3153 rs6000_vector_align[V4SFmode] = align32;
3155 else if (TARGET_ALTIVEC)
3157 rs6000_vector_unit[V4SFmode] = VECTOR_ALTIVEC;
3158 rs6000_vector_mem[V4SFmode] = VECTOR_ALTIVEC;
3159 rs6000_vector_align[V4SFmode] = align32;
3162 /* V16QImode, V8HImode, V4SImode are Altivec only, but possibly do VSX loads
3163 and stores. */
3164 if (TARGET_ALTIVEC)
3166 rs6000_vector_unit[V4SImode] = VECTOR_ALTIVEC;
3167 rs6000_vector_unit[V8HImode] = VECTOR_ALTIVEC;
3168 rs6000_vector_unit[V16QImode] = VECTOR_ALTIVEC;
3169 rs6000_vector_align[V4SImode] = align32;
3170 rs6000_vector_align[V8HImode] = align32;
3171 rs6000_vector_align[V16QImode] = align32;
3173 if (TARGET_VSX)
3175 rs6000_vector_mem[V4SImode] = VECTOR_VSX;
3176 rs6000_vector_mem[V8HImode] = VECTOR_VSX;
3177 rs6000_vector_mem[V16QImode] = VECTOR_VSX;
3179 else
3181 rs6000_vector_mem[V4SImode] = VECTOR_ALTIVEC;
3182 rs6000_vector_mem[V8HImode] = VECTOR_ALTIVEC;
3183 rs6000_vector_mem[V16QImode] = VECTOR_ALTIVEC;
3187 /* V2DImode, full mode depends on ISA 2.07 vector mode. Allow under VSX to
3188 do insert/splat/extract. Altivec doesn't have 64-bit integer support. */
3189 if (TARGET_VSX)
3191 rs6000_vector_mem[V2DImode] = VECTOR_VSX;
3192 rs6000_vector_unit[V2DImode]
3193 = (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
3194 rs6000_vector_align[V2DImode] = align64;
3196 rs6000_vector_mem[V1TImode] = VECTOR_VSX;
3197 rs6000_vector_unit[V1TImode]
3198 = (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
3199 rs6000_vector_align[V1TImode] = 128;
3202 /* DFmode, see if we want to use the VSX unit. Memory is handled
3203 differently, so don't set rs6000_vector_mem. */
3204 if (TARGET_VSX)
3206 rs6000_vector_unit[DFmode] = VECTOR_VSX;
3207 rs6000_vector_align[DFmode] = 64;
3210 /* SFmode, see if we want to use the VSX unit. */
3211 if (TARGET_P8_VECTOR)
3213 rs6000_vector_unit[SFmode] = VECTOR_VSX;
3214 rs6000_vector_align[SFmode] = 32;
3217 /* Allow TImode in VSX register and set the VSX memory macros. */
3218 if (TARGET_VSX)
3220 rs6000_vector_mem[TImode] = VECTOR_VSX;
3221 rs6000_vector_align[TImode] = align64;
3224 /* TODO add paired floating point vector support. */
3226 /* Register class constraints for the constraints that depend on compile
3227 switches. When the VSX code was added, different constraints were added
3228 based on the type (DFmode, V2DFmode, V4SFmode). For the vector types, all
3229 of the VSX registers are used. The register classes for scalar floating
3230 point types is set, based on whether we allow that type into the upper
3231 (Altivec) registers. GCC has register classes to target the Altivec
3232 registers for load/store operations, to select using a VSX memory
3233 operation instead of the traditional floating point operation. The
3234 constraints are:
3236 d - Register class to use with traditional DFmode instructions.
3237 f - Register class to use with traditional SFmode instructions.
3238 v - Altivec register.
3239 wa - Any VSX register.
3240 wc - Reserved to represent individual CR bits (used in LLVM).
3241 wd - Preferred register class for V2DFmode.
3242 wf - Preferred register class for V4SFmode.
3243 wg - Float register for power6x move insns.
3244 wh - FP register for direct move instructions.
3245 wi - FP or VSX register to hold 64-bit integers for VSX insns.
3246 wj - FP or VSX register to hold 64-bit integers for direct moves.
3247 wk - FP or VSX register to hold 64-bit doubles for direct moves.
3248 wl - Float register if we can do 32-bit signed int loads.
3249 wm - VSX register for ISA 2.07 direct move operations.
3250 wn - always NO_REGS.
3251 wr - GPR if 64-bit mode is permitted.
3252 ws - Register class to do ISA 2.06 DF operations.
3253 wt - VSX register for TImode in VSX registers.
3254 wu - Altivec register for ISA 2.07 VSX SF/SI load/stores.
3255 wv - Altivec register for ISA 2.06 VSX DF/DI load/stores.
3256 ww - Register class to do SF conversions in with VSX operations.
3257 wx - Float register if we can do 32-bit int stores.
3258 wy - Register class to do ISA 2.07 SF operations.
3259 wz - Float register if we can do 32-bit unsigned int loads.
3260 wH - Altivec register if SImode is allowed in VSX registers.
3261 wI - VSX register if SImode is allowed in VSX registers.
3262 wJ - VSX register if QImode/HImode are allowed in VSX registers.
3263 wK - Altivec register if QImode/HImode are allowed in VSX registers. */
3265 if (TARGET_HARD_FLOAT)
3266 rs6000_constraints[RS6000_CONSTRAINT_f] = FLOAT_REGS; /* SFmode */
3268 if (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
3269 rs6000_constraints[RS6000_CONSTRAINT_d] = FLOAT_REGS; /* DFmode */
3271 if (TARGET_VSX)
3273 rs6000_constraints[RS6000_CONSTRAINT_wa] = VSX_REGS;
3274 rs6000_constraints[RS6000_CONSTRAINT_wd] = VSX_REGS; /* V2DFmode */
3275 rs6000_constraints[RS6000_CONSTRAINT_wf] = VSX_REGS; /* V4SFmode */
3276 rs6000_constraints[RS6000_CONSTRAINT_ws] = VSX_REGS; /* DFmode */
3277 rs6000_constraints[RS6000_CONSTRAINT_wv] = ALTIVEC_REGS; /* DFmode */
3278 rs6000_constraints[RS6000_CONSTRAINT_wi] = VSX_REGS; /* DImode */
3279 rs6000_constraints[RS6000_CONSTRAINT_wt] = VSX_REGS; /* TImode */
3282 /* Add conditional constraints based on various options, to allow us to
3283 collapse multiple insn patterns. */
3284 if (TARGET_ALTIVEC)
3285 rs6000_constraints[RS6000_CONSTRAINT_v] = ALTIVEC_REGS;
3287 if (TARGET_MFPGPR) /* DFmode */
3288 rs6000_constraints[RS6000_CONSTRAINT_wg] = FLOAT_REGS;
3290 if (TARGET_LFIWAX)
3291 rs6000_constraints[RS6000_CONSTRAINT_wl] = FLOAT_REGS; /* DImode */
3293 if (TARGET_DIRECT_MOVE)
3295 rs6000_constraints[RS6000_CONSTRAINT_wh] = FLOAT_REGS;
3296 rs6000_constraints[RS6000_CONSTRAINT_wj] /* DImode */
3297 = rs6000_constraints[RS6000_CONSTRAINT_wi];
3298 rs6000_constraints[RS6000_CONSTRAINT_wk] /* DFmode */
3299 = rs6000_constraints[RS6000_CONSTRAINT_ws];
3300 rs6000_constraints[RS6000_CONSTRAINT_wm] = VSX_REGS;
3303 if (TARGET_POWERPC64)
3305 rs6000_constraints[RS6000_CONSTRAINT_wr] = GENERAL_REGS;
3306 rs6000_constraints[RS6000_CONSTRAINT_wA] = BASE_REGS;
3309 if (TARGET_P8_VECTOR) /* SFmode */
3311 rs6000_constraints[RS6000_CONSTRAINT_wu] = ALTIVEC_REGS;
3312 rs6000_constraints[RS6000_CONSTRAINT_wy] = VSX_REGS;
3313 rs6000_constraints[RS6000_CONSTRAINT_ww] = VSX_REGS;
3315 else if (TARGET_VSX)
3316 rs6000_constraints[RS6000_CONSTRAINT_ww] = FLOAT_REGS;
3318 if (TARGET_STFIWX)
3319 rs6000_constraints[RS6000_CONSTRAINT_wx] = FLOAT_REGS; /* DImode */
3321 if (TARGET_LFIWZX)
3322 rs6000_constraints[RS6000_CONSTRAINT_wz] = FLOAT_REGS; /* DImode */
3324 if (TARGET_FLOAT128_TYPE)
3326 rs6000_constraints[RS6000_CONSTRAINT_wq] = VSX_REGS; /* KFmode */
3327 if (FLOAT128_IEEE_P (TFmode))
3328 rs6000_constraints[RS6000_CONSTRAINT_wp] = VSX_REGS; /* TFmode */
3331 if (TARGET_P9_VECTOR)
3333 /* Support for new D-form instructions. */
3334 rs6000_constraints[RS6000_CONSTRAINT_wb] = ALTIVEC_REGS;
3336 /* Support for ISA 3.0 (power9) vectors. */
3337 rs6000_constraints[RS6000_CONSTRAINT_wo] = VSX_REGS;
3340 /* Support for new direct moves (ISA 3.0 + 64bit). */
3341 if (TARGET_DIRECT_MOVE_128)
3342 rs6000_constraints[RS6000_CONSTRAINT_we] = VSX_REGS;
3344 /* Support small integers in VSX registers. */
3345 if (TARGET_P8_VECTOR)
3347 rs6000_constraints[RS6000_CONSTRAINT_wH] = ALTIVEC_REGS;
3348 rs6000_constraints[RS6000_CONSTRAINT_wI] = FLOAT_REGS;
3349 if (TARGET_P9_VECTOR)
3351 rs6000_constraints[RS6000_CONSTRAINT_wJ] = FLOAT_REGS;
3352 rs6000_constraints[RS6000_CONSTRAINT_wK] = ALTIVEC_REGS;
3356 /* Set up the reload helper and direct move functions. */
3357 if (TARGET_VSX || TARGET_ALTIVEC)
3359 if (TARGET_64BIT)
3361 reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_di_store;
3362 reg_addr[V16QImode].reload_load = CODE_FOR_reload_v16qi_di_load;
3363 reg_addr[V8HImode].reload_store = CODE_FOR_reload_v8hi_di_store;
3364 reg_addr[V8HImode].reload_load = CODE_FOR_reload_v8hi_di_load;
3365 reg_addr[V4SImode].reload_store = CODE_FOR_reload_v4si_di_store;
3366 reg_addr[V4SImode].reload_load = CODE_FOR_reload_v4si_di_load;
3367 reg_addr[V2DImode].reload_store = CODE_FOR_reload_v2di_di_store;
3368 reg_addr[V2DImode].reload_load = CODE_FOR_reload_v2di_di_load;
3369 reg_addr[V1TImode].reload_store = CODE_FOR_reload_v1ti_di_store;
3370 reg_addr[V1TImode].reload_load = CODE_FOR_reload_v1ti_di_load;
3371 reg_addr[V4SFmode].reload_store = CODE_FOR_reload_v4sf_di_store;
3372 reg_addr[V4SFmode].reload_load = CODE_FOR_reload_v4sf_di_load;
3373 reg_addr[V2DFmode].reload_store = CODE_FOR_reload_v2df_di_store;
3374 reg_addr[V2DFmode].reload_load = CODE_FOR_reload_v2df_di_load;
3375 reg_addr[DFmode].reload_store = CODE_FOR_reload_df_di_store;
3376 reg_addr[DFmode].reload_load = CODE_FOR_reload_df_di_load;
3377 reg_addr[DDmode].reload_store = CODE_FOR_reload_dd_di_store;
3378 reg_addr[DDmode].reload_load = CODE_FOR_reload_dd_di_load;
3379 reg_addr[SFmode].reload_store = CODE_FOR_reload_sf_di_store;
3380 reg_addr[SFmode].reload_load = CODE_FOR_reload_sf_di_load;
3382 if (FLOAT128_VECTOR_P (KFmode))
3384 reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_di_store;
3385 reg_addr[KFmode].reload_load = CODE_FOR_reload_kf_di_load;
3388 if (FLOAT128_VECTOR_P (TFmode))
3390 reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_di_store;
3391 reg_addr[TFmode].reload_load = CODE_FOR_reload_tf_di_load;
3394 /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
3395 available. */
3396 if (TARGET_NO_SDMODE_STACK)
3398 reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_di_store;
3399 reg_addr[SDmode].reload_load = CODE_FOR_reload_sd_di_load;
3402 if (TARGET_VSX)
3404 reg_addr[TImode].reload_store = CODE_FOR_reload_ti_di_store;
3405 reg_addr[TImode].reload_load = CODE_FOR_reload_ti_di_load;
3408 if (TARGET_DIRECT_MOVE && !TARGET_DIRECT_MOVE_128)
3410 reg_addr[TImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxti;
3411 reg_addr[V1TImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv1ti;
3412 reg_addr[V2DFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv2df;
3413 reg_addr[V2DImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv2di;
3414 reg_addr[V4SFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv4sf;
3415 reg_addr[V4SImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv4si;
3416 reg_addr[V8HImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv8hi;
3417 reg_addr[V16QImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv16qi;
3418 reg_addr[SFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxsf;
3420 reg_addr[TImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprti;
3421 reg_addr[V1TImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv1ti;
3422 reg_addr[V2DFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv2df;
3423 reg_addr[V2DImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv2di;
3424 reg_addr[V4SFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv4sf;
3425 reg_addr[V4SImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv4si;
3426 reg_addr[V8HImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv8hi;
3427 reg_addr[V16QImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv16qi;
3428 reg_addr[SFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprsf;
3430 if (FLOAT128_VECTOR_P (KFmode))
3432 reg_addr[KFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxkf;
3433 reg_addr[KFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprkf;
3436 if (FLOAT128_VECTOR_P (TFmode))
3438 reg_addr[TFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxtf;
3439 reg_addr[TFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprtf;
3443 else
3445 reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_si_store;
3446 reg_addr[V16QImode].reload_load = CODE_FOR_reload_v16qi_si_load;
3447 reg_addr[V8HImode].reload_store = CODE_FOR_reload_v8hi_si_store;
3448 reg_addr[V8HImode].reload_load = CODE_FOR_reload_v8hi_si_load;
3449 reg_addr[V4SImode].reload_store = CODE_FOR_reload_v4si_si_store;
3450 reg_addr[V4SImode].reload_load = CODE_FOR_reload_v4si_si_load;
3451 reg_addr[V2DImode].reload_store = CODE_FOR_reload_v2di_si_store;
3452 reg_addr[V2DImode].reload_load = CODE_FOR_reload_v2di_si_load;
3453 reg_addr[V1TImode].reload_store = CODE_FOR_reload_v1ti_si_store;
3454 reg_addr[V1TImode].reload_load = CODE_FOR_reload_v1ti_si_load;
3455 reg_addr[V4SFmode].reload_store = CODE_FOR_reload_v4sf_si_store;
3456 reg_addr[V4SFmode].reload_load = CODE_FOR_reload_v4sf_si_load;
3457 reg_addr[V2DFmode].reload_store = CODE_FOR_reload_v2df_si_store;
3458 reg_addr[V2DFmode].reload_load = CODE_FOR_reload_v2df_si_load;
3459 reg_addr[DFmode].reload_store = CODE_FOR_reload_df_si_store;
3460 reg_addr[DFmode].reload_load = CODE_FOR_reload_df_si_load;
3461 reg_addr[DDmode].reload_store = CODE_FOR_reload_dd_si_store;
3462 reg_addr[DDmode].reload_load = CODE_FOR_reload_dd_si_load;
3463 reg_addr[SFmode].reload_store = CODE_FOR_reload_sf_si_store;
3464 reg_addr[SFmode].reload_load = CODE_FOR_reload_sf_si_load;
3466 if (FLOAT128_VECTOR_P (KFmode))
3468 reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_si_store;
3469 reg_addr[KFmode].reload_load = CODE_FOR_reload_kf_si_load;
3472 if (FLOAT128_IEEE_P (TFmode))
3474 reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_si_store;
3475 reg_addr[TFmode].reload_load = CODE_FOR_reload_tf_si_load;
3478 /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
3479 available. */
3480 if (TARGET_NO_SDMODE_STACK)
3482 reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_si_store;
3483 reg_addr[SDmode].reload_load = CODE_FOR_reload_sd_si_load;
3486 if (TARGET_VSX)
3488 reg_addr[TImode].reload_store = CODE_FOR_reload_ti_si_store;
3489 reg_addr[TImode].reload_load = CODE_FOR_reload_ti_si_load;
3492 if (TARGET_DIRECT_MOVE)
3494 reg_addr[DImode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdi;
3495 reg_addr[DDmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdd;
3496 reg_addr[DFmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdf;
3500 reg_addr[DFmode].scalar_in_vmx_p = true;
3501 reg_addr[DImode].scalar_in_vmx_p = true;
3503 if (TARGET_P8_VECTOR)
3505 reg_addr[SFmode].scalar_in_vmx_p = true;
3506 reg_addr[SImode].scalar_in_vmx_p = true;
3508 if (TARGET_P9_VECTOR)
3510 reg_addr[HImode].scalar_in_vmx_p = true;
3511 reg_addr[QImode].scalar_in_vmx_p = true;
3516 /* Setup the fusion operations. */
3517 if (TARGET_P8_FUSION)
3519 reg_addr[QImode].fusion_gpr_ld = CODE_FOR_fusion_gpr_load_qi;
3520 reg_addr[HImode].fusion_gpr_ld = CODE_FOR_fusion_gpr_load_hi;
3521 reg_addr[SImode].fusion_gpr_ld = CODE_FOR_fusion_gpr_load_si;
3522 if (TARGET_64BIT)
3523 reg_addr[DImode].fusion_gpr_ld = CODE_FOR_fusion_gpr_load_di;
3526 if (TARGET_P9_FUSION)
3528 struct fuse_insns {
3529 enum machine_mode mode; /* mode of the fused type. */
3530 enum machine_mode pmode; /* pointer mode. */
3531 enum rs6000_reload_reg_type rtype; /* register type. */
3532 enum insn_code load; /* load insn. */
3533 enum insn_code store; /* store insn. */
3536 static const struct fuse_insns addis_insns[] = {
3537 { E_SFmode, E_DImode, RELOAD_REG_FPR,
3538 CODE_FOR_fusion_vsx_di_sf_load,
3539 CODE_FOR_fusion_vsx_di_sf_store },
3541 { E_SFmode, E_SImode, RELOAD_REG_FPR,
3542 CODE_FOR_fusion_vsx_si_sf_load,
3543 CODE_FOR_fusion_vsx_si_sf_store },
3545 { E_DFmode, E_DImode, RELOAD_REG_FPR,
3546 CODE_FOR_fusion_vsx_di_df_load,
3547 CODE_FOR_fusion_vsx_di_df_store },
3549 { E_DFmode, E_SImode, RELOAD_REG_FPR,
3550 CODE_FOR_fusion_vsx_si_df_load,
3551 CODE_FOR_fusion_vsx_si_df_store },
3553 { E_DImode, E_DImode, RELOAD_REG_FPR,
3554 CODE_FOR_fusion_vsx_di_di_load,
3555 CODE_FOR_fusion_vsx_di_di_store },
3557 { E_DImode, E_SImode, RELOAD_REG_FPR,
3558 CODE_FOR_fusion_vsx_si_di_load,
3559 CODE_FOR_fusion_vsx_si_di_store },
3561 { E_QImode, E_DImode, RELOAD_REG_GPR,
3562 CODE_FOR_fusion_gpr_di_qi_load,
3563 CODE_FOR_fusion_gpr_di_qi_store },
3565 { E_QImode, E_SImode, RELOAD_REG_GPR,
3566 CODE_FOR_fusion_gpr_si_qi_load,
3567 CODE_FOR_fusion_gpr_si_qi_store },
3569 { E_HImode, E_DImode, RELOAD_REG_GPR,
3570 CODE_FOR_fusion_gpr_di_hi_load,
3571 CODE_FOR_fusion_gpr_di_hi_store },
3573 { E_HImode, E_SImode, RELOAD_REG_GPR,
3574 CODE_FOR_fusion_gpr_si_hi_load,
3575 CODE_FOR_fusion_gpr_si_hi_store },
3577 { E_SImode, E_DImode, RELOAD_REG_GPR,
3578 CODE_FOR_fusion_gpr_di_si_load,
3579 CODE_FOR_fusion_gpr_di_si_store },
3581 { E_SImode, E_SImode, RELOAD_REG_GPR,
3582 CODE_FOR_fusion_gpr_si_si_load,
3583 CODE_FOR_fusion_gpr_si_si_store },
3585 { E_SFmode, E_DImode, RELOAD_REG_GPR,
3586 CODE_FOR_fusion_gpr_di_sf_load,
3587 CODE_FOR_fusion_gpr_di_sf_store },
3589 { E_SFmode, E_SImode, RELOAD_REG_GPR,
3590 CODE_FOR_fusion_gpr_si_sf_load,
3591 CODE_FOR_fusion_gpr_si_sf_store },
3593 { E_DImode, E_DImode, RELOAD_REG_GPR,
3594 CODE_FOR_fusion_gpr_di_di_load,
3595 CODE_FOR_fusion_gpr_di_di_store },
3597 { E_DFmode, E_DImode, RELOAD_REG_GPR,
3598 CODE_FOR_fusion_gpr_di_df_load,
3599 CODE_FOR_fusion_gpr_di_df_store },
3602 machine_mode cur_pmode = Pmode;
3603 size_t i;
3605 for (i = 0; i < ARRAY_SIZE (addis_insns); i++)
3607 machine_mode xmode = addis_insns[i].mode;
3608 enum rs6000_reload_reg_type rtype = addis_insns[i].rtype;
3610 if (addis_insns[i].pmode != cur_pmode)
3611 continue;
3613 if (rtype == RELOAD_REG_FPR && !TARGET_HARD_FLOAT)
3614 continue;
3616 reg_addr[xmode].fusion_addis_ld[rtype] = addis_insns[i].load;
3617 reg_addr[xmode].fusion_addis_st[rtype] = addis_insns[i].store;
3619 if (rtype == RELOAD_REG_FPR && TARGET_P9_VECTOR)
3621 reg_addr[xmode].fusion_addis_ld[RELOAD_REG_VMX]
3622 = addis_insns[i].load;
3623 reg_addr[xmode].fusion_addis_st[RELOAD_REG_VMX]
3624 = addis_insns[i].store;
3629 /* Note which types we support fusing TOC setup plus memory insn. We only do
3630 fused TOCs for medium/large code models. */
3631 if (TARGET_P8_FUSION && TARGET_TOC_FUSION && TARGET_POWERPC64
3632 && (TARGET_CMODEL != CMODEL_SMALL))
3634 reg_addr[QImode].fused_toc = true;
3635 reg_addr[HImode].fused_toc = true;
3636 reg_addr[SImode].fused_toc = true;
3637 reg_addr[DImode].fused_toc = true;
3638 if (TARGET_HARD_FLOAT)
3640 if (TARGET_SINGLE_FLOAT)
3641 reg_addr[SFmode].fused_toc = true;
3642 if (TARGET_DOUBLE_FLOAT)
3643 reg_addr[DFmode].fused_toc = true;
3647 /* Precalculate HARD_REGNO_NREGS. */
3648 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
3649 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3650 rs6000_hard_regno_nregs[m][r]
3651 = rs6000_hard_regno_nregs_internal (r, (machine_mode)m);
3653 /* Precalculate TARGET_HARD_REGNO_MODE_OK. */
3654 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
3655 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3656 if (rs6000_hard_regno_mode_ok_uncached (r, (machine_mode)m))
3657 rs6000_hard_regno_mode_ok_p[m][r] = true;
3659 /* Precalculate CLASS_MAX_NREGS sizes. */
3660 for (c = 0; c < LIM_REG_CLASSES; ++c)
3662 int reg_size;
3664 if (TARGET_VSX && VSX_REG_CLASS_P (c))
3665 reg_size = UNITS_PER_VSX_WORD;
3667 else if (c == ALTIVEC_REGS)
3668 reg_size = UNITS_PER_ALTIVEC_WORD;
3670 else if (c == FLOAT_REGS)
3671 reg_size = UNITS_PER_FP_WORD;
3673 else
3674 reg_size = UNITS_PER_WORD;
3676 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3678 machine_mode m2 = (machine_mode)m;
3679 int reg_size2 = reg_size;
3681 /* TDmode & IBM 128-bit floating point always takes 2 registers, even
3682 in VSX. */
3683 if (TARGET_VSX && VSX_REG_CLASS_P (c) && FLOAT128_2REG_P (m))
3684 reg_size2 = UNITS_PER_FP_WORD;
3686 rs6000_class_max_nregs[m][c]
3687 = (GET_MODE_SIZE (m2) + reg_size2 - 1) / reg_size2;
3691 /* Calculate which modes to automatically generate code to use a the
3692 reciprocal divide and square root instructions. In the future, possibly
3693 automatically generate the instructions even if the user did not specify
3694 -mrecip. The older machines double precision reciprocal sqrt estimate is
3695 not accurate enough. */
3696 memset (rs6000_recip_bits, 0, sizeof (rs6000_recip_bits));
3697 if (TARGET_FRES)
3698 rs6000_recip_bits[SFmode] = RS6000_RECIP_MASK_HAVE_RE;
3699 if (TARGET_FRE)
3700 rs6000_recip_bits[DFmode] = RS6000_RECIP_MASK_HAVE_RE;
3701 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
3702 rs6000_recip_bits[V4SFmode] = RS6000_RECIP_MASK_HAVE_RE;
3703 if (VECTOR_UNIT_VSX_P (V2DFmode))
3704 rs6000_recip_bits[V2DFmode] = RS6000_RECIP_MASK_HAVE_RE;
3706 if (TARGET_FRSQRTES)
3707 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3708 if (TARGET_FRSQRTE)
3709 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3710 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
3711 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3712 if (VECTOR_UNIT_VSX_P (V2DFmode))
3713 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3715 if (rs6000_recip_control)
3717 if (!flag_finite_math_only)
3718 warning (0, "%qs requires %qs or %qs", "-mrecip", "-ffinite-math",
3719 "-ffast-math");
3720 if (flag_trapping_math)
3721 warning (0, "%qs requires %qs or %qs", "-mrecip",
3722 "-fno-trapping-math", "-ffast-math");
3723 if (!flag_reciprocal_math)
3724 warning (0, "%qs requires %qs or %qs", "-mrecip", "-freciprocal-math",
3725 "-ffast-math");
3726 if (flag_finite_math_only && !flag_trapping_math && flag_reciprocal_math)
3728 if (RS6000_RECIP_HAVE_RE_P (SFmode)
3729 && (rs6000_recip_control & RECIP_SF_DIV) != 0)
3730 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3732 if (RS6000_RECIP_HAVE_RE_P (DFmode)
3733 && (rs6000_recip_control & RECIP_DF_DIV) != 0)
3734 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3736 if (RS6000_RECIP_HAVE_RE_P (V4SFmode)
3737 && (rs6000_recip_control & RECIP_V4SF_DIV) != 0)
3738 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3740 if (RS6000_RECIP_HAVE_RE_P (V2DFmode)
3741 && (rs6000_recip_control & RECIP_V2DF_DIV) != 0)
3742 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3744 if (RS6000_RECIP_HAVE_RSQRTE_P (SFmode)
3745 && (rs6000_recip_control & RECIP_SF_RSQRT) != 0)
3746 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3748 if (RS6000_RECIP_HAVE_RSQRTE_P (DFmode)
3749 && (rs6000_recip_control & RECIP_DF_RSQRT) != 0)
3750 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3752 if (RS6000_RECIP_HAVE_RSQRTE_P (V4SFmode)
3753 && (rs6000_recip_control & RECIP_V4SF_RSQRT) != 0)
3754 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3756 if (RS6000_RECIP_HAVE_RSQRTE_P (V2DFmode)
3757 && (rs6000_recip_control & RECIP_V2DF_RSQRT) != 0)
3758 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3762 /* Update the addr mask bits in reg_addr to help secondary reload and go if
3763 legitimate address support to figure out the appropriate addressing to
3764 use. */
3765 rs6000_setup_reg_addr_masks ();
3767 if (global_init_p || TARGET_DEBUG_TARGET)
3769 if (TARGET_DEBUG_REG)
3770 rs6000_debug_reg_global ();
3772 if (TARGET_DEBUG_COST || TARGET_DEBUG_REG)
3773 fprintf (stderr,
3774 "SImode variable mult cost = %d\n"
3775 "SImode constant mult cost = %d\n"
3776 "SImode short constant mult cost = %d\n"
3777 "DImode multipliciation cost = %d\n"
3778 "SImode division cost = %d\n"
3779 "DImode division cost = %d\n"
3780 "Simple fp operation cost = %d\n"
3781 "DFmode multiplication cost = %d\n"
3782 "SFmode division cost = %d\n"
3783 "DFmode division cost = %d\n"
3784 "cache line size = %d\n"
3785 "l1 cache size = %d\n"
3786 "l2 cache size = %d\n"
3787 "simultaneous prefetches = %d\n"
3788 "\n",
3789 rs6000_cost->mulsi,
3790 rs6000_cost->mulsi_const,
3791 rs6000_cost->mulsi_const9,
3792 rs6000_cost->muldi,
3793 rs6000_cost->divsi,
3794 rs6000_cost->divdi,
3795 rs6000_cost->fp,
3796 rs6000_cost->dmul,
3797 rs6000_cost->sdiv,
3798 rs6000_cost->ddiv,
3799 rs6000_cost->cache_line_size,
3800 rs6000_cost->l1_cache_size,
3801 rs6000_cost->l2_cache_size,
3802 rs6000_cost->simultaneous_prefetches);
3806 #if TARGET_MACHO
3807 /* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
3809 static void
3810 darwin_rs6000_override_options (void)
3812 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
3813 off. */
3814 rs6000_altivec_abi = 1;
3815 TARGET_ALTIVEC_VRSAVE = 1;
3816 rs6000_current_abi = ABI_DARWIN;
3818 if (DEFAULT_ABI == ABI_DARWIN
3819 && TARGET_64BIT)
3820 darwin_one_byte_bool = 1;
3822 if (TARGET_64BIT && ! TARGET_POWERPC64)
3824 rs6000_isa_flags |= OPTION_MASK_POWERPC64;
3825 warning (0, "%qs requires PowerPC64 architecture, enabling", "-m64");
3827 if (flag_mkernel)
3829 rs6000_default_long_calls = 1;
3830 rs6000_isa_flags |= OPTION_MASK_SOFT_FLOAT;
3833 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
3834 Altivec. */
3835 if (!flag_mkernel && !flag_apple_kext
3836 && TARGET_64BIT
3837 && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC))
3838 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
3840 /* Unless the user (not the configurer) has explicitly overridden
3841 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
3842 G4 unless targeting the kernel. */
3843 if (!flag_mkernel
3844 && !flag_apple_kext
3845 && strverscmp (darwin_macosx_version_min, "10.5") >= 0
3846 && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC)
3847 && ! global_options_set.x_rs6000_cpu_index)
3849 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
3852 #endif
3854 /* If not otherwise specified by a target, make 'long double' equivalent to
3855 'double'. */
3857 #ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
3858 #define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
3859 #endif
3861 /* Return the builtin mask of the various options used that could affect which
3862 builtins were used. In the past we used target_flags, but we've run out of
3863 bits, and some options like PAIRED are no longer in target_flags. */
3865 HOST_WIDE_INT
3866 rs6000_builtin_mask_calculate (void)
3868 return (((TARGET_ALTIVEC) ? RS6000_BTM_ALTIVEC : 0)
3869 | ((TARGET_CMPB) ? RS6000_BTM_CMPB : 0)
3870 | ((TARGET_VSX) ? RS6000_BTM_VSX : 0)
3871 | ((TARGET_PAIRED_FLOAT) ? RS6000_BTM_PAIRED : 0)
3872 | ((TARGET_FRE) ? RS6000_BTM_FRE : 0)
3873 | ((TARGET_FRES) ? RS6000_BTM_FRES : 0)
3874 | ((TARGET_FRSQRTE) ? RS6000_BTM_FRSQRTE : 0)
3875 | ((TARGET_FRSQRTES) ? RS6000_BTM_FRSQRTES : 0)
3876 | ((TARGET_POPCNTD) ? RS6000_BTM_POPCNTD : 0)
3877 | ((rs6000_cpu == PROCESSOR_CELL) ? RS6000_BTM_CELL : 0)
3878 | ((TARGET_P8_VECTOR) ? RS6000_BTM_P8_VECTOR : 0)
3879 | ((TARGET_P9_VECTOR) ? RS6000_BTM_P9_VECTOR : 0)
3880 | ((TARGET_P9_MISC) ? RS6000_BTM_P9_MISC : 0)
3881 | ((TARGET_MODULO) ? RS6000_BTM_MODULO : 0)
3882 | ((TARGET_64BIT) ? RS6000_BTM_64BIT : 0)
3883 | ((TARGET_CRYPTO) ? RS6000_BTM_CRYPTO : 0)
3884 | ((TARGET_HTM) ? RS6000_BTM_HTM : 0)
3885 | ((TARGET_DFP) ? RS6000_BTM_DFP : 0)
3886 | ((TARGET_HARD_FLOAT) ? RS6000_BTM_HARD_FLOAT : 0)
3887 | ((TARGET_LONG_DOUBLE_128) ? RS6000_BTM_LDBL128 : 0)
3888 | ((TARGET_FLOAT128_TYPE) ? RS6000_BTM_FLOAT128 : 0)
3889 | ((TARGET_FLOAT128_HW) ? RS6000_BTM_FLOAT128_HW : 0));
3892 /* Implement TARGET_MD_ASM_ADJUST. All asm statements are considered
3893 to clobber the XER[CA] bit because clobbering that bit without telling
3894 the compiler worked just fine with versions of GCC before GCC 5, and
3895 breaking a lot of older code in ways that are hard to track down is
3896 not such a great idea. */
3898 static rtx_insn *
3899 rs6000_md_asm_adjust (vec<rtx> &/*outputs*/, vec<rtx> &/*inputs*/,
3900 vec<const char *> &/*constraints*/,
3901 vec<rtx> &clobbers, HARD_REG_SET &clobbered_regs)
3903 clobbers.safe_push (gen_rtx_REG (SImode, CA_REGNO));
3904 SET_HARD_REG_BIT (clobbered_regs, CA_REGNO);
3905 return NULL;
3908 /* Override command line options.
3910 Combine build-specific configuration information with options
3911 specified on the command line to set various state variables which
3912 influence code generation, optimization, and expansion of built-in
3913 functions. Assure that command-line configuration preferences are
3914 compatible with each other and with the build configuration; issue
3915 warnings while adjusting configuration or error messages while
3916 rejecting configuration.
3918 Upon entry to this function:
3920 This function is called once at the beginning of
3921 compilation, and then again at the start and end of compiling
3922 each section of code that has a different configuration, as
3923 indicated, for example, by adding the
3925 __attribute__((__target__("cpu=power9")))
3927 qualifier to a function definition or, for example, by bracketing
3928 code between
3930 #pragma GCC target("altivec")
3934 #pragma GCC reset_options
3936 directives. Parameter global_init_p is true for the initial
3937 invocation, which initializes global variables, and false for all
3938 subsequent invocations.
3941 Various global state information is assumed to be valid. This
3942 includes OPTION_TARGET_CPU_DEFAULT, representing the name of the
3943 default CPU specified at build configure time, TARGET_DEFAULT,
3944 representing the default set of option flags for the default
3945 target, and global_options_set.x_rs6000_isa_flags, representing
3946 which options were requested on the command line.
3948 Upon return from this function:
3950 rs6000_isa_flags_explicit has a non-zero bit for each flag that
3951 was set by name on the command line. Additionally, if certain
3952 attributes are automatically enabled or disabled by this function
3953 in order to assure compatibility between options and
3954 configuration, the flags associated with those attributes are
3955 also set. By setting these "explicit bits", we avoid the risk
3956 that other code might accidentally overwrite these particular
3957 attributes with "default values".
3959 The various bits of rs6000_isa_flags are set to indicate the
3960 target options that have been selected for the most current
3961 compilation efforts. This has the effect of also turning on the
3962 associated TARGET_XXX values since these are macros which are
3963 generally defined to test the corresponding bit of the
3964 rs6000_isa_flags variable.
3966 The variable rs6000_builtin_mask is set to represent the target
3967 options for the most current compilation efforts, consistent with
3968 the current contents of rs6000_isa_flags. This variable controls
3969 expansion of built-in functions.
3971 Various other global variables and fields of global structures
3972 (over 50 in all) are initialized to reflect the desired options
3973 for the most current compilation efforts. */
3975 static bool
3976 rs6000_option_override_internal (bool global_init_p)
3978 bool ret = true;
3980 HOST_WIDE_INT set_masks;
3981 HOST_WIDE_INT ignore_masks;
3982 int cpu_index = -1;
3983 int tune_index;
3984 struct cl_target_option *main_target_opt
3985 = ((global_init_p || target_option_default_node == NULL)
3986 ? NULL : TREE_TARGET_OPTION (target_option_default_node));
3988 /* Print defaults. */
3989 if ((TARGET_DEBUG_REG || TARGET_DEBUG_TARGET) && global_init_p)
3990 rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);
3992 /* Remember the explicit arguments. */
3993 if (global_init_p)
3994 rs6000_isa_flags_explicit = global_options_set.x_rs6000_isa_flags;
3996 /* On 64-bit Darwin, power alignment is ABI-incompatible with some C
3997 library functions, so warn about it. The flag may be useful for
3998 performance studies from time to time though, so don't disable it
3999 entirely. */
4000 if (global_options_set.x_rs6000_alignment_flags
4001 && rs6000_alignment_flags == MASK_ALIGN_POWER
4002 && DEFAULT_ABI == ABI_DARWIN
4003 && TARGET_64BIT)
4004 warning (0, "%qs is not supported for 64-bit Darwin;"
4005 " it is incompatible with the installed C and C++ libraries",
4006 "-malign-power");
4008 /* Numerous experiment shows that IRA based loop pressure
4009 calculation works better for RTL loop invariant motion on targets
4010 with enough (>= 32) registers. It is an expensive optimization.
4011 So it is on only for peak performance. */
4012 if (optimize >= 3 && global_init_p
4013 && !global_options_set.x_flag_ira_loop_pressure)
4014 flag_ira_loop_pressure = 1;
4016 /* -fsanitize=address needs to turn on -fasynchronous-unwind-tables in order
4017 for tracebacks to be complete but not if any -fasynchronous-unwind-tables
4018 options were already specified. */
4019 if (flag_sanitize & SANITIZE_USER_ADDRESS
4020 && !global_options_set.x_flag_asynchronous_unwind_tables)
4021 flag_asynchronous_unwind_tables = 1;
4023 /* Set the pointer size. */
4024 if (TARGET_64BIT)
4026 rs6000_pmode = DImode;
4027 rs6000_pointer_size = 64;
4029 else
4031 rs6000_pmode = SImode;
4032 rs6000_pointer_size = 32;
4035 /* Some OSs don't support saving the high part of 64-bit registers on context
4036 switch. Other OSs don't support saving Altivec registers. On those OSs,
4037 we don't touch the OPTION_MASK_POWERPC64 or OPTION_MASK_ALTIVEC settings;
4038 if the user wants either, the user must explicitly specify them and we
4039 won't interfere with the user's specification. */
4041 set_masks = POWERPC_MASKS;
4042 #ifdef OS_MISSING_POWERPC64
4043 if (OS_MISSING_POWERPC64)
4044 set_masks &= ~OPTION_MASK_POWERPC64;
4045 #endif
4046 #ifdef OS_MISSING_ALTIVEC
4047 if (OS_MISSING_ALTIVEC)
4048 set_masks &= ~(OPTION_MASK_ALTIVEC | OPTION_MASK_VSX
4049 | OTHER_VSX_VECTOR_MASKS);
4050 #endif
4052 /* Don't override by the processor default if given explicitly. */
4053 set_masks &= ~rs6000_isa_flags_explicit;
4055 /* Process the -mcpu=<xxx> and -mtune=<xxx> argument. If the user changed
4056 the cpu in a target attribute or pragma, but did not specify a tuning
4057 option, use the cpu for the tuning option rather than the option specified
4058 with -mtune on the command line. Process a '--with-cpu' configuration
4059 request as an implicit --cpu. */
4060 if (rs6000_cpu_index >= 0)
4061 cpu_index = rs6000_cpu_index;
4062 else if (main_target_opt != NULL && main_target_opt->x_rs6000_cpu_index >= 0)
4063 cpu_index = main_target_opt->x_rs6000_cpu_index;
4064 else if (OPTION_TARGET_CPU_DEFAULT)
4065 cpu_index = rs6000_cpu_name_lookup (OPTION_TARGET_CPU_DEFAULT);
4067 if (cpu_index >= 0)
4069 const char *unavailable_cpu = NULL;
4070 switch (processor_target_table[cpu_index].processor)
4072 #ifndef HAVE_AS_POWER9
4073 case PROCESSOR_POWER9:
4074 unavailable_cpu = "power9";
4075 break;
4076 #endif
4077 #ifndef HAVE_AS_POWER8
4078 case PROCESSOR_POWER8:
4079 unavailable_cpu = "power8";
4080 break;
4081 #endif
4082 #ifndef HAVE_AS_POPCNTD
4083 case PROCESSOR_POWER7:
4084 unavailable_cpu = "power7";
4085 break;
4086 #endif
4087 #ifndef HAVE_AS_DFP
4088 case PROCESSOR_POWER6:
4089 unavailable_cpu = "power6";
4090 break;
4091 #endif
4092 #ifndef HAVE_AS_POPCNTB
4093 case PROCESSOR_POWER5:
4094 unavailable_cpu = "power5";
4095 break;
4096 #endif
4097 default:
4098 break;
4100 if (unavailable_cpu)
4102 cpu_index = -1;
4103 warning (0, "will not generate %qs instructions because "
4104 "assembler lacks %qs support", unavailable_cpu,
4105 unavailable_cpu);
4109 /* If we have a cpu, either through an explicit -mcpu=<xxx> or if the
4110 compiler was configured with --with-cpu=<xxx>, replace all of the ISA bits
4111 with those from the cpu, except for options that were explicitly set. If
4112 we don't have a cpu, do not override the target bits set in
4113 TARGET_DEFAULT. */
4114 if (cpu_index >= 0)
4116 rs6000_cpu_index = cpu_index;
4117 rs6000_isa_flags &= ~set_masks;
4118 rs6000_isa_flags |= (processor_target_table[cpu_index].target_enable
4119 & set_masks);
4121 else
4123 /* If no -mcpu=<xxx>, inherit any default options that were cleared via
4124 POWERPC_MASKS. Originally, TARGET_DEFAULT was used to initialize
4125 target_flags via the TARGET_DEFAULT_TARGET_FLAGS hook. When we switched
4126 to using rs6000_isa_flags, we need to do the initialization here.
4128 If there is a TARGET_DEFAULT, use that. Otherwise fall back to using
4129 -mcpu=powerpc, -mcpu=powerpc64, or -mcpu=powerpc64le defaults. */
4130 HOST_WIDE_INT flags;
4131 if (TARGET_DEFAULT)
4132 flags = TARGET_DEFAULT;
4133 else
4135 /* PowerPC 64-bit LE requires at least ISA 2.07. */
4136 const char *default_cpu = (!TARGET_POWERPC64
4137 ? "powerpc"
4138 : (BYTES_BIG_ENDIAN
4139 ? "powerpc64"
4140 : "powerpc64le"));
4141 int default_cpu_index = rs6000_cpu_name_lookup (default_cpu);
4142 flags = processor_target_table[default_cpu_index].target_enable;
4144 rs6000_isa_flags |= (flags & ~rs6000_isa_flags_explicit);
4147 if (rs6000_tune_index >= 0)
4148 tune_index = rs6000_tune_index;
4149 else if (cpu_index >= 0)
4150 rs6000_tune_index = tune_index = cpu_index;
4151 else
4153 size_t i;
4154 enum processor_type tune_proc
4155 = (TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT);
4157 tune_index = -1;
4158 for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
4159 if (processor_target_table[i].processor == tune_proc)
4161 tune_index = i;
4162 break;
4166 gcc_assert (tune_index >= 0);
4167 rs6000_cpu = processor_target_table[tune_index].processor;
4169 if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
4170 || rs6000_cpu == PROCESSOR_PPCE500MC || rs6000_cpu == PROCESSOR_PPCE500MC64
4171 || rs6000_cpu == PROCESSOR_PPCE5500)
4173 if (TARGET_ALTIVEC)
4174 error ("AltiVec not supported in this target");
4177 /* If we are optimizing big endian systems for space, use the load/store
4178 multiple and string instructions. */
4179 if (BYTES_BIG_ENDIAN && optimize_size)
4180 rs6000_isa_flags |= ~rs6000_isa_flags_explicit & (OPTION_MASK_MULTIPLE
4181 | OPTION_MASK_STRING);
4183 /* Don't allow -mmultiple or -mstring on little endian systems
4184 unless the cpu is a 750, because the hardware doesn't support the
4185 instructions used in little endian mode, and causes an alignment
4186 trap. The 750 does not cause an alignment trap (except when the
4187 target is unaligned). */
4189 if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750)
4191 if (TARGET_MULTIPLE)
4193 rs6000_isa_flags &= ~OPTION_MASK_MULTIPLE;
4194 if ((rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE) != 0)
4195 warning (0, "%qs is not supported on little endian systems",
4196 "-mmultiple");
4199 if (TARGET_STRING)
4201 rs6000_isa_flags &= ~OPTION_MASK_STRING;
4202 if ((rs6000_isa_flags_explicit & OPTION_MASK_STRING) != 0)
4203 warning (0, "%qs is not supported on little endian systems",
4204 "-mstring");
4208 /* If little-endian, default to -mstrict-align on older processors.
4209 Testing for htm matches power8 and later. */
4210 if (!BYTES_BIG_ENDIAN
4211 && !(processor_target_table[tune_index].target_enable & OPTION_MASK_HTM))
4212 rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_STRICT_ALIGN;
4214 /* -maltivec={le,be} implies -maltivec. */
4215 if (rs6000_altivec_element_order != 0)
4216 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
4218 /* Disallow -maltivec=le in big endian mode for now. This is not
4219 known to be useful for anyone. */
4220 if (BYTES_BIG_ENDIAN && rs6000_altivec_element_order == 1)
4222 warning (0, N_("-maltivec=le not allowed for big-endian targets"));
4223 rs6000_altivec_element_order = 0;
4226 if (!rs6000_fold_gimple)
4227 fprintf (stderr,
4228 "gimple folding of rs6000 builtins has been disabled.\n");
4230 /* Add some warnings for VSX. */
4231 if (TARGET_VSX)
4233 const char *msg = NULL;
4234 if (!TARGET_HARD_FLOAT || !TARGET_SINGLE_FLOAT || !TARGET_DOUBLE_FLOAT)
4236 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4237 msg = N_("-mvsx requires hardware floating point");
4238 else
4240 rs6000_isa_flags &= ~ OPTION_MASK_VSX;
4241 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4244 else if (TARGET_PAIRED_FLOAT)
4245 msg = N_("-mvsx and -mpaired are incompatible");
4246 else if (TARGET_AVOID_XFORM > 0)
4247 msg = N_("-mvsx needs indexed addressing");
4248 else if (!TARGET_ALTIVEC && (rs6000_isa_flags_explicit
4249 & OPTION_MASK_ALTIVEC))
4251 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4252 msg = N_("-mvsx and -mno-altivec are incompatible");
4253 else
4254 msg = N_("-mno-altivec disables vsx");
4257 if (msg)
4259 warning (0, msg);
4260 rs6000_isa_flags &= ~ OPTION_MASK_VSX;
4261 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4265 /* If hard-float/altivec/vsx were explicitly turned off then don't allow
4266 the -mcpu setting to enable options that conflict. */
4267 if ((!TARGET_HARD_FLOAT || !TARGET_ALTIVEC || !TARGET_VSX)
4268 && (rs6000_isa_flags_explicit & (OPTION_MASK_SOFT_FLOAT
4269 | OPTION_MASK_ALTIVEC
4270 | OPTION_MASK_VSX)) != 0)
4271 rs6000_isa_flags &= ~((OPTION_MASK_P8_VECTOR | OPTION_MASK_CRYPTO
4272 | OPTION_MASK_DIRECT_MOVE)
4273 & ~rs6000_isa_flags_explicit);
4275 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4276 rs6000_print_isa_options (stderr, 0, "before defaults", rs6000_isa_flags);
4278 /* Handle explicit -mno-{altivec,vsx,power8-vector,power9-vector} and turn
4279 off all of the options that depend on those flags. */
4280 ignore_masks = rs6000_disable_incompatible_switches ();
4282 /* For the newer switches (vsx, dfp, etc.) set some of the older options,
4283 unless the user explicitly used the -mno-<option> to disable the code. */
4284 if (TARGET_P9_VECTOR || TARGET_MODULO || TARGET_P9_MISC)
4285 rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
4286 else if (TARGET_P9_MINMAX)
4288 if (cpu_index >= 0)
4290 if (cpu_index == PROCESSOR_POWER9)
4292 /* legacy behavior: allow -mcpu=power9 with certain
4293 capabilities explicitly disabled. */
4294 rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
4296 else
4297 error ("power9 target option is incompatible with %<%s=<xxx>%> "
4298 "for <xxx> less than power9", "-mcpu");
4300 else if ((ISA_3_0_MASKS_SERVER & rs6000_isa_flags_explicit)
4301 != (ISA_3_0_MASKS_SERVER & rs6000_isa_flags
4302 & rs6000_isa_flags_explicit))
4303 /* Enforce that none of the ISA_3_0_MASKS_SERVER flags
4304 were explicitly cleared. */
4305 error ("%qs incompatible with explicitly disabled options",
4306 "-mpower9-minmax");
4307 else
4308 rs6000_isa_flags |= ISA_3_0_MASKS_SERVER;
4310 else if (TARGET_P8_VECTOR || TARGET_DIRECT_MOVE || TARGET_CRYPTO)
4311 rs6000_isa_flags |= (ISA_2_7_MASKS_SERVER & ~ignore_masks);
4312 else if (TARGET_VSX)
4313 rs6000_isa_flags |= (ISA_2_6_MASKS_SERVER & ~ignore_masks);
4314 else if (TARGET_POPCNTD)
4315 rs6000_isa_flags |= (ISA_2_6_MASKS_EMBEDDED & ~ignore_masks);
4316 else if (TARGET_DFP)
4317 rs6000_isa_flags |= (ISA_2_5_MASKS_SERVER & ~ignore_masks);
4318 else if (TARGET_CMPB)
4319 rs6000_isa_flags |= (ISA_2_5_MASKS_EMBEDDED & ~ignore_masks);
4320 else if (TARGET_FPRND)
4321 rs6000_isa_flags |= (ISA_2_4_MASKS & ~ignore_masks);
4322 else if (TARGET_POPCNTB)
4323 rs6000_isa_flags |= (ISA_2_2_MASKS & ~ignore_masks);
4324 else if (TARGET_ALTIVEC)
4325 rs6000_isa_flags |= (OPTION_MASK_PPC_GFXOPT & ~ignore_masks);
4327 if (TARGET_CRYPTO && !TARGET_ALTIVEC)
4329 if (rs6000_isa_flags_explicit & OPTION_MASK_CRYPTO)
4330 error ("%qs requires %qs", "-mcrypto", "-maltivec");
4331 rs6000_isa_flags &= ~OPTION_MASK_CRYPTO;
4334 if (TARGET_DIRECT_MOVE && !TARGET_VSX)
4336 if (rs6000_isa_flags_explicit & OPTION_MASK_DIRECT_MOVE)
4337 error ("%qs requires %qs", "-mdirect-move", "-mvsx");
4338 rs6000_isa_flags &= ~OPTION_MASK_DIRECT_MOVE;
4341 if (TARGET_P8_VECTOR && !TARGET_ALTIVEC)
4343 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4344 error ("%qs requires %qs", "-mpower8-vector", "-maltivec");
4345 rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
4348 if (TARGET_P8_VECTOR && !TARGET_VSX)
4350 if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4351 && (rs6000_isa_flags_explicit & OPTION_MASK_VSX))
4352 error ("%qs requires %qs", "-mpower8-vector", "-mvsx");
4353 else if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR) == 0)
4355 rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
4356 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4357 rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
4359 else
4361 /* OPTION_MASK_P8_VECTOR is explicit, and OPTION_MASK_VSX is
4362 not explicit. */
4363 rs6000_isa_flags |= OPTION_MASK_VSX;
4364 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4368 if (TARGET_DFP && !TARGET_HARD_FLOAT)
4370 if (rs6000_isa_flags_explicit & OPTION_MASK_DFP)
4371 error ("%qs requires %qs", "-mhard-dfp", "-mhard-float");
4372 rs6000_isa_flags &= ~OPTION_MASK_DFP;
4375 /* The quad memory instructions only works in 64-bit mode. In 32-bit mode,
4376 silently turn off quad memory mode. */
4377 if ((TARGET_QUAD_MEMORY || TARGET_QUAD_MEMORY_ATOMIC) && !TARGET_POWERPC64)
4379 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
4380 warning (0, N_("-mquad-memory requires 64-bit mode"));
4382 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) != 0)
4383 warning (0, N_("-mquad-memory-atomic requires 64-bit mode"));
4385 rs6000_isa_flags &= ~(OPTION_MASK_QUAD_MEMORY
4386 | OPTION_MASK_QUAD_MEMORY_ATOMIC);
4389 /* Non-atomic quad memory load/store are disabled for little endian, since
4390 the words are reversed, but atomic operations can still be done by
4391 swapping the words. */
4392 if (TARGET_QUAD_MEMORY && !WORDS_BIG_ENDIAN)
4394 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
4395 warning (0, N_("-mquad-memory is not available in little endian "
4396 "mode"));
4398 rs6000_isa_flags &= ~OPTION_MASK_QUAD_MEMORY;
4401 /* Assume if the user asked for normal quad memory instructions, they want
4402 the atomic versions as well, unless they explicity told us not to use quad
4403 word atomic instructions. */
4404 if (TARGET_QUAD_MEMORY
4405 && !TARGET_QUAD_MEMORY_ATOMIC
4406 && ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) == 0))
4407 rs6000_isa_flags |= OPTION_MASK_QUAD_MEMORY_ATOMIC;
4409 /* Enable power8 fusion if we are tuning for power8, even if we aren't
4410 generating power8 instructions. */
4411 if (!(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION))
4412 rs6000_isa_flags |= (processor_target_table[tune_index].target_enable
4413 & OPTION_MASK_P8_FUSION);
4415 /* Setting additional fusion flags turns on base fusion. */
4416 if (!TARGET_P8_FUSION && (TARGET_P8_FUSION_SIGN || TARGET_TOC_FUSION))
4418 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
4420 if (TARGET_P8_FUSION_SIGN)
4421 error ("%qs requires %qs", "-mpower8-fusion-sign",
4422 "-mpower8-fusion");
4424 if (TARGET_TOC_FUSION)
4425 error ("%qs requires %qs", "-mtoc-fusion", "-mpower8-fusion");
4427 rs6000_isa_flags &= ~OPTION_MASK_P8_FUSION;
4429 else
4430 rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
4433 /* Power9 fusion is a superset over power8 fusion. */
4434 if (TARGET_P9_FUSION && !TARGET_P8_FUSION)
4436 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
4438 /* We prefer to not mention undocumented options in
4439 error messages. However, if users have managed to select
4440 power9-fusion without selecting power8-fusion, they
4441 already know about undocumented flags. */
4442 error ("%qs requires %qs", "-mpower9-fusion", "-mpower8-fusion");
4443 rs6000_isa_flags &= ~OPTION_MASK_P9_FUSION;
4445 else
4446 rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
4449 /* Enable power9 fusion if we are tuning for power9, even if we aren't
4450 generating power9 instructions. */
4451 if (!(rs6000_isa_flags_explicit & OPTION_MASK_P9_FUSION))
4452 rs6000_isa_flags |= (processor_target_table[tune_index].target_enable
4453 & OPTION_MASK_P9_FUSION);
4455 /* Power8 does not fuse sign extended loads with the addis. If we are
4456 optimizing at high levels for speed, convert a sign extended load into a
4457 zero extending load, and an explicit sign extension. */
4458 if (TARGET_P8_FUSION
4459 && !(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION_SIGN)
4460 && optimize_function_for_speed_p (cfun)
4461 && optimize >= 3)
4462 rs6000_isa_flags |= OPTION_MASK_P8_FUSION_SIGN;
4464 /* TOC fusion requires 64-bit and medium/large code model. */
4465 if (TARGET_TOC_FUSION && !TARGET_POWERPC64)
4467 rs6000_isa_flags &= ~OPTION_MASK_TOC_FUSION;
4468 if ((rs6000_isa_flags_explicit & OPTION_MASK_TOC_FUSION) != 0)
4469 warning (0, N_("-mtoc-fusion requires 64-bit"));
4472 if (TARGET_TOC_FUSION && (TARGET_CMODEL == CMODEL_SMALL))
4474 rs6000_isa_flags &= ~OPTION_MASK_TOC_FUSION;
4475 if ((rs6000_isa_flags_explicit & OPTION_MASK_TOC_FUSION) != 0)
4476 warning (0, N_("-mtoc-fusion requires medium/large code model"));
4479 /* Turn on -mtoc-fusion by default if p8-fusion and 64-bit medium/large code
4480 model. */
4481 if (TARGET_P8_FUSION && !TARGET_TOC_FUSION && TARGET_POWERPC64
4482 && (TARGET_CMODEL != CMODEL_SMALL)
4483 && !(rs6000_isa_flags_explicit & OPTION_MASK_TOC_FUSION))
4484 rs6000_isa_flags |= OPTION_MASK_TOC_FUSION;
4486 /* ISA 3.0 vector instructions include ISA 2.07. */
4487 if (TARGET_P9_VECTOR && !TARGET_P8_VECTOR)
4489 /* We prefer to not mention undocumented options in
4490 error messages. However, if users have managed to select
4491 power9-vector without selecting power8-vector, they
4492 already know about undocumented flags. */
4493 if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) &&
4494 (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR))
4495 error ("%qs requires %qs", "-mpower9-vector", "-mpower8-vector");
4496 else if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) == 0)
4498 rs6000_isa_flags &= ~OPTION_MASK_P9_VECTOR;
4499 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4500 rs6000_isa_flags_explicit |= OPTION_MASK_P9_VECTOR;
4502 else
4504 /* OPTION_MASK_P9_VECTOR is explicit and
4505 OPTION_MASK_P8_VECTOR is not explicit. */
4506 rs6000_isa_flags |= OPTION_MASK_P8_VECTOR;
4507 rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
4511 /* Set -mallow-movmisalign to explicitly on if we have full ISA 2.07
4512 support. If we only have ISA 2.06 support, and the user did not specify
4513 the switch, leave it set to -1 so the movmisalign patterns are enabled,
4514 but we don't enable the full vectorization support */
4515 if (TARGET_ALLOW_MOVMISALIGN == -1 && TARGET_P8_VECTOR && TARGET_DIRECT_MOVE)
4516 TARGET_ALLOW_MOVMISALIGN = 1;
4518 else if (TARGET_ALLOW_MOVMISALIGN && !TARGET_VSX)
4520 if (TARGET_ALLOW_MOVMISALIGN > 0
4521 && global_options_set.x_TARGET_ALLOW_MOVMISALIGN)
4522 error ("%qs requires %qs", "-mallow-movmisalign", "-mvsx");
4524 TARGET_ALLOW_MOVMISALIGN = 0;
4527 /* Determine when unaligned vector accesses are permitted, and when
4528 they are preferred over masked Altivec loads. Note that if
4529 TARGET_ALLOW_MOVMISALIGN has been disabled by the user, then
4530 TARGET_EFFICIENT_UNALIGNED_VSX must be as well. The converse is
4531 not true. */
4532 if (TARGET_EFFICIENT_UNALIGNED_VSX)
4534 if (!TARGET_VSX)
4536 if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
4537 error ("%qs requires %qs", "-mefficient-unaligned-vsx", "-mvsx");
4539 rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
4542 else if (!TARGET_ALLOW_MOVMISALIGN)
4544 if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
4545 error ("%qs requires %qs", "-munefficient-unaligned-vsx",
4546 "-mallow-movmisalign");
4548 rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
4552 /* Set long double size before the IEEE 128-bit tests. */
4553 if (!global_options_set.x_rs6000_long_double_type_size)
4555 if (main_target_opt != NULL
4556 && (main_target_opt->x_rs6000_long_double_type_size
4557 != RS6000_DEFAULT_LONG_DOUBLE_SIZE))
4558 error ("target attribute or pragma changes long double size");
4559 else
4560 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
4563 /* Set -mabi=ieeelongdouble on some old targets. Note, AIX and Darwin
4564 explicitly redefine TARGET_IEEEQUAD to 0, so those systems will not
4565 pick up this default. */
4566 #if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
4567 if (!global_options_set.x_rs6000_ieeequad)
4568 rs6000_ieeequad = 1;
4569 #endif
4571 /* Enable the default support for IEEE 128-bit floating point on Linux VSX
4572 sytems. In GCC 7, we would enable the the IEEE 128-bit floating point
4573 infrastructure (-mfloat128-type) but not enable the actual __float128 type
4574 unless the user used the explicit -mfloat128. In GCC 8, we enable both
4575 the keyword as well as the type. */
4576 TARGET_FLOAT128_TYPE = TARGET_FLOAT128_ENABLE_TYPE && TARGET_VSX;
4578 /* IEEE 128-bit floating point requires VSX support. */
4579 if (TARGET_FLOAT128_KEYWORD)
4581 if (!TARGET_VSX)
4583 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) != 0)
4584 error ("%qs requires VSX support", "-mfloat128");
4586 TARGET_FLOAT128_TYPE = 0;
4587 rs6000_isa_flags &= ~(OPTION_MASK_FLOAT128_KEYWORD
4588 | OPTION_MASK_FLOAT128_HW);
4590 else if (!TARGET_FLOAT128_TYPE)
4592 TARGET_FLOAT128_TYPE = 1;
4593 warning (0, "The -mfloat128 option may not be fully supported");
4597 /* Enable the __float128 keyword under Linux by default. */
4598 if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_KEYWORD
4599 && (rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) == 0)
4600 rs6000_isa_flags |= OPTION_MASK_FLOAT128_KEYWORD;
4602 /* If we have are supporting the float128 type and full ISA 3.0 support,
4603 enable -mfloat128-hardware by default. However, don't enable the
4604 __float128 keyword if it was explicitly turned off. 64-bit mode is needed
4605 because sometimes the compiler wants to put things in an integer
4606 container, and if we don't have __int128 support, it is impossible. */
4607 if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_HW && TARGET_64BIT
4608 && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) == ISA_3_0_MASKS_IEEE
4609 && !(rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW))
4610 rs6000_isa_flags |= OPTION_MASK_FLOAT128_HW;
4612 if (TARGET_FLOAT128_HW
4613 && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) != ISA_3_0_MASKS_IEEE)
4615 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
4616 error ("%qs requires full ISA 3.0 support", "-mfloat128-hardware");
4618 rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
4621 if (TARGET_FLOAT128_HW && !TARGET_64BIT)
4623 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
4624 error ("%qs requires %qs", "-mfloat128-hardware", "-m64");
4626 rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
4629 /* Print the options after updating the defaults. */
4630 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4631 rs6000_print_isa_options (stderr, 0, "after defaults", rs6000_isa_flags);
4633 /* E500mc does "better" if we inline more aggressively. Respect the
4634 user's opinion, though. */
4635 if (rs6000_block_move_inline_limit == 0
4636 && (rs6000_cpu == PROCESSOR_PPCE500MC
4637 || rs6000_cpu == PROCESSOR_PPCE500MC64
4638 || rs6000_cpu == PROCESSOR_PPCE5500
4639 || rs6000_cpu == PROCESSOR_PPCE6500))
4640 rs6000_block_move_inline_limit = 128;
4642 /* store_one_arg depends on expand_block_move to handle at least the
4643 size of reg_parm_stack_space. */
4644 if (rs6000_block_move_inline_limit < (TARGET_POWERPC64 ? 64 : 32))
4645 rs6000_block_move_inline_limit = (TARGET_POWERPC64 ? 64 : 32);
4647 if (global_init_p)
4649 /* If the appropriate debug option is enabled, replace the target hooks
4650 with debug versions that call the real version and then prints
4651 debugging information. */
4652 if (TARGET_DEBUG_COST)
4654 targetm.rtx_costs = rs6000_debug_rtx_costs;
4655 targetm.address_cost = rs6000_debug_address_cost;
4656 targetm.sched.adjust_cost = rs6000_debug_adjust_cost;
4659 if (TARGET_DEBUG_ADDR)
4661 targetm.legitimate_address_p = rs6000_debug_legitimate_address_p;
4662 targetm.legitimize_address = rs6000_debug_legitimize_address;
4663 rs6000_secondary_reload_class_ptr
4664 = rs6000_debug_secondary_reload_class;
4665 targetm.secondary_memory_needed
4666 = rs6000_debug_secondary_memory_needed;
4667 targetm.can_change_mode_class
4668 = rs6000_debug_can_change_mode_class;
4669 rs6000_preferred_reload_class_ptr
4670 = rs6000_debug_preferred_reload_class;
4671 rs6000_legitimize_reload_address_ptr
4672 = rs6000_debug_legitimize_reload_address;
4673 rs6000_mode_dependent_address_ptr
4674 = rs6000_debug_mode_dependent_address;
4677 if (rs6000_veclibabi_name)
4679 if (strcmp (rs6000_veclibabi_name, "mass") == 0)
4680 rs6000_veclib_handler = rs6000_builtin_vectorized_libmass;
4681 else
4683 error ("unknown vectorization library ABI type (%qs) for "
4684 "%qs switch", rs6000_veclibabi_name, "-mveclibabi=");
4685 ret = false;
4690 /* Disable VSX and Altivec silently if the user switched cpus to power7 in a
4691 target attribute or pragma which automatically enables both options,
4692 unless the altivec ABI was set. This is set by default for 64-bit, but
4693 not for 32-bit. */
4694 if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
4696 TARGET_FLOAT128_TYPE = 0;
4697 rs6000_isa_flags &= ~((OPTION_MASK_VSX | OPTION_MASK_ALTIVEC
4698 | OPTION_MASK_FLOAT128_KEYWORD)
4699 & ~rs6000_isa_flags_explicit);
4702 /* Enable Altivec ABI for AIX -maltivec. */
4703 if (TARGET_XCOFF && (TARGET_ALTIVEC || TARGET_VSX))
4705 if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
4706 error ("target attribute or pragma changes AltiVec ABI");
4707 else
4708 rs6000_altivec_abi = 1;
4711 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
4712 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
4713 be explicitly overridden in either case. */
4714 if (TARGET_ELF)
4716 if (!global_options_set.x_rs6000_altivec_abi
4717 && (TARGET_64BIT || TARGET_ALTIVEC || TARGET_VSX))
4719 if (main_target_opt != NULL &&
4720 !main_target_opt->x_rs6000_altivec_abi)
4721 error ("target attribute or pragma changes AltiVec ABI");
4722 else
4723 rs6000_altivec_abi = 1;
4727 /* Set the Darwin64 ABI as default for 64-bit Darwin.
4728 So far, the only darwin64 targets are also MACH-O. */
4729 if (TARGET_MACHO
4730 && DEFAULT_ABI == ABI_DARWIN
4731 && TARGET_64BIT)
4733 if (main_target_opt != NULL && !main_target_opt->x_rs6000_darwin64_abi)
4734 error ("target attribute or pragma changes darwin64 ABI");
4735 else
4737 rs6000_darwin64_abi = 1;
4738 /* Default to natural alignment, for better performance. */
4739 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
4743 /* Place FP constants in the constant pool instead of TOC
4744 if section anchors enabled. */
4745 if (flag_section_anchors
4746 && !global_options_set.x_TARGET_NO_FP_IN_TOC)
4747 TARGET_NO_FP_IN_TOC = 1;
4749 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4750 rs6000_print_isa_options (stderr, 0, "before subtarget", rs6000_isa_flags);
4752 #ifdef SUBTARGET_OVERRIDE_OPTIONS
4753 SUBTARGET_OVERRIDE_OPTIONS;
4754 #endif
4755 #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
4756 SUBSUBTARGET_OVERRIDE_OPTIONS;
4757 #endif
4758 #ifdef SUB3TARGET_OVERRIDE_OPTIONS
4759 SUB3TARGET_OVERRIDE_OPTIONS;
4760 #endif
4762 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4763 rs6000_print_isa_options (stderr, 0, "after subtarget", rs6000_isa_flags);
4765 /* For the E500 family of cores, reset the single/double FP flags to let us
4766 check that they remain constant across attributes or pragmas. Also,
4767 clear a possible request for string instructions, not supported and which
4768 we might have silently queried above for -Os.
4770 For other families, clear ISEL in case it was set implicitly.
4773 switch (rs6000_cpu)
4775 case PROCESSOR_PPC8540:
4776 case PROCESSOR_PPC8548:
4777 case PROCESSOR_PPCE500MC:
4778 case PROCESSOR_PPCE500MC64:
4779 case PROCESSOR_PPCE5500:
4780 case PROCESSOR_PPCE6500:
4782 rs6000_single_float = 0;
4783 rs6000_double_float = 0;
4785 rs6000_isa_flags &= ~OPTION_MASK_STRING;
4787 break;
4789 default:
4791 if (cpu_index >= 0 && !(rs6000_isa_flags_explicit & OPTION_MASK_ISEL))
4792 rs6000_isa_flags &= ~OPTION_MASK_ISEL;
4794 break;
4797 if (main_target_opt)
4799 if (main_target_opt->x_rs6000_single_float != rs6000_single_float)
4800 error ("target attribute or pragma changes single precision floating "
4801 "point");
4802 if (main_target_opt->x_rs6000_double_float != rs6000_double_float)
4803 error ("target attribute or pragma changes double precision floating "
4804 "point");
4807 rs6000_always_hint = (rs6000_cpu != PROCESSOR_POWER4
4808 && rs6000_cpu != PROCESSOR_POWER5
4809 && rs6000_cpu != PROCESSOR_POWER6
4810 && rs6000_cpu != PROCESSOR_POWER7
4811 && rs6000_cpu != PROCESSOR_POWER8
4812 && rs6000_cpu != PROCESSOR_POWER9
4813 && rs6000_cpu != PROCESSOR_PPCA2
4814 && rs6000_cpu != PROCESSOR_CELL
4815 && rs6000_cpu != PROCESSOR_PPC476);
4816 rs6000_sched_groups = (rs6000_cpu == PROCESSOR_POWER4
4817 || rs6000_cpu == PROCESSOR_POWER5
4818 || rs6000_cpu == PROCESSOR_POWER7
4819 || rs6000_cpu == PROCESSOR_POWER8);
4820 rs6000_align_branch_targets = (rs6000_cpu == PROCESSOR_POWER4
4821 || rs6000_cpu == PROCESSOR_POWER5
4822 || rs6000_cpu == PROCESSOR_POWER6
4823 || rs6000_cpu == PROCESSOR_POWER7
4824 || rs6000_cpu == PROCESSOR_POWER8
4825 || rs6000_cpu == PROCESSOR_POWER9
4826 || rs6000_cpu == PROCESSOR_PPCE500MC
4827 || rs6000_cpu == PROCESSOR_PPCE500MC64
4828 || rs6000_cpu == PROCESSOR_PPCE5500
4829 || rs6000_cpu == PROCESSOR_PPCE6500);
4831 /* Allow debug switches to override the above settings. These are set to -1
4832 in rs6000.opt to indicate the user hasn't directly set the switch. */
4833 if (TARGET_ALWAYS_HINT >= 0)
4834 rs6000_always_hint = TARGET_ALWAYS_HINT;
4836 if (TARGET_SCHED_GROUPS >= 0)
4837 rs6000_sched_groups = TARGET_SCHED_GROUPS;
4839 if (TARGET_ALIGN_BRANCH_TARGETS >= 0)
4840 rs6000_align_branch_targets = TARGET_ALIGN_BRANCH_TARGETS;
4842 rs6000_sched_restricted_insns_priority
4843 = (rs6000_sched_groups ? 1 : 0);
4845 /* Handle -msched-costly-dep option. */
4846 rs6000_sched_costly_dep
4847 = (rs6000_sched_groups ? true_store_to_load_dep_costly : no_dep_costly);
4849 if (rs6000_sched_costly_dep_str)
4851 if (! strcmp (rs6000_sched_costly_dep_str, "no"))
4852 rs6000_sched_costly_dep = no_dep_costly;
4853 else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
4854 rs6000_sched_costly_dep = all_deps_costly;
4855 else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
4856 rs6000_sched_costly_dep = true_store_to_load_dep_costly;
4857 else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
4858 rs6000_sched_costly_dep = store_to_load_dep_costly;
4859 else
4860 rs6000_sched_costly_dep = ((enum rs6000_dependence_cost)
4861 atoi (rs6000_sched_costly_dep_str));
4864 /* Handle -minsert-sched-nops option. */
4865 rs6000_sched_insert_nops
4866 = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);
4868 if (rs6000_sched_insert_nops_str)
4870 if (! strcmp (rs6000_sched_insert_nops_str, "no"))
4871 rs6000_sched_insert_nops = sched_finish_none;
4872 else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
4873 rs6000_sched_insert_nops = sched_finish_pad_groups;
4874 else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
4875 rs6000_sched_insert_nops = sched_finish_regroup_exact;
4876 else
4877 rs6000_sched_insert_nops = ((enum rs6000_nop_insertion)
4878 atoi (rs6000_sched_insert_nops_str));
4881 /* Handle stack protector */
4882 if (!global_options_set.x_rs6000_stack_protector_guard)
4883 #ifdef TARGET_THREAD_SSP_OFFSET
4884 rs6000_stack_protector_guard = SSP_TLS;
4885 #else
4886 rs6000_stack_protector_guard = SSP_GLOBAL;
4887 #endif
4889 #ifdef TARGET_THREAD_SSP_OFFSET
4890 rs6000_stack_protector_guard_offset = TARGET_THREAD_SSP_OFFSET;
4891 rs6000_stack_protector_guard_reg = TARGET_64BIT ? 13 : 2;
4892 #endif
4894 if (global_options_set.x_rs6000_stack_protector_guard_offset_str)
4896 char *endp;
4897 const char *str = rs6000_stack_protector_guard_offset_str;
4899 errno = 0;
4900 long offset = strtol (str, &endp, 0);
4901 if (!*str || *endp || errno)
4902 error ("%qs is not a valid number in %qs", str,
4903 "-mstack-protector-guard-offset=");
4905 if (!IN_RANGE (offset, -0x8000, 0x7fff)
4906 || (TARGET_64BIT && (offset & 3)))
4907 error ("%qs is not a valid offset in %qs", str,
4908 "-mstack-protector-guard-offset=");
4910 rs6000_stack_protector_guard_offset = offset;
4913 if (global_options_set.x_rs6000_stack_protector_guard_reg_str)
4915 const char *str = rs6000_stack_protector_guard_reg_str;
4916 int reg = decode_reg_name (str);
4918 if (!IN_RANGE (reg, 1, 31))
4919 error ("%qs is not a valid base register in %qs", str,
4920 "-mstack-protector-guard-reg=");
4922 rs6000_stack_protector_guard_reg = reg;
4925 if (rs6000_stack_protector_guard == SSP_TLS
4926 && !IN_RANGE (rs6000_stack_protector_guard_reg, 1, 31))
4927 error ("%qs needs a valid base register", "-mstack-protector-guard=tls");
4929 if (global_init_p)
4931 #ifdef TARGET_REGNAMES
4932 /* If the user desires alternate register names, copy in the
4933 alternate names now. */
4934 if (TARGET_REGNAMES)
4935 memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
4936 #endif
4938 /* Set aix_struct_return last, after the ABI is determined.
4939 If -maix-struct-return or -msvr4-struct-return was explicitly
4940 used, don't override with the ABI default. */
4941 if (!global_options_set.x_aix_struct_return)
4942 aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);
4944 #if 0
4945 /* IBM XL compiler defaults to unsigned bitfields. */
4946 if (TARGET_XL_COMPAT)
4947 flag_signed_bitfields = 0;
4948 #endif
4950 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
4951 REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;
4953 ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);
4955 /* We can only guarantee the availability of DI pseudo-ops when
4956 assembling for 64-bit targets. */
4957 if (!TARGET_64BIT)
4959 targetm.asm_out.aligned_op.di = NULL;
4960 targetm.asm_out.unaligned_op.di = NULL;
4964 /* Set branch target alignment, if not optimizing for size. */
4965 if (!optimize_size)
4967 /* Cell wants to be aligned 8byte for dual issue. Titan wants to be
4968 aligned 8byte to avoid misprediction by the branch predictor. */
4969 if (rs6000_cpu == PROCESSOR_TITAN
4970 || rs6000_cpu == PROCESSOR_CELL)
4972 if (align_functions <= 0)
4973 align_functions = 8;
4974 if (align_jumps <= 0)
4975 align_jumps = 8;
4976 if (align_loops <= 0)
4977 align_loops = 8;
4979 if (rs6000_align_branch_targets)
4981 if (align_functions <= 0)
4982 align_functions = 16;
4983 if (align_jumps <= 0)
4984 align_jumps = 16;
4985 if (align_loops <= 0)
4987 can_override_loop_align = 1;
4988 align_loops = 16;
4991 if (align_jumps_max_skip <= 0)
4992 align_jumps_max_skip = 15;
4993 if (align_loops_max_skip <= 0)
4994 align_loops_max_skip = 15;
4997 /* Arrange to save and restore machine status around nested functions. */
4998 init_machine_status = rs6000_init_machine_status;
5000 /* We should always be splitting complex arguments, but we can't break
5001 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
5002 if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
5003 targetm.calls.split_complex_arg = NULL;
5005 /* The AIX and ELFv1 ABIs define standard function descriptors. */
5006 if (DEFAULT_ABI == ABI_AIX)
5007 targetm.calls.custom_function_descriptors = 0;
5010 /* Initialize rs6000_cost with the appropriate target costs. */
5011 if (optimize_size)
5012 rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
5013 else
5014 switch (rs6000_cpu)
5016 case PROCESSOR_RS64A:
5017 rs6000_cost = &rs64a_cost;
5018 break;
5020 case PROCESSOR_MPCCORE:
5021 rs6000_cost = &mpccore_cost;
5022 break;
5024 case PROCESSOR_PPC403:
5025 rs6000_cost = &ppc403_cost;
5026 break;
5028 case PROCESSOR_PPC405:
5029 rs6000_cost = &ppc405_cost;
5030 break;
5032 case PROCESSOR_PPC440:
5033 rs6000_cost = &ppc440_cost;
5034 break;
5036 case PROCESSOR_PPC476:
5037 rs6000_cost = &ppc476_cost;
5038 break;
5040 case PROCESSOR_PPC601:
5041 rs6000_cost = &ppc601_cost;
5042 break;
5044 case PROCESSOR_PPC603:
5045 rs6000_cost = &ppc603_cost;
5046 break;
5048 case PROCESSOR_PPC604:
5049 rs6000_cost = &ppc604_cost;
5050 break;
5052 case PROCESSOR_PPC604e:
5053 rs6000_cost = &ppc604e_cost;
5054 break;
5056 case PROCESSOR_PPC620:
5057 rs6000_cost = &ppc620_cost;
5058 break;
5060 case PROCESSOR_PPC630:
5061 rs6000_cost = &ppc630_cost;
5062 break;
5064 case PROCESSOR_CELL:
5065 rs6000_cost = &ppccell_cost;
5066 break;
5068 case PROCESSOR_PPC750:
5069 case PROCESSOR_PPC7400:
5070 rs6000_cost = &ppc750_cost;
5071 break;
5073 case PROCESSOR_PPC7450:
5074 rs6000_cost = &ppc7450_cost;
5075 break;
5077 case PROCESSOR_PPC8540:
5078 case PROCESSOR_PPC8548:
5079 rs6000_cost = &ppc8540_cost;
5080 break;
5082 case PROCESSOR_PPCE300C2:
5083 case PROCESSOR_PPCE300C3:
5084 rs6000_cost = &ppce300c2c3_cost;
5085 break;
5087 case PROCESSOR_PPCE500MC:
5088 rs6000_cost = &ppce500mc_cost;
5089 break;
5091 case PROCESSOR_PPCE500MC64:
5092 rs6000_cost = &ppce500mc64_cost;
5093 break;
5095 case PROCESSOR_PPCE5500:
5096 rs6000_cost = &ppce5500_cost;
5097 break;
5099 case PROCESSOR_PPCE6500:
5100 rs6000_cost = &ppce6500_cost;
5101 break;
5103 case PROCESSOR_TITAN:
5104 rs6000_cost = &titan_cost;
5105 break;
5107 case PROCESSOR_POWER4:
5108 case PROCESSOR_POWER5:
5109 rs6000_cost = &power4_cost;
5110 break;
5112 case PROCESSOR_POWER6:
5113 rs6000_cost = &power6_cost;
5114 break;
5116 case PROCESSOR_POWER7:
5117 rs6000_cost = &power7_cost;
5118 break;
5120 case PROCESSOR_POWER8:
5121 rs6000_cost = &power8_cost;
5122 break;
5124 case PROCESSOR_POWER9:
5125 rs6000_cost = &power9_cost;
5126 break;
5128 case PROCESSOR_PPCA2:
5129 rs6000_cost = &ppca2_cost;
5130 break;
5132 default:
5133 gcc_unreachable ();
5136 if (global_init_p)
5138 maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
5139 rs6000_cost->simultaneous_prefetches,
5140 global_options.x_param_values,
5141 global_options_set.x_param_values);
5142 maybe_set_param_value (PARAM_L1_CACHE_SIZE, rs6000_cost->l1_cache_size,
5143 global_options.x_param_values,
5144 global_options_set.x_param_values);
5145 maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
5146 rs6000_cost->cache_line_size,
5147 global_options.x_param_values,
5148 global_options_set.x_param_values);
5149 maybe_set_param_value (PARAM_L2_CACHE_SIZE, rs6000_cost->l2_cache_size,
5150 global_options.x_param_values,
5151 global_options_set.x_param_values);
5153 /* Increase loop peeling limits based on performance analysis. */
5154 maybe_set_param_value (PARAM_MAX_PEELED_INSNS, 400,
5155 global_options.x_param_values,
5156 global_options_set.x_param_values);
5157 maybe_set_param_value (PARAM_MAX_COMPLETELY_PEELED_INSNS, 400,
5158 global_options.x_param_values,
5159 global_options_set.x_param_values);
5161 /* Use the 'model' -fsched-pressure algorithm by default. */
5162 maybe_set_param_value (PARAM_SCHED_PRESSURE_ALGORITHM,
5163 SCHED_PRESSURE_MODEL,
5164 global_options.x_param_values,
5165 global_options_set.x_param_values);
5167 /* If using typedef char *va_list, signal that
5168 __builtin_va_start (&ap, 0) can be optimized to
5169 ap = __builtin_next_arg (0). */
5170 if (DEFAULT_ABI != ABI_V4)
5171 targetm.expand_builtin_va_start = NULL;
5174 /* Set up single/double float flags.
5175 If TARGET_HARD_FLOAT is set, but neither single or double is set,
5176 then set both flags. */
5177 if (TARGET_HARD_FLOAT && rs6000_single_float == 0 && rs6000_double_float == 0)
5178 rs6000_single_float = rs6000_double_float = 1;
5180 /* If not explicitly specified via option, decide whether to generate indexed
5181 load/store instructions. A value of -1 indicates that the
5182 initial value of this variable has not been overwritten. During
5183 compilation, TARGET_AVOID_XFORM is either 0 or 1. */
5184 if (TARGET_AVOID_XFORM == -1)
5185 /* Avoid indexed addressing when targeting Power6 in order to avoid the
5186 DERAT mispredict penalty. However the LVE and STVE altivec instructions
5187 need indexed accesses and the type used is the scalar type of the element
5188 being loaded or stored. */
5189 TARGET_AVOID_XFORM = (rs6000_cpu == PROCESSOR_POWER6 && TARGET_CMPB
5190 && !TARGET_ALTIVEC);
5192 /* Set the -mrecip options. */
5193 if (rs6000_recip_name)
5195 char *p = ASTRDUP (rs6000_recip_name);
5196 char *q;
5197 unsigned int mask, i;
5198 bool invert;
5200 while ((q = strtok (p, ",")) != NULL)
5202 p = NULL;
5203 if (*q == '!')
5205 invert = true;
5206 q++;
5208 else
5209 invert = false;
5211 if (!strcmp (q, "default"))
5212 mask = ((TARGET_RECIP_PRECISION)
5213 ? RECIP_HIGH_PRECISION : RECIP_LOW_PRECISION);
5214 else
5216 for (i = 0; i < ARRAY_SIZE (recip_options); i++)
5217 if (!strcmp (q, recip_options[i].string))
5219 mask = recip_options[i].mask;
5220 break;
5223 if (i == ARRAY_SIZE (recip_options))
5225 error ("unknown option for %<%s=%s%>", "-mrecip", q);
5226 invert = false;
5227 mask = 0;
5228 ret = false;
5232 if (invert)
5233 rs6000_recip_control &= ~mask;
5234 else
5235 rs6000_recip_control |= mask;
5239 /* Set the builtin mask of the various options used that could affect which
5240 builtins were used. In the past we used target_flags, but we've run out
5241 of bits, and some options like PAIRED are no longer in target_flags. */
5242 rs6000_builtin_mask = rs6000_builtin_mask_calculate ();
5243 if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
5244 rs6000_print_builtin_options (stderr, 0, "builtin mask",
5245 rs6000_builtin_mask);
5247 /* Initialize all of the registers. */
5248 rs6000_init_hard_regno_mode_ok (global_init_p);
5250 /* Save the initial options in case the user does function specific options */
5251 if (global_init_p)
5252 target_option_default_node = target_option_current_node
5253 = build_target_option_node (&global_options);
5255 /* If not explicitly specified via option, decide whether to generate the
5256 extra blr's required to preserve the link stack on some cpus (eg, 476). */
5257 if (TARGET_LINK_STACK == -1)
5258 SET_TARGET_LINK_STACK (rs6000_cpu == PROCESSOR_PPC476 && flag_pic);
5260 return ret;
5263 /* Implement TARGET_OPTION_OVERRIDE. On the RS/6000 this is used to
5264 define the target cpu type. */
5266 static void
5267 rs6000_option_override (void)
5269 (void) rs6000_option_override_internal (true);
5273 /* Implement targetm.vectorize.builtin_mask_for_load. */
5274 static tree
5275 rs6000_builtin_mask_for_load (void)
5277 /* Don't use lvsl/vperm for P8 and similarly efficient machines. */
5278 if ((TARGET_ALTIVEC && !TARGET_VSX)
5279 || (TARGET_VSX && !TARGET_EFFICIENT_UNALIGNED_VSX))
5280 return altivec_builtin_mask_for_load;
5281 else
5282 return 0;
5285 /* Implement LOOP_ALIGN. */
5287 rs6000_loop_align (rtx label)
5289 basic_block bb;
5290 int ninsns;
5292 /* Don't override loop alignment if -falign-loops was specified. */
5293 if (!can_override_loop_align)
5294 return align_loops_log;
5296 bb = BLOCK_FOR_INSN (label);
5297 ninsns = num_loop_insns(bb->loop_father);
5299 /* Align small loops to 32 bytes to fit in an icache sector, otherwise return default. */
5300 if (ninsns > 4 && ninsns <= 8
5301 && (rs6000_cpu == PROCESSOR_POWER4
5302 || rs6000_cpu == PROCESSOR_POWER5
5303 || rs6000_cpu == PROCESSOR_POWER6
5304 || rs6000_cpu == PROCESSOR_POWER7
5305 || rs6000_cpu == PROCESSOR_POWER8
5306 || rs6000_cpu == PROCESSOR_POWER9))
5307 return 5;
5308 else
5309 return align_loops_log;
5312 /* Implement TARGET_LOOP_ALIGN_MAX_SKIP. */
5313 static int
5314 rs6000_loop_align_max_skip (rtx_insn *label)
5316 return (1 << rs6000_loop_align (label)) - 1;
5319 /* Return true iff, data reference of TYPE can reach vector alignment (16)
5320 after applying N number of iterations. This routine does not determine
5321 how may iterations are required to reach desired alignment. */
5323 static bool
5324 rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
5326 if (is_packed)
5327 return false;
5329 if (TARGET_32BIT)
5331 if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
5332 return true;
5334 if (rs6000_alignment_flags == MASK_ALIGN_POWER)
5335 return true;
5337 return false;
5339 else
5341 if (TARGET_MACHO)
5342 return false;
5344 /* Assuming that all other types are naturally aligned. CHECKME! */
5345 return true;
5349 /* Return true if the vector misalignment factor is supported by the
5350 target. */
5351 static bool
5352 rs6000_builtin_support_vector_misalignment (machine_mode mode,
5353 const_tree type,
5354 int misalignment,
5355 bool is_packed)
5357 if (TARGET_VSX)
5359 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5360 return true;
5362 /* Return if movmisalign pattern is not supported for this mode. */
5363 if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
5364 return false;
5366 if (misalignment == -1)
5368 /* Misalignment factor is unknown at compile time but we know
5369 it's word aligned. */
5370 if (rs6000_vector_alignment_reachable (type, is_packed))
5372 int element_size = TREE_INT_CST_LOW (TYPE_SIZE (type));
5374 if (element_size == 64 || element_size == 32)
5375 return true;
5378 return false;
5381 /* VSX supports word-aligned vector. */
5382 if (misalignment % 4 == 0)
5383 return true;
5385 return false;
5388 /* Implement targetm.vectorize.builtin_vectorization_cost. */
5389 static int
5390 rs6000_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
5391 tree vectype, int misalign)
5393 unsigned elements;
5394 tree elem_type;
5396 switch (type_of_cost)
5398 case scalar_stmt:
5399 case scalar_load:
5400 case scalar_store:
5401 case vector_stmt:
5402 case vector_load:
5403 case vector_store:
5404 case vec_to_scalar:
5405 case scalar_to_vec:
5406 case cond_branch_not_taken:
5407 return 1;
5409 case vec_perm:
5410 if (TARGET_VSX)
5411 return 3;
5412 else
5413 return 1;
5415 case vec_promote_demote:
5416 if (TARGET_VSX)
5417 return 4;
5418 else
5419 return 1;
5421 case cond_branch_taken:
5422 return 3;
5424 case unaligned_load:
5425 case vector_gather_load:
5426 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5427 return 1;
5429 if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
5431 elements = TYPE_VECTOR_SUBPARTS (vectype);
5432 if (elements == 2)
5433 /* Double word aligned. */
5434 return 2;
5436 if (elements == 4)
5438 switch (misalign)
5440 case 8:
5441 /* Double word aligned. */
5442 return 2;
5444 case -1:
5445 /* Unknown misalignment. */
5446 case 4:
5447 case 12:
5448 /* Word aligned. */
5449 return 22;
5451 default:
5452 gcc_unreachable ();
5457 if (TARGET_ALTIVEC)
5458 /* Misaligned loads are not supported. */
5459 gcc_unreachable ();
5461 return 2;
5463 case unaligned_store:
5464 case vector_scatter_store:
5465 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5466 return 1;
5468 if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
5470 elements = TYPE_VECTOR_SUBPARTS (vectype);
5471 if (elements == 2)
5472 /* Double word aligned. */
5473 return 2;
5475 if (elements == 4)
5477 switch (misalign)
5479 case 8:
5480 /* Double word aligned. */
5481 return 2;
5483 case -1:
5484 /* Unknown misalignment. */
5485 case 4:
5486 case 12:
5487 /* Word aligned. */
5488 return 23;
5490 default:
5491 gcc_unreachable ();
5496 if (TARGET_ALTIVEC)
5497 /* Misaligned stores are not supported. */
5498 gcc_unreachable ();
5500 return 2;
5502 case vec_construct:
5503 /* This is a rough approximation assuming non-constant elements
5504 constructed into a vector via element insertion. FIXME:
5505 vec_construct is not granular enough for uniformly good
5506 decisions. If the initialization is a splat, this is
5507 cheaper than we estimate. Improve this someday. */
5508 elem_type = TREE_TYPE (vectype);
5509 /* 32-bit vectors loaded into registers are stored as double
5510 precision, so we need 2 permutes, 2 converts, and 1 merge
5511 to construct a vector of short floats from them. */
5512 if (SCALAR_FLOAT_TYPE_P (elem_type)
5513 && TYPE_PRECISION (elem_type) == 32)
5514 return 5;
5515 /* On POWER9, integer vector types are built up in GPRs and then
5516 use a direct move (2 cycles). For POWER8 this is even worse,
5517 as we need two direct moves and a merge, and the direct moves
5518 are five cycles. */
5519 else if (INTEGRAL_TYPE_P (elem_type))
5521 if (TARGET_P9_VECTOR)
5522 return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 2;
5523 else
5524 return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 5;
5526 else
5527 /* V2DFmode doesn't need a direct move. */
5528 return 2;
5530 default:
5531 gcc_unreachable ();
5535 /* Implement targetm.vectorize.preferred_simd_mode. */
5537 static machine_mode
5538 rs6000_preferred_simd_mode (scalar_mode mode)
5540 if (TARGET_VSX)
5541 switch (mode)
5543 case E_DFmode:
5544 return V2DFmode;
5545 default:;
5547 if (TARGET_ALTIVEC || TARGET_VSX)
5548 switch (mode)
5550 case E_SFmode:
5551 return V4SFmode;
5552 case E_TImode:
5553 return V1TImode;
5554 case E_DImode:
5555 return V2DImode;
5556 case E_SImode:
5557 return V4SImode;
5558 case E_HImode:
5559 return V8HImode;
5560 case E_QImode:
5561 return V16QImode;
5562 default:;
5564 if (TARGET_PAIRED_FLOAT
5565 && mode == SFmode)
5566 return V2SFmode;
5567 return word_mode;
5570 typedef struct _rs6000_cost_data
5572 struct loop *loop_info;
5573 unsigned cost[3];
5574 } rs6000_cost_data;
5576 /* Test for likely overcommitment of vector hardware resources. If a
5577 loop iteration is relatively large, and too large a percentage of
5578 instructions in the loop are vectorized, the cost model may not
5579 adequately reflect delays from unavailable vector resources.
5580 Penalize the loop body cost for this case. */
5582 static void
5583 rs6000_density_test (rs6000_cost_data *data)
5585 const int DENSITY_PCT_THRESHOLD = 85;
5586 const int DENSITY_SIZE_THRESHOLD = 70;
5587 const int DENSITY_PENALTY = 10;
5588 struct loop *loop = data->loop_info;
5589 basic_block *bbs = get_loop_body (loop);
5590 int nbbs = loop->num_nodes;
5591 int vec_cost = data->cost[vect_body], not_vec_cost = 0;
5592 int i, density_pct;
5594 for (i = 0; i < nbbs; i++)
5596 basic_block bb = bbs[i];
5597 gimple_stmt_iterator gsi;
5599 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5601 gimple *stmt = gsi_stmt (gsi);
5602 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5604 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5605 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
5606 not_vec_cost++;
5610 free (bbs);
5611 density_pct = (vec_cost * 100) / (vec_cost + not_vec_cost);
5613 if (density_pct > DENSITY_PCT_THRESHOLD
5614 && vec_cost + not_vec_cost > DENSITY_SIZE_THRESHOLD)
5616 data->cost[vect_body] = vec_cost * (100 + DENSITY_PENALTY) / 100;
5617 if (dump_enabled_p ())
5618 dump_printf_loc (MSG_NOTE, vect_location,
5619 "density %d%%, cost %d exceeds threshold, penalizing "
5620 "loop body cost by %d%%", density_pct,
5621 vec_cost + not_vec_cost, DENSITY_PENALTY);
5625 /* Implement targetm.vectorize.init_cost. */
5627 /* For each vectorized loop, this var holds TRUE iff a non-memory vector
5628 instruction is needed by the vectorization. */
5629 static bool rs6000_vect_nonmem;
5631 static void *
5632 rs6000_init_cost (struct loop *loop_info)
5634 rs6000_cost_data *data = XNEW (struct _rs6000_cost_data);
5635 data->loop_info = loop_info;
5636 data->cost[vect_prologue] = 0;
5637 data->cost[vect_body] = 0;
5638 data->cost[vect_epilogue] = 0;
5639 rs6000_vect_nonmem = false;
5640 return data;
5643 /* Implement targetm.vectorize.add_stmt_cost. */
5645 static unsigned
5646 rs6000_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
5647 struct _stmt_vec_info *stmt_info, int misalign,
5648 enum vect_cost_model_location where)
5650 rs6000_cost_data *cost_data = (rs6000_cost_data*) data;
5651 unsigned retval = 0;
5653 if (flag_vect_cost_model)
5655 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
5656 int stmt_cost = rs6000_builtin_vectorization_cost (kind, vectype,
5657 misalign);
5658 /* Statements in an inner loop relative to the loop being
5659 vectorized are weighted more heavily. The value here is
5660 arbitrary and could potentially be improved with analysis. */
5661 if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
5662 count *= 50; /* FIXME. */
5664 retval = (unsigned) (count * stmt_cost);
5665 cost_data->cost[where] += retval;
5667 /* Check whether we're doing something other than just a copy loop.
5668 Not all such loops may be profitably vectorized; see
5669 rs6000_finish_cost. */
5670 if ((kind == vec_to_scalar || kind == vec_perm
5671 || kind == vec_promote_demote || kind == vec_construct
5672 || kind == scalar_to_vec)
5673 || (where == vect_body && kind == vector_stmt))
5674 rs6000_vect_nonmem = true;
5677 return retval;
5680 /* Implement targetm.vectorize.finish_cost. */
5682 static void
5683 rs6000_finish_cost (void *data, unsigned *prologue_cost,
5684 unsigned *body_cost, unsigned *epilogue_cost)
5686 rs6000_cost_data *cost_data = (rs6000_cost_data*) data;
5688 if (cost_data->loop_info)
5689 rs6000_density_test (cost_data);
5691 /* Don't vectorize minimum-vectorization-factor, simple copy loops
5692 that require versioning for any reason. The vectorization is at
5693 best a wash inside the loop, and the versioning checks make
5694 profitability highly unlikely and potentially quite harmful. */
5695 if (cost_data->loop_info)
5697 loop_vec_info vec_info = loop_vec_info_for_loop (cost_data->loop_info);
5698 if (!rs6000_vect_nonmem
5699 && LOOP_VINFO_VECT_FACTOR (vec_info) == 2
5700 && LOOP_REQUIRES_VERSIONING (vec_info))
5701 cost_data->cost[vect_body] += 10000;
5704 *prologue_cost = cost_data->cost[vect_prologue];
5705 *body_cost = cost_data->cost[vect_body];
5706 *epilogue_cost = cost_data->cost[vect_epilogue];
5709 /* Implement targetm.vectorize.destroy_cost_data. */
5711 static void
5712 rs6000_destroy_cost_data (void *data)
5714 free (data);
5717 /* Handler for the Mathematical Acceleration Subsystem (mass) interface to a
5718 library with vectorized intrinsics. */
5720 static tree
5721 rs6000_builtin_vectorized_libmass (combined_fn fn, tree type_out,
5722 tree type_in)
5724 char name[32];
5725 const char *suffix = NULL;
5726 tree fntype, new_fndecl, bdecl = NULL_TREE;
5727 int n_args = 1;
5728 const char *bname;
5729 machine_mode el_mode, in_mode;
5730 int n, in_n;
5732 /* Libmass is suitable for unsafe math only as it does not correctly support
5733 parts of IEEE with the required precision such as denormals. Only support
5734 it if we have VSX to use the simd d2 or f4 functions.
5735 XXX: Add variable length support. */
5736 if (!flag_unsafe_math_optimizations || !TARGET_VSX)
5737 return NULL_TREE;
5739 el_mode = TYPE_MODE (TREE_TYPE (type_out));
5740 n = TYPE_VECTOR_SUBPARTS (type_out);
5741 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5742 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5743 if (el_mode != in_mode
5744 || n != in_n)
5745 return NULL_TREE;
5747 switch (fn)
5749 CASE_CFN_ATAN2:
5750 CASE_CFN_HYPOT:
5751 CASE_CFN_POW:
5752 n_args = 2;
5753 gcc_fallthrough ();
5755 CASE_CFN_ACOS:
5756 CASE_CFN_ACOSH:
5757 CASE_CFN_ASIN:
5758 CASE_CFN_ASINH:
5759 CASE_CFN_ATAN:
5760 CASE_CFN_ATANH:
5761 CASE_CFN_CBRT:
5762 CASE_CFN_COS:
5763 CASE_CFN_COSH:
5764 CASE_CFN_ERF:
5765 CASE_CFN_ERFC:
5766 CASE_CFN_EXP2:
5767 CASE_CFN_EXP:
5768 CASE_CFN_EXPM1:
5769 CASE_CFN_LGAMMA:
5770 CASE_CFN_LOG10:
5771 CASE_CFN_LOG1P:
5772 CASE_CFN_LOG2:
5773 CASE_CFN_LOG:
5774 CASE_CFN_SIN:
5775 CASE_CFN_SINH:
5776 CASE_CFN_SQRT:
5777 CASE_CFN_TAN:
5778 CASE_CFN_TANH:
5779 if (el_mode == DFmode && n == 2)
5781 bdecl = mathfn_built_in (double_type_node, fn);
5782 suffix = "d2"; /* pow -> powd2 */
5784 else if (el_mode == SFmode && n == 4)
5786 bdecl = mathfn_built_in (float_type_node, fn);
5787 suffix = "4"; /* powf -> powf4 */
5789 else
5790 return NULL_TREE;
5791 if (!bdecl)
5792 return NULL_TREE;
5793 break;
5795 default:
5796 return NULL_TREE;
5799 gcc_assert (suffix != NULL);
5800 bname = IDENTIFIER_POINTER (DECL_NAME (bdecl));
5801 if (!bname)
5802 return NULL_TREE;
5804 strcpy (name, bname + sizeof ("__builtin_") - 1);
5805 strcat (name, suffix);
5807 if (n_args == 1)
5808 fntype = build_function_type_list (type_out, type_in, NULL);
5809 else if (n_args == 2)
5810 fntype = build_function_type_list (type_out, type_in, type_in, NULL);
5811 else
5812 gcc_unreachable ();
5814 /* Build a function declaration for the vectorized function. */
5815 new_fndecl = build_decl (BUILTINS_LOCATION,
5816 FUNCTION_DECL, get_identifier (name), fntype);
5817 TREE_PUBLIC (new_fndecl) = 1;
5818 DECL_EXTERNAL (new_fndecl) = 1;
5819 DECL_IS_NOVOPS (new_fndecl) = 1;
5820 TREE_READONLY (new_fndecl) = 1;
5822 return new_fndecl;
5825 /* Returns a function decl for a vectorized version of the builtin function
5826 with builtin function code FN and the result vector type TYPE, or NULL_TREE
5827 if it is not available. */
5829 static tree
5830 rs6000_builtin_vectorized_function (unsigned int fn, tree type_out,
5831 tree type_in)
5833 machine_mode in_mode, out_mode;
5834 int in_n, out_n;
5836 if (TARGET_DEBUG_BUILTIN)
5837 fprintf (stderr, "rs6000_builtin_vectorized_function (%s, %s, %s)\n",
5838 combined_fn_name (combined_fn (fn)),
5839 GET_MODE_NAME (TYPE_MODE (type_out)),
5840 GET_MODE_NAME (TYPE_MODE (type_in)));
5842 if (TREE_CODE (type_out) != VECTOR_TYPE
5843 || TREE_CODE (type_in) != VECTOR_TYPE)
5844 return NULL_TREE;
5846 out_mode = TYPE_MODE (TREE_TYPE (type_out));
5847 out_n = TYPE_VECTOR_SUBPARTS (type_out);
5848 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5849 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5851 switch (fn)
5853 CASE_CFN_COPYSIGN:
5854 if (VECTOR_UNIT_VSX_P (V2DFmode)
5855 && out_mode == DFmode && out_n == 2
5856 && in_mode == DFmode && in_n == 2)
5857 return rs6000_builtin_decls[VSX_BUILTIN_CPSGNDP];
5858 if (VECTOR_UNIT_VSX_P (V4SFmode)
5859 && out_mode == SFmode && out_n == 4
5860 && in_mode == SFmode && in_n == 4)
5861 return rs6000_builtin_decls[VSX_BUILTIN_CPSGNSP];
5862 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5863 && out_mode == SFmode && out_n == 4
5864 && in_mode == SFmode && in_n == 4)
5865 return rs6000_builtin_decls[ALTIVEC_BUILTIN_COPYSIGN_V4SF];
5866 break;
5867 CASE_CFN_CEIL:
5868 if (VECTOR_UNIT_VSX_P (V2DFmode)
5869 && out_mode == DFmode && out_n == 2
5870 && in_mode == DFmode && in_n == 2)
5871 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIP];
5872 if (VECTOR_UNIT_VSX_P (V4SFmode)
5873 && out_mode == SFmode && out_n == 4
5874 && in_mode == SFmode && in_n == 4)
5875 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIP];
5876 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5877 && out_mode == SFmode && out_n == 4
5878 && in_mode == SFmode && in_n == 4)
5879 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIP];
5880 break;
5881 CASE_CFN_FLOOR:
5882 if (VECTOR_UNIT_VSX_P (V2DFmode)
5883 && out_mode == DFmode && out_n == 2
5884 && in_mode == DFmode && in_n == 2)
5885 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIM];
5886 if (VECTOR_UNIT_VSX_P (V4SFmode)
5887 && out_mode == SFmode && out_n == 4
5888 && in_mode == SFmode && in_n == 4)
5889 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIM];
5890 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5891 && out_mode == SFmode && out_n == 4
5892 && in_mode == SFmode && in_n == 4)
5893 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIM];
5894 break;
5895 CASE_CFN_FMA:
5896 if (VECTOR_UNIT_VSX_P (V2DFmode)
5897 && out_mode == DFmode && out_n == 2
5898 && in_mode == DFmode && in_n == 2)
5899 return rs6000_builtin_decls[VSX_BUILTIN_XVMADDDP];
5900 if (VECTOR_UNIT_VSX_P (V4SFmode)
5901 && out_mode == SFmode && out_n == 4
5902 && in_mode == SFmode && in_n == 4)
5903 return rs6000_builtin_decls[VSX_BUILTIN_XVMADDSP];
5904 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5905 && out_mode == SFmode && out_n == 4
5906 && in_mode == SFmode && in_n == 4)
5907 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VMADDFP];
5908 break;
5909 CASE_CFN_TRUNC:
5910 if (VECTOR_UNIT_VSX_P (V2DFmode)
5911 && out_mode == DFmode && out_n == 2
5912 && in_mode == DFmode && in_n == 2)
5913 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIZ];
5914 if (VECTOR_UNIT_VSX_P (V4SFmode)
5915 && out_mode == SFmode && out_n == 4
5916 && in_mode == SFmode && in_n == 4)
5917 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIZ];
5918 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5919 && out_mode == SFmode && out_n == 4
5920 && in_mode == SFmode && in_n == 4)
5921 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIZ];
5922 break;
5923 CASE_CFN_NEARBYINT:
5924 if (VECTOR_UNIT_VSX_P (V2DFmode)
5925 && flag_unsafe_math_optimizations
5926 && out_mode == DFmode && out_n == 2
5927 && in_mode == DFmode && in_n == 2)
5928 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPI];
5929 if (VECTOR_UNIT_VSX_P (V4SFmode)
5930 && flag_unsafe_math_optimizations
5931 && out_mode == SFmode && out_n == 4
5932 && in_mode == SFmode && in_n == 4)
5933 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPI];
5934 break;
5935 CASE_CFN_RINT:
5936 if (VECTOR_UNIT_VSX_P (V2DFmode)
5937 && !flag_trapping_math
5938 && out_mode == DFmode && out_n == 2
5939 && in_mode == DFmode && in_n == 2)
5940 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIC];
5941 if (VECTOR_UNIT_VSX_P (V4SFmode)
5942 && !flag_trapping_math
5943 && out_mode == SFmode && out_n == 4
5944 && in_mode == SFmode && in_n == 4)
5945 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIC];
5946 break;
5947 default:
5948 break;
5951 /* Generate calls to libmass if appropriate. */
5952 if (rs6000_veclib_handler)
5953 return rs6000_veclib_handler (combined_fn (fn), type_out, type_in);
5955 return NULL_TREE;
5958 /* Implement TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION. */
5960 static tree
5961 rs6000_builtin_md_vectorized_function (tree fndecl, tree type_out,
5962 tree type_in)
5964 machine_mode in_mode, out_mode;
5965 int in_n, out_n;
5967 if (TARGET_DEBUG_BUILTIN)
5968 fprintf (stderr, "rs6000_builtin_md_vectorized_function (%s, %s, %s)\n",
5969 IDENTIFIER_POINTER (DECL_NAME (fndecl)),
5970 GET_MODE_NAME (TYPE_MODE (type_out)),
5971 GET_MODE_NAME (TYPE_MODE (type_in)));
5973 if (TREE_CODE (type_out) != VECTOR_TYPE
5974 || TREE_CODE (type_in) != VECTOR_TYPE)
5975 return NULL_TREE;
5977 out_mode = TYPE_MODE (TREE_TYPE (type_out));
5978 out_n = TYPE_VECTOR_SUBPARTS (type_out);
5979 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5980 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5982 enum rs6000_builtins fn
5983 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
5984 switch (fn)
5986 case RS6000_BUILTIN_RSQRTF:
5987 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)
5988 && out_mode == SFmode && out_n == 4
5989 && in_mode == SFmode && in_n == 4)
5990 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRSQRTFP];
5991 break;
5992 case RS6000_BUILTIN_RSQRT:
5993 if (VECTOR_UNIT_VSX_P (V2DFmode)
5994 && out_mode == DFmode && out_n == 2
5995 && in_mode == DFmode && in_n == 2)
5996 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_2DF];
5997 break;
5998 case RS6000_BUILTIN_RECIPF:
5999 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)
6000 && out_mode == SFmode && out_n == 4
6001 && in_mode == SFmode && in_n == 4)
6002 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRECIPFP];
6003 break;
6004 case RS6000_BUILTIN_RECIP:
6005 if (VECTOR_UNIT_VSX_P (V2DFmode)
6006 && out_mode == DFmode && out_n == 2
6007 && in_mode == DFmode && in_n == 2)
6008 return rs6000_builtin_decls[VSX_BUILTIN_RECIP_V2DF];
6009 break;
6010 default:
6011 break;
6013 return NULL_TREE;
6016 /* Default CPU string for rs6000*_file_start functions. */
6017 static const char *rs6000_default_cpu;
6019 /* Do anything needed at the start of the asm file. */
6021 static void
6022 rs6000_file_start (void)
6024 char buffer[80];
6025 const char *start = buffer;
6026 FILE *file = asm_out_file;
6028 rs6000_default_cpu = TARGET_CPU_DEFAULT;
6030 default_file_start ();
6032 if (flag_verbose_asm)
6034 sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
6036 if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
6038 fprintf (file, "%s --with-cpu=%s", start, rs6000_default_cpu);
6039 start = "";
6042 if (global_options_set.x_rs6000_cpu_index)
6044 fprintf (file, "%s -mcpu=%s", start,
6045 processor_target_table[rs6000_cpu_index].name);
6046 start = "";
6049 if (global_options_set.x_rs6000_tune_index)
6051 fprintf (file, "%s -mtune=%s", start,
6052 processor_target_table[rs6000_tune_index].name);
6053 start = "";
6056 if (PPC405_ERRATUM77)
6058 fprintf (file, "%s PPC405CR_ERRATUM77", start);
6059 start = "";
6062 #ifdef USING_ELFOS_H
6063 switch (rs6000_sdata)
6065 case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
6066 case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
6067 case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
6068 case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
6071 if (rs6000_sdata && g_switch_value)
6073 fprintf (file, "%s -G %d", start,
6074 g_switch_value);
6075 start = "";
6077 #endif
6079 if (*start == '\0')
6080 putc ('\n', file);
6083 #ifdef USING_ELFOS_H
6084 if (!(rs6000_default_cpu && rs6000_default_cpu[0])
6085 && !global_options_set.x_rs6000_cpu_index)
6087 fputs ("\t.machine ", asm_out_file);
6088 if ((rs6000_isa_flags & OPTION_MASK_MODULO) != 0)
6089 fputs ("power9\n", asm_out_file);
6090 else if ((rs6000_isa_flags & OPTION_MASK_DIRECT_MOVE) != 0)
6091 fputs ("power8\n", asm_out_file);
6092 else if ((rs6000_isa_flags & OPTION_MASK_POPCNTD) != 0)
6093 fputs ("power7\n", asm_out_file);
6094 else if ((rs6000_isa_flags & OPTION_MASK_CMPB) != 0)
6095 fputs ("power6\n", asm_out_file);
6096 else if ((rs6000_isa_flags & OPTION_MASK_POPCNTB) != 0)
6097 fputs ("power5\n", asm_out_file);
6098 else if ((rs6000_isa_flags & OPTION_MASK_MFCRF) != 0)
6099 fputs ("power4\n", asm_out_file);
6100 else if ((rs6000_isa_flags & OPTION_MASK_POWERPC64) != 0)
6101 fputs ("ppc64\n", asm_out_file);
6102 else
6103 fputs ("ppc\n", asm_out_file);
6105 #endif
6107 if (DEFAULT_ABI == ABI_ELFv2)
6108 fprintf (file, "\t.abiversion 2\n");
6112 /* Return nonzero if this function is known to have a null epilogue. */
6115 direct_return (void)
6117 if (reload_completed)
6119 rs6000_stack_t *info = rs6000_stack_info ();
6121 if (info->first_gp_reg_save == 32
6122 && info->first_fp_reg_save == 64
6123 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
6124 && ! info->lr_save_p
6125 && ! info->cr_save_p
6126 && info->vrsave_size == 0
6127 && ! info->push_p)
6128 return 1;
6131 return 0;
6134 /* Return the number of instructions it takes to form a constant in an
6135 integer register. */
6138 num_insns_constant_wide (HOST_WIDE_INT value)
6140 /* signed constant loadable with addi */
6141 if (((unsigned HOST_WIDE_INT) value + 0x8000) < 0x10000)
6142 return 1;
6144 /* constant loadable with addis */
6145 else if ((value & 0xffff) == 0
6146 && (value >> 31 == -1 || value >> 31 == 0))
6147 return 1;
6149 else if (TARGET_POWERPC64)
6151 HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
6152 HOST_WIDE_INT high = value >> 31;
6154 if (high == 0 || high == -1)
6155 return 2;
6157 high >>= 1;
6159 if (low == 0)
6160 return num_insns_constant_wide (high) + 1;
6161 else if (high == 0)
6162 return num_insns_constant_wide (low) + 1;
6163 else
6164 return (num_insns_constant_wide (high)
6165 + num_insns_constant_wide (low) + 1);
6168 else
6169 return 2;
6173 num_insns_constant (rtx op, machine_mode mode)
6175 HOST_WIDE_INT low, high;
6177 switch (GET_CODE (op))
6179 case CONST_INT:
6180 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
6181 && rs6000_is_valid_and_mask (op, mode))
6182 return 2;
6183 else
6184 return num_insns_constant_wide (INTVAL (op));
6186 case CONST_WIDE_INT:
6188 int i;
6189 int ins = CONST_WIDE_INT_NUNITS (op) - 1;
6190 for (i = 0; i < CONST_WIDE_INT_NUNITS (op); i++)
6191 ins += num_insns_constant_wide (CONST_WIDE_INT_ELT (op, i));
6192 return ins;
6195 case CONST_DOUBLE:
6196 if (mode == SFmode || mode == SDmode)
6198 long l;
6200 if (DECIMAL_FLOAT_MODE_P (mode))
6201 REAL_VALUE_TO_TARGET_DECIMAL32
6202 (*CONST_DOUBLE_REAL_VALUE (op), l);
6203 else
6204 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
6205 return num_insns_constant_wide ((HOST_WIDE_INT) l);
6208 long l[2];
6209 if (DECIMAL_FLOAT_MODE_P (mode))
6210 REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (op), l);
6211 else
6212 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
6213 high = l[WORDS_BIG_ENDIAN == 0];
6214 low = l[WORDS_BIG_ENDIAN != 0];
6216 if (TARGET_32BIT)
6217 return (num_insns_constant_wide (low)
6218 + num_insns_constant_wide (high));
6219 else
6221 if ((high == 0 && low >= 0)
6222 || (high == -1 && low < 0))
6223 return num_insns_constant_wide (low);
6225 else if (rs6000_is_valid_and_mask (op, mode))
6226 return 2;
6228 else if (low == 0)
6229 return num_insns_constant_wide (high) + 1;
6231 else
6232 return (num_insns_constant_wide (high)
6233 + num_insns_constant_wide (low) + 1);
6236 default:
6237 gcc_unreachable ();
6241 /* Interpret element ELT of the CONST_VECTOR OP as an integer value.
6242 If the mode of OP is MODE_VECTOR_INT, this simply returns the
6243 corresponding element of the vector, but for V4SFmode and V2SFmode,
6244 the corresponding "float" is interpreted as an SImode integer. */
6246 HOST_WIDE_INT
6247 const_vector_elt_as_int (rtx op, unsigned int elt)
6249 rtx tmp;
6251 /* We can't handle V2DImode and V2DFmode vector constants here yet. */
6252 gcc_assert (GET_MODE (op) != V2DImode
6253 && GET_MODE (op) != V2DFmode);
6255 tmp = CONST_VECTOR_ELT (op, elt);
6256 if (GET_MODE (op) == V4SFmode
6257 || GET_MODE (op) == V2SFmode)
6258 tmp = gen_lowpart (SImode, tmp);
6259 return INTVAL (tmp);
6262 /* Return true if OP can be synthesized with a particular vspltisb, vspltish
6263 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
6264 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
6265 all items are set to the same value and contain COPIES replicas of the
6266 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
6267 operand and the others are set to the value of the operand's msb. */
6269 static bool
6270 vspltis_constant (rtx op, unsigned step, unsigned copies)
6272 machine_mode mode = GET_MODE (op);
6273 machine_mode inner = GET_MODE_INNER (mode);
6275 unsigned i;
6276 unsigned nunits;
6277 unsigned bitsize;
6278 unsigned mask;
6280 HOST_WIDE_INT val;
6281 HOST_WIDE_INT splat_val;
6282 HOST_WIDE_INT msb_val;
6284 if (mode == V2DImode || mode == V2DFmode || mode == V1TImode)
6285 return false;
6287 nunits = GET_MODE_NUNITS (mode);
6288 bitsize = GET_MODE_BITSIZE (inner);
6289 mask = GET_MODE_MASK (inner);
6291 val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
6292 splat_val = val;
6293 msb_val = val >= 0 ? 0 : -1;
6295 /* Construct the value to be splatted, if possible. If not, return 0. */
6296 for (i = 2; i <= copies; i *= 2)
6298 HOST_WIDE_INT small_val;
6299 bitsize /= 2;
6300 small_val = splat_val >> bitsize;
6301 mask >>= bitsize;
6302 if (splat_val != ((HOST_WIDE_INT)
6303 ((unsigned HOST_WIDE_INT) small_val << bitsize)
6304 | (small_val & mask)))
6305 return false;
6306 splat_val = small_val;
6309 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
6310 if (EASY_VECTOR_15 (splat_val))
6313 /* Also check if we can splat, and then add the result to itself. Do so if
6314 the value is positive, of if the splat instruction is using OP's mode;
6315 for splat_val < 0, the splat and the add should use the same mode. */
6316 else if (EASY_VECTOR_15_ADD_SELF (splat_val)
6317 && (splat_val >= 0 || (step == 1 && copies == 1)))
6320 /* Also check if are loading up the most significant bit which can be done by
6321 loading up -1 and shifting the value left by -1. */
6322 else if (EASY_VECTOR_MSB (splat_val, inner))
6325 else
6326 return false;
6328 /* Check if VAL is present in every STEP-th element, and the
6329 other elements are filled with its most significant bit. */
6330 for (i = 1; i < nunits; ++i)
6332 HOST_WIDE_INT desired_val;
6333 unsigned elt = BYTES_BIG_ENDIAN ? nunits - 1 - i : i;
6334 if ((i & (step - 1)) == 0)
6335 desired_val = val;
6336 else
6337 desired_val = msb_val;
6339 if (desired_val != const_vector_elt_as_int (op, elt))
6340 return false;
6343 return true;
6346 /* Like vsplitis_constant, but allow the value to be shifted left with a VSLDOI
6347 instruction, filling in the bottom elements with 0 or -1.
6349 Return 0 if the constant cannot be generated with VSLDOI. Return positive
6350 for the number of zeroes to shift in, or negative for the number of 0xff
6351 bytes to shift in.
6353 OP is a CONST_VECTOR. */
6356 vspltis_shifted (rtx op)
6358 machine_mode mode = GET_MODE (op);
6359 machine_mode inner = GET_MODE_INNER (mode);
6361 unsigned i, j;
6362 unsigned nunits;
6363 unsigned mask;
6365 HOST_WIDE_INT val;
6367 if (mode != V16QImode && mode != V8HImode && mode != V4SImode)
6368 return false;
6370 /* We need to create pseudo registers to do the shift, so don't recognize
6371 shift vector constants after reload. */
6372 if (!can_create_pseudo_p ())
6373 return false;
6375 nunits = GET_MODE_NUNITS (mode);
6376 mask = GET_MODE_MASK (inner);
6378 val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? 0 : nunits - 1);
6380 /* Check if the value can really be the operand of a vspltis[bhw]. */
6381 if (EASY_VECTOR_15 (val))
6384 /* Also check if we are loading up the most significant bit which can be done
6385 by loading up -1 and shifting the value left by -1. */
6386 else if (EASY_VECTOR_MSB (val, inner))
6389 else
6390 return 0;
6392 /* Check if VAL is present in every STEP-th element until we find elements
6393 that are 0 or all 1 bits. */
6394 for (i = 1; i < nunits; ++i)
6396 unsigned elt = BYTES_BIG_ENDIAN ? i : nunits - 1 - i;
6397 HOST_WIDE_INT elt_val = const_vector_elt_as_int (op, elt);
6399 /* If the value isn't the splat value, check for the remaining elements
6400 being 0/-1. */
6401 if (val != elt_val)
6403 if (elt_val == 0)
6405 for (j = i+1; j < nunits; ++j)
6407 unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
6408 if (const_vector_elt_as_int (op, elt2) != 0)
6409 return 0;
6412 return (nunits - i) * GET_MODE_SIZE (inner);
6415 else if ((elt_val & mask) == mask)
6417 for (j = i+1; j < nunits; ++j)
6419 unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
6420 if ((const_vector_elt_as_int (op, elt2) & mask) != mask)
6421 return 0;
6424 return -((nunits - i) * GET_MODE_SIZE (inner));
6427 else
6428 return 0;
6432 /* If all elements are equal, we don't need to do VLSDOI. */
6433 return 0;
6437 /* Return true if OP is of the given MODE and can be synthesized
6438 with a vspltisb, vspltish or vspltisw. */
6440 bool
6441 easy_altivec_constant (rtx op, machine_mode mode)
6443 unsigned step, copies;
6445 if (mode == VOIDmode)
6446 mode = GET_MODE (op);
6447 else if (mode != GET_MODE (op))
6448 return false;
6450 /* V2DI/V2DF was added with VSX. Only allow 0 and all 1's as easy
6451 constants. */
6452 if (mode == V2DFmode)
6453 return zero_constant (op, mode);
6455 else if (mode == V2DImode)
6457 if (GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
6458 || GET_CODE (CONST_VECTOR_ELT (op, 1)) != CONST_INT)
6459 return false;
6461 if (zero_constant (op, mode))
6462 return true;
6464 if (INTVAL (CONST_VECTOR_ELT (op, 0)) == -1
6465 && INTVAL (CONST_VECTOR_ELT (op, 1)) == -1)
6466 return true;
6468 return false;
6471 /* V1TImode is a special container for TImode. Ignore for now. */
6472 else if (mode == V1TImode)
6473 return false;
6475 /* Start with a vspltisw. */
6476 step = GET_MODE_NUNITS (mode) / 4;
6477 copies = 1;
6479 if (vspltis_constant (op, step, copies))
6480 return true;
6482 /* Then try with a vspltish. */
6483 if (step == 1)
6484 copies <<= 1;
6485 else
6486 step >>= 1;
6488 if (vspltis_constant (op, step, copies))
6489 return true;
6491 /* And finally a vspltisb. */
6492 if (step == 1)
6493 copies <<= 1;
6494 else
6495 step >>= 1;
6497 if (vspltis_constant (op, step, copies))
6498 return true;
6500 if (vspltis_shifted (op) != 0)
6501 return true;
6503 return false;
6506 /* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
6507 result is OP. Abort if it is not possible. */
6510 gen_easy_altivec_constant (rtx op)
6512 machine_mode mode = GET_MODE (op);
6513 int nunits = GET_MODE_NUNITS (mode);
6514 rtx val = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
6515 unsigned step = nunits / 4;
6516 unsigned copies = 1;
6518 /* Start with a vspltisw. */
6519 if (vspltis_constant (op, step, copies))
6520 return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, val));
6522 /* Then try with a vspltish. */
6523 if (step == 1)
6524 copies <<= 1;
6525 else
6526 step >>= 1;
6528 if (vspltis_constant (op, step, copies))
6529 return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, val));
6531 /* And finally a vspltisb. */
6532 if (step == 1)
6533 copies <<= 1;
6534 else
6535 step >>= 1;
6537 if (vspltis_constant (op, step, copies))
6538 return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, val));
6540 gcc_unreachable ();
6543 /* Return true if OP is of the given MODE and can be synthesized with ISA 3.0
6544 instructions (xxspltib, vupkhsb/vextsb2w/vextb2d).
6546 Return the number of instructions needed (1 or 2) into the address pointed
6547 via NUM_INSNS_PTR.
6549 Return the constant that is being split via CONSTANT_PTR. */
6551 bool
6552 xxspltib_constant_p (rtx op,
6553 machine_mode mode,
6554 int *num_insns_ptr,
6555 int *constant_ptr)
6557 size_t nunits = GET_MODE_NUNITS (mode);
6558 size_t i;
6559 HOST_WIDE_INT value;
6560 rtx element;
6562 /* Set the returned values to out of bound values. */
6563 *num_insns_ptr = -1;
6564 *constant_ptr = 256;
6566 if (!TARGET_P9_VECTOR)
6567 return false;
6569 if (mode == VOIDmode)
6570 mode = GET_MODE (op);
6572 else if (mode != GET_MODE (op) && GET_MODE (op) != VOIDmode)
6573 return false;
6575 /* Handle (vec_duplicate <constant>). */
6576 if (GET_CODE (op) == VEC_DUPLICATE)
6578 if (mode != V16QImode && mode != V8HImode && mode != V4SImode
6579 && mode != V2DImode)
6580 return false;
6582 element = XEXP (op, 0);
6583 if (!CONST_INT_P (element))
6584 return false;
6586 value = INTVAL (element);
6587 if (!IN_RANGE (value, -128, 127))
6588 return false;
6591 /* Handle (const_vector [...]). */
6592 else if (GET_CODE (op) == CONST_VECTOR)
6594 if (mode != V16QImode && mode != V8HImode && mode != V4SImode
6595 && mode != V2DImode)
6596 return false;
6598 element = CONST_VECTOR_ELT (op, 0);
6599 if (!CONST_INT_P (element))
6600 return false;
6602 value = INTVAL (element);
6603 if (!IN_RANGE (value, -128, 127))
6604 return false;
6606 for (i = 1; i < nunits; i++)
6608 element = CONST_VECTOR_ELT (op, i);
6609 if (!CONST_INT_P (element))
6610 return false;
6612 if (value != INTVAL (element))
6613 return false;
6617 /* Handle integer constants being loaded into the upper part of the VSX
6618 register as a scalar. If the value isn't 0/-1, only allow it if the mode
6619 can go in Altivec registers. Prefer VSPLTISW/VUPKHSW over XXSPLITIB. */
6620 else if (CONST_INT_P (op))
6622 if (!SCALAR_INT_MODE_P (mode))
6623 return false;
6625 value = INTVAL (op);
6626 if (!IN_RANGE (value, -128, 127))
6627 return false;
6629 if (!IN_RANGE (value, -1, 0))
6631 if (!(reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID))
6632 return false;
6634 if (EASY_VECTOR_15 (value))
6635 return false;
6639 else
6640 return false;
6642 /* See if we could generate vspltisw/vspltish directly instead of xxspltib +
6643 sign extend. Special case 0/-1 to allow getting any VSX register instead
6644 of an Altivec register. */
6645 if ((mode == V4SImode || mode == V8HImode) && !IN_RANGE (value, -1, 0)
6646 && EASY_VECTOR_15 (value))
6647 return false;
6649 /* Return # of instructions and the constant byte for XXSPLTIB. */
6650 if (mode == V16QImode)
6651 *num_insns_ptr = 1;
6653 else if (IN_RANGE (value, -1, 0))
6654 *num_insns_ptr = 1;
6656 else
6657 *num_insns_ptr = 2;
6659 *constant_ptr = (int) value;
6660 return true;
6663 const char *
6664 output_vec_const_move (rtx *operands)
6666 int shift;
6667 machine_mode mode;
6668 rtx dest, vec;
6670 dest = operands[0];
6671 vec = operands[1];
6672 mode = GET_MODE (dest);
6674 if (TARGET_VSX)
6676 bool dest_vmx_p = ALTIVEC_REGNO_P (REGNO (dest));
6677 int xxspltib_value = 256;
6678 int num_insns = -1;
6680 if (zero_constant (vec, mode))
6682 if (TARGET_P9_VECTOR)
6683 return "xxspltib %x0,0";
6685 else if (dest_vmx_p)
6686 return "vspltisw %0,0";
6688 else
6689 return "xxlxor %x0,%x0,%x0";
6692 if (all_ones_constant (vec, mode))
6694 if (TARGET_P9_VECTOR)
6695 return "xxspltib %x0,255";
6697 else if (dest_vmx_p)
6698 return "vspltisw %0,-1";
6700 else if (TARGET_P8_VECTOR)
6701 return "xxlorc %x0,%x0,%x0";
6703 else
6704 gcc_unreachable ();
6707 if (TARGET_P9_VECTOR
6708 && xxspltib_constant_p (vec, mode, &num_insns, &xxspltib_value))
6710 if (num_insns == 1)
6712 operands[2] = GEN_INT (xxspltib_value & 0xff);
6713 return "xxspltib %x0,%2";
6716 return "#";
6720 if (TARGET_ALTIVEC)
6722 rtx splat_vec;
6724 gcc_assert (ALTIVEC_REGNO_P (REGNO (dest)));
6725 if (zero_constant (vec, mode))
6726 return "vspltisw %0,0";
6728 if (all_ones_constant (vec, mode))
6729 return "vspltisw %0,-1";
6731 /* Do we need to construct a value using VSLDOI? */
6732 shift = vspltis_shifted (vec);
6733 if (shift != 0)
6734 return "#";
6736 splat_vec = gen_easy_altivec_constant (vec);
6737 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
6738 operands[1] = XEXP (splat_vec, 0);
6739 if (!EASY_VECTOR_15 (INTVAL (operands[1])))
6740 return "#";
6742 switch (GET_MODE (splat_vec))
6744 case E_V4SImode:
6745 return "vspltisw %0,%1";
6747 case E_V8HImode:
6748 return "vspltish %0,%1";
6750 case E_V16QImode:
6751 return "vspltisb %0,%1";
6753 default:
6754 gcc_unreachable ();
6758 gcc_unreachable ();
6761 /* Initialize TARGET of vector PAIRED to VALS. */
6763 void
6764 paired_expand_vector_init (rtx target, rtx vals)
6766 machine_mode mode = GET_MODE (target);
6767 int n_elts = GET_MODE_NUNITS (mode);
6768 int n_var = 0;
6769 rtx x, new_rtx, tmp, constant_op, op1, op2;
6770 int i;
6772 for (i = 0; i < n_elts; ++i)
6774 x = XVECEXP (vals, 0, i);
6775 if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
6776 ++n_var;
6778 if (n_var == 0)
6780 /* Load from constant pool. */
6781 emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
6782 return;
6785 if (n_var == 2)
6787 /* The vector is initialized only with non-constants. */
6788 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, XVECEXP (vals, 0, 0),
6789 XVECEXP (vals, 0, 1));
6791 emit_move_insn (target, new_rtx);
6792 return;
6795 /* One field is non-constant and the other one is a constant. Load the
6796 constant from the constant pool and use ps_merge instruction to
6797 construct the whole vector. */
6798 op1 = XVECEXP (vals, 0, 0);
6799 op2 = XVECEXP (vals, 0, 1);
6801 constant_op = (CONSTANT_P (op1)) ? op1 : op2;
6803 tmp = gen_reg_rtx (GET_MODE (constant_op));
6804 emit_move_insn (tmp, constant_op);
6806 if (CONSTANT_P (op1))
6807 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, tmp, op2);
6808 else
6809 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, op1, tmp);
6811 emit_move_insn (target, new_rtx);
6814 void
6815 paired_expand_vector_move (rtx operands[])
6817 rtx op0 = operands[0], op1 = operands[1];
6819 emit_move_insn (op0, op1);
6822 /* Emit vector compare for code RCODE. DEST is destination, OP1 and
6823 OP2 are two VEC_COND_EXPR operands, CC_OP0 and CC_OP1 are the two
6824 operands for the relation operation COND. This is a recursive
6825 function. */
6827 static void
6828 paired_emit_vector_compare (enum rtx_code rcode,
6829 rtx dest, rtx op0, rtx op1,
6830 rtx cc_op0, rtx cc_op1)
6832 rtx tmp = gen_reg_rtx (V2SFmode);
6833 rtx tmp1, max, min;
6835 gcc_assert (TARGET_PAIRED_FLOAT);
6836 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
6838 switch (rcode)
6840 case LT:
6841 case LTU:
6842 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
6843 return;
6844 case GE:
6845 case GEU:
6846 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
6847 emit_insn (gen_selv2sf4 (dest, tmp, op0, op1, CONST0_RTX (SFmode)));
6848 return;
6849 case LE:
6850 case LEU:
6851 paired_emit_vector_compare (GE, dest, op0, op1, cc_op1, cc_op0);
6852 return;
6853 case GT:
6854 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
6855 return;
6856 case EQ:
6857 tmp1 = gen_reg_rtx (V2SFmode);
6858 max = gen_reg_rtx (V2SFmode);
6859 min = gen_reg_rtx (V2SFmode);
6860 gen_reg_rtx (V2SFmode);
6862 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
6863 emit_insn (gen_selv2sf4
6864 (max, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
6865 emit_insn (gen_subv2sf3 (tmp, cc_op1, cc_op0));
6866 emit_insn (gen_selv2sf4
6867 (min, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
6868 emit_insn (gen_subv2sf3 (tmp1, min, max));
6869 emit_insn (gen_selv2sf4 (dest, tmp1, op0, op1, CONST0_RTX (SFmode)));
6870 return;
6871 case NE:
6872 paired_emit_vector_compare (EQ, dest, op1, op0, cc_op0, cc_op1);
6873 return;
6874 case UNLE:
6875 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
6876 return;
6877 case UNLT:
6878 paired_emit_vector_compare (LT, dest, op1, op0, cc_op0, cc_op1);
6879 return;
6880 case UNGE:
6881 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
6882 return;
6883 case UNGT:
6884 paired_emit_vector_compare (GT, dest, op1, op0, cc_op0, cc_op1);
6885 return;
6886 default:
6887 gcc_unreachable ();
6890 return;
6893 /* Emit vector conditional expression.
6894 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
6895 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
6898 paired_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
6899 rtx cond, rtx cc_op0, rtx cc_op1)
6901 enum rtx_code rcode = GET_CODE (cond);
6903 if (!TARGET_PAIRED_FLOAT)
6904 return 0;
6906 paired_emit_vector_compare (rcode, dest, op1, op2, cc_op0, cc_op1);
6908 return 1;
6911 /* Initialize vector TARGET to VALS. */
6913 void
6914 rs6000_expand_vector_init (rtx target, rtx vals)
6916 machine_mode mode = GET_MODE (target);
6917 machine_mode inner_mode = GET_MODE_INNER (mode);
6918 int n_elts = GET_MODE_NUNITS (mode);
6919 int n_var = 0, one_var = -1;
6920 bool all_same = true, all_const_zero = true;
6921 rtx x, mem;
6922 int i;
6924 for (i = 0; i < n_elts; ++i)
6926 x = XVECEXP (vals, 0, i);
6927 if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
6928 ++n_var, one_var = i;
6929 else if (x != CONST0_RTX (inner_mode))
6930 all_const_zero = false;
6932 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
6933 all_same = false;
6936 if (n_var == 0)
6938 rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
6939 bool int_vector_p = (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
6940 if ((int_vector_p || TARGET_VSX) && all_const_zero)
6942 /* Zero register. */
6943 emit_move_insn (target, CONST0_RTX (mode));
6944 return;
6946 else if (int_vector_p && easy_vector_constant (const_vec, mode))
6948 /* Splat immediate. */
6949 emit_insn (gen_rtx_SET (target, const_vec));
6950 return;
6952 else
6954 /* Load from constant pool. */
6955 emit_move_insn (target, const_vec);
6956 return;
6960 /* Double word values on VSX can use xxpermdi or lxvdsx. */
6961 if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
6963 rtx op[2];
6964 size_t i;
6965 size_t num_elements = all_same ? 1 : 2;
6966 for (i = 0; i < num_elements; i++)
6968 op[i] = XVECEXP (vals, 0, i);
6969 /* Just in case there is a SUBREG with a smaller mode, do a
6970 conversion. */
6971 if (GET_MODE (op[i]) != inner_mode)
6973 rtx tmp = gen_reg_rtx (inner_mode);
6974 convert_move (tmp, op[i], 0);
6975 op[i] = tmp;
6977 /* Allow load with splat double word. */
6978 else if (MEM_P (op[i]))
6980 if (!all_same)
6981 op[i] = force_reg (inner_mode, op[i]);
6983 else if (!REG_P (op[i]))
6984 op[i] = force_reg (inner_mode, op[i]);
6987 if (all_same)
6989 if (mode == V2DFmode)
6990 emit_insn (gen_vsx_splat_v2df (target, op[0]));
6991 else
6992 emit_insn (gen_vsx_splat_v2di (target, op[0]));
6994 else
6996 if (mode == V2DFmode)
6997 emit_insn (gen_vsx_concat_v2df (target, op[0], op[1]));
6998 else
6999 emit_insn (gen_vsx_concat_v2di (target, op[0], op[1]));
7001 return;
7004 /* Special case initializing vector int if we are on 64-bit systems with
7005 direct move or we have the ISA 3.0 instructions. */
7006 if (mode == V4SImode && VECTOR_MEM_VSX_P (V4SImode)
7007 && TARGET_DIRECT_MOVE_64BIT)
7009 if (all_same)
7011 rtx element0 = XVECEXP (vals, 0, 0);
7012 if (MEM_P (element0))
7013 element0 = rs6000_address_for_fpconvert (element0);
7014 else
7015 element0 = force_reg (SImode, element0);
7017 if (TARGET_P9_VECTOR)
7018 emit_insn (gen_vsx_splat_v4si (target, element0));
7019 else
7021 rtx tmp = gen_reg_rtx (DImode);
7022 emit_insn (gen_zero_extendsidi2 (tmp, element0));
7023 emit_insn (gen_vsx_splat_v4si_di (target, tmp));
7025 return;
7027 else
7029 rtx elements[4];
7030 size_t i;
7032 for (i = 0; i < 4; i++)
7034 elements[i] = XVECEXP (vals, 0, i);
7035 if (!CONST_INT_P (elements[i]) && !REG_P (elements[i]))
7036 elements[i] = copy_to_mode_reg (SImode, elements[i]);
7039 emit_insn (gen_vsx_init_v4si (target, elements[0], elements[1],
7040 elements[2], elements[3]));
7041 return;
7045 /* With single precision floating point on VSX, know that internally single
7046 precision is actually represented as a double, and either make 2 V2DF
7047 vectors, and convert these vectors to single precision, or do one
7048 conversion, and splat the result to the other elements. */
7049 if (mode == V4SFmode && VECTOR_MEM_VSX_P (V4SFmode))
7051 if (all_same)
7053 rtx element0 = XVECEXP (vals, 0, 0);
7055 if (TARGET_P9_VECTOR)
7057 if (MEM_P (element0))
7058 element0 = rs6000_address_for_fpconvert (element0);
7060 emit_insn (gen_vsx_splat_v4sf (target, element0));
7063 else
7065 rtx freg = gen_reg_rtx (V4SFmode);
7066 rtx sreg = force_reg (SFmode, element0);
7067 rtx cvt = (TARGET_XSCVDPSPN
7068 ? gen_vsx_xscvdpspn_scalar (freg, sreg)
7069 : gen_vsx_xscvdpsp_scalar (freg, sreg));
7071 emit_insn (cvt);
7072 emit_insn (gen_vsx_xxspltw_v4sf_direct (target, freg,
7073 const0_rtx));
7076 else
7078 rtx dbl_even = gen_reg_rtx (V2DFmode);
7079 rtx dbl_odd = gen_reg_rtx (V2DFmode);
7080 rtx flt_even = gen_reg_rtx (V4SFmode);
7081 rtx flt_odd = gen_reg_rtx (V4SFmode);
7082 rtx op0 = force_reg (SFmode, XVECEXP (vals, 0, 0));
7083 rtx op1 = force_reg (SFmode, XVECEXP (vals, 0, 1));
7084 rtx op2 = force_reg (SFmode, XVECEXP (vals, 0, 2));
7085 rtx op3 = force_reg (SFmode, XVECEXP (vals, 0, 3));
7087 /* Use VMRGEW if we can instead of doing a permute. */
7088 if (TARGET_P8_VECTOR)
7090 emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op2));
7091 emit_insn (gen_vsx_concat_v2sf (dbl_odd, op1, op3));
7092 emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
7093 emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
7094 if (BYTES_BIG_ENDIAN)
7095 emit_insn (gen_p8_vmrgew_v4sf_direct (target, flt_even, flt_odd));
7096 else
7097 emit_insn (gen_p8_vmrgew_v4sf_direct (target, flt_odd, flt_even));
7099 else
7101 emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op1));
7102 emit_insn (gen_vsx_concat_v2sf (dbl_odd, op2, op3));
7103 emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
7104 emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
7105 rs6000_expand_extract_even (target, flt_even, flt_odd);
7108 return;
7111 /* Special case initializing vector short/char that are splats if we are on
7112 64-bit systems with direct move. */
7113 if (all_same && TARGET_DIRECT_MOVE_64BIT
7114 && (mode == V16QImode || mode == V8HImode))
7116 rtx op0 = XVECEXP (vals, 0, 0);
7117 rtx di_tmp = gen_reg_rtx (DImode);
7119 if (!REG_P (op0))
7120 op0 = force_reg (GET_MODE_INNER (mode), op0);
7122 if (mode == V16QImode)
7124 emit_insn (gen_zero_extendqidi2 (di_tmp, op0));
7125 emit_insn (gen_vsx_vspltb_di (target, di_tmp));
7126 return;
7129 if (mode == V8HImode)
7131 emit_insn (gen_zero_extendhidi2 (di_tmp, op0));
7132 emit_insn (gen_vsx_vsplth_di (target, di_tmp));
7133 return;
7137 /* Store value to stack temp. Load vector element. Splat. However, splat
7138 of 64-bit items is not supported on Altivec. */
7139 if (all_same && GET_MODE_SIZE (inner_mode) <= 4)
7141 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
7142 emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
7143 XVECEXP (vals, 0, 0));
7144 x = gen_rtx_UNSPEC (VOIDmode,
7145 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
7146 emit_insn (gen_rtx_PARALLEL (VOIDmode,
7147 gen_rtvec (2,
7148 gen_rtx_SET (target, mem),
7149 x)));
7150 x = gen_rtx_VEC_SELECT (inner_mode, target,
7151 gen_rtx_PARALLEL (VOIDmode,
7152 gen_rtvec (1, const0_rtx)));
7153 emit_insn (gen_rtx_SET (target, gen_rtx_VEC_DUPLICATE (mode, x)));
7154 return;
7157 /* One field is non-constant. Load constant then overwrite
7158 varying field. */
7159 if (n_var == 1)
7161 rtx copy = copy_rtx (vals);
7163 /* Load constant part of vector, substitute neighboring value for
7164 varying element. */
7165 XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
7166 rs6000_expand_vector_init (target, copy);
7168 /* Insert variable. */
7169 rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
7170 return;
7173 /* Construct the vector in memory one field at a time
7174 and load the whole vector. */
7175 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
7176 for (i = 0; i < n_elts; i++)
7177 emit_move_insn (adjust_address_nv (mem, inner_mode,
7178 i * GET_MODE_SIZE (inner_mode)),
7179 XVECEXP (vals, 0, i));
7180 emit_move_insn (target, mem);
7183 /* Set field ELT of TARGET to VAL. */
7185 void
7186 rs6000_expand_vector_set (rtx target, rtx val, int elt)
7188 machine_mode mode = GET_MODE (target);
7189 machine_mode inner_mode = GET_MODE_INNER (mode);
7190 rtx reg = gen_reg_rtx (mode);
7191 rtx mask, mem, x;
7192 int width = GET_MODE_SIZE (inner_mode);
7193 int i;
7195 val = force_reg (GET_MODE (val), val);
7197 if (VECTOR_MEM_VSX_P (mode))
7199 rtx insn = NULL_RTX;
7200 rtx elt_rtx = GEN_INT (elt);
7202 if (mode == V2DFmode)
7203 insn = gen_vsx_set_v2df (target, target, val, elt_rtx);
7205 else if (mode == V2DImode)
7206 insn = gen_vsx_set_v2di (target, target, val, elt_rtx);
7208 else if (TARGET_P9_VECTOR && TARGET_POWERPC64)
7210 if (mode == V4SImode)
7211 insn = gen_vsx_set_v4si_p9 (target, target, val, elt_rtx);
7212 else if (mode == V8HImode)
7213 insn = gen_vsx_set_v8hi_p9 (target, target, val, elt_rtx);
7214 else if (mode == V16QImode)
7215 insn = gen_vsx_set_v16qi_p9 (target, target, val, elt_rtx);
7216 else if (mode == V4SFmode)
7217 insn = gen_vsx_set_v4sf_p9 (target, target, val, elt_rtx);
7220 if (insn)
7222 emit_insn (insn);
7223 return;
7227 /* Simplify setting single element vectors like V1TImode. */
7228 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE (inner_mode) && elt == 0)
7230 emit_move_insn (target, gen_lowpart (mode, val));
7231 return;
7234 /* Load single variable value. */
7235 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
7236 emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
7237 x = gen_rtx_UNSPEC (VOIDmode,
7238 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
7239 emit_insn (gen_rtx_PARALLEL (VOIDmode,
7240 gen_rtvec (2,
7241 gen_rtx_SET (reg, mem),
7242 x)));
7244 /* Linear sequence. */
7245 mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
7246 for (i = 0; i < 16; ++i)
7247 XVECEXP (mask, 0, i) = GEN_INT (i);
7249 /* Set permute mask to insert element into target. */
7250 for (i = 0; i < width; ++i)
7251 XVECEXP (mask, 0, elt*width + i)
7252 = GEN_INT (i + 0x10);
7253 x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
7255 if (BYTES_BIG_ENDIAN)
7256 x = gen_rtx_UNSPEC (mode,
7257 gen_rtvec (3, target, reg,
7258 force_reg (V16QImode, x)),
7259 UNSPEC_VPERM);
7260 else
7262 if (TARGET_P9_VECTOR)
7263 x = gen_rtx_UNSPEC (mode,
7264 gen_rtvec (3, target, reg,
7265 force_reg (V16QImode, x)),
7266 UNSPEC_VPERMR);
7267 else
7269 /* Invert selector. We prefer to generate VNAND on P8 so
7270 that future fusion opportunities can kick in, but must
7271 generate VNOR elsewhere. */
7272 rtx notx = gen_rtx_NOT (V16QImode, force_reg (V16QImode, x));
7273 rtx iorx = (TARGET_P8_VECTOR
7274 ? gen_rtx_IOR (V16QImode, notx, notx)
7275 : gen_rtx_AND (V16QImode, notx, notx));
7276 rtx tmp = gen_reg_rtx (V16QImode);
7277 emit_insn (gen_rtx_SET (tmp, iorx));
7279 /* Permute with operands reversed and adjusted selector. */
7280 x = gen_rtx_UNSPEC (mode, gen_rtvec (3, reg, target, tmp),
7281 UNSPEC_VPERM);
7285 emit_insn (gen_rtx_SET (target, x));
7288 /* Extract field ELT from VEC into TARGET. */
7290 void
7291 rs6000_expand_vector_extract (rtx target, rtx vec, rtx elt)
7293 machine_mode mode = GET_MODE (vec);
7294 machine_mode inner_mode = GET_MODE_INNER (mode);
7295 rtx mem;
7297 if (VECTOR_MEM_VSX_P (mode) && CONST_INT_P (elt))
7299 switch (mode)
7301 default:
7302 break;
7303 case E_V1TImode:
7304 gcc_assert (INTVAL (elt) == 0 && inner_mode == TImode);
7305 emit_move_insn (target, gen_lowpart (TImode, vec));
7306 break;
7307 case E_V2DFmode:
7308 emit_insn (gen_vsx_extract_v2df (target, vec, elt));
7309 return;
7310 case E_V2DImode:
7311 emit_insn (gen_vsx_extract_v2di (target, vec, elt));
7312 return;
7313 case E_V4SFmode:
7314 emit_insn (gen_vsx_extract_v4sf (target, vec, elt));
7315 return;
7316 case E_V16QImode:
7317 if (TARGET_DIRECT_MOVE_64BIT)
7319 emit_insn (gen_vsx_extract_v16qi (target, vec, elt));
7320 return;
7322 else
7323 break;
7324 case E_V8HImode:
7325 if (TARGET_DIRECT_MOVE_64BIT)
7327 emit_insn (gen_vsx_extract_v8hi (target, vec, elt));
7328 return;
7330 else
7331 break;
7332 case E_V4SImode:
7333 if (TARGET_DIRECT_MOVE_64BIT)
7335 emit_insn (gen_vsx_extract_v4si (target, vec, elt));
7336 return;
7338 break;
7341 else if (VECTOR_MEM_VSX_P (mode) && !CONST_INT_P (elt)
7342 && TARGET_DIRECT_MOVE_64BIT)
7344 if (GET_MODE (elt) != DImode)
7346 rtx tmp = gen_reg_rtx (DImode);
7347 convert_move (tmp, elt, 0);
7348 elt = tmp;
7350 else if (!REG_P (elt))
7351 elt = force_reg (DImode, elt);
7353 switch (mode)
7355 case E_V2DFmode:
7356 emit_insn (gen_vsx_extract_v2df_var (target, vec, elt));
7357 return;
7359 case E_V2DImode:
7360 emit_insn (gen_vsx_extract_v2di_var (target, vec, elt));
7361 return;
7363 case E_V4SFmode:
7364 emit_insn (gen_vsx_extract_v4sf_var (target, vec, elt));
7365 return;
7367 case E_V4SImode:
7368 emit_insn (gen_vsx_extract_v4si_var (target, vec, elt));
7369 return;
7371 case E_V8HImode:
7372 emit_insn (gen_vsx_extract_v8hi_var (target, vec, elt));
7373 return;
7375 case E_V16QImode:
7376 emit_insn (gen_vsx_extract_v16qi_var (target, vec, elt));
7377 return;
7379 default:
7380 gcc_unreachable ();
7384 gcc_assert (CONST_INT_P (elt));
7386 /* Allocate mode-sized buffer. */
7387 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
7389 emit_move_insn (mem, vec);
7391 /* Add offset to field within buffer matching vector element. */
7392 mem = adjust_address_nv (mem, inner_mode,
7393 INTVAL (elt) * GET_MODE_SIZE (inner_mode));
7395 emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
7398 /* Helper function to return the register number of a RTX. */
7399 static inline int
7400 regno_or_subregno (rtx op)
7402 if (REG_P (op))
7403 return REGNO (op);
7404 else if (SUBREG_P (op))
7405 return subreg_regno (op);
7406 else
7407 gcc_unreachable ();
7410 /* Adjust a memory address (MEM) of a vector type to point to a scalar field
7411 within the vector (ELEMENT) with a mode (SCALAR_MODE). Use a base register
7412 temporary (BASE_TMP) to fixup the address. Return the new memory address
7413 that is valid for reads or writes to a given register (SCALAR_REG). */
7416 rs6000_adjust_vec_address (rtx scalar_reg,
7417 rtx mem,
7418 rtx element,
7419 rtx base_tmp,
7420 machine_mode scalar_mode)
7422 unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
7423 rtx addr = XEXP (mem, 0);
7424 rtx element_offset;
7425 rtx new_addr;
7426 bool valid_addr_p;
7428 /* Vector addresses should not have PRE_INC, PRE_DEC, or PRE_MODIFY. */
7429 gcc_assert (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC);
7431 /* Calculate what we need to add to the address to get the element
7432 address. */
7433 if (CONST_INT_P (element))
7434 element_offset = GEN_INT (INTVAL (element) * scalar_size);
7435 else
7437 int byte_shift = exact_log2 (scalar_size);
7438 gcc_assert (byte_shift >= 0);
7440 if (byte_shift == 0)
7441 element_offset = element;
7443 else
7445 if (TARGET_POWERPC64)
7446 emit_insn (gen_ashldi3 (base_tmp, element, GEN_INT (byte_shift)));
7447 else
7448 emit_insn (gen_ashlsi3 (base_tmp, element, GEN_INT (byte_shift)));
7450 element_offset = base_tmp;
7454 /* Create the new address pointing to the element within the vector. If we
7455 are adding 0, we don't have to change the address. */
7456 if (element_offset == const0_rtx)
7457 new_addr = addr;
7459 /* A simple indirect address can be converted into a reg + offset
7460 address. */
7461 else if (REG_P (addr) || SUBREG_P (addr))
7462 new_addr = gen_rtx_PLUS (Pmode, addr, element_offset);
7464 /* Optimize D-FORM addresses with constant offset with a constant element, to
7465 include the element offset in the address directly. */
7466 else if (GET_CODE (addr) == PLUS)
7468 rtx op0 = XEXP (addr, 0);
7469 rtx op1 = XEXP (addr, 1);
7470 rtx insn;
7472 gcc_assert (REG_P (op0) || SUBREG_P (op0));
7473 if (CONST_INT_P (op1) && CONST_INT_P (element_offset))
7475 HOST_WIDE_INT offset = INTVAL (op1) + INTVAL (element_offset);
7476 rtx offset_rtx = GEN_INT (offset);
7478 if (IN_RANGE (offset, -32768, 32767)
7479 && (scalar_size < 8 || (offset & 0x3) == 0))
7480 new_addr = gen_rtx_PLUS (Pmode, op0, offset_rtx);
7481 else
7483 emit_move_insn (base_tmp, offset_rtx);
7484 new_addr = gen_rtx_PLUS (Pmode, op0, base_tmp);
7487 else
7489 bool op1_reg_p = (REG_P (op1) || SUBREG_P (op1));
7490 bool ele_reg_p = (REG_P (element_offset) || SUBREG_P (element_offset));
7492 /* Note, ADDI requires the register being added to be a base
7493 register. If the register was R0, load it up into the temporary
7494 and do the add. */
7495 if (op1_reg_p
7496 && (ele_reg_p || reg_or_subregno (op1) != FIRST_GPR_REGNO))
7498 insn = gen_add3_insn (base_tmp, op1, element_offset);
7499 gcc_assert (insn != NULL_RTX);
7500 emit_insn (insn);
7503 else if (ele_reg_p
7504 && reg_or_subregno (element_offset) != FIRST_GPR_REGNO)
7506 insn = gen_add3_insn (base_tmp, element_offset, op1);
7507 gcc_assert (insn != NULL_RTX);
7508 emit_insn (insn);
7511 else
7513 emit_move_insn (base_tmp, op1);
7514 emit_insn (gen_add2_insn (base_tmp, element_offset));
7517 new_addr = gen_rtx_PLUS (Pmode, op0, base_tmp);
7521 else
7523 emit_move_insn (base_tmp, addr);
7524 new_addr = gen_rtx_PLUS (Pmode, base_tmp, element_offset);
7527 /* If we have a PLUS, we need to see whether the particular register class
7528 allows for D-FORM or X-FORM addressing. */
7529 if (GET_CODE (new_addr) == PLUS)
7531 rtx op1 = XEXP (new_addr, 1);
7532 addr_mask_type addr_mask;
7533 int scalar_regno = regno_or_subregno (scalar_reg);
7535 gcc_assert (scalar_regno < FIRST_PSEUDO_REGISTER);
7536 if (INT_REGNO_P (scalar_regno))
7537 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_GPR];
7539 else if (FP_REGNO_P (scalar_regno))
7540 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_FPR];
7542 else if (ALTIVEC_REGNO_P (scalar_regno))
7543 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_VMX];
7545 else
7546 gcc_unreachable ();
7548 if (REG_P (op1) || SUBREG_P (op1))
7549 valid_addr_p = (addr_mask & RELOAD_REG_INDEXED) != 0;
7550 else
7551 valid_addr_p = (addr_mask & RELOAD_REG_OFFSET) != 0;
7554 else if (REG_P (new_addr) || SUBREG_P (new_addr))
7555 valid_addr_p = true;
7557 else
7558 valid_addr_p = false;
7560 if (!valid_addr_p)
7562 emit_move_insn (base_tmp, new_addr);
7563 new_addr = base_tmp;
7566 return change_address (mem, scalar_mode, new_addr);
7569 /* Split a variable vec_extract operation into the component instructions. */
7571 void
7572 rs6000_split_vec_extract_var (rtx dest, rtx src, rtx element, rtx tmp_gpr,
7573 rtx tmp_altivec)
7575 machine_mode mode = GET_MODE (src);
7576 machine_mode scalar_mode = GET_MODE (dest);
7577 unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
7578 int byte_shift = exact_log2 (scalar_size);
7580 gcc_assert (byte_shift >= 0);
7582 /* If we are given a memory address, optimize to load just the element. We
7583 don't have to adjust the vector element number on little endian
7584 systems. */
7585 if (MEM_P (src))
7587 gcc_assert (REG_P (tmp_gpr));
7588 emit_move_insn (dest, rs6000_adjust_vec_address (dest, src, element,
7589 tmp_gpr, scalar_mode));
7590 return;
7593 else if (REG_P (src) || SUBREG_P (src))
7595 int bit_shift = byte_shift + 3;
7596 rtx element2;
7597 int dest_regno = regno_or_subregno (dest);
7598 int src_regno = regno_or_subregno (src);
7599 int element_regno = regno_or_subregno (element);
7601 gcc_assert (REG_P (tmp_gpr));
7603 /* See if we want to generate VEXTU{B,H,W}{L,R}X if the destination is in
7604 a general purpose register. */
7605 if (TARGET_P9_VECTOR
7606 && (mode == V16QImode || mode == V8HImode || mode == V4SImode)
7607 && INT_REGNO_P (dest_regno)
7608 && ALTIVEC_REGNO_P (src_regno)
7609 && INT_REGNO_P (element_regno))
7611 rtx dest_si = gen_rtx_REG (SImode, dest_regno);
7612 rtx element_si = gen_rtx_REG (SImode, element_regno);
7614 if (mode == V16QImode)
7615 emit_insn (VECTOR_ELT_ORDER_BIG
7616 ? gen_vextublx (dest_si, element_si, src)
7617 : gen_vextubrx (dest_si, element_si, src));
7619 else if (mode == V8HImode)
7621 rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
7622 emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const1_rtx));
7623 emit_insn (VECTOR_ELT_ORDER_BIG
7624 ? gen_vextuhlx (dest_si, tmp_gpr_si, src)
7625 : gen_vextuhrx (dest_si, tmp_gpr_si, src));
7629 else
7631 rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
7632 emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const2_rtx));
7633 emit_insn (VECTOR_ELT_ORDER_BIG
7634 ? gen_vextuwlx (dest_si, tmp_gpr_si, src)
7635 : gen_vextuwrx (dest_si, tmp_gpr_si, src));
7638 return;
7642 gcc_assert (REG_P (tmp_altivec));
7644 /* For little endian, adjust element ordering. For V2DI/V2DF, we can use
7645 an XOR, otherwise we need to subtract. The shift amount is so VSLO
7646 will shift the element into the upper position (adding 3 to convert a
7647 byte shift into a bit shift). */
7648 if (scalar_size == 8)
7650 if (!VECTOR_ELT_ORDER_BIG)
7652 emit_insn (gen_xordi3 (tmp_gpr, element, const1_rtx));
7653 element2 = tmp_gpr;
7655 else
7656 element2 = element;
7658 /* Generate RLDIC directly to shift left 6 bits and retrieve 1
7659 bit. */
7660 emit_insn (gen_rtx_SET (tmp_gpr,
7661 gen_rtx_AND (DImode,
7662 gen_rtx_ASHIFT (DImode,
7663 element2,
7664 GEN_INT (6)),
7665 GEN_INT (64))));
7667 else
7669 if (!VECTOR_ELT_ORDER_BIG)
7671 rtx num_ele_m1 = GEN_INT (GET_MODE_NUNITS (mode) - 1);
7673 emit_insn (gen_anddi3 (tmp_gpr, element, num_ele_m1));
7674 emit_insn (gen_subdi3 (tmp_gpr, num_ele_m1, tmp_gpr));
7675 element2 = tmp_gpr;
7677 else
7678 element2 = element;
7680 emit_insn (gen_ashldi3 (tmp_gpr, element2, GEN_INT (bit_shift)));
7683 /* Get the value into the lower byte of the Altivec register where VSLO
7684 expects it. */
7685 if (TARGET_P9_VECTOR)
7686 emit_insn (gen_vsx_splat_v2di (tmp_altivec, tmp_gpr));
7687 else if (can_create_pseudo_p ())
7688 emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_gpr, tmp_gpr));
7689 else
7691 rtx tmp_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7692 emit_move_insn (tmp_di, tmp_gpr);
7693 emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_di, tmp_di));
7696 /* Do the VSLO to get the value into the final location. */
7697 switch (mode)
7699 case E_V2DFmode:
7700 emit_insn (gen_vsx_vslo_v2df (dest, src, tmp_altivec));
7701 return;
7703 case E_V2DImode:
7704 emit_insn (gen_vsx_vslo_v2di (dest, src, tmp_altivec));
7705 return;
7707 case E_V4SFmode:
7709 rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7710 rtx tmp_altivec_v4sf = gen_rtx_REG (V4SFmode, REGNO (tmp_altivec));
7711 rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
7712 emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
7713 tmp_altivec));
7715 emit_insn (gen_vsx_xscvspdp_scalar2 (dest, tmp_altivec_v4sf));
7716 return;
7719 case E_V4SImode:
7720 case E_V8HImode:
7721 case E_V16QImode:
7723 rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7724 rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
7725 rtx tmp_gpr_di = gen_rtx_REG (DImode, REGNO (dest));
7726 emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
7727 tmp_altivec));
7728 emit_move_insn (tmp_gpr_di, tmp_altivec_di);
7729 emit_insn (gen_ashrdi3 (tmp_gpr_di, tmp_gpr_di,
7730 GEN_INT (64 - (8 * scalar_size))));
7731 return;
7734 default:
7735 gcc_unreachable ();
7738 return;
7740 else
7741 gcc_unreachable ();
7744 /* Helper function for rs6000_split_v4si_init to build up a DImode value from
7745 two SImode values. */
7747 static void
7748 rs6000_split_v4si_init_di_reg (rtx dest, rtx si1, rtx si2, rtx tmp)
7750 const unsigned HOST_WIDE_INT mask_32bit = HOST_WIDE_INT_C (0xffffffff);
7752 if (CONST_INT_P (si1) && CONST_INT_P (si2))
7754 unsigned HOST_WIDE_INT const1 = (UINTVAL (si1) & mask_32bit) << 32;
7755 unsigned HOST_WIDE_INT const2 = UINTVAL (si2) & mask_32bit;
7757 emit_move_insn (dest, GEN_INT (const1 | const2));
7758 return;
7761 /* Put si1 into upper 32-bits of dest. */
7762 if (CONST_INT_P (si1))
7763 emit_move_insn (dest, GEN_INT ((UINTVAL (si1) & mask_32bit) << 32));
7764 else
7766 /* Generate RLDIC. */
7767 rtx si1_di = gen_rtx_REG (DImode, regno_or_subregno (si1));
7768 rtx shift_rtx = gen_rtx_ASHIFT (DImode, si1_di, GEN_INT (32));
7769 rtx mask_rtx = GEN_INT (mask_32bit << 32);
7770 rtx and_rtx = gen_rtx_AND (DImode, shift_rtx, mask_rtx);
7771 gcc_assert (!reg_overlap_mentioned_p (dest, si1));
7772 emit_insn (gen_rtx_SET (dest, and_rtx));
7775 /* Put si2 into the temporary. */
7776 gcc_assert (!reg_overlap_mentioned_p (dest, tmp));
7777 if (CONST_INT_P (si2))
7778 emit_move_insn (tmp, GEN_INT (UINTVAL (si2) & mask_32bit));
7779 else
7780 emit_insn (gen_zero_extendsidi2 (tmp, si2));
7782 /* Combine the two parts. */
7783 emit_insn (gen_iordi3 (dest, dest, tmp));
7784 return;
7787 /* Split a V4SI initialization. */
7789 void
7790 rs6000_split_v4si_init (rtx operands[])
7792 rtx dest = operands[0];
7794 /* Destination is a GPR, build up the two DImode parts in place. */
7795 if (REG_P (dest) || SUBREG_P (dest))
7797 int d_regno = regno_or_subregno (dest);
7798 rtx scalar1 = operands[1];
7799 rtx scalar2 = operands[2];
7800 rtx scalar3 = operands[3];
7801 rtx scalar4 = operands[4];
7802 rtx tmp1 = operands[5];
7803 rtx tmp2 = operands[6];
7805 /* Even though we only need one temporary (plus the destination, which
7806 has an early clobber constraint, try to use two temporaries, one for
7807 each double word created. That way the 2nd insn scheduling pass can
7808 rearrange things so the two parts are done in parallel. */
7809 if (BYTES_BIG_ENDIAN)
7811 rtx di_lo = gen_rtx_REG (DImode, d_regno);
7812 rtx di_hi = gen_rtx_REG (DImode, d_regno + 1);
7813 rs6000_split_v4si_init_di_reg (di_lo, scalar1, scalar2, tmp1);
7814 rs6000_split_v4si_init_di_reg (di_hi, scalar3, scalar4, tmp2);
7816 else
7818 rtx di_lo = gen_rtx_REG (DImode, d_regno + 1);
7819 rtx di_hi = gen_rtx_REG (DImode, d_regno);
7820 gcc_assert (!VECTOR_ELT_ORDER_BIG);
7821 rs6000_split_v4si_init_di_reg (di_lo, scalar4, scalar3, tmp1);
7822 rs6000_split_v4si_init_di_reg (di_hi, scalar2, scalar1, tmp2);
7824 return;
7827 else
7828 gcc_unreachable ();
7831 /* Return alignment of TYPE. Existing alignment is ALIGN. HOW
7832 selects whether the alignment is abi mandated, optional, or
7833 both abi and optional alignment. */
7835 unsigned int
7836 rs6000_data_alignment (tree type, unsigned int align, enum data_align how)
7838 if (how != align_opt)
7840 if (TREE_CODE (type) == VECTOR_TYPE)
7842 if (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (type)))
7844 if (align < 64)
7845 align = 64;
7847 else if (align < 128)
7848 align = 128;
7852 if (how != align_abi)
7854 if (TREE_CODE (type) == ARRAY_TYPE
7855 && TYPE_MODE (TREE_TYPE (type)) == QImode)
7857 if (align < BITS_PER_WORD)
7858 align = BITS_PER_WORD;
7862 return align;
7865 /* Implement TARGET_SLOW_UNALIGNED_ACCESS. Altivec vector memory
7866 instructions simply ignore the low bits; VSX memory instructions
7867 are aligned to 4 or 8 bytes. */
7869 static bool
7870 rs6000_slow_unaligned_access (machine_mode mode, unsigned int align)
7872 return (STRICT_ALIGNMENT
7873 || (!TARGET_EFFICIENT_UNALIGNED_VSX
7874 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && align < 32)
7875 || ((VECTOR_MODE_P (mode) || FLOAT128_VECTOR_P (mode))
7876 && (int) align < VECTOR_ALIGN (mode)))));
7879 /* Previous GCC releases forced all vector types to have 16-byte alignment. */
7881 bool
7882 rs6000_special_adjust_field_align_p (tree type, unsigned int computed)
7884 if (TARGET_ALTIVEC && TREE_CODE (type) == VECTOR_TYPE)
7886 if (computed != 128)
7888 static bool warned;
7889 if (!warned && warn_psabi)
7891 warned = true;
7892 inform (input_location,
7893 "the layout of aggregates containing vectors with"
7894 " %d-byte alignment has changed in GCC 5",
7895 computed / BITS_PER_UNIT);
7898 /* In current GCC there is no special case. */
7899 return false;
7902 return false;
7905 /* AIX increases natural record alignment to doubleword if the first
7906 field is an FP double while the FP fields remain word aligned. */
7908 unsigned int
7909 rs6000_special_round_type_align (tree type, unsigned int computed,
7910 unsigned int specified)
7912 unsigned int align = MAX (computed, specified);
7913 tree field = TYPE_FIELDS (type);
7915 /* Skip all non field decls */
7916 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
7917 field = DECL_CHAIN (field);
7919 if (field != NULL && field != type)
7921 type = TREE_TYPE (field);
7922 while (TREE_CODE (type) == ARRAY_TYPE)
7923 type = TREE_TYPE (type);
7925 if (type != error_mark_node && TYPE_MODE (type) == DFmode)
7926 align = MAX (align, 64);
7929 return align;
7932 /* Darwin increases record alignment to the natural alignment of
7933 the first field. */
7935 unsigned int
7936 darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
7937 unsigned int specified)
7939 unsigned int align = MAX (computed, specified);
7941 if (TYPE_PACKED (type))
7942 return align;
7944 /* Find the first field, looking down into aggregates. */
7945 do {
7946 tree field = TYPE_FIELDS (type);
7947 /* Skip all non field decls */
7948 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
7949 field = DECL_CHAIN (field);
7950 if (! field)
7951 break;
7952 /* A packed field does not contribute any extra alignment. */
7953 if (DECL_PACKED (field))
7954 return align;
7955 type = TREE_TYPE (field);
7956 while (TREE_CODE (type) == ARRAY_TYPE)
7957 type = TREE_TYPE (type);
7958 } while (AGGREGATE_TYPE_P (type));
7960 if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
7961 align = MAX (align, TYPE_ALIGN (type));
7963 return align;
7966 /* Return 1 for an operand in small memory on V.4/eabi. */
7969 small_data_operand (rtx op ATTRIBUTE_UNUSED,
7970 machine_mode mode ATTRIBUTE_UNUSED)
7972 #if TARGET_ELF
7973 rtx sym_ref;
7975 if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
7976 return 0;
7978 if (DEFAULT_ABI != ABI_V4)
7979 return 0;
7981 if (GET_CODE (op) == SYMBOL_REF)
7982 sym_ref = op;
7984 else if (GET_CODE (op) != CONST
7985 || GET_CODE (XEXP (op, 0)) != PLUS
7986 || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
7987 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
7988 return 0;
7990 else
7992 rtx sum = XEXP (op, 0);
7993 HOST_WIDE_INT summand;
7995 /* We have to be careful here, because it is the referenced address
7996 that must be 32k from _SDA_BASE_, not just the symbol. */
7997 summand = INTVAL (XEXP (sum, 1));
7998 if (summand < 0 || summand > g_switch_value)
7999 return 0;
8001 sym_ref = XEXP (sum, 0);
8004 return SYMBOL_REF_SMALL_P (sym_ref);
8005 #else
8006 return 0;
8007 #endif
8010 /* Return true if either operand is a general purpose register. */
8012 bool
8013 gpr_or_gpr_p (rtx op0, rtx op1)
8015 return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
8016 || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
8019 /* Return true if this is a move direct operation between GPR registers and
8020 floating point/VSX registers. */
8022 bool
8023 direct_move_p (rtx op0, rtx op1)
8025 int regno0, regno1;
8027 if (!REG_P (op0) || !REG_P (op1))
8028 return false;
8030 if (!TARGET_DIRECT_MOVE && !TARGET_MFPGPR)
8031 return false;
8033 regno0 = REGNO (op0);
8034 regno1 = REGNO (op1);
8035 if (regno0 >= FIRST_PSEUDO_REGISTER || regno1 >= FIRST_PSEUDO_REGISTER)
8036 return false;
8038 if (INT_REGNO_P (regno0))
8039 return (TARGET_DIRECT_MOVE) ? VSX_REGNO_P (regno1) : FP_REGNO_P (regno1);
8041 else if (INT_REGNO_P (regno1))
8043 if (TARGET_MFPGPR && FP_REGNO_P (regno0))
8044 return true;
8046 else if (TARGET_DIRECT_MOVE && VSX_REGNO_P (regno0))
8047 return true;
8050 return false;
8053 /* Return true if the OFFSET is valid for the quad address instructions that
8054 use d-form (register + offset) addressing. */
8056 static inline bool
8057 quad_address_offset_p (HOST_WIDE_INT offset)
8059 return (IN_RANGE (offset, -32768, 32767) && ((offset) & 0xf) == 0);
8062 /* Return true if the ADDR is an acceptable address for a quad memory
8063 operation of mode MODE (either LQ/STQ for general purpose registers, or
8064 LXV/STXV for vector registers under ISA 3.0. GPR_P is true if this address
8065 is intended for LQ/STQ. If it is false, the address is intended for the ISA
8066 3.0 LXV/STXV instruction. */
8068 bool
8069 quad_address_p (rtx addr, machine_mode mode, bool strict)
8071 rtx op0, op1;
8073 if (GET_MODE_SIZE (mode) != 16)
8074 return false;
8076 if (legitimate_indirect_address_p (addr, strict))
8077 return true;
8079 if (VECTOR_MODE_P (mode) && !mode_supports_vsx_dform_quad (mode))
8080 return false;
8082 if (GET_CODE (addr) != PLUS)
8083 return false;
8085 op0 = XEXP (addr, 0);
8086 if (!REG_P (op0) || !INT_REG_OK_FOR_BASE_P (op0, strict))
8087 return false;
8089 op1 = XEXP (addr, 1);
8090 if (!CONST_INT_P (op1))
8091 return false;
8093 return quad_address_offset_p (INTVAL (op1));
8096 /* Return true if this is a load or store quad operation. This function does
8097 not handle the atomic quad memory instructions. */
8099 bool
8100 quad_load_store_p (rtx op0, rtx op1)
8102 bool ret;
8104 if (!TARGET_QUAD_MEMORY)
8105 ret = false;
8107 else if (REG_P (op0) && MEM_P (op1))
8108 ret = (quad_int_reg_operand (op0, GET_MODE (op0))
8109 && quad_memory_operand (op1, GET_MODE (op1))
8110 && !reg_overlap_mentioned_p (op0, op1));
8112 else if (MEM_P (op0) && REG_P (op1))
8113 ret = (quad_memory_operand (op0, GET_MODE (op0))
8114 && quad_int_reg_operand (op1, GET_MODE (op1)));
8116 else
8117 ret = false;
8119 if (TARGET_DEBUG_ADDR)
8121 fprintf (stderr, "\n========== quad_load_store, return %s\n",
8122 ret ? "true" : "false");
8123 debug_rtx (gen_rtx_SET (op0, op1));
8126 return ret;
8129 /* Given an address, return a constant offset term if one exists. */
8131 static rtx
8132 address_offset (rtx op)
8134 if (GET_CODE (op) == PRE_INC
8135 || GET_CODE (op) == PRE_DEC)
8136 op = XEXP (op, 0);
8137 else if (GET_CODE (op) == PRE_MODIFY
8138 || GET_CODE (op) == LO_SUM)
8139 op = XEXP (op, 1);
8141 if (GET_CODE (op) == CONST)
8142 op = XEXP (op, 0);
8144 if (GET_CODE (op) == PLUS)
8145 op = XEXP (op, 1);
8147 if (CONST_INT_P (op))
8148 return op;
8150 return NULL_RTX;
8153 /* Return true if the MEM operand is a memory operand suitable for use
8154 with a (full width, possibly multiple) gpr load/store. On
8155 powerpc64 this means the offset must be divisible by 4.
8156 Implements 'Y' constraint.
8158 Accept direct, indexed, offset, lo_sum and tocref. Since this is
8159 a constraint function we know the operand has satisfied a suitable
8160 memory predicate. Also accept some odd rtl generated by reload
8161 (see rs6000_legitimize_reload_address for various forms). It is
8162 important that reload rtl be accepted by appropriate constraints
8163 but not by the operand predicate.
8165 Offsetting a lo_sum should not be allowed, except where we know by
8166 alignment that a 32k boundary is not crossed, but see the ???
8167 comment in rs6000_legitimize_reload_address. Note that by
8168 "offsetting" here we mean a further offset to access parts of the
8169 MEM. It's fine to have a lo_sum where the inner address is offset
8170 from a sym, since the same sym+offset will appear in the high part
8171 of the address calculation. */
8173 bool
8174 mem_operand_gpr (rtx op, machine_mode mode)
8176 unsigned HOST_WIDE_INT offset;
8177 int extra;
8178 rtx addr = XEXP (op, 0);
8180 op = address_offset (addr);
8181 if (op == NULL_RTX)
8182 return true;
8184 offset = INTVAL (op);
8185 if (TARGET_POWERPC64 && (offset & 3) != 0)
8186 return false;
8188 extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
8189 if (extra < 0)
8190 extra = 0;
8192 if (GET_CODE (addr) == LO_SUM)
8193 /* For lo_sum addresses, we must allow any offset except one that
8194 causes a wrap, so test only the low 16 bits. */
8195 offset = ((offset & 0xffff) ^ 0x8000) - 0x8000;
8197 return offset + 0x8000 < 0x10000u - extra;
8200 /* As above, but for DS-FORM VSX insns. Unlike mem_operand_gpr,
8201 enforce an offset divisible by 4 even for 32-bit. */
8203 bool
8204 mem_operand_ds_form (rtx op, machine_mode mode)
8206 unsigned HOST_WIDE_INT offset;
8207 int extra;
8208 rtx addr = XEXP (op, 0);
8210 if (!offsettable_address_p (false, mode, addr))
8211 return false;
8213 op = address_offset (addr);
8214 if (op == NULL_RTX)
8215 return true;
8217 offset = INTVAL (op);
8218 if ((offset & 3) != 0)
8219 return false;
8221 extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
8222 if (extra < 0)
8223 extra = 0;
8225 if (GET_CODE (addr) == LO_SUM)
8226 /* For lo_sum addresses, we must allow any offset except one that
8227 causes a wrap, so test only the low 16 bits. */
8228 offset = ((offset & 0xffff) ^ 0x8000) - 0x8000;
8230 return offset + 0x8000 < 0x10000u - extra;
8233 /* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address_p. */
8235 static bool
8236 reg_offset_addressing_ok_p (machine_mode mode)
8238 switch (mode)
8240 case E_V16QImode:
8241 case E_V8HImode:
8242 case E_V4SFmode:
8243 case E_V4SImode:
8244 case E_V2DFmode:
8245 case E_V2DImode:
8246 case E_V1TImode:
8247 case E_TImode:
8248 case E_TFmode:
8249 case E_KFmode:
8250 /* AltiVec/VSX vector modes. Only reg+reg addressing was valid until the
8251 ISA 3.0 vector d-form addressing mode was added. While TImode is not
8252 a vector mode, if we want to use the VSX registers to move it around,
8253 we need to restrict ourselves to reg+reg addressing. Similarly for
8254 IEEE 128-bit floating point that is passed in a single vector
8255 register. */
8256 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
8257 return mode_supports_vsx_dform_quad (mode);
8258 break;
8260 case E_V2SImode:
8261 case E_V2SFmode:
8262 /* Paired vector modes. Only reg+reg addressing is valid. */
8263 if (TARGET_PAIRED_FLOAT)
8264 return false;
8265 break;
8267 case E_SDmode:
8268 /* If we can do direct load/stores of SDmode, restrict it to reg+reg
8269 addressing for the LFIWZX and STFIWX instructions. */
8270 if (TARGET_NO_SDMODE_STACK)
8271 return false;
8272 break;
8274 default:
8275 break;
8278 return true;
8281 static bool
8282 virtual_stack_registers_memory_p (rtx op)
8284 int regnum;
8286 if (GET_CODE (op) == REG)
8287 regnum = REGNO (op);
8289 else if (GET_CODE (op) == PLUS
8290 && GET_CODE (XEXP (op, 0)) == REG
8291 && GET_CODE (XEXP (op, 1)) == CONST_INT)
8292 regnum = REGNO (XEXP (op, 0));
8294 else
8295 return false;
8297 return (regnum >= FIRST_VIRTUAL_REGISTER
8298 && regnum <= LAST_VIRTUAL_POINTER_REGISTER);
8301 /* Return true if a MODE sized memory accesses to OP plus OFFSET
8302 is known to not straddle a 32k boundary. This function is used
8303 to determine whether -mcmodel=medium code can use TOC pointer
8304 relative addressing for OP. This means the alignment of the TOC
8305 pointer must also be taken into account, and unfortunately that is
8306 only 8 bytes. */
8308 #ifndef POWERPC64_TOC_POINTER_ALIGNMENT
8309 #define POWERPC64_TOC_POINTER_ALIGNMENT 8
8310 #endif
8312 static bool
8313 offsettable_ok_by_alignment (rtx op, HOST_WIDE_INT offset,
8314 machine_mode mode)
8316 tree decl;
8317 unsigned HOST_WIDE_INT dsize, dalign, lsb, mask;
8319 if (GET_CODE (op) != SYMBOL_REF)
8320 return false;
8322 /* ISA 3.0 vector d-form addressing is restricted, don't allow
8323 SYMBOL_REF. */
8324 if (mode_supports_vsx_dform_quad (mode))
8325 return false;
8327 dsize = GET_MODE_SIZE (mode);
8328 decl = SYMBOL_REF_DECL (op);
8329 if (!decl)
8331 if (dsize == 0)
8332 return false;
8334 /* -fsection-anchors loses the original SYMBOL_REF_DECL when
8335 replacing memory addresses with an anchor plus offset. We
8336 could find the decl by rummaging around in the block->objects
8337 VEC for the given offset but that seems like too much work. */
8338 dalign = BITS_PER_UNIT;
8339 if (SYMBOL_REF_HAS_BLOCK_INFO_P (op)
8340 && SYMBOL_REF_ANCHOR_P (op)
8341 && SYMBOL_REF_BLOCK (op) != NULL)
8343 struct object_block *block = SYMBOL_REF_BLOCK (op);
8345 dalign = block->alignment;
8346 offset += SYMBOL_REF_BLOCK_OFFSET (op);
8348 else if (CONSTANT_POOL_ADDRESS_P (op))
8350 /* It would be nice to have get_pool_align().. */
8351 machine_mode cmode = get_pool_mode (op);
8353 dalign = GET_MODE_ALIGNMENT (cmode);
8356 else if (DECL_P (decl))
8358 dalign = DECL_ALIGN (decl);
8360 if (dsize == 0)
8362 /* Allow BLKmode when the entire object is known to not
8363 cross a 32k boundary. */
8364 if (!DECL_SIZE_UNIT (decl))
8365 return false;
8367 if (!tree_fits_uhwi_p (DECL_SIZE_UNIT (decl)))
8368 return false;
8370 dsize = tree_to_uhwi (DECL_SIZE_UNIT (decl));
8371 if (dsize > 32768)
8372 return false;
8374 dalign /= BITS_PER_UNIT;
8375 if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
8376 dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
8377 return dalign >= dsize;
8380 else
8381 gcc_unreachable ();
8383 /* Find how many bits of the alignment we know for this access. */
8384 dalign /= BITS_PER_UNIT;
8385 if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
8386 dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
8387 mask = dalign - 1;
8388 lsb = offset & -offset;
8389 mask &= lsb - 1;
8390 dalign = mask + 1;
8392 return dalign >= dsize;
8395 static bool
8396 constant_pool_expr_p (rtx op)
8398 rtx base, offset;
8400 split_const (op, &base, &offset);
8401 return (GET_CODE (base) == SYMBOL_REF
8402 && CONSTANT_POOL_ADDRESS_P (base)
8403 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
8406 /* These are only used to pass through from print_operand/print_operand_address
8407 to rs6000_output_addr_const_extra over the intervening function
8408 output_addr_const which is not target code. */
8409 static const_rtx tocrel_base_oac, tocrel_offset_oac;
8411 /* Return true if OP is a toc pointer relative address (the output
8412 of create_TOC_reference). If STRICT, do not match non-split
8413 -mcmodel=large/medium toc pointer relative addresses. If the pointers
8414 are non-NULL, place base and offset pieces in TOCREL_BASE_RET and
8415 TOCREL_OFFSET_RET respectively. */
8417 bool
8418 toc_relative_expr_p (const_rtx op, bool strict, const_rtx *tocrel_base_ret,
8419 const_rtx *tocrel_offset_ret)
8421 if (!TARGET_TOC)
8422 return false;
8424 if (TARGET_CMODEL != CMODEL_SMALL)
8426 /* When strict ensure we have everything tidy. */
8427 if (strict
8428 && !(GET_CODE (op) == LO_SUM
8429 && REG_P (XEXP (op, 0))
8430 && INT_REG_OK_FOR_BASE_P (XEXP (op, 0), strict)))
8431 return false;
8433 /* When not strict, allow non-split TOC addresses and also allow
8434 (lo_sum (high ..)) TOC addresses created during reload. */
8435 if (GET_CODE (op) == LO_SUM)
8436 op = XEXP (op, 1);
8439 const_rtx tocrel_base = op;
8440 const_rtx tocrel_offset = const0_rtx;
8442 if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), GET_MODE (op)))
8444 tocrel_base = XEXP (op, 0);
8445 tocrel_offset = XEXP (op, 1);
8448 if (tocrel_base_ret)
8449 *tocrel_base_ret = tocrel_base;
8450 if (tocrel_offset_ret)
8451 *tocrel_offset_ret = tocrel_offset;
8453 return (GET_CODE (tocrel_base) == UNSPEC
8454 && XINT (tocrel_base, 1) == UNSPEC_TOCREL);
8457 /* Return true if X is a constant pool address, and also for cmodel=medium
8458 if X is a toc-relative address known to be offsettable within MODE. */
8460 bool
8461 legitimate_constant_pool_address_p (const_rtx x, machine_mode mode,
8462 bool strict)
8464 const_rtx tocrel_base, tocrel_offset;
8465 return (toc_relative_expr_p (x, strict, &tocrel_base, &tocrel_offset)
8466 && (TARGET_CMODEL != CMODEL_MEDIUM
8467 || constant_pool_expr_p (XVECEXP (tocrel_base, 0, 0))
8468 || mode == QImode
8469 || offsettable_ok_by_alignment (XVECEXP (tocrel_base, 0, 0),
8470 INTVAL (tocrel_offset), mode)));
8473 static bool
8474 legitimate_small_data_p (machine_mode mode, rtx x)
8476 return (DEFAULT_ABI == ABI_V4
8477 && !flag_pic && !TARGET_TOC
8478 && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
8479 && small_data_operand (x, mode));
8482 bool
8483 rs6000_legitimate_offset_address_p (machine_mode mode, rtx x,
8484 bool strict, bool worst_case)
8486 unsigned HOST_WIDE_INT offset;
8487 unsigned int extra;
8489 if (GET_CODE (x) != PLUS)
8490 return false;
8491 if (!REG_P (XEXP (x, 0)))
8492 return false;
8493 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
8494 return false;
8495 if (mode_supports_vsx_dform_quad (mode))
8496 return quad_address_p (x, mode, strict);
8497 if (!reg_offset_addressing_ok_p (mode))
8498 return virtual_stack_registers_memory_p (x);
8499 if (legitimate_constant_pool_address_p (x, mode, strict || lra_in_progress))
8500 return true;
8501 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
8502 return false;
8504 offset = INTVAL (XEXP (x, 1));
8505 extra = 0;
8506 switch (mode)
8508 case E_V2SImode:
8509 case E_V2SFmode:
8510 /* Paired single modes: offset addressing isn't valid. */
8511 return false;
8513 case E_DFmode:
8514 case E_DDmode:
8515 case E_DImode:
8516 /* If we are using VSX scalar loads, restrict ourselves to reg+reg
8517 addressing. */
8518 if (VECTOR_MEM_VSX_P (mode))
8519 return false;
8521 if (!worst_case)
8522 break;
8523 if (!TARGET_POWERPC64)
8524 extra = 4;
8525 else if (offset & 3)
8526 return false;
8527 break;
8529 case E_TFmode:
8530 case E_IFmode:
8531 case E_KFmode:
8532 case E_TDmode:
8533 case E_TImode:
8534 case E_PTImode:
8535 extra = 8;
8536 if (!worst_case)
8537 break;
8538 if (!TARGET_POWERPC64)
8539 extra = 12;
8540 else if (offset & 3)
8541 return false;
8542 break;
8544 default:
8545 break;
8548 offset += 0x8000;
8549 return offset < 0x10000 - extra;
8552 bool
8553 legitimate_indexed_address_p (rtx x, int strict)
8555 rtx op0, op1;
8557 if (GET_CODE (x) != PLUS)
8558 return false;
8560 op0 = XEXP (x, 0);
8561 op1 = XEXP (x, 1);
8563 return (REG_P (op0) && REG_P (op1)
8564 && ((INT_REG_OK_FOR_BASE_P (op0, strict)
8565 && INT_REG_OK_FOR_INDEX_P (op1, strict))
8566 || (INT_REG_OK_FOR_BASE_P (op1, strict)
8567 && INT_REG_OK_FOR_INDEX_P (op0, strict))));
8570 bool
8571 avoiding_indexed_address_p (machine_mode mode)
8573 /* Avoid indexed addressing for modes that have non-indexed
8574 load/store instruction forms. */
8575 return (TARGET_AVOID_XFORM && VECTOR_MEM_NONE_P (mode));
8578 bool
8579 legitimate_indirect_address_p (rtx x, int strict)
8581 return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
8584 bool
8585 macho_lo_sum_memory_operand (rtx x, machine_mode mode)
8587 if (!TARGET_MACHO || !flag_pic
8588 || mode != SImode || GET_CODE (x) != MEM)
8589 return false;
8590 x = XEXP (x, 0);
8592 if (GET_CODE (x) != LO_SUM)
8593 return false;
8594 if (GET_CODE (XEXP (x, 0)) != REG)
8595 return false;
8596 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
8597 return false;
8598 x = XEXP (x, 1);
8600 return CONSTANT_P (x);
8603 static bool
8604 legitimate_lo_sum_address_p (machine_mode mode, rtx x, int strict)
8606 if (GET_CODE (x) != LO_SUM)
8607 return false;
8608 if (GET_CODE (XEXP (x, 0)) != REG)
8609 return false;
8610 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
8611 return false;
8612 /* quad word addresses are restricted, and we can't use LO_SUM. */
8613 if (mode_supports_vsx_dform_quad (mode))
8614 return false;
8615 x = XEXP (x, 1);
8617 if (TARGET_ELF || TARGET_MACHO)
8619 bool large_toc_ok;
8621 if (DEFAULT_ABI == ABI_V4 && flag_pic)
8622 return false;
8623 /* LRA doesn't use LEGITIMIZE_RELOAD_ADDRESS as it usually calls
8624 push_reload from reload pass code. LEGITIMIZE_RELOAD_ADDRESS
8625 recognizes some LO_SUM addresses as valid although this
8626 function says opposite. In most cases, LRA through different
8627 transformations can generate correct code for address reloads.
8628 It can not manage only some LO_SUM cases. So we need to add
8629 code analogous to one in rs6000_legitimize_reload_address for
8630 LOW_SUM here saying that some addresses are still valid. */
8631 large_toc_ok = (lra_in_progress && TARGET_CMODEL != CMODEL_SMALL
8632 && small_toc_ref (x, VOIDmode));
8633 if (TARGET_TOC && ! large_toc_ok)
8634 return false;
8635 if (GET_MODE_NUNITS (mode) != 1)
8636 return false;
8637 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
8638 && !(/* ??? Assume floating point reg based on mode? */
8639 TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
8640 && (mode == DFmode || mode == DDmode)))
8641 return false;
8643 return CONSTANT_P (x) || large_toc_ok;
8646 return false;
8650 /* Try machine-dependent ways of modifying an illegitimate address
8651 to be legitimate. If we find one, return the new, valid address.
8652 This is used from only one place: `memory_address' in explow.c.
8654 OLDX is the address as it was before break_out_memory_refs was
8655 called. In some cases it is useful to look at this to decide what
8656 needs to be done.
8658 It is always safe for this function to do nothing. It exists to
8659 recognize opportunities to optimize the output.
8661 On RS/6000, first check for the sum of a register with a constant
8662 integer that is out of range. If so, generate code to add the
8663 constant with the low-order 16 bits masked to the register and force
8664 this result into another register (this can be done with `cau').
8665 Then generate an address of REG+(CONST&0xffff), allowing for the
8666 possibility of bit 16 being a one.
8668 Then check for the sum of a register and something not constant, try to
8669 load the other things into a register and return the sum. */
8671 static rtx
8672 rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
8673 machine_mode mode)
8675 unsigned int extra;
8677 if (!reg_offset_addressing_ok_p (mode)
8678 || mode_supports_vsx_dform_quad (mode))
8680 if (virtual_stack_registers_memory_p (x))
8681 return x;
8683 /* In theory we should not be seeing addresses of the form reg+0,
8684 but just in case it is generated, optimize it away. */
8685 if (GET_CODE (x) == PLUS && XEXP (x, 1) == const0_rtx)
8686 return force_reg (Pmode, XEXP (x, 0));
8688 /* For TImode with load/store quad, restrict addresses to just a single
8689 pointer, so it works with both GPRs and VSX registers. */
8690 /* Make sure both operands are registers. */
8691 else if (GET_CODE (x) == PLUS
8692 && (mode != TImode || !TARGET_VSX))
8693 return gen_rtx_PLUS (Pmode,
8694 force_reg (Pmode, XEXP (x, 0)),
8695 force_reg (Pmode, XEXP (x, 1)));
8696 else
8697 return force_reg (Pmode, x);
8699 if (GET_CODE (x) == SYMBOL_REF)
8701 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
8702 if (model != 0)
8703 return rs6000_legitimize_tls_address (x, model);
8706 extra = 0;
8707 switch (mode)
8709 case E_TFmode:
8710 case E_TDmode:
8711 case E_TImode:
8712 case E_PTImode:
8713 case E_IFmode:
8714 case E_KFmode:
8715 /* As in legitimate_offset_address_p we do not assume
8716 worst-case. The mode here is just a hint as to the registers
8717 used. A TImode is usually in gprs, but may actually be in
8718 fprs. Leave worst-case scenario for reload to handle via
8719 insn constraints. PTImode is only GPRs. */
8720 extra = 8;
8721 break;
8722 default:
8723 break;
8726 if (GET_CODE (x) == PLUS
8727 && GET_CODE (XEXP (x, 0)) == REG
8728 && GET_CODE (XEXP (x, 1)) == CONST_INT
8729 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000)
8730 >= 0x10000 - extra)
8731 && !PAIRED_VECTOR_MODE (mode))
8733 HOST_WIDE_INT high_int, low_int;
8734 rtx sum;
8735 low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
8736 if (low_int >= 0x8000 - extra)
8737 low_int = 0;
8738 high_int = INTVAL (XEXP (x, 1)) - low_int;
8739 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
8740 GEN_INT (high_int)), 0);
8741 return plus_constant (Pmode, sum, low_int);
8743 else if (GET_CODE (x) == PLUS
8744 && GET_CODE (XEXP (x, 0)) == REG
8745 && GET_CODE (XEXP (x, 1)) != CONST_INT
8746 && GET_MODE_NUNITS (mode) == 1
8747 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
8748 || (/* ??? Assume floating point reg based on mode? */
8749 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
8750 && (mode == DFmode || mode == DDmode)))
8751 && !avoiding_indexed_address_p (mode))
8753 return gen_rtx_PLUS (Pmode, XEXP (x, 0),
8754 force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
8756 else if (PAIRED_VECTOR_MODE (mode))
8758 if (mode == DImode)
8759 return x;
8760 /* We accept [reg + reg]. */
8762 if (GET_CODE (x) == PLUS)
8764 rtx op1 = XEXP (x, 0);
8765 rtx op2 = XEXP (x, 1);
8766 rtx y;
8768 op1 = force_reg (Pmode, op1);
8769 op2 = force_reg (Pmode, op2);
8771 /* We can't always do [reg + reg] for these, because [reg +
8772 reg + offset] is not a legitimate addressing mode. */
8773 y = gen_rtx_PLUS (Pmode, op1, op2);
8775 if ((GET_MODE_SIZE (mode) > 8 || mode == DDmode) && REG_P (op2))
8776 return force_reg (Pmode, y);
8777 else
8778 return y;
8781 return force_reg (Pmode, x);
8783 else if ((TARGET_ELF
8784 #if TARGET_MACHO
8785 || !MACHO_DYNAMIC_NO_PIC_P
8786 #endif
8788 && TARGET_32BIT
8789 && TARGET_NO_TOC
8790 && ! flag_pic
8791 && GET_CODE (x) != CONST_INT
8792 && GET_CODE (x) != CONST_WIDE_INT
8793 && GET_CODE (x) != CONST_DOUBLE
8794 && CONSTANT_P (x)
8795 && GET_MODE_NUNITS (mode) == 1
8796 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
8797 || (/* ??? Assume floating point reg based on mode? */
8798 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
8799 && (mode == DFmode || mode == DDmode))))
8801 rtx reg = gen_reg_rtx (Pmode);
8802 if (TARGET_ELF)
8803 emit_insn (gen_elf_high (reg, x));
8804 else
8805 emit_insn (gen_macho_high (reg, x));
8806 return gen_rtx_LO_SUM (Pmode, reg, x);
8808 else if (TARGET_TOC
8809 && GET_CODE (x) == SYMBOL_REF
8810 && constant_pool_expr_p (x)
8811 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
8812 return create_TOC_reference (x, NULL_RTX);
8813 else
8814 return x;
8817 /* Debug version of rs6000_legitimize_address. */
8818 static rtx
8819 rs6000_debug_legitimize_address (rtx x, rtx oldx, machine_mode mode)
8821 rtx ret;
8822 rtx_insn *insns;
8824 start_sequence ();
8825 ret = rs6000_legitimize_address (x, oldx, mode);
8826 insns = get_insns ();
8827 end_sequence ();
8829 if (ret != x)
8831 fprintf (stderr,
8832 "\nrs6000_legitimize_address: mode %s, old code %s, "
8833 "new code %s, modified\n",
8834 GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)),
8835 GET_RTX_NAME (GET_CODE (ret)));
8837 fprintf (stderr, "Original address:\n");
8838 debug_rtx (x);
8840 fprintf (stderr, "oldx:\n");
8841 debug_rtx (oldx);
8843 fprintf (stderr, "New address:\n");
8844 debug_rtx (ret);
8846 if (insns)
8848 fprintf (stderr, "Insns added:\n");
8849 debug_rtx_list (insns, 20);
8852 else
8854 fprintf (stderr,
8855 "\nrs6000_legitimize_address: mode %s, code %s, no change:\n",
8856 GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)));
8858 debug_rtx (x);
8861 if (insns)
8862 emit_insn (insns);
8864 return ret;
8867 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
8868 We need to emit DTP-relative relocations. */
8870 static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
8871 static void
8872 rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
8874 switch (size)
8876 case 4:
8877 fputs ("\t.long\t", file);
8878 break;
8879 case 8:
8880 fputs (DOUBLE_INT_ASM_OP, file);
8881 break;
8882 default:
8883 gcc_unreachable ();
8885 output_addr_const (file, x);
8886 if (TARGET_ELF)
8887 fputs ("@dtprel+0x8000", file);
8888 else if (TARGET_XCOFF && GET_CODE (x) == SYMBOL_REF)
8890 switch (SYMBOL_REF_TLS_MODEL (x))
8892 case 0:
8893 break;
8894 case TLS_MODEL_LOCAL_EXEC:
8895 fputs ("@le", file);
8896 break;
8897 case TLS_MODEL_INITIAL_EXEC:
8898 fputs ("@ie", file);
8899 break;
8900 case TLS_MODEL_GLOBAL_DYNAMIC:
8901 case TLS_MODEL_LOCAL_DYNAMIC:
8902 fputs ("@m", file);
8903 break;
8904 default:
8905 gcc_unreachable ();
8910 /* Return true if X is a symbol that refers to real (rather than emulated)
8911 TLS. */
8913 static bool
8914 rs6000_real_tls_symbol_ref_p (rtx x)
8916 return (GET_CODE (x) == SYMBOL_REF
8917 && SYMBOL_REF_TLS_MODEL (x) >= TLS_MODEL_REAL);
8920 /* In the name of slightly smaller debug output, and to cater to
8921 general assembler lossage, recognize various UNSPEC sequences
8922 and turn them back into a direct symbol reference. */
8924 static rtx
8925 rs6000_delegitimize_address (rtx orig_x)
8927 rtx x, y, offset;
8929 orig_x = delegitimize_mem_from_attrs (orig_x);
8930 x = orig_x;
8931 if (MEM_P (x))
8932 x = XEXP (x, 0);
8934 y = x;
8935 if (TARGET_CMODEL != CMODEL_SMALL
8936 && GET_CODE (y) == LO_SUM)
8937 y = XEXP (y, 1);
8939 offset = NULL_RTX;
8940 if (GET_CODE (y) == PLUS
8941 && GET_MODE (y) == Pmode
8942 && CONST_INT_P (XEXP (y, 1)))
8944 offset = XEXP (y, 1);
8945 y = XEXP (y, 0);
8948 if (GET_CODE (y) == UNSPEC
8949 && XINT (y, 1) == UNSPEC_TOCREL)
8951 y = XVECEXP (y, 0, 0);
8953 #ifdef HAVE_AS_TLS
8954 /* Do not associate thread-local symbols with the original
8955 constant pool symbol. */
8956 if (TARGET_XCOFF
8957 && GET_CODE (y) == SYMBOL_REF
8958 && CONSTANT_POOL_ADDRESS_P (y)
8959 && rs6000_real_tls_symbol_ref_p (get_pool_constant (y)))
8960 return orig_x;
8961 #endif
8963 if (offset != NULL_RTX)
8964 y = gen_rtx_PLUS (Pmode, y, offset);
8965 if (!MEM_P (orig_x))
8966 return y;
8967 else
8968 return replace_equiv_address_nv (orig_x, y);
8971 if (TARGET_MACHO
8972 && GET_CODE (orig_x) == LO_SUM
8973 && GET_CODE (XEXP (orig_x, 1)) == CONST)
8975 y = XEXP (XEXP (orig_x, 1), 0);
8976 if (GET_CODE (y) == UNSPEC
8977 && XINT (y, 1) == UNSPEC_MACHOPIC_OFFSET)
8978 return XVECEXP (y, 0, 0);
8981 return orig_x;
8984 /* Return true if X shouldn't be emitted into the debug info.
8985 The linker doesn't like .toc section references from
8986 .debug_* sections, so reject .toc section symbols. */
8988 static bool
8989 rs6000_const_not_ok_for_debug_p (rtx x)
8991 if (GET_CODE (x) == SYMBOL_REF
8992 && CONSTANT_POOL_ADDRESS_P (x))
8994 rtx c = get_pool_constant (x);
8995 machine_mode cmode = get_pool_mode (x);
8996 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (c, cmode))
8997 return true;
9000 return false;
9004 /* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */
9006 static bool
9007 rs6000_legitimate_combined_insn (rtx_insn *insn)
9009 int icode = INSN_CODE (insn);
9011 /* Reject creating doloop insns. Combine should not be allowed
9012 to create these for a number of reasons:
9013 1) In a nested loop, if combine creates one of these in an
9014 outer loop and the register allocator happens to allocate ctr
9015 to the outer loop insn, then the inner loop can't use ctr.
9016 Inner loops ought to be more highly optimized.
9017 2) Combine often wants to create one of these from what was
9018 originally a three insn sequence, first combining the three
9019 insns to two, then to ctrsi/ctrdi. When ctrsi/ctrdi is not
9020 allocated ctr, the splitter takes use back to the three insn
9021 sequence. It's better to stop combine at the two insn
9022 sequence.
9023 3) Faced with not being able to allocate ctr for ctrsi/crtdi
9024 insns, the register allocator sometimes uses floating point
9025 or vector registers for the pseudo. Since ctrsi/ctrdi is a
9026 jump insn and output reloads are not implemented for jumps,
9027 the ctrsi/ctrdi splitters need to handle all possible cases.
9028 That's a pain, and it gets to be seriously difficult when a
9029 splitter that runs after reload needs memory to transfer from
9030 a gpr to fpr. See PR70098 and PR71763 which are not fixed
9031 for the difficult case. It's better to not create problems
9032 in the first place. */
9033 if (icode != CODE_FOR_nothing
9034 && (icode == CODE_FOR_ctrsi_internal1
9035 || icode == CODE_FOR_ctrdi_internal1
9036 || icode == CODE_FOR_ctrsi_internal2
9037 || icode == CODE_FOR_ctrdi_internal2))
9038 return false;
9040 return true;
9043 /* Construct the SYMBOL_REF for the tls_get_addr function. */
9045 static GTY(()) rtx rs6000_tls_symbol;
9046 static rtx
9047 rs6000_tls_get_addr (void)
9049 if (!rs6000_tls_symbol)
9050 rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");
9052 return rs6000_tls_symbol;
9055 /* Construct the SYMBOL_REF for TLS GOT references. */
9057 static GTY(()) rtx rs6000_got_symbol;
9058 static rtx
9059 rs6000_got_sym (void)
9061 if (!rs6000_got_symbol)
9063 rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
9064 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
9065 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
9068 return rs6000_got_symbol;
9071 /* AIX Thread-Local Address support. */
9073 static rtx
9074 rs6000_legitimize_tls_address_aix (rtx addr, enum tls_model model)
9076 rtx sym, mem, tocref, tlsreg, tmpreg, dest, tlsaddr;
9077 const char *name;
9078 char *tlsname;
9080 name = XSTR (addr, 0);
9081 /* Append TLS CSECT qualifier, unless the symbol already is qualified
9082 or the symbol will be in TLS private data section. */
9083 if (name[strlen (name) - 1] != ']'
9084 && (TREE_PUBLIC (SYMBOL_REF_DECL (addr))
9085 || bss_initializer_p (SYMBOL_REF_DECL (addr))))
9087 tlsname = XALLOCAVEC (char, strlen (name) + 4);
9088 strcpy (tlsname, name);
9089 strcat (tlsname,
9090 bss_initializer_p (SYMBOL_REF_DECL (addr)) ? "[UL]" : "[TL]");
9091 tlsaddr = copy_rtx (addr);
9092 XSTR (tlsaddr, 0) = ggc_strdup (tlsname);
9094 else
9095 tlsaddr = addr;
9097 /* Place addr into TOC constant pool. */
9098 sym = force_const_mem (GET_MODE (tlsaddr), tlsaddr);
9100 /* Output the TOC entry and create the MEM referencing the value. */
9101 if (constant_pool_expr_p (XEXP (sym, 0))
9102 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (XEXP (sym, 0)), Pmode))
9104 tocref = create_TOC_reference (XEXP (sym, 0), NULL_RTX);
9105 mem = gen_const_mem (Pmode, tocref);
9106 set_mem_alias_set (mem, get_TOC_alias_set ());
9108 else
9109 return sym;
9111 /* Use global-dynamic for local-dynamic. */
9112 if (model == TLS_MODEL_GLOBAL_DYNAMIC
9113 || model == TLS_MODEL_LOCAL_DYNAMIC)
9115 /* Create new TOC reference for @m symbol. */
9116 name = XSTR (XVECEXP (XEXP (mem, 0), 0, 0), 0);
9117 tlsname = XALLOCAVEC (char, strlen (name) + 1);
9118 strcpy (tlsname, "*LCM");
9119 strcat (tlsname, name + 3);
9120 rtx modaddr = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (tlsname));
9121 SYMBOL_REF_FLAGS (modaddr) |= SYMBOL_FLAG_LOCAL;
9122 tocref = create_TOC_reference (modaddr, NULL_RTX);
9123 rtx modmem = gen_const_mem (Pmode, tocref);
9124 set_mem_alias_set (modmem, get_TOC_alias_set ());
9126 rtx modreg = gen_reg_rtx (Pmode);
9127 emit_insn (gen_rtx_SET (modreg, modmem));
9129 tmpreg = gen_reg_rtx (Pmode);
9130 emit_insn (gen_rtx_SET (tmpreg, mem));
9132 dest = gen_reg_rtx (Pmode);
9133 if (TARGET_32BIT)
9134 emit_insn (gen_tls_get_addrsi (dest, modreg, tmpreg));
9135 else
9136 emit_insn (gen_tls_get_addrdi (dest, modreg, tmpreg));
9137 return dest;
9139 /* Obtain TLS pointer: 32 bit call or 64 bit GPR 13. */
9140 else if (TARGET_32BIT)
9142 tlsreg = gen_reg_rtx (SImode);
9143 emit_insn (gen_tls_get_tpointer (tlsreg));
9145 else
9146 tlsreg = gen_rtx_REG (DImode, 13);
9148 /* Load the TOC value into temporary register. */
9149 tmpreg = gen_reg_rtx (Pmode);
9150 emit_insn (gen_rtx_SET (tmpreg, mem));
9151 set_unique_reg_note (get_last_insn (), REG_EQUAL,
9152 gen_rtx_MINUS (Pmode, addr, tlsreg));
9154 /* Add TOC symbol value to TLS pointer. */
9155 dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tmpreg, tlsreg));
9157 return dest;
9160 /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
9161 this (thread-local) address. */
9163 static rtx
9164 rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
9166 rtx dest, insn;
9168 if (TARGET_XCOFF)
9169 return rs6000_legitimize_tls_address_aix (addr, model);
9171 dest = gen_reg_rtx (Pmode);
9172 if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
9174 rtx tlsreg;
9176 if (TARGET_64BIT)
9178 tlsreg = gen_rtx_REG (Pmode, 13);
9179 insn = gen_tls_tprel_64 (dest, tlsreg, addr);
9181 else
9183 tlsreg = gen_rtx_REG (Pmode, 2);
9184 insn = gen_tls_tprel_32 (dest, tlsreg, addr);
9186 emit_insn (insn);
9188 else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
9190 rtx tlsreg, tmp;
9192 tmp = gen_reg_rtx (Pmode);
9193 if (TARGET_64BIT)
9195 tlsreg = gen_rtx_REG (Pmode, 13);
9196 insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
9198 else
9200 tlsreg = gen_rtx_REG (Pmode, 2);
9201 insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
9203 emit_insn (insn);
9204 if (TARGET_64BIT)
9205 insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
9206 else
9207 insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
9208 emit_insn (insn);
9210 else
9212 rtx r3, got, tga, tmp1, tmp2, call_insn;
9214 /* We currently use relocations like @got@tlsgd for tls, which
9215 means the linker will handle allocation of tls entries, placing
9216 them in the .got section. So use a pointer to the .got section,
9217 not one to secondary TOC sections used by 64-bit -mminimal-toc,
9218 or to secondary GOT sections used by 32-bit -fPIC. */
9219 if (TARGET_64BIT)
9220 got = gen_rtx_REG (Pmode, 2);
9221 else
9223 if (flag_pic == 1)
9224 got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
9225 else
9227 rtx gsym = rs6000_got_sym ();
9228 got = gen_reg_rtx (Pmode);
9229 if (flag_pic == 0)
9230 rs6000_emit_move (got, gsym, Pmode);
9231 else
9233 rtx mem, lab;
9235 tmp1 = gen_reg_rtx (Pmode);
9236 tmp2 = gen_reg_rtx (Pmode);
9237 mem = gen_const_mem (Pmode, tmp1);
9238 lab = gen_label_rtx ();
9239 emit_insn (gen_load_toc_v4_PIC_1b (gsym, lab));
9240 emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
9241 if (TARGET_LINK_STACK)
9242 emit_insn (gen_addsi3 (tmp1, tmp1, GEN_INT (4)));
9243 emit_move_insn (tmp2, mem);
9244 rtx_insn *last = emit_insn (gen_addsi3 (got, tmp1, tmp2));
9245 set_unique_reg_note (last, REG_EQUAL, gsym);
9250 if (model == TLS_MODEL_GLOBAL_DYNAMIC)
9252 tga = rs6000_tls_get_addr ();
9253 emit_library_call_value (tga, dest, LCT_CONST, Pmode,
9254 const0_rtx, Pmode);
9256 r3 = gen_rtx_REG (Pmode, 3);
9257 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
9259 if (TARGET_64BIT)
9260 insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
9261 else
9262 insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
9264 else if (DEFAULT_ABI == ABI_V4)
9265 insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
9266 else
9267 gcc_unreachable ();
9268 call_insn = last_call_insn ();
9269 PATTERN (call_insn) = insn;
9270 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
9271 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
9272 pic_offset_table_rtx);
9274 else if (model == TLS_MODEL_LOCAL_DYNAMIC)
9276 tga = rs6000_tls_get_addr ();
9277 tmp1 = gen_reg_rtx (Pmode);
9278 emit_library_call_value (tga, tmp1, LCT_CONST, Pmode,
9279 const0_rtx, Pmode);
9281 r3 = gen_rtx_REG (Pmode, 3);
9282 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
9284 if (TARGET_64BIT)
9285 insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
9286 else
9287 insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
9289 else if (DEFAULT_ABI == ABI_V4)
9290 insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
9291 else
9292 gcc_unreachable ();
9293 call_insn = last_call_insn ();
9294 PATTERN (call_insn) = insn;
9295 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
9296 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
9297 pic_offset_table_rtx);
9299 if (rs6000_tls_size == 16)
9301 if (TARGET_64BIT)
9302 insn = gen_tls_dtprel_64 (dest, tmp1, addr);
9303 else
9304 insn = gen_tls_dtprel_32 (dest, tmp1, addr);
9306 else if (rs6000_tls_size == 32)
9308 tmp2 = gen_reg_rtx (Pmode);
9309 if (TARGET_64BIT)
9310 insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
9311 else
9312 insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
9313 emit_insn (insn);
9314 if (TARGET_64BIT)
9315 insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
9316 else
9317 insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
9319 else
9321 tmp2 = gen_reg_rtx (Pmode);
9322 if (TARGET_64BIT)
9323 insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
9324 else
9325 insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
9326 emit_insn (insn);
9327 insn = gen_rtx_SET (dest, gen_rtx_PLUS (Pmode, tmp2, tmp1));
9329 emit_insn (insn);
9331 else
9333 /* IE, or 64-bit offset LE. */
9334 tmp2 = gen_reg_rtx (Pmode);
9335 if (TARGET_64BIT)
9336 insn = gen_tls_got_tprel_64 (tmp2, got, addr);
9337 else
9338 insn = gen_tls_got_tprel_32 (tmp2, got, addr);
9339 emit_insn (insn);
9340 if (TARGET_64BIT)
9341 insn = gen_tls_tls_64 (dest, tmp2, addr);
9342 else
9343 insn = gen_tls_tls_32 (dest, tmp2, addr);
9344 emit_insn (insn);
9348 return dest;
9351 /* Only create the global variable for the stack protect guard if we are using
9352 the global flavor of that guard. */
9353 static tree
9354 rs6000_init_stack_protect_guard (void)
9356 if (rs6000_stack_protector_guard == SSP_GLOBAL)
9357 return default_stack_protect_guard ();
9359 return NULL_TREE;
9362 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
9364 static bool
9365 rs6000_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
9367 if (GET_CODE (x) == HIGH
9368 && GET_CODE (XEXP (x, 0)) == UNSPEC)
9369 return true;
9371 /* A TLS symbol in the TOC cannot contain a sum. */
9372 if (GET_CODE (x) == CONST
9373 && GET_CODE (XEXP (x, 0)) == PLUS
9374 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
9375 && SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)) != 0)
9376 return true;
9378 /* Do not place an ELF TLS symbol in the constant pool. */
9379 return TARGET_ELF && tls_referenced_p (x);
9382 /* Return true iff the given SYMBOL_REF refers to a constant pool entry
9383 that we have put in the TOC, or for cmodel=medium, if the SYMBOL_REF
9384 can be addressed relative to the toc pointer. */
9386 static bool
9387 use_toc_relative_ref (rtx sym, machine_mode mode)
9389 return ((constant_pool_expr_p (sym)
9390 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (sym),
9391 get_pool_mode (sym)))
9392 || (TARGET_CMODEL == CMODEL_MEDIUM
9393 && SYMBOL_REF_LOCAL_P (sym)
9394 && GET_MODE_SIZE (mode) <= POWERPC64_TOC_POINTER_ALIGNMENT));
9397 /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
9398 replace the input X, or the original X if no replacement is called for.
9399 The output parameter *WIN is 1 if the calling macro should goto WIN,
9400 0 if it should not.
9402 For RS/6000, we wish to handle large displacements off a base
9403 register by splitting the addend across an addiu/addis and the mem insn.
9404 This cuts number of extra insns needed from 3 to 1.
9406 On Darwin, we use this to generate code for floating point constants.
9407 A movsf_low is generated so we wind up with 2 instructions rather than 3.
9408 The Darwin code is inside #if TARGET_MACHO because only then are the
9409 machopic_* functions defined. */
9410 static rtx
9411 rs6000_legitimize_reload_address (rtx x, machine_mode mode,
9412 int opnum, int type,
9413 int ind_levels ATTRIBUTE_UNUSED, int *win)
9415 bool reg_offset_p = reg_offset_addressing_ok_p (mode);
9416 bool quad_offset_p = mode_supports_vsx_dform_quad (mode);
9418 /* Nasty hack for vsx_splat_v2df/v2di load from mem, which takes a
9419 DFmode/DImode MEM. Ditto for ISA 3.0 vsx_splat_v4sf/v4si. */
9420 if (reg_offset_p
9421 && opnum == 1
9422 && ((mode == DFmode && recog_data.operand_mode[0] == V2DFmode)
9423 || (mode == DImode && recog_data.operand_mode[0] == V2DImode)
9424 || (mode == SFmode && recog_data.operand_mode[0] == V4SFmode
9425 && TARGET_P9_VECTOR)
9426 || (mode == SImode && recog_data.operand_mode[0] == V4SImode
9427 && TARGET_P9_VECTOR)))
9428 reg_offset_p = false;
9430 /* We must recognize output that we have already generated ourselves. */
9431 if (GET_CODE (x) == PLUS
9432 && GET_CODE (XEXP (x, 0)) == PLUS
9433 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
9434 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
9435 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9437 if (TARGET_DEBUG_ADDR)
9439 fprintf (stderr, "\nlegitimize_reload_address push_reload #1:\n");
9440 debug_rtx (x);
9442 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9443 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
9444 opnum, (enum reload_type) type);
9445 *win = 1;
9446 return x;
9449 /* Likewise for (lo_sum (high ...) ...) output we have generated. */
9450 if (GET_CODE (x) == LO_SUM
9451 && GET_CODE (XEXP (x, 0)) == HIGH)
9453 if (TARGET_DEBUG_ADDR)
9455 fprintf (stderr, "\nlegitimize_reload_address push_reload #2:\n");
9456 debug_rtx (x);
9458 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9459 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9460 opnum, (enum reload_type) type);
9461 *win = 1;
9462 return x;
9465 #if TARGET_MACHO
9466 if (DEFAULT_ABI == ABI_DARWIN && flag_pic
9467 && GET_CODE (x) == LO_SUM
9468 && GET_CODE (XEXP (x, 0)) == PLUS
9469 && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
9470 && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
9471 && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
9472 && machopic_operand_p (XEXP (x, 1)))
9474 /* Result of previous invocation of this function on Darwin
9475 floating point constant. */
9476 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9477 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9478 opnum, (enum reload_type) type);
9479 *win = 1;
9480 return x;
9482 #endif
9484 if (TARGET_CMODEL != CMODEL_SMALL
9485 && reg_offset_p
9486 && !quad_offset_p
9487 && small_toc_ref (x, VOIDmode))
9489 rtx hi = gen_rtx_HIGH (Pmode, copy_rtx (x));
9490 x = gen_rtx_LO_SUM (Pmode, hi, x);
9491 if (TARGET_DEBUG_ADDR)
9493 fprintf (stderr, "\nlegitimize_reload_address push_reload #3:\n");
9494 debug_rtx (x);
9496 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9497 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9498 opnum, (enum reload_type) type);
9499 *win = 1;
9500 return x;
9503 if (GET_CODE (x) == PLUS
9504 && REG_P (XEXP (x, 0))
9505 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
9506 && INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 1)
9507 && CONST_INT_P (XEXP (x, 1))
9508 && reg_offset_p
9509 && !PAIRED_VECTOR_MODE (mode)
9510 && (quad_offset_p || !VECTOR_MODE_P (mode) || VECTOR_MEM_NONE_P (mode)))
9512 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
9513 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
9514 HOST_WIDE_INT high
9515 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
9517 /* Check for 32-bit overflow or quad addresses with one of the
9518 four least significant bits set. */
9519 if (high + low != val
9520 || (quad_offset_p && (low & 0xf)))
9522 *win = 0;
9523 return x;
9526 /* Reload the high part into a base reg; leave the low part
9527 in the mem directly. */
9529 x = gen_rtx_PLUS (GET_MODE (x),
9530 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
9531 GEN_INT (high)),
9532 GEN_INT (low));
9534 if (TARGET_DEBUG_ADDR)
9536 fprintf (stderr, "\nlegitimize_reload_address push_reload #4:\n");
9537 debug_rtx (x);
9539 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9540 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
9541 opnum, (enum reload_type) type);
9542 *win = 1;
9543 return x;
9546 if (GET_CODE (x) == SYMBOL_REF
9547 && reg_offset_p
9548 && !quad_offset_p
9549 && (!VECTOR_MODE_P (mode) || VECTOR_MEM_NONE_P (mode))
9550 && !PAIRED_VECTOR_MODE (mode)
9551 #if TARGET_MACHO
9552 && DEFAULT_ABI == ABI_DARWIN
9553 && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
9554 && machopic_symbol_defined_p (x)
9555 #else
9556 && DEFAULT_ABI == ABI_V4
9557 && !flag_pic
9558 #endif
9559 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
9560 The same goes for DImode without 64-bit gprs and DFmode and DDmode
9561 without fprs.
9562 ??? Assume floating point reg based on mode? This assumption is
9563 violated by eg. powerpc-linux -m32 compile of gcc.dg/pr28796-2.c
9564 where reload ends up doing a DFmode load of a constant from
9565 mem using two gprs. Unfortunately, at this point reload
9566 hasn't yet selected regs so poking around in reload data
9567 won't help and even if we could figure out the regs reliably,
9568 we'd still want to allow this transformation when the mem is
9569 naturally aligned. Since we say the address is good here, we
9570 can't disable offsets from LO_SUMs in mem_operand_gpr.
9571 FIXME: Allow offset from lo_sum for other modes too, when
9572 mem is sufficiently aligned.
9574 Also disallow this if the type can go in VMX/Altivec registers, since
9575 those registers do not have d-form (reg+offset) address modes. */
9576 && !reg_addr[mode].scalar_in_vmx_p
9577 && mode != TFmode
9578 && mode != TDmode
9579 && mode != IFmode
9580 && mode != KFmode
9581 && (mode != TImode || !TARGET_VSX)
9582 && mode != PTImode
9583 && (mode != DImode || TARGET_POWERPC64)
9584 && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
9585 || (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)))
9587 #if TARGET_MACHO
9588 if (flag_pic)
9590 rtx offset = machopic_gen_offset (x);
9591 x = gen_rtx_LO_SUM (GET_MODE (x),
9592 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
9593 gen_rtx_HIGH (Pmode, offset)), offset);
9595 else
9596 #endif
9597 x = gen_rtx_LO_SUM (GET_MODE (x),
9598 gen_rtx_HIGH (Pmode, x), x);
9600 if (TARGET_DEBUG_ADDR)
9602 fprintf (stderr, "\nlegitimize_reload_address push_reload #5:\n");
9603 debug_rtx (x);
9605 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9606 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9607 opnum, (enum reload_type) type);
9608 *win = 1;
9609 return x;
9612 /* Reload an offset address wrapped by an AND that represents the
9613 masking of the lower bits. Strip the outer AND and let reload
9614 convert the offset address into an indirect address. For VSX,
9615 force reload to create the address with an AND in a separate
9616 register, because we can't guarantee an altivec register will
9617 be used. */
9618 if (VECTOR_MEM_ALTIVEC_P (mode)
9619 && GET_CODE (x) == AND
9620 && GET_CODE (XEXP (x, 0)) == PLUS
9621 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
9622 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
9623 && GET_CODE (XEXP (x, 1)) == CONST_INT
9624 && INTVAL (XEXP (x, 1)) == -16)
9626 x = XEXP (x, 0);
9627 *win = 1;
9628 return x;
9631 if (TARGET_TOC
9632 && reg_offset_p
9633 && !quad_offset_p
9634 && GET_CODE (x) == SYMBOL_REF
9635 && use_toc_relative_ref (x, mode))
9637 x = create_TOC_reference (x, NULL_RTX);
9638 if (TARGET_CMODEL != CMODEL_SMALL)
9640 if (TARGET_DEBUG_ADDR)
9642 fprintf (stderr, "\nlegitimize_reload_address push_reload #6:\n");
9643 debug_rtx (x);
9645 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9646 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9647 opnum, (enum reload_type) type);
9649 *win = 1;
9650 return x;
9652 *win = 0;
9653 return x;
9656 /* Debug version of rs6000_legitimize_reload_address. */
9657 static rtx
9658 rs6000_debug_legitimize_reload_address (rtx x, machine_mode mode,
9659 int opnum, int type,
9660 int ind_levels, int *win)
9662 rtx ret = rs6000_legitimize_reload_address (x, mode, opnum, type,
9663 ind_levels, win);
9664 fprintf (stderr,
9665 "\nrs6000_legitimize_reload_address: mode = %s, opnum = %d, "
9666 "type = %d, ind_levels = %d, win = %d, original addr:\n",
9667 GET_MODE_NAME (mode), opnum, type, ind_levels, *win);
9668 debug_rtx (x);
9670 if (x == ret)
9671 fprintf (stderr, "Same address returned\n");
9672 else if (!ret)
9673 fprintf (stderr, "NULL returned\n");
9674 else
9676 fprintf (stderr, "New address:\n");
9677 debug_rtx (ret);
9680 return ret;
9683 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
9684 that is a valid memory address for an instruction.
9685 The MODE argument is the machine mode for the MEM expression
9686 that wants to use this address.
9688 On the RS/6000, there are four valid address: a SYMBOL_REF that
9689 refers to a constant pool entry of an address (or the sum of it
9690 plus a constant), a short (16-bit signed) constant plus a register,
9691 the sum of two registers, or a register indirect, possibly with an
9692 auto-increment. For DFmode, DDmode and DImode with a constant plus
9693 register, we must ensure that both words are addressable or PowerPC64
9694 with offset word aligned.
9696 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
9697 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
9698 because adjacent memory cells are accessed by adding word-sized offsets
9699 during assembly output. */
9700 static bool
9701 rs6000_legitimate_address_p (machine_mode mode, rtx x, bool reg_ok_strict)
9703 bool reg_offset_p = reg_offset_addressing_ok_p (mode);
9704 bool quad_offset_p = mode_supports_vsx_dform_quad (mode);
9706 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
9707 if (VECTOR_MEM_ALTIVEC_P (mode)
9708 && GET_CODE (x) == AND
9709 && GET_CODE (XEXP (x, 1)) == CONST_INT
9710 && INTVAL (XEXP (x, 1)) == -16)
9711 x = XEXP (x, 0);
9713 if (TARGET_ELF && RS6000_SYMBOL_REF_TLS_P (x))
9714 return 0;
9715 if (legitimate_indirect_address_p (x, reg_ok_strict))
9716 return 1;
9717 if (TARGET_UPDATE
9718 && (GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
9719 && mode_supports_pre_incdec_p (mode)
9720 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
9721 return 1;
9722 /* Handle restricted vector d-form offsets in ISA 3.0. */
9723 if (quad_offset_p)
9725 if (quad_address_p (x, mode, reg_ok_strict))
9726 return 1;
9728 else if (virtual_stack_registers_memory_p (x))
9729 return 1;
9731 else if (reg_offset_p)
9733 if (legitimate_small_data_p (mode, x))
9734 return 1;
9735 if (legitimate_constant_pool_address_p (x, mode,
9736 reg_ok_strict || lra_in_progress))
9737 return 1;
9738 if (reg_addr[mode].fused_toc && GET_CODE (x) == UNSPEC
9739 && XINT (x, 1) == UNSPEC_FUSION_ADDIS)
9740 return 1;
9743 /* For TImode, if we have TImode in VSX registers, only allow register
9744 indirect addresses. This will allow the values to go in either GPRs
9745 or VSX registers without reloading. The vector types would tend to
9746 go into VSX registers, so we allow REG+REG, while TImode seems
9747 somewhat split, in that some uses are GPR based, and some VSX based. */
9748 /* FIXME: We could loosen this by changing the following to
9749 if (mode == TImode && TARGET_QUAD_MEMORY && TARGET_VSX)
9750 but currently we cannot allow REG+REG addressing for TImode. See
9751 PR72827 for complete details on how this ends up hoodwinking DSE. */
9752 if (mode == TImode && TARGET_VSX)
9753 return 0;
9754 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
9755 if (! reg_ok_strict
9756 && reg_offset_p
9757 && GET_CODE (x) == PLUS
9758 && GET_CODE (XEXP (x, 0)) == REG
9759 && (XEXP (x, 0) == virtual_stack_vars_rtx
9760 || XEXP (x, 0) == arg_pointer_rtx)
9761 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9762 return 1;
9763 if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict, false))
9764 return 1;
9765 if (!FLOAT128_2REG_P (mode)
9766 && ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
9767 || TARGET_POWERPC64
9768 || (mode != DFmode && mode != DDmode))
9769 && (TARGET_POWERPC64 || mode != DImode)
9770 && (mode != TImode || VECTOR_MEM_VSX_P (TImode))
9771 && mode != PTImode
9772 && !avoiding_indexed_address_p (mode)
9773 && legitimate_indexed_address_p (x, reg_ok_strict))
9774 return 1;
9775 if (TARGET_UPDATE && GET_CODE (x) == PRE_MODIFY
9776 && mode_supports_pre_modify_p (mode)
9777 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
9778 && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1),
9779 reg_ok_strict, false)
9780 || (!avoiding_indexed_address_p (mode)
9781 && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
9782 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
9783 return 1;
9784 if (reg_offset_p && !quad_offset_p
9785 && legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
9786 return 1;
9787 return 0;
9790 /* Debug version of rs6000_legitimate_address_p. */
9791 static bool
9792 rs6000_debug_legitimate_address_p (machine_mode mode, rtx x,
9793 bool reg_ok_strict)
9795 bool ret = rs6000_legitimate_address_p (mode, x, reg_ok_strict);
9796 fprintf (stderr,
9797 "\nrs6000_legitimate_address_p: return = %s, mode = %s, "
9798 "strict = %d, reload = %s, code = %s\n",
9799 ret ? "true" : "false",
9800 GET_MODE_NAME (mode),
9801 reg_ok_strict,
9802 (reload_completed ? "after" : "before"),
9803 GET_RTX_NAME (GET_CODE (x)));
9804 debug_rtx (x);
9806 return ret;
9809 /* Implement TARGET_MODE_DEPENDENT_ADDRESS_P. */
9811 static bool
9812 rs6000_mode_dependent_address_p (const_rtx addr,
9813 addr_space_t as ATTRIBUTE_UNUSED)
9815 return rs6000_mode_dependent_address_ptr (addr);
9818 /* Go to LABEL if ADDR (a legitimate address expression)
9819 has an effect that depends on the machine mode it is used for.
9821 On the RS/6000 this is true of all integral offsets (since AltiVec
9822 and VSX modes don't allow them) or is a pre-increment or decrement.
9824 ??? Except that due to conceptual problems in offsettable_address_p
9825 we can't really report the problems of integral offsets. So leave
9826 this assuming that the adjustable offset must be valid for the
9827 sub-words of a TFmode operand, which is what we had before. */
9829 static bool
9830 rs6000_mode_dependent_address (const_rtx addr)
9832 switch (GET_CODE (addr))
9834 case PLUS:
9835 /* Any offset from virtual_stack_vars_rtx and arg_pointer_rtx
9836 is considered a legitimate address before reload, so there
9837 are no offset restrictions in that case. Note that this
9838 condition is safe in strict mode because any address involving
9839 virtual_stack_vars_rtx or arg_pointer_rtx would already have
9840 been rejected as illegitimate. */
9841 if (XEXP (addr, 0) != virtual_stack_vars_rtx
9842 && XEXP (addr, 0) != arg_pointer_rtx
9843 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
9845 unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
9846 return val + 0x8000 >= 0x10000 - (TARGET_POWERPC64 ? 8 : 12);
9848 break;
9850 case LO_SUM:
9851 /* Anything in the constant pool is sufficiently aligned that
9852 all bytes have the same high part address. */
9853 return !legitimate_constant_pool_address_p (addr, QImode, false);
9855 /* Auto-increment cases are now treated generically in recog.c. */
9856 case PRE_MODIFY:
9857 return TARGET_UPDATE;
9859 /* AND is only allowed in Altivec loads. */
9860 case AND:
9861 return true;
9863 default:
9864 break;
9867 return false;
9870 /* Debug version of rs6000_mode_dependent_address. */
9871 static bool
9872 rs6000_debug_mode_dependent_address (const_rtx addr)
9874 bool ret = rs6000_mode_dependent_address (addr);
9876 fprintf (stderr, "\nrs6000_mode_dependent_address: ret = %s\n",
9877 ret ? "true" : "false");
9878 debug_rtx (addr);
9880 return ret;
9883 /* Implement FIND_BASE_TERM. */
9886 rs6000_find_base_term (rtx op)
9888 rtx base;
9890 base = op;
9891 if (GET_CODE (base) == CONST)
9892 base = XEXP (base, 0);
9893 if (GET_CODE (base) == PLUS)
9894 base = XEXP (base, 0);
9895 if (GET_CODE (base) == UNSPEC)
9896 switch (XINT (base, 1))
9898 case UNSPEC_TOCREL:
9899 case UNSPEC_MACHOPIC_OFFSET:
9900 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
9901 for aliasing purposes. */
9902 return XVECEXP (base, 0, 0);
9905 return op;
9908 /* More elaborate version of recog's offsettable_memref_p predicate
9909 that works around the ??? note of rs6000_mode_dependent_address.
9910 In particular it accepts
9912 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
9914 in 32-bit mode, that the recog predicate rejects. */
9916 static bool
9917 rs6000_offsettable_memref_p (rtx op, machine_mode reg_mode)
9919 bool worst_case;
9921 if (!MEM_P (op))
9922 return false;
9924 /* First mimic offsettable_memref_p. */
9925 if (offsettable_address_p (true, GET_MODE (op), XEXP (op, 0)))
9926 return true;
9928 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
9929 the latter predicate knows nothing about the mode of the memory
9930 reference and, therefore, assumes that it is the largest supported
9931 mode (TFmode). As a consequence, legitimate offsettable memory
9932 references are rejected. rs6000_legitimate_offset_address_p contains
9933 the correct logic for the PLUS case of rs6000_mode_dependent_address,
9934 at least with a little bit of help here given that we know the
9935 actual registers used. */
9936 worst_case = ((TARGET_POWERPC64 && GET_MODE_CLASS (reg_mode) == MODE_INT)
9937 || GET_MODE_SIZE (reg_mode) == 4);
9938 return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0),
9939 true, worst_case);
9942 /* Determine the reassociation width to be used in reassociate_bb.
9943 This takes into account how many parallel operations we
9944 can actually do of a given type, and also the latency.
9946 int add/sub 6/cycle
9947 mul 2/cycle
9948 vect add/sub/mul 2/cycle
9949 fp add/sub/mul 2/cycle
9950 dfp 1/cycle
9953 static int
9954 rs6000_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED,
9955 machine_mode mode)
9957 switch (rs6000_cpu)
9959 case PROCESSOR_POWER8:
9960 case PROCESSOR_POWER9:
9961 if (DECIMAL_FLOAT_MODE_P (mode))
9962 return 1;
9963 if (VECTOR_MODE_P (mode))
9964 return 4;
9965 if (INTEGRAL_MODE_P (mode))
9966 return opc == MULT_EXPR ? 4 : 6;
9967 if (FLOAT_MODE_P (mode))
9968 return 4;
9969 break;
9970 default:
9971 break;
9973 return 1;
9976 /* Change register usage conditional on target flags. */
9977 static void
9978 rs6000_conditional_register_usage (void)
9980 int i;
9982 if (TARGET_DEBUG_TARGET)
9983 fprintf (stderr, "rs6000_conditional_register_usage called\n");
9985 /* Set MQ register fixed (already call_used) so that it will not be
9986 allocated. */
9987 fixed_regs[64] = 1;
9989 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
9990 if (TARGET_64BIT)
9991 fixed_regs[13] = call_used_regs[13]
9992 = call_really_used_regs[13] = 1;
9994 /* Conditionally disable FPRs. */
9995 if (TARGET_SOFT_FLOAT)
9996 for (i = 32; i < 64; i++)
9997 fixed_regs[i] = call_used_regs[i]
9998 = call_really_used_regs[i] = 1;
10000 /* The TOC register is not killed across calls in a way that is
10001 visible to the compiler. */
10002 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
10003 call_really_used_regs[2] = 0;
10005 if (DEFAULT_ABI == ABI_V4 && flag_pic == 2)
10006 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
10008 if (DEFAULT_ABI == ABI_V4 && flag_pic == 1)
10009 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
10010 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
10011 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
10013 if (DEFAULT_ABI == ABI_DARWIN && flag_pic)
10014 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
10015 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
10016 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
10018 if (TARGET_TOC && TARGET_MINIMAL_TOC)
10019 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
10020 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
10022 if (!TARGET_ALTIVEC && !TARGET_VSX)
10024 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
10025 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
10026 call_really_used_regs[VRSAVE_REGNO] = 1;
10029 if (TARGET_ALTIVEC || TARGET_VSX)
10030 global_regs[VSCR_REGNO] = 1;
10032 if (TARGET_ALTIVEC_ABI)
10034 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
10035 call_used_regs[i] = call_really_used_regs[i] = 1;
10037 /* AIX reserves VR20:31 in non-extended ABI mode. */
10038 if (TARGET_XCOFF)
10039 for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
10040 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
10045 /* Output insns to set DEST equal to the constant SOURCE as a series of
10046 lis, ori and shl instructions and return TRUE. */
10048 bool
10049 rs6000_emit_set_const (rtx dest, rtx source)
10051 machine_mode mode = GET_MODE (dest);
10052 rtx temp, set;
10053 rtx_insn *insn;
10054 HOST_WIDE_INT c;
10056 gcc_checking_assert (CONST_INT_P (source));
10057 c = INTVAL (source);
10058 switch (mode)
10060 case E_QImode:
10061 case E_HImode:
10062 emit_insn (gen_rtx_SET (dest, source));
10063 return true;
10065 case E_SImode:
10066 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);
10068 emit_insn (gen_rtx_SET (copy_rtx (temp),
10069 GEN_INT (c & ~(HOST_WIDE_INT) 0xffff)));
10070 emit_insn (gen_rtx_SET (dest,
10071 gen_rtx_IOR (SImode, copy_rtx (temp),
10072 GEN_INT (c & 0xffff))));
10073 break;
10075 case E_DImode:
10076 if (!TARGET_POWERPC64)
10078 rtx hi, lo;
10080 hi = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN == 0,
10081 DImode);
10082 lo = operand_subword_force (dest, WORDS_BIG_ENDIAN != 0,
10083 DImode);
10084 emit_move_insn (hi, GEN_INT (c >> 32));
10085 c = ((c & 0xffffffff) ^ 0x80000000) - 0x80000000;
10086 emit_move_insn (lo, GEN_INT (c));
10088 else
10089 rs6000_emit_set_long_const (dest, c);
10090 break;
10092 default:
10093 gcc_unreachable ();
10096 insn = get_last_insn ();
10097 set = single_set (insn);
10098 if (! CONSTANT_P (SET_SRC (set)))
10099 set_unique_reg_note (insn, REG_EQUAL, GEN_INT (c));
10101 return true;
10104 /* Subroutine of rs6000_emit_set_const, handling PowerPC64 DImode.
10105 Output insns to set DEST equal to the constant C as a series of
10106 lis, ori and shl instructions. */
10108 static void
10109 rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c)
10111 rtx temp;
10112 HOST_WIDE_INT ud1, ud2, ud3, ud4;
10114 ud1 = c & 0xffff;
10115 c = c >> 16;
10116 ud2 = c & 0xffff;
10117 c = c >> 16;
10118 ud3 = c & 0xffff;
10119 c = c >> 16;
10120 ud4 = c & 0xffff;
10122 if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
10123 || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
10124 emit_move_insn (dest, GEN_INT ((ud1 ^ 0x8000) - 0x8000));
10126 else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
10127 || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
10129 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
10131 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
10132 GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000));
10133 if (ud1 != 0)
10134 emit_move_insn (dest,
10135 gen_rtx_IOR (DImode, copy_rtx (temp),
10136 GEN_INT (ud1)));
10138 else if (ud3 == 0 && ud4 == 0)
10140 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
10142 gcc_assert (ud2 & 0x8000);
10143 emit_move_insn (copy_rtx (temp),
10144 GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000));
10145 if (ud1 != 0)
10146 emit_move_insn (copy_rtx (temp),
10147 gen_rtx_IOR (DImode, copy_rtx (temp),
10148 GEN_INT (ud1)));
10149 emit_move_insn (dest,
10150 gen_rtx_ZERO_EXTEND (DImode,
10151 gen_lowpart (SImode,
10152 copy_rtx (temp))));
10154 else if ((ud4 == 0xffff && (ud3 & 0x8000))
10155 || (ud4 == 0 && ! (ud3 & 0x8000)))
10157 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
10159 emit_move_insn (copy_rtx (temp),
10160 GEN_INT (((ud3 << 16) ^ 0x80000000) - 0x80000000));
10161 if (ud2 != 0)
10162 emit_move_insn (copy_rtx (temp),
10163 gen_rtx_IOR (DImode, copy_rtx (temp),
10164 GEN_INT (ud2)));
10165 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
10166 gen_rtx_ASHIFT (DImode, copy_rtx (temp),
10167 GEN_INT (16)));
10168 if (ud1 != 0)
10169 emit_move_insn (dest,
10170 gen_rtx_IOR (DImode, copy_rtx (temp),
10171 GEN_INT (ud1)));
10173 else
10175 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
10177 emit_move_insn (copy_rtx (temp),
10178 GEN_INT (((ud4 << 16) ^ 0x80000000) - 0x80000000));
10179 if (ud3 != 0)
10180 emit_move_insn (copy_rtx (temp),
10181 gen_rtx_IOR (DImode, copy_rtx (temp),
10182 GEN_INT (ud3)));
10184 emit_move_insn (ud2 != 0 || ud1 != 0 ? copy_rtx (temp) : dest,
10185 gen_rtx_ASHIFT (DImode, copy_rtx (temp),
10186 GEN_INT (32)));
10187 if (ud2 != 0)
10188 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
10189 gen_rtx_IOR (DImode, copy_rtx (temp),
10190 GEN_INT (ud2 << 16)));
10191 if (ud1 != 0)
10192 emit_move_insn (dest,
10193 gen_rtx_IOR (DImode, copy_rtx (temp),
10194 GEN_INT (ud1)));
10198 /* Helper for the following. Get rid of [r+r] memory refs
10199 in cases where it won't work (TImode, TFmode, TDmode, PTImode). */
10201 static void
10202 rs6000_eliminate_indexed_memrefs (rtx operands[2])
10204 if (GET_CODE (operands[0]) == MEM
10205 && GET_CODE (XEXP (operands[0], 0)) != REG
10206 && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0),
10207 GET_MODE (operands[0]), false))
10208 operands[0]
10209 = replace_equiv_address (operands[0],
10210 copy_addr_to_reg (XEXP (operands[0], 0)));
10212 if (GET_CODE (operands[1]) == MEM
10213 && GET_CODE (XEXP (operands[1], 0)) != REG
10214 && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0),
10215 GET_MODE (operands[1]), false))
10216 operands[1]
10217 = replace_equiv_address (operands[1],
10218 copy_addr_to_reg (XEXP (operands[1], 0)));
10221 /* Generate a vector of constants to permute MODE for a little-endian
10222 storage operation by swapping the two halves of a vector. */
10223 static rtvec
10224 rs6000_const_vec (machine_mode mode)
10226 int i, subparts;
10227 rtvec v;
10229 switch (mode)
10231 case E_V1TImode:
10232 subparts = 1;
10233 break;
10234 case E_V2DFmode:
10235 case E_V2DImode:
10236 subparts = 2;
10237 break;
10238 case E_V4SFmode:
10239 case E_V4SImode:
10240 subparts = 4;
10241 break;
10242 case E_V8HImode:
10243 subparts = 8;
10244 break;
10245 case E_V16QImode:
10246 subparts = 16;
10247 break;
10248 default:
10249 gcc_unreachable();
10252 v = rtvec_alloc (subparts);
10254 for (i = 0; i < subparts / 2; ++i)
10255 RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i + subparts / 2);
10256 for (i = subparts / 2; i < subparts; ++i)
10257 RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i - subparts / 2);
10259 return v;
10262 /* Emit an lxvd2x, stxvd2x, or xxpermdi instruction for a VSX load or
10263 store operation. */
10264 void
10265 rs6000_emit_le_vsx_permute (rtx dest, rtx source, machine_mode mode)
10267 /* Scalar permutations are easier to express in integer modes rather than
10268 floating-point modes, so cast them here. We use V1TImode instead
10269 of TImode to ensure that the values don't go through GPRs. */
10270 if (FLOAT128_VECTOR_P (mode))
10272 dest = gen_lowpart (V1TImode, dest);
10273 source = gen_lowpart (V1TImode, source);
10274 mode = V1TImode;
10277 /* Use ROTATE instead of VEC_SELECT if the mode contains only a single
10278 scalar. */
10279 if (mode == TImode || mode == V1TImode)
10280 emit_insn (gen_rtx_SET (dest, gen_rtx_ROTATE (mode, source,
10281 GEN_INT (64))));
10282 else
10284 rtx par = gen_rtx_PARALLEL (VOIDmode, rs6000_const_vec (mode));
10285 emit_insn (gen_rtx_SET (dest, gen_rtx_VEC_SELECT (mode, source, par)));
10289 /* Emit a little-endian load from vector memory location SOURCE to VSX
10290 register DEST in mode MODE. The load is done with two permuting
10291 insn's that represent an lxvd2x and xxpermdi. */
10292 void
10293 rs6000_emit_le_vsx_load (rtx dest, rtx source, machine_mode mode)
10295 /* Use V2DImode to do swaps of types with 128-bit scalare parts (TImode,
10296 V1TImode). */
10297 if (mode == TImode || mode == V1TImode)
10299 mode = V2DImode;
10300 dest = gen_lowpart (V2DImode, dest);
10301 source = adjust_address (source, V2DImode, 0);
10304 rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (dest) : dest;
10305 rs6000_emit_le_vsx_permute (tmp, source, mode);
10306 rs6000_emit_le_vsx_permute (dest, tmp, mode);
10309 /* Emit a little-endian store to vector memory location DEST from VSX
10310 register SOURCE in mode MODE. The store is done with two permuting
10311 insn's that represent an xxpermdi and an stxvd2x. */
10312 void
10313 rs6000_emit_le_vsx_store (rtx dest, rtx source, machine_mode mode)
10315 /* This should never be called during or after LRA, because it does
10316 not re-permute the source register. It is intended only for use
10317 during expand. */
10318 gcc_assert (!lra_in_progress && !reload_completed);
10320 /* Use V2DImode to do swaps of types with 128-bit scalar parts (TImode,
10321 V1TImode). */
10322 if (mode == TImode || mode == V1TImode)
10324 mode = V2DImode;
10325 dest = adjust_address (dest, V2DImode, 0);
10326 source = gen_lowpart (V2DImode, source);
10329 rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (source) : source;
10330 rs6000_emit_le_vsx_permute (tmp, source, mode);
10331 rs6000_emit_le_vsx_permute (dest, tmp, mode);
10334 /* Emit a sequence representing a little-endian VSX load or store,
10335 moving data from SOURCE to DEST in mode MODE. This is done
10336 separately from rs6000_emit_move to ensure it is called only
10337 during expand. LE VSX loads and stores introduced later are
10338 handled with a split. The expand-time RTL generation allows
10339 us to optimize away redundant pairs of register-permutes. */
10340 void
10341 rs6000_emit_le_vsx_move (rtx dest, rtx source, machine_mode mode)
10343 gcc_assert (!BYTES_BIG_ENDIAN
10344 && VECTOR_MEM_VSX_P (mode)
10345 && !TARGET_P9_VECTOR
10346 && !gpr_or_gpr_p (dest, source)
10347 && (MEM_P (source) ^ MEM_P (dest)));
10349 if (MEM_P (source))
10351 gcc_assert (REG_P (dest) || GET_CODE (dest) == SUBREG);
10352 rs6000_emit_le_vsx_load (dest, source, mode);
10354 else
10356 if (!REG_P (source))
10357 source = force_reg (mode, source);
10358 rs6000_emit_le_vsx_store (dest, source, mode);
10362 /* Return whether a SFmode or SImode move can be done without converting one
10363 mode to another. This arrises when we have:
10365 (SUBREG:SF (REG:SI ...))
10366 (SUBREG:SI (REG:SF ...))
10368 and one of the values is in a floating point/vector register, where SFmode
10369 scalars are stored in DFmode format. */
10371 bool
10372 valid_sf_si_move (rtx dest, rtx src, machine_mode mode)
10374 if (TARGET_ALLOW_SF_SUBREG)
10375 return true;
10377 if (mode != SFmode && GET_MODE_CLASS (mode) != MODE_INT)
10378 return true;
10380 if (!SUBREG_P (src) || !sf_subreg_operand (src, mode))
10381 return true;
10383 /*. Allow (set (SUBREG:SI (REG:SF)) (SUBREG:SI (REG:SF))). */
10384 if (SUBREG_P (dest))
10386 rtx dest_subreg = SUBREG_REG (dest);
10387 rtx src_subreg = SUBREG_REG (src);
10388 return GET_MODE (dest_subreg) == GET_MODE (src_subreg);
10391 return false;
10395 /* Helper function to change moves with:
10397 (SUBREG:SF (REG:SI)) and
10398 (SUBREG:SI (REG:SF))
10400 into separate UNSPEC insns. In the PowerPC architecture, scalar SFmode
10401 values are stored as DFmode values in the VSX registers. We need to convert
10402 the bits before we can use a direct move or operate on the bits in the
10403 vector register as an integer type.
10405 Skip things like (set (SUBREG:SI (...) (SUBREG:SI (...)). */
10407 static bool
10408 rs6000_emit_move_si_sf_subreg (rtx dest, rtx source, machine_mode mode)
10410 if (TARGET_DIRECT_MOVE_64BIT && !lra_in_progress && !reload_completed
10411 && (!SUBREG_P (dest) || !sf_subreg_operand (dest, mode))
10412 && SUBREG_P (source) && sf_subreg_operand (source, mode))
10414 rtx inner_source = SUBREG_REG (source);
10415 machine_mode inner_mode = GET_MODE (inner_source);
10417 if (mode == SImode && inner_mode == SFmode)
10419 emit_insn (gen_movsi_from_sf (dest, inner_source));
10420 return true;
10423 if (mode == SFmode && inner_mode == SImode)
10425 emit_insn (gen_movsf_from_si (dest, inner_source));
10426 return true;
10430 return false;
10433 /* Emit a move from SOURCE to DEST in mode MODE. */
10434 void
10435 rs6000_emit_move (rtx dest, rtx source, machine_mode mode)
10437 rtx operands[2];
10438 operands[0] = dest;
10439 operands[1] = source;
10441 if (TARGET_DEBUG_ADDR)
10443 fprintf (stderr,
10444 "\nrs6000_emit_move: mode = %s, lra_in_progress = %d, "
10445 "reload_completed = %d, can_create_pseudos = %d.\ndest:\n",
10446 GET_MODE_NAME (mode),
10447 lra_in_progress,
10448 reload_completed,
10449 can_create_pseudo_p ());
10450 debug_rtx (dest);
10451 fprintf (stderr, "source:\n");
10452 debug_rtx (source);
10455 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
10456 if (CONST_WIDE_INT_P (operands[1])
10457 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10459 /* This should be fixed with the introduction of CONST_WIDE_INT. */
10460 gcc_unreachable ();
10463 /* See if we need to special case SImode/SFmode SUBREG moves. */
10464 if ((mode == SImode || mode == SFmode) && SUBREG_P (source)
10465 && rs6000_emit_move_si_sf_subreg (dest, source, mode))
10466 return;
10468 /* Check if GCC is setting up a block move that will end up using FP
10469 registers as temporaries. We must make sure this is acceptable. */
10470 if (GET_CODE (operands[0]) == MEM
10471 && GET_CODE (operands[1]) == MEM
10472 && mode == DImode
10473 && (rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[0]))
10474 || rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[1])))
10475 && ! (rs6000_slow_unaligned_access (SImode,
10476 (MEM_ALIGN (operands[0]) > 32
10477 ? 32 : MEM_ALIGN (operands[0])))
10478 || rs6000_slow_unaligned_access (SImode,
10479 (MEM_ALIGN (operands[1]) > 32
10480 ? 32 : MEM_ALIGN (operands[1]))))
10481 && ! MEM_VOLATILE_P (operands [0])
10482 && ! MEM_VOLATILE_P (operands [1]))
10484 emit_move_insn (adjust_address (operands[0], SImode, 0),
10485 adjust_address (operands[1], SImode, 0));
10486 emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
10487 adjust_address (copy_rtx (operands[1]), SImode, 4));
10488 return;
10491 if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
10492 && !gpc_reg_operand (operands[1], mode))
10493 operands[1] = force_reg (mode, operands[1]);
10495 /* Recognize the case where operand[1] is a reference to thread-local
10496 data and load its address to a register. */
10497 if (tls_referenced_p (operands[1]))
10499 enum tls_model model;
10500 rtx tmp = operands[1];
10501 rtx addend = NULL;
10503 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
10505 addend = XEXP (XEXP (tmp, 0), 1);
10506 tmp = XEXP (XEXP (tmp, 0), 0);
10509 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
10510 model = SYMBOL_REF_TLS_MODEL (tmp);
10511 gcc_assert (model != 0);
10513 tmp = rs6000_legitimize_tls_address (tmp, model);
10514 if (addend)
10516 tmp = gen_rtx_PLUS (mode, tmp, addend);
10517 tmp = force_operand (tmp, operands[0]);
10519 operands[1] = tmp;
10522 /* 128-bit constant floating-point values on Darwin should really be loaded
10523 as two parts. However, this premature splitting is a problem when DFmode
10524 values can go into Altivec registers. */
10525 if (FLOAT128_IBM_P (mode) && !reg_addr[DFmode].scalar_in_vmx_p
10526 && GET_CODE (operands[1]) == CONST_DOUBLE)
10528 rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode, 0),
10529 simplify_gen_subreg (DFmode, operands[1], mode, 0),
10530 DFmode);
10531 rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode,
10532 GET_MODE_SIZE (DFmode)),
10533 simplify_gen_subreg (DFmode, operands[1], mode,
10534 GET_MODE_SIZE (DFmode)),
10535 DFmode);
10536 return;
10539 /* Transform (p0:DD, (SUBREG:DD p1:SD)) to ((SUBREG:SD p0:DD),
10540 p1:SD) if p1 is not of floating point class and p0 is spilled as
10541 we can have no analogous movsd_store for this. */
10542 if (lra_in_progress && mode == DDmode
10543 && REG_P (operands[0]) && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER
10544 && reg_preferred_class (REGNO (operands[0])) == NO_REGS
10545 && GET_CODE (operands[1]) == SUBREG && REG_P (SUBREG_REG (operands[1]))
10546 && GET_MODE (SUBREG_REG (operands[1])) == SDmode)
10548 enum reg_class cl;
10549 int regno = REGNO (SUBREG_REG (operands[1]));
10551 if (regno >= FIRST_PSEUDO_REGISTER)
10553 cl = reg_preferred_class (regno);
10554 regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][1];
10556 if (regno >= 0 && ! FP_REGNO_P (regno))
10558 mode = SDmode;
10559 operands[0] = gen_lowpart_SUBREG (SDmode, operands[0]);
10560 operands[1] = SUBREG_REG (operands[1]);
10563 if (lra_in_progress
10564 && mode == SDmode
10565 && REG_P (operands[0]) && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER
10566 && reg_preferred_class (REGNO (operands[0])) == NO_REGS
10567 && (REG_P (operands[1])
10568 || (GET_CODE (operands[1]) == SUBREG
10569 && REG_P (SUBREG_REG (operands[1])))))
10571 int regno = REGNO (GET_CODE (operands[1]) == SUBREG
10572 ? SUBREG_REG (operands[1]) : operands[1]);
10573 enum reg_class cl;
10575 if (regno >= FIRST_PSEUDO_REGISTER)
10577 cl = reg_preferred_class (regno);
10578 gcc_assert (cl != NO_REGS);
10579 regno = ira_class_hard_regs[cl][0];
10581 if (FP_REGNO_P (regno))
10583 if (GET_MODE (operands[0]) != DDmode)
10584 operands[0] = gen_rtx_SUBREG (DDmode, operands[0], 0);
10585 emit_insn (gen_movsd_store (operands[0], operands[1]));
10587 else if (INT_REGNO_P (regno))
10588 emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
10589 else
10590 gcc_unreachable();
10591 return;
10593 /* Transform ((SUBREG:DD p0:SD), p1:DD) to (p0:SD, (SUBREG:SD
10594 p:DD)) if p0 is not of floating point class and p1 is spilled as
10595 we can have no analogous movsd_load for this. */
10596 if (lra_in_progress && mode == DDmode
10597 && GET_CODE (operands[0]) == SUBREG && REG_P (SUBREG_REG (operands[0]))
10598 && GET_MODE (SUBREG_REG (operands[0])) == SDmode
10599 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER
10600 && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
10602 enum reg_class cl;
10603 int regno = REGNO (SUBREG_REG (operands[0]));
10605 if (regno >= FIRST_PSEUDO_REGISTER)
10607 cl = reg_preferred_class (regno);
10608 regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][0];
10610 if (regno >= 0 && ! FP_REGNO_P (regno))
10612 mode = SDmode;
10613 operands[0] = SUBREG_REG (operands[0]);
10614 operands[1] = gen_lowpart_SUBREG (SDmode, operands[1]);
10617 if (lra_in_progress
10618 && mode == SDmode
10619 && (REG_P (operands[0])
10620 || (GET_CODE (operands[0]) == SUBREG
10621 && REG_P (SUBREG_REG (operands[0]))))
10622 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER
10623 && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
10625 int regno = REGNO (GET_CODE (operands[0]) == SUBREG
10626 ? SUBREG_REG (operands[0]) : operands[0]);
10627 enum reg_class cl;
10629 if (regno >= FIRST_PSEUDO_REGISTER)
10631 cl = reg_preferred_class (regno);
10632 gcc_assert (cl != NO_REGS);
10633 regno = ira_class_hard_regs[cl][0];
10635 if (FP_REGNO_P (regno))
10637 if (GET_MODE (operands[1]) != DDmode)
10638 operands[1] = gen_rtx_SUBREG (DDmode, operands[1], 0);
10639 emit_insn (gen_movsd_load (operands[0], operands[1]));
10641 else if (INT_REGNO_P (regno))
10642 emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
10643 else
10644 gcc_unreachable();
10645 return;
10648 /* FIXME: In the long term, this switch statement should go away
10649 and be replaced by a sequence of tests based on things like
10650 mode == Pmode. */
10651 switch (mode)
10653 case E_HImode:
10654 case E_QImode:
10655 if (CONSTANT_P (operands[1])
10656 && GET_CODE (operands[1]) != CONST_INT)
10657 operands[1] = force_const_mem (mode, operands[1]);
10658 break;
10660 case E_TFmode:
10661 case E_TDmode:
10662 case E_IFmode:
10663 case E_KFmode:
10664 if (FLOAT128_2REG_P (mode))
10665 rs6000_eliminate_indexed_memrefs (operands);
10666 /* fall through */
10668 case E_DFmode:
10669 case E_DDmode:
10670 case E_SFmode:
10671 case E_SDmode:
10672 if (CONSTANT_P (operands[1])
10673 && ! easy_fp_constant (operands[1], mode))
10674 operands[1] = force_const_mem (mode, operands[1]);
10675 break;
10677 case E_V16QImode:
10678 case E_V8HImode:
10679 case E_V4SFmode:
10680 case E_V4SImode:
10681 case E_V2SFmode:
10682 case E_V2SImode:
10683 case E_V2DFmode:
10684 case E_V2DImode:
10685 case E_V1TImode:
10686 if (CONSTANT_P (operands[1])
10687 && !easy_vector_constant (operands[1], mode))
10688 operands[1] = force_const_mem (mode, operands[1]);
10689 break;
10691 case E_SImode:
10692 case E_DImode:
10693 /* Use default pattern for address of ELF small data */
10694 if (TARGET_ELF
10695 && mode == Pmode
10696 && DEFAULT_ABI == ABI_V4
10697 && (GET_CODE (operands[1]) == SYMBOL_REF
10698 || GET_CODE (operands[1]) == CONST)
10699 && small_data_operand (operands[1], mode))
10701 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10702 return;
10705 if (DEFAULT_ABI == ABI_V4
10706 && mode == Pmode && mode == SImode
10707 && flag_pic == 1 && got_operand (operands[1], mode))
10709 emit_insn (gen_movsi_got (operands[0], operands[1]));
10710 return;
10713 if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
10714 && TARGET_NO_TOC
10715 && ! flag_pic
10716 && mode == Pmode
10717 && CONSTANT_P (operands[1])
10718 && GET_CODE (operands[1]) != HIGH
10719 && GET_CODE (operands[1]) != CONST_INT)
10721 rtx target = (!can_create_pseudo_p ()
10722 ? operands[0]
10723 : gen_reg_rtx (mode));
10725 /* If this is a function address on -mcall-aixdesc,
10726 convert it to the address of the descriptor. */
10727 if (DEFAULT_ABI == ABI_AIX
10728 && GET_CODE (operands[1]) == SYMBOL_REF
10729 && XSTR (operands[1], 0)[0] == '.')
10731 const char *name = XSTR (operands[1], 0);
10732 rtx new_ref;
10733 while (*name == '.')
10734 name++;
10735 new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
10736 CONSTANT_POOL_ADDRESS_P (new_ref)
10737 = CONSTANT_POOL_ADDRESS_P (operands[1]);
10738 SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
10739 SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
10740 SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
10741 operands[1] = new_ref;
10744 if (DEFAULT_ABI == ABI_DARWIN)
10746 #if TARGET_MACHO
10747 if (MACHO_DYNAMIC_NO_PIC_P)
10749 /* Take care of any required data indirection. */
10750 operands[1] = rs6000_machopic_legitimize_pic_address (
10751 operands[1], mode, operands[0]);
10752 if (operands[0] != operands[1])
10753 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10754 return;
10756 #endif
10757 emit_insn (gen_macho_high (target, operands[1]));
10758 emit_insn (gen_macho_low (operands[0], target, operands[1]));
10759 return;
10762 emit_insn (gen_elf_high (target, operands[1]));
10763 emit_insn (gen_elf_low (operands[0], target, operands[1]));
10764 return;
10767 /* If this is a SYMBOL_REF that refers to a constant pool entry,
10768 and we have put it in the TOC, we just need to make a TOC-relative
10769 reference to it. */
10770 if (TARGET_TOC
10771 && GET_CODE (operands[1]) == SYMBOL_REF
10772 && use_toc_relative_ref (operands[1], mode))
10773 operands[1] = create_TOC_reference (operands[1], operands[0]);
10774 else if (mode == Pmode
10775 && CONSTANT_P (operands[1])
10776 && GET_CODE (operands[1]) != HIGH
10777 && ((GET_CODE (operands[1]) != CONST_INT
10778 && ! easy_fp_constant (operands[1], mode))
10779 || (GET_CODE (operands[1]) == CONST_INT
10780 && (num_insns_constant (operands[1], mode)
10781 > (TARGET_CMODEL != CMODEL_SMALL ? 3 : 2)))
10782 || (GET_CODE (operands[0]) == REG
10783 && FP_REGNO_P (REGNO (operands[0]))))
10784 && !toc_relative_expr_p (operands[1], false, NULL, NULL)
10785 && (TARGET_CMODEL == CMODEL_SMALL
10786 || can_create_pseudo_p ()
10787 || (REG_P (operands[0])
10788 && INT_REG_OK_FOR_BASE_P (operands[0], true))))
10791 #if TARGET_MACHO
10792 /* Darwin uses a special PIC legitimizer. */
10793 if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
10795 operands[1] =
10796 rs6000_machopic_legitimize_pic_address (operands[1], mode,
10797 operands[0]);
10798 if (operands[0] != operands[1])
10799 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10800 return;
10802 #endif
10804 /* If we are to limit the number of things we put in the TOC and
10805 this is a symbol plus a constant we can add in one insn,
10806 just put the symbol in the TOC and add the constant. */
10807 if (GET_CODE (operands[1]) == CONST
10808 && TARGET_NO_SUM_IN_TOC
10809 && GET_CODE (XEXP (operands[1], 0)) == PLUS
10810 && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
10811 && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
10812 || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
10813 && ! side_effects_p (operands[0]))
10815 rtx sym =
10816 force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
10817 rtx other = XEXP (XEXP (operands[1], 0), 1);
10819 sym = force_reg (mode, sym);
10820 emit_insn (gen_add3_insn (operands[0], sym, other));
10821 return;
10824 operands[1] = force_const_mem (mode, operands[1]);
10826 if (TARGET_TOC
10827 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
10828 && use_toc_relative_ref (XEXP (operands[1], 0), mode))
10830 rtx tocref = create_TOC_reference (XEXP (operands[1], 0),
10831 operands[0]);
10832 operands[1] = gen_const_mem (mode, tocref);
10833 set_mem_alias_set (operands[1], get_TOC_alias_set ());
10836 break;
10838 case E_TImode:
10839 if (!VECTOR_MEM_VSX_P (TImode))
10840 rs6000_eliminate_indexed_memrefs (operands);
10841 break;
10843 case E_PTImode:
10844 rs6000_eliminate_indexed_memrefs (operands);
10845 break;
10847 default:
10848 fatal_insn ("bad move", gen_rtx_SET (dest, source));
10851 /* Above, we may have called force_const_mem which may have returned
10852 an invalid address. If we can, fix this up; otherwise, reload will
10853 have to deal with it. */
10854 if (GET_CODE (operands[1]) == MEM)
10855 operands[1] = validize_mem (operands[1]);
10857 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10860 /* Nonzero if we can use a floating-point register to pass this arg. */
10861 #define USE_FP_FOR_ARG_P(CUM,MODE) \
10862 (SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) \
10863 && (CUM)->fregno <= FP_ARG_MAX_REG \
10864 && TARGET_HARD_FLOAT)
10866 /* Nonzero if we can use an AltiVec register to pass this arg. */
10867 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,NAMED) \
10868 (ALTIVEC_OR_VSX_VECTOR_MODE (MODE) \
10869 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
10870 && TARGET_ALTIVEC_ABI \
10871 && (NAMED))
10873 /* Walk down the type tree of TYPE counting consecutive base elements.
10874 If *MODEP is VOIDmode, then set it to the first valid floating point
10875 or vector type. If a non-floating point or vector type is found, or
10876 if a floating point or vector type that doesn't match a non-VOIDmode
10877 *MODEP is found, then return -1, otherwise return the count in the
10878 sub-tree. */
10880 static int
10881 rs6000_aggregate_candidate (const_tree type, machine_mode *modep)
10883 machine_mode mode;
10884 HOST_WIDE_INT size;
10886 switch (TREE_CODE (type))
10888 case REAL_TYPE:
10889 mode = TYPE_MODE (type);
10890 if (!SCALAR_FLOAT_MODE_P (mode))
10891 return -1;
10893 if (*modep == VOIDmode)
10894 *modep = mode;
10896 if (*modep == mode)
10897 return 1;
10899 break;
10901 case COMPLEX_TYPE:
10902 mode = TYPE_MODE (TREE_TYPE (type));
10903 if (!SCALAR_FLOAT_MODE_P (mode))
10904 return -1;
10906 if (*modep == VOIDmode)
10907 *modep = mode;
10909 if (*modep == mode)
10910 return 2;
10912 break;
10914 case VECTOR_TYPE:
10915 if (!TARGET_ALTIVEC_ABI || !TARGET_ALTIVEC)
10916 return -1;
10918 /* Use V4SImode as representative of all 128-bit vector types. */
10919 size = int_size_in_bytes (type);
10920 switch (size)
10922 case 16:
10923 mode = V4SImode;
10924 break;
10925 default:
10926 return -1;
10929 if (*modep == VOIDmode)
10930 *modep = mode;
10932 /* Vector modes are considered to be opaque: two vectors are
10933 equivalent for the purposes of being homogeneous aggregates
10934 if they are the same size. */
10935 if (*modep == mode)
10936 return 1;
10938 break;
10940 case ARRAY_TYPE:
10942 int count;
10943 tree index = TYPE_DOMAIN (type);
10945 /* Can't handle incomplete types nor sizes that are not
10946 fixed. */
10947 if (!COMPLETE_TYPE_P (type)
10948 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10949 return -1;
10951 count = rs6000_aggregate_candidate (TREE_TYPE (type), modep);
10952 if (count == -1
10953 || !index
10954 || !TYPE_MAX_VALUE (index)
10955 || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
10956 || !TYPE_MIN_VALUE (index)
10957 || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
10958 || count < 0)
10959 return -1;
10961 count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
10962 - tree_to_uhwi (TYPE_MIN_VALUE (index)));
10964 /* There must be no padding. */
10965 if (wi::to_wide (TYPE_SIZE (type))
10966 != count * GET_MODE_BITSIZE (*modep))
10967 return -1;
10969 return count;
10972 case RECORD_TYPE:
10974 int count = 0;
10975 int sub_count;
10976 tree field;
10978 /* Can't handle incomplete types nor sizes that are not
10979 fixed. */
10980 if (!COMPLETE_TYPE_P (type)
10981 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10982 return -1;
10984 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
10986 if (TREE_CODE (field) != FIELD_DECL)
10987 continue;
10989 sub_count = rs6000_aggregate_candidate (TREE_TYPE (field), modep);
10990 if (sub_count < 0)
10991 return -1;
10992 count += sub_count;
10995 /* There must be no padding. */
10996 if (wi::to_wide (TYPE_SIZE (type))
10997 != count * GET_MODE_BITSIZE (*modep))
10998 return -1;
11000 return count;
11003 case UNION_TYPE:
11004 case QUAL_UNION_TYPE:
11006 /* These aren't very interesting except in a degenerate case. */
11007 int count = 0;
11008 int sub_count;
11009 tree field;
11011 /* Can't handle incomplete types nor sizes that are not
11012 fixed. */
11013 if (!COMPLETE_TYPE_P (type)
11014 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
11015 return -1;
11017 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
11019 if (TREE_CODE (field) != FIELD_DECL)
11020 continue;
11022 sub_count = rs6000_aggregate_candidate (TREE_TYPE (field), modep);
11023 if (sub_count < 0)
11024 return -1;
11025 count = count > sub_count ? count : sub_count;
11028 /* There must be no padding. */
11029 if (wi::to_wide (TYPE_SIZE (type))
11030 != count * GET_MODE_BITSIZE (*modep))
11031 return -1;
11033 return count;
11036 default:
11037 break;
11040 return -1;
11043 /* If an argument, whose type is described by TYPE and MODE, is a homogeneous
11044 float or vector aggregate that shall be passed in FP/vector registers
11045 according to the ELFv2 ABI, return the homogeneous element mode in
11046 *ELT_MODE and the number of elements in *N_ELTS, and return TRUE.
11048 Otherwise, set *ELT_MODE to MODE and *N_ELTS to 1, and return FALSE. */
11050 static bool
11051 rs6000_discover_homogeneous_aggregate (machine_mode mode, const_tree type,
11052 machine_mode *elt_mode,
11053 int *n_elts)
11055 /* Note that we do not accept complex types at the top level as
11056 homogeneous aggregates; these types are handled via the
11057 targetm.calls.split_complex_arg mechanism. Complex types
11058 can be elements of homogeneous aggregates, however. */
11059 if (DEFAULT_ABI == ABI_ELFv2 && type && AGGREGATE_TYPE_P (type))
11061 machine_mode field_mode = VOIDmode;
11062 int field_count = rs6000_aggregate_candidate (type, &field_mode);
11064 if (field_count > 0)
11066 int n_regs = (SCALAR_FLOAT_MODE_P (field_mode) ?
11067 (GET_MODE_SIZE (field_mode) + 7) >> 3 : 1);
11069 /* The ELFv2 ABI allows homogeneous aggregates to occupy
11070 up to AGGR_ARG_NUM_REG registers. */
11071 if (field_count * n_regs <= AGGR_ARG_NUM_REG)
11073 if (elt_mode)
11074 *elt_mode = field_mode;
11075 if (n_elts)
11076 *n_elts = field_count;
11077 return true;
11082 if (elt_mode)
11083 *elt_mode = mode;
11084 if (n_elts)
11085 *n_elts = 1;
11086 return false;
11089 /* Return a nonzero value to say to return the function value in
11090 memory, just as large structures are always returned. TYPE will be
11091 the data type of the value, and FNTYPE will be the type of the
11092 function doing the returning, or @code{NULL} for libcalls.
11094 The AIX ABI for the RS/6000 specifies that all structures are
11095 returned in memory. The Darwin ABI does the same.
11097 For the Darwin 64 Bit ABI, a function result can be returned in
11098 registers or in memory, depending on the size of the return data
11099 type. If it is returned in registers, the value occupies the same
11100 registers as it would if it were the first and only function
11101 argument. Otherwise, the function places its result in memory at
11102 the location pointed to by GPR3.
11104 The SVR4 ABI specifies that structures <= 8 bytes are returned in r3/r4,
11105 but a draft put them in memory, and GCC used to implement the draft
11106 instead of the final standard. Therefore, aix_struct_return
11107 controls this instead of DEFAULT_ABI; V.4 targets needing backward
11108 compatibility can change DRAFT_V4_STRUCT_RET to override the
11109 default, and -m switches get the final word. See
11110 rs6000_option_override_internal for more details.
11112 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
11113 long double support is enabled. These values are returned in memory.
11115 int_size_in_bytes returns -1 for variable size objects, which go in
11116 memory always. The cast to unsigned makes -1 > 8. */
11118 static bool
11119 rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
11121 /* For the Darwin64 ABI, test if we can fit the return value in regs. */
11122 if (TARGET_MACHO
11123 && rs6000_darwin64_abi
11124 && TREE_CODE (type) == RECORD_TYPE
11125 && int_size_in_bytes (type) > 0)
11127 CUMULATIVE_ARGS valcum;
11128 rtx valret;
11130 valcum.words = 0;
11131 valcum.fregno = FP_ARG_MIN_REG;
11132 valcum.vregno = ALTIVEC_ARG_MIN_REG;
11133 /* Do a trial code generation as if this were going to be passed
11134 as an argument; if any part goes in memory, we return NULL. */
11135 valret = rs6000_darwin64_record_arg (&valcum, type, true, true);
11136 if (valret)
11137 return false;
11138 /* Otherwise fall through to more conventional ABI rules. */
11141 /* The ELFv2 ABI returns homogeneous VFP aggregates in registers */
11142 if (rs6000_discover_homogeneous_aggregate (TYPE_MODE (type), type,
11143 NULL, NULL))
11144 return false;
11146 /* The ELFv2 ABI returns aggregates up to 16B in registers */
11147 if (DEFAULT_ABI == ABI_ELFv2 && AGGREGATE_TYPE_P (type)
11148 && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) <= 16)
11149 return false;
11151 if (AGGREGATE_TYPE_P (type)
11152 && (aix_struct_return
11153 || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
11154 return true;
11156 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
11157 modes only exist for GCC vector types if -maltivec. */
11158 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
11159 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
11160 return false;
11162 /* Return synthetic vectors in memory. */
11163 if (TREE_CODE (type) == VECTOR_TYPE
11164 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
11166 static bool warned_for_return_big_vectors = false;
11167 if (!warned_for_return_big_vectors)
11169 warning (OPT_Wpsabi, "GCC vector returned by reference: "
11170 "non-standard ABI extension with no compatibility "
11171 "guarantee");
11172 warned_for_return_big_vectors = true;
11174 return true;
11177 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD
11178 && FLOAT128_IEEE_P (TYPE_MODE (type)))
11179 return true;
11181 return false;
11184 /* Specify whether values returned in registers should be at the most
11185 significant end of a register. We want aggregates returned by
11186 value to match the way aggregates are passed to functions. */
11188 static bool
11189 rs6000_return_in_msb (const_tree valtype)
11191 return (DEFAULT_ABI == ABI_ELFv2
11192 && BYTES_BIG_ENDIAN
11193 && AGGREGATE_TYPE_P (valtype)
11194 && (rs6000_function_arg_padding (TYPE_MODE (valtype), valtype)
11195 == PAD_UPWARD));
11198 #ifdef HAVE_AS_GNU_ATTRIBUTE
11199 /* Return TRUE if a call to function FNDECL may be one that
11200 potentially affects the function calling ABI of the object file. */
11202 static bool
11203 call_ABI_of_interest (tree fndecl)
11205 if (rs6000_gnu_attr && symtab->state == EXPANSION)
11207 struct cgraph_node *c_node;
11209 /* Libcalls are always interesting. */
11210 if (fndecl == NULL_TREE)
11211 return true;
11213 /* Any call to an external function is interesting. */
11214 if (DECL_EXTERNAL (fndecl))
11215 return true;
11217 /* Interesting functions that we are emitting in this object file. */
11218 c_node = cgraph_node::get (fndecl);
11219 c_node = c_node->ultimate_alias_target ();
11220 return !c_node->only_called_directly_p ();
11222 return false;
11224 #endif
11226 /* Initialize a variable CUM of type CUMULATIVE_ARGS
11227 for a call to a function whose data type is FNTYPE.
11228 For a library call, FNTYPE is 0 and RETURN_MODE the return value mode.
11230 For incoming args we set the number of arguments in the prototype large
11231 so we never return a PARALLEL. */
11233 void
11234 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
11235 rtx libname ATTRIBUTE_UNUSED, int incoming,
11236 int libcall, int n_named_args,
11237 tree fndecl ATTRIBUTE_UNUSED,
11238 machine_mode return_mode ATTRIBUTE_UNUSED)
11240 static CUMULATIVE_ARGS zero_cumulative;
11242 *cum = zero_cumulative;
11243 cum->words = 0;
11244 cum->fregno = FP_ARG_MIN_REG;
11245 cum->vregno = ALTIVEC_ARG_MIN_REG;
11246 cum->prototype = (fntype && prototype_p (fntype));
11247 cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
11248 ? CALL_LIBCALL : CALL_NORMAL);
11249 cum->sysv_gregno = GP_ARG_MIN_REG;
11250 cum->stdarg = stdarg_p (fntype);
11251 cum->libcall = libcall;
11253 cum->nargs_prototype = 0;
11254 if (incoming || cum->prototype)
11255 cum->nargs_prototype = n_named_args;
11257 /* Check for a longcall attribute. */
11258 if ((!fntype && rs6000_default_long_calls)
11259 || (fntype
11260 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
11261 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
11262 cum->call_cookie |= CALL_LONG;
11264 if (TARGET_DEBUG_ARG)
11266 fprintf (stderr, "\ninit_cumulative_args:");
11267 if (fntype)
11269 tree ret_type = TREE_TYPE (fntype);
11270 fprintf (stderr, " ret code = %s,",
11271 get_tree_code_name (TREE_CODE (ret_type)));
11274 if (cum->call_cookie & CALL_LONG)
11275 fprintf (stderr, " longcall,");
11277 fprintf (stderr, " proto = %d, nargs = %d\n",
11278 cum->prototype, cum->nargs_prototype);
11281 #ifdef HAVE_AS_GNU_ATTRIBUTE
11282 if (TARGET_ELF && (TARGET_64BIT || DEFAULT_ABI == ABI_V4))
11284 cum->escapes = call_ABI_of_interest (fndecl);
11285 if (cum->escapes)
11287 tree return_type;
11289 if (fntype)
11291 return_type = TREE_TYPE (fntype);
11292 return_mode = TYPE_MODE (return_type);
11294 else
11295 return_type = lang_hooks.types.type_for_mode (return_mode, 0);
11297 if (return_type != NULL)
11299 if (TREE_CODE (return_type) == RECORD_TYPE
11300 && TYPE_TRANSPARENT_AGGR (return_type))
11302 return_type = TREE_TYPE (first_field (return_type));
11303 return_mode = TYPE_MODE (return_type);
11305 if (AGGREGATE_TYPE_P (return_type)
11306 && ((unsigned HOST_WIDE_INT) int_size_in_bytes (return_type)
11307 <= 8))
11308 rs6000_returns_struct = true;
11310 if (SCALAR_FLOAT_MODE_P (return_mode))
11312 rs6000_passes_float = true;
11313 if ((HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT)
11314 && (FLOAT128_IBM_P (return_mode)
11315 || FLOAT128_IEEE_P (return_mode)
11316 || (return_type != NULL
11317 && (TYPE_MAIN_VARIANT (return_type)
11318 == long_double_type_node))))
11319 rs6000_passes_long_double = true;
11321 if (ALTIVEC_OR_VSX_VECTOR_MODE (return_mode)
11322 || PAIRED_VECTOR_MODE (return_mode))
11323 rs6000_passes_vector = true;
11326 #endif
11328 if (fntype
11329 && !TARGET_ALTIVEC
11330 && TARGET_ALTIVEC_ABI
11331 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
11333 error ("cannot return value in vector register because"
11334 " altivec instructions are disabled, use %qs"
11335 " to enable them", "-maltivec");
11339 /* The mode the ABI uses for a word. This is not the same as word_mode
11340 for -m32 -mpowerpc64. This is used to implement various target hooks. */
11342 static scalar_int_mode
11343 rs6000_abi_word_mode (void)
11345 return TARGET_32BIT ? SImode : DImode;
11348 /* Implement the TARGET_OFFLOAD_OPTIONS hook. */
11349 static char *
11350 rs6000_offload_options (void)
11352 if (TARGET_64BIT)
11353 return xstrdup ("-foffload-abi=lp64");
11354 else
11355 return xstrdup ("-foffload-abi=ilp32");
11358 /* On rs6000, function arguments are promoted, as are function return
11359 values. */
11361 static machine_mode
11362 rs6000_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
11363 machine_mode mode,
11364 int *punsignedp ATTRIBUTE_UNUSED,
11365 const_tree, int)
11367 PROMOTE_MODE (mode, *punsignedp, type);
11369 return mode;
11372 /* Return true if TYPE must be passed on the stack and not in registers. */
11374 static bool
11375 rs6000_must_pass_in_stack (machine_mode mode, const_tree type)
11377 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2 || TARGET_64BIT)
11378 return must_pass_in_stack_var_size (mode, type);
11379 else
11380 return must_pass_in_stack_var_size_or_pad (mode, type);
11383 static inline bool
11384 is_complex_IBM_long_double (machine_mode mode)
11386 return mode == ICmode || (!TARGET_IEEEQUAD && mode == TCmode);
11389 /* Whether ABI_V4 passes MODE args to a function in floating point
11390 registers. */
11392 static bool
11393 abi_v4_pass_in_fpr (machine_mode mode)
11395 if (!TARGET_HARD_FLOAT)
11396 return false;
11397 if (TARGET_SINGLE_FLOAT && mode == SFmode)
11398 return true;
11399 if (TARGET_DOUBLE_FLOAT && mode == DFmode)
11400 return true;
11401 /* ABI_V4 passes complex IBM long double in 8 gprs.
11402 Stupid, but we can't change the ABI now. */
11403 if (is_complex_IBM_long_double (mode))
11404 return false;
11405 if (FLOAT128_2REG_P (mode))
11406 return true;
11407 if (DECIMAL_FLOAT_MODE_P (mode))
11408 return true;
11409 return false;
11412 /* Implement TARGET_FUNCTION_ARG_PADDING.
11414 For the AIX ABI structs are always stored left shifted in their
11415 argument slot. */
11417 static pad_direction
11418 rs6000_function_arg_padding (machine_mode mode, const_tree type)
11420 #ifndef AGGREGATE_PADDING_FIXED
11421 #define AGGREGATE_PADDING_FIXED 0
11422 #endif
11423 #ifndef AGGREGATES_PAD_UPWARD_ALWAYS
11424 #define AGGREGATES_PAD_UPWARD_ALWAYS 0
11425 #endif
11427 if (!AGGREGATE_PADDING_FIXED)
11429 /* GCC used to pass structures of the same size as integer types as
11430 if they were in fact integers, ignoring TARGET_FUNCTION_ARG_PADDING.
11431 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
11432 passed padded downward, except that -mstrict-align further
11433 muddied the water in that multi-component structures of 2 and 4
11434 bytes in size were passed padded upward.
11436 The following arranges for best compatibility with previous
11437 versions of gcc, but removes the -mstrict-align dependency. */
11438 if (BYTES_BIG_ENDIAN)
11440 HOST_WIDE_INT size = 0;
11442 if (mode == BLKmode)
11444 if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
11445 size = int_size_in_bytes (type);
11447 else
11448 size = GET_MODE_SIZE (mode);
11450 if (size == 1 || size == 2 || size == 4)
11451 return PAD_DOWNWARD;
11453 return PAD_UPWARD;
11456 if (AGGREGATES_PAD_UPWARD_ALWAYS)
11458 if (type != 0 && AGGREGATE_TYPE_P (type))
11459 return PAD_UPWARD;
11462 /* Fall back to the default. */
11463 return default_function_arg_padding (mode, type);
11466 /* If defined, a C expression that gives the alignment boundary, in bits,
11467 of an argument with the specified mode and type. If it is not defined,
11468 PARM_BOUNDARY is used for all arguments.
11470 V.4 wants long longs and doubles to be double word aligned. Just
11471 testing the mode size is a boneheaded way to do this as it means
11472 that other types such as complex int are also double word aligned.
11473 However, we're stuck with this because changing the ABI might break
11474 existing library interfaces.
11476 Quadword align Altivec/VSX vectors.
11477 Quadword align large synthetic vector types. */
11479 static unsigned int
11480 rs6000_function_arg_boundary (machine_mode mode, const_tree type)
11482 machine_mode elt_mode;
11483 int n_elts;
11485 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
11487 if (DEFAULT_ABI == ABI_V4
11488 && (GET_MODE_SIZE (mode) == 8
11489 || (TARGET_HARD_FLOAT
11490 && !is_complex_IBM_long_double (mode)
11491 && FLOAT128_2REG_P (mode))))
11492 return 64;
11493 else if (FLOAT128_VECTOR_P (mode))
11494 return 128;
11495 else if (PAIRED_VECTOR_MODE (mode)
11496 || (type && TREE_CODE (type) == VECTOR_TYPE
11497 && int_size_in_bytes (type) >= 8
11498 && int_size_in_bytes (type) < 16))
11499 return 64;
11500 else if (ALTIVEC_OR_VSX_VECTOR_MODE (elt_mode)
11501 || (type && TREE_CODE (type) == VECTOR_TYPE
11502 && int_size_in_bytes (type) >= 16))
11503 return 128;
11505 /* Aggregate types that need > 8 byte alignment are quadword-aligned
11506 in the parameter area in the ELFv2 ABI, and in the AIX ABI unless
11507 -mcompat-align-parm is used. */
11508 if (((DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm)
11509 || DEFAULT_ABI == ABI_ELFv2)
11510 && type && TYPE_ALIGN (type) > 64)
11512 /* "Aggregate" means any AGGREGATE_TYPE except for single-element
11513 or homogeneous float/vector aggregates here. We already handled
11514 vector aggregates above, but still need to check for float here. */
11515 bool aggregate_p = (AGGREGATE_TYPE_P (type)
11516 && !SCALAR_FLOAT_MODE_P (elt_mode));
11518 /* We used to check for BLKmode instead of the above aggregate type
11519 check. Warn when this results in any difference to the ABI. */
11520 if (aggregate_p != (mode == BLKmode))
11522 static bool warned;
11523 if (!warned && warn_psabi)
11525 warned = true;
11526 inform (input_location,
11527 "the ABI of passing aggregates with %d-byte alignment"
11528 " has changed in GCC 5",
11529 (int) TYPE_ALIGN (type) / BITS_PER_UNIT);
11533 if (aggregate_p)
11534 return 128;
11537 /* Similar for the Darwin64 ABI. Note that for historical reasons we
11538 implement the "aggregate type" check as a BLKmode check here; this
11539 means certain aggregate types are in fact not aligned. */
11540 if (TARGET_MACHO && rs6000_darwin64_abi
11541 && mode == BLKmode
11542 && type && TYPE_ALIGN (type) > 64)
11543 return 128;
11545 return PARM_BOUNDARY;
11548 /* The offset in words to the start of the parameter save area. */
11550 static unsigned int
11551 rs6000_parm_offset (void)
11553 return (DEFAULT_ABI == ABI_V4 ? 2
11554 : DEFAULT_ABI == ABI_ELFv2 ? 4
11555 : 6);
11558 /* For a function parm of MODE and TYPE, return the starting word in
11559 the parameter area. NWORDS of the parameter area are already used. */
11561 static unsigned int
11562 rs6000_parm_start (machine_mode mode, const_tree type,
11563 unsigned int nwords)
11565 unsigned int align;
11567 align = rs6000_function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
11568 return nwords + (-(rs6000_parm_offset () + nwords) & align);
11571 /* Compute the size (in words) of a function argument. */
11573 static unsigned long
11574 rs6000_arg_size (machine_mode mode, const_tree type)
11576 unsigned long size;
11578 if (mode != BLKmode)
11579 size = GET_MODE_SIZE (mode);
11580 else
11581 size = int_size_in_bytes (type);
11583 if (TARGET_32BIT)
11584 return (size + 3) >> 2;
11585 else
11586 return (size + 7) >> 3;
11589 /* Use this to flush pending int fields. */
11591 static void
11592 rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
11593 HOST_WIDE_INT bitpos, int final)
11595 unsigned int startbit, endbit;
11596 int intregs, intoffset;
11598 /* Handle the situations where a float is taking up the first half
11599 of the GPR, and the other half is empty (typically due to
11600 alignment restrictions). We can detect this by a 8-byte-aligned
11601 int field, or by seeing that this is the final flush for this
11602 argument. Count the word and continue on. */
11603 if (cum->floats_in_gpr == 1
11604 && (cum->intoffset % 64 == 0
11605 || (cum->intoffset == -1 && final)))
11607 cum->words++;
11608 cum->floats_in_gpr = 0;
11611 if (cum->intoffset == -1)
11612 return;
11614 intoffset = cum->intoffset;
11615 cum->intoffset = -1;
11616 cum->floats_in_gpr = 0;
11618 if (intoffset % BITS_PER_WORD != 0)
11620 unsigned int bits = BITS_PER_WORD - intoffset % BITS_PER_WORD;
11621 if (!int_mode_for_size (bits, 0).exists ())
11623 /* We couldn't find an appropriate mode, which happens,
11624 e.g., in packed structs when there are 3 bytes to load.
11625 Back intoffset back to the beginning of the word in this
11626 case. */
11627 intoffset = ROUND_DOWN (intoffset, BITS_PER_WORD);
11631 startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
11632 endbit = ROUND_UP (bitpos, BITS_PER_WORD);
11633 intregs = (endbit - startbit) / BITS_PER_WORD;
11634 cum->words += intregs;
11635 /* words should be unsigned. */
11636 if ((unsigned)cum->words < (endbit/BITS_PER_WORD))
11638 int pad = (endbit/BITS_PER_WORD) - cum->words;
11639 cum->words += pad;
11643 /* The darwin64 ABI calls for us to recurse down through structs,
11644 looking for elements passed in registers. Unfortunately, we have
11645 to track int register count here also because of misalignments
11646 in powerpc alignment mode. */
11648 static void
11649 rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
11650 const_tree type,
11651 HOST_WIDE_INT startbitpos)
11653 tree f;
11655 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
11656 if (TREE_CODE (f) == FIELD_DECL)
11658 HOST_WIDE_INT bitpos = startbitpos;
11659 tree ftype = TREE_TYPE (f);
11660 machine_mode mode;
11661 if (ftype == error_mark_node)
11662 continue;
11663 mode = TYPE_MODE (ftype);
11665 if (DECL_SIZE (f) != 0
11666 && tree_fits_uhwi_p (bit_position (f)))
11667 bitpos += int_bit_position (f);
11669 /* ??? FIXME: else assume zero offset. */
11671 if (TREE_CODE (ftype) == RECORD_TYPE)
11672 rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
11673 else if (USE_FP_FOR_ARG_P (cum, mode))
11675 unsigned n_fpregs = (GET_MODE_SIZE (mode) + 7) >> 3;
11676 rs6000_darwin64_record_arg_advance_flush (cum, bitpos, 0);
11677 cum->fregno += n_fpregs;
11678 /* Single-precision floats present a special problem for
11679 us, because they are smaller than an 8-byte GPR, and so
11680 the structure-packing rules combined with the standard
11681 varargs behavior mean that we want to pack float/float
11682 and float/int combinations into a single register's
11683 space. This is complicated by the arg advance flushing,
11684 which works on arbitrarily large groups of int-type
11685 fields. */
11686 if (mode == SFmode)
11688 if (cum->floats_in_gpr == 1)
11690 /* Two floats in a word; count the word and reset
11691 the float count. */
11692 cum->words++;
11693 cum->floats_in_gpr = 0;
11695 else if (bitpos % 64 == 0)
11697 /* A float at the beginning of an 8-byte word;
11698 count it and put off adjusting cum->words until
11699 we see if a arg advance flush is going to do it
11700 for us. */
11701 cum->floats_in_gpr++;
11703 else
11705 /* The float is at the end of a word, preceded
11706 by integer fields, so the arg advance flush
11707 just above has already set cum->words and
11708 everything is taken care of. */
11711 else
11712 cum->words += n_fpregs;
11714 else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, 1))
11716 rs6000_darwin64_record_arg_advance_flush (cum, bitpos, 0);
11717 cum->vregno++;
11718 cum->words += 2;
11720 else if (cum->intoffset == -1)
11721 cum->intoffset = bitpos;
11725 /* Check for an item that needs to be considered specially under the darwin 64
11726 bit ABI. These are record types where the mode is BLK or the structure is
11727 8 bytes in size. */
11728 static int
11729 rs6000_darwin64_struct_check_p (machine_mode mode, const_tree type)
11731 return rs6000_darwin64_abi
11732 && ((mode == BLKmode
11733 && TREE_CODE (type) == RECORD_TYPE
11734 && int_size_in_bytes (type) > 0)
11735 || (type && TREE_CODE (type) == RECORD_TYPE
11736 && int_size_in_bytes (type) == 8)) ? 1 : 0;
11739 /* Update the data in CUM to advance over an argument
11740 of mode MODE and data type TYPE.
11741 (TYPE is null for libcalls where that information may not be available.)
11743 Note that for args passed by reference, function_arg will be called
11744 with MODE and TYPE set to that of the pointer to the arg, not the arg
11745 itself. */
11747 static void
11748 rs6000_function_arg_advance_1 (CUMULATIVE_ARGS *cum, machine_mode mode,
11749 const_tree type, bool named, int depth)
11751 machine_mode elt_mode;
11752 int n_elts;
11754 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
11756 /* Only tick off an argument if we're not recursing. */
11757 if (depth == 0)
11758 cum->nargs_prototype--;
11760 #ifdef HAVE_AS_GNU_ATTRIBUTE
11761 if (TARGET_ELF && (TARGET_64BIT || DEFAULT_ABI == ABI_V4)
11762 && cum->escapes)
11764 if (SCALAR_FLOAT_MODE_P (mode))
11766 rs6000_passes_float = true;
11767 if ((HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT)
11768 && (FLOAT128_IBM_P (mode)
11769 || FLOAT128_IEEE_P (mode)
11770 || (type != NULL
11771 && TYPE_MAIN_VARIANT (type) == long_double_type_node)))
11772 rs6000_passes_long_double = true;
11774 if ((named && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
11775 || (PAIRED_VECTOR_MODE (mode)
11776 && !cum->stdarg
11777 && cum->sysv_gregno <= GP_ARG_MAX_REG))
11778 rs6000_passes_vector = true;
11780 #endif
11782 if (TARGET_ALTIVEC_ABI
11783 && (ALTIVEC_OR_VSX_VECTOR_MODE (elt_mode)
11784 || (type && TREE_CODE (type) == VECTOR_TYPE
11785 && int_size_in_bytes (type) == 16)))
11787 bool stack = false;
11789 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
11791 cum->vregno += n_elts;
11793 if (!TARGET_ALTIVEC)
11794 error ("cannot pass argument in vector register because"
11795 " altivec instructions are disabled, use %qs"
11796 " to enable them", "-maltivec");
11798 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
11799 even if it is going to be passed in a vector register.
11800 Darwin does the same for variable-argument functions. */
11801 if (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
11802 && TARGET_64BIT)
11803 || (cum->stdarg && DEFAULT_ABI != ABI_V4))
11804 stack = true;
11806 else
11807 stack = true;
11809 if (stack)
11811 int align;
11813 /* Vector parameters must be 16-byte aligned. In 32-bit
11814 mode this means we need to take into account the offset
11815 to the parameter save area. In 64-bit mode, they just
11816 have to start on an even word, since the parameter save
11817 area is 16-byte aligned. */
11818 if (TARGET_32BIT)
11819 align = -(rs6000_parm_offset () + cum->words) & 3;
11820 else
11821 align = cum->words & 1;
11822 cum->words += align + rs6000_arg_size (mode, type);
11824 if (TARGET_DEBUG_ARG)
11826 fprintf (stderr, "function_adv: words = %2d, align=%d, ",
11827 cum->words, align);
11828 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
11829 cum->nargs_prototype, cum->prototype,
11830 GET_MODE_NAME (mode));
11834 else if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
11836 int size = int_size_in_bytes (type);
11837 /* Variable sized types have size == -1 and are
11838 treated as if consisting entirely of ints.
11839 Pad to 16 byte boundary if needed. */
11840 if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
11841 && (cum->words % 2) != 0)
11842 cum->words++;
11843 /* For varargs, we can just go up by the size of the struct. */
11844 if (!named)
11845 cum->words += (size + 7) / 8;
11846 else
11848 /* It is tempting to say int register count just goes up by
11849 sizeof(type)/8, but this is wrong in a case such as
11850 { int; double; int; } [powerpc alignment]. We have to
11851 grovel through the fields for these too. */
11852 cum->intoffset = 0;
11853 cum->floats_in_gpr = 0;
11854 rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
11855 rs6000_darwin64_record_arg_advance_flush (cum,
11856 size * BITS_PER_UNIT, 1);
11858 if (TARGET_DEBUG_ARG)
11860 fprintf (stderr, "function_adv: words = %2d, align=%d, size=%d",
11861 cum->words, TYPE_ALIGN (type), size);
11862 fprintf (stderr,
11863 "nargs = %4d, proto = %d, mode = %4s (darwin64 abi)\n",
11864 cum->nargs_prototype, cum->prototype,
11865 GET_MODE_NAME (mode));
11868 else if (DEFAULT_ABI == ABI_V4)
11870 if (abi_v4_pass_in_fpr (mode))
11872 /* _Decimal128 must use an even/odd register pair. This assumes
11873 that the register number is odd when fregno is odd. */
11874 if (mode == TDmode && (cum->fregno % 2) == 1)
11875 cum->fregno++;
11877 if (cum->fregno + (FLOAT128_2REG_P (mode) ? 1 : 0)
11878 <= FP_ARG_V4_MAX_REG)
11879 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
11880 else
11882 cum->fregno = FP_ARG_V4_MAX_REG + 1;
11883 if (mode == DFmode || FLOAT128_IBM_P (mode)
11884 || mode == DDmode || mode == TDmode)
11885 cum->words += cum->words & 1;
11886 cum->words += rs6000_arg_size (mode, type);
11889 else
11891 int n_words = rs6000_arg_size (mode, type);
11892 int gregno = cum->sysv_gregno;
11894 /* Long long is put in (r3,r4), (r5,r6), (r7,r8) or (r9,r10).
11895 As does any other 2 word item such as complex int due to a
11896 historical mistake. */
11897 if (n_words == 2)
11898 gregno += (1 - gregno) & 1;
11900 /* Multi-reg args are not split between registers and stack. */
11901 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
11903 /* Long long is aligned on the stack. So are other 2 word
11904 items such as complex int due to a historical mistake. */
11905 if (n_words == 2)
11906 cum->words += cum->words & 1;
11907 cum->words += n_words;
11910 /* Note: continuing to accumulate gregno past when we've started
11911 spilling to the stack indicates the fact that we've started
11912 spilling to the stack to expand_builtin_saveregs. */
11913 cum->sysv_gregno = gregno + n_words;
11916 if (TARGET_DEBUG_ARG)
11918 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
11919 cum->words, cum->fregno);
11920 fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
11921 cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
11922 fprintf (stderr, "mode = %4s, named = %d\n",
11923 GET_MODE_NAME (mode), named);
11926 else
11928 int n_words = rs6000_arg_size (mode, type);
11929 int start_words = cum->words;
11930 int align_words = rs6000_parm_start (mode, type, start_words);
11932 cum->words = align_words + n_words;
11934 if (SCALAR_FLOAT_MODE_P (elt_mode) && TARGET_HARD_FLOAT)
11936 /* _Decimal128 must be passed in an even/odd float register pair.
11937 This assumes that the register number is odd when fregno is
11938 odd. */
11939 if (elt_mode == TDmode && (cum->fregno % 2) == 1)
11940 cum->fregno++;
11941 cum->fregno += n_elts * ((GET_MODE_SIZE (elt_mode) + 7) >> 3);
11944 if (TARGET_DEBUG_ARG)
11946 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
11947 cum->words, cum->fregno);
11948 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
11949 cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
11950 fprintf (stderr, "named = %d, align = %d, depth = %d\n",
11951 named, align_words - start_words, depth);
11956 static void
11957 rs6000_function_arg_advance (cumulative_args_t cum, machine_mode mode,
11958 const_tree type, bool named)
11960 rs6000_function_arg_advance_1 (get_cumulative_args (cum), mode, type, named,
11964 /* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
11965 structure between cum->intoffset and bitpos to integer registers. */
11967 static void
11968 rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
11969 HOST_WIDE_INT bitpos, rtx rvec[], int *k)
11971 machine_mode mode;
11972 unsigned int regno;
11973 unsigned int startbit, endbit;
11974 int this_regno, intregs, intoffset;
11975 rtx reg;
11977 if (cum->intoffset == -1)
11978 return;
11980 intoffset = cum->intoffset;
11981 cum->intoffset = -1;
11983 /* If this is the trailing part of a word, try to only load that
11984 much into the register. Otherwise load the whole register. Note
11985 that in the latter case we may pick up unwanted bits. It's not a
11986 problem at the moment but may wish to revisit. */
11988 if (intoffset % BITS_PER_WORD != 0)
11990 unsigned int bits = BITS_PER_WORD - intoffset % BITS_PER_WORD;
11991 if (!int_mode_for_size (bits, 0).exists (&mode))
11993 /* We couldn't find an appropriate mode, which happens,
11994 e.g., in packed structs when there are 3 bytes to load.
11995 Back intoffset back to the beginning of the word in this
11996 case. */
11997 intoffset = ROUND_DOWN (intoffset, BITS_PER_WORD);
11998 mode = word_mode;
12001 else
12002 mode = word_mode;
12004 startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
12005 endbit = ROUND_UP (bitpos, BITS_PER_WORD);
12006 intregs = (endbit - startbit) / BITS_PER_WORD;
12007 this_regno = cum->words + intoffset / BITS_PER_WORD;
12009 if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
12010 cum->use_stack = 1;
12012 intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
12013 if (intregs <= 0)
12014 return;
12016 intoffset /= BITS_PER_UNIT;
12019 regno = GP_ARG_MIN_REG + this_regno;
12020 reg = gen_rtx_REG (mode, regno);
12021 rvec[(*k)++] =
12022 gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
12024 this_regno += 1;
12025 intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
12026 mode = word_mode;
12027 intregs -= 1;
12029 while (intregs > 0);
12032 /* Recursive workhorse for the following. */
12034 static void
12035 rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
12036 HOST_WIDE_INT startbitpos, rtx rvec[],
12037 int *k)
12039 tree f;
12041 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
12042 if (TREE_CODE (f) == FIELD_DECL)
12044 HOST_WIDE_INT bitpos = startbitpos;
12045 tree ftype = TREE_TYPE (f);
12046 machine_mode mode;
12047 if (ftype == error_mark_node)
12048 continue;
12049 mode = TYPE_MODE (ftype);
12051 if (DECL_SIZE (f) != 0
12052 && tree_fits_uhwi_p (bit_position (f)))
12053 bitpos += int_bit_position (f);
12055 /* ??? FIXME: else assume zero offset. */
12057 if (TREE_CODE (ftype) == RECORD_TYPE)
12058 rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
12059 else if (cum->named && USE_FP_FOR_ARG_P (cum, mode))
12061 unsigned n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;
12062 #if 0
12063 switch (mode)
12065 case E_SCmode: mode = SFmode; break;
12066 case E_DCmode: mode = DFmode; break;
12067 case E_TCmode: mode = TFmode; break;
12068 default: break;
12070 #endif
12071 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
12072 if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
12074 gcc_assert (cum->fregno == FP_ARG_MAX_REG
12075 && (mode == TFmode || mode == TDmode));
12076 /* Long double or _Decimal128 split over regs and memory. */
12077 mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode : DFmode;
12078 cum->use_stack=1;
12080 rvec[(*k)++]
12081 = gen_rtx_EXPR_LIST (VOIDmode,
12082 gen_rtx_REG (mode, cum->fregno++),
12083 GEN_INT (bitpos / BITS_PER_UNIT));
12084 if (FLOAT128_2REG_P (mode))
12085 cum->fregno++;
12087 else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, 1))
12089 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
12090 rvec[(*k)++]
12091 = gen_rtx_EXPR_LIST (VOIDmode,
12092 gen_rtx_REG (mode, cum->vregno++),
12093 GEN_INT (bitpos / BITS_PER_UNIT));
12095 else if (cum->intoffset == -1)
12096 cum->intoffset = bitpos;
12100 /* For the darwin64 ABI, we want to construct a PARALLEL consisting of
12101 the register(s) to be used for each field and subfield of a struct
12102 being passed by value, along with the offset of where the
12103 register's value may be found in the block. FP fields go in FP
12104 register, vector fields go in vector registers, and everything
12105 else goes in int registers, packed as in memory.
12107 This code is also used for function return values. RETVAL indicates
12108 whether this is the case.
12110 Much of this is taken from the SPARC V9 port, which has a similar
12111 calling convention. */
12113 static rtx
12114 rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
12115 bool named, bool retval)
12117 rtx rvec[FIRST_PSEUDO_REGISTER];
12118 int k = 1, kbase = 1;
12119 HOST_WIDE_INT typesize = int_size_in_bytes (type);
12120 /* This is a copy; modifications are not visible to our caller. */
12121 CUMULATIVE_ARGS copy_cum = *orig_cum;
12122 CUMULATIVE_ARGS *cum = &copy_cum;
12124 /* Pad to 16 byte boundary if needed. */
12125 if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
12126 && (cum->words % 2) != 0)
12127 cum->words++;
12129 cum->intoffset = 0;
12130 cum->use_stack = 0;
12131 cum->named = named;
12133 /* Put entries into rvec[] for individual FP and vector fields, and
12134 for the chunks of memory that go in int regs. Note we start at
12135 element 1; 0 is reserved for an indication of using memory, and
12136 may or may not be filled in below. */
12137 rs6000_darwin64_record_arg_recurse (cum, type, /* startbit pos= */ 0, rvec, &k);
12138 rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);
12140 /* If any part of the struct went on the stack put all of it there.
12141 This hack is because the generic code for
12142 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
12143 parts of the struct are not at the beginning. */
12144 if (cum->use_stack)
12146 if (retval)
12147 return NULL_RTX; /* doesn't go in registers at all */
12148 kbase = 0;
12149 rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
12151 if (k > 1 || cum->use_stack)
12152 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
12153 else
12154 return NULL_RTX;
12157 /* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
12159 static rtx
12160 rs6000_mixed_function_arg (machine_mode mode, const_tree type,
12161 int align_words)
12163 int n_units;
12164 int i, k;
12165 rtx rvec[GP_ARG_NUM_REG + 1];
12167 if (align_words >= GP_ARG_NUM_REG)
12168 return NULL_RTX;
12170 n_units = rs6000_arg_size (mode, type);
12172 /* Optimize the simple case where the arg fits in one gpr, except in
12173 the case of BLKmode due to assign_parms assuming that registers are
12174 BITS_PER_WORD wide. */
12175 if (n_units == 0
12176 || (n_units == 1 && mode != BLKmode))
12177 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
12179 k = 0;
12180 if (align_words + n_units > GP_ARG_NUM_REG)
12181 /* Not all of the arg fits in gprs. Say that it goes in memory too,
12182 using a magic NULL_RTX component.
12183 This is not strictly correct. Only some of the arg belongs in
12184 memory, not all of it. However, the normal scheme using
12185 function_arg_partial_nregs can result in unusual subregs, eg.
12186 (subreg:SI (reg:DF) 4), which are not handled well. The code to
12187 store the whole arg to memory is often more efficient than code
12188 to store pieces, and we know that space is available in the right
12189 place for the whole arg. */
12190 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
12192 i = 0;
12195 rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
12196 rtx off = GEN_INT (i++ * 4);
12197 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
12199 while (++align_words < GP_ARG_NUM_REG && --n_units != 0);
12201 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
12204 /* We have an argument of MODE and TYPE that goes into FPRs or VRs,
12205 but must also be copied into the parameter save area starting at
12206 offset ALIGN_WORDS. Fill in RVEC with the elements corresponding
12207 to the GPRs and/or memory. Return the number of elements used. */
12209 static int
12210 rs6000_psave_function_arg (machine_mode mode, const_tree type,
12211 int align_words, rtx *rvec)
12213 int k = 0;
12215 if (align_words < GP_ARG_NUM_REG)
12217 int n_words = rs6000_arg_size (mode, type);
12219 if (align_words + n_words > GP_ARG_NUM_REG
12220 || mode == BLKmode
12221 || (TARGET_32BIT && TARGET_POWERPC64))
12223 /* If this is partially on the stack, then we only
12224 include the portion actually in registers here. */
12225 machine_mode rmode = TARGET_32BIT ? SImode : DImode;
12226 int i = 0;
12228 if (align_words + n_words > GP_ARG_NUM_REG)
12230 /* Not all of the arg fits in gprs. Say that it goes in memory
12231 too, using a magic NULL_RTX component. Also see comment in
12232 rs6000_mixed_function_arg for why the normal
12233 function_arg_partial_nregs scheme doesn't work in this case. */
12234 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
12239 rtx r = gen_rtx_REG (rmode, GP_ARG_MIN_REG + align_words);
12240 rtx off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
12241 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
12243 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
12245 else
12247 /* The whole arg fits in gprs. */
12248 rtx r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
12249 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
12252 else
12254 /* It's entirely in memory. */
12255 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
12258 return k;
12261 /* RVEC is a vector of K components of an argument of mode MODE.
12262 Construct the final function_arg return value from it. */
12264 static rtx
12265 rs6000_finish_function_arg (machine_mode mode, rtx *rvec, int k)
12267 gcc_assert (k >= 1);
12269 /* Avoid returning a PARALLEL in the trivial cases. */
12270 if (k == 1)
12272 if (XEXP (rvec[0], 0) == NULL_RTX)
12273 return NULL_RTX;
12275 if (GET_MODE (XEXP (rvec[0], 0)) == mode)
12276 return XEXP (rvec[0], 0);
12279 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
12282 /* Determine where to put an argument to a function.
12283 Value is zero to push the argument on the stack,
12284 or a hard register in which to store the argument.
12286 MODE is the argument's machine mode.
12287 TYPE is the data type of the argument (as a tree).
12288 This is null for libcalls where that information may
12289 not be available.
12290 CUM is a variable of type CUMULATIVE_ARGS which gives info about
12291 the preceding args and about the function being called. It is
12292 not modified in this routine.
12293 NAMED is nonzero if this argument is a named parameter
12294 (otherwise it is an extra parameter matching an ellipsis).
12296 On RS/6000 the first eight words of non-FP are normally in registers
12297 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
12298 Under V.4, the first 8 FP args are in registers.
12300 If this is floating-point and no prototype is specified, we use
12301 both an FP and integer register (or possibly FP reg and stack). Library
12302 functions (when CALL_LIBCALL is set) always have the proper types for args,
12303 so we can pass the FP value just in one register. emit_library_function
12304 doesn't support PARALLEL anyway.
12306 Note that for args passed by reference, function_arg will be called
12307 with MODE and TYPE set to that of the pointer to the arg, not the arg
12308 itself. */
12310 static rtx
12311 rs6000_function_arg (cumulative_args_t cum_v, machine_mode mode,
12312 const_tree type, bool named)
12314 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
12315 enum rs6000_abi abi = DEFAULT_ABI;
12316 machine_mode elt_mode;
12317 int n_elts;
12319 /* Return a marker to indicate whether CR1 needs to set or clear the
12320 bit that V.4 uses to say fp args were passed in registers.
12321 Assume that we don't need the marker for software floating point,
12322 or compiler generated library calls. */
12323 if (mode == VOIDmode)
12325 if (abi == ABI_V4
12326 && (cum->call_cookie & CALL_LIBCALL) == 0
12327 && (cum->stdarg
12328 || (cum->nargs_prototype < 0
12329 && (cum->prototype || TARGET_NO_PROTOTYPE)))
12330 && TARGET_HARD_FLOAT)
12331 return GEN_INT (cum->call_cookie
12332 | ((cum->fregno == FP_ARG_MIN_REG)
12333 ? CALL_V4_SET_FP_ARGS
12334 : CALL_V4_CLEAR_FP_ARGS));
12336 return GEN_INT (cum->call_cookie & ~CALL_LIBCALL);
12339 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
12341 if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
12343 rtx rslt = rs6000_darwin64_record_arg (cum, type, named, /*retval= */false);
12344 if (rslt != NULL_RTX)
12345 return rslt;
12346 /* Else fall through to usual handling. */
12349 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
12351 rtx rvec[GP_ARG_NUM_REG + AGGR_ARG_NUM_REG + 1];
12352 rtx r, off;
12353 int i, k = 0;
12355 /* Do we also need to pass this argument in the parameter save area?
12356 Library support functions for IEEE 128-bit are assumed to not need the
12357 value passed both in GPRs and in vector registers. */
12358 if (TARGET_64BIT && !cum->prototype
12359 && (!cum->libcall || !FLOAT128_VECTOR_P (elt_mode)))
12361 int align_words = ROUND_UP (cum->words, 2);
12362 k = rs6000_psave_function_arg (mode, type, align_words, rvec);
12365 /* Describe where this argument goes in the vector registers. */
12366 for (i = 0; i < n_elts && cum->vregno + i <= ALTIVEC_ARG_MAX_REG; i++)
12368 r = gen_rtx_REG (elt_mode, cum->vregno + i);
12369 off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
12370 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
12373 return rs6000_finish_function_arg (mode, rvec, k);
12375 else if (TARGET_ALTIVEC_ABI
12376 && (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
12377 || (type && TREE_CODE (type) == VECTOR_TYPE
12378 && int_size_in_bytes (type) == 16)))
12380 if (named || abi == ABI_V4)
12381 return NULL_RTX;
12382 else
12384 /* Vector parameters to varargs functions under AIX or Darwin
12385 get passed in memory and possibly also in GPRs. */
12386 int align, align_words, n_words;
12387 machine_mode part_mode;
12389 /* Vector parameters must be 16-byte aligned. In 32-bit
12390 mode this means we need to take into account the offset
12391 to the parameter save area. In 64-bit mode, they just
12392 have to start on an even word, since the parameter save
12393 area is 16-byte aligned. */
12394 if (TARGET_32BIT)
12395 align = -(rs6000_parm_offset () + cum->words) & 3;
12396 else
12397 align = cum->words & 1;
12398 align_words = cum->words + align;
12400 /* Out of registers? Memory, then. */
12401 if (align_words >= GP_ARG_NUM_REG)
12402 return NULL_RTX;
12404 if (TARGET_32BIT && TARGET_POWERPC64)
12405 return rs6000_mixed_function_arg (mode, type, align_words);
12407 /* The vector value goes in GPRs. Only the part of the
12408 value in GPRs is reported here. */
12409 part_mode = mode;
12410 n_words = rs6000_arg_size (mode, type);
12411 if (align_words + n_words > GP_ARG_NUM_REG)
12412 /* Fortunately, there are only two possibilities, the value
12413 is either wholly in GPRs or half in GPRs and half not. */
12414 part_mode = DImode;
12416 return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
12420 else if (abi == ABI_V4)
12422 if (abi_v4_pass_in_fpr (mode))
12424 /* _Decimal128 must use an even/odd register pair. This assumes
12425 that the register number is odd when fregno is odd. */
12426 if (mode == TDmode && (cum->fregno % 2) == 1)
12427 cum->fregno++;
12429 if (cum->fregno + (FLOAT128_2REG_P (mode) ? 1 : 0)
12430 <= FP_ARG_V4_MAX_REG)
12431 return gen_rtx_REG (mode, cum->fregno);
12432 else
12433 return NULL_RTX;
12435 else
12437 int n_words = rs6000_arg_size (mode, type);
12438 int gregno = cum->sysv_gregno;
12440 /* Long long is put in (r3,r4), (r5,r6), (r7,r8) or (r9,r10).
12441 As does any other 2 word item such as complex int due to a
12442 historical mistake. */
12443 if (n_words == 2)
12444 gregno += (1 - gregno) & 1;
12446 /* Multi-reg args are not split between registers and stack. */
12447 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
12448 return NULL_RTX;
12450 if (TARGET_32BIT && TARGET_POWERPC64)
12451 return rs6000_mixed_function_arg (mode, type,
12452 gregno - GP_ARG_MIN_REG);
12453 return gen_rtx_REG (mode, gregno);
12456 else
12458 int align_words = rs6000_parm_start (mode, type, cum->words);
12460 /* _Decimal128 must be passed in an even/odd float register pair.
12461 This assumes that the register number is odd when fregno is odd. */
12462 if (elt_mode == TDmode && (cum->fregno % 2) == 1)
12463 cum->fregno++;
12465 if (USE_FP_FOR_ARG_P (cum, elt_mode))
12467 rtx rvec[GP_ARG_NUM_REG + AGGR_ARG_NUM_REG + 1];
12468 rtx r, off;
12469 int i, k = 0;
12470 unsigned long n_fpreg = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
12471 int fpr_words;
12473 /* Do we also need to pass this argument in the parameter
12474 save area? */
12475 if (type && (cum->nargs_prototype <= 0
12476 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
12477 && TARGET_XL_COMPAT
12478 && align_words >= GP_ARG_NUM_REG)))
12479 k = rs6000_psave_function_arg (mode, type, align_words, rvec);
12481 /* Describe where this argument goes in the fprs. */
12482 for (i = 0; i < n_elts
12483 && cum->fregno + i * n_fpreg <= FP_ARG_MAX_REG; i++)
12485 /* Check if the argument is split over registers and memory.
12486 This can only ever happen for long double or _Decimal128;
12487 complex types are handled via split_complex_arg. */
12488 machine_mode fmode = elt_mode;
12489 if (cum->fregno + (i + 1) * n_fpreg > FP_ARG_MAX_REG + 1)
12491 gcc_assert (FLOAT128_2REG_P (fmode));
12492 fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
12495 r = gen_rtx_REG (fmode, cum->fregno + i * n_fpreg);
12496 off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
12497 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
12500 /* If there were not enough FPRs to hold the argument, the rest
12501 usually goes into memory. However, if the current position
12502 is still within the register parameter area, a portion may
12503 actually have to go into GPRs.
12505 Note that it may happen that the portion of the argument
12506 passed in the first "half" of the first GPR was already
12507 passed in the last FPR as well.
12509 For unnamed arguments, we already set up GPRs to cover the
12510 whole argument in rs6000_psave_function_arg, so there is
12511 nothing further to do at this point. */
12512 fpr_words = (i * GET_MODE_SIZE (elt_mode)) / (TARGET_32BIT ? 4 : 8);
12513 if (i < n_elts && align_words + fpr_words < GP_ARG_NUM_REG
12514 && cum->nargs_prototype > 0)
12516 static bool warned;
12518 machine_mode rmode = TARGET_32BIT ? SImode : DImode;
12519 int n_words = rs6000_arg_size (mode, type);
12521 align_words += fpr_words;
12522 n_words -= fpr_words;
12526 r = gen_rtx_REG (rmode, GP_ARG_MIN_REG + align_words);
12527 off = GEN_INT (fpr_words++ * GET_MODE_SIZE (rmode));
12528 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
12530 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
12532 if (!warned && warn_psabi)
12534 warned = true;
12535 inform (input_location,
12536 "the ABI of passing homogeneous float aggregates"
12537 " has changed in GCC 5");
12541 return rs6000_finish_function_arg (mode, rvec, k);
12543 else if (align_words < GP_ARG_NUM_REG)
12545 if (TARGET_32BIT && TARGET_POWERPC64)
12546 return rs6000_mixed_function_arg (mode, type, align_words);
12548 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
12550 else
12551 return NULL_RTX;
12555 /* For an arg passed partly in registers and partly in memory, this is
12556 the number of bytes passed in registers. For args passed entirely in
12557 registers or entirely in memory, zero. When an arg is described by a
12558 PARALLEL, perhaps using more than one register type, this function
12559 returns the number of bytes used by the first element of the PARALLEL. */
12561 static int
12562 rs6000_arg_partial_bytes (cumulative_args_t cum_v, machine_mode mode,
12563 tree type, bool named)
12565 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
12566 bool passed_in_gprs = true;
12567 int ret = 0;
12568 int align_words;
12569 machine_mode elt_mode;
12570 int n_elts;
12572 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
12574 if (DEFAULT_ABI == ABI_V4)
12575 return 0;
12577 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
12579 /* If we are passing this arg in the fixed parameter save area (gprs or
12580 memory) as well as VRs, we do not use the partial bytes mechanism;
12581 instead, rs6000_function_arg will return a PARALLEL including a memory
12582 element as necessary. Library support functions for IEEE 128-bit are
12583 assumed to not need the value passed both in GPRs and in vector
12584 registers. */
12585 if (TARGET_64BIT && !cum->prototype
12586 && (!cum->libcall || !FLOAT128_VECTOR_P (elt_mode)))
12587 return 0;
12589 /* Otherwise, we pass in VRs only. Check for partial copies. */
12590 passed_in_gprs = false;
12591 if (cum->vregno + n_elts > ALTIVEC_ARG_MAX_REG + 1)
12592 ret = (ALTIVEC_ARG_MAX_REG + 1 - cum->vregno) * 16;
12595 /* In this complicated case we just disable the partial_nregs code. */
12596 if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
12597 return 0;
12599 align_words = rs6000_parm_start (mode, type, cum->words);
12601 if (USE_FP_FOR_ARG_P (cum, elt_mode))
12603 unsigned long n_fpreg = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
12605 /* If we are passing this arg in the fixed parameter save area
12606 (gprs or memory) as well as FPRs, we do not use the partial
12607 bytes mechanism; instead, rs6000_function_arg will return a
12608 PARALLEL including a memory element as necessary. */
12609 if (type
12610 && (cum->nargs_prototype <= 0
12611 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
12612 && TARGET_XL_COMPAT
12613 && align_words >= GP_ARG_NUM_REG)))
12614 return 0;
12616 /* Otherwise, we pass in FPRs only. Check for partial copies. */
12617 passed_in_gprs = false;
12618 if (cum->fregno + n_elts * n_fpreg > FP_ARG_MAX_REG + 1)
12620 /* Compute number of bytes / words passed in FPRs. If there
12621 is still space available in the register parameter area
12622 *after* that amount, a part of the argument will be passed
12623 in GPRs. In that case, the total amount passed in any
12624 registers is equal to the amount that would have been passed
12625 in GPRs if everything were passed there, so we fall back to
12626 the GPR code below to compute the appropriate value. */
12627 int fpr = ((FP_ARG_MAX_REG + 1 - cum->fregno)
12628 * MIN (8, GET_MODE_SIZE (elt_mode)));
12629 int fpr_words = fpr / (TARGET_32BIT ? 4 : 8);
12631 if (align_words + fpr_words < GP_ARG_NUM_REG)
12632 passed_in_gprs = true;
12633 else
12634 ret = fpr;
12638 if (passed_in_gprs
12639 && align_words < GP_ARG_NUM_REG
12640 && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
12641 ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);
12643 if (ret != 0 && TARGET_DEBUG_ARG)
12644 fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);
12646 return ret;
12649 /* A C expression that indicates when an argument must be passed by
12650 reference. If nonzero for an argument, a copy of that argument is
12651 made in memory and a pointer to the argument is passed instead of
12652 the argument itself. The pointer is passed in whatever way is
12653 appropriate for passing a pointer to that type.
12655 Under V.4, aggregates and long double are passed by reference.
12657 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
12658 reference unless the AltiVec vector extension ABI is in force.
12660 As an extension to all ABIs, variable sized types are passed by
12661 reference. */
12663 static bool
12664 rs6000_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
12665 machine_mode mode, const_tree type,
12666 bool named ATTRIBUTE_UNUSED)
12668 if (!type)
12669 return 0;
12671 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD
12672 && FLOAT128_IEEE_P (TYPE_MODE (type)))
12674 if (TARGET_DEBUG_ARG)
12675 fprintf (stderr, "function_arg_pass_by_reference: V4 IEEE 128-bit\n");
12676 return 1;
12679 if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
12681 if (TARGET_DEBUG_ARG)
12682 fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
12683 return 1;
12686 if (int_size_in_bytes (type) < 0)
12688 if (TARGET_DEBUG_ARG)
12689 fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
12690 return 1;
12693 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
12694 modes only exist for GCC vector types if -maltivec. */
12695 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
12697 if (TARGET_DEBUG_ARG)
12698 fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
12699 return 1;
12702 /* Pass synthetic vectors in memory. */
12703 if (TREE_CODE (type) == VECTOR_TYPE
12704 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
12706 static bool warned_for_pass_big_vectors = false;
12707 if (TARGET_DEBUG_ARG)
12708 fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
12709 if (!warned_for_pass_big_vectors)
12711 warning (OPT_Wpsabi, "GCC vector passed by reference: "
12712 "non-standard ABI extension with no compatibility "
12713 "guarantee");
12714 warned_for_pass_big_vectors = true;
12716 return 1;
12719 return 0;
12722 /* Process parameter of type TYPE after ARGS_SO_FAR parameters were
12723 already processes. Return true if the parameter must be passed
12724 (fully or partially) on the stack. */
12726 static bool
12727 rs6000_parm_needs_stack (cumulative_args_t args_so_far, tree type)
12729 machine_mode mode;
12730 int unsignedp;
12731 rtx entry_parm;
12733 /* Catch errors. */
12734 if (type == NULL || type == error_mark_node)
12735 return true;
12737 /* Handle types with no storage requirement. */
12738 if (TYPE_MODE (type) == VOIDmode)
12739 return false;
12741 /* Handle complex types. */
12742 if (TREE_CODE (type) == COMPLEX_TYPE)
12743 return (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (type))
12744 || rs6000_parm_needs_stack (args_so_far, TREE_TYPE (type)));
12746 /* Handle transparent aggregates. */
12747 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
12748 && TYPE_TRANSPARENT_AGGR (type))
12749 type = TREE_TYPE (first_field (type));
12751 /* See if this arg was passed by invisible reference. */
12752 if (pass_by_reference (get_cumulative_args (args_so_far),
12753 TYPE_MODE (type), type, true))
12754 type = build_pointer_type (type);
12756 /* Find mode as it is passed by the ABI. */
12757 unsignedp = TYPE_UNSIGNED (type);
12758 mode = promote_mode (type, TYPE_MODE (type), &unsignedp);
12760 /* If we must pass in stack, we need a stack. */
12761 if (rs6000_must_pass_in_stack (mode, type))
12762 return true;
12764 /* If there is no incoming register, we need a stack. */
12765 entry_parm = rs6000_function_arg (args_so_far, mode, type, true);
12766 if (entry_parm == NULL)
12767 return true;
12769 /* Likewise if we need to pass both in registers and on the stack. */
12770 if (GET_CODE (entry_parm) == PARALLEL
12771 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
12772 return true;
12774 /* Also true if we're partially in registers and partially not. */
12775 if (rs6000_arg_partial_bytes (args_so_far, mode, type, true) != 0)
12776 return true;
12778 /* Update info on where next arg arrives in registers. */
12779 rs6000_function_arg_advance (args_so_far, mode, type, true);
12780 return false;
12783 /* Return true if FUN has no prototype, has a variable argument
12784 list, or passes any parameter in memory. */
12786 static bool
12787 rs6000_function_parms_need_stack (tree fun, bool incoming)
12789 tree fntype, result;
12790 CUMULATIVE_ARGS args_so_far_v;
12791 cumulative_args_t args_so_far;
12793 if (!fun)
12794 /* Must be a libcall, all of which only use reg parms. */
12795 return false;
12797 fntype = fun;
12798 if (!TYPE_P (fun))
12799 fntype = TREE_TYPE (fun);
12801 /* Varargs functions need the parameter save area. */
12802 if ((!incoming && !prototype_p (fntype)) || stdarg_p (fntype))
12803 return true;
12805 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far_v, fntype, NULL_RTX);
12806 args_so_far = pack_cumulative_args (&args_so_far_v);
12808 /* When incoming, we will have been passed the function decl.
12809 It is necessary to use the decl to handle K&R style functions,
12810 where TYPE_ARG_TYPES may not be available. */
12811 if (incoming)
12813 gcc_assert (DECL_P (fun));
12814 result = DECL_RESULT (fun);
12816 else
12817 result = TREE_TYPE (fntype);
12819 if (result && aggregate_value_p (result, fntype))
12821 if (!TYPE_P (result))
12822 result = TREE_TYPE (result);
12823 result = build_pointer_type (result);
12824 rs6000_parm_needs_stack (args_so_far, result);
12827 if (incoming)
12829 tree parm;
12831 for (parm = DECL_ARGUMENTS (fun);
12832 parm && parm != void_list_node;
12833 parm = TREE_CHAIN (parm))
12834 if (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (parm)))
12835 return true;
12837 else
12839 function_args_iterator args_iter;
12840 tree arg_type;
12842 FOREACH_FUNCTION_ARGS (fntype, arg_type, args_iter)
12843 if (rs6000_parm_needs_stack (args_so_far, arg_type))
12844 return true;
12847 return false;
12850 /* Return the size of the REG_PARM_STACK_SPACE are for FUN. This is
12851 usually a constant depending on the ABI. However, in the ELFv2 ABI
12852 the register parameter area is optional when calling a function that
12853 has a prototype is scope, has no variable argument list, and passes
12854 all parameters in registers. */
12857 rs6000_reg_parm_stack_space (tree fun, bool incoming)
12859 int reg_parm_stack_space;
12861 switch (DEFAULT_ABI)
12863 default:
12864 reg_parm_stack_space = 0;
12865 break;
12867 case ABI_AIX:
12868 case ABI_DARWIN:
12869 reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
12870 break;
12872 case ABI_ELFv2:
12873 /* ??? Recomputing this every time is a bit expensive. Is there
12874 a place to cache this information? */
12875 if (rs6000_function_parms_need_stack (fun, incoming))
12876 reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
12877 else
12878 reg_parm_stack_space = 0;
12879 break;
12882 return reg_parm_stack_space;
12885 static void
12886 rs6000_move_block_from_reg (int regno, rtx x, int nregs)
12888 int i;
12889 machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;
12891 if (nregs == 0)
12892 return;
12894 for (i = 0; i < nregs; i++)
12896 rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
12897 if (reload_completed)
12899 if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
12900 tem = NULL_RTX;
12901 else
12902 tem = simplify_gen_subreg (reg_mode, x, BLKmode,
12903 i * GET_MODE_SIZE (reg_mode));
12905 else
12906 tem = replace_equiv_address (tem, XEXP (tem, 0));
12908 gcc_assert (tem);
12910 emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
12914 /* Perform any needed actions needed for a function that is receiving a
12915 variable number of arguments.
12917 CUM is as above.
12919 MODE and TYPE are the mode and type of the current parameter.
12921 PRETEND_SIZE is a variable that should be set to the amount of stack
12922 that must be pushed by the prolog to pretend that our caller pushed
12925 Normally, this macro will push all remaining incoming registers on the
12926 stack and set PRETEND_SIZE to the length of the registers pushed. */
12928 static void
12929 setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
12930 tree type, int *pretend_size ATTRIBUTE_UNUSED,
12931 int no_rtl)
12933 CUMULATIVE_ARGS next_cum;
12934 int reg_size = TARGET_32BIT ? 4 : 8;
12935 rtx save_area = NULL_RTX, mem;
12936 int first_reg_offset;
12937 alias_set_type set;
12939 /* Skip the last named argument. */
12940 next_cum = *get_cumulative_args (cum);
12941 rs6000_function_arg_advance_1 (&next_cum, mode, type, true, 0);
12943 if (DEFAULT_ABI == ABI_V4)
12945 first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;
12947 if (! no_rtl)
12949 int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
12950 HOST_WIDE_INT offset = 0;
12952 /* Try to optimize the size of the varargs save area.
12953 The ABI requires that ap.reg_save_area is doubleword
12954 aligned, but we don't need to allocate space for all
12955 the bytes, only those to which we actually will save
12956 anything. */
12957 if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
12958 gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
12959 if (TARGET_HARD_FLOAT
12960 && next_cum.fregno <= FP_ARG_V4_MAX_REG
12961 && cfun->va_list_fpr_size)
12963 if (gpr_reg_num)
12964 fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
12965 * UNITS_PER_FP_WORD;
12966 if (cfun->va_list_fpr_size
12967 < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
12968 fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
12969 else
12970 fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
12971 * UNITS_PER_FP_WORD;
12973 if (gpr_reg_num)
12975 offset = -((first_reg_offset * reg_size) & ~7);
12976 if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
12978 gpr_reg_num = cfun->va_list_gpr_size;
12979 if (reg_size == 4 && (first_reg_offset & 1))
12980 gpr_reg_num++;
12982 gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
12984 else if (fpr_size)
12985 offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
12986 * UNITS_PER_FP_WORD
12987 - (int) (GP_ARG_NUM_REG * reg_size);
12989 if (gpr_size + fpr_size)
12991 rtx reg_save_area
12992 = assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
12993 gcc_assert (GET_CODE (reg_save_area) == MEM);
12994 reg_save_area = XEXP (reg_save_area, 0);
12995 if (GET_CODE (reg_save_area) == PLUS)
12997 gcc_assert (XEXP (reg_save_area, 0)
12998 == virtual_stack_vars_rtx);
12999 gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
13000 offset += INTVAL (XEXP (reg_save_area, 1));
13002 else
13003 gcc_assert (reg_save_area == virtual_stack_vars_rtx);
13006 cfun->machine->varargs_save_offset = offset;
13007 save_area = plus_constant (Pmode, virtual_stack_vars_rtx, offset);
13010 else
13012 first_reg_offset = next_cum.words;
13013 save_area = crtl->args.internal_arg_pointer;
13015 if (targetm.calls.must_pass_in_stack (mode, type))
13016 first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
13019 set = get_varargs_alias_set ();
13020 if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
13021 && cfun->va_list_gpr_size)
13023 int n_gpr, nregs = GP_ARG_NUM_REG - first_reg_offset;
13025 if (va_list_gpr_counter_field)
13026 /* V4 va_list_gpr_size counts number of registers needed. */
13027 n_gpr = cfun->va_list_gpr_size;
13028 else
13029 /* char * va_list instead counts number of bytes needed. */
13030 n_gpr = (cfun->va_list_gpr_size + reg_size - 1) / reg_size;
13032 if (nregs > n_gpr)
13033 nregs = n_gpr;
13035 mem = gen_rtx_MEM (BLKmode,
13036 plus_constant (Pmode, save_area,
13037 first_reg_offset * reg_size));
13038 MEM_NOTRAP_P (mem) = 1;
13039 set_mem_alias_set (mem, set);
13040 set_mem_align (mem, BITS_PER_WORD);
13042 rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
13043 nregs);
13046 /* Save FP registers if needed. */
13047 if (DEFAULT_ABI == ABI_V4
13048 && TARGET_HARD_FLOAT
13049 && ! no_rtl
13050 && next_cum.fregno <= FP_ARG_V4_MAX_REG
13051 && cfun->va_list_fpr_size)
13053 int fregno = next_cum.fregno, nregs;
13054 rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
13055 rtx lab = gen_label_rtx ();
13056 int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
13057 * UNITS_PER_FP_WORD);
13059 emit_jump_insn
13060 (gen_rtx_SET (pc_rtx,
13061 gen_rtx_IF_THEN_ELSE (VOIDmode,
13062 gen_rtx_NE (VOIDmode, cr1,
13063 const0_rtx),
13064 gen_rtx_LABEL_REF (VOIDmode, lab),
13065 pc_rtx)));
13067 for (nregs = 0;
13068 fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
13069 fregno++, off += UNITS_PER_FP_WORD, nregs++)
13071 mem = gen_rtx_MEM ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
13072 ? DFmode : SFmode,
13073 plus_constant (Pmode, save_area, off));
13074 MEM_NOTRAP_P (mem) = 1;
13075 set_mem_alias_set (mem, set);
13076 set_mem_align (mem, GET_MODE_ALIGNMENT (
13077 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
13078 ? DFmode : SFmode));
13079 emit_move_insn (mem, gen_rtx_REG (
13080 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
13081 ? DFmode : SFmode, fregno));
13084 emit_label (lab);
13088 /* Create the va_list data type. */
13090 static tree
13091 rs6000_build_builtin_va_list (void)
13093 tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;
13095 /* For AIX, prefer 'char *' because that's what the system
13096 header files like. */
13097 if (DEFAULT_ABI != ABI_V4)
13098 return build_pointer_type (char_type_node);
13100 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
13101 type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
13102 get_identifier ("__va_list_tag"), record);
13104 f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gpr"),
13105 unsigned_char_type_node);
13106 f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fpr"),
13107 unsigned_char_type_node);
13108 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
13109 every user file. */
13110 f_res = build_decl (BUILTINS_LOCATION, FIELD_DECL,
13111 get_identifier ("reserved"), short_unsigned_type_node);
13112 f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL,
13113 get_identifier ("overflow_arg_area"),
13114 ptr_type_node);
13115 f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL,
13116 get_identifier ("reg_save_area"),
13117 ptr_type_node);
13119 va_list_gpr_counter_field = f_gpr;
13120 va_list_fpr_counter_field = f_fpr;
13122 DECL_FIELD_CONTEXT (f_gpr) = record;
13123 DECL_FIELD_CONTEXT (f_fpr) = record;
13124 DECL_FIELD_CONTEXT (f_res) = record;
13125 DECL_FIELD_CONTEXT (f_ovf) = record;
13126 DECL_FIELD_CONTEXT (f_sav) = record;
13128 TYPE_STUB_DECL (record) = type_decl;
13129 TYPE_NAME (record) = type_decl;
13130 TYPE_FIELDS (record) = f_gpr;
13131 DECL_CHAIN (f_gpr) = f_fpr;
13132 DECL_CHAIN (f_fpr) = f_res;
13133 DECL_CHAIN (f_res) = f_ovf;
13134 DECL_CHAIN (f_ovf) = f_sav;
13136 layout_type (record);
13138 /* The correct type is an array type of one element. */
13139 return build_array_type (record, build_index_type (size_zero_node));
13142 /* Implement va_start. */
13144 static void
13145 rs6000_va_start (tree valist, rtx nextarg)
13147 HOST_WIDE_INT words, n_gpr, n_fpr;
13148 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
13149 tree gpr, fpr, ovf, sav, t;
13151 /* Only SVR4 needs something special. */
13152 if (DEFAULT_ABI != ABI_V4)
13154 std_expand_builtin_va_start (valist, nextarg);
13155 return;
13158 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
13159 f_fpr = DECL_CHAIN (f_gpr);
13160 f_res = DECL_CHAIN (f_fpr);
13161 f_ovf = DECL_CHAIN (f_res);
13162 f_sav = DECL_CHAIN (f_ovf);
13164 valist = build_simple_mem_ref (valist);
13165 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
13166 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
13167 f_fpr, NULL_TREE);
13168 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
13169 f_ovf, NULL_TREE);
13170 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
13171 f_sav, NULL_TREE);
13173 /* Count number of gp and fp argument registers used. */
13174 words = crtl->args.info.words;
13175 n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
13176 GP_ARG_NUM_REG);
13177 n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
13178 FP_ARG_NUM_REG);
13180 if (TARGET_DEBUG_ARG)
13181 fprintf (stderr, "va_start: words = " HOST_WIDE_INT_PRINT_DEC", n_gpr = "
13182 HOST_WIDE_INT_PRINT_DEC", n_fpr = " HOST_WIDE_INT_PRINT_DEC"\n",
13183 words, n_gpr, n_fpr);
13185 if (cfun->va_list_gpr_size)
13187 t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
13188 build_int_cst (NULL_TREE, n_gpr));
13189 TREE_SIDE_EFFECTS (t) = 1;
13190 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
13193 if (cfun->va_list_fpr_size)
13195 t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
13196 build_int_cst (NULL_TREE, n_fpr));
13197 TREE_SIDE_EFFECTS (t) = 1;
13198 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
13200 #ifdef HAVE_AS_GNU_ATTRIBUTE
13201 if (call_ABI_of_interest (cfun->decl))
13202 rs6000_passes_float = true;
13203 #endif
13206 /* Find the overflow area. */
13207 t = make_tree (TREE_TYPE (ovf), crtl->args.internal_arg_pointer);
13208 if (words != 0)
13209 t = fold_build_pointer_plus_hwi (t, words * MIN_UNITS_PER_WORD);
13210 t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
13211 TREE_SIDE_EFFECTS (t) = 1;
13212 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
13214 /* If there were no va_arg invocations, don't set up the register
13215 save area. */
13216 if (!cfun->va_list_gpr_size
13217 && !cfun->va_list_fpr_size
13218 && n_gpr < GP_ARG_NUM_REG
13219 && n_fpr < FP_ARG_V4_MAX_REG)
13220 return;
13222 /* Find the register save area. */
13223 t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
13224 if (cfun->machine->varargs_save_offset)
13225 t = fold_build_pointer_plus_hwi (t, cfun->machine->varargs_save_offset);
13226 t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
13227 TREE_SIDE_EFFECTS (t) = 1;
13228 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
13231 /* Implement va_arg. */
13233 static tree
13234 rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
13235 gimple_seq *post_p)
13237 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
13238 tree gpr, fpr, ovf, sav, reg, t, u;
13239 int size, rsize, n_reg, sav_ofs, sav_scale;
13240 tree lab_false, lab_over, addr;
13241 int align;
13242 tree ptrtype = build_pointer_type_for_mode (type, ptr_mode, true);
13243 int regalign = 0;
13244 gimple *stmt;
13246 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
13248 t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
13249 return build_va_arg_indirect_ref (t);
13252 /* We need to deal with the fact that the darwin ppc64 ABI is defined by an
13253 earlier version of gcc, with the property that it always applied alignment
13254 adjustments to the va-args (even for zero-sized types). The cheapest way
13255 to deal with this is to replicate the effect of the part of
13256 std_gimplify_va_arg_expr that carries out the align adjust, for the case
13257 of relevance.
13258 We don't need to check for pass-by-reference because of the test above.
13259 We can return a simplifed answer, since we know there's no offset to add. */
13261 if (((TARGET_MACHO
13262 && rs6000_darwin64_abi)
13263 || DEFAULT_ABI == ABI_ELFv2
13264 || (DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm))
13265 && integer_zerop (TYPE_SIZE (type)))
13267 unsigned HOST_WIDE_INT align, boundary;
13268 tree valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
13269 align = PARM_BOUNDARY / BITS_PER_UNIT;
13270 boundary = rs6000_function_arg_boundary (TYPE_MODE (type), type);
13271 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
13272 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
13273 boundary /= BITS_PER_UNIT;
13274 if (boundary > align)
13276 tree t ;
13277 /* This updates arg ptr by the amount that would be necessary
13278 to align the zero-sized (but not zero-alignment) item. */
13279 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
13280 fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
13281 gimplify_and_add (t, pre_p);
13283 t = fold_convert (sizetype, valist_tmp);
13284 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
13285 fold_convert (TREE_TYPE (valist),
13286 fold_build2 (BIT_AND_EXPR, sizetype, t,
13287 size_int (-boundary))));
13288 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
13289 gimplify_and_add (t, pre_p);
13291 /* Since it is zero-sized there's no increment for the item itself. */
13292 valist_tmp = fold_convert (build_pointer_type (type), valist_tmp);
13293 return build_va_arg_indirect_ref (valist_tmp);
13296 if (DEFAULT_ABI != ABI_V4)
13298 if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
13300 tree elem_type = TREE_TYPE (type);
13301 machine_mode elem_mode = TYPE_MODE (elem_type);
13302 int elem_size = GET_MODE_SIZE (elem_mode);
13304 if (elem_size < UNITS_PER_WORD)
13306 tree real_part, imag_part;
13307 gimple_seq post = NULL;
13309 real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
13310 &post);
13311 /* Copy the value into a temporary, lest the formal temporary
13312 be reused out from under us. */
13313 real_part = get_initialized_tmp_var (real_part, pre_p, &post);
13314 gimple_seq_add_seq (pre_p, post);
13316 imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
13317 post_p);
13319 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
13323 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
13326 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
13327 f_fpr = DECL_CHAIN (f_gpr);
13328 f_res = DECL_CHAIN (f_fpr);
13329 f_ovf = DECL_CHAIN (f_res);
13330 f_sav = DECL_CHAIN (f_ovf);
13332 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
13333 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
13334 f_fpr, NULL_TREE);
13335 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
13336 f_ovf, NULL_TREE);
13337 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
13338 f_sav, NULL_TREE);
13340 size = int_size_in_bytes (type);
13341 rsize = (size + 3) / 4;
13342 int pad = 4 * rsize - size;
13343 align = 1;
13345 machine_mode mode = TYPE_MODE (type);
13346 if (abi_v4_pass_in_fpr (mode))
13348 /* FP args go in FP registers, if present. */
13349 reg = fpr;
13350 n_reg = (size + 7) / 8;
13351 sav_ofs = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4) * 4;
13352 sav_scale = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4);
13353 if (mode != SFmode && mode != SDmode)
13354 align = 8;
13356 else
13358 /* Otherwise into GP registers. */
13359 reg = gpr;
13360 n_reg = rsize;
13361 sav_ofs = 0;
13362 sav_scale = 4;
13363 if (n_reg == 2)
13364 align = 8;
13367 /* Pull the value out of the saved registers.... */
13369 lab_over = NULL;
13370 addr = create_tmp_var (ptr_type_node, "addr");
13372 /* AltiVec vectors never go in registers when -mabi=altivec. */
13373 if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
13374 align = 16;
13375 else
13377 lab_false = create_artificial_label (input_location);
13378 lab_over = create_artificial_label (input_location);
13380 /* Long long is aligned in the registers. As are any other 2 gpr
13381 item such as complex int due to a historical mistake. */
13382 u = reg;
13383 if (n_reg == 2 && reg == gpr)
13385 regalign = 1;
13386 u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
13387 build_int_cst (TREE_TYPE (reg), n_reg - 1));
13388 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
13389 unshare_expr (reg), u);
13391 /* _Decimal128 is passed in even/odd fpr pairs; the stored
13392 reg number is 0 for f1, so we want to make it odd. */
13393 else if (reg == fpr && mode == TDmode)
13395 t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
13396 build_int_cst (TREE_TYPE (reg), 1));
13397 u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
13400 t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
13401 t = build2 (GE_EXPR, boolean_type_node, u, t);
13402 u = build1 (GOTO_EXPR, void_type_node, lab_false);
13403 t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
13404 gimplify_and_add (t, pre_p);
13406 t = sav;
13407 if (sav_ofs)
13408 t = fold_build_pointer_plus_hwi (sav, sav_ofs);
13410 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
13411 build_int_cst (TREE_TYPE (reg), n_reg));
13412 u = fold_convert (sizetype, u);
13413 u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
13414 t = fold_build_pointer_plus (t, u);
13416 /* _Decimal32 varargs are located in the second word of the 64-bit
13417 FP register for 32-bit binaries. */
13418 if (TARGET_32BIT && TARGET_HARD_FLOAT && mode == SDmode)
13419 t = fold_build_pointer_plus_hwi (t, size);
13421 /* Args are passed right-aligned. */
13422 if (BYTES_BIG_ENDIAN)
13423 t = fold_build_pointer_plus_hwi (t, pad);
13425 gimplify_assign (addr, t, pre_p);
13427 gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
13429 stmt = gimple_build_label (lab_false);
13430 gimple_seq_add_stmt (pre_p, stmt);
13432 if ((n_reg == 2 && !regalign) || n_reg > 2)
13434 /* Ensure that we don't find any more args in regs.
13435 Alignment has taken care of for special cases. */
13436 gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
13440 /* ... otherwise out of the overflow area. */
13442 /* Care for on-stack alignment if needed. */
13443 t = ovf;
13444 if (align != 1)
13446 t = fold_build_pointer_plus_hwi (t, align - 1);
13447 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
13448 build_int_cst (TREE_TYPE (t), -align));
13451 /* Args are passed right-aligned. */
13452 if (BYTES_BIG_ENDIAN)
13453 t = fold_build_pointer_plus_hwi (t, pad);
13455 gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
13457 gimplify_assign (unshare_expr (addr), t, pre_p);
13459 t = fold_build_pointer_plus_hwi (t, size);
13460 gimplify_assign (unshare_expr (ovf), t, pre_p);
13462 if (lab_over)
13464 stmt = gimple_build_label (lab_over);
13465 gimple_seq_add_stmt (pre_p, stmt);
13468 if (STRICT_ALIGNMENT
13469 && (TYPE_ALIGN (type)
13470 > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
13472 /* The value (of type complex double, for example) may not be
13473 aligned in memory in the saved registers, so copy via a
13474 temporary. (This is the same code as used for SPARC.) */
13475 tree tmp = create_tmp_var (type, "va_arg_tmp");
13476 tree dest_addr = build_fold_addr_expr (tmp);
13478 tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
13479 3, dest_addr, addr, size_int (rsize * 4));
13481 gimplify_and_add (copy, pre_p);
13482 addr = dest_addr;
13485 addr = fold_convert (ptrtype, addr);
13486 return build_va_arg_indirect_ref (addr);
13489 /* Builtins. */
13491 static void
13492 def_builtin (const char *name, tree type, enum rs6000_builtins code)
13494 tree t;
13495 unsigned classify = rs6000_builtin_info[(int)code].attr;
13496 const char *attr_string = "";
13498 gcc_assert (name != NULL);
13499 gcc_assert (IN_RANGE ((int)code, 0, (int)RS6000_BUILTIN_COUNT));
13501 if (rs6000_builtin_decls[(int)code])
13502 fatal_error (input_location,
13503 "internal error: builtin function %qs already processed",
13504 name);
13506 rs6000_builtin_decls[(int)code] = t =
13507 add_builtin_function (name, type, (int)code, BUILT_IN_MD, NULL, NULL_TREE);
13509 /* Set any special attributes. */
13510 if ((classify & RS6000_BTC_CONST) != 0)
13512 /* const function, function only depends on the inputs. */
13513 TREE_READONLY (t) = 1;
13514 TREE_NOTHROW (t) = 1;
13515 attr_string = ", const";
13517 else if ((classify & RS6000_BTC_PURE) != 0)
13519 /* pure function, function can read global memory, but does not set any
13520 external state. */
13521 DECL_PURE_P (t) = 1;
13522 TREE_NOTHROW (t) = 1;
13523 attr_string = ", pure";
13525 else if ((classify & RS6000_BTC_FP) != 0)
13527 /* Function is a math function. If rounding mode is on, then treat the
13528 function as not reading global memory, but it can have arbitrary side
13529 effects. If it is off, then assume the function is a const function.
13530 This mimics the ATTR_MATHFN_FPROUNDING attribute in
13531 builtin-attribute.def that is used for the math functions. */
13532 TREE_NOTHROW (t) = 1;
13533 if (flag_rounding_math)
13535 DECL_PURE_P (t) = 1;
13536 DECL_IS_NOVOPS (t) = 1;
13537 attr_string = ", fp, pure";
13539 else
13541 TREE_READONLY (t) = 1;
13542 attr_string = ", fp, const";
13545 else if ((classify & RS6000_BTC_ATTR_MASK) != 0)
13546 gcc_unreachable ();
13548 if (TARGET_DEBUG_BUILTIN)
13549 fprintf (stderr, "rs6000_builtin, code = %4d, %s%s\n",
13550 (int)code, name, attr_string);
13553 /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
13555 #undef RS6000_BUILTIN_0
13556 #undef RS6000_BUILTIN_1
13557 #undef RS6000_BUILTIN_2
13558 #undef RS6000_BUILTIN_3
13559 #undef RS6000_BUILTIN_A
13560 #undef RS6000_BUILTIN_D
13561 #undef RS6000_BUILTIN_H
13562 #undef RS6000_BUILTIN_P
13563 #undef RS6000_BUILTIN_Q
13564 #undef RS6000_BUILTIN_X
13566 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13567 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13568 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13569 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) \
13570 { MASK, ICODE, NAME, ENUM },
13572 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13573 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13574 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13575 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13576 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13577 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13579 static const struct builtin_description bdesc_3arg[] =
13581 #include "rs6000-builtin.def"
13584 /* DST operations: void foo (void *, const int, const char). */
13586 #undef RS6000_BUILTIN_0
13587 #undef RS6000_BUILTIN_1
13588 #undef RS6000_BUILTIN_2
13589 #undef RS6000_BUILTIN_3
13590 #undef RS6000_BUILTIN_A
13591 #undef RS6000_BUILTIN_D
13592 #undef RS6000_BUILTIN_H
13593 #undef RS6000_BUILTIN_P
13594 #undef RS6000_BUILTIN_Q
13595 #undef RS6000_BUILTIN_X
13597 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13598 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13599 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13600 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13601 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13602 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) \
13603 { MASK, ICODE, NAME, ENUM },
13605 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13606 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13607 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13608 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13610 static const struct builtin_description bdesc_dst[] =
13612 #include "rs6000-builtin.def"
13615 /* Simple binary operations: VECc = foo (VECa, VECb). */
13617 #undef RS6000_BUILTIN_0
13618 #undef RS6000_BUILTIN_1
13619 #undef RS6000_BUILTIN_2
13620 #undef RS6000_BUILTIN_3
13621 #undef RS6000_BUILTIN_A
13622 #undef RS6000_BUILTIN_D
13623 #undef RS6000_BUILTIN_H
13624 #undef RS6000_BUILTIN_P
13625 #undef RS6000_BUILTIN_Q
13626 #undef RS6000_BUILTIN_X
13628 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13629 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13630 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) \
13631 { MASK, ICODE, NAME, ENUM },
13633 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13634 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13635 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13636 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13637 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13638 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13639 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13641 static const struct builtin_description bdesc_2arg[] =
13643 #include "rs6000-builtin.def"
13646 #undef RS6000_BUILTIN_0
13647 #undef RS6000_BUILTIN_1
13648 #undef RS6000_BUILTIN_2
13649 #undef RS6000_BUILTIN_3
13650 #undef RS6000_BUILTIN_A
13651 #undef RS6000_BUILTIN_D
13652 #undef RS6000_BUILTIN_H
13653 #undef RS6000_BUILTIN_P
13654 #undef RS6000_BUILTIN_Q
13655 #undef RS6000_BUILTIN_X
13657 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13658 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13659 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13660 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13661 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13662 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13663 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13664 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) \
13665 { MASK, ICODE, NAME, ENUM },
13667 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13668 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13670 /* AltiVec predicates. */
13672 static const struct builtin_description bdesc_altivec_preds[] =
13674 #include "rs6000-builtin.def"
13677 /* PAIRED predicates. */
13678 #undef RS6000_BUILTIN_0
13679 #undef RS6000_BUILTIN_1
13680 #undef RS6000_BUILTIN_2
13681 #undef RS6000_BUILTIN_3
13682 #undef RS6000_BUILTIN_A
13683 #undef RS6000_BUILTIN_D
13684 #undef RS6000_BUILTIN_H
13685 #undef RS6000_BUILTIN_P
13686 #undef RS6000_BUILTIN_Q
13687 #undef RS6000_BUILTIN_X
13689 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13690 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13691 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13692 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13693 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13694 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13695 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13696 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13697 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) \
13698 { MASK, ICODE, NAME, ENUM },
13700 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13702 static const struct builtin_description bdesc_paired_preds[] =
13704 #include "rs6000-builtin.def"
13707 /* ABS* operations. */
13709 #undef RS6000_BUILTIN_0
13710 #undef RS6000_BUILTIN_1
13711 #undef RS6000_BUILTIN_2
13712 #undef RS6000_BUILTIN_3
13713 #undef RS6000_BUILTIN_A
13714 #undef RS6000_BUILTIN_D
13715 #undef RS6000_BUILTIN_H
13716 #undef RS6000_BUILTIN_P
13717 #undef RS6000_BUILTIN_Q
13718 #undef RS6000_BUILTIN_X
13720 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13721 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13722 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13723 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13724 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) \
13725 { MASK, ICODE, NAME, ENUM },
13727 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13728 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13729 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13730 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13731 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13733 static const struct builtin_description bdesc_abs[] =
13735 #include "rs6000-builtin.def"
13738 /* Simple unary operations: VECb = foo (unsigned literal) or VECb =
13739 foo (VECa). */
13741 #undef RS6000_BUILTIN_0
13742 #undef RS6000_BUILTIN_1
13743 #undef RS6000_BUILTIN_2
13744 #undef RS6000_BUILTIN_3
13745 #undef RS6000_BUILTIN_A
13746 #undef RS6000_BUILTIN_D
13747 #undef RS6000_BUILTIN_H
13748 #undef RS6000_BUILTIN_P
13749 #undef RS6000_BUILTIN_Q
13750 #undef RS6000_BUILTIN_X
13752 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13753 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) \
13754 { MASK, ICODE, NAME, ENUM },
13756 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13757 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13758 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13759 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13760 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13761 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13762 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13763 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13765 static const struct builtin_description bdesc_1arg[] =
13767 #include "rs6000-builtin.def"
13770 /* Simple no-argument operations: result = __builtin_darn_32 () */
13772 #undef RS6000_BUILTIN_0
13773 #undef RS6000_BUILTIN_1
13774 #undef RS6000_BUILTIN_2
13775 #undef RS6000_BUILTIN_3
13776 #undef RS6000_BUILTIN_A
13777 #undef RS6000_BUILTIN_D
13778 #undef RS6000_BUILTIN_H
13779 #undef RS6000_BUILTIN_P
13780 #undef RS6000_BUILTIN_Q
13781 #undef RS6000_BUILTIN_X
13783 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) \
13784 { MASK, ICODE, NAME, ENUM },
13786 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13787 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13788 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13789 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13790 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13791 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13792 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13793 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13794 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13796 static const struct builtin_description bdesc_0arg[] =
13798 #include "rs6000-builtin.def"
13801 /* HTM builtins. */
13802 #undef RS6000_BUILTIN_0
13803 #undef RS6000_BUILTIN_1
13804 #undef RS6000_BUILTIN_2
13805 #undef RS6000_BUILTIN_3
13806 #undef RS6000_BUILTIN_A
13807 #undef RS6000_BUILTIN_D
13808 #undef RS6000_BUILTIN_H
13809 #undef RS6000_BUILTIN_P
13810 #undef RS6000_BUILTIN_Q
13811 #undef RS6000_BUILTIN_X
13813 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13814 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13815 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13816 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13817 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13818 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13819 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) \
13820 { MASK, ICODE, NAME, ENUM },
13822 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13823 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE)
13824 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13826 static const struct builtin_description bdesc_htm[] =
13828 #include "rs6000-builtin.def"
13831 #undef RS6000_BUILTIN_0
13832 #undef RS6000_BUILTIN_1
13833 #undef RS6000_BUILTIN_2
13834 #undef RS6000_BUILTIN_3
13835 #undef RS6000_BUILTIN_A
13836 #undef RS6000_BUILTIN_D
13837 #undef RS6000_BUILTIN_H
13838 #undef RS6000_BUILTIN_P
13839 #undef RS6000_BUILTIN_Q
13841 /* Return true if a builtin function is overloaded. */
13842 bool
13843 rs6000_overloaded_builtin_p (enum rs6000_builtins fncode)
13845 return (rs6000_builtin_info[(int)fncode].attr & RS6000_BTC_OVERLOADED) != 0;
13848 const char *
13849 rs6000_overloaded_builtin_name (enum rs6000_builtins fncode)
13851 return rs6000_builtin_info[(int)fncode].name;
13854 /* Expand an expression EXP that calls a builtin without arguments. */
13855 static rtx
13856 rs6000_expand_zeroop_builtin (enum insn_code icode, rtx target)
13858 rtx pat;
13859 machine_mode tmode = insn_data[icode].operand[0].mode;
13861 if (icode == CODE_FOR_nothing)
13862 /* Builtin not supported on this processor. */
13863 return 0;
13865 if (target == 0
13866 || GET_MODE (target) != tmode
13867 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13868 target = gen_reg_rtx (tmode);
13870 pat = GEN_FCN (icode) (target);
13871 if (! pat)
13872 return 0;
13873 emit_insn (pat);
13875 return target;
13879 static rtx
13880 rs6000_expand_mtfsf_builtin (enum insn_code icode, tree exp)
13882 rtx pat;
13883 tree arg0 = CALL_EXPR_ARG (exp, 0);
13884 tree arg1 = CALL_EXPR_ARG (exp, 1);
13885 rtx op0 = expand_normal (arg0);
13886 rtx op1 = expand_normal (arg1);
13887 machine_mode mode0 = insn_data[icode].operand[0].mode;
13888 machine_mode mode1 = insn_data[icode].operand[1].mode;
13890 if (icode == CODE_FOR_nothing)
13891 /* Builtin not supported on this processor. */
13892 return 0;
13894 /* If we got invalid arguments bail out before generating bad rtl. */
13895 if (arg0 == error_mark_node || arg1 == error_mark_node)
13896 return const0_rtx;
13898 if (GET_CODE (op0) != CONST_INT
13899 || INTVAL (op0) > 255
13900 || INTVAL (op0) < 0)
13902 error ("argument 1 must be an 8-bit field value");
13903 return const0_rtx;
13906 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13907 op0 = copy_to_mode_reg (mode0, op0);
13909 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
13910 op1 = copy_to_mode_reg (mode1, op1);
13912 pat = GEN_FCN (icode) (op0, op1);
13913 if (! pat)
13914 return const0_rtx;
13915 emit_insn (pat);
13917 return NULL_RTX;
13920 static rtx
13921 rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
13923 rtx pat;
13924 tree arg0 = CALL_EXPR_ARG (exp, 0);
13925 rtx op0 = expand_normal (arg0);
13926 machine_mode tmode = insn_data[icode].operand[0].mode;
13927 machine_mode mode0 = insn_data[icode].operand[1].mode;
13929 if (icode == CODE_FOR_nothing)
13930 /* Builtin not supported on this processor. */
13931 return 0;
13933 /* If we got invalid arguments bail out before generating bad rtl. */
13934 if (arg0 == error_mark_node)
13935 return const0_rtx;
13937 if (icode == CODE_FOR_altivec_vspltisb
13938 || icode == CODE_FOR_altivec_vspltish
13939 || icode == CODE_FOR_altivec_vspltisw)
13941 /* Only allow 5-bit *signed* literals. */
13942 if (GET_CODE (op0) != CONST_INT
13943 || INTVAL (op0) > 15
13944 || INTVAL (op0) < -16)
13946 error ("argument 1 must be a 5-bit signed literal");
13947 return CONST0_RTX (tmode);
13951 if (target == 0
13952 || GET_MODE (target) != tmode
13953 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13954 target = gen_reg_rtx (tmode);
13956 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13957 op0 = copy_to_mode_reg (mode0, op0);
13959 pat = GEN_FCN (icode) (target, op0);
13960 if (! pat)
13961 return 0;
13962 emit_insn (pat);
13964 return target;
13967 static rtx
13968 altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
13970 rtx pat, scratch1, scratch2;
13971 tree arg0 = CALL_EXPR_ARG (exp, 0);
13972 rtx op0 = expand_normal (arg0);
13973 machine_mode tmode = insn_data[icode].operand[0].mode;
13974 machine_mode mode0 = insn_data[icode].operand[1].mode;
13976 /* If we have invalid arguments, bail out before generating bad rtl. */
13977 if (arg0 == error_mark_node)
13978 return const0_rtx;
13980 if (target == 0
13981 || GET_MODE (target) != tmode
13982 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13983 target = gen_reg_rtx (tmode);
13985 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13986 op0 = copy_to_mode_reg (mode0, op0);
13988 scratch1 = gen_reg_rtx (mode0);
13989 scratch2 = gen_reg_rtx (mode0);
13991 pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
13992 if (! pat)
13993 return 0;
13994 emit_insn (pat);
13996 return target;
13999 static rtx
14000 rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
14002 rtx pat;
14003 tree arg0 = CALL_EXPR_ARG (exp, 0);
14004 tree arg1 = CALL_EXPR_ARG (exp, 1);
14005 rtx op0 = expand_normal (arg0);
14006 rtx op1 = expand_normal (arg1);
14007 machine_mode tmode = insn_data[icode].operand[0].mode;
14008 machine_mode mode0 = insn_data[icode].operand[1].mode;
14009 machine_mode mode1 = insn_data[icode].operand[2].mode;
14011 if (icode == CODE_FOR_nothing)
14012 /* Builtin not supported on this processor. */
14013 return 0;
14015 /* If we got invalid arguments bail out before generating bad rtl. */
14016 if (arg0 == error_mark_node || arg1 == error_mark_node)
14017 return const0_rtx;
14019 if (icode == CODE_FOR_altivec_vcfux
14020 || icode == CODE_FOR_altivec_vcfsx
14021 || icode == CODE_FOR_altivec_vctsxs
14022 || icode == CODE_FOR_altivec_vctuxs
14023 || icode == CODE_FOR_altivec_vspltb
14024 || icode == CODE_FOR_altivec_vsplth
14025 || icode == CODE_FOR_altivec_vspltw)
14027 /* Only allow 5-bit unsigned literals. */
14028 STRIP_NOPS (arg1);
14029 if (TREE_CODE (arg1) != INTEGER_CST
14030 || TREE_INT_CST_LOW (arg1) & ~0x1f)
14032 error ("argument 2 must be a 5-bit unsigned literal");
14033 return CONST0_RTX (tmode);
14036 else if (icode == CODE_FOR_dfptstsfi_eq_dd
14037 || icode == CODE_FOR_dfptstsfi_lt_dd
14038 || icode == CODE_FOR_dfptstsfi_gt_dd
14039 || icode == CODE_FOR_dfptstsfi_unordered_dd
14040 || icode == CODE_FOR_dfptstsfi_eq_td
14041 || icode == CODE_FOR_dfptstsfi_lt_td
14042 || icode == CODE_FOR_dfptstsfi_gt_td
14043 || icode == CODE_FOR_dfptstsfi_unordered_td)
14045 /* Only allow 6-bit unsigned literals. */
14046 STRIP_NOPS (arg0);
14047 if (TREE_CODE (arg0) != INTEGER_CST
14048 || !IN_RANGE (TREE_INT_CST_LOW (arg0), 0, 63))
14050 error ("argument 1 must be a 6-bit unsigned literal");
14051 return CONST0_RTX (tmode);
14054 else if (icode == CODE_FOR_xststdcqp
14055 || icode == CODE_FOR_xststdcdp
14056 || icode == CODE_FOR_xststdcsp
14057 || icode == CODE_FOR_xvtstdcdp
14058 || icode == CODE_FOR_xvtstdcsp)
14060 /* Only allow 7-bit unsigned literals. */
14061 STRIP_NOPS (arg1);
14062 if (TREE_CODE (arg1) != INTEGER_CST
14063 || !IN_RANGE (TREE_INT_CST_LOW (arg1), 0, 127))
14065 error ("argument 2 must be a 7-bit unsigned literal");
14066 return CONST0_RTX (tmode);
14069 else if (icode == CODE_FOR_unpackv1ti
14070 || icode == CODE_FOR_unpackkf
14071 || icode == CODE_FOR_unpacktf
14072 || icode == CODE_FOR_unpackif
14073 || icode == CODE_FOR_unpacktd)
14075 /* Only allow 1-bit unsigned literals. */
14076 STRIP_NOPS (arg1);
14077 if (TREE_CODE (arg1) != INTEGER_CST
14078 || !IN_RANGE (TREE_INT_CST_LOW (arg1), 0, 1))
14080 error ("argument 2 must be a 1-bit unsigned literal");
14081 return CONST0_RTX (tmode);
14085 if (target == 0
14086 || GET_MODE (target) != tmode
14087 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14088 target = gen_reg_rtx (tmode);
14090 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
14091 op0 = copy_to_mode_reg (mode0, op0);
14092 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
14093 op1 = copy_to_mode_reg (mode1, op1);
14095 pat = GEN_FCN (icode) (target, op0, op1);
14096 if (! pat)
14097 return 0;
14098 emit_insn (pat);
14100 return target;
14103 static rtx
14104 altivec_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
14106 rtx pat, scratch;
14107 tree cr6_form = CALL_EXPR_ARG (exp, 0);
14108 tree arg0 = CALL_EXPR_ARG (exp, 1);
14109 tree arg1 = CALL_EXPR_ARG (exp, 2);
14110 rtx op0 = expand_normal (arg0);
14111 rtx op1 = expand_normal (arg1);
14112 machine_mode tmode = SImode;
14113 machine_mode mode0 = insn_data[icode].operand[1].mode;
14114 machine_mode mode1 = insn_data[icode].operand[2].mode;
14115 int cr6_form_int;
14117 if (TREE_CODE (cr6_form) != INTEGER_CST)
14119 error ("argument 1 of %qs must be a constant",
14120 "__builtin_altivec_predicate");
14121 return const0_rtx;
14123 else
14124 cr6_form_int = TREE_INT_CST_LOW (cr6_form);
14126 gcc_assert (mode0 == mode1);
14128 /* If we have invalid arguments, bail out before generating bad rtl. */
14129 if (arg0 == error_mark_node || arg1 == error_mark_node)
14130 return const0_rtx;
14132 if (target == 0
14133 || GET_MODE (target) != tmode
14134 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14135 target = gen_reg_rtx (tmode);
14137 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
14138 op0 = copy_to_mode_reg (mode0, op0);
14139 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
14140 op1 = copy_to_mode_reg (mode1, op1);
14142 /* Note that for many of the relevant operations (e.g. cmpne or
14143 cmpeq) with float or double operands, it makes more sense for the
14144 mode of the allocated scratch register to select a vector of
14145 integer. But the choice to copy the mode of operand 0 was made
14146 long ago and there are no plans to change it. */
14147 scratch = gen_reg_rtx (mode0);
14149 pat = GEN_FCN (icode) (scratch, op0, op1);
14150 if (! pat)
14151 return 0;
14152 emit_insn (pat);
14154 /* The vec_any* and vec_all* predicates use the same opcodes for two
14155 different operations, but the bits in CR6 will be different
14156 depending on what information we want. So we have to play tricks
14157 with CR6 to get the right bits out.
14159 If you think this is disgusting, look at the specs for the
14160 AltiVec predicates. */
14162 switch (cr6_form_int)
14164 case 0:
14165 emit_insn (gen_cr6_test_for_zero (target));
14166 break;
14167 case 1:
14168 emit_insn (gen_cr6_test_for_zero_reverse (target));
14169 break;
14170 case 2:
14171 emit_insn (gen_cr6_test_for_lt (target));
14172 break;
14173 case 3:
14174 emit_insn (gen_cr6_test_for_lt_reverse (target));
14175 break;
14176 default:
14177 error ("argument 1 of %qs is out of range",
14178 "__builtin_altivec_predicate");
14179 break;
14182 return target;
14185 static rtx
14186 paired_expand_lv_builtin (enum insn_code icode, tree exp, rtx target)
14188 rtx pat, addr;
14189 tree arg0 = CALL_EXPR_ARG (exp, 0);
14190 tree arg1 = CALL_EXPR_ARG (exp, 1);
14191 machine_mode tmode = insn_data[icode].operand[0].mode;
14192 machine_mode mode0 = Pmode;
14193 machine_mode mode1 = Pmode;
14194 rtx op0 = expand_normal (arg0);
14195 rtx op1 = expand_normal (arg1);
14197 if (icode == CODE_FOR_nothing)
14198 /* Builtin not supported on this processor. */
14199 return 0;
14201 /* If we got invalid arguments bail out before generating bad rtl. */
14202 if (arg0 == error_mark_node || arg1 == error_mark_node)
14203 return const0_rtx;
14205 if (target == 0
14206 || GET_MODE (target) != tmode
14207 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14208 target = gen_reg_rtx (tmode);
14210 op1 = copy_to_mode_reg (mode1, op1);
14212 if (op0 == const0_rtx)
14214 addr = gen_rtx_MEM (tmode, op1);
14216 else
14218 op0 = copy_to_mode_reg (mode0, op0);
14219 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op0, op1));
14222 pat = GEN_FCN (icode) (target, addr);
14224 if (! pat)
14225 return 0;
14226 emit_insn (pat);
14228 return target;
14231 /* Return a constant vector for use as a little-endian permute control vector
14232 to reverse the order of elements of the given vector mode. */
14233 static rtx
14234 swap_selector_for_mode (machine_mode mode)
14236 /* These are little endian vectors, so their elements are reversed
14237 from what you would normally expect for a permute control vector. */
14238 unsigned int swap2[16] = {7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8};
14239 unsigned int swap4[16] = {3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12};
14240 unsigned int swap8[16] = {1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14};
14241 unsigned int swap16[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
14242 unsigned int *swaparray, i;
14243 rtx perm[16];
14245 switch (mode)
14247 case E_V2DFmode:
14248 case E_V2DImode:
14249 swaparray = swap2;
14250 break;
14251 case E_V4SFmode:
14252 case E_V4SImode:
14253 swaparray = swap4;
14254 break;
14255 case E_V8HImode:
14256 swaparray = swap8;
14257 break;
14258 case E_V16QImode:
14259 swaparray = swap16;
14260 break;
14261 default:
14262 gcc_unreachable ();
14265 for (i = 0; i < 16; ++i)
14266 perm[i] = GEN_INT (swaparray[i]);
14268 return force_reg (V16QImode, gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm)));
14271 /* Generate code for an "lvxl", or "lve*x" built-in for a little endian target
14272 with -maltivec=be specified. Issue the load followed by an element-
14273 reversing permute. */
14274 void
14275 altivec_expand_lvx_be (rtx op0, rtx op1, machine_mode mode, unsigned unspec)
14277 rtx tmp = gen_reg_rtx (mode);
14278 rtx load = gen_rtx_SET (tmp, op1);
14279 rtx lvx = gen_rtx_UNSPEC (mode, gen_rtvec (1, const0_rtx), unspec);
14280 rtx par = gen_rtx_PARALLEL (mode, gen_rtvec (2, load, lvx));
14281 rtx sel = swap_selector_for_mode (mode);
14282 rtx vperm = gen_rtx_UNSPEC (mode, gen_rtvec (3, tmp, tmp, sel), UNSPEC_VPERM);
14284 gcc_assert (REG_P (op0));
14285 emit_insn (par);
14286 emit_insn (gen_rtx_SET (op0, vperm));
14289 /* Generate code for a "stvxl" built-in for a little endian target with
14290 -maltivec=be specified. Issue the store preceded by an element-reversing
14291 permute. */
14292 void
14293 altivec_expand_stvx_be (rtx op0, rtx op1, machine_mode mode, unsigned unspec)
14295 rtx tmp = gen_reg_rtx (mode);
14296 rtx store = gen_rtx_SET (op0, tmp);
14297 rtx stvx = gen_rtx_UNSPEC (mode, gen_rtvec (1, const0_rtx), unspec);
14298 rtx par = gen_rtx_PARALLEL (mode, gen_rtvec (2, store, stvx));
14299 rtx sel = swap_selector_for_mode (mode);
14300 rtx vperm;
14302 gcc_assert (REG_P (op1));
14303 vperm = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op1, sel), UNSPEC_VPERM);
14304 emit_insn (gen_rtx_SET (tmp, vperm));
14305 emit_insn (par);
14308 /* Generate code for a "stve*x" built-in for a little endian target with -maltivec=be
14309 specified. Issue the store preceded by an element-reversing permute. */
14310 void
14311 altivec_expand_stvex_be (rtx op0, rtx op1, machine_mode mode, unsigned unspec)
14313 machine_mode inner_mode = GET_MODE_INNER (mode);
14314 rtx tmp = gen_reg_rtx (mode);
14315 rtx stvx = gen_rtx_UNSPEC (inner_mode, gen_rtvec (1, tmp), unspec);
14316 rtx sel = swap_selector_for_mode (mode);
14317 rtx vperm;
14319 gcc_assert (REG_P (op1));
14320 vperm = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op1, sel), UNSPEC_VPERM);
14321 emit_insn (gen_rtx_SET (tmp, vperm));
14322 emit_insn (gen_rtx_SET (op0, stvx));
14325 static rtx
14326 altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
14328 rtx pat, addr;
14329 tree arg0 = CALL_EXPR_ARG (exp, 0);
14330 tree arg1 = CALL_EXPR_ARG (exp, 1);
14331 machine_mode tmode = insn_data[icode].operand[0].mode;
14332 machine_mode mode0 = Pmode;
14333 machine_mode mode1 = Pmode;
14334 rtx op0 = expand_normal (arg0);
14335 rtx op1 = expand_normal (arg1);
14337 if (icode == CODE_FOR_nothing)
14338 /* Builtin not supported on this processor. */
14339 return 0;
14341 /* If we got invalid arguments bail out before generating bad rtl. */
14342 if (arg0 == error_mark_node || arg1 == error_mark_node)
14343 return const0_rtx;
14345 if (target == 0
14346 || GET_MODE (target) != tmode
14347 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14348 target = gen_reg_rtx (tmode);
14350 op1 = copy_to_mode_reg (mode1, op1);
14352 /* For LVX, express the RTL accurately by ANDing the address with -16.
14353 LVXL and LVE*X expand to use UNSPECs to hide their special behavior,
14354 so the raw address is fine. */
14355 if (icode == CODE_FOR_altivec_lvx_v2df_2op
14356 || icode == CODE_FOR_altivec_lvx_v2di_2op
14357 || icode == CODE_FOR_altivec_lvx_v4sf_2op
14358 || icode == CODE_FOR_altivec_lvx_v4si_2op
14359 || icode == CODE_FOR_altivec_lvx_v8hi_2op
14360 || icode == CODE_FOR_altivec_lvx_v16qi_2op)
14362 rtx rawaddr;
14363 if (op0 == const0_rtx)
14364 rawaddr = op1;
14365 else
14367 op0 = copy_to_mode_reg (mode0, op0);
14368 rawaddr = gen_rtx_PLUS (Pmode, op1, op0);
14370 addr = gen_rtx_AND (Pmode, rawaddr, gen_rtx_CONST_INT (Pmode, -16));
14371 addr = gen_rtx_MEM (blk ? BLKmode : tmode, addr);
14373 /* For -maltivec=be, emit the load and follow it up with a
14374 permute to swap the elements. */
14375 if (!BYTES_BIG_ENDIAN && VECTOR_ELT_ORDER_BIG)
14377 rtx temp = gen_reg_rtx (tmode);
14378 emit_insn (gen_rtx_SET (temp, addr));
14380 rtx sel = swap_selector_for_mode (tmode);
14381 rtx vperm = gen_rtx_UNSPEC (tmode, gen_rtvec (3, temp, temp, sel),
14382 UNSPEC_VPERM);
14383 emit_insn (gen_rtx_SET (target, vperm));
14385 else
14386 emit_insn (gen_rtx_SET (target, addr));
14388 else
14390 if (op0 == const0_rtx)
14391 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
14392 else
14394 op0 = copy_to_mode_reg (mode0, op0);
14395 addr = gen_rtx_MEM (blk ? BLKmode : tmode,
14396 gen_rtx_PLUS (Pmode, op1, op0));
14399 pat = GEN_FCN (icode) (target, addr);
14400 if (! pat)
14401 return 0;
14402 emit_insn (pat);
14405 return target;
14408 static rtx
14409 altivec_expand_xl_be_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
14411 rtx pat, addr;
14412 tree arg0 = CALL_EXPR_ARG (exp, 0);
14413 tree arg1 = CALL_EXPR_ARG (exp, 1);
14414 machine_mode tmode = insn_data[icode].operand[0].mode;
14415 machine_mode mode0 = Pmode;
14416 machine_mode mode1 = Pmode;
14417 rtx op0 = expand_normal (arg0);
14418 rtx op1 = expand_normal (arg1);
14420 if (icode == CODE_FOR_nothing)
14421 /* Builtin not supported on this processor. */
14422 return 0;
14424 /* If we got invalid arguments bail out before generating bad rtl. */
14425 if (arg0 == error_mark_node || arg1 == error_mark_node)
14426 return const0_rtx;
14428 if (target == 0
14429 || GET_MODE (target) != tmode
14430 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14431 target = gen_reg_rtx (tmode);
14433 op1 = copy_to_mode_reg (mode1, op1);
14435 if (op0 == const0_rtx)
14436 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
14437 else
14439 op0 = copy_to_mode_reg (mode0, op0);
14440 addr = gen_rtx_MEM (blk ? BLKmode : tmode,
14441 gen_rtx_PLUS (Pmode, op1, op0));
14444 pat = GEN_FCN (icode) (target, addr);
14445 if (!pat)
14446 return 0;
14448 emit_insn (pat);
14449 /* Reverse element order of elements if in LE mode */
14450 if (!VECTOR_ELT_ORDER_BIG)
14452 rtx sel = swap_selector_for_mode (tmode);
14453 rtx vperm = gen_rtx_UNSPEC (tmode, gen_rtvec (3, target, target, sel),
14454 UNSPEC_VPERM);
14455 emit_insn (gen_rtx_SET (target, vperm));
14457 return target;
14460 static rtx
14461 paired_expand_stv_builtin (enum insn_code icode, tree exp)
14463 tree arg0 = CALL_EXPR_ARG (exp, 0);
14464 tree arg1 = CALL_EXPR_ARG (exp, 1);
14465 tree arg2 = CALL_EXPR_ARG (exp, 2);
14466 rtx op0 = expand_normal (arg0);
14467 rtx op1 = expand_normal (arg1);
14468 rtx op2 = expand_normal (arg2);
14469 rtx pat, addr;
14470 machine_mode tmode = insn_data[icode].operand[0].mode;
14471 machine_mode mode1 = Pmode;
14472 machine_mode mode2 = Pmode;
14474 /* Invalid arguments. Bail before doing anything stoopid! */
14475 if (arg0 == error_mark_node
14476 || arg1 == error_mark_node
14477 || arg2 == error_mark_node)
14478 return const0_rtx;
14480 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
14481 op0 = copy_to_mode_reg (tmode, op0);
14483 op2 = copy_to_mode_reg (mode2, op2);
14485 if (op1 == const0_rtx)
14487 addr = gen_rtx_MEM (tmode, op2);
14489 else
14491 op1 = copy_to_mode_reg (mode1, op1);
14492 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
14495 pat = GEN_FCN (icode) (addr, op0);
14496 if (pat)
14497 emit_insn (pat);
14498 return NULL_RTX;
14501 static rtx
14502 altivec_expand_stxvl_builtin (enum insn_code icode, tree exp)
14504 rtx pat;
14505 tree arg0 = CALL_EXPR_ARG (exp, 0);
14506 tree arg1 = CALL_EXPR_ARG (exp, 1);
14507 tree arg2 = CALL_EXPR_ARG (exp, 2);
14508 rtx op0 = expand_normal (arg0);
14509 rtx op1 = expand_normal (arg1);
14510 rtx op2 = expand_normal (arg2);
14511 machine_mode mode0 = insn_data[icode].operand[0].mode;
14512 machine_mode mode1 = insn_data[icode].operand[1].mode;
14513 machine_mode mode2 = insn_data[icode].operand[2].mode;
14515 if (icode == CODE_FOR_nothing)
14516 /* Builtin not supported on this processor. */
14517 return NULL_RTX;
14519 /* If we got invalid arguments bail out before generating bad rtl. */
14520 if (arg0 == error_mark_node
14521 || arg1 == error_mark_node
14522 || arg2 == error_mark_node)
14523 return NULL_RTX;
14525 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
14526 op0 = copy_to_mode_reg (mode0, op0);
14527 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
14528 op1 = copy_to_mode_reg (mode1, op1);
14529 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
14530 op2 = copy_to_mode_reg (mode2, op2);
14532 pat = GEN_FCN (icode) (op0, op1, op2);
14533 if (pat)
14534 emit_insn (pat);
14536 return NULL_RTX;
14539 static rtx
14540 altivec_expand_stv_builtin (enum insn_code icode, tree exp)
14542 tree arg0 = CALL_EXPR_ARG (exp, 0);
14543 tree arg1 = CALL_EXPR_ARG (exp, 1);
14544 tree arg2 = CALL_EXPR_ARG (exp, 2);
14545 rtx op0 = expand_normal (arg0);
14546 rtx op1 = expand_normal (arg1);
14547 rtx op2 = expand_normal (arg2);
14548 rtx pat, addr, rawaddr;
14549 machine_mode tmode = insn_data[icode].operand[0].mode;
14550 machine_mode smode = insn_data[icode].operand[1].mode;
14551 machine_mode mode1 = Pmode;
14552 machine_mode mode2 = Pmode;
14554 /* Invalid arguments. Bail before doing anything stoopid! */
14555 if (arg0 == error_mark_node
14556 || arg1 == error_mark_node
14557 || arg2 == error_mark_node)
14558 return const0_rtx;
14560 op2 = copy_to_mode_reg (mode2, op2);
14562 /* For STVX, express the RTL accurately by ANDing the address with -16.
14563 STVXL and STVE*X expand to use UNSPECs to hide their special behavior,
14564 so the raw address is fine. */
14565 if (icode == CODE_FOR_altivec_stvx_v2df_2op
14566 || icode == CODE_FOR_altivec_stvx_v2di_2op
14567 || icode == CODE_FOR_altivec_stvx_v4sf_2op
14568 || icode == CODE_FOR_altivec_stvx_v4si_2op
14569 || icode == CODE_FOR_altivec_stvx_v8hi_2op
14570 || icode == CODE_FOR_altivec_stvx_v16qi_2op)
14572 if (op1 == const0_rtx)
14573 rawaddr = op2;
14574 else
14576 op1 = copy_to_mode_reg (mode1, op1);
14577 rawaddr = gen_rtx_PLUS (Pmode, op2, op1);
14580 addr = gen_rtx_AND (Pmode, rawaddr, gen_rtx_CONST_INT (Pmode, -16));
14581 addr = gen_rtx_MEM (tmode, addr);
14583 op0 = copy_to_mode_reg (tmode, op0);
14585 /* For -maltivec=be, emit a permute to swap the elements, followed
14586 by the store. */
14587 if (!BYTES_BIG_ENDIAN && VECTOR_ELT_ORDER_BIG)
14589 rtx temp = gen_reg_rtx (tmode);
14590 rtx sel = swap_selector_for_mode (tmode);
14591 rtx vperm = gen_rtx_UNSPEC (tmode, gen_rtvec (3, op0, op0, sel),
14592 UNSPEC_VPERM);
14593 emit_insn (gen_rtx_SET (temp, vperm));
14594 emit_insn (gen_rtx_SET (addr, temp));
14596 else
14597 emit_insn (gen_rtx_SET (addr, op0));
14599 else
14601 if (! (*insn_data[icode].operand[1].predicate) (op0, smode))
14602 op0 = copy_to_mode_reg (smode, op0);
14604 if (op1 == const0_rtx)
14605 addr = gen_rtx_MEM (tmode, op2);
14606 else
14608 op1 = copy_to_mode_reg (mode1, op1);
14609 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op2, op1));
14612 pat = GEN_FCN (icode) (addr, op0);
14613 if (pat)
14614 emit_insn (pat);
14617 return NULL_RTX;
14620 /* Return the appropriate SPR number associated with the given builtin. */
14621 static inline HOST_WIDE_INT
14622 htm_spr_num (enum rs6000_builtins code)
14624 if (code == HTM_BUILTIN_GET_TFHAR
14625 || code == HTM_BUILTIN_SET_TFHAR)
14626 return TFHAR_SPR;
14627 else if (code == HTM_BUILTIN_GET_TFIAR
14628 || code == HTM_BUILTIN_SET_TFIAR)
14629 return TFIAR_SPR;
14630 else if (code == HTM_BUILTIN_GET_TEXASR
14631 || code == HTM_BUILTIN_SET_TEXASR)
14632 return TEXASR_SPR;
14633 gcc_assert (code == HTM_BUILTIN_GET_TEXASRU
14634 || code == HTM_BUILTIN_SET_TEXASRU);
14635 return TEXASRU_SPR;
14638 /* Return the appropriate SPR regno associated with the given builtin. */
14639 static inline HOST_WIDE_INT
14640 htm_spr_regno (enum rs6000_builtins code)
14642 if (code == HTM_BUILTIN_GET_TFHAR
14643 || code == HTM_BUILTIN_SET_TFHAR)
14644 return TFHAR_REGNO;
14645 else if (code == HTM_BUILTIN_GET_TFIAR
14646 || code == HTM_BUILTIN_SET_TFIAR)
14647 return TFIAR_REGNO;
14648 gcc_assert (code == HTM_BUILTIN_GET_TEXASR
14649 || code == HTM_BUILTIN_SET_TEXASR
14650 || code == HTM_BUILTIN_GET_TEXASRU
14651 || code == HTM_BUILTIN_SET_TEXASRU);
14652 return TEXASR_REGNO;
14655 /* Return the correct ICODE value depending on whether we are
14656 setting or reading the HTM SPRs. */
14657 static inline enum insn_code
14658 rs6000_htm_spr_icode (bool nonvoid)
14660 if (nonvoid)
14661 return (TARGET_POWERPC64) ? CODE_FOR_htm_mfspr_di : CODE_FOR_htm_mfspr_si;
14662 else
14663 return (TARGET_POWERPC64) ? CODE_FOR_htm_mtspr_di : CODE_FOR_htm_mtspr_si;
14666 /* Expand the HTM builtin in EXP and store the result in TARGET.
14667 Store true in *EXPANDEDP if we found a builtin to expand. */
14668 static rtx
14669 htm_expand_builtin (tree exp, rtx target, bool * expandedp)
14671 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14672 bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
14673 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14674 const struct builtin_description *d;
14675 size_t i;
14677 *expandedp = true;
14679 if (!TARGET_POWERPC64
14680 && (fcode == HTM_BUILTIN_TABORTDC
14681 || fcode == HTM_BUILTIN_TABORTDCI))
14683 size_t uns_fcode = (size_t)fcode;
14684 const char *name = rs6000_builtin_info[uns_fcode].name;
14685 error ("builtin %qs is only valid in 64-bit mode", name);
14686 return const0_rtx;
14689 /* Expand the HTM builtins. */
14690 d = bdesc_htm;
14691 for (i = 0; i < ARRAY_SIZE (bdesc_htm); i++, d++)
14692 if (d->code == fcode)
14694 rtx op[MAX_HTM_OPERANDS], pat;
14695 int nopnds = 0;
14696 tree arg;
14697 call_expr_arg_iterator iter;
14698 unsigned attr = rs6000_builtin_info[fcode].attr;
14699 enum insn_code icode = d->icode;
14700 const struct insn_operand_data *insn_op;
14701 bool uses_spr = (attr & RS6000_BTC_SPR);
14702 rtx cr = NULL_RTX;
14704 if (uses_spr)
14705 icode = rs6000_htm_spr_icode (nonvoid);
14706 insn_op = &insn_data[icode].operand[0];
14708 if (nonvoid)
14710 machine_mode tmode = (uses_spr) ? insn_op->mode : E_SImode;
14711 if (!target
14712 || GET_MODE (target) != tmode
14713 || (uses_spr && !(*insn_op->predicate) (target, tmode)))
14714 target = gen_reg_rtx (tmode);
14715 if (uses_spr)
14716 op[nopnds++] = target;
14719 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
14721 if (arg == error_mark_node || nopnds >= MAX_HTM_OPERANDS)
14722 return const0_rtx;
14724 insn_op = &insn_data[icode].operand[nopnds];
14726 op[nopnds] = expand_normal (arg);
14728 if (!(*insn_op->predicate) (op[nopnds], insn_op->mode))
14730 if (!strcmp (insn_op->constraint, "n"))
14732 int arg_num = (nonvoid) ? nopnds : nopnds + 1;
14733 if (!CONST_INT_P (op[nopnds]))
14734 error ("argument %d must be an unsigned literal", arg_num);
14735 else
14736 error ("argument %d is an unsigned literal that is "
14737 "out of range", arg_num);
14738 return const0_rtx;
14740 op[nopnds] = copy_to_mode_reg (insn_op->mode, op[nopnds]);
14743 nopnds++;
14746 /* Handle the builtins for extended mnemonics. These accept
14747 no arguments, but map to builtins that take arguments. */
14748 switch (fcode)
14750 case HTM_BUILTIN_TENDALL: /* Alias for: tend. 1 */
14751 case HTM_BUILTIN_TRESUME: /* Alias for: tsr. 1 */
14752 op[nopnds++] = GEN_INT (1);
14753 if (flag_checking)
14754 attr |= RS6000_BTC_UNARY;
14755 break;
14756 case HTM_BUILTIN_TSUSPEND: /* Alias for: tsr. 0 */
14757 op[nopnds++] = GEN_INT (0);
14758 if (flag_checking)
14759 attr |= RS6000_BTC_UNARY;
14760 break;
14761 default:
14762 break;
14765 /* If this builtin accesses SPRs, then pass in the appropriate
14766 SPR number and SPR regno as the last two operands. */
14767 if (uses_spr)
14769 machine_mode mode = (TARGET_POWERPC64) ? DImode : SImode;
14770 op[nopnds++] = gen_rtx_CONST_INT (mode, htm_spr_num (fcode));
14771 op[nopnds++] = gen_rtx_REG (mode, htm_spr_regno (fcode));
14773 /* If this builtin accesses a CR, then pass in a scratch
14774 CR as the last operand. */
14775 else if (attr & RS6000_BTC_CR)
14776 { cr = gen_reg_rtx (CCmode);
14777 op[nopnds++] = cr;
14780 if (flag_checking)
14782 int expected_nopnds = 0;
14783 if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_UNARY)
14784 expected_nopnds = 1;
14785 else if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_BINARY)
14786 expected_nopnds = 2;
14787 else if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_TERNARY)
14788 expected_nopnds = 3;
14789 if (!(attr & RS6000_BTC_VOID))
14790 expected_nopnds += 1;
14791 if (uses_spr)
14792 expected_nopnds += 2;
14794 gcc_assert (nopnds == expected_nopnds
14795 && nopnds <= MAX_HTM_OPERANDS);
14798 switch (nopnds)
14800 case 1:
14801 pat = GEN_FCN (icode) (op[0]);
14802 break;
14803 case 2:
14804 pat = GEN_FCN (icode) (op[0], op[1]);
14805 break;
14806 case 3:
14807 pat = GEN_FCN (icode) (op[0], op[1], op[2]);
14808 break;
14809 case 4:
14810 pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
14811 break;
14812 default:
14813 gcc_unreachable ();
14815 if (!pat)
14816 return NULL_RTX;
14817 emit_insn (pat);
14819 if (attr & RS6000_BTC_CR)
14821 if (fcode == HTM_BUILTIN_TBEGIN)
14823 /* Emit code to set TARGET to true or false depending on
14824 whether the tbegin. instruction successfully or failed
14825 to start a transaction. We do this by placing the 1's
14826 complement of CR's EQ bit into TARGET. */
14827 rtx scratch = gen_reg_rtx (SImode);
14828 emit_insn (gen_rtx_SET (scratch,
14829 gen_rtx_EQ (SImode, cr,
14830 const0_rtx)));
14831 emit_insn (gen_rtx_SET (target,
14832 gen_rtx_XOR (SImode, scratch,
14833 GEN_INT (1))));
14835 else
14837 /* Emit code to copy the 4-bit condition register field
14838 CR into the least significant end of register TARGET. */
14839 rtx scratch1 = gen_reg_rtx (SImode);
14840 rtx scratch2 = gen_reg_rtx (SImode);
14841 rtx subreg = simplify_gen_subreg (CCmode, scratch1, SImode, 0);
14842 emit_insn (gen_movcc (subreg, cr));
14843 emit_insn (gen_lshrsi3 (scratch2, scratch1, GEN_INT (28)));
14844 emit_insn (gen_andsi3 (target, scratch2, GEN_INT (0xf)));
14848 if (nonvoid)
14849 return target;
14850 return const0_rtx;
14853 *expandedp = false;
14854 return NULL_RTX;
14857 /* Expand the CPU builtin in FCODE and store the result in TARGET. */
14859 static rtx
14860 cpu_expand_builtin (enum rs6000_builtins fcode, tree exp ATTRIBUTE_UNUSED,
14861 rtx target)
14863 /* __builtin_cpu_init () is a nop, so expand to nothing. */
14864 if (fcode == RS6000_BUILTIN_CPU_INIT)
14865 return const0_rtx;
14867 if (target == 0 || GET_MODE (target) != SImode)
14868 target = gen_reg_rtx (SImode);
14870 #ifdef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
14871 tree arg = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
14872 /* Target clones creates an ARRAY_REF instead of STRING_CST, convert it back
14873 to a STRING_CST. */
14874 if (TREE_CODE (arg) == ARRAY_REF
14875 && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST
14876 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST
14877 && compare_tree_int (TREE_OPERAND (arg, 1), 0) == 0)
14878 arg = TREE_OPERAND (arg, 0);
14880 if (TREE_CODE (arg) != STRING_CST)
14882 error ("builtin %qs only accepts a string argument",
14883 rs6000_builtin_info[(size_t) fcode].name);
14884 return const0_rtx;
14887 if (fcode == RS6000_BUILTIN_CPU_IS)
14889 const char *cpu = TREE_STRING_POINTER (arg);
14890 rtx cpuid = NULL_RTX;
14891 for (size_t i = 0; i < ARRAY_SIZE (cpu_is_info); i++)
14892 if (strcmp (cpu, cpu_is_info[i].cpu) == 0)
14894 /* The CPUID value in the TCB is offset by _DL_FIRST_PLATFORM. */
14895 cpuid = GEN_INT (cpu_is_info[i].cpuid + _DL_FIRST_PLATFORM);
14896 break;
14898 if (cpuid == NULL_RTX)
14900 /* Invalid CPU argument. */
14901 error ("cpu %qs is an invalid argument to builtin %qs",
14902 cpu, rs6000_builtin_info[(size_t) fcode].name);
14903 return const0_rtx;
14906 rtx platform = gen_reg_rtx (SImode);
14907 rtx tcbmem = gen_const_mem (SImode,
14908 gen_rtx_PLUS (Pmode,
14909 gen_rtx_REG (Pmode, TLS_REGNUM),
14910 GEN_INT (TCB_PLATFORM_OFFSET)));
14911 emit_move_insn (platform, tcbmem);
14912 emit_insn (gen_eqsi3 (target, platform, cpuid));
14914 else if (fcode == RS6000_BUILTIN_CPU_SUPPORTS)
14916 const char *hwcap = TREE_STRING_POINTER (arg);
14917 rtx mask = NULL_RTX;
14918 int hwcap_offset;
14919 for (size_t i = 0; i < ARRAY_SIZE (cpu_supports_info); i++)
14920 if (strcmp (hwcap, cpu_supports_info[i].hwcap) == 0)
14922 mask = GEN_INT (cpu_supports_info[i].mask);
14923 hwcap_offset = TCB_HWCAP_OFFSET (cpu_supports_info[i].id);
14924 break;
14926 if (mask == NULL_RTX)
14928 /* Invalid HWCAP argument. */
14929 error ("%s %qs is an invalid argument to builtin %qs",
14930 "hwcap", hwcap, rs6000_builtin_info[(size_t) fcode].name);
14931 return const0_rtx;
14934 rtx tcb_hwcap = gen_reg_rtx (SImode);
14935 rtx tcbmem = gen_const_mem (SImode,
14936 gen_rtx_PLUS (Pmode,
14937 gen_rtx_REG (Pmode, TLS_REGNUM),
14938 GEN_INT (hwcap_offset)));
14939 emit_move_insn (tcb_hwcap, tcbmem);
14940 rtx scratch1 = gen_reg_rtx (SImode);
14941 emit_insn (gen_rtx_SET (scratch1, gen_rtx_AND (SImode, tcb_hwcap, mask)));
14942 rtx scratch2 = gen_reg_rtx (SImode);
14943 emit_insn (gen_eqsi3 (scratch2, scratch1, const0_rtx));
14944 emit_insn (gen_rtx_SET (target, gen_rtx_XOR (SImode, scratch2, const1_rtx)));
14946 else
14947 gcc_unreachable ();
14949 /* Record that we have expanded a CPU builtin, so that we can later
14950 emit a reference to the special symbol exported by LIBC to ensure we
14951 do not link against an old LIBC that doesn't support this feature. */
14952 cpu_builtin_p = true;
14954 #else
14955 warning (0, "builtin %qs needs GLIBC (2.23 and newer) that exports hardware "
14956 "capability bits", rs6000_builtin_info[(size_t) fcode].name);
14958 /* For old LIBCs, always return FALSE. */
14959 emit_move_insn (target, GEN_INT (0));
14960 #endif /* TARGET_LIBC_PROVIDES_HWCAP_IN_TCB */
14962 return target;
14965 static rtx
14966 rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
14968 rtx pat;
14969 tree arg0 = CALL_EXPR_ARG (exp, 0);
14970 tree arg1 = CALL_EXPR_ARG (exp, 1);
14971 tree arg2 = CALL_EXPR_ARG (exp, 2);
14972 rtx op0 = expand_normal (arg0);
14973 rtx op1 = expand_normal (arg1);
14974 rtx op2 = expand_normal (arg2);
14975 machine_mode tmode = insn_data[icode].operand[0].mode;
14976 machine_mode mode0 = insn_data[icode].operand[1].mode;
14977 machine_mode mode1 = insn_data[icode].operand[2].mode;
14978 machine_mode mode2 = insn_data[icode].operand[3].mode;
14980 if (icode == CODE_FOR_nothing)
14981 /* Builtin not supported on this processor. */
14982 return 0;
14984 /* If we got invalid arguments bail out before generating bad rtl. */
14985 if (arg0 == error_mark_node
14986 || arg1 == error_mark_node
14987 || arg2 == error_mark_node)
14988 return const0_rtx;
14990 /* Check and prepare argument depending on the instruction code.
14992 Note that a switch statement instead of the sequence of tests
14993 would be incorrect as many of the CODE_FOR values could be
14994 CODE_FOR_nothing and that would yield multiple alternatives
14995 with identical values. We'd never reach here at runtime in
14996 this case. */
14997 if (icode == CODE_FOR_altivec_vsldoi_v4sf
14998 || icode == CODE_FOR_altivec_vsldoi_v2df
14999 || icode == CODE_FOR_altivec_vsldoi_v4si
15000 || icode == CODE_FOR_altivec_vsldoi_v8hi
15001 || icode == CODE_FOR_altivec_vsldoi_v16qi)
15003 /* Only allow 4-bit unsigned literals. */
15004 STRIP_NOPS (arg2);
15005 if (TREE_CODE (arg2) != INTEGER_CST
15006 || TREE_INT_CST_LOW (arg2) & ~0xf)
15008 error ("argument 3 must be a 4-bit unsigned literal");
15009 return CONST0_RTX (tmode);
15012 else if (icode == CODE_FOR_vsx_xxpermdi_v2df
15013 || icode == CODE_FOR_vsx_xxpermdi_v2di
15014 || icode == CODE_FOR_vsx_xxpermdi_v2df_be
15015 || icode == CODE_FOR_vsx_xxpermdi_v2di_be
15016 || icode == CODE_FOR_vsx_xxpermdi_v1ti
15017 || icode == CODE_FOR_vsx_xxpermdi_v4sf
15018 || icode == CODE_FOR_vsx_xxpermdi_v4si
15019 || icode == CODE_FOR_vsx_xxpermdi_v8hi
15020 || icode == CODE_FOR_vsx_xxpermdi_v16qi
15021 || icode == CODE_FOR_vsx_xxsldwi_v16qi
15022 || icode == CODE_FOR_vsx_xxsldwi_v8hi
15023 || icode == CODE_FOR_vsx_xxsldwi_v4si
15024 || icode == CODE_FOR_vsx_xxsldwi_v4sf
15025 || icode == CODE_FOR_vsx_xxsldwi_v2di
15026 || icode == CODE_FOR_vsx_xxsldwi_v2df)
15028 /* Only allow 2-bit unsigned literals. */
15029 STRIP_NOPS (arg2);
15030 if (TREE_CODE (arg2) != INTEGER_CST
15031 || TREE_INT_CST_LOW (arg2) & ~0x3)
15033 error ("argument 3 must be a 2-bit unsigned literal");
15034 return CONST0_RTX (tmode);
15037 else if (icode == CODE_FOR_vsx_set_v2df
15038 || icode == CODE_FOR_vsx_set_v2di
15039 || icode == CODE_FOR_bcdadd
15040 || icode == CODE_FOR_bcdadd_lt
15041 || icode == CODE_FOR_bcdadd_eq
15042 || icode == CODE_FOR_bcdadd_gt
15043 || icode == CODE_FOR_bcdsub
15044 || icode == CODE_FOR_bcdsub_lt
15045 || icode == CODE_FOR_bcdsub_eq
15046 || icode == CODE_FOR_bcdsub_gt)
15048 /* Only allow 1-bit unsigned literals. */
15049 STRIP_NOPS (arg2);
15050 if (TREE_CODE (arg2) != INTEGER_CST
15051 || TREE_INT_CST_LOW (arg2) & ~0x1)
15053 error ("argument 3 must be a 1-bit unsigned literal");
15054 return CONST0_RTX (tmode);
15057 else if (icode == CODE_FOR_dfp_ddedpd_dd
15058 || icode == CODE_FOR_dfp_ddedpd_td)
15060 /* Only allow 2-bit unsigned literals where the value is 0 or 2. */
15061 STRIP_NOPS (arg0);
15062 if (TREE_CODE (arg0) != INTEGER_CST
15063 || TREE_INT_CST_LOW (arg2) & ~0x3)
15065 error ("argument 1 must be 0 or 2");
15066 return CONST0_RTX (tmode);
15069 else if (icode == CODE_FOR_dfp_denbcd_dd
15070 || icode == CODE_FOR_dfp_denbcd_td)
15072 /* Only allow 1-bit unsigned literals. */
15073 STRIP_NOPS (arg0);
15074 if (TREE_CODE (arg0) != INTEGER_CST
15075 || TREE_INT_CST_LOW (arg0) & ~0x1)
15077 error ("argument 1 must be a 1-bit unsigned literal");
15078 return CONST0_RTX (tmode);
15081 else if (icode == CODE_FOR_dfp_dscli_dd
15082 || icode == CODE_FOR_dfp_dscli_td
15083 || icode == CODE_FOR_dfp_dscri_dd
15084 || icode == CODE_FOR_dfp_dscri_td)
15086 /* Only allow 6-bit unsigned literals. */
15087 STRIP_NOPS (arg1);
15088 if (TREE_CODE (arg1) != INTEGER_CST
15089 || TREE_INT_CST_LOW (arg1) & ~0x3f)
15091 error ("argument 2 must be a 6-bit unsigned literal");
15092 return CONST0_RTX (tmode);
15095 else if (icode == CODE_FOR_crypto_vshasigmaw
15096 || icode == CODE_FOR_crypto_vshasigmad)
15098 /* Check whether the 2nd and 3rd arguments are integer constants and in
15099 range and prepare arguments. */
15100 STRIP_NOPS (arg1);
15101 if (TREE_CODE (arg1) != INTEGER_CST || wi::geu_p (wi::to_wide (arg1), 2))
15103 error ("argument 2 must be 0 or 1");
15104 return CONST0_RTX (tmode);
15107 STRIP_NOPS (arg2);
15108 if (TREE_CODE (arg2) != INTEGER_CST
15109 || wi::geu_p (wi::to_wide (arg2), 16))
15111 error ("argument 3 must be in the range 0..15");
15112 return CONST0_RTX (tmode);
15116 if (target == 0
15117 || GET_MODE (target) != tmode
15118 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
15119 target = gen_reg_rtx (tmode);
15121 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
15122 op0 = copy_to_mode_reg (mode0, op0);
15123 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
15124 op1 = copy_to_mode_reg (mode1, op1);
15125 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
15126 op2 = copy_to_mode_reg (mode2, op2);
15128 if (TARGET_PAIRED_FLOAT && icode == CODE_FOR_selv2sf4)
15129 pat = GEN_FCN (icode) (target, op0, op1, op2, CONST0_RTX (SFmode));
15130 else
15131 pat = GEN_FCN (icode) (target, op0, op1, op2);
15132 if (! pat)
15133 return 0;
15134 emit_insn (pat);
15136 return target;
15139 /* Expand the lvx builtins. */
15140 static rtx
15141 altivec_expand_ld_builtin (tree exp, rtx target, bool *expandedp)
15143 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
15144 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
15145 tree arg0;
15146 machine_mode tmode, mode0;
15147 rtx pat, op0;
15148 enum insn_code icode;
15150 switch (fcode)
15152 case ALTIVEC_BUILTIN_LD_INTERNAL_16qi:
15153 icode = CODE_FOR_vector_altivec_load_v16qi;
15154 break;
15155 case ALTIVEC_BUILTIN_LD_INTERNAL_8hi:
15156 icode = CODE_FOR_vector_altivec_load_v8hi;
15157 break;
15158 case ALTIVEC_BUILTIN_LD_INTERNAL_4si:
15159 icode = CODE_FOR_vector_altivec_load_v4si;
15160 break;
15161 case ALTIVEC_BUILTIN_LD_INTERNAL_4sf:
15162 icode = CODE_FOR_vector_altivec_load_v4sf;
15163 break;
15164 case ALTIVEC_BUILTIN_LD_INTERNAL_2df:
15165 icode = CODE_FOR_vector_altivec_load_v2df;
15166 break;
15167 case ALTIVEC_BUILTIN_LD_INTERNAL_2di:
15168 icode = CODE_FOR_vector_altivec_load_v2di;
15169 break;
15170 case ALTIVEC_BUILTIN_LD_INTERNAL_1ti:
15171 icode = CODE_FOR_vector_altivec_load_v1ti;
15172 break;
15173 default:
15174 *expandedp = false;
15175 return NULL_RTX;
15178 *expandedp = true;
15180 arg0 = CALL_EXPR_ARG (exp, 0);
15181 op0 = expand_normal (arg0);
15182 tmode = insn_data[icode].operand[0].mode;
15183 mode0 = insn_data[icode].operand[1].mode;
15185 if (target == 0
15186 || GET_MODE (target) != tmode
15187 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
15188 target = gen_reg_rtx (tmode);
15190 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
15191 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
15193 pat = GEN_FCN (icode) (target, op0);
15194 if (! pat)
15195 return 0;
15196 emit_insn (pat);
15197 return target;
15200 /* Expand the stvx builtins. */
15201 static rtx
15202 altivec_expand_st_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
15203 bool *expandedp)
15205 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
15206 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
15207 tree arg0, arg1;
15208 machine_mode mode0, mode1;
15209 rtx pat, op0, op1;
15210 enum insn_code icode;
15212 switch (fcode)
15214 case ALTIVEC_BUILTIN_ST_INTERNAL_16qi:
15215 icode = CODE_FOR_vector_altivec_store_v16qi;
15216 break;
15217 case ALTIVEC_BUILTIN_ST_INTERNAL_8hi:
15218 icode = CODE_FOR_vector_altivec_store_v8hi;
15219 break;
15220 case ALTIVEC_BUILTIN_ST_INTERNAL_4si:
15221 icode = CODE_FOR_vector_altivec_store_v4si;
15222 break;
15223 case ALTIVEC_BUILTIN_ST_INTERNAL_4sf:
15224 icode = CODE_FOR_vector_altivec_store_v4sf;
15225 break;
15226 case ALTIVEC_BUILTIN_ST_INTERNAL_2df:
15227 icode = CODE_FOR_vector_altivec_store_v2df;
15228 break;
15229 case ALTIVEC_BUILTIN_ST_INTERNAL_2di:
15230 icode = CODE_FOR_vector_altivec_store_v2di;
15231 break;
15232 case ALTIVEC_BUILTIN_ST_INTERNAL_1ti:
15233 icode = CODE_FOR_vector_altivec_store_v1ti;
15234 break;
15235 default:
15236 *expandedp = false;
15237 return NULL_RTX;
15240 arg0 = CALL_EXPR_ARG (exp, 0);
15241 arg1 = CALL_EXPR_ARG (exp, 1);
15242 op0 = expand_normal (arg0);
15243 op1 = expand_normal (arg1);
15244 mode0 = insn_data[icode].operand[0].mode;
15245 mode1 = insn_data[icode].operand[1].mode;
15247 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
15248 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
15249 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
15250 op1 = copy_to_mode_reg (mode1, op1);
15252 pat = GEN_FCN (icode) (op0, op1);
15253 if (pat)
15254 emit_insn (pat);
15256 *expandedp = true;
15257 return NULL_RTX;
15260 /* Expand the dst builtins. */
15261 static rtx
15262 altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
15263 bool *expandedp)
15265 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
15266 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
15267 tree arg0, arg1, arg2;
15268 machine_mode mode0, mode1;
15269 rtx pat, op0, op1, op2;
15270 const struct builtin_description *d;
15271 size_t i;
15273 *expandedp = false;
15275 /* Handle DST variants. */
15276 d = bdesc_dst;
15277 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
15278 if (d->code == fcode)
15280 arg0 = CALL_EXPR_ARG (exp, 0);
15281 arg1 = CALL_EXPR_ARG (exp, 1);
15282 arg2 = CALL_EXPR_ARG (exp, 2);
15283 op0 = expand_normal (arg0);
15284 op1 = expand_normal (arg1);
15285 op2 = expand_normal (arg2);
15286 mode0 = insn_data[d->icode].operand[0].mode;
15287 mode1 = insn_data[d->icode].operand[1].mode;
15289 /* Invalid arguments, bail out before generating bad rtl. */
15290 if (arg0 == error_mark_node
15291 || arg1 == error_mark_node
15292 || arg2 == error_mark_node)
15293 return const0_rtx;
15295 *expandedp = true;
15296 STRIP_NOPS (arg2);
15297 if (TREE_CODE (arg2) != INTEGER_CST
15298 || TREE_INT_CST_LOW (arg2) & ~0x3)
15300 error ("argument to %qs must be a 2-bit unsigned literal", d->name);
15301 return const0_rtx;
15304 if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
15305 op0 = copy_to_mode_reg (Pmode, op0);
15306 if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
15307 op1 = copy_to_mode_reg (mode1, op1);
15309 pat = GEN_FCN (d->icode) (op0, op1, op2);
15310 if (pat != 0)
15311 emit_insn (pat);
15313 return NULL_RTX;
15316 return NULL_RTX;
15319 /* Expand vec_init builtin. */
15320 static rtx
15321 altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
15323 machine_mode tmode = TYPE_MODE (type);
15324 machine_mode inner_mode = GET_MODE_INNER (tmode);
15325 int i, n_elt = GET_MODE_NUNITS (tmode);
15327 gcc_assert (VECTOR_MODE_P (tmode));
15328 gcc_assert (n_elt == call_expr_nargs (exp));
15330 if (!target || !register_operand (target, tmode))
15331 target = gen_reg_rtx (tmode);
15333 /* If we have a vector compromised of a single element, such as V1TImode, do
15334 the initialization directly. */
15335 if (n_elt == 1 && GET_MODE_SIZE (tmode) == GET_MODE_SIZE (inner_mode))
15337 rtx x = expand_normal (CALL_EXPR_ARG (exp, 0));
15338 emit_move_insn (target, gen_lowpart (tmode, x));
15340 else
15342 rtvec v = rtvec_alloc (n_elt);
15344 for (i = 0; i < n_elt; ++i)
15346 rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
15347 RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
15350 rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
15353 return target;
15356 /* Return the integer constant in ARG. Constrain it to be in the range
15357 of the subparts of VEC_TYPE; issue an error if not. */
15359 static int
15360 get_element_number (tree vec_type, tree arg)
15362 unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
15364 if (!tree_fits_uhwi_p (arg)
15365 || (elt = tree_to_uhwi (arg), elt > max))
15367 error ("selector must be an integer constant in the range 0..%wi", max);
15368 return 0;
15371 return elt;
15374 /* Expand vec_set builtin. */
15375 static rtx
15376 altivec_expand_vec_set_builtin (tree exp)
15378 machine_mode tmode, mode1;
15379 tree arg0, arg1, arg2;
15380 int elt;
15381 rtx op0, op1;
15383 arg0 = CALL_EXPR_ARG (exp, 0);
15384 arg1 = CALL_EXPR_ARG (exp, 1);
15385 arg2 = CALL_EXPR_ARG (exp, 2);
15387 tmode = TYPE_MODE (TREE_TYPE (arg0));
15388 mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
15389 gcc_assert (VECTOR_MODE_P (tmode));
15391 op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
15392 op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
15393 elt = get_element_number (TREE_TYPE (arg0), arg2);
15395 if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
15396 op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
15398 op0 = force_reg (tmode, op0);
15399 op1 = force_reg (mode1, op1);
15401 rs6000_expand_vector_set (op0, op1, elt);
15403 return op0;
15406 /* Expand vec_ext builtin. */
15407 static rtx
15408 altivec_expand_vec_ext_builtin (tree exp, rtx target)
15410 machine_mode tmode, mode0;
15411 tree arg0, arg1;
15412 rtx op0;
15413 rtx op1;
15415 arg0 = CALL_EXPR_ARG (exp, 0);
15416 arg1 = CALL_EXPR_ARG (exp, 1);
15418 op0 = expand_normal (arg0);
15419 op1 = expand_normal (arg1);
15421 /* Call get_element_number to validate arg1 if it is a constant. */
15422 if (TREE_CODE (arg1) == INTEGER_CST)
15423 (void) get_element_number (TREE_TYPE (arg0), arg1);
15425 tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
15426 mode0 = TYPE_MODE (TREE_TYPE (arg0));
15427 gcc_assert (VECTOR_MODE_P (mode0));
15429 op0 = force_reg (mode0, op0);
15431 if (optimize || !target || !register_operand (target, tmode))
15432 target = gen_reg_rtx (tmode);
15434 rs6000_expand_vector_extract (target, op0, op1);
15436 return target;
15439 /* Expand the builtin in EXP and store the result in TARGET. Store
15440 true in *EXPANDEDP if we found a builtin to expand. */
15441 static rtx
15442 altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
15444 const struct builtin_description *d;
15445 size_t i;
15446 enum insn_code icode;
15447 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
15448 tree arg0, arg1, arg2;
15449 rtx op0, pat;
15450 machine_mode tmode, mode0;
15451 enum rs6000_builtins fcode
15452 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
15454 if (rs6000_overloaded_builtin_p (fcode))
15456 *expandedp = true;
15457 error ("unresolved overload for Altivec builtin %qF", fndecl);
15459 /* Given it is invalid, just generate a normal call. */
15460 return expand_call (exp, target, false);
15463 target = altivec_expand_ld_builtin (exp, target, expandedp);
15464 if (*expandedp)
15465 return target;
15467 target = altivec_expand_st_builtin (exp, target, expandedp);
15468 if (*expandedp)
15469 return target;
15471 target = altivec_expand_dst_builtin (exp, target, expandedp);
15472 if (*expandedp)
15473 return target;
15475 *expandedp = true;
15477 switch (fcode)
15479 case ALTIVEC_BUILTIN_STVX_V2DF:
15480 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v2df_2op, exp);
15481 case ALTIVEC_BUILTIN_STVX_V2DI:
15482 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v2di_2op, exp);
15483 case ALTIVEC_BUILTIN_STVX_V4SF:
15484 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v4sf_2op, exp);
15485 case ALTIVEC_BUILTIN_STVX:
15486 case ALTIVEC_BUILTIN_STVX_V4SI:
15487 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v4si_2op, exp);
15488 case ALTIVEC_BUILTIN_STVX_V8HI:
15489 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v8hi_2op, exp);
15490 case ALTIVEC_BUILTIN_STVX_V16QI:
15491 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v16qi_2op, exp);
15492 case ALTIVEC_BUILTIN_STVEBX:
15493 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
15494 case ALTIVEC_BUILTIN_STVEHX:
15495 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
15496 case ALTIVEC_BUILTIN_STVEWX:
15497 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
15498 case ALTIVEC_BUILTIN_STVXL_V2DF:
15499 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v2df, exp);
15500 case ALTIVEC_BUILTIN_STVXL_V2DI:
15501 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v2di, exp);
15502 case ALTIVEC_BUILTIN_STVXL_V4SF:
15503 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v4sf, exp);
15504 case ALTIVEC_BUILTIN_STVXL:
15505 case ALTIVEC_BUILTIN_STVXL_V4SI:
15506 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v4si, exp);
15507 case ALTIVEC_BUILTIN_STVXL_V8HI:
15508 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v8hi, exp);
15509 case ALTIVEC_BUILTIN_STVXL_V16QI:
15510 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v16qi, exp);
15512 case ALTIVEC_BUILTIN_STVLX:
15513 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
15514 case ALTIVEC_BUILTIN_STVLXL:
15515 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
15516 case ALTIVEC_BUILTIN_STVRX:
15517 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
15518 case ALTIVEC_BUILTIN_STVRXL:
15519 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);
15521 case P9V_BUILTIN_STXVL:
15522 return altivec_expand_stxvl_builtin (CODE_FOR_stxvl, exp);
15524 case P9V_BUILTIN_XST_LEN_R:
15525 return altivec_expand_stxvl_builtin (CODE_FOR_xst_len_r, exp);
15527 case VSX_BUILTIN_STXVD2X_V1TI:
15528 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v1ti, exp);
15529 case VSX_BUILTIN_STXVD2X_V2DF:
15530 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v2df, exp);
15531 case VSX_BUILTIN_STXVD2X_V2DI:
15532 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v2di, exp);
15533 case VSX_BUILTIN_STXVW4X_V4SF:
15534 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v4sf, exp);
15535 case VSX_BUILTIN_STXVW4X_V4SI:
15536 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v4si, exp);
15537 case VSX_BUILTIN_STXVW4X_V8HI:
15538 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v8hi, exp);
15539 case VSX_BUILTIN_STXVW4X_V16QI:
15540 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v16qi, exp);
15542 /* For the following on big endian, it's ok to use any appropriate
15543 unaligned-supporting store, so use a generic expander. For
15544 little-endian, the exact element-reversing instruction must
15545 be used. */
15546 case VSX_BUILTIN_ST_ELEMREV_V2DF:
15548 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v2df
15549 : CODE_FOR_vsx_st_elemrev_v2df);
15550 return altivec_expand_stv_builtin (code, exp);
15552 case VSX_BUILTIN_ST_ELEMREV_V2DI:
15554 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v2di
15555 : CODE_FOR_vsx_st_elemrev_v2di);
15556 return altivec_expand_stv_builtin (code, exp);
15558 case VSX_BUILTIN_ST_ELEMREV_V4SF:
15560 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v4sf
15561 : CODE_FOR_vsx_st_elemrev_v4sf);
15562 return altivec_expand_stv_builtin (code, exp);
15564 case VSX_BUILTIN_ST_ELEMREV_V4SI:
15566 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v4si
15567 : CODE_FOR_vsx_st_elemrev_v4si);
15568 return altivec_expand_stv_builtin (code, exp);
15570 case VSX_BUILTIN_ST_ELEMREV_V8HI:
15572 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v8hi
15573 : CODE_FOR_vsx_st_elemrev_v8hi);
15574 return altivec_expand_stv_builtin (code, exp);
15576 case VSX_BUILTIN_ST_ELEMREV_V16QI:
15578 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v16qi
15579 : CODE_FOR_vsx_st_elemrev_v16qi);
15580 return altivec_expand_stv_builtin (code, exp);
15583 case ALTIVEC_BUILTIN_MFVSCR:
15584 icode = CODE_FOR_altivec_mfvscr;
15585 tmode = insn_data[icode].operand[0].mode;
15587 if (target == 0
15588 || GET_MODE (target) != tmode
15589 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
15590 target = gen_reg_rtx (tmode);
15592 pat = GEN_FCN (icode) (target);
15593 if (! pat)
15594 return 0;
15595 emit_insn (pat);
15596 return target;
15598 case ALTIVEC_BUILTIN_MTVSCR:
15599 icode = CODE_FOR_altivec_mtvscr;
15600 arg0 = CALL_EXPR_ARG (exp, 0);
15601 op0 = expand_normal (arg0);
15602 mode0 = insn_data[icode].operand[0].mode;
15604 /* If we got invalid arguments bail out before generating bad rtl. */
15605 if (arg0 == error_mark_node)
15606 return const0_rtx;
15608 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
15609 op0 = copy_to_mode_reg (mode0, op0);
15611 pat = GEN_FCN (icode) (op0);
15612 if (pat)
15613 emit_insn (pat);
15614 return NULL_RTX;
15616 case ALTIVEC_BUILTIN_DSSALL:
15617 emit_insn (gen_altivec_dssall ());
15618 return NULL_RTX;
15620 case ALTIVEC_BUILTIN_DSS:
15621 icode = CODE_FOR_altivec_dss;
15622 arg0 = CALL_EXPR_ARG (exp, 0);
15623 STRIP_NOPS (arg0);
15624 op0 = expand_normal (arg0);
15625 mode0 = insn_data[icode].operand[0].mode;
15627 /* If we got invalid arguments bail out before generating bad rtl. */
15628 if (arg0 == error_mark_node)
15629 return const0_rtx;
15631 if (TREE_CODE (arg0) != INTEGER_CST
15632 || TREE_INT_CST_LOW (arg0) & ~0x3)
15634 error ("argument to %qs must be a 2-bit unsigned literal", "dss");
15635 return const0_rtx;
15638 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
15639 op0 = copy_to_mode_reg (mode0, op0);
15641 emit_insn (gen_altivec_dss (op0));
15642 return NULL_RTX;
15644 case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
15645 case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
15646 case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
15647 case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
15648 case VSX_BUILTIN_VEC_INIT_V2DF:
15649 case VSX_BUILTIN_VEC_INIT_V2DI:
15650 case VSX_BUILTIN_VEC_INIT_V1TI:
15651 return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
15653 case ALTIVEC_BUILTIN_VEC_SET_V4SI:
15654 case ALTIVEC_BUILTIN_VEC_SET_V8HI:
15655 case ALTIVEC_BUILTIN_VEC_SET_V16QI:
15656 case ALTIVEC_BUILTIN_VEC_SET_V4SF:
15657 case VSX_BUILTIN_VEC_SET_V2DF:
15658 case VSX_BUILTIN_VEC_SET_V2DI:
15659 case VSX_BUILTIN_VEC_SET_V1TI:
15660 return altivec_expand_vec_set_builtin (exp);
15662 case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
15663 case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
15664 case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
15665 case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
15666 case VSX_BUILTIN_VEC_EXT_V2DF:
15667 case VSX_BUILTIN_VEC_EXT_V2DI:
15668 case VSX_BUILTIN_VEC_EXT_V1TI:
15669 return altivec_expand_vec_ext_builtin (exp, target);
15671 case P9V_BUILTIN_VEXTRACT4B:
15672 case P9V_BUILTIN_VEC_VEXTRACT4B:
15673 arg1 = CALL_EXPR_ARG (exp, 1);
15674 STRIP_NOPS (arg1);
15676 /* Generate a normal call if it is invalid. */
15677 if (arg1 == error_mark_node)
15678 return expand_call (exp, target, false);
15680 if (TREE_CODE (arg1) != INTEGER_CST || TREE_INT_CST_LOW (arg1) > 12)
15682 error ("second argument to %qs must be 0..12", "vec_vextract4b");
15683 return expand_call (exp, target, false);
15685 break;
15687 case P9V_BUILTIN_VINSERT4B:
15688 case P9V_BUILTIN_VINSERT4B_DI:
15689 case P9V_BUILTIN_VEC_VINSERT4B:
15690 arg2 = CALL_EXPR_ARG (exp, 2);
15691 STRIP_NOPS (arg2);
15693 /* Generate a normal call if it is invalid. */
15694 if (arg2 == error_mark_node)
15695 return expand_call (exp, target, false);
15697 if (TREE_CODE (arg2) != INTEGER_CST || TREE_INT_CST_LOW (arg2) > 12)
15699 error ("third argument to %qs must be 0..12", "vec_vinsert4b");
15700 return expand_call (exp, target, false);
15702 break;
15704 default:
15705 break;
15706 /* Fall through. */
15709 /* Expand abs* operations. */
15710 d = bdesc_abs;
15711 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
15712 if (d->code == fcode)
15713 return altivec_expand_abs_builtin (d->icode, exp, target);
15715 /* Expand the AltiVec predicates. */
15716 d = bdesc_altivec_preds;
15717 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, d++)
15718 if (d->code == fcode)
15719 return altivec_expand_predicate_builtin (d->icode, exp, target);
15721 /* LV* are funky. We initialized them differently. */
15722 switch (fcode)
15724 case ALTIVEC_BUILTIN_LVSL:
15725 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
15726 exp, target, false);
15727 case ALTIVEC_BUILTIN_LVSR:
15728 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
15729 exp, target, false);
15730 case ALTIVEC_BUILTIN_LVEBX:
15731 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
15732 exp, target, false);
15733 case ALTIVEC_BUILTIN_LVEHX:
15734 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
15735 exp, target, false);
15736 case ALTIVEC_BUILTIN_LVEWX:
15737 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
15738 exp, target, false);
15739 case ALTIVEC_BUILTIN_LVXL_V2DF:
15740 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v2df,
15741 exp, target, false);
15742 case ALTIVEC_BUILTIN_LVXL_V2DI:
15743 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v2di,
15744 exp, target, false);
15745 case ALTIVEC_BUILTIN_LVXL_V4SF:
15746 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v4sf,
15747 exp, target, false);
15748 case ALTIVEC_BUILTIN_LVXL:
15749 case ALTIVEC_BUILTIN_LVXL_V4SI:
15750 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v4si,
15751 exp, target, false);
15752 case ALTIVEC_BUILTIN_LVXL_V8HI:
15753 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v8hi,
15754 exp, target, false);
15755 case ALTIVEC_BUILTIN_LVXL_V16QI:
15756 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v16qi,
15757 exp, target, false);
15758 case ALTIVEC_BUILTIN_LVX_V2DF:
15759 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v2df_2op,
15760 exp, target, false);
15761 case ALTIVEC_BUILTIN_LVX_V2DI:
15762 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v2di_2op,
15763 exp, target, false);
15764 case ALTIVEC_BUILTIN_LVX_V4SF:
15765 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v4sf_2op,
15766 exp, target, false);
15767 case ALTIVEC_BUILTIN_LVX:
15768 case ALTIVEC_BUILTIN_LVX_V4SI:
15769 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v4si_2op,
15770 exp, target, false);
15771 case ALTIVEC_BUILTIN_LVX_V8HI:
15772 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v8hi_2op,
15773 exp, target, false);
15774 case ALTIVEC_BUILTIN_LVX_V16QI:
15775 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v16qi_2op,
15776 exp, target, false);
15777 case ALTIVEC_BUILTIN_LVLX:
15778 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
15779 exp, target, true);
15780 case ALTIVEC_BUILTIN_LVLXL:
15781 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
15782 exp, target, true);
15783 case ALTIVEC_BUILTIN_LVRX:
15784 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
15785 exp, target, true);
15786 case ALTIVEC_BUILTIN_LVRXL:
15787 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
15788 exp, target, true);
15789 case VSX_BUILTIN_LXVD2X_V1TI:
15790 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v1ti,
15791 exp, target, false);
15792 case VSX_BUILTIN_LXVD2X_V2DF:
15793 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v2df,
15794 exp, target, false);
15795 case VSX_BUILTIN_LXVD2X_V2DI:
15796 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v2di,
15797 exp, target, false);
15798 case VSX_BUILTIN_LXVW4X_V4SF:
15799 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v4sf,
15800 exp, target, false);
15801 case VSX_BUILTIN_LXVW4X_V4SI:
15802 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v4si,
15803 exp, target, false);
15804 case VSX_BUILTIN_LXVW4X_V8HI:
15805 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v8hi,
15806 exp, target, false);
15807 case VSX_BUILTIN_LXVW4X_V16QI:
15808 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v16qi,
15809 exp, target, false);
15810 /* For the following on big endian, it's ok to use any appropriate
15811 unaligned-supporting load, so use a generic expander. For
15812 little-endian, the exact element-reversing instruction must
15813 be used. */
15814 case VSX_BUILTIN_LD_ELEMREV_V2DF:
15816 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v2df
15817 : CODE_FOR_vsx_ld_elemrev_v2df);
15818 return altivec_expand_lv_builtin (code, exp, target, false);
15820 case VSX_BUILTIN_LD_ELEMREV_V2DI:
15822 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v2di
15823 : CODE_FOR_vsx_ld_elemrev_v2di);
15824 return altivec_expand_lv_builtin (code, exp, target, false);
15826 case VSX_BUILTIN_LD_ELEMREV_V4SF:
15828 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v4sf
15829 : CODE_FOR_vsx_ld_elemrev_v4sf);
15830 return altivec_expand_lv_builtin (code, exp, target, false);
15832 case VSX_BUILTIN_LD_ELEMREV_V4SI:
15834 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v4si
15835 : CODE_FOR_vsx_ld_elemrev_v4si);
15836 return altivec_expand_lv_builtin (code, exp, target, false);
15838 case VSX_BUILTIN_LD_ELEMREV_V8HI:
15840 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v8hi
15841 : CODE_FOR_vsx_ld_elemrev_v8hi);
15842 return altivec_expand_lv_builtin (code, exp, target, false);
15844 case VSX_BUILTIN_LD_ELEMREV_V16QI:
15846 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v16qi
15847 : CODE_FOR_vsx_ld_elemrev_v16qi);
15848 return altivec_expand_lv_builtin (code, exp, target, false);
15850 break;
15851 default:
15852 break;
15853 /* Fall through. */
15856 /* XL_BE We initialized them to always load in big endian order. */
15857 switch (fcode)
15859 case VSX_BUILTIN_XL_BE_V2DI:
15861 enum insn_code code = CODE_FOR_vsx_load_v2di;
15862 return altivec_expand_xl_be_builtin (code, exp, target, false);
15864 break;
15865 case VSX_BUILTIN_XL_BE_V4SI:
15867 enum insn_code code = CODE_FOR_vsx_load_v4si;
15868 return altivec_expand_xl_be_builtin (code, exp, target, false);
15870 break;
15871 case VSX_BUILTIN_XL_BE_V8HI:
15873 enum insn_code code = CODE_FOR_vsx_load_v8hi;
15874 return altivec_expand_xl_be_builtin (code, exp, target, false);
15876 break;
15877 case VSX_BUILTIN_XL_BE_V16QI:
15879 enum insn_code code = CODE_FOR_vsx_load_v16qi;
15880 return altivec_expand_xl_be_builtin (code, exp, target, false);
15882 break;
15883 case VSX_BUILTIN_XL_BE_V2DF:
15885 enum insn_code code = CODE_FOR_vsx_load_v2df;
15886 return altivec_expand_xl_be_builtin (code, exp, target, false);
15888 break;
15889 case VSX_BUILTIN_XL_BE_V4SF:
15891 enum insn_code code = CODE_FOR_vsx_load_v4sf;
15892 return altivec_expand_xl_be_builtin (code, exp, target, false);
15894 break;
15895 default:
15896 break;
15897 /* Fall through. */
15900 *expandedp = false;
15901 return NULL_RTX;
15904 /* Expand the builtin in EXP and store the result in TARGET. Store
15905 true in *EXPANDEDP if we found a builtin to expand. */
15906 static rtx
15907 paired_expand_builtin (tree exp, rtx target, bool * expandedp)
15909 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
15910 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
15911 const struct builtin_description *d;
15912 size_t i;
15914 *expandedp = true;
15916 switch (fcode)
15918 case PAIRED_BUILTIN_STX:
15919 return paired_expand_stv_builtin (CODE_FOR_paired_stx, exp);
15920 case PAIRED_BUILTIN_LX:
15921 return paired_expand_lv_builtin (CODE_FOR_paired_lx, exp, target);
15922 default:
15923 break;
15924 /* Fall through. */
15927 /* Expand the paired predicates. */
15928 d = bdesc_paired_preds;
15929 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); i++, d++)
15930 if (d->code == fcode)
15931 return paired_expand_predicate_builtin (d->icode, exp, target);
15933 *expandedp = false;
15934 return NULL_RTX;
15937 static rtx
15938 paired_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
15940 rtx pat, scratch, tmp;
15941 tree form = CALL_EXPR_ARG (exp, 0);
15942 tree arg0 = CALL_EXPR_ARG (exp, 1);
15943 tree arg1 = CALL_EXPR_ARG (exp, 2);
15944 rtx op0 = expand_normal (arg0);
15945 rtx op1 = expand_normal (arg1);
15946 machine_mode mode0 = insn_data[icode].operand[1].mode;
15947 machine_mode mode1 = insn_data[icode].operand[2].mode;
15948 int form_int;
15949 enum rtx_code code;
15951 if (TREE_CODE (form) != INTEGER_CST)
15953 error ("argument 1 of %s must be a constant",
15954 "__builtin_paired_predicate");
15955 return const0_rtx;
15957 else
15958 form_int = TREE_INT_CST_LOW (form);
15960 gcc_assert (mode0 == mode1);
15962 if (arg0 == error_mark_node || arg1 == error_mark_node)
15963 return const0_rtx;
15965 if (target == 0
15966 || GET_MODE (target) != SImode
15967 || !(*insn_data[icode].operand[0].predicate) (target, SImode))
15968 target = gen_reg_rtx (SImode);
15969 if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
15970 op0 = copy_to_mode_reg (mode0, op0);
15971 if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
15972 op1 = copy_to_mode_reg (mode1, op1);
15974 scratch = gen_reg_rtx (CCFPmode);
15976 pat = GEN_FCN (icode) (scratch, op0, op1);
15977 if (!pat)
15978 return const0_rtx;
15980 emit_insn (pat);
15982 switch (form_int)
15984 /* LT bit. */
15985 case 0:
15986 code = LT;
15987 break;
15988 /* GT bit. */
15989 case 1:
15990 code = GT;
15991 break;
15992 /* EQ bit. */
15993 case 2:
15994 code = EQ;
15995 break;
15996 /* UN bit. */
15997 case 3:
15998 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
15999 return target;
16000 default:
16001 error ("argument 1 of %qs is out of range",
16002 "__builtin_paired_predicate");
16003 return const0_rtx;
16006 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
16007 emit_move_insn (target, tmp);
16008 return target;
16011 /* Raise an error message for a builtin function that is called without the
16012 appropriate target options being set. */
16014 static void
16015 rs6000_invalid_builtin (enum rs6000_builtins fncode)
16017 size_t uns_fncode = (size_t) fncode;
16018 const char *name = rs6000_builtin_info[uns_fncode].name;
16019 HOST_WIDE_INT fnmask = rs6000_builtin_info[uns_fncode].mask;
16021 gcc_assert (name != NULL);
16022 if ((fnmask & RS6000_BTM_CELL) != 0)
16023 error ("builtin function %qs is only valid for the cell processor", name);
16024 else if ((fnmask & RS6000_BTM_VSX) != 0)
16025 error ("builtin function %qs requires the %qs option", name, "-mvsx");
16026 else if ((fnmask & RS6000_BTM_HTM) != 0)
16027 error ("builtin function %qs requires the %qs option", name, "-mhtm");
16028 else if ((fnmask & RS6000_BTM_ALTIVEC) != 0)
16029 error ("builtin function %qs requires the %qs option", name, "-maltivec");
16030 else if ((fnmask & RS6000_BTM_PAIRED) != 0)
16031 error ("builtin function %qs requires the %qs option", name, "-mpaired");
16032 else if ((fnmask & (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
16033 == (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
16034 error ("builtin function %qs requires the %qs and %qs options",
16035 name, "-mhard-dfp", "-mpower8-vector");
16036 else if ((fnmask & RS6000_BTM_DFP) != 0)
16037 error ("builtin function %qs requires the %qs option", name, "-mhard-dfp");
16038 else if ((fnmask & RS6000_BTM_P8_VECTOR) != 0)
16039 error ("builtin function %qs requires the %qs option", name,
16040 "-mpower8-vector");
16041 else if ((fnmask & (RS6000_BTM_P9_VECTOR | RS6000_BTM_64BIT))
16042 == (RS6000_BTM_P9_VECTOR | RS6000_BTM_64BIT))
16043 error ("builtin function %qs requires the %qs and %qs options",
16044 name, "-mcpu=power9", "-m64");
16045 else if ((fnmask & RS6000_BTM_P9_VECTOR) != 0)
16046 error ("builtin function %qs requires the %qs option", name,
16047 "-mcpu=power9");
16048 else if ((fnmask & (RS6000_BTM_P9_MISC | RS6000_BTM_64BIT))
16049 == (RS6000_BTM_P9_MISC | RS6000_BTM_64BIT))
16050 error ("builtin function %qs requires the %qs and %qs options",
16051 name, "-mcpu=power9", "-m64");
16052 else if ((fnmask & RS6000_BTM_P9_MISC) == RS6000_BTM_P9_MISC)
16053 error ("builtin function %qs requires the %qs option", name,
16054 "-mcpu=power9");
16055 else if ((fnmask & (RS6000_BTM_HARD_FLOAT | RS6000_BTM_LDBL128))
16056 == (RS6000_BTM_HARD_FLOAT | RS6000_BTM_LDBL128))
16057 error ("builtin function %qs requires the %qs and %qs options",
16058 name, "-mhard-float", "-mlong-double-128");
16059 else if ((fnmask & RS6000_BTM_HARD_FLOAT) != 0)
16060 error ("builtin function %qs requires the %qs option", name,
16061 "-mhard-float");
16062 else if ((fnmask & RS6000_BTM_FLOAT128_HW) != 0)
16063 error ("builtin function %qs requires ISA 3.0 IEEE 128-bit floating point",
16064 name);
16065 else if ((fnmask & RS6000_BTM_FLOAT128) != 0)
16066 error ("builtin function %qs requires the %qs option", name, "-mfloat128");
16067 else
16068 error ("builtin function %qs is not supported with the current options",
16069 name);
16072 /* Target hook for early folding of built-ins, shamelessly stolen
16073 from ia64.c. */
16075 static tree
16076 rs6000_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED,
16077 tree *args, bool ignore ATTRIBUTE_UNUSED)
16079 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
16081 enum rs6000_builtins fn_code
16082 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
16083 switch (fn_code)
16085 case RS6000_BUILTIN_NANQ:
16086 case RS6000_BUILTIN_NANSQ:
16088 tree type = TREE_TYPE (TREE_TYPE (fndecl));
16089 const char *str = c_getstr (*args);
16090 int quiet = fn_code == RS6000_BUILTIN_NANQ;
16091 REAL_VALUE_TYPE real;
16093 if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
16094 return build_real (type, real);
16095 return NULL_TREE;
16097 case RS6000_BUILTIN_INFQ:
16098 case RS6000_BUILTIN_HUGE_VALQ:
16100 tree type = TREE_TYPE (TREE_TYPE (fndecl));
16101 REAL_VALUE_TYPE inf;
16102 real_inf (&inf);
16103 return build_real (type, inf);
16105 default:
16106 break;
16109 #ifdef SUBTARGET_FOLD_BUILTIN
16110 return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore);
16111 #else
16112 return NULL_TREE;
16113 #endif
16116 /* Helper function to sort out which built-ins may be valid without having
16117 a LHS. */
16118 static bool
16119 rs6000_builtin_valid_without_lhs (enum rs6000_builtins fn_code)
16121 switch (fn_code)
16123 case ALTIVEC_BUILTIN_STVX_V16QI:
16124 case ALTIVEC_BUILTIN_STVX_V8HI:
16125 case ALTIVEC_BUILTIN_STVX_V4SI:
16126 case ALTIVEC_BUILTIN_STVX_V4SF:
16127 case ALTIVEC_BUILTIN_STVX_V2DI:
16128 case ALTIVEC_BUILTIN_STVX_V2DF:
16129 return true;
16130 default:
16131 return false;
16135 /* Fold a machine-dependent built-in in GIMPLE. (For folding into
16136 a constant, use rs6000_fold_builtin.) */
16138 bool
16139 rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
16141 gimple *stmt = gsi_stmt (*gsi);
16142 tree fndecl = gimple_call_fndecl (stmt);
16143 gcc_checking_assert (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD);
16144 enum rs6000_builtins fn_code
16145 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
16146 tree arg0, arg1, lhs;
16148 size_t uns_fncode = (size_t) fn_code;
16149 enum insn_code icode = rs6000_builtin_info[uns_fncode].icode;
16150 const char *fn_name1 = rs6000_builtin_info[uns_fncode].name;
16151 const char *fn_name2 = (icode != CODE_FOR_nothing)
16152 ? get_insn_name ((int) icode)
16153 : "nothing";
16155 if (TARGET_DEBUG_BUILTIN)
16156 fprintf (stderr, "rs6000_gimple_fold_builtin %d %s %s\n",
16157 fn_code, fn_name1, fn_name2);
16159 if (!rs6000_fold_gimple)
16160 return false;
16162 /* Prevent gimple folding for code that does not have a LHS, unless it is
16163 allowed per the rs6000_builtin_valid_without_lhs helper function. */
16164 if (!gimple_call_lhs (stmt) && !rs6000_builtin_valid_without_lhs (fn_code))
16165 return false;
16167 switch (fn_code)
16169 /* Flavors of vec_add. We deliberately don't expand
16170 P8V_BUILTIN_VADDUQM as it gets lowered from V1TImode to
16171 TImode, resulting in much poorer code generation. */
16172 case ALTIVEC_BUILTIN_VADDUBM:
16173 case ALTIVEC_BUILTIN_VADDUHM:
16174 case ALTIVEC_BUILTIN_VADDUWM:
16175 case P8V_BUILTIN_VADDUDM:
16176 case ALTIVEC_BUILTIN_VADDFP:
16177 case VSX_BUILTIN_XVADDDP:
16179 arg0 = gimple_call_arg (stmt, 0);
16180 arg1 = gimple_call_arg (stmt, 1);
16181 lhs = gimple_call_lhs (stmt);
16182 gimple *g = gimple_build_assign (lhs, PLUS_EXPR, arg0, arg1);
16183 gimple_set_location (g, gimple_location (stmt));
16184 gsi_replace (gsi, g, true);
16185 return true;
16187 /* Flavors of vec_sub. We deliberately don't expand
16188 P8V_BUILTIN_VSUBUQM. */
16189 case ALTIVEC_BUILTIN_VSUBUBM:
16190 case ALTIVEC_BUILTIN_VSUBUHM:
16191 case ALTIVEC_BUILTIN_VSUBUWM:
16192 case P8V_BUILTIN_VSUBUDM:
16193 case ALTIVEC_BUILTIN_VSUBFP:
16194 case VSX_BUILTIN_XVSUBDP:
16196 arg0 = gimple_call_arg (stmt, 0);
16197 arg1 = gimple_call_arg (stmt, 1);
16198 lhs = gimple_call_lhs (stmt);
16199 gimple *g = gimple_build_assign (lhs, MINUS_EXPR, arg0, arg1);
16200 gimple_set_location (g, gimple_location (stmt));
16201 gsi_replace (gsi, g, true);
16202 return true;
16204 case VSX_BUILTIN_XVMULSP:
16205 case VSX_BUILTIN_XVMULDP:
16207 arg0 = gimple_call_arg (stmt, 0);
16208 arg1 = gimple_call_arg (stmt, 1);
16209 lhs = gimple_call_lhs (stmt);
16210 gimple *g = gimple_build_assign (lhs, MULT_EXPR, arg0, arg1);
16211 gimple_set_location (g, gimple_location (stmt));
16212 gsi_replace (gsi, g, true);
16213 return true;
16215 /* Even element flavors of vec_mul (signed). */
16216 case ALTIVEC_BUILTIN_VMULESB:
16217 case ALTIVEC_BUILTIN_VMULESH:
16218 case ALTIVEC_BUILTIN_VMULESW:
16219 /* Even element flavors of vec_mul (unsigned). */
16220 case ALTIVEC_BUILTIN_VMULEUB:
16221 case ALTIVEC_BUILTIN_VMULEUH:
16222 case ALTIVEC_BUILTIN_VMULEUW:
16224 arg0 = gimple_call_arg (stmt, 0);
16225 arg1 = gimple_call_arg (stmt, 1);
16226 lhs = gimple_call_lhs (stmt);
16227 gimple *g = gimple_build_assign (lhs, VEC_WIDEN_MULT_EVEN_EXPR, arg0, arg1);
16228 gimple_set_location (g, gimple_location (stmt));
16229 gsi_replace (gsi, g, true);
16230 return true;
16232 /* Odd element flavors of vec_mul (signed). */
16233 case ALTIVEC_BUILTIN_VMULOSB:
16234 case ALTIVEC_BUILTIN_VMULOSH:
16235 case ALTIVEC_BUILTIN_VMULOSW:
16236 /* Odd element flavors of vec_mul (unsigned). */
16237 case ALTIVEC_BUILTIN_VMULOUB:
16238 case ALTIVEC_BUILTIN_VMULOUH:
16239 case ALTIVEC_BUILTIN_VMULOUW:
16241 arg0 = gimple_call_arg (stmt, 0);
16242 arg1 = gimple_call_arg (stmt, 1);
16243 lhs = gimple_call_lhs (stmt);
16244 gimple *g = gimple_build_assign (lhs, VEC_WIDEN_MULT_ODD_EXPR, arg0, arg1);
16245 gimple_set_location (g, gimple_location (stmt));
16246 gsi_replace (gsi, g, true);
16247 return true;
16249 /* Flavors of vec_div (Integer). */
16250 case VSX_BUILTIN_DIV_V2DI:
16251 case VSX_BUILTIN_UDIV_V2DI:
16253 arg0 = gimple_call_arg (stmt, 0);
16254 arg1 = gimple_call_arg (stmt, 1);
16255 lhs = gimple_call_lhs (stmt);
16256 gimple *g = gimple_build_assign (lhs, TRUNC_DIV_EXPR, arg0, arg1);
16257 gimple_set_location (g, gimple_location (stmt));
16258 gsi_replace (gsi, g, true);
16259 return true;
16261 /* Flavors of vec_div (Float). */
16262 case VSX_BUILTIN_XVDIVSP:
16263 case VSX_BUILTIN_XVDIVDP:
16265 arg0 = gimple_call_arg (stmt, 0);
16266 arg1 = gimple_call_arg (stmt, 1);
16267 lhs = gimple_call_lhs (stmt);
16268 gimple *g = gimple_build_assign (lhs, RDIV_EXPR, arg0, arg1);
16269 gimple_set_location (g, gimple_location (stmt));
16270 gsi_replace (gsi, g, true);
16271 return true;
16273 /* Flavors of vec_and. */
16274 case ALTIVEC_BUILTIN_VAND:
16276 arg0 = gimple_call_arg (stmt, 0);
16277 arg1 = gimple_call_arg (stmt, 1);
16278 lhs = gimple_call_lhs (stmt);
16279 gimple *g = gimple_build_assign (lhs, BIT_AND_EXPR, arg0, arg1);
16280 gimple_set_location (g, gimple_location (stmt));
16281 gsi_replace (gsi, g, true);
16282 return true;
16284 /* Flavors of vec_andc. */
16285 case ALTIVEC_BUILTIN_VANDC:
16287 arg0 = gimple_call_arg (stmt, 0);
16288 arg1 = gimple_call_arg (stmt, 1);
16289 lhs = gimple_call_lhs (stmt);
16290 tree temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
16291 gimple *g = gimple_build_assign(temp, BIT_NOT_EXPR, arg1);
16292 gimple_set_location (g, gimple_location (stmt));
16293 gsi_insert_before(gsi, g, GSI_SAME_STMT);
16294 g = gimple_build_assign (lhs, BIT_AND_EXPR, arg0, temp);
16295 gimple_set_location (g, gimple_location (stmt));
16296 gsi_replace (gsi, g, true);
16297 return true;
16299 /* Flavors of vec_nand. */
16300 case P8V_BUILTIN_VEC_NAND:
16301 case P8V_BUILTIN_NAND_V16QI:
16302 case P8V_BUILTIN_NAND_V8HI:
16303 case P8V_BUILTIN_NAND_V4SI:
16304 case P8V_BUILTIN_NAND_V4SF:
16305 case P8V_BUILTIN_NAND_V2DF:
16306 case P8V_BUILTIN_NAND_V2DI:
16308 arg0 = gimple_call_arg (stmt, 0);
16309 arg1 = gimple_call_arg (stmt, 1);
16310 lhs = gimple_call_lhs (stmt);
16311 tree temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
16312 gimple *g = gimple_build_assign(temp, BIT_AND_EXPR, arg0, arg1);
16313 gimple_set_location (g, gimple_location (stmt));
16314 gsi_insert_before(gsi, g, GSI_SAME_STMT);
16315 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
16316 gimple_set_location (g, gimple_location (stmt));
16317 gsi_replace (gsi, g, true);
16318 return true;
16320 /* Flavors of vec_or. */
16321 case ALTIVEC_BUILTIN_VOR:
16323 arg0 = gimple_call_arg (stmt, 0);
16324 arg1 = gimple_call_arg (stmt, 1);
16325 lhs = gimple_call_lhs (stmt);
16326 gimple *g = gimple_build_assign (lhs, BIT_IOR_EXPR, arg0, arg1);
16327 gimple_set_location (g, gimple_location (stmt));
16328 gsi_replace (gsi, g, true);
16329 return true;
16331 /* flavors of vec_orc. */
16332 case P8V_BUILTIN_ORC_V16QI:
16333 case P8V_BUILTIN_ORC_V8HI:
16334 case P8V_BUILTIN_ORC_V4SI:
16335 case P8V_BUILTIN_ORC_V4SF:
16336 case P8V_BUILTIN_ORC_V2DF:
16337 case P8V_BUILTIN_ORC_V2DI:
16339 arg0 = gimple_call_arg (stmt, 0);
16340 arg1 = gimple_call_arg (stmt, 1);
16341 lhs = gimple_call_lhs (stmt);
16342 tree temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
16343 gimple *g = gimple_build_assign(temp, BIT_NOT_EXPR, arg1);
16344 gimple_set_location (g, gimple_location (stmt));
16345 gsi_insert_before(gsi, g, GSI_SAME_STMT);
16346 g = gimple_build_assign (lhs, BIT_IOR_EXPR, arg0, temp);
16347 gimple_set_location (g, gimple_location (stmt));
16348 gsi_replace (gsi, g, true);
16349 return true;
16351 /* Flavors of vec_xor. */
16352 case ALTIVEC_BUILTIN_VXOR:
16354 arg0 = gimple_call_arg (stmt, 0);
16355 arg1 = gimple_call_arg (stmt, 1);
16356 lhs = gimple_call_lhs (stmt);
16357 gimple *g = gimple_build_assign (lhs, BIT_XOR_EXPR, arg0, arg1);
16358 gimple_set_location (g, gimple_location (stmt));
16359 gsi_replace (gsi, g, true);
16360 return true;
16362 /* Flavors of vec_nor. */
16363 case ALTIVEC_BUILTIN_VNOR:
16365 arg0 = gimple_call_arg (stmt, 0);
16366 arg1 = gimple_call_arg (stmt, 1);
16367 lhs = gimple_call_lhs (stmt);
16368 tree temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
16369 gimple *g = gimple_build_assign (temp, BIT_IOR_EXPR, arg0, arg1);
16370 gimple_set_location (g, gimple_location (stmt));
16371 gsi_insert_before(gsi, g, GSI_SAME_STMT);
16372 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
16373 gimple_set_location (g, gimple_location (stmt));
16374 gsi_replace (gsi, g, true);
16375 return true;
16377 /* flavors of vec_abs. */
16378 case ALTIVEC_BUILTIN_ABS_V16QI:
16379 case ALTIVEC_BUILTIN_ABS_V8HI:
16380 case ALTIVEC_BUILTIN_ABS_V4SI:
16381 case ALTIVEC_BUILTIN_ABS_V4SF:
16382 case P8V_BUILTIN_ABS_V2DI:
16383 case VSX_BUILTIN_XVABSDP:
16385 arg0 = gimple_call_arg (stmt, 0);
16386 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (arg0)))
16387 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (TREE_TYPE (arg0))))
16388 return false;
16389 lhs = gimple_call_lhs (stmt);
16390 gimple *g = gimple_build_assign (lhs, ABS_EXPR, arg0);
16391 gimple_set_location (g, gimple_location (stmt));
16392 gsi_replace (gsi, g, true);
16393 return true;
16395 /* flavors of vec_min. */
16396 case VSX_BUILTIN_XVMINDP:
16397 case P8V_BUILTIN_VMINSD:
16398 case P8V_BUILTIN_VMINUD:
16399 case ALTIVEC_BUILTIN_VMINSB:
16400 case ALTIVEC_BUILTIN_VMINSH:
16401 case ALTIVEC_BUILTIN_VMINSW:
16402 case ALTIVEC_BUILTIN_VMINUB:
16403 case ALTIVEC_BUILTIN_VMINUH:
16404 case ALTIVEC_BUILTIN_VMINUW:
16405 case ALTIVEC_BUILTIN_VMINFP:
16407 arg0 = gimple_call_arg (stmt, 0);
16408 arg1 = gimple_call_arg (stmt, 1);
16409 lhs = gimple_call_lhs (stmt);
16410 gimple *g = gimple_build_assign (lhs, MIN_EXPR, arg0, arg1);
16411 gimple_set_location (g, gimple_location (stmt));
16412 gsi_replace (gsi, g, true);
16413 return true;
16415 /* flavors of vec_max. */
16416 case VSX_BUILTIN_XVMAXDP:
16417 case P8V_BUILTIN_VMAXSD:
16418 case P8V_BUILTIN_VMAXUD:
16419 case ALTIVEC_BUILTIN_VMAXSB:
16420 case ALTIVEC_BUILTIN_VMAXSH:
16421 case ALTIVEC_BUILTIN_VMAXSW:
16422 case ALTIVEC_BUILTIN_VMAXUB:
16423 case ALTIVEC_BUILTIN_VMAXUH:
16424 case ALTIVEC_BUILTIN_VMAXUW:
16425 case ALTIVEC_BUILTIN_VMAXFP:
16427 arg0 = gimple_call_arg (stmt, 0);
16428 arg1 = gimple_call_arg (stmt, 1);
16429 lhs = gimple_call_lhs (stmt);
16430 gimple *g = gimple_build_assign (lhs, MAX_EXPR, arg0, arg1);
16431 gimple_set_location (g, gimple_location (stmt));
16432 gsi_replace (gsi, g, true);
16433 return true;
16435 /* Flavors of vec_eqv. */
16436 case P8V_BUILTIN_EQV_V16QI:
16437 case P8V_BUILTIN_EQV_V8HI:
16438 case P8V_BUILTIN_EQV_V4SI:
16439 case P8V_BUILTIN_EQV_V4SF:
16440 case P8V_BUILTIN_EQV_V2DF:
16441 case P8V_BUILTIN_EQV_V2DI:
16443 arg0 = gimple_call_arg (stmt, 0);
16444 arg1 = gimple_call_arg (stmt, 1);
16445 lhs = gimple_call_lhs (stmt);
16446 tree temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
16447 gimple *g = gimple_build_assign (temp, BIT_XOR_EXPR, arg0, arg1);
16448 gimple_set_location (g, gimple_location (stmt));
16449 gsi_insert_before (gsi, g, GSI_SAME_STMT);
16450 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
16451 gimple_set_location (g, gimple_location (stmt));
16452 gsi_replace (gsi, g, true);
16453 return true;
16455 /* Flavors of vec_rotate_left. */
16456 case ALTIVEC_BUILTIN_VRLB:
16457 case ALTIVEC_BUILTIN_VRLH:
16458 case ALTIVEC_BUILTIN_VRLW:
16459 case P8V_BUILTIN_VRLD:
16461 arg0 = gimple_call_arg (stmt, 0);
16462 arg1 = gimple_call_arg (stmt, 1);
16463 lhs = gimple_call_lhs (stmt);
16464 gimple *g = gimple_build_assign (lhs, LROTATE_EXPR, arg0, arg1);
16465 gimple_set_location (g, gimple_location (stmt));
16466 gsi_replace (gsi, g, true);
16467 return true;
16469 /* Flavors of vector shift right algebraic.
16470 vec_sra{b,h,w} -> vsra{b,h,w}. */
16471 case ALTIVEC_BUILTIN_VSRAB:
16472 case ALTIVEC_BUILTIN_VSRAH:
16473 case ALTIVEC_BUILTIN_VSRAW:
16474 case P8V_BUILTIN_VSRAD:
16476 arg0 = gimple_call_arg (stmt, 0);
16477 arg1 = gimple_call_arg (stmt, 1);
16478 lhs = gimple_call_lhs (stmt);
16479 gimple *g = gimple_build_assign (lhs, RSHIFT_EXPR, arg0, arg1);
16480 gimple_set_location (g, gimple_location (stmt));
16481 gsi_replace (gsi, g, true);
16482 return true;
16484 /* Flavors of vector shift left.
16485 builtin_altivec_vsl{b,h,w} -> vsl{b,h,w}. */
16486 case ALTIVEC_BUILTIN_VSLB:
16487 case ALTIVEC_BUILTIN_VSLH:
16488 case ALTIVEC_BUILTIN_VSLW:
16489 case P8V_BUILTIN_VSLD:
16491 arg0 = gimple_call_arg (stmt, 0);
16492 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (arg0)))
16493 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (TREE_TYPE (arg0))))
16494 return false;
16495 arg1 = gimple_call_arg (stmt, 1);
16496 lhs = gimple_call_lhs (stmt);
16497 gimple *g = gimple_build_assign (lhs, LSHIFT_EXPR, arg0, arg1);
16498 gimple_set_location (g, gimple_location (stmt));
16499 gsi_replace (gsi, g, true);
16500 return true;
16502 /* Flavors of vector shift right. */
16503 case ALTIVEC_BUILTIN_VSRB:
16504 case ALTIVEC_BUILTIN_VSRH:
16505 case ALTIVEC_BUILTIN_VSRW:
16506 case P8V_BUILTIN_VSRD:
16508 arg0 = gimple_call_arg (stmt, 0);
16509 arg1 = gimple_call_arg (stmt, 1);
16510 lhs = gimple_call_lhs (stmt);
16511 gimple_seq stmts = NULL;
16512 /* Convert arg0 to unsigned. */
16513 tree arg0_unsigned
16514 = gimple_build (&stmts, VIEW_CONVERT_EXPR,
16515 unsigned_type_for (TREE_TYPE (arg0)), arg0);
16516 tree res
16517 = gimple_build (&stmts, RSHIFT_EXPR,
16518 TREE_TYPE (arg0_unsigned), arg0_unsigned, arg1);
16519 /* Convert result back to the lhs type. */
16520 res = gimple_build (&stmts, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), res);
16521 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
16522 update_call_from_tree (gsi, res);
16523 return true;
16525 /* Vector loads. */
16526 case ALTIVEC_BUILTIN_LVX_V16QI:
16527 case ALTIVEC_BUILTIN_LVX_V8HI:
16528 case ALTIVEC_BUILTIN_LVX_V4SI:
16529 case ALTIVEC_BUILTIN_LVX_V4SF:
16530 case ALTIVEC_BUILTIN_LVX_V2DI:
16531 case ALTIVEC_BUILTIN_LVX_V2DF:
16533 arg0 = gimple_call_arg (stmt, 0); // offset
16534 arg1 = gimple_call_arg (stmt, 1); // address
16535 /* Do not fold for -maltivec=be on LE targets. */
16536 if (VECTOR_ELT_ORDER_BIG && !BYTES_BIG_ENDIAN)
16537 return false;
16538 lhs = gimple_call_lhs (stmt);
16539 location_t loc = gimple_location (stmt);
16540 /* Since arg1 may be cast to a different type, just use ptr_type_node
16541 here instead of trying to enforce TBAA on pointer types. */
16542 tree arg1_type = ptr_type_node;
16543 tree lhs_type = TREE_TYPE (lhs);
16544 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
16545 the tree using the value from arg0. The resulting type will match
16546 the type of arg1. */
16547 gimple_seq stmts = NULL;
16548 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
16549 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
16550 arg1_type, arg1, temp_offset);
16551 /* Mask off any lower bits from the address. */
16552 tree aligned_addr = gimple_build (&stmts, loc, BIT_AND_EXPR,
16553 arg1_type, temp_addr,
16554 build_int_cst (arg1_type, -16));
16555 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
16556 /* Use the build2 helper to set up the mem_ref. The MEM_REF could also
16557 take an offset, but since we've already incorporated the offset
16558 above, here we just pass in a zero. */
16559 gimple *g;
16560 g = gimple_build_assign (lhs, build2 (MEM_REF, lhs_type, aligned_addr,
16561 build_int_cst (arg1_type, 0)));
16562 gimple_set_location (g, loc);
16563 gsi_replace (gsi, g, true);
16564 return true;
16566 /* Vector stores. */
16567 case ALTIVEC_BUILTIN_STVX_V16QI:
16568 case ALTIVEC_BUILTIN_STVX_V8HI:
16569 case ALTIVEC_BUILTIN_STVX_V4SI:
16570 case ALTIVEC_BUILTIN_STVX_V4SF:
16571 case ALTIVEC_BUILTIN_STVX_V2DI:
16572 case ALTIVEC_BUILTIN_STVX_V2DF:
16574 /* Do not fold for -maltivec=be on LE targets. */
16575 if (VECTOR_ELT_ORDER_BIG && !BYTES_BIG_ENDIAN)
16576 return false;
16577 arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
16578 arg1 = gimple_call_arg (stmt, 1); /* Offset. */
16579 tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
16580 location_t loc = gimple_location (stmt);
16581 tree arg0_type = TREE_TYPE (arg0);
16582 /* Use ptr_type_node (no TBAA) for the arg2_type.
16583 FIXME: (Richard) "A proper fix would be to transition this type as
16584 seen from the frontend to GIMPLE, for example in a similar way we
16585 do for MEM_REFs by piggy-backing that on an extra argument, a
16586 constant zero pointer of the alias pointer type to use (which would
16587 also serve as a type indicator of the store itself). I'd use a
16588 target specific internal function for this (not sure if we can have
16589 those target specific, but I guess if it's folded away then that's
16590 fine) and get away with the overload set."
16592 tree arg2_type = ptr_type_node;
16593 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
16594 the tree using the value from arg0. The resulting type will match
16595 the type of arg2. */
16596 gimple_seq stmts = NULL;
16597 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
16598 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
16599 arg2_type, arg2, temp_offset);
16600 /* Mask off any lower bits from the address. */
16601 tree aligned_addr = gimple_build (&stmts, loc, BIT_AND_EXPR,
16602 arg2_type, temp_addr,
16603 build_int_cst (arg2_type, -16));
16604 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
16605 /* The desired gimple result should be similar to:
16606 MEM[(__vector floatD.1407 *)_1] = vf1D.2697; */
16607 gimple *g;
16608 g = gimple_build_assign (build2 (MEM_REF, arg0_type, aligned_addr,
16609 build_int_cst (arg2_type, 0)), arg0);
16610 gimple_set_location (g, loc);
16611 gsi_replace (gsi, g, true);
16612 return true;
16614 default:
16615 if (TARGET_DEBUG_BUILTIN)
16616 fprintf (stderr, "gimple builtin intrinsic not matched:%d %s %s\n",
16617 fn_code, fn_name1, fn_name2);
16618 break;
16621 return false;
16624 /* Expand an expression EXP that calls a built-in function,
16625 with result going to TARGET if that's convenient
16626 (and in mode MODE if that's convenient).
16627 SUBTARGET may be used as the target for computing one of EXP's operands.
16628 IGNORE is nonzero if the value is to be ignored. */
16630 static rtx
16631 rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
16632 machine_mode mode ATTRIBUTE_UNUSED,
16633 int ignore ATTRIBUTE_UNUSED)
16635 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
16636 enum rs6000_builtins fcode
16637 = (enum rs6000_builtins)DECL_FUNCTION_CODE (fndecl);
16638 size_t uns_fcode = (size_t)fcode;
16639 const struct builtin_description *d;
16640 size_t i;
16641 rtx ret;
16642 bool success;
16643 HOST_WIDE_INT mask = rs6000_builtin_info[uns_fcode].mask;
16644 bool func_valid_p = ((rs6000_builtin_mask & mask) == mask);
16646 if (TARGET_DEBUG_BUILTIN)
16648 enum insn_code icode = rs6000_builtin_info[uns_fcode].icode;
16649 const char *name1 = rs6000_builtin_info[uns_fcode].name;
16650 const char *name2 = (icode != CODE_FOR_nothing)
16651 ? get_insn_name ((int) icode)
16652 : "nothing";
16653 const char *name3;
16655 switch (rs6000_builtin_info[uns_fcode].attr & RS6000_BTC_TYPE_MASK)
16657 default: name3 = "unknown"; break;
16658 case RS6000_BTC_SPECIAL: name3 = "special"; break;
16659 case RS6000_BTC_UNARY: name3 = "unary"; break;
16660 case RS6000_BTC_BINARY: name3 = "binary"; break;
16661 case RS6000_BTC_TERNARY: name3 = "ternary"; break;
16662 case RS6000_BTC_PREDICATE: name3 = "predicate"; break;
16663 case RS6000_BTC_ABS: name3 = "abs"; break;
16664 case RS6000_BTC_DST: name3 = "dst"; break;
16668 fprintf (stderr,
16669 "rs6000_expand_builtin, %s (%d), insn = %s (%d), type=%s%s\n",
16670 (name1) ? name1 : "---", fcode,
16671 (name2) ? name2 : "---", (int) icode,
16672 name3,
16673 func_valid_p ? "" : ", not valid");
16676 if (!func_valid_p)
16678 rs6000_invalid_builtin (fcode);
16680 /* Given it is invalid, just generate a normal call. */
16681 return expand_call (exp, target, ignore);
16684 switch (fcode)
16686 case RS6000_BUILTIN_RECIP:
16687 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);
16689 case RS6000_BUILTIN_RECIPF:
16690 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);
16692 case RS6000_BUILTIN_RSQRTF:
16693 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);
16695 case RS6000_BUILTIN_RSQRT:
16696 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtdf2, exp, target);
16698 case POWER7_BUILTIN_BPERMD:
16699 return rs6000_expand_binop_builtin (((TARGET_64BIT)
16700 ? CODE_FOR_bpermd_di
16701 : CODE_FOR_bpermd_si), exp, target);
16703 case RS6000_BUILTIN_GET_TB:
16704 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_get_timebase,
16705 target);
16707 case RS6000_BUILTIN_MFTB:
16708 return rs6000_expand_zeroop_builtin (((TARGET_64BIT)
16709 ? CODE_FOR_rs6000_mftb_di
16710 : CODE_FOR_rs6000_mftb_si),
16711 target);
16713 case RS6000_BUILTIN_MFFS:
16714 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_mffs, target);
16716 case RS6000_BUILTIN_MTFSF:
16717 return rs6000_expand_mtfsf_builtin (CODE_FOR_rs6000_mtfsf, exp);
16719 case RS6000_BUILTIN_CPU_INIT:
16720 case RS6000_BUILTIN_CPU_IS:
16721 case RS6000_BUILTIN_CPU_SUPPORTS:
16722 return cpu_expand_builtin (fcode, exp, target);
16724 case ALTIVEC_BUILTIN_MASK_FOR_LOAD:
16725 case ALTIVEC_BUILTIN_MASK_FOR_STORE:
16727 int icode = (BYTES_BIG_ENDIAN ? (int) CODE_FOR_altivec_lvsr_direct
16728 : (int) CODE_FOR_altivec_lvsl_direct);
16729 machine_mode tmode = insn_data[icode].operand[0].mode;
16730 machine_mode mode = insn_data[icode].operand[1].mode;
16731 tree arg;
16732 rtx op, addr, pat;
16734 gcc_assert (TARGET_ALTIVEC);
16736 arg = CALL_EXPR_ARG (exp, 0);
16737 gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
16738 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
16739 addr = memory_address (mode, op);
16740 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
16741 op = addr;
16742 else
16744 /* For the load case need to negate the address. */
16745 op = gen_reg_rtx (GET_MODE (addr));
16746 emit_insn (gen_rtx_SET (op, gen_rtx_NEG (GET_MODE (addr), addr)));
16748 op = gen_rtx_MEM (mode, op);
16750 if (target == 0
16751 || GET_MODE (target) != tmode
16752 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
16753 target = gen_reg_rtx (tmode);
16755 pat = GEN_FCN (icode) (target, op);
16756 if (!pat)
16757 return 0;
16758 emit_insn (pat);
16760 return target;
16763 case ALTIVEC_BUILTIN_VCFUX:
16764 case ALTIVEC_BUILTIN_VCFSX:
16765 case ALTIVEC_BUILTIN_VCTUXS:
16766 case ALTIVEC_BUILTIN_VCTSXS:
16767 /* FIXME: There's got to be a nicer way to handle this case than
16768 constructing a new CALL_EXPR. */
16769 if (call_expr_nargs (exp) == 1)
16771 exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
16772 2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
16774 break;
16776 default:
16777 break;
16780 if (TARGET_ALTIVEC)
16782 ret = altivec_expand_builtin (exp, target, &success);
16784 if (success)
16785 return ret;
16787 if (TARGET_PAIRED_FLOAT)
16789 ret = paired_expand_builtin (exp, target, &success);
16791 if (success)
16792 return ret;
16794 if (TARGET_HTM)
16796 ret = htm_expand_builtin (exp, target, &success);
16798 if (success)
16799 return ret;
16802 unsigned attr = rs6000_builtin_info[uns_fcode].attr & RS6000_BTC_TYPE_MASK;
16803 /* RS6000_BTC_SPECIAL represents no-operand operators. */
16804 gcc_assert (attr == RS6000_BTC_UNARY
16805 || attr == RS6000_BTC_BINARY
16806 || attr == RS6000_BTC_TERNARY
16807 || attr == RS6000_BTC_SPECIAL);
16809 /* Handle simple unary operations. */
16810 d = bdesc_1arg;
16811 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
16812 if (d->code == fcode)
16813 return rs6000_expand_unop_builtin (d->icode, exp, target);
16815 /* Handle simple binary operations. */
16816 d = bdesc_2arg;
16817 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
16818 if (d->code == fcode)
16819 return rs6000_expand_binop_builtin (d->icode, exp, target);
16821 /* Handle simple ternary operations. */
16822 d = bdesc_3arg;
16823 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
16824 if (d->code == fcode)
16825 return rs6000_expand_ternop_builtin (d->icode, exp, target);
16827 /* Handle simple no-argument operations. */
16828 d = bdesc_0arg;
16829 for (i = 0; i < ARRAY_SIZE (bdesc_0arg); i++, d++)
16830 if (d->code == fcode)
16831 return rs6000_expand_zeroop_builtin (d->icode, target);
16833 gcc_unreachable ();
16836 /* Create a builtin vector type with a name. Taking care not to give
16837 the canonical type a name. */
16839 static tree
16840 rs6000_vector_type (const char *name, tree elt_type, unsigned num_elts)
16842 tree result = build_vector_type (elt_type, num_elts);
16844 /* Copy so we don't give the canonical type a name. */
16845 result = build_variant_type_copy (result);
16847 add_builtin_type (name, result);
16849 return result;
16852 static void
16853 rs6000_init_builtins (void)
16855 tree tdecl;
16856 tree ftype;
16857 machine_mode mode;
16859 if (TARGET_DEBUG_BUILTIN)
16860 fprintf (stderr, "rs6000_init_builtins%s%s%s\n",
16861 (TARGET_PAIRED_FLOAT) ? ", paired" : "",
16862 (TARGET_ALTIVEC) ? ", altivec" : "",
16863 (TARGET_VSX) ? ", vsx" : "");
16865 V2SI_type_node = build_vector_type (intSI_type_node, 2);
16866 V2SF_type_node = build_vector_type (float_type_node, 2);
16867 V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64 ? "__vector long"
16868 : "__vector long long",
16869 intDI_type_node, 2);
16870 V2DF_type_node = rs6000_vector_type ("__vector double", double_type_node, 2);
16871 V4SI_type_node = rs6000_vector_type ("__vector signed int",
16872 intSI_type_node, 4);
16873 V4SF_type_node = rs6000_vector_type ("__vector float", float_type_node, 4);
16874 V8HI_type_node = rs6000_vector_type ("__vector signed short",
16875 intHI_type_node, 8);
16876 V16QI_type_node = rs6000_vector_type ("__vector signed char",
16877 intQI_type_node, 16);
16879 unsigned_V16QI_type_node = rs6000_vector_type ("__vector unsigned char",
16880 unsigned_intQI_type_node, 16);
16881 unsigned_V8HI_type_node = rs6000_vector_type ("__vector unsigned short",
16882 unsigned_intHI_type_node, 8);
16883 unsigned_V4SI_type_node = rs6000_vector_type ("__vector unsigned int",
16884 unsigned_intSI_type_node, 4);
16885 unsigned_V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64
16886 ? "__vector unsigned long"
16887 : "__vector unsigned long long",
16888 unsigned_intDI_type_node, 2);
16890 opaque_V2SF_type_node = build_opaque_vector_type (float_type_node, 2);
16891 opaque_V2SI_type_node = build_opaque_vector_type (intSI_type_node, 2);
16892 opaque_p_V2SI_type_node = build_pointer_type (opaque_V2SI_type_node);
16893 opaque_V4SI_type_node = build_opaque_vector_type (intSI_type_node, 4);
16895 const_str_type_node
16896 = build_pointer_type (build_qualified_type (char_type_node,
16897 TYPE_QUAL_CONST));
16899 /* We use V1TI mode as a special container to hold __int128_t items that
16900 must live in VSX registers. */
16901 if (intTI_type_node)
16903 V1TI_type_node = rs6000_vector_type ("__vector __int128",
16904 intTI_type_node, 1);
16905 unsigned_V1TI_type_node
16906 = rs6000_vector_type ("__vector unsigned __int128",
16907 unsigned_intTI_type_node, 1);
16910 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
16911 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
16912 'vector unsigned short'. */
16914 bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
16915 bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
16916 bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
16917 bool_long_type_node = build_distinct_type_copy (unsigned_intDI_type_node);
16918 pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
16920 long_integer_type_internal_node = long_integer_type_node;
16921 long_unsigned_type_internal_node = long_unsigned_type_node;
16922 long_long_integer_type_internal_node = long_long_integer_type_node;
16923 long_long_unsigned_type_internal_node = long_long_unsigned_type_node;
16924 intQI_type_internal_node = intQI_type_node;
16925 uintQI_type_internal_node = unsigned_intQI_type_node;
16926 intHI_type_internal_node = intHI_type_node;
16927 uintHI_type_internal_node = unsigned_intHI_type_node;
16928 intSI_type_internal_node = intSI_type_node;
16929 uintSI_type_internal_node = unsigned_intSI_type_node;
16930 intDI_type_internal_node = intDI_type_node;
16931 uintDI_type_internal_node = unsigned_intDI_type_node;
16932 intTI_type_internal_node = intTI_type_node;
16933 uintTI_type_internal_node = unsigned_intTI_type_node;
16934 float_type_internal_node = float_type_node;
16935 double_type_internal_node = double_type_node;
16936 long_double_type_internal_node = long_double_type_node;
16937 dfloat64_type_internal_node = dfloat64_type_node;
16938 dfloat128_type_internal_node = dfloat128_type_node;
16939 void_type_internal_node = void_type_node;
16941 /* 128-bit floating point support. KFmode is IEEE 128-bit floating point.
16942 IFmode is the IBM extended 128-bit format that is a pair of doubles.
16943 TFmode will be either IEEE 128-bit floating point or the IBM double-double
16944 format that uses a pair of doubles, depending on the switches and
16945 defaults.
16947 If we don't support for either 128-bit IBM double double or IEEE 128-bit
16948 floating point, we need make sure the type is non-zero or else self-test
16949 fails during bootstrap.
16951 We don't register a built-in type for __ibm128 if the type is the same as
16952 long double. Instead we add a #define for __ibm128 in
16953 rs6000_cpu_cpp_builtins to long double.
16955 For IEEE 128-bit floating point, always create the type __ieee128. If the
16956 user used -mfloat128, rs6000-c.c will create a define from __float128 to
16957 __ieee128. */
16958 if (TARGET_LONG_DOUBLE_128 && FLOAT128_IEEE_P (TFmode))
16960 ibm128_float_type_node = make_node (REAL_TYPE);
16961 TYPE_PRECISION (ibm128_float_type_node) = 128;
16962 SET_TYPE_MODE (ibm128_float_type_node, IFmode);
16963 layout_type (ibm128_float_type_node);
16965 lang_hooks.types.register_builtin_type (ibm128_float_type_node,
16966 "__ibm128");
16968 else
16969 ibm128_float_type_node = long_double_type_node;
16971 if (TARGET_FLOAT128_TYPE)
16973 ieee128_float_type_node = float128_type_node;
16974 lang_hooks.types.register_builtin_type (ieee128_float_type_node,
16975 "__ieee128");
16978 else
16979 ieee128_float_type_node = long_double_type_node;
16981 /* Initialize the modes for builtin_function_type, mapping a machine mode to
16982 tree type node. */
16983 builtin_mode_to_type[QImode][0] = integer_type_node;
16984 builtin_mode_to_type[HImode][0] = integer_type_node;
16985 builtin_mode_to_type[SImode][0] = intSI_type_node;
16986 builtin_mode_to_type[SImode][1] = unsigned_intSI_type_node;
16987 builtin_mode_to_type[DImode][0] = intDI_type_node;
16988 builtin_mode_to_type[DImode][1] = unsigned_intDI_type_node;
16989 builtin_mode_to_type[TImode][0] = intTI_type_node;
16990 builtin_mode_to_type[TImode][1] = unsigned_intTI_type_node;
16991 builtin_mode_to_type[SFmode][0] = float_type_node;
16992 builtin_mode_to_type[DFmode][0] = double_type_node;
16993 builtin_mode_to_type[IFmode][0] = ibm128_float_type_node;
16994 builtin_mode_to_type[KFmode][0] = ieee128_float_type_node;
16995 builtin_mode_to_type[TFmode][0] = long_double_type_node;
16996 builtin_mode_to_type[DDmode][0] = dfloat64_type_node;
16997 builtin_mode_to_type[TDmode][0] = dfloat128_type_node;
16998 builtin_mode_to_type[V1TImode][0] = V1TI_type_node;
16999 builtin_mode_to_type[V1TImode][1] = unsigned_V1TI_type_node;
17000 builtin_mode_to_type[V2SImode][0] = V2SI_type_node;
17001 builtin_mode_to_type[V2SFmode][0] = V2SF_type_node;
17002 builtin_mode_to_type[V2DImode][0] = V2DI_type_node;
17003 builtin_mode_to_type[V2DImode][1] = unsigned_V2DI_type_node;
17004 builtin_mode_to_type[V2DFmode][0] = V2DF_type_node;
17005 builtin_mode_to_type[V4SImode][0] = V4SI_type_node;
17006 builtin_mode_to_type[V4SImode][1] = unsigned_V4SI_type_node;
17007 builtin_mode_to_type[V4SFmode][0] = V4SF_type_node;
17008 builtin_mode_to_type[V8HImode][0] = V8HI_type_node;
17009 builtin_mode_to_type[V8HImode][1] = unsigned_V8HI_type_node;
17010 builtin_mode_to_type[V16QImode][0] = V16QI_type_node;
17011 builtin_mode_to_type[V16QImode][1] = unsigned_V16QI_type_node;
17013 tdecl = add_builtin_type ("__bool char", bool_char_type_node);
17014 TYPE_NAME (bool_char_type_node) = tdecl;
17016 tdecl = add_builtin_type ("__bool short", bool_short_type_node);
17017 TYPE_NAME (bool_short_type_node) = tdecl;
17019 tdecl = add_builtin_type ("__bool int", bool_int_type_node);
17020 TYPE_NAME (bool_int_type_node) = tdecl;
17022 tdecl = add_builtin_type ("__pixel", pixel_type_node);
17023 TYPE_NAME (pixel_type_node) = tdecl;
17025 bool_V16QI_type_node = rs6000_vector_type ("__vector __bool char",
17026 bool_char_type_node, 16);
17027 bool_V8HI_type_node = rs6000_vector_type ("__vector __bool short",
17028 bool_short_type_node, 8);
17029 bool_V4SI_type_node = rs6000_vector_type ("__vector __bool int",
17030 bool_int_type_node, 4);
17031 bool_V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64
17032 ? "__vector __bool long"
17033 : "__vector __bool long long",
17034 bool_long_type_node, 2);
17035 pixel_V8HI_type_node = rs6000_vector_type ("__vector __pixel",
17036 pixel_type_node, 8);
17038 /* Paired builtins are only available if you build a compiler with the
17039 appropriate options, so only create those builtins with the appropriate
17040 compiler option. Create Altivec and VSX builtins on machines with at
17041 least the general purpose extensions (970 and newer) to allow the use of
17042 the target attribute. */
17043 if (TARGET_PAIRED_FLOAT)
17044 paired_init_builtins ();
17045 if (TARGET_EXTRA_BUILTINS)
17046 altivec_init_builtins ();
17047 if (TARGET_HTM)
17048 htm_init_builtins ();
17050 if (TARGET_EXTRA_BUILTINS || TARGET_PAIRED_FLOAT)
17051 rs6000_common_init_builtins ();
17053 ftype = build_function_type_list (ieee128_float_type_node,
17054 const_str_type_node, NULL_TREE);
17055 def_builtin ("__builtin_nanq", ftype, RS6000_BUILTIN_NANQ);
17056 def_builtin ("__builtin_nansq", ftype, RS6000_BUILTIN_NANSQ);
17058 ftype = build_function_type_list (ieee128_float_type_node, NULL_TREE);
17059 def_builtin ("__builtin_infq", ftype, RS6000_BUILTIN_INFQ);
17060 def_builtin ("__builtin_huge_valq", ftype, RS6000_BUILTIN_HUGE_VALQ);
17062 ftype = builtin_function_type (DFmode, DFmode, DFmode, VOIDmode,
17063 RS6000_BUILTIN_RECIP, "__builtin_recipdiv");
17064 def_builtin ("__builtin_recipdiv", ftype, RS6000_BUILTIN_RECIP);
17066 ftype = builtin_function_type (SFmode, SFmode, SFmode, VOIDmode,
17067 RS6000_BUILTIN_RECIPF, "__builtin_recipdivf");
17068 def_builtin ("__builtin_recipdivf", ftype, RS6000_BUILTIN_RECIPF);
17070 ftype = builtin_function_type (DFmode, DFmode, VOIDmode, VOIDmode,
17071 RS6000_BUILTIN_RSQRT, "__builtin_rsqrt");
17072 def_builtin ("__builtin_rsqrt", ftype, RS6000_BUILTIN_RSQRT);
17074 ftype = builtin_function_type (SFmode, SFmode, VOIDmode, VOIDmode,
17075 RS6000_BUILTIN_RSQRTF, "__builtin_rsqrtf");
17076 def_builtin ("__builtin_rsqrtf", ftype, RS6000_BUILTIN_RSQRTF);
17078 mode = (TARGET_64BIT) ? DImode : SImode;
17079 ftype = builtin_function_type (mode, mode, mode, VOIDmode,
17080 POWER7_BUILTIN_BPERMD, "__builtin_bpermd");
17081 def_builtin ("__builtin_bpermd", ftype, POWER7_BUILTIN_BPERMD);
17083 ftype = build_function_type_list (unsigned_intDI_type_node,
17084 NULL_TREE);
17085 def_builtin ("__builtin_ppc_get_timebase", ftype, RS6000_BUILTIN_GET_TB);
17087 if (TARGET_64BIT)
17088 ftype = build_function_type_list (unsigned_intDI_type_node,
17089 NULL_TREE);
17090 else
17091 ftype = build_function_type_list (unsigned_intSI_type_node,
17092 NULL_TREE);
17093 def_builtin ("__builtin_ppc_mftb", ftype, RS6000_BUILTIN_MFTB);
17095 ftype = build_function_type_list (double_type_node, NULL_TREE);
17096 def_builtin ("__builtin_mffs", ftype, RS6000_BUILTIN_MFFS);
17098 ftype = build_function_type_list (void_type_node,
17099 intSI_type_node, double_type_node,
17100 NULL_TREE);
17101 def_builtin ("__builtin_mtfsf", ftype, RS6000_BUILTIN_MTFSF);
17103 ftype = build_function_type_list (void_type_node, NULL_TREE);
17104 def_builtin ("__builtin_cpu_init", ftype, RS6000_BUILTIN_CPU_INIT);
17106 ftype = build_function_type_list (bool_int_type_node, const_ptr_type_node,
17107 NULL_TREE);
17108 def_builtin ("__builtin_cpu_is", ftype, RS6000_BUILTIN_CPU_IS);
17109 def_builtin ("__builtin_cpu_supports", ftype, RS6000_BUILTIN_CPU_SUPPORTS);
17111 /* AIX libm provides clog as __clog. */
17112 if (TARGET_XCOFF &&
17113 (tdecl = builtin_decl_explicit (BUILT_IN_CLOG)) != NULL_TREE)
17114 set_user_assembler_name (tdecl, "__clog");
17116 #ifdef SUBTARGET_INIT_BUILTINS
17117 SUBTARGET_INIT_BUILTINS;
17118 #endif
17121 /* Returns the rs6000 builtin decl for CODE. */
17123 static tree
17124 rs6000_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
17126 HOST_WIDE_INT fnmask;
17128 if (code >= RS6000_BUILTIN_COUNT)
17129 return error_mark_node;
17131 fnmask = rs6000_builtin_info[code].mask;
17132 if ((fnmask & rs6000_builtin_mask) != fnmask)
17134 rs6000_invalid_builtin ((enum rs6000_builtins)code);
17135 return error_mark_node;
17138 return rs6000_builtin_decls[code];
17141 static void
17142 paired_init_builtins (void)
17144 const struct builtin_description *d;
17145 size_t i;
17146 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17148 tree int_ftype_int_v2sf_v2sf
17149 = build_function_type_list (integer_type_node,
17150 integer_type_node,
17151 V2SF_type_node,
17152 V2SF_type_node,
17153 NULL_TREE);
17154 tree pcfloat_type_node =
17155 build_pointer_type (build_qualified_type
17156 (float_type_node, TYPE_QUAL_CONST));
17158 tree v2sf_ftype_long_pcfloat = build_function_type_list (V2SF_type_node,
17159 long_integer_type_node,
17160 pcfloat_type_node,
17161 NULL_TREE);
17162 tree void_ftype_v2sf_long_pcfloat =
17163 build_function_type_list (void_type_node,
17164 V2SF_type_node,
17165 long_integer_type_node,
17166 pcfloat_type_node,
17167 NULL_TREE);
17170 def_builtin ("__builtin_paired_lx", v2sf_ftype_long_pcfloat,
17171 PAIRED_BUILTIN_LX);
17174 def_builtin ("__builtin_paired_stx", void_ftype_v2sf_long_pcfloat,
17175 PAIRED_BUILTIN_STX);
17177 /* Predicates. */
17178 d = bdesc_paired_preds;
17179 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); ++i, d++)
17181 tree type;
17182 HOST_WIDE_INT mask = d->mask;
17184 if ((mask & builtin_mask) != mask)
17186 if (TARGET_DEBUG_BUILTIN)
17187 fprintf (stderr, "paired_init_builtins, skip predicate %s\n",
17188 d->name);
17189 continue;
17192 /* Cannot define builtin if the instruction is disabled. */
17193 gcc_assert (d->icode != CODE_FOR_nothing);
17195 if (TARGET_DEBUG_BUILTIN)
17196 fprintf (stderr, "paired pred #%d, insn = %s [%d], mode = %s\n",
17197 (int)i, get_insn_name (d->icode), (int)d->icode,
17198 GET_MODE_NAME (insn_data[d->icode].operand[1].mode));
17200 switch (insn_data[d->icode].operand[1].mode)
17202 case E_V2SFmode:
17203 type = int_ftype_int_v2sf_v2sf;
17204 break;
17205 default:
17206 gcc_unreachable ();
17209 def_builtin (d->name, type, d->code);
17213 static void
17214 altivec_init_builtins (void)
17216 const struct builtin_description *d;
17217 size_t i;
17218 tree ftype;
17219 tree decl;
17220 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17222 tree pvoid_type_node = build_pointer_type (void_type_node);
17224 tree pcvoid_type_node
17225 = build_pointer_type (build_qualified_type (void_type_node,
17226 TYPE_QUAL_CONST));
17228 tree int_ftype_opaque
17229 = build_function_type_list (integer_type_node,
17230 opaque_V4SI_type_node, NULL_TREE);
17231 tree opaque_ftype_opaque
17232 = build_function_type_list (integer_type_node, NULL_TREE);
17233 tree opaque_ftype_opaque_int
17234 = build_function_type_list (opaque_V4SI_type_node,
17235 opaque_V4SI_type_node, integer_type_node, NULL_TREE);
17236 tree opaque_ftype_opaque_opaque_int
17237 = build_function_type_list (opaque_V4SI_type_node,
17238 opaque_V4SI_type_node, opaque_V4SI_type_node,
17239 integer_type_node, NULL_TREE);
17240 tree opaque_ftype_opaque_opaque_opaque
17241 = build_function_type_list (opaque_V4SI_type_node,
17242 opaque_V4SI_type_node, opaque_V4SI_type_node,
17243 opaque_V4SI_type_node, NULL_TREE);
17244 tree opaque_ftype_opaque_opaque
17245 = build_function_type_list (opaque_V4SI_type_node,
17246 opaque_V4SI_type_node, opaque_V4SI_type_node,
17247 NULL_TREE);
17248 tree int_ftype_int_opaque_opaque
17249 = build_function_type_list (integer_type_node,
17250 integer_type_node, opaque_V4SI_type_node,
17251 opaque_V4SI_type_node, NULL_TREE);
17252 tree int_ftype_int_v4si_v4si
17253 = build_function_type_list (integer_type_node,
17254 integer_type_node, V4SI_type_node,
17255 V4SI_type_node, NULL_TREE);
17256 tree int_ftype_int_v2di_v2di
17257 = build_function_type_list (integer_type_node,
17258 integer_type_node, V2DI_type_node,
17259 V2DI_type_node, NULL_TREE);
17260 tree void_ftype_v4si
17261 = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
17262 tree v8hi_ftype_void
17263 = build_function_type_list (V8HI_type_node, NULL_TREE);
17264 tree void_ftype_void
17265 = build_function_type_list (void_type_node, NULL_TREE);
17266 tree void_ftype_int
17267 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
17269 tree opaque_ftype_long_pcvoid
17270 = build_function_type_list (opaque_V4SI_type_node,
17271 long_integer_type_node, pcvoid_type_node,
17272 NULL_TREE);
17273 tree v16qi_ftype_long_pcvoid
17274 = build_function_type_list (V16QI_type_node,
17275 long_integer_type_node, pcvoid_type_node,
17276 NULL_TREE);
17277 tree v8hi_ftype_long_pcvoid
17278 = build_function_type_list (V8HI_type_node,
17279 long_integer_type_node, pcvoid_type_node,
17280 NULL_TREE);
17281 tree v4si_ftype_long_pcvoid
17282 = build_function_type_list (V4SI_type_node,
17283 long_integer_type_node, pcvoid_type_node,
17284 NULL_TREE);
17285 tree v4sf_ftype_long_pcvoid
17286 = build_function_type_list (V4SF_type_node,
17287 long_integer_type_node, pcvoid_type_node,
17288 NULL_TREE);
17289 tree v2df_ftype_long_pcvoid
17290 = build_function_type_list (V2DF_type_node,
17291 long_integer_type_node, pcvoid_type_node,
17292 NULL_TREE);
17293 tree v2di_ftype_long_pcvoid
17294 = build_function_type_list (V2DI_type_node,
17295 long_integer_type_node, pcvoid_type_node,
17296 NULL_TREE);
17298 tree void_ftype_opaque_long_pvoid
17299 = build_function_type_list (void_type_node,
17300 opaque_V4SI_type_node, long_integer_type_node,
17301 pvoid_type_node, NULL_TREE);
17302 tree void_ftype_v4si_long_pvoid
17303 = build_function_type_list (void_type_node,
17304 V4SI_type_node, long_integer_type_node,
17305 pvoid_type_node, NULL_TREE);
17306 tree void_ftype_v16qi_long_pvoid
17307 = build_function_type_list (void_type_node,
17308 V16QI_type_node, long_integer_type_node,
17309 pvoid_type_node, NULL_TREE);
17311 tree void_ftype_v16qi_pvoid_long
17312 = build_function_type_list (void_type_node,
17313 V16QI_type_node, pvoid_type_node,
17314 long_integer_type_node, NULL_TREE);
17316 tree void_ftype_v8hi_long_pvoid
17317 = build_function_type_list (void_type_node,
17318 V8HI_type_node, long_integer_type_node,
17319 pvoid_type_node, NULL_TREE);
17320 tree void_ftype_v4sf_long_pvoid
17321 = build_function_type_list (void_type_node,
17322 V4SF_type_node, long_integer_type_node,
17323 pvoid_type_node, NULL_TREE);
17324 tree void_ftype_v2df_long_pvoid
17325 = build_function_type_list (void_type_node,
17326 V2DF_type_node, long_integer_type_node,
17327 pvoid_type_node, NULL_TREE);
17328 tree void_ftype_v2di_long_pvoid
17329 = build_function_type_list (void_type_node,
17330 V2DI_type_node, long_integer_type_node,
17331 pvoid_type_node, NULL_TREE);
17332 tree int_ftype_int_v8hi_v8hi
17333 = build_function_type_list (integer_type_node,
17334 integer_type_node, V8HI_type_node,
17335 V8HI_type_node, NULL_TREE);
17336 tree int_ftype_int_v16qi_v16qi
17337 = build_function_type_list (integer_type_node,
17338 integer_type_node, V16QI_type_node,
17339 V16QI_type_node, NULL_TREE);
17340 tree int_ftype_int_v4sf_v4sf
17341 = build_function_type_list (integer_type_node,
17342 integer_type_node, V4SF_type_node,
17343 V4SF_type_node, NULL_TREE);
17344 tree int_ftype_int_v2df_v2df
17345 = build_function_type_list (integer_type_node,
17346 integer_type_node, V2DF_type_node,
17347 V2DF_type_node, NULL_TREE);
17348 tree v2di_ftype_v2di
17349 = build_function_type_list (V2DI_type_node, V2DI_type_node, NULL_TREE);
17350 tree v4si_ftype_v4si
17351 = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
17352 tree v8hi_ftype_v8hi
17353 = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
17354 tree v16qi_ftype_v16qi
17355 = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
17356 tree v4sf_ftype_v4sf
17357 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
17358 tree v2df_ftype_v2df
17359 = build_function_type_list (V2DF_type_node, V2DF_type_node, NULL_TREE);
17360 tree void_ftype_pcvoid_int_int
17361 = build_function_type_list (void_type_node,
17362 pcvoid_type_node, integer_type_node,
17363 integer_type_node, NULL_TREE);
17365 def_builtin ("__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
17366 def_builtin ("__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
17367 def_builtin ("__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
17368 def_builtin ("__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
17369 def_builtin ("__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
17370 def_builtin ("__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
17371 def_builtin ("__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
17372 def_builtin ("__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
17373 def_builtin ("__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
17374 def_builtin ("__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
17375 def_builtin ("__builtin_altivec_lvxl_v2df", v2df_ftype_long_pcvoid,
17376 ALTIVEC_BUILTIN_LVXL_V2DF);
17377 def_builtin ("__builtin_altivec_lvxl_v2di", v2di_ftype_long_pcvoid,
17378 ALTIVEC_BUILTIN_LVXL_V2DI);
17379 def_builtin ("__builtin_altivec_lvxl_v4sf", v4sf_ftype_long_pcvoid,
17380 ALTIVEC_BUILTIN_LVXL_V4SF);
17381 def_builtin ("__builtin_altivec_lvxl_v4si", v4si_ftype_long_pcvoid,
17382 ALTIVEC_BUILTIN_LVXL_V4SI);
17383 def_builtin ("__builtin_altivec_lvxl_v8hi", v8hi_ftype_long_pcvoid,
17384 ALTIVEC_BUILTIN_LVXL_V8HI);
17385 def_builtin ("__builtin_altivec_lvxl_v16qi", v16qi_ftype_long_pcvoid,
17386 ALTIVEC_BUILTIN_LVXL_V16QI);
17387 def_builtin ("__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
17388 def_builtin ("__builtin_altivec_lvx_v2df", v2df_ftype_long_pcvoid,
17389 ALTIVEC_BUILTIN_LVX_V2DF);
17390 def_builtin ("__builtin_altivec_lvx_v2di", v2di_ftype_long_pcvoid,
17391 ALTIVEC_BUILTIN_LVX_V2DI);
17392 def_builtin ("__builtin_altivec_lvx_v4sf", v4sf_ftype_long_pcvoid,
17393 ALTIVEC_BUILTIN_LVX_V4SF);
17394 def_builtin ("__builtin_altivec_lvx_v4si", v4si_ftype_long_pcvoid,
17395 ALTIVEC_BUILTIN_LVX_V4SI);
17396 def_builtin ("__builtin_altivec_lvx_v8hi", v8hi_ftype_long_pcvoid,
17397 ALTIVEC_BUILTIN_LVX_V8HI);
17398 def_builtin ("__builtin_altivec_lvx_v16qi", v16qi_ftype_long_pcvoid,
17399 ALTIVEC_BUILTIN_LVX_V16QI);
17400 def_builtin ("__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
17401 def_builtin ("__builtin_altivec_stvx_v2df", void_ftype_v2df_long_pvoid,
17402 ALTIVEC_BUILTIN_STVX_V2DF);
17403 def_builtin ("__builtin_altivec_stvx_v2di", void_ftype_v2di_long_pvoid,
17404 ALTIVEC_BUILTIN_STVX_V2DI);
17405 def_builtin ("__builtin_altivec_stvx_v4sf", void_ftype_v4sf_long_pvoid,
17406 ALTIVEC_BUILTIN_STVX_V4SF);
17407 def_builtin ("__builtin_altivec_stvx_v4si", void_ftype_v4si_long_pvoid,
17408 ALTIVEC_BUILTIN_STVX_V4SI);
17409 def_builtin ("__builtin_altivec_stvx_v8hi", void_ftype_v8hi_long_pvoid,
17410 ALTIVEC_BUILTIN_STVX_V8HI);
17411 def_builtin ("__builtin_altivec_stvx_v16qi", void_ftype_v16qi_long_pvoid,
17412 ALTIVEC_BUILTIN_STVX_V16QI);
17413 def_builtin ("__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
17414 def_builtin ("__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
17415 def_builtin ("__builtin_altivec_stvxl_v2df", void_ftype_v2df_long_pvoid,
17416 ALTIVEC_BUILTIN_STVXL_V2DF);
17417 def_builtin ("__builtin_altivec_stvxl_v2di", void_ftype_v2di_long_pvoid,
17418 ALTIVEC_BUILTIN_STVXL_V2DI);
17419 def_builtin ("__builtin_altivec_stvxl_v4sf", void_ftype_v4sf_long_pvoid,
17420 ALTIVEC_BUILTIN_STVXL_V4SF);
17421 def_builtin ("__builtin_altivec_stvxl_v4si", void_ftype_v4si_long_pvoid,
17422 ALTIVEC_BUILTIN_STVXL_V4SI);
17423 def_builtin ("__builtin_altivec_stvxl_v8hi", void_ftype_v8hi_long_pvoid,
17424 ALTIVEC_BUILTIN_STVXL_V8HI);
17425 def_builtin ("__builtin_altivec_stvxl_v16qi", void_ftype_v16qi_long_pvoid,
17426 ALTIVEC_BUILTIN_STVXL_V16QI);
17427 def_builtin ("__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
17428 def_builtin ("__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
17429 def_builtin ("__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
17430 def_builtin ("__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
17431 def_builtin ("__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
17432 def_builtin ("__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
17433 def_builtin ("__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
17434 def_builtin ("__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
17435 def_builtin ("__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
17436 def_builtin ("__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
17437 def_builtin ("__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
17438 def_builtin ("__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
17439 def_builtin ("__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
17440 def_builtin ("__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
17441 def_builtin ("__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
17442 def_builtin ("__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);
17444 def_builtin ("__builtin_vsx_lxvd2x_v2df", v2df_ftype_long_pcvoid,
17445 VSX_BUILTIN_LXVD2X_V2DF);
17446 def_builtin ("__builtin_vsx_lxvd2x_v2di", v2di_ftype_long_pcvoid,
17447 VSX_BUILTIN_LXVD2X_V2DI);
17448 def_builtin ("__builtin_vsx_lxvw4x_v4sf", v4sf_ftype_long_pcvoid,
17449 VSX_BUILTIN_LXVW4X_V4SF);
17450 def_builtin ("__builtin_vsx_lxvw4x_v4si", v4si_ftype_long_pcvoid,
17451 VSX_BUILTIN_LXVW4X_V4SI);
17452 def_builtin ("__builtin_vsx_lxvw4x_v8hi", v8hi_ftype_long_pcvoid,
17453 VSX_BUILTIN_LXVW4X_V8HI);
17454 def_builtin ("__builtin_vsx_lxvw4x_v16qi", v16qi_ftype_long_pcvoid,
17455 VSX_BUILTIN_LXVW4X_V16QI);
17456 def_builtin ("__builtin_vsx_stxvd2x_v2df", void_ftype_v2df_long_pvoid,
17457 VSX_BUILTIN_STXVD2X_V2DF);
17458 def_builtin ("__builtin_vsx_stxvd2x_v2di", void_ftype_v2di_long_pvoid,
17459 VSX_BUILTIN_STXVD2X_V2DI);
17460 def_builtin ("__builtin_vsx_stxvw4x_v4sf", void_ftype_v4sf_long_pvoid,
17461 VSX_BUILTIN_STXVW4X_V4SF);
17462 def_builtin ("__builtin_vsx_stxvw4x_v4si", void_ftype_v4si_long_pvoid,
17463 VSX_BUILTIN_STXVW4X_V4SI);
17464 def_builtin ("__builtin_vsx_stxvw4x_v8hi", void_ftype_v8hi_long_pvoid,
17465 VSX_BUILTIN_STXVW4X_V8HI);
17466 def_builtin ("__builtin_vsx_stxvw4x_v16qi", void_ftype_v16qi_long_pvoid,
17467 VSX_BUILTIN_STXVW4X_V16QI);
17469 def_builtin ("__builtin_vsx_ld_elemrev_v2df", v2df_ftype_long_pcvoid,
17470 VSX_BUILTIN_LD_ELEMREV_V2DF);
17471 def_builtin ("__builtin_vsx_ld_elemrev_v2di", v2di_ftype_long_pcvoid,
17472 VSX_BUILTIN_LD_ELEMREV_V2DI);
17473 def_builtin ("__builtin_vsx_ld_elemrev_v4sf", v4sf_ftype_long_pcvoid,
17474 VSX_BUILTIN_LD_ELEMREV_V4SF);
17475 def_builtin ("__builtin_vsx_ld_elemrev_v4si", v4si_ftype_long_pcvoid,
17476 VSX_BUILTIN_LD_ELEMREV_V4SI);
17477 def_builtin ("__builtin_vsx_st_elemrev_v2df", void_ftype_v2df_long_pvoid,
17478 VSX_BUILTIN_ST_ELEMREV_V2DF);
17479 def_builtin ("__builtin_vsx_st_elemrev_v2di", void_ftype_v2di_long_pvoid,
17480 VSX_BUILTIN_ST_ELEMREV_V2DI);
17481 def_builtin ("__builtin_vsx_st_elemrev_v4sf", void_ftype_v4sf_long_pvoid,
17482 VSX_BUILTIN_ST_ELEMREV_V4SF);
17483 def_builtin ("__builtin_vsx_st_elemrev_v4si", void_ftype_v4si_long_pvoid,
17484 VSX_BUILTIN_ST_ELEMREV_V4SI);
17486 def_builtin ("__builtin_vsx_le_be_v8hi", v8hi_ftype_long_pcvoid,
17487 VSX_BUILTIN_XL_BE_V8HI);
17488 def_builtin ("__builtin_vsx_le_be_v4si", v4si_ftype_long_pcvoid,
17489 VSX_BUILTIN_XL_BE_V4SI);
17490 def_builtin ("__builtin_vsx_le_be_v2di", v2di_ftype_long_pcvoid,
17491 VSX_BUILTIN_XL_BE_V2DI);
17492 def_builtin ("__builtin_vsx_le_be_v4sf", v4sf_ftype_long_pcvoid,
17493 VSX_BUILTIN_XL_BE_V4SF);
17494 def_builtin ("__builtin_vsx_le_be_v2df", v2df_ftype_long_pcvoid,
17495 VSX_BUILTIN_XL_BE_V2DF);
17496 def_builtin ("__builtin_vsx_le_be_v16qi", v16qi_ftype_long_pcvoid,
17497 VSX_BUILTIN_XL_BE_V16QI);
17499 if (TARGET_P9_VECTOR)
17501 def_builtin ("__builtin_vsx_ld_elemrev_v8hi", v8hi_ftype_long_pcvoid,
17502 VSX_BUILTIN_LD_ELEMREV_V8HI);
17503 def_builtin ("__builtin_vsx_ld_elemrev_v16qi", v16qi_ftype_long_pcvoid,
17504 VSX_BUILTIN_LD_ELEMREV_V16QI);
17505 def_builtin ("__builtin_vsx_st_elemrev_v8hi",
17506 void_ftype_v8hi_long_pvoid, VSX_BUILTIN_ST_ELEMREV_V8HI);
17507 def_builtin ("__builtin_vsx_st_elemrev_v16qi",
17508 void_ftype_v16qi_long_pvoid, VSX_BUILTIN_ST_ELEMREV_V16QI);
17510 else
17512 rs6000_builtin_decls[(int) VSX_BUILTIN_LD_ELEMREV_V8HI]
17513 = rs6000_builtin_decls[(int) VSX_BUILTIN_LXVW4X_V8HI];
17514 rs6000_builtin_decls[(int) VSX_BUILTIN_LD_ELEMREV_V16QI]
17515 = rs6000_builtin_decls[(int) VSX_BUILTIN_LXVW4X_V16QI];
17516 rs6000_builtin_decls[(int) VSX_BUILTIN_ST_ELEMREV_V8HI]
17517 = rs6000_builtin_decls[(int) VSX_BUILTIN_STXVW4X_V8HI];
17518 rs6000_builtin_decls[(int) VSX_BUILTIN_ST_ELEMREV_V16QI]
17519 = rs6000_builtin_decls[(int) VSX_BUILTIN_STXVW4X_V16QI];
17522 def_builtin ("__builtin_vec_vsx_ld", opaque_ftype_long_pcvoid,
17523 VSX_BUILTIN_VEC_LD);
17524 def_builtin ("__builtin_vec_vsx_st", void_ftype_opaque_long_pvoid,
17525 VSX_BUILTIN_VEC_ST);
17526 def_builtin ("__builtin_vec_xl", opaque_ftype_long_pcvoid,
17527 VSX_BUILTIN_VEC_XL);
17528 def_builtin ("__builtin_vec_xl_be", opaque_ftype_long_pcvoid,
17529 VSX_BUILTIN_VEC_XL_BE);
17530 def_builtin ("__builtin_vec_xst", void_ftype_opaque_long_pvoid,
17531 VSX_BUILTIN_VEC_XST);
17533 def_builtin ("__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
17534 def_builtin ("__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
17535 def_builtin ("__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);
17537 def_builtin ("__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
17538 def_builtin ("__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
17539 def_builtin ("__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
17540 def_builtin ("__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
17541 def_builtin ("__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
17542 def_builtin ("__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
17543 def_builtin ("__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
17544 def_builtin ("__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
17545 def_builtin ("__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
17546 def_builtin ("__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
17547 def_builtin ("__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
17548 def_builtin ("__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);
17550 def_builtin ("__builtin_vec_adde", opaque_ftype_opaque_opaque_opaque,
17551 ALTIVEC_BUILTIN_VEC_ADDE);
17552 def_builtin ("__builtin_vec_addec", opaque_ftype_opaque_opaque_opaque,
17553 ALTIVEC_BUILTIN_VEC_ADDEC);
17554 def_builtin ("__builtin_vec_cmpne", opaque_ftype_opaque_opaque,
17555 ALTIVEC_BUILTIN_VEC_CMPNE);
17556 def_builtin ("__builtin_vec_mul", opaque_ftype_opaque_opaque,
17557 ALTIVEC_BUILTIN_VEC_MUL);
17558 def_builtin ("__builtin_vec_sube", opaque_ftype_opaque_opaque_opaque,
17559 ALTIVEC_BUILTIN_VEC_SUBE);
17560 def_builtin ("__builtin_vec_subec", opaque_ftype_opaque_opaque_opaque,
17561 ALTIVEC_BUILTIN_VEC_SUBEC);
17563 /* Cell builtins. */
17564 def_builtin ("__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
17565 def_builtin ("__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
17566 def_builtin ("__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
17567 def_builtin ("__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);
17569 def_builtin ("__builtin_vec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
17570 def_builtin ("__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
17571 def_builtin ("__builtin_vec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
17572 def_builtin ("__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);
17574 def_builtin ("__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
17575 def_builtin ("__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
17576 def_builtin ("__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
17577 def_builtin ("__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);
17579 def_builtin ("__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
17580 def_builtin ("__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
17581 def_builtin ("__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
17582 def_builtin ("__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
17584 if (TARGET_P9_VECTOR)
17586 def_builtin ("__builtin_altivec_stxvl", void_ftype_v16qi_pvoid_long,
17587 P9V_BUILTIN_STXVL);
17588 def_builtin ("__builtin_xst_len_r", void_ftype_v16qi_pvoid_long,
17589 P9V_BUILTIN_XST_LEN_R);
17592 /* Add the DST variants. */
17593 d = bdesc_dst;
17594 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
17596 HOST_WIDE_INT mask = d->mask;
17598 /* It is expected that these dst built-in functions may have
17599 d->icode equal to CODE_FOR_nothing. */
17600 if ((mask & builtin_mask) != mask)
17602 if (TARGET_DEBUG_BUILTIN)
17603 fprintf (stderr, "altivec_init_builtins, skip dst %s\n",
17604 d->name);
17605 continue;
17607 def_builtin (d->name, void_ftype_pcvoid_int_int, d->code);
17610 /* Initialize the predicates. */
17611 d = bdesc_altivec_preds;
17612 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, d++)
17614 machine_mode mode1;
17615 tree type;
17616 HOST_WIDE_INT mask = d->mask;
17618 if ((mask & builtin_mask) != mask)
17620 if (TARGET_DEBUG_BUILTIN)
17621 fprintf (stderr, "altivec_init_builtins, skip predicate %s\n",
17622 d->name);
17623 continue;
17626 if (rs6000_overloaded_builtin_p (d->code))
17627 mode1 = VOIDmode;
17628 else
17630 /* Cannot define builtin if the instruction is disabled. */
17631 gcc_assert (d->icode != CODE_FOR_nothing);
17632 mode1 = insn_data[d->icode].operand[1].mode;
17635 switch (mode1)
17637 case E_VOIDmode:
17638 type = int_ftype_int_opaque_opaque;
17639 break;
17640 case E_V2DImode:
17641 type = int_ftype_int_v2di_v2di;
17642 break;
17643 case E_V4SImode:
17644 type = int_ftype_int_v4si_v4si;
17645 break;
17646 case E_V8HImode:
17647 type = int_ftype_int_v8hi_v8hi;
17648 break;
17649 case E_V16QImode:
17650 type = int_ftype_int_v16qi_v16qi;
17651 break;
17652 case E_V4SFmode:
17653 type = int_ftype_int_v4sf_v4sf;
17654 break;
17655 case E_V2DFmode:
17656 type = int_ftype_int_v2df_v2df;
17657 break;
17658 default:
17659 gcc_unreachable ();
17662 def_builtin (d->name, type, d->code);
17665 /* Initialize the abs* operators. */
17666 d = bdesc_abs;
17667 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
17669 machine_mode mode0;
17670 tree type;
17671 HOST_WIDE_INT mask = d->mask;
17673 if ((mask & builtin_mask) != mask)
17675 if (TARGET_DEBUG_BUILTIN)
17676 fprintf (stderr, "altivec_init_builtins, skip abs %s\n",
17677 d->name);
17678 continue;
17681 /* Cannot define builtin if the instruction is disabled. */
17682 gcc_assert (d->icode != CODE_FOR_nothing);
17683 mode0 = insn_data[d->icode].operand[0].mode;
17685 switch (mode0)
17687 case E_V2DImode:
17688 type = v2di_ftype_v2di;
17689 break;
17690 case E_V4SImode:
17691 type = v4si_ftype_v4si;
17692 break;
17693 case E_V8HImode:
17694 type = v8hi_ftype_v8hi;
17695 break;
17696 case E_V16QImode:
17697 type = v16qi_ftype_v16qi;
17698 break;
17699 case E_V4SFmode:
17700 type = v4sf_ftype_v4sf;
17701 break;
17702 case E_V2DFmode:
17703 type = v2df_ftype_v2df;
17704 break;
17705 default:
17706 gcc_unreachable ();
17709 def_builtin (d->name, type, d->code);
17712 /* Initialize target builtin that implements
17713 targetm.vectorize.builtin_mask_for_load. */
17715 decl = add_builtin_function ("__builtin_altivec_mask_for_load",
17716 v16qi_ftype_long_pcvoid,
17717 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
17718 BUILT_IN_MD, NULL, NULL_TREE);
17719 TREE_READONLY (decl) = 1;
17720 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
17721 altivec_builtin_mask_for_load = decl;
17723 /* Access to the vec_init patterns. */
17724 ftype = build_function_type_list (V4SI_type_node, integer_type_node,
17725 integer_type_node, integer_type_node,
17726 integer_type_node, NULL_TREE);
17727 def_builtin ("__builtin_vec_init_v4si", ftype, ALTIVEC_BUILTIN_VEC_INIT_V4SI);
17729 ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
17730 short_integer_type_node,
17731 short_integer_type_node,
17732 short_integer_type_node,
17733 short_integer_type_node,
17734 short_integer_type_node,
17735 short_integer_type_node,
17736 short_integer_type_node, NULL_TREE);
17737 def_builtin ("__builtin_vec_init_v8hi", ftype, ALTIVEC_BUILTIN_VEC_INIT_V8HI);
17739 ftype = build_function_type_list (V16QI_type_node, char_type_node,
17740 char_type_node, char_type_node,
17741 char_type_node, char_type_node,
17742 char_type_node, char_type_node,
17743 char_type_node, char_type_node,
17744 char_type_node, char_type_node,
17745 char_type_node, char_type_node,
17746 char_type_node, char_type_node,
17747 char_type_node, NULL_TREE);
17748 def_builtin ("__builtin_vec_init_v16qi", ftype,
17749 ALTIVEC_BUILTIN_VEC_INIT_V16QI);
17751 ftype = build_function_type_list (V4SF_type_node, float_type_node,
17752 float_type_node, float_type_node,
17753 float_type_node, NULL_TREE);
17754 def_builtin ("__builtin_vec_init_v4sf", ftype, ALTIVEC_BUILTIN_VEC_INIT_V4SF);
17756 /* VSX builtins. */
17757 ftype = build_function_type_list (V2DF_type_node, double_type_node,
17758 double_type_node, NULL_TREE);
17759 def_builtin ("__builtin_vec_init_v2df", ftype, VSX_BUILTIN_VEC_INIT_V2DF);
17761 ftype = build_function_type_list (V2DI_type_node, intDI_type_node,
17762 intDI_type_node, NULL_TREE);
17763 def_builtin ("__builtin_vec_init_v2di", ftype, VSX_BUILTIN_VEC_INIT_V2DI);
17765 /* Access to the vec_set patterns. */
17766 ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
17767 intSI_type_node,
17768 integer_type_node, NULL_TREE);
17769 def_builtin ("__builtin_vec_set_v4si", ftype, ALTIVEC_BUILTIN_VEC_SET_V4SI);
17771 ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
17772 intHI_type_node,
17773 integer_type_node, NULL_TREE);
17774 def_builtin ("__builtin_vec_set_v8hi", ftype, ALTIVEC_BUILTIN_VEC_SET_V8HI);
17776 ftype = build_function_type_list (V16QI_type_node, V16QI_type_node,
17777 intQI_type_node,
17778 integer_type_node, NULL_TREE);
17779 def_builtin ("__builtin_vec_set_v16qi", ftype, ALTIVEC_BUILTIN_VEC_SET_V16QI);
17781 ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
17782 float_type_node,
17783 integer_type_node, NULL_TREE);
17784 def_builtin ("__builtin_vec_set_v4sf", ftype, ALTIVEC_BUILTIN_VEC_SET_V4SF);
17786 ftype = build_function_type_list (V2DF_type_node, V2DF_type_node,
17787 double_type_node,
17788 integer_type_node, NULL_TREE);
17789 def_builtin ("__builtin_vec_set_v2df", ftype, VSX_BUILTIN_VEC_SET_V2DF);
17791 ftype = build_function_type_list (V2DI_type_node, V2DI_type_node,
17792 intDI_type_node,
17793 integer_type_node, NULL_TREE);
17794 def_builtin ("__builtin_vec_set_v2di", ftype, VSX_BUILTIN_VEC_SET_V2DI);
17796 /* Access to the vec_extract patterns. */
17797 ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
17798 integer_type_node, NULL_TREE);
17799 def_builtin ("__builtin_vec_ext_v4si", ftype, ALTIVEC_BUILTIN_VEC_EXT_V4SI);
17801 ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
17802 integer_type_node, NULL_TREE);
17803 def_builtin ("__builtin_vec_ext_v8hi", ftype, ALTIVEC_BUILTIN_VEC_EXT_V8HI);
17805 ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
17806 integer_type_node, NULL_TREE);
17807 def_builtin ("__builtin_vec_ext_v16qi", ftype, ALTIVEC_BUILTIN_VEC_EXT_V16QI);
17809 ftype = build_function_type_list (float_type_node, V4SF_type_node,
17810 integer_type_node, NULL_TREE);
17811 def_builtin ("__builtin_vec_ext_v4sf", ftype, ALTIVEC_BUILTIN_VEC_EXT_V4SF);
17813 ftype = build_function_type_list (double_type_node, V2DF_type_node,
17814 integer_type_node, NULL_TREE);
17815 def_builtin ("__builtin_vec_ext_v2df", ftype, VSX_BUILTIN_VEC_EXT_V2DF);
17817 ftype = build_function_type_list (intDI_type_node, V2DI_type_node,
17818 integer_type_node, NULL_TREE);
17819 def_builtin ("__builtin_vec_ext_v2di", ftype, VSX_BUILTIN_VEC_EXT_V2DI);
17822 if (V1TI_type_node)
17824 tree v1ti_ftype_long_pcvoid
17825 = build_function_type_list (V1TI_type_node,
17826 long_integer_type_node, pcvoid_type_node,
17827 NULL_TREE);
17828 tree void_ftype_v1ti_long_pvoid
17829 = build_function_type_list (void_type_node,
17830 V1TI_type_node, long_integer_type_node,
17831 pvoid_type_node, NULL_TREE);
17832 def_builtin ("__builtin_vsx_lxvd2x_v1ti", v1ti_ftype_long_pcvoid,
17833 VSX_BUILTIN_LXVD2X_V1TI);
17834 def_builtin ("__builtin_vsx_stxvd2x_v1ti", void_ftype_v1ti_long_pvoid,
17835 VSX_BUILTIN_STXVD2X_V1TI);
17836 ftype = build_function_type_list (V1TI_type_node, intTI_type_node,
17837 NULL_TREE, NULL_TREE);
17838 def_builtin ("__builtin_vec_init_v1ti", ftype, VSX_BUILTIN_VEC_INIT_V1TI);
17839 ftype = build_function_type_list (V1TI_type_node, V1TI_type_node,
17840 intTI_type_node,
17841 integer_type_node, NULL_TREE);
17842 def_builtin ("__builtin_vec_set_v1ti", ftype, VSX_BUILTIN_VEC_SET_V1TI);
17843 ftype = build_function_type_list (intTI_type_node, V1TI_type_node,
17844 integer_type_node, NULL_TREE);
17845 def_builtin ("__builtin_vec_ext_v1ti", ftype, VSX_BUILTIN_VEC_EXT_V1TI);
17850 static void
17851 htm_init_builtins (void)
17853 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17854 const struct builtin_description *d;
17855 size_t i;
17857 d = bdesc_htm;
17858 for (i = 0; i < ARRAY_SIZE (bdesc_htm); i++, d++)
17860 tree op[MAX_HTM_OPERANDS], type;
17861 HOST_WIDE_INT mask = d->mask;
17862 unsigned attr = rs6000_builtin_info[d->code].attr;
17863 bool void_func = (attr & RS6000_BTC_VOID);
17864 int attr_args = (attr & RS6000_BTC_TYPE_MASK);
17865 int nopnds = 0;
17866 tree gpr_type_node;
17867 tree rettype;
17868 tree argtype;
17870 /* It is expected that these htm built-in functions may have
17871 d->icode equal to CODE_FOR_nothing. */
17873 if (TARGET_32BIT && TARGET_POWERPC64)
17874 gpr_type_node = long_long_unsigned_type_node;
17875 else
17876 gpr_type_node = long_unsigned_type_node;
17878 if (attr & RS6000_BTC_SPR)
17880 rettype = gpr_type_node;
17881 argtype = gpr_type_node;
17883 else if (d->code == HTM_BUILTIN_TABORTDC
17884 || d->code == HTM_BUILTIN_TABORTDCI)
17886 rettype = unsigned_type_node;
17887 argtype = gpr_type_node;
17889 else
17891 rettype = unsigned_type_node;
17892 argtype = unsigned_type_node;
17895 if ((mask & builtin_mask) != mask)
17897 if (TARGET_DEBUG_BUILTIN)
17898 fprintf (stderr, "htm_builtin, skip binary %s\n", d->name);
17899 continue;
17902 if (d->name == 0)
17904 if (TARGET_DEBUG_BUILTIN)
17905 fprintf (stderr, "htm_builtin, bdesc_htm[%ld] no name\n",
17906 (long unsigned) i);
17907 continue;
17910 op[nopnds++] = (void_func) ? void_type_node : rettype;
17912 if (attr_args == RS6000_BTC_UNARY)
17913 op[nopnds++] = argtype;
17914 else if (attr_args == RS6000_BTC_BINARY)
17916 op[nopnds++] = argtype;
17917 op[nopnds++] = argtype;
17919 else if (attr_args == RS6000_BTC_TERNARY)
17921 op[nopnds++] = argtype;
17922 op[nopnds++] = argtype;
17923 op[nopnds++] = argtype;
17926 switch (nopnds)
17928 case 1:
17929 type = build_function_type_list (op[0], NULL_TREE);
17930 break;
17931 case 2:
17932 type = build_function_type_list (op[0], op[1], NULL_TREE);
17933 break;
17934 case 3:
17935 type = build_function_type_list (op[0], op[1], op[2], NULL_TREE);
17936 break;
17937 case 4:
17938 type = build_function_type_list (op[0], op[1], op[2], op[3],
17939 NULL_TREE);
17940 break;
17941 default:
17942 gcc_unreachable ();
17945 def_builtin (d->name, type, d->code);
17949 /* Hash function for builtin functions with up to 3 arguments and a return
17950 type. */
17951 hashval_t
17952 builtin_hasher::hash (builtin_hash_struct *bh)
17954 unsigned ret = 0;
17955 int i;
17957 for (i = 0; i < 4; i++)
17959 ret = (ret * (unsigned)MAX_MACHINE_MODE) + ((unsigned)bh->mode[i]);
17960 ret = (ret * 2) + bh->uns_p[i];
17963 return ret;
17966 /* Compare builtin hash entries H1 and H2 for equivalence. */
17967 bool
17968 builtin_hasher::equal (builtin_hash_struct *p1, builtin_hash_struct *p2)
17970 return ((p1->mode[0] == p2->mode[0])
17971 && (p1->mode[1] == p2->mode[1])
17972 && (p1->mode[2] == p2->mode[2])
17973 && (p1->mode[3] == p2->mode[3])
17974 && (p1->uns_p[0] == p2->uns_p[0])
17975 && (p1->uns_p[1] == p2->uns_p[1])
17976 && (p1->uns_p[2] == p2->uns_p[2])
17977 && (p1->uns_p[3] == p2->uns_p[3]));
17980 /* Map types for builtin functions with an explicit return type and up to 3
17981 arguments. Functions with fewer than 3 arguments use VOIDmode as the type
17982 of the argument. */
17983 static tree
17984 builtin_function_type (machine_mode mode_ret, machine_mode mode_arg0,
17985 machine_mode mode_arg1, machine_mode mode_arg2,
17986 enum rs6000_builtins builtin, const char *name)
17988 struct builtin_hash_struct h;
17989 struct builtin_hash_struct *h2;
17990 int num_args = 3;
17991 int i;
17992 tree ret_type = NULL_TREE;
17993 tree arg_type[3] = { NULL_TREE, NULL_TREE, NULL_TREE };
17995 /* Create builtin_hash_table. */
17996 if (builtin_hash_table == NULL)
17997 builtin_hash_table = hash_table<builtin_hasher>::create_ggc (1500);
17999 h.type = NULL_TREE;
18000 h.mode[0] = mode_ret;
18001 h.mode[1] = mode_arg0;
18002 h.mode[2] = mode_arg1;
18003 h.mode[3] = mode_arg2;
18004 h.uns_p[0] = 0;
18005 h.uns_p[1] = 0;
18006 h.uns_p[2] = 0;
18007 h.uns_p[3] = 0;
18009 /* If the builtin is a type that produces unsigned results or takes unsigned
18010 arguments, and it is returned as a decl for the vectorizer (such as
18011 widening multiplies, permute), make sure the arguments and return value
18012 are type correct. */
18013 switch (builtin)
18015 /* unsigned 1 argument functions. */
18016 case CRYPTO_BUILTIN_VSBOX:
18017 case P8V_BUILTIN_VGBBD:
18018 case MISC_BUILTIN_CDTBCD:
18019 case MISC_BUILTIN_CBCDTD:
18020 h.uns_p[0] = 1;
18021 h.uns_p[1] = 1;
18022 break;
18024 /* unsigned 2 argument functions. */
18025 case ALTIVEC_BUILTIN_VMULEUB:
18026 case ALTIVEC_BUILTIN_VMULEUH:
18027 case ALTIVEC_BUILTIN_VMULEUW:
18028 case ALTIVEC_BUILTIN_VMULOUB:
18029 case ALTIVEC_BUILTIN_VMULOUH:
18030 case ALTIVEC_BUILTIN_VMULOUW:
18031 case CRYPTO_BUILTIN_VCIPHER:
18032 case CRYPTO_BUILTIN_VCIPHERLAST:
18033 case CRYPTO_BUILTIN_VNCIPHER:
18034 case CRYPTO_BUILTIN_VNCIPHERLAST:
18035 case CRYPTO_BUILTIN_VPMSUMB:
18036 case CRYPTO_BUILTIN_VPMSUMH:
18037 case CRYPTO_BUILTIN_VPMSUMW:
18038 case CRYPTO_BUILTIN_VPMSUMD:
18039 case CRYPTO_BUILTIN_VPMSUM:
18040 case MISC_BUILTIN_ADDG6S:
18041 case MISC_BUILTIN_DIVWEU:
18042 case MISC_BUILTIN_DIVWEUO:
18043 case MISC_BUILTIN_DIVDEU:
18044 case MISC_BUILTIN_DIVDEUO:
18045 case VSX_BUILTIN_UDIV_V2DI:
18046 case ALTIVEC_BUILTIN_VMAXUB:
18047 case ALTIVEC_BUILTIN_VMINUB:
18048 case ALTIVEC_BUILTIN_VMAXUH:
18049 case ALTIVEC_BUILTIN_VMINUH:
18050 case ALTIVEC_BUILTIN_VMAXUW:
18051 case ALTIVEC_BUILTIN_VMINUW:
18052 case P8V_BUILTIN_VMAXUD:
18053 case P8V_BUILTIN_VMINUD:
18054 h.uns_p[0] = 1;
18055 h.uns_p[1] = 1;
18056 h.uns_p[2] = 1;
18057 break;
18059 /* unsigned 3 argument functions. */
18060 case ALTIVEC_BUILTIN_VPERM_16QI_UNS:
18061 case ALTIVEC_BUILTIN_VPERM_8HI_UNS:
18062 case ALTIVEC_BUILTIN_VPERM_4SI_UNS:
18063 case ALTIVEC_BUILTIN_VPERM_2DI_UNS:
18064 case ALTIVEC_BUILTIN_VSEL_16QI_UNS:
18065 case ALTIVEC_BUILTIN_VSEL_8HI_UNS:
18066 case ALTIVEC_BUILTIN_VSEL_4SI_UNS:
18067 case ALTIVEC_BUILTIN_VSEL_2DI_UNS:
18068 case VSX_BUILTIN_VPERM_16QI_UNS:
18069 case VSX_BUILTIN_VPERM_8HI_UNS:
18070 case VSX_BUILTIN_VPERM_4SI_UNS:
18071 case VSX_BUILTIN_VPERM_2DI_UNS:
18072 case VSX_BUILTIN_XXSEL_16QI_UNS:
18073 case VSX_BUILTIN_XXSEL_8HI_UNS:
18074 case VSX_BUILTIN_XXSEL_4SI_UNS:
18075 case VSX_BUILTIN_XXSEL_2DI_UNS:
18076 case CRYPTO_BUILTIN_VPERMXOR:
18077 case CRYPTO_BUILTIN_VPERMXOR_V2DI:
18078 case CRYPTO_BUILTIN_VPERMXOR_V4SI:
18079 case CRYPTO_BUILTIN_VPERMXOR_V8HI:
18080 case CRYPTO_BUILTIN_VPERMXOR_V16QI:
18081 case CRYPTO_BUILTIN_VSHASIGMAW:
18082 case CRYPTO_BUILTIN_VSHASIGMAD:
18083 case CRYPTO_BUILTIN_VSHASIGMA:
18084 h.uns_p[0] = 1;
18085 h.uns_p[1] = 1;
18086 h.uns_p[2] = 1;
18087 h.uns_p[3] = 1;
18088 break;
18090 /* signed permute functions with unsigned char mask. */
18091 case ALTIVEC_BUILTIN_VPERM_16QI:
18092 case ALTIVEC_BUILTIN_VPERM_8HI:
18093 case ALTIVEC_BUILTIN_VPERM_4SI:
18094 case ALTIVEC_BUILTIN_VPERM_4SF:
18095 case ALTIVEC_BUILTIN_VPERM_2DI:
18096 case ALTIVEC_BUILTIN_VPERM_2DF:
18097 case VSX_BUILTIN_VPERM_16QI:
18098 case VSX_BUILTIN_VPERM_8HI:
18099 case VSX_BUILTIN_VPERM_4SI:
18100 case VSX_BUILTIN_VPERM_4SF:
18101 case VSX_BUILTIN_VPERM_2DI:
18102 case VSX_BUILTIN_VPERM_2DF:
18103 h.uns_p[3] = 1;
18104 break;
18106 /* unsigned args, signed return. */
18107 case VSX_BUILTIN_XVCVUXDSP:
18108 case VSX_BUILTIN_XVCVUXDDP_UNS:
18109 case ALTIVEC_BUILTIN_UNSFLOAT_V4SI_V4SF:
18110 h.uns_p[1] = 1;
18111 break;
18113 /* signed args, unsigned return. */
18114 case VSX_BUILTIN_XVCVDPUXDS_UNS:
18115 case ALTIVEC_BUILTIN_FIXUNS_V4SF_V4SI:
18116 case MISC_BUILTIN_UNPACK_TD:
18117 case MISC_BUILTIN_UNPACK_V1TI:
18118 h.uns_p[0] = 1;
18119 break;
18121 /* unsigned arguments for 128-bit pack instructions. */
18122 case MISC_BUILTIN_PACK_TD:
18123 case MISC_BUILTIN_PACK_V1TI:
18124 h.uns_p[1] = 1;
18125 h.uns_p[2] = 1;
18126 break;
18128 /* unsigned second arguments (vector shift right). */
18129 case ALTIVEC_BUILTIN_VSRB:
18130 case ALTIVEC_BUILTIN_VSRH:
18131 case ALTIVEC_BUILTIN_VSRW:
18132 case P8V_BUILTIN_VSRD:
18133 h.uns_p[2] = 1;
18134 break;
18136 default:
18137 break;
18140 /* Figure out how many args are present. */
18141 while (num_args > 0 && h.mode[num_args] == VOIDmode)
18142 num_args--;
18144 ret_type = builtin_mode_to_type[h.mode[0]][h.uns_p[0]];
18145 if (!ret_type && h.uns_p[0])
18146 ret_type = builtin_mode_to_type[h.mode[0]][0];
18148 if (!ret_type)
18149 fatal_error (input_location,
18150 "internal error: builtin function %qs had an unexpected "
18151 "return type %qs", name, GET_MODE_NAME (h.mode[0]));
18153 for (i = 0; i < (int) ARRAY_SIZE (arg_type); i++)
18154 arg_type[i] = NULL_TREE;
18156 for (i = 0; i < num_args; i++)
18158 int m = (int) h.mode[i+1];
18159 int uns_p = h.uns_p[i+1];
18161 arg_type[i] = builtin_mode_to_type[m][uns_p];
18162 if (!arg_type[i] && uns_p)
18163 arg_type[i] = builtin_mode_to_type[m][0];
18165 if (!arg_type[i])
18166 fatal_error (input_location,
18167 "internal error: builtin function %qs, argument %d "
18168 "had unexpected argument type %qs", name, i,
18169 GET_MODE_NAME (m));
18172 builtin_hash_struct **found = builtin_hash_table->find_slot (&h, INSERT);
18173 if (*found == NULL)
18175 h2 = ggc_alloc<builtin_hash_struct> ();
18176 *h2 = h;
18177 *found = h2;
18179 h2->type = build_function_type_list (ret_type, arg_type[0], arg_type[1],
18180 arg_type[2], NULL_TREE);
18183 return (*found)->type;
18186 static void
18187 rs6000_common_init_builtins (void)
18189 const struct builtin_description *d;
18190 size_t i;
18192 tree opaque_ftype_opaque = NULL_TREE;
18193 tree opaque_ftype_opaque_opaque = NULL_TREE;
18194 tree opaque_ftype_opaque_opaque_opaque = NULL_TREE;
18195 tree v2si_ftype = NULL_TREE;
18196 tree v2si_ftype_qi = NULL_TREE;
18197 tree v2si_ftype_v2si_qi = NULL_TREE;
18198 tree v2si_ftype_int_qi = NULL_TREE;
18199 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
18201 if (!TARGET_PAIRED_FLOAT)
18203 builtin_mode_to_type[V2SImode][0] = opaque_V2SI_type_node;
18204 builtin_mode_to_type[V2SFmode][0] = opaque_V2SF_type_node;
18207 /* Paired builtins are only available if you build a compiler with the
18208 appropriate options, so only create those builtins with the appropriate
18209 compiler option. Create Altivec and VSX builtins on machines with at
18210 least the general purpose extensions (970 and newer) to allow the use of
18211 the target attribute.. */
18213 if (TARGET_EXTRA_BUILTINS)
18214 builtin_mask |= RS6000_BTM_COMMON;
18216 /* Add the ternary operators. */
18217 d = bdesc_3arg;
18218 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
18220 tree type;
18221 HOST_WIDE_INT mask = d->mask;
18223 if ((mask & builtin_mask) != mask)
18225 if (TARGET_DEBUG_BUILTIN)
18226 fprintf (stderr, "rs6000_builtin, skip ternary %s\n", d->name);
18227 continue;
18230 if (rs6000_overloaded_builtin_p (d->code))
18232 if (! (type = opaque_ftype_opaque_opaque_opaque))
18233 type = opaque_ftype_opaque_opaque_opaque
18234 = build_function_type_list (opaque_V4SI_type_node,
18235 opaque_V4SI_type_node,
18236 opaque_V4SI_type_node,
18237 opaque_V4SI_type_node,
18238 NULL_TREE);
18240 else
18242 enum insn_code icode = d->icode;
18243 if (d->name == 0)
18245 if (TARGET_DEBUG_BUILTIN)
18246 fprintf (stderr, "rs6000_builtin, bdesc_3arg[%ld] no name\n",
18247 (long unsigned)i);
18249 continue;
18252 if (icode == CODE_FOR_nothing)
18254 if (TARGET_DEBUG_BUILTIN)
18255 fprintf (stderr, "rs6000_builtin, skip ternary %s (no code)\n",
18256 d->name);
18258 continue;
18261 type = builtin_function_type (insn_data[icode].operand[0].mode,
18262 insn_data[icode].operand[1].mode,
18263 insn_data[icode].operand[2].mode,
18264 insn_data[icode].operand[3].mode,
18265 d->code, d->name);
18268 def_builtin (d->name, type, d->code);
18271 /* Add the binary operators. */
18272 d = bdesc_2arg;
18273 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
18275 machine_mode mode0, mode1, mode2;
18276 tree type;
18277 HOST_WIDE_INT mask = d->mask;
18279 if ((mask & builtin_mask) != mask)
18281 if (TARGET_DEBUG_BUILTIN)
18282 fprintf (stderr, "rs6000_builtin, skip binary %s\n", d->name);
18283 continue;
18286 if (rs6000_overloaded_builtin_p (d->code))
18288 if (! (type = opaque_ftype_opaque_opaque))
18289 type = opaque_ftype_opaque_opaque
18290 = build_function_type_list (opaque_V4SI_type_node,
18291 opaque_V4SI_type_node,
18292 opaque_V4SI_type_node,
18293 NULL_TREE);
18295 else
18297 enum insn_code icode = d->icode;
18298 if (d->name == 0)
18300 if (TARGET_DEBUG_BUILTIN)
18301 fprintf (stderr, "rs6000_builtin, bdesc_2arg[%ld] no name\n",
18302 (long unsigned)i);
18304 continue;
18307 if (icode == CODE_FOR_nothing)
18309 if (TARGET_DEBUG_BUILTIN)
18310 fprintf (stderr, "rs6000_builtin, skip binary %s (no code)\n",
18311 d->name);
18313 continue;
18316 mode0 = insn_data[icode].operand[0].mode;
18317 mode1 = insn_data[icode].operand[1].mode;
18318 mode2 = insn_data[icode].operand[2].mode;
18320 if (mode0 == V2SImode && mode1 == V2SImode && mode2 == QImode)
18322 if (! (type = v2si_ftype_v2si_qi))
18323 type = v2si_ftype_v2si_qi
18324 = build_function_type_list (opaque_V2SI_type_node,
18325 opaque_V2SI_type_node,
18326 char_type_node,
18327 NULL_TREE);
18330 else if (mode0 == V2SImode && GET_MODE_CLASS (mode1) == MODE_INT
18331 && mode2 == QImode)
18333 if (! (type = v2si_ftype_int_qi))
18334 type = v2si_ftype_int_qi
18335 = build_function_type_list (opaque_V2SI_type_node,
18336 integer_type_node,
18337 char_type_node,
18338 NULL_TREE);
18341 else
18342 type = builtin_function_type (mode0, mode1, mode2, VOIDmode,
18343 d->code, d->name);
18346 def_builtin (d->name, type, d->code);
18349 /* Add the simple unary operators. */
18350 d = bdesc_1arg;
18351 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
18353 machine_mode mode0, mode1;
18354 tree type;
18355 HOST_WIDE_INT mask = d->mask;
18357 if ((mask & builtin_mask) != mask)
18359 if (TARGET_DEBUG_BUILTIN)
18360 fprintf (stderr, "rs6000_builtin, skip unary %s\n", d->name);
18361 continue;
18364 if (rs6000_overloaded_builtin_p (d->code))
18366 if (! (type = opaque_ftype_opaque))
18367 type = opaque_ftype_opaque
18368 = build_function_type_list (opaque_V4SI_type_node,
18369 opaque_V4SI_type_node,
18370 NULL_TREE);
18372 else
18374 enum insn_code icode = d->icode;
18375 if (d->name == 0)
18377 if (TARGET_DEBUG_BUILTIN)
18378 fprintf (stderr, "rs6000_builtin, bdesc_1arg[%ld] no name\n",
18379 (long unsigned)i);
18381 continue;
18384 if (icode == CODE_FOR_nothing)
18386 if (TARGET_DEBUG_BUILTIN)
18387 fprintf (stderr, "rs6000_builtin, skip unary %s (no code)\n",
18388 d->name);
18390 continue;
18393 mode0 = insn_data[icode].operand[0].mode;
18394 mode1 = insn_data[icode].operand[1].mode;
18396 if (mode0 == V2SImode && mode1 == QImode)
18398 if (! (type = v2si_ftype_qi))
18399 type = v2si_ftype_qi
18400 = build_function_type_list (opaque_V2SI_type_node,
18401 char_type_node,
18402 NULL_TREE);
18405 else
18406 type = builtin_function_type (mode0, mode1, VOIDmode, VOIDmode,
18407 d->code, d->name);
18410 def_builtin (d->name, type, d->code);
18413 /* Add the simple no-argument operators. */
18414 d = bdesc_0arg;
18415 for (i = 0; i < ARRAY_SIZE (bdesc_0arg); i++, d++)
18417 machine_mode mode0;
18418 tree type;
18419 HOST_WIDE_INT mask = d->mask;
18421 if ((mask & builtin_mask) != mask)
18423 if (TARGET_DEBUG_BUILTIN)
18424 fprintf (stderr, "rs6000_builtin, skip no-argument %s\n", d->name);
18425 continue;
18427 if (rs6000_overloaded_builtin_p (d->code))
18429 if (!opaque_ftype_opaque)
18430 opaque_ftype_opaque
18431 = build_function_type_list (opaque_V4SI_type_node, NULL_TREE);
18432 type = opaque_ftype_opaque;
18434 else
18436 enum insn_code icode = d->icode;
18437 if (d->name == 0)
18439 if (TARGET_DEBUG_BUILTIN)
18440 fprintf (stderr, "rs6000_builtin, bdesc_0arg[%lu] no name\n",
18441 (long unsigned) i);
18442 continue;
18444 if (icode == CODE_FOR_nothing)
18446 if (TARGET_DEBUG_BUILTIN)
18447 fprintf (stderr,
18448 "rs6000_builtin, skip no-argument %s (no code)\n",
18449 d->name);
18450 continue;
18452 mode0 = insn_data[icode].operand[0].mode;
18453 if (mode0 == V2SImode)
18455 /* code for paired single */
18456 if (! (type = v2si_ftype))
18458 v2si_ftype
18459 = build_function_type_list (opaque_V2SI_type_node,
18460 NULL_TREE);
18461 type = v2si_ftype;
18464 else
18465 type = builtin_function_type (mode0, VOIDmode, VOIDmode, VOIDmode,
18466 d->code, d->name);
18468 def_builtin (d->name, type, d->code);
18472 /* Set up AIX/Darwin/64-bit Linux quad floating point routines. */
18473 static void
18474 init_float128_ibm (machine_mode mode)
18476 if (!TARGET_XL_COMPAT)
18478 set_optab_libfunc (add_optab, mode, "__gcc_qadd");
18479 set_optab_libfunc (sub_optab, mode, "__gcc_qsub");
18480 set_optab_libfunc (smul_optab, mode, "__gcc_qmul");
18481 set_optab_libfunc (sdiv_optab, mode, "__gcc_qdiv");
18483 if (!TARGET_HARD_FLOAT)
18485 set_optab_libfunc (neg_optab, mode, "__gcc_qneg");
18486 set_optab_libfunc (eq_optab, mode, "__gcc_qeq");
18487 set_optab_libfunc (ne_optab, mode, "__gcc_qne");
18488 set_optab_libfunc (gt_optab, mode, "__gcc_qgt");
18489 set_optab_libfunc (ge_optab, mode, "__gcc_qge");
18490 set_optab_libfunc (lt_optab, mode, "__gcc_qlt");
18491 set_optab_libfunc (le_optab, mode, "__gcc_qle");
18492 set_optab_libfunc (unord_optab, mode, "__gcc_qunord");
18494 set_conv_libfunc (sext_optab, mode, SFmode, "__gcc_stoq");
18495 set_conv_libfunc (sext_optab, mode, DFmode, "__gcc_dtoq");
18496 set_conv_libfunc (trunc_optab, SFmode, mode, "__gcc_qtos");
18497 set_conv_libfunc (trunc_optab, DFmode, mode, "__gcc_qtod");
18498 set_conv_libfunc (sfix_optab, SImode, mode, "__gcc_qtoi");
18499 set_conv_libfunc (ufix_optab, SImode, mode, "__gcc_qtou");
18500 set_conv_libfunc (sfloat_optab, mode, SImode, "__gcc_itoq");
18501 set_conv_libfunc (ufloat_optab, mode, SImode, "__gcc_utoq");
18504 else
18506 set_optab_libfunc (add_optab, mode, "_xlqadd");
18507 set_optab_libfunc (sub_optab, mode, "_xlqsub");
18508 set_optab_libfunc (smul_optab, mode, "_xlqmul");
18509 set_optab_libfunc (sdiv_optab, mode, "_xlqdiv");
18512 /* Add various conversions for IFmode to use the traditional TFmode
18513 names. */
18514 if (mode == IFmode)
18516 set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdtf2");
18517 set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddtf2");
18518 set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctftd2");
18519 set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunctfsd2");
18520 set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunctfdd2");
18521 set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendtdtf2");
18523 if (TARGET_POWERPC64)
18525 set_conv_libfunc (sfix_optab, TImode, mode, "__fixtfti");
18526 set_conv_libfunc (ufix_optab, TImode, mode, "__fixunstfti");
18527 set_conv_libfunc (sfloat_optab, mode, TImode, "__floattitf");
18528 set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntitf");
18533 /* Set up IEEE 128-bit floating point routines. Use different names if the
18534 arguments can be passed in a vector register. The historical PowerPC
18535 implementation of IEEE 128-bit floating point used _q_<op> for the names, so
18536 continue to use that if we aren't using vector registers to pass IEEE
18537 128-bit floating point. */
18539 static void
18540 init_float128_ieee (machine_mode mode)
18542 if (FLOAT128_VECTOR_P (mode))
18544 set_optab_libfunc (add_optab, mode, "__addkf3");
18545 set_optab_libfunc (sub_optab, mode, "__subkf3");
18546 set_optab_libfunc (neg_optab, mode, "__negkf2");
18547 set_optab_libfunc (smul_optab, mode, "__mulkf3");
18548 set_optab_libfunc (sdiv_optab, mode, "__divkf3");
18549 set_optab_libfunc (sqrt_optab, mode, "__sqrtkf2");
18550 set_optab_libfunc (abs_optab, mode, "__abstkf2");
18552 set_optab_libfunc (eq_optab, mode, "__eqkf2");
18553 set_optab_libfunc (ne_optab, mode, "__nekf2");
18554 set_optab_libfunc (gt_optab, mode, "__gtkf2");
18555 set_optab_libfunc (ge_optab, mode, "__gekf2");
18556 set_optab_libfunc (lt_optab, mode, "__ltkf2");
18557 set_optab_libfunc (le_optab, mode, "__lekf2");
18558 set_optab_libfunc (unord_optab, mode, "__unordkf2");
18560 set_conv_libfunc (sext_optab, mode, SFmode, "__extendsfkf2");
18561 set_conv_libfunc (sext_optab, mode, DFmode, "__extenddfkf2");
18562 set_conv_libfunc (trunc_optab, SFmode, mode, "__trunckfsf2");
18563 set_conv_libfunc (trunc_optab, DFmode, mode, "__trunckfdf2");
18565 set_conv_libfunc (sext_optab, mode, IFmode, "__extendtfkf2");
18566 if (mode != TFmode && FLOAT128_IBM_P (TFmode))
18567 set_conv_libfunc (sext_optab, mode, TFmode, "__extendtfkf2");
18569 set_conv_libfunc (trunc_optab, IFmode, mode, "__trunckftf2");
18570 if (mode != TFmode && FLOAT128_IBM_P (TFmode))
18571 set_conv_libfunc (trunc_optab, TFmode, mode, "__trunckftf2");
18573 set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdkf2");
18574 set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddkf2");
18575 set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunckftd2");
18576 set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunckfsd2");
18577 set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunckfdd2");
18578 set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendtdkf2");
18580 set_conv_libfunc (sfix_optab, SImode, mode, "__fixkfsi");
18581 set_conv_libfunc (ufix_optab, SImode, mode, "__fixunskfsi");
18582 set_conv_libfunc (sfix_optab, DImode, mode, "__fixkfdi");
18583 set_conv_libfunc (ufix_optab, DImode, mode, "__fixunskfdi");
18585 set_conv_libfunc (sfloat_optab, mode, SImode, "__floatsikf");
18586 set_conv_libfunc (ufloat_optab, mode, SImode, "__floatunsikf");
18587 set_conv_libfunc (sfloat_optab, mode, DImode, "__floatdikf");
18588 set_conv_libfunc (ufloat_optab, mode, DImode, "__floatundikf");
18590 if (TARGET_POWERPC64)
18592 set_conv_libfunc (sfix_optab, TImode, mode, "__fixkfti");
18593 set_conv_libfunc (ufix_optab, TImode, mode, "__fixunskfti");
18594 set_conv_libfunc (sfloat_optab, mode, TImode, "__floattikf");
18595 set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntikf");
18599 else
18601 set_optab_libfunc (add_optab, mode, "_q_add");
18602 set_optab_libfunc (sub_optab, mode, "_q_sub");
18603 set_optab_libfunc (neg_optab, mode, "_q_neg");
18604 set_optab_libfunc (smul_optab, mode, "_q_mul");
18605 set_optab_libfunc (sdiv_optab, mode, "_q_div");
18606 if (TARGET_PPC_GPOPT)
18607 set_optab_libfunc (sqrt_optab, mode, "_q_sqrt");
18609 set_optab_libfunc (eq_optab, mode, "_q_feq");
18610 set_optab_libfunc (ne_optab, mode, "_q_fne");
18611 set_optab_libfunc (gt_optab, mode, "_q_fgt");
18612 set_optab_libfunc (ge_optab, mode, "_q_fge");
18613 set_optab_libfunc (lt_optab, mode, "_q_flt");
18614 set_optab_libfunc (le_optab, mode, "_q_fle");
18616 set_conv_libfunc (sext_optab, mode, SFmode, "_q_stoq");
18617 set_conv_libfunc (sext_optab, mode, DFmode, "_q_dtoq");
18618 set_conv_libfunc (trunc_optab, SFmode, mode, "_q_qtos");
18619 set_conv_libfunc (trunc_optab, DFmode, mode, "_q_qtod");
18620 set_conv_libfunc (sfix_optab, SImode, mode, "_q_qtoi");
18621 set_conv_libfunc (ufix_optab, SImode, mode, "_q_qtou");
18622 set_conv_libfunc (sfloat_optab, mode, SImode, "_q_itoq");
18623 set_conv_libfunc (ufloat_optab, mode, SImode, "_q_utoq");
18627 static void
18628 rs6000_init_libfuncs (void)
18630 /* __float128 support. */
18631 if (TARGET_FLOAT128_TYPE)
18633 init_float128_ibm (IFmode);
18634 init_float128_ieee (KFmode);
18637 /* AIX/Darwin/64-bit Linux quad floating point routines. */
18638 if (TARGET_LONG_DOUBLE_128)
18640 if (!TARGET_IEEEQUAD)
18641 init_float128_ibm (TFmode);
18643 /* IEEE 128-bit including 32-bit SVR4 quad floating point routines. */
18644 else
18645 init_float128_ieee (TFmode);
18649 /* Emit a potentially record-form instruction, setting DST from SRC.
18650 If DOT is 0, that is all; otherwise, set CCREG to the result of the
18651 signed comparison of DST with zero. If DOT is 1, the generated RTL
18652 doesn't care about the DST result; if DOT is 2, it does. If CCREG
18653 is CR0 do a single dot insn (as a PARALLEL); otherwise, do a SET and
18654 a separate COMPARE. */
18656 void
18657 rs6000_emit_dot_insn (rtx dst, rtx src, int dot, rtx ccreg)
18659 if (dot == 0)
18661 emit_move_insn (dst, src);
18662 return;
18665 if (cc_reg_not_cr0_operand (ccreg, CCmode))
18667 emit_move_insn (dst, src);
18668 emit_move_insn (ccreg, gen_rtx_COMPARE (CCmode, dst, const0_rtx));
18669 return;
18672 rtx ccset = gen_rtx_SET (ccreg, gen_rtx_COMPARE (CCmode, src, const0_rtx));
18673 if (dot == 1)
18675 rtx clobber = gen_rtx_CLOBBER (VOIDmode, dst);
18676 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, clobber)));
18678 else
18680 rtx set = gen_rtx_SET (dst, src);
18681 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, set)));
18686 /* A validation routine: say whether CODE, a condition code, and MODE
18687 match. The other alternatives either don't make sense or should
18688 never be generated. */
18690 void
18691 validate_condition_mode (enum rtx_code code, machine_mode mode)
18693 gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
18694 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
18695 && GET_MODE_CLASS (mode) == MODE_CC);
18697 /* These don't make sense. */
18698 gcc_assert ((code != GT && code != LT && code != GE && code != LE)
18699 || mode != CCUNSmode);
18701 gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
18702 || mode == CCUNSmode);
18704 gcc_assert (mode == CCFPmode
18705 || (code != ORDERED && code != UNORDERED
18706 && code != UNEQ && code != LTGT
18707 && code != UNGT && code != UNLT
18708 && code != UNGE && code != UNLE));
18710 /* These should never be generated except for
18711 flag_finite_math_only. */
18712 gcc_assert (mode != CCFPmode
18713 || flag_finite_math_only
18714 || (code != LE && code != GE
18715 && code != UNEQ && code != LTGT
18716 && code != UNGT && code != UNLT));
18718 /* These are invalid; the information is not there. */
18719 gcc_assert (mode != CCEQmode || code == EQ || code == NE);
18723 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm,
18724 rldicl, rldicr, or rldic instruction in mode MODE. If so, if E is
18725 not zero, store there the bit offset (counted from the right) where
18726 the single stretch of 1 bits begins; and similarly for B, the bit
18727 offset where it ends. */
18729 bool
18730 rs6000_is_valid_mask (rtx mask, int *b, int *e, machine_mode mode)
18732 unsigned HOST_WIDE_INT val = INTVAL (mask);
18733 unsigned HOST_WIDE_INT bit;
18734 int nb, ne;
18735 int n = GET_MODE_PRECISION (mode);
18737 if (mode != DImode && mode != SImode)
18738 return false;
18740 if (INTVAL (mask) >= 0)
18742 bit = val & -val;
18743 ne = exact_log2 (bit);
18744 nb = exact_log2 (val + bit);
18746 else if (val + 1 == 0)
18748 nb = n;
18749 ne = 0;
18751 else if (val & 1)
18753 val = ~val;
18754 bit = val & -val;
18755 nb = exact_log2 (bit);
18756 ne = exact_log2 (val + bit);
18758 else
18760 bit = val & -val;
18761 ne = exact_log2 (bit);
18762 if (val + bit == 0)
18763 nb = n;
18764 else
18765 nb = 0;
18768 nb--;
18770 if (nb < 0 || ne < 0 || nb >= n || ne >= n)
18771 return false;
18773 if (b)
18774 *b = nb;
18775 if (e)
18776 *e = ne;
18778 return true;
18781 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm, rldicl,
18782 or rldicr instruction, to implement an AND with it in mode MODE. */
18784 bool
18785 rs6000_is_valid_and_mask (rtx mask, machine_mode mode)
18787 int nb, ne;
18789 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18790 return false;
18792 /* For DImode, we need a rldicl, rldicr, or a rlwinm with mask that
18793 does not wrap. */
18794 if (mode == DImode)
18795 return (ne == 0 || nb == 63 || (nb < 32 && ne <= nb));
18797 /* For SImode, rlwinm can do everything. */
18798 if (mode == SImode)
18799 return (nb < 32 && ne < 32);
18801 return false;
18804 /* Return the instruction template for an AND with mask in mode MODE, with
18805 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18807 const char *
18808 rs6000_insn_for_and_mask (machine_mode mode, rtx *operands, bool dot)
18810 int nb, ne;
18812 if (!rs6000_is_valid_mask (operands[2], &nb, &ne, mode))
18813 gcc_unreachable ();
18815 if (mode == DImode && ne == 0)
18817 operands[3] = GEN_INT (63 - nb);
18818 if (dot)
18819 return "rldicl. %0,%1,0,%3";
18820 return "rldicl %0,%1,0,%3";
18823 if (mode == DImode && nb == 63)
18825 operands[3] = GEN_INT (63 - ne);
18826 if (dot)
18827 return "rldicr. %0,%1,0,%3";
18828 return "rldicr %0,%1,0,%3";
18831 if (nb < 32 && ne < 32)
18833 operands[3] = GEN_INT (31 - nb);
18834 operands[4] = GEN_INT (31 - ne);
18835 if (dot)
18836 return "rlwinm. %0,%1,0,%3,%4";
18837 return "rlwinm %0,%1,0,%3,%4";
18840 gcc_unreachable ();
18843 /* Return whether MASK (a CONST_INT) is a valid mask for any rlw[i]nm,
18844 rld[i]cl, rld[i]cr, or rld[i]c instruction, to implement an AND with
18845 shift SHIFT (a ROTATE, ASHIFT, or LSHIFTRT) in mode MODE. */
18847 bool
18848 rs6000_is_valid_shift_mask (rtx mask, rtx shift, machine_mode mode)
18850 int nb, ne;
18852 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18853 return false;
18855 int n = GET_MODE_PRECISION (mode);
18856 int sh = -1;
18858 if (CONST_INT_P (XEXP (shift, 1)))
18860 sh = INTVAL (XEXP (shift, 1));
18861 if (sh < 0 || sh >= n)
18862 return false;
18865 rtx_code code = GET_CODE (shift);
18867 /* Convert any shift by 0 to a rotate, to simplify below code. */
18868 if (sh == 0)
18869 code = ROTATE;
18871 /* Convert rotate to simple shift if we can, to make analysis simpler. */
18872 if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
18873 code = ASHIFT;
18874 if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
18876 code = LSHIFTRT;
18877 sh = n - sh;
18880 /* DImode rotates need rld*. */
18881 if (mode == DImode && code == ROTATE)
18882 return (nb == 63 || ne == 0 || ne == sh);
18884 /* SImode rotates need rlw*. */
18885 if (mode == SImode && code == ROTATE)
18886 return (nb < 32 && ne < 32 && sh < 32);
18888 /* Wrap-around masks are only okay for rotates. */
18889 if (ne > nb)
18890 return false;
18892 /* Variable shifts are only okay for rotates. */
18893 if (sh < 0)
18894 return false;
18896 /* Don't allow ASHIFT if the mask is wrong for that. */
18897 if (code == ASHIFT && ne < sh)
18898 return false;
18900 /* If we can do it with an rlw*, we can do it. Don't allow LSHIFTRT
18901 if the mask is wrong for that. */
18902 if (nb < 32 && ne < 32 && sh < 32
18903 && !(code == LSHIFTRT && nb >= 32 - sh))
18904 return true;
18906 /* If we can do it with an rld*, we can do it. Don't allow LSHIFTRT
18907 if the mask is wrong for that. */
18908 if (code == LSHIFTRT)
18909 sh = 64 - sh;
18910 if (nb == 63 || ne == 0 || ne == sh)
18911 return !(code == LSHIFTRT && nb >= sh);
18913 return false;
18916 /* Return the instruction template for a shift with mask in mode MODE, with
18917 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18919 const char *
18920 rs6000_insn_for_shift_mask (machine_mode mode, rtx *operands, bool dot)
18922 int nb, ne;
18924 if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
18925 gcc_unreachable ();
18927 if (mode == DImode && ne == 0)
18929 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18930 operands[2] = GEN_INT (64 - INTVAL (operands[2]));
18931 operands[3] = GEN_INT (63 - nb);
18932 if (dot)
18933 return "rld%I2cl. %0,%1,%2,%3";
18934 return "rld%I2cl %0,%1,%2,%3";
18937 if (mode == DImode && nb == 63)
18939 operands[3] = GEN_INT (63 - ne);
18940 if (dot)
18941 return "rld%I2cr. %0,%1,%2,%3";
18942 return "rld%I2cr %0,%1,%2,%3";
18945 if (mode == DImode
18946 && GET_CODE (operands[4]) != LSHIFTRT
18947 && CONST_INT_P (operands[2])
18948 && ne == INTVAL (operands[2]))
18950 operands[3] = GEN_INT (63 - nb);
18951 if (dot)
18952 return "rld%I2c. %0,%1,%2,%3";
18953 return "rld%I2c %0,%1,%2,%3";
18956 if (nb < 32 && ne < 32)
18958 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18959 operands[2] = GEN_INT (32 - INTVAL (operands[2]));
18960 operands[3] = GEN_INT (31 - nb);
18961 operands[4] = GEN_INT (31 - ne);
18962 /* This insn can also be a 64-bit rotate with mask that really makes
18963 it just a shift right (with mask); the %h below are to adjust for
18964 that situation (shift count is >= 32 in that case). */
18965 if (dot)
18966 return "rlw%I2nm. %0,%1,%h2,%3,%4";
18967 return "rlw%I2nm %0,%1,%h2,%3,%4";
18970 gcc_unreachable ();
18973 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwimi or
18974 rldimi instruction, to implement an insert with shift SHIFT (a ROTATE,
18975 ASHIFT, or LSHIFTRT) in mode MODE. */
18977 bool
18978 rs6000_is_valid_insert_mask (rtx mask, rtx shift, machine_mode mode)
18980 int nb, ne;
18982 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18983 return false;
18985 int n = GET_MODE_PRECISION (mode);
18987 int sh = INTVAL (XEXP (shift, 1));
18988 if (sh < 0 || sh >= n)
18989 return false;
18991 rtx_code code = GET_CODE (shift);
18993 /* Convert any shift by 0 to a rotate, to simplify below code. */
18994 if (sh == 0)
18995 code = ROTATE;
18997 /* Convert rotate to simple shift if we can, to make analysis simpler. */
18998 if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
18999 code = ASHIFT;
19000 if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
19002 code = LSHIFTRT;
19003 sh = n - sh;
19006 /* DImode rotates need rldimi. */
19007 if (mode == DImode && code == ROTATE)
19008 return (ne == sh);
19010 /* SImode rotates need rlwimi. */
19011 if (mode == SImode && code == ROTATE)
19012 return (nb < 32 && ne < 32 && sh < 32);
19014 /* Wrap-around masks are only okay for rotates. */
19015 if (ne > nb)
19016 return false;
19018 /* Don't allow ASHIFT if the mask is wrong for that. */
19019 if (code == ASHIFT && ne < sh)
19020 return false;
19022 /* If we can do it with an rlwimi, we can do it. Don't allow LSHIFTRT
19023 if the mask is wrong for that. */
19024 if (nb < 32 && ne < 32 && sh < 32
19025 && !(code == LSHIFTRT && nb >= 32 - sh))
19026 return true;
19028 /* If we can do it with an rldimi, we can do it. Don't allow LSHIFTRT
19029 if the mask is wrong for that. */
19030 if (code == LSHIFTRT)
19031 sh = 64 - sh;
19032 if (ne == sh)
19033 return !(code == LSHIFTRT && nb >= sh);
19035 return false;
19038 /* Return the instruction template for an insert with mask in mode MODE, with
19039 operands OPERANDS. If DOT is true, make it a record-form instruction. */
19041 const char *
19042 rs6000_insn_for_insert_mask (machine_mode mode, rtx *operands, bool dot)
19044 int nb, ne;
19046 if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
19047 gcc_unreachable ();
19049 /* Prefer rldimi because rlwimi is cracked. */
19050 if (TARGET_POWERPC64
19051 && (!dot || mode == DImode)
19052 && GET_CODE (operands[4]) != LSHIFTRT
19053 && ne == INTVAL (operands[2]))
19055 operands[3] = GEN_INT (63 - nb);
19056 if (dot)
19057 return "rldimi. %0,%1,%2,%3";
19058 return "rldimi %0,%1,%2,%3";
19061 if (nb < 32 && ne < 32)
19063 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
19064 operands[2] = GEN_INT (32 - INTVAL (operands[2]));
19065 operands[3] = GEN_INT (31 - nb);
19066 operands[4] = GEN_INT (31 - ne);
19067 if (dot)
19068 return "rlwimi. %0,%1,%2,%3,%4";
19069 return "rlwimi %0,%1,%2,%3,%4";
19072 gcc_unreachable ();
19075 /* Return whether an AND with C (a CONST_INT) in mode MODE can be done
19076 using two machine instructions. */
19078 bool
19079 rs6000_is_valid_2insn_and (rtx c, machine_mode mode)
19081 /* There are two kinds of AND we can handle with two insns:
19082 1) those we can do with two rl* insn;
19083 2) ori[s];xori[s].
19085 We do not handle that last case yet. */
19087 /* If there is just one stretch of ones, we can do it. */
19088 if (rs6000_is_valid_mask (c, NULL, NULL, mode))
19089 return true;
19091 /* Otherwise, fill in the lowest "hole"; if we can do the result with
19092 one insn, we can do the whole thing with two. */
19093 unsigned HOST_WIDE_INT val = INTVAL (c);
19094 unsigned HOST_WIDE_INT bit1 = val & -val;
19095 unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
19096 unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
19097 unsigned HOST_WIDE_INT bit3 = val1 & -val1;
19098 return rs6000_is_valid_and_mask (GEN_INT (val + bit3 - bit2), mode);
19101 /* Emit the two insns to do an AND in mode MODE, with operands OPERANDS.
19102 If EXPAND is true, split rotate-and-mask instructions we generate to
19103 their constituent parts as well (this is used during expand); if DOT
19104 is 1, make the last insn a record-form instruction clobbering the
19105 destination GPR and setting the CC reg (from operands[3]); if 2, set
19106 that GPR as well as the CC reg. */
19108 void
19109 rs6000_emit_2insn_and (machine_mode mode, rtx *operands, bool expand, int dot)
19111 gcc_assert (!(expand && dot));
19113 unsigned HOST_WIDE_INT val = INTVAL (operands[2]);
19115 /* If it is one stretch of ones, it is DImode; shift left, mask, then
19116 shift right. This generates better code than doing the masks without
19117 shifts, or shifting first right and then left. */
19118 int nb, ne;
19119 if (rs6000_is_valid_mask (operands[2], &nb, &ne, mode) && nb >= ne)
19121 gcc_assert (mode == DImode);
19123 int shift = 63 - nb;
19124 if (expand)
19126 rtx tmp1 = gen_reg_rtx (DImode);
19127 rtx tmp2 = gen_reg_rtx (DImode);
19128 emit_insn (gen_ashldi3 (tmp1, operands[1], GEN_INT (shift)));
19129 emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (val << shift)));
19130 emit_insn (gen_lshrdi3 (operands[0], tmp2, GEN_INT (shift)));
19132 else
19134 rtx tmp = gen_rtx_ASHIFT (mode, operands[1], GEN_INT (shift));
19135 tmp = gen_rtx_AND (mode, tmp, GEN_INT (val << shift));
19136 emit_move_insn (operands[0], tmp);
19137 tmp = gen_rtx_LSHIFTRT (mode, operands[0], GEN_INT (shift));
19138 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
19140 return;
19143 /* Otherwise, make a mask2 that cuts out the lowest "hole", and a mask1
19144 that does the rest. */
19145 unsigned HOST_WIDE_INT bit1 = val & -val;
19146 unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
19147 unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
19148 unsigned HOST_WIDE_INT bit3 = val1 & -val1;
19150 unsigned HOST_WIDE_INT mask1 = -bit3 + bit2 - 1;
19151 unsigned HOST_WIDE_INT mask2 = val + bit3 - bit2;
19153 gcc_assert (rs6000_is_valid_and_mask (GEN_INT (mask2), mode));
19155 /* Two "no-rotate"-and-mask instructions, for SImode. */
19156 if (rs6000_is_valid_and_mask (GEN_INT (mask1), mode))
19158 gcc_assert (mode == SImode);
19160 rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
19161 rtx tmp = gen_rtx_AND (mode, operands[1], GEN_INT (mask1));
19162 emit_move_insn (reg, tmp);
19163 tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
19164 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
19165 return;
19168 gcc_assert (mode == DImode);
19170 /* Two "no-rotate"-and-mask instructions, for DImode: both are rlwinm
19171 insns; we have to do the first in SImode, because it wraps. */
19172 if (mask2 <= 0xffffffff
19173 && rs6000_is_valid_and_mask (GEN_INT (mask1), SImode))
19175 rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
19176 rtx tmp = gen_rtx_AND (SImode, gen_lowpart (SImode, operands[1]),
19177 GEN_INT (mask1));
19178 rtx reg_low = gen_lowpart (SImode, reg);
19179 emit_move_insn (reg_low, tmp);
19180 tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
19181 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
19182 return;
19185 /* Two rld* insns: rotate, clear the hole in the middle (which now is
19186 at the top end), rotate back and clear the other hole. */
19187 int right = exact_log2 (bit3);
19188 int left = 64 - right;
19190 /* Rotate the mask too. */
19191 mask1 = (mask1 >> right) | ((bit2 - 1) << left);
19193 if (expand)
19195 rtx tmp1 = gen_reg_rtx (DImode);
19196 rtx tmp2 = gen_reg_rtx (DImode);
19197 rtx tmp3 = gen_reg_rtx (DImode);
19198 emit_insn (gen_rotldi3 (tmp1, operands[1], GEN_INT (left)));
19199 emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (mask1)));
19200 emit_insn (gen_rotldi3 (tmp3, tmp2, GEN_INT (right)));
19201 emit_insn (gen_anddi3 (operands[0], tmp3, GEN_INT (mask2)));
19203 else
19205 rtx tmp = gen_rtx_ROTATE (mode, operands[1], GEN_INT (left));
19206 tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask1));
19207 emit_move_insn (operands[0], tmp);
19208 tmp = gen_rtx_ROTATE (mode, operands[0], GEN_INT (right));
19209 tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask2));
19210 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
19214 /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
19215 for lfq and stfq insns iff the registers are hard registers. */
19218 registers_ok_for_quad_peep (rtx reg1, rtx reg2)
19220 /* We might have been passed a SUBREG. */
19221 if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
19222 return 0;
19224 /* We might have been passed non floating point registers. */
19225 if (!FP_REGNO_P (REGNO (reg1))
19226 || !FP_REGNO_P (REGNO (reg2)))
19227 return 0;
19229 return (REGNO (reg1) == REGNO (reg2) - 1);
19232 /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
19233 addr1 and addr2 must be in consecutive memory locations
19234 (addr2 == addr1 + 8). */
19237 mems_ok_for_quad_peep (rtx mem1, rtx mem2)
19239 rtx addr1, addr2;
19240 unsigned int reg1, reg2;
19241 int offset1, offset2;
19243 /* The mems cannot be volatile. */
19244 if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
19245 return 0;
19247 addr1 = XEXP (mem1, 0);
19248 addr2 = XEXP (mem2, 0);
19250 /* Extract an offset (if used) from the first addr. */
19251 if (GET_CODE (addr1) == PLUS)
19253 /* If not a REG, return zero. */
19254 if (GET_CODE (XEXP (addr1, 0)) != REG)
19255 return 0;
19256 else
19258 reg1 = REGNO (XEXP (addr1, 0));
19259 /* The offset must be constant! */
19260 if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
19261 return 0;
19262 offset1 = INTVAL (XEXP (addr1, 1));
19265 else if (GET_CODE (addr1) != REG)
19266 return 0;
19267 else
19269 reg1 = REGNO (addr1);
19270 /* This was a simple (mem (reg)) expression. Offset is 0. */
19271 offset1 = 0;
19274 /* And now for the second addr. */
19275 if (GET_CODE (addr2) == PLUS)
19277 /* If not a REG, return zero. */
19278 if (GET_CODE (XEXP (addr2, 0)) != REG)
19279 return 0;
19280 else
19282 reg2 = REGNO (XEXP (addr2, 0));
19283 /* The offset must be constant. */
19284 if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
19285 return 0;
19286 offset2 = INTVAL (XEXP (addr2, 1));
19289 else if (GET_CODE (addr2) != REG)
19290 return 0;
19291 else
19293 reg2 = REGNO (addr2);
19294 /* This was a simple (mem (reg)) expression. Offset is 0. */
19295 offset2 = 0;
19298 /* Both of these must have the same base register. */
19299 if (reg1 != reg2)
19300 return 0;
19302 /* The offset for the second addr must be 8 more than the first addr. */
19303 if (offset2 != offset1 + 8)
19304 return 0;
19306 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
19307 instructions. */
19308 return 1;
19311 /* Implement TARGET_SECONDARY_RELOAD_NEEDED_MODE. For SDmode values we
19312 need to use DDmode, in all other cases we can use the same mode. */
19313 static machine_mode
19314 rs6000_secondary_memory_needed_mode (machine_mode mode)
19316 if (lra_in_progress && mode == SDmode)
19317 return DDmode;
19318 return mode;
19321 /* Classify a register type. Because the FMRGOW/FMRGEW instructions only work
19322 on traditional floating point registers, and the VMRGOW/VMRGEW instructions
19323 only work on the traditional altivec registers, note if an altivec register
19324 was chosen. */
19326 static enum rs6000_reg_type
19327 register_to_reg_type (rtx reg, bool *is_altivec)
19329 HOST_WIDE_INT regno;
19330 enum reg_class rclass;
19332 if (GET_CODE (reg) == SUBREG)
19333 reg = SUBREG_REG (reg);
19335 if (!REG_P (reg))
19336 return NO_REG_TYPE;
19338 regno = REGNO (reg);
19339 if (regno >= FIRST_PSEUDO_REGISTER)
19341 if (!lra_in_progress && !reload_completed)
19342 return PSEUDO_REG_TYPE;
19344 regno = true_regnum (reg);
19345 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
19346 return PSEUDO_REG_TYPE;
19349 gcc_assert (regno >= 0);
19351 if (is_altivec && ALTIVEC_REGNO_P (regno))
19352 *is_altivec = true;
19354 rclass = rs6000_regno_regclass[regno];
19355 return reg_class_to_reg_type[(int)rclass];
19358 /* Helper function to return the cost of adding a TOC entry address. */
19360 static inline int
19361 rs6000_secondary_reload_toc_costs (addr_mask_type addr_mask)
19363 int ret;
19365 if (TARGET_CMODEL != CMODEL_SMALL)
19366 ret = ((addr_mask & RELOAD_REG_OFFSET) == 0) ? 1 : 2;
19368 else
19369 ret = (TARGET_MINIMAL_TOC) ? 6 : 3;
19371 return ret;
19374 /* Helper function for rs6000_secondary_reload to determine whether the memory
19375 address (ADDR) with a given register class (RCLASS) and machine mode (MODE)
19376 needs reloading. Return negative if the memory is not handled by the memory
19377 helper functions and to try a different reload method, 0 if no additional
19378 instructions are need, and positive to give the extra cost for the
19379 memory. */
19381 static int
19382 rs6000_secondary_reload_memory (rtx addr,
19383 enum reg_class rclass,
19384 machine_mode mode)
19386 int extra_cost = 0;
19387 rtx reg, and_arg, plus_arg0, plus_arg1;
19388 addr_mask_type addr_mask;
19389 const char *type = NULL;
19390 const char *fail_msg = NULL;
19392 if (GPR_REG_CLASS_P (rclass))
19393 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];
19395 else if (rclass == FLOAT_REGS)
19396 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];
19398 else if (rclass == ALTIVEC_REGS)
19399 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];
19401 /* For the combined VSX_REGS, turn off Altivec AND -16. */
19402 else if (rclass == VSX_REGS)
19403 addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_VMX]
19404 & ~RELOAD_REG_AND_M16);
19406 /* If the register allocator hasn't made up its mind yet on the register
19407 class to use, settle on defaults to use. */
19408 else if (rclass == NO_REGS)
19410 addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_ANY]
19411 & ~RELOAD_REG_AND_M16);
19413 if ((addr_mask & RELOAD_REG_MULTIPLE) != 0)
19414 addr_mask &= ~(RELOAD_REG_INDEXED
19415 | RELOAD_REG_PRE_INCDEC
19416 | RELOAD_REG_PRE_MODIFY);
19419 else
19420 addr_mask = 0;
19422 /* If the register isn't valid in this register class, just return now. */
19423 if ((addr_mask & RELOAD_REG_VALID) == 0)
19425 if (TARGET_DEBUG_ADDR)
19427 fprintf (stderr,
19428 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
19429 "not valid in class\n",
19430 GET_MODE_NAME (mode), reg_class_names[rclass]);
19431 debug_rtx (addr);
19434 return -1;
19437 switch (GET_CODE (addr))
19439 /* Does the register class supports auto update forms for this mode? We
19440 don't need a scratch register, since the powerpc only supports
19441 PRE_INC, PRE_DEC, and PRE_MODIFY. */
19442 case PRE_INC:
19443 case PRE_DEC:
19444 reg = XEXP (addr, 0);
19445 if (!base_reg_operand (addr, GET_MODE (reg)))
19447 fail_msg = "no base register #1";
19448 extra_cost = -1;
19451 else if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
19453 extra_cost = 1;
19454 type = "update";
19456 break;
19458 case PRE_MODIFY:
19459 reg = XEXP (addr, 0);
19460 plus_arg1 = XEXP (addr, 1);
19461 if (!base_reg_operand (reg, GET_MODE (reg))
19462 || GET_CODE (plus_arg1) != PLUS
19463 || !rtx_equal_p (reg, XEXP (plus_arg1, 0)))
19465 fail_msg = "bad PRE_MODIFY";
19466 extra_cost = -1;
19469 else if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
19471 extra_cost = 1;
19472 type = "update";
19474 break;
19476 /* Do we need to simulate AND -16 to clear the bottom address bits used
19477 in VMX load/stores? Only allow the AND for vector sizes. */
19478 case AND:
19479 and_arg = XEXP (addr, 0);
19480 if (GET_MODE_SIZE (mode) != 16
19481 || GET_CODE (XEXP (addr, 1)) != CONST_INT
19482 || INTVAL (XEXP (addr, 1)) != -16)
19484 fail_msg = "bad Altivec AND #1";
19485 extra_cost = -1;
19488 if (rclass != ALTIVEC_REGS)
19490 if (legitimate_indirect_address_p (and_arg, false))
19491 extra_cost = 1;
19493 else if (legitimate_indexed_address_p (and_arg, false))
19494 extra_cost = 2;
19496 else
19498 fail_msg = "bad Altivec AND #2";
19499 extra_cost = -1;
19502 type = "and";
19504 break;
19506 /* If this is an indirect address, make sure it is a base register. */
19507 case REG:
19508 case SUBREG:
19509 if (!legitimate_indirect_address_p (addr, false))
19511 extra_cost = 1;
19512 type = "move";
19514 break;
19516 /* If this is an indexed address, make sure the register class can handle
19517 indexed addresses for this mode. */
19518 case PLUS:
19519 plus_arg0 = XEXP (addr, 0);
19520 plus_arg1 = XEXP (addr, 1);
19522 /* (plus (plus (reg) (constant)) (constant)) is generated during
19523 push_reload processing, so handle it now. */
19524 if (GET_CODE (plus_arg0) == PLUS && CONST_INT_P (plus_arg1))
19526 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19528 extra_cost = 1;
19529 type = "offset";
19533 /* (plus (plus (reg) (constant)) (reg)) is also generated during
19534 push_reload processing, so handle it now. */
19535 else if (GET_CODE (plus_arg0) == PLUS && REG_P (plus_arg1))
19537 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19539 extra_cost = 1;
19540 type = "indexed #2";
19544 else if (!base_reg_operand (plus_arg0, GET_MODE (plus_arg0)))
19546 fail_msg = "no base register #2";
19547 extra_cost = -1;
19550 else if (int_reg_operand (plus_arg1, GET_MODE (plus_arg1)))
19552 if ((addr_mask & RELOAD_REG_INDEXED) == 0
19553 || !legitimate_indexed_address_p (addr, false))
19555 extra_cost = 1;
19556 type = "indexed";
19560 else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0
19561 && CONST_INT_P (plus_arg1))
19563 if (!quad_address_offset_p (INTVAL (plus_arg1)))
19565 extra_cost = 1;
19566 type = "vector d-form offset";
19570 /* Make sure the register class can handle offset addresses. */
19571 else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
19573 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19575 extra_cost = 1;
19576 type = "offset #2";
19580 else
19582 fail_msg = "bad PLUS";
19583 extra_cost = -1;
19586 break;
19588 case LO_SUM:
19589 /* Quad offsets are restricted and can't handle normal addresses. */
19590 if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19592 extra_cost = -1;
19593 type = "vector d-form lo_sum";
19596 else if (!legitimate_lo_sum_address_p (mode, addr, false))
19598 fail_msg = "bad LO_SUM";
19599 extra_cost = -1;
19602 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19604 extra_cost = 1;
19605 type = "lo_sum";
19607 break;
19609 /* Static addresses need to create a TOC entry. */
19610 case CONST:
19611 case SYMBOL_REF:
19612 case LABEL_REF:
19613 if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19615 extra_cost = -1;
19616 type = "vector d-form lo_sum #2";
19619 else
19621 type = "address";
19622 extra_cost = rs6000_secondary_reload_toc_costs (addr_mask);
19624 break;
19626 /* TOC references look like offsetable memory. */
19627 case UNSPEC:
19628 if (TARGET_CMODEL == CMODEL_SMALL || XINT (addr, 1) != UNSPEC_TOCREL)
19630 fail_msg = "bad UNSPEC";
19631 extra_cost = -1;
19634 else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19636 extra_cost = -1;
19637 type = "vector d-form lo_sum #3";
19640 else if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19642 extra_cost = 1;
19643 type = "toc reference";
19645 break;
19647 default:
19649 fail_msg = "bad address";
19650 extra_cost = -1;
19654 if (TARGET_DEBUG_ADDR /* && extra_cost != 0 */)
19656 if (extra_cost < 0)
19657 fprintf (stderr,
19658 "rs6000_secondary_reload_memory error: mode = %s, "
19659 "class = %s, addr_mask = '%s', %s\n",
19660 GET_MODE_NAME (mode),
19661 reg_class_names[rclass],
19662 rs6000_debug_addr_mask (addr_mask, false),
19663 (fail_msg != NULL) ? fail_msg : "<bad address>");
19665 else
19666 fprintf (stderr,
19667 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
19668 "addr_mask = '%s', extra cost = %d, %s\n",
19669 GET_MODE_NAME (mode),
19670 reg_class_names[rclass],
19671 rs6000_debug_addr_mask (addr_mask, false),
19672 extra_cost,
19673 (type) ? type : "<none>");
19675 debug_rtx (addr);
19678 return extra_cost;
19681 /* Helper function for rs6000_secondary_reload to return true if a move to a
19682 different register classe is really a simple move. */
19684 static bool
19685 rs6000_secondary_reload_simple_move (enum rs6000_reg_type to_type,
19686 enum rs6000_reg_type from_type,
19687 machine_mode mode)
19689 int size = GET_MODE_SIZE (mode);
19691 /* Add support for various direct moves available. In this function, we only
19692 look at cases where we don't need any extra registers, and one or more
19693 simple move insns are issued. Originally small integers are not allowed
19694 in FPR/VSX registers. Single precision binary floating is not a simple
19695 move because we need to convert to the single precision memory layout.
19696 The 4-byte SDmode can be moved. TDmode values are disallowed since they
19697 need special direct move handling, which we do not support yet. */
19698 if (TARGET_DIRECT_MOVE
19699 && ((to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19700 || (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)))
19702 if (TARGET_POWERPC64)
19704 /* ISA 2.07: MTVSRD or MVFVSRD. */
19705 if (size == 8)
19706 return true;
19708 /* ISA 3.0: MTVSRDD or MFVSRD + MFVSRLD. */
19709 if (size == 16 && TARGET_P9_VECTOR && mode != TDmode)
19710 return true;
19713 /* ISA 2.07: MTVSRWZ or MFVSRWZ. */
19714 if (TARGET_P8_VECTOR)
19716 if (mode == SImode)
19717 return true;
19719 if (TARGET_P9_VECTOR && (mode == HImode || mode == QImode))
19720 return true;
19723 /* ISA 2.07: MTVSRWZ or MFVSRWZ. */
19724 if (mode == SDmode)
19725 return true;
19728 /* Power6+: MFTGPR or MFFGPR. */
19729 else if (TARGET_MFPGPR && TARGET_POWERPC64 && size == 8
19730 && ((to_type == GPR_REG_TYPE && from_type == FPR_REG_TYPE)
19731 || (to_type == FPR_REG_TYPE && from_type == GPR_REG_TYPE)))
19732 return true;
19734 /* Move to/from SPR. */
19735 else if ((size == 4 || (TARGET_POWERPC64 && size == 8))
19736 && ((to_type == GPR_REG_TYPE && from_type == SPR_REG_TYPE)
19737 || (to_type == SPR_REG_TYPE && from_type == GPR_REG_TYPE)))
19738 return true;
19740 return false;
19743 /* Direct move helper function for rs6000_secondary_reload, handle all of the
19744 special direct moves that involve allocating an extra register, return the
19745 insn code of the helper function if there is such a function or
19746 CODE_FOR_nothing if not. */
19748 static bool
19749 rs6000_secondary_reload_direct_move (enum rs6000_reg_type to_type,
19750 enum rs6000_reg_type from_type,
19751 machine_mode mode,
19752 secondary_reload_info *sri,
19753 bool altivec_p)
19755 bool ret = false;
19756 enum insn_code icode = CODE_FOR_nothing;
19757 int cost = 0;
19758 int size = GET_MODE_SIZE (mode);
19760 if (TARGET_POWERPC64 && size == 16)
19762 /* Handle moving 128-bit values from GPRs to VSX point registers on
19763 ISA 2.07 (power8, power9) when running in 64-bit mode using
19764 XXPERMDI to glue the two 64-bit values back together. */
19765 if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
19767 cost = 3; /* 2 mtvsrd's, 1 xxpermdi. */
19768 icode = reg_addr[mode].reload_vsx_gpr;
19771 /* Handle moving 128-bit values from VSX point registers to GPRs on
19772 ISA 2.07 when running in 64-bit mode using XXPERMDI to get access to the
19773 bottom 64-bit value. */
19774 else if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19776 cost = 3; /* 2 mfvsrd's, 1 xxpermdi. */
19777 icode = reg_addr[mode].reload_gpr_vsx;
19781 else if (TARGET_POWERPC64 && mode == SFmode)
19783 if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19785 cost = 3; /* xscvdpspn, mfvsrd, and. */
19786 icode = reg_addr[mode].reload_gpr_vsx;
19789 else if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
19791 cost = 2; /* mtvsrz, xscvspdpn. */
19792 icode = reg_addr[mode].reload_vsx_gpr;
19796 else if (!TARGET_POWERPC64 && size == 8)
19798 /* Handle moving 64-bit values from GPRs to floating point registers on
19799 ISA 2.07 when running in 32-bit mode using FMRGOW to glue the two
19800 32-bit values back together. Altivec register classes must be handled
19801 specially since a different instruction is used, and the secondary
19802 reload support requires a single instruction class in the scratch
19803 register constraint. However, right now TFmode is not allowed in
19804 Altivec registers, so the pattern will never match. */
19805 if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE && !altivec_p)
19807 cost = 3; /* 2 mtvsrwz's, 1 fmrgow. */
19808 icode = reg_addr[mode].reload_fpr_gpr;
19812 if (icode != CODE_FOR_nothing)
19814 ret = true;
19815 if (sri)
19817 sri->icode = icode;
19818 sri->extra_cost = cost;
19822 return ret;
19825 /* Return whether a move between two register classes can be done either
19826 directly (simple move) or via a pattern that uses a single extra temporary
19827 (using ISA 2.07's direct move in this case. */
19829 static bool
19830 rs6000_secondary_reload_move (enum rs6000_reg_type to_type,
19831 enum rs6000_reg_type from_type,
19832 machine_mode mode,
19833 secondary_reload_info *sri,
19834 bool altivec_p)
19836 /* Fall back to load/store reloads if either type is not a register. */
19837 if (to_type == NO_REG_TYPE || from_type == NO_REG_TYPE)
19838 return false;
19840 /* If we haven't allocated registers yet, assume the move can be done for the
19841 standard register types. */
19842 if ((to_type == PSEUDO_REG_TYPE && from_type == PSEUDO_REG_TYPE)
19843 || (to_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (from_type))
19844 || (from_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (to_type)))
19845 return true;
19847 /* Moves to the same set of registers is a simple move for non-specialized
19848 registers. */
19849 if (to_type == from_type && IS_STD_REG_TYPE (to_type))
19850 return true;
19852 /* Check whether a simple move can be done directly. */
19853 if (rs6000_secondary_reload_simple_move (to_type, from_type, mode))
19855 if (sri)
19857 sri->icode = CODE_FOR_nothing;
19858 sri->extra_cost = 0;
19860 return true;
19863 /* Now check if we can do it in a few steps. */
19864 return rs6000_secondary_reload_direct_move (to_type, from_type, mode, sri,
19865 altivec_p);
19868 /* Inform reload about cases where moving X with a mode MODE to a register in
19869 RCLASS requires an extra scratch or immediate register. Return the class
19870 needed for the immediate register.
19872 For VSX and Altivec, we may need a register to convert sp+offset into
19873 reg+sp.
19875 For misaligned 64-bit gpr loads and stores we need a register to
19876 convert an offset address to indirect. */
19878 static reg_class_t
19879 rs6000_secondary_reload (bool in_p,
19880 rtx x,
19881 reg_class_t rclass_i,
19882 machine_mode mode,
19883 secondary_reload_info *sri)
19885 enum reg_class rclass = (enum reg_class) rclass_i;
19886 reg_class_t ret = ALL_REGS;
19887 enum insn_code icode;
19888 bool default_p = false;
19889 bool done_p = false;
19891 /* Allow subreg of memory before/during reload. */
19892 bool memory_p = (MEM_P (x)
19893 || (!reload_completed && GET_CODE (x) == SUBREG
19894 && MEM_P (SUBREG_REG (x))));
19896 sri->icode = CODE_FOR_nothing;
19897 sri->t_icode = CODE_FOR_nothing;
19898 sri->extra_cost = 0;
19899 icode = ((in_p)
19900 ? reg_addr[mode].reload_load
19901 : reg_addr[mode].reload_store);
19903 if (REG_P (x) || register_operand (x, mode))
19905 enum rs6000_reg_type to_type = reg_class_to_reg_type[(int)rclass];
19906 bool altivec_p = (rclass == ALTIVEC_REGS);
19907 enum rs6000_reg_type from_type = register_to_reg_type (x, &altivec_p);
19909 if (!in_p)
19910 std::swap (to_type, from_type);
19912 /* Can we do a direct move of some sort? */
19913 if (rs6000_secondary_reload_move (to_type, from_type, mode, sri,
19914 altivec_p))
19916 icode = (enum insn_code)sri->icode;
19917 default_p = false;
19918 done_p = true;
19919 ret = NO_REGS;
19923 /* Make sure 0.0 is not reloaded or forced into memory. */
19924 if (x == CONST0_RTX (mode) && VSX_REG_CLASS_P (rclass))
19926 ret = NO_REGS;
19927 default_p = false;
19928 done_p = true;
19931 /* If this is a scalar floating point value and we want to load it into the
19932 traditional Altivec registers, do it via a move via a traditional floating
19933 point register, unless we have D-form addressing. Also make sure that
19934 non-zero constants use a FPR. */
19935 if (!done_p && reg_addr[mode].scalar_in_vmx_p
19936 && !mode_supports_vmx_dform (mode)
19937 && (rclass == VSX_REGS || rclass == ALTIVEC_REGS)
19938 && (memory_p || (GET_CODE (x) == CONST_DOUBLE)))
19940 ret = FLOAT_REGS;
19941 default_p = false;
19942 done_p = true;
19945 /* Handle reload of load/stores if we have reload helper functions. */
19946 if (!done_p && icode != CODE_FOR_nothing && memory_p)
19948 int extra_cost = rs6000_secondary_reload_memory (XEXP (x, 0), rclass,
19949 mode);
19951 if (extra_cost >= 0)
19953 done_p = true;
19954 ret = NO_REGS;
19955 if (extra_cost > 0)
19957 sri->extra_cost = extra_cost;
19958 sri->icode = icode;
19963 /* Handle unaligned loads and stores of integer registers. */
19964 if (!done_p && TARGET_POWERPC64
19965 && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
19966 && memory_p
19967 && GET_MODE_SIZE (GET_MODE (x)) >= UNITS_PER_WORD)
19969 rtx addr = XEXP (x, 0);
19970 rtx off = address_offset (addr);
19972 if (off != NULL_RTX)
19974 unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
19975 unsigned HOST_WIDE_INT offset = INTVAL (off);
19977 /* We need a secondary reload when our legitimate_address_p
19978 says the address is good (as otherwise the entire address
19979 will be reloaded), and the offset is not a multiple of
19980 four or we have an address wrap. Address wrap will only
19981 occur for LO_SUMs since legitimate_offset_address_p
19982 rejects addresses for 16-byte mems that will wrap. */
19983 if (GET_CODE (addr) == LO_SUM
19984 ? (1 /* legitimate_address_p allows any offset for lo_sum */
19985 && ((offset & 3) != 0
19986 || ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra))
19987 : (offset + 0x8000 < 0x10000 - extra /* legitimate_address_p */
19988 && (offset & 3) != 0))
19990 /* -m32 -mpowerpc64 needs to use a 32-bit scratch register. */
19991 if (in_p)
19992 sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_load
19993 : CODE_FOR_reload_di_load);
19994 else
19995 sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_store
19996 : CODE_FOR_reload_di_store);
19997 sri->extra_cost = 2;
19998 ret = NO_REGS;
19999 done_p = true;
20001 else
20002 default_p = true;
20004 else
20005 default_p = true;
20008 if (!done_p && !TARGET_POWERPC64
20009 && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
20010 && memory_p
20011 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
20013 rtx addr = XEXP (x, 0);
20014 rtx off = address_offset (addr);
20016 if (off != NULL_RTX)
20018 unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
20019 unsigned HOST_WIDE_INT offset = INTVAL (off);
20021 /* We need a secondary reload when our legitimate_address_p
20022 says the address is good (as otherwise the entire address
20023 will be reloaded), and we have a wrap.
20025 legitimate_lo_sum_address_p allows LO_SUM addresses to
20026 have any offset so test for wrap in the low 16 bits.
20028 legitimate_offset_address_p checks for the range
20029 [-0x8000,0x7fff] for mode size of 8 and [-0x8000,0x7ff7]
20030 for mode size of 16. We wrap at [0x7ffc,0x7fff] and
20031 [0x7ff4,0x7fff] respectively, so test for the
20032 intersection of these ranges, [0x7ffc,0x7fff] and
20033 [0x7ff4,0x7ff7] respectively.
20035 Note that the address we see here may have been
20036 manipulated by legitimize_reload_address. */
20037 if (GET_CODE (addr) == LO_SUM
20038 ? ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra
20039 : offset - (0x8000 - extra) < UNITS_PER_WORD)
20041 if (in_p)
20042 sri->icode = CODE_FOR_reload_si_load;
20043 else
20044 sri->icode = CODE_FOR_reload_si_store;
20045 sri->extra_cost = 2;
20046 ret = NO_REGS;
20047 done_p = true;
20049 else
20050 default_p = true;
20052 else
20053 default_p = true;
20056 if (!done_p)
20057 default_p = true;
20059 if (default_p)
20060 ret = default_secondary_reload (in_p, x, rclass, mode, sri);
20062 gcc_assert (ret != ALL_REGS);
20064 if (TARGET_DEBUG_ADDR)
20066 fprintf (stderr,
20067 "\nrs6000_secondary_reload, return %s, in_p = %s, rclass = %s, "
20068 "mode = %s",
20069 reg_class_names[ret],
20070 in_p ? "true" : "false",
20071 reg_class_names[rclass],
20072 GET_MODE_NAME (mode));
20074 if (reload_completed)
20075 fputs (", after reload", stderr);
20077 if (!done_p)
20078 fputs (", done_p not set", stderr);
20080 if (default_p)
20081 fputs (", default secondary reload", stderr);
20083 if (sri->icode != CODE_FOR_nothing)
20084 fprintf (stderr, ", reload func = %s, extra cost = %d",
20085 insn_data[sri->icode].name, sri->extra_cost);
20087 else if (sri->extra_cost > 0)
20088 fprintf (stderr, ", extra cost = %d", sri->extra_cost);
20090 fputs ("\n", stderr);
20091 debug_rtx (x);
20094 return ret;
20097 /* Better tracing for rs6000_secondary_reload_inner. */
20099 static void
20100 rs6000_secondary_reload_trace (int line, rtx reg, rtx mem, rtx scratch,
20101 bool store_p)
20103 rtx set, clobber;
20105 gcc_assert (reg != NULL_RTX && mem != NULL_RTX && scratch != NULL_RTX);
20107 fprintf (stderr, "rs6000_secondary_reload_inner:%d, type = %s\n", line,
20108 store_p ? "store" : "load");
20110 if (store_p)
20111 set = gen_rtx_SET (mem, reg);
20112 else
20113 set = gen_rtx_SET (reg, mem);
20115 clobber = gen_rtx_CLOBBER (VOIDmode, scratch);
20116 debug_rtx (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
20119 static void rs6000_secondary_reload_fail (int, rtx, rtx, rtx, bool)
20120 ATTRIBUTE_NORETURN;
20122 static void
20123 rs6000_secondary_reload_fail (int line, rtx reg, rtx mem, rtx scratch,
20124 bool store_p)
20126 rs6000_secondary_reload_trace (line, reg, mem, scratch, store_p);
20127 gcc_unreachable ();
20130 /* Fixup reload addresses for values in GPR, FPR, and VMX registers that have
20131 reload helper functions. These were identified in
20132 rs6000_secondary_reload_memory, and if reload decided to use the secondary
20133 reload, it calls the insns:
20134 reload_<RELOAD:mode>_<P:mptrsize>_store
20135 reload_<RELOAD:mode>_<P:mptrsize>_load
20137 which in turn calls this function, to do whatever is necessary to create
20138 valid addresses. */
20140 void
20141 rs6000_secondary_reload_inner (rtx reg, rtx mem, rtx scratch, bool store_p)
20143 int regno = true_regnum (reg);
20144 machine_mode mode = GET_MODE (reg);
20145 addr_mask_type addr_mask;
20146 rtx addr;
20147 rtx new_addr;
20148 rtx op_reg, op0, op1;
20149 rtx and_op;
20150 rtx cc_clobber;
20151 rtvec rv;
20153 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER || !MEM_P (mem)
20154 || !base_reg_operand (scratch, GET_MODE (scratch)))
20155 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20157 if (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO))
20158 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];
20160 else if (IN_RANGE (regno, FIRST_FPR_REGNO, LAST_FPR_REGNO))
20161 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];
20163 else if (IN_RANGE (regno, FIRST_ALTIVEC_REGNO, LAST_ALTIVEC_REGNO))
20164 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];
20166 else
20167 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20169 /* Make sure the mode is valid in this register class. */
20170 if ((addr_mask & RELOAD_REG_VALID) == 0)
20171 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20173 if (TARGET_DEBUG_ADDR)
20174 rs6000_secondary_reload_trace (__LINE__, reg, mem, scratch, store_p);
20176 new_addr = addr = XEXP (mem, 0);
20177 switch (GET_CODE (addr))
20179 /* Does the register class support auto update forms for this mode? If
20180 not, do the update now. We don't need a scratch register, since the
20181 powerpc only supports PRE_INC, PRE_DEC, and PRE_MODIFY. */
20182 case PRE_INC:
20183 case PRE_DEC:
20184 op_reg = XEXP (addr, 0);
20185 if (!base_reg_operand (op_reg, Pmode))
20186 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20188 if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
20190 emit_insn (gen_add2_insn (op_reg, GEN_INT (GET_MODE_SIZE (mode))));
20191 new_addr = op_reg;
20193 break;
20195 case PRE_MODIFY:
20196 op0 = XEXP (addr, 0);
20197 op1 = XEXP (addr, 1);
20198 if (!base_reg_operand (op0, Pmode)
20199 || GET_CODE (op1) != PLUS
20200 || !rtx_equal_p (op0, XEXP (op1, 0)))
20201 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20203 if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
20205 emit_insn (gen_rtx_SET (op0, op1));
20206 new_addr = reg;
20208 break;
20210 /* Do we need to simulate AND -16 to clear the bottom address bits used
20211 in VMX load/stores? */
20212 case AND:
20213 op0 = XEXP (addr, 0);
20214 op1 = XEXP (addr, 1);
20215 if ((addr_mask & RELOAD_REG_AND_M16) == 0)
20217 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
20218 op_reg = op0;
20220 else if (GET_CODE (op1) == PLUS)
20222 emit_insn (gen_rtx_SET (scratch, op1));
20223 op_reg = scratch;
20226 else
20227 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20229 and_op = gen_rtx_AND (GET_MODE (scratch), op_reg, op1);
20230 cc_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
20231 rv = gen_rtvec (2, gen_rtx_SET (scratch, and_op), cc_clobber);
20232 emit_insn (gen_rtx_PARALLEL (VOIDmode, rv));
20233 new_addr = scratch;
20235 break;
20237 /* If this is an indirect address, make sure it is a base register. */
20238 case REG:
20239 case SUBREG:
20240 if (!base_reg_operand (addr, GET_MODE (addr)))
20242 emit_insn (gen_rtx_SET (scratch, addr));
20243 new_addr = scratch;
20245 break;
20247 /* If this is an indexed address, make sure the register class can handle
20248 indexed addresses for this mode. */
20249 case PLUS:
20250 op0 = XEXP (addr, 0);
20251 op1 = XEXP (addr, 1);
20252 if (!base_reg_operand (op0, Pmode))
20253 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20255 else if (int_reg_operand (op1, Pmode))
20257 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
20259 emit_insn (gen_rtx_SET (scratch, addr));
20260 new_addr = scratch;
20264 else if (mode_supports_vsx_dform_quad (mode) && CONST_INT_P (op1))
20266 if (((addr_mask & RELOAD_REG_QUAD_OFFSET) == 0)
20267 || !quad_address_p (addr, mode, false))
20269 emit_insn (gen_rtx_SET (scratch, addr));
20270 new_addr = scratch;
20274 /* Make sure the register class can handle offset addresses. */
20275 else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
20277 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
20279 emit_insn (gen_rtx_SET (scratch, addr));
20280 new_addr = scratch;
20284 else
20285 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20287 break;
20289 case LO_SUM:
20290 op0 = XEXP (addr, 0);
20291 op1 = XEXP (addr, 1);
20292 if (!base_reg_operand (op0, Pmode))
20293 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20295 else if (int_reg_operand (op1, Pmode))
20297 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
20299 emit_insn (gen_rtx_SET (scratch, addr));
20300 new_addr = scratch;
20304 /* Quad offsets are restricted and can't handle normal addresses. */
20305 else if (mode_supports_vsx_dform_quad (mode))
20307 emit_insn (gen_rtx_SET (scratch, addr));
20308 new_addr = scratch;
20311 /* Make sure the register class can handle offset addresses. */
20312 else if (legitimate_lo_sum_address_p (mode, addr, false))
20314 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
20316 emit_insn (gen_rtx_SET (scratch, addr));
20317 new_addr = scratch;
20321 else
20322 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20324 break;
20326 case SYMBOL_REF:
20327 case CONST:
20328 case LABEL_REF:
20329 rs6000_emit_move (scratch, addr, Pmode);
20330 new_addr = scratch;
20331 break;
20333 default:
20334 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
20337 /* Adjust the address if it changed. */
20338 if (addr != new_addr)
20340 mem = replace_equiv_address_nv (mem, new_addr);
20341 if (TARGET_DEBUG_ADDR)
20342 fprintf (stderr, "\nrs6000_secondary_reload_inner, mem adjusted.\n");
20345 /* Now create the move. */
20346 if (store_p)
20347 emit_insn (gen_rtx_SET (mem, reg));
20348 else
20349 emit_insn (gen_rtx_SET (reg, mem));
20351 return;
20354 /* Convert reloads involving 64-bit gprs and misaligned offset
20355 addressing, or multiple 32-bit gprs and offsets that are too large,
20356 to use indirect addressing. */
20358 void
20359 rs6000_secondary_reload_gpr (rtx reg, rtx mem, rtx scratch, bool store_p)
20361 int regno = true_regnum (reg);
20362 enum reg_class rclass;
20363 rtx addr;
20364 rtx scratch_or_premodify = scratch;
20366 if (TARGET_DEBUG_ADDR)
20368 fprintf (stderr, "\nrs6000_secondary_reload_gpr, type = %s\n",
20369 store_p ? "store" : "load");
20370 fprintf (stderr, "reg:\n");
20371 debug_rtx (reg);
20372 fprintf (stderr, "mem:\n");
20373 debug_rtx (mem);
20374 fprintf (stderr, "scratch:\n");
20375 debug_rtx (scratch);
20378 gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
20379 gcc_assert (GET_CODE (mem) == MEM);
20380 rclass = REGNO_REG_CLASS (regno);
20381 gcc_assert (rclass == GENERAL_REGS || rclass == BASE_REGS);
20382 addr = XEXP (mem, 0);
20384 if (GET_CODE (addr) == PRE_MODIFY)
20386 gcc_assert (REG_P (XEXP (addr, 0))
20387 && GET_CODE (XEXP (addr, 1)) == PLUS
20388 && XEXP (XEXP (addr, 1), 0) == XEXP (addr, 0));
20389 scratch_or_premodify = XEXP (addr, 0);
20390 if (!HARD_REGISTER_P (scratch_or_premodify))
20391 /* If we have a pseudo here then reload will have arranged
20392 to have it replaced, but only in the original insn.
20393 Use the replacement here too. */
20394 scratch_or_premodify = find_replacement (&XEXP (addr, 0));
20396 /* RTL emitted by rs6000_secondary_reload_gpr uses RTL
20397 expressions from the original insn, without unsharing them.
20398 Any RTL that points into the original insn will of course
20399 have register replacements applied. That is why we don't
20400 need to look for replacements under the PLUS. */
20401 addr = XEXP (addr, 1);
20403 gcc_assert (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM);
20405 rs6000_emit_move (scratch_or_premodify, addr, Pmode);
20407 mem = replace_equiv_address_nv (mem, scratch_or_premodify);
20409 /* Now create the move. */
20410 if (store_p)
20411 emit_insn (gen_rtx_SET (mem, reg));
20412 else
20413 emit_insn (gen_rtx_SET (reg, mem));
20415 return;
20418 /* Given an rtx X being reloaded into a reg required to be
20419 in class CLASS, return the class of reg to actually use.
20420 In general this is just CLASS; but on some machines
20421 in some cases it is preferable to use a more restrictive class.
20423 On the RS/6000, we have to return NO_REGS when we want to reload a
20424 floating-point CONST_DOUBLE to force it to be copied to memory.
20426 We also don't want to reload integer values into floating-point
20427 registers if we can at all help it. In fact, this can
20428 cause reload to die, if it tries to generate a reload of CTR
20429 into a FP register and discovers it doesn't have the memory location
20430 required.
20432 ??? Would it be a good idea to have reload do the converse, that is
20433 try to reload floating modes into FP registers if possible?
20436 static enum reg_class
20437 rs6000_preferred_reload_class (rtx x, enum reg_class rclass)
20439 machine_mode mode = GET_MODE (x);
20440 bool is_constant = CONSTANT_P (x);
20442 /* If a mode can't go in FPR/ALTIVEC/VSX registers, don't return a preferred
20443 reload class for it. */
20444 if ((rclass == ALTIVEC_REGS || rclass == VSX_REGS)
20445 && (reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID) == 0)
20446 return NO_REGS;
20448 if ((rclass == FLOAT_REGS || rclass == VSX_REGS)
20449 && (reg_addr[mode].addr_mask[RELOAD_REG_FPR] & RELOAD_REG_VALID) == 0)
20450 return NO_REGS;
20452 /* For VSX, see if we should prefer FLOAT_REGS or ALTIVEC_REGS. Do not allow
20453 the reloading of address expressions using PLUS into floating point
20454 registers. */
20455 if (TARGET_VSX && VSX_REG_CLASS_P (rclass) && GET_CODE (x) != PLUS)
20457 if (is_constant)
20459 /* Zero is always allowed in all VSX registers. */
20460 if (x == CONST0_RTX (mode))
20461 return rclass;
20463 /* If this is a vector constant that can be formed with a few Altivec
20464 instructions, we want altivec registers. */
20465 if (GET_CODE (x) == CONST_VECTOR && easy_vector_constant (x, mode))
20466 return ALTIVEC_REGS;
20468 /* If this is an integer constant that can easily be loaded into
20469 vector registers, allow it. */
20470 if (CONST_INT_P (x))
20472 HOST_WIDE_INT value = INTVAL (x);
20474 /* ISA 2.07 can generate -1 in all registers with XXLORC. ISA
20475 2.06 can generate it in the Altivec registers with
20476 VSPLTI<x>. */
20477 if (value == -1)
20479 if (TARGET_P8_VECTOR)
20480 return rclass;
20481 else if (rclass == ALTIVEC_REGS || rclass == VSX_REGS)
20482 return ALTIVEC_REGS;
20483 else
20484 return NO_REGS;
20487 /* ISA 3.0 can load -128..127 using the XXSPLTIB instruction and
20488 a sign extend in the Altivec registers. */
20489 if (IN_RANGE (value, -128, 127) && TARGET_P9_VECTOR
20490 && (rclass == ALTIVEC_REGS || rclass == VSX_REGS))
20491 return ALTIVEC_REGS;
20494 /* Force constant to memory. */
20495 return NO_REGS;
20498 /* D-form addressing can easily reload the value. */
20499 if (mode_supports_vmx_dform (mode)
20500 || mode_supports_vsx_dform_quad (mode))
20501 return rclass;
20503 /* If this is a scalar floating point value and we don't have D-form
20504 addressing, prefer the traditional floating point registers so that we
20505 can use D-form (register+offset) addressing. */
20506 if (rclass == VSX_REGS
20507 && (mode == SFmode || GET_MODE_SIZE (mode) == 8))
20508 return FLOAT_REGS;
20510 /* Prefer the Altivec registers if Altivec is handling the vector
20511 operations (i.e. V16QI, V8HI, and V4SI), or if we prefer Altivec
20512 loads. */
20513 if (VECTOR_UNIT_ALTIVEC_P (mode) || VECTOR_MEM_ALTIVEC_P (mode)
20514 || mode == V1TImode)
20515 return ALTIVEC_REGS;
20517 return rclass;
20520 if (is_constant || GET_CODE (x) == PLUS)
20522 if (reg_class_subset_p (GENERAL_REGS, rclass))
20523 return GENERAL_REGS;
20524 if (reg_class_subset_p (BASE_REGS, rclass))
20525 return BASE_REGS;
20526 return NO_REGS;
20529 if (GET_MODE_CLASS (mode) == MODE_INT && rclass == NON_SPECIAL_REGS)
20530 return GENERAL_REGS;
20532 return rclass;
20535 /* Debug version of rs6000_preferred_reload_class. */
20536 static enum reg_class
20537 rs6000_debug_preferred_reload_class (rtx x, enum reg_class rclass)
20539 enum reg_class ret = rs6000_preferred_reload_class (x, rclass);
20541 fprintf (stderr,
20542 "\nrs6000_preferred_reload_class, return %s, rclass = %s, "
20543 "mode = %s, x:\n",
20544 reg_class_names[ret], reg_class_names[rclass],
20545 GET_MODE_NAME (GET_MODE (x)));
20546 debug_rtx (x);
20548 return ret;
20551 /* If we are copying between FP or AltiVec registers and anything else, we need
20552 a memory location. The exception is when we are targeting ppc64 and the
20553 move to/from fpr to gpr instructions are available. Also, under VSX, you
20554 can copy vector registers from the FP register set to the Altivec register
20555 set and vice versa. */
20557 static bool
20558 rs6000_secondary_memory_needed (machine_mode mode,
20559 reg_class_t from_class,
20560 reg_class_t to_class)
20562 enum rs6000_reg_type from_type, to_type;
20563 bool altivec_p = ((from_class == ALTIVEC_REGS)
20564 || (to_class == ALTIVEC_REGS));
20566 /* If a simple/direct move is available, we don't need secondary memory */
20567 from_type = reg_class_to_reg_type[(int)from_class];
20568 to_type = reg_class_to_reg_type[(int)to_class];
20570 if (rs6000_secondary_reload_move (to_type, from_type, mode,
20571 (secondary_reload_info *)0, altivec_p))
20572 return false;
20574 /* If we have a floating point or vector register class, we need to use
20575 memory to transfer the data. */
20576 if (IS_FP_VECT_REG_TYPE (from_type) || IS_FP_VECT_REG_TYPE (to_type))
20577 return true;
20579 return false;
20582 /* Debug version of rs6000_secondary_memory_needed. */
20583 static bool
20584 rs6000_debug_secondary_memory_needed (machine_mode mode,
20585 reg_class_t from_class,
20586 reg_class_t to_class)
20588 bool ret = rs6000_secondary_memory_needed (mode, from_class, to_class);
20590 fprintf (stderr,
20591 "rs6000_secondary_memory_needed, return: %s, from_class = %s, "
20592 "to_class = %s, mode = %s\n",
20593 ret ? "true" : "false",
20594 reg_class_names[from_class],
20595 reg_class_names[to_class],
20596 GET_MODE_NAME (mode));
20598 return ret;
20601 /* Return the register class of a scratch register needed to copy IN into
20602 or out of a register in RCLASS in MODE. If it can be done directly,
20603 NO_REGS is returned. */
20605 static enum reg_class
20606 rs6000_secondary_reload_class (enum reg_class rclass, machine_mode mode,
20607 rtx in)
20609 int regno;
20611 if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
20612 #if TARGET_MACHO
20613 && MACHOPIC_INDIRECT
20614 #endif
20617 /* We cannot copy a symbolic operand directly into anything
20618 other than BASE_REGS for TARGET_ELF. So indicate that a
20619 register from BASE_REGS is needed as an intermediate
20620 register.
20622 On Darwin, pic addresses require a load from memory, which
20623 needs a base register. */
20624 if (rclass != BASE_REGS
20625 && (GET_CODE (in) == SYMBOL_REF
20626 || GET_CODE (in) == HIGH
20627 || GET_CODE (in) == LABEL_REF
20628 || GET_CODE (in) == CONST))
20629 return BASE_REGS;
20632 if (GET_CODE (in) == REG)
20634 regno = REGNO (in);
20635 if (regno >= FIRST_PSEUDO_REGISTER)
20637 regno = true_regnum (in);
20638 if (regno >= FIRST_PSEUDO_REGISTER)
20639 regno = -1;
20642 else if (GET_CODE (in) == SUBREG)
20644 regno = true_regnum (in);
20645 if (regno >= FIRST_PSEUDO_REGISTER)
20646 regno = -1;
20648 else
20649 regno = -1;
20651 /* If we have VSX register moves, prefer moving scalar values between
20652 Altivec registers and GPR by going via an FPR (and then via memory)
20653 instead of reloading the secondary memory address for Altivec moves. */
20654 if (TARGET_VSX
20655 && GET_MODE_SIZE (mode) < 16
20656 && !mode_supports_vmx_dform (mode)
20657 && (((rclass == GENERAL_REGS || rclass == BASE_REGS)
20658 && (regno >= 0 && ALTIVEC_REGNO_P (regno)))
20659 || ((rclass == VSX_REGS || rclass == ALTIVEC_REGS)
20660 && (regno >= 0 && INT_REGNO_P (regno)))))
20661 return FLOAT_REGS;
20663 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
20664 into anything. */
20665 if (rclass == GENERAL_REGS || rclass == BASE_REGS
20666 || (regno >= 0 && INT_REGNO_P (regno)))
20667 return NO_REGS;
20669 /* Constants, memory, and VSX registers can go into VSX registers (both the
20670 traditional floating point and the altivec registers). */
20671 if (rclass == VSX_REGS
20672 && (regno == -1 || VSX_REGNO_P (regno)))
20673 return NO_REGS;
20675 /* Constants, memory, and FP registers can go into FP registers. */
20676 if ((regno == -1 || FP_REGNO_P (regno))
20677 && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
20678 return (mode != SDmode || lra_in_progress) ? NO_REGS : GENERAL_REGS;
20680 /* Memory, and AltiVec registers can go into AltiVec registers. */
20681 if ((regno == -1 || ALTIVEC_REGNO_P (regno))
20682 && rclass == ALTIVEC_REGS)
20683 return NO_REGS;
20685 /* We can copy among the CR registers. */
20686 if ((rclass == CR_REGS || rclass == CR0_REGS)
20687 && regno >= 0 && CR_REGNO_P (regno))
20688 return NO_REGS;
20690 /* Otherwise, we need GENERAL_REGS. */
20691 return GENERAL_REGS;
20694 /* Debug version of rs6000_secondary_reload_class. */
20695 static enum reg_class
20696 rs6000_debug_secondary_reload_class (enum reg_class rclass,
20697 machine_mode mode, rtx in)
20699 enum reg_class ret = rs6000_secondary_reload_class (rclass, mode, in);
20700 fprintf (stderr,
20701 "\nrs6000_secondary_reload_class, return %s, rclass = %s, "
20702 "mode = %s, input rtx:\n",
20703 reg_class_names[ret], reg_class_names[rclass],
20704 GET_MODE_NAME (mode));
20705 debug_rtx (in);
20707 return ret;
20710 /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
20712 static bool
20713 rs6000_can_change_mode_class (machine_mode from,
20714 machine_mode to,
20715 reg_class_t rclass)
20717 unsigned from_size = GET_MODE_SIZE (from);
20718 unsigned to_size = GET_MODE_SIZE (to);
20720 if (from_size != to_size)
20722 enum reg_class xclass = (TARGET_VSX) ? VSX_REGS : FLOAT_REGS;
20724 if (reg_classes_intersect_p (xclass, rclass))
20726 unsigned to_nregs = hard_regno_nregs (FIRST_FPR_REGNO, to);
20727 unsigned from_nregs = hard_regno_nregs (FIRST_FPR_REGNO, from);
20728 bool to_float128_vector_p = FLOAT128_VECTOR_P (to);
20729 bool from_float128_vector_p = FLOAT128_VECTOR_P (from);
20731 /* Don't allow 64-bit types to overlap with 128-bit types that take a
20732 single register under VSX because the scalar part of the register
20733 is in the upper 64-bits, and not the lower 64-bits. Types like
20734 TFmode/TDmode that take 2 scalar register can overlap. 128-bit
20735 IEEE floating point can't overlap, and neither can small
20736 values. */
20738 if (to_float128_vector_p && from_float128_vector_p)
20739 return true;
20741 else if (to_float128_vector_p || from_float128_vector_p)
20742 return false;
20744 /* TDmode in floating-mode registers must always go into a register
20745 pair with the most significant word in the even-numbered register
20746 to match ISA requirements. In little-endian mode, this does not
20747 match subreg numbering, so we cannot allow subregs. */
20748 if (!BYTES_BIG_ENDIAN && (to == TDmode || from == TDmode))
20749 return false;
20751 if (from_size < 8 || to_size < 8)
20752 return false;
20754 if (from_size == 8 && (8 * to_nregs) != to_size)
20755 return false;
20757 if (to_size == 8 && (8 * from_nregs) != from_size)
20758 return false;
20760 return true;
20762 else
20763 return true;
20766 /* Since the VSX register set includes traditional floating point registers
20767 and altivec registers, just check for the size being different instead of
20768 trying to check whether the modes are vector modes. Otherwise it won't
20769 allow say DF and DI to change classes. For types like TFmode and TDmode
20770 that take 2 64-bit registers, rather than a single 128-bit register, don't
20771 allow subregs of those types to other 128 bit types. */
20772 if (TARGET_VSX && VSX_REG_CLASS_P (rclass))
20774 unsigned num_regs = (from_size + 15) / 16;
20775 if (hard_regno_nregs (FIRST_FPR_REGNO, to) > num_regs
20776 || hard_regno_nregs (FIRST_FPR_REGNO, from) > num_regs)
20777 return false;
20779 return (from_size == 8 || from_size == 16);
20782 if (TARGET_ALTIVEC && rclass == ALTIVEC_REGS
20783 && (ALTIVEC_VECTOR_MODE (from) + ALTIVEC_VECTOR_MODE (to)) == 1)
20784 return false;
20786 return true;
20789 /* Debug version of rs6000_can_change_mode_class. */
20790 static bool
20791 rs6000_debug_can_change_mode_class (machine_mode from,
20792 machine_mode to,
20793 reg_class_t rclass)
20795 bool ret = rs6000_can_change_mode_class (from, to, rclass);
20797 fprintf (stderr,
20798 "rs6000_can_change_mode_class, return %s, from = %s, "
20799 "to = %s, rclass = %s\n",
20800 ret ? "true" : "false",
20801 GET_MODE_NAME (from), GET_MODE_NAME (to),
20802 reg_class_names[rclass]);
20804 return ret;
20807 /* Return a string to do a move operation of 128 bits of data. */
20809 const char *
20810 rs6000_output_move_128bit (rtx operands[])
20812 rtx dest = operands[0];
20813 rtx src = operands[1];
20814 machine_mode mode = GET_MODE (dest);
20815 int dest_regno;
20816 int src_regno;
20817 bool dest_gpr_p, dest_fp_p, dest_vmx_p, dest_vsx_p;
20818 bool src_gpr_p, src_fp_p, src_vmx_p, src_vsx_p;
20820 if (REG_P (dest))
20822 dest_regno = REGNO (dest);
20823 dest_gpr_p = INT_REGNO_P (dest_regno);
20824 dest_fp_p = FP_REGNO_P (dest_regno);
20825 dest_vmx_p = ALTIVEC_REGNO_P (dest_regno);
20826 dest_vsx_p = dest_fp_p | dest_vmx_p;
20828 else
20830 dest_regno = -1;
20831 dest_gpr_p = dest_fp_p = dest_vmx_p = dest_vsx_p = false;
20834 if (REG_P (src))
20836 src_regno = REGNO (src);
20837 src_gpr_p = INT_REGNO_P (src_regno);
20838 src_fp_p = FP_REGNO_P (src_regno);
20839 src_vmx_p = ALTIVEC_REGNO_P (src_regno);
20840 src_vsx_p = src_fp_p | src_vmx_p;
20842 else
20844 src_regno = -1;
20845 src_gpr_p = src_fp_p = src_vmx_p = src_vsx_p = false;
20848 /* Register moves. */
20849 if (dest_regno >= 0 && src_regno >= 0)
20851 if (dest_gpr_p)
20853 if (src_gpr_p)
20854 return "#";
20856 if (TARGET_DIRECT_MOVE_128 && src_vsx_p)
20857 return (WORDS_BIG_ENDIAN
20858 ? "mfvsrd %0,%x1\n\tmfvsrld %L0,%x1"
20859 : "mfvsrd %L0,%x1\n\tmfvsrld %0,%x1");
20861 else if (TARGET_VSX && TARGET_DIRECT_MOVE && src_vsx_p)
20862 return "#";
20865 else if (TARGET_VSX && dest_vsx_p)
20867 if (src_vsx_p)
20868 return "xxlor %x0,%x1,%x1";
20870 else if (TARGET_DIRECT_MOVE_128 && src_gpr_p)
20871 return (WORDS_BIG_ENDIAN
20872 ? "mtvsrdd %x0,%1,%L1"
20873 : "mtvsrdd %x0,%L1,%1");
20875 else if (TARGET_DIRECT_MOVE && src_gpr_p)
20876 return "#";
20879 else if (TARGET_ALTIVEC && dest_vmx_p && src_vmx_p)
20880 return "vor %0,%1,%1";
20882 else if (dest_fp_p && src_fp_p)
20883 return "#";
20886 /* Loads. */
20887 else if (dest_regno >= 0 && MEM_P (src))
20889 if (dest_gpr_p)
20891 if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
20892 return "lq %0,%1";
20893 else
20894 return "#";
20897 else if (TARGET_ALTIVEC && dest_vmx_p
20898 && altivec_indexed_or_indirect_operand (src, mode))
20899 return "lvx %0,%y1";
20901 else if (TARGET_VSX && dest_vsx_p)
20903 if (mode_supports_vsx_dform_quad (mode)
20904 && quad_address_p (XEXP (src, 0), mode, true))
20905 return "lxv %x0,%1";
20907 else if (TARGET_P9_VECTOR)
20908 return "lxvx %x0,%y1";
20910 else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
20911 return "lxvw4x %x0,%y1";
20913 else
20914 return "lxvd2x %x0,%y1";
20917 else if (TARGET_ALTIVEC && dest_vmx_p)
20918 return "lvx %0,%y1";
20920 else if (dest_fp_p)
20921 return "#";
20924 /* Stores. */
20925 else if (src_regno >= 0 && MEM_P (dest))
20927 if (src_gpr_p)
20929 if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
20930 return "stq %1,%0";
20931 else
20932 return "#";
20935 else if (TARGET_ALTIVEC && src_vmx_p
20936 && altivec_indexed_or_indirect_operand (src, mode))
20937 return "stvx %1,%y0";
20939 else if (TARGET_VSX && src_vsx_p)
20941 if (mode_supports_vsx_dform_quad (mode)
20942 && quad_address_p (XEXP (dest, 0), mode, true))
20943 return "stxv %x1,%0";
20945 else if (TARGET_P9_VECTOR)
20946 return "stxvx %x1,%y0";
20948 else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
20949 return "stxvw4x %x1,%y0";
20951 else
20952 return "stxvd2x %x1,%y0";
20955 else if (TARGET_ALTIVEC && src_vmx_p)
20956 return "stvx %1,%y0";
20958 else if (src_fp_p)
20959 return "#";
20962 /* Constants. */
20963 else if (dest_regno >= 0
20964 && (GET_CODE (src) == CONST_INT
20965 || GET_CODE (src) == CONST_WIDE_INT
20966 || GET_CODE (src) == CONST_DOUBLE
20967 || GET_CODE (src) == CONST_VECTOR))
20969 if (dest_gpr_p)
20970 return "#";
20972 else if ((dest_vmx_p && TARGET_ALTIVEC)
20973 || (dest_vsx_p && TARGET_VSX))
20974 return output_vec_const_move (operands);
20977 fatal_insn ("Bad 128-bit move", gen_rtx_SET (dest, src));
20980 /* Validate a 128-bit move. */
20981 bool
20982 rs6000_move_128bit_ok_p (rtx operands[])
20984 machine_mode mode = GET_MODE (operands[0]);
20985 return (gpc_reg_operand (operands[0], mode)
20986 || gpc_reg_operand (operands[1], mode));
20989 /* Return true if a 128-bit move needs to be split. */
20990 bool
20991 rs6000_split_128bit_ok_p (rtx operands[])
20993 if (!reload_completed)
20994 return false;
20996 if (!gpr_or_gpr_p (operands[0], operands[1]))
20997 return false;
20999 if (quad_load_store_p (operands[0], operands[1]))
21000 return false;
21002 return true;
21006 /* Given a comparison operation, return the bit number in CCR to test. We
21007 know this is a valid comparison.
21009 SCC_P is 1 if this is for an scc. That means that %D will have been
21010 used instead of %C, so the bits will be in different places.
21012 Return -1 if OP isn't a valid comparison for some reason. */
21015 ccr_bit (rtx op, int scc_p)
21017 enum rtx_code code = GET_CODE (op);
21018 machine_mode cc_mode;
21019 int cc_regnum;
21020 int base_bit;
21021 rtx reg;
21023 if (!COMPARISON_P (op))
21024 return -1;
21026 reg = XEXP (op, 0);
21028 gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));
21030 cc_mode = GET_MODE (reg);
21031 cc_regnum = REGNO (reg);
21032 base_bit = 4 * (cc_regnum - CR0_REGNO);
21034 validate_condition_mode (code, cc_mode);
21036 /* When generating a sCOND operation, only positive conditions are
21037 allowed. */
21038 gcc_assert (!scc_p
21039 || code == EQ || code == GT || code == LT || code == UNORDERED
21040 || code == GTU || code == LTU);
21042 switch (code)
21044 case NE:
21045 return scc_p ? base_bit + 3 : base_bit + 2;
21046 case EQ:
21047 return base_bit + 2;
21048 case GT: case GTU: case UNLE:
21049 return base_bit + 1;
21050 case LT: case LTU: case UNGE:
21051 return base_bit;
21052 case ORDERED: case UNORDERED:
21053 return base_bit + 3;
21055 case GE: case GEU:
21056 /* If scc, we will have done a cror to put the bit in the
21057 unordered position. So test that bit. For integer, this is ! LT
21058 unless this is an scc insn. */
21059 return scc_p ? base_bit + 3 : base_bit;
21061 case LE: case LEU:
21062 return scc_p ? base_bit + 3 : base_bit + 1;
21064 default:
21065 gcc_unreachable ();
21069 /* Return the GOT register. */
21072 rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
21074 /* The second flow pass currently (June 1999) can't update
21075 regs_ever_live without disturbing other parts of the compiler, so
21076 update it here to make the prolog/epilogue code happy. */
21077 if (!can_create_pseudo_p ()
21078 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
21079 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);
21081 crtl->uses_pic_offset_table = 1;
21083 return pic_offset_table_rtx;
21086 static rs6000_stack_t stack_info;
21088 /* Function to init struct machine_function.
21089 This will be called, via a pointer variable,
21090 from push_function_context. */
21092 static struct machine_function *
21093 rs6000_init_machine_status (void)
21095 stack_info.reload_completed = 0;
21096 return ggc_cleared_alloc<machine_function> ();
21099 #define INT_P(X) (GET_CODE (X) == CONST_INT && GET_MODE (X) == VOIDmode)
21101 /* Write out a function code label. */
21103 void
21104 rs6000_output_function_entry (FILE *file, const char *fname)
21106 if (fname[0] != '.')
21108 switch (DEFAULT_ABI)
21110 default:
21111 gcc_unreachable ();
21113 case ABI_AIX:
21114 if (DOT_SYMBOLS)
21115 putc ('.', file);
21116 else
21117 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
21118 break;
21120 case ABI_ELFv2:
21121 case ABI_V4:
21122 case ABI_DARWIN:
21123 break;
21127 RS6000_OUTPUT_BASENAME (file, fname);
21130 /* Print an operand. Recognize special options, documented below. */
21132 #if TARGET_ELF
21133 #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
21134 #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
21135 #else
21136 #define SMALL_DATA_RELOC "sda21"
21137 #define SMALL_DATA_REG 0
21138 #endif
21140 void
21141 print_operand (FILE *file, rtx x, int code)
21143 int i;
21144 unsigned HOST_WIDE_INT uval;
21146 switch (code)
21148 /* %a is output_address. */
21150 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
21151 output_operand. */
21153 case 'D':
21154 /* Like 'J' but get to the GT bit only. */
21155 gcc_assert (REG_P (x));
21157 /* Bit 1 is GT bit. */
21158 i = 4 * (REGNO (x) - CR0_REGNO) + 1;
21160 /* Add one for shift count in rlinm for scc. */
21161 fprintf (file, "%d", i + 1);
21162 return;
21164 case 'e':
21165 /* If the low 16 bits are 0, but some other bit is set, write 's'. */
21166 if (! INT_P (x))
21168 output_operand_lossage ("invalid %%e value");
21169 return;
21172 uval = INTVAL (x);
21173 if ((uval & 0xffff) == 0 && uval != 0)
21174 putc ('s', file);
21175 return;
21177 case 'E':
21178 /* X is a CR register. Print the number of the EQ bit of the CR */
21179 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
21180 output_operand_lossage ("invalid %%E value");
21181 else
21182 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
21183 return;
21185 case 'f':
21186 /* X is a CR register. Print the shift count needed to move it
21187 to the high-order four bits. */
21188 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
21189 output_operand_lossage ("invalid %%f value");
21190 else
21191 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
21192 return;
21194 case 'F':
21195 /* Similar, but print the count for the rotate in the opposite
21196 direction. */
21197 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
21198 output_operand_lossage ("invalid %%F value");
21199 else
21200 fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
21201 return;
21203 case 'G':
21204 /* X is a constant integer. If it is negative, print "m",
21205 otherwise print "z". This is to make an aze or ame insn. */
21206 if (GET_CODE (x) != CONST_INT)
21207 output_operand_lossage ("invalid %%G value");
21208 else if (INTVAL (x) >= 0)
21209 putc ('z', file);
21210 else
21211 putc ('m', file);
21212 return;
21214 case 'h':
21215 /* If constant, output low-order five bits. Otherwise, write
21216 normally. */
21217 if (INT_P (x))
21218 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 31);
21219 else
21220 print_operand (file, x, 0);
21221 return;
21223 case 'H':
21224 /* If constant, output low-order six bits. Otherwise, write
21225 normally. */
21226 if (INT_P (x))
21227 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 63);
21228 else
21229 print_operand (file, x, 0);
21230 return;
21232 case 'I':
21233 /* Print `i' if this is a constant, else nothing. */
21234 if (INT_P (x))
21235 putc ('i', file);
21236 return;
21238 case 'j':
21239 /* Write the bit number in CCR for jump. */
21240 i = ccr_bit (x, 0);
21241 if (i == -1)
21242 output_operand_lossage ("invalid %%j code");
21243 else
21244 fprintf (file, "%d", i);
21245 return;
21247 case 'J':
21248 /* Similar, but add one for shift count in rlinm for scc and pass
21249 scc flag to `ccr_bit'. */
21250 i = ccr_bit (x, 1);
21251 if (i == -1)
21252 output_operand_lossage ("invalid %%J code");
21253 else
21254 /* If we want bit 31, write a shift count of zero, not 32. */
21255 fprintf (file, "%d", i == 31 ? 0 : i + 1);
21256 return;
21258 case 'k':
21259 /* X must be a constant. Write the 1's complement of the
21260 constant. */
21261 if (! INT_P (x))
21262 output_operand_lossage ("invalid %%k value");
21263 else
21264 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
21265 return;
21267 case 'K':
21268 /* X must be a symbolic constant on ELF. Write an
21269 expression suitable for an 'addi' that adds in the low 16
21270 bits of the MEM. */
21271 if (GET_CODE (x) == CONST)
21273 if (GET_CODE (XEXP (x, 0)) != PLUS
21274 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
21275 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
21276 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
21277 output_operand_lossage ("invalid %%K value");
21279 print_operand_address (file, x);
21280 fputs ("@l", file);
21281 return;
21283 /* %l is output_asm_label. */
21285 case 'L':
21286 /* Write second word of DImode or DFmode reference. Works on register
21287 or non-indexed memory only. */
21288 if (REG_P (x))
21289 fputs (reg_names[REGNO (x) + 1], file);
21290 else if (MEM_P (x))
21292 machine_mode mode = GET_MODE (x);
21293 /* Handle possible auto-increment. Since it is pre-increment and
21294 we have already done it, we can just use an offset of word. */
21295 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21296 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21297 output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
21298 UNITS_PER_WORD));
21299 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21300 output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
21301 UNITS_PER_WORD));
21302 else
21303 output_address (mode, XEXP (adjust_address_nv (x, SImode,
21304 UNITS_PER_WORD),
21305 0));
21307 if (small_data_operand (x, GET_MODE (x)))
21308 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21309 reg_names[SMALL_DATA_REG]);
21311 return;
21313 case 'N':
21314 /* Write the number of elements in the vector times 4. */
21315 if (GET_CODE (x) != PARALLEL)
21316 output_operand_lossage ("invalid %%N value");
21317 else
21318 fprintf (file, "%d", XVECLEN (x, 0) * 4);
21319 return;
21321 case 'O':
21322 /* Similar, but subtract 1 first. */
21323 if (GET_CODE (x) != PARALLEL)
21324 output_operand_lossage ("invalid %%O value");
21325 else
21326 fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
21327 return;
21329 case 'p':
21330 /* X is a CONST_INT that is a power of two. Output the logarithm. */
21331 if (! INT_P (x)
21332 || INTVAL (x) < 0
21333 || (i = exact_log2 (INTVAL (x))) < 0)
21334 output_operand_lossage ("invalid %%p value");
21335 else
21336 fprintf (file, "%d", i);
21337 return;
21339 case 'P':
21340 /* The operand must be an indirect memory reference. The result
21341 is the register name. */
21342 if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
21343 || REGNO (XEXP (x, 0)) >= 32)
21344 output_operand_lossage ("invalid %%P value");
21345 else
21346 fputs (reg_names[REGNO (XEXP (x, 0))], file);
21347 return;
21349 case 'q':
21350 /* This outputs the logical code corresponding to a boolean
21351 expression. The expression may have one or both operands
21352 negated (if one, only the first one). For condition register
21353 logical operations, it will also treat the negated
21354 CR codes as NOTs, but not handle NOTs of them. */
21356 const char *const *t = 0;
21357 const char *s;
21358 enum rtx_code code = GET_CODE (x);
21359 static const char * const tbl[3][3] = {
21360 { "and", "andc", "nor" },
21361 { "or", "orc", "nand" },
21362 { "xor", "eqv", "xor" } };
21364 if (code == AND)
21365 t = tbl[0];
21366 else if (code == IOR)
21367 t = tbl[1];
21368 else if (code == XOR)
21369 t = tbl[2];
21370 else
21371 output_operand_lossage ("invalid %%q value");
21373 if (GET_CODE (XEXP (x, 0)) != NOT)
21374 s = t[0];
21375 else
21377 if (GET_CODE (XEXP (x, 1)) == NOT)
21378 s = t[2];
21379 else
21380 s = t[1];
21383 fputs (s, file);
21385 return;
21387 case 'Q':
21388 if (! TARGET_MFCRF)
21389 return;
21390 fputc (',', file);
21391 /* FALLTHRU */
21393 case 'R':
21394 /* X is a CR register. Print the mask for `mtcrf'. */
21395 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
21396 output_operand_lossage ("invalid %%R value");
21397 else
21398 fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
21399 return;
21401 case 's':
21402 /* Low 5 bits of 32 - value */
21403 if (! INT_P (x))
21404 output_operand_lossage ("invalid %%s value");
21405 else
21406 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INTVAL (x)) & 31);
21407 return;
21409 case 't':
21410 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
21411 gcc_assert (REG_P (x) && GET_MODE (x) == CCmode);
21413 /* Bit 3 is OV bit. */
21414 i = 4 * (REGNO (x) - CR0_REGNO) + 3;
21416 /* If we want bit 31, write a shift count of zero, not 32. */
21417 fprintf (file, "%d", i == 31 ? 0 : i + 1);
21418 return;
21420 case 'T':
21421 /* Print the symbolic name of a branch target register. */
21422 if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
21423 && REGNO (x) != CTR_REGNO))
21424 output_operand_lossage ("invalid %%T value");
21425 else if (REGNO (x) == LR_REGNO)
21426 fputs ("lr", file);
21427 else
21428 fputs ("ctr", file);
21429 return;
21431 case 'u':
21432 /* High-order or low-order 16 bits of constant, whichever is non-zero,
21433 for use in unsigned operand. */
21434 if (! INT_P (x))
21436 output_operand_lossage ("invalid %%u value");
21437 return;
21440 uval = INTVAL (x);
21441 if ((uval & 0xffff) == 0)
21442 uval >>= 16;
21444 fprintf (file, HOST_WIDE_INT_PRINT_HEX, uval & 0xffff);
21445 return;
21447 case 'v':
21448 /* High-order 16 bits of constant for use in signed operand. */
21449 if (! INT_P (x))
21450 output_operand_lossage ("invalid %%v value");
21451 else
21452 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
21453 (INTVAL (x) >> 16) & 0xffff);
21454 return;
21456 case 'U':
21457 /* Print `u' if this has an auto-increment or auto-decrement. */
21458 if (MEM_P (x)
21459 && (GET_CODE (XEXP (x, 0)) == PRE_INC
21460 || GET_CODE (XEXP (x, 0)) == PRE_DEC
21461 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
21462 putc ('u', file);
21463 return;
21465 case 'V':
21466 /* Print the trap code for this operand. */
21467 switch (GET_CODE (x))
21469 case EQ:
21470 fputs ("eq", file); /* 4 */
21471 break;
21472 case NE:
21473 fputs ("ne", file); /* 24 */
21474 break;
21475 case LT:
21476 fputs ("lt", file); /* 16 */
21477 break;
21478 case LE:
21479 fputs ("le", file); /* 20 */
21480 break;
21481 case GT:
21482 fputs ("gt", file); /* 8 */
21483 break;
21484 case GE:
21485 fputs ("ge", file); /* 12 */
21486 break;
21487 case LTU:
21488 fputs ("llt", file); /* 2 */
21489 break;
21490 case LEU:
21491 fputs ("lle", file); /* 6 */
21492 break;
21493 case GTU:
21494 fputs ("lgt", file); /* 1 */
21495 break;
21496 case GEU:
21497 fputs ("lge", file); /* 5 */
21498 break;
21499 default:
21500 gcc_unreachable ();
21502 break;
21504 case 'w':
21505 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
21506 normally. */
21507 if (INT_P (x))
21508 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
21509 ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000);
21510 else
21511 print_operand (file, x, 0);
21512 return;
21514 case 'x':
21515 /* X is a FPR or Altivec register used in a VSX context. */
21516 if (GET_CODE (x) != REG || !VSX_REGNO_P (REGNO (x)))
21517 output_operand_lossage ("invalid %%x value");
21518 else
21520 int reg = REGNO (x);
21521 int vsx_reg = (FP_REGNO_P (reg)
21522 ? reg - 32
21523 : reg - FIRST_ALTIVEC_REGNO + 32);
21525 #ifdef TARGET_REGNAMES
21526 if (TARGET_REGNAMES)
21527 fprintf (file, "%%vs%d", vsx_reg);
21528 else
21529 #endif
21530 fprintf (file, "%d", vsx_reg);
21532 return;
21534 case 'X':
21535 if (MEM_P (x)
21536 && (legitimate_indexed_address_p (XEXP (x, 0), 0)
21537 || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
21538 && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
21539 putc ('x', file);
21540 return;
21542 case 'Y':
21543 /* Like 'L', for third word of TImode/PTImode */
21544 if (REG_P (x))
21545 fputs (reg_names[REGNO (x) + 2], file);
21546 else if (MEM_P (x))
21548 machine_mode mode = GET_MODE (x);
21549 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21550 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21551 output_address (mode, plus_constant (Pmode,
21552 XEXP (XEXP (x, 0), 0), 8));
21553 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21554 output_address (mode, plus_constant (Pmode,
21555 XEXP (XEXP (x, 0), 0), 8));
21556 else
21557 output_address (mode, XEXP (adjust_address_nv (x, SImode, 8), 0));
21558 if (small_data_operand (x, GET_MODE (x)))
21559 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21560 reg_names[SMALL_DATA_REG]);
21562 return;
21564 case 'z':
21565 /* X is a SYMBOL_REF. Write out the name preceded by a
21566 period and without any trailing data in brackets. Used for function
21567 names. If we are configured for System V (or the embedded ABI) on
21568 the PowerPC, do not emit the period, since those systems do not use
21569 TOCs and the like. */
21570 gcc_assert (GET_CODE (x) == SYMBOL_REF);
21572 /* For macho, check to see if we need a stub. */
21573 if (TARGET_MACHO)
21575 const char *name = XSTR (x, 0);
21576 #if TARGET_MACHO
21577 if (darwin_emit_branch_islands
21578 && MACHOPIC_INDIRECT
21579 && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
21580 name = machopic_indirection_name (x, /*stub_p=*/true);
21581 #endif
21582 assemble_name (file, name);
21584 else if (!DOT_SYMBOLS)
21585 assemble_name (file, XSTR (x, 0));
21586 else
21587 rs6000_output_function_entry (file, XSTR (x, 0));
21588 return;
21590 case 'Z':
21591 /* Like 'L', for last word of TImode/PTImode. */
21592 if (REG_P (x))
21593 fputs (reg_names[REGNO (x) + 3], file);
21594 else if (MEM_P (x))
21596 machine_mode mode = GET_MODE (x);
21597 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21598 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21599 output_address (mode, plus_constant (Pmode,
21600 XEXP (XEXP (x, 0), 0), 12));
21601 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21602 output_address (mode, plus_constant (Pmode,
21603 XEXP (XEXP (x, 0), 0), 12));
21604 else
21605 output_address (mode, XEXP (adjust_address_nv (x, SImode, 12), 0));
21606 if (small_data_operand (x, GET_MODE (x)))
21607 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21608 reg_names[SMALL_DATA_REG]);
21610 return;
21612 /* Print AltiVec memory operand. */
21613 case 'y':
21615 rtx tmp;
21617 gcc_assert (MEM_P (x));
21619 tmp = XEXP (x, 0);
21621 if (VECTOR_MEM_ALTIVEC_P (GET_MODE (x))
21622 && GET_CODE (tmp) == AND
21623 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
21624 && INTVAL (XEXP (tmp, 1)) == -16)
21625 tmp = XEXP (tmp, 0);
21626 else if (VECTOR_MEM_VSX_P (GET_MODE (x))
21627 && GET_CODE (tmp) == PRE_MODIFY)
21628 tmp = XEXP (tmp, 1);
21629 if (REG_P (tmp))
21630 fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
21631 else
21633 if (GET_CODE (tmp) != PLUS
21634 || !REG_P (XEXP (tmp, 0))
21635 || !REG_P (XEXP (tmp, 1)))
21637 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
21638 break;
21641 if (REGNO (XEXP (tmp, 0)) == 0)
21642 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
21643 reg_names[ REGNO (XEXP (tmp, 0)) ]);
21644 else
21645 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
21646 reg_names[ REGNO (XEXP (tmp, 1)) ]);
21648 break;
21651 case 0:
21652 if (REG_P (x))
21653 fprintf (file, "%s", reg_names[REGNO (x)]);
21654 else if (MEM_P (x))
21656 /* We need to handle PRE_INC and PRE_DEC here, since we need to
21657 know the width from the mode. */
21658 if (GET_CODE (XEXP (x, 0)) == PRE_INC)
21659 fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
21660 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
21661 else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
21662 fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
21663 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
21664 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21665 output_address (GET_MODE (x), XEXP (XEXP (x, 0), 1));
21666 else
21667 output_address (GET_MODE (x), XEXP (x, 0));
21669 else
21671 if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
21672 /* This hack along with a corresponding hack in
21673 rs6000_output_addr_const_extra arranges to output addends
21674 where the assembler expects to find them. eg.
21675 (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 4)
21676 without this hack would be output as "x@toc+4". We
21677 want "x+4@toc". */
21678 output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
21679 else
21680 output_addr_const (file, x);
21682 return;
21684 case '&':
21685 if (const char *name = get_some_local_dynamic_name ())
21686 assemble_name (file, name);
21687 else
21688 output_operand_lossage ("'%%&' used without any "
21689 "local dynamic TLS references");
21690 return;
21692 default:
21693 output_operand_lossage ("invalid %%xn code");
21697 /* Print the address of an operand. */
21699 void
21700 print_operand_address (FILE *file, rtx x)
21702 if (REG_P (x))
21703 fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
21704 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
21705 || GET_CODE (x) == LABEL_REF)
21707 output_addr_const (file, x);
21708 if (small_data_operand (x, GET_MODE (x)))
21709 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21710 reg_names[SMALL_DATA_REG]);
21711 else
21712 gcc_assert (!TARGET_TOC);
21714 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
21715 && REG_P (XEXP (x, 1)))
21717 if (REGNO (XEXP (x, 0)) == 0)
21718 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
21719 reg_names[ REGNO (XEXP (x, 0)) ]);
21720 else
21721 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
21722 reg_names[ REGNO (XEXP (x, 1)) ]);
21724 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
21725 && GET_CODE (XEXP (x, 1)) == CONST_INT)
21726 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
21727 INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
21728 #if TARGET_MACHO
21729 else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
21730 && CONSTANT_P (XEXP (x, 1)))
21732 fprintf (file, "lo16(");
21733 output_addr_const (file, XEXP (x, 1));
21734 fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
21736 #endif
21737 #if TARGET_ELF
21738 else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
21739 && CONSTANT_P (XEXP (x, 1)))
21741 output_addr_const (file, XEXP (x, 1));
21742 fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
21744 #endif
21745 else if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
21747 /* This hack along with a corresponding hack in
21748 rs6000_output_addr_const_extra arranges to output addends
21749 where the assembler expects to find them. eg.
21750 (lo_sum (reg 9)
21751 . (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 8))
21752 without this hack would be output as "x@toc+8@l(9)". We
21753 want "x+8@toc@l(9)". */
21754 output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
21755 if (GET_CODE (x) == LO_SUM)
21756 fprintf (file, "@l(%s)", reg_names[REGNO (XEXP (x, 0))]);
21757 else
21758 fprintf (file, "(%s)", reg_names[REGNO (XVECEXP (tocrel_base_oac, 0, 1))]);
21760 else
21761 gcc_unreachable ();
21764 /* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
21766 static bool
21767 rs6000_output_addr_const_extra (FILE *file, rtx x)
21769 if (GET_CODE (x) == UNSPEC)
21770 switch (XINT (x, 1))
21772 case UNSPEC_TOCREL:
21773 gcc_checking_assert (GET_CODE (XVECEXP (x, 0, 0)) == SYMBOL_REF
21774 && REG_P (XVECEXP (x, 0, 1))
21775 && REGNO (XVECEXP (x, 0, 1)) == TOC_REGISTER);
21776 output_addr_const (file, XVECEXP (x, 0, 0));
21777 if (x == tocrel_base_oac && tocrel_offset_oac != const0_rtx)
21779 if (INTVAL (tocrel_offset_oac) >= 0)
21780 fprintf (file, "+");
21781 output_addr_const (file, CONST_CAST_RTX (tocrel_offset_oac));
21783 if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
21785 putc ('-', file);
21786 assemble_name (file, toc_label_name);
21787 need_toc_init = 1;
21789 else if (TARGET_ELF)
21790 fputs ("@toc", file);
21791 return true;
21793 #if TARGET_MACHO
21794 case UNSPEC_MACHOPIC_OFFSET:
21795 output_addr_const (file, XVECEXP (x, 0, 0));
21796 putc ('-', file);
21797 machopic_output_function_base_name (file);
21798 return true;
21799 #endif
21801 return false;
21804 /* Target hook for assembling integer objects. The PowerPC version has
21805 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
21806 is defined. It also needs to handle DI-mode objects on 64-bit
21807 targets. */
21809 static bool
21810 rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
21812 #ifdef RELOCATABLE_NEEDS_FIXUP
21813 /* Special handling for SI values. */
21814 if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
21816 static int recurse = 0;
21818 /* For -mrelocatable, we mark all addresses that need to be fixed up in
21819 the .fixup section. Since the TOC section is already relocated, we
21820 don't need to mark it here. We used to skip the text section, but it
21821 should never be valid for relocated addresses to be placed in the text
21822 section. */
21823 if (DEFAULT_ABI == ABI_V4
21824 && (TARGET_RELOCATABLE || flag_pic > 1)
21825 && in_section != toc_section
21826 && !recurse
21827 && !CONST_SCALAR_INT_P (x)
21828 && CONSTANT_P (x))
21830 char buf[256];
21832 recurse = 1;
21833 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
21834 fixuplabelno++;
21835 ASM_OUTPUT_LABEL (asm_out_file, buf);
21836 fprintf (asm_out_file, "\t.long\t(");
21837 output_addr_const (asm_out_file, x);
21838 fprintf (asm_out_file, ")@fixup\n");
21839 fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
21840 ASM_OUTPUT_ALIGN (asm_out_file, 2);
21841 fprintf (asm_out_file, "\t.long\t");
21842 assemble_name (asm_out_file, buf);
21843 fprintf (asm_out_file, "\n\t.previous\n");
21844 recurse = 0;
21845 return true;
21847 /* Remove initial .'s to turn a -mcall-aixdesc function
21848 address into the address of the descriptor, not the function
21849 itself. */
21850 else if (GET_CODE (x) == SYMBOL_REF
21851 && XSTR (x, 0)[0] == '.'
21852 && DEFAULT_ABI == ABI_AIX)
21854 const char *name = XSTR (x, 0);
21855 while (*name == '.')
21856 name++;
21858 fprintf (asm_out_file, "\t.long\t%s\n", name);
21859 return true;
21862 #endif /* RELOCATABLE_NEEDS_FIXUP */
21863 return default_assemble_integer (x, size, aligned_p);
21866 #if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
21867 /* Emit an assembler directive to set symbol visibility for DECL to
21868 VISIBILITY_TYPE. */
21870 static void
21871 rs6000_assemble_visibility (tree decl, int vis)
21873 if (TARGET_XCOFF)
21874 return;
21876 /* Functions need to have their entry point symbol visibility set as
21877 well as their descriptor symbol visibility. */
21878 if (DEFAULT_ABI == ABI_AIX
21879 && DOT_SYMBOLS
21880 && TREE_CODE (decl) == FUNCTION_DECL)
21882 static const char * const visibility_types[] = {
21883 NULL, "protected", "hidden", "internal"
21886 const char *name, *type;
21888 name = ((* targetm.strip_name_encoding)
21889 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
21890 type = visibility_types[vis];
21892 fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
21893 fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
21895 else
21896 default_assemble_visibility (decl, vis);
21898 #endif
21900 enum rtx_code
21901 rs6000_reverse_condition (machine_mode mode, enum rtx_code code)
21903 /* Reversal of FP compares takes care -- an ordered compare
21904 becomes an unordered compare and vice versa. */
21905 if (mode == CCFPmode
21906 && (!flag_finite_math_only
21907 || code == UNLT || code == UNLE || code == UNGT || code == UNGE
21908 || code == UNEQ || code == LTGT))
21909 return reverse_condition_maybe_unordered (code);
21910 else
21911 return reverse_condition (code);
21914 /* Generate a compare for CODE. Return a brand-new rtx that
21915 represents the result of the compare. */
21917 static rtx
21918 rs6000_generate_compare (rtx cmp, machine_mode mode)
21920 machine_mode comp_mode;
21921 rtx compare_result;
21922 enum rtx_code code = GET_CODE (cmp);
21923 rtx op0 = XEXP (cmp, 0);
21924 rtx op1 = XEXP (cmp, 1);
21926 if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
21927 comp_mode = CCmode;
21928 else if (FLOAT_MODE_P (mode))
21929 comp_mode = CCFPmode;
21930 else if (code == GTU || code == LTU
21931 || code == GEU || code == LEU)
21932 comp_mode = CCUNSmode;
21933 else if ((code == EQ || code == NE)
21934 && unsigned_reg_p (op0)
21935 && (unsigned_reg_p (op1)
21936 || (CONST_INT_P (op1) && INTVAL (op1) != 0)))
21937 /* These are unsigned values, perhaps there will be a later
21938 ordering compare that can be shared with this one. */
21939 comp_mode = CCUNSmode;
21940 else
21941 comp_mode = CCmode;
21943 /* If we have an unsigned compare, make sure we don't have a signed value as
21944 an immediate. */
21945 if (comp_mode == CCUNSmode && GET_CODE (op1) == CONST_INT
21946 && INTVAL (op1) < 0)
21948 op0 = copy_rtx_if_shared (op0);
21949 op1 = force_reg (GET_MODE (op0), op1);
21950 cmp = gen_rtx_fmt_ee (code, GET_MODE (cmp), op0, op1);
21953 /* First, the compare. */
21954 compare_result = gen_reg_rtx (comp_mode);
21956 /* IEEE 128-bit support in VSX registers when we do not have hardware
21957 support. */
21958 if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
21960 rtx libfunc = NULL_RTX;
21961 bool check_nan = false;
21962 rtx dest;
21964 switch (code)
21966 case EQ:
21967 case NE:
21968 libfunc = optab_libfunc (eq_optab, mode);
21969 break;
21971 case GT:
21972 case GE:
21973 libfunc = optab_libfunc (ge_optab, mode);
21974 break;
21976 case LT:
21977 case LE:
21978 libfunc = optab_libfunc (le_optab, mode);
21979 break;
21981 case UNORDERED:
21982 case ORDERED:
21983 libfunc = optab_libfunc (unord_optab, mode);
21984 code = (code == UNORDERED) ? NE : EQ;
21985 break;
21987 case UNGE:
21988 case UNGT:
21989 check_nan = true;
21990 libfunc = optab_libfunc (ge_optab, mode);
21991 code = (code == UNGE) ? GE : GT;
21992 break;
21994 case UNLE:
21995 case UNLT:
21996 check_nan = true;
21997 libfunc = optab_libfunc (le_optab, mode);
21998 code = (code == UNLE) ? LE : LT;
21999 break;
22001 case UNEQ:
22002 case LTGT:
22003 check_nan = true;
22004 libfunc = optab_libfunc (eq_optab, mode);
22005 code = (code = UNEQ) ? EQ : NE;
22006 break;
22008 default:
22009 gcc_unreachable ();
22012 gcc_assert (libfunc);
22014 if (!check_nan)
22015 dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
22016 SImode, op0, mode, op1, mode);
22018 /* The library signals an exception for signalling NaNs, so we need to
22019 handle isgreater, etc. by first checking isordered. */
22020 else
22022 rtx ne_rtx, normal_dest, unord_dest;
22023 rtx unord_func = optab_libfunc (unord_optab, mode);
22024 rtx join_label = gen_label_rtx ();
22025 rtx join_ref = gen_rtx_LABEL_REF (VOIDmode, join_label);
22026 rtx unord_cmp = gen_reg_rtx (comp_mode);
22029 /* Test for either value being a NaN. */
22030 gcc_assert (unord_func);
22031 unord_dest = emit_library_call_value (unord_func, NULL_RTX, LCT_CONST,
22032 SImode, op0, mode, op1, mode);
22034 /* Set value (0) if either value is a NaN, and jump to the join
22035 label. */
22036 dest = gen_reg_rtx (SImode);
22037 emit_move_insn (dest, const1_rtx);
22038 emit_insn (gen_rtx_SET (unord_cmp,
22039 gen_rtx_COMPARE (comp_mode, unord_dest,
22040 const0_rtx)));
22042 ne_rtx = gen_rtx_NE (comp_mode, unord_cmp, const0_rtx);
22043 emit_jump_insn (gen_rtx_SET (pc_rtx,
22044 gen_rtx_IF_THEN_ELSE (VOIDmode, ne_rtx,
22045 join_ref,
22046 pc_rtx)));
22048 /* Do the normal comparison, knowing that the values are not
22049 NaNs. */
22050 normal_dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
22051 SImode, op0, mode, op1, mode);
22053 emit_insn (gen_cstoresi4 (dest,
22054 gen_rtx_fmt_ee (code, SImode, normal_dest,
22055 const0_rtx),
22056 normal_dest, const0_rtx));
22058 /* Join NaN and non-Nan paths. Compare dest against 0. */
22059 emit_label (join_label);
22060 code = NE;
22063 emit_insn (gen_rtx_SET (compare_result,
22064 gen_rtx_COMPARE (comp_mode, dest, const0_rtx)));
22067 else
22069 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
22070 CLOBBERs to match cmptf_internal2 pattern. */
22071 if (comp_mode == CCFPmode && TARGET_XL_COMPAT
22072 && FLOAT128_IBM_P (GET_MODE (op0))
22073 && TARGET_HARD_FLOAT)
22074 emit_insn (gen_rtx_PARALLEL (VOIDmode,
22075 gen_rtvec (10,
22076 gen_rtx_SET (compare_result,
22077 gen_rtx_COMPARE (comp_mode, op0, op1)),
22078 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22079 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22080 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22081 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22082 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22083 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22084 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22085 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
22086 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (Pmode)))));
22087 else if (GET_CODE (op1) == UNSPEC
22088 && XINT (op1, 1) == UNSPEC_SP_TEST)
22090 rtx op1b = XVECEXP (op1, 0, 0);
22091 comp_mode = CCEQmode;
22092 compare_result = gen_reg_rtx (CCEQmode);
22093 if (TARGET_64BIT)
22094 emit_insn (gen_stack_protect_testdi (compare_result, op0, op1b));
22095 else
22096 emit_insn (gen_stack_protect_testsi (compare_result, op0, op1b));
22098 else
22099 emit_insn (gen_rtx_SET (compare_result,
22100 gen_rtx_COMPARE (comp_mode, op0, op1)));
22103 /* Some kinds of FP comparisons need an OR operation;
22104 under flag_finite_math_only we don't bother. */
22105 if (FLOAT_MODE_P (mode)
22106 && (!FLOAT128_IEEE_P (mode) || TARGET_FLOAT128_HW)
22107 && !flag_finite_math_only
22108 && (code == LE || code == GE
22109 || code == UNEQ || code == LTGT
22110 || code == UNGT || code == UNLT))
22112 enum rtx_code or1, or2;
22113 rtx or1_rtx, or2_rtx, compare2_rtx;
22114 rtx or_result = gen_reg_rtx (CCEQmode);
22116 switch (code)
22118 case LE: or1 = LT; or2 = EQ; break;
22119 case GE: or1 = GT; or2 = EQ; break;
22120 case UNEQ: or1 = UNORDERED; or2 = EQ; break;
22121 case LTGT: or1 = LT; or2 = GT; break;
22122 case UNGT: or1 = UNORDERED; or2 = GT; break;
22123 case UNLT: or1 = UNORDERED; or2 = LT; break;
22124 default: gcc_unreachable ();
22126 validate_condition_mode (or1, comp_mode);
22127 validate_condition_mode (or2, comp_mode);
22128 or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
22129 or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
22130 compare2_rtx = gen_rtx_COMPARE (CCEQmode,
22131 gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
22132 const_true_rtx);
22133 emit_insn (gen_rtx_SET (or_result, compare2_rtx));
22135 compare_result = or_result;
22136 code = EQ;
22139 validate_condition_mode (code, GET_MODE (compare_result));
22141 return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
22145 /* Return the diagnostic message string if the binary operation OP is
22146 not permitted on TYPE1 and TYPE2, NULL otherwise. */
22148 static const char*
22149 rs6000_invalid_binary_op (int op ATTRIBUTE_UNUSED,
22150 const_tree type1,
22151 const_tree type2)
22153 machine_mode mode1 = TYPE_MODE (type1);
22154 machine_mode mode2 = TYPE_MODE (type2);
22156 /* For complex modes, use the inner type. */
22157 if (COMPLEX_MODE_P (mode1))
22158 mode1 = GET_MODE_INNER (mode1);
22160 if (COMPLEX_MODE_P (mode2))
22161 mode2 = GET_MODE_INNER (mode2);
22163 /* Don't allow IEEE 754R 128-bit binary floating point and IBM extended
22164 double to intermix unless -mfloat128-convert. */
22165 if (mode1 == mode2)
22166 return NULL;
22168 if (!TARGET_FLOAT128_CVT)
22170 if ((mode1 == KFmode && mode2 == IFmode)
22171 || (mode1 == IFmode && mode2 == KFmode))
22172 return N_("__float128 and __ibm128 cannot be used in the same "
22173 "expression");
22175 if (TARGET_IEEEQUAD
22176 && ((mode1 == IFmode && mode2 == TFmode)
22177 || (mode1 == TFmode && mode2 == IFmode)))
22178 return N_("__ibm128 and long double cannot be used in the same "
22179 "expression");
22181 if (!TARGET_IEEEQUAD
22182 && ((mode1 == KFmode && mode2 == TFmode)
22183 || (mode1 == TFmode && mode2 == KFmode)))
22184 return N_("__float128 and long double cannot be used in the same "
22185 "expression");
22188 return NULL;
22192 /* Expand floating point conversion to/from __float128 and __ibm128. */
22194 void
22195 rs6000_expand_float128_convert (rtx dest, rtx src, bool unsigned_p)
22197 machine_mode dest_mode = GET_MODE (dest);
22198 machine_mode src_mode = GET_MODE (src);
22199 convert_optab cvt = unknown_optab;
22200 bool do_move = false;
22201 rtx libfunc = NULL_RTX;
22202 rtx dest2;
22203 typedef rtx (*rtx_2func_t) (rtx, rtx);
22204 rtx_2func_t hw_convert = (rtx_2func_t)0;
22205 size_t kf_or_tf;
22207 struct hw_conv_t {
22208 rtx_2func_t from_df;
22209 rtx_2func_t from_sf;
22210 rtx_2func_t from_si_sign;
22211 rtx_2func_t from_si_uns;
22212 rtx_2func_t from_di_sign;
22213 rtx_2func_t from_di_uns;
22214 rtx_2func_t to_df;
22215 rtx_2func_t to_sf;
22216 rtx_2func_t to_si_sign;
22217 rtx_2func_t to_si_uns;
22218 rtx_2func_t to_di_sign;
22219 rtx_2func_t to_di_uns;
22220 } hw_conversions[2] = {
22221 /* convertions to/from KFmode */
22223 gen_extenddfkf2_hw, /* KFmode <- DFmode. */
22224 gen_extendsfkf2_hw, /* KFmode <- SFmode. */
22225 gen_float_kfsi2_hw, /* KFmode <- SImode (signed). */
22226 gen_floatuns_kfsi2_hw, /* KFmode <- SImode (unsigned). */
22227 gen_float_kfdi2_hw, /* KFmode <- DImode (signed). */
22228 gen_floatuns_kfdi2_hw, /* KFmode <- DImode (unsigned). */
22229 gen_trunckfdf2_hw, /* DFmode <- KFmode. */
22230 gen_trunckfsf2_hw, /* SFmode <- KFmode. */
22231 gen_fix_kfsi2_hw, /* SImode <- KFmode (signed). */
22232 gen_fixuns_kfsi2_hw, /* SImode <- KFmode (unsigned). */
22233 gen_fix_kfdi2_hw, /* DImode <- KFmode (signed). */
22234 gen_fixuns_kfdi2_hw, /* DImode <- KFmode (unsigned). */
22237 /* convertions to/from TFmode */
22239 gen_extenddftf2_hw, /* TFmode <- DFmode. */
22240 gen_extendsftf2_hw, /* TFmode <- SFmode. */
22241 gen_float_tfsi2_hw, /* TFmode <- SImode (signed). */
22242 gen_floatuns_tfsi2_hw, /* TFmode <- SImode (unsigned). */
22243 gen_float_tfdi2_hw, /* TFmode <- DImode (signed). */
22244 gen_floatuns_tfdi2_hw, /* TFmode <- DImode (unsigned). */
22245 gen_trunctfdf2_hw, /* DFmode <- TFmode. */
22246 gen_trunctfsf2_hw, /* SFmode <- TFmode. */
22247 gen_fix_tfsi2_hw, /* SImode <- TFmode (signed). */
22248 gen_fixuns_tfsi2_hw, /* SImode <- TFmode (unsigned). */
22249 gen_fix_tfdi2_hw, /* DImode <- TFmode (signed). */
22250 gen_fixuns_tfdi2_hw, /* DImode <- TFmode (unsigned). */
22254 if (dest_mode == src_mode)
22255 gcc_unreachable ();
22257 /* Eliminate memory operations. */
22258 if (MEM_P (src))
22259 src = force_reg (src_mode, src);
22261 if (MEM_P (dest))
22263 rtx tmp = gen_reg_rtx (dest_mode);
22264 rs6000_expand_float128_convert (tmp, src, unsigned_p);
22265 rs6000_emit_move (dest, tmp, dest_mode);
22266 return;
22269 /* Convert to IEEE 128-bit floating point. */
22270 if (FLOAT128_IEEE_P (dest_mode))
22272 if (dest_mode == KFmode)
22273 kf_or_tf = 0;
22274 else if (dest_mode == TFmode)
22275 kf_or_tf = 1;
22276 else
22277 gcc_unreachable ();
22279 switch (src_mode)
22281 case E_DFmode:
22282 cvt = sext_optab;
22283 hw_convert = hw_conversions[kf_or_tf].from_df;
22284 break;
22286 case E_SFmode:
22287 cvt = sext_optab;
22288 hw_convert = hw_conversions[kf_or_tf].from_sf;
22289 break;
22291 case E_KFmode:
22292 case E_IFmode:
22293 case E_TFmode:
22294 if (FLOAT128_IBM_P (src_mode))
22295 cvt = sext_optab;
22296 else
22297 do_move = true;
22298 break;
22300 case E_SImode:
22301 if (unsigned_p)
22303 cvt = ufloat_optab;
22304 hw_convert = hw_conversions[kf_or_tf].from_si_uns;
22306 else
22308 cvt = sfloat_optab;
22309 hw_convert = hw_conversions[kf_or_tf].from_si_sign;
22311 break;
22313 case E_DImode:
22314 if (unsigned_p)
22316 cvt = ufloat_optab;
22317 hw_convert = hw_conversions[kf_or_tf].from_di_uns;
22319 else
22321 cvt = sfloat_optab;
22322 hw_convert = hw_conversions[kf_or_tf].from_di_sign;
22324 break;
22326 default:
22327 gcc_unreachable ();
22331 /* Convert from IEEE 128-bit floating point. */
22332 else if (FLOAT128_IEEE_P (src_mode))
22334 if (src_mode == KFmode)
22335 kf_or_tf = 0;
22336 else if (src_mode == TFmode)
22337 kf_or_tf = 1;
22338 else
22339 gcc_unreachable ();
22341 switch (dest_mode)
22343 case E_DFmode:
22344 cvt = trunc_optab;
22345 hw_convert = hw_conversions[kf_or_tf].to_df;
22346 break;
22348 case E_SFmode:
22349 cvt = trunc_optab;
22350 hw_convert = hw_conversions[kf_or_tf].to_sf;
22351 break;
22353 case E_KFmode:
22354 case E_IFmode:
22355 case E_TFmode:
22356 if (FLOAT128_IBM_P (dest_mode))
22357 cvt = trunc_optab;
22358 else
22359 do_move = true;
22360 break;
22362 case E_SImode:
22363 if (unsigned_p)
22365 cvt = ufix_optab;
22366 hw_convert = hw_conversions[kf_or_tf].to_si_uns;
22368 else
22370 cvt = sfix_optab;
22371 hw_convert = hw_conversions[kf_or_tf].to_si_sign;
22373 break;
22375 case E_DImode:
22376 if (unsigned_p)
22378 cvt = ufix_optab;
22379 hw_convert = hw_conversions[kf_or_tf].to_di_uns;
22381 else
22383 cvt = sfix_optab;
22384 hw_convert = hw_conversions[kf_or_tf].to_di_sign;
22386 break;
22388 default:
22389 gcc_unreachable ();
22393 /* Both IBM format. */
22394 else if (FLOAT128_IBM_P (dest_mode) && FLOAT128_IBM_P (src_mode))
22395 do_move = true;
22397 else
22398 gcc_unreachable ();
22400 /* Handle conversion between TFmode/KFmode. */
22401 if (do_move)
22402 emit_move_insn (dest, gen_lowpart (dest_mode, src));
22404 /* Handle conversion if we have hardware support. */
22405 else if (TARGET_FLOAT128_HW && hw_convert)
22406 emit_insn ((hw_convert) (dest, src));
22408 /* Call an external function to do the conversion. */
22409 else if (cvt != unknown_optab)
22411 libfunc = convert_optab_libfunc (cvt, dest_mode, src_mode);
22412 gcc_assert (libfunc != NULL_RTX);
22414 dest2 = emit_library_call_value (libfunc, dest, LCT_CONST, dest_mode,
22415 src, src_mode);
22417 gcc_assert (dest2 != NULL_RTX);
22418 if (!rtx_equal_p (dest, dest2))
22419 emit_move_insn (dest, dest2);
22422 else
22423 gcc_unreachable ();
22425 return;
22429 /* Emit the RTL for an sISEL pattern. */
22431 void
22432 rs6000_emit_sISEL (machine_mode mode ATTRIBUTE_UNUSED, rtx operands[])
22434 rs6000_emit_int_cmove (operands[0], operands[1], const1_rtx, const0_rtx);
22437 /* Emit RTL that sets a register to zero if OP1 and OP2 are equal. SCRATCH
22438 can be used as that dest register. Return the dest register. */
22441 rs6000_emit_eqne (machine_mode mode, rtx op1, rtx op2, rtx scratch)
22443 if (op2 == const0_rtx)
22444 return op1;
22446 if (GET_CODE (scratch) == SCRATCH)
22447 scratch = gen_reg_rtx (mode);
22449 if (logical_operand (op2, mode))
22450 emit_insn (gen_rtx_SET (scratch, gen_rtx_XOR (mode, op1, op2)));
22451 else
22452 emit_insn (gen_rtx_SET (scratch,
22453 gen_rtx_PLUS (mode, op1, negate_rtx (mode, op2))));
22455 return scratch;
22458 void
22459 rs6000_emit_sCOND (machine_mode mode, rtx operands[])
22461 rtx condition_rtx;
22462 machine_mode op_mode;
22463 enum rtx_code cond_code;
22464 rtx result = operands[0];
22466 condition_rtx = rs6000_generate_compare (operands[1], mode);
22467 cond_code = GET_CODE (condition_rtx);
22469 if (cond_code == NE
22470 || cond_code == GE || cond_code == LE
22471 || cond_code == GEU || cond_code == LEU
22472 || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
22474 rtx not_result = gen_reg_rtx (CCEQmode);
22475 rtx not_op, rev_cond_rtx;
22476 machine_mode cc_mode;
22478 cc_mode = GET_MODE (XEXP (condition_rtx, 0));
22480 rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
22481 SImode, XEXP (condition_rtx, 0), const0_rtx);
22482 not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
22483 emit_insn (gen_rtx_SET (not_result, not_op));
22484 condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
22487 op_mode = GET_MODE (XEXP (operands[1], 0));
22488 if (op_mode == VOIDmode)
22489 op_mode = GET_MODE (XEXP (operands[1], 1));
22491 if (TARGET_POWERPC64 && (op_mode == DImode || FLOAT_MODE_P (mode)))
22493 PUT_MODE (condition_rtx, DImode);
22494 convert_move (result, condition_rtx, 0);
22496 else
22498 PUT_MODE (condition_rtx, SImode);
22499 emit_insn (gen_rtx_SET (result, condition_rtx));
22503 /* Emit a branch of kind CODE to location LOC. */
22505 void
22506 rs6000_emit_cbranch (machine_mode mode, rtx operands[])
22508 rtx condition_rtx, loc_ref;
22510 condition_rtx = rs6000_generate_compare (operands[0], mode);
22511 loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
22512 emit_jump_insn (gen_rtx_SET (pc_rtx,
22513 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
22514 loc_ref, pc_rtx)));
22517 /* Return the string to output a conditional branch to LABEL, which is
22518 the operand template of the label, or NULL if the branch is really a
22519 conditional return.
22521 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
22522 condition code register and its mode specifies what kind of
22523 comparison we made.
22525 REVERSED is nonzero if we should reverse the sense of the comparison.
22527 INSN is the insn. */
22529 char *
22530 output_cbranch (rtx op, const char *label, int reversed, rtx_insn *insn)
22532 static char string[64];
22533 enum rtx_code code = GET_CODE (op);
22534 rtx cc_reg = XEXP (op, 0);
22535 machine_mode mode = GET_MODE (cc_reg);
22536 int cc_regno = REGNO (cc_reg) - CR0_REGNO;
22537 int need_longbranch = label != NULL && get_attr_length (insn) == 8;
22538 int really_reversed = reversed ^ need_longbranch;
22539 char *s = string;
22540 const char *ccode;
22541 const char *pred;
22542 rtx note;
22544 validate_condition_mode (code, mode);
22546 /* Work out which way this really branches. We could use
22547 reverse_condition_maybe_unordered here always but this
22548 makes the resulting assembler clearer. */
22549 if (really_reversed)
22551 /* Reversal of FP compares takes care -- an ordered compare
22552 becomes an unordered compare and vice versa. */
22553 if (mode == CCFPmode)
22554 code = reverse_condition_maybe_unordered (code);
22555 else
22556 code = reverse_condition (code);
22559 switch (code)
22561 /* Not all of these are actually distinct opcodes, but
22562 we distinguish them for clarity of the resulting assembler. */
22563 case NE: case LTGT:
22564 ccode = "ne"; break;
22565 case EQ: case UNEQ:
22566 ccode = "eq"; break;
22567 case GE: case GEU:
22568 ccode = "ge"; break;
22569 case GT: case GTU: case UNGT:
22570 ccode = "gt"; break;
22571 case LE: case LEU:
22572 ccode = "le"; break;
22573 case LT: case LTU: case UNLT:
22574 ccode = "lt"; break;
22575 case UNORDERED: ccode = "un"; break;
22576 case ORDERED: ccode = "nu"; break;
22577 case UNGE: ccode = "nl"; break;
22578 case UNLE: ccode = "ng"; break;
22579 default:
22580 gcc_unreachable ();
22583 /* Maybe we have a guess as to how likely the branch is. */
22584 pred = "";
22585 note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
22586 if (note != NULL_RTX)
22588 /* PROB is the difference from 50%. */
22589 int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
22590 .to_reg_br_prob_base () - REG_BR_PROB_BASE / 2;
22592 /* Only hint for highly probable/improbable branches on newer cpus when
22593 we have real profile data, as static prediction overrides processor
22594 dynamic prediction. For older cpus we may as well always hint, but
22595 assume not taken for branches that are very close to 50% as a
22596 mispredicted taken branch is more expensive than a
22597 mispredicted not-taken branch. */
22598 if (rs6000_always_hint
22599 || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
22600 && (profile_status_for_fn (cfun) != PROFILE_GUESSED)
22601 && br_prob_note_reliable_p (note)))
22603 if (abs (prob) > REG_BR_PROB_BASE / 20
22604 && ((prob > 0) ^ need_longbranch))
22605 pred = "+";
22606 else
22607 pred = "-";
22611 if (label == NULL)
22612 s += sprintf (s, "b%slr%s ", ccode, pred);
22613 else
22614 s += sprintf (s, "b%s%s ", ccode, pred);
22616 /* We need to escape any '%' characters in the reg_names string.
22617 Assume they'd only be the first character.... */
22618 if (reg_names[cc_regno + CR0_REGNO][0] == '%')
22619 *s++ = '%';
22620 s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);
22622 if (label != NULL)
22624 /* If the branch distance was too far, we may have to use an
22625 unconditional branch to go the distance. */
22626 if (need_longbranch)
22627 s += sprintf (s, ",$+8\n\tb %s", label);
22628 else
22629 s += sprintf (s, ",%s", label);
22632 return string;
22635 /* Return insn for VSX or Altivec comparisons. */
22637 static rtx
22638 rs6000_emit_vector_compare_inner (enum rtx_code code, rtx op0, rtx op1)
22640 rtx mask;
22641 machine_mode mode = GET_MODE (op0);
22643 switch (code)
22645 default:
22646 break;
22648 case GE:
22649 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
22650 return NULL_RTX;
22651 /* FALLTHRU */
22653 case EQ:
22654 case GT:
22655 case GTU:
22656 case ORDERED:
22657 case UNORDERED:
22658 case UNEQ:
22659 case LTGT:
22660 mask = gen_reg_rtx (mode);
22661 emit_insn (gen_rtx_SET (mask, gen_rtx_fmt_ee (code, mode, op0, op1)));
22662 return mask;
22665 return NULL_RTX;
22668 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
22669 DMODE is expected destination mode. This is a recursive function. */
22671 static rtx
22672 rs6000_emit_vector_compare (enum rtx_code rcode,
22673 rtx op0, rtx op1,
22674 machine_mode dmode)
22676 rtx mask;
22677 bool swap_operands = false;
22678 bool try_again = false;
22680 gcc_assert (VECTOR_UNIT_ALTIVEC_OR_VSX_P (dmode));
22681 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
22683 /* See if the comparison works as is. */
22684 mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
22685 if (mask)
22686 return mask;
22688 switch (rcode)
22690 case LT:
22691 rcode = GT;
22692 swap_operands = true;
22693 try_again = true;
22694 break;
22695 case LTU:
22696 rcode = GTU;
22697 swap_operands = true;
22698 try_again = true;
22699 break;
22700 case NE:
22701 case UNLE:
22702 case UNLT:
22703 case UNGE:
22704 case UNGT:
22705 /* Invert condition and try again.
22706 e.g., A != B becomes ~(A==B). */
22708 enum rtx_code rev_code;
22709 enum insn_code nor_code;
22710 rtx mask2;
22712 rev_code = reverse_condition_maybe_unordered (rcode);
22713 if (rev_code == UNKNOWN)
22714 return NULL_RTX;
22716 nor_code = optab_handler (one_cmpl_optab, dmode);
22717 if (nor_code == CODE_FOR_nothing)
22718 return NULL_RTX;
22720 mask2 = rs6000_emit_vector_compare (rev_code, op0, op1, dmode);
22721 if (!mask2)
22722 return NULL_RTX;
22724 mask = gen_reg_rtx (dmode);
22725 emit_insn (GEN_FCN (nor_code) (mask, mask2));
22726 return mask;
22728 break;
22729 case GE:
22730 case GEU:
22731 case LE:
22732 case LEU:
22733 /* Try GT/GTU/LT/LTU OR EQ */
22735 rtx c_rtx, eq_rtx;
22736 enum insn_code ior_code;
22737 enum rtx_code new_code;
22739 switch (rcode)
22741 case GE:
22742 new_code = GT;
22743 break;
22745 case GEU:
22746 new_code = GTU;
22747 break;
22749 case LE:
22750 new_code = LT;
22751 break;
22753 case LEU:
22754 new_code = LTU;
22755 break;
22757 default:
22758 gcc_unreachable ();
22761 ior_code = optab_handler (ior_optab, dmode);
22762 if (ior_code == CODE_FOR_nothing)
22763 return NULL_RTX;
22765 c_rtx = rs6000_emit_vector_compare (new_code, op0, op1, dmode);
22766 if (!c_rtx)
22767 return NULL_RTX;
22769 eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1, dmode);
22770 if (!eq_rtx)
22771 return NULL_RTX;
22773 mask = gen_reg_rtx (dmode);
22774 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
22775 return mask;
22777 break;
22778 default:
22779 return NULL_RTX;
22782 if (try_again)
22784 if (swap_operands)
22785 std::swap (op0, op1);
22787 mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
22788 if (mask)
22789 return mask;
22792 /* You only get two chances. */
22793 return NULL_RTX;
22796 /* Emit vector conditional expression. DEST is destination. OP_TRUE and
22797 OP_FALSE are two VEC_COND_EXPR operands. CC_OP0 and CC_OP1 are the two
22798 operands for the relation operation COND. */
22801 rs6000_emit_vector_cond_expr (rtx dest, rtx op_true, rtx op_false,
22802 rtx cond, rtx cc_op0, rtx cc_op1)
22804 machine_mode dest_mode = GET_MODE (dest);
22805 machine_mode mask_mode = GET_MODE (cc_op0);
22806 enum rtx_code rcode = GET_CODE (cond);
22807 machine_mode cc_mode = CCmode;
22808 rtx mask;
22809 rtx cond2;
22810 bool invert_move = false;
22812 if (VECTOR_UNIT_NONE_P (dest_mode))
22813 return 0;
22815 gcc_assert (GET_MODE_SIZE (dest_mode) == GET_MODE_SIZE (mask_mode)
22816 && GET_MODE_NUNITS (dest_mode) == GET_MODE_NUNITS (mask_mode));
22818 switch (rcode)
22820 /* Swap operands if we can, and fall back to doing the operation as
22821 specified, and doing a NOR to invert the test. */
22822 case NE:
22823 case UNLE:
22824 case UNLT:
22825 case UNGE:
22826 case UNGT:
22827 /* Invert condition and try again.
22828 e.g., A = (B != C) ? D : E becomes A = (B == C) ? E : D. */
22829 invert_move = true;
22830 rcode = reverse_condition_maybe_unordered (rcode);
22831 if (rcode == UNKNOWN)
22832 return 0;
22833 break;
22835 case GE:
22836 case LE:
22837 if (GET_MODE_CLASS (mask_mode) == MODE_VECTOR_INT)
22839 /* Invert condition to avoid compound test. */
22840 invert_move = true;
22841 rcode = reverse_condition (rcode);
22843 break;
22845 case GTU:
22846 case GEU:
22847 case LTU:
22848 case LEU:
22849 /* Mark unsigned tests with CCUNSmode. */
22850 cc_mode = CCUNSmode;
22852 /* Invert condition to avoid compound test if necessary. */
22853 if (rcode == GEU || rcode == LEU)
22855 invert_move = true;
22856 rcode = reverse_condition (rcode);
22858 break;
22860 default:
22861 break;
22864 /* Get the vector mask for the given relational operations. */
22865 mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, mask_mode);
22867 if (!mask)
22868 return 0;
22870 if (invert_move)
22871 std::swap (op_true, op_false);
22873 /* Optimize vec1 == vec2, to know the mask generates -1/0. */
22874 if (GET_MODE_CLASS (dest_mode) == MODE_VECTOR_INT
22875 && (GET_CODE (op_true) == CONST_VECTOR
22876 || GET_CODE (op_false) == CONST_VECTOR))
22878 rtx constant_0 = CONST0_RTX (dest_mode);
22879 rtx constant_m1 = CONSTM1_RTX (dest_mode);
22881 if (op_true == constant_m1 && op_false == constant_0)
22883 emit_move_insn (dest, mask);
22884 return 1;
22887 else if (op_true == constant_0 && op_false == constant_m1)
22889 emit_insn (gen_rtx_SET (dest, gen_rtx_NOT (dest_mode, mask)));
22890 return 1;
22893 /* If we can't use the vector comparison directly, perhaps we can use
22894 the mask for the true or false fields, instead of loading up a
22895 constant. */
22896 if (op_true == constant_m1)
22897 op_true = mask;
22899 if (op_false == constant_0)
22900 op_false = mask;
22903 if (!REG_P (op_true) && !SUBREG_P (op_true))
22904 op_true = force_reg (dest_mode, op_true);
22906 if (!REG_P (op_false) && !SUBREG_P (op_false))
22907 op_false = force_reg (dest_mode, op_false);
22909 cond2 = gen_rtx_fmt_ee (NE, cc_mode, gen_lowpart (dest_mode, mask),
22910 CONST0_RTX (dest_mode));
22911 emit_insn (gen_rtx_SET (dest,
22912 gen_rtx_IF_THEN_ELSE (dest_mode,
22913 cond2,
22914 op_true,
22915 op_false)));
22916 return 1;
22919 /* ISA 3.0 (power9) minmax subcase to emit a XSMAXCDP or XSMINCDP instruction
22920 for SF/DF scalars. Move TRUE_COND to DEST if OP of the operands of the last
22921 comparison is nonzero/true, FALSE_COND if it is zero/false. Return 0 if the
22922 hardware has no such operation. */
22924 static int
22925 rs6000_emit_p9_fp_minmax (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22927 enum rtx_code code = GET_CODE (op);
22928 rtx op0 = XEXP (op, 0);
22929 rtx op1 = XEXP (op, 1);
22930 machine_mode compare_mode = GET_MODE (op0);
22931 machine_mode result_mode = GET_MODE (dest);
22932 bool max_p = false;
22934 if (result_mode != compare_mode)
22935 return 0;
22937 if (code == GE || code == GT)
22938 max_p = true;
22939 else if (code == LE || code == LT)
22940 max_p = false;
22941 else
22942 return 0;
22944 if (rtx_equal_p (op0, true_cond) && rtx_equal_p (op1, false_cond))
22947 else if (rtx_equal_p (op1, true_cond) && rtx_equal_p (op0, false_cond))
22948 max_p = !max_p;
22950 else
22951 return 0;
22953 rs6000_emit_minmax (dest, max_p ? SMAX : SMIN, op0, op1);
22954 return 1;
22957 /* ISA 3.0 (power9) conditional move subcase to emit XSCMP{EQ,GE,GT,NE}DP and
22958 XXSEL instructions for SF/DF scalars. Move TRUE_COND to DEST if OP of the
22959 operands of the last comparison is nonzero/true, FALSE_COND if it is
22960 zero/false. Return 0 if the hardware has no such operation. */
22962 static int
22963 rs6000_emit_p9_fp_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22965 enum rtx_code code = GET_CODE (op);
22966 rtx op0 = XEXP (op, 0);
22967 rtx op1 = XEXP (op, 1);
22968 machine_mode result_mode = GET_MODE (dest);
22969 rtx compare_rtx;
22970 rtx cmove_rtx;
22971 rtx clobber_rtx;
22973 if (!can_create_pseudo_p ())
22974 return 0;
22976 switch (code)
22978 case EQ:
22979 case GE:
22980 case GT:
22981 break;
22983 case NE:
22984 case LT:
22985 case LE:
22986 code = swap_condition (code);
22987 std::swap (op0, op1);
22988 break;
22990 default:
22991 return 0;
22994 /* Generate: [(parallel [(set (dest)
22995 (if_then_else (op (cmp1) (cmp2))
22996 (true)
22997 (false)))
22998 (clobber (scratch))])]. */
23000 compare_rtx = gen_rtx_fmt_ee (code, CCFPmode, op0, op1);
23001 cmove_rtx = gen_rtx_SET (dest,
23002 gen_rtx_IF_THEN_ELSE (result_mode,
23003 compare_rtx,
23004 true_cond,
23005 false_cond));
23007 clobber_rtx = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (V2DImode));
23008 emit_insn (gen_rtx_PARALLEL (VOIDmode,
23009 gen_rtvec (2, cmove_rtx, clobber_rtx)));
23011 return 1;
23014 /* Emit a conditional move: move TRUE_COND to DEST if OP of the
23015 operands of the last comparison is nonzero/true, FALSE_COND if it
23016 is zero/false. Return 0 if the hardware has no such operation. */
23019 rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
23021 enum rtx_code code = GET_CODE (op);
23022 rtx op0 = XEXP (op, 0);
23023 rtx op1 = XEXP (op, 1);
23024 machine_mode compare_mode = GET_MODE (op0);
23025 machine_mode result_mode = GET_MODE (dest);
23026 rtx temp;
23027 bool is_against_zero;
23029 /* These modes should always match. */
23030 if (GET_MODE (op1) != compare_mode
23031 /* In the isel case however, we can use a compare immediate, so
23032 op1 may be a small constant. */
23033 && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
23034 return 0;
23035 if (GET_MODE (true_cond) != result_mode)
23036 return 0;
23037 if (GET_MODE (false_cond) != result_mode)
23038 return 0;
23040 /* See if we can use the ISA 3.0 (power9) min/max/compare functions. */
23041 if (TARGET_P9_MINMAX
23042 && (compare_mode == SFmode || compare_mode == DFmode)
23043 && (result_mode == SFmode || result_mode == DFmode))
23045 if (rs6000_emit_p9_fp_minmax (dest, op, true_cond, false_cond))
23046 return 1;
23048 if (rs6000_emit_p9_fp_cmove (dest, op, true_cond, false_cond))
23049 return 1;
23052 /* Don't allow using floating point comparisons for integer results for
23053 now. */
23054 if (FLOAT_MODE_P (compare_mode) && !FLOAT_MODE_P (result_mode))
23055 return 0;
23057 /* First, work out if the hardware can do this at all, or
23058 if it's too slow.... */
23059 if (!FLOAT_MODE_P (compare_mode))
23061 if (TARGET_ISEL)
23062 return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
23063 return 0;
23066 is_against_zero = op1 == CONST0_RTX (compare_mode);
23068 /* A floating-point subtract might overflow, underflow, or produce
23069 an inexact result, thus changing the floating-point flags, so it
23070 can't be generated if we care about that. It's safe if one side
23071 of the construct is zero, since then no subtract will be
23072 generated. */
23073 if (SCALAR_FLOAT_MODE_P (compare_mode)
23074 && flag_trapping_math && ! is_against_zero)
23075 return 0;
23077 /* Eliminate half of the comparisons by switching operands, this
23078 makes the remaining code simpler. */
23079 if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
23080 || code == LTGT || code == LT || code == UNLE)
23082 code = reverse_condition_maybe_unordered (code);
23083 temp = true_cond;
23084 true_cond = false_cond;
23085 false_cond = temp;
23088 /* UNEQ and LTGT take four instructions for a comparison with zero,
23089 it'll probably be faster to use a branch here too. */
23090 if (code == UNEQ && HONOR_NANS (compare_mode))
23091 return 0;
23093 /* We're going to try to implement comparisons by performing
23094 a subtract, then comparing against zero. Unfortunately,
23095 Inf - Inf is NaN which is not zero, and so if we don't
23096 know that the operand is finite and the comparison
23097 would treat EQ different to UNORDERED, we can't do it. */
23098 if (HONOR_INFINITIES (compare_mode)
23099 && code != GT && code != UNGE
23100 && (GET_CODE (op1) != CONST_DOUBLE
23101 || real_isinf (CONST_DOUBLE_REAL_VALUE (op1)))
23102 /* Constructs of the form (a OP b ? a : b) are safe. */
23103 && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
23104 || (! rtx_equal_p (op0, true_cond)
23105 && ! rtx_equal_p (op1, true_cond))))
23106 return 0;
23108 /* At this point we know we can use fsel. */
23110 /* Reduce the comparison to a comparison against zero. */
23111 if (! is_against_zero)
23113 temp = gen_reg_rtx (compare_mode);
23114 emit_insn (gen_rtx_SET (temp, gen_rtx_MINUS (compare_mode, op0, op1)));
23115 op0 = temp;
23116 op1 = CONST0_RTX (compare_mode);
23119 /* If we don't care about NaNs we can reduce some of the comparisons
23120 down to faster ones. */
23121 if (! HONOR_NANS (compare_mode))
23122 switch (code)
23124 case GT:
23125 code = LE;
23126 temp = true_cond;
23127 true_cond = false_cond;
23128 false_cond = temp;
23129 break;
23130 case UNGE:
23131 code = GE;
23132 break;
23133 case UNEQ:
23134 code = EQ;
23135 break;
23136 default:
23137 break;
23140 /* Now, reduce everything down to a GE. */
23141 switch (code)
23143 case GE:
23144 break;
23146 case LE:
23147 temp = gen_reg_rtx (compare_mode);
23148 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
23149 op0 = temp;
23150 break;
23152 case ORDERED:
23153 temp = gen_reg_rtx (compare_mode);
23154 emit_insn (gen_rtx_SET (temp, gen_rtx_ABS (compare_mode, op0)));
23155 op0 = temp;
23156 break;
23158 case EQ:
23159 temp = gen_reg_rtx (compare_mode);
23160 emit_insn (gen_rtx_SET (temp,
23161 gen_rtx_NEG (compare_mode,
23162 gen_rtx_ABS (compare_mode, op0))));
23163 op0 = temp;
23164 break;
23166 case UNGE:
23167 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
23168 temp = gen_reg_rtx (result_mode);
23169 emit_insn (gen_rtx_SET (temp,
23170 gen_rtx_IF_THEN_ELSE (result_mode,
23171 gen_rtx_GE (VOIDmode,
23172 op0, op1),
23173 true_cond, false_cond)));
23174 false_cond = true_cond;
23175 true_cond = temp;
23177 temp = gen_reg_rtx (compare_mode);
23178 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
23179 op0 = temp;
23180 break;
23182 case GT:
23183 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
23184 temp = gen_reg_rtx (result_mode);
23185 emit_insn (gen_rtx_SET (temp,
23186 gen_rtx_IF_THEN_ELSE (result_mode,
23187 gen_rtx_GE (VOIDmode,
23188 op0, op1),
23189 true_cond, false_cond)));
23190 true_cond = false_cond;
23191 false_cond = temp;
23193 temp = gen_reg_rtx (compare_mode);
23194 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
23195 op0 = temp;
23196 break;
23198 default:
23199 gcc_unreachable ();
23202 emit_insn (gen_rtx_SET (dest,
23203 gen_rtx_IF_THEN_ELSE (result_mode,
23204 gen_rtx_GE (VOIDmode,
23205 op0, op1),
23206 true_cond, false_cond)));
23207 return 1;
23210 /* Same as above, but for ints (isel). */
23212 static int
23213 rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
23215 rtx condition_rtx, cr;
23216 machine_mode mode = GET_MODE (dest);
23217 enum rtx_code cond_code;
23218 rtx (*isel_func) (rtx, rtx, rtx, rtx, rtx);
23219 bool signedp;
23221 if (mode != SImode && (!TARGET_POWERPC64 || mode != DImode))
23222 return 0;
23224 /* We still have to do the compare, because isel doesn't do a
23225 compare, it just looks at the CRx bits set by a previous compare
23226 instruction. */
23227 condition_rtx = rs6000_generate_compare (op, mode);
23228 cond_code = GET_CODE (condition_rtx);
23229 cr = XEXP (condition_rtx, 0);
23230 signedp = GET_MODE (cr) == CCmode;
23232 isel_func = (mode == SImode
23233 ? (signedp ? gen_isel_signed_si : gen_isel_unsigned_si)
23234 : (signedp ? gen_isel_signed_di : gen_isel_unsigned_di));
23236 switch (cond_code)
23238 case LT: case GT: case LTU: case GTU: case EQ:
23239 /* isel handles these directly. */
23240 break;
23242 default:
23243 /* We need to swap the sense of the comparison. */
23245 std::swap (false_cond, true_cond);
23246 PUT_CODE (condition_rtx, reverse_condition (cond_code));
23248 break;
23251 false_cond = force_reg (mode, false_cond);
23252 if (true_cond != const0_rtx)
23253 true_cond = force_reg (mode, true_cond);
23255 emit_insn (isel_func (dest, condition_rtx, true_cond, false_cond, cr));
23257 return 1;
23260 void
23261 rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
23263 machine_mode mode = GET_MODE (op0);
23264 enum rtx_code c;
23265 rtx target;
23267 /* VSX/altivec have direct min/max insns. */
23268 if ((code == SMAX || code == SMIN)
23269 && (VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)
23270 || (mode == SFmode && VECTOR_UNIT_VSX_P (DFmode))))
23272 emit_insn (gen_rtx_SET (dest, gen_rtx_fmt_ee (code, mode, op0, op1)));
23273 return;
23276 if (code == SMAX || code == SMIN)
23277 c = GE;
23278 else
23279 c = GEU;
23281 if (code == SMAX || code == UMAX)
23282 target = emit_conditional_move (dest, c, op0, op1, mode,
23283 op0, op1, mode, 0);
23284 else
23285 target = emit_conditional_move (dest, c, op0, op1, mode,
23286 op1, op0, mode, 0);
23287 gcc_assert (target);
23288 if (target != dest)
23289 emit_move_insn (dest, target);
23292 /* Split a signbit operation on 64-bit machines with direct move. Also allow
23293 for the value to come from memory or if it is already loaded into a GPR. */
23295 void
23296 rs6000_split_signbit (rtx dest, rtx src)
23298 machine_mode d_mode = GET_MODE (dest);
23299 machine_mode s_mode = GET_MODE (src);
23300 rtx dest_di = (d_mode == DImode) ? dest : gen_lowpart (DImode, dest);
23301 rtx shift_reg = dest_di;
23303 gcc_assert (FLOAT128_IEEE_P (s_mode) && TARGET_POWERPC64);
23305 if (MEM_P (src))
23307 rtx mem = (WORDS_BIG_ENDIAN
23308 ? adjust_address (src, DImode, 0)
23309 : adjust_address (src, DImode, 8));
23310 emit_insn (gen_rtx_SET (dest_di, mem));
23313 else
23315 unsigned int r = reg_or_subregno (src);
23317 if (INT_REGNO_P (r))
23318 shift_reg = gen_rtx_REG (DImode, r + (BYTES_BIG_ENDIAN == 0));
23320 else
23322 /* Generate the special mfvsrd instruction to get it in a GPR. */
23323 gcc_assert (VSX_REGNO_P (r));
23324 if (s_mode == KFmode)
23325 emit_insn (gen_signbitkf2_dm2 (dest_di, src));
23326 else
23327 emit_insn (gen_signbittf2_dm2 (dest_di, src));
23331 emit_insn (gen_lshrdi3 (dest_di, shift_reg, GEN_INT (63)));
23332 return;
23335 /* A subroutine of the atomic operation splitters. Jump to LABEL if
23336 COND is true. Mark the jump as unlikely to be taken. */
23338 static void
23339 emit_unlikely_jump (rtx cond, rtx label)
23341 rtx x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
23342 rtx_insn *insn = emit_jump_insn (gen_rtx_SET (pc_rtx, x));
23343 add_reg_br_prob_note (insn, profile_probability::very_unlikely ());
23346 /* A subroutine of the atomic operation splitters. Emit a load-locked
23347 instruction in MODE. For QI/HImode, possibly use a pattern than includes
23348 the zero_extend operation. */
23350 static void
23351 emit_load_locked (machine_mode mode, rtx reg, rtx mem)
23353 rtx (*fn) (rtx, rtx) = NULL;
23355 switch (mode)
23357 case E_QImode:
23358 fn = gen_load_lockedqi;
23359 break;
23360 case E_HImode:
23361 fn = gen_load_lockedhi;
23362 break;
23363 case E_SImode:
23364 if (GET_MODE (mem) == QImode)
23365 fn = gen_load_lockedqi_si;
23366 else if (GET_MODE (mem) == HImode)
23367 fn = gen_load_lockedhi_si;
23368 else
23369 fn = gen_load_lockedsi;
23370 break;
23371 case E_DImode:
23372 fn = gen_load_lockeddi;
23373 break;
23374 case E_TImode:
23375 fn = gen_load_lockedti;
23376 break;
23377 default:
23378 gcc_unreachable ();
23380 emit_insn (fn (reg, mem));
23383 /* A subroutine of the atomic operation splitters. Emit a store-conditional
23384 instruction in MODE. */
23386 static void
23387 emit_store_conditional (machine_mode mode, rtx res, rtx mem, rtx val)
23389 rtx (*fn) (rtx, rtx, rtx) = NULL;
23391 switch (mode)
23393 case E_QImode:
23394 fn = gen_store_conditionalqi;
23395 break;
23396 case E_HImode:
23397 fn = gen_store_conditionalhi;
23398 break;
23399 case E_SImode:
23400 fn = gen_store_conditionalsi;
23401 break;
23402 case E_DImode:
23403 fn = gen_store_conditionaldi;
23404 break;
23405 case E_TImode:
23406 fn = gen_store_conditionalti;
23407 break;
23408 default:
23409 gcc_unreachable ();
23412 /* Emit sync before stwcx. to address PPC405 Erratum. */
23413 if (PPC405_ERRATUM77)
23414 emit_insn (gen_hwsync ());
23416 emit_insn (fn (res, mem, val));
23419 /* Expand barriers before and after a load_locked/store_cond sequence. */
23421 static rtx
23422 rs6000_pre_atomic_barrier (rtx mem, enum memmodel model)
23424 rtx addr = XEXP (mem, 0);
23426 if (!legitimate_indirect_address_p (addr, reload_completed)
23427 && !legitimate_indexed_address_p (addr, reload_completed))
23429 addr = force_reg (Pmode, addr);
23430 mem = replace_equiv_address_nv (mem, addr);
23433 switch (model)
23435 case MEMMODEL_RELAXED:
23436 case MEMMODEL_CONSUME:
23437 case MEMMODEL_ACQUIRE:
23438 break;
23439 case MEMMODEL_RELEASE:
23440 case MEMMODEL_ACQ_REL:
23441 emit_insn (gen_lwsync ());
23442 break;
23443 case MEMMODEL_SEQ_CST:
23444 emit_insn (gen_hwsync ());
23445 break;
23446 default:
23447 gcc_unreachable ();
23449 return mem;
23452 static void
23453 rs6000_post_atomic_barrier (enum memmodel model)
23455 switch (model)
23457 case MEMMODEL_RELAXED:
23458 case MEMMODEL_CONSUME:
23459 case MEMMODEL_RELEASE:
23460 break;
23461 case MEMMODEL_ACQUIRE:
23462 case MEMMODEL_ACQ_REL:
23463 case MEMMODEL_SEQ_CST:
23464 emit_insn (gen_isync ());
23465 break;
23466 default:
23467 gcc_unreachable ();
23471 /* A subroutine of the various atomic expanders. For sub-word operations,
23472 we must adjust things to operate on SImode. Given the original MEM,
23473 return a new aligned memory. Also build and return the quantities by
23474 which to shift and mask. */
23476 static rtx
23477 rs6000_adjust_atomic_subword (rtx orig_mem, rtx *pshift, rtx *pmask)
23479 rtx addr, align, shift, mask, mem;
23480 HOST_WIDE_INT shift_mask;
23481 machine_mode mode = GET_MODE (orig_mem);
23483 /* For smaller modes, we have to implement this via SImode. */
23484 shift_mask = (mode == QImode ? 0x18 : 0x10);
23486 addr = XEXP (orig_mem, 0);
23487 addr = force_reg (GET_MODE (addr), addr);
23489 /* Aligned memory containing subword. Generate a new memory. We
23490 do not want any of the existing MEM_ATTR data, as we're now
23491 accessing memory outside the original object. */
23492 align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-4),
23493 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23494 mem = gen_rtx_MEM (SImode, align);
23495 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
23496 if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
23497 set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
23499 /* Shift amount for subword relative to aligned word. */
23500 shift = gen_reg_rtx (SImode);
23501 addr = gen_lowpart (SImode, addr);
23502 rtx tmp = gen_reg_rtx (SImode);
23503 emit_insn (gen_ashlsi3 (tmp, addr, GEN_INT (3)));
23504 emit_insn (gen_andsi3 (shift, tmp, GEN_INT (shift_mask)));
23505 if (BYTES_BIG_ENDIAN)
23506 shift = expand_simple_binop (SImode, XOR, shift, GEN_INT (shift_mask),
23507 shift, 1, OPTAB_LIB_WIDEN);
23508 *pshift = shift;
23510 /* Mask for insertion. */
23511 mask = expand_simple_binop (SImode, ASHIFT, GEN_INT (GET_MODE_MASK (mode)),
23512 shift, NULL_RTX, 1, OPTAB_LIB_WIDEN);
23513 *pmask = mask;
23515 return mem;
23518 /* A subroutine of the various atomic expanders. For sub-word operands,
23519 combine OLDVAL and NEWVAL via MASK. Returns a new pseduo. */
23521 static rtx
23522 rs6000_mask_atomic_subword (rtx oldval, rtx newval, rtx mask)
23524 rtx x;
23526 x = gen_reg_rtx (SImode);
23527 emit_insn (gen_rtx_SET (x, gen_rtx_AND (SImode,
23528 gen_rtx_NOT (SImode, mask),
23529 oldval)));
23531 x = expand_simple_binop (SImode, IOR, newval, x, x, 1, OPTAB_LIB_WIDEN);
23533 return x;
23536 /* A subroutine of the various atomic expanders. For sub-word operands,
23537 extract WIDE to NARROW via SHIFT. */
23539 static void
23540 rs6000_finish_atomic_subword (rtx narrow, rtx wide, rtx shift)
23542 wide = expand_simple_binop (SImode, LSHIFTRT, wide, shift,
23543 wide, 1, OPTAB_LIB_WIDEN);
23544 emit_move_insn (narrow, gen_lowpart (GET_MODE (narrow), wide));
23547 /* Expand an atomic compare and swap operation. */
23549 void
23550 rs6000_expand_atomic_compare_and_swap (rtx operands[])
23552 rtx boolval, retval, mem, oldval, newval, cond;
23553 rtx label1, label2, x, mask, shift;
23554 machine_mode mode, orig_mode;
23555 enum memmodel mod_s, mod_f;
23556 bool is_weak;
23558 boolval = operands[0];
23559 retval = operands[1];
23560 mem = operands[2];
23561 oldval = operands[3];
23562 newval = operands[4];
23563 is_weak = (INTVAL (operands[5]) != 0);
23564 mod_s = memmodel_base (INTVAL (operands[6]));
23565 mod_f = memmodel_base (INTVAL (operands[7]));
23566 orig_mode = mode = GET_MODE (mem);
23568 mask = shift = NULL_RTX;
23569 if (mode == QImode || mode == HImode)
23571 /* Before power8, we didn't have access to lbarx/lharx, so generate a
23572 lwarx and shift/mask operations. With power8, we need to do the
23573 comparison in SImode, but the store is still done in QI/HImode. */
23574 oldval = convert_modes (SImode, mode, oldval, 1);
23576 if (!TARGET_SYNC_HI_QI)
23578 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23580 /* Shift and mask OLDVAL into position with the word. */
23581 oldval = expand_simple_binop (SImode, ASHIFT, oldval, shift,
23582 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23584 /* Shift and mask NEWVAL into position within the word. */
23585 newval = convert_modes (SImode, mode, newval, 1);
23586 newval = expand_simple_binop (SImode, ASHIFT, newval, shift,
23587 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23590 /* Prepare to adjust the return value. */
23591 retval = gen_reg_rtx (SImode);
23592 mode = SImode;
23594 else if (reg_overlap_mentioned_p (retval, oldval))
23595 oldval = copy_to_reg (oldval);
23597 if (mode != TImode && !reg_or_short_operand (oldval, mode))
23598 oldval = copy_to_mode_reg (mode, oldval);
23600 if (reg_overlap_mentioned_p (retval, newval))
23601 newval = copy_to_reg (newval);
23603 mem = rs6000_pre_atomic_barrier (mem, mod_s);
23605 label1 = NULL_RTX;
23606 if (!is_weak)
23608 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23609 emit_label (XEXP (label1, 0));
23611 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23613 emit_load_locked (mode, retval, mem);
23615 x = retval;
23616 if (mask)
23617 x = expand_simple_binop (SImode, AND, retval, mask,
23618 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23620 cond = gen_reg_rtx (CCmode);
23621 /* If we have TImode, synthesize a comparison. */
23622 if (mode != TImode)
23623 x = gen_rtx_COMPARE (CCmode, x, oldval);
23624 else
23626 rtx xor1_result = gen_reg_rtx (DImode);
23627 rtx xor2_result = gen_reg_rtx (DImode);
23628 rtx or_result = gen_reg_rtx (DImode);
23629 rtx new_word0 = simplify_gen_subreg (DImode, x, TImode, 0);
23630 rtx new_word1 = simplify_gen_subreg (DImode, x, TImode, 8);
23631 rtx old_word0 = simplify_gen_subreg (DImode, oldval, TImode, 0);
23632 rtx old_word1 = simplify_gen_subreg (DImode, oldval, TImode, 8);
23634 emit_insn (gen_xordi3 (xor1_result, new_word0, old_word0));
23635 emit_insn (gen_xordi3 (xor2_result, new_word1, old_word1));
23636 emit_insn (gen_iordi3 (or_result, xor1_result, xor2_result));
23637 x = gen_rtx_COMPARE (CCmode, or_result, const0_rtx);
23640 emit_insn (gen_rtx_SET (cond, x));
23642 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23643 emit_unlikely_jump (x, label2);
23645 x = newval;
23646 if (mask)
23647 x = rs6000_mask_atomic_subword (retval, newval, mask);
23649 emit_store_conditional (orig_mode, cond, mem, x);
23651 if (!is_weak)
23653 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23654 emit_unlikely_jump (x, label1);
23657 if (!is_mm_relaxed (mod_f))
23658 emit_label (XEXP (label2, 0));
23660 rs6000_post_atomic_barrier (mod_s);
23662 if (is_mm_relaxed (mod_f))
23663 emit_label (XEXP (label2, 0));
23665 if (shift)
23666 rs6000_finish_atomic_subword (operands[1], retval, shift);
23667 else if (mode != GET_MODE (operands[1]))
23668 convert_move (operands[1], retval, 1);
23670 /* In all cases, CR0 contains EQ on success, and NE on failure. */
23671 x = gen_rtx_EQ (SImode, cond, const0_rtx);
23672 emit_insn (gen_rtx_SET (boolval, x));
23675 /* Expand an atomic exchange operation. */
23677 void
23678 rs6000_expand_atomic_exchange (rtx operands[])
23680 rtx retval, mem, val, cond;
23681 machine_mode mode;
23682 enum memmodel model;
23683 rtx label, x, mask, shift;
23685 retval = operands[0];
23686 mem = operands[1];
23687 val = operands[2];
23688 model = memmodel_base (INTVAL (operands[3]));
23689 mode = GET_MODE (mem);
23691 mask = shift = NULL_RTX;
23692 if (!TARGET_SYNC_HI_QI && (mode == QImode || mode == HImode))
23694 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23696 /* Shift and mask VAL into position with the word. */
23697 val = convert_modes (SImode, mode, val, 1);
23698 val = expand_simple_binop (SImode, ASHIFT, val, shift,
23699 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23701 /* Prepare to adjust the return value. */
23702 retval = gen_reg_rtx (SImode);
23703 mode = SImode;
23706 mem = rs6000_pre_atomic_barrier (mem, model);
23708 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23709 emit_label (XEXP (label, 0));
23711 emit_load_locked (mode, retval, mem);
23713 x = val;
23714 if (mask)
23715 x = rs6000_mask_atomic_subword (retval, val, mask);
23717 cond = gen_reg_rtx (CCmode);
23718 emit_store_conditional (mode, cond, mem, x);
23720 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23721 emit_unlikely_jump (x, label);
23723 rs6000_post_atomic_barrier (model);
23725 if (shift)
23726 rs6000_finish_atomic_subword (operands[0], retval, shift);
23729 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
23730 to perform. MEM is the memory on which to operate. VAL is the second
23731 operand of the binary operator. BEFORE and AFTER are optional locations to
23732 return the value of MEM either before of after the operation. MODEL_RTX
23733 is a CONST_INT containing the memory model to use. */
23735 void
23736 rs6000_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
23737 rtx orig_before, rtx orig_after, rtx model_rtx)
23739 enum memmodel model = memmodel_base (INTVAL (model_rtx));
23740 machine_mode mode = GET_MODE (mem);
23741 machine_mode store_mode = mode;
23742 rtx label, x, cond, mask, shift;
23743 rtx before = orig_before, after = orig_after;
23745 mask = shift = NULL_RTX;
23746 /* On power8, we want to use SImode for the operation. On previous systems,
23747 use the operation in a subword and shift/mask to get the proper byte or
23748 halfword. */
23749 if (mode == QImode || mode == HImode)
23751 if (TARGET_SYNC_HI_QI)
23753 val = convert_modes (SImode, mode, val, 1);
23755 /* Prepare to adjust the return value. */
23756 before = gen_reg_rtx (SImode);
23757 if (after)
23758 after = gen_reg_rtx (SImode);
23759 mode = SImode;
23761 else
23763 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23765 /* Shift and mask VAL into position with the word. */
23766 val = convert_modes (SImode, mode, val, 1);
23767 val = expand_simple_binop (SImode, ASHIFT, val, shift,
23768 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23770 switch (code)
23772 case IOR:
23773 case XOR:
23774 /* We've already zero-extended VAL. That is sufficient to
23775 make certain that it does not affect other bits. */
23776 mask = NULL;
23777 break;
23779 case AND:
23780 /* If we make certain that all of the other bits in VAL are
23781 set, that will be sufficient to not affect other bits. */
23782 x = gen_rtx_NOT (SImode, mask);
23783 x = gen_rtx_IOR (SImode, x, val);
23784 emit_insn (gen_rtx_SET (val, x));
23785 mask = NULL;
23786 break;
23788 case NOT:
23789 case PLUS:
23790 case MINUS:
23791 /* These will all affect bits outside the field and need
23792 adjustment via MASK within the loop. */
23793 break;
23795 default:
23796 gcc_unreachable ();
23799 /* Prepare to adjust the return value. */
23800 before = gen_reg_rtx (SImode);
23801 if (after)
23802 after = gen_reg_rtx (SImode);
23803 store_mode = mode = SImode;
23807 mem = rs6000_pre_atomic_barrier (mem, model);
23809 label = gen_label_rtx ();
23810 emit_label (label);
23811 label = gen_rtx_LABEL_REF (VOIDmode, label);
23813 if (before == NULL_RTX)
23814 before = gen_reg_rtx (mode);
23816 emit_load_locked (mode, before, mem);
23818 if (code == NOT)
23820 x = expand_simple_binop (mode, AND, before, val,
23821 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23822 after = expand_simple_unop (mode, NOT, x, after, 1);
23824 else
23826 after = expand_simple_binop (mode, code, before, val,
23827 after, 1, OPTAB_LIB_WIDEN);
23830 x = after;
23831 if (mask)
23833 x = expand_simple_binop (SImode, AND, after, mask,
23834 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23835 x = rs6000_mask_atomic_subword (before, x, mask);
23837 else if (store_mode != mode)
23838 x = convert_modes (store_mode, mode, x, 1);
23840 cond = gen_reg_rtx (CCmode);
23841 emit_store_conditional (store_mode, cond, mem, x);
23843 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23844 emit_unlikely_jump (x, label);
23846 rs6000_post_atomic_barrier (model);
23848 if (shift)
23850 /* QImode/HImode on machines without lbarx/lharx where we do a lwarx and
23851 then do the calcuations in a SImode register. */
23852 if (orig_before)
23853 rs6000_finish_atomic_subword (orig_before, before, shift);
23854 if (orig_after)
23855 rs6000_finish_atomic_subword (orig_after, after, shift);
23857 else if (store_mode != mode)
23859 /* QImode/HImode on machines with lbarx/lharx where we do the native
23860 operation and then do the calcuations in a SImode register. */
23861 if (orig_before)
23862 convert_move (orig_before, before, 1);
23863 if (orig_after)
23864 convert_move (orig_after, after, 1);
23866 else if (orig_after && after != orig_after)
23867 emit_move_insn (orig_after, after);
23870 /* Emit instructions to move SRC to DST. Called by splitters for
23871 multi-register moves. It will emit at most one instruction for
23872 each register that is accessed; that is, it won't emit li/lis pairs
23873 (or equivalent for 64-bit code). One of SRC or DST must be a hard
23874 register. */
23876 void
23877 rs6000_split_multireg_move (rtx dst, rtx src)
23879 /* The register number of the first register being moved. */
23880 int reg;
23881 /* The mode that is to be moved. */
23882 machine_mode mode;
23883 /* The mode that the move is being done in, and its size. */
23884 machine_mode reg_mode;
23885 int reg_mode_size;
23886 /* The number of registers that will be moved. */
23887 int nregs;
23889 reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
23890 mode = GET_MODE (dst);
23891 nregs = hard_regno_nregs (reg, mode);
23892 if (FP_REGNO_P (reg))
23893 reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
23894 ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? DFmode : SFmode);
23895 else if (ALTIVEC_REGNO_P (reg))
23896 reg_mode = V16QImode;
23897 else
23898 reg_mode = word_mode;
23899 reg_mode_size = GET_MODE_SIZE (reg_mode);
23901 gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));
23903 /* TDmode residing in FP registers is special, since the ISA requires that
23904 the lower-numbered word of a register pair is always the most significant
23905 word, even in little-endian mode. This does not match the usual subreg
23906 semantics, so we cannnot use simplify_gen_subreg in those cases. Access
23907 the appropriate constituent registers "by hand" in little-endian mode.
23909 Note we do not need to check for destructive overlap here since TDmode
23910 can only reside in even/odd register pairs. */
23911 if (FP_REGNO_P (reg) && DECIMAL_FLOAT_MODE_P (mode) && !BYTES_BIG_ENDIAN)
23913 rtx p_src, p_dst;
23914 int i;
23916 for (i = 0; i < nregs; i++)
23918 if (REG_P (src) && FP_REGNO_P (REGNO (src)))
23919 p_src = gen_rtx_REG (reg_mode, REGNO (src) + nregs - 1 - i);
23920 else
23921 p_src = simplify_gen_subreg (reg_mode, src, mode,
23922 i * reg_mode_size);
23924 if (REG_P (dst) && FP_REGNO_P (REGNO (dst)))
23925 p_dst = gen_rtx_REG (reg_mode, REGNO (dst) + nregs - 1 - i);
23926 else
23927 p_dst = simplify_gen_subreg (reg_mode, dst, mode,
23928 i * reg_mode_size);
23930 emit_insn (gen_rtx_SET (p_dst, p_src));
23933 return;
23936 if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
23938 /* Move register range backwards, if we might have destructive
23939 overlap. */
23940 int i;
23941 for (i = nregs - 1; i >= 0; i--)
23942 emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
23943 i * reg_mode_size),
23944 simplify_gen_subreg (reg_mode, src, mode,
23945 i * reg_mode_size)));
23947 else
23949 int i;
23950 int j = -1;
23951 bool used_update = false;
23952 rtx restore_basereg = NULL_RTX;
23954 if (MEM_P (src) && INT_REGNO_P (reg))
23956 rtx breg;
23958 if (GET_CODE (XEXP (src, 0)) == PRE_INC
23959 || GET_CODE (XEXP (src, 0)) == PRE_DEC)
23961 rtx delta_rtx;
23962 breg = XEXP (XEXP (src, 0), 0);
23963 delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
23964 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
23965 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
23966 emit_insn (gen_add3_insn (breg, breg, delta_rtx));
23967 src = replace_equiv_address (src, breg);
23969 else if (! rs6000_offsettable_memref_p (src, reg_mode))
23971 if (GET_CODE (XEXP (src, 0)) == PRE_MODIFY)
23973 rtx basereg = XEXP (XEXP (src, 0), 0);
23974 if (TARGET_UPDATE)
23976 rtx ndst = simplify_gen_subreg (reg_mode, dst, mode, 0);
23977 emit_insn (gen_rtx_SET (ndst,
23978 gen_rtx_MEM (reg_mode,
23979 XEXP (src, 0))));
23980 used_update = true;
23982 else
23983 emit_insn (gen_rtx_SET (basereg,
23984 XEXP (XEXP (src, 0), 1)));
23985 src = replace_equiv_address (src, basereg);
23987 else
23989 rtx basereg = gen_rtx_REG (Pmode, reg);
23990 emit_insn (gen_rtx_SET (basereg, XEXP (src, 0)));
23991 src = replace_equiv_address (src, basereg);
23995 breg = XEXP (src, 0);
23996 if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
23997 breg = XEXP (breg, 0);
23999 /* If the base register we are using to address memory is
24000 also a destination reg, then change that register last. */
24001 if (REG_P (breg)
24002 && REGNO (breg) >= REGNO (dst)
24003 && REGNO (breg) < REGNO (dst) + nregs)
24004 j = REGNO (breg) - REGNO (dst);
24006 else if (MEM_P (dst) && INT_REGNO_P (reg))
24008 rtx breg;
24010 if (GET_CODE (XEXP (dst, 0)) == PRE_INC
24011 || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
24013 rtx delta_rtx;
24014 breg = XEXP (XEXP (dst, 0), 0);
24015 delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
24016 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
24017 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));
24019 /* We have to update the breg before doing the store.
24020 Use store with update, if available. */
24022 if (TARGET_UPDATE)
24024 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
24025 emit_insn (TARGET_32BIT
24026 ? (TARGET_POWERPC64
24027 ? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
24028 : gen_movsi_update (breg, breg, delta_rtx, nsrc))
24029 : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
24030 used_update = true;
24032 else
24033 emit_insn (gen_add3_insn (breg, breg, delta_rtx));
24034 dst = replace_equiv_address (dst, breg);
24036 else if (!rs6000_offsettable_memref_p (dst, reg_mode)
24037 && GET_CODE (XEXP (dst, 0)) != LO_SUM)
24039 if (GET_CODE (XEXP (dst, 0)) == PRE_MODIFY)
24041 rtx basereg = XEXP (XEXP (dst, 0), 0);
24042 if (TARGET_UPDATE)
24044 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
24045 emit_insn (gen_rtx_SET (gen_rtx_MEM (reg_mode,
24046 XEXP (dst, 0)),
24047 nsrc));
24048 used_update = true;
24050 else
24051 emit_insn (gen_rtx_SET (basereg,
24052 XEXP (XEXP (dst, 0), 1)));
24053 dst = replace_equiv_address (dst, basereg);
24055 else
24057 rtx basereg = XEXP (XEXP (dst, 0), 0);
24058 rtx offsetreg = XEXP (XEXP (dst, 0), 1);
24059 gcc_assert (GET_CODE (XEXP (dst, 0)) == PLUS
24060 && REG_P (basereg)
24061 && REG_P (offsetreg)
24062 && REGNO (basereg) != REGNO (offsetreg));
24063 if (REGNO (basereg) == 0)
24065 rtx tmp = offsetreg;
24066 offsetreg = basereg;
24067 basereg = tmp;
24069 emit_insn (gen_add3_insn (basereg, basereg, offsetreg));
24070 restore_basereg = gen_sub3_insn (basereg, basereg, offsetreg);
24071 dst = replace_equiv_address (dst, basereg);
24074 else if (GET_CODE (XEXP (dst, 0)) != LO_SUM)
24075 gcc_assert (rs6000_offsettable_memref_p (dst, reg_mode));
24078 for (i = 0; i < nregs; i++)
24080 /* Calculate index to next subword. */
24081 ++j;
24082 if (j == nregs)
24083 j = 0;
24085 /* If compiler already emitted move of first word by
24086 store with update, no need to do anything. */
24087 if (j == 0 && used_update)
24088 continue;
24090 emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
24091 j * reg_mode_size),
24092 simplify_gen_subreg (reg_mode, src, mode,
24093 j * reg_mode_size)));
24095 if (restore_basereg != NULL_RTX)
24096 emit_insn (restore_basereg);
24101 /* This page contains routines that are used to determine what the
24102 function prologue and epilogue code will do and write them out. */
24104 /* Determine whether the REG is really used. */
24106 static bool
24107 save_reg_p (int reg)
24109 /* We need to mark the PIC offset register live for the same conditions
24110 as it is set up, or otherwise it won't be saved before we clobber it. */
24112 if (reg == RS6000_PIC_OFFSET_TABLE_REGNUM && !TARGET_SINGLE_PIC_BASE)
24114 /* When calling eh_return, we must return true for all the cases
24115 where conditional_register_usage marks the PIC offset reg
24116 call used. */
24117 if (TARGET_TOC && TARGET_MINIMAL_TOC
24118 && (crtl->calls_eh_return
24119 || df_regs_ever_live_p (reg)
24120 || !constant_pool_empty_p ()))
24121 return true;
24123 if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
24124 && flag_pic)
24125 return true;
24128 return !call_used_regs[reg] && df_regs_ever_live_p (reg);
24131 /* Return the first fixed-point register that is required to be
24132 saved. 32 if none. */
24135 first_reg_to_save (void)
24137 int first_reg;
24139 /* Find lowest numbered live register. */
24140 for (first_reg = 13; first_reg <= 31; first_reg++)
24141 if (save_reg_p (first_reg))
24142 break;
24144 #if TARGET_MACHO
24145 if (flag_pic
24146 && crtl->uses_pic_offset_table
24147 && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
24148 return RS6000_PIC_OFFSET_TABLE_REGNUM;
24149 #endif
24151 return first_reg;
24154 /* Similar, for FP regs. */
24157 first_fp_reg_to_save (void)
24159 int first_reg;
24161 /* Find lowest numbered live register. */
24162 for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
24163 if (save_reg_p (first_reg))
24164 break;
24166 return first_reg;
24169 /* Similar, for AltiVec regs. */
24171 static int
24172 first_altivec_reg_to_save (void)
24174 int i;
24176 /* Stack frame remains as is unless we are in AltiVec ABI. */
24177 if (! TARGET_ALTIVEC_ABI)
24178 return LAST_ALTIVEC_REGNO + 1;
24180 /* On Darwin, the unwind routines are compiled without
24181 TARGET_ALTIVEC, and use save_world to save/restore the
24182 altivec registers when necessary. */
24183 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
24184 && ! TARGET_ALTIVEC)
24185 return FIRST_ALTIVEC_REGNO + 20;
24187 /* Find lowest numbered live register. */
24188 for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
24189 if (save_reg_p (i))
24190 break;
24192 return i;
24195 /* Return a 32-bit mask of the AltiVec registers we need to set in
24196 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
24197 the 32-bit word is 0. */
24199 static unsigned int
24200 compute_vrsave_mask (void)
24202 unsigned int i, mask = 0;
24204 /* On Darwin, the unwind routines are compiled without
24205 TARGET_ALTIVEC, and use save_world to save/restore the
24206 call-saved altivec registers when necessary. */
24207 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
24208 && ! TARGET_ALTIVEC)
24209 mask |= 0xFFF;
24211 /* First, find out if we use _any_ altivec registers. */
24212 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
24213 if (df_regs_ever_live_p (i))
24214 mask |= ALTIVEC_REG_BIT (i);
24216 if (mask == 0)
24217 return mask;
24219 /* Next, remove the argument registers from the set. These must
24220 be in the VRSAVE mask set by the caller, so we don't need to add
24221 them in again. More importantly, the mask we compute here is
24222 used to generate CLOBBERs in the set_vrsave insn, and we do not
24223 wish the argument registers to die. */
24224 for (i = ALTIVEC_ARG_MIN_REG; i < (unsigned) crtl->args.info.vregno; i++)
24225 mask &= ~ALTIVEC_REG_BIT (i);
24227 /* Similarly, remove the return value from the set. */
24229 bool yes = false;
24230 diddle_return_value (is_altivec_return_reg, &yes);
24231 if (yes)
24232 mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
24235 return mask;
24238 /* For a very restricted set of circumstances, we can cut down the
24239 size of prologues/epilogues by calling our own save/restore-the-world
24240 routines. */
24242 static void
24243 compute_save_world_info (rs6000_stack_t *info)
24245 info->world_save_p = 1;
24246 info->world_save_p
24247 = (WORLD_SAVE_P (info)
24248 && DEFAULT_ABI == ABI_DARWIN
24249 && !cfun->has_nonlocal_label
24250 && info->first_fp_reg_save == FIRST_SAVED_FP_REGNO
24251 && info->first_gp_reg_save == FIRST_SAVED_GP_REGNO
24252 && info->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
24253 && info->cr_save_p);
24255 /* This will not work in conjunction with sibcalls. Make sure there
24256 are none. (This check is expensive, but seldom executed.) */
24257 if (WORLD_SAVE_P (info))
24259 rtx_insn *insn;
24260 for (insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
24261 if (CALL_P (insn) && SIBLING_CALL_P (insn))
24263 info->world_save_p = 0;
24264 break;
24268 if (WORLD_SAVE_P (info))
24270 /* Even if we're not touching VRsave, make sure there's room on the
24271 stack for it, if it looks like we're calling SAVE_WORLD, which
24272 will attempt to save it. */
24273 info->vrsave_size = 4;
24275 /* If we are going to save the world, we need to save the link register too. */
24276 info->lr_save_p = 1;
24278 /* "Save" the VRsave register too if we're saving the world. */
24279 if (info->vrsave_mask == 0)
24280 info->vrsave_mask = compute_vrsave_mask ();
24282 /* Because the Darwin register save/restore routines only handle
24283 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
24284 check. */
24285 gcc_assert (info->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
24286 && (info->first_altivec_reg_save
24287 >= FIRST_SAVED_ALTIVEC_REGNO));
24290 return;
24294 static void
24295 is_altivec_return_reg (rtx reg, void *xyes)
24297 bool *yes = (bool *) xyes;
24298 if (REGNO (reg) == ALTIVEC_ARG_RETURN)
24299 *yes = true;
24303 /* Return whether REG is a global user reg or has been specifed by
24304 -ffixed-REG. We should not restore these, and so cannot use
24305 lmw or out-of-line restore functions if there are any. We also
24306 can't save them (well, emit frame notes for them), because frame
24307 unwinding during exception handling will restore saved registers. */
24309 static bool
24310 fixed_reg_p (int reg)
24312 /* Ignore fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] when the
24313 backend sets it, overriding anything the user might have given. */
24314 if (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
24315 && ((DEFAULT_ABI == ABI_V4 && flag_pic)
24316 || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
24317 || (TARGET_TOC && TARGET_MINIMAL_TOC)))
24318 return false;
24320 return fixed_regs[reg];
24323 /* Determine the strategy for savings/restoring registers. */
24325 enum {
24326 SAVE_MULTIPLE = 0x1,
24327 SAVE_INLINE_GPRS = 0x2,
24328 SAVE_INLINE_FPRS = 0x4,
24329 SAVE_NOINLINE_GPRS_SAVES_LR = 0x8,
24330 SAVE_NOINLINE_FPRS_SAVES_LR = 0x10,
24331 SAVE_INLINE_VRS = 0x20,
24332 REST_MULTIPLE = 0x100,
24333 REST_INLINE_GPRS = 0x200,
24334 REST_INLINE_FPRS = 0x400,
24335 REST_NOINLINE_FPRS_DOESNT_RESTORE_LR = 0x800,
24336 REST_INLINE_VRS = 0x1000
24339 static int
24340 rs6000_savres_strategy (rs6000_stack_t *info,
24341 bool using_static_chain_p)
24343 int strategy = 0;
24345 /* Select between in-line and out-of-line save and restore of regs.
24346 First, all the obvious cases where we don't use out-of-line. */
24347 if (crtl->calls_eh_return
24348 || cfun->machine->ra_need_lr)
24349 strategy |= (SAVE_INLINE_FPRS | REST_INLINE_FPRS
24350 | SAVE_INLINE_GPRS | REST_INLINE_GPRS
24351 | SAVE_INLINE_VRS | REST_INLINE_VRS);
24353 if (info->first_gp_reg_save == 32)
24354 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24356 if (info->first_fp_reg_save == 64
24357 /* The out-of-line FP routines use double-precision stores;
24358 we can't use those routines if we don't have such stores. */
24359 || (TARGET_HARD_FLOAT && !TARGET_DOUBLE_FLOAT))
24360 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
24362 if (info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1)
24363 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
24365 /* Define cutoff for using out-of-line functions to save registers. */
24366 if (DEFAULT_ABI == ABI_V4 || TARGET_ELF)
24368 if (!optimize_size)
24370 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
24371 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24372 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
24374 else
24376 /* Prefer out-of-line restore if it will exit. */
24377 if (info->first_fp_reg_save > 61)
24378 strategy |= SAVE_INLINE_FPRS;
24379 if (info->first_gp_reg_save > 29)
24381 if (info->first_fp_reg_save == 64)
24382 strategy |= SAVE_INLINE_GPRS;
24383 else
24384 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24386 if (info->first_altivec_reg_save == LAST_ALTIVEC_REGNO)
24387 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
24390 else if (DEFAULT_ABI == ABI_DARWIN)
24392 if (info->first_fp_reg_save > 60)
24393 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
24394 if (info->first_gp_reg_save > 29)
24395 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24396 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
24398 else
24400 gcc_checking_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
24401 if ((flag_shrink_wrap_separate && optimize_function_for_speed_p (cfun))
24402 || info->first_fp_reg_save > 61)
24403 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
24404 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24405 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
24408 /* Don't bother to try to save things out-of-line if r11 is occupied
24409 by the static chain. It would require too much fiddling and the
24410 static chain is rarely used anyway. FPRs are saved w.r.t the stack
24411 pointer on Darwin, and AIX uses r1 or r12. */
24412 if (using_static_chain_p
24413 && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN))
24414 strategy |= ((DEFAULT_ABI == ABI_DARWIN ? 0 : SAVE_INLINE_FPRS)
24415 | SAVE_INLINE_GPRS
24416 | SAVE_INLINE_VRS);
24418 /* Don't ever restore fixed regs. That means we can't use the
24419 out-of-line register restore functions if a fixed reg is in the
24420 range of regs restored. */
24421 if (!(strategy & REST_INLINE_FPRS))
24422 for (int i = info->first_fp_reg_save; i < 64; i++)
24423 if (fixed_regs[i])
24425 strategy |= REST_INLINE_FPRS;
24426 break;
24429 /* We can only use the out-of-line routines to restore fprs if we've
24430 saved all the registers from first_fp_reg_save in the prologue.
24431 Otherwise, we risk loading garbage. Of course, if we have saved
24432 out-of-line then we know we haven't skipped any fprs. */
24433 if ((strategy & SAVE_INLINE_FPRS)
24434 && !(strategy & REST_INLINE_FPRS))
24435 for (int i = info->first_fp_reg_save; i < 64; i++)
24436 if (!save_reg_p (i))
24438 strategy |= REST_INLINE_FPRS;
24439 break;
24442 /* Similarly, for altivec regs. */
24443 if (!(strategy & REST_INLINE_VRS))
24444 for (int i = info->first_altivec_reg_save; i < LAST_ALTIVEC_REGNO + 1; i++)
24445 if (fixed_regs[i])
24447 strategy |= REST_INLINE_VRS;
24448 break;
24451 if ((strategy & SAVE_INLINE_VRS)
24452 && !(strategy & REST_INLINE_VRS))
24453 for (int i = info->first_altivec_reg_save; i < LAST_ALTIVEC_REGNO + 1; i++)
24454 if (!save_reg_p (i))
24456 strategy |= REST_INLINE_VRS;
24457 break;
24460 /* info->lr_save_p isn't yet set if the only reason lr needs to be
24461 saved is an out-of-line save or restore. Set up the value for
24462 the next test (excluding out-of-line gprs). */
24463 bool lr_save_p = (info->lr_save_p
24464 || !(strategy & SAVE_INLINE_FPRS)
24465 || !(strategy & SAVE_INLINE_VRS)
24466 || !(strategy & REST_INLINE_FPRS)
24467 || !(strategy & REST_INLINE_VRS));
24469 if (TARGET_MULTIPLE
24470 && !TARGET_POWERPC64
24471 && info->first_gp_reg_save < 31
24472 && !(flag_shrink_wrap
24473 && flag_shrink_wrap_separate
24474 && optimize_function_for_speed_p (cfun)))
24476 int count = 0;
24477 for (int i = info->first_gp_reg_save; i < 32; i++)
24478 if (save_reg_p (i))
24479 count++;
24481 if (count <= 1)
24482 /* Don't use store multiple if only one reg needs to be
24483 saved. This can occur for example when the ABI_V4 pic reg
24484 (r30) needs to be saved to make calls, but r31 is not
24485 used. */
24486 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24487 else
24489 /* Prefer store multiple for saves over out-of-line
24490 routines, since the store-multiple instruction will
24491 always be smaller. */
24492 strategy |= SAVE_INLINE_GPRS | SAVE_MULTIPLE;
24494 /* The situation is more complicated with load multiple.
24495 We'd prefer to use the out-of-line routines for restores,
24496 since the "exit" out-of-line routines can handle the
24497 restore of LR and the frame teardown. However if doesn't
24498 make sense to use the out-of-line routine if that is the
24499 only reason we'd need to save LR, and we can't use the
24500 "exit" out-of-line gpr restore if we have saved some
24501 fprs; In those cases it is advantageous to use load
24502 multiple when available. */
24503 if (info->first_fp_reg_save != 64 || !lr_save_p)
24504 strategy |= REST_INLINE_GPRS | REST_MULTIPLE;
24508 /* Using the "exit" out-of-line routine does not improve code size
24509 if using it would require lr to be saved and if only saving one
24510 or two gprs. */
24511 else if (!lr_save_p && info->first_gp_reg_save > 29)
24512 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
24514 /* Don't ever restore fixed regs. */
24515 if ((strategy & (REST_INLINE_GPRS | REST_MULTIPLE)) != REST_INLINE_GPRS)
24516 for (int i = info->first_gp_reg_save; i < 32; i++)
24517 if (fixed_reg_p (i))
24519 strategy |= REST_INLINE_GPRS;
24520 strategy &= ~REST_MULTIPLE;
24521 break;
24524 /* We can only use load multiple or the out-of-line routines to
24525 restore gprs if we've saved all the registers from
24526 first_gp_reg_save. Otherwise, we risk loading garbage.
24527 Of course, if we have saved out-of-line or used stmw then we know
24528 we haven't skipped any gprs. */
24529 if ((strategy & (SAVE_INLINE_GPRS | SAVE_MULTIPLE)) == SAVE_INLINE_GPRS
24530 && (strategy & (REST_INLINE_GPRS | REST_MULTIPLE)) != REST_INLINE_GPRS)
24531 for (int i = info->first_gp_reg_save; i < 32; i++)
24532 if (!save_reg_p (i))
24534 strategy |= REST_INLINE_GPRS;
24535 strategy &= ~REST_MULTIPLE;
24536 break;
24539 if (TARGET_ELF && TARGET_64BIT)
24541 if (!(strategy & SAVE_INLINE_FPRS))
24542 strategy |= SAVE_NOINLINE_FPRS_SAVES_LR;
24543 else if (!(strategy & SAVE_INLINE_GPRS)
24544 && info->first_fp_reg_save == 64)
24545 strategy |= SAVE_NOINLINE_GPRS_SAVES_LR;
24547 else if (TARGET_AIX && !(strategy & REST_INLINE_FPRS))
24548 strategy |= REST_NOINLINE_FPRS_DOESNT_RESTORE_LR;
24550 if (TARGET_MACHO && !(strategy & SAVE_INLINE_FPRS))
24551 strategy |= SAVE_NOINLINE_FPRS_SAVES_LR;
24553 return strategy;
24556 /* Calculate the stack information for the current function. This is
24557 complicated by having two separate calling sequences, the AIX calling
24558 sequence and the V.4 calling sequence.
24560 AIX (and Darwin/Mac OS X) stack frames look like:
24561 32-bit 64-bit
24562 SP----> +---------------------------------------+
24563 | back chain to caller | 0 0
24564 +---------------------------------------+
24565 | saved CR | 4 8 (8-11)
24566 +---------------------------------------+
24567 | saved LR | 8 16
24568 +---------------------------------------+
24569 | reserved for compilers | 12 24
24570 +---------------------------------------+
24571 | reserved for binders | 16 32
24572 +---------------------------------------+
24573 | saved TOC pointer | 20 40
24574 +---------------------------------------+
24575 | Parameter save area (+padding*) (P) | 24 48
24576 +---------------------------------------+
24577 | Alloca space (A) | 24+P etc.
24578 +---------------------------------------+
24579 | Local variable space (L) | 24+P+A
24580 +---------------------------------------+
24581 | Float/int conversion temporary (X) | 24+P+A+L
24582 +---------------------------------------+
24583 | Save area for AltiVec registers (W) | 24+P+A+L+X
24584 +---------------------------------------+
24585 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
24586 +---------------------------------------+
24587 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
24588 +---------------------------------------+
24589 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
24590 +---------------------------------------+
24591 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
24592 +---------------------------------------+
24593 old SP->| back chain to caller's caller |
24594 +---------------------------------------+
24596 * If the alloca area is present, the parameter save area is
24597 padded so that the former starts 16-byte aligned.
24599 The required alignment for AIX configurations is two words (i.e., 8
24600 or 16 bytes).
24602 The ELFv2 ABI is a variant of the AIX ABI. Stack frames look like:
24604 SP----> +---------------------------------------+
24605 | Back chain to caller | 0
24606 +---------------------------------------+
24607 | Save area for CR | 8
24608 +---------------------------------------+
24609 | Saved LR | 16
24610 +---------------------------------------+
24611 | Saved TOC pointer | 24
24612 +---------------------------------------+
24613 | Parameter save area (+padding*) (P) | 32
24614 +---------------------------------------+
24615 | Alloca space (A) | 32+P
24616 +---------------------------------------+
24617 | Local variable space (L) | 32+P+A
24618 +---------------------------------------+
24619 | Save area for AltiVec registers (W) | 32+P+A+L
24620 +---------------------------------------+
24621 | AltiVec alignment padding (Y) | 32+P+A+L+W
24622 +---------------------------------------+
24623 | Save area for GP registers (G) | 32+P+A+L+W+Y
24624 +---------------------------------------+
24625 | Save area for FP registers (F) | 32+P+A+L+W+Y+G
24626 +---------------------------------------+
24627 old SP->| back chain to caller's caller | 32+P+A+L+W+Y+G+F
24628 +---------------------------------------+
24630 * If the alloca area is present, the parameter save area is
24631 padded so that the former starts 16-byte aligned.
24633 V.4 stack frames look like:
24635 SP----> +---------------------------------------+
24636 | back chain to caller | 0
24637 +---------------------------------------+
24638 | caller's saved LR | 4
24639 +---------------------------------------+
24640 | Parameter save area (+padding*) (P) | 8
24641 +---------------------------------------+
24642 | Alloca space (A) | 8+P
24643 +---------------------------------------+
24644 | Varargs save area (V) | 8+P+A
24645 +---------------------------------------+
24646 | Local variable space (L) | 8+P+A+V
24647 +---------------------------------------+
24648 | Float/int conversion temporary (X) | 8+P+A+V+L
24649 +---------------------------------------+
24650 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
24651 +---------------------------------------+
24652 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
24653 +---------------------------------------+
24654 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
24655 +---------------------------------------+
24656 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
24657 +---------------------------------------+
24658 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
24659 +---------------------------------------+
24660 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
24661 +---------------------------------------+
24662 old SP->| back chain to caller's caller |
24663 +---------------------------------------+
24665 * If the alloca area is present and the required alignment is
24666 16 bytes, the parameter save area is padded so that the
24667 alloca area starts 16-byte aligned.
24669 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
24670 given. (But note below and in sysv4.h that we require only 8 and
24671 may round up the size of our stack frame anyways. The historical
24672 reason is early versions of powerpc-linux which didn't properly
24673 align the stack at program startup. A happy side-effect is that
24674 -mno-eabi libraries can be used with -meabi programs.)
24676 The EABI configuration defaults to the V.4 layout. However,
24677 the stack alignment requirements may differ. If -mno-eabi is not
24678 given, the required stack alignment is 8 bytes; if -mno-eabi is
24679 given, the required alignment is 16 bytes. (But see V.4 comment
24680 above.) */
24682 #ifndef ABI_STACK_BOUNDARY
24683 #define ABI_STACK_BOUNDARY STACK_BOUNDARY
24684 #endif
24686 static rs6000_stack_t *
24687 rs6000_stack_info (void)
24689 /* We should never be called for thunks, we are not set up for that. */
24690 gcc_assert (!cfun->is_thunk);
24692 rs6000_stack_t *info = &stack_info;
24693 int reg_size = TARGET_32BIT ? 4 : 8;
24694 int ehrd_size;
24695 int ehcr_size;
24696 int save_align;
24697 int first_gp;
24698 HOST_WIDE_INT non_fixed_size;
24699 bool using_static_chain_p;
24701 if (reload_completed && info->reload_completed)
24702 return info;
24704 memset (info, 0, sizeof (*info));
24705 info->reload_completed = reload_completed;
24707 /* Select which calling sequence. */
24708 info->abi = DEFAULT_ABI;
24710 /* Calculate which registers need to be saved & save area size. */
24711 info->first_gp_reg_save = first_reg_to_save ();
24712 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
24713 even if it currently looks like we won't. Reload may need it to
24714 get at a constant; if so, it will have already created a constant
24715 pool entry for it. */
24716 if (((TARGET_TOC && TARGET_MINIMAL_TOC)
24717 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
24718 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
24719 && crtl->uses_const_pool
24720 && info->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
24721 first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
24722 else
24723 first_gp = info->first_gp_reg_save;
24725 info->gp_size = reg_size * (32 - first_gp);
24727 info->first_fp_reg_save = first_fp_reg_to_save ();
24728 info->fp_size = 8 * (64 - info->first_fp_reg_save);
24730 info->first_altivec_reg_save = first_altivec_reg_to_save ();
24731 info->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
24732 - info->first_altivec_reg_save);
24734 /* Does this function call anything? */
24735 info->calls_p = (!crtl->is_leaf || cfun->machine->ra_needs_full_frame);
24737 /* Determine if we need to save the condition code registers. */
24738 if (save_reg_p (CR2_REGNO)
24739 || save_reg_p (CR3_REGNO)
24740 || save_reg_p (CR4_REGNO))
24742 info->cr_save_p = 1;
24743 if (DEFAULT_ABI == ABI_V4)
24744 info->cr_size = reg_size;
24747 /* If the current function calls __builtin_eh_return, then we need
24748 to allocate stack space for registers that will hold data for
24749 the exception handler. */
24750 if (crtl->calls_eh_return)
24752 unsigned int i;
24753 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
24754 continue;
24756 ehrd_size = i * UNITS_PER_WORD;
24758 else
24759 ehrd_size = 0;
24761 /* In the ELFv2 ABI, we also need to allocate space for separate
24762 CR field save areas if the function calls __builtin_eh_return. */
24763 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
24765 /* This hard-codes that we have three call-saved CR fields. */
24766 ehcr_size = 3 * reg_size;
24767 /* We do *not* use the regular CR save mechanism. */
24768 info->cr_save_p = 0;
24770 else
24771 ehcr_size = 0;
24773 /* Determine various sizes. */
24774 info->reg_size = reg_size;
24775 info->fixed_size = RS6000_SAVE_AREA;
24776 info->vars_size = RS6000_ALIGN (get_frame_size (), 8);
24777 if (cfun->calls_alloca)
24778 info->parm_size =
24779 RS6000_ALIGN (crtl->outgoing_args_size + info->fixed_size,
24780 STACK_BOUNDARY / BITS_PER_UNIT) - info->fixed_size;
24781 else
24782 info->parm_size = RS6000_ALIGN (crtl->outgoing_args_size,
24783 TARGET_ALTIVEC ? 16 : 8);
24784 if (FRAME_GROWS_DOWNWARD)
24785 info->vars_size
24786 += RS6000_ALIGN (info->fixed_size + info->vars_size + info->parm_size,
24787 ABI_STACK_BOUNDARY / BITS_PER_UNIT)
24788 - (info->fixed_size + info->vars_size + info->parm_size);
24790 if (TARGET_ALTIVEC_ABI)
24791 info->vrsave_mask = compute_vrsave_mask ();
24793 if (TARGET_ALTIVEC_VRSAVE && info->vrsave_mask)
24794 info->vrsave_size = 4;
24796 compute_save_world_info (info);
24798 /* Calculate the offsets. */
24799 switch (DEFAULT_ABI)
24801 case ABI_NONE:
24802 default:
24803 gcc_unreachable ();
24805 case ABI_AIX:
24806 case ABI_ELFv2:
24807 case ABI_DARWIN:
24808 info->fp_save_offset = -info->fp_size;
24809 info->gp_save_offset = info->fp_save_offset - info->gp_size;
24811 if (TARGET_ALTIVEC_ABI)
24813 info->vrsave_save_offset = info->gp_save_offset - info->vrsave_size;
24815 /* Align stack so vector save area is on a quadword boundary.
24816 The padding goes above the vectors. */
24817 if (info->altivec_size != 0)
24818 info->altivec_padding_size = info->vrsave_save_offset & 0xF;
24820 info->altivec_save_offset = info->vrsave_save_offset
24821 - info->altivec_padding_size
24822 - info->altivec_size;
24823 gcc_assert (info->altivec_size == 0
24824 || info->altivec_save_offset % 16 == 0);
24826 /* Adjust for AltiVec case. */
24827 info->ehrd_offset = info->altivec_save_offset - ehrd_size;
24829 else
24830 info->ehrd_offset = info->gp_save_offset - ehrd_size;
24832 info->ehcr_offset = info->ehrd_offset - ehcr_size;
24833 info->cr_save_offset = reg_size; /* first word when 64-bit. */
24834 info->lr_save_offset = 2*reg_size;
24835 break;
24837 case ABI_V4:
24838 info->fp_save_offset = -info->fp_size;
24839 info->gp_save_offset = info->fp_save_offset - info->gp_size;
24840 info->cr_save_offset = info->gp_save_offset - info->cr_size;
24842 if (TARGET_ALTIVEC_ABI)
24844 info->vrsave_save_offset = info->cr_save_offset - info->vrsave_size;
24846 /* Align stack so vector save area is on a quadword boundary. */
24847 if (info->altivec_size != 0)
24848 info->altivec_padding_size = 16 - (-info->vrsave_save_offset % 16);
24850 info->altivec_save_offset = info->vrsave_save_offset
24851 - info->altivec_padding_size
24852 - info->altivec_size;
24854 /* Adjust for AltiVec case. */
24855 info->ehrd_offset = info->altivec_save_offset;
24857 else
24858 info->ehrd_offset = info->cr_save_offset;
24860 info->ehrd_offset -= ehrd_size;
24861 info->lr_save_offset = reg_size;
24864 save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
24865 info->save_size = RS6000_ALIGN (info->fp_size
24866 + info->gp_size
24867 + info->altivec_size
24868 + info->altivec_padding_size
24869 + ehrd_size
24870 + ehcr_size
24871 + info->cr_size
24872 + info->vrsave_size,
24873 save_align);
24875 non_fixed_size = info->vars_size + info->parm_size + info->save_size;
24877 info->total_size = RS6000_ALIGN (non_fixed_size + info->fixed_size,
24878 ABI_STACK_BOUNDARY / BITS_PER_UNIT);
24880 /* Determine if we need to save the link register. */
24881 if (info->calls_p
24882 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
24883 && crtl->profile
24884 && !TARGET_PROFILE_KERNEL)
24885 || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
24886 #ifdef TARGET_RELOCATABLE
24887 || (DEFAULT_ABI == ABI_V4
24888 && (TARGET_RELOCATABLE || flag_pic > 1)
24889 && !constant_pool_empty_p ())
24890 #endif
24891 || rs6000_ra_ever_killed ())
24892 info->lr_save_p = 1;
24894 using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
24895 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
24896 && call_used_regs[STATIC_CHAIN_REGNUM]);
24897 info->savres_strategy = rs6000_savres_strategy (info, using_static_chain_p);
24899 if (!(info->savres_strategy & SAVE_INLINE_GPRS)
24900 || !(info->savres_strategy & SAVE_INLINE_FPRS)
24901 || !(info->savres_strategy & SAVE_INLINE_VRS)
24902 || !(info->savres_strategy & REST_INLINE_GPRS)
24903 || !(info->savres_strategy & REST_INLINE_FPRS)
24904 || !(info->savres_strategy & REST_INLINE_VRS))
24905 info->lr_save_p = 1;
24907 if (info->lr_save_p)
24908 df_set_regs_ever_live (LR_REGNO, true);
24910 /* Determine if we need to allocate any stack frame:
24912 For AIX we need to push the stack if a frame pointer is needed
24913 (because the stack might be dynamically adjusted), if we are
24914 debugging, if we make calls, or if the sum of fp_save, gp_save,
24915 and local variables are more than the space needed to save all
24916 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
24917 + 18*8 = 288 (GPR13 reserved).
24919 For V.4 we don't have the stack cushion that AIX uses, but assume
24920 that the debugger can handle stackless frames. */
24922 if (info->calls_p)
24923 info->push_p = 1;
24925 else if (DEFAULT_ABI == ABI_V4)
24926 info->push_p = non_fixed_size != 0;
24928 else if (frame_pointer_needed)
24929 info->push_p = 1;
24931 else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
24932 info->push_p = 1;
24934 else
24935 info->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);
24937 return info;
24940 static void
24941 debug_stack_info (rs6000_stack_t *info)
24943 const char *abi_string;
24945 if (! info)
24946 info = rs6000_stack_info ();
24948 fprintf (stderr, "\nStack information for function %s:\n",
24949 ((current_function_decl && DECL_NAME (current_function_decl))
24950 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
24951 : "<unknown>"));
24953 switch (info->abi)
24955 default: abi_string = "Unknown"; break;
24956 case ABI_NONE: abi_string = "NONE"; break;
24957 case ABI_AIX: abi_string = "AIX"; break;
24958 case ABI_ELFv2: abi_string = "ELFv2"; break;
24959 case ABI_DARWIN: abi_string = "Darwin"; break;
24960 case ABI_V4: abi_string = "V.4"; break;
24963 fprintf (stderr, "\tABI = %5s\n", abi_string);
24965 if (TARGET_ALTIVEC_ABI)
24966 fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");
24968 if (info->first_gp_reg_save != 32)
24969 fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save);
24971 if (info->first_fp_reg_save != 64)
24972 fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save);
24974 if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
24975 fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
24976 info->first_altivec_reg_save);
24978 if (info->lr_save_p)
24979 fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p);
24981 if (info->cr_save_p)
24982 fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p);
24984 if (info->vrsave_mask)
24985 fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask);
24987 if (info->push_p)
24988 fprintf (stderr, "\tpush_p = %5d\n", info->push_p);
24990 if (info->calls_p)
24991 fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p);
24993 if (info->gp_size)
24994 fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset);
24996 if (info->fp_size)
24997 fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset);
24999 if (info->altivec_size)
25000 fprintf (stderr, "\taltivec_save_offset = %5d\n",
25001 info->altivec_save_offset);
25003 if (info->vrsave_size)
25004 fprintf (stderr, "\tvrsave_save_offset = %5d\n",
25005 info->vrsave_save_offset);
25007 if (info->lr_save_p)
25008 fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset);
25010 if (info->cr_save_p)
25011 fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset);
25013 if (info->varargs_save_offset)
25014 fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);
25016 if (info->total_size)
25017 fprintf (stderr, "\ttotal_size = " HOST_WIDE_INT_PRINT_DEC"\n",
25018 info->total_size);
25020 if (info->vars_size)
25021 fprintf (stderr, "\tvars_size = " HOST_WIDE_INT_PRINT_DEC"\n",
25022 info->vars_size);
25024 if (info->parm_size)
25025 fprintf (stderr, "\tparm_size = %5d\n", info->parm_size);
25027 if (info->fixed_size)
25028 fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size);
25030 if (info->gp_size)
25031 fprintf (stderr, "\tgp_size = %5d\n", info->gp_size);
25033 if (info->fp_size)
25034 fprintf (stderr, "\tfp_size = %5d\n", info->fp_size);
25036 if (info->altivec_size)
25037 fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size);
25039 if (info->vrsave_size)
25040 fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size);
25042 if (info->altivec_padding_size)
25043 fprintf (stderr, "\taltivec_padding_size= %5d\n",
25044 info->altivec_padding_size);
25046 if (info->cr_size)
25047 fprintf (stderr, "\tcr_size = %5d\n", info->cr_size);
25049 if (info->save_size)
25050 fprintf (stderr, "\tsave_size = %5d\n", info->save_size);
25052 if (info->reg_size != 4)
25053 fprintf (stderr, "\treg_size = %5d\n", info->reg_size);
25055 fprintf (stderr, "\tsave-strategy = %04x\n", info->savres_strategy);
25057 fprintf (stderr, "\n");
25061 rs6000_return_addr (int count, rtx frame)
25063 /* We can't use get_hard_reg_initial_val for LR when count == 0 if LR
25064 is trashed by the prologue, as it is for PIC on ABI_V4 and Darwin. */
25065 if (count != 0
25066 || ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN) && flag_pic))
25068 cfun->machine->ra_needs_full_frame = 1;
25070 if (count == 0)
25071 /* FRAME is set to frame_pointer_rtx by the generic code, but that
25072 is good for loading 0(r1) only when !FRAME_GROWS_DOWNWARD. */
25073 frame = stack_pointer_rtx;
25074 rtx prev_frame_addr = memory_address (Pmode, frame);
25075 rtx prev_frame = copy_to_reg (gen_rtx_MEM (Pmode, prev_frame_addr));
25076 rtx lr_save_off = plus_constant (Pmode,
25077 prev_frame, RETURN_ADDRESS_OFFSET);
25078 rtx lr_save_addr = memory_address (Pmode, lr_save_off);
25079 return gen_rtx_MEM (Pmode, lr_save_addr);
25082 cfun->machine->ra_need_lr = 1;
25083 return get_hard_reg_initial_val (Pmode, LR_REGNO);
25086 /* Say whether a function is a candidate for sibcall handling or not. */
25088 static bool
25089 rs6000_function_ok_for_sibcall (tree decl, tree exp)
25091 tree fntype;
25093 if (decl)
25094 fntype = TREE_TYPE (decl);
25095 else
25096 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (exp)));
25098 /* We can't do it if the called function has more vector parameters
25099 than the current function; there's nowhere to put the VRsave code. */
25100 if (TARGET_ALTIVEC_ABI
25101 && TARGET_ALTIVEC_VRSAVE
25102 && !(decl && decl == current_function_decl))
25104 function_args_iterator args_iter;
25105 tree type;
25106 int nvreg = 0;
25108 /* Functions with vector parameters are required to have a
25109 prototype, so the argument type info must be available
25110 here. */
25111 FOREACH_FUNCTION_ARGS(fntype, type, args_iter)
25112 if (TREE_CODE (type) == VECTOR_TYPE
25113 && ALTIVEC_OR_VSX_VECTOR_MODE (TYPE_MODE (type)))
25114 nvreg++;
25116 FOREACH_FUNCTION_ARGS(TREE_TYPE (current_function_decl), type, args_iter)
25117 if (TREE_CODE (type) == VECTOR_TYPE
25118 && ALTIVEC_OR_VSX_VECTOR_MODE (TYPE_MODE (type)))
25119 nvreg--;
25121 if (nvreg > 0)
25122 return false;
25125 /* Under the AIX or ELFv2 ABIs we can't allow calls to non-local
25126 functions, because the callee may have a different TOC pointer to
25127 the caller and there's no way to ensure we restore the TOC when
25128 we return. With the secure-plt SYSV ABI we can't make non-local
25129 calls when -fpic/PIC because the plt call stubs use r30. */
25130 if (DEFAULT_ABI == ABI_DARWIN
25131 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
25132 && decl
25133 && !DECL_EXTERNAL (decl)
25134 && !DECL_WEAK (decl)
25135 && (*targetm.binds_local_p) (decl))
25136 || (DEFAULT_ABI == ABI_V4
25137 && (!TARGET_SECURE_PLT
25138 || !flag_pic
25139 || (decl
25140 && (*targetm.binds_local_p) (decl)))))
25142 tree attr_list = TYPE_ATTRIBUTES (fntype);
25144 if (!lookup_attribute ("longcall", attr_list)
25145 || lookup_attribute ("shortcall", attr_list))
25146 return true;
25149 return false;
25152 static int
25153 rs6000_ra_ever_killed (void)
25155 rtx_insn *top;
25156 rtx reg;
25157 rtx_insn *insn;
25159 if (cfun->is_thunk)
25160 return 0;
25162 if (cfun->machine->lr_save_state)
25163 return cfun->machine->lr_save_state - 1;
25165 /* regs_ever_live has LR marked as used if any sibcalls are present,
25166 but this should not force saving and restoring in the
25167 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
25168 clobbers LR, so that is inappropriate. */
25170 /* Also, the prologue can generate a store into LR that
25171 doesn't really count, like this:
25173 move LR->R0
25174 bcl to set PIC register
25175 move LR->R31
25176 move R0->LR
25178 When we're called from the epilogue, we need to avoid counting
25179 this as a store. */
25181 push_topmost_sequence ();
25182 top = get_insns ();
25183 pop_topmost_sequence ();
25184 reg = gen_rtx_REG (Pmode, LR_REGNO);
25186 for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
25188 if (INSN_P (insn))
25190 if (CALL_P (insn))
25192 if (!SIBLING_CALL_P (insn))
25193 return 1;
25195 else if (find_regno_note (insn, REG_INC, LR_REGNO))
25196 return 1;
25197 else if (set_of (reg, insn) != NULL_RTX
25198 && !prologue_epilogue_contains (insn))
25199 return 1;
25202 return 0;
25205 /* Emit instructions needed to load the TOC register.
25206 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
25207 a constant pool; or for SVR4 -fpic. */
25209 void
25210 rs6000_emit_load_toc_table (int fromprolog)
25212 rtx dest;
25213 dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
25215 if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI == ABI_V4 && flag_pic)
25217 char buf[30];
25218 rtx lab, tmp1, tmp2, got;
25220 lab = gen_label_rtx ();
25221 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (lab));
25222 lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
25223 if (flag_pic == 2)
25225 got = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
25226 need_toc_init = 1;
25228 else
25229 got = rs6000_got_sym ();
25230 tmp1 = tmp2 = dest;
25231 if (!fromprolog)
25233 tmp1 = gen_reg_rtx (Pmode);
25234 tmp2 = gen_reg_rtx (Pmode);
25236 emit_insn (gen_load_toc_v4_PIC_1 (lab));
25237 emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
25238 emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
25239 emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
25241 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
25243 emit_insn (gen_load_toc_v4_pic_si ());
25244 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
25246 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 2)
25248 char buf[30];
25249 rtx temp0 = (fromprolog
25250 ? gen_rtx_REG (Pmode, 0)
25251 : gen_reg_rtx (Pmode));
25253 if (fromprolog)
25255 rtx symF, symL;
25257 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
25258 symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
25260 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
25261 symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
25263 emit_insn (gen_load_toc_v4_PIC_1 (symF));
25264 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
25265 emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
25267 else
25269 rtx tocsym, lab;
25271 tocsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
25272 need_toc_init = 1;
25273 lab = gen_label_rtx ();
25274 emit_insn (gen_load_toc_v4_PIC_1b (tocsym, lab));
25275 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
25276 if (TARGET_LINK_STACK)
25277 emit_insn (gen_addsi3 (dest, dest, GEN_INT (4)));
25278 emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
25280 emit_insn (gen_addsi3 (dest, temp0, dest));
25282 else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
25284 /* This is for AIX code running in non-PIC ELF32. */
25285 rtx realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
25287 need_toc_init = 1;
25288 emit_insn (gen_elf_high (dest, realsym));
25289 emit_insn (gen_elf_low (dest, dest, realsym));
25291 else
25293 gcc_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
25295 if (TARGET_32BIT)
25296 emit_insn (gen_load_toc_aix_si (dest));
25297 else
25298 emit_insn (gen_load_toc_aix_di (dest));
25302 /* Emit instructions to restore the link register after determining where
25303 its value has been stored. */
25305 void
25306 rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
25308 rs6000_stack_t *info = rs6000_stack_info ();
25309 rtx operands[2];
25311 operands[0] = source;
25312 operands[1] = scratch;
25314 if (info->lr_save_p)
25316 rtx frame_rtx = stack_pointer_rtx;
25317 HOST_WIDE_INT sp_offset = 0;
25318 rtx tmp;
25320 if (frame_pointer_needed
25321 || cfun->calls_alloca
25322 || info->total_size > 32767)
25324 tmp = gen_frame_mem (Pmode, frame_rtx);
25325 emit_move_insn (operands[1], tmp);
25326 frame_rtx = operands[1];
25328 else if (info->push_p)
25329 sp_offset = info->total_size;
25331 tmp = plus_constant (Pmode, frame_rtx,
25332 info->lr_save_offset + sp_offset);
25333 tmp = gen_frame_mem (Pmode, tmp);
25334 emit_move_insn (tmp, operands[0]);
25336 else
25337 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
25339 /* Freeze lr_save_p. We've just emitted rtl that depends on the
25340 state of lr_save_p so any change from here on would be a bug. In
25341 particular, stop rs6000_ra_ever_killed from considering the SET
25342 of lr we may have added just above. */
25343 cfun->machine->lr_save_state = info->lr_save_p + 1;
25346 static GTY(()) alias_set_type set = -1;
25348 alias_set_type
25349 get_TOC_alias_set (void)
25351 if (set == -1)
25352 set = new_alias_set ();
25353 return set;
25356 /* This returns nonzero if the current function uses the TOC. This is
25357 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
25358 is generated by the ABI_V4 load_toc_* patterns.
25359 Return 2 instead of 1 if the load_toc_* pattern is in the function
25360 partition that doesn't start the function. */
25361 #if TARGET_ELF
25362 static int
25363 uses_TOC (void)
25365 rtx_insn *insn;
25366 int ret = 1;
25368 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
25370 if (INSN_P (insn))
25372 rtx pat = PATTERN (insn);
25373 int i;
25375 if (GET_CODE (pat) == PARALLEL)
25376 for (i = 0; i < XVECLEN (pat, 0); i++)
25378 rtx sub = XVECEXP (pat, 0, i);
25379 if (GET_CODE (sub) == USE)
25381 sub = XEXP (sub, 0);
25382 if (GET_CODE (sub) == UNSPEC
25383 && XINT (sub, 1) == UNSPEC_TOC)
25384 return ret;
25388 else if (crtl->has_bb_partition
25389 && NOTE_P (insn)
25390 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
25391 ret = 2;
25393 return 0;
25395 #endif
25398 create_TOC_reference (rtx symbol, rtx largetoc_reg)
25400 rtx tocrel, tocreg, hi;
25402 if (TARGET_DEBUG_ADDR)
25404 if (GET_CODE (symbol) == SYMBOL_REF)
25405 fprintf (stderr, "\ncreate_TOC_reference, (symbol_ref %s)\n",
25406 XSTR (symbol, 0));
25407 else
25409 fprintf (stderr, "\ncreate_TOC_reference, code %s:\n",
25410 GET_RTX_NAME (GET_CODE (symbol)));
25411 debug_rtx (symbol);
25415 if (!can_create_pseudo_p ())
25416 df_set_regs_ever_live (TOC_REGISTER, true);
25418 tocreg = gen_rtx_REG (Pmode, TOC_REGISTER);
25419 tocrel = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, symbol, tocreg), UNSPEC_TOCREL);
25420 if (TARGET_CMODEL == CMODEL_SMALL || can_create_pseudo_p ())
25421 return tocrel;
25423 hi = gen_rtx_HIGH (Pmode, copy_rtx (tocrel));
25424 if (largetoc_reg != NULL)
25426 emit_move_insn (largetoc_reg, hi);
25427 hi = largetoc_reg;
25429 return gen_rtx_LO_SUM (Pmode, hi, tocrel);
25432 /* Issue assembly directives that create a reference to the given DWARF
25433 FRAME_TABLE_LABEL from the current function section. */
25434 void
25435 rs6000_aix_asm_output_dwarf_table_ref (char * frame_table_label)
25437 fprintf (asm_out_file, "\t.ref %s\n",
25438 (* targetm.strip_name_encoding) (frame_table_label));
25441 /* This ties together stack memory (MEM with an alias set of frame_alias_set)
25442 and the change to the stack pointer. */
25444 static void
25445 rs6000_emit_stack_tie (rtx fp, bool hard_frame_needed)
25447 rtvec p;
25448 int i;
25449 rtx regs[3];
25451 i = 0;
25452 regs[i++] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
25453 if (hard_frame_needed)
25454 regs[i++] = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
25455 if (!(REGNO (fp) == STACK_POINTER_REGNUM
25456 || (hard_frame_needed
25457 && REGNO (fp) == HARD_FRAME_POINTER_REGNUM)))
25458 regs[i++] = fp;
25460 p = rtvec_alloc (i);
25461 while (--i >= 0)
25463 rtx mem = gen_frame_mem (BLKmode, regs[i]);
25464 RTVEC_ELT (p, i) = gen_rtx_SET (mem, const0_rtx);
25467 emit_insn (gen_stack_tie (gen_rtx_PARALLEL (VOIDmode, p)));
25470 /* Allocate SIZE_INT bytes on the stack using a store with update style insn
25471 and set the appropriate attributes for the generated insn. Return the
25472 first insn which adjusts the stack pointer or the last insn before
25473 the stack adjustment loop.
25475 SIZE_INT is used to create the CFI note for the allocation.
25477 SIZE_RTX is an rtx containing the size of the adjustment. Note that
25478 since stacks grow to lower addresses its runtime value is -SIZE_INT.
25480 ORIG_SP contains the backchain value that must be stored at *sp. */
25482 static rtx_insn *
25483 rs6000_emit_allocate_stack_1 (HOST_WIDE_INT size_int, rtx orig_sp)
25485 rtx_insn *insn;
25487 rtx size_rtx = GEN_INT (-size_int);
25488 if (size_int > 32767)
25490 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
25491 /* Need a note here so that try_split doesn't get confused. */
25492 if (get_last_insn () == NULL_RTX)
25493 emit_note (NOTE_INSN_DELETED);
25494 insn = emit_move_insn (tmp_reg, size_rtx);
25495 try_split (PATTERN (insn), insn, 0);
25496 size_rtx = tmp_reg;
25499 if (Pmode == SImode)
25500 insn = emit_insn (gen_movsi_update_stack (stack_pointer_rtx,
25501 stack_pointer_rtx,
25502 size_rtx,
25503 orig_sp));
25504 else
25505 insn = emit_insn (gen_movdi_di_update_stack (stack_pointer_rtx,
25506 stack_pointer_rtx,
25507 size_rtx,
25508 orig_sp));
25509 rtx par = PATTERN (insn);
25510 gcc_assert (GET_CODE (par) == PARALLEL);
25511 rtx set = XVECEXP (par, 0, 0);
25512 gcc_assert (GET_CODE (set) == SET);
25513 rtx mem = SET_DEST (set);
25514 gcc_assert (MEM_P (mem));
25515 MEM_NOTRAP_P (mem) = 1;
25516 set_mem_alias_set (mem, get_frame_alias_set ());
25518 RTX_FRAME_RELATED_P (insn) = 1;
25519 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
25520 gen_rtx_SET (stack_pointer_rtx,
25521 gen_rtx_PLUS (Pmode,
25522 stack_pointer_rtx,
25523 GEN_INT (-size_int))));
25525 /* Emit a blockage to ensure the allocation/probing insns are
25526 not optimized, combined, removed, etc. Add REG_STACK_CHECK
25527 note for similar reasons. */
25528 if (flag_stack_clash_protection)
25530 add_reg_note (insn, REG_STACK_CHECK, const0_rtx);
25531 emit_insn (gen_blockage ());
25534 return insn;
25537 static HOST_WIDE_INT
25538 get_stack_clash_protection_probe_interval (void)
25540 return (HOST_WIDE_INT_1U
25541 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL));
25544 static HOST_WIDE_INT
25545 get_stack_clash_protection_guard_size (void)
25547 return (HOST_WIDE_INT_1U
25548 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_GUARD_SIZE));
25551 /* Allocate ORIG_SIZE bytes on the stack and probe the newly
25552 allocated space every STACK_CLASH_PROTECTION_PROBE_INTERVAL bytes.
25554 COPY_REG, if non-null, should contain a copy of the original
25555 stack pointer at exit from this function.
25557 This is subtly different than the Ada probing in that it tries hard to
25558 prevent attacks that jump the stack guard. Thus it is never allowed to
25559 allocate more than STACK_CLASH_PROTECTION_PROBE_INTERVAL bytes of stack
25560 space without a suitable probe. */
25561 static rtx_insn *
25562 rs6000_emit_probe_stack_range_stack_clash (HOST_WIDE_INT orig_size,
25563 rtx copy_reg)
25565 rtx orig_sp = copy_reg;
25567 HOST_WIDE_INT probe_interval = get_stack_clash_protection_probe_interval ();
25569 /* Round the size down to a multiple of PROBE_INTERVAL. */
25570 HOST_WIDE_INT rounded_size = ROUND_DOWN (orig_size, probe_interval);
25572 /* If explicitly requested,
25573 or the rounded size is not the same as the original size
25574 or the the rounded size is greater than a page,
25575 then we will need a copy of the original stack pointer. */
25576 if (rounded_size != orig_size
25577 || rounded_size > probe_interval
25578 || copy_reg)
25580 /* If the caller did not request a copy of the incoming stack
25581 pointer, then we use r0 to hold the copy. */
25582 if (!copy_reg)
25583 orig_sp = gen_rtx_REG (Pmode, 0);
25584 emit_move_insn (orig_sp, stack_pointer_rtx);
25587 /* There's three cases here.
25589 One is a single probe which is the most common and most efficiently
25590 implemented as it does not have to have a copy of the original
25591 stack pointer if there are no residuals.
25593 Second is unrolled allocation/probes which we use if there's just
25594 a few of them. It needs to save the original stack pointer into a
25595 temporary for use as a source register in the allocation/probe.
25597 Last is a loop. This is the most uncommon case and least efficient. */
25598 rtx_insn *retval = NULL;
25599 if (rounded_size == probe_interval)
25601 retval = rs6000_emit_allocate_stack_1 (probe_interval, stack_pointer_rtx);
25603 dump_stack_clash_frame_info (PROBE_INLINE, rounded_size != orig_size);
25605 else if (rounded_size <= 8 * probe_interval)
25607 /* The ABI requires using the store with update insns to allocate
25608 space and store the backchain into the stack
25610 So we save the current stack pointer into a temporary, then
25611 emit the store-with-update insns to store the saved stack pointer
25612 into the right location in each new page. */
25613 for (int i = 0; i < rounded_size; i += probe_interval)
25615 rtx_insn *insn
25616 = rs6000_emit_allocate_stack_1 (probe_interval, orig_sp);
25618 /* Save the first stack adjustment in RETVAL. */
25619 if (i == 0)
25620 retval = insn;
25623 dump_stack_clash_frame_info (PROBE_INLINE, rounded_size != orig_size);
25625 else
25627 /* Compute the ending address. */
25628 rtx end_addr
25629 = copy_reg ? gen_rtx_REG (Pmode, 0) : gen_rtx_REG (Pmode, 12);
25630 rtx rs = GEN_INT (-rounded_size);
25631 rtx_insn *insn;
25632 if (add_operand (rs, Pmode))
25633 insn = emit_insn (gen_add3_insn (end_addr, stack_pointer_rtx, rs));
25634 else
25636 emit_move_insn (end_addr, GEN_INT (-rounded_size));
25637 insn = emit_insn (gen_add3_insn (end_addr, end_addr,
25638 stack_pointer_rtx));
25639 /* Describe the effect of INSN to the CFI engine. */
25640 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
25641 gen_rtx_SET (end_addr,
25642 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
25643 rs)));
25645 RTX_FRAME_RELATED_P (insn) = 1;
25647 /* Emit the loop. */
25648 if (TARGET_64BIT)
25649 retval = emit_insn (gen_probe_stack_rangedi (stack_pointer_rtx,
25650 stack_pointer_rtx, orig_sp,
25651 end_addr));
25652 else
25653 retval = emit_insn (gen_probe_stack_rangesi (stack_pointer_rtx,
25654 stack_pointer_rtx, orig_sp,
25655 end_addr));
25656 RTX_FRAME_RELATED_P (retval) = 1;
25657 /* Describe the effect of INSN to the CFI engine. */
25658 add_reg_note (retval, REG_FRAME_RELATED_EXPR,
25659 gen_rtx_SET (stack_pointer_rtx, end_addr));
25661 /* Emit a blockage to ensure the allocation/probing insns are
25662 not optimized, combined, removed, etc. Other cases handle this
25663 within their call to rs6000_emit_allocate_stack_1. */
25664 emit_insn (gen_blockage ());
25666 dump_stack_clash_frame_info (PROBE_LOOP, rounded_size != orig_size);
25669 if (orig_size != rounded_size)
25671 /* Allocate (and implicitly probe) any residual space. */
25672 HOST_WIDE_INT residual = orig_size - rounded_size;
25674 rtx_insn *insn = rs6000_emit_allocate_stack_1 (residual, orig_sp);
25676 /* If the residual was the only allocation, then we can return the
25677 allocating insn. */
25678 if (!retval)
25679 retval = insn;
25682 return retval;
25685 /* Emit the correct code for allocating stack space, as insns.
25686 If COPY_REG, make sure a copy of the old frame is left there.
25687 The generated code may use hard register 0 as a temporary. */
25689 static rtx_insn *
25690 rs6000_emit_allocate_stack (HOST_WIDE_INT size, rtx copy_reg, int copy_off)
25692 rtx_insn *insn;
25693 rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
25694 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
25695 rtx todec = gen_int_mode (-size, Pmode);
25697 if (INTVAL (todec) != -size)
25699 warning (0, "stack frame too large");
25700 emit_insn (gen_trap ());
25701 return 0;
25704 if (crtl->limit_stack)
25706 if (REG_P (stack_limit_rtx)
25707 && REGNO (stack_limit_rtx) > 1
25708 && REGNO (stack_limit_rtx) <= 31)
25710 rtx_insn *insn
25711 = gen_add3_insn (tmp_reg, stack_limit_rtx, GEN_INT (size));
25712 gcc_assert (insn);
25713 emit_insn (insn);
25714 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg, const0_rtx));
25716 else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
25717 && TARGET_32BIT
25718 && DEFAULT_ABI == ABI_V4
25719 && !flag_pic)
25721 rtx toload = gen_rtx_CONST (VOIDmode,
25722 gen_rtx_PLUS (Pmode,
25723 stack_limit_rtx,
25724 GEN_INT (size)));
25726 emit_insn (gen_elf_high (tmp_reg, toload));
25727 emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
25728 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
25729 const0_rtx));
25731 else
25732 warning (0, "stack limit expression is not supported");
25735 if (flag_stack_clash_protection)
25737 if (size < get_stack_clash_protection_guard_size ())
25738 dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
25739 else
25741 rtx_insn *insn = rs6000_emit_probe_stack_range_stack_clash (size,
25742 copy_reg);
25744 /* If we asked for a copy with an offset, then we still need add in
25745 the offset. */
25746 if (copy_reg && copy_off)
25747 emit_insn (gen_add3_insn (copy_reg, copy_reg, GEN_INT (copy_off)));
25748 return insn;
25752 if (copy_reg)
25754 if (copy_off != 0)
25755 emit_insn (gen_add3_insn (copy_reg, stack_reg, GEN_INT (copy_off)));
25756 else
25757 emit_move_insn (copy_reg, stack_reg);
25760 /* Since we didn't use gen_frame_mem to generate the MEM, grab
25761 it now and set the alias set/attributes. The above gen_*_update
25762 calls will generate a PARALLEL with the MEM set being the first
25763 operation. */
25764 insn = rs6000_emit_allocate_stack_1 (size, stack_reg);
25765 return insn;
25768 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
25770 #if PROBE_INTERVAL > 32768
25771 #error Cannot use indexed addressing mode for stack probing
25772 #endif
25774 /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
25775 inclusive. These are offsets from the current stack pointer. */
25777 static void
25778 rs6000_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
25780 /* See if we have a constant small number of probes to generate. If so,
25781 that's the easy case. */
25782 if (first + size <= 32768)
25784 HOST_WIDE_INT i;
25786 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
25787 it exceeds SIZE. If only one probe is needed, this will not
25788 generate any code. Then probe at FIRST + SIZE. */
25789 for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
25790 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
25791 -(first + i)));
25793 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
25794 -(first + size)));
25797 /* Otherwise, do the same as above, but in a loop. Note that we must be
25798 extra careful with variables wrapping around because we might be at
25799 the very top (or the very bottom) of the address space and we have
25800 to be able to handle this case properly; in particular, we use an
25801 equality test for the loop condition. */
25802 else
25804 HOST_WIDE_INT rounded_size;
25805 rtx r12 = gen_rtx_REG (Pmode, 12);
25806 rtx r0 = gen_rtx_REG (Pmode, 0);
25808 /* Sanity check for the addressing mode we're going to use. */
25809 gcc_assert (first <= 32768);
25811 /* Step 1: round SIZE to the previous multiple of the interval. */
25813 rounded_size = ROUND_DOWN (size, PROBE_INTERVAL);
25816 /* Step 2: compute initial and final value of the loop counter. */
25818 /* TEST_ADDR = SP + FIRST. */
25819 emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, stack_pointer_rtx,
25820 -first)));
25822 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
25823 if (rounded_size > 32768)
25825 emit_move_insn (r0, GEN_INT (-rounded_size));
25826 emit_insn (gen_rtx_SET (r0, gen_rtx_PLUS (Pmode, r12, r0)));
25828 else
25829 emit_insn (gen_rtx_SET (r0, plus_constant (Pmode, r12,
25830 -rounded_size)));
25833 /* Step 3: the loop
25837 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
25838 probe at TEST_ADDR
25840 while (TEST_ADDR != LAST_ADDR)
25842 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
25843 until it is equal to ROUNDED_SIZE. */
25845 if (TARGET_64BIT)
25846 emit_insn (gen_probe_stack_rangedi (r12, r12, stack_pointer_rtx, r0));
25847 else
25848 emit_insn (gen_probe_stack_rangesi (r12, r12, stack_pointer_rtx, r0));
25851 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
25852 that SIZE is equal to ROUNDED_SIZE. */
25854 if (size != rounded_size)
25855 emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
25859 /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
25860 addresses, not offsets. */
25862 static const char *
25863 output_probe_stack_range_1 (rtx reg1, rtx reg2)
25865 static int labelno = 0;
25866 char loop_lab[32];
25867 rtx xops[2];
25869 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
25871 /* Loop. */
25872 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
25874 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
25875 xops[0] = reg1;
25876 xops[1] = GEN_INT (-PROBE_INTERVAL);
25877 output_asm_insn ("addi %0,%0,%1", xops);
25879 /* Probe at TEST_ADDR. */
25880 xops[1] = gen_rtx_REG (Pmode, 0);
25881 output_asm_insn ("stw %1,0(%0)", xops);
25883 /* Test if TEST_ADDR == LAST_ADDR. */
25884 xops[1] = reg2;
25885 if (TARGET_64BIT)
25886 output_asm_insn ("cmpd 0,%0,%1", xops);
25887 else
25888 output_asm_insn ("cmpw 0,%0,%1", xops);
25890 /* Branch. */
25891 fputs ("\tbne 0,", asm_out_file);
25892 assemble_name_raw (asm_out_file, loop_lab);
25893 fputc ('\n', asm_out_file);
25895 return "";
25898 /* This function is called when rs6000_frame_related is processing
25899 SETs within a PARALLEL, and returns whether the REGNO save ought to
25900 be marked RTX_FRAME_RELATED_P. The PARALLELs involved are those
25901 for out-of-line register save functions, store multiple, and the
25902 Darwin world_save. They may contain registers that don't really
25903 need saving. */
25905 static bool
25906 interesting_frame_related_regno (unsigned int regno)
25908 /* Saves apparently of r0 are actually saving LR. It doesn't make
25909 sense to substitute the regno here to test save_reg_p (LR_REGNO).
25910 We *know* LR needs saving, and dwarf2cfi.c is able to deduce that
25911 (set (mem) (r0)) is saving LR from a prior (set (r0) (lr)) marked
25912 as frame related. */
25913 if (regno == 0)
25914 return true;
25915 /* If we see CR2 then we are here on a Darwin world save. Saves of
25916 CR2 signify the whole CR is being saved. This is a long-standing
25917 ABI wart fixed by ELFv2. As for r0/lr there is no need to check
25918 that CR needs to be saved. */
25919 if (regno == CR2_REGNO)
25920 return true;
25921 /* Omit frame info for any user-defined global regs. If frame info
25922 is supplied for them, frame unwinding will restore a user reg.
25923 Also omit frame info for any reg we don't need to save, as that
25924 bloats frame info and can cause problems with shrink wrapping.
25925 Since global regs won't be seen as needing to be saved, both of
25926 these conditions are covered by save_reg_p. */
25927 return save_reg_p (regno);
25930 /* Probe a range of stack addresses from REG1 to REG3 inclusive. These are
25931 addresses, not offsets.
25933 REG2 contains the backchain that must be stored into *sp at each allocation.
25935 This is subtly different than the Ada probing above in that it tries hard
25936 to prevent attacks that jump the stack guard. Thus, it is never allowed
25937 to allocate more than PROBE_INTERVAL bytes of stack space without a
25938 suitable probe. */
25940 static const char *
25941 output_probe_stack_range_stack_clash (rtx reg1, rtx reg2, rtx reg3)
25943 static int labelno = 0;
25944 char loop_lab[32];
25945 rtx xops[3];
25947 HOST_WIDE_INT probe_interval = get_stack_clash_protection_probe_interval ();
25949 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
25951 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
25953 /* This allocates and probes. */
25954 xops[0] = reg1;
25955 xops[1] = reg2;
25956 xops[2] = GEN_INT (-probe_interval);
25957 if (TARGET_64BIT)
25958 output_asm_insn ("stdu %1,%2(%0)", xops);
25959 else
25960 output_asm_insn ("stwu %1,%2(%0)", xops);
25962 /* Jump to LOOP_LAB if TEST_ADDR != LAST_ADDR. */
25963 xops[0] = reg1;
25964 xops[1] = reg3;
25965 if (TARGET_64BIT)
25966 output_asm_insn ("cmpd 0,%0,%1", xops);
25967 else
25968 output_asm_insn ("cmpw 0,%0,%1", xops);
25970 fputs ("\tbne 0,", asm_out_file);
25971 assemble_name_raw (asm_out_file, loop_lab);
25972 fputc ('\n', asm_out_file);
25974 return "";
25977 /* Wrapper around the output_probe_stack_range routines. */
25978 const char *
25979 output_probe_stack_range (rtx reg1, rtx reg2, rtx reg3)
25981 if (flag_stack_clash_protection)
25982 return output_probe_stack_range_stack_clash (reg1, reg2, reg3);
25983 else
25984 return output_probe_stack_range_1 (reg1, reg3);
25987 /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
25988 with (plus:P (reg 1) VAL), and with REG2 replaced with REPL2 if REG2
25989 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
25990 deduce these equivalences by itself so it wasn't necessary to hold
25991 its hand so much. Don't be tempted to always supply d2_f_d_e with
25992 the actual cfa register, ie. r31 when we are using a hard frame
25993 pointer. That fails when saving regs off r1, and sched moves the
25994 r31 setup past the reg saves. */
25996 static rtx_insn *
25997 rs6000_frame_related (rtx_insn *insn, rtx reg, HOST_WIDE_INT val,
25998 rtx reg2, rtx repl2)
26000 rtx repl;
26002 if (REGNO (reg) == STACK_POINTER_REGNUM)
26004 gcc_checking_assert (val == 0);
26005 repl = NULL_RTX;
26007 else
26008 repl = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM),
26009 GEN_INT (val));
26011 rtx pat = PATTERN (insn);
26012 if (!repl && !reg2)
26014 /* No need for any replacement. Just set RTX_FRAME_RELATED_P. */
26015 if (GET_CODE (pat) == PARALLEL)
26016 for (int i = 0; i < XVECLEN (pat, 0); i++)
26017 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
26019 rtx set = XVECEXP (pat, 0, i);
26021 if (!REG_P (SET_SRC (set))
26022 || interesting_frame_related_regno (REGNO (SET_SRC (set))))
26023 RTX_FRAME_RELATED_P (set) = 1;
26025 RTX_FRAME_RELATED_P (insn) = 1;
26026 return insn;
26029 /* We expect that 'pat' is either a SET or a PARALLEL containing
26030 SETs (and possibly other stuff). In a PARALLEL, all the SETs
26031 are important so they all have to be marked RTX_FRAME_RELATED_P.
26032 Call simplify_replace_rtx on the SETs rather than the whole insn
26033 so as to leave the other stuff alone (for example USE of r12). */
26035 set_used_flags (pat);
26036 if (GET_CODE (pat) == SET)
26038 if (repl)
26039 pat = simplify_replace_rtx (pat, reg, repl);
26040 if (reg2)
26041 pat = simplify_replace_rtx (pat, reg2, repl2);
26043 else if (GET_CODE (pat) == PARALLEL)
26045 pat = shallow_copy_rtx (pat);
26046 XVEC (pat, 0) = shallow_copy_rtvec (XVEC (pat, 0));
26048 for (int i = 0; i < XVECLEN (pat, 0); i++)
26049 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
26051 rtx set = XVECEXP (pat, 0, i);
26053 if (repl)
26054 set = simplify_replace_rtx (set, reg, repl);
26055 if (reg2)
26056 set = simplify_replace_rtx (set, reg2, repl2);
26057 XVECEXP (pat, 0, i) = set;
26059 if (!REG_P (SET_SRC (set))
26060 || interesting_frame_related_regno (REGNO (SET_SRC (set))))
26061 RTX_FRAME_RELATED_P (set) = 1;
26064 else
26065 gcc_unreachable ();
26067 RTX_FRAME_RELATED_P (insn) = 1;
26068 add_reg_note (insn, REG_FRAME_RELATED_EXPR, copy_rtx_if_shared (pat));
26070 return insn;
26073 /* Returns an insn that has a vrsave set operation with the
26074 appropriate CLOBBERs. */
26076 static rtx
26077 generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
26079 int nclobs, i;
26080 rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
26081 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
26083 clobs[0]
26084 = gen_rtx_SET (vrsave,
26085 gen_rtx_UNSPEC_VOLATILE (SImode,
26086 gen_rtvec (2, reg, vrsave),
26087 UNSPECV_SET_VRSAVE));
26089 nclobs = 1;
26091 /* We need to clobber the registers in the mask so the scheduler
26092 does not move sets to VRSAVE before sets of AltiVec registers.
26094 However, if the function receives nonlocal gotos, reload will set
26095 all call saved registers live. We will end up with:
26097 (set (reg 999) (mem))
26098 (parallel [ (set (reg vrsave) (unspec blah))
26099 (clobber (reg 999))])
26101 The clobber will cause the store into reg 999 to be dead, and
26102 flow will attempt to delete an epilogue insn. In this case, we
26103 need an unspec use/set of the register. */
26105 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
26106 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
26108 if (!epiloguep || call_used_regs [i])
26109 clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
26110 gen_rtx_REG (V4SImode, i));
26111 else
26113 rtx reg = gen_rtx_REG (V4SImode, i);
26115 clobs[nclobs++]
26116 = gen_rtx_SET (reg,
26117 gen_rtx_UNSPEC (V4SImode,
26118 gen_rtvec (1, reg), 27));
26122 insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));
26124 for (i = 0; i < nclobs; ++i)
26125 XVECEXP (insn, 0, i) = clobs[i];
26127 return insn;
26130 static rtx
26131 gen_frame_set (rtx reg, rtx frame_reg, int offset, bool store)
26133 rtx addr, mem;
26135 addr = gen_rtx_PLUS (Pmode, frame_reg, GEN_INT (offset));
26136 mem = gen_frame_mem (GET_MODE (reg), addr);
26137 return gen_rtx_SET (store ? mem : reg, store ? reg : mem);
26140 static rtx
26141 gen_frame_load (rtx reg, rtx frame_reg, int offset)
26143 return gen_frame_set (reg, frame_reg, offset, false);
26146 static rtx
26147 gen_frame_store (rtx reg, rtx frame_reg, int offset)
26149 return gen_frame_set (reg, frame_reg, offset, true);
26152 /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
26153 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
26155 static rtx_insn *
26156 emit_frame_save (rtx frame_reg, machine_mode mode,
26157 unsigned int regno, int offset, HOST_WIDE_INT frame_reg_to_sp)
26159 rtx reg;
26161 /* Some cases that need register indexed addressing. */
26162 gcc_checking_assert (!(TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
26163 || (TARGET_VSX && ALTIVEC_OR_VSX_VECTOR_MODE (mode)));
26165 reg = gen_rtx_REG (mode, regno);
26166 rtx_insn *insn = emit_insn (gen_frame_store (reg, frame_reg, offset));
26167 return rs6000_frame_related (insn, frame_reg, frame_reg_to_sp,
26168 NULL_RTX, NULL_RTX);
26171 /* Emit an offset memory reference suitable for a frame store, while
26172 converting to a valid addressing mode. */
26174 static rtx
26175 gen_frame_mem_offset (machine_mode mode, rtx reg, int offset)
26177 return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, GEN_INT (offset)));
26180 #ifndef TARGET_FIX_AND_CONTINUE
26181 #define TARGET_FIX_AND_CONTINUE 0
26182 #endif
26184 /* It's really GPR 13 or 14, FPR 14 and VR 20. We need the smallest. */
26185 #define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
26186 #define LAST_SAVRES_REGISTER 31
26187 #define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
26189 enum {
26190 SAVRES_LR = 0x1,
26191 SAVRES_SAVE = 0x2,
26192 SAVRES_REG = 0x0c,
26193 SAVRES_GPR = 0,
26194 SAVRES_FPR = 4,
26195 SAVRES_VR = 8
26198 static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][12];
26200 /* Temporary holding space for an out-of-line register save/restore
26201 routine name. */
26202 static char savres_routine_name[30];
26204 /* Return the name for an out-of-line register save/restore routine.
26205 We are saving/restoring GPRs if GPR is true. */
26207 static char *
26208 rs6000_savres_routine_name (int regno, int sel)
26210 const char *prefix = "";
26211 const char *suffix = "";
26213 /* Different targets are supposed to define
26214 {SAVE,RESTORE}_FP_{PREFIX,SUFFIX} with the idea that the needed
26215 routine name could be defined with:
26217 sprintf (name, "%s%d%s", SAVE_FP_PREFIX, regno, SAVE_FP_SUFFIX)
26219 This is a nice idea in practice, but in reality, things are
26220 complicated in several ways:
26222 - ELF targets have save/restore routines for GPRs.
26224 - PPC64 ELF targets have routines for save/restore of GPRs that
26225 differ in what they do with the link register, so having a set
26226 prefix doesn't work. (We only use one of the save routines at
26227 the moment, though.)
26229 - PPC32 elf targets have "exit" versions of the restore routines
26230 that restore the link register and can save some extra space.
26231 These require an extra suffix. (There are also "tail" versions
26232 of the restore routines and "GOT" versions of the save routines,
26233 but we don't generate those at present. Same problems apply,
26234 though.)
26236 We deal with all this by synthesizing our own prefix/suffix and
26237 using that for the simple sprintf call shown above. */
26238 if (DEFAULT_ABI == ABI_V4)
26240 if (TARGET_64BIT)
26241 goto aix_names;
26243 if ((sel & SAVRES_REG) == SAVRES_GPR)
26244 prefix = (sel & SAVRES_SAVE) ? "_savegpr_" : "_restgpr_";
26245 else if ((sel & SAVRES_REG) == SAVRES_FPR)
26246 prefix = (sel & SAVRES_SAVE) ? "_savefpr_" : "_restfpr_";
26247 else if ((sel & SAVRES_REG) == SAVRES_VR)
26248 prefix = (sel & SAVRES_SAVE) ? "_savevr_" : "_restvr_";
26249 else
26250 abort ();
26252 if ((sel & SAVRES_LR))
26253 suffix = "_x";
26255 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
26257 #if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
26258 /* No out-of-line save/restore routines for GPRs on AIX. */
26259 gcc_assert (!TARGET_AIX || (sel & SAVRES_REG) != SAVRES_GPR);
26260 #endif
26262 aix_names:
26263 if ((sel & SAVRES_REG) == SAVRES_GPR)
26264 prefix = ((sel & SAVRES_SAVE)
26265 ? ((sel & SAVRES_LR) ? "_savegpr0_" : "_savegpr1_")
26266 : ((sel & SAVRES_LR) ? "_restgpr0_" : "_restgpr1_"));
26267 else if ((sel & SAVRES_REG) == SAVRES_FPR)
26269 #if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
26270 if ((sel & SAVRES_LR))
26271 prefix = ((sel & SAVRES_SAVE) ? "_savefpr_" : "_restfpr_");
26272 else
26273 #endif
26275 prefix = (sel & SAVRES_SAVE) ? SAVE_FP_PREFIX : RESTORE_FP_PREFIX;
26276 suffix = (sel & SAVRES_SAVE) ? SAVE_FP_SUFFIX : RESTORE_FP_SUFFIX;
26279 else if ((sel & SAVRES_REG) == SAVRES_VR)
26280 prefix = (sel & SAVRES_SAVE) ? "_savevr_" : "_restvr_";
26281 else
26282 abort ();
26285 if (DEFAULT_ABI == ABI_DARWIN)
26287 /* The Darwin approach is (slightly) different, in order to be
26288 compatible with code generated by the system toolchain. There is a
26289 single symbol for the start of save sequence, and the code here
26290 embeds an offset into that code on the basis of the first register
26291 to be saved. */
26292 prefix = (sel & SAVRES_SAVE) ? "save" : "rest" ;
26293 if ((sel & SAVRES_REG) == SAVRES_GPR)
26294 sprintf (savres_routine_name, "*%sGPR%s%s%.0d ; %s r%d-r31", prefix,
26295 ((sel & SAVRES_LR) ? "x" : ""), (regno == 13 ? "" : "+"),
26296 (regno - 13) * 4, prefix, regno);
26297 else if ((sel & SAVRES_REG) == SAVRES_FPR)
26298 sprintf (savres_routine_name, "*%sFP%s%.0d ; %s f%d-f31", prefix,
26299 (regno == 14 ? "" : "+"), (regno - 14) * 4, prefix, regno);
26300 else if ((sel & SAVRES_REG) == SAVRES_VR)
26301 sprintf (savres_routine_name, "*%sVEC%s%.0d ; %s v%d-v31", prefix,
26302 (regno == 20 ? "" : "+"), (regno - 20) * 8, prefix, regno);
26303 else
26304 abort ();
26306 else
26307 sprintf (savres_routine_name, "%s%d%s", prefix, regno, suffix);
26309 return savres_routine_name;
26312 /* Return an RTL SYMBOL_REF for an out-of-line register save/restore routine.
26313 We are saving/restoring GPRs if GPR is true. */
26315 static rtx
26316 rs6000_savres_routine_sym (rs6000_stack_t *info, int sel)
26318 int regno = ((sel & SAVRES_REG) == SAVRES_GPR
26319 ? info->first_gp_reg_save
26320 : (sel & SAVRES_REG) == SAVRES_FPR
26321 ? info->first_fp_reg_save - 32
26322 : (sel & SAVRES_REG) == SAVRES_VR
26323 ? info->first_altivec_reg_save - FIRST_ALTIVEC_REGNO
26324 : -1);
26325 rtx sym;
26326 int select = sel;
26328 /* Don't generate bogus routine names. */
26329 gcc_assert (FIRST_SAVRES_REGISTER <= regno
26330 && regno <= LAST_SAVRES_REGISTER
26331 && select >= 0 && select <= 12);
26333 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];
26335 if (sym == NULL)
26337 char *name;
26339 name = rs6000_savres_routine_name (regno, sel);
26341 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
26342 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
26343 SYMBOL_REF_FLAGS (sym) |= SYMBOL_FLAG_FUNCTION;
26346 return sym;
26349 /* Emit a sequence of insns, including a stack tie if needed, for
26350 resetting the stack pointer. If UPDT_REGNO is not 1, then don't
26351 reset the stack pointer, but move the base of the frame into
26352 reg UPDT_REGNO for use by out-of-line register restore routines. */
26354 static rtx
26355 rs6000_emit_stack_reset (rtx frame_reg_rtx, HOST_WIDE_INT frame_off,
26356 unsigned updt_regno)
26358 /* If there is nothing to do, don't do anything. */
26359 if (frame_off == 0 && REGNO (frame_reg_rtx) == updt_regno)
26360 return NULL_RTX;
26362 rtx updt_reg_rtx = gen_rtx_REG (Pmode, updt_regno);
26364 /* This blockage is needed so that sched doesn't decide to move
26365 the sp change before the register restores. */
26366 if (DEFAULT_ABI == ABI_V4)
26367 return emit_insn (gen_stack_restore_tie (updt_reg_rtx, frame_reg_rtx,
26368 GEN_INT (frame_off)));
26370 /* If we are restoring registers out-of-line, we will be using the
26371 "exit" variants of the restore routines, which will reset the
26372 stack for us. But we do need to point updt_reg into the
26373 right place for those routines. */
26374 if (frame_off != 0)
26375 return emit_insn (gen_add3_insn (updt_reg_rtx,
26376 frame_reg_rtx, GEN_INT (frame_off)));
26377 else
26378 return emit_move_insn (updt_reg_rtx, frame_reg_rtx);
26380 return NULL_RTX;
26383 /* Return the register number used as a pointer by out-of-line
26384 save/restore functions. */
26386 static inline unsigned
26387 ptr_regno_for_savres (int sel)
26389 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
26390 return (sel & SAVRES_REG) == SAVRES_FPR || (sel & SAVRES_LR) ? 1 : 12;
26391 return DEFAULT_ABI == ABI_DARWIN && (sel & SAVRES_REG) == SAVRES_FPR ? 1 : 11;
26394 /* Construct a parallel rtx describing the effect of a call to an
26395 out-of-line register save/restore routine, and emit the insn
26396 or jump_insn as appropriate. */
26398 static rtx_insn *
26399 rs6000_emit_savres_rtx (rs6000_stack_t *info,
26400 rtx frame_reg_rtx, int save_area_offset, int lr_offset,
26401 machine_mode reg_mode, int sel)
26403 int i;
26404 int offset, start_reg, end_reg, n_regs, use_reg;
26405 int reg_size = GET_MODE_SIZE (reg_mode);
26406 rtx sym;
26407 rtvec p;
26408 rtx par;
26409 rtx_insn *insn;
26411 offset = 0;
26412 start_reg = ((sel & SAVRES_REG) == SAVRES_GPR
26413 ? info->first_gp_reg_save
26414 : (sel & SAVRES_REG) == SAVRES_FPR
26415 ? info->first_fp_reg_save
26416 : (sel & SAVRES_REG) == SAVRES_VR
26417 ? info->first_altivec_reg_save
26418 : -1);
26419 end_reg = ((sel & SAVRES_REG) == SAVRES_GPR
26420 ? 32
26421 : (sel & SAVRES_REG) == SAVRES_FPR
26422 ? 64
26423 : (sel & SAVRES_REG) == SAVRES_VR
26424 ? LAST_ALTIVEC_REGNO + 1
26425 : -1);
26426 n_regs = end_reg - start_reg;
26427 p = rtvec_alloc (3 + ((sel & SAVRES_LR) ? 1 : 0)
26428 + ((sel & SAVRES_REG) == SAVRES_VR ? 1 : 0)
26429 + n_regs);
26431 if (!(sel & SAVRES_SAVE) && (sel & SAVRES_LR))
26432 RTVEC_ELT (p, offset++) = ret_rtx;
26434 RTVEC_ELT (p, offset++)
26435 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
26437 sym = rs6000_savres_routine_sym (info, sel);
26438 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
26440 use_reg = ptr_regno_for_savres (sel);
26441 if ((sel & SAVRES_REG) == SAVRES_VR)
26443 /* Vector regs are saved/restored using [reg+reg] addressing. */
26444 RTVEC_ELT (p, offset++)
26445 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, use_reg));
26446 RTVEC_ELT (p, offset++)
26447 = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 0));
26449 else
26450 RTVEC_ELT (p, offset++)
26451 = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, use_reg));
26453 for (i = 0; i < end_reg - start_reg; i++)
26454 RTVEC_ELT (p, i + offset)
26455 = gen_frame_set (gen_rtx_REG (reg_mode, start_reg + i),
26456 frame_reg_rtx, save_area_offset + reg_size * i,
26457 (sel & SAVRES_SAVE) != 0);
26459 if ((sel & SAVRES_SAVE) && (sel & SAVRES_LR))
26460 RTVEC_ELT (p, i + offset)
26461 = gen_frame_store (gen_rtx_REG (Pmode, 0), frame_reg_rtx, lr_offset);
26463 par = gen_rtx_PARALLEL (VOIDmode, p);
26465 if (!(sel & SAVRES_SAVE) && (sel & SAVRES_LR))
26467 insn = emit_jump_insn (par);
26468 JUMP_LABEL (insn) = ret_rtx;
26470 else
26471 insn = emit_insn (par);
26472 return insn;
26475 /* Emit prologue code to store CR fields that need to be saved into REG. This
26476 function should only be called when moving the non-volatile CRs to REG, it
26477 is not a general purpose routine to move the entire set of CRs to REG.
26478 Specifically, gen_prologue_movesi_from_cr() does not contain uses of the
26479 volatile CRs. */
26481 static void
26482 rs6000_emit_prologue_move_from_cr (rtx reg)
26484 /* Only the ELFv2 ABI allows storing only selected fields. */
26485 if (DEFAULT_ABI == ABI_ELFv2 && TARGET_MFCRF)
26487 int i, cr_reg[8], count = 0;
26489 /* Collect CR fields that must be saved. */
26490 for (i = 0; i < 8; i++)
26491 if (save_reg_p (CR0_REGNO + i))
26492 cr_reg[count++] = i;
26494 /* If it's just a single one, use mfcrf. */
26495 if (count == 1)
26497 rtvec p = rtvec_alloc (1);
26498 rtvec r = rtvec_alloc (2);
26499 RTVEC_ELT (r, 0) = gen_rtx_REG (CCmode, CR0_REGNO + cr_reg[0]);
26500 RTVEC_ELT (r, 1) = GEN_INT (1 << (7 - cr_reg[0]));
26501 RTVEC_ELT (p, 0)
26502 = gen_rtx_SET (reg,
26503 gen_rtx_UNSPEC (SImode, r, UNSPEC_MOVESI_FROM_CR));
26505 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
26506 return;
26509 /* ??? It might be better to handle count == 2 / 3 cases here
26510 as well, using logical operations to combine the values. */
26513 emit_insn (gen_prologue_movesi_from_cr (reg));
26516 /* Return whether the split-stack arg pointer (r12) is used. */
26518 static bool
26519 split_stack_arg_pointer_used_p (void)
26521 /* If the pseudo holding the arg pointer is no longer a pseudo,
26522 then the arg pointer is used. */
26523 if (cfun->machine->split_stack_arg_pointer != NULL_RTX
26524 && (!REG_P (cfun->machine->split_stack_arg_pointer)
26525 || (REGNO (cfun->machine->split_stack_arg_pointer)
26526 < FIRST_PSEUDO_REGISTER)))
26527 return true;
26529 /* Unfortunately we also need to do some code scanning, since
26530 r12 may have been substituted for the pseudo. */
26531 rtx_insn *insn;
26532 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
26533 FOR_BB_INSNS (bb, insn)
26534 if (NONDEBUG_INSN_P (insn))
26536 /* A call destroys r12. */
26537 if (CALL_P (insn))
26538 return false;
26540 df_ref use;
26541 FOR_EACH_INSN_USE (use, insn)
26543 rtx x = DF_REF_REG (use);
26544 if (REG_P (x) && REGNO (x) == 12)
26545 return true;
26547 df_ref def;
26548 FOR_EACH_INSN_DEF (def, insn)
26550 rtx x = DF_REF_REG (def);
26551 if (REG_P (x) && REGNO (x) == 12)
26552 return false;
26555 return bitmap_bit_p (DF_LR_OUT (bb), 12);
26558 /* Return whether we need to emit an ELFv2 global entry point prologue. */
26560 static bool
26561 rs6000_global_entry_point_needed_p (void)
26563 /* Only needed for the ELFv2 ABI. */
26564 if (DEFAULT_ABI != ABI_ELFv2)
26565 return false;
26567 /* With -msingle-pic-base, we assume the whole program shares the same
26568 TOC, so no global entry point prologues are needed anywhere. */
26569 if (TARGET_SINGLE_PIC_BASE)
26570 return false;
26572 /* Ensure we have a global entry point for thunks. ??? We could
26573 avoid that if the target routine doesn't need a global entry point,
26574 but we do not know whether this is the case at this point. */
26575 if (cfun->is_thunk)
26576 return true;
26578 /* For regular functions, rs6000_emit_prologue sets this flag if the
26579 routine ever uses the TOC pointer. */
26580 return cfun->machine->r2_setup_needed;
26583 /* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS. */
26584 static sbitmap
26585 rs6000_get_separate_components (void)
26587 rs6000_stack_t *info = rs6000_stack_info ();
26589 if (WORLD_SAVE_P (info))
26590 return NULL;
26592 gcc_assert (!(info->savres_strategy & SAVE_MULTIPLE)
26593 && !(info->savres_strategy & REST_MULTIPLE));
26595 /* Component 0 is the save/restore of LR (done via GPR0).
26596 Components 13..31 are the save/restore of GPR13..GPR31.
26597 Components 46..63 are the save/restore of FPR14..FPR31. */
26599 cfun->machine->n_components = 64;
26601 sbitmap components = sbitmap_alloc (cfun->machine->n_components);
26602 bitmap_clear (components);
26604 int reg_size = TARGET_32BIT ? 4 : 8;
26605 int fp_reg_size = 8;
26607 /* The GPRs we need saved to the frame. */
26608 if ((info->savres_strategy & SAVE_INLINE_GPRS)
26609 && (info->savres_strategy & REST_INLINE_GPRS))
26611 int offset = info->gp_save_offset;
26612 if (info->push_p)
26613 offset += info->total_size;
26615 for (unsigned regno = info->first_gp_reg_save; regno < 32; regno++)
26617 if (IN_RANGE (offset, -0x8000, 0x7fff)
26618 && save_reg_p (regno))
26619 bitmap_set_bit (components, regno);
26621 offset += reg_size;
26625 /* Don't mess with the hard frame pointer. */
26626 if (frame_pointer_needed)
26627 bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);
26629 /* Don't mess with the fixed TOC register. */
26630 if ((TARGET_TOC && TARGET_MINIMAL_TOC)
26631 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
26632 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
26633 bitmap_clear_bit (components, RS6000_PIC_OFFSET_TABLE_REGNUM);
26635 /* The FPRs we need saved to the frame. */
26636 if ((info->savres_strategy & SAVE_INLINE_FPRS)
26637 && (info->savres_strategy & REST_INLINE_FPRS))
26639 int offset = info->fp_save_offset;
26640 if (info->push_p)
26641 offset += info->total_size;
26643 for (unsigned regno = info->first_fp_reg_save; regno < 64; regno++)
26645 if (IN_RANGE (offset, -0x8000, 0x7fff) && save_reg_p (regno))
26646 bitmap_set_bit (components, regno);
26648 offset += fp_reg_size;
26652 /* Optimize LR save and restore if we can. This is component 0. Any
26653 out-of-line register save/restore routines need LR. */
26654 if (info->lr_save_p
26655 && !(flag_pic && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN))
26656 && (info->savres_strategy & SAVE_INLINE_GPRS)
26657 && (info->savres_strategy & REST_INLINE_GPRS)
26658 && (info->savres_strategy & SAVE_INLINE_FPRS)
26659 && (info->savres_strategy & REST_INLINE_FPRS)
26660 && (info->savres_strategy & SAVE_INLINE_VRS)
26661 && (info->savres_strategy & REST_INLINE_VRS))
26663 int offset = info->lr_save_offset;
26664 if (info->push_p)
26665 offset += info->total_size;
26666 if (IN_RANGE (offset, -0x8000, 0x7fff))
26667 bitmap_set_bit (components, 0);
26670 return components;
26673 /* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB. */
26674 static sbitmap
26675 rs6000_components_for_bb (basic_block bb)
26677 rs6000_stack_t *info = rs6000_stack_info ();
26679 bitmap in = DF_LIVE_IN (bb);
26680 bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
26681 bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;
26683 sbitmap components = sbitmap_alloc (cfun->machine->n_components);
26684 bitmap_clear (components);
26686 /* A register is used in a bb if it is in the IN, GEN, or KILL sets. */
26688 /* GPRs. */
26689 for (unsigned regno = info->first_gp_reg_save; regno < 32; regno++)
26690 if (bitmap_bit_p (in, regno)
26691 || bitmap_bit_p (gen, regno)
26692 || bitmap_bit_p (kill, regno))
26693 bitmap_set_bit (components, regno);
26695 /* FPRs. */
26696 for (unsigned regno = info->first_fp_reg_save; regno < 64; regno++)
26697 if (bitmap_bit_p (in, regno)
26698 || bitmap_bit_p (gen, regno)
26699 || bitmap_bit_p (kill, regno))
26700 bitmap_set_bit (components, regno);
26702 /* The link register. */
26703 if (bitmap_bit_p (in, LR_REGNO)
26704 || bitmap_bit_p (gen, LR_REGNO)
26705 || bitmap_bit_p (kill, LR_REGNO))
26706 bitmap_set_bit (components, 0);
26708 return components;
26711 /* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS. */
26712 static void
26713 rs6000_disqualify_components (sbitmap components, edge e,
26714 sbitmap edge_components, bool /*is_prologue*/)
26716 /* Our LR pro/epilogue code moves LR via R0, so R0 had better not be
26717 live where we want to place that code. */
26718 if (bitmap_bit_p (edge_components, 0)
26719 && bitmap_bit_p (DF_LIVE_IN (e->dest), 0))
26721 if (dump_file)
26722 fprintf (dump_file, "Disqualifying LR because GPR0 is live "
26723 "on entry to bb %d\n", e->dest->index);
26724 bitmap_clear_bit (components, 0);
26728 /* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS. */
26729 static void
26730 rs6000_emit_prologue_components (sbitmap components)
26732 rs6000_stack_t *info = rs6000_stack_info ();
26733 rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
26734 ? HARD_FRAME_POINTER_REGNUM
26735 : STACK_POINTER_REGNUM);
26737 machine_mode reg_mode = Pmode;
26738 int reg_size = TARGET_32BIT ? 4 : 8;
26739 machine_mode fp_reg_mode = (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
26740 ? DFmode : SFmode;
26741 int fp_reg_size = 8;
26743 /* Prologue for LR. */
26744 if (bitmap_bit_p (components, 0))
26746 rtx reg = gen_rtx_REG (reg_mode, 0);
26747 rtx_insn *insn = emit_move_insn (reg, gen_rtx_REG (reg_mode, LR_REGNO));
26748 RTX_FRAME_RELATED_P (insn) = 1;
26749 add_reg_note (insn, REG_CFA_REGISTER, NULL);
26751 int offset = info->lr_save_offset;
26752 if (info->push_p)
26753 offset += info->total_size;
26755 insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26756 RTX_FRAME_RELATED_P (insn) = 1;
26757 rtx lr = gen_rtx_REG (reg_mode, LR_REGNO);
26758 rtx mem = copy_rtx (SET_DEST (single_set (insn)));
26759 add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (mem, lr));
26762 /* Prologue for the GPRs. */
26763 int offset = info->gp_save_offset;
26764 if (info->push_p)
26765 offset += info->total_size;
26767 for (int i = info->first_gp_reg_save; i < 32; i++)
26769 if (bitmap_bit_p (components, i))
26771 rtx reg = gen_rtx_REG (reg_mode, i);
26772 rtx_insn *insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26773 RTX_FRAME_RELATED_P (insn) = 1;
26774 rtx set = copy_rtx (single_set (insn));
26775 add_reg_note (insn, REG_CFA_OFFSET, set);
26778 offset += reg_size;
26781 /* Prologue for the FPRs. */
26782 offset = info->fp_save_offset;
26783 if (info->push_p)
26784 offset += info->total_size;
26786 for (int i = info->first_fp_reg_save; i < 64; i++)
26788 if (bitmap_bit_p (components, i))
26790 rtx reg = gen_rtx_REG (fp_reg_mode, i);
26791 rtx_insn *insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26792 RTX_FRAME_RELATED_P (insn) = 1;
26793 rtx set = copy_rtx (single_set (insn));
26794 add_reg_note (insn, REG_CFA_OFFSET, set);
26797 offset += fp_reg_size;
26801 /* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS. */
26802 static void
26803 rs6000_emit_epilogue_components (sbitmap components)
26805 rs6000_stack_t *info = rs6000_stack_info ();
26806 rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
26807 ? HARD_FRAME_POINTER_REGNUM
26808 : STACK_POINTER_REGNUM);
26810 machine_mode reg_mode = Pmode;
26811 int reg_size = TARGET_32BIT ? 4 : 8;
26813 machine_mode fp_reg_mode = (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
26814 ? DFmode : SFmode;
26815 int fp_reg_size = 8;
26817 /* Epilogue for the FPRs. */
26818 int offset = info->fp_save_offset;
26819 if (info->push_p)
26820 offset += info->total_size;
26822 for (int i = info->first_fp_reg_save; i < 64; i++)
26824 if (bitmap_bit_p (components, i))
26826 rtx reg = gen_rtx_REG (fp_reg_mode, i);
26827 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26828 RTX_FRAME_RELATED_P (insn) = 1;
26829 add_reg_note (insn, REG_CFA_RESTORE, reg);
26832 offset += fp_reg_size;
26835 /* Epilogue for the GPRs. */
26836 offset = info->gp_save_offset;
26837 if (info->push_p)
26838 offset += info->total_size;
26840 for (int i = info->first_gp_reg_save; i < 32; i++)
26842 if (bitmap_bit_p (components, i))
26844 rtx reg = gen_rtx_REG (reg_mode, i);
26845 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26846 RTX_FRAME_RELATED_P (insn) = 1;
26847 add_reg_note (insn, REG_CFA_RESTORE, reg);
26850 offset += reg_size;
26853 /* Epilogue for LR. */
26854 if (bitmap_bit_p (components, 0))
26856 int offset = info->lr_save_offset;
26857 if (info->push_p)
26858 offset += info->total_size;
26860 rtx reg = gen_rtx_REG (reg_mode, 0);
26861 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26863 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
26864 insn = emit_move_insn (lr, reg);
26865 RTX_FRAME_RELATED_P (insn) = 1;
26866 add_reg_note (insn, REG_CFA_RESTORE, lr);
26870 /* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS. */
26871 static void
26872 rs6000_set_handled_components (sbitmap components)
26874 rs6000_stack_t *info = rs6000_stack_info ();
26876 for (int i = info->first_gp_reg_save; i < 32; i++)
26877 if (bitmap_bit_p (components, i))
26878 cfun->machine->gpr_is_wrapped_separately[i] = true;
26880 for (int i = info->first_fp_reg_save; i < 64; i++)
26881 if (bitmap_bit_p (components, i))
26882 cfun->machine->fpr_is_wrapped_separately[i - 32] = true;
26884 if (bitmap_bit_p (components, 0))
26885 cfun->machine->lr_is_wrapped_separately = true;
26888 /* VRSAVE is a bit vector representing which AltiVec registers
26889 are used. The OS uses this to determine which vector
26890 registers to save on a context switch. We need to save
26891 VRSAVE on the stack frame, add whatever AltiVec registers we
26892 used in this function, and do the corresponding magic in the
26893 epilogue. */
26894 static void
26895 emit_vrsave_prologue (rs6000_stack_t *info, int save_regno,
26896 HOST_WIDE_INT frame_off, rtx frame_reg_rtx)
26898 /* Get VRSAVE into a GPR. */
26899 rtx reg = gen_rtx_REG (SImode, save_regno);
26900 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
26901 if (TARGET_MACHO)
26902 emit_insn (gen_get_vrsave_internal (reg));
26903 else
26904 emit_insn (gen_rtx_SET (reg, vrsave));
26906 /* Save VRSAVE. */
26907 int offset = info->vrsave_save_offset + frame_off;
26908 emit_insn (gen_frame_store (reg, frame_reg_rtx, offset));
26910 /* Include the registers in the mask. */
26911 emit_insn (gen_iorsi3 (reg, reg, GEN_INT (info->vrsave_mask)));
26913 emit_insn (generate_set_vrsave (reg, info, 0));
26916 /* Set up the arg pointer (r12) for -fsplit-stack code. If __morestack was
26917 called, it left the arg pointer to the old stack in r29. Otherwise, the
26918 arg pointer is the top of the current frame. */
26919 static void
26920 emit_split_stack_prologue (rs6000_stack_t *info, rtx_insn *sp_adjust,
26921 HOST_WIDE_INT frame_off, rtx frame_reg_rtx)
26923 cfun->machine->split_stack_argp_used = true;
26925 if (sp_adjust)
26927 rtx r12 = gen_rtx_REG (Pmode, 12);
26928 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26929 rtx set_r12 = gen_rtx_SET (r12, sp_reg_rtx);
26930 emit_insn_before (set_r12, sp_adjust);
26932 else if (frame_off != 0 || REGNO (frame_reg_rtx) != 12)
26934 rtx r12 = gen_rtx_REG (Pmode, 12);
26935 if (frame_off == 0)
26936 emit_move_insn (r12, frame_reg_rtx);
26937 else
26938 emit_insn (gen_add3_insn (r12, frame_reg_rtx, GEN_INT (frame_off)));
26941 if (info->push_p)
26943 rtx r12 = gen_rtx_REG (Pmode, 12);
26944 rtx r29 = gen_rtx_REG (Pmode, 29);
26945 rtx cr7 = gen_rtx_REG (CCUNSmode, CR7_REGNO);
26946 rtx not_more = gen_label_rtx ();
26947 rtx jump;
26949 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
26950 gen_rtx_GEU (VOIDmode, cr7, const0_rtx),
26951 gen_rtx_LABEL_REF (VOIDmode, not_more),
26952 pc_rtx);
26953 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
26954 JUMP_LABEL (jump) = not_more;
26955 LABEL_NUSES (not_more) += 1;
26956 emit_move_insn (r12, r29);
26957 emit_label (not_more);
26961 /* Emit function prologue as insns. */
26963 void
26964 rs6000_emit_prologue (void)
26966 rs6000_stack_t *info = rs6000_stack_info ();
26967 machine_mode reg_mode = Pmode;
26968 int reg_size = TARGET_32BIT ? 4 : 8;
26969 machine_mode fp_reg_mode = (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
26970 ? DFmode : SFmode;
26971 int fp_reg_size = 8;
26972 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26973 rtx frame_reg_rtx = sp_reg_rtx;
26974 unsigned int cr_save_regno;
26975 rtx cr_save_rtx = NULL_RTX;
26976 rtx_insn *insn;
26977 int strategy;
26978 int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
26979 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
26980 && call_used_regs[STATIC_CHAIN_REGNUM]);
26981 int using_split_stack = (flag_split_stack
26982 && (lookup_attribute ("no_split_stack",
26983 DECL_ATTRIBUTES (cfun->decl))
26984 == NULL));
26986 /* Offset to top of frame for frame_reg and sp respectively. */
26987 HOST_WIDE_INT frame_off = 0;
26988 HOST_WIDE_INT sp_off = 0;
26989 /* sp_adjust is the stack adjusting instruction, tracked so that the
26990 insn setting up the split-stack arg pointer can be emitted just
26991 prior to it, when r12 is not used here for other purposes. */
26992 rtx_insn *sp_adjust = 0;
26994 #if CHECKING_P
26995 /* Track and check usage of r0, r11, r12. */
26996 int reg_inuse = using_static_chain_p ? 1 << 11 : 0;
26997 #define START_USE(R) do \
26999 gcc_assert ((reg_inuse & (1 << (R))) == 0); \
27000 reg_inuse |= 1 << (R); \
27001 } while (0)
27002 #define END_USE(R) do \
27004 gcc_assert ((reg_inuse & (1 << (R))) != 0); \
27005 reg_inuse &= ~(1 << (R)); \
27006 } while (0)
27007 #define NOT_INUSE(R) do \
27009 gcc_assert ((reg_inuse & (1 << (R))) == 0); \
27010 } while (0)
27011 #else
27012 #define START_USE(R) do {} while (0)
27013 #define END_USE(R) do {} while (0)
27014 #define NOT_INUSE(R) do {} while (0)
27015 #endif
27017 if (DEFAULT_ABI == ABI_ELFv2
27018 && !TARGET_SINGLE_PIC_BASE)
27020 cfun->machine->r2_setup_needed = df_regs_ever_live_p (TOC_REGNUM);
27022 /* With -mminimal-toc we may generate an extra use of r2 below. */
27023 if (TARGET_TOC && TARGET_MINIMAL_TOC
27024 && !constant_pool_empty_p ())
27025 cfun->machine->r2_setup_needed = true;
27029 if (flag_stack_usage_info)
27030 current_function_static_stack_size = info->total_size;
27032 if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
27034 HOST_WIDE_INT size = info->total_size;
27036 if (crtl->is_leaf && !cfun->calls_alloca)
27038 if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
27039 rs6000_emit_probe_stack_range (get_stack_check_protect (),
27040 size - get_stack_check_protect ());
27042 else if (size > 0)
27043 rs6000_emit_probe_stack_range (get_stack_check_protect (), size);
27046 if (TARGET_FIX_AND_CONTINUE)
27048 /* gdb on darwin arranges to forward a function from the old
27049 address by modifying the first 5 instructions of the function
27050 to branch to the overriding function. This is necessary to
27051 permit function pointers that point to the old function to
27052 actually forward to the new function. */
27053 emit_insn (gen_nop ());
27054 emit_insn (gen_nop ());
27055 emit_insn (gen_nop ());
27056 emit_insn (gen_nop ());
27057 emit_insn (gen_nop ());
27060 /* Handle world saves specially here. */
27061 if (WORLD_SAVE_P (info))
27063 int i, j, sz;
27064 rtx treg;
27065 rtvec p;
27066 rtx reg0;
27068 /* save_world expects lr in r0. */
27069 reg0 = gen_rtx_REG (Pmode, 0);
27070 if (info->lr_save_p)
27072 insn = emit_move_insn (reg0,
27073 gen_rtx_REG (Pmode, LR_REGNO));
27074 RTX_FRAME_RELATED_P (insn) = 1;
27077 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
27078 assumptions about the offsets of various bits of the stack
27079 frame. */
27080 gcc_assert (info->gp_save_offset == -220
27081 && info->fp_save_offset == -144
27082 && info->lr_save_offset == 8
27083 && info->cr_save_offset == 4
27084 && info->push_p
27085 && info->lr_save_p
27086 && (!crtl->calls_eh_return
27087 || info->ehrd_offset == -432)
27088 && info->vrsave_save_offset == -224
27089 && info->altivec_save_offset == -416);
27091 treg = gen_rtx_REG (SImode, 11);
27092 emit_move_insn (treg, GEN_INT (-info->total_size));
27094 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
27095 in R11. It also clobbers R12, so beware! */
27097 /* Preserve CR2 for save_world prologues */
27098 sz = 5;
27099 sz += 32 - info->first_gp_reg_save;
27100 sz += 64 - info->first_fp_reg_save;
27101 sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
27102 p = rtvec_alloc (sz);
27103 j = 0;
27104 RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
27105 gen_rtx_REG (SImode,
27106 LR_REGNO));
27107 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
27108 gen_rtx_SYMBOL_REF (Pmode,
27109 "*save_world"));
27110 /* We do floats first so that the instruction pattern matches
27111 properly. */
27112 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
27113 RTVEC_ELT (p, j++)
27114 = gen_frame_store (gen_rtx_REG (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
27115 ? DFmode : SFmode,
27116 info->first_fp_reg_save + i),
27117 frame_reg_rtx,
27118 info->fp_save_offset + frame_off + 8 * i);
27119 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
27120 RTVEC_ELT (p, j++)
27121 = gen_frame_store (gen_rtx_REG (V4SImode,
27122 info->first_altivec_reg_save + i),
27123 frame_reg_rtx,
27124 info->altivec_save_offset + frame_off + 16 * i);
27125 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
27126 RTVEC_ELT (p, j++)
27127 = gen_frame_store (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
27128 frame_reg_rtx,
27129 info->gp_save_offset + frame_off + reg_size * i);
27131 /* CR register traditionally saved as CR2. */
27132 RTVEC_ELT (p, j++)
27133 = gen_frame_store (gen_rtx_REG (SImode, CR2_REGNO),
27134 frame_reg_rtx, info->cr_save_offset + frame_off);
27135 /* Explain about use of R0. */
27136 if (info->lr_save_p)
27137 RTVEC_ELT (p, j++)
27138 = gen_frame_store (reg0,
27139 frame_reg_rtx, info->lr_save_offset + frame_off);
27140 /* Explain what happens to the stack pointer. */
27142 rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
27143 RTVEC_ELT (p, j++) = gen_rtx_SET (sp_reg_rtx, newval);
27146 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27147 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
27148 treg, GEN_INT (-info->total_size));
27149 sp_off = frame_off = info->total_size;
27152 strategy = info->savres_strategy;
27154 /* For V.4, update stack before we do any saving and set back pointer. */
27155 if (! WORLD_SAVE_P (info)
27156 && info->push_p
27157 && (DEFAULT_ABI == ABI_V4
27158 || crtl->calls_eh_return))
27160 bool need_r11 = (!(strategy & SAVE_INLINE_FPRS)
27161 || !(strategy & SAVE_INLINE_GPRS)
27162 || !(strategy & SAVE_INLINE_VRS));
27163 int ptr_regno = -1;
27164 rtx ptr_reg = NULL_RTX;
27165 int ptr_off = 0;
27167 if (info->total_size < 32767)
27168 frame_off = info->total_size;
27169 else if (need_r11)
27170 ptr_regno = 11;
27171 else if (info->cr_save_p
27172 || info->lr_save_p
27173 || info->first_fp_reg_save < 64
27174 || info->first_gp_reg_save < 32
27175 || info->altivec_size != 0
27176 || info->vrsave_size != 0
27177 || crtl->calls_eh_return)
27178 ptr_regno = 12;
27179 else
27181 /* The prologue won't be saving any regs so there is no need
27182 to set up a frame register to access any frame save area.
27183 We also won't be using frame_off anywhere below, but set
27184 the correct value anyway to protect against future
27185 changes to this function. */
27186 frame_off = info->total_size;
27188 if (ptr_regno != -1)
27190 /* Set up the frame offset to that needed by the first
27191 out-of-line save function. */
27192 START_USE (ptr_regno);
27193 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
27194 frame_reg_rtx = ptr_reg;
27195 if (!(strategy & SAVE_INLINE_FPRS) && info->fp_size != 0)
27196 gcc_checking_assert (info->fp_save_offset + info->fp_size == 0);
27197 else if (!(strategy & SAVE_INLINE_GPRS) && info->first_gp_reg_save < 32)
27198 ptr_off = info->gp_save_offset + info->gp_size;
27199 else if (!(strategy & SAVE_INLINE_VRS) && info->altivec_size != 0)
27200 ptr_off = info->altivec_save_offset + info->altivec_size;
27201 frame_off = -ptr_off;
27203 sp_adjust = rs6000_emit_allocate_stack (info->total_size,
27204 ptr_reg, ptr_off);
27205 if (REGNO (frame_reg_rtx) == 12)
27206 sp_adjust = 0;
27207 sp_off = info->total_size;
27208 if (frame_reg_rtx != sp_reg_rtx)
27209 rs6000_emit_stack_tie (frame_reg_rtx, false);
27212 /* If we use the link register, get it into r0. */
27213 if (!WORLD_SAVE_P (info) && info->lr_save_p
27214 && !cfun->machine->lr_is_wrapped_separately)
27216 rtx addr, reg, mem;
27218 reg = gen_rtx_REG (Pmode, 0);
27219 START_USE (0);
27220 insn = emit_move_insn (reg, gen_rtx_REG (Pmode, LR_REGNO));
27221 RTX_FRAME_RELATED_P (insn) = 1;
27223 if (!(strategy & (SAVE_NOINLINE_GPRS_SAVES_LR
27224 | SAVE_NOINLINE_FPRS_SAVES_LR)))
27226 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
27227 GEN_INT (info->lr_save_offset + frame_off));
27228 mem = gen_rtx_MEM (Pmode, addr);
27229 /* This should not be of rs6000_sr_alias_set, because of
27230 __builtin_return_address. */
27232 insn = emit_move_insn (mem, reg);
27233 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
27234 NULL_RTX, NULL_RTX);
27235 END_USE (0);
27239 /* If we need to save CR, put it into r12 or r11. Choose r12 except when
27240 r12 will be needed by out-of-line gpr restore. */
27241 cr_save_regno = ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
27242 && !(strategy & (SAVE_INLINE_GPRS
27243 | SAVE_NOINLINE_GPRS_SAVES_LR))
27244 ? 11 : 12);
27245 if (!WORLD_SAVE_P (info)
27246 && info->cr_save_p
27247 && REGNO (frame_reg_rtx) != cr_save_regno
27248 && !(using_static_chain_p && cr_save_regno == 11)
27249 && !(using_split_stack && cr_save_regno == 12 && sp_adjust))
27251 cr_save_rtx = gen_rtx_REG (SImode, cr_save_regno);
27252 START_USE (cr_save_regno);
27253 rs6000_emit_prologue_move_from_cr (cr_save_rtx);
27256 /* Do any required saving of fpr's. If only one or two to save, do
27257 it ourselves. Otherwise, call function. */
27258 if (!WORLD_SAVE_P (info) && (strategy & SAVE_INLINE_FPRS))
27260 int offset = info->fp_save_offset + frame_off;
27261 for (int i = info->first_fp_reg_save; i < 64; i++)
27263 if (save_reg_p (i)
27264 && !cfun->machine->fpr_is_wrapped_separately[i - 32])
27265 emit_frame_save (frame_reg_rtx, fp_reg_mode, i, offset,
27266 sp_off - frame_off);
27268 offset += fp_reg_size;
27271 else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
27273 bool lr = (strategy & SAVE_NOINLINE_FPRS_SAVES_LR) != 0;
27274 int sel = SAVRES_SAVE | SAVRES_FPR | (lr ? SAVRES_LR : 0);
27275 unsigned ptr_regno = ptr_regno_for_savres (sel);
27276 rtx ptr_reg = frame_reg_rtx;
27278 if (REGNO (frame_reg_rtx) == ptr_regno)
27279 gcc_checking_assert (frame_off == 0);
27280 else
27282 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
27283 NOT_INUSE (ptr_regno);
27284 emit_insn (gen_add3_insn (ptr_reg,
27285 frame_reg_rtx, GEN_INT (frame_off)));
27287 insn = rs6000_emit_savres_rtx (info, ptr_reg,
27288 info->fp_save_offset,
27289 info->lr_save_offset,
27290 DFmode, sel);
27291 rs6000_frame_related (insn, ptr_reg, sp_off,
27292 NULL_RTX, NULL_RTX);
27293 if (lr)
27294 END_USE (0);
27297 /* Save GPRs. This is done as a PARALLEL if we are using
27298 the store-multiple instructions. */
27299 if (!WORLD_SAVE_P (info) && !(strategy & SAVE_INLINE_GPRS))
27301 bool lr = (strategy & SAVE_NOINLINE_GPRS_SAVES_LR) != 0;
27302 int sel = SAVRES_SAVE | SAVRES_GPR | (lr ? SAVRES_LR : 0);
27303 unsigned ptr_regno = ptr_regno_for_savres (sel);
27304 rtx ptr_reg = frame_reg_rtx;
27305 bool ptr_set_up = REGNO (ptr_reg) == ptr_regno;
27306 int end_save = info->gp_save_offset + info->gp_size;
27307 int ptr_off;
27309 if (ptr_regno == 12)
27310 sp_adjust = 0;
27311 if (!ptr_set_up)
27312 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
27314 /* Need to adjust r11 (r12) if we saved any FPRs. */
27315 if (end_save + frame_off != 0)
27317 rtx offset = GEN_INT (end_save + frame_off);
27319 if (ptr_set_up)
27320 frame_off = -end_save;
27321 else
27322 NOT_INUSE (ptr_regno);
27323 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
27325 else if (!ptr_set_up)
27327 NOT_INUSE (ptr_regno);
27328 emit_move_insn (ptr_reg, frame_reg_rtx);
27330 ptr_off = -end_save;
27331 insn = rs6000_emit_savres_rtx (info, ptr_reg,
27332 info->gp_save_offset + ptr_off,
27333 info->lr_save_offset + ptr_off,
27334 reg_mode, sel);
27335 rs6000_frame_related (insn, ptr_reg, sp_off - ptr_off,
27336 NULL_RTX, NULL_RTX);
27337 if (lr)
27338 END_USE (0);
27340 else if (!WORLD_SAVE_P (info) && (strategy & SAVE_MULTIPLE))
27342 rtvec p;
27343 int i;
27344 p = rtvec_alloc (32 - info->first_gp_reg_save);
27345 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
27346 RTVEC_ELT (p, i)
27347 = gen_frame_store (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
27348 frame_reg_rtx,
27349 info->gp_save_offset + frame_off + reg_size * i);
27350 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27351 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
27352 NULL_RTX, NULL_RTX);
27354 else if (!WORLD_SAVE_P (info))
27356 int offset = info->gp_save_offset + frame_off;
27357 for (int i = info->first_gp_reg_save; i < 32; i++)
27359 if (save_reg_p (i)
27360 && !cfun->machine->gpr_is_wrapped_separately[i])
27361 emit_frame_save (frame_reg_rtx, reg_mode, i, offset,
27362 sp_off - frame_off);
27364 offset += reg_size;
27368 if (crtl->calls_eh_return)
27370 unsigned int i;
27371 rtvec p;
27373 for (i = 0; ; ++i)
27375 unsigned int regno = EH_RETURN_DATA_REGNO (i);
27376 if (regno == INVALID_REGNUM)
27377 break;
27380 p = rtvec_alloc (i);
27382 for (i = 0; ; ++i)
27384 unsigned int regno = EH_RETURN_DATA_REGNO (i);
27385 if (regno == INVALID_REGNUM)
27386 break;
27388 rtx set
27389 = gen_frame_store (gen_rtx_REG (reg_mode, regno),
27390 sp_reg_rtx,
27391 info->ehrd_offset + sp_off + reg_size * (int) i);
27392 RTVEC_ELT (p, i) = set;
27393 RTX_FRAME_RELATED_P (set) = 1;
27396 insn = emit_insn (gen_blockage ());
27397 RTX_FRAME_RELATED_P (insn) = 1;
27398 add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_PARALLEL (VOIDmode, p));
27401 /* In AIX ABI we need to make sure r2 is really saved. */
27402 if (TARGET_AIX && crtl->calls_eh_return)
27404 rtx tmp_reg, tmp_reg_si, hi, lo, compare_result, toc_save_done, jump;
27405 rtx join_insn, note;
27406 rtx_insn *save_insn;
27407 long toc_restore_insn;
27409 tmp_reg = gen_rtx_REG (Pmode, 11);
27410 tmp_reg_si = gen_rtx_REG (SImode, 11);
27411 if (using_static_chain_p)
27413 START_USE (0);
27414 emit_move_insn (gen_rtx_REG (Pmode, 0), tmp_reg);
27416 else
27417 START_USE (11);
27418 emit_move_insn (tmp_reg, gen_rtx_REG (Pmode, LR_REGNO));
27419 /* Peek at instruction to which this function returns. If it's
27420 restoring r2, then we know we've already saved r2. We can't
27421 unconditionally save r2 because the value we have will already
27422 be updated if we arrived at this function via a plt call or
27423 toc adjusting stub. */
27424 emit_move_insn (tmp_reg_si, gen_rtx_MEM (SImode, tmp_reg));
27425 toc_restore_insn = ((TARGET_32BIT ? 0x80410000 : 0xE8410000)
27426 + RS6000_TOC_SAVE_SLOT);
27427 hi = gen_int_mode (toc_restore_insn & ~0xffff, SImode);
27428 emit_insn (gen_xorsi3 (tmp_reg_si, tmp_reg_si, hi));
27429 compare_result = gen_rtx_REG (CCUNSmode, CR0_REGNO);
27430 validate_condition_mode (EQ, CCUNSmode);
27431 lo = gen_int_mode (toc_restore_insn & 0xffff, SImode);
27432 emit_insn (gen_rtx_SET (compare_result,
27433 gen_rtx_COMPARE (CCUNSmode, tmp_reg_si, lo)));
27434 toc_save_done = gen_label_rtx ();
27435 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
27436 gen_rtx_EQ (VOIDmode, compare_result,
27437 const0_rtx),
27438 gen_rtx_LABEL_REF (VOIDmode, toc_save_done),
27439 pc_rtx);
27440 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
27441 JUMP_LABEL (jump) = toc_save_done;
27442 LABEL_NUSES (toc_save_done) += 1;
27444 save_insn = emit_frame_save (frame_reg_rtx, reg_mode,
27445 TOC_REGNUM, frame_off + RS6000_TOC_SAVE_SLOT,
27446 sp_off - frame_off);
27448 emit_label (toc_save_done);
27450 /* ??? If we leave SAVE_INSN as marked as saving R2, then we'll
27451 have a CFG that has different saves along different paths.
27452 Move the note to a dummy blockage insn, which describes that
27453 R2 is unconditionally saved after the label. */
27454 /* ??? An alternate representation might be a special insn pattern
27455 containing both the branch and the store. That might let the
27456 code that minimizes the number of DW_CFA_advance opcodes better
27457 freedom in placing the annotations. */
27458 note = find_reg_note (save_insn, REG_FRAME_RELATED_EXPR, NULL);
27459 if (note)
27460 remove_note (save_insn, note);
27461 else
27462 note = alloc_reg_note (REG_FRAME_RELATED_EXPR,
27463 copy_rtx (PATTERN (save_insn)), NULL_RTX);
27464 RTX_FRAME_RELATED_P (save_insn) = 0;
27466 join_insn = emit_insn (gen_blockage ());
27467 REG_NOTES (join_insn) = note;
27468 RTX_FRAME_RELATED_P (join_insn) = 1;
27470 if (using_static_chain_p)
27472 emit_move_insn (tmp_reg, gen_rtx_REG (Pmode, 0));
27473 END_USE (0);
27475 else
27476 END_USE (11);
27479 /* Save CR if we use any that must be preserved. */
27480 if (!WORLD_SAVE_P (info) && info->cr_save_p)
27482 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
27483 GEN_INT (info->cr_save_offset + frame_off));
27484 rtx mem = gen_frame_mem (SImode, addr);
27486 /* If we didn't copy cr before, do so now using r0. */
27487 if (cr_save_rtx == NULL_RTX)
27489 START_USE (0);
27490 cr_save_rtx = gen_rtx_REG (SImode, 0);
27491 rs6000_emit_prologue_move_from_cr (cr_save_rtx);
27494 /* Saving CR requires a two-instruction sequence: one instruction
27495 to move the CR to a general-purpose register, and a second
27496 instruction that stores the GPR to memory.
27498 We do not emit any DWARF CFI records for the first of these,
27499 because we cannot properly represent the fact that CR is saved in
27500 a register. One reason is that we cannot express that multiple
27501 CR fields are saved; another reason is that on 64-bit, the size
27502 of the CR register in DWARF (4 bytes) differs from the size of
27503 a general-purpose register.
27505 This means if any intervening instruction were to clobber one of
27506 the call-saved CR fields, we'd have incorrect CFI. To prevent
27507 this from happening, we mark the store to memory as a use of
27508 those CR fields, which prevents any such instruction from being
27509 scheduled in between the two instructions. */
27510 rtx crsave_v[9];
27511 int n_crsave = 0;
27512 int i;
27514 crsave_v[n_crsave++] = gen_rtx_SET (mem, cr_save_rtx);
27515 for (i = 0; i < 8; i++)
27516 if (save_reg_p (CR0_REGNO + i))
27517 crsave_v[n_crsave++]
27518 = gen_rtx_USE (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO + i));
27520 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode,
27521 gen_rtvec_v (n_crsave, crsave_v)));
27522 END_USE (REGNO (cr_save_rtx));
27524 /* Now, there's no way that dwarf2out_frame_debug_expr is going to
27525 understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)',
27526 so we need to construct a frame expression manually. */
27527 RTX_FRAME_RELATED_P (insn) = 1;
27529 /* Update address to be stack-pointer relative, like
27530 rs6000_frame_related would do. */
27531 addr = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM),
27532 GEN_INT (info->cr_save_offset + sp_off));
27533 mem = gen_frame_mem (SImode, addr);
27535 if (DEFAULT_ABI == ABI_ELFv2)
27537 /* In the ELFv2 ABI we generate separate CFI records for each
27538 CR field that was actually saved. They all point to the
27539 same 32-bit stack slot. */
27540 rtx crframe[8];
27541 int n_crframe = 0;
27543 for (i = 0; i < 8; i++)
27544 if (save_reg_p (CR0_REGNO + i))
27546 crframe[n_crframe]
27547 = gen_rtx_SET (mem, gen_rtx_REG (SImode, CR0_REGNO + i));
27549 RTX_FRAME_RELATED_P (crframe[n_crframe]) = 1;
27550 n_crframe++;
27553 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
27554 gen_rtx_PARALLEL (VOIDmode,
27555 gen_rtvec_v (n_crframe, crframe)));
27557 else
27559 /* In other ABIs, by convention, we use a single CR regnum to
27560 represent the fact that all call-saved CR fields are saved.
27561 We use CR2_REGNO to be compatible with gcc-2.95 on Linux. */
27562 rtx set = gen_rtx_SET (mem, gen_rtx_REG (SImode, CR2_REGNO));
27563 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
27567 /* In the ELFv2 ABI we need to save all call-saved CR fields into
27568 *separate* slots if the routine calls __builtin_eh_return, so
27569 that they can be independently restored by the unwinder. */
27570 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
27572 int i, cr_off = info->ehcr_offset;
27573 rtx crsave;
27575 /* ??? We might get better performance by using multiple mfocrf
27576 instructions. */
27577 crsave = gen_rtx_REG (SImode, 0);
27578 emit_insn (gen_prologue_movesi_from_cr (crsave));
27580 for (i = 0; i < 8; i++)
27581 if (!call_used_regs[CR0_REGNO + i])
27583 rtvec p = rtvec_alloc (2);
27584 RTVEC_ELT (p, 0)
27585 = gen_frame_store (crsave, frame_reg_rtx, cr_off + frame_off);
27586 RTVEC_ELT (p, 1)
27587 = gen_rtx_USE (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO + i));
27589 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27591 RTX_FRAME_RELATED_P (insn) = 1;
27592 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
27593 gen_frame_store (gen_rtx_REG (SImode, CR0_REGNO + i),
27594 sp_reg_rtx, cr_off + sp_off));
27596 cr_off += reg_size;
27600 /* If we are emitting stack probes, but allocate no stack, then
27601 just note that in the dump file. */
27602 if (flag_stack_clash_protection
27603 && dump_file
27604 && !info->push_p)
27605 dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
27607 /* Update stack and set back pointer unless this is V.4,
27608 for which it was done previously. */
27609 if (!WORLD_SAVE_P (info) && info->push_p
27610 && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
27612 rtx ptr_reg = NULL;
27613 int ptr_off = 0;
27615 /* If saving altivec regs we need to be able to address all save
27616 locations using a 16-bit offset. */
27617 if ((strategy & SAVE_INLINE_VRS) == 0
27618 || (info->altivec_size != 0
27619 && (info->altivec_save_offset + info->altivec_size - 16
27620 + info->total_size - frame_off) > 32767)
27621 || (info->vrsave_size != 0
27622 && (info->vrsave_save_offset
27623 + info->total_size - frame_off) > 32767))
27625 int sel = SAVRES_SAVE | SAVRES_VR;
27626 unsigned ptr_regno = ptr_regno_for_savres (sel);
27628 if (using_static_chain_p
27629 && ptr_regno == STATIC_CHAIN_REGNUM)
27630 ptr_regno = 12;
27631 if (REGNO (frame_reg_rtx) != ptr_regno)
27632 START_USE (ptr_regno);
27633 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
27634 frame_reg_rtx = ptr_reg;
27635 ptr_off = info->altivec_save_offset + info->altivec_size;
27636 frame_off = -ptr_off;
27638 else if (REGNO (frame_reg_rtx) == 1)
27639 frame_off = info->total_size;
27640 sp_adjust = rs6000_emit_allocate_stack (info->total_size,
27641 ptr_reg, ptr_off);
27642 if (REGNO (frame_reg_rtx) == 12)
27643 sp_adjust = 0;
27644 sp_off = info->total_size;
27645 if (frame_reg_rtx != sp_reg_rtx)
27646 rs6000_emit_stack_tie (frame_reg_rtx, false);
27649 /* Set frame pointer, if needed. */
27650 if (frame_pointer_needed)
27652 insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
27653 sp_reg_rtx);
27654 RTX_FRAME_RELATED_P (insn) = 1;
27657 /* Save AltiVec registers if needed. Save here because the red zone does
27658 not always include AltiVec registers. */
27659 if (!WORLD_SAVE_P (info)
27660 && info->altivec_size != 0 && (strategy & SAVE_INLINE_VRS) == 0)
27662 int end_save = info->altivec_save_offset + info->altivec_size;
27663 int ptr_off;
27664 /* Oddly, the vector save/restore functions point r0 at the end
27665 of the save area, then use r11 or r12 to load offsets for
27666 [reg+reg] addressing. */
27667 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
27668 int scratch_regno = ptr_regno_for_savres (SAVRES_SAVE | SAVRES_VR);
27669 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
27671 gcc_checking_assert (scratch_regno == 11 || scratch_regno == 12);
27672 NOT_INUSE (0);
27673 if (scratch_regno == 12)
27674 sp_adjust = 0;
27675 if (end_save + frame_off != 0)
27677 rtx offset = GEN_INT (end_save + frame_off);
27679 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
27681 else
27682 emit_move_insn (ptr_reg, frame_reg_rtx);
27684 ptr_off = -end_save;
27685 insn = rs6000_emit_savres_rtx (info, scratch_reg,
27686 info->altivec_save_offset + ptr_off,
27687 0, V4SImode, SAVRES_SAVE | SAVRES_VR);
27688 rs6000_frame_related (insn, scratch_reg, sp_off - ptr_off,
27689 NULL_RTX, NULL_RTX);
27690 if (REGNO (frame_reg_rtx) == REGNO (scratch_reg))
27692 /* The oddity mentioned above clobbered our frame reg. */
27693 emit_move_insn (frame_reg_rtx, ptr_reg);
27694 frame_off = ptr_off;
27697 else if (!WORLD_SAVE_P (info)
27698 && info->altivec_size != 0)
27700 int i;
27702 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27703 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
27705 rtx areg, savereg, mem;
27706 HOST_WIDE_INT offset;
27708 offset = (info->altivec_save_offset + frame_off
27709 + 16 * (i - info->first_altivec_reg_save));
27711 savereg = gen_rtx_REG (V4SImode, i);
27713 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
27715 mem = gen_frame_mem (V4SImode,
27716 gen_rtx_PLUS (Pmode, frame_reg_rtx,
27717 GEN_INT (offset)));
27718 insn = emit_insn (gen_rtx_SET (mem, savereg));
27719 areg = NULL_RTX;
27721 else
27723 NOT_INUSE (0);
27724 areg = gen_rtx_REG (Pmode, 0);
27725 emit_move_insn (areg, GEN_INT (offset));
27727 /* AltiVec addressing mode is [reg+reg]. */
27728 mem = gen_frame_mem (V4SImode,
27729 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));
27731 /* Rather than emitting a generic move, force use of the stvx
27732 instruction, which we always want on ISA 2.07 (power8) systems.
27733 In particular we don't want xxpermdi/stxvd2x for little
27734 endian. */
27735 insn = emit_insn (gen_altivec_stvx_v4si_internal (mem, savereg));
27738 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
27739 areg, GEN_INT (offset));
27743 /* VRSAVE is a bit vector representing which AltiVec registers
27744 are used. The OS uses this to determine which vector
27745 registers to save on a context switch. We need to save
27746 VRSAVE on the stack frame, add whatever AltiVec registers we
27747 used in this function, and do the corresponding magic in the
27748 epilogue. */
27750 if (!WORLD_SAVE_P (info) && info->vrsave_size != 0)
27752 /* Get VRSAVE into a GPR. Note that ABI_V4 and ABI_DARWIN might
27753 be using r12 as frame_reg_rtx and r11 as the static chain
27754 pointer for nested functions. */
27755 int save_regno = 12;
27756 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
27757 && !using_static_chain_p)
27758 save_regno = 11;
27759 else if (using_split_stack || REGNO (frame_reg_rtx) == 12)
27761 save_regno = 11;
27762 if (using_static_chain_p)
27763 save_regno = 0;
27765 NOT_INUSE (save_regno);
27767 emit_vrsave_prologue (info, save_regno, frame_off, frame_reg_rtx);
27770 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
27771 if (!TARGET_SINGLE_PIC_BASE
27772 && ((TARGET_TOC && TARGET_MINIMAL_TOC
27773 && !constant_pool_empty_p ())
27774 || (DEFAULT_ABI == ABI_V4
27775 && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
27776 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))))
27778 /* If emit_load_toc_table will use the link register, we need to save
27779 it. We use R12 for this purpose because emit_load_toc_table
27780 can use register 0. This allows us to use a plain 'blr' to return
27781 from the procedure more often. */
27782 int save_LR_around_toc_setup = (TARGET_ELF
27783 && DEFAULT_ABI == ABI_V4
27784 && flag_pic
27785 && ! info->lr_save_p
27786 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0);
27787 if (save_LR_around_toc_setup)
27789 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27790 rtx tmp = gen_rtx_REG (Pmode, 12);
27792 sp_adjust = 0;
27793 insn = emit_move_insn (tmp, lr);
27794 RTX_FRAME_RELATED_P (insn) = 1;
27796 rs6000_emit_load_toc_table (TRUE);
27798 insn = emit_move_insn (lr, tmp);
27799 add_reg_note (insn, REG_CFA_RESTORE, lr);
27800 RTX_FRAME_RELATED_P (insn) = 1;
27802 else
27803 rs6000_emit_load_toc_table (TRUE);
27806 #if TARGET_MACHO
27807 if (!TARGET_SINGLE_PIC_BASE
27808 && DEFAULT_ABI == ABI_DARWIN
27809 && flag_pic && crtl->uses_pic_offset_table)
27811 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27812 rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);
27814 /* Save and restore LR locally around this call (in R0). */
27815 if (!info->lr_save_p)
27816 emit_move_insn (gen_rtx_REG (Pmode, 0), lr);
27818 emit_insn (gen_load_macho_picbase (src));
27820 emit_move_insn (gen_rtx_REG (Pmode,
27821 RS6000_PIC_OFFSET_TABLE_REGNUM),
27822 lr);
27824 if (!info->lr_save_p)
27825 emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
27827 #endif
27829 /* If we need to, save the TOC register after doing the stack setup.
27830 Do not emit eh frame info for this save. The unwinder wants info,
27831 conceptually attached to instructions in this function, about
27832 register values in the caller of this function. This R2 may have
27833 already been changed from the value in the caller.
27834 We don't attempt to write accurate DWARF EH frame info for R2
27835 because code emitted by gcc for a (non-pointer) function call
27836 doesn't save and restore R2. Instead, R2 is managed out-of-line
27837 by a linker generated plt call stub when the function resides in
27838 a shared library. This behavior is costly to describe in DWARF,
27839 both in terms of the size of DWARF info and the time taken in the
27840 unwinder to interpret it. R2 changes, apart from the
27841 calls_eh_return case earlier in this function, are handled by
27842 linux-unwind.h frob_update_context. */
27843 if (rs6000_save_toc_in_prologue_p ())
27845 rtx reg = gen_rtx_REG (reg_mode, TOC_REGNUM);
27846 emit_insn (gen_frame_store (reg, sp_reg_rtx, RS6000_TOC_SAVE_SLOT));
27849 /* Set up the arg pointer (r12) for -fsplit-stack code. */
27850 if (using_split_stack && split_stack_arg_pointer_used_p ())
27851 emit_split_stack_prologue (info, sp_adjust, frame_off, frame_reg_rtx);
27854 /* Output .extern statements for the save/restore routines we use. */
27856 static void
27857 rs6000_output_savres_externs (FILE *file)
27859 rs6000_stack_t *info = rs6000_stack_info ();
27861 if (TARGET_DEBUG_STACK)
27862 debug_stack_info (info);
27864 /* Write .extern for any function we will call to save and restore
27865 fp values. */
27866 if (info->first_fp_reg_save < 64
27867 && !TARGET_MACHO
27868 && !TARGET_ELF)
27870 char *name;
27871 int regno = info->first_fp_reg_save - 32;
27873 if ((info->savres_strategy & SAVE_INLINE_FPRS) == 0)
27875 bool lr = (info->savres_strategy & SAVE_NOINLINE_FPRS_SAVES_LR) != 0;
27876 int sel = SAVRES_SAVE | SAVRES_FPR | (lr ? SAVRES_LR : 0);
27877 name = rs6000_savres_routine_name (regno, sel);
27878 fprintf (file, "\t.extern %s\n", name);
27880 if ((info->savres_strategy & REST_INLINE_FPRS) == 0)
27882 bool lr = (info->savres_strategy
27883 & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
27884 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
27885 name = rs6000_savres_routine_name (regno, sel);
27886 fprintf (file, "\t.extern %s\n", name);
27891 /* Write function prologue. */
27893 static void
27894 rs6000_output_function_prologue (FILE *file)
27896 if (!cfun->is_thunk)
27897 rs6000_output_savres_externs (file);
27899 /* ELFv2 ABI r2 setup code and local entry point. This must follow
27900 immediately after the global entry point label. */
27901 if (rs6000_global_entry_point_needed_p ())
27903 const char *name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
27905 (*targetm.asm_out.internal_label) (file, "LCF", rs6000_pic_labelno);
27907 if (TARGET_CMODEL != CMODEL_LARGE)
27909 /* In the small and medium code models, we assume the TOC is less
27910 2 GB away from the text section, so it can be computed via the
27911 following two-instruction sequence. */
27912 char buf[256];
27914 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
27915 fprintf (file, "0:\taddis 2,12,.TOC.-");
27916 assemble_name (file, buf);
27917 fprintf (file, "@ha\n");
27918 fprintf (file, "\taddi 2,2,.TOC.-");
27919 assemble_name (file, buf);
27920 fprintf (file, "@l\n");
27922 else
27924 /* In the large code model, we allow arbitrary offsets between the
27925 TOC and the text section, so we have to load the offset from
27926 memory. The data field is emitted directly before the global
27927 entry point in rs6000_elf_declare_function_name. */
27928 char buf[256];
27930 #ifdef HAVE_AS_ENTRY_MARKERS
27931 /* If supported by the linker, emit a marker relocation. If the
27932 total code size of the final executable or shared library
27933 happens to fit into 2 GB after all, the linker will replace
27934 this code sequence with the sequence for the small or medium
27935 code model. */
27936 fprintf (file, "\t.reloc .,R_PPC64_ENTRY\n");
27937 #endif
27938 fprintf (file, "\tld 2,");
27939 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
27940 assemble_name (file, buf);
27941 fprintf (file, "-");
27942 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
27943 assemble_name (file, buf);
27944 fprintf (file, "(12)\n");
27945 fprintf (file, "\tadd 2,2,12\n");
27948 fputs ("\t.localentry\t", file);
27949 assemble_name (file, name);
27950 fputs (",.-", file);
27951 assemble_name (file, name);
27952 fputs ("\n", file);
27955 /* Output -mprofile-kernel code. This needs to be done here instead of
27956 in output_function_profile since it must go after the ELFv2 ABI
27957 local entry point. */
27958 if (TARGET_PROFILE_KERNEL && crtl->profile)
27960 gcc_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
27961 gcc_assert (!TARGET_32BIT);
27963 asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
27965 /* In the ELFv2 ABI we have no compiler stack word. It must be
27966 the resposibility of _mcount to preserve the static chain
27967 register if required. */
27968 if (DEFAULT_ABI != ABI_ELFv2
27969 && cfun->static_chain_decl != NULL)
27971 asm_fprintf (file, "\tstd %s,24(%s)\n",
27972 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
27973 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
27974 asm_fprintf (file, "\tld %s,24(%s)\n",
27975 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
27977 else
27978 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
27981 rs6000_pic_labelno++;
27984 /* -mprofile-kernel code calls mcount before the function prolog,
27985 so a profiled leaf function should stay a leaf function. */
27986 static bool
27987 rs6000_keep_leaf_when_profiled ()
27989 return TARGET_PROFILE_KERNEL;
27992 /* Non-zero if vmx regs are restored before the frame pop, zero if
27993 we restore after the pop when possible. */
27994 #define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
27996 /* Restoring cr is a two step process: loading a reg from the frame
27997 save, then moving the reg to cr. For ABI_V4 we must let the
27998 unwinder know that the stack location is no longer valid at or
27999 before the stack deallocation, but we can't emit a cfa_restore for
28000 cr at the stack deallocation like we do for other registers.
28001 The trouble is that it is possible for the move to cr to be
28002 scheduled after the stack deallocation. So say exactly where cr
28003 is located on each of the two insns. */
28005 static rtx
28006 load_cr_save (int regno, rtx frame_reg_rtx, int offset, bool exit_func)
28008 rtx mem = gen_frame_mem_offset (SImode, frame_reg_rtx, offset);
28009 rtx reg = gen_rtx_REG (SImode, regno);
28010 rtx_insn *insn = emit_move_insn (reg, mem);
28012 if (!exit_func && DEFAULT_ABI == ABI_V4)
28014 rtx cr = gen_rtx_REG (SImode, CR2_REGNO);
28015 rtx set = gen_rtx_SET (reg, cr);
28017 add_reg_note (insn, REG_CFA_REGISTER, set);
28018 RTX_FRAME_RELATED_P (insn) = 1;
28020 return reg;
28023 /* Reload CR from REG. */
28025 static void
28026 restore_saved_cr (rtx reg, int using_mfcr_multiple, bool exit_func)
28028 int count = 0;
28029 int i;
28031 if (using_mfcr_multiple)
28033 for (i = 0; i < 8; i++)
28034 if (save_reg_p (CR0_REGNO + i))
28035 count++;
28036 gcc_assert (count);
28039 if (using_mfcr_multiple && count > 1)
28041 rtx_insn *insn;
28042 rtvec p;
28043 int ndx;
28045 p = rtvec_alloc (count);
28047 ndx = 0;
28048 for (i = 0; i < 8; i++)
28049 if (save_reg_p (CR0_REGNO + i))
28051 rtvec r = rtvec_alloc (2);
28052 RTVEC_ELT (r, 0) = reg;
28053 RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
28054 RTVEC_ELT (p, ndx) =
28055 gen_rtx_SET (gen_rtx_REG (CCmode, CR0_REGNO + i),
28056 gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
28057 ndx++;
28059 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
28060 gcc_assert (ndx == count);
28062 /* For the ELFv2 ABI we generate a CFA_RESTORE for each
28063 CR field separately. */
28064 if (!exit_func && DEFAULT_ABI == ABI_ELFv2 && flag_shrink_wrap)
28066 for (i = 0; i < 8; i++)
28067 if (save_reg_p (CR0_REGNO + i))
28068 add_reg_note (insn, REG_CFA_RESTORE,
28069 gen_rtx_REG (SImode, CR0_REGNO + i));
28071 RTX_FRAME_RELATED_P (insn) = 1;
28074 else
28075 for (i = 0; i < 8; i++)
28076 if (save_reg_p (CR0_REGNO + i))
28078 rtx insn = emit_insn (gen_movsi_to_cr_one
28079 (gen_rtx_REG (CCmode, CR0_REGNO + i), reg));
28081 /* For the ELFv2 ABI we generate a CFA_RESTORE for each
28082 CR field separately, attached to the insn that in fact
28083 restores this particular CR field. */
28084 if (!exit_func && DEFAULT_ABI == ABI_ELFv2 && flag_shrink_wrap)
28086 add_reg_note (insn, REG_CFA_RESTORE,
28087 gen_rtx_REG (SImode, CR0_REGNO + i));
28089 RTX_FRAME_RELATED_P (insn) = 1;
28093 /* For other ABIs, we just generate a single CFA_RESTORE for CR2. */
28094 if (!exit_func && DEFAULT_ABI != ABI_ELFv2
28095 && (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap))
28097 rtx_insn *insn = get_last_insn ();
28098 rtx cr = gen_rtx_REG (SImode, CR2_REGNO);
28100 add_reg_note (insn, REG_CFA_RESTORE, cr);
28101 RTX_FRAME_RELATED_P (insn) = 1;
28105 /* Like cr, the move to lr instruction can be scheduled after the
28106 stack deallocation, but unlike cr, its stack frame save is still
28107 valid. So we only need to emit the cfa_restore on the correct
28108 instruction. */
28110 static void
28111 load_lr_save (int regno, rtx frame_reg_rtx, int offset)
28113 rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx, offset);
28114 rtx reg = gen_rtx_REG (Pmode, regno);
28116 emit_move_insn (reg, mem);
28119 static void
28120 restore_saved_lr (int regno, bool exit_func)
28122 rtx reg = gen_rtx_REG (Pmode, regno);
28123 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
28124 rtx_insn *insn = emit_move_insn (lr, reg);
28126 if (!exit_func && flag_shrink_wrap)
28128 add_reg_note (insn, REG_CFA_RESTORE, lr);
28129 RTX_FRAME_RELATED_P (insn) = 1;
28133 static rtx
28134 add_crlr_cfa_restore (const rs6000_stack_t *info, rtx cfa_restores)
28136 if (DEFAULT_ABI == ABI_ELFv2)
28138 int i;
28139 for (i = 0; i < 8; i++)
28140 if (save_reg_p (CR0_REGNO + i))
28142 rtx cr = gen_rtx_REG (SImode, CR0_REGNO + i);
28143 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, cr,
28144 cfa_restores);
28147 else if (info->cr_save_p)
28148 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
28149 gen_rtx_REG (SImode, CR2_REGNO),
28150 cfa_restores);
28152 if (info->lr_save_p)
28153 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
28154 gen_rtx_REG (Pmode, LR_REGNO),
28155 cfa_restores);
28156 return cfa_restores;
28159 /* Return true if OFFSET from stack pointer can be clobbered by signals.
28160 V.4 doesn't have any stack cushion, AIX ABIs have 220 or 288 bytes
28161 below stack pointer not cloberred by signals. */
28163 static inline bool
28164 offset_below_red_zone_p (HOST_WIDE_INT offset)
28166 return offset < (DEFAULT_ABI == ABI_V4
28168 : TARGET_32BIT ? -220 : -288);
28171 /* Append CFA_RESTORES to any existing REG_NOTES on the last insn. */
28173 static void
28174 emit_cfa_restores (rtx cfa_restores)
28176 rtx_insn *insn = get_last_insn ();
28177 rtx *loc = &REG_NOTES (insn);
28179 while (*loc)
28180 loc = &XEXP (*loc, 1);
28181 *loc = cfa_restores;
28182 RTX_FRAME_RELATED_P (insn) = 1;
28185 /* Emit function epilogue as insns. */
28187 void
28188 rs6000_emit_epilogue (int sibcall)
28190 rs6000_stack_t *info;
28191 int restoring_GPRs_inline;
28192 int restoring_FPRs_inline;
28193 int using_load_multiple;
28194 int using_mtcr_multiple;
28195 int use_backchain_to_restore_sp;
28196 int restore_lr;
28197 int strategy;
28198 HOST_WIDE_INT frame_off = 0;
28199 rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
28200 rtx frame_reg_rtx = sp_reg_rtx;
28201 rtx cfa_restores = NULL_RTX;
28202 rtx insn;
28203 rtx cr_save_reg = NULL_RTX;
28204 machine_mode reg_mode = Pmode;
28205 int reg_size = TARGET_32BIT ? 4 : 8;
28206 machine_mode fp_reg_mode = (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
28207 ? DFmode : SFmode;
28208 int fp_reg_size = 8;
28209 int i;
28210 bool exit_func;
28211 unsigned ptr_regno;
28213 info = rs6000_stack_info ();
28215 strategy = info->savres_strategy;
28216 using_load_multiple = strategy & REST_MULTIPLE;
28217 restoring_FPRs_inline = sibcall || (strategy & REST_INLINE_FPRS);
28218 restoring_GPRs_inline = sibcall || (strategy & REST_INLINE_GPRS);
28219 using_mtcr_multiple = (rs6000_cpu == PROCESSOR_PPC601
28220 || rs6000_cpu == PROCESSOR_PPC603
28221 || rs6000_cpu == PROCESSOR_PPC750
28222 || optimize_size);
28223 /* Restore via the backchain when we have a large frame, since this
28224 is more efficient than an addis, addi pair. The second condition
28225 here will not trigger at the moment; We don't actually need a
28226 frame pointer for alloca, but the generic parts of the compiler
28227 give us one anyway. */
28228 use_backchain_to_restore_sp = (info->total_size + (info->lr_save_p
28229 ? info->lr_save_offset
28230 : 0) > 32767
28231 || (cfun->calls_alloca
28232 && !frame_pointer_needed));
28233 restore_lr = (info->lr_save_p
28234 && (restoring_FPRs_inline
28235 || (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR))
28236 && (restoring_GPRs_inline
28237 || info->first_fp_reg_save < 64)
28238 && !cfun->machine->lr_is_wrapped_separately);
28241 if (WORLD_SAVE_P (info))
28243 int i, j;
28244 char rname[30];
28245 const char *alloc_rname;
28246 rtvec p;
28248 /* eh_rest_world_r10 will return to the location saved in the LR
28249 stack slot (which is not likely to be our caller.)
28250 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
28251 rest_world is similar, except any R10 parameter is ignored.
28252 The exception-handling stuff that was here in 2.95 is no
28253 longer necessary. */
28255 p = rtvec_alloc (9
28256 + 32 - info->first_gp_reg_save
28257 + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
28258 + 63 + 1 - info->first_fp_reg_save);
28260 strcpy (rname, ((crtl->calls_eh_return) ?
28261 "*eh_rest_world_r10" : "*rest_world"));
28262 alloc_rname = ggc_strdup (rname);
28264 j = 0;
28265 RTVEC_ELT (p, j++) = ret_rtx;
28266 RTVEC_ELT (p, j++)
28267 = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
28268 /* The instruction pattern requires a clobber here;
28269 it is shared with the restVEC helper. */
28270 RTVEC_ELT (p, j++)
28271 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
28274 /* CR register traditionally saved as CR2. */
28275 rtx reg = gen_rtx_REG (SImode, CR2_REGNO);
28276 RTVEC_ELT (p, j++)
28277 = gen_frame_load (reg, frame_reg_rtx, info->cr_save_offset);
28278 if (flag_shrink_wrap)
28280 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
28281 gen_rtx_REG (Pmode, LR_REGNO),
28282 cfa_restores);
28283 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28287 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
28289 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
28290 RTVEC_ELT (p, j++)
28291 = gen_frame_load (reg,
28292 frame_reg_rtx, info->gp_save_offset + reg_size * i);
28293 if (flag_shrink_wrap
28294 && save_reg_p (info->first_gp_reg_save + i))
28295 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28297 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
28299 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
28300 RTVEC_ELT (p, j++)
28301 = gen_frame_load (reg,
28302 frame_reg_rtx, info->altivec_save_offset + 16 * i);
28303 if (flag_shrink_wrap
28304 && save_reg_p (info->first_altivec_reg_save + i))
28305 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28307 for (i = 0; info->first_fp_reg_save + i <= 63; i++)
28309 rtx reg = gen_rtx_REG ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
28310 ? DFmode : SFmode),
28311 info->first_fp_reg_save + i);
28312 RTVEC_ELT (p, j++)
28313 = gen_frame_load (reg, frame_reg_rtx, info->fp_save_offset + 8 * i);
28314 if (flag_shrink_wrap
28315 && save_reg_p (info->first_fp_reg_save + i))
28316 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28318 RTVEC_ELT (p, j++)
28319 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
28320 RTVEC_ELT (p, j++)
28321 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
28322 RTVEC_ELT (p, j++)
28323 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
28324 RTVEC_ELT (p, j++)
28325 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
28326 RTVEC_ELT (p, j++)
28327 = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
28328 insn = emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
28330 if (flag_shrink_wrap)
28332 REG_NOTES (insn) = cfa_restores;
28333 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28334 RTX_FRAME_RELATED_P (insn) = 1;
28336 return;
28339 /* frame_reg_rtx + frame_off points to the top of this stack frame. */
28340 if (info->push_p)
28341 frame_off = info->total_size;
28343 /* Restore AltiVec registers if we must do so before adjusting the
28344 stack. */
28345 if (info->altivec_size != 0
28346 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28347 || (DEFAULT_ABI != ABI_V4
28348 && offset_below_red_zone_p (info->altivec_save_offset))))
28350 int i;
28351 int scratch_regno = ptr_regno_for_savres (SAVRES_VR);
28353 gcc_checking_assert (scratch_regno == 11 || scratch_regno == 12);
28354 if (use_backchain_to_restore_sp)
28356 int frame_regno = 11;
28358 if ((strategy & REST_INLINE_VRS) == 0)
28360 /* Of r11 and r12, select the one not clobbered by an
28361 out-of-line restore function for the frame register. */
28362 frame_regno = 11 + 12 - scratch_regno;
28364 frame_reg_rtx = gen_rtx_REG (Pmode, frame_regno);
28365 emit_move_insn (frame_reg_rtx,
28366 gen_rtx_MEM (Pmode, sp_reg_rtx));
28367 frame_off = 0;
28369 else if (frame_pointer_needed)
28370 frame_reg_rtx = hard_frame_pointer_rtx;
28372 if ((strategy & REST_INLINE_VRS) == 0)
28374 int end_save = info->altivec_save_offset + info->altivec_size;
28375 int ptr_off;
28376 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
28377 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
28379 if (end_save + frame_off != 0)
28381 rtx offset = GEN_INT (end_save + frame_off);
28383 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
28385 else
28386 emit_move_insn (ptr_reg, frame_reg_rtx);
28388 ptr_off = -end_save;
28389 insn = rs6000_emit_savres_rtx (info, scratch_reg,
28390 info->altivec_save_offset + ptr_off,
28391 0, V4SImode, SAVRES_VR);
28393 else
28395 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28396 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
28398 rtx addr, areg, mem, insn;
28399 rtx reg = gen_rtx_REG (V4SImode, i);
28400 HOST_WIDE_INT offset
28401 = (info->altivec_save_offset + frame_off
28402 + 16 * (i - info->first_altivec_reg_save));
28404 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
28406 mem = gen_frame_mem (V4SImode,
28407 gen_rtx_PLUS (Pmode, frame_reg_rtx,
28408 GEN_INT (offset)));
28409 insn = gen_rtx_SET (reg, mem);
28411 else
28413 areg = gen_rtx_REG (Pmode, 0);
28414 emit_move_insn (areg, GEN_INT (offset));
28416 /* AltiVec addressing mode is [reg+reg]. */
28417 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
28418 mem = gen_frame_mem (V4SImode, addr);
28420 /* Rather than emitting a generic move, force use of the
28421 lvx instruction, which we always want. In particular we
28422 don't want lxvd2x/xxpermdi for little endian. */
28423 insn = gen_altivec_lvx_v4si_internal (reg, mem);
28426 (void) emit_insn (insn);
28430 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28431 if (((strategy & REST_INLINE_VRS) == 0
28432 || (info->vrsave_mask & ALTIVEC_REG_BIT (i)) != 0)
28433 && (flag_shrink_wrap
28434 || (offset_below_red_zone_p
28435 (info->altivec_save_offset
28436 + 16 * (i - info->first_altivec_reg_save))))
28437 && save_reg_p (i))
28439 rtx reg = gen_rtx_REG (V4SImode, i);
28440 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28444 /* Restore VRSAVE if we must do so before adjusting the stack. */
28445 if (info->vrsave_size != 0
28446 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28447 || (DEFAULT_ABI != ABI_V4
28448 && offset_below_red_zone_p (info->vrsave_save_offset))))
28450 rtx reg;
28452 if (frame_reg_rtx == sp_reg_rtx)
28454 if (use_backchain_to_restore_sp)
28456 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
28457 emit_move_insn (frame_reg_rtx,
28458 gen_rtx_MEM (Pmode, sp_reg_rtx));
28459 frame_off = 0;
28461 else if (frame_pointer_needed)
28462 frame_reg_rtx = hard_frame_pointer_rtx;
28465 reg = gen_rtx_REG (SImode, 12);
28466 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28467 info->vrsave_save_offset + frame_off));
28469 emit_insn (generate_set_vrsave (reg, info, 1));
28472 insn = NULL_RTX;
28473 /* If we have a large stack frame, restore the old stack pointer
28474 using the backchain. */
28475 if (use_backchain_to_restore_sp)
28477 if (frame_reg_rtx == sp_reg_rtx)
28479 /* Under V.4, don't reset the stack pointer until after we're done
28480 loading the saved registers. */
28481 if (DEFAULT_ABI == ABI_V4)
28482 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
28484 insn = emit_move_insn (frame_reg_rtx,
28485 gen_rtx_MEM (Pmode, sp_reg_rtx));
28486 frame_off = 0;
28488 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28489 && DEFAULT_ABI == ABI_V4)
28490 /* frame_reg_rtx has been set up by the altivec restore. */
28492 else
28494 insn = emit_move_insn (sp_reg_rtx, frame_reg_rtx);
28495 frame_reg_rtx = sp_reg_rtx;
28498 /* If we have a frame pointer, we can restore the old stack pointer
28499 from it. */
28500 else if (frame_pointer_needed)
28502 frame_reg_rtx = sp_reg_rtx;
28503 if (DEFAULT_ABI == ABI_V4)
28504 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
28505 /* Prevent reordering memory accesses against stack pointer restore. */
28506 else if (cfun->calls_alloca
28507 || offset_below_red_zone_p (-info->total_size))
28508 rs6000_emit_stack_tie (frame_reg_rtx, true);
28510 insn = emit_insn (gen_add3_insn (frame_reg_rtx, hard_frame_pointer_rtx,
28511 GEN_INT (info->total_size)));
28512 frame_off = 0;
28514 else if (info->push_p
28515 && DEFAULT_ABI != ABI_V4
28516 && !crtl->calls_eh_return)
28518 /* Prevent reordering memory accesses against stack pointer restore. */
28519 if (cfun->calls_alloca
28520 || offset_below_red_zone_p (-info->total_size))
28521 rs6000_emit_stack_tie (frame_reg_rtx, false);
28522 insn = emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx,
28523 GEN_INT (info->total_size)));
28524 frame_off = 0;
28526 if (insn && frame_reg_rtx == sp_reg_rtx)
28528 if (cfa_restores)
28530 REG_NOTES (insn) = cfa_restores;
28531 cfa_restores = NULL_RTX;
28533 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28534 RTX_FRAME_RELATED_P (insn) = 1;
28537 /* Restore AltiVec registers if we have not done so already. */
28538 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28539 && info->altivec_size != 0
28540 && (DEFAULT_ABI == ABI_V4
28541 || !offset_below_red_zone_p (info->altivec_save_offset)))
28543 int i;
28545 if ((strategy & REST_INLINE_VRS) == 0)
28547 int end_save = info->altivec_save_offset + info->altivec_size;
28548 int ptr_off;
28549 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
28550 int scratch_regno = ptr_regno_for_savres (SAVRES_VR);
28551 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
28553 if (end_save + frame_off != 0)
28555 rtx offset = GEN_INT (end_save + frame_off);
28557 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
28559 else
28560 emit_move_insn (ptr_reg, frame_reg_rtx);
28562 ptr_off = -end_save;
28563 insn = rs6000_emit_savres_rtx (info, scratch_reg,
28564 info->altivec_save_offset + ptr_off,
28565 0, V4SImode, SAVRES_VR);
28566 if (REGNO (frame_reg_rtx) == REGNO (scratch_reg))
28568 /* Frame reg was clobbered by out-of-line save. Restore it
28569 from ptr_reg, and if we are calling out-of-line gpr or
28570 fpr restore set up the correct pointer and offset. */
28571 unsigned newptr_regno = 1;
28572 if (!restoring_GPRs_inline)
28574 bool lr = info->gp_save_offset + info->gp_size == 0;
28575 int sel = SAVRES_GPR | (lr ? SAVRES_LR : 0);
28576 newptr_regno = ptr_regno_for_savres (sel);
28577 end_save = info->gp_save_offset + info->gp_size;
28579 else if (!restoring_FPRs_inline)
28581 bool lr = !(strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR);
28582 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
28583 newptr_regno = ptr_regno_for_savres (sel);
28584 end_save = info->fp_save_offset + info->fp_size;
28587 if (newptr_regno != 1 && REGNO (frame_reg_rtx) != newptr_regno)
28588 frame_reg_rtx = gen_rtx_REG (Pmode, newptr_regno);
28590 if (end_save + ptr_off != 0)
28592 rtx offset = GEN_INT (end_save + ptr_off);
28594 frame_off = -end_save;
28595 if (TARGET_32BIT)
28596 emit_insn (gen_addsi3_carry (frame_reg_rtx,
28597 ptr_reg, offset));
28598 else
28599 emit_insn (gen_adddi3_carry (frame_reg_rtx,
28600 ptr_reg, offset));
28602 else
28604 frame_off = ptr_off;
28605 emit_move_insn (frame_reg_rtx, ptr_reg);
28609 else
28611 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28612 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
28614 rtx addr, areg, mem, insn;
28615 rtx reg = gen_rtx_REG (V4SImode, i);
28616 HOST_WIDE_INT offset
28617 = (info->altivec_save_offset + frame_off
28618 + 16 * (i - info->first_altivec_reg_save));
28620 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
28622 mem = gen_frame_mem (V4SImode,
28623 gen_rtx_PLUS (Pmode, frame_reg_rtx,
28624 GEN_INT (offset)));
28625 insn = gen_rtx_SET (reg, mem);
28627 else
28629 areg = gen_rtx_REG (Pmode, 0);
28630 emit_move_insn (areg, GEN_INT (offset));
28632 /* AltiVec addressing mode is [reg+reg]. */
28633 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
28634 mem = gen_frame_mem (V4SImode, addr);
28636 /* Rather than emitting a generic move, force use of the
28637 lvx instruction, which we always want. In particular we
28638 don't want lxvd2x/xxpermdi for little endian. */
28639 insn = gen_altivec_lvx_v4si_internal (reg, mem);
28642 (void) emit_insn (insn);
28646 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28647 if (((strategy & REST_INLINE_VRS) == 0
28648 || (info->vrsave_mask & ALTIVEC_REG_BIT (i)) != 0)
28649 && (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28650 && save_reg_p (i))
28652 rtx reg = gen_rtx_REG (V4SImode, i);
28653 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28657 /* Restore VRSAVE if we have not done so already. */
28658 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28659 && info->vrsave_size != 0
28660 && (DEFAULT_ABI == ABI_V4
28661 || !offset_below_red_zone_p (info->vrsave_save_offset)))
28663 rtx reg;
28665 reg = gen_rtx_REG (SImode, 12);
28666 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28667 info->vrsave_save_offset + frame_off));
28669 emit_insn (generate_set_vrsave (reg, info, 1));
28672 /* If we exit by an out-of-line restore function on ABI_V4 then that
28673 function will deallocate the stack, so we don't need to worry
28674 about the unwinder restoring cr from an invalid stack frame
28675 location. */
28676 exit_func = (!restoring_FPRs_inline
28677 || (!restoring_GPRs_inline
28678 && info->first_fp_reg_save == 64));
28680 /* In the ELFv2 ABI we need to restore all call-saved CR fields from
28681 *separate* slots if the routine calls __builtin_eh_return, so
28682 that they can be independently restored by the unwinder. */
28683 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
28685 int i, cr_off = info->ehcr_offset;
28687 for (i = 0; i < 8; i++)
28688 if (!call_used_regs[CR0_REGNO + i])
28690 rtx reg = gen_rtx_REG (SImode, 0);
28691 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28692 cr_off + frame_off));
28694 insn = emit_insn (gen_movsi_to_cr_one
28695 (gen_rtx_REG (CCmode, CR0_REGNO + i), reg));
28697 if (!exit_func && flag_shrink_wrap)
28699 add_reg_note (insn, REG_CFA_RESTORE,
28700 gen_rtx_REG (SImode, CR0_REGNO + i));
28702 RTX_FRAME_RELATED_P (insn) = 1;
28705 cr_off += reg_size;
28709 /* Get the old lr if we saved it. If we are restoring registers
28710 out-of-line, then the out-of-line routines can do this for us. */
28711 if (restore_lr && restoring_GPRs_inline)
28712 load_lr_save (0, frame_reg_rtx, info->lr_save_offset + frame_off);
28714 /* Get the old cr if we saved it. */
28715 if (info->cr_save_p)
28717 unsigned cr_save_regno = 12;
28719 if (!restoring_GPRs_inline)
28721 /* Ensure we don't use the register used by the out-of-line
28722 gpr register restore below. */
28723 bool lr = info->gp_save_offset + info->gp_size == 0;
28724 int sel = SAVRES_GPR | (lr ? SAVRES_LR : 0);
28725 int gpr_ptr_regno = ptr_regno_for_savres (sel);
28727 if (gpr_ptr_regno == 12)
28728 cr_save_regno = 11;
28729 gcc_checking_assert (REGNO (frame_reg_rtx) != cr_save_regno);
28731 else if (REGNO (frame_reg_rtx) == 12)
28732 cr_save_regno = 11;
28734 cr_save_reg = load_cr_save (cr_save_regno, frame_reg_rtx,
28735 info->cr_save_offset + frame_off,
28736 exit_func);
28739 /* Set LR here to try to overlap restores below. */
28740 if (restore_lr && restoring_GPRs_inline)
28741 restore_saved_lr (0, exit_func);
28743 /* Load exception handler data registers, if needed. */
28744 if (crtl->calls_eh_return)
28746 unsigned int i, regno;
28748 if (TARGET_AIX)
28750 rtx reg = gen_rtx_REG (reg_mode, 2);
28751 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28752 frame_off + RS6000_TOC_SAVE_SLOT));
28755 for (i = 0; ; ++i)
28757 rtx mem;
28759 regno = EH_RETURN_DATA_REGNO (i);
28760 if (regno == INVALID_REGNUM)
28761 break;
28763 mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
28764 info->ehrd_offset + frame_off
28765 + reg_size * (int) i);
28767 emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
28771 /* Restore GPRs. This is done as a PARALLEL if we are using
28772 the load-multiple instructions. */
28773 if (!restoring_GPRs_inline)
28775 /* We are jumping to an out-of-line function. */
28776 rtx ptr_reg;
28777 int end_save = info->gp_save_offset + info->gp_size;
28778 bool can_use_exit = end_save == 0;
28779 int sel = SAVRES_GPR | (can_use_exit ? SAVRES_LR : 0);
28780 int ptr_off;
28782 /* Emit stack reset code if we need it. */
28783 ptr_regno = ptr_regno_for_savres (sel);
28784 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
28785 if (can_use_exit)
28786 rs6000_emit_stack_reset (frame_reg_rtx, frame_off, ptr_regno);
28787 else if (end_save + frame_off != 0)
28788 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx,
28789 GEN_INT (end_save + frame_off)));
28790 else if (REGNO (frame_reg_rtx) != ptr_regno)
28791 emit_move_insn (ptr_reg, frame_reg_rtx);
28792 if (REGNO (frame_reg_rtx) == ptr_regno)
28793 frame_off = -end_save;
28795 if (can_use_exit && info->cr_save_p)
28796 restore_saved_cr (cr_save_reg, using_mtcr_multiple, true);
28798 ptr_off = -end_save;
28799 rs6000_emit_savres_rtx (info, ptr_reg,
28800 info->gp_save_offset + ptr_off,
28801 info->lr_save_offset + ptr_off,
28802 reg_mode, sel);
28804 else if (using_load_multiple)
28806 rtvec p;
28807 p = rtvec_alloc (32 - info->first_gp_reg_save);
28808 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
28809 RTVEC_ELT (p, i)
28810 = gen_frame_load (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
28811 frame_reg_rtx,
28812 info->gp_save_offset + frame_off + reg_size * i);
28813 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
28815 else
28817 int offset = info->gp_save_offset + frame_off;
28818 for (i = info->first_gp_reg_save; i < 32; i++)
28820 if (save_reg_p (i)
28821 && !cfun->machine->gpr_is_wrapped_separately[i])
28823 rtx reg = gen_rtx_REG (reg_mode, i);
28824 emit_insn (gen_frame_load (reg, frame_reg_rtx, offset));
28827 offset += reg_size;
28831 if (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28833 /* If the frame pointer was used then we can't delay emitting
28834 a REG_CFA_DEF_CFA note. This must happen on the insn that
28835 restores the frame pointer, r31. We may have already emitted
28836 a REG_CFA_DEF_CFA note, but that's OK; A duplicate is
28837 discarded by dwarf2cfi.c/dwarf2out.c, and in any case would
28838 be harmless if emitted. */
28839 if (frame_pointer_needed)
28841 insn = get_last_insn ();
28842 add_reg_note (insn, REG_CFA_DEF_CFA,
28843 plus_constant (Pmode, frame_reg_rtx, frame_off));
28844 RTX_FRAME_RELATED_P (insn) = 1;
28847 /* Set up cfa_restores. We always need these when
28848 shrink-wrapping. If not shrink-wrapping then we only need
28849 the cfa_restore when the stack location is no longer valid.
28850 The cfa_restores must be emitted on or before the insn that
28851 invalidates the stack, and of course must not be emitted
28852 before the insn that actually does the restore. The latter
28853 is why it is a bad idea to emit the cfa_restores as a group
28854 on the last instruction here that actually does a restore:
28855 That insn may be reordered with respect to others doing
28856 restores. */
28857 if (flag_shrink_wrap
28858 && !restoring_GPRs_inline
28859 && info->first_fp_reg_save == 64)
28860 cfa_restores = add_crlr_cfa_restore (info, cfa_restores);
28862 for (i = info->first_gp_reg_save; i < 32; i++)
28863 if (save_reg_p (i)
28864 && !cfun->machine->gpr_is_wrapped_separately[i])
28866 rtx reg = gen_rtx_REG (reg_mode, i);
28867 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28871 if (!restoring_GPRs_inline
28872 && info->first_fp_reg_save == 64)
28874 /* We are jumping to an out-of-line function. */
28875 if (cfa_restores)
28876 emit_cfa_restores (cfa_restores);
28877 return;
28880 if (restore_lr && !restoring_GPRs_inline)
28882 load_lr_save (0, frame_reg_rtx, info->lr_save_offset + frame_off);
28883 restore_saved_lr (0, exit_func);
28886 /* Restore fpr's if we need to do it without calling a function. */
28887 if (restoring_FPRs_inline)
28889 int offset = info->fp_save_offset + frame_off;
28890 for (i = info->first_fp_reg_save; i < 64; i++)
28892 if (save_reg_p (i)
28893 && !cfun->machine->fpr_is_wrapped_separately[i - 32])
28895 rtx reg = gen_rtx_REG (fp_reg_mode, i);
28896 emit_insn (gen_frame_load (reg, frame_reg_rtx, offset));
28897 if (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28898 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
28899 cfa_restores);
28902 offset += fp_reg_size;
28906 /* If we saved cr, restore it here. Just those that were used. */
28907 if (info->cr_save_p)
28908 restore_saved_cr (cr_save_reg, using_mtcr_multiple, exit_func);
28910 /* If this is V.4, unwind the stack pointer after all of the loads
28911 have been done, or set up r11 if we are restoring fp out of line. */
28912 ptr_regno = 1;
28913 if (!restoring_FPRs_inline)
28915 bool lr = (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
28916 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
28917 ptr_regno = ptr_regno_for_savres (sel);
28920 insn = rs6000_emit_stack_reset (frame_reg_rtx, frame_off, ptr_regno);
28921 if (REGNO (frame_reg_rtx) == ptr_regno)
28922 frame_off = 0;
28924 if (insn && restoring_FPRs_inline)
28926 if (cfa_restores)
28928 REG_NOTES (insn) = cfa_restores;
28929 cfa_restores = NULL_RTX;
28931 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28932 RTX_FRAME_RELATED_P (insn) = 1;
28935 if (crtl->calls_eh_return)
28937 rtx sa = EH_RETURN_STACKADJ_RTX;
28938 emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx, sa));
28941 if (!sibcall && restoring_FPRs_inline)
28943 if (cfa_restores)
28945 /* We can't hang the cfa_restores off a simple return,
28946 since the shrink-wrap code sometimes uses an existing
28947 return. This means there might be a path from
28948 pre-prologue code to this return, and dwarf2cfi code
28949 wants the eh_frame unwinder state to be the same on
28950 all paths to any point. So we need to emit the
28951 cfa_restores before the return. For -m64 we really
28952 don't need epilogue cfa_restores at all, except for
28953 this irritating dwarf2cfi with shrink-wrap
28954 requirement; The stack red-zone means eh_frame info
28955 from the prologue telling the unwinder to restore
28956 from the stack is perfectly good right to the end of
28957 the function. */
28958 emit_insn (gen_blockage ());
28959 emit_cfa_restores (cfa_restores);
28960 cfa_restores = NULL_RTX;
28963 emit_jump_insn (targetm.gen_simple_return ());
28966 if (!sibcall && !restoring_FPRs_inline)
28968 bool lr = (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
28969 rtvec p = rtvec_alloc (3 + !!lr + 64 - info->first_fp_reg_save);
28970 int elt = 0;
28971 RTVEC_ELT (p, elt++) = ret_rtx;
28972 if (lr)
28973 RTVEC_ELT (p, elt++)
28974 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
28976 /* We have to restore more than two FP registers, so branch to the
28977 restore function. It will return to our caller. */
28978 int i;
28979 int reg;
28980 rtx sym;
28982 if (flag_shrink_wrap)
28983 cfa_restores = add_crlr_cfa_restore (info, cfa_restores);
28985 sym = rs6000_savres_routine_sym (info, SAVRES_FPR | (lr ? SAVRES_LR : 0));
28986 RTVEC_ELT (p, elt++) = gen_rtx_USE (VOIDmode, sym);
28987 reg = (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)? 1 : 11;
28988 RTVEC_ELT (p, elt++) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, reg));
28990 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
28992 rtx reg = gen_rtx_REG (DFmode, info->first_fp_reg_save + i);
28994 RTVEC_ELT (p, elt++)
28995 = gen_frame_load (reg, sp_reg_rtx, info->fp_save_offset + 8 * i);
28996 if (flag_shrink_wrap
28997 && save_reg_p (info->first_fp_reg_save + i))
28998 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
29001 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
29004 if (cfa_restores)
29006 if (sibcall)
29007 /* Ensure the cfa_restores are hung off an insn that won't
29008 be reordered above other restores. */
29009 emit_insn (gen_blockage ());
29011 emit_cfa_restores (cfa_restores);
29015 /* Write function epilogue. */
29017 static void
29018 rs6000_output_function_epilogue (FILE *file)
29020 #if TARGET_MACHO
29021 macho_branch_islands ();
29024 rtx_insn *insn = get_last_insn ();
29025 rtx_insn *deleted_debug_label = NULL;
29027 /* Mach-O doesn't support labels at the end of objects, so if
29028 it looks like we might want one, take special action.
29030 First, collect any sequence of deleted debug labels. */
29031 while (insn
29032 && NOTE_P (insn)
29033 && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
29035 /* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL
29036 notes only, instead set their CODE_LABEL_NUMBER to -1,
29037 otherwise there would be code generation differences
29038 in between -g and -g0. */
29039 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
29040 deleted_debug_label = insn;
29041 insn = PREV_INSN (insn);
29044 /* Second, if we have:
29045 label:
29046 barrier
29047 then this needs to be detected, so skip past the barrier. */
29049 if (insn && BARRIER_P (insn))
29050 insn = PREV_INSN (insn);
29052 /* Up to now we've only seen notes or barriers. */
29053 if (insn)
29055 if (LABEL_P (insn)
29056 || (NOTE_P (insn)
29057 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))
29058 /* Trailing label: <barrier>. */
29059 fputs ("\tnop\n", file);
29060 else
29062 /* Lastly, see if we have a completely empty function body. */
29063 while (insn && ! INSN_P (insn))
29064 insn = PREV_INSN (insn);
29065 /* If we don't find any insns, we've got an empty function body;
29066 I.e. completely empty - without a return or branch. This is
29067 taken as the case where a function body has been removed
29068 because it contains an inline __builtin_unreachable(). GCC
29069 states that reaching __builtin_unreachable() means UB so we're
29070 not obliged to do anything special; however, we want
29071 non-zero-sized function bodies. To meet this, and help the
29072 user out, let's trap the case. */
29073 if (insn == NULL)
29074 fputs ("\ttrap\n", file);
29077 else if (deleted_debug_label)
29078 for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn))
29079 if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
29080 CODE_LABEL_NUMBER (insn) = -1;
29082 #endif
29084 /* Output a traceback table here. See /usr/include/sys/debug.h for info
29085 on its format.
29087 We don't output a traceback table if -finhibit-size-directive was
29088 used. The documentation for -finhibit-size-directive reads
29089 ``don't output a @code{.size} assembler directive, or anything
29090 else that would cause trouble if the function is split in the
29091 middle, and the two halves are placed at locations far apart in
29092 memory.'' The traceback table has this property, since it
29093 includes the offset from the start of the function to the
29094 traceback table itself.
29096 System V.4 Powerpc's (and the embedded ABI derived from it) use a
29097 different traceback table. */
29098 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
29099 && ! flag_inhibit_size_directive
29100 && rs6000_traceback != traceback_none && !cfun->is_thunk)
29102 const char *fname = NULL;
29103 const char *language_string = lang_hooks.name;
29104 int fixed_parms = 0, float_parms = 0, parm_info = 0;
29105 int i;
29106 int optional_tbtab;
29107 rs6000_stack_t *info = rs6000_stack_info ();
29109 if (rs6000_traceback == traceback_full)
29110 optional_tbtab = 1;
29111 else if (rs6000_traceback == traceback_part)
29112 optional_tbtab = 0;
29113 else
29114 optional_tbtab = !optimize_size && !TARGET_ELF;
29116 if (optional_tbtab)
29118 fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
29119 while (*fname == '.') /* V.4 encodes . in the name */
29120 fname++;
29122 /* Need label immediately before tbtab, so we can compute
29123 its offset from the function start. */
29124 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
29125 ASM_OUTPUT_LABEL (file, fname);
29128 /* The .tbtab pseudo-op can only be used for the first eight
29129 expressions, since it can't handle the possibly variable
29130 length fields that follow. However, if you omit the optional
29131 fields, the assembler outputs zeros for all optional fields
29132 anyways, giving each variable length field is minimum length
29133 (as defined in sys/debug.h). Thus we can not use the .tbtab
29134 pseudo-op at all. */
29136 /* An all-zero word flags the start of the tbtab, for debuggers
29137 that have to find it by searching forward from the entry
29138 point or from the current pc. */
29139 fputs ("\t.long 0\n", file);
29141 /* Tbtab format type. Use format type 0. */
29142 fputs ("\t.byte 0,", file);
29144 /* Language type. Unfortunately, there does not seem to be any
29145 official way to discover the language being compiled, so we
29146 use language_string.
29147 C is 0. Fortran is 1. Pascal is 2. Ada is 3. C++ is 9.
29148 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
29149 a number, so for now use 9. LTO, Go and JIT aren't assigned numbers
29150 either, so for now use 0. */
29151 if (lang_GNU_C ()
29152 || ! strcmp (language_string, "GNU GIMPLE")
29153 || ! strcmp (language_string, "GNU Go")
29154 || ! strcmp (language_string, "libgccjit"))
29155 i = 0;
29156 else if (! strcmp (language_string, "GNU F77")
29157 || lang_GNU_Fortran ())
29158 i = 1;
29159 else if (! strcmp (language_string, "GNU Pascal"))
29160 i = 2;
29161 else if (! strcmp (language_string, "GNU Ada"))
29162 i = 3;
29163 else if (lang_GNU_CXX ()
29164 || ! strcmp (language_string, "GNU Objective-C++"))
29165 i = 9;
29166 else if (! strcmp (language_string, "GNU Java"))
29167 i = 13;
29168 else if (! strcmp (language_string, "GNU Objective-C"))
29169 i = 14;
29170 else
29171 gcc_unreachable ();
29172 fprintf (file, "%d,", i);
29174 /* 8 single bit fields: global linkage (not set for C extern linkage,
29175 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
29176 from start of procedure stored in tbtab, internal function, function
29177 has controlled storage, function has no toc, function uses fp,
29178 function logs/aborts fp operations. */
29179 /* Assume that fp operations are used if any fp reg must be saved. */
29180 fprintf (file, "%d,",
29181 (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));
29183 /* 6 bitfields: function is interrupt handler, name present in
29184 proc table, function calls alloca, on condition directives
29185 (controls stack walks, 3 bits), saves condition reg, saves
29186 link reg. */
29187 /* The `function calls alloca' bit seems to be set whenever reg 31 is
29188 set up as a frame pointer, even when there is no alloca call. */
29189 fprintf (file, "%d,",
29190 ((optional_tbtab << 6)
29191 | ((optional_tbtab & frame_pointer_needed) << 5)
29192 | (info->cr_save_p << 1)
29193 | (info->lr_save_p)));
29195 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
29196 (6 bits). */
29197 fprintf (file, "%d,",
29198 (info->push_p << 7) | (64 - info->first_fp_reg_save));
29200 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
29201 fprintf (file, "%d,", (32 - first_reg_to_save ()));
29203 if (optional_tbtab)
29205 /* Compute the parameter info from the function decl argument
29206 list. */
29207 tree decl;
29208 int next_parm_info_bit = 31;
29210 for (decl = DECL_ARGUMENTS (current_function_decl);
29211 decl; decl = DECL_CHAIN (decl))
29213 rtx parameter = DECL_INCOMING_RTL (decl);
29214 machine_mode mode = GET_MODE (parameter);
29216 if (GET_CODE (parameter) == REG)
29218 if (SCALAR_FLOAT_MODE_P (mode))
29220 int bits;
29222 float_parms++;
29224 switch (mode)
29226 case E_SFmode:
29227 case E_SDmode:
29228 bits = 0x2;
29229 break;
29231 case E_DFmode:
29232 case E_DDmode:
29233 case E_TFmode:
29234 case E_TDmode:
29235 case E_IFmode:
29236 case E_KFmode:
29237 bits = 0x3;
29238 break;
29240 default:
29241 gcc_unreachable ();
29244 /* If only one bit will fit, don't or in this entry. */
29245 if (next_parm_info_bit > 0)
29246 parm_info |= (bits << (next_parm_info_bit - 1));
29247 next_parm_info_bit -= 2;
29249 else
29251 fixed_parms += ((GET_MODE_SIZE (mode)
29252 + (UNITS_PER_WORD - 1))
29253 / UNITS_PER_WORD);
29254 next_parm_info_bit -= 1;
29260 /* Number of fixed point parameters. */
29261 /* This is actually the number of words of fixed point parameters; thus
29262 an 8 byte struct counts as 2; and thus the maximum value is 8. */
29263 fprintf (file, "%d,", fixed_parms);
29265 /* 2 bitfields: number of floating point parameters (7 bits), parameters
29266 all on stack. */
29267 /* This is actually the number of fp registers that hold parameters;
29268 and thus the maximum value is 13. */
29269 /* Set parameters on stack bit if parameters are not in their original
29270 registers, regardless of whether they are on the stack? Xlc
29271 seems to set the bit when not optimizing. */
29272 fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));
29274 if (optional_tbtab)
29276 /* Optional fields follow. Some are variable length. */
29278 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single
29279 float, 11 double float. */
29280 /* There is an entry for each parameter in a register, in the order
29281 that they occur in the parameter list. Any intervening arguments
29282 on the stack are ignored. If the list overflows a long (max
29283 possible length 34 bits) then completely leave off all elements
29284 that don't fit. */
29285 /* Only emit this long if there was at least one parameter. */
29286 if (fixed_parms || float_parms)
29287 fprintf (file, "\t.long %d\n", parm_info);
29289 /* Offset from start of code to tb table. */
29290 fputs ("\t.long ", file);
29291 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
29292 RS6000_OUTPUT_BASENAME (file, fname);
29293 putc ('-', file);
29294 rs6000_output_function_entry (file, fname);
29295 putc ('\n', file);
29297 /* Interrupt handler mask. */
29298 /* Omit this long, since we never set the interrupt handler bit
29299 above. */
29301 /* Number of CTL (controlled storage) anchors. */
29302 /* Omit this long, since the has_ctl bit is never set above. */
29304 /* Displacement into stack of each CTL anchor. */
29305 /* Omit this list of longs, because there are no CTL anchors. */
29307 /* Length of function name. */
29308 if (*fname == '*')
29309 ++fname;
29310 fprintf (file, "\t.short %d\n", (int) strlen (fname));
29312 /* Function name. */
29313 assemble_string (fname, strlen (fname));
29315 /* Register for alloca automatic storage; this is always reg 31.
29316 Only emit this if the alloca bit was set above. */
29317 if (frame_pointer_needed)
29318 fputs ("\t.byte 31\n", file);
29320 fputs ("\t.align 2\n", file);
29324 /* Arrange to define .LCTOC1 label, if not already done. */
29325 if (need_toc_init)
29327 need_toc_init = 0;
29328 if (!toc_initialized)
29330 switch_to_section (toc_section);
29331 switch_to_section (current_function_section ());
29336 /* -fsplit-stack support. */
29338 /* A SYMBOL_REF for __morestack. */
29339 static GTY(()) rtx morestack_ref;
29341 static rtx
29342 gen_add3_const (rtx rt, rtx ra, long c)
29344 if (TARGET_64BIT)
29345 return gen_adddi3 (rt, ra, GEN_INT (c));
29346 else
29347 return gen_addsi3 (rt, ra, GEN_INT (c));
29350 /* Emit -fsplit-stack prologue, which goes before the regular function
29351 prologue (at local entry point in the case of ELFv2). */
29353 void
29354 rs6000_expand_split_stack_prologue (void)
29356 rs6000_stack_t *info = rs6000_stack_info ();
29357 unsigned HOST_WIDE_INT allocate;
29358 long alloc_hi, alloc_lo;
29359 rtx r0, r1, r12, lr, ok_label, compare, jump, call_fusage;
29360 rtx_insn *insn;
29362 gcc_assert (flag_split_stack && reload_completed);
29364 if (!info->push_p)
29365 return;
29367 if (global_regs[29])
29369 error ("%qs uses register r29", "-fsplit-stack");
29370 inform (DECL_SOURCE_LOCATION (global_regs_decl[29]),
29371 "conflicts with %qD", global_regs_decl[29]);
29374 allocate = info->total_size;
29375 if (allocate > (unsigned HOST_WIDE_INT) 1 << 31)
29377 sorry ("Stack frame larger than 2G is not supported for -fsplit-stack");
29378 return;
29380 if (morestack_ref == NULL_RTX)
29382 morestack_ref = gen_rtx_SYMBOL_REF (Pmode, "__morestack");
29383 SYMBOL_REF_FLAGS (morestack_ref) |= (SYMBOL_FLAG_LOCAL
29384 | SYMBOL_FLAG_FUNCTION);
29387 r0 = gen_rtx_REG (Pmode, 0);
29388 r1 = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
29389 r12 = gen_rtx_REG (Pmode, 12);
29390 emit_insn (gen_load_split_stack_limit (r0));
29391 /* Always emit two insns here to calculate the requested stack,
29392 so that the linker can edit them when adjusting size for calling
29393 non-split-stack code. */
29394 alloc_hi = (-allocate + 0x8000) & ~0xffffL;
29395 alloc_lo = -allocate - alloc_hi;
29396 if (alloc_hi != 0)
29398 emit_insn (gen_add3_const (r12, r1, alloc_hi));
29399 if (alloc_lo != 0)
29400 emit_insn (gen_add3_const (r12, r12, alloc_lo));
29401 else
29402 emit_insn (gen_nop ());
29404 else
29406 emit_insn (gen_add3_const (r12, r1, alloc_lo));
29407 emit_insn (gen_nop ());
29410 compare = gen_rtx_REG (CCUNSmode, CR7_REGNO);
29411 emit_insn (gen_rtx_SET (compare, gen_rtx_COMPARE (CCUNSmode, r12, r0)));
29412 ok_label = gen_label_rtx ();
29413 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
29414 gen_rtx_GEU (VOIDmode, compare, const0_rtx),
29415 gen_rtx_LABEL_REF (VOIDmode, ok_label),
29416 pc_rtx);
29417 insn = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
29418 JUMP_LABEL (insn) = ok_label;
29419 /* Mark the jump as very likely to be taken. */
29420 add_reg_br_prob_note (insn, profile_probability::very_likely ());
29422 lr = gen_rtx_REG (Pmode, LR_REGNO);
29423 insn = emit_move_insn (r0, lr);
29424 RTX_FRAME_RELATED_P (insn) = 1;
29425 insn = emit_insn (gen_frame_store (r0, r1, info->lr_save_offset));
29426 RTX_FRAME_RELATED_P (insn) = 1;
29428 insn = emit_call_insn (gen_call (gen_rtx_MEM (SImode, morestack_ref),
29429 const0_rtx, const0_rtx));
29430 call_fusage = NULL_RTX;
29431 use_reg (&call_fusage, r12);
29432 /* Say the call uses r0, even though it doesn't, to stop regrename
29433 from twiddling with the insns saving lr, trashing args for cfun.
29434 The insns restoring lr are similarly protected by making
29435 split_stack_return use r0. */
29436 use_reg (&call_fusage, r0);
29437 add_function_usage_to (insn, call_fusage);
29438 /* Indicate that this function can't jump to non-local gotos. */
29439 make_reg_eh_region_note_nothrow_nononlocal (insn);
29440 emit_insn (gen_frame_load (r0, r1, info->lr_save_offset));
29441 insn = emit_move_insn (lr, r0);
29442 add_reg_note (insn, REG_CFA_RESTORE, lr);
29443 RTX_FRAME_RELATED_P (insn) = 1;
29444 emit_insn (gen_split_stack_return ());
29446 emit_label (ok_label);
29447 LABEL_NUSES (ok_label) = 1;
29450 /* Return the internal arg pointer used for function incoming
29451 arguments. When -fsplit-stack, the arg pointer is r12 so we need
29452 to copy it to a pseudo in order for it to be preserved over calls
29453 and suchlike. We'd really like to use a pseudo here for the
29454 internal arg pointer but data-flow analysis is not prepared to
29455 accept pseudos as live at the beginning of a function. */
29457 static rtx
29458 rs6000_internal_arg_pointer (void)
29460 if (flag_split_stack
29461 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
29462 == NULL))
29465 if (cfun->machine->split_stack_arg_pointer == NULL_RTX)
29467 rtx pat;
29469 cfun->machine->split_stack_arg_pointer = gen_reg_rtx (Pmode);
29470 REG_POINTER (cfun->machine->split_stack_arg_pointer) = 1;
29472 /* Put the pseudo initialization right after the note at the
29473 beginning of the function. */
29474 pat = gen_rtx_SET (cfun->machine->split_stack_arg_pointer,
29475 gen_rtx_REG (Pmode, 12));
29476 push_topmost_sequence ();
29477 emit_insn_after (pat, get_insns ());
29478 pop_topmost_sequence ();
29480 return plus_constant (Pmode, cfun->machine->split_stack_arg_pointer,
29481 FIRST_PARM_OFFSET (current_function_decl));
29483 return virtual_incoming_args_rtx;
29486 /* We may have to tell the dataflow pass that the split stack prologue
29487 is initializing a register. */
29489 static void
29490 rs6000_live_on_entry (bitmap regs)
29492 if (flag_split_stack)
29493 bitmap_set_bit (regs, 12);
29496 /* Emit -fsplit-stack dynamic stack allocation space check. */
29498 void
29499 rs6000_split_stack_space_check (rtx size, rtx label)
29501 rtx sp = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
29502 rtx limit = gen_reg_rtx (Pmode);
29503 rtx requested = gen_reg_rtx (Pmode);
29504 rtx cmp = gen_reg_rtx (CCUNSmode);
29505 rtx jump;
29507 emit_insn (gen_load_split_stack_limit (limit));
29508 if (CONST_INT_P (size))
29509 emit_insn (gen_add3_insn (requested, sp, GEN_INT (-INTVAL (size))));
29510 else
29512 size = force_reg (Pmode, size);
29513 emit_move_insn (requested, gen_rtx_MINUS (Pmode, sp, size));
29515 emit_insn (gen_rtx_SET (cmp, gen_rtx_COMPARE (CCUNSmode, requested, limit)));
29516 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
29517 gen_rtx_GEU (VOIDmode, cmp, const0_rtx),
29518 gen_rtx_LABEL_REF (VOIDmode, label),
29519 pc_rtx);
29520 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
29521 JUMP_LABEL (jump) = label;
29524 /* A C compound statement that outputs the assembler code for a thunk
29525 function, used to implement C++ virtual function calls with
29526 multiple inheritance. The thunk acts as a wrapper around a virtual
29527 function, adjusting the implicit object parameter before handing
29528 control off to the real function.
29530 First, emit code to add the integer DELTA to the location that
29531 contains the incoming first argument. Assume that this argument
29532 contains a pointer, and is the one used to pass the `this' pointer
29533 in C++. This is the incoming argument *before* the function
29534 prologue, e.g. `%o0' on a sparc. The addition must preserve the
29535 values of all other incoming arguments.
29537 After the addition, emit code to jump to FUNCTION, which is a
29538 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
29539 not touch the return address. Hence returning from FUNCTION will
29540 return to whoever called the current `thunk'.
29542 The effect must be as if FUNCTION had been called directly with the
29543 adjusted first argument. This macro is responsible for emitting
29544 all of the code for a thunk function; output_function_prologue()
29545 and output_function_epilogue() are not invoked.
29547 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
29548 been extracted from it.) It might possibly be useful on some
29549 targets, but probably not.
29551 If you do not define this macro, the target-independent code in the
29552 C++ frontend will generate a less efficient heavyweight thunk that
29553 calls FUNCTION instead of jumping to it. The generic approach does
29554 not support varargs. */
29556 static void
29557 rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
29558 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
29559 tree function)
29561 rtx this_rtx, funexp;
29562 rtx_insn *insn;
29564 reload_completed = 1;
29565 epilogue_completed = 1;
29567 /* Mark the end of the (empty) prologue. */
29568 emit_note (NOTE_INSN_PROLOGUE_END);
29570 /* Find the "this" pointer. If the function returns a structure,
29571 the structure return pointer is in r3. */
29572 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
29573 this_rtx = gen_rtx_REG (Pmode, 4);
29574 else
29575 this_rtx = gen_rtx_REG (Pmode, 3);
29577 /* Apply the constant offset, if required. */
29578 if (delta)
29579 emit_insn (gen_add3_insn (this_rtx, this_rtx, GEN_INT (delta)));
29581 /* Apply the offset from the vtable, if required. */
29582 if (vcall_offset)
29584 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
29585 rtx tmp = gen_rtx_REG (Pmode, 12);
29587 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
29588 if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
29590 emit_insn (gen_add3_insn (tmp, tmp, vcall_offset_rtx));
29591 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
29593 else
29595 rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);
29597 emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
29599 emit_insn (gen_add3_insn (this_rtx, this_rtx, tmp));
29602 /* Generate a tail call to the target function. */
29603 if (!TREE_USED (function))
29605 assemble_external (function);
29606 TREE_USED (function) = 1;
29608 funexp = XEXP (DECL_RTL (function), 0);
29609 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
29611 #if TARGET_MACHO
29612 if (MACHOPIC_INDIRECT)
29613 funexp = machopic_indirect_call_target (funexp);
29614 #endif
29616 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
29617 generate sibcall RTL explicitly. */
29618 insn = emit_call_insn (
29619 gen_rtx_PARALLEL (VOIDmode,
29620 gen_rtvec (3,
29621 gen_rtx_CALL (VOIDmode,
29622 funexp, const0_rtx),
29623 gen_rtx_USE (VOIDmode, const0_rtx),
29624 simple_return_rtx)));
29625 SIBLING_CALL_P (insn) = 1;
29626 emit_barrier ();
29628 /* Run just enough of rest_of_compilation to get the insns emitted.
29629 There's not really enough bulk here to make other passes such as
29630 instruction scheduling worth while. Note that use_thunk calls
29631 assemble_start_function and assemble_end_function. */
29632 insn = get_insns ();
29633 shorten_branches (insn);
29634 final_start_function (insn, file, 1);
29635 final (insn, file, 1);
29636 final_end_function ();
29638 reload_completed = 0;
29639 epilogue_completed = 0;
29642 /* A quick summary of the various types of 'constant-pool tables'
29643 under PowerPC:
29645 Target Flags Name One table per
29646 AIX (none) AIX TOC object file
29647 AIX -mfull-toc AIX TOC object file
29648 AIX -mminimal-toc AIX minimal TOC translation unit
29649 SVR4/EABI (none) SVR4 SDATA object file
29650 SVR4/EABI -fpic SVR4 pic object file
29651 SVR4/EABI -fPIC SVR4 PIC translation unit
29652 SVR4/EABI -mrelocatable EABI TOC function
29653 SVR4/EABI -maix AIX TOC object file
29654 SVR4/EABI -maix -mminimal-toc
29655 AIX minimal TOC translation unit
29657 Name Reg. Set by entries contains:
29658 made by addrs? fp? sum?
29660 AIX TOC 2 crt0 as Y option option
29661 AIX minimal TOC 30 prolog gcc Y Y option
29662 SVR4 SDATA 13 crt0 gcc N Y N
29663 SVR4 pic 30 prolog ld Y not yet N
29664 SVR4 PIC 30 prolog gcc Y option option
29665 EABI TOC 30 prolog gcc Y option option
29669 /* Hash functions for the hash table. */
29671 static unsigned
29672 rs6000_hash_constant (rtx k)
29674 enum rtx_code code = GET_CODE (k);
29675 machine_mode mode = GET_MODE (k);
29676 unsigned result = (code << 3) ^ mode;
29677 const char *format;
29678 int flen, fidx;
29680 format = GET_RTX_FORMAT (code);
29681 flen = strlen (format);
29682 fidx = 0;
29684 switch (code)
29686 case LABEL_REF:
29687 return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));
29689 case CONST_WIDE_INT:
29691 int i;
29692 flen = CONST_WIDE_INT_NUNITS (k);
29693 for (i = 0; i < flen; i++)
29694 result = result * 613 + CONST_WIDE_INT_ELT (k, i);
29695 return result;
29698 case CONST_DOUBLE:
29699 if (mode != VOIDmode)
29700 return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
29701 flen = 2;
29702 break;
29704 case CODE_LABEL:
29705 fidx = 3;
29706 break;
29708 default:
29709 break;
29712 for (; fidx < flen; fidx++)
29713 switch (format[fidx])
29715 case 's':
29717 unsigned i, len;
29718 const char *str = XSTR (k, fidx);
29719 len = strlen (str);
29720 result = result * 613 + len;
29721 for (i = 0; i < len; i++)
29722 result = result * 613 + (unsigned) str[i];
29723 break;
29725 case 'u':
29726 case 'e':
29727 result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
29728 break;
29729 case 'i':
29730 case 'n':
29731 result = result * 613 + (unsigned) XINT (k, fidx);
29732 break;
29733 case 'w':
29734 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
29735 result = result * 613 + (unsigned) XWINT (k, fidx);
29736 else
29738 size_t i;
29739 for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
29740 result = result * 613 + (unsigned) (XWINT (k, fidx)
29741 >> CHAR_BIT * i);
29743 break;
29744 case '0':
29745 break;
29746 default:
29747 gcc_unreachable ();
29750 return result;
29753 hashval_t
29754 toc_hasher::hash (toc_hash_struct *thc)
29756 return rs6000_hash_constant (thc->key) ^ thc->key_mode;
29759 /* Compare H1 and H2 for equivalence. */
29761 bool
29762 toc_hasher::equal (toc_hash_struct *h1, toc_hash_struct *h2)
29764 rtx r1 = h1->key;
29765 rtx r2 = h2->key;
29767 if (h1->key_mode != h2->key_mode)
29768 return 0;
29770 return rtx_equal_p (r1, r2);
29773 /* These are the names given by the C++ front-end to vtables, and
29774 vtable-like objects. Ideally, this logic should not be here;
29775 instead, there should be some programmatic way of inquiring as
29776 to whether or not an object is a vtable. */
29778 #define VTABLE_NAME_P(NAME) \
29779 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
29780 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
29781 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
29782 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
29783 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
29785 #ifdef NO_DOLLAR_IN_LABEL
29786 /* Return a GGC-allocated character string translating dollar signs in
29787 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
29789 const char *
29790 rs6000_xcoff_strip_dollar (const char *name)
29792 char *strip, *p;
29793 const char *q;
29794 size_t len;
29796 q = (const char *) strchr (name, '$');
29798 if (q == 0 || q == name)
29799 return name;
29801 len = strlen (name);
29802 strip = XALLOCAVEC (char, len + 1);
29803 strcpy (strip, name);
29804 p = strip + (q - name);
29805 while (p)
29807 *p = '_';
29808 p = strchr (p + 1, '$');
29811 return ggc_alloc_string (strip, len);
29813 #endif
29815 void
29816 rs6000_output_symbol_ref (FILE *file, rtx x)
29818 const char *name = XSTR (x, 0);
29820 /* Currently C++ toc references to vtables can be emitted before it
29821 is decided whether the vtable is public or private. If this is
29822 the case, then the linker will eventually complain that there is
29823 a reference to an unknown section. Thus, for vtables only,
29824 we emit the TOC reference to reference the identifier and not the
29825 symbol. */
29826 if (VTABLE_NAME_P (name))
29828 RS6000_OUTPUT_BASENAME (file, name);
29830 else
29831 assemble_name (file, name);
29834 /* Output a TOC entry. We derive the entry name from what is being
29835 written. */
29837 void
29838 output_toc (FILE *file, rtx x, int labelno, machine_mode mode)
29840 char buf[256];
29841 const char *name = buf;
29842 rtx base = x;
29843 HOST_WIDE_INT offset = 0;
29845 gcc_assert (!TARGET_NO_TOC);
29847 /* When the linker won't eliminate them, don't output duplicate
29848 TOC entries (this happens on AIX if there is any kind of TOC,
29849 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
29850 CODE_LABELs. */
29851 if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
29853 struct toc_hash_struct *h;
29855 /* Create toc_hash_table. This can't be done at TARGET_OPTION_OVERRIDE
29856 time because GGC is not initialized at that point. */
29857 if (toc_hash_table == NULL)
29858 toc_hash_table = hash_table<toc_hasher>::create_ggc (1021);
29860 h = ggc_alloc<toc_hash_struct> ();
29861 h->key = x;
29862 h->key_mode = mode;
29863 h->labelno = labelno;
29865 toc_hash_struct **found = toc_hash_table->find_slot (h, INSERT);
29866 if (*found == NULL)
29867 *found = h;
29868 else /* This is indeed a duplicate.
29869 Set this label equal to that label. */
29871 fputs ("\t.set ", file);
29872 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
29873 fprintf (file, "%d,", labelno);
29874 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
29875 fprintf (file, "%d\n", ((*found)->labelno));
29877 #ifdef HAVE_AS_TLS
29878 if (TARGET_XCOFF && GET_CODE (x) == SYMBOL_REF
29879 && (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_GLOBAL_DYNAMIC
29880 || SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC))
29882 fputs ("\t.set ", file);
29883 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
29884 fprintf (file, "%d,", labelno);
29885 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
29886 fprintf (file, "%d\n", ((*found)->labelno));
29888 #endif
29889 return;
29893 /* If we're going to put a double constant in the TOC, make sure it's
29894 aligned properly when strict alignment is on. */
29895 if ((CONST_DOUBLE_P (x) || CONST_WIDE_INT_P (x))
29896 && STRICT_ALIGNMENT
29897 && GET_MODE_BITSIZE (mode) >= 64
29898 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
29899 ASM_OUTPUT_ALIGN (file, 3);
29902 (*targetm.asm_out.internal_label) (file, "LC", labelno);
29904 /* Handle FP constants specially. Note that if we have a minimal
29905 TOC, things we put here aren't actually in the TOC, so we can allow
29906 FP constants. */
29907 if (GET_CODE (x) == CONST_DOUBLE &&
29908 (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode
29909 || GET_MODE (x) == IFmode || GET_MODE (x) == KFmode))
29911 long k[4];
29913 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29914 REAL_VALUE_TO_TARGET_DECIMAL128 (*CONST_DOUBLE_REAL_VALUE (x), k);
29915 else
29916 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);
29918 if (TARGET_64BIT)
29920 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29921 fputs (DOUBLE_INT_ASM_OP, file);
29922 else
29923 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
29924 k[0] & 0xffffffff, k[1] & 0xffffffff,
29925 k[2] & 0xffffffff, k[3] & 0xffffffff);
29926 fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
29927 k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
29928 k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff,
29929 k[WORDS_BIG_ENDIAN ? 2 : 3] & 0xffffffff,
29930 k[WORDS_BIG_ENDIAN ? 3 : 2] & 0xffffffff);
29931 return;
29933 else
29935 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29936 fputs ("\t.long ", file);
29937 else
29938 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
29939 k[0] & 0xffffffff, k[1] & 0xffffffff,
29940 k[2] & 0xffffffff, k[3] & 0xffffffff);
29941 fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
29942 k[0] & 0xffffffff, k[1] & 0xffffffff,
29943 k[2] & 0xffffffff, k[3] & 0xffffffff);
29944 return;
29947 else if (GET_CODE (x) == CONST_DOUBLE &&
29948 (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
29950 long k[2];
29952 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29953 REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (x), k);
29954 else
29955 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);
29957 if (TARGET_64BIT)
29959 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29960 fputs (DOUBLE_INT_ASM_OP, file);
29961 else
29962 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
29963 k[0] & 0xffffffff, k[1] & 0xffffffff);
29964 fprintf (file, "0x%lx%08lx\n",
29965 k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
29966 k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff);
29967 return;
29969 else
29971 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29972 fputs ("\t.long ", file);
29973 else
29974 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
29975 k[0] & 0xffffffff, k[1] & 0xffffffff);
29976 fprintf (file, "0x%lx,0x%lx\n",
29977 k[0] & 0xffffffff, k[1] & 0xffffffff);
29978 return;
29981 else if (GET_CODE (x) == CONST_DOUBLE &&
29982 (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
29984 long l;
29986 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29987 REAL_VALUE_TO_TARGET_DECIMAL32 (*CONST_DOUBLE_REAL_VALUE (x), l);
29988 else
29989 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
29991 if (TARGET_64BIT)
29993 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29994 fputs (DOUBLE_INT_ASM_OP, file);
29995 else
29996 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
29997 if (WORDS_BIG_ENDIAN)
29998 fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
29999 else
30000 fprintf (file, "0x%lx\n", l & 0xffffffff);
30001 return;
30003 else
30005 if (TARGET_ELF || TARGET_MINIMAL_TOC)
30006 fputs ("\t.long ", file);
30007 else
30008 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
30009 fprintf (file, "0x%lx\n", l & 0xffffffff);
30010 return;
30013 else if (GET_MODE (x) == VOIDmode && GET_CODE (x) == CONST_INT)
30015 unsigned HOST_WIDE_INT low;
30016 HOST_WIDE_INT high;
30018 low = INTVAL (x) & 0xffffffff;
30019 high = (HOST_WIDE_INT) INTVAL (x) >> 32;
30021 /* TOC entries are always Pmode-sized, so when big-endian
30022 smaller integer constants in the TOC need to be padded.
30023 (This is still a win over putting the constants in
30024 a separate constant pool, because then we'd have
30025 to have both a TOC entry _and_ the actual constant.)
30027 For a 32-bit target, CONST_INT values are loaded and shifted
30028 entirely within `low' and can be stored in one TOC entry. */
30030 /* It would be easy to make this work, but it doesn't now. */
30031 gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));
30033 if (WORDS_BIG_ENDIAN && POINTER_SIZE > GET_MODE_BITSIZE (mode))
30035 low |= high << 32;
30036 low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
30037 high = (HOST_WIDE_INT) low >> 32;
30038 low &= 0xffffffff;
30041 if (TARGET_64BIT)
30043 if (TARGET_ELF || TARGET_MINIMAL_TOC)
30044 fputs (DOUBLE_INT_ASM_OP, file);
30045 else
30046 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
30047 (long) high & 0xffffffff, (long) low & 0xffffffff);
30048 fprintf (file, "0x%lx%08lx\n",
30049 (long) high & 0xffffffff, (long) low & 0xffffffff);
30050 return;
30052 else
30054 if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
30056 if (TARGET_ELF || TARGET_MINIMAL_TOC)
30057 fputs ("\t.long ", file);
30058 else
30059 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
30060 (long) high & 0xffffffff, (long) low & 0xffffffff);
30061 fprintf (file, "0x%lx,0x%lx\n",
30062 (long) high & 0xffffffff, (long) low & 0xffffffff);
30064 else
30066 if (TARGET_ELF || TARGET_MINIMAL_TOC)
30067 fputs ("\t.long ", file);
30068 else
30069 fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
30070 fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
30072 return;
30076 if (GET_CODE (x) == CONST)
30078 gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS
30079 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT);
30081 base = XEXP (XEXP (x, 0), 0);
30082 offset = INTVAL (XEXP (XEXP (x, 0), 1));
30085 switch (GET_CODE (base))
30087 case SYMBOL_REF:
30088 name = XSTR (base, 0);
30089 break;
30091 case LABEL_REF:
30092 ASM_GENERATE_INTERNAL_LABEL (buf, "L",
30093 CODE_LABEL_NUMBER (XEXP (base, 0)));
30094 break;
30096 case CODE_LABEL:
30097 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
30098 break;
30100 default:
30101 gcc_unreachable ();
30104 if (TARGET_ELF || TARGET_MINIMAL_TOC)
30105 fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
30106 else
30108 fputs ("\t.tc ", file);
30109 RS6000_OUTPUT_BASENAME (file, name);
30111 if (offset < 0)
30112 fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
30113 else if (offset)
30114 fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);
30116 /* Mark large TOC symbols on AIX with [TE] so they are mapped
30117 after other TOC symbols, reducing overflow of small TOC access
30118 to [TC] symbols. */
30119 fputs (TARGET_XCOFF && TARGET_CMODEL != CMODEL_SMALL
30120 ? "[TE]," : "[TC],", file);
30123 /* Currently C++ toc references to vtables can be emitted before it
30124 is decided whether the vtable is public or private. If this is
30125 the case, then the linker will eventually complain that there is
30126 a TOC reference to an unknown section. Thus, for vtables only,
30127 we emit the TOC reference to reference the symbol and not the
30128 section. */
30129 if (VTABLE_NAME_P (name))
30131 RS6000_OUTPUT_BASENAME (file, name);
30132 if (offset < 0)
30133 fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
30134 else if (offset > 0)
30135 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
30137 else
30138 output_addr_const (file, x);
30140 #if HAVE_AS_TLS
30141 if (TARGET_XCOFF && GET_CODE (base) == SYMBOL_REF)
30143 switch (SYMBOL_REF_TLS_MODEL (base))
30145 case 0:
30146 break;
30147 case TLS_MODEL_LOCAL_EXEC:
30148 fputs ("@le", file);
30149 break;
30150 case TLS_MODEL_INITIAL_EXEC:
30151 fputs ("@ie", file);
30152 break;
30153 /* Use global-dynamic for local-dynamic. */
30154 case TLS_MODEL_GLOBAL_DYNAMIC:
30155 case TLS_MODEL_LOCAL_DYNAMIC:
30156 putc ('\n', file);
30157 (*targetm.asm_out.internal_label) (file, "LCM", labelno);
30158 fputs ("\t.tc .", file);
30159 RS6000_OUTPUT_BASENAME (file, name);
30160 fputs ("[TC],", file);
30161 output_addr_const (file, x);
30162 fputs ("@m", file);
30163 break;
30164 default:
30165 gcc_unreachable ();
30168 #endif
30170 putc ('\n', file);
30173 /* Output an assembler pseudo-op to write an ASCII string of N characters
30174 starting at P to FILE.
30176 On the RS/6000, we have to do this using the .byte operation and
30177 write out special characters outside the quoted string.
30178 Also, the assembler is broken; very long strings are truncated,
30179 so we must artificially break them up early. */
30181 void
30182 output_ascii (FILE *file, const char *p, int n)
30184 char c;
30185 int i, count_string;
30186 const char *for_string = "\t.byte \"";
30187 const char *for_decimal = "\t.byte ";
30188 const char *to_close = NULL;
30190 count_string = 0;
30191 for (i = 0; i < n; i++)
30193 c = *p++;
30194 if (c >= ' ' && c < 0177)
30196 if (for_string)
30197 fputs (for_string, file);
30198 putc (c, file);
30200 /* Write two quotes to get one. */
30201 if (c == '"')
30203 putc (c, file);
30204 ++count_string;
30207 for_string = NULL;
30208 for_decimal = "\"\n\t.byte ";
30209 to_close = "\"\n";
30210 ++count_string;
30212 if (count_string >= 512)
30214 fputs (to_close, file);
30216 for_string = "\t.byte \"";
30217 for_decimal = "\t.byte ";
30218 to_close = NULL;
30219 count_string = 0;
30222 else
30224 if (for_decimal)
30225 fputs (for_decimal, file);
30226 fprintf (file, "%d", c);
30228 for_string = "\n\t.byte \"";
30229 for_decimal = ", ";
30230 to_close = "\n";
30231 count_string = 0;
30235 /* Now close the string if we have written one. Then end the line. */
30236 if (to_close)
30237 fputs (to_close, file);
30240 /* Generate a unique section name for FILENAME for a section type
30241 represented by SECTION_DESC. Output goes into BUF.
30243 SECTION_DESC can be any string, as long as it is different for each
30244 possible section type.
30246 We name the section in the same manner as xlc. The name begins with an
30247 underscore followed by the filename (after stripping any leading directory
30248 names) with the last period replaced by the string SECTION_DESC. If
30249 FILENAME does not contain a period, SECTION_DESC is appended to the end of
30250 the name. */
30252 void
30253 rs6000_gen_section_name (char **buf, const char *filename,
30254 const char *section_desc)
30256 const char *q, *after_last_slash, *last_period = 0;
30257 char *p;
30258 int len;
30260 after_last_slash = filename;
30261 for (q = filename; *q; q++)
30263 if (*q == '/')
30264 after_last_slash = q + 1;
30265 else if (*q == '.')
30266 last_period = q;
30269 len = strlen (after_last_slash) + strlen (section_desc) + 2;
30270 *buf = (char *) xmalloc (len);
30272 p = *buf;
30273 *p++ = '_';
30275 for (q = after_last_slash; *q; q++)
30277 if (q == last_period)
30279 strcpy (p, section_desc);
30280 p += strlen (section_desc);
30281 break;
30284 else if (ISALNUM (*q))
30285 *p++ = *q;
30288 if (last_period == 0)
30289 strcpy (p, section_desc);
30290 else
30291 *p = '\0';
30294 /* Emit profile function. */
30296 void
30297 output_profile_hook (int labelno ATTRIBUTE_UNUSED)
30299 /* Non-standard profiling for kernels, which just saves LR then calls
30300 _mcount without worrying about arg saves. The idea is to change
30301 the function prologue as little as possible as it isn't easy to
30302 account for arg save/restore code added just for _mcount. */
30303 if (TARGET_PROFILE_KERNEL)
30304 return;
30306 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
30308 #ifndef NO_PROFILE_COUNTERS
30309 # define NO_PROFILE_COUNTERS 0
30310 #endif
30311 if (NO_PROFILE_COUNTERS)
30312 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
30313 LCT_NORMAL, VOIDmode);
30314 else
30316 char buf[30];
30317 const char *label_name;
30318 rtx fun;
30320 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
30321 label_name = ggc_strdup ((*targetm.strip_name_encoding) (buf));
30322 fun = gen_rtx_SYMBOL_REF (Pmode, label_name);
30324 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
30325 LCT_NORMAL, VOIDmode, fun, Pmode);
30328 else if (DEFAULT_ABI == ABI_DARWIN)
30330 const char *mcount_name = RS6000_MCOUNT;
30331 int caller_addr_regno = LR_REGNO;
30333 /* Be conservative and always set this, at least for now. */
30334 crtl->uses_pic_offset_table = 1;
30336 #if TARGET_MACHO
30337 /* For PIC code, set up a stub and collect the caller's address
30338 from r0, which is where the prologue puts it. */
30339 if (MACHOPIC_INDIRECT
30340 && crtl->uses_pic_offset_table)
30341 caller_addr_regno = 0;
30342 #endif
30343 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
30344 LCT_NORMAL, VOIDmode,
30345 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
30349 /* Write function profiler code. */
30351 void
30352 output_function_profiler (FILE *file, int labelno)
30354 char buf[100];
30356 switch (DEFAULT_ABI)
30358 default:
30359 gcc_unreachable ();
30361 case ABI_V4:
30362 if (!TARGET_32BIT)
30364 warning (0, "no profiling of 64-bit code for this ABI");
30365 return;
30367 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
30368 fprintf (file, "\tmflr %s\n", reg_names[0]);
30369 if (NO_PROFILE_COUNTERS)
30371 asm_fprintf (file, "\tstw %s,4(%s)\n",
30372 reg_names[0], reg_names[1]);
30374 else if (TARGET_SECURE_PLT && flag_pic)
30376 if (TARGET_LINK_STACK)
30378 char name[32];
30379 get_ppc476_thunk_name (name);
30380 asm_fprintf (file, "\tbl %s\n", name);
30382 else
30383 asm_fprintf (file, "\tbcl 20,31,1f\n1:\n");
30384 asm_fprintf (file, "\tstw %s,4(%s)\n",
30385 reg_names[0], reg_names[1]);
30386 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
30387 asm_fprintf (file, "\taddis %s,%s,",
30388 reg_names[12], reg_names[12]);
30389 assemble_name (file, buf);
30390 asm_fprintf (file, "-1b@ha\n\tla %s,", reg_names[0]);
30391 assemble_name (file, buf);
30392 asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
30394 else if (flag_pic == 1)
30396 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
30397 asm_fprintf (file, "\tstw %s,4(%s)\n",
30398 reg_names[0], reg_names[1]);
30399 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
30400 asm_fprintf (file, "\tlwz %s,", reg_names[0]);
30401 assemble_name (file, buf);
30402 asm_fprintf (file, "@got(%s)\n", reg_names[12]);
30404 else if (flag_pic > 1)
30406 asm_fprintf (file, "\tstw %s,4(%s)\n",
30407 reg_names[0], reg_names[1]);
30408 /* Now, we need to get the address of the label. */
30409 if (TARGET_LINK_STACK)
30411 char name[32];
30412 get_ppc476_thunk_name (name);
30413 asm_fprintf (file, "\tbl %s\n\tb 1f\n\t.long ", name);
30414 assemble_name (file, buf);
30415 fputs ("-.\n1:", file);
30416 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
30417 asm_fprintf (file, "\taddi %s,%s,4\n",
30418 reg_names[11], reg_names[11]);
30420 else
30422 fputs ("\tbcl 20,31,1f\n\t.long ", file);
30423 assemble_name (file, buf);
30424 fputs ("-.\n1:", file);
30425 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
30427 asm_fprintf (file, "\tlwz %s,0(%s)\n",
30428 reg_names[0], reg_names[11]);
30429 asm_fprintf (file, "\tadd %s,%s,%s\n",
30430 reg_names[0], reg_names[0], reg_names[11]);
30432 else
30434 asm_fprintf (file, "\tlis %s,", reg_names[12]);
30435 assemble_name (file, buf);
30436 fputs ("@ha\n", file);
30437 asm_fprintf (file, "\tstw %s,4(%s)\n",
30438 reg_names[0], reg_names[1]);
30439 asm_fprintf (file, "\tla %s,", reg_names[0]);
30440 assemble_name (file, buf);
30441 asm_fprintf (file, "@l(%s)\n", reg_names[12]);
30444 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
30445 fprintf (file, "\tbl %s%s\n",
30446 RS6000_MCOUNT, flag_pic ? "@plt" : "");
30447 break;
30449 case ABI_AIX:
30450 case ABI_ELFv2:
30451 case ABI_DARWIN:
30452 /* Don't do anything, done in output_profile_hook (). */
30453 break;
30459 /* The following variable value is the last issued insn. */
30461 static rtx_insn *last_scheduled_insn;
30463 /* The following variable helps to balance issuing of load and
30464 store instructions */
30466 static int load_store_pendulum;
30468 /* The following variable helps pair divide insns during scheduling. */
30469 static int divide_cnt;
30470 /* The following variable helps pair and alternate vector and vector load
30471 insns during scheduling. */
30472 static int vec_pairing;
30475 /* Power4 load update and store update instructions are cracked into a
30476 load or store and an integer insn which are executed in the same cycle.
30477 Branches have their own dispatch slot which does not count against the
30478 GCC issue rate, but it changes the program flow so there are no other
30479 instructions to issue in this cycle. */
30481 static int
30482 rs6000_variable_issue_1 (rtx_insn *insn, int more)
30484 last_scheduled_insn = insn;
30485 if (GET_CODE (PATTERN (insn)) == USE
30486 || GET_CODE (PATTERN (insn)) == CLOBBER)
30488 cached_can_issue_more = more;
30489 return cached_can_issue_more;
30492 if (insn_terminates_group_p (insn, current_group))
30494 cached_can_issue_more = 0;
30495 return cached_can_issue_more;
30498 /* If no reservation, but reach here */
30499 if (recog_memoized (insn) < 0)
30500 return more;
30502 if (rs6000_sched_groups)
30504 if (is_microcoded_insn (insn))
30505 cached_can_issue_more = 0;
30506 else if (is_cracked_insn (insn))
30507 cached_can_issue_more = more > 2 ? more - 2 : 0;
30508 else
30509 cached_can_issue_more = more - 1;
30511 return cached_can_issue_more;
30514 if (rs6000_cpu_attr == CPU_CELL && is_nonpipeline_insn (insn))
30515 return 0;
30517 cached_can_issue_more = more - 1;
30518 return cached_can_issue_more;
30521 static int
30522 rs6000_variable_issue (FILE *stream, int verbose, rtx_insn *insn, int more)
30524 int r = rs6000_variable_issue_1 (insn, more);
30525 if (verbose)
30526 fprintf (stream, "// rs6000_variable_issue (more = %d) = %d\n", more, r);
30527 return r;
30530 /* Adjust the cost of a scheduling dependency. Return the new cost of
30531 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
30533 static int
30534 rs6000_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, int cost,
30535 unsigned int)
30537 enum attr_type attr_type;
30539 if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
30540 return cost;
30542 switch (dep_type)
30544 case REG_DEP_TRUE:
30546 /* Data dependency; DEP_INSN writes a register that INSN reads
30547 some cycles later. */
30549 /* Separate a load from a narrower, dependent store. */
30550 if ((rs6000_sched_groups || rs6000_cpu_attr == CPU_POWER9)
30551 && GET_CODE (PATTERN (insn)) == SET
30552 && GET_CODE (PATTERN (dep_insn)) == SET
30553 && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
30554 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
30555 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
30556 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
30557 return cost + 14;
30559 attr_type = get_attr_type (insn);
30561 switch (attr_type)
30563 case TYPE_JMPREG:
30564 /* Tell the first scheduling pass about the latency between
30565 a mtctr and bctr (and mtlr and br/blr). The first
30566 scheduling pass will not know about this latency since
30567 the mtctr instruction, which has the latency associated
30568 to it, will be generated by reload. */
30569 return 4;
30570 case TYPE_BRANCH:
30571 /* Leave some extra cycles between a compare and its
30572 dependent branch, to inhibit expensive mispredicts. */
30573 if ((rs6000_cpu_attr == CPU_PPC603
30574 || rs6000_cpu_attr == CPU_PPC604
30575 || rs6000_cpu_attr == CPU_PPC604E
30576 || rs6000_cpu_attr == CPU_PPC620
30577 || rs6000_cpu_attr == CPU_PPC630
30578 || rs6000_cpu_attr == CPU_PPC750
30579 || rs6000_cpu_attr == CPU_PPC7400
30580 || rs6000_cpu_attr == CPU_PPC7450
30581 || rs6000_cpu_attr == CPU_PPCE5500
30582 || rs6000_cpu_attr == CPU_PPCE6500
30583 || rs6000_cpu_attr == CPU_POWER4
30584 || rs6000_cpu_attr == CPU_POWER5
30585 || rs6000_cpu_attr == CPU_POWER7
30586 || rs6000_cpu_attr == CPU_POWER8
30587 || rs6000_cpu_attr == CPU_POWER9
30588 || rs6000_cpu_attr == CPU_CELL)
30589 && recog_memoized (dep_insn)
30590 && (INSN_CODE (dep_insn) >= 0))
30592 switch (get_attr_type (dep_insn))
30594 case TYPE_CMP:
30595 case TYPE_FPCOMPARE:
30596 case TYPE_CR_LOGICAL:
30597 case TYPE_DELAYED_CR:
30598 return cost + 2;
30599 case TYPE_EXTS:
30600 case TYPE_MUL:
30601 if (get_attr_dot (dep_insn) == DOT_YES)
30602 return cost + 2;
30603 else
30604 break;
30605 case TYPE_SHIFT:
30606 if (get_attr_dot (dep_insn) == DOT_YES
30607 && get_attr_var_shift (dep_insn) == VAR_SHIFT_NO)
30608 return cost + 2;
30609 else
30610 break;
30611 default:
30612 break;
30614 break;
30616 case TYPE_STORE:
30617 case TYPE_FPSTORE:
30618 if ((rs6000_cpu == PROCESSOR_POWER6)
30619 && recog_memoized (dep_insn)
30620 && (INSN_CODE (dep_insn) >= 0))
30623 if (GET_CODE (PATTERN (insn)) != SET)
30624 /* If this happens, we have to extend this to schedule
30625 optimally. Return default for now. */
30626 return cost;
30628 /* Adjust the cost for the case where the value written
30629 by a fixed point operation is used as the address
30630 gen value on a store. */
30631 switch (get_attr_type (dep_insn))
30633 case TYPE_LOAD:
30634 case TYPE_CNTLZ:
30636 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30637 return get_attr_sign_extend (dep_insn)
30638 == SIGN_EXTEND_YES ? 6 : 4;
30639 break;
30641 case TYPE_SHIFT:
30643 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30644 return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
30645 6 : 3;
30646 break;
30648 case TYPE_INTEGER:
30649 case TYPE_ADD:
30650 case TYPE_LOGICAL:
30651 case TYPE_EXTS:
30652 case TYPE_INSERT:
30654 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30655 return 3;
30656 break;
30658 case TYPE_STORE:
30659 case TYPE_FPLOAD:
30660 case TYPE_FPSTORE:
30662 if (get_attr_update (dep_insn) == UPDATE_YES
30663 && ! rs6000_store_data_bypass_p (dep_insn, insn))
30664 return 3;
30665 break;
30667 case TYPE_MUL:
30669 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30670 return 17;
30671 break;
30673 case TYPE_DIV:
30675 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30676 return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
30677 break;
30679 default:
30680 break;
30683 break;
30685 case TYPE_LOAD:
30686 if ((rs6000_cpu == PROCESSOR_POWER6)
30687 && recog_memoized (dep_insn)
30688 && (INSN_CODE (dep_insn) >= 0))
30691 /* Adjust the cost for the case where the value written
30692 by a fixed point instruction is used within the address
30693 gen portion of a subsequent load(u)(x) */
30694 switch (get_attr_type (dep_insn))
30696 case TYPE_LOAD:
30697 case TYPE_CNTLZ:
30699 if (set_to_load_agen (dep_insn, insn))
30700 return get_attr_sign_extend (dep_insn)
30701 == SIGN_EXTEND_YES ? 6 : 4;
30702 break;
30704 case TYPE_SHIFT:
30706 if (set_to_load_agen (dep_insn, insn))
30707 return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
30708 6 : 3;
30709 break;
30711 case TYPE_INTEGER:
30712 case TYPE_ADD:
30713 case TYPE_LOGICAL:
30714 case TYPE_EXTS:
30715 case TYPE_INSERT:
30717 if (set_to_load_agen (dep_insn, insn))
30718 return 3;
30719 break;
30721 case TYPE_STORE:
30722 case TYPE_FPLOAD:
30723 case TYPE_FPSTORE:
30725 if (get_attr_update (dep_insn) == UPDATE_YES
30726 && set_to_load_agen (dep_insn, insn))
30727 return 3;
30728 break;
30730 case TYPE_MUL:
30732 if (set_to_load_agen (dep_insn, insn))
30733 return 17;
30734 break;
30736 case TYPE_DIV:
30738 if (set_to_load_agen (dep_insn, insn))
30739 return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
30740 break;
30742 default:
30743 break;
30746 break;
30748 case TYPE_FPLOAD:
30749 if ((rs6000_cpu == PROCESSOR_POWER6)
30750 && get_attr_update (insn) == UPDATE_NO
30751 && recog_memoized (dep_insn)
30752 && (INSN_CODE (dep_insn) >= 0)
30753 && (get_attr_type (dep_insn) == TYPE_MFFGPR))
30754 return 2;
30756 default:
30757 break;
30760 /* Fall out to return default cost. */
30762 break;
30764 case REG_DEP_OUTPUT:
30765 /* Output dependency; DEP_INSN writes a register that INSN writes some
30766 cycles later. */
30767 if ((rs6000_cpu == PROCESSOR_POWER6)
30768 && recog_memoized (dep_insn)
30769 && (INSN_CODE (dep_insn) >= 0))
30771 attr_type = get_attr_type (insn);
30773 switch (attr_type)
30775 case TYPE_FP:
30776 case TYPE_FPSIMPLE:
30777 if (get_attr_type (dep_insn) == TYPE_FP
30778 || get_attr_type (dep_insn) == TYPE_FPSIMPLE)
30779 return 1;
30780 break;
30781 case TYPE_FPLOAD:
30782 if (get_attr_update (insn) == UPDATE_NO
30783 && get_attr_type (dep_insn) == TYPE_MFFGPR)
30784 return 2;
30785 break;
30786 default:
30787 break;
30790 /* Fall through, no cost for output dependency. */
30791 /* FALLTHRU */
30793 case REG_DEP_ANTI:
30794 /* Anti dependency; DEP_INSN reads a register that INSN writes some
30795 cycles later. */
30796 return 0;
30798 default:
30799 gcc_unreachable ();
30802 return cost;
30805 /* Debug version of rs6000_adjust_cost. */
30807 static int
30808 rs6000_debug_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
30809 int cost, unsigned int dw)
30811 int ret = rs6000_adjust_cost (insn, dep_type, dep_insn, cost, dw);
30813 if (ret != cost)
30815 const char *dep;
30817 switch (dep_type)
30819 default: dep = "unknown depencency"; break;
30820 case REG_DEP_TRUE: dep = "data dependency"; break;
30821 case REG_DEP_OUTPUT: dep = "output dependency"; break;
30822 case REG_DEP_ANTI: dep = "anti depencency"; break;
30825 fprintf (stderr,
30826 "\nrs6000_adjust_cost, final cost = %d, orig cost = %d, "
30827 "%s, insn:\n", ret, cost, dep);
30829 debug_rtx (insn);
30832 return ret;
30835 /* The function returns a true if INSN is microcoded.
30836 Return false otherwise. */
30838 static bool
30839 is_microcoded_insn (rtx_insn *insn)
30841 if (!insn || !NONDEBUG_INSN_P (insn)
30842 || GET_CODE (PATTERN (insn)) == USE
30843 || GET_CODE (PATTERN (insn)) == CLOBBER)
30844 return false;
30846 if (rs6000_cpu_attr == CPU_CELL)
30847 return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;
30849 if (rs6000_sched_groups
30850 && (rs6000_cpu == PROCESSOR_POWER4 || rs6000_cpu == PROCESSOR_POWER5))
30852 enum attr_type type = get_attr_type (insn);
30853 if ((type == TYPE_LOAD
30854 && get_attr_update (insn) == UPDATE_YES
30855 && get_attr_sign_extend (insn) == SIGN_EXTEND_YES)
30856 || ((type == TYPE_LOAD || type == TYPE_STORE)
30857 && get_attr_update (insn) == UPDATE_YES
30858 && get_attr_indexed (insn) == INDEXED_YES)
30859 || type == TYPE_MFCR)
30860 return true;
30863 return false;
30866 /* The function returns true if INSN is cracked into 2 instructions
30867 by the processor (and therefore occupies 2 issue slots). */
30869 static bool
30870 is_cracked_insn (rtx_insn *insn)
30872 if (!insn || !NONDEBUG_INSN_P (insn)
30873 || GET_CODE (PATTERN (insn)) == USE
30874 || GET_CODE (PATTERN (insn)) == CLOBBER)
30875 return false;
30877 if (rs6000_sched_groups
30878 && (rs6000_cpu == PROCESSOR_POWER4 || rs6000_cpu == PROCESSOR_POWER5))
30880 enum attr_type type = get_attr_type (insn);
30881 if ((type == TYPE_LOAD
30882 && get_attr_sign_extend (insn) == SIGN_EXTEND_YES
30883 && get_attr_update (insn) == UPDATE_NO)
30884 || (type == TYPE_LOAD
30885 && get_attr_sign_extend (insn) == SIGN_EXTEND_NO
30886 && get_attr_update (insn) == UPDATE_YES
30887 && get_attr_indexed (insn) == INDEXED_NO)
30888 || (type == TYPE_STORE
30889 && get_attr_update (insn) == UPDATE_YES
30890 && get_attr_indexed (insn) == INDEXED_NO)
30891 || ((type == TYPE_FPLOAD || type == TYPE_FPSTORE)
30892 && get_attr_update (insn) == UPDATE_YES)
30893 || type == TYPE_DELAYED_CR
30894 || (type == TYPE_EXTS
30895 && get_attr_dot (insn) == DOT_YES)
30896 || (type == TYPE_SHIFT
30897 && get_attr_dot (insn) == DOT_YES
30898 && get_attr_var_shift (insn) == VAR_SHIFT_NO)
30899 || (type == TYPE_MUL
30900 && get_attr_dot (insn) == DOT_YES)
30901 || type == TYPE_DIV
30902 || (type == TYPE_INSERT
30903 && get_attr_size (insn) == SIZE_32))
30904 return true;
30907 return false;
30910 /* The function returns true if INSN can be issued only from
30911 the branch slot. */
30913 static bool
30914 is_branch_slot_insn (rtx_insn *insn)
30916 if (!insn || !NONDEBUG_INSN_P (insn)
30917 || GET_CODE (PATTERN (insn)) == USE
30918 || GET_CODE (PATTERN (insn)) == CLOBBER)
30919 return false;
30921 if (rs6000_sched_groups)
30923 enum attr_type type = get_attr_type (insn);
30924 if (type == TYPE_BRANCH || type == TYPE_JMPREG)
30925 return true;
30926 return false;
30929 return false;
30932 /* The function returns true if out_inst sets a value that is
30933 used in the address generation computation of in_insn */
30934 static bool
30935 set_to_load_agen (rtx_insn *out_insn, rtx_insn *in_insn)
30937 rtx out_set, in_set;
30939 /* For performance reasons, only handle the simple case where
30940 both loads are a single_set. */
30941 out_set = single_set (out_insn);
30942 if (out_set)
30944 in_set = single_set (in_insn);
30945 if (in_set)
30946 return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
30949 return false;
30952 /* Try to determine base/offset/size parts of the given MEM.
30953 Return true if successful, false if all the values couldn't
30954 be determined.
30956 This function only looks for REG or REG+CONST address forms.
30957 REG+REG address form will return false. */
30959 static bool
30960 get_memref_parts (rtx mem, rtx *base, HOST_WIDE_INT *offset,
30961 HOST_WIDE_INT *size)
30963 rtx addr_rtx;
30964 if MEM_SIZE_KNOWN_P (mem)
30965 *size = MEM_SIZE (mem);
30966 else
30967 return false;
30969 addr_rtx = (XEXP (mem, 0));
30970 if (GET_CODE (addr_rtx) == PRE_MODIFY)
30971 addr_rtx = XEXP (addr_rtx, 1);
30973 *offset = 0;
30974 while (GET_CODE (addr_rtx) == PLUS
30975 && CONST_INT_P (XEXP (addr_rtx, 1)))
30977 *offset += INTVAL (XEXP (addr_rtx, 1));
30978 addr_rtx = XEXP (addr_rtx, 0);
30980 if (!REG_P (addr_rtx))
30981 return false;
30983 *base = addr_rtx;
30984 return true;
30987 /* The function returns true if the target storage location of
30988 mem1 is adjacent to the target storage location of mem2 */
30989 /* Return 1 if memory locations are adjacent. */
30991 static bool
30992 adjacent_mem_locations (rtx mem1, rtx mem2)
30994 rtx reg1, reg2;
30995 HOST_WIDE_INT off1, size1, off2, size2;
30997 if (get_memref_parts (mem1, &reg1, &off1, &size1)
30998 && get_memref_parts (mem2, &reg2, &off2, &size2))
30999 return ((REGNO (reg1) == REGNO (reg2))
31000 && ((off1 + size1 == off2)
31001 || (off2 + size2 == off1)));
31003 return false;
31006 /* This function returns true if it can be determined that the two MEM
31007 locations overlap by at least 1 byte based on base reg/offset/size. */
31009 static bool
31010 mem_locations_overlap (rtx mem1, rtx mem2)
31012 rtx reg1, reg2;
31013 HOST_WIDE_INT off1, size1, off2, size2;
31015 if (get_memref_parts (mem1, &reg1, &off1, &size1)
31016 && get_memref_parts (mem2, &reg2, &off2, &size2))
31017 return ((REGNO (reg1) == REGNO (reg2))
31018 && (((off1 <= off2) && (off1 + size1 > off2))
31019 || ((off2 <= off1) && (off2 + size2 > off1))));
31021 return false;
31024 /* A C statement (sans semicolon) to update the integer scheduling
31025 priority INSN_PRIORITY (INSN). Increase the priority to execute the
31026 INSN earlier, reduce the priority to execute INSN later. Do not
31027 define this macro if you do not need to adjust the scheduling
31028 priorities of insns. */
31030 static int
31031 rs6000_adjust_priority (rtx_insn *insn ATTRIBUTE_UNUSED, int priority)
31033 rtx load_mem, str_mem;
31034 /* On machines (like the 750) which have asymmetric integer units,
31035 where one integer unit can do multiply and divides and the other
31036 can't, reduce the priority of multiply/divide so it is scheduled
31037 before other integer operations. */
31039 #if 0
31040 if (! INSN_P (insn))
31041 return priority;
31043 if (GET_CODE (PATTERN (insn)) == USE)
31044 return priority;
31046 switch (rs6000_cpu_attr) {
31047 case CPU_PPC750:
31048 switch (get_attr_type (insn))
31050 default:
31051 break;
31053 case TYPE_MUL:
31054 case TYPE_DIV:
31055 fprintf (stderr, "priority was %#x (%d) before adjustment\n",
31056 priority, priority);
31057 if (priority >= 0 && priority < 0x01000000)
31058 priority >>= 3;
31059 break;
31062 #endif
31064 if (insn_must_be_first_in_group (insn)
31065 && reload_completed
31066 && current_sched_info->sched_max_insns_priority
31067 && rs6000_sched_restricted_insns_priority)
31070 /* Prioritize insns that can be dispatched only in the first
31071 dispatch slot. */
31072 if (rs6000_sched_restricted_insns_priority == 1)
31073 /* Attach highest priority to insn. This means that in
31074 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
31075 precede 'priority' (critical path) considerations. */
31076 return current_sched_info->sched_max_insns_priority;
31077 else if (rs6000_sched_restricted_insns_priority == 2)
31078 /* Increase priority of insn by a minimal amount. This means that in
31079 haifa-sched.c:ready_sort(), only 'priority' (critical path)
31080 considerations precede dispatch-slot restriction considerations. */
31081 return (priority + 1);
31084 if (rs6000_cpu == PROCESSOR_POWER6
31085 && ((load_store_pendulum == -2 && is_load_insn (insn, &load_mem))
31086 || (load_store_pendulum == 2 && is_store_insn (insn, &str_mem))))
31087 /* Attach highest priority to insn if the scheduler has just issued two
31088 stores and this instruction is a load, or two loads and this instruction
31089 is a store. Power6 wants loads and stores scheduled alternately
31090 when possible */
31091 return current_sched_info->sched_max_insns_priority;
31093 return priority;
31096 /* Return true if the instruction is nonpipelined on the Cell. */
31097 static bool
31098 is_nonpipeline_insn (rtx_insn *insn)
31100 enum attr_type type;
31101 if (!insn || !NONDEBUG_INSN_P (insn)
31102 || GET_CODE (PATTERN (insn)) == USE
31103 || GET_CODE (PATTERN (insn)) == CLOBBER)
31104 return false;
31106 type = get_attr_type (insn);
31107 if (type == TYPE_MUL
31108 || type == TYPE_DIV
31109 || type == TYPE_SDIV
31110 || type == TYPE_DDIV
31111 || type == TYPE_SSQRT
31112 || type == TYPE_DSQRT
31113 || type == TYPE_MFCR
31114 || type == TYPE_MFCRF
31115 || type == TYPE_MFJMPR)
31117 return true;
31119 return false;
31123 /* Return how many instructions the machine can issue per cycle. */
31125 static int
31126 rs6000_issue_rate (void)
31128 /* Unless scheduling for register pressure, use issue rate of 1 for
31129 first scheduling pass to decrease degradation. */
31130 if (!reload_completed && !flag_sched_pressure)
31131 return 1;
31133 switch (rs6000_cpu_attr) {
31134 case CPU_RS64A:
31135 case CPU_PPC601: /* ? */
31136 case CPU_PPC7450:
31137 return 3;
31138 case CPU_PPC440:
31139 case CPU_PPC603:
31140 case CPU_PPC750:
31141 case CPU_PPC7400:
31142 case CPU_PPC8540:
31143 case CPU_PPC8548:
31144 case CPU_CELL:
31145 case CPU_PPCE300C2:
31146 case CPU_PPCE300C3:
31147 case CPU_PPCE500MC:
31148 case CPU_PPCE500MC64:
31149 case CPU_PPCE5500:
31150 case CPU_PPCE6500:
31151 case CPU_TITAN:
31152 return 2;
31153 case CPU_PPC476:
31154 case CPU_PPC604:
31155 case CPU_PPC604E:
31156 case CPU_PPC620:
31157 case CPU_PPC630:
31158 return 4;
31159 case CPU_POWER4:
31160 case CPU_POWER5:
31161 case CPU_POWER6:
31162 case CPU_POWER7:
31163 return 5;
31164 case CPU_POWER8:
31165 return 7;
31166 case CPU_POWER9:
31167 return 6;
31168 default:
31169 return 1;
31173 /* Return how many instructions to look ahead for better insn
31174 scheduling. */
31176 static int
31177 rs6000_use_sched_lookahead (void)
31179 switch (rs6000_cpu_attr)
31181 case CPU_PPC8540:
31182 case CPU_PPC8548:
31183 return 4;
31185 case CPU_CELL:
31186 return (reload_completed ? 8 : 0);
31188 default:
31189 return 0;
31193 /* We are choosing insn from the ready queue. Return zero if INSN can be
31194 chosen. */
31195 static int
31196 rs6000_use_sched_lookahead_guard (rtx_insn *insn, int ready_index)
31198 if (ready_index == 0)
31199 return 0;
31201 if (rs6000_cpu_attr != CPU_CELL)
31202 return 0;
31204 gcc_assert (insn != NULL_RTX && INSN_P (insn));
31206 if (!reload_completed
31207 || is_nonpipeline_insn (insn)
31208 || is_microcoded_insn (insn))
31209 return 1;
31211 return 0;
31214 /* Determine if PAT refers to memory. If so, set MEM_REF to the MEM rtx
31215 and return true. */
31217 static bool
31218 find_mem_ref (rtx pat, rtx *mem_ref)
31220 const char * fmt;
31221 int i, j;
31223 /* stack_tie does not produce any real memory traffic. */
31224 if (tie_operand (pat, VOIDmode))
31225 return false;
31227 if (GET_CODE (pat) == MEM)
31229 *mem_ref = pat;
31230 return true;
31233 /* Recursively process the pattern. */
31234 fmt = GET_RTX_FORMAT (GET_CODE (pat));
31236 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
31238 if (fmt[i] == 'e')
31240 if (find_mem_ref (XEXP (pat, i), mem_ref))
31241 return true;
31243 else if (fmt[i] == 'E')
31244 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
31246 if (find_mem_ref (XVECEXP (pat, i, j), mem_ref))
31247 return true;
31251 return false;
31254 /* Determine if PAT is a PATTERN of a load insn. */
31256 static bool
31257 is_load_insn1 (rtx pat, rtx *load_mem)
31259 if (!pat || pat == NULL_RTX)
31260 return false;
31262 if (GET_CODE (pat) == SET)
31263 return find_mem_ref (SET_SRC (pat), load_mem);
31265 if (GET_CODE (pat) == PARALLEL)
31267 int i;
31269 for (i = 0; i < XVECLEN (pat, 0); i++)
31270 if (is_load_insn1 (XVECEXP (pat, 0, i), load_mem))
31271 return true;
31274 return false;
31277 /* Determine if INSN loads from memory. */
31279 static bool
31280 is_load_insn (rtx insn, rtx *load_mem)
31282 if (!insn || !INSN_P (insn))
31283 return false;
31285 if (CALL_P (insn))
31286 return false;
31288 return is_load_insn1 (PATTERN (insn), load_mem);
31291 /* Determine if PAT is a PATTERN of a store insn. */
31293 static bool
31294 is_store_insn1 (rtx pat, rtx *str_mem)
31296 if (!pat || pat == NULL_RTX)
31297 return false;
31299 if (GET_CODE (pat) == SET)
31300 return find_mem_ref (SET_DEST (pat), str_mem);
31302 if (GET_CODE (pat) == PARALLEL)
31304 int i;
31306 for (i = 0; i < XVECLEN (pat, 0); i++)
31307 if (is_store_insn1 (XVECEXP (pat, 0, i), str_mem))
31308 return true;
31311 return false;
31314 /* Determine if INSN stores to memory. */
31316 static bool
31317 is_store_insn (rtx insn, rtx *str_mem)
31319 if (!insn || !INSN_P (insn))
31320 return false;
31322 return is_store_insn1 (PATTERN (insn), str_mem);
31325 /* Return whether TYPE is a Power9 pairable vector instruction type. */
31327 static bool
31328 is_power9_pairable_vec_type (enum attr_type type)
31330 switch (type)
31332 case TYPE_VECSIMPLE:
31333 case TYPE_VECCOMPLEX:
31334 case TYPE_VECDIV:
31335 case TYPE_VECCMP:
31336 case TYPE_VECPERM:
31337 case TYPE_VECFLOAT:
31338 case TYPE_VECFDIV:
31339 case TYPE_VECDOUBLE:
31340 return true;
31341 default:
31342 break;
31344 return false;
31347 /* Returns whether the dependence between INSN and NEXT is considered
31348 costly by the given target. */
31350 static bool
31351 rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
31353 rtx insn;
31354 rtx next;
31355 rtx load_mem, str_mem;
31357 /* If the flag is not enabled - no dependence is considered costly;
31358 allow all dependent insns in the same group.
31359 This is the most aggressive option. */
31360 if (rs6000_sched_costly_dep == no_dep_costly)
31361 return false;
31363 /* If the flag is set to 1 - a dependence is always considered costly;
31364 do not allow dependent instructions in the same group.
31365 This is the most conservative option. */
31366 if (rs6000_sched_costly_dep == all_deps_costly)
31367 return true;
31369 insn = DEP_PRO (dep);
31370 next = DEP_CON (dep);
31372 if (rs6000_sched_costly_dep == store_to_load_dep_costly
31373 && is_load_insn (next, &load_mem)
31374 && is_store_insn (insn, &str_mem))
31375 /* Prevent load after store in the same group. */
31376 return true;
31378 if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
31379 && is_load_insn (next, &load_mem)
31380 && is_store_insn (insn, &str_mem)
31381 && DEP_TYPE (dep) == REG_DEP_TRUE
31382 && mem_locations_overlap(str_mem, load_mem))
31383 /* Prevent load after store in the same group if it is a true
31384 dependence. */
31385 return true;
31387 /* The flag is set to X; dependences with latency >= X are considered costly,
31388 and will not be scheduled in the same group. */
31389 if (rs6000_sched_costly_dep <= max_dep_latency
31390 && ((cost - distance) >= (int)rs6000_sched_costly_dep))
31391 return true;
31393 return false;
31396 /* Return the next insn after INSN that is found before TAIL is reached,
31397 skipping any "non-active" insns - insns that will not actually occupy
31398 an issue slot. Return NULL_RTX if such an insn is not found. */
31400 static rtx_insn *
31401 get_next_active_insn (rtx_insn *insn, rtx_insn *tail)
31403 if (insn == NULL_RTX || insn == tail)
31404 return NULL;
31406 while (1)
31408 insn = NEXT_INSN (insn);
31409 if (insn == NULL_RTX || insn == tail)
31410 return NULL;
31412 if (CALL_P (insn)
31413 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
31414 || (NONJUMP_INSN_P (insn)
31415 && GET_CODE (PATTERN (insn)) != USE
31416 && GET_CODE (PATTERN (insn)) != CLOBBER
31417 && INSN_CODE (insn) != CODE_FOR_stack_tie))
31418 break;
31420 return insn;
31423 /* Do Power9 specific sched_reorder2 reordering of ready list. */
31425 static int
31426 power9_sched_reorder2 (rtx_insn **ready, int lastpos)
31428 int pos;
31429 int i;
31430 rtx_insn *tmp;
31431 enum attr_type type, type2;
31433 type = get_attr_type (last_scheduled_insn);
31435 /* Try to issue fixed point divides back-to-back in pairs so they will be
31436 routed to separate execution units and execute in parallel. */
31437 if (type == TYPE_DIV && divide_cnt == 0)
31439 /* First divide has been scheduled. */
31440 divide_cnt = 1;
31442 /* Scan the ready list looking for another divide, if found move it
31443 to the end of the list so it is chosen next. */
31444 pos = lastpos;
31445 while (pos >= 0)
31447 if (recog_memoized (ready[pos]) >= 0
31448 && get_attr_type (ready[pos]) == TYPE_DIV)
31450 tmp = ready[pos];
31451 for (i = pos; i < lastpos; i++)
31452 ready[i] = ready[i + 1];
31453 ready[lastpos] = tmp;
31454 break;
31456 pos--;
31459 else
31461 /* Last insn was the 2nd divide or not a divide, reset the counter. */
31462 divide_cnt = 0;
31464 /* The best dispatch throughput for vector and vector load insns can be
31465 achieved by interleaving a vector and vector load such that they'll
31466 dispatch to the same superslice. If this pairing cannot be achieved
31467 then it is best to pair vector insns together and vector load insns
31468 together.
31470 To aid in this pairing, vec_pairing maintains the current state with
31471 the following values:
31473 0 : Initial state, no vecload/vector pairing has been started.
31475 1 : A vecload or vector insn has been issued and a candidate for
31476 pairing has been found and moved to the end of the ready
31477 list. */
31478 if (type == TYPE_VECLOAD)
31480 /* Issued a vecload. */
31481 if (vec_pairing == 0)
31483 int vecload_pos = -1;
31484 /* We issued a single vecload, look for a vector insn to pair it
31485 with. If one isn't found, try to pair another vecload. */
31486 pos = lastpos;
31487 while (pos >= 0)
31489 if (recog_memoized (ready[pos]) >= 0)
31491 type2 = get_attr_type (ready[pos]);
31492 if (is_power9_pairable_vec_type (type2))
31494 /* Found a vector insn to pair with, move it to the
31495 end of the ready list so it is scheduled next. */
31496 tmp = ready[pos];
31497 for (i = pos; i < lastpos; i++)
31498 ready[i] = ready[i + 1];
31499 ready[lastpos] = tmp;
31500 vec_pairing = 1;
31501 return cached_can_issue_more;
31503 else if (type2 == TYPE_VECLOAD && vecload_pos == -1)
31504 /* Remember position of first vecload seen. */
31505 vecload_pos = pos;
31507 pos--;
31509 if (vecload_pos >= 0)
31511 /* Didn't find a vector to pair with but did find a vecload,
31512 move it to the end of the ready list. */
31513 tmp = ready[vecload_pos];
31514 for (i = vecload_pos; i < lastpos; i++)
31515 ready[i] = ready[i + 1];
31516 ready[lastpos] = tmp;
31517 vec_pairing = 1;
31518 return cached_can_issue_more;
31522 else if (is_power9_pairable_vec_type (type))
31524 /* Issued a vector operation. */
31525 if (vec_pairing == 0)
31527 int vec_pos = -1;
31528 /* We issued a single vector insn, look for a vecload to pair it
31529 with. If one isn't found, try to pair another vector. */
31530 pos = lastpos;
31531 while (pos >= 0)
31533 if (recog_memoized (ready[pos]) >= 0)
31535 type2 = get_attr_type (ready[pos]);
31536 if (type2 == TYPE_VECLOAD)
31538 /* Found a vecload insn to pair with, move it to the
31539 end of the ready list so it is scheduled next. */
31540 tmp = ready[pos];
31541 for (i = pos; i < lastpos; i++)
31542 ready[i] = ready[i + 1];
31543 ready[lastpos] = tmp;
31544 vec_pairing = 1;
31545 return cached_can_issue_more;
31547 else if (is_power9_pairable_vec_type (type2)
31548 && vec_pos == -1)
31549 /* Remember position of first vector insn seen. */
31550 vec_pos = pos;
31552 pos--;
31554 if (vec_pos >= 0)
31556 /* Didn't find a vecload to pair with but did find a vector
31557 insn, move it to the end of the ready list. */
31558 tmp = ready[vec_pos];
31559 for (i = vec_pos; i < lastpos; i++)
31560 ready[i] = ready[i + 1];
31561 ready[lastpos] = tmp;
31562 vec_pairing = 1;
31563 return cached_can_issue_more;
31568 /* We've either finished a vec/vecload pair, couldn't find an insn to
31569 continue the current pair, or the last insn had nothing to do with
31570 with pairing. In any case, reset the state. */
31571 vec_pairing = 0;
31574 return cached_can_issue_more;
31577 /* We are about to begin issuing insns for this clock cycle. */
31579 static int
31580 rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
31581 rtx_insn **ready ATTRIBUTE_UNUSED,
31582 int *pn_ready ATTRIBUTE_UNUSED,
31583 int clock_var ATTRIBUTE_UNUSED)
31585 int n_ready = *pn_ready;
31587 if (sched_verbose)
31588 fprintf (dump, "// rs6000_sched_reorder :\n");
31590 /* Reorder the ready list, if the second to last ready insn
31591 is a nonepipeline insn. */
31592 if (rs6000_cpu_attr == CPU_CELL && n_ready > 1)
31594 if (is_nonpipeline_insn (ready[n_ready - 1])
31595 && (recog_memoized (ready[n_ready - 2]) > 0))
31596 /* Simply swap first two insns. */
31597 std::swap (ready[n_ready - 1], ready[n_ready - 2]);
31600 if (rs6000_cpu == PROCESSOR_POWER6)
31601 load_store_pendulum = 0;
31603 return rs6000_issue_rate ();
31606 /* Like rs6000_sched_reorder, but called after issuing each insn. */
31608 static int
31609 rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx_insn **ready,
31610 int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
31612 if (sched_verbose)
31613 fprintf (dump, "// rs6000_sched_reorder2 :\n");
31615 /* For Power6, we need to handle some special cases to try and keep the
31616 store queue from overflowing and triggering expensive flushes.
31618 This code monitors how load and store instructions are being issued
31619 and skews the ready list one way or the other to increase the likelihood
31620 that a desired instruction is issued at the proper time.
31622 A couple of things are done. First, we maintain a "load_store_pendulum"
31623 to track the current state of load/store issue.
31625 - If the pendulum is at zero, then no loads or stores have been
31626 issued in the current cycle so we do nothing.
31628 - If the pendulum is 1, then a single load has been issued in this
31629 cycle and we attempt to locate another load in the ready list to
31630 issue with it.
31632 - If the pendulum is -2, then two stores have already been
31633 issued in this cycle, so we increase the priority of the first load
31634 in the ready list to increase it's likelihood of being chosen first
31635 in the next cycle.
31637 - If the pendulum is -1, then a single store has been issued in this
31638 cycle and we attempt to locate another store in the ready list to
31639 issue with it, preferring a store to an adjacent memory location to
31640 facilitate store pairing in the store queue.
31642 - If the pendulum is 2, then two loads have already been
31643 issued in this cycle, so we increase the priority of the first store
31644 in the ready list to increase it's likelihood of being chosen first
31645 in the next cycle.
31647 - If the pendulum < -2 or > 2, then do nothing.
31649 Note: This code covers the most common scenarios. There exist non
31650 load/store instructions which make use of the LSU and which
31651 would need to be accounted for to strictly model the behavior
31652 of the machine. Those instructions are currently unaccounted
31653 for to help minimize compile time overhead of this code.
31655 if (rs6000_cpu == PROCESSOR_POWER6 && last_scheduled_insn)
31657 int pos;
31658 int i;
31659 rtx_insn *tmp;
31660 rtx load_mem, str_mem;
31662 if (is_store_insn (last_scheduled_insn, &str_mem))
31663 /* Issuing a store, swing the load_store_pendulum to the left */
31664 load_store_pendulum--;
31665 else if (is_load_insn (last_scheduled_insn, &load_mem))
31666 /* Issuing a load, swing the load_store_pendulum to the right */
31667 load_store_pendulum++;
31668 else
31669 return cached_can_issue_more;
31671 /* If the pendulum is balanced, or there is only one instruction on
31672 the ready list, then all is well, so return. */
31673 if ((load_store_pendulum == 0) || (*pn_ready <= 1))
31674 return cached_can_issue_more;
31676 if (load_store_pendulum == 1)
31678 /* A load has been issued in this cycle. Scan the ready list
31679 for another load to issue with it */
31680 pos = *pn_ready-1;
31682 while (pos >= 0)
31684 if (is_load_insn (ready[pos], &load_mem))
31686 /* Found a load. Move it to the head of the ready list,
31687 and adjust it's priority so that it is more likely to
31688 stay there */
31689 tmp = ready[pos];
31690 for (i=pos; i<*pn_ready-1; i++)
31691 ready[i] = ready[i + 1];
31692 ready[*pn_ready-1] = tmp;
31694 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31695 INSN_PRIORITY (tmp)++;
31696 break;
31698 pos--;
31701 else if (load_store_pendulum == -2)
31703 /* Two stores have been issued in this cycle. Increase the
31704 priority of the first load in the ready list to favor it for
31705 issuing in the next cycle. */
31706 pos = *pn_ready-1;
31708 while (pos >= 0)
31710 if (is_load_insn (ready[pos], &load_mem)
31711 && !sel_sched_p ()
31712 && INSN_PRIORITY_KNOWN (ready[pos]))
31714 INSN_PRIORITY (ready[pos])++;
31716 /* Adjust the pendulum to account for the fact that a load
31717 was found and increased in priority. This is to prevent
31718 increasing the priority of multiple loads */
31719 load_store_pendulum--;
31721 break;
31723 pos--;
31726 else if (load_store_pendulum == -1)
31728 /* A store has been issued in this cycle. Scan the ready list for
31729 another store to issue with it, preferring a store to an adjacent
31730 memory location */
31731 int first_store_pos = -1;
31733 pos = *pn_ready-1;
31735 while (pos >= 0)
31737 if (is_store_insn (ready[pos], &str_mem))
31739 rtx str_mem2;
31740 /* Maintain the index of the first store found on the
31741 list */
31742 if (first_store_pos == -1)
31743 first_store_pos = pos;
31745 if (is_store_insn (last_scheduled_insn, &str_mem2)
31746 && adjacent_mem_locations (str_mem, str_mem2))
31748 /* Found an adjacent store. Move it to the head of the
31749 ready list, and adjust it's priority so that it is
31750 more likely to stay there */
31751 tmp = ready[pos];
31752 for (i=pos; i<*pn_ready-1; i++)
31753 ready[i] = ready[i + 1];
31754 ready[*pn_ready-1] = tmp;
31756 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31757 INSN_PRIORITY (tmp)++;
31759 first_store_pos = -1;
31761 break;
31764 pos--;
31767 if (first_store_pos >= 0)
31769 /* An adjacent store wasn't found, but a non-adjacent store was,
31770 so move the non-adjacent store to the front of the ready
31771 list, and adjust its priority so that it is more likely to
31772 stay there. */
31773 tmp = ready[first_store_pos];
31774 for (i=first_store_pos; i<*pn_ready-1; i++)
31775 ready[i] = ready[i + 1];
31776 ready[*pn_ready-1] = tmp;
31777 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31778 INSN_PRIORITY (tmp)++;
31781 else if (load_store_pendulum == 2)
31783 /* Two loads have been issued in this cycle. Increase the priority
31784 of the first store in the ready list to favor it for issuing in
31785 the next cycle. */
31786 pos = *pn_ready-1;
31788 while (pos >= 0)
31790 if (is_store_insn (ready[pos], &str_mem)
31791 && !sel_sched_p ()
31792 && INSN_PRIORITY_KNOWN (ready[pos]))
31794 INSN_PRIORITY (ready[pos])++;
31796 /* Adjust the pendulum to account for the fact that a store
31797 was found and increased in priority. This is to prevent
31798 increasing the priority of multiple stores */
31799 load_store_pendulum++;
31801 break;
31803 pos--;
31808 /* Do Power9 dependent reordering if necessary. */
31809 if (rs6000_cpu == PROCESSOR_POWER9 && last_scheduled_insn
31810 && recog_memoized (last_scheduled_insn) >= 0)
31811 return power9_sched_reorder2 (ready, *pn_ready - 1);
31813 return cached_can_issue_more;
31816 /* Return whether the presence of INSN causes a dispatch group termination
31817 of group WHICH_GROUP.
31819 If WHICH_GROUP == current_group, this function will return true if INSN
31820 causes the termination of the current group (i.e, the dispatch group to
31821 which INSN belongs). This means that INSN will be the last insn in the
31822 group it belongs to.
31824 If WHICH_GROUP == previous_group, this function will return true if INSN
31825 causes the termination of the previous group (i.e, the dispatch group that
31826 precedes the group to which INSN belongs). This means that INSN will be
31827 the first insn in the group it belongs to). */
31829 static bool
31830 insn_terminates_group_p (rtx_insn *insn, enum group_termination which_group)
31832 bool first, last;
31834 if (! insn)
31835 return false;
31837 first = insn_must_be_first_in_group (insn);
31838 last = insn_must_be_last_in_group (insn);
31840 if (first && last)
31841 return true;
31843 if (which_group == current_group)
31844 return last;
31845 else if (which_group == previous_group)
31846 return first;
31848 return false;
31852 static bool
31853 insn_must_be_first_in_group (rtx_insn *insn)
31855 enum attr_type type;
31857 if (!insn
31858 || NOTE_P (insn)
31859 || DEBUG_INSN_P (insn)
31860 || GET_CODE (PATTERN (insn)) == USE
31861 || GET_CODE (PATTERN (insn)) == CLOBBER)
31862 return false;
31864 switch (rs6000_cpu)
31866 case PROCESSOR_POWER5:
31867 if (is_cracked_insn (insn))
31868 return true;
31869 /* FALLTHRU */
31870 case PROCESSOR_POWER4:
31871 if (is_microcoded_insn (insn))
31872 return true;
31874 if (!rs6000_sched_groups)
31875 return false;
31877 type = get_attr_type (insn);
31879 switch (type)
31881 case TYPE_MFCR:
31882 case TYPE_MFCRF:
31883 case TYPE_MTCR:
31884 case TYPE_DELAYED_CR:
31885 case TYPE_CR_LOGICAL:
31886 case TYPE_MTJMPR:
31887 case TYPE_MFJMPR:
31888 case TYPE_DIV:
31889 case TYPE_LOAD_L:
31890 case TYPE_STORE_C:
31891 case TYPE_ISYNC:
31892 case TYPE_SYNC:
31893 return true;
31894 default:
31895 break;
31897 break;
31898 case PROCESSOR_POWER6:
31899 type = get_attr_type (insn);
31901 switch (type)
31903 case TYPE_EXTS:
31904 case TYPE_CNTLZ:
31905 case TYPE_TRAP:
31906 case TYPE_MUL:
31907 case TYPE_INSERT:
31908 case TYPE_FPCOMPARE:
31909 case TYPE_MFCR:
31910 case TYPE_MTCR:
31911 case TYPE_MFJMPR:
31912 case TYPE_MTJMPR:
31913 case TYPE_ISYNC:
31914 case TYPE_SYNC:
31915 case TYPE_LOAD_L:
31916 case TYPE_STORE_C:
31917 return true;
31918 case TYPE_SHIFT:
31919 if (get_attr_dot (insn) == DOT_NO
31920 || get_attr_var_shift (insn) == VAR_SHIFT_NO)
31921 return true;
31922 else
31923 break;
31924 case TYPE_DIV:
31925 if (get_attr_size (insn) == SIZE_32)
31926 return true;
31927 else
31928 break;
31929 case TYPE_LOAD:
31930 case TYPE_STORE:
31931 case TYPE_FPLOAD:
31932 case TYPE_FPSTORE:
31933 if (get_attr_update (insn) == UPDATE_YES)
31934 return true;
31935 else
31936 break;
31937 default:
31938 break;
31940 break;
31941 case PROCESSOR_POWER7:
31942 type = get_attr_type (insn);
31944 switch (type)
31946 case TYPE_CR_LOGICAL:
31947 case TYPE_MFCR:
31948 case TYPE_MFCRF:
31949 case TYPE_MTCR:
31950 case TYPE_DIV:
31951 case TYPE_ISYNC:
31952 case TYPE_LOAD_L:
31953 case TYPE_STORE_C:
31954 case TYPE_MFJMPR:
31955 case TYPE_MTJMPR:
31956 return true;
31957 case TYPE_MUL:
31958 case TYPE_SHIFT:
31959 case TYPE_EXTS:
31960 if (get_attr_dot (insn) == DOT_YES)
31961 return true;
31962 else
31963 break;
31964 case TYPE_LOAD:
31965 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31966 || get_attr_update (insn) == UPDATE_YES)
31967 return true;
31968 else
31969 break;
31970 case TYPE_STORE:
31971 case TYPE_FPLOAD:
31972 case TYPE_FPSTORE:
31973 if (get_attr_update (insn) == UPDATE_YES)
31974 return true;
31975 else
31976 break;
31977 default:
31978 break;
31980 break;
31981 case PROCESSOR_POWER8:
31982 type = get_attr_type (insn);
31984 switch (type)
31986 case TYPE_CR_LOGICAL:
31987 case TYPE_DELAYED_CR:
31988 case TYPE_MFCR:
31989 case TYPE_MFCRF:
31990 case TYPE_MTCR:
31991 case TYPE_SYNC:
31992 case TYPE_ISYNC:
31993 case TYPE_LOAD_L:
31994 case TYPE_STORE_C:
31995 case TYPE_VECSTORE:
31996 case TYPE_MFJMPR:
31997 case TYPE_MTJMPR:
31998 return true;
31999 case TYPE_SHIFT:
32000 case TYPE_EXTS:
32001 case TYPE_MUL:
32002 if (get_attr_dot (insn) == DOT_YES)
32003 return true;
32004 else
32005 break;
32006 case TYPE_LOAD:
32007 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
32008 || get_attr_update (insn) == UPDATE_YES)
32009 return true;
32010 else
32011 break;
32012 case TYPE_STORE:
32013 if (get_attr_update (insn) == UPDATE_YES
32014 && get_attr_indexed (insn) == INDEXED_YES)
32015 return true;
32016 else
32017 break;
32018 default:
32019 break;
32021 break;
32022 default:
32023 break;
32026 return false;
32029 static bool
32030 insn_must_be_last_in_group (rtx_insn *insn)
32032 enum attr_type type;
32034 if (!insn
32035 || NOTE_P (insn)
32036 || DEBUG_INSN_P (insn)
32037 || GET_CODE (PATTERN (insn)) == USE
32038 || GET_CODE (PATTERN (insn)) == CLOBBER)
32039 return false;
32041 switch (rs6000_cpu) {
32042 case PROCESSOR_POWER4:
32043 case PROCESSOR_POWER5:
32044 if (is_microcoded_insn (insn))
32045 return true;
32047 if (is_branch_slot_insn (insn))
32048 return true;
32050 break;
32051 case PROCESSOR_POWER6:
32052 type = get_attr_type (insn);
32054 switch (type)
32056 case TYPE_EXTS:
32057 case TYPE_CNTLZ:
32058 case TYPE_TRAP:
32059 case TYPE_MUL:
32060 case TYPE_FPCOMPARE:
32061 case TYPE_MFCR:
32062 case TYPE_MTCR:
32063 case TYPE_MFJMPR:
32064 case TYPE_MTJMPR:
32065 case TYPE_ISYNC:
32066 case TYPE_SYNC:
32067 case TYPE_LOAD_L:
32068 case TYPE_STORE_C:
32069 return true;
32070 case TYPE_SHIFT:
32071 if (get_attr_dot (insn) == DOT_NO
32072 || get_attr_var_shift (insn) == VAR_SHIFT_NO)
32073 return true;
32074 else
32075 break;
32076 case TYPE_DIV:
32077 if (get_attr_size (insn) == SIZE_32)
32078 return true;
32079 else
32080 break;
32081 default:
32082 break;
32084 break;
32085 case PROCESSOR_POWER7:
32086 type = get_attr_type (insn);
32088 switch (type)
32090 case TYPE_ISYNC:
32091 case TYPE_SYNC:
32092 case TYPE_LOAD_L:
32093 case TYPE_STORE_C:
32094 return true;
32095 case TYPE_LOAD:
32096 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
32097 && get_attr_update (insn) == UPDATE_YES)
32098 return true;
32099 else
32100 break;
32101 case TYPE_STORE:
32102 if (get_attr_update (insn) == UPDATE_YES
32103 && get_attr_indexed (insn) == INDEXED_YES)
32104 return true;
32105 else
32106 break;
32107 default:
32108 break;
32110 break;
32111 case PROCESSOR_POWER8:
32112 type = get_attr_type (insn);
32114 switch (type)
32116 case TYPE_MFCR:
32117 case TYPE_MTCR:
32118 case TYPE_ISYNC:
32119 case TYPE_SYNC:
32120 case TYPE_LOAD_L:
32121 case TYPE_STORE_C:
32122 return true;
32123 case TYPE_LOAD:
32124 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
32125 && get_attr_update (insn) == UPDATE_YES)
32126 return true;
32127 else
32128 break;
32129 case TYPE_STORE:
32130 if (get_attr_update (insn) == UPDATE_YES
32131 && get_attr_indexed (insn) == INDEXED_YES)
32132 return true;
32133 else
32134 break;
32135 default:
32136 break;
32138 break;
32139 default:
32140 break;
32143 return false;
32146 /* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
32147 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
32149 static bool
32150 is_costly_group (rtx *group_insns, rtx next_insn)
32152 int i;
32153 int issue_rate = rs6000_issue_rate ();
32155 for (i = 0; i < issue_rate; i++)
32157 sd_iterator_def sd_it;
32158 dep_t dep;
32159 rtx insn = group_insns[i];
32161 if (!insn)
32162 continue;
32164 FOR_EACH_DEP (insn, SD_LIST_RES_FORW, sd_it, dep)
32166 rtx next = DEP_CON (dep);
32168 if (next == next_insn
32169 && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
32170 return true;
32174 return false;
32177 /* Utility of the function redefine_groups.
32178 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
32179 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
32180 to keep it "far" (in a separate group) from GROUP_INSNS, following
32181 one of the following schemes, depending on the value of the flag
32182 -minsert_sched_nops = X:
32183 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
32184 in order to force NEXT_INSN into a separate group.
32185 (2) X < sched_finish_regroup_exact: insert exactly X nops.
32186 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
32187 insertion (has a group just ended, how many vacant issue slots remain in the
32188 last group, and how many dispatch groups were encountered so far). */
32190 static int
32191 force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
32192 rtx_insn *next_insn, bool *group_end, int can_issue_more,
32193 int *group_count)
32195 rtx nop;
32196 bool force;
32197 int issue_rate = rs6000_issue_rate ();
32198 bool end = *group_end;
32199 int i;
32201 if (next_insn == NULL_RTX || DEBUG_INSN_P (next_insn))
32202 return can_issue_more;
32204 if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
32205 return can_issue_more;
32207 force = is_costly_group (group_insns, next_insn);
32208 if (!force)
32209 return can_issue_more;
32211 if (sched_verbose > 6)
32212 fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
32213 *group_count ,can_issue_more);
32215 if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
32217 if (*group_end)
32218 can_issue_more = 0;
32220 /* Since only a branch can be issued in the last issue_slot, it is
32221 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
32222 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
32223 in this case the last nop will start a new group and the branch
32224 will be forced to the new group. */
32225 if (can_issue_more && !is_branch_slot_insn (next_insn))
32226 can_issue_more--;
32228 /* Do we have a special group ending nop? */
32229 if (rs6000_cpu_attr == CPU_POWER6 || rs6000_cpu_attr == CPU_POWER7
32230 || rs6000_cpu_attr == CPU_POWER8)
32232 nop = gen_group_ending_nop ();
32233 emit_insn_before (nop, next_insn);
32234 can_issue_more = 0;
32236 else
32237 while (can_issue_more > 0)
32239 nop = gen_nop ();
32240 emit_insn_before (nop, next_insn);
32241 can_issue_more--;
32244 *group_end = true;
32245 return 0;
32248 if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
32250 int n_nops = rs6000_sched_insert_nops;
32252 /* Nops can't be issued from the branch slot, so the effective
32253 issue_rate for nops is 'issue_rate - 1'. */
32254 if (can_issue_more == 0)
32255 can_issue_more = issue_rate;
32256 can_issue_more--;
32257 if (can_issue_more == 0)
32259 can_issue_more = issue_rate - 1;
32260 (*group_count)++;
32261 end = true;
32262 for (i = 0; i < issue_rate; i++)
32264 group_insns[i] = 0;
32268 while (n_nops > 0)
32270 nop = gen_nop ();
32271 emit_insn_before (nop, next_insn);
32272 if (can_issue_more == issue_rate - 1) /* new group begins */
32273 end = false;
32274 can_issue_more--;
32275 if (can_issue_more == 0)
32277 can_issue_more = issue_rate - 1;
32278 (*group_count)++;
32279 end = true;
32280 for (i = 0; i < issue_rate; i++)
32282 group_insns[i] = 0;
32285 n_nops--;
32288 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
32289 can_issue_more++;
32291 /* Is next_insn going to start a new group? */
32292 *group_end
32293 = (end
32294 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
32295 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
32296 || (can_issue_more < issue_rate &&
32297 insn_terminates_group_p (next_insn, previous_group)));
32298 if (*group_end && end)
32299 (*group_count)--;
32301 if (sched_verbose > 6)
32302 fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
32303 *group_count, can_issue_more);
32304 return can_issue_more;
32307 return can_issue_more;
32310 /* This function tries to synch the dispatch groups that the compiler "sees"
32311 with the dispatch groups that the processor dispatcher is expected to
32312 form in practice. It tries to achieve this synchronization by forcing the
32313 estimated processor grouping on the compiler (as opposed to the function
32314 'pad_goups' which tries to force the scheduler's grouping on the processor).
32316 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
32317 examines the (estimated) dispatch groups that will be formed by the processor
32318 dispatcher. It marks these group boundaries to reflect the estimated
32319 processor grouping, overriding the grouping that the scheduler had marked.
32320 Depending on the value of the flag '-minsert-sched-nops' this function can
32321 force certain insns into separate groups or force a certain distance between
32322 them by inserting nops, for example, if there exists a "costly dependence"
32323 between the insns.
32325 The function estimates the group boundaries that the processor will form as
32326 follows: It keeps track of how many vacant issue slots are available after
32327 each insn. A subsequent insn will start a new group if one of the following
32328 4 cases applies:
32329 - no more vacant issue slots remain in the current dispatch group.
32330 - only the last issue slot, which is the branch slot, is vacant, but the next
32331 insn is not a branch.
32332 - only the last 2 or less issue slots, including the branch slot, are vacant,
32333 which means that a cracked insn (which occupies two issue slots) can't be
32334 issued in this group.
32335 - less than 'issue_rate' slots are vacant, and the next insn always needs to
32336 start a new group. */
32338 static int
32339 redefine_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
32340 rtx_insn *tail)
32342 rtx_insn *insn, *next_insn;
32343 int issue_rate;
32344 int can_issue_more;
32345 int slot, i;
32346 bool group_end;
32347 int group_count = 0;
32348 rtx *group_insns;
32350 /* Initialize. */
32351 issue_rate = rs6000_issue_rate ();
32352 group_insns = XALLOCAVEC (rtx, issue_rate);
32353 for (i = 0; i < issue_rate; i++)
32355 group_insns[i] = 0;
32357 can_issue_more = issue_rate;
32358 slot = 0;
32359 insn = get_next_active_insn (prev_head_insn, tail);
32360 group_end = false;
32362 while (insn != NULL_RTX)
32364 slot = (issue_rate - can_issue_more);
32365 group_insns[slot] = insn;
32366 can_issue_more =
32367 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
32368 if (insn_terminates_group_p (insn, current_group))
32369 can_issue_more = 0;
32371 next_insn = get_next_active_insn (insn, tail);
32372 if (next_insn == NULL_RTX)
32373 return group_count + 1;
32375 /* Is next_insn going to start a new group? */
32376 group_end
32377 = (can_issue_more == 0
32378 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
32379 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
32380 || (can_issue_more < issue_rate &&
32381 insn_terminates_group_p (next_insn, previous_group)));
32383 can_issue_more = force_new_group (sched_verbose, dump, group_insns,
32384 next_insn, &group_end, can_issue_more,
32385 &group_count);
32387 if (group_end)
32389 group_count++;
32390 can_issue_more = 0;
32391 for (i = 0; i < issue_rate; i++)
32393 group_insns[i] = 0;
32397 if (GET_MODE (next_insn) == TImode && can_issue_more)
32398 PUT_MODE (next_insn, VOIDmode);
32399 else if (!can_issue_more && GET_MODE (next_insn) != TImode)
32400 PUT_MODE (next_insn, TImode);
32402 insn = next_insn;
32403 if (can_issue_more == 0)
32404 can_issue_more = issue_rate;
32405 } /* while */
32407 return group_count;
32410 /* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
32411 dispatch group boundaries that the scheduler had marked. Pad with nops
32412 any dispatch groups which have vacant issue slots, in order to force the
32413 scheduler's grouping on the processor dispatcher. The function
32414 returns the number of dispatch groups found. */
32416 static int
32417 pad_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
32418 rtx_insn *tail)
32420 rtx_insn *insn, *next_insn;
32421 rtx nop;
32422 int issue_rate;
32423 int can_issue_more;
32424 int group_end;
32425 int group_count = 0;
32427 /* Initialize issue_rate. */
32428 issue_rate = rs6000_issue_rate ();
32429 can_issue_more = issue_rate;
32431 insn = get_next_active_insn (prev_head_insn, tail);
32432 next_insn = get_next_active_insn (insn, tail);
32434 while (insn != NULL_RTX)
32436 can_issue_more =
32437 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
32439 group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);
32441 if (next_insn == NULL_RTX)
32442 break;
32444 if (group_end)
32446 /* If the scheduler had marked group termination at this location
32447 (between insn and next_insn), and neither insn nor next_insn will
32448 force group termination, pad the group with nops to force group
32449 termination. */
32450 if (can_issue_more
32451 && (rs6000_sched_insert_nops == sched_finish_pad_groups)
32452 && !insn_terminates_group_p (insn, current_group)
32453 && !insn_terminates_group_p (next_insn, previous_group))
32455 if (!is_branch_slot_insn (next_insn))
32456 can_issue_more--;
32458 while (can_issue_more)
32460 nop = gen_nop ();
32461 emit_insn_before (nop, next_insn);
32462 can_issue_more--;
32466 can_issue_more = issue_rate;
32467 group_count++;
32470 insn = next_insn;
32471 next_insn = get_next_active_insn (insn, tail);
32474 return group_count;
32477 /* We're beginning a new block. Initialize data structures as necessary. */
32479 static void
32480 rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
32481 int sched_verbose ATTRIBUTE_UNUSED,
32482 int max_ready ATTRIBUTE_UNUSED)
32484 last_scheduled_insn = NULL;
32485 load_store_pendulum = 0;
32486 divide_cnt = 0;
32487 vec_pairing = 0;
32490 /* The following function is called at the end of scheduling BB.
32491 After reload, it inserts nops at insn group bundling. */
32493 static void
32494 rs6000_sched_finish (FILE *dump, int sched_verbose)
32496 int n_groups;
32498 if (sched_verbose)
32499 fprintf (dump, "=== Finishing schedule.\n");
32501 if (reload_completed && rs6000_sched_groups)
32503 /* Do not run sched_finish hook when selective scheduling enabled. */
32504 if (sel_sched_p ())
32505 return;
32507 if (rs6000_sched_insert_nops == sched_finish_none)
32508 return;
32510 if (rs6000_sched_insert_nops == sched_finish_pad_groups)
32511 n_groups = pad_groups (dump, sched_verbose,
32512 current_sched_info->prev_head,
32513 current_sched_info->next_tail);
32514 else
32515 n_groups = redefine_groups (dump, sched_verbose,
32516 current_sched_info->prev_head,
32517 current_sched_info->next_tail);
32519 if (sched_verbose >= 6)
32521 fprintf (dump, "ngroups = %d\n", n_groups);
32522 print_rtl (dump, current_sched_info->prev_head);
32523 fprintf (dump, "Done finish_sched\n");
32528 struct rs6000_sched_context
32530 short cached_can_issue_more;
32531 rtx_insn *last_scheduled_insn;
32532 int load_store_pendulum;
32533 int divide_cnt;
32534 int vec_pairing;
32537 typedef struct rs6000_sched_context rs6000_sched_context_def;
32538 typedef rs6000_sched_context_def *rs6000_sched_context_t;
32540 /* Allocate store for new scheduling context. */
32541 static void *
32542 rs6000_alloc_sched_context (void)
32544 return xmalloc (sizeof (rs6000_sched_context_def));
32547 /* If CLEAN_P is true then initializes _SC with clean data,
32548 and from the global context otherwise. */
32549 static void
32550 rs6000_init_sched_context (void *_sc, bool clean_p)
32552 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
32554 if (clean_p)
32556 sc->cached_can_issue_more = 0;
32557 sc->last_scheduled_insn = NULL;
32558 sc->load_store_pendulum = 0;
32559 sc->divide_cnt = 0;
32560 sc->vec_pairing = 0;
32562 else
32564 sc->cached_can_issue_more = cached_can_issue_more;
32565 sc->last_scheduled_insn = last_scheduled_insn;
32566 sc->load_store_pendulum = load_store_pendulum;
32567 sc->divide_cnt = divide_cnt;
32568 sc->vec_pairing = vec_pairing;
32572 /* Sets the global scheduling context to the one pointed to by _SC. */
32573 static void
32574 rs6000_set_sched_context (void *_sc)
32576 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
32578 gcc_assert (sc != NULL);
32580 cached_can_issue_more = sc->cached_can_issue_more;
32581 last_scheduled_insn = sc->last_scheduled_insn;
32582 load_store_pendulum = sc->load_store_pendulum;
32583 divide_cnt = sc->divide_cnt;
32584 vec_pairing = sc->vec_pairing;
32587 /* Free _SC. */
32588 static void
32589 rs6000_free_sched_context (void *_sc)
32591 gcc_assert (_sc != NULL);
32593 free (_sc);
32596 static bool
32597 rs6000_sched_can_speculate_insn (rtx_insn *insn)
32599 switch (get_attr_type (insn))
32601 case TYPE_DIV:
32602 case TYPE_SDIV:
32603 case TYPE_DDIV:
32604 case TYPE_VECDIV:
32605 case TYPE_SSQRT:
32606 case TYPE_DSQRT:
32607 return false;
32609 default:
32610 return true;
32614 /* Length in units of the trampoline for entering a nested function. */
32617 rs6000_trampoline_size (void)
32619 int ret = 0;
32621 switch (DEFAULT_ABI)
32623 default:
32624 gcc_unreachable ();
32626 case ABI_AIX:
32627 ret = (TARGET_32BIT) ? 12 : 24;
32628 break;
32630 case ABI_ELFv2:
32631 gcc_assert (!TARGET_32BIT);
32632 ret = 32;
32633 break;
32635 case ABI_DARWIN:
32636 case ABI_V4:
32637 ret = (TARGET_32BIT) ? 40 : 48;
32638 break;
32641 return ret;
32644 /* Emit RTL insns to initialize the variable parts of a trampoline.
32645 FNADDR is an RTX for the address of the function's pure code.
32646 CXT is an RTX for the static chain value for the function. */
32648 static void
32649 rs6000_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
32651 int regsize = (TARGET_32BIT) ? 4 : 8;
32652 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
32653 rtx ctx_reg = force_reg (Pmode, cxt);
32654 rtx addr = force_reg (Pmode, XEXP (m_tramp, 0));
32656 switch (DEFAULT_ABI)
32658 default:
32659 gcc_unreachable ();
32661 /* Under AIX, just build the 3 word function descriptor */
32662 case ABI_AIX:
32664 rtx fnmem, fn_reg, toc_reg;
32666 if (!TARGET_POINTERS_TO_NESTED_FUNCTIONS)
32667 error ("you cannot take the address of a nested function if you use "
32668 "the %qs option", "-mno-pointers-to-nested-functions");
32670 fnmem = gen_const_mem (Pmode, force_reg (Pmode, fnaddr));
32671 fn_reg = gen_reg_rtx (Pmode);
32672 toc_reg = gen_reg_rtx (Pmode);
32674 /* Macro to shorten the code expansions below. */
32675 # define MEM_PLUS(MEM, OFFSET) adjust_address (MEM, Pmode, OFFSET)
32677 m_tramp = replace_equiv_address (m_tramp, addr);
32679 emit_move_insn (fn_reg, MEM_PLUS (fnmem, 0));
32680 emit_move_insn (toc_reg, MEM_PLUS (fnmem, regsize));
32681 emit_move_insn (MEM_PLUS (m_tramp, 0), fn_reg);
32682 emit_move_insn (MEM_PLUS (m_tramp, regsize), toc_reg);
32683 emit_move_insn (MEM_PLUS (m_tramp, 2*regsize), ctx_reg);
32685 # undef MEM_PLUS
32687 break;
32689 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
32690 case ABI_ELFv2:
32691 case ABI_DARWIN:
32692 case ABI_V4:
32693 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
32694 LCT_NORMAL, VOIDmode,
32695 addr, Pmode,
32696 GEN_INT (rs6000_trampoline_size ()), SImode,
32697 fnaddr, Pmode,
32698 ctx_reg, Pmode);
32699 break;
32704 /* Returns TRUE iff the target attribute indicated by ATTR_ID takes a plain
32705 identifier as an argument, so the front end shouldn't look it up. */
32707 static bool
32708 rs6000_attribute_takes_identifier_p (const_tree attr_id)
32710 return is_attribute_p ("altivec", attr_id);
32713 /* Handle the "altivec" attribute. The attribute may have
32714 arguments as follows:
32716 __attribute__((altivec(vector__)))
32717 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
32718 __attribute__((altivec(bool__))) (always followed by 'unsigned')
32720 and may appear more than once (e.g., 'vector bool char') in a
32721 given declaration. */
32723 static tree
32724 rs6000_handle_altivec_attribute (tree *node,
32725 tree name ATTRIBUTE_UNUSED,
32726 tree args,
32727 int flags ATTRIBUTE_UNUSED,
32728 bool *no_add_attrs)
32730 tree type = *node, result = NULL_TREE;
32731 machine_mode mode;
32732 int unsigned_p;
32733 char altivec_type
32734 = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
32735 && TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
32736 ? *IDENTIFIER_POINTER (TREE_VALUE (args))
32737 : '?');
32739 while (POINTER_TYPE_P (type)
32740 || TREE_CODE (type) == FUNCTION_TYPE
32741 || TREE_CODE (type) == METHOD_TYPE
32742 || TREE_CODE (type) == ARRAY_TYPE)
32743 type = TREE_TYPE (type);
32745 mode = TYPE_MODE (type);
32747 /* Check for invalid AltiVec type qualifiers. */
32748 if (type == long_double_type_node)
32749 error ("use of %<long double%> in AltiVec types is invalid");
32750 else if (type == boolean_type_node)
32751 error ("use of boolean types in AltiVec types is invalid");
32752 else if (TREE_CODE (type) == COMPLEX_TYPE)
32753 error ("use of %<complex%> in AltiVec types is invalid");
32754 else if (DECIMAL_FLOAT_MODE_P (mode))
32755 error ("use of decimal floating point types in AltiVec types is invalid");
32756 else if (!TARGET_VSX)
32758 if (type == long_unsigned_type_node || type == long_integer_type_node)
32760 if (TARGET_64BIT)
32761 error ("use of %<long%> in AltiVec types is invalid for "
32762 "64-bit code without %qs", "-mvsx");
32763 else if (rs6000_warn_altivec_long)
32764 warning (0, "use of %<long%> in AltiVec types is deprecated; "
32765 "use %<int%>");
32767 else if (type == long_long_unsigned_type_node
32768 || type == long_long_integer_type_node)
32769 error ("use of %<long long%> in AltiVec types is invalid without %qs",
32770 "-mvsx");
32771 else if (type == double_type_node)
32772 error ("use of %<double%> in AltiVec types is invalid without %qs",
32773 "-mvsx");
32776 switch (altivec_type)
32778 case 'v':
32779 unsigned_p = TYPE_UNSIGNED (type);
32780 switch (mode)
32782 case E_TImode:
32783 result = (unsigned_p ? unsigned_V1TI_type_node : V1TI_type_node);
32784 break;
32785 case E_DImode:
32786 result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
32787 break;
32788 case E_SImode:
32789 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
32790 break;
32791 case E_HImode:
32792 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
32793 break;
32794 case E_QImode:
32795 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
32796 break;
32797 case E_SFmode: result = V4SF_type_node; break;
32798 case E_DFmode: result = V2DF_type_node; break;
32799 /* If the user says 'vector int bool', we may be handed the 'bool'
32800 attribute _before_ the 'vector' attribute, and so select the
32801 proper type in the 'b' case below. */
32802 case E_V4SImode: case E_V8HImode: case E_V16QImode: case E_V4SFmode:
32803 case E_V2DImode: case E_V2DFmode:
32804 result = type;
32805 default: break;
32807 break;
32808 case 'b':
32809 switch (mode)
32811 case E_DImode: case E_V2DImode: result = bool_V2DI_type_node; break;
32812 case E_SImode: case E_V4SImode: result = bool_V4SI_type_node; break;
32813 case E_HImode: case E_V8HImode: result = bool_V8HI_type_node; break;
32814 case E_QImode: case E_V16QImode: result = bool_V16QI_type_node;
32815 default: break;
32817 break;
32818 case 'p':
32819 switch (mode)
32821 case E_V8HImode: result = pixel_V8HI_type_node;
32822 default: break;
32824 default: break;
32827 /* Propagate qualifiers attached to the element type
32828 onto the vector type. */
32829 if (result && result != type && TYPE_QUALS (type))
32830 result = build_qualified_type (result, TYPE_QUALS (type));
32832 *no_add_attrs = true; /* No need to hang on to the attribute. */
32834 if (result)
32835 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
32837 return NULL_TREE;
32840 /* AltiVec defines four built-in scalar types that serve as vector
32841 elements; we must teach the compiler how to mangle them. */
32843 static const char *
32844 rs6000_mangle_type (const_tree type)
32846 type = TYPE_MAIN_VARIANT (type);
32848 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
32849 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
32850 return NULL;
32852 if (type == bool_char_type_node) return "U6__boolc";
32853 if (type == bool_short_type_node) return "U6__bools";
32854 if (type == pixel_type_node) return "u7__pixel";
32855 if (type == bool_int_type_node) return "U6__booli";
32856 if (type == bool_long_type_node) return "U6__booll";
32858 /* Use a unique name for __float128 rather than trying to use "e" or "g". Use
32859 "g" for IBM extended double, no matter whether it is long double (using
32860 -mabi=ibmlongdouble) or the distinct __ibm128 type. */
32861 if (TARGET_FLOAT128_TYPE)
32863 if (type == ieee128_float_type_node)
32864 return "U10__float128";
32866 if (TARGET_LONG_DOUBLE_128)
32868 if (type == long_double_type_node)
32869 return (TARGET_IEEEQUAD) ? "U10__float128" : "g";
32871 if (type == ibm128_float_type_node)
32872 return "g";
32876 /* Mangle IBM extended float long double as `g' (__float128) on
32877 powerpc*-linux where long-double-64 previously was the default. */
32878 if (TYPE_MAIN_VARIANT (type) == long_double_type_node
32879 && TARGET_ELF
32880 && TARGET_LONG_DOUBLE_128
32881 && !TARGET_IEEEQUAD)
32882 return "g";
32884 /* For all other types, use normal C++ mangling. */
32885 return NULL;
32888 /* Handle a "longcall" or "shortcall" attribute; arguments as in
32889 struct attribute_spec.handler. */
32891 static tree
32892 rs6000_handle_longcall_attribute (tree *node, tree name,
32893 tree args ATTRIBUTE_UNUSED,
32894 int flags ATTRIBUTE_UNUSED,
32895 bool *no_add_attrs)
32897 if (TREE_CODE (*node) != FUNCTION_TYPE
32898 && TREE_CODE (*node) != FIELD_DECL
32899 && TREE_CODE (*node) != TYPE_DECL)
32901 warning (OPT_Wattributes, "%qE attribute only applies to functions",
32902 name);
32903 *no_add_attrs = true;
32906 return NULL_TREE;
32909 /* Set longcall attributes on all functions declared when
32910 rs6000_default_long_calls is true. */
32911 static void
32912 rs6000_set_default_type_attributes (tree type)
32914 if (rs6000_default_long_calls
32915 && (TREE_CODE (type) == FUNCTION_TYPE
32916 || TREE_CODE (type) == METHOD_TYPE))
32917 TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
32918 NULL_TREE,
32919 TYPE_ATTRIBUTES (type));
32921 #if TARGET_MACHO
32922 darwin_set_default_type_attributes (type);
32923 #endif
32926 /* Return a reference suitable for calling a function with the
32927 longcall attribute. */
32930 rs6000_longcall_ref (rtx call_ref)
32932 const char *call_name;
32933 tree node;
32935 if (GET_CODE (call_ref) != SYMBOL_REF)
32936 return call_ref;
32938 /* System V adds '.' to the internal name, so skip them. */
32939 call_name = XSTR (call_ref, 0);
32940 if (*call_name == '.')
32942 while (*call_name == '.')
32943 call_name++;
32945 node = get_identifier (call_name);
32946 call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
32949 return force_reg (Pmode, call_ref);
32952 #ifndef TARGET_USE_MS_BITFIELD_LAYOUT
32953 #define TARGET_USE_MS_BITFIELD_LAYOUT 0
32954 #endif
32956 /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
32957 struct attribute_spec.handler. */
32958 static tree
32959 rs6000_handle_struct_attribute (tree *node, tree name,
32960 tree args ATTRIBUTE_UNUSED,
32961 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
32963 tree *type = NULL;
32964 if (DECL_P (*node))
32966 if (TREE_CODE (*node) == TYPE_DECL)
32967 type = &TREE_TYPE (*node);
32969 else
32970 type = node;
32972 if (!(type && (TREE_CODE (*type) == RECORD_TYPE
32973 || TREE_CODE (*type) == UNION_TYPE)))
32975 warning (OPT_Wattributes, "%qE attribute ignored", name);
32976 *no_add_attrs = true;
32979 else if ((is_attribute_p ("ms_struct", name)
32980 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
32981 || ((is_attribute_p ("gcc_struct", name)
32982 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
32984 warning (OPT_Wattributes, "%qE incompatible attribute ignored",
32985 name);
32986 *no_add_attrs = true;
32989 return NULL_TREE;
32992 static bool
32993 rs6000_ms_bitfield_layout_p (const_tree record_type)
32995 return (TARGET_USE_MS_BITFIELD_LAYOUT &&
32996 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
32997 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
33000 #ifdef USING_ELFOS_H
33002 /* A get_unnamed_section callback, used for switching to toc_section. */
33004 static void
33005 rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
33007 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
33008 && TARGET_MINIMAL_TOC)
33010 if (!toc_initialized)
33012 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
33013 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
33014 (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
33015 fprintf (asm_out_file, "\t.tc ");
33016 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
33017 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
33018 fprintf (asm_out_file, "\n");
33020 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
33021 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
33022 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
33023 fprintf (asm_out_file, " = .+32768\n");
33024 toc_initialized = 1;
33026 else
33027 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
33029 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
33031 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
33032 if (!toc_initialized)
33034 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
33035 toc_initialized = 1;
33038 else
33040 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
33041 if (!toc_initialized)
33043 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
33044 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
33045 fprintf (asm_out_file, " = .+32768\n");
33046 toc_initialized = 1;
33051 /* Implement TARGET_ASM_INIT_SECTIONS. */
33053 static void
33054 rs6000_elf_asm_init_sections (void)
33056 toc_section
33057 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);
33059 sdata2_section
33060 = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
33061 SDATA2_SECTION_ASM_OP);
33064 /* Implement TARGET_SELECT_RTX_SECTION. */
33066 static section *
33067 rs6000_elf_select_rtx_section (machine_mode mode, rtx x,
33068 unsigned HOST_WIDE_INT align)
33070 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
33071 return toc_section;
33072 else
33073 return default_elf_select_rtx_section (mode, x, align);
33076 /* For a SYMBOL_REF, set generic flags and then perform some
33077 target-specific processing.
33079 When the AIX ABI is requested on a non-AIX system, replace the
33080 function name with the real name (with a leading .) rather than the
33081 function descriptor name. This saves a lot of overriding code to
33082 read the prefixes. */
33084 static void rs6000_elf_encode_section_info (tree, rtx, int) ATTRIBUTE_UNUSED;
33085 static void
33086 rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
33088 default_encode_section_info (decl, rtl, first);
33090 if (first
33091 && TREE_CODE (decl) == FUNCTION_DECL
33092 && !TARGET_AIX
33093 && DEFAULT_ABI == ABI_AIX)
33095 rtx sym_ref = XEXP (rtl, 0);
33096 size_t len = strlen (XSTR (sym_ref, 0));
33097 char *str = XALLOCAVEC (char, len + 2);
33098 str[0] = '.';
33099 memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
33100 XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
33104 static inline bool
33105 compare_section_name (const char *section, const char *templ)
33107 int len;
33109 len = strlen (templ);
33110 return (strncmp (section, templ, len) == 0
33111 && (section[len] == 0 || section[len] == '.'));
33114 bool
33115 rs6000_elf_in_small_data_p (const_tree decl)
33117 if (rs6000_sdata == SDATA_NONE)
33118 return false;
33120 /* We want to merge strings, so we never consider them small data. */
33121 if (TREE_CODE (decl) == STRING_CST)
33122 return false;
33124 /* Functions are never in the small data area. */
33125 if (TREE_CODE (decl) == FUNCTION_DECL)
33126 return false;
33128 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
33130 const char *section = DECL_SECTION_NAME (decl);
33131 if (compare_section_name (section, ".sdata")
33132 || compare_section_name (section, ".sdata2")
33133 || compare_section_name (section, ".gnu.linkonce.s")
33134 || compare_section_name (section, ".sbss")
33135 || compare_section_name (section, ".sbss2")
33136 || compare_section_name (section, ".gnu.linkonce.sb")
33137 || strcmp (section, ".PPC.EMB.sdata0") == 0
33138 || strcmp (section, ".PPC.EMB.sbss0") == 0)
33139 return true;
33141 else
33143 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
33145 if (size > 0
33146 && size <= g_switch_value
33147 /* If it's not public, and we're not going to reference it there,
33148 there's no need to put it in the small data section. */
33149 && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
33150 return true;
33153 return false;
33156 #endif /* USING_ELFOS_H */
33158 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
33160 static bool
33161 rs6000_use_blocks_for_constant_p (machine_mode mode, const_rtx x)
33163 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
33166 /* Do not place thread-local symbols refs in the object blocks. */
33168 static bool
33169 rs6000_use_blocks_for_decl_p (const_tree decl)
33171 return !DECL_THREAD_LOCAL_P (decl);
33174 /* Return a REG that occurs in ADDR with coefficient 1.
33175 ADDR can be effectively incremented by incrementing REG.
33177 r0 is special and we must not select it as an address
33178 register by this routine since our caller will try to
33179 increment the returned register via an "la" instruction. */
33182 find_addr_reg (rtx addr)
33184 while (GET_CODE (addr) == PLUS)
33186 if (GET_CODE (XEXP (addr, 0)) == REG
33187 && REGNO (XEXP (addr, 0)) != 0)
33188 addr = XEXP (addr, 0);
33189 else if (GET_CODE (XEXP (addr, 1)) == REG
33190 && REGNO (XEXP (addr, 1)) != 0)
33191 addr = XEXP (addr, 1);
33192 else if (CONSTANT_P (XEXP (addr, 0)))
33193 addr = XEXP (addr, 1);
33194 else if (CONSTANT_P (XEXP (addr, 1)))
33195 addr = XEXP (addr, 0);
33196 else
33197 gcc_unreachable ();
33199 gcc_assert (GET_CODE (addr) == REG && REGNO (addr) != 0);
33200 return addr;
33203 void
33204 rs6000_fatal_bad_address (rtx op)
33206 fatal_insn ("bad address", op);
33209 #if TARGET_MACHO
33211 typedef struct branch_island_d {
33212 tree function_name;
33213 tree label_name;
33214 int line_number;
33215 } branch_island;
33218 static vec<branch_island, va_gc> *branch_islands;
33220 /* Remember to generate a branch island for far calls to the given
33221 function. */
33223 static void
33224 add_compiler_branch_island (tree label_name, tree function_name,
33225 int line_number)
33227 branch_island bi = {function_name, label_name, line_number};
33228 vec_safe_push (branch_islands, bi);
33231 /* Generate far-jump branch islands for everything recorded in
33232 branch_islands. Invoked immediately after the last instruction of
33233 the epilogue has been emitted; the branch islands must be appended
33234 to, and contiguous with, the function body. Mach-O stubs are
33235 generated in machopic_output_stub(). */
33237 static void
33238 macho_branch_islands (void)
33240 char tmp_buf[512];
33242 while (!vec_safe_is_empty (branch_islands))
33244 branch_island *bi = &branch_islands->last ();
33245 const char *label = IDENTIFIER_POINTER (bi->label_name);
33246 const char *name = IDENTIFIER_POINTER (bi->function_name);
33247 char name_buf[512];
33248 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
33249 if (name[0] == '*' || name[0] == '&')
33250 strcpy (name_buf, name+1);
33251 else
33253 name_buf[0] = '_';
33254 strcpy (name_buf+1, name);
33256 strcpy (tmp_buf, "\n");
33257 strcat (tmp_buf, label);
33258 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
33259 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
33260 dbxout_stabd (N_SLINE, bi->line_number);
33261 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
33262 if (flag_pic)
33264 if (TARGET_LINK_STACK)
33266 char name[32];
33267 get_ppc476_thunk_name (name);
33268 strcat (tmp_buf, ":\n\tmflr r0\n\tbl ");
33269 strcat (tmp_buf, name);
33270 strcat (tmp_buf, "\n");
33271 strcat (tmp_buf, label);
33272 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
33274 else
33276 strcat (tmp_buf, ":\n\tmflr r0\n\tbcl 20,31,");
33277 strcat (tmp_buf, label);
33278 strcat (tmp_buf, "_pic\n");
33279 strcat (tmp_buf, label);
33280 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
33283 strcat (tmp_buf, "\taddis r11,r11,ha16(");
33284 strcat (tmp_buf, name_buf);
33285 strcat (tmp_buf, " - ");
33286 strcat (tmp_buf, label);
33287 strcat (tmp_buf, "_pic)\n");
33289 strcat (tmp_buf, "\tmtlr r0\n");
33291 strcat (tmp_buf, "\taddi r12,r11,lo16(");
33292 strcat (tmp_buf, name_buf);
33293 strcat (tmp_buf, " - ");
33294 strcat (tmp_buf, label);
33295 strcat (tmp_buf, "_pic)\n");
33297 strcat (tmp_buf, "\tmtctr r12\n\tbctr\n");
33299 else
33301 strcat (tmp_buf, ":\nlis r12,hi16(");
33302 strcat (tmp_buf, name_buf);
33303 strcat (tmp_buf, ")\n\tori r12,r12,lo16(");
33304 strcat (tmp_buf, name_buf);
33305 strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr");
33307 output_asm_insn (tmp_buf, 0);
33308 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
33309 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
33310 dbxout_stabd (N_SLINE, bi->line_number);
33311 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
33312 branch_islands->pop ();
33316 /* NO_PREVIOUS_DEF checks in the link list whether the function name is
33317 already there or not. */
33319 static int
33320 no_previous_def (tree function_name)
33322 branch_island *bi;
33323 unsigned ix;
33325 FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
33326 if (function_name == bi->function_name)
33327 return 0;
33328 return 1;
33331 /* GET_PREV_LABEL gets the label name from the previous definition of
33332 the function. */
33334 static tree
33335 get_prev_label (tree function_name)
33337 branch_island *bi;
33338 unsigned ix;
33340 FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
33341 if (function_name == bi->function_name)
33342 return bi->label_name;
33343 return NULL_TREE;
33346 /* INSN is either a function call or a millicode call. It may have an
33347 unconditional jump in its delay slot.
33349 CALL_DEST is the routine we are calling. */
33351 char *
33352 output_call (rtx_insn *insn, rtx *operands, int dest_operand_number,
33353 int cookie_operand_number)
33355 static char buf[256];
33356 if (darwin_emit_branch_islands
33357 && GET_CODE (operands[dest_operand_number]) == SYMBOL_REF
33358 && (INTVAL (operands[cookie_operand_number]) & CALL_LONG))
33360 tree labelname;
33361 tree funname = get_identifier (XSTR (operands[dest_operand_number], 0));
33363 if (no_previous_def (funname))
33365 rtx label_rtx = gen_label_rtx ();
33366 char *label_buf, temp_buf[256];
33367 ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
33368 CODE_LABEL_NUMBER (label_rtx));
33369 label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
33370 labelname = get_identifier (label_buf);
33371 add_compiler_branch_island (labelname, funname, insn_line (insn));
33373 else
33374 labelname = get_prev_label (funname);
33376 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
33377 instruction will reach 'foo', otherwise link as 'bl L42'".
33378 "L42" should be a 'branch island', that will do a far jump to
33379 'foo'. Branch islands are generated in
33380 macho_branch_islands(). */
33381 sprintf (buf, "jbsr %%z%d,%.246s",
33382 dest_operand_number, IDENTIFIER_POINTER (labelname));
33384 else
33385 sprintf (buf, "bl %%z%d", dest_operand_number);
33386 return buf;
33389 /* Generate PIC and indirect symbol stubs. */
33391 void
33392 machopic_output_stub (FILE *file, const char *symb, const char *stub)
33394 unsigned int length;
33395 char *symbol_name, *lazy_ptr_name;
33396 char *local_label_0;
33397 static int label = 0;
33399 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
33400 symb = (*targetm.strip_name_encoding) (symb);
33403 length = strlen (symb);
33404 symbol_name = XALLOCAVEC (char, length + 32);
33405 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
33407 lazy_ptr_name = XALLOCAVEC (char, length + 32);
33408 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);
33410 if (flag_pic == 2)
33411 switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
33412 else
33413 switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
33415 if (flag_pic == 2)
33417 fprintf (file, "\t.align 5\n");
33419 fprintf (file, "%s:\n", stub);
33420 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
33422 label++;
33423 local_label_0 = XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
33424 sprintf (local_label_0, "\"L%011d$spb\"", label);
33426 fprintf (file, "\tmflr r0\n");
33427 if (TARGET_LINK_STACK)
33429 char name[32];
33430 get_ppc476_thunk_name (name);
33431 fprintf (file, "\tbl %s\n", name);
33432 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
33434 else
33436 fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
33437 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
33439 fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
33440 lazy_ptr_name, local_label_0);
33441 fprintf (file, "\tmtlr r0\n");
33442 fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
33443 (TARGET_64BIT ? "ldu" : "lwzu"),
33444 lazy_ptr_name, local_label_0);
33445 fprintf (file, "\tmtctr r12\n");
33446 fprintf (file, "\tbctr\n");
33448 else
33450 fprintf (file, "\t.align 4\n");
33452 fprintf (file, "%s:\n", stub);
33453 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
33455 fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
33456 fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
33457 (TARGET_64BIT ? "ldu" : "lwzu"),
33458 lazy_ptr_name);
33459 fprintf (file, "\tmtctr r12\n");
33460 fprintf (file, "\tbctr\n");
33463 switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
33464 fprintf (file, "%s:\n", lazy_ptr_name);
33465 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
33466 fprintf (file, "%sdyld_stub_binding_helper\n",
33467 (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
33470 /* Legitimize PIC addresses. If the address is already
33471 position-independent, we return ORIG. Newly generated
33472 position-independent addresses go into a reg. This is REG if non
33473 zero, otherwise we allocate register(s) as necessary. */
33475 #define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
33478 rs6000_machopic_legitimize_pic_address (rtx orig, machine_mode mode,
33479 rtx reg)
33481 rtx base, offset;
33483 if (reg == NULL && !reload_completed)
33484 reg = gen_reg_rtx (Pmode);
33486 if (GET_CODE (orig) == CONST)
33488 rtx reg_temp;
33490 if (GET_CODE (XEXP (orig, 0)) == PLUS
33491 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
33492 return orig;
33494 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
33496 /* Use a different reg for the intermediate value, as
33497 it will be marked UNCHANGING. */
33498 reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
33499 base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
33500 Pmode, reg_temp);
33501 offset =
33502 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
33503 Pmode, reg);
33505 if (GET_CODE (offset) == CONST_INT)
33507 if (SMALL_INT (offset))
33508 return plus_constant (Pmode, base, INTVAL (offset));
33509 else if (!reload_completed)
33510 offset = force_reg (Pmode, offset);
33511 else
33513 rtx mem = force_const_mem (Pmode, orig);
33514 return machopic_legitimize_pic_address (mem, Pmode, reg);
33517 return gen_rtx_PLUS (Pmode, base, offset);
33520 /* Fall back on generic machopic code. */
33521 return machopic_legitimize_pic_address (orig, mode, reg);
33524 /* Output a .machine directive for the Darwin assembler, and call
33525 the generic start_file routine. */
33527 static void
33528 rs6000_darwin_file_start (void)
33530 static const struct
33532 const char *arg;
33533 const char *name;
33534 HOST_WIDE_INT if_set;
33535 } mapping[] = {
33536 { "ppc64", "ppc64", MASK_64BIT },
33537 { "970", "ppc970", MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64 },
33538 { "power4", "ppc970", 0 },
33539 { "G5", "ppc970", 0 },
33540 { "7450", "ppc7450", 0 },
33541 { "7400", "ppc7400", MASK_ALTIVEC },
33542 { "G4", "ppc7400", 0 },
33543 { "750", "ppc750", 0 },
33544 { "740", "ppc750", 0 },
33545 { "G3", "ppc750", 0 },
33546 { "604e", "ppc604e", 0 },
33547 { "604", "ppc604", 0 },
33548 { "603e", "ppc603", 0 },
33549 { "603", "ppc603", 0 },
33550 { "601", "ppc601", 0 },
33551 { NULL, "ppc", 0 } };
33552 const char *cpu_id = "";
33553 size_t i;
33555 rs6000_file_start ();
33556 darwin_file_start ();
33558 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
33560 if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
33561 cpu_id = rs6000_default_cpu;
33563 if (global_options_set.x_rs6000_cpu_index)
33564 cpu_id = processor_target_table[rs6000_cpu_index].name;
33566 /* Look through the mapping array. Pick the first name that either
33567 matches the argument, has a bit set in IF_SET that is also set
33568 in the target flags, or has a NULL name. */
33570 i = 0;
33571 while (mapping[i].arg != NULL
33572 && strcmp (mapping[i].arg, cpu_id) != 0
33573 && (mapping[i].if_set & rs6000_isa_flags) == 0)
33574 i++;
33576 fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
33579 #endif /* TARGET_MACHO */
33581 #if TARGET_ELF
33582 static int
33583 rs6000_elf_reloc_rw_mask (void)
33585 if (flag_pic)
33586 return 3;
33587 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
33588 return 2;
33589 else
33590 return 0;
33593 /* Record an element in the table of global constructors. SYMBOL is
33594 a SYMBOL_REF of the function to be called; PRIORITY is a number
33595 between 0 and MAX_INIT_PRIORITY.
33597 This differs from default_named_section_asm_out_constructor in
33598 that we have special handling for -mrelocatable. */
33600 static void rs6000_elf_asm_out_constructor (rtx, int) ATTRIBUTE_UNUSED;
33601 static void
33602 rs6000_elf_asm_out_constructor (rtx symbol, int priority)
33604 const char *section = ".ctors";
33605 char buf[18];
33607 if (priority != DEFAULT_INIT_PRIORITY)
33609 sprintf (buf, ".ctors.%.5u",
33610 /* Invert the numbering so the linker puts us in the proper
33611 order; constructors are run from right to left, and the
33612 linker sorts in increasing order. */
33613 MAX_INIT_PRIORITY - priority);
33614 section = buf;
33617 switch_to_section (get_section (section, SECTION_WRITE, NULL));
33618 assemble_align (POINTER_SIZE);
33620 if (DEFAULT_ABI == ABI_V4
33621 && (TARGET_RELOCATABLE || flag_pic > 1))
33623 fputs ("\t.long (", asm_out_file);
33624 output_addr_const (asm_out_file, symbol);
33625 fputs (")@fixup\n", asm_out_file);
33627 else
33628 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
33631 static void rs6000_elf_asm_out_destructor (rtx, int) ATTRIBUTE_UNUSED;
33632 static void
33633 rs6000_elf_asm_out_destructor (rtx symbol, int priority)
33635 const char *section = ".dtors";
33636 char buf[18];
33638 if (priority != DEFAULT_INIT_PRIORITY)
33640 sprintf (buf, ".dtors.%.5u",
33641 /* Invert the numbering so the linker puts us in the proper
33642 order; constructors are run from right to left, and the
33643 linker sorts in increasing order. */
33644 MAX_INIT_PRIORITY - priority);
33645 section = buf;
33648 switch_to_section (get_section (section, SECTION_WRITE, NULL));
33649 assemble_align (POINTER_SIZE);
33651 if (DEFAULT_ABI == ABI_V4
33652 && (TARGET_RELOCATABLE || flag_pic > 1))
33654 fputs ("\t.long (", asm_out_file);
33655 output_addr_const (asm_out_file, symbol);
33656 fputs (")@fixup\n", asm_out_file);
33658 else
33659 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
33662 void
33663 rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
33665 if (TARGET_64BIT && DEFAULT_ABI != ABI_ELFv2)
33667 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
33668 ASM_OUTPUT_LABEL (file, name);
33669 fputs (DOUBLE_INT_ASM_OP, file);
33670 rs6000_output_function_entry (file, name);
33671 fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
33672 if (DOT_SYMBOLS)
33674 fputs ("\t.size\t", file);
33675 assemble_name (file, name);
33676 fputs (",24\n\t.type\t.", file);
33677 assemble_name (file, name);
33678 fputs (",@function\n", file);
33679 if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
33681 fputs ("\t.globl\t.", file);
33682 assemble_name (file, name);
33683 putc ('\n', file);
33686 else
33687 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
33688 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
33689 rs6000_output_function_entry (file, name);
33690 fputs (":\n", file);
33691 return;
33694 int uses_toc;
33695 if (DEFAULT_ABI == ABI_V4
33696 && (TARGET_RELOCATABLE || flag_pic > 1)
33697 && !TARGET_SECURE_PLT
33698 && (!constant_pool_empty_p () || crtl->profile)
33699 && (uses_toc = uses_TOC ()))
33701 char buf[256];
33703 if (uses_toc == 2)
33704 switch_to_other_text_partition ();
33705 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
33707 fprintf (file, "\t.long ");
33708 assemble_name (file, toc_label_name);
33709 need_toc_init = 1;
33710 putc ('-', file);
33711 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
33712 assemble_name (file, buf);
33713 putc ('\n', file);
33714 if (uses_toc == 2)
33715 switch_to_other_text_partition ();
33718 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
33719 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
33721 if (TARGET_CMODEL == CMODEL_LARGE && rs6000_global_entry_point_needed_p ())
33723 char buf[256];
33725 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
33727 fprintf (file, "\t.quad .TOC.-");
33728 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
33729 assemble_name (file, buf);
33730 putc ('\n', file);
33733 if (DEFAULT_ABI == ABI_AIX)
33735 const char *desc_name, *orig_name;
33737 orig_name = (*targetm.strip_name_encoding) (name);
33738 desc_name = orig_name;
33739 while (*desc_name == '.')
33740 desc_name++;
33742 if (TREE_PUBLIC (decl))
33743 fprintf (file, "\t.globl %s\n", desc_name);
33745 fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
33746 fprintf (file, "%s:\n", desc_name);
33747 fprintf (file, "\t.long %s\n", orig_name);
33748 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
33749 fputs ("\t.long 0\n", file);
33750 fprintf (file, "\t.previous\n");
33752 ASM_OUTPUT_LABEL (file, name);
33755 static void rs6000_elf_file_end (void) ATTRIBUTE_UNUSED;
33756 static void
33757 rs6000_elf_file_end (void)
33759 #ifdef HAVE_AS_GNU_ATTRIBUTE
33760 /* ??? The value emitted depends on options active at file end.
33761 Assume anyone using #pragma or attributes that might change
33762 options knows what they are doing. */
33763 if ((TARGET_64BIT || DEFAULT_ABI == ABI_V4)
33764 && rs6000_passes_float)
33766 int fp;
33768 if (TARGET_DF_FPR)
33769 fp = 1;
33770 else if (TARGET_SF_FPR)
33771 fp = 3;
33772 else
33773 fp = 2;
33774 if (rs6000_passes_long_double)
33776 if (!TARGET_LONG_DOUBLE_128)
33777 fp |= 2 * 4;
33778 else if (TARGET_IEEEQUAD)
33779 fp |= 3 * 4;
33780 else
33781 fp |= 1 * 4;
33783 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", fp);
33785 if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
33787 if (rs6000_passes_vector)
33788 fprintf (asm_out_file, "\t.gnu_attribute 8, %d\n",
33789 (TARGET_ALTIVEC_ABI ? 2 : 1));
33790 if (rs6000_returns_struct)
33791 fprintf (asm_out_file, "\t.gnu_attribute 12, %d\n",
33792 aix_struct_return ? 2 : 1);
33794 #endif
33795 #if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
33796 if (TARGET_32BIT || DEFAULT_ABI == ABI_ELFv2)
33797 file_end_indicate_exec_stack ();
33798 #endif
33800 if (flag_split_stack)
33801 file_end_indicate_split_stack ();
33803 if (cpu_builtin_p)
33805 /* We have expanded a CPU builtin, so we need to emit a reference to
33806 the special symbol that LIBC uses to declare it supports the
33807 AT_PLATFORM and AT_HWCAP/AT_HWCAP2 in the TCB feature. */
33808 switch_to_section (data_section);
33809 fprintf (asm_out_file, "\t.align %u\n", TARGET_32BIT ? 2 : 3);
33810 fprintf (asm_out_file, "\t%s %s\n",
33811 TARGET_32BIT ? ".long" : ".quad", tcb_verification_symbol);
33814 #endif
33816 #if TARGET_XCOFF
33818 #ifndef HAVE_XCOFF_DWARF_EXTRAS
33819 #define HAVE_XCOFF_DWARF_EXTRAS 0
33820 #endif
33822 static enum unwind_info_type
33823 rs6000_xcoff_debug_unwind_info (void)
33825 return UI_NONE;
33828 static void
33829 rs6000_xcoff_asm_output_anchor (rtx symbol)
33831 char buffer[100];
33833 sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
33834 SYMBOL_REF_BLOCK_OFFSET (symbol));
33835 fprintf (asm_out_file, "%s", SET_ASM_OP);
33836 RS6000_OUTPUT_BASENAME (asm_out_file, XSTR (symbol, 0));
33837 fprintf (asm_out_file, ",");
33838 RS6000_OUTPUT_BASENAME (asm_out_file, buffer);
33839 fprintf (asm_out_file, "\n");
33842 static void
33843 rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
33845 fputs (GLOBAL_ASM_OP, stream);
33846 RS6000_OUTPUT_BASENAME (stream, name);
33847 putc ('\n', stream);
33850 /* A get_unnamed_decl callback, used for read-only sections. PTR
33851 points to the section string variable. */
33853 static void
33854 rs6000_xcoff_output_readonly_section_asm_op (const void *directive)
33856 fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
33857 *(const char *const *) directive,
33858 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33861 /* Likewise for read-write sections. */
33863 static void
33864 rs6000_xcoff_output_readwrite_section_asm_op (const void *directive)
33866 fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
33867 *(const char *const *) directive,
33868 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33871 static void
33872 rs6000_xcoff_output_tls_section_asm_op (const void *directive)
33874 fprintf (asm_out_file, "\t.csect %s[TL],%s\n",
33875 *(const char *const *) directive,
33876 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33879 /* A get_unnamed_section callback, used for switching to toc_section. */
33881 static void
33882 rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
33884 if (TARGET_MINIMAL_TOC)
33886 /* toc_section is always selected at least once from
33887 rs6000_xcoff_file_start, so this is guaranteed to
33888 always be defined once and only once in each file. */
33889 if (!toc_initialized)
33891 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
33892 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
33893 toc_initialized = 1;
33895 fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
33896 (TARGET_32BIT ? "" : ",3"));
33898 else
33899 fputs ("\t.toc\n", asm_out_file);
33902 /* Implement TARGET_ASM_INIT_SECTIONS. */
33904 static void
33905 rs6000_xcoff_asm_init_sections (void)
33907 read_only_data_section
33908 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
33909 &xcoff_read_only_section_name);
33911 private_data_section
33912 = get_unnamed_section (SECTION_WRITE,
33913 rs6000_xcoff_output_readwrite_section_asm_op,
33914 &xcoff_private_data_section_name);
33916 tls_data_section
33917 = get_unnamed_section (SECTION_TLS,
33918 rs6000_xcoff_output_tls_section_asm_op,
33919 &xcoff_tls_data_section_name);
33921 tls_private_data_section
33922 = get_unnamed_section (SECTION_TLS,
33923 rs6000_xcoff_output_tls_section_asm_op,
33924 &xcoff_private_data_section_name);
33926 read_only_private_data_section
33927 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
33928 &xcoff_private_data_section_name);
33930 toc_section
33931 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);
33933 readonly_data_section = read_only_data_section;
33936 static int
33937 rs6000_xcoff_reloc_rw_mask (void)
33939 return 3;
33942 static void
33943 rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
33944 tree decl ATTRIBUTE_UNUSED)
33946 int smclass;
33947 static const char * const suffix[5] = { "PR", "RO", "RW", "TL", "XO" };
33949 if (flags & SECTION_EXCLUDE)
33950 smclass = 4;
33951 else if (flags & SECTION_DEBUG)
33953 fprintf (asm_out_file, "\t.dwsect %s\n", name);
33954 return;
33956 else if (flags & SECTION_CODE)
33957 smclass = 0;
33958 else if (flags & SECTION_TLS)
33959 smclass = 3;
33960 else if (flags & SECTION_WRITE)
33961 smclass = 2;
33962 else
33963 smclass = 1;
33965 fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
33966 (flags & SECTION_CODE) ? "." : "",
33967 name, suffix[smclass], flags & SECTION_ENTSIZE);
33970 #define IN_NAMED_SECTION(DECL) \
33971 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
33972 && DECL_SECTION_NAME (DECL) != NULL)
33974 static section *
33975 rs6000_xcoff_select_section (tree decl, int reloc,
33976 unsigned HOST_WIDE_INT align)
33978 /* Place variables with alignment stricter than BIGGEST_ALIGNMENT into
33979 named section. */
33980 if (align > BIGGEST_ALIGNMENT)
33982 resolve_unique_section (decl, reloc, true);
33983 if (IN_NAMED_SECTION (decl))
33984 return get_named_section (decl, NULL, reloc);
33987 if (decl_readonly_section (decl, reloc))
33989 if (TREE_PUBLIC (decl))
33990 return read_only_data_section;
33991 else
33992 return read_only_private_data_section;
33994 else
33996 #if HAVE_AS_TLS
33997 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
33999 if (TREE_PUBLIC (decl))
34000 return tls_data_section;
34001 else if (bss_initializer_p (decl))
34003 /* Convert to COMMON to emit in BSS. */
34004 DECL_COMMON (decl) = 1;
34005 return tls_comm_section;
34007 else
34008 return tls_private_data_section;
34010 else
34011 #endif
34012 if (TREE_PUBLIC (decl))
34013 return data_section;
34014 else
34015 return private_data_section;
34019 static void
34020 rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
34022 const char *name;
34024 /* Use select_section for private data and uninitialized data with
34025 alignment <= BIGGEST_ALIGNMENT. */
34026 if (!TREE_PUBLIC (decl)
34027 || DECL_COMMON (decl)
34028 || (DECL_INITIAL (decl) == NULL_TREE
34029 && DECL_ALIGN (decl) <= BIGGEST_ALIGNMENT)
34030 || DECL_INITIAL (decl) == error_mark_node
34031 || (flag_zero_initialized_in_bss
34032 && initializer_zerop (DECL_INITIAL (decl))))
34033 return;
34035 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
34036 name = (*targetm.strip_name_encoding) (name);
34037 set_decl_section_name (decl, name);
34040 /* Select section for constant in constant pool.
34042 On RS/6000, all constants are in the private read-only data area.
34043 However, if this is being placed in the TOC it must be output as a
34044 toc entry. */
34046 static section *
34047 rs6000_xcoff_select_rtx_section (machine_mode mode, rtx x,
34048 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
34050 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
34051 return toc_section;
34052 else
34053 return read_only_private_data_section;
34056 /* Remove any trailing [DS] or the like from the symbol name. */
34058 static const char *
34059 rs6000_xcoff_strip_name_encoding (const char *name)
34061 size_t len;
34062 if (*name == '*')
34063 name++;
34064 len = strlen (name);
34065 if (name[len - 1] == ']')
34066 return ggc_alloc_string (name, len - 4);
34067 else
34068 return name;
34071 /* Section attributes. AIX is always PIC. */
34073 static unsigned int
34074 rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
34076 unsigned int align;
34077 unsigned int flags = default_section_type_flags (decl, name, reloc);
34079 /* Align to at least UNIT size. */
34080 if ((flags & SECTION_CODE) != 0 || !decl || !DECL_P (decl))
34081 align = MIN_UNITS_PER_WORD;
34082 else
34083 /* Increase alignment of large objects if not already stricter. */
34084 align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
34085 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
34086 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);
34088 return flags | (exact_log2 (align) & SECTION_ENTSIZE);
34091 /* Output at beginning of assembler file.
34093 Initialize the section names for the RS/6000 at this point.
34095 Specify filename, including full path, to assembler.
34097 We want to go into the TOC section so at least one .toc will be emitted.
34098 Also, in order to output proper .bs/.es pairs, we need at least one static
34099 [RW] section emitted.
34101 Finally, declare mcount when profiling to make the assembler happy. */
34103 static void
34104 rs6000_xcoff_file_start (void)
34106 rs6000_gen_section_name (&xcoff_bss_section_name,
34107 main_input_filename, ".bss_");
34108 rs6000_gen_section_name (&xcoff_private_data_section_name,
34109 main_input_filename, ".rw_");
34110 rs6000_gen_section_name (&xcoff_read_only_section_name,
34111 main_input_filename, ".ro_");
34112 rs6000_gen_section_name (&xcoff_tls_data_section_name,
34113 main_input_filename, ".tls_");
34114 rs6000_gen_section_name (&xcoff_tbss_section_name,
34115 main_input_filename, ".tbss_[UL]");
34117 fputs ("\t.file\t", asm_out_file);
34118 output_quoted_string (asm_out_file, main_input_filename);
34119 fputc ('\n', asm_out_file);
34120 if (write_symbols != NO_DEBUG)
34121 switch_to_section (private_data_section);
34122 switch_to_section (toc_section);
34123 switch_to_section (text_section);
34124 if (profile_flag)
34125 fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
34126 rs6000_file_start ();
34129 /* Output at end of assembler file.
34130 On the RS/6000, referencing data should automatically pull in text. */
34132 static void
34133 rs6000_xcoff_file_end (void)
34135 switch_to_section (text_section);
34136 fputs ("_section_.text:\n", asm_out_file);
34137 switch_to_section (data_section);
34138 fputs (TARGET_32BIT
34139 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
34140 asm_out_file);
34143 struct declare_alias_data
34145 FILE *file;
34146 bool function_descriptor;
34149 /* Declare alias N. A helper function for for_node_and_aliases. */
34151 static bool
34152 rs6000_declare_alias (struct symtab_node *n, void *d)
34154 struct declare_alias_data *data = (struct declare_alias_data *)d;
34155 /* Main symbol is output specially, because varasm machinery does part of
34156 the job for us - we do not need to declare .globl/lglobs and such. */
34157 if (!n->alias || n->weakref)
34158 return false;
34160 if (lookup_attribute ("ifunc", DECL_ATTRIBUTES (n->decl)))
34161 return false;
34163 /* Prevent assemble_alias from trying to use .set pseudo operation
34164 that does not behave as expected by the middle-end. */
34165 TREE_ASM_WRITTEN (n->decl) = true;
34167 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (n->decl));
34168 char *buffer = (char *) alloca (strlen (name) + 2);
34169 char *p;
34170 int dollar_inside = 0;
34172 strcpy (buffer, name);
34173 p = strchr (buffer, '$');
34174 while (p) {
34175 *p = '_';
34176 dollar_inside++;
34177 p = strchr (p + 1, '$');
34179 if (TREE_PUBLIC (n->decl))
34181 if (!RS6000_WEAK || !DECL_WEAK (n->decl))
34183 if (dollar_inside) {
34184 if (data->function_descriptor)
34185 fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
34186 fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
34188 if (data->function_descriptor)
34190 fputs ("\t.globl .", data->file);
34191 RS6000_OUTPUT_BASENAME (data->file, buffer);
34192 putc ('\n', data->file);
34194 fputs ("\t.globl ", data->file);
34195 RS6000_OUTPUT_BASENAME (data->file, buffer);
34196 putc ('\n', data->file);
34198 #ifdef ASM_WEAKEN_DECL
34199 else if (DECL_WEAK (n->decl) && !data->function_descriptor)
34200 ASM_WEAKEN_DECL (data->file, n->decl, name, NULL);
34201 #endif
34203 else
34205 if (dollar_inside)
34207 if (data->function_descriptor)
34208 fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
34209 fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
34211 if (data->function_descriptor)
34213 fputs ("\t.lglobl .", data->file);
34214 RS6000_OUTPUT_BASENAME (data->file, buffer);
34215 putc ('\n', data->file);
34217 fputs ("\t.lglobl ", data->file);
34218 RS6000_OUTPUT_BASENAME (data->file, buffer);
34219 putc ('\n', data->file);
34221 if (data->function_descriptor)
34222 fputs (".", data->file);
34223 RS6000_OUTPUT_BASENAME (data->file, buffer);
34224 fputs (":\n", data->file);
34225 return false;
34229 #ifdef HAVE_GAS_HIDDEN
34230 /* Helper function to calculate visibility of a DECL
34231 and return the value as a const string. */
34233 static const char *
34234 rs6000_xcoff_visibility (tree decl)
34236 static const char * const visibility_types[] = {
34237 "", ",protected", ",hidden", ",internal"
34240 enum symbol_visibility vis = DECL_VISIBILITY (decl);
34242 if (TREE_CODE (decl) == FUNCTION_DECL
34243 && cgraph_node::get (decl)
34244 && cgraph_node::get (decl)->instrumentation_clone
34245 && cgraph_node::get (decl)->instrumented_version)
34246 vis = DECL_VISIBILITY (cgraph_node::get (decl)->instrumented_version->decl);
34248 return visibility_types[vis];
34250 #endif
34253 /* This macro produces the initial definition of a function name.
34254 On the RS/6000, we need to place an extra '.' in the function name and
34255 output the function descriptor.
34256 Dollar signs are converted to underscores.
34258 The csect for the function will have already been created when
34259 text_section was selected. We do have to go back to that csect, however.
34261 The third and fourth parameters to the .function pseudo-op (16 and 044)
34262 are placeholders which no longer have any use.
34264 Because AIX assembler's .set command has unexpected semantics, we output
34265 all aliases as alternative labels in front of the definition. */
34267 void
34268 rs6000_xcoff_declare_function_name (FILE *file, const char *name, tree decl)
34270 char *buffer = (char *) alloca (strlen (name) + 1);
34271 char *p;
34272 int dollar_inside = 0;
34273 struct declare_alias_data data = {file, false};
34275 strcpy (buffer, name);
34276 p = strchr (buffer, '$');
34277 while (p) {
34278 *p = '_';
34279 dollar_inside++;
34280 p = strchr (p + 1, '$');
34282 if (TREE_PUBLIC (decl))
34284 if (!RS6000_WEAK || !DECL_WEAK (decl))
34286 if (dollar_inside) {
34287 fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
34288 fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
34290 fputs ("\t.globl .", file);
34291 RS6000_OUTPUT_BASENAME (file, buffer);
34292 #ifdef HAVE_GAS_HIDDEN
34293 fputs (rs6000_xcoff_visibility (decl), file);
34294 #endif
34295 putc ('\n', file);
34298 else
34300 if (dollar_inside) {
34301 fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
34302 fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
34304 fputs ("\t.lglobl .", file);
34305 RS6000_OUTPUT_BASENAME (file, buffer);
34306 putc ('\n', file);
34308 fputs ("\t.csect ", file);
34309 RS6000_OUTPUT_BASENAME (file, buffer);
34310 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", file);
34311 RS6000_OUTPUT_BASENAME (file, buffer);
34312 fputs (":\n", file);
34313 symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
34314 &data, true);
34315 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", file);
34316 RS6000_OUTPUT_BASENAME (file, buffer);
34317 fputs (", TOC[tc0], 0\n", file);
34318 in_section = NULL;
34319 switch_to_section (function_section (decl));
34320 putc ('.', file);
34321 RS6000_OUTPUT_BASENAME (file, buffer);
34322 fputs (":\n", file);
34323 data.function_descriptor = true;
34324 symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
34325 &data, true);
34326 if (!DECL_IGNORED_P (decl))
34328 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
34329 xcoffout_declare_function (file, decl, buffer);
34330 else if (write_symbols == DWARF2_DEBUG)
34332 name = (*targetm.strip_name_encoding) (name);
34333 fprintf (file, "\t.function .%s,.%s,2,0\n", name, name);
34336 return;
34340 /* Output assembly language to globalize a symbol from a DECL,
34341 possibly with visibility. */
34343 void
34344 rs6000_xcoff_asm_globalize_decl_name (FILE *stream, tree decl)
34346 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
34347 fputs (GLOBAL_ASM_OP, stream);
34348 RS6000_OUTPUT_BASENAME (stream, name);
34349 #ifdef HAVE_GAS_HIDDEN
34350 fputs (rs6000_xcoff_visibility (decl), stream);
34351 #endif
34352 putc ('\n', stream);
34355 /* Output assembly language to define a symbol as COMMON from a DECL,
34356 possibly with visibility. */
34358 void
34359 rs6000_xcoff_asm_output_aligned_decl_common (FILE *stream,
34360 tree decl ATTRIBUTE_UNUSED,
34361 const char *name,
34362 unsigned HOST_WIDE_INT size,
34363 unsigned HOST_WIDE_INT align)
34365 unsigned HOST_WIDE_INT align2 = 2;
34367 if (align > 32)
34368 align2 = floor_log2 (align / BITS_PER_UNIT);
34369 else if (size > 4)
34370 align2 = 3;
34372 fputs (COMMON_ASM_OP, stream);
34373 RS6000_OUTPUT_BASENAME (stream, name);
34375 fprintf (stream,
34376 "," HOST_WIDE_INT_PRINT_UNSIGNED "," HOST_WIDE_INT_PRINT_UNSIGNED,
34377 size, align2);
34379 #ifdef HAVE_GAS_HIDDEN
34380 if (decl != NULL)
34381 fputs (rs6000_xcoff_visibility (decl), stream);
34382 #endif
34383 putc ('\n', stream);
34386 /* This macro produces the initial definition of a object (variable) name.
34387 Because AIX assembler's .set command has unexpected semantics, we output
34388 all aliases as alternative labels in front of the definition. */
34390 void
34391 rs6000_xcoff_declare_object_name (FILE *file, const char *name, tree decl)
34393 struct declare_alias_data data = {file, false};
34394 RS6000_OUTPUT_BASENAME (file, name);
34395 fputs (":\n", file);
34396 symtab_node::get_create (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
34397 &data, true);
34400 /* Overide the default 'SYMBOL-.' syntax with AIX compatible 'SYMBOL-$'. */
34402 void
34403 rs6000_asm_output_dwarf_pcrel (FILE *file, int size, const char *label)
34405 fputs (integer_asm_op (size, FALSE), file);
34406 assemble_name (file, label);
34407 fputs ("-$", file);
34410 /* Output a symbol offset relative to the dbase for the current object.
34411 We use __gcc_unwind_dbase as an arbitrary base for dbase and assume
34412 signed offsets.
34414 __gcc_unwind_dbase is embedded in all executables/libraries through
34415 libgcc/config/rs6000/crtdbase.S. */
34417 void
34418 rs6000_asm_output_dwarf_datarel (FILE *file, int size, const char *label)
34420 fputs (integer_asm_op (size, FALSE), file);
34421 assemble_name (file, label);
34422 fputs("-__gcc_unwind_dbase", file);
34425 #ifdef HAVE_AS_TLS
34426 static void
34427 rs6000_xcoff_encode_section_info (tree decl, rtx rtl, int first)
34429 rtx symbol;
34430 int flags;
34431 const char *symname;
34433 default_encode_section_info (decl, rtl, first);
34435 /* Careful not to prod global register variables. */
34436 if (!MEM_P (rtl))
34437 return;
34438 symbol = XEXP (rtl, 0);
34439 if (GET_CODE (symbol) != SYMBOL_REF)
34440 return;
34442 flags = SYMBOL_REF_FLAGS (symbol);
34444 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
34445 flags &= ~SYMBOL_FLAG_HAS_BLOCK_INFO;
34447 SYMBOL_REF_FLAGS (symbol) = flags;
34449 /* Append mapping class to extern decls. */
34450 symname = XSTR (symbol, 0);
34451 if (decl /* sync condition with assemble_external () */
34452 && DECL_P (decl) && DECL_EXTERNAL (decl) && TREE_PUBLIC (decl)
34453 && ((TREE_CODE (decl) == VAR_DECL && !DECL_THREAD_LOCAL_P (decl))
34454 || TREE_CODE (decl) == FUNCTION_DECL)
34455 && symname[strlen (symname) - 1] != ']')
34457 char *newname = (char *) alloca (strlen (symname) + 5);
34458 strcpy (newname, symname);
34459 strcat (newname, (TREE_CODE (decl) == FUNCTION_DECL
34460 ? "[DS]" : "[UA]"));
34461 XSTR (symbol, 0) = ggc_strdup (newname);
34464 #endif /* HAVE_AS_TLS */
34465 #endif /* TARGET_XCOFF */
34467 void
34468 rs6000_asm_weaken_decl (FILE *stream, tree decl,
34469 const char *name, const char *val)
34471 fputs ("\t.weak\t", stream);
34472 RS6000_OUTPUT_BASENAME (stream, name);
34473 if (decl && TREE_CODE (decl) == FUNCTION_DECL
34474 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
34476 if (TARGET_XCOFF)
34477 fputs ("[DS]", stream);
34478 #if TARGET_XCOFF && HAVE_GAS_HIDDEN
34479 if (TARGET_XCOFF)
34480 fputs (rs6000_xcoff_visibility (decl), stream);
34481 #endif
34482 fputs ("\n\t.weak\t.", stream);
34483 RS6000_OUTPUT_BASENAME (stream, name);
34485 #if TARGET_XCOFF && HAVE_GAS_HIDDEN
34486 if (TARGET_XCOFF)
34487 fputs (rs6000_xcoff_visibility (decl), stream);
34488 #endif
34489 fputc ('\n', stream);
34490 if (val)
34492 #ifdef ASM_OUTPUT_DEF
34493 ASM_OUTPUT_DEF (stream, name, val);
34494 #endif
34495 if (decl && TREE_CODE (decl) == FUNCTION_DECL
34496 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
34498 fputs ("\t.set\t.", stream);
34499 RS6000_OUTPUT_BASENAME (stream, name);
34500 fputs (",.", stream);
34501 RS6000_OUTPUT_BASENAME (stream, val);
34502 fputc ('\n', stream);
34508 /* Return true if INSN should not be copied. */
34510 static bool
34511 rs6000_cannot_copy_insn_p (rtx_insn *insn)
34513 return recog_memoized (insn) >= 0
34514 && get_attr_cannot_copy (insn);
34517 /* Compute a (partial) cost for rtx X. Return true if the complete
34518 cost has been computed, and false if subexpressions should be
34519 scanned. In either case, *TOTAL contains the cost result. */
34521 static bool
34522 rs6000_rtx_costs (rtx x, machine_mode mode, int outer_code,
34523 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
34525 int code = GET_CODE (x);
34527 switch (code)
34529 /* On the RS/6000, if it is valid in the insn, it is free. */
34530 case CONST_INT:
34531 if (((outer_code == SET
34532 || outer_code == PLUS
34533 || outer_code == MINUS)
34534 && (satisfies_constraint_I (x)
34535 || satisfies_constraint_L (x)))
34536 || (outer_code == AND
34537 && (satisfies_constraint_K (x)
34538 || (mode == SImode
34539 ? satisfies_constraint_L (x)
34540 : satisfies_constraint_J (x))))
34541 || ((outer_code == IOR || outer_code == XOR)
34542 && (satisfies_constraint_K (x)
34543 || (mode == SImode
34544 ? satisfies_constraint_L (x)
34545 : satisfies_constraint_J (x))))
34546 || outer_code == ASHIFT
34547 || outer_code == ASHIFTRT
34548 || outer_code == LSHIFTRT
34549 || outer_code == ROTATE
34550 || outer_code == ROTATERT
34551 || outer_code == ZERO_EXTRACT
34552 || (outer_code == MULT
34553 && satisfies_constraint_I (x))
34554 || ((outer_code == DIV || outer_code == UDIV
34555 || outer_code == MOD || outer_code == UMOD)
34556 && exact_log2 (INTVAL (x)) >= 0)
34557 || (outer_code == COMPARE
34558 && (satisfies_constraint_I (x)
34559 || satisfies_constraint_K (x)))
34560 || ((outer_code == EQ || outer_code == NE)
34561 && (satisfies_constraint_I (x)
34562 || satisfies_constraint_K (x)
34563 || (mode == SImode
34564 ? satisfies_constraint_L (x)
34565 : satisfies_constraint_J (x))))
34566 || (outer_code == GTU
34567 && satisfies_constraint_I (x))
34568 || (outer_code == LTU
34569 && satisfies_constraint_P (x)))
34571 *total = 0;
34572 return true;
34574 else if ((outer_code == PLUS
34575 && reg_or_add_cint_operand (x, VOIDmode))
34576 || (outer_code == MINUS
34577 && reg_or_sub_cint_operand (x, VOIDmode))
34578 || ((outer_code == SET
34579 || outer_code == IOR
34580 || outer_code == XOR)
34581 && (INTVAL (x)
34582 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
34584 *total = COSTS_N_INSNS (1);
34585 return true;
34587 /* FALLTHRU */
34589 case CONST_DOUBLE:
34590 case CONST_WIDE_INT:
34591 case CONST:
34592 case HIGH:
34593 case SYMBOL_REF:
34594 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
34595 return true;
34597 case MEM:
34598 /* When optimizing for size, MEM should be slightly more expensive
34599 than generating address, e.g., (plus (reg) (const)).
34600 L1 cache latency is about two instructions. */
34601 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
34602 if (rs6000_slow_unaligned_access (mode, MEM_ALIGN (x)))
34603 *total += COSTS_N_INSNS (100);
34604 return true;
34606 case LABEL_REF:
34607 *total = 0;
34608 return true;
34610 case PLUS:
34611 case MINUS:
34612 if (FLOAT_MODE_P (mode))
34613 *total = rs6000_cost->fp;
34614 else
34615 *total = COSTS_N_INSNS (1);
34616 return false;
34618 case MULT:
34619 if (GET_CODE (XEXP (x, 1)) == CONST_INT
34620 && satisfies_constraint_I (XEXP (x, 1)))
34622 if (INTVAL (XEXP (x, 1)) >= -256
34623 && INTVAL (XEXP (x, 1)) <= 255)
34624 *total = rs6000_cost->mulsi_const9;
34625 else
34626 *total = rs6000_cost->mulsi_const;
34628 else if (mode == SFmode)
34629 *total = rs6000_cost->fp;
34630 else if (FLOAT_MODE_P (mode))
34631 *total = rs6000_cost->dmul;
34632 else if (mode == DImode)
34633 *total = rs6000_cost->muldi;
34634 else
34635 *total = rs6000_cost->mulsi;
34636 return false;
34638 case FMA:
34639 if (mode == SFmode)
34640 *total = rs6000_cost->fp;
34641 else
34642 *total = rs6000_cost->dmul;
34643 break;
34645 case DIV:
34646 case MOD:
34647 if (FLOAT_MODE_P (mode))
34649 *total = mode == DFmode ? rs6000_cost->ddiv
34650 : rs6000_cost->sdiv;
34651 return false;
34653 /* FALLTHRU */
34655 case UDIV:
34656 case UMOD:
34657 if (GET_CODE (XEXP (x, 1)) == CONST_INT
34658 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
34660 if (code == DIV || code == MOD)
34661 /* Shift, addze */
34662 *total = COSTS_N_INSNS (2);
34663 else
34664 /* Shift */
34665 *total = COSTS_N_INSNS (1);
34667 else
34669 if (GET_MODE (XEXP (x, 1)) == DImode)
34670 *total = rs6000_cost->divdi;
34671 else
34672 *total = rs6000_cost->divsi;
34674 /* Add in shift and subtract for MOD unless we have a mod instruction. */
34675 if (!TARGET_MODULO && (code == MOD || code == UMOD))
34676 *total += COSTS_N_INSNS (2);
34677 return false;
34679 case CTZ:
34680 *total = COSTS_N_INSNS (TARGET_CTZ ? 1 : 4);
34681 return false;
34683 case FFS:
34684 *total = COSTS_N_INSNS (4);
34685 return false;
34687 case POPCOUNT:
34688 *total = COSTS_N_INSNS (TARGET_POPCNTD ? 1 : 6);
34689 return false;
34691 case PARITY:
34692 *total = COSTS_N_INSNS (TARGET_CMPB ? 2 : 6);
34693 return false;
34695 case NOT:
34696 if (outer_code == AND || outer_code == IOR || outer_code == XOR)
34697 *total = 0;
34698 else
34699 *total = COSTS_N_INSNS (1);
34700 return false;
34702 case AND:
34703 if (CONST_INT_P (XEXP (x, 1)))
34705 rtx left = XEXP (x, 0);
34706 rtx_code left_code = GET_CODE (left);
34708 /* rotate-and-mask: 1 insn. */
34709 if ((left_code == ROTATE
34710 || left_code == ASHIFT
34711 || left_code == LSHIFTRT)
34712 && rs6000_is_valid_shift_mask (XEXP (x, 1), left, mode))
34714 *total = rtx_cost (XEXP (left, 0), mode, left_code, 0, speed);
34715 if (!CONST_INT_P (XEXP (left, 1)))
34716 *total += rtx_cost (XEXP (left, 1), SImode, left_code, 1, speed);
34717 *total += COSTS_N_INSNS (1);
34718 return true;
34721 /* rotate-and-mask (no rotate), andi., andis.: 1 insn. */
34722 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
34723 if (rs6000_is_valid_and_mask (XEXP (x, 1), mode)
34724 || (val & 0xffff) == val
34725 || (val & 0xffff0000) == val
34726 || ((val & 0xffff) == 0 && mode == SImode))
34728 *total = rtx_cost (left, mode, AND, 0, speed);
34729 *total += COSTS_N_INSNS (1);
34730 return true;
34733 /* 2 insns. */
34734 if (rs6000_is_valid_2insn_and (XEXP (x, 1), mode))
34736 *total = rtx_cost (left, mode, AND, 0, speed);
34737 *total += COSTS_N_INSNS (2);
34738 return true;
34742 *total = COSTS_N_INSNS (1);
34743 return false;
34745 case IOR:
34746 /* FIXME */
34747 *total = COSTS_N_INSNS (1);
34748 return true;
34750 case CLZ:
34751 case XOR:
34752 case ZERO_EXTRACT:
34753 *total = COSTS_N_INSNS (1);
34754 return false;
34756 case ASHIFT:
34757 /* The EXTSWSLI instruction is a combined instruction. Don't count both
34758 the sign extend and shift separately within the insn. */
34759 if (TARGET_EXTSWSLI && mode == DImode
34760 && GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
34761 && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode)
34763 *total = 0;
34764 return false;
34766 /* fall through */
34768 case ASHIFTRT:
34769 case LSHIFTRT:
34770 case ROTATE:
34771 case ROTATERT:
34772 /* Handle mul_highpart. */
34773 if (outer_code == TRUNCATE
34774 && GET_CODE (XEXP (x, 0)) == MULT)
34776 if (mode == DImode)
34777 *total = rs6000_cost->muldi;
34778 else
34779 *total = rs6000_cost->mulsi;
34780 return true;
34782 else if (outer_code == AND)
34783 *total = 0;
34784 else
34785 *total = COSTS_N_INSNS (1);
34786 return false;
34788 case SIGN_EXTEND:
34789 case ZERO_EXTEND:
34790 if (GET_CODE (XEXP (x, 0)) == MEM)
34791 *total = 0;
34792 else
34793 *total = COSTS_N_INSNS (1);
34794 return false;
34796 case COMPARE:
34797 case NEG:
34798 case ABS:
34799 if (!FLOAT_MODE_P (mode))
34801 *total = COSTS_N_INSNS (1);
34802 return false;
34804 /* FALLTHRU */
34806 case FLOAT:
34807 case UNSIGNED_FLOAT:
34808 case FIX:
34809 case UNSIGNED_FIX:
34810 case FLOAT_TRUNCATE:
34811 *total = rs6000_cost->fp;
34812 return false;
34814 case FLOAT_EXTEND:
34815 if (mode == DFmode)
34816 *total = rs6000_cost->sfdf_convert;
34817 else
34818 *total = rs6000_cost->fp;
34819 return false;
34821 case UNSPEC:
34822 switch (XINT (x, 1))
34824 case UNSPEC_FRSP:
34825 *total = rs6000_cost->fp;
34826 return true;
34828 default:
34829 break;
34831 break;
34833 case CALL:
34834 case IF_THEN_ELSE:
34835 if (!speed)
34837 *total = COSTS_N_INSNS (1);
34838 return true;
34840 else if (FLOAT_MODE_P (mode) && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT)
34842 *total = rs6000_cost->fp;
34843 return false;
34845 break;
34847 case NE:
34848 case EQ:
34849 case GTU:
34850 case LTU:
34851 /* Carry bit requires mode == Pmode.
34852 NEG or PLUS already counted so only add one. */
34853 if (mode == Pmode
34854 && (outer_code == NEG || outer_code == PLUS))
34856 *total = COSTS_N_INSNS (1);
34857 return true;
34859 if (outer_code == SET)
34861 if (XEXP (x, 1) == const0_rtx)
34863 if (TARGET_ISEL && !TARGET_MFCRF)
34864 *total = COSTS_N_INSNS (8);
34865 else
34866 *total = COSTS_N_INSNS (2);
34867 return true;
34869 else
34871 *total = COSTS_N_INSNS (3);
34872 return false;
34875 /* FALLTHRU */
34877 case GT:
34878 case LT:
34879 case UNORDERED:
34880 if (outer_code == SET && (XEXP (x, 1) == const0_rtx))
34882 if (TARGET_ISEL && !TARGET_MFCRF)
34883 *total = COSTS_N_INSNS (8);
34884 else
34885 *total = COSTS_N_INSNS (2);
34886 return true;
34888 /* CC COMPARE. */
34889 if (outer_code == COMPARE)
34891 *total = 0;
34892 return true;
34894 break;
34896 default:
34897 break;
34900 return false;
34903 /* Debug form of r6000_rtx_costs that is selected if -mdebug=cost. */
34905 static bool
34906 rs6000_debug_rtx_costs (rtx x, machine_mode mode, int outer_code,
34907 int opno, int *total, bool speed)
34909 bool ret = rs6000_rtx_costs (x, mode, outer_code, opno, total, speed);
34911 fprintf (stderr,
34912 "\nrs6000_rtx_costs, return = %s, mode = %s, outer_code = %s, "
34913 "opno = %d, total = %d, speed = %s, x:\n",
34914 ret ? "complete" : "scan inner",
34915 GET_MODE_NAME (mode),
34916 GET_RTX_NAME (outer_code),
34917 opno,
34918 *total,
34919 speed ? "true" : "false");
34921 debug_rtx (x);
34923 return ret;
34926 static int
34927 rs6000_insn_cost (rtx_insn *insn, bool speed)
34929 if (recog_memoized (insn) < 0)
34930 return 0;
34932 if (!speed)
34933 return get_attr_length (insn);
34935 int cost = get_attr_cost (insn);
34936 if (cost > 0)
34937 return cost;
34939 int n = get_attr_length (insn) / 4;
34940 enum attr_type type = get_attr_type (insn);
34942 switch (type)
34944 case TYPE_LOAD:
34945 case TYPE_FPLOAD:
34946 case TYPE_VECLOAD:
34947 cost = COSTS_N_INSNS (n + 1);
34948 break;
34950 case TYPE_MUL:
34951 switch (get_attr_size (insn))
34953 case SIZE_8:
34954 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const9;
34955 break;
34956 case SIZE_16:
34957 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const;
34958 break;
34959 case SIZE_32:
34960 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi;
34961 break;
34962 case SIZE_64:
34963 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->muldi;
34964 break;
34965 default:
34966 gcc_unreachable ();
34968 break;
34969 case TYPE_DIV:
34970 switch (get_attr_size (insn))
34972 case SIZE_32:
34973 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divsi;
34974 break;
34975 case SIZE_64:
34976 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divdi;
34977 break;
34978 default:
34979 gcc_unreachable ();
34981 break;
34983 case TYPE_FP:
34984 cost = n * rs6000_cost->fp;
34985 break;
34986 case TYPE_DMUL:
34987 cost = n * rs6000_cost->dmul;
34988 break;
34989 case TYPE_SDIV:
34990 cost = n * rs6000_cost->sdiv;
34991 break;
34992 case TYPE_DDIV:
34993 cost = n * rs6000_cost->ddiv;
34994 break;
34996 case TYPE_SYNC:
34997 case TYPE_LOAD_L:
34998 cost = COSTS_N_INSNS (n + 2);
34999 break;
35001 default:
35002 cost = COSTS_N_INSNS (n);
35005 return cost;
35008 /* Debug form of ADDRESS_COST that is selected if -mdebug=cost. */
35010 static int
35011 rs6000_debug_address_cost (rtx x, machine_mode mode,
35012 addr_space_t as, bool speed)
35014 int ret = TARGET_ADDRESS_COST (x, mode, as, speed);
35016 fprintf (stderr, "\nrs6000_address_cost, return = %d, speed = %s, x:\n",
35017 ret, speed ? "true" : "false");
35018 debug_rtx (x);
35020 return ret;
35024 /* A C expression returning the cost of moving data from a register of class
35025 CLASS1 to one of CLASS2. */
35027 static int
35028 rs6000_register_move_cost (machine_mode mode,
35029 reg_class_t from, reg_class_t to)
35031 int ret;
35033 if (TARGET_DEBUG_COST)
35034 dbg_cost_ctrl++;
35036 /* Moves from/to GENERAL_REGS. */
35037 if (reg_classes_intersect_p (to, GENERAL_REGS)
35038 || reg_classes_intersect_p (from, GENERAL_REGS))
35040 reg_class_t rclass = from;
35042 if (! reg_classes_intersect_p (to, GENERAL_REGS))
35043 rclass = to;
35045 if (rclass == FLOAT_REGS || rclass == ALTIVEC_REGS || rclass == VSX_REGS)
35046 ret = (rs6000_memory_move_cost (mode, rclass, false)
35047 + rs6000_memory_move_cost (mode, GENERAL_REGS, false));
35049 /* It's more expensive to move CR_REGS than CR0_REGS because of the
35050 shift. */
35051 else if (rclass == CR_REGS)
35052 ret = 4;
35054 /* For those processors that have slow LR/CTR moves, make them more
35055 expensive than memory in order to bias spills to memory .*/
35056 else if ((rs6000_cpu == PROCESSOR_POWER6
35057 || rs6000_cpu == PROCESSOR_POWER7
35058 || rs6000_cpu == PROCESSOR_POWER8
35059 || rs6000_cpu == PROCESSOR_POWER9)
35060 && reg_classes_intersect_p (rclass, LINK_OR_CTR_REGS))
35061 ret = 6 * hard_regno_nregs (0, mode);
35063 else
35064 /* A move will cost one instruction per GPR moved. */
35065 ret = 2 * hard_regno_nregs (0, mode);
35068 /* If we have VSX, we can easily move between FPR or Altivec registers. */
35069 else if (VECTOR_MEM_VSX_P (mode)
35070 && reg_classes_intersect_p (to, VSX_REGS)
35071 && reg_classes_intersect_p (from, VSX_REGS))
35072 ret = 2 * hard_regno_nregs (FIRST_FPR_REGNO, mode);
35074 /* Moving between two similar registers is just one instruction. */
35075 else if (reg_classes_intersect_p (to, from))
35076 ret = (FLOAT128_2REG_P (mode)) ? 4 : 2;
35078 /* Everything else has to go through GENERAL_REGS. */
35079 else
35080 ret = (rs6000_register_move_cost (mode, GENERAL_REGS, to)
35081 + rs6000_register_move_cost (mode, from, GENERAL_REGS));
35083 if (TARGET_DEBUG_COST)
35085 if (dbg_cost_ctrl == 1)
35086 fprintf (stderr,
35087 "rs6000_register_move_cost:, ret=%d, mode=%s, from=%s, to=%s\n",
35088 ret, GET_MODE_NAME (mode), reg_class_names[from],
35089 reg_class_names[to]);
35090 dbg_cost_ctrl--;
35093 return ret;
35096 /* A C expressions returning the cost of moving data of MODE from a register to
35097 or from memory. */
35099 static int
35100 rs6000_memory_move_cost (machine_mode mode, reg_class_t rclass,
35101 bool in ATTRIBUTE_UNUSED)
35103 int ret;
35105 if (TARGET_DEBUG_COST)
35106 dbg_cost_ctrl++;
35108 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
35109 ret = 4 * hard_regno_nregs (0, mode);
35110 else if ((reg_classes_intersect_p (rclass, FLOAT_REGS)
35111 || reg_classes_intersect_p (rclass, VSX_REGS)))
35112 ret = 4 * hard_regno_nregs (32, mode);
35113 else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
35114 ret = 4 * hard_regno_nregs (FIRST_ALTIVEC_REGNO, mode);
35115 else
35116 ret = 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
35118 if (TARGET_DEBUG_COST)
35120 if (dbg_cost_ctrl == 1)
35121 fprintf (stderr,
35122 "rs6000_memory_move_cost: ret=%d, mode=%s, rclass=%s, in=%d\n",
35123 ret, GET_MODE_NAME (mode), reg_class_names[rclass], in);
35124 dbg_cost_ctrl--;
35127 return ret;
35130 /* Returns a code for a target-specific builtin that implements
35131 reciprocal of the function, or NULL_TREE if not available. */
35133 static tree
35134 rs6000_builtin_reciprocal (tree fndecl)
35136 switch (DECL_FUNCTION_CODE (fndecl))
35138 case VSX_BUILTIN_XVSQRTDP:
35139 if (!RS6000_RECIP_AUTO_RSQRTE_P (V2DFmode))
35140 return NULL_TREE;
35142 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_2DF];
35144 case VSX_BUILTIN_XVSQRTSP:
35145 if (!RS6000_RECIP_AUTO_RSQRTE_P (V4SFmode))
35146 return NULL_TREE;
35148 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_4SF];
35150 default:
35151 return NULL_TREE;
35155 /* Load up a constant. If the mode is a vector mode, splat the value across
35156 all of the vector elements. */
35158 static rtx
35159 rs6000_load_constant_and_splat (machine_mode mode, REAL_VALUE_TYPE dconst)
35161 rtx reg;
35163 if (mode == SFmode || mode == DFmode)
35165 rtx d = const_double_from_real_value (dconst, mode);
35166 reg = force_reg (mode, d);
35168 else if (mode == V4SFmode)
35170 rtx d = const_double_from_real_value (dconst, SFmode);
35171 rtvec v = gen_rtvec (4, d, d, d, d);
35172 reg = gen_reg_rtx (mode);
35173 rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
35175 else if (mode == V2DFmode)
35177 rtx d = const_double_from_real_value (dconst, DFmode);
35178 rtvec v = gen_rtvec (2, d, d);
35179 reg = gen_reg_rtx (mode);
35180 rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
35182 else
35183 gcc_unreachable ();
35185 return reg;
35188 /* Generate an FMA instruction. */
35190 static void
35191 rs6000_emit_madd (rtx target, rtx m1, rtx m2, rtx a)
35193 machine_mode mode = GET_MODE (target);
35194 rtx dst;
35196 dst = expand_ternary_op (mode, fma_optab, m1, m2, a, target, 0);
35197 gcc_assert (dst != NULL);
35199 if (dst != target)
35200 emit_move_insn (target, dst);
35203 /* Generate a FNMSUB instruction: dst = -fma(m1, m2, -a). */
35205 static void
35206 rs6000_emit_nmsub (rtx dst, rtx m1, rtx m2, rtx a)
35208 machine_mode mode = GET_MODE (dst);
35209 rtx r;
35211 /* This is a tad more complicated, since the fnma_optab is for
35212 a different expression: fma(-m1, m2, a), which is the same
35213 thing except in the case of signed zeros.
35215 Fortunately we know that if FMA is supported that FNMSUB is
35216 also supported in the ISA. Just expand it directly. */
35218 gcc_assert (optab_handler (fma_optab, mode) != CODE_FOR_nothing);
35220 r = gen_rtx_NEG (mode, a);
35221 r = gen_rtx_FMA (mode, m1, m2, r);
35222 r = gen_rtx_NEG (mode, r);
35223 emit_insn (gen_rtx_SET (dst, r));
35226 /* Newton-Raphson approximation of floating point divide DST = N/D. If NOTE_P,
35227 add a reg_note saying that this was a division. Support both scalar and
35228 vector divide. Assumes no trapping math and finite arguments. */
35230 void
35231 rs6000_emit_swdiv (rtx dst, rtx n, rtx d, bool note_p)
35233 machine_mode mode = GET_MODE (dst);
35234 rtx one, x0, e0, x1, xprev, eprev, xnext, enext, u, v;
35235 int i;
35237 /* Low precision estimates guarantee 5 bits of accuracy. High
35238 precision estimates guarantee 14 bits of accuracy. SFmode
35239 requires 23 bits of accuracy. DFmode requires 52 bits of
35240 accuracy. Each pass at least doubles the accuracy, leading
35241 to the following. */
35242 int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
35243 if (mode == DFmode || mode == V2DFmode)
35244 passes++;
35246 enum insn_code code = optab_handler (smul_optab, mode);
35247 insn_gen_fn gen_mul = GEN_FCN (code);
35249 gcc_assert (code != CODE_FOR_nothing);
35251 one = rs6000_load_constant_and_splat (mode, dconst1);
35253 /* x0 = 1./d estimate */
35254 x0 = gen_reg_rtx (mode);
35255 emit_insn (gen_rtx_SET (x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, d),
35256 UNSPEC_FRES)));
35258 /* Each iteration but the last calculates x_(i+1) = x_i * (2 - d * x_i). */
35259 if (passes > 1) {
35261 /* e0 = 1. - d * x0 */
35262 e0 = gen_reg_rtx (mode);
35263 rs6000_emit_nmsub (e0, d, x0, one);
35265 /* x1 = x0 + e0 * x0 */
35266 x1 = gen_reg_rtx (mode);
35267 rs6000_emit_madd (x1, e0, x0, x0);
35269 for (i = 0, xprev = x1, eprev = e0; i < passes - 2;
35270 ++i, xprev = xnext, eprev = enext) {
35272 /* enext = eprev * eprev */
35273 enext = gen_reg_rtx (mode);
35274 emit_insn (gen_mul (enext, eprev, eprev));
35276 /* xnext = xprev + enext * xprev */
35277 xnext = gen_reg_rtx (mode);
35278 rs6000_emit_madd (xnext, enext, xprev, xprev);
35281 } else
35282 xprev = x0;
35284 /* The last iteration calculates x_(i+1) = n * x_i * (2 - d * x_i). */
35286 /* u = n * xprev */
35287 u = gen_reg_rtx (mode);
35288 emit_insn (gen_mul (u, n, xprev));
35290 /* v = n - (d * u) */
35291 v = gen_reg_rtx (mode);
35292 rs6000_emit_nmsub (v, d, u, n);
35294 /* dst = (v * xprev) + u */
35295 rs6000_emit_madd (dst, v, xprev, u);
35297 if (note_p)
35298 add_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_DIV (mode, n, d));
35301 /* Goldschmidt's Algorithm for single/double-precision floating point
35302 sqrt and rsqrt. Assumes no trapping math and finite arguments. */
35304 void
35305 rs6000_emit_swsqrt (rtx dst, rtx src, bool recip)
35307 machine_mode mode = GET_MODE (src);
35308 rtx e = gen_reg_rtx (mode);
35309 rtx g = gen_reg_rtx (mode);
35310 rtx h = gen_reg_rtx (mode);
35312 /* Low precision estimates guarantee 5 bits of accuracy. High
35313 precision estimates guarantee 14 bits of accuracy. SFmode
35314 requires 23 bits of accuracy. DFmode requires 52 bits of
35315 accuracy. Each pass at least doubles the accuracy, leading
35316 to the following. */
35317 int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
35318 if (mode == DFmode || mode == V2DFmode)
35319 passes++;
35321 int i;
35322 rtx mhalf;
35323 enum insn_code code = optab_handler (smul_optab, mode);
35324 insn_gen_fn gen_mul = GEN_FCN (code);
35326 gcc_assert (code != CODE_FOR_nothing);
35328 mhalf = rs6000_load_constant_and_splat (mode, dconsthalf);
35330 /* e = rsqrt estimate */
35331 emit_insn (gen_rtx_SET (e, gen_rtx_UNSPEC (mode, gen_rtvec (1, src),
35332 UNSPEC_RSQRT)));
35334 /* If (src == 0.0) filter infinity to prevent NaN for sqrt(0.0). */
35335 if (!recip)
35337 rtx zero = force_reg (mode, CONST0_RTX (mode));
35339 if (mode == SFmode)
35341 rtx target = emit_conditional_move (e, GT, src, zero, mode,
35342 e, zero, mode, 0);
35343 if (target != e)
35344 emit_move_insn (e, target);
35346 else
35348 rtx cond = gen_rtx_GT (VOIDmode, e, zero);
35349 rs6000_emit_vector_cond_expr (e, e, zero, cond, src, zero);
35353 /* g = sqrt estimate. */
35354 emit_insn (gen_mul (g, e, src));
35355 /* h = 1/(2*sqrt) estimate. */
35356 emit_insn (gen_mul (h, e, mhalf));
35358 if (recip)
35360 if (passes == 1)
35362 rtx t = gen_reg_rtx (mode);
35363 rs6000_emit_nmsub (t, g, h, mhalf);
35364 /* Apply correction directly to 1/rsqrt estimate. */
35365 rs6000_emit_madd (dst, e, t, e);
35367 else
35369 for (i = 0; i < passes; i++)
35371 rtx t1 = gen_reg_rtx (mode);
35372 rtx g1 = gen_reg_rtx (mode);
35373 rtx h1 = gen_reg_rtx (mode);
35375 rs6000_emit_nmsub (t1, g, h, mhalf);
35376 rs6000_emit_madd (g1, g, t1, g);
35377 rs6000_emit_madd (h1, h, t1, h);
35379 g = g1;
35380 h = h1;
35382 /* Multiply by 2 for 1/rsqrt. */
35383 emit_insn (gen_add3_insn (dst, h, h));
35386 else
35388 rtx t = gen_reg_rtx (mode);
35389 rs6000_emit_nmsub (t, g, h, mhalf);
35390 rs6000_emit_madd (dst, g, t, g);
35393 return;
35396 /* Emit popcount intrinsic on TARGET_POPCNTB (Power5) and TARGET_POPCNTD
35397 (Power7) targets. DST is the target, and SRC is the argument operand. */
35399 void
35400 rs6000_emit_popcount (rtx dst, rtx src)
35402 machine_mode mode = GET_MODE (dst);
35403 rtx tmp1, tmp2;
35405 /* Use the PPC ISA 2.06 popcnt{w,d} instruction if we can. */
35406 if (TARGET_POPCNTD)
35408 if (mode == SImode)
35409 emit_insn (gen_popcntdsi2 (dst, src));
35410 else
35411 emit_insn (gen_popcntddi2 (dst, src));
35412 return;
35415 tmp1 = gen_reg_rtx (mode);
35417 if (mode == SImode)
35419 emit_insn (gen_popcntbsi2 (tmp1, src));
35420 tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
35421 NULL_RTX, 0);
35422 tmp2 = force_reg (SImode, tmp2);
35423 emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
35425 else
35427 emit_insn (gen_popcntbdi2 (tmp1, src));
35428 tmp2 = expand_mult (DImode, tmp1,
35429 GEN_INT ((HOST_WIDE_INT)
35430 0x01010101 << 32 | 0x01010101),
35431 NULL_RTX, 0);
35432 tmp2 = force_reg (DImode, tmp2);
35433 emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
35438 /* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
35439 target, and SRC is the argument operand. */
35441 void
35442 rs6000_emit_parity (rtx dst, rtx src)
35444 machine_mode mode = GET_MODE (dst);
35445 rtx tmp;
35447 tmp = gen_reg_rtx (mode);
35449 /* Use the PPC ISA 2.05 prtyw/prtyd instruction if we can. */
35450 if (TARGET_CMPB)
35452 if (mode == SImode)
35454 emit_insn (gen_popcntbsi2 (tmp, src));
35455 emit_insn (gen_paritysi2_cmpb (dst, tmp));
35457 else
35459 emit_insn (gen_popcntbdi2 (tmp, src));
35460 emit_insn (gen_paritydi2_cmpb (dst, tmp));
35462 return;
35465 if (mode == SImode)
35467 /* Is mult+shift >= shift+xor+shift+xor? */
35468 if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
35470 rtx tmp1, tmp2, tmp3, tmp4;
35472 tmp1 = gen_reg_rtx (SImode);
35473 emit_insn (gen_popcntbsi2 (tmp1, src));
35475 tmp2 = gen_reg_rtx (SImode);
35476 emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
35477 tmp3 = gen_reg_rtx (SImode);
35478 emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));
35480 tmp4 = gen_reg_rtx (SImode);
35481 emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
35482 emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
35484 else
35485 rs6000_emit_popcount (tmp, src);
35486 emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
35488 else
35490 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
35491 if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
35493 rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
35495 tmp1 = gen_reg_rtx (DImode);
35496 emit_insn (gen_popcntbdi2 (tmp1, src));
35498 tmp2 = gen_reg_rtx (DImode);
35499 emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
35500 tmp3 = gen_reg_rtx (DImode);
35501 emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));
35503 tmp4 = gen_reg_rtx (DImode);
35504 emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
35505 tmp5 = gen_reg_rtx (DImode);
35506 emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));
35508 tmp6 = gen_reg_rtx (DImode);
35509 emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
35510 emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
35512 else
35513 rs6000_emit_popcount (tmp, src);
35514 emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
35518 /* Expand an Altivec constant permutation for little endian mode.
35519 There are two issues: First, the two input operands must be
35520 swapped so that together they form a double-wide array in LE
35521 order. Second, the vperm instruction has surprising behavior
35522 in LE mode: it interprets the elements of the source vectors
35523 in BE mode ("left to right") and interprets the elements of
35524 the destination vector in LE mode ("right to left"). To
35525 correct for this, we must subtract each element of the permute
35526 control vector from 31.
35528 For example, suppose we want to concatenate vr10 = {0, 1, 2, 3}
35529 with vr11 = {4, 5, 6, 7} and extract {0, 2, 4, 6} using a vperm.
35530 We place {0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27} in vr12 to
35531 serve as the permute control vector. Then, in BE mode,
35533 vperm 9,10,11,12
35535 places the desired result in vr9. However, in LE mode the
35536 vector contents will be
35538 vr10 = 00000003 00000002 00000001 00000000
35539 vr11 = 00000007 00000006 00000005 00000004
35541 The result of the vperm using the same permute control vector is
35543 vr9 = 05000000 07000000 01000000 03000000
35545 That is, the leftmost 4 bytes of vr10 are interpreted as the
35546 source for the rightmost 4 bytes of vr9, and so on.
35548 If we change the permute control vector to
35550 vr12 = {31,20,29,28,23,22,21,20,15,14,13,12,7,6,5,4}
35552 and issue
35554 vperm 9,11,10,12
35556 we get the desired
35558 vr9 = 00000006 00000004 00000002 00000000. */
35560 void
35561 altivec_expand_vec_perm_const_le (rtx operands[4])
35563 unsigned int i;
35564 rtx perm[16];
35565 rtx constv, unspec;
35566 rtx target = operands[0];
35567 rtx op0 = operands[1];
35568 rtx op1 = operands[2];
35569 rtx sel = operands[3];
35571 /* Unpack and adjust the constant selector. */
35572 for (i = 0; i < 16; ++i)
35574 rtx e = XVECEXP (sel, 0, i);
35575 unsigned int elt = 31 - (INTVAL (e) & 31);
35576 perm[i] = GEN_INT (elt);
35579 /* Expand to a permute, swapping the inputs and using the
35580 adjusted selector. */
35581 if (!REG_P (op0))
35582 op0 = force_reg (V16QImode, op0);
35583 if (!REG_P (op1))
35584 op1 = force_reg (V16QImode, op1);
35586 constv = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm));
35587 constv = force_reg (V16QImode, constv);
35588 unspec = gen_rtx_UNSPEC (V16QImode, gen_rtvec (3, op1, op0, constv),
35589 UNSPEC_VPERM);
35590 if (!REG_P (target))
35592 rtx tmp = gen_reg_rtx (V16QImode);
35593 emit_move_insn (tmp, unspec);
35594 unspec = tmp;
35597 emit_move_insn (target, unspec);
35600 /* Similarly to altivec_expand_vec_perm_const_le, we must adjust the
35601 permute control vector. But here it's not a constant, so we must
35602 generate a vector NAND or NOR to do the adjustment. */
35604 void
35605 altivec_expand_vec_perm_le (rtx operands[4])
35607 rtx notx, iorx, unspec;
35608 rtx target = operands[0];
35609 rtx op0 = operands[1];
35610 rtx op1 = operands[2];
35611 rtx sel = operands[3];
35612 rtx tmp = target;
35613 rtx norreg = gen_reg_rtx (V16QImode);
35614 machine_mode mode = GET_MODE (target);
35616 /* Get everything in regs so the pattern matches. */
35617 if (!REG_P (op0))
35618 op0 = force_reg (mode, op0);
35619 if (!REG_P (op1))
35620 op1 = force_reg (mode, op1);
35621 if (!REG_P (sel))
35622 sel = force_reg (V16QImode, sel);
35623 if (!REG_P (target))
35624 tmp = gen_reg_rtx (mode);
35626 if (TARGET_P9_VECTOR)
35628 unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op0, op1, sel),
35629 UNSPEC_VPERMR);
35631 else
35633 /* Invert the selector with a VNAND if available, else a VNOR.
35634 The VNAND is preferred for future fusion opportunities. */
35635 notx = gen_rtx_NOT (V16QImode, sel);
35636 iorx = (TARGET_P8_VECTOR
35637 ? gen_rtx_IOR (V16QImode, notx, notx)
35638 : gen_rtx_AND (V16QImode, notx, notx));
35639 emit_insn (gen_rtx_SET (norreg, iorx));
35641 /* Permute with operands reversed and adjusted selector. */
35642 unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, norreg),
35643 UNSPEC_VPERM);
35646 /* Copy into target, possibly by way of a register. */
35647 if (!REG_P (target))
35649 emit_move_insn (tmp, unspec);
35650 unspec = tmp;
35653 emit_move_insn (target, unspec);
35656 /* Expand an Altivec constant permutation. Return true if we match
35657 an efficient implementation; false to fall back to VPERM. */
35659 bool
35660 altivec_expand_vec_perm_const (rtx operands[4])
35662 struct altivec_perm_insn {
35663 HOST_WIDE_INT mask;
35664 enum insn_code impl;
35665 unsigned char perm[16];
35667 static const struct altivec_perm_insn patterns[] = {
35668 { OPTION_MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum_direct,
35669 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
35670 { OPTION_MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum_direct,
35671 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
35672 { OPTION_MASK_ALTIVEC,
35673 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghb_direct
35674 : CODE_FOR_altivec_vmrglb_direct),
35675 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
35676 { OPTION_MASK_ALTIVEC,
35677 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghh_direct
35678 : CODE_FOR_altivec_vmrglh_direct),
35679 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
35680 { OPTION_MASK_ALTIVEC,
35681 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghw_direct
35682 : CODE_FOR_altivec_vmrglw_direct),
35683 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
35684 { OPTION_MASK_ALTIVEC,
35685 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglb_direct
35686 : CODE_FOR_altivec_vmrghb_direct),
35687 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
35688 { OPTION_MASK_ALTIVEC,
35689 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglh_direct
35690 : CODE_FOR_altivec_vmrghh_direct),
35691 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
35692 { OPTION_MASK_ALTIVEC,
35693 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglw_direct
35694 : CODE_FOR_altivec_vmrghw_direct),
35695 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
35696 { OPTION_MASK_P8_VECTOR,
35697 (BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgew_v4sf_direct
35698 : CODE_FOR_p8_vmrgow_v4sf_direct),
35699 { 0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27 } },
35700 { OPTION_MASK_P8_VECTOR,
35701 (BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgow_v4sf_direct
35702 : CODE_FOR_p8_vmrgew_v4sf_direct),
35703 { 4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31 } }
35706 unsigned int i, j, elt, which;
35707 unsigned char perm[16];
35708 rtx target, op0, op1, sel, x;
35709 bool one_vec;
35711 target = operands[0];
35712 op0 = operands[1];
35713 op1 = operands[2];
35714 sel = operands[3];
35716 /* Unpack the constant selector. */
35717 for (i = which = 0; i < 16; ++i)
35719 rtx e = XVECEXP (sel, 0, i);
35720 elt = INTVAL (e) & 31;
35721 which |= (elt < 16 ? 1 : 2);
35722 perm[i] = elt;
35725 /* Simplify the constant selector based on operands. */
35726 switch (which)
35728 default:
35729 gcc_unreachable ();
35731 case 3:
35732 one_vec = false;
35733 if (!rtx_equal_p (op0, op1))
35734 break;
35735 /* FALLTHRU */
35737 case 2:
35738 for (i = 0; i < 16; ++i)
35739 perm[i] &= 15;
35740 op0 = op1;
35741 one_vec = true;
35742 break;
35744 case 1:
35745 op1 = op0;
35746 one_vec = true;
35747 break;
35750 /* Look for splat patterns. */
35751 if (one_vec)
35753 elt = perm[0];
35755 for (i = 0; i < 16; ++i)
35756 if (perm[i] != elt)
35757 break;
35758 if (i == 16)
35760 if (!BYTES_BIG_ENDIAN)
35761 elt = 15 - elt;
35762 emit_insn (gen_altivec_vspltb_direct (target, op0, GEN_INT (elt)));
35763 return true;
35766 if (elt % 2 == 0)
35768 for (i = 0; i < 16; i += 2)
35769 if (perm[i] != elt || perm[i + 1] != elt + 1)
35770 break;
35771 if (i == 16)
35773 int field = BYTES_BIG_ENDIAN ? elt / 2 : 7 - elt / 2;
35774 x = gen_reg_rtx (V8HImode);
35775 emit_insn (gen_altivec_vsplth_direct (x, gen_lowpart (V8HImode, op0),
35776 GEN_INT (field)));
35777 emit_move_insn (target, gen_lowpart (V16QImode, x));
35778 return true;
35782 if (elt % 4 == 0)
35784 for (i = 0; i < 16; i += 4)
35785 if (perm[i] != elt
35786 || perm[i + 1] != elt + 1
35787 || perm[i + 2] != elt + 2
35788 || perm[i + 3] != elt + 3)
35789 break;
35790 if (i == 16)
35792 int field = BYTES_BIG_ENDIAN ? elt / 4 : 3 - elt / 4;
35793 x = gen_reg_rtx (V4SImode);
35794 emit_insn (gen_altivec_vspltw_direct (x, gen_lowpart (V4SImode, op0),
35795 GEN_INT (field)));
35796 emit_move_insn (target, gen_lowpart (V16QImode, x));
35797 return true;
35802 /* Look for merge and pack patterns. */
35803 for (j = 0; j < ARRAY_SIZE (patterns); ++j)
35805 bool swapped;
35807 if ((patterns[j].mask & rs6000_isa_flags) == 0)
35808 continue;
35810 elt = patterns[j].perm[0];
35811 if (perm[0] == elt)
35812 swapped = false;
35813 else if (perm[0] == elt + 16)
35814 swapped = true;
35815 else
35816 continue;
35817 for (i = 1; i < 16; ++i)
35819 elt = patterns[j].perm[i];
35820 if (swapped)
35821 elt = (elt >= 16 ? elt - 16 : elt + 16);
35822 else if (one_vec && elt >= 16)
35823 elt -= 16;
35824 if (perm[i] != elt)
35825 break;
35827 if (i == 16)
35829 enum insn_code icode = patterns[j].impl;
35830 machine_mode omode = insn_data[icode].operand[0].mode;
35831 machine_mode imode = insn_data[icode].operand[1].mode;
35833 /* For little-endian, don't use vpkuwum and vpkuhum if the
35834 underlying vector type is not V4SI and V8HI, respectively.
35835 For example, using vpkuwum with a V8HI picks up the even
35836 halfwords (BE numbering) when the even halfwords (LE
35837 numbering) are what we need. */
35838 if (!BYTES_BIG_ENDIAN
35839 && icode == CODE_FOR_altivec_vpkuwum_direct
35840 && ((GET_CODE (op0) == REG
35841 && GET_MODE (op0) != V4SImode)
35842 || (GET_CODE (op0) == SUBREG
35843 && GET_MODE (XEXP (op0, 0)) != V4SImode)))
35844 continue;
35845 if (!BYTES_BIG_ENDIAN
35846 && icode == CODE_FOR_altivec_vpkuhum_direct
35847 && ((GET_CODE (op0) == REG
35848 && GET_MODE (op0) != V8HImode)
35849 || (GET_CODE (op0) == SUBREG
35850 && GET_MODE (XEXP (op0, 0)) != V8HImode)))
35851 continue;
35853 /* For little-endian, the two input operands must be swapped
35854 (or swapped back) to ensure proper right-to-left numbering
35855 from 0 to 2N-1. */
35856 if (swapped ^ !BYTES_BIG_ENDIAN)
35857 std::swap (op0, op1);
35858 if (imode != V16QImode)
35860 op0 = gen_lowpart (imode, op0);
35861 op1 = gen_lowpart (imode, op1);
35863 if (omode == V16QImode)
35864 x = target;
35865 else
35866 x = gen_reg_rtx (omode);
35867 emit_insn (GEN_FCN (icode) (x, op0, op1));
35868 if (omode != V16QImode)
35869 emit_move_insn (target, gen_lowpart (V16QImode, x));
35870 return true;
35874 if (!BYTES_BIG_ENDIAN)
35876 altivec_expand_vec_perm_const_le (operands);
35877 return true;
35880 return false;
35883 /* Expand a Paired Single or VSX Permute Doubleword constant permutation.
35884 Return true if we match an efficient implementation. */
35886 static bool
35887 rs6000_expand_vec_perm_const_1 (rtx target, rtx op0, rtx op1,
35888 unsigned char perm0, unsigned char perm1)
35890 rtx x;
35892 /* If both selectors come from the same operand, fold to single op. */
35893 if ((perm0 & 2) == (perm1 & 2))
35895 if (perm0 & 2)
35896 op0 = op1;
35897 else
35898 op1 = op0;
35900 /* If both operands are equal, fold to simpler permutation. */
35901 if (rtx_equal_p (op0, op1))
35903 perm0 = perm0 & 1;
35904 perm1 = (perm1 & 1) + 2;
35906 /* If the first selector comes from the second operand, swap. */
35907 else if (perm0 & 2)
35909 if (perm1 & 2)
35910 return false;
35911 perm0 -= 2;
35912 perm1 += 2;
35913 std::swap (op0, op1);
35915 /* If the second selector does not come from the second operand, fail. */
35916 else if ((perm1 & 2) == 0)
35917 return false;
35919 /* Success! */
35920 if (target != NULL)
35922 machine_mode vmode, dmode;
35923 rtvec v;
35925 vmode = GET_MODE (target);
35926 gcc_assert (GET_MODE_NUNITS (vmode) == 2);
35927 dmode = mode_for_vector (GET_MODE_INNER (vmode), 4).require ();
35928 x = gen_rtx_VEC_CONCAT (dmode, op0, op1);
35929 v = gen_rtvec (2, GEN_INT (perm0), GEN_INT (perm1));
35930 x = gen_rtx_VEC_SELECT (vmode, x, gen_rtx_PARALLEL (VOIDmode, v));
35931 emit_insn (gen_rtx_SET (target, x));
35933 return true;
35936 bool
35937 rs6000_expand_vec_perm_const (rtx operands[4])
35939 rtx target, op0, op1, sel;
35940 unsigned char perm0, perm1;
35942 target = operands[0];
35943 op0 = operands[1];
35944 op1 = operands[2];
35945 sel = operands[3];
35947 /* Unpack the constant selector. */
35948 perm0 = INTVAL (XVECEXP (sel, 0, 0)) & 3;
35949 perm1 = INTVAL (XVECEXP (sel, 0, 1)) & 3;
35951 return rs6000_expand_vec_perm_const_1 (target, op0, op1, perm0, perm1);
35954 /* Test whether a constant permutation is supported. */
35956 static bool
35957 rs6000_vectorize_vec_perm_const_ok (machine_mode vmode, vec_perm_indices sel)
35959 /* AltiVec (and thus VSX) can handle arbitrary permutations. */
35960 if (TARGET_ALTIVEC)
35961 return true;
35963 /* Check for ps_merge* or evmerge* insns. */
35964 if (TARGET_PAIRED_FLOAT && vmode == V2SFmode)
35966 rtx op0 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 1);
35967 rtx op1 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 2);
35968 return rs6000_expand_vec_perm_const_1 (NULL, op0, op1, sel[0], sel[1]);
35971 return false;
35974 /* A subroutine for rs6000_expand_extract_even & rs6000_expand_interleave. */
35976 static void
35977 rs6000_do_expand_vec_perm (rtx target, rtx op0, rtx op1,
35978 machine_mode vmode, unsigned nelt, rtx perm[])
35980 machine_mode imode;
35981 rtx x;
35983 imode = vmode;
35984 if (GET_MODE_CLASS (vmode) != MODE_VECTOR_INT)
35985 imode = mode_for_int_vector (vmode).require ();
35987 x = gen_rtx_CONST_VECTOR (imode, gen_rtvec_v (nelt, perm));
35988 x = expand_vec_perm (vmode, op0, op1, x, target);
35989 if (x != target)
35990 emit_move_insn (target, x);
35993 /* Expand an extract even operation. */
35995 void
35996 rs6000_expand_extract_even (rtx target, rtx op0, rtx op1)
35998 machine_mode vmode = GET_MODE (target);
35999 unsigned i, nelt = GET_MODE_NUNITS (vmode);
36000 rtx perm[16];
36002 for (i = 0; i < nelt; i++)
36003 perm[i] = GEN_INT (i * 2);
36005 rs6000_do_expand_vec_perm (target, op0, op1, vmode, nelt, perm);
36008 /* Expand a vector interleave operation. */
36010 void
36011 rs6000_expand_interleave (rtx target, rtx op0, rtx op1, bool highp)
36013 machine_mode vmode = GET_MODE (target);
36014 unsigned i, high, nelt = GET_MODE_NUNITS (vmode);
36015 rtx perm[16];
36017 high = (highp ? 0 : nelt / 2);
36018 for (i = 0; i < nelt / 2; i++)
36020 perm[i * 2] = GEN_INT (i + high);
36021 perm[i * 2 + 1] = GEN_INT (i + nelt + high);
36024 rs6000_do_expand_vec_perm (target, op0, op1, vmode, nelt, perm);
36027 /* Scale a V2DF vector SRC by two to the SCALE and place in TGT. */
36028 void
36029 rs6000_scale_v2df (rtx tgt, rtx src, int scale)
36031 HOST_WIDE_INT hwi_scale (scale);
36032 REAL_VALUE_TYPE r_pow;
36033 rtvec v = rtvec_alloc (2);
36034 rtx elt;
36035 rtx scale_vec = gen_reg_rtx (V2DFmode);
36036 (void)real_powi (&r_pow, DFmode, &dconst2, hwi_scale);
36037 elt = const_double_from_real_value (r_pow, DFmode);
36038 RTVEC_ELT (v, 0) = elt;
36039 RTVEC_ELT (v, 1) = elt;
36040 rs6000_expand_vector_init (scale_vec, gen_rtx_PARALLEL (V2DFmode, v));
36041 emit_insn (gen_mulv2df3 (tgt, src, scale_vec));
36044 /* Return an RTX representing where to find the function value of a
36045 function returning MODE. */
36046 static rtx
36047 rs6000_complex_function_value (machine_mode mode)
36049 unsigned int regno;
36050 rtx r1, r2;
36051 machine_mode inner = GET_MODE_INNER (mode);
36052 unsigned int inner_bytes = GET_MODE_UNIT_SIZE (mode);
36054 if (TARGET_FLOAT128_TYPE
36055 && (mode == KCmode
36056 || (mode == TCmode && TARGET_IEEEQUAD)))
36057 regno = ALTIVEC_ARG_RETURN;
36059 else if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
36060 regno = FP_ARG_RETURN;
36062 else
36064 regno = GP_ARG_RETURN;
36066 /* 32-bit is OK since it'll go in r3/r4. */
36067 if (TARGET_32BIT && inner_bytes >= 4)
36068 return gen_rtx_REG (mode, regno);
36071 if (inner_bytes >= 8)
36072 return gen_rtx_REG (mode, regno);
36074 r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
36075 const0_rtx);
36076 r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
36077 GEN_INT (inner_bytes));
36078 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
36081 /* Return an rtx describing a return value of MODE as a PARALLEL
36082 in N_ELTS registers, each of mode ELT_MODE, starting at REGNO,
36083 stride REG_STRIDE. */
36085 static rtx
36086 rs6000_parallel_return (machine_mode mode,
36087 int n_elts, machine_mode elt_mode,
36088 unsigned int regno, unsigned int reg_stride)
36090 rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
36092 int i;
36093 for (i = 0; i < n_elts; i++)
36095 rtx r = gen_rtx_REG (elt_mode, regno);
36096 rtx off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
36097 XVECEXP (par, 0, i) = gen_rtx_EXPR_LIST (VOIDmode, r, off);
36098 regno += reg_stride;
36101 return par;
36104 /* Target hook for TARGET_FUNCTION_VALUE.
36106 An integer value is in r3 and a floating-point value is in fp1,
36107 unless -msoft-float. */
36109 static rtx
36110 rs6000_function_value (const_tree valtype,
36111 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
36112 bool outgoing ATTRIBUTE_UNUSED)
36114 machine_mode mode;
36115 unsigned int regno;
36116 machine_mode elt_mode;
36117 int n_elts;
36119 /* Special handling for structs in darwin64. */
36120 if (TARGET_MACHO
36121 && rs6000_darwin64_struct_check_p (TYPE_MODE (valtype), valtype))
36123 CUMULATIVE_ARGS valcum;
36124 rtx valret;
36126 valcum.words = 0;
36127 valcum.fregno = FP_ARG_MIN_REG;
36128 valcum.vregno = ALTIVEC_ARG_MIN_REG;
36129 /* Do a trial code generation as if this were going to be passed as
36130 an argument; if any part goes in memory, we return NULL. */
36131 valret = rs6000_darwin64_record_arg (&valcum, valtype, true, /* retval= */ true);
36132 if (valret)
36133 return valret;
36134 /* Otherwise fall through to standard ABI rules. */
36137 mode = TYPE_MODE (valtype);
36139 /* The ELFv2 ABI returns homogeneous VFP aggregates in registers. */
36140 if (rs6000_discover_homogeneous_aggregate (mode, valtype, &elt_mode, &n_elts))
36142 int first_reg, n_regs;
36144 if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (elt_mode))
36146 /* _Decimal128 must use even/odd register pairs. */
36147 first_reg = (elt_mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
36148 n_regs = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
36150 else
36152 first_reg = ALTIVEC_ARG_RETURN;
36153 n_regs = 1;
36156 return rs6000_parallel_return (mode, n_elts, elt_mode, first_reg, n_regs);
36159 /* Some return value types need be split in -mpowerpc64, 32bit ABI. */
36160 if (TARGET_32BIT && TARGET_POWERPC64)
36161 switch (mode)
36163 default:
36164 break;
36165 case E_DImode:
36166 case E_SCmode:
36167 case E_DCmode:
36168 case E_TCmode:
36169 int count = GET_MODE_SIZE (mode) / 4;
36170 return rs6000_parallel_return (mode, count, SImode, GP_ARG_RETURN, 1);
36173 if ((INTEGRAL_TYPE_P (valtype)
36174 && GET_MODE_BITSIZE (mode) < (TARGET_32BIT ? 32 : 64))
36175 || POINTER_TYPE_P (valtype))
36176 mode = TARGET_32BIT ? SImode : DImode;
36178 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
36179 /* _Decimal128 must use an even/odd register pair. */
36180 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
36181 else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT
36182 && !FLOAT128_VECTOR_P (mode)
36183 && ((TARGET_SINGLE_FLOAT && (mode == SFmode)) || TARGET_DOUBLE_FLOAT))
36184 regno = FP_ARG_RETURN;
36185 else if (TREE_CODE (valtype) == COMPLEX_TYPE
36186 && targetm.calls.split_complex_arg)
36187 return rs6000_complex_function_value (mode);
36188 /* VSX is a superset of Altivec and adds V2DImode/V2DFmode. Since the same
36189 return register is used in both cases, and we won't see V2DImode/V2DFmode
36190 for pure altivec, combine the two cases. */
36191 else if ((TREE_CODE (valtype) == VECTOR_TYPE || FLOAT128_VECTOR_P (mode))
36192 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
36193 && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
36194 regno = ALTIVEC_ARG_RETURN;
36195 else
36196 regno = GP_ARG_RETURN;
36198 return gen_rtx_REG (mode, regno);
36201 /* Define how to find the value returned by a library function
36202 assuming the value has mode MODE. */
36204 rs6000_libcall_value (machine_mode mode)
36206 unsigned int regno;
36208 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
36209 if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
36210 return rs6000_parallel_return (mode, 2, SImode, GP_ARG_RETURN, 1);
36212 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
36213 /* _Decimal128 must use an even/odd register pair. */
36214 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
36215 else if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode)
36216 && TARGET_HARD_FLOAT
36217 && ((TARGET_SINGLE_FLOAT && mode == SFmode) || TARGET_DOUBLE_FLOAT))
36218 regno = FP_ARG_RETURN;
36219 /* VSX is a superset of Altivec and adds V2DImode/V2DFmode. Since the same
36220 return register is used in both cases, and we won't see V2DImode/V2DFmode
36221 for pure altivec, combine the two cases. */
36222 else if (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
36223 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
36224 regno = ALTIVEC_ARG_RETURN;
36225 else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
36226 return rs6000_complex_function_value (mode);
36227 else
36228 regno = GP_ARG_RETURN;
36230 return gen_rtx_REG (mode, regno);
36233 /* Compute register pressure classes. We implement the target hook to avoid
36234 IRA picking something like NON_SPECIAL_REGS as a pressure class, which can
36235 lead to incorrect estimates of number of available registers and therefor
36236 increased register pressure/spill. */
36237 static int
36238 rs6000_compute_pressure_classes (enum reg_class *pressure_classes)
36240 int n;
36242 n = 0;
36243 pressure_classes[n++] = GENERAL_REGS;
36244 if (TARGET_VSX)
36245 pressure_classes[n++] = VSX_REGS;
36246 else
36248 if (TARGET_ALTIVEC)
36249 pressure_classes[n++] = ALTIVEC_REGS;
36250 if (TARGET_HARD_FLOAT)
36251 pressure_classes[n++] = FLOAT_REGS;
36253 pressure_classes[n++] = CR_REGS;
36254 pressure_classes[n++] = SPECIAL_REGS;
36256 return n;
36259 /* Given FROM and TO register numbers, say whether this elimination is allowed.
36260 Frame pointer elimination is automatically handled.
36262 For the RS/6000, if frame pointer elimination is being done, we would like
36263 to convert ap into fp, not sp.
36265 We need r30 if -mminimal-toc was specified, and there are constant pool
36266 references. */
36268 static bool
36269 rs6000_can_eliminate (const int from, const int to)
36271 return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
36272 ? ! frame_pointer_needed
36273 : from == RS6000_PIC_OFFSET_TABLE_REGNUM
36274 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC
36275 || constant_pool_empty_p ()
36276 : true);
36279 /* Define the offset between two registers, FROM to be eliminated and its
36280 replacement TO, at the start of a routine. */
36281 HOST_WIDE_INT
36282 rs6000_initial_elimination_offset (int from, int to)
36284 rs6000_stack_t *info = rs6000_stack_info ();
36285 HOST_WIDE_INT offset;
36287 if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
36288 offset = info->push_p ? 0 : -info->total_size;
36289 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
36291 offset = info->push_p ? 0 : -info->total_size;
36292 if (FRAME_GROWS_DOWNWARD)
36293 offset += info->fixed_size + info->vars_size + info->parm_size;
36295 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
36296 offset = FRAME_GROWS_DOWNWARD
36297 ? info->fixed_size + info->vars_size + info->parm_size
36298 : 0;
36299 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
36300 offset = info->total_size;
36301 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
36302 offset = info->push_p ? info->total_size : 0;
36303 else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
36304 offset = 0;
36305 else
36306 gcc_unreachable ();
36308 return offset;
36311 /* Fill in sizes of registers used by unwinder. */
36313 static void
36314 rs6000_init_dwarf_reg_sizes_extra (tree address)
36316 if (TARGET_MACHO && ! TARGET_ALTIVEC)
36318 int i;
36319 machine_mode mode = TYPE_MODE (char_type_node);
36320 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, EXPAND_NORMAL);
36321 rtx mem = gen_rtx_MEM (BLKmode, addr);
36322 rtx value = gen_int_mode (16, mode);
36324 /* On Darwin, libgcc may be built to run on both G3 and G4/5.
36325 The unwinder still needs to know the size of Altivec registers. */
36327 for (i = FIRST_ALTIVEC_REGNO; i < LAST_ALTIVEC_REGNO+1; i++)
36329 int column = DWARF_REG_TO_UNWIND_COLUMN
36330 (DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), true));
36331 HOST_WIDE_INT offset = column * GET_MODE_SIZE (mode);
36333 emit_move_insn (adjust_address (mem, mode, offset), value);
36338 /* Map internal gcc register numbers to debug format register numbers.
36339 FORMAT specifies the type of debug register number to use:
36340 0 -- debug information, except for frame-related sections
36341 1 -- DWARF .debug_frame section
36342 2 -- DWARF .eh_frame section */
36344 unsigned int
36345 rs6000_dbx_register_number (unsigned int regno, unsigned int format)
36347 /* Except for the above, we use the internal number for non-DWARF
36348 debug information, and also for .eh_frame. */
36349 if ((format == 0 && write_symbols != DWARF2_DEBUG) || format == 2)
36350 return regno;
36352 /* On some platforms, we use the standard DWARF register
36353 numbering for .debug_info and .debug_frame. */
36354 #ifdef RS6000_USE_DWARF_NUMBERING
36355 if (regno <= 63)
36356 return regno;
36357 if (regno == LR_REGNO)
36358 return 108;
36359 if (regno == CTR_REGNO)
36360 return 109;
36361 /* Special handling for CR for .debug_frame: rs6000_emit_prologue has
36362 translated any combination of CR2, CR3, CR4 saves to a save of CR2.
36363 The actual code emitted saves the whole of CR, so we map CR2_REGNO
36364 to the DWARF reg for CR. */
36365 if (format == 1 && regno == CR2_REGNO)
36366 return 64;
36367 if (CR_REGNO_P (regno))
36368 return regno - CR0_REGNO + 86;
36369 if (regno == CA_REGNO)
36370 return 101; /* XER */
36371 if (ALTIVEC_REGNO_P (regno))
36372 return regno - FIRST_ALTIVEC_REGNO + 1124;
36373 if (regno == VRSAVE_REGNO)
36374 return 356;
36375 if (regno == VSCR_REGNO)
36376 return 67;
36377 #endif
36378 return regno;
36381 /* target hook eh_return_filter_mode */
36382 static scalar_int_mode
36383 rs6000_eh_return_filter_mode (void)
36385 return TARGET_32BIT ? SImode : word_mode;
36388 /* Target hook for scalar_mode_supported_p. */
36389 static bool
36390 rs6000_scalar_mode_supported_p (scalar_mode mode)
36392 /* -m32 does not support TImode. This is the default, from
36393 default_scalar_mode_supported_p. For -m32 -mpowerpc64 we want the
36394 same ABI as for -m32. But default_scalar_mode_supported_p allows
36395 integer modes of precision 2 * BITS_PER_WORD, which matches TImode
36396 for -mpowerpc64. */
36397 if (TARGET_32BIT && mode == TImode)
36398 return false;
36400 if (DECIMAL_FLOAT_MODE_P (mode))
36401 return default_decimal_float_supported_p ();
36402 else if (TARGET_FLOAT128_TYPE && (mode == KFmode || mode == IFmode))
36403 return true;
36404 else
36405 return default_scalar_mode_supported_p (mode);
36408 /* Target hook for vector_mode_supported_p. */
36409 static bool
36410 rs6000_vector_mode_supported_p (machine_mode mode)
36413 if (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (mode))
36414 return true;
36416 /* There is no vector form for IEEE 128-bit. If we return true for IEEE
36417 128-bit, the compiler might try to widen IEEE 128-bit to IBM
36418 double-double. */
36419 else if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && !FLOAT128_IEEE_P (mode))
36420 return true;
36422 else
36423 return false;
36426 /* Target hook for floatn_mode. */
36427 static opt_scalar_float_mode
36428 rs6000_floatn_mode (int n, bool extended)
36430 if (extended)
36432 switch (n)
36434 case 32:
36435 return DFmode;
36437 case 64:
36438 if (TARGET_FLOAT128_TYPE)
36439 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
36440 else
36441 return opt_scalar_float_mode ();
36443 case 128:
36444 return opt_scalar_float_mode ();
36446 default:
36447 /* Those are the only valid _FloatNx types. */
36448 gcc_unreachable ();
36451 else
36453 switch (n)
36455 case 32:
36456 return SFmode;
36458 case 64:
36459 return DFmode;
36461 case 128:
36462 if (TARGET_FLOAT128_TYPE)
36463 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
36464 else
36465 return opt_scalar_float_mode ();
36467 default:
36468 return opt_scalar_float_mode ();
36474 /* Target hook for c_mode_for_suffix. */
36475 static machine_mode
36476 rs6000_c_mode_for_suffix (char suffix)
36478 if (TARGET_FLOAT128_TYPE)
36480 if (suffix == 'q' || suffix == 'Q')
36481 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
36483 /* At the moment, we are not defining a suffix for IBM extended double.
36484 If/when the default for -mabi=ieeelongdouble is changed, and we want
36485 to support __ibm128 constants in legacy library code, we may need to
36486 re-evalaute this decision. Currently, c-lex.c only supports 'w' and
36487 'q' as machine dependent suffixes. The x86_64 port uses 'w' for
36488 __float80 constants. */
36491 return VOIDmode;
36494 /* Target hook for invalid_arg_for_unprototyped_fn. */
36495 static const char *
36496 invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
36498 return (!rs6000_darwin64_abi
36499 && typelist == 0
36500 && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
36501 && (funcdecl == NULL_TREE
36502 || (TREE_CODE (funcdecl) == FUNCTION_DECL
36503 && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
36504 ? N_("AltiVec argument passed to unprototyped function")
36505 : NULL;
36508 /* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
36509 setup by using __stack_chk_fail_local hidden function instead of
36510 calling __stack_chk_fail directly. Otherwise it is better to call
36511 __stack_chk_fail directly. */
36513 static tree ATTRIBUTE_UNUSED
36514 rs6000_stack_protect_fail (void)
36516 return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
36517 ? default_hidden_stack_protect_fail ()
36518 : default_external_stack_protect_fail ();
36521 /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */
36523 #if TARGET_ELF
36524 static unsigned HOST_WIDE_INT
36525 rs6000_asan_shadow_offset (void)
36527 return (unsigned HOST_WIDE_INT) 1 << (TARGET_64BIT ? 41 : 29);
36529 #endif
36531 /* Mask options that we want to support inside of attribute((target)) and
36532 #pragma GCC target operations. Note, we do not include things like
36533 64/32-bit, endianness, hard/soft floating point, etc. that would have
36534 different calling sequences. */
36536 struct rs6000_opt_mask {
36537 const char *name; /* option name */
36538 HOST_WIDE_INT mask; /* mask to set */
36539 bool invert; /* invert sense of mask */
36540 bool valid_target; /* option is a target option */
36543 static struct rs6000_opt_mask const rs6000_opt_masks[] =
36545 { "altivec", OPTION_MASK_ALTIVEC, false, true },
36546 { "cmpb", OPTION_MASK_CMPB, false, true },
36547 { "crypto", OPTION_MASK_CRYPTO, false, true },
36548 { "direct-move", OPTION_MASK_DIRECT_MOVE, false, true },
36549 { "dlmzb", OPTION_MASK_DLMZB, false, true },
36550 { "efficient-unaligned-vsx", OPTION_MASK_EFFICIENT_UNALIGNED_VSX,
36551 false, true },
36552 { "float128", OPTION_MASK_FLOAT128_KEYWORD, false, true },
36553 { "float128-hardware", OPTION_MASK_FLOAT128_HW, false, true },
36554 { "fprnd", OPTION_MASK_FPRND, false, true },
36555 { "hard-dfp", OPTION_MASK_DFP, false, true },
36556 { "htm", OPTION_MASK_HTM, false, true },
36557 { "isel", OPTION_MASK_ISEL, false, true },
36558 { "mfcrf", OPTION_MASK_MFCRF, false, true },
36559 { "mfpgpr", OPTION_MASK_MFPGPR, false, true },
36560 { "modulo", OPTION_MASK_MODULO, false, true },
36561 { "mulhw", OPTION_MASK_MULHW, false, true },
36562 { "multiple", OPTION_MASK_MULTIPLE, false, true },
36563 { "popcntb", OPTION_MASK_POPCNTB, false, true },
36564 { "popcntd", OPTION_MASK_POPCNTD, false, true },
36565 { "power8-fusion", OPTION_MASK_P8_FUSION, false, true },
36566 { "power8-fusion-sign", OPTION_MASK_P8_FUSION_SIGN, false, true },
36567 { "power8-vector", OPTION_MASK_P8_VECTOR, false, true },
36568 { "power9-fusion", OPTION_MASK_P9_FUSION, false, true },
36569 { "power9-minmax", OPTION_MASK_P9_MINMAX, false, true },
36570 { "power9-misc", OPTION_MASK_P9_MISC, false, true },
36571 { "power9-vector", OPTION_MASK_P9_VECTOR, false, true },
36572 { "powerpc-gfxopt", OPTION_MASK_PPC_GFXOPT, false, true },
36573 { "powerpc-gpopt", OPTION_MASK_PPC_GPOPT, false, true },
36574 { "quad-memory", OPTION_MASK_QUAD_MEMORY, false, true },
36575 { "quad-memory-atomic", OPTION_MASK_QUAD_MEMORY_ATOMIC, false, true },
36576 { "recip-precision", OPTION_MASK_RECIP_PRECISION, false, true },
36577 { "save-toc-indirect", OPTION_MASK_SAVE_TOC_INDIRECT, false, true },
36578 { "string", OPTION_MASK_STRING, false, true },
36579 { "toc-fusion", OPTION_MASK_TOC_FUSION, false, true },
36580 { "update", OPTION_MASK_NO_UPDATE, true , true },
36581 { "vsx", OPTION_MASK_VSX, false, true },
36582 #ifdef OPTION_MASK_64BIT
36583 #if TARGET_AIX_OS
36584 { "aix64", OPTION_MASK_64BIT, false, false },
36585 { "aix32", OPTION_MASK_64BIT, true, false },
36586 #else
36587 { "64", OPTION_MASK_64BIT, false, false },
36588 { "32", OPTION_MASK_64BIT, true, false },
36589 #endif
36590 #endif
36591 #ifdef OPTION_MASK_EABI
36592 { "eabi", OPTION_MASK_EABI, false, false },
36593 #endif
36594 #ifdef OPTION_MASK_LITTLE_ENDIAN
36595 { "little", OPTION_MASK_LITTLE_ENDIAN, false, false },
36596 { "big", OPTION_MASK_LITTLE_ENDIAN, true, false },
36597 #endif
36598 #ifdef OPTION_MASK_RELOCATABLE
36599 { "relocatable", OPTION_MASK_RELOCATABLE, false, false },
36600 #endif
36601 #ifdef OPTION_MASK_STRICT_ALIGN
36602 { "strict-align", OPTION_MASK_STRICT_ALIGN, false, false },
36603 #endif
36604 { "soft-float", OPTION_MASK_SOFT_FLOAT, false, false },
36605 { "string", OPTION_MASK_STRING, false, false },
36608 /* Builtin mask mapping for printing the flags. */
36609 static struct rs6000_opt_mask const rs6000_builtin_mask_names[] =
36611 { "altivec", RS6000_BTM_ALTIVEC, false, false },
36612 { "vsx", RS6000_BTM_VSX, false, false },
36613 { "paired", RS6000_BTM_PAIRED, false, false },
36614 { "fre", RS6000_BTM_FRE, false, false },
36615 { "fres", RS6000_BTM_FRES, false, false },
36616 { "frsqrte", RS6000_BTM_FRSQRTE, false, false },
36617 { "frsqrtes", RS6000_BTM_FRSQRTES, false, false },
36618 { "popcntd", RS6000_BTM_POPCNTD, false, false },
36619 { "cell", RS6000_BTM_CELL, false, false },
36620 { "power8-vector", RS6000_BTM_P8_VECTOR, false, false },
36621 { "power9-vector", RS6000_BTM_P9_VECTOR, false, false },
36622 { "power9-misc", RS6000_BTM_P9_MISC, false, false },
36623 { "crypto", RS6000_BTM_CRYPTO, false, false },
36624 { "htm", RS6000_BTM_HTM, false, false },
36625 { "hard-dfp", RS6000_BTM_DFP, false, false },
36626 { "hard-float", RS6000_BTM_HARD_FLOAT, false, false },
36627 { "long-double-128", RS6000_BTM_LDBL128, false, false },
36628 { "float128", RS6000_BTM_FLOAT128, false, false },
36629 { "float128-hw", RS6000_BTM_FLOAT128_HW,false, false },
36632 /* Option variables that we want to support inside attribute((target)) and
36633 #pragma GCC target operations. */
36635 struct rs6000_opt_var {
36636 const char *name; /* option name */
36637 size_t global_offset; /* offset of the option in global_options. */
36638 size_t target_offset; /* offset of the option in target options. */
36641 static struct rs6000_opt_var const rs6000_opt_vars[] =
36643 { "friz",
36644 offsetof (struct gcc_options, x_TARGET_FRIZ),
36645 offsetof (struct cl_target_option, x_TARGET_FRIZ), },
36646 { "avoid-indexed-addresses",
36647 offsetof (struct gcc_options, x_TARGET_AVOID_XFORM),
36648 offsetof (struct cl_target_option, x_TARGET_AVOID_XFORM) },
36649 { "paired",
36650 offsetof (struct gcc_options, x_rs6000_paired_float),
36651 offsetof (struct cl_target_option, x_rs6000_paired_float), },
36652 { "longcall",
36653 offsetof (struct gcc_options, x_rs6000_default_long_calls),
36654 offsetof (struct cl_target_option, x_rs6000_default_long_calls), },
36655 { "optimize-swaps",
36656 offsetof (struct gcc_options, x_rs6000_optimize_swaps),
36657 offsetof (struct cl_target_option, x_rs6000_optimize_swaps), },
36658 { "allow-movmisalign",
36659 offsetof (struct gcc_options, x_TARGET_ALLOW_MOVMISALIGN),
36660 offsetof (struct cl_target_option, x_TARGET_ALLOW_MOVMISALIGN), },
36661 { "sched-groups",
36662 offsetof (struct gcc_options, x_TARGET_SCHED_GROUPS),
36663 offsetof (struct cl_target_option, x_TARGET_SCHED_GROUPS), },
36664 { "always-hint",
36665 offsetof (struct gcc_options, x_TARGET_ALWAYS_HINT),
36666 offsetof (struct cl_target_option, x_TARGET_ALWAYS_HINT), },
36667 { "align-branch-targets",
36668 offsetof (struct gcc_options, x_TARGET_ALIGN_BRANCH_TARGETS),
36669 offsetof (struct cl_target_option, x_TARGET_ALIGN_BRANCH_TARGETS), },
36670 { "tls-markers",
36671 offsetof (struct gcc_options, x_tls_markers),
36672 offsetof (struct cl_target_option, x_tls_markers), },
36673 { "sched-prolog",
36674 offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
36675 offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
36676 { "sched-epilog",
36677 offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
36678 offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
36681 /* Inner function to handle attribute((target("..."))) and #pragma GCC target
36682 parsing. Return true if there were no errors. */
36684 static bool
36685 rs6000_inner_target_options (tree args, bool attr_p)
36687 bool ret = true;
36689 if (args == NULL_TREE)
36692 else if (TREE_CODE (args) == STRING_CST)
36694 char *p = ASTRDUP (TREE_STRING_POINTER (args));
36695 char *q;
36697 while ((q = strtok (p, ",")) != NULL)
36699 bool error_p = false;
36700 bool not_valid_p = false;
36701 const char *cpu_opt = NULL;
36703 p = NULL;
36704 if (strncmp (q, "cpu=", 4) == 0)
36706 int cpu_index = rs6000_cpu_name_lookup (q+4);
36707 if (cpu_index >= 0)
36708 rs6000_cpu_index = cpu_index;
36709 else
36711 error_p = true;
36712 cpu_opt = q+4;
36715 else if (strncmp (q, "tune=", 5) == 0)
36717 int tune_index = rs6000_cpu_name_lookup (q+5);
36718 if (tune_index >= 0)
36719 rs6000_tune_index = tune_index;
36720 else
36722 error_p = true;
36723 cpu_opt = q+5;
36726 else
36728 size_t i;
36729 bool invert = false;
36730 char *r = q;
36732 error_p = true;
36733 if (strncmp (r, "no-", 3) == 0)
36735 invert = true;
36736 r += 3;
36739 for (i = 0; i < ARRAY_SIZE (rs6000_opt_masks); i++)
36740 if (strcmp (r, rs6000_opt_masks[i].name) == 0)
36742 HOST_WIDE_INT mask = rs6000_opt_masks[i].mask;
36744 if (!rs6000_opt_masks[i].valid_target)
36745 not_valid_p = true;
36746 else
36748 error_p = false;
36749 rs6000_isa_flags_explicit |= mask;
36751 /* VSX needs altivec, so -mvsx automagically sets
36752 altivec and disables -mavoid-indexed-addresses. */
36753 if (!invert)
36755 if (mask == OPTION_MASK_VSX)
36757 mask |= OPTION_MASK_ALTIVEC;
36758 TARGET_AVOID_XFORM = 0;
36762 if (rs6000_opt_masks[i].invert)
36763 invert = !invert;
36765 if (invert)
36766 rs6000_isa_flags &= ~mask;
36767 else
36768 rs6000_isa_flags |= mask;
36770 break;
36773 if (error_p && !not_valid_p)
36775 for (i = 0; i < ARRAY_SIZE (rs6000_opt_vars); i++)
36776 if (strcmp (r, rs6000_opt_vars[i].name) == 0)
36778 size_t j = rs6000_opt_vars[i].global_offset;
36779 *((int *) ((char *)&global_options + j)) = !invert;
36780 error_p = false;
36781 not_valid_p = false;
36782 break;
36787 if (error_p)
36789 const char *eprefix, *esuffix;
36791 ret = false;
36792 if (attr_p)
36794 eprefix = "__attribute__((__target__(";
36795 esuffix = ")))";
36797 else
36799 eprefix = "#pragma GCC target ";
36800 esuffix = "";
36803 if (cpu_opt)
36804 error ("invalid cpu %qs for %s%qs%s", cpu_opt, eprefix,
36805 q, esuffix);
36806 else if (not_valid_p)
36807 error ("%s%qs%s is not allowed", eprefix, q, esuffix);
36808 else
36809 error ("%s%qs%s is invalid", eprefix, q, esuffix);
36814 else if (TREE_CODE (args) == TREE_LIST)
36818 tree value = TREE_VALUE (args);
36819 if (value)
36821 bool ret2 = rs6000_inner_target_options (value, attr_p);
36822 if (!ret2)
36823 ret = false;
36825 args = TREE_CHAIN (args);
36827 while (args != NULL_TREE);
36830 else
36832 error ("attribute %<target%> argument not a string");
36833 return false;
36836 return ret;
36839 /* Print out the target options as a list for -mdebug=target. */
36841 static void
36842 rs6000_debug_target_options (tree args, const char *prefix)
36844 if (args == NULL_TREE)
36845 fprintf (stderr, "%s<NULL>", prefix);
36847 else if (TREE_CODE (args) == STRING_CST)
36849 char *p = ASTRDUP (TREE_STRING_POINTER (args));
36850 char *q;
36852 while ((q = strtok (p, ",")) != NULL)
36854 p = NULL;
36855 fprintf (stderr, "%s\"%s\"", prefix, q);
36856 prefix = ", ";
36860 else if (TREE_CODE (args) == TREE_LIST)
36864 tree value = TREE_VALUE (args);
36865 if (value)
36867 rs6000_debug_target_options (value, prefix);
36868 prefix = ", ";
36870 args = TREE_CHAIN (args);
36872 while (args != NULL_TREE);
36875 else
36876 gcc_unreachable ();
36878 return;
36882 /* Hook to validate attribute((target("..."))). */
36884 static bool
36885 rs6000_valid_attribute_p (tree fndecl,
36886 tree ARG_UNUSED (name),
36887 tree args,
36888 int flags)
36890 struct cl_target_option cur_target;
36891 bool ret;
36892 tree old_optimize;
36893 tree new_target, new_optimize;
36894 tree func_optimize;
36896 gcc_assert ((fndecl != NULL_TREE) && (args != NULL_TREE));
36898 if (TARGET_DEBUG_TARGET)
36900 tree tname = DECL_NAME (fndecl);
36901 fprintf (stderr, "\n==================== rs6000_valid_attribute_p:\n");
36902 if (tname)
36903 fprintf (stderr, "function: %.*s\n",
36904 (int) IDENTIFIER_LENGTH (tname),
36905 IDENTIFIER_POINTER (tname));
36906 else
36907 fprintf (stderr, "function: unknown\n");
36909 fprintf (stderr, "args:");
36910 rs6000_debug_target_options (args, " ");
36911 fprintf (stderr, "\n");
36913 if (flags)
36914 fprintf (stderr, "flags: 0x%x\n", flags);
36916 fprintf (stderr, "--------------------\n");
36919 /* attribute((target("default"))) does nothing, beyond
36920 affecting multi-versioning. */
36921 if (TREE_VALUE (args)
36922 && TREE_CODE (TREE_VALUE (args)) == STRING_CST
36923 && TREE_CHAIN (args) == NULL_TREE
36924 && strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0)
36925 return true;
36927 old_optimize = build_optimization_node (&global_options);
36928 func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);
36930 /* If the function changed the optimization levels as well as setting target
36931 options, start with the optimizations specified. */
36932 if (func_optimize && func_optimize != old_optimize)
36933 cl_optimization_restore (&global_options,
36934 TREE_OPTIMIZATION (func_optimize));
36936 /* The target attributes may also change some optimization flags, so update
36937 the optimization options if necessary. */
36938 cl_target_option_save (&cur_target, &global_options);
36939 rs6000_cpu_index = rs6000_tune_index = -1;
36940 ret = rs6000_inner_target_options (args, true);
36942 /* Set up any additional state. */
36943 if (ret)
36945 ret = rs6000_option_override_internal (false);
36946 new_target = build_target_option_node (&global_options);
36948 else
36949 new_target = NULL;
36951 new_optimize = build_optimization_node (&global_options);
36953 if (!new_target)
36954 ret = false;
36956 else if (fndecl)
36958 DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;
36960 if (old_optimize != new_optimize)
36961 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
36964 cl_target_option_restore (&global_options, &cur_target);
36966 if (old_optimize != new_optimize)
36967 cl_optimization_restore (&global_options,
36968 TREE_OPTIMIZATION (old_optimize));
36970 return ret;
36974 /* Hook to validate the current #pragma GCC target and set the state, and
36975 update the macros based on what was changed. If ARGS is NULL, then
36976 POP_TARGET is used to reset the options. */
36978 bool
36979 rs6000_pragma_target_parse (tree args, tree pop_target)
36981 tree prev_tree = build_target_option_node (&global_options);
36982 tree cur_tree;
36983 struct cl_target_option *prev_opt, *cur_opt;
36984 HOST_WIDE_INT prev_flags, cur_flags, diff_flags;
36985 HOST_WIDE_INT prev_bumask, cur_bumask, diff_bumask;
36987 if (TARGET_DEBUG_TARGET)
36989 fprintf (stderr, "\n==================== rs6000_pragma_target_parse\n");
36990 fprintf (stderr, "args:");
36991 rs6000_debug_target_options (args, " ");
36992 fprintf (stderr, "\n");
36994 if (pop_target)
36996 fprintf (stderr, "pop_target:\n");
36997 debug_tree (pop_target);
36999 else
37000 fprintf (stderr, "pop_target: <NULL>\n");
37002 fprintf (stderr, "--------------------\n");
37005 if (! args)
37007 cur_tree = ((pop_target)
37008 ? pop_target
37009 : target_option_default_node);
37010 cl_target_option_restore (&global_options,
37011 TREE_TARGET_OPTION (cur_tree));
37013 else
37015 rs6000_cpu_index = rs6000_tune_index = -1;
37016 if (!rs6000_inner_target_options (args, false)
37017 || !rs6000_option_override_internal (false)
37018 || (cur_tree = build_target_option_node (&global_options))
37019 == NULL_TREE)
37021 if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
37022 fprintf (stderr, "invalid pragma\n");
37024 return false;
37028 target_option_current_node = cur_tree;
37029 rs6000_activate_target_options (target_option_current_node);
37031 /* If we have the preprocessor linked in (i.e. C or C++ languages), possibly
37032 change the macros that are defined. */
37033 if (rs6000_target_modify_macros_ptr)
37035 prev_opt = TREE_TARGET_OPTION (prev_tree);
37036 prev_bumask = prev_opt->x_rs6000_builtin_mask;
37037 prev_flags = prev_opt->x_rs6000_isa_flags;
37039 cur_opt = TREE_TARGET_OPTION (cur_tree);
37040 cur_flags = cur_opt->x_rs6000_isa_flags;
37041 cur_bumask = cur_opt->x_rs6000_builtin_mask;
37043 diff_bumask = (prev_bumask ^ cur_bumask);
37044 diff_flags = (prev_flags ^ cur_flags);
37046 if ((diff_flags != 0) || (diff_bumask != 0))
37048 /* Delete old macros. */
37049 rs6000_target_modify_macros_ptr (false,
37050 prev_flags & diff_flags,
37051 prev_bumask & diff_bumask);
37053 /* Define new macros. */
37054 rs6000_target_modify_macros_ptr (true,
37055 cur_flags & diff_flags,
37056 cur_bumask & diff_bumask);
37060 return true;
37064 /* Remember the last target of rs6000_set_current_function. */
37065 static GTY(()) tree rs6000_previous_fndecl;
37067 /* Restore target's globals from NEW_TREE and invalidate the
37068 rs6000_previous_fndecl cache. */
37070 void
37071 rs6000_activate_target_options (tree new_tree)
37073 cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree));
37074 if (TREE_TARGET_GLOBALS (new_tree))
37075 restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
37076 else if (new_tree == target_option_default_node)
37077 restore_target_globals (&default_target_globals);
37078 else
37079 TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
37080 rs6000_previous_fndecl = NULL_TREE;
37083 /* Establish appropriate back-end context for processing the function
37084 FNDECL. The argument might be NULL to indicate processing at top
37085 level, outside of any function scope. */
37086 static void
37087 rs6000_set_current_function (tree fndecl)
37089 if (TARGET_DEBUG_TARGET)
37091 fprintf (stderr, "\n==================== rs6000_set_current_function");
37093 if (fndecl)
37094 fprintf (stderr, ", fndecl %s (%p)",
37095 (DECL_NAME (fndecl)
37096 ? IDENTIFIER_POINTER (DECL_NAME (fndecl))
37097 : "<unknown>"), (void *)fndecl);
37099 if (rs6000_previous_fndecl)
37100 fprintf (stderr, ", prev_fndecl (%p)", (void *)rs6000_previous_fndecl);
37102 fprintf (stderr, "\n");
37105 /* Only change the context if the function changes. This hook is called
37106 several times in the course of compiling a function, and we don't want to
37107 slow things down too much or call target_reinit when it isn't safe. */
37108 if (fndecl == rs6000_previous_fndecl)
37109 return;
37111 tree old_tree;
37112 if (rs6000_previous_fndecl == NULL_TREE)
37113 old_tree = target_option_current_node;
37114 else if (DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl))
37115 old_tree = DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl);
37116 else
37117 old_tree = target_option_default_node;
37119 tree new_tree;
37120 if (fndecl == NULL_TREE)
37122 if (old_tree != target_option_current_node)
37123 new_tree = target_option_current_node;
37124 else
37125 new_tree = NULL_TREE;
37127 else
37129 new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
37130 if (new_tree == NULL_TREE)
37131 new_tree = target_option_default_node;
37134 if (TARGET_DEBUG_TARGET)
37136 if (new_tree)
37138 fprintf (stderr, "\nnew fndecl target specific options:\n");
37139 debug_tree (new_tree);
37142 if (old_tree)
37144 fprintf (stderr, "\nold fndecl target specific options:\n");
37145 debug_tree (old_tree);
37148 if (old_tree != NULL_TREE || new_tree != NULL_TREE)
37149 fprintf (stderr, "--------------------\n");
37152 if (new_tree && old_tree != new_tree)
37153 rs6000_activate_target_options (new_tree);
37155 if (fndecl)
37156 rs6000_previous_fndecl = fndecl;
37160 /* Save the current options */
37162 static void
37163 rs6000_function_specific_save (struct cl_target_option *ptr,
37164 struct gcc_options *opts)
37166 ptr->x_rs6000_isa_flags = opts->x_rs6000_isa_flags;
37167 ptr->x_rs6000_isa_flags_explicit = opts->x_rs6000_isa_flags_explicit;
37170 /* Restore the current options */
37172 static void
37173 rs6000_function_specific_restore (struct gcc_options *opts,
37174 struct cl_target_option *ptr)
37177 opts->x_rs6000_isa_flags = ptr->x_rs6000_isa_flags;
37178 opts->x_rs6000_isa_flags_explicit = ptr->x_rs6000_isa_flags_explicit;
37179 (void) rs6000_option_override_internal (false);
37182 /* Print the current options */
37184 static void
37185 rs6000_function_specific_print (FILE *file, int indent,
37186 struct cl_target_option *ptr)
37188 rs6000_print_isa_options (file, indent, "Isa options set",
37189 ptr->x_rs6000_isa_flags);
37191 rs6000_print_isa_options (file, indent, "Isa options explicit",
37192 ptr->x_rs6000_isa_flags_explicit);
37195 /* Helper function to print the current isa or misc options on a line. */
37197 static void
37198 rs6000_print_options_internal (FILE *file,
37199 int indent,
37200 const char *string,
37201 HOST_WIDE_INT flags,
37202 const char *prefix,
37203 const struct rs6000_opt_mask *opts,
37204 size_t num_elements)
37206 size_t i;
37207 size_t start_column = 0;
37208 size_t cur_column;
37209 size_t max_column = 120;
37210 size_t prefix_len = strlen (prefix);
37211 size_t comma_len = 0;
37212 const char *comma = "";
37214 if (indent)
37215 start_column += fprintf (file, "%*s", indent, "");
37217 if (!flags)
37219 fprintf (stderr, DEBUG_FMT_S, string, "<none>");
37220 return;
37223 start_column += fprintf (stderr, DEBUG_FMT_WX, string, flags);
37225 /* Print the various mask options. */
37226 cur_column = start_column;
37227 for (i = 0; i < num_elements; i++)
37229 bool invert = opts[i].invert;
37230 const char *name = opts[i].name;
37231 const char *no_str = "";
37232 HOST_WIDE_INT mask = opts[i].mask;
37233 size_t len = comma_len + prefix_len + strlen (name);
37235 if (!invert)
37237 if ((flags & mask) == 0)
37239 no_str = "no-";
37240 len += sizeof ("no-") - 1;
37243 flags &= ~mask;
37246 else
37248 if ((flags & mask) != 0)
37250 no_str = "no-";
37251 len += sizeof ("no-") - 1;
37254 flags |= mask;
37257 cur_column += len;
37258 if (cur_column > max_column)
37260 fprintf (stderr, ", \\\n%*s", (int)start_column, "");
37261 cur_column = start_column + len;
37262 comma = "";
37265 fprintf (file, "%s%s%s%s", comma, prefix, no_str, name);
37266 comma = ", ";
37267 comma_len = sizeof (", ") - 1;
37270 fputs ("\n", file);
37273 /* Helper function to print the current isa options on a line. */
37275 static void
37276 rs6000_print_isa_options (FILE *file, int indent, const char *string,
37277 HOST_WIDE_INT flags)
37279 rs6000_print_options_internal (file, indent, string, flags, "-m",
37280 &rs6000_opt_masks[0],
37281 ARRAY_SIZE (rs6000_opt_masks));
37284 static void
37285 rs6000_print_builtin_options (FILE *file, int indent, const char *string,
37286 HOST_WIDE_INT flags)
37288 rs6000_print_options_internal (file, indent, string, flags, "",
37289 &rs6000_builtin_mask_names[0],
37290 ARRAY_SIZE (rs6000_builtin_mask_names));
37293 /* If the user used -mno-vsx, we need turn off all of the implicit ISA 2.06,
37294 2.07, and 3.0 options that relate to the vector unit (-mdirect-move,
37295 -mupper-regs-df, etc.).
37297 If the user used -mno-power8-vector, we need to turn off all of the implicit
37298 ISA 2.07 and 3.0 options that relate to the vector unit.
37300 If the user used -mno-power9-vector, we need to turn off all of the implicit
37301 ISA 3.0 options that relate to the vector unit.
37303 This function does not handle explicit options such as the user specifying
37304 -mdirect-move. These are handled in rs6000_option_override_internal, and
37305 the appropriate error is given if needed.
37307 We return a mask of all of the implicit options that should not be enabled
37308 by default. */
37310 static HOST_WIDE_INT
37311 rs6000_disable_incompatible_switches (void)
37313 HOST_WIDE_INT ignore_masks = rs6000_isa_flags_explicit;
37314 size_t i, j;
37316 static const struct {
37317 const HOST_WIDE_INT no_flag; /* flag explicitly turned off. */
37318 const HOST_WIDE_INT dep_flags; /* flags that depend on this option. */
37319 const char *const name; /* name of the switch. */
37320 } flags[] = {
37321 { OPTION_MASK_P9_VECTOR, OTHER_P9_VECTOR_MASKS, "power9-vector" },
37322 { OPTION_MASK_P8_VECTOR, OTHER_P8_VECTOR_MASKS, "power8-vector" },
37323 { OPTION_MASK_VSX, OTHER_VSX_VECTOR_MASKS, "vsx" },
37326 for (i = 0; i < ARRAY_SIZE (flags); i++)
37328 HOST_WIDE_INT no_flag = flags[i].no_flag;
37330 if ((rs6000_isa_flags & no_flag) == 0
37331 && (rs6000_isa_flags_explicit & no_flag) != 0)
37333 HOST_WIDE_INT dep_flags = flags[i].dep_flags;
37334 HOST_WIDE_INT set_flags = (rs6000_isa_flags_explicit
37335 & rs6000_isa_flags
37336 & dep_flags);
37338 if (set_flags)
37340 for (j = 0; j < ARRAY_SIZE (rs6000_opt_masks); j++)
37341 if ((set_flags & rs6000_opt_masks[j].mask) != 0)
37343 set_flags &= ~rs6000_opt_masks[j].mask;
37344 error ("%<-mno-%s%> turns off %<-m%s%>",
37345 flags[i].name,
37346 rs6000_opt_masks[j].name);
37349 gcc_assert (!set_flags);
37352 rs6000_isa_flags &= ~dep_flags;
37353 ignore_masks |= no_flag | dep_flags;
37357 return ignore_masks;
37361 /* Helper function for printing the function name when debugging. */
37363 static const char *
37364 get_decl_name (tree fn)
37366 tree name;
37368 if (!fn)
37369 return "<null>";
37371 name = DECL_NAME (fn);
37372 if (!name)
37373 return "<no-name>";
37375 return IDENTIFIER_POINTER (name);
37378 /* Return the clone id of the target we are compiling code for in a target
37379 clone. The clone id is ordered from 0 (default) to CLONE_MAX-1 and gives
37380 the priority list for the target clones (ordered from lowest to
37381 highest). */
37383 static int
37384 rs6000_clone_priority (tree fndecl)
37386 tree fn_opts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
37387 HOST_WIDE_INT isa_masks;
37388 int ret = CLONE_DEFAULT;
37389 tree attrs = lookup_attribute ("target", DECL_ATTRIBUTES (fndecl));
37390 const char *attrs_str = NULL;
37392 attrs = TREE_VALUE (TREE_VALUE (attrs));
37393 attrs_str = TREE_STRING_POINTER (attrs);
37395 /* Return priority zero for default function. Return the ISA needed for the
37396 function if it is not the default. */
37397 if (strcmp (attrs_str, "default") != 0)
37399 if (fn_opts == NULL_TREE)
37400 fn_opts = target_option_default_node;
37402 if (!fn_opts || !TREE_TARGET_OPTION (fn_opts))
37403 isa_masks = rs6000_isa_flags;
37404 else
37405 isa_masks = TREE_TARGET_OPTION (fn_opts)->x_rs6000_isa_flags;
37407 for (ret = CLONE_MAX - 1; ret != 0; ret--)
37408 if ((rs6000_clone_map[ret].isa_mask & isa_masks) != 0)
37409 break;
37412 if (TARGET_DEBUG_TARGET)
37413 fprintf (stderr, "rs6000_get_function_version_priority (%s) => %d\n",
37414 get_decl_name (fndecl), ret);
37416 return ret;
37419 /* This compares the priority of target features in function DECL1 and DECL2.
37420 It returns positive value if DECL1 is higher priority, negative value if
37421 DECL2 is higher priority and 0 if they are the same. Note, priorities are
37422 ordered from lowest (CLONE_DEFAULT) to highest (currently CLONE_ISA_3_0). */
37424 static int
37425 rs6000_compare_version_priority (tree decl1, tree decl2)
37427 int priority1 = rs6000_clone_priority (decl1);
37428 int priority2 = rs6000_clone_priority (decl2);
37429 int ret = priority1 - priority2;
37431 if (TARGET_DEBUG_TARGET)
37432 fprintf (stderr, "rs6000_compare_version_priority (%s, %s) => %d\n",
37433 get_decl_name (decl1), get_decl_name (decl2), ret);
37435 return ret;
37438 /* Make a dispatcher declaration for the multi-versioned function DECL.
37439 Calls to DECL function will be replaced with calls to the dispatcher
37440 by the front-end. Returns the decl of the dispatcher function. */
37442 static tree
37443 rs6000_get_function_versions_dispatcher (void *decl)
37445 tree fn = (tree) decl;
37446 struct cgraph_node *node = NULL;
37447 struct cgraph_node *default_node = NULL;
37448 struct cgraph_function_version_info *node_v = NULL;
37449 struct cgraph_function_version_info *first_v = NULL;
37451 tree dispatch_decl = NULL;
37453 struct cgraph_function_version_info *default_version_info = NULL;
37454 gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn));
37456 if (TARGET_DEBUG_TARGET)
37457 fprintf (stderr, "rs6000_get_function_versions_dispatcher (%s)\n",
37458 get_decl_name (fn));
37460 node = cgraph_node::get (fn);
37461 gcc_assert (node != NULL);
37463 node_v = node->function_version ();
37464 gcc_assert (node_v != NULL);
37466 if (node_v->dispatcher_resolver != NULL)
37467 return node_v->dispatcher_resolver;
37469 /* Find the default version and make it the first node. */
37470 first_v = node_v;
37471 /* Go to the beginning of the chain. */
37472 while (first_v->prev != NULL)
37473 first_v = first_v->prev;
37475 default_version_info = first_v;
37476 while (default_version_info != NULL)
37478 const tree decl2 = default_version_info->this_node->decl;
37479 if (is_function_default_version (decl2))
37480 break;
37481 default_version_info = default_version_info->next;
37484 /* If there is no default node, just return NULL. */
37485 if (default_version_info == NULL)
37486 return NULL;
37488 /* Make default info the first node. */
37489 if (first_v != default_version_info)
37491 default_version_info->prev->next = default_version_info->next;
37492 if (default_version_info->next)
37493 default_version_info->next->prev = default_version_info->prev;
37494 first_v->prev = default_version_info;
37495 default_version_info->next = first_v;
37496 default_version_info->prev = NULL;
37499 default_node = default_version_info->this_node;
37501 #ifndef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
37502 error_at (DECL_SOURCE_LOCATION (default_node->decl),
37503 "target_clones attribute needs GLIBC (2.23 and newer) that "
37504 "exports hardware capability bits");
37505 #else
37507 if (targetm.has_ifunc_p ())
37509 struct cgraph_function_version_info *it_v = NULL;
37510 struct cgraph_node *dispatcher_node = NULL;
37511 struct cgraph_function_version_info *dispatcher_version_info = NULL;
37513 /* Right now, the dispatching is done via ifunc. */
37514 dispatch_decl = make_dispatcher_decl (default_node->decl);
37516 dispatcher_node = cgraph_node::get_create (dispatch_decl);
37517 gcc_assert (dispatcher_node != NULL);
37518 dispatcher_node->dispatcher_function = 1;
37519 dispatcher_version_info
37520 = dispatcher_node->insert_new_function_version ();
37521 dispatcher_version_info->next = default_version_info;
37522 dispatcher_node->definition = 1;
37524 /* Set the dispatcher for all the versions. */
37525 it_v = default_version_info;
37526 while (it_v != NULL)
37528 it_v->dispatcher_resolver = dispatch_decl;
37529 it_v = it_v->next;
37532 else
37534 error_at (DECL_SOURCE_LOCATION (default_node->decl),
37535 "multiversioning needs ifunc which is not supported "
37536 "on this target");
37538 #endif
37540 return dispatch_decl;
37543 /* Make the resolver function decl to dispatch the versions of a multi-
37544 versioned function, DEFAULT_DECL. Create an empty basic block in the
37545 resolver and store the pointer in EMPTY_BB. Return the decl of the resolver
37546 function. */
37548 static tree
37549 make_resolver_func (const tree default_decl,
37550 const tree dispatch_decl,
37551 basic_block *empty_bb)
37553 /* Make the resolver function static. The resolver function returns
37554 void *. */
37555 tree decl_name = clone_function_name (default_decl, "resolver");
37556 const char *resolver_name = IDENTIFIER_POINTER (decl_name);
37557 tree type = build_function_type_list (ptr_type_node, NULL_TREE);
37558 tree decl = build_fn_decl (resolver_name, type);
37559 SET_DECL_ASSEMBLER_NAME (decl, decl_name);
37561 DECL_NAME (decl) = decl_name;
37562 TREE_USED (decl) = 1;
37563 DECL_ARTIFICIAL (decl) = 1;
37564 DECL_IGNORED_P (decl) = 0;
37565 TREE_PUBLIC (decl) = 0;
37566 DECL_UNINLINABLE (decl) = 1;
37568 /* Resolver is not external, body is generated. */
37569 DECL_EXTERNAL (decl) = 0;
37570 DECL_EXTERNAL (dispatch_decl) = 0;
37572 DECL_CONTEXT (decl) = NULL_TREE;
37573 DECL_INITIAL (decl) = make_node (BLOCK);
37574 DECL_STATIC_CONSTRUCTOR (decl) = 0;
37576 /* Build result decl and add to function_decl. */
37577 tree t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node);
37578 DECL_ARTIFICIAL (t) = 1;
37579 DECL_IGNORED_P (t) = 1;
37580 DECL_RESULT (decl) = t;
37582 gimplify_function_tree (decl);
37583 push_cfun (DECL_STRUCT_FUNCTION (decl));
37584 *empty_bb = init_lowered_empty_function (decl, false,
37585 profile_count::uninitialized ());
37587 cgraph_node::add_new_function (decl, true);
37588 symtab->call_cgraph_insertion_hooks (cgraph_node::get_create (decl));
37590 pop_cfun ();
37592 /* Mark dispatch_decl as "ifunc" with resolver as resolver_name. */
37593 DECL_ATTRIBUTES (dispatch_decl)
37594 = make_attribute ("ifunc", resolver_name, DECL_ATTRIBUTES (dispatch_decl));
37596 cgraph_node::create_same_body_alias (dispatch_decl, decl);
37598 return decl;
37601 /* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL to
37602 return a pointer to VERSION_DECL if we are running on a machine that
37603 supports the index CLONE_ISA hardware architecture bits. This function will
37604 be called during version dispatch to decide which function version to
37605 execute. It returns the basic block at the end, to which more conditions
37606 can be added. */
37608 static basic_block
37609 add_condition_to_bb (tree function_decl, tree version_decl,
37610 int clone_isa, basic_block new_bb)
37612 push_cfun (DECL_STRUCT_FUNCTION (function_decl));
37614 gcc_assert (new_bb != NULL);
37615 gimple_seq gseq = bb_seq (new_bb);
37618 tree convert_expr = build1 (CONVERT_EXPR, ptr_type_node,
37619 build_fold_addr_expr (version_decl));
37620 tree result_var = create_tmp_var (ptr_type_node);
37621 gimple *convert_stmt = gimple_build_assign (result_var, convert_expr);
37622 gimple *return_stmt = gimple_build_return (result_var);
37624 if (clone_isa == CLONE_DEFAULT)
37626 gimple_seq_add_stmt (&gseq, convert_stmt);
37627 gimple_seq_add_stmt (&gseq, return_stmt);
37628 set_bb_seq (new_bb, gseq);
37629 gimple_set_bb (convert_stmt, new_bb);
37630 gimple_set_bb (return_stmt, new_bb);
37631 pop_cfun ();
37632 return new_bb;
37635 tree bool_zero = build_int_cst (bool_int_type_node, 0);
37636 tree cond_var = create_tmp_var (bool_int_type_node);
37637 tree predicate_decl = rs6000_builtin_decls [(int) RS6000_BUILTIN_CPU_SUPPORTS];
37638 const char *arg_str = rs6000_clone_map[clone_isa].name;
37639 tree predicate_arg = build_string_literal (strlen (arg_str) + 1, arg_str);
37640 gimple *call_cond_stmt = gimple_build_call (predicate_decl, 1, predicate_arg);
37641 gimple_call_set_lhs (call_cond_stmt, cond_var);
37643 gimple_set_block (call_cond_stmt, DECL_INITIAL (function_decl));
37644 gimple_set_bb (call_cond_stmt, new_bb);
37645 gimple_seq_add_stmt (&gseq, call_cond_stmt);
37647 gimple *if_else_stmt = gimple_build_cond (NE_EXPR, cond_var, bool_zero,
37648 NULL_TREE, NULL_TREE);
37649 gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl));
37650 gimple_set_bb (if_else_stmt, new_bb);
37651 gimple_seq_add_stmt (&gseq, if_else_stmt);
37653 gimple_seq_add_stmt (&gseq, convert_stmt);
37654 gimple_seq_add_stmt (&gseq, return_stmt);
37655 set_bb_seq (new_bb, gseq);
37657 basic_block bb1 = new_bb;
37658 edge e12 = split_block (bb1, if_else_stmt);
37659 basic_block bb2 = e12->dest;
37660 e12->flags &= ~EDGE_FALLTHRU;
37661 e12->flags |= EDGE_TRUE_VALUE;
37663 edge e23 = split_block (bb2, return_stmt);
37664 gimple_set_bb (convert_stmt, bb2);
37665 gimple_set_bb (return_stmt, bb2);
37667 basic_block bb3 = e23->dest;
37668 make_edge (bb1, bb3, EDGE_FALSE_VALUE);
37670 remove_edge (e23);
37671 make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
37673 pop_cfun ();
37674 return bb3;
37677 /* This function generates the dispatch function for multi-versioned functions.
37678 DISPATCH_DECL is the function which will contain the dispatch logic.
37679 FNDECLS are the function choices for dispatch, and is a tree chain.
37680 EMPTY_BB is the basic block pointer in DISPATCH_DECL in which the dispatch
37681 code is generated. */
37683 static int
37684 dispatch_function_versions (tree dispatch_decl,
37685 void *fndecls_p,
37686 basic_block *empty_bb)
37688 int ix;
37689 tree ele;
37690 vec<tree> *fndecls;
37691 tree clones[CLONE_MAX];
37693 if (TARGET_DEBUG_TARGET)
37694 fputs ("dispatch_function_versions, top\n", stderr);
37696 gcc_assert (dispatch_decl != NULL
37697 && fndecls_p != NULL
37698 && empty_bb != NULL);
37700 /* fndecls_p is actually a vector. */
37701 fndecls = static_cast<vec<tree> *> (fndecls_p);
37703 /* At least one more version other than the default. */
37704 gcc_assert (fndecls->length () >= 2);
37706 /* The first version in the vector is the default decl. */
37707 memset ((void *) clones, '\0', sizeof (clones));
37708 clones[CLONE_DEFAULT] = (*fndecls)[0];
37710 /* On the PowerPC, we do not need to call __builtin_cpu_init, which is a NOP
37711 on the PowerPC (on the x86_64, it is not a NOP). The builtin function
37712 __builtin_cpu_support ensures that the TOC fields are setup by requiring a
37713 recent glibc. If we ever need to call __builtin_cpu_init, we would need
37714 to insert the code here to do the call. */
37716 for (ix = 1; fndecls->iterate (ix, &ele); ++ix)
37718 int priority = rs6000_clone_priority (ele);
37719 if (!clones[priority])
37720 clones[priority] = ele;
37723 for (ix = CLONE_MAX - 1; ix >= 0; ix--)
37724 if (clones[ix])
37726 if (TARGET_DEBUG_TARGET)
37727 fprintf (stderr, "dispatch_function_versions, clone %d, %s\n",
37728 ix, get_decl_name (clones[ix]));
37730 *empty_bb = add_condition_to_bb (dispatch_decl, clones[ix], ix,
37731 *empty_bb);
37734 return 0;
37737 /* Generate the dispatching code body to dispatch multi-versioned function
37738 DECL. The target hook is called to process the "target" attributes and
37739 provide the code to dispatch the right function at run-time. NODE points
37740 to the dispatcher decl whose body will be created. */
37742 static tree
37743 rs6000_generate_version_dispatcher_body (void *node_p)
37745 tree resolver;
37746 basic_block empty_bb;
37747 struct cgraph_node *node = (cgraph_node *) node_p;
37748 struct cgraph_function_version_info *ninfo = node->function_version ();
37750 if (ninfo->dispatcher_resolver)
37751 return ninfo->dispatcher_resolver;
37753 /* node is going to be an alias, so remove the finalized bit. */
37754 node->definition = false;
37756 /* The first version in the chain corresponds to the default version. */
37757 ninfo->dispatcher_resolver = resolver
37758 = make_resolver_func (ninfo->next->this_node->decl, node->decl, &empty_bb);
37760 if (TARGET_DEBUG_TARGET)
37761 fprintf (stderr, "rs6000_get_function_versions_dispatcher, %s\n",
37762 get_decl_name (resolver));
37764 push_cfun (DECL_STRUCT_FUNCTION (resolver));
37765 auto_vec<tree, 2> fn_ver_vec;
37767 for (struct cgraph_function_version_info *vinfo = ninfo->next;
37768 vinfo;
37769 vinfo = vinfo->next)
37771 struct cgraph_node *version = vinfo->this_node;
37772 /* Check for virtual functions here again, as by this time it should
37773 have been determined if this function needs a vtable index or
37774 not. This happens for methods in derived classes that override
37775 virtual methods in base classes but are not explicitly marked as
37776 virtual. */
37777 if (DECL_VINDEX (version->decl))
37778 sorry ("Virtual function multiversioning not supported");
37780 fn_ver_vec.safe_push (version->decl);
37783 dispatch_function_versions (resolver, &fn_ver_vec, &empty_bb);
37784 cgraph_edge::rebuild_edges ();
37785 pop_cfun ();
37786 return resolver;
37790 /* Hook to determine if one function can safely inline another. */
37792 static bool
37793 rs6000_can_inline_p (tree caller, tree callee)
37795 bool ret = false;
37796 tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
37797 tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
37799 /* If callee has no option attributes, then it is ok to inline. */
37800 if (!callee_tree)
37801 ret = true;
37803 /* If caller has no option attributes, but callee does then it is not ok to
37804 inline. */
37805 else if (!caller_tree)
37806 ret = false;
37808 else
37810 struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
37811 struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
37813 /* Callee's options should a subset of the caller's, i.e. a vsx function
37814 can inline an altivec function but a non-vsx function can't inline a
37815 vsx function. */
37816 if ((caller_opts->x_rs6000_isa_flags & callee_opts->x_rs6000_isa_flags)
37817 == callee_opts->x_rs6000_isa_flags)
37818 ret = true;
37821 if (TARGET_DEBUG_TARGET)
37822 fprintf (stderr, "rs6000_can_inline_p:, caller %s, callee %s, %s inline\n",
37823 get_decl_name (caller), get_decl_name (callee),
37824 (ret ? "can" : "cannot"));
37826 return ret;
37829 /* Allocate a stack temp and fixup the address so it meets the particular
37830 memory requirements (either offetable or REG+REG addressing). */
37833 rs6000_allocate_stack_temp (machine_mode mode,
37834 bool offsettable_p,
37835 bool reg_reg_p)
37837 rtx stack = assign_stack_temp (mode, GET_MODE_SIZE (mode));
37838 rtx addr = XEXP (stack, 0);
37839 int strict_p = reload_completed;
37841 if (!legitimate_indirect_address_p (addr, strict_p))
37843 if (offsettable_p
37844 && !rs6000_legitimate_offset_address_p (mode, addr, strict_p, true))
37845 stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
37847 else if (reg_reg_p && !legitimate_indexed_address_p (addr, strict_p))
37848 stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
37851 return stack;
37854 /* Given a memory reference, if it is not a reg or reg+reg addressing, convert
37855 to such a form to deal with memory reference instructions like STFIWX that
37856 only take reg+reg addressing. */
37859 rs6000_address_for_fpconvert (rtx x)
37861 rtx addr;
37863 gcc_assert (MEM_P (x));
37864 addr = XEXP (x, 0);
37865 if (! legitimate_indirect_address_p (addr, reload_completed)
37866 && ! legitimate_indexed_address_p (addr, reload_completed))
37868 if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
37870 rtx reg = XEXP (addr, 0);
37871 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (x));
37872 rtx size_rtx = GEN_INT ((GET_CODE (addr) == PRE_DEC) ? -size : size);
37873 gcc_assert (REG_P (reg));
37874 emit_insn (gen_add3_insn (reg, reg, size_rtx));
37875 addr = reg;
37877 else if (GET_CODE (addr) == PRE_MODIFY)
37879 rtx reg = XEXP (addr, 0);
37880 rtx expr = XEXP (addr, 1);
37881 gcc_assert (REG_P (reg));
37882 gcc_assert (GET_CODE (expr) == PLUS);
37883 emit_insn (gen_add3_insn (reg, XEXP (expr, 0), XEXP (expr, 1)));
37884 addr = reg;
37887 x = replace_equiv_address (x, copy_addr_to_reg (addr));
37890 return x;
37893 /* Given a memory reference, if it is not in the form for altivec memory
37894 reference instructions (i.e. reg or reg+reg addressing with AND of -16),
37895 convert to the altivec format. */
37898 rs6000_address_for_altivec (rtx x)
37900 gcc_assert (MEM_P (x));
37901 if (!altivec_indexed_or_indirect_operand (x, GET_MODE (x)))
37903 rtx addr = XEXP (x, 0);
37905 if (!legitimate_indexed_address_p (addr, reload_completed)
37906 && !legitimate_indirect_address_p (addr, reload_completed))
37907 addr = copy_to_mode_reg (Pmode, addr);
37909 addr = gen_rtx_AND (Pmode, addr, GEN_INT (-16));
37910 x = change_address (x, GET_MODE (x), addr);
37913 return x;
37916 /* Implement TARGET_LEGITIMATE_CONSTANT_P.
37918 On the RS/6000, all integer constants are acceptable, most won't be valid
37919 for particular insns, though. Only easy FP constants are acceptable. */
37921 static bool
37922 rs6000_legitimate_constant_p (machine_mode mode, rtx x)
37924 if (TARGET_ELF && tls_referenced_p (x))
37925 return false;
37927 return ((GET_CODE (x) != CONST_DOUBLE && GET_CODE (x) != CONST_VECTOR)
37928 || GET_MODE (x) == VOIDmode
37929 || (TARGET_POWERPC64 && mode == DImode)
37930 || easy_fp_constant (x, mode)
37931 || easy_vector_constant (x, mode));
37935 /* Return TRUE iff the sequence ending in LAST sets the static chain. */
37937 static bool
37938 chain_already_loaded (rtx_insn *last)
37940 for (; last != NULL; last = PREV_INSN (last))
37942 if (NONJUMP_INSN_P (last))
37944 rtx patt = PATTERN (last);
37946 if (GET_CODE (patt) == SET)
37948 rtx lhs = XEXP (patt, 0);
37950 if (REG_P (lhs) && REGNO (lhs) == STATIC_CHAIN_REGNUM)
37951 return true;
37955 return false;
37958 /* Expand code to perform a call under the AIX or ELFv2 ABI. */
37960 void
37961 rs6000_call_aix (rtx value, rtx func_desc, rtx flag, rtx cookie)
37963 const bool direct_call_p
37964 = GET_CODE (func_desc) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (func_desc);
37965 rtx toc_reg = gen_rtx_REG (Pmode, TOC_REGNUM);
37966 rtx toc_load = NULL_RTX;
37967 rtx toc_restore = NULL_RTX;
37968 rtx func_addr;
37969 rtx abi_reg = NULL_RTX;
37970 rtx call[4];
37971 int n_call;
37972 rtx insn;
37974 /* Handle longcall attributes. */
37975 if (INTVAL (cookie) & CALL_LONG)
37976 func_desc = rs6000_longcall_ref (func_desc);
37978 /* Handle indirect calls. */
37979 if (GET_CODE (func_desc) != SYMBOL_REF
37980 || (DEFAULT_ABI == ABI_AIX && !SYMBOL_REF_FUNCTION_P (func_desc)))
37982 /* Save the TOC into its reserved slot before the call,
37983 and prepare to restore it after the call. */
37984 rtx stack_ptr = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
37985 rtx stack_toc_offset = GEN_INT (RS6000_TOC_SAVE_SLOT);
37986 rtx stack_toc_mem = gen_frame_mem (Pmode,
37987 gen_rtx_PLUS (Pmode, stack_ptr,
37988 stack_toc_offset));
37989 rtx stack_toc_unspec = gen_rtx_UNSPEC (Pmode,
37990 gen_rtvec (1, stack_toc_offset),
37991 UNSPEC_TOCSLOT);
37992 toc_restore = gen_rtx_SET (toc_reg, stack_toc_unspec);
37994 /* Can we optimize saving the TOC in the prologue or
37995 do we need to do it at every call? */
37996 if (TARGET_SAVE_TOC_INDIRECT && !cfun->calls_alloca)
37997 cfun->machine->save_toc_in_prologue = true;
37998 else
38000 MEM_VOLATILE_P (stack_toc_mem) = 1;
38001 emit_move_insn (stack_toc_mem, toc_reg);
38004 if (DEFAULT_ABI == ABI_ELFv2)
38006 /* A function pointer in the ELFv2 ABI is just a plain address, but
38007 the ABI requires it to be loaded into r12 before the call. */
38008 func_addr = gen_rtx_REG (Pmode, 12);
38009 emit_move_insn (func_addr, func_desc);
38010 abi_reg = func_addr;
38012 else
38014 /* A function pointer under AIX is a pointer to a data area whose
38015 first word contains the actual address of the function, whose
38016 second word contains a pointer to its TOC, and whose third word
38017 contains a value to place in the static chain register (r11).
38018 Note that if we load the static chain, our "trampoline" need
38019 not have any executable code. */
38021 /* Load up address of the actual function. */
38022 func_desc = force_reg (Pmode, func_desc);
38023 func_addr = gen_reg_rtx (Pmode);
38024 emit_move_insn (func_addr, gen_rtx_MEM (Pmode, func_desc));
38026 /* Prepare to load the TOC of the called function. Note that the
38027 TOC load must happen immediately before the actual call so
38028 that unwinding the TOC registers works correctly. See the
38029 comment in frob_update_context. */
38030 rtx func_toc_offset = GEN_INT (GET_MODE_SIZE (Pmode));
38031 rtx func_toc_mem = gen_rtx_MEM (Pmode,
38032 gen_rtx_PLUS (Pmode, func_desc,
38033 func_toc_offset));
38034 toc_load = gen_rtx_USE (VOIDmode, func_toc_mem);
38036 /* If we have a static chain, load it up. But, if the call was
38037 originally direct, the 3rd word has not been written since no
38038 trampoline has been built, so we ought not to load it, lest we
38039 override a static chain value. */
38040 if (!direct_call_p
38041 && TARGET_POINTERS_TO_NESTED_FUNCTIONS
38042 && !chain_already_loaded (get_current_sequence ()->next->last))
38044 rtx sc_reg = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
38045 rtx func_sc_offset = GEN_INT (2 * GET_MODE_SIZE (Pmode));
38046 rtx func_sc_mem = gen_rtx_MEM (Pmode,
38047 gen_rtx_PLUS (Pmode, func_desc,
38048 func_sc_offset));
38049 emit_move_insn (sc_reg, func_sc_mem);
38050 abi_reg = sc_reg;
38054 else
38056 /* Direct calls use the TOC: for local calls, the callee will
38057 assume the TOC register is set; for non-local calls, the
38058 PLT stub needs the TOC register. */
38059 abi_reg = toc_reg;
38060 func_addr = func_desc;
38063 /* Create the call. */
38064 call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), flag);
38065 if (value != NULL_RTX)
38066 call[0] = gen_rtx_SET (value, call[0]);
38067 n_call = 1;
38069 if (toc_load)
38070 call[n_call++] = toc_load;
38071 if (toc_restore)
38072 call[n_call++] = toc_restore;
38074 call[n_call++] = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
38076 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (n_call, call));
38077 insn = emit_call_insn (insn);
38079 /* Mention all registers defined by the ABI to hold information
38080 as uses in CALL_INSN_FUNCTION_USAGE. */
38081 if (abi_reg)
38082 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), abi_reg);
38085 /* Expand code to perform a sibling call under the AIX or ELFv2 ABI. */
38087 void
38088 rs6000_sibcall_aix (rtx value, rtx func_desc, rtx flag, rtx cookie)
38090 rtx call[2];
38091 rtx insn;
38093 gcc_assert (INTVAL (cookie) == 0);
38095 /* Create the call. */
38096 call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_desc), flag);
38097 if (value != NULL_RTX)
38098 call[0] = gen_rtx_SET (value, call[0]);
38100 call[1] = simple_return_rtx;
38102 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (2, call));
38103 insn = emit_call_insn (insn);
38105 /* Note use of the TOC register. */
38106 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), gen_rtx_REG (Pmode, TOC_REGNUM));
38109 /* Return whether we need to always update the saved TOC pointer when we update
38110 the stack pointer. */
38112 static bool
38113 rs6000_save_toc_in_prologue_p (void)
38115 return (cfun && cfun->machine && cfun->machine->save_toc_in_prologue);
38118 #ifdef HAVE_GAS_HIDDEN
38119 # define USE_HIDDEN_LINKONCE 1
38120 #else
38121 # define USE_HIDDEN_LINKONCE 0
38122 #endif
38124 /* Fills in the label name that should be used for a 476 link stack thunk. */
38126 void
38127 get_ppc476_thunk_name (char name[32])
38129 gcc_assert (TARGET_LINK_STACK);
38131 if (USE_HIDDEN_LINKONCE)
38132 sprintf (name, "__ppc476.get_thunk");
38133 else
38134 ASM_GENERATE_INTERNAL_LABEL (name, "LPPC476_", 0);
38137 /* This function emits the simple thunk routine that is used to preserve
38138 the link stack on the 476 cpu. */
38140 static void rs6000_code_end (void) ATTRIBUTE_UNUSED;
38141 static void
38142 rs6000_code_end (void)
38144 char name[32];
38145 tree decl;
38147 if (!TARGET_LINK_STACK)
38148 return;
38150 get_ppc476_thunk_name (name);
38152 decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name),
38153 build_function_type_list (void_type_node, NULL_TREE));
38154 DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
38155 NULL_TREE, void_type_node);
38156 TREE_PUBLIC (decl) = 1;
38157 TREE_STATIC (decl) = 1;
38159 #if RS6000_WEAK
38160 if (USE_HIDDEN_LINKONCE && !TARGET_XCOFF)
38162 cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
38163 targetm.asm_out.unique_section (decl, 0);
38164 switch_to_section (get_named_section (decl, NULL, 0));
38165 DECL_WEAK (decl) = 1;
38166 ASM_WEAKEN_DECL (asm_out_file, decl, name, 0);
38167 targetm.asm_out.globalize_label (asm_out_file, name);
38168 targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
38169 ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
38171 else
38172 #endif
38174 switch_to_section (text_section);
38175 ASM_OUTPUT_LABEL (asm_out_file, name);
38178 DECL_INITIAL (decl) = make_node (BLOCK);
38179 current_function_decl = decl;
38180 allocate_struct_function (decl, false);
38181 init_function_start (decl);
38182 first_function_block_is_cold = false;
38183 /* Make sure unwind info is emitted for the thunk if needed. */
38184 final_start_function (emit_barrier (), asm_out_file, 1);
38186 fputs ("\tblr\n", asm_out_file);
38188 final_end_function ();
38189 init_insn_lengths ();
38190 free_after_compilation (cfun);
38191 set_cfun (NULL);
38192 current_function_decl = NULL;
38195 /* Add r30 to hard reg set if the prologue sets it up and it is not
38196 pic_offset_table_rtx. */
38198 static void
38199 rs6000_set_up_by_prologue (struct hard_reg_set_container *set)
38201 if (!TARGET_SINGLE_PIC_BASE
38202 && TARGET_TOC
38203 && TARGET_MINIMAL_TOC
38204 && !constant_pool_empty_p ())
38205 add_to_hard_reg_set (&set->set, Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
38206 if (cfun->machine->split_stack_argp_used)
38207 add_to_hard_reg_set (&set->set, Pmode, 12);
38209 /* Make sure the hard reg set doesn't include r2, which was possibly added
38210 via PIC_OFFSET_TABLE_REGNUM. */
38211 if (TARGET_TOC)
38212 remove_from_hard_reg_set (&set->set, Pmode, TOC_REGNUM);
38216 /* Helper function for rs6000_split_logical to emit a logical instruction after
38217 spliting the operation to single GPR registers.
38219 DEST is the destination register.
38220 OP1 and OP2 are the input source registers.
38221 CODE is the base operation (AND, IOR, XOR, NOT).
38222 MODE is the machine mode.
38223 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
38224 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
38225 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT. */
38227 static void
38228 rs6000_split_logical_inner (rtx dest,
38229 rtx op1,
38230 rtx op2,
38231 enum rtx_code code,
38232 machine_mode mode,
38233 bool complement_final_p,
38234 bool complement_op1_p,
38235 bool complement_op2_p)
38237 rtx bool_rtx;
38239 /* Optimize AND of 0/0xffffffff and IOR/XOR of 0. */
38240 if (op2 && GET_CODE (op2) == CONST_INT
38241 && (mode == SImode || (mode == DImode && TARGET_POWERPC64))
38242 && !complement_final_p && !complement_op1_p && !complement_op2_p)
38244 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
38245 HOST_WIDE_INT value = INTVAL (op2) & mask;
38247 /* Optimize AND of 0 to just set 0. Optimize AND of -1 to be a move. */
38248 if (code == AND)
38250 if (value == 0)
38252 emit_insn (gen_rtx_SET (dest, const0_rtx));
38253 return;
38256 else if (value == mask)
38258 if (!rtx_equal_p (dest, op1))
38259 emit_insn (gen_rtx_SET (dest, op1));
38260 return;
38264 /* Optimize IOR/XOR of 0 to be a simple move. Split large operations
38265 into separate ORI/ORIS or XORI/XORIS instrucitons. */
38266 else if (code == IOR || code == XOR)
38268 if (value == 0)
38270 if (!rtx_equal_p (dest, op1))
38271 emit_insn (gen_rtx_SET (dest, op1));
38272 return;
38277 if (code == AND && mode == SImode
38278 && !complement_final_p && !complement_op1_p && !complement_op2_p)
38280 emit_insn (gen_andsi3 (dest, op1, op2));
38281 return;
38284 if (complement_op1_p)
38285 op1 = gen_rtx_NOT (mode, op1);
38287 if (complement_op2_p)
38288 op2 = gen_rtx_NOT (mode, op2);
38290 /* For canonical RTL, if only one arm is inverted it is the first. */
38291 if (!complement_op1_p && complement_op2_p)
38292 std::swap (op1, op2);
38294 bool_rtx = ((code == NOT)
38295 ? gen_rtx_NOT (mode, op1)
38296 : gen_rtx_fmt_ee (code, mode, op1, op2));
38298 if (complement_final_p)
38299 bool_rtx = gen_rtx_NOT (mode, bool_rtx);
38301 emit_insn (gen_rtx_SET (dest, bool_rtx));
38304 /* Split a DImode AND/IOR/XOR with a constant on a 32-bit system. These
38305 operations are split immediately during RTL generation to allow for more
38306 optimizations of the AND/IOR/XOR.
38308 OPERANDS is an array containing the destination and two input operands.
38309 CODE is the base operation (AND, IOR, XOR, NOT).
38310 MODE is the machine mode.
38311 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
38312 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
38313 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT.
38314 CLOBBER_REG is either NULL or a scratch register of type CC to allow
38315 formation of the AND instructions. */
38317 static void
38318 rs6000_split_logical_di (rtx operands[3],
38319 enum rtx_code code,
38320 bool complement_final_p,
38321 bool complement_op1_p,
38322 bool complement_op2_p)
38324 const HOST_WIDE_INT lower_32bits = HOST_WIDE_INT_C(0xffffffff);
38325 const HOST_WIDE_INT upper_32bits = ~ lower_32bits;
38326 const HOST_WIDE_INT sign_bit = HOST_WIDE_INT_C(0x80000000);
38327 enum hi_lo { hi = 0, lo = 1 };
38328 rtx op0_hi_lo[2], op1_hi_lo[2], op2_hi_lo[2];
38329 size_t i;
38331 op0_hi_lo[hi] = gen_highpart (SImode, operands[0]);
38332 op1_hi_lo[hi] = gen_highpart (SImode, operands[1]);
38333 op0_hi_lo[lo] = gen_lowpart (SImode, operands[0]);
38334 op1_hi_lo[lo] = gen_lowpart (SImode, operands[1]);
38336 if (code == NOT)
38337 op2_hi_lo[hi] = op2_hi_lo[lo] = NULL_RTX;
38338 else
38340 if (GET_CODE (operands[2]) != CONST_INT)
38342 op2_hi_lo[hi] = gen_highpart_mode (SImode, DImode, operands[2]);
38343 op2_hi_lo[lo] = gen_lowpart (SImode, operands[2]);
38345 else
38347 HOST_WIDE_INT value = INTVAL (operands[2]);
38348 HOST_WIDE_INT value_hi_lo[2];
38350 gcc_assert (!complement_final_p);
38351 gcc_assert (!complement_op1_p);
38352 gcc_assert (!complement_op2_p);
38354 value_hi_lo[hi] = value >> 32;
38355 value_hi_lo[lo] = value & lower_32bits;
38357 for (i = 0; i < 2; i++)
38359 HOST_WIDE_INT sub_value = value_hi_lo[i];
38361 if (sub_value & sign_bit)
38362 sub_value |= upper_32bits;
38364 op2_hi_lo[i] = GEN_INT (sub_value);
38366 /* If this is an AND instruction, check to see if we need to load
38367 the value in a register. */
38368 if (code == AND && sub_value != -1 && sub_value != 0
38369 && !and_operand (op2_hi_lo[i], SImode))
38370 op2_hi_lo[i] = force_reg (SImode, op2_hi_lo[i]);
38375 for (i = 0; i < 2; i++)
38377 /* Split large IOR/XOR operations. */
38378 if ((code == IOR || code == XOR)
38379 && GET_CODE (op2_hi_lo[i]) == CONST_INT
38380 && !complement_final_p
38381 && !complement_op1_p
38382 && !complement_op2_p
38383 && !logical_const_operand (op2_hi_lo[i], SImode))
38385 HOST_WIDE_INT value = INTVAL (op2_hi_lo[i]);
38386 HOST_WIDE_INT hi_16bits = value & HOST_WIDE_INT_C(0xffff0000);
38387 HOST_WIDE_INT lo_16bits = value & HOST_WIDE_INT_C(0x0000ffff);
38388 rtx tmp = gen_reg_rtx (SImode);
38390 /* Make sure the constant is sign extended. */
38391 if ((hi_16bits & sign_bit) != 0)
38392 hi_16bits |= upper_32bits;
38394 rs6000_split_logical_inner (tmp, op1_hi_lo[i], GEN_INT (hi_16bits),
38395 code, SImode, false, false, false);
38397 rs6000_split_logical_inner (op0_hi_lo[i], tmp, GEN_INT (lo_16bits),
38398 code, SImode, false, false, false);
38400 else
38401 rs6000_split_logical_inner (op0_hi_lo[i], op1_hi_lo[i], op2_hi_lo[i],
38402 code, SImode, complement_final_p,
38403 complement_op1_p, complement_op2_p);
38406 return;
38409 /* Split the insns that make up boolean operations operating on multiple GPR
38410 registers. The boolean MD patterns ensure that the inputs either are
38411 exactly the same as the output registers, or there is no overlap.
38413 OPERANDS is an array containing the destination and two input operands.
38414 CODE is the base operation (AND, IOR, XOR, NOT).
38415 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
38416 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
38417 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT. */
38419 void
38420 rs6000_split_logical (rtx operands[3],
38421 enum rtx_code code,
38422 bool complement_final_p,
38423 bool complement_op1_p,
38424 bool complement_op2_p)
38426 machine_mode mode = GET_MODE (operands[0]);
38427 machine_mode sub_mode;
38428 rtx op0, op1, op2;
38429 int sub_size, regno0, regno1, nregs, i;
38431 /* If this is DImode, use the specialized version that can run before
38432 register allocation. */
38433 if (mode == DImode && !TARGET_POWERPC64)
38435 rs6000_split_logical_di (operands, code, complement_final_p,
38436 complement_op1_p, complement_op2_p);
38437 return;
38440 op0 = operands[0];
38441 op1 = operands[1];
38442 op2 = (code == NOT) ? NULL_RTX : operands[2];
38443 sub_mode = (TARGET_POWERPC64) ? DImode : SImode;
38444 sub_size = GET_MODE_SIZE (sub_mode);
38445 regno0 = REGNO (op0);
38446 regno1 = REGNO (op1);
38448 gcc_assert (reload_completed);
38449 gcc_assert (IN_RANGE (regno0, FIRST_GPR_REGNO, LAST_GPR_REGNO));
38450 gcc_assert (IN_RANGE (regno1, FIRST_GPR_REGNO, LAST_GPR_REGNO));
38452 nregs = rs6000_hard_regno_nregs[(int)mode][regno0];
38453 gcc_assert (nregs > 1);
38455 if (op2 && REG_P (op2))
38456 gcc_assert (IN_RANGE (REGNO (op2), FIRST_GPR_REGNO, LAST_GPR_REGNO));
38458 for (i = 0; i < nregs; i++)
38460 int offset = i * sub_size;
38461 rtx sub_op0 = simplify_subreg (sub_mode, op0, mode, offset);
38462 rtx sub_op1 = simplify_subreg (sub_mode, op1, mode, offset);
38463 rtx sub_op2 = ((code == NOT)
38464 ? NULL_RTX
38465 : simplify_subreg (sub_mode, op2, mode, offset));
38467 rs6000_split_logical_inner (sub_op0, sub_op1, sub_op2, code, sub_mode,
38468 complement_final_p, complement_op1_p,
38469 complement_op2_p);
38472 return;
38476 /* Return true if the peephole2 can combine a load involving a combination of
38477 an addis instruction and a load with an offset that can be fused together on
38478 a power8. */
38480 bool
38481 fusion_gpr_load_p (rtx addis_reg, /* register set via addis. */
38482 rtx addis_value, /* addis value. */
38483 rtx target, /* target register that is loaded. */
38484 rtx mem) /* bottom part of the memory addr. */
38486 rtx addr;
38487 rtx base_reg;
38489 /* Validate arguments. */
38490 if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
38491 return false;
38493 if (!base_reg_operand (target, GET_MODE (target)))
38494 return false;
38496 if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
38497 return false;
38499 /* Allow sign/zero extension. */
38500 if (GET_CODE (mem) == ZERO_EXTEND
38501 || (GET_CODE (mem) == SIGN_EXTEND && TARGET_P8_FUSION_SIGN))
38502 mem = XEXP (mem, 0);
38504 if (!MEM_P (mem))
38505 return false;
38507 if (!fusion_gpr_mem_load (mem, GET_MODE (mem)))
38508 return false;
38510 addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
38511 if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
38512 return false;
38514 /* Validate that the register used to load the high value is either the
38515 register being loaded, or we can safely replace its use.
38517 This function is only called from the peephole2 pass and we assume that
38518 there are 2 instructions in the peephole (addis and load), so we want to
38519 check if the target register was not used in the memory address and the
38520 register to hold the addis result is dead after the peephole. */
38521 if (REGNO (addis_reg) != REGNO (target))
38523 if (reg_mentioned_p (target, mem))
38524 return false;
38526 if (!peep2_reg_dead_p (2, addis_reg))
38527 return false;
38529 /* If the target register being loaded is the stack pointer, we must
38530 avoid loading any other value into it, even temporarily. */
38531 if (REG_P (target) && REGNO (target) == STACK_POINTER_REGNUM)
38532 return false;
38535 base_reg = XEXP (addr, 0);
38536 return REGNO (addis_reg) == REGNO (base_reg);
38539 /* During the peephole2 pass, adjust and expand the insns for a load fusion
38540 sequence. We adjust the addis register to use the target register. If the
38541 load sign extends, we adjust the code to do the zero extending load, and an
38542 explicit sign extension later since the fusion only covers zero extending
38543 loads.
38545 The operands are:
38546 operands[0] register set with addis (to be replaced with target)
38547 operands[1] value set via addis
38548 operands[2] target register being loaded
38549 operands[3] D-form memory reference using operands[0]. */
38551 void
38552 expand_fusion_gpr_load (rtx *operands)
38554 rtx addis_value = operands[1];
38555 rtx target = operands[2];
38556 rtx orig_mem = operands[3];
38557 rtx new_addr, new_mem, orig_addr, offset;
38558 enum rtx_code plus_or_lo_sum;
38559 machine_mode target_mode = GET_MODE (target);
38560 machine_mode extend_mode = target_mode;
38561 machine_mode ptr_mode = Pmode;
38562 enum rtx_code extend = UNKNOWN;
38564 if (GET_CODE (orig_mem) == ZERO_EXTEND
38565 || (TARGET_P8_FUSION_SIGN && GET_CODE (orig_mem) == SIGN_EXTEND))
38567 extend = GET_CODE (orig_mem);
38568 orig_mem = XEXP (orig_mem, 0);
38569 target_mode = GET_MODE (orig_mem);
38572 gcc_assert (MEM_P (orig_mem));
38574 orig_addr = XEXP (orig_mem, 0);
38575 plus_or_lo_sum = GET_CODE (orig_addr);
38576 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38578 offset = XEXP (orig_addr, 1);
38579 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38580 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38582 if (extend != UNKNOWN)
38583 new_mem = gen_rtx_fmt_e (ZERO_EXTEND, extend_mode, new_mem);
38585 new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
38586 UNSPEC_FUSION_GPR);
38587 emit_insn (gen_rtx_SET (target, new_mem));
38589 if (extend == SIGN_EXTEND)
38591 int sub_off = ((BYTES_BIG_ENDIAN)
38592 ? GET_MODE_SIZE (extend_mode) - GET_MODE_SIZE (target_mode)
38593 : 0);
38594 rtx sign_reg
38595 = simplify_subreg (target_mode, target, extend_mode, sub_off);
38597 emit_insn (gen_rtx_SET (target,
38598 gen_rtx_SIGN_EXTEND (extend_mode, sign_reg)));
38601 return;
38604 /* Emit the addis instruction that will be part of a fused instruction
38605 sequence. */
38607 void
38608 emit_fusion_addis (rtx target, rtx addis_value, const char *comment,
38609 const char *mode_name)
38611 rtx fuse_ops[10];
38612 char insn_template[80];
38613 const char *addis_str = NULL;
38614 const char *comment_str = ASM_COMMENT_START;
38616 if (*comment_str == ' ')
38617 comment_str++;
38619 /* Emit the addis instruction. */
38620 fuse_ops[0] = target;
38621 if (satisfies_constraint_L (addis_value))
38623 fuse_ops[1] = addis_value;
38624 addis_str = "lis %0,%v1";
38627 else if (GET_CODE (addis_value) == PLUS)
38629 rtx op0 = XEXP (addis_value, 0);
38630 rtx op1 = XEXP (addis_value, 1);
38632 if (REG_P (op0) && CONST_INT_P (op1)
38633 && satisfies_constraint_L (op1))
38635 fuse_ops[1] = op0;
38636 fuse_ops[2] = op1;
38637 addis_str = "addis %0,%1,%v2";
38641 else if (GET_CODE (addis_value) == HIGH)
38643 rtx value = XEXP (addis_value, 0);
38644 if (GET_CODE (value) == UNSPEC && XINT (value, 1) == UNSPEC_TOCREL)
38646 fuse_ops[1] = XVECEXP (value, 0, 0); /* symbol ref. */
38647 fuse_ops[2] = XVECEXP (value, 0, 1); /* TOC register. */
38648 if (TARGET_ELF)
38649 addis_str = "addis %0,%2,%1@toc@ha";
38651 else if (TARGET_XCOFF)
38652 addis_str = "addis %0,%1@u(%2)";
38654 else
38655 gcc_unreachable ();
38658 else if (GET_CODE (value) == PLUS)
38660 rtx op0 = XEXP (value, 0);
38661 rtx op1 = XEXP (value, 1);
38663 if (GET_CODE (op0) == UNSPEC
38664 && XINT (op0, 1) == UNSPEC_TOCREL
38665 && CONST_INT_P (op1))
38667 fuse_ops[1] = XVECEXP (op0, 0, 0); /* symbol ref. */
38668 fuse_ops[2] = XVECEXP (op0, 0, 1); /* TOC register. */
38669 fuse_ops[3] = op1;
38670 if (TARGET_ELF)
38671 addis_str = "addis %0,%2,%1+%3@toc@ha";
38673 else if (TARGET_XCOFF)
38674 addis_str = "addis %0,%1+%3@u(%2)";
38676 else
38677 gcc_unreachable ();
38681 else if (satisfies_constraint_L (value))
38683 fuse_ops[1] = value;
38684 addis_str = "lis %0,%v1";
38687 else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (value))
38689 fuse_ops[1] = value;
38690 addis_str = "lis %0,%1@ha";
38694 if (!addis_str)
38695 fatal_insn ("Could not generate addis value for fusion", addis_value);
38697 sprintf (insn_template, "%s\t\t%s %s, type %s", addis_str, comment_str,
38698 comment, mode_name);
38699 output_asm_insn (insn_template, fuse_ops);
38702 /* Emit a D-form load or store instruction that is the second instruction
38703 of a fusion sequence. */
38705 void
38706 emit_fusion_load_store (rtx load_store_reg, rtx addis_reg, rtx offset,
38707 const char *insn_str)
38709 rtx fuse_ops[10];
38710 char insn_template[80];
38712 fuse_ops[0] = load_store_reg;
38713 fuse_ops[1] = addis_reg;
38715 if (CONST_INT_P (offset) && satisfies_constraint_I (offset))
38717 sprintf (insn_template, "%s %%0,%%2(%%1)", insn_str);
38718 fuse_ops[2] = offset;
38719 output_asm_insn (insn_template, fuse_ops);
38722 else if (GET_CODE (offset) == UNSPEC
38723 && XINT (offset, 1) == UNSPEC_TOCREL)
38725 if (TARGET_ELF)
38726 sprintf (insn_template, "%s %%0,%%2@toc@l(%%1)", insn_str);
38728 else if (TARGET_XCOFF)
38729 sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);
38731 else
38732 gcc_unreachable ();
38734 fuse_ops[2] = XVECEXP (offset, 0, 0);
38735 output_asm_insn (insn_template, fuse_ops);
38738 else if (GET_CODE (offset) == PLUS
38739 && GET_CODE (XEXP (offset, 0)) == UNSPEC
38740 && XINT (XEXP (offset, 0), 1) == UNSPEC_TOCREL
38741 && CONST_INT_P (XEXP (offset, 1)))
38743 rtx tocrel_unspec = XEXP (offset, 0);
38744 if (TARGET_ELF)
38745 sprintf (insn_template, "%s %%0,%%2+%%3@toc@l(%%1)", insn_str);
38747 else if (TARGET_XCOFF)
38748 sprintf (insn_template, "%s %%0,%%2+%%3@l(%%1)", insn_str);
38750 else
38751 gcc_unreachable ();
38753 fuse_ops[2] = XVECEXP (tocrel_unspec, 0, 0);
38754 fuse_ops[3] = XEXP (offset, 1);
38755 output_asm_insn (insn_template, fuse_ops);
38758 else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (offset))
38760 sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);
38762 fuse_ops[2] = offset;
38763 output_asm_insn (insn_template, fuse_ops);
38766 else
38767 fatal_insn ("Unable to generate load/store offset for fusion", offset);
38769 return;
38772 /* Wrap a TOC address that can be fused to indicate that special fusion
38773 processing is needed. */
38776 fusion_wrap_memory_address (rtx old_mem)
38778 rtx old_addr = XEXP (old_mem, 0);
38779 rtvec v = gen_rtvec (1, old_addr);
38780 rtx new_addr = gen_rtx_UNSPEC (Pmode, v, UNSPEC_FUSION_ADDIS);
38781 return replace_equiv_address_nv (old_mem, new_addr, false);
38784 /* Given an address, convert it into the addis and load offset parts. Addresses
38785 created during the peephole2 process look like:
38786 (lo_sum (high (unspec [(sym)] UNSPEC_TOCREL))
38787 (unspec [(...)] UNSPEC_TOCREL))
38789 Addresses created via toc fusion look like:
38790 (unspec [(unspec [(...)] UNSPEC_TOCREL)] UNSPEC_FUSION_ADDIS)) */
38792 static void
38793 fusion_split_address (rtx addr, rtx *p_hi, rtx *p_lo)
38795 rtx hi, lo;
38797 if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_FUSION_ADDIS)
38799 lo = XVECEXP (addr, 0, 0);
38800 hi = gen_rtx_HIGH (Pmode, lo);
38802 else if (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
38804 hi = XEXP (addr, 0);
38805 lo = XEXP (addr, 1);
38807 else
38808 gcc_unreachable ();
38810 *p_hi = hi;
38811 *p_lo = lo;
38814 /* Return a string to fuse an addis instruction with a gpr load to the same
38815 register that we loaded up the addis instruction. The address that is used
38816 is the logical address that was formed during peephole2:
38817 (lo_sum (high) (low-part))
38819 Or the address is the TOC address that is wrapped before register allocation:
38820 (unspec [(addr) (toc-reg)] UNSPEC_FUSION_ADDIS)
38822 The code is complicated, so we call output_asm_insn directly, and just
38823 return "". */
38825 const char *
38826 emit_fusion_gpr_load (rtx target, rtx mem)
38828 rtx addis_value;
38829 rtx addr;
38830 rtx load_offset;
38831 const char *load_str = NULL;
38832 const char *mode_name = NULL;
38833 machine_mode mode;
38835 if (GET_CODE (mem) == ZERO_EXTEND)
38836 mem = XEXP (mem, 0);
38838 gcc_assert (REG_P (target) && MEM_P (mem));
38840 addr = XEXP (mem, 0);
38841 fusion_split_address (addr, &addis_value, &load_offset);
38843 /* Now emit the load instruction to the same register. */
38844 mode = GET_MODE (mem);
38845 switch (mode)
38847 case E_QImode:
38848 mode_name = "char";
38849 load_str = "lbz";
38850 break;
38852 case E_HImode:
38853 mode_name = "short";
38854 load_str = "lhz";
38855 break;
38857 case E_SImode:
38858 case E_SFmode:
38859 mode_name = (mode == SFmode) ? "float" : "int";
38860 load_str = "lwz";
38861 break;
38863 case E_DImode:
38864 case E_DFmode:
38865 gcc_assert (TARGET_POWERPC64);
38866 mode_name = (mode == DFmode) ? "double" : "long";
38867 load_str = "ld";
38868 break;
38870 default:
38871 fatal_insn ("Bad GPR fusion", gen_rtx_SET (target, mem));
38874 /* Emit the addis instruction. */
38875 emit_fusion_addis (target, addis_value, "gpr load fusion", mode_name);
38877 /* Emit the D-form load instruction. */
38878 emit_fusion_load_store (target, target, load_offset, load_str);
38880 return "";
38884 /* Return true if the peephole2 can combine a load/store involving a
38885 combination of an addis instruction and the memory operation. This was
38886 added to the ISA 3.0 (power9) hardware. */
38888 bool
38889 fusion_p9_p (rtx addis_reg, /* register set via addis. */
38890 rtx addis_value, /* addis value. */
38891 rtx dest, /* destination (memory or register). */
38892 rtx src) /* source (register or memory). */
38894 rtx addr, mem, offset;
38895 machine_mode mode = GET_MODE (src);
38897 /* Validate arguments. */
38898 if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
38899 return false;
38901 if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
38902 return false;
38904 /* Ignore extend operations that are part of the load. */
38905 if (GET_CODE (src) == FLOAT_EXTEND || GET_CODE (src) == ZERO_EXTEND)
38906 src = XEXP (src, 0);
38908 /* Test for memory<-register or register<-memory. */
38909 if (fpr_reg_operand (src, mode) || int_reg_operand (src, mode))
38911 if (!MEM_P (dest))
38912 return false;
38914 mem = dest;
38917 else if (MEM_P (src))
38919 if (!fpr_reg_operand (dest, mode) && !int_reg_operand (dest, mode))
38920 return false;
38922 mem = src;
38925 else
38926 return false;
38928 addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
38929 if (GET_CODE (addr) == PLUS)
38931 if (!rtx_equal_p (addis_reg, XEXP (addr, 0)))
38932 return false;
38934 return satisfies_constraint_I (XEXP (addr, 1));
38937 else if (GET_CODE (addr) == LO_SUM)
38939 if (!rtx_equal_p (addis_reg, XEXP (addr, 0)))
38940 return false;
38942 offset = XEXP (addr, 1);
38943 if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
38944 return small_toc_ref (offset, GET_MODE (offset));
38946 else if (TARGET_ELF && !TARGET_POWERPC64)
38947 return CONSTANT_P (offset);
38950 return false;
38953 /* During the peephole2 pass, adjust and expand the insns for an extended fusion
38954 load sequence.
38956 The operands are:
38957 operands[0] register set with addis
38958 operands[1] value set via addis
38959 operands[2] target register being loaded
38960 operands[3] D-form memory reference using operands[0].
38962 This is similar to the fusion introduced with power8, except it scales to
38963 both loads/stores and does not require the result register to be the same as
38964 the base register. At the moment, we only do this if register set with addis
38965 is dead. */
38967 void
38968 expand_fusion_p9_load (rtx *operands)
38970 rtx tmp_reg = operands[0];
38971 rtx addis_value = operands[1];
38972 rtx target = operands[2];
38973 rtx orig_mem = operands[3];
38974 rtx new_addr, new_mem, orig_addr, offset, set, clobber, insn;
38975 enum rtx_code plus_or_lo_sum;
38976 machine_mode target_mode = GET_MODE (target);
38977 machine_mode extend_mode = target_mode;
38978 machine_mode ptr_mode = Pmode;
38979 enum rtx_code extend = UNKNOWN;
38981 if (GET_CODE (orig_mem) == FLOAT_EXTEND || GET_CODE (orig_mem) == ZERO_EXTEND)
38983 extend = GET_CODE (orig_mem);
38984 orig_mem = XEXP (orig_mem, 0);
38985 target_mode = GET_MODE (orig_mem);
38988 gcc_assert (MEM_P (orig_mem));
38990 orig_addr = XEXP (orig_mem, 0);
38991 plus_or_lo_sum = GET_CODE (orig_addr);
38992 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38994 offset = XEXP (orig_addr, 1);
38995 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38996 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38998 if (extend != UNKNOWN)
38999 new_mem = gen_rtx_fmt_e (extend, extend_mode, new_mem);
39001 new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
39002 UNSPEC_FUSION_P9);
39004 set = gen_rtx_SET (target, new_mem);
39005 clobber = gen_rtx_CLOBBER (VOIDmode, tmp_reg);
39006 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber));
39007 emit_insn (insn);
39009 return;
39012 /* During the peephole2 pass, adjust and expand the insns for an extended fusion
39013 store sequence.
39015 The operands are:
39016 operands[0] register set with addis
39017 operands[1] value set via addis
39018 operands[2] target D-form memory being stored to
39019 operands[3] register being stored
39021 This is similar to the fusion introduced with power8, except it scales to
39022 both loads/stores and does not require the result register to be the same as
39023 the base register. At the moment, we only do this if register set with addis
39024 is dead. */
39026 void
39027 expand_fusion_p9_store (rtx *operands)
39029 rtx tmp_reg = operands[0];
39030 rtx addis_value = operands[1];
39031 rtx orig_mem = operands[2];
39032 rtx src = operands[3];
39033 rtx new_addr, new_mem, orig_addr, offset, set, clobber, insn, new_src;
39034 enum rtx_code plus_or_lo_sum;
39035 machine_mode target_mode = GET_MODE (orig_mem);
39036 machine_mode ptr_mode = Pmode;
39038 gcc_assert (MEM_P (orig_mem));
39040 orig_addr = XEXP (orig_mem, 0);
39041 plus_or_lo_sum = GET_CODE (orig_addr);
39042 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
39044 offset = XEXP (orig_addr, 1);
39045 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
39046 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
39048 new_src = gen_rtx_UNSPEC (target_mode, gen_rtvec (1, src),
39049 UNSPEC_FUSION_P9);
39051 set = gen_rtx_SET (new_mem, new_src);
39052 clobber = gen_rtx_CLOBBER (VOIDmode, tmp_reg);
39053 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber));
39054 emit_insn (insn);
39056 return;
39059 /* Return a string to fuse an addis instruction with a load using extended
39060 fusion. The address that is used is the logical address that was formed
39061 during peephole2: (lo_sum (high) (low-part))
39063 The code is complicated, so we call output_asm_insn directly, and just
39064 return "". */
39066 const char *
39067 emit_fusion_p9_load (rtx reg, rtx mem, rtx tmp_reg)
39069 machine_mode mode = GET_MODE (reg);
39070 rtx hi;
39071 rtx lo;
39072 rtx addr;
39073 const char *load_string;
39074 int r;
39076 if (GET_CODE (mem) == FLOAT_EXTEND || GET_CODE (mem) == ZERO_EXTEND)
39078 mem = XEXP (mem, 0);
39079 mode = GET_MODE (mem);
39082 if (GET_CODE (reg) == SUBREG)
39084 gcc_assert (SUBREG_BYTE (reg) == 0);
39085 reg = SUBREG_REG (reg);
39088 if (!REG_P (reg))
39089 fatal_insn ("emit_fusion_p9_load, bad reg #1", reg);
39091 r = REGNO (reg);
39092 if (FP_REGNO_P (r))
39094 if (mode == SFmode)
39095 load_string = "lfs";
39096 else if (mode == DFmode || mode == DImode)
39097 load_string = "lfd";
39098 else
39099 gcc_unreachable ();
39101 else if (ALTIVEC_REGNO_P (r) && TARGET_P9_VECTOR)
39103 if (mode == SFmode)
39104 load_string = "lxssp";
39105 else if (mode == DFmode || mode == DImode)
39106 load_string = "lxsd";
39107 else
39108 gcc_unreachable ();
39110 else if (INT_REGNO_P (r))
39112 switch (mode)
39114 case E_QImode:
39115 load_string = "lbz";
39116 break;
39117 case E_HImode:
39118 load_string = "lhz";
39119 break;
39120 case E_SImode:
39121 case E_SFmode:
39122 load_string = "lwz";
39123 break;
39124 case E_DImode:
39125 case E_DFmode:
39126 if (!TARGET_POWERPC64)
39127 gcc_unreachable ();
39128 load_string = "ld";
39129 break;
39130 default:
39131 gcc_unreachable ();
39134 else
39135 fatal_insn ("emit_fusion_p9_load, bad reg #2", reg);
39137 if (!MEM_P (mem))
39138 fatal_insn ("emit_fusion_p9_load not MEM", mem);
39140 addr = XEXP (mem, 0);
39141 fusion_split_address (addr, &hi, &lo);
39143 /* Emit the addis instruction. */
39144 emit_fusion_addis (tmp_reg, hi, "power9 load fusion", GET_MODE_NAME (mode));
39146 /* Emit the D-form load instruction. */
39147 emit_fusion_load_store (reg, tmp_reg, lo, load_string);
39149 return "";
39152 /* Return a string to fuse an addis instruction with a store using extended
39153 fusion. The address that is used is the logical address that was formed
39154 during peephole2: (lo_sum (high) (low-part))
39156 The code is complicated, so we call output_asm_insn directly, and just
39157 return "". */
39159 const char *
39160 emit_fusion_p9_store (rtx mem, rtx reg, rtx tmp_reg)
39162 machine_mode mode = GET_MODE (reg);
39163 rtx hi;
39164 rtx lo;
39165 rtx addr;
39166 const char *store_string;
39167 int r;
39169 if (GET_CODE (reg) == SUBREG)
39171 gcc_assert (SUBREG_BYTE (reg) == 0);
39172 reg = SUBREG_REG (reg);
39175 if (!REG_P (reg))
39176 fatal_insn ("emit_fusion_p9_store, bad reg #1", reg);
39178 r = REGNO (reg);
39179 if (FP_REGNO_P (r))
39181 if (mode == SFmode)
39182 store_string = "stfs";
39183 else if (mode == DFmode)
39184 store_string = "stfd";
39185 else
39186 gcc_unreachable ();
39188 else if (ALTIVEC_REGNO_P (r) && TARGET_P9_VECTOR)
39190 if (mode == SFmode)
39191 store_string = "stxssp";
39192 else if (mode == DFmode || mode == DImode)
39193 store_string = "stxsd";
39194 else
39195 gcc_unreachable ();
39197 else if (INT_REGNO_P (r))
39199 switch (mode)
39201 case E_QImode:
39202 store_string = "stb";
39203 break;
39204 case E_HImode:
39205 store_string = "sth";
39206 break;
39207 case E_SImode:
39208 case E_SFmode:
39209 store_string = "stw";
39210 break;
39211 case E_DImode:
39212 case E_DFmode:
39213 if (!TARGET_POWERPC64)
39214 gcc_unreachable ();
39215 store_string = "std";
39216 break;
39217 default:
39218 gcc_unreachable ();
39221 else
39222 fatal_insn ("emit_fusion_p9_store, bad reg #2", reg);
39224 if (!MEM_P (mem))
39225 fatal_insn ("emit_fusion_p9_store not MEM", mem);
39227 addr = XEXP (mem, 0);
39228 fusion_split_address (addr, &hi, &lo);
39230 /* Emit the addis instruction. */
39231 emit_fusion_addis (tmp_reg, hi, "power9 store fusion", GET_MODE_NAME (mode));
39233 /* Emit the D-form load instruction. */
39234 emit_fusion_load_store (reg, tmp_reg, lo, store_string);
39236 return "";
39239 #ifdef RS6000_GLIBC_ATOMIC_FENV
39240 /* Function declarations for rs6000_atomic_assign_expand_fenv. */
39241 static tree atomic_hold_decl, atomic_clear_decl, atomic_update_decl;
39242 #endif
39244 /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */
39246 static void
39247 rs6000_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
39249 if (!TARGET_HARD_FLOAT)
39251 #ifdef RS6000_GLIBC_ATOMIC_FENV
39252 if (atomic_hold_decl == NULL_TREE)
39254 atomic_hold_decl
39255 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
39256 get_identifier ("__atomic_feholdexcept"),
39257 build_function_type_list (void_type_node,
39258 double_ptr_type_node,
39259 NULL_TREE));
39260 TREE_PUBLIC (atomic_hold_decl) = 1;
39261 DECL_EXTERNAL (atomic_hold_decl) = 1;
39264 if (atomic_clear_decl == NULL_TREE)
39266 atomic_clear_decl
39267 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
39268 get_identifier ("__atomic_feclearexcept"),
39269 build_function_type_list (void_type_node,
39270 NULL_TREE));
39271 TREE_PUBLIC (atomic_clear_decl) = 1;
39272 DECL_EXTERNAL (atomic_clear_decl) = 1;
39275 tree const_double = build_qualified_type (double_type_node,
39276 TYPE_QUAL_CONST);
39277 tree const_double_ptr = build_pointer_type (const_double);
39278 if (atomic_update_decl == NULL_TREE)
39280 atomic_update_decl
39281 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
39282 get_identifier ("__atomic_feupdateenv"),
39283 build_function_type_list (void_type_node,
39284 const_double_ptr,
39285 NULL_TREE));
39286 TREE_PUBLIC (atomic_update_decl) = 1;
39287 DECL_EXTERNAL (atomic_update_decl) = 1;
39290 tree fenv_var = create_tmp_var_raw (double_type_node);
39291 TREE_ADDRESSABLE (fenv_var) = 1;
39292 tree fenv_addr = build1 (ADDR_EXPR, double_ptr_type_node, fenv_var);
39294 *hold = build_call_expr (atomic_hold_decl, 1, fenv_addr);
39295 *clear = build_call_expr (atomic_clear_decl, 0);
39296 *update = build_call_expr (atomic_update_decl, 1,
39297 fold_convert (const_double_ptr, fenv_addr));
39298 #endif
39299 return;
39302 tree mffs = rs6000_builtin_decls[RS6000_BUILTIN_MFFS];
39303 tree mtfsf = rs6000_builtin_decls[RS6000_BUILTIN_MTFSF];
39304 tree call_mffs = build_call_expr (mffs, 0);
39306 /* Generates the equivalent of feholdexcept (&fenv_var)
39308 *fenv_var = __builtin_mffs ();
39309 double fenv_hold;
39310 *(uint64_t*)&fenv_hold = *(uint64_t*)fenv_var & 0xffffffff00000007LL;
39311 __builtin_mtfsf (0xff, fenv_hold); */
39313 /* Mask to clear everything except for the rounding modes and non-IEEE
39314 arithmetic flag. */
39315 const unsigned HOST_WIDE_INT hold_exception_mask =
39316 HOST_WIDE_INT_C (0xffffffff00000007);
39318 tree fenv_var = create_tmp_var_raw (double_type_node);
39320 tree hold_mffs = build2 (MODIFY_EXPR, void_type_node, fenv_var, call_mffs);
39322 tree fenv_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_var);
39323 tree fenv_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
39324 build_int_cst (uint64_type_node,
39325 hold_exception_mask));
39327 tree fenv_hold_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
39328 fenv_llu_and);
39330 tree hold_mtfsf = build_call_expr (mtfsf, 2,
39331 build_int_cst (unsigned_type_node, 0xff),
39332 fenv_hold_mtfsf);
39334 *hold = build2 (COMPOUND_EXPR, void_type_node, hold_mffs, hold_mtfsf);
39336 /* Generates the equivalent of feclearexcept (FE_ALL_EXCEPT):
39338 double fenv_clear = __builtin_mffs ();
39339 *(uint64_t)&fenv_clear &= 0xffffffff00000000LL;
39340 __builtin_mtfsf (0xff, fenv_clear); */
39342 /* Mask to clear everything except for the rounding modes and non-IEEE
39343 arithmetic flag. */
39344 const unsigned HOST_WIDE_INT clear_exception_mask =
39345 HOST_WIDE_INT_C (0xffffffff00000000);
39347 tree fenv_clear = create_tmp_var_raw (double_type_node);
39349 tree clear_mffs = build2 (MODIFY_EXPR, void_type_node, fenv_clear, call_mffs);
39351 tree fenv_clean_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_clear);
39352 tree fenv_clear_llu_and = build2 (BIT_AND_EXPR, uint64_type_node,
39353 fenv_clean_llu,
39354 build_int_cst (uint64_type_node,
39355 clear_exception_mask));
39357 tree fenv_clear_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
39358 fenv_clear_llu_and);
39360 tree clear_mtfsf = build_call_expr (mtfsf, 2,
39361 build_int_cst (unsigned_type_node, 0xff),
39362 fenv_clear_mtfsf);
39364 *clear = build2 (COMPOUND_EXPR, void_type_node, clear_mffs, clear_mtfsf);
39366 /* Generates the equivalent of feupdateenv (&fenv_var)
39368 double old_fenv = __builtin_mffs ();
39369 double fenv_update;
39370 *(uint64_t*)&fenv_update = (*(uint64_t*)&old & 0xffffffff1fffff00LL) |
39371 (*(uint64_t*)fenv_var 0x1ff80fff);
39372 __builtin_mtfsf (0xff, fenv_update); */
39374 const unsigned HOST_WIDE_INT update_exception_mask =
39375 HOST_WIDE_INT_C (0xffffffff1fffff00);
39376 const unsigned HOST_WIDE_INT new_exception_mask =
39377 HOST_WIDE_INT_C (0x1ff80fff);
39379 tree old_fenv = create_tmp_var_raw (double_type_node);
39380 tree update_mffs = build2 (MODIFY_EXPR, void_type_node, old_fenv, call_mffs);
39382 tree old_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, old_fenv);
39383 tree old_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, old_llu,
39384 build_int_cst (uint64_type_node,
39385 update_exception_mask));
39387 tree new_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
39388 build_int_cst (uint64_type_node,
39389 new_exception_mask));
39391 tree new_llu_mask = build2 (BIT_IOR_EXPR, uint64_type_node,
39392 old_llu_and, new_llu_and);
39394 tree fenv_update_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
39395 new_llu_mask);
39397 tree update_mtfsf = build_call_expr (mtfsf, 2,
39398 build_int_cst (unsigned_type_node, 0xff),
39399 fenv_update_mtfsf);
39401 *update = build2 (COMPOUND_EXPR, void_type_node, update_mffs, update_mtfsf);
39404 void
39405 rs6000_generate_float2_code (bool signed_convert, rtx dst, rtx src1, rtx src2)
39407 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
39409 rtx_tmp0 = gen_reg_rtx (V2DImode);
39410 rtx_tmp1 = gen_reg_rtx (V2DImode);
39412 /* The destination of the vmrgew instruction layout is:
39413 rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
39414 Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
39415 vmrgew instruction will be correct. */
39416 if (VECTOR_ELT_ORDER_BIG)
39418 emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp0, src1, src2, GEN_INT (0)));
39419 emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp1, src1, src2, GEN_INT (3)));
39421 else
39423 emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp0, src1, src2, GEN_INT (3)));
39424 emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp1, src1, src2, GEN_INT (0)));
39427 rtx_tmp2 = gen_reg_rtx (V4SFmode);
39428 rtx_tmp3 = gen_reg_rtx (V4SFmode);
39430 if (signed_convert)
39432 emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp2, rtx_tmp0));
39433 emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp3, rtx_tmp1));
39435 else
39437 emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp2, rtx_tmp0));
39438 emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp3, rtx_tmp1));
39441 if (VECTOR_ELT_ORDER_BIG)
39442 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
39443 else
39444 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
39447 void
39448 rs6000_generate_vsigned2_code (bool signed_convert, rtx dst, rtx src1,
39449 rtx src2)
39451 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
39453 rtx_tmp0 = gen_reg_rtx (V2DFmode);
39454 rtx_tmp1 = gen_reg_rtx (V2DFmode);
39456 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (0)));
39457 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (3)));
39459 rtx_tmp2 = gen_reg_rtx (V4SImode);
39460 rtx_tmp3 = gen_reg_rtx (V4SImode);
39462 if (signed_convert)
39464 emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp2, rtx_tmp0));
39465 emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp3, rtx_tmp1));
39467 else
39469 emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp2, rtx_tmp0));
39470 emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp3, rtx_tmp1));
39473 emit_insn (gen_p8_vmrgew_v4si (dst, rtx_tmp2, rtx_tmp3));
39476 /* Implement the TARGET_OPTAB_SUPPORTED_P hook. */
39478 static bool
39479 rs6000_optab_supported_p (int op, machine_mode mode1, machine_mode,
39480 optimization_type opt_type)
39482 switch (op)
39484 case rsqrt_optab:
39485 return (opt_type == OPTIMIZE_FOR_SPEED
39486 && RS6000_RECIP_AUTO_RSQRTE_P (mode1));
39488 default:
39489 return true;
39493 /* Implement TARGET_CONSTANT_ALIGNMENT. */
39495 static HOST_WIDE_INT
39496 rs6000_constant_alignment (const_tree exp, HOST_WIDE_INT align)
39498 if (TREE_CODE (exp) == STRING_CST
39499 && (STRICT_ALIGNMENT || !optimize_size))
39500 return MAX (align, BITS_PER_WORD);
39501 return align;
39504 /* Implement TARGET_STARTING_FRAME_OFFSET. */
39506 static HOST_WIDE_INT
39507 rs6000_starting_frame_offset (void)
39509 if (FRAME_GROWS_DOWNWARD)
39510 return 0;
39511 return RS6000_STARTING_FRAME_OFFSET;
39514 struct gcc_target targetm = TARGET_INITIALIZER;
39516 #include "gt-rs6000.h"