configure.ac: Don't use pkg-config to check for bdw-gc.
[official-gcc.git] / gcc / fold-const.c
blob6517188c4c6026205731e044a5e0fde3c1011c0d
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
83 /* Nonzero if we are folding constants inside an initializer; zero
84 otherwise. */
85 int folding_initializer = 0;
87 /* The following constants represent a bit based encoding of GCC's
88 comparison operators. This encoding simplifies transformations
89 on relational comparison operators, such as AND and OR. */
90 enum comparison_code {
91 COMPCODE_FALSE = 0,
92 COMPCODE_LT = 1,
93 COMPCODE_EQ = 2,
94 COMPCODE_LE = 3,
95 COMPCODE_GT = 4,
96 COMPCODE_LTGT = 5,
97 COMPCODE_GE = 6,
98 COMPCODE_ORD = 7,
99 COMPCODE_UNORD = 8,
100 COMPCODE_UNLT = 9,
101 COMPCODE_UNEQ = 10,
102 COMPCODE_UNLE = 11,
103 COMPCODE_UNGT = 12,
104 COMPCODE_NE = 13,
105 COMPCODE_UNGE = 14,
106 COMPCODE_TRUE = 15
109 static bool negate_expr_p (tree);
110 static tree negate_expr (tree);
111 static tree split_tree (location_t, tree, tree, enum tree_code,
112 tree *, tree *, tree *, int);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int operand_equal_for_comparison_p (tree, tree, tree);
117 static int twoval_comparison_p (tree, tree *, tree *, int *);
118 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
119 static tree optimize_bit_field_compare (location_t, enum tree_code,
120 tree, tree, tree);
121 static int simple_operand_p (const_tree);
122 static bool simple_operand_p_2 (tree);
123 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
124 static tree range_predecessor (tree);
125 static tree range_successor (tree);
126 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
127 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
128 static tree unextend (tree, int, int, tree);
129 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
130 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
131 static tree fold_binary_op_with_conditional_arg (location_t,
132 enum tree_code, tree,
133 tree, tree,
134 tree, tree, int);
135 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
140 static tree fold_view_convert_expr (tree, tree);
141 static bool vec_cst_ctor_to_array (tree, tree *);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
147 static location_t
148 expr_location_or (tree t, location_t loc)
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc == UNKNOWN_LOCATION ? loc : tloc;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
169 return x;
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
174 NULL_TREE. */
176 tree
177 div_if_zero_remainder (const_tree arg1, const_tree arg2)
179 widest_int quo;
181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
182 SIGNED, &quo))
183 return wide_int_to_tree (TREE_TYPE (arg1), quo);
185 return NULL_TREE;
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
195 used. */
197 static int fold_deferring_overflow_warnings;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
214 void
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
227 deferred code. */
229 void
230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
232 const char *warnmsg;
233 location_t locus;
235 gcc_assert (fold_deferring_overflow_warnings > 0);
236 --fold_deferring_overflow_warnings;
237 if (fold_deferring_overflow_warnings > 0)
239 if (fold_deferred_overflow_warning != NULL
240 && code != 0
241 && code < (int) fold_deferred_overflow_code)
242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
243 return;
246 warnmsg = fold_deferred_overflow_warning;
247 fold_deferred_overflow_warning = NULL;
249 if (!issue || warnmsg == NULL)
250 return;
252 if (gimple_no_warning_p (stmt))
253 return;
255 /* Use the smallest code level when deciding to issue the
256 warning. */
257 if (code == 0 || code > (int) fold_deferred_overflow_code)
258 code = fold_deferred_overflow_code;
260 if (!issue_strict_overflow_warning (code))
261 return;
263 if (stmt == NULL)
264 locus = input_location;
265 else
266 locus = gimple_location (stmt);
267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
270 /* Stop deferring overflow warnings, ignoring any deferred
271 warnings. */
273 void
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL, 0);
279 /* Whether we are deferring overflow warnings. */
281 bool
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings > 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
290 void
291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
293 if (fold_deferring_overflow_warnings > 0)
295 if (fold_deferred_overflow_warning == NULL
296 || wc < fold_deferred_overflow_code)
298 fold_deferred_overflow_warning = gmsgid;
299 fold_deferred_overflow_code = wc;
302 else if (issue_strict_overflow_warning (wc))
303 warning (OPT_Wstrict_overflow, gmsgid);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
309 bool
310 negate_mathfn_p (combined_fn fn)
312 switch (fn)
314 CASE_CFN_ASIN:
315 CASE_CFN_ASINH:
316 CASE_CFN_ATAN:
317 CASE_CFN_ATANH:
318 CASE_CFN_CASIN:
319 CASE_CFN_CASINH:
320 CASE_CFN_CATAN:
321 CASE_CFN_CATANH:
322 CASE_CFN_CBRT:
323 CASE_CFN_CPROJ:
324 CASE_CFN_CSIN:
325 CASE_CFN_CSINH:
326 CASE_CFN_CTAN:
327 CASE_CFN_CTANH:
328 CASE_CFN_ERF:
329 CASE_CFN_LLROUND:
330 CASE_CFN_LROUND:
331 CASE_CFN_ROUND:
332 CASE_CFN_SIN:
333 CASE_CFN_SINH:
334 CASE_CFN_TAN:
335 CASE_CFN_TANH:
336 CASE_CFN_TRUNC:
337 return true;
339 CASE_CFN_LLRINT:
340 CASE_CFN_LRINT:
341 CASE_CFN_NEARBYINT:
342 CASE_CFN_RINT:
343 return !flag_rounding_math;
345 default:
346 break;
348 return false;
351 /* Check whether we may negate an integer constant T without causing
352 overflow. */
354 bool
355 may_negate_without_overflow_p (const_tree t)
357 tree type;
359 gcc_assert (TREE_CODE (t) == INTEGER_CST);
361 type = TREE_TYPE (t);
362 if (TYPE_UNSIGNED (type))
363 return false;
365 return !wi::only_sign_bit_p (t);
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
371 static bool
372 negate_expr_p (tree t)
374 tree type;
376 if (t == 0)
377 return false;
379 type = TREE_TYPE (t);
381 STRIP_SIGN_NOPS (t);
382 switch (TREE_CODE (t))
384 case INTEGER_CST:
385 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
386 return true;
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t);
390 case BIT_NOT_EXPR:
391 return (INTEGRAL_TYPE_P (type)
392 && TYPE_OVERFLOW_WRAPS (type));
394 case FIXED_CST:
395 return true;
397 case NEGATE_EXPR:
398 return !TYPE_OVERFLOW_SANITIZED (type);
400 case REAL_CST:
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
405 case COMPLEX_CST:
406 return negate_expr_p (TREE_REALPART (t))
407 && negate_expr_p (TREE_IMAGPART (t));
409 case VECTOR_CST:
411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
412 return true;
414 int count = TYPE_VECTOR_SUBPARTS (type), i;
416 for (i = 0; i < count; i++)
417 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
418 return false;
420 return true;
423 case COMPLEX_EXPR:
424 return negate_expr_p (TREE_OPERAND (t, 0))
425 && negate_expr_p (TREE_OPERAND (t, 1));
427 case CONJ_EXPR:
428 return negate_expr_p (TREE_OPERAND (t, 0));
430 case PLUS_EXPR:
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
432 || HONOR_SIGNED_ZEROS (element_mode (type))
433 || (INTEGRAL_TYPE_P (type)
434 && ! TYPE_OVERFLOW_WRAPS (type)))
435 return false;
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t, 1)))
438 return true;
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t, 0));
442 case MINUS_EXPR:
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
445 && !HONOR_SIGNED_ZEROS (element_mode (type))
446 && (! INTEGRAL_TYPE_P (type)
447 || TYPE_OVERFLOW_WRAPS (type));
449 case MULT_EXPR:
450 if (TYPE_UNSIGNED (type))
451 break;
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
457 && wi::popcount (wi::abs (TREE_OPERAND (t, 0))) != 1)
458 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
459 && wi::popcount (wi::abs (TREE_OPERAND (t, 1))) != 1)))
460 break;
462 /* Fall through. */
464 case RDIV_EXPR:
465 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
466 return negate_expr_p (TREE_OPERAND (t, 1))
467 || negate_expr_p (TREE_OPERAND (t, 0));
468 break;
470 case TRUNC_DIV_EXPR:
471 case ROUND_DIV_EXPR:
472 case EXACT_DIV_EXPR:
473 if (TYPE_UNSIGNED (type))
474 break;
475 if (negate_expr_p (TREE_OPERAND (t, 0)))
476 return true;
477 /* In general we can't negate B in A / B, because if A is INT_MIN and
478 B is 1, we may turn this into INT_MIN / -1 which is undefined
479 and actually traps on some architectures. */
480 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
481 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
482 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
483 && ! integer_onep (TREE_OPERAND (t, 1))))
484 return negate_expr_p (TREE_OPERAND (t, 1));
485 break;
487 case NOP_EXPR:
488 /* Negate -((double)float) as (double)(-float). */
489 if (TREE_CODE (type) == REAL_TYPE)
491 tree tem = strip_float_extensions (t);
492 if (tem != t)
493 return negate_expr_p (tem);
495 break;
497 case CALL_EXPR:
498 /* Negate -f(x) as f(-x). */
499 if (negate_mathfn_p (get_call_combined_fn (t)))
500 return negate_expr_p (CALL_EXPR_ARG (t, 0));
501 break;
503 case RSHIFT_EXPR:
504 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
505 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
507 tree op1 = TREE_OPERAND (t, 1);
508 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
509 return true;
511 break;
513 default:
514 break;
516 return false;
519 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
520 simplification is possible.
521 If negate_expr_p would return true for T, NULL_TREE will never be
522 returned. */
524 static tree
525 fold_negate_expr (location_t loc, tree t)
527 tree type = TREE_TYPE (t);
528 tree tem;
530 switch (TREE_CODE (t))
532 /* Convert - (~A) to A + 1. */
533 case BIT_NOT_EXPR:
534 if (INTEGRAL_TYPE_P (type))
535 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
536 build_one_cst (type));
537 break;
539 case INTEGER_CST:
540 tem = fold_negate_const (t, type);
541 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
542 || (ANY_INTEGRAL_TYPE_P (type)
543 && !TYPE_OVERFLOW_TRAPS (type)
544 && TYPE_OVERFLOW_WRAPS (type))
545 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
546 return tem;
547 break;
549 case REAL_CST:
550 tem = fold_negate_const (t, type);
551 return tem;
553 case FIXED_CST:
554 tem = fold_negate_const (t, type);
555 return tem;
557 case COMPLEX_CST:
559 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
560 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
561 if (rpart && ipart)
562 return build_complex (type, rpart, ipart);
564 break;
566 case VECTOR_CST:
568 int count = TYPE_VECTOR_SUBPARTS (type), i;
569 tree *elts = XALLOCAVEC (tree, count);
571 for (i = 0; i < count; i++)
573 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
574 if (elts[i] == NULL_TREE)
575 return NULL_TREE;
578 return build_vector (type, elts);
581 case COMPLEX_EXPR:
582 if (negate_expr_p (t))
583 return fold_build2_loc (loc, COMPLEX_EXPR, type,
584 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
585 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
586 break;
588 case CONJ_EXPR:
589 if (negate_expr_p (t))
590 return fold_build1_loc (loc, CONJ_EXPR, type,
591 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
592 break;
594 case NEGATE_EXPR:
595 if (!TYPE_OVERFLOW_SANITIZED (type))
596 return TREE_OPERAND (t, 0);
597 break;
599 case PLUS_EXPR:
600 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
601 && !HONOR_SIGNED_ZEROS (element_mode (type)))
603 /* -(A + B) -> (-B) - A. */
604 if (negate_expr_p (TREE_OPERAND (t, 1)))
606 tem = negate_expr (TREE_OPERAND (t, 1));
607 return fold_build2_loc (loc, MINUS_EXPR, type,
608 tem, TREE_OPERAND (t, 0));
611 /* -(A + B) -> (-A) - B. */
612 if (negate_expr_p (TREE_OPERAND (t, 0)))
614 tem = negate_expr (TREE_OPERAND (t, 0));
615 return fold_build2_loc (loc, MINUS_EXPR, type,
616 tem, TREE_OPERAND (t, 1));
619 break;
621 case MINUS_EXPR:
622 /* - (A - B) -> B - A */
623 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
624 && !HONOR_SIGNED_ZEROS (element_mode (type)))
625 return fold_build2_loc (loc, MINUS_EXPR, type,
626 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
627 break;
629 case MULT_EXPR:
630 if (TYPE_UNSIGNED (type))
631 break;
633 /* Fall through. */
635 case RDIV_EXPR:
636 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
638 tem = TREE_OPERAND (t, 1);
639 if (negate_expr_p (tem))
640 return fold_build2_loc (loc, TREE_CODE (t), type,
641 TREE_OPERAND (t, 0), negate_expr (tem));
642 tem = TREE_OPERAND (t, 0);
643 if (negate_expr_p (tem))
644 return fold_build2_loc (loc, TREE_CODE (t), type,
645 negate_expr (tem), TREE_OPERAND (t, 1));
647 break;
649 case TRUNC_DIV_EXPR:
650 case ROUND_DIV_EXPR:
651 case EXACT_DIV_EXPR:
652 if (TYPE_UNSIGNED (type))
653 break;
654 if (negate_expr_p (TREE_OPERAND (t, 0)))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 negate_expr (TREE_OPERAND (t, 0)),
657 TREE_OPERAND (t, 1));
658 /* In general we can't negate B in A / B, because if A is INT_MIN and
659 B is 1, we may turn this into INT_MIN / -1 which is undefined
660 and actually traps on some architectures. */
661 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
662 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
663 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
664 && ! integer_onep (TREE_OPERAND (t, 1))))
665 && negate_expr_p (TREE_OPERAND (t, 1)))
666 return fold_build2_loc (loc, TREE_CODE (t), type,
667 TREE_OPERAND (t, 0),
668 negate_expr (TREE_OPERAND (t, 1)));
669 break;
671 case NOP_EXPR:
672 /* Convert -((double)float) into (double)(-float). */
673 if (TREE_CODE (type) == REAL_TYPE)
675 tem = strip_float_extensions (t);
676 if (tem != t && negate_expr_p (tem))
677 return fold_convert_loc (loc, type, negate_expr (tem));
679 break;
681 case CALL_EXPR:
682 /* Negate -f(x) as f(-x). */
683 if (negate_mathfn_p (get_call_combined_fn (t))
684 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
686 tree fndecl, arg;
688 fndecl = get_callee_fndecl (t);
689 arg = negate_expr (CALL_EXPR_ARG (t, 0));
690 return build_call_expr_loc (loc, fndecl, 1, arg);
692 break;
694 case RSHIFT_EXPR:
695 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
696 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
698 tree op1 = TREE_OPERAND (t, 1);
699 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
701 tree ntype = TYPE_UNSIGNED (type)
702 ? signed_type_for (type)
703 : unsigned_type_for (type);
704 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
705 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
706 return fold_convert_loc (loc, type, temp);
709 break;
711 default:
712 break;
715 return NULL_TREE;
718 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
719 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
720 return NULL_TREE. */
722 static tree
723 negate_expr (tree t)
725 tree type, tem;
726 location_t loc;
728 if (t == NULL_TREE)
729 return NULL_TREE;
731 loc = EXPR_LOCATION (t);
732 type = TREE_TYPE (t);
733 STRIP_SIGN_NOPS (t);
735 tem = fold_negate_expr (loc, t);
736 if (!tem)
737 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
738 return fold_convert_loc (loc, type, tem);
741 /* Split a tree IN into a constant, literal and variable parts that could be
742 combined with CODE to make IN. "constant" means an expression with
743 TREE_CONSTANT but that isn't an actual constant. CODE must be a
744 commutative arithmetic operation. Store the constant part into *CONP,
745 the literal in *LITP and return the variable part. If a part isn't
746 present, set it to null. If the tree does not decompose in this way,
747 return the entire tree as the variable part and the other parts as null.
749 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
750 case, we negate an operand that was subtracted. Except if it is a
751 literal for which we use *MINUS_LITP instead.
753 If NEGATE_P is true, we are negating all of IN, again except a literal
754 for which we use *MINUS_LITP instead. If a variable part is of pointer
755 type, it is negated after converting to TYPE. This prevents us from
756 generating illegal MINUS pointer expression. LOC is the location of
757 the converted variable part.
759 If IN is itself a literal or constant, return it as appropriate.
761 Note that we do not guarantee that any of the three values will be the
762 same type as IN, but they will have the same signedness and mode. */
764 static tree
765 split_tree (location_t loc, tree in, tree type, enum tree_code code,
766 tree *conp, tree *litp, tree *minus_litp, int negate_p)
768 tree var = 0;
770 *conp = 0;
771 *litp = 0;
772 *minus_litp = 0;
774 /* Strip any conversions that don't change the machine mode or signedness. */
775 STRIP_SIGN_NOPS (in);
777 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
778 || TREE_CODE (in) == FIXED_CST)
779 *litp = in;
780 else if (TREE_CODE (in) == code
781 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
782 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
783 /* We can associate addition and subtraction together (even
784 though the C standard doesn't say so) for integers because
785 the value is not affected. For reals, the value might be
786 affected, so we can't. */
787 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
788 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
790 tree op0 = TREE_OPERAND (in, 0);
791 tree op1 = TREE_OPERAND (in, 1);
792 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
793 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
795 /* First see if either of the operands is a literal, then a constant. */
796 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
797 || TREE_CODE (op0) == FIXED_CST)
798 *litp = op0, op0 = 0;
799 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
800 || TREE_CODE (op1) == FIXED_CST)
801 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
803 if (op0 != 0 && TREE_CONSTANT (op0))
804 *conp = op0, op0 = 0;
805 else if (op1 != 0 && TREE_CONSTANT (op1))
806 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
808 /* If we haven't dealt with either operand, this is not a case we can
809 decompose. Otherwise, VAR is either of the ones remaining, if any. */
810 if (op0 != 0 && op1 != 0)
811 var = in;
812 else if (op0 != 0)
813 var = op0;
814 else
815 var = op1, neg_var_p = neg1_p;
817 /* Now do any needed negations. */
818 if (neg_litp_p)
819 *minus_litp = *litp, *litp = 0;
820 if (neg_conp_p)
821 *conp = negate_expr (*conp);
822 if (neg_var_p && var)
824 /* Convert to TYPE before negating. */
825 var = fold_convert_loc (loc, type, var);
826 var = negate_expr (var);
829 else if (TREE_CONSTANT (in))
830 *conp = in;
831 else if (TREE_CODE (in) == BIT_NOT_EXPR
832 && code == PLUS_EXPR)
834 /* -X - 1 is folded to ~X, undo that here. Do _not_ do this
835 when IN is constant. */
836 *minus_litp = build_one_cst (TREE_TYPE (in));
837 var = negate_expr (TREE_OPERAND (in, 0));
839 else
840 var = in;
842 if (negate_p)
844 if (*litp)
845 *minus_litp = *litp, *litp = 0;
846 else if (*minus_litp)
847 *litp = *minus_litp, *minus_litp = 0;
848 *conp = negate_expr (*conp);
849 if (var)
851 /* Convert to TYPE before negating. */
852 var = fold_convert_loc (loc, type, var);
853 var = negate_expr (var);
857 return var;
860 /* Re-associate trees split by the above function. T1 and T2 are
861 either expressions to associate or null. Return the new
862 expression, if any. LOC is the location of the new expression. If
863 we build an operation, do it in TYPE and with CODE. */
865 static tree
866 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
868 if (t1 == 0)
869 return t2;
870 else if (t2 == 0)
871 return t1;
873 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
874 try to fold this since we will have infinite recursion. But do
875 deal with any NEGATE_EXPRs. */
876 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
877 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
879 if (code == PLUS_EXPR)
881 if (TREE_CODE (t1) == NEGATE_EXPR)
882 return build2_loc (loc, MINUS_EXPR, type,
883 fold_convert_loc (loc, type, t2),
884 fold_convert_loc (loc, type,
885 TREE_OPERAND (t1, 0)));
886 else if (TREE_CODE (t2) == NEGATE_EXPR)
887 return build2_loc (loc, MINUS_EXPR, type,
888 fold_convert_loc (loc, type, t1),
889 fold_convert_loc (loc, type,
890 TREE_OPERAND (t2, 0)));
891 else if (integer_zerop (t2))
892 return fold_convert_loc (loc, type, t1);
894 else if (code == MINUS_EXPR)
896 if (integer_zerop (t2))
897 return fold_convert_loc (loc, type, t1);
900 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
901 fold_convert_loc (loc, type, t2));
904 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
905 fold_convert_loc (loc, type, t2));
908 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
909 for use in int_const_binop, size_binop and size_diffop. */
911 static bool
912 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
914 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
915 return false;
916 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
917 return false;
919 switch (code)
921 case LSHIFT_EXPR:
922 case RSHIFT_EXPR:
923 case LROTATE_EXPR:
924 case RROTATE_EXPR:
925 return true;
927 default:
928 break;
931 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
932 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
933 && TYPE_MODE (type1) == TYPE_MODE (type2);
937 /* Combine two integer constants ARG1 and ARG2 under operation CODE
938 to produce a new constant. Return NULL_TREE if we don't know how
939 to evaluate CODE at compile-time. */
941 static tree
942 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
943 int overflowable)
945 wide_int res;
946 tree t;
947 tree type = TREE_TYPE (arg1);
948 signop sign = TYPE_SIGN (type);
949 bool overflow = false;
951 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
953 switch (code)
955 case BIT_IOR_EXPR:
956 res = wi::bit_or (arg1, arg2);
957 break;
959 case BIT_XOR_EXPR:
960 res = wi::bit_xor (arg1, arg2);
961 break;
963 case BIT_AND_EXPR:
964 res = wi::bit_and (arg1, arg2);
965 break;
967 case RSHIFT_EXPR:
968 case LSHIFT_EXPR:
969 if (wi::neg_p (arg2))
971 arg2 = -arg2;
972 if (code == RSHIFT_EXPR)
973 code = LSHIFT_EXPR;
974 else
975 code = RSHIFT_EXPR;
978 if (code == RSHIFT_EXPR)
979 /* It's unclear from the C standard whether shifts can overflow.
980 The following code ignores overflow; perhaps a C standard
981 interpretation ruling is needed. */
982 res = wi::rshift (arg1, arg2, sign);
983 else
984 res = wi::lshift (arg1, arg2);
985 break;
987 case RROTATE_EXPR:
988 case LROTATE_EXPR:
989 if (wi::neg_p (arg2))
991 arg2 = -arg2;
992 if (code == RROTATE_EXPR)
993 code = LROTATE_EXPR;
994 else
995 code = RROTATE_EXPR;
998 if (code == RROTATE_EXPR)
999 res = wi::rrotate (arg1, arg2);
1000 else
1001 res = wi::lrotate (arg1, arg2);
1002 break;
1004 case PLUS_EXPR:
1005 res = wi::add (arg1, arg2, sign, &overflow);
1006 break;
1008 case MINUS_EXPR:
1009 res = wi::sub (arg1, arg2, sign, &overflow);
1010 break;
1012 case MULT_EXPR:
1013 res = wi::mul (arg1, arg2, sign, &overflow);
1014 break;
1016 case MULT_HIGHPART_EXPR:
1017 res = wi::mul_high (arg1, arg2, sign);
1018 break;
1020 case TRUNC_DIV_EXPR:
1021 case EXACT_DIV_EXPR:
1022 if (arg2 == 0)
1023 return NULL_TREE;
1024 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1025 break;
1027 case FLOOR_DIV_EXPR:
1028 if (arg2 == 0)
1029 return NULL_TREE;
1030 res = wi::div_floor (arg1, arg2, sign, &overflow);
1031 break;
1033 case CEIL_DIV_EXPR:
1034 if (arg2 == 0)
1035 return NULL_TREE;
1036 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1037 break;
1039 case ROUND_DIV_EXPR:
1040 if (arg2 == 0)
1041 return NULL_TREE;
1042 res = wi::div_round (arg1, arg2, sign, &overflow);
1043 break;
1045 case TRUNC_MOD_EXPR:
1046 if (arg2 == 0)
1047 return NULL_TREE;
1048 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1049 break;
1051 case FLOOR_MOD_EXPR:
1052 if (arg2 == 0)
1053 return NULL_TREE;
1054 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1055 break;
1057 case CEIL_MOD_EXPR:
1058 if (arg2 == 0)
1059 return NULL_TREE;
1060 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1061 break;
1063 case ROUND_MOD_EXPR:
1064 if (arg2 == 0)
1065 return NULL_TREE;
1066 res = wi::mod_round (arg1, arg2, sign, &overflow);
1067 break;
1069 case MIN_EXPR:
1070 res = wi::min (arg1, arg2, sign);
1071 break;
1073 case MAX_EXPR:
1074 res = wi::max (arg1, arg2, sign);
1075 break;
1077 default:
1078 return NULL_TREE;
1081 t = force_fit_type (type, res, overflowable,
1082 (((sign == SIGNED || overflowable == -1)
1083 && overflow)
1084 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1086 return t;
1089 tree
1090 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1092 return int_const_binop_1 (code, arg1, arg2, 1);
1095 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1096 constant. We assume ARG1 and ARG2 have the same data type, or at least
1097 are the same kind of constant and the same machine mode. Return zero if
1098 combining the constants is not allowed in the current operating mode. */
1100 static tree
1101 const_binop (enum tree_code code, tree arg1, tree arg2)
1103 /* Sanity check for the recursive cases. */
1104 if (!arg1 || !arg2)
1105 return NULL_TREE;
1107 STRIP_NOPS (arg1);
1108 STRIP_NOPS (arg2);
1110 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1112 if (code == POINTER_PLUS_EXPR)
1113 return int_const_binop (PLUS_EXPR,
1114 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1116 return int_const_binop (code, arg1, arg2);
1119 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1121 machine_mode mode;
1122 REAL_VALUE_TYPE d1;
1123 REAL_VALUE_TYPE d2;
1124 REAL_VALUE_TYPE value;
1125 REAL_VALUE_TYPE result;
1126 bool inexact;
1127 tree t, type;
1129 /* The following codes are handled by real_arithmetic. */
1130 switch (code)
1132 case PLUS_EXPR:
1133 case MINUS_EXPR:
1134 case MULT_EXPR:
1135 case RDIV_EXPR:
1136 case MIN_EXPR:
1137 case MAX_EXPR:
1138 break;
1140 default:
1141 return NULL_TREE;
1144 d1 = TREE_REAL_CST (arg1);
1145 d2 = TREE_REAL_CST (arg2);
1147 type = TREE_TYPE (arg1);
1148 mode = TYPE_MODE (type);
1150 /* Don't perform operation if we honor signaling NaNs and
1151 either operand is a signaling NaN. */
1152 if (HONOR_SNANS (mode)
1153 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1154 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1155 return NULL_TREE;
1157 /* Don't perform operation if it would raise a division
1158 by zero exception. */
1159 if (code == RDIV_EXPR
1160 && real_equal (&d2, &dconst0)
1161 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1162 return NULL_TREE;
1164 /* If either operand is a NaN, just return it. Otherwise, set up
1165 for floating-point trap; we return an overflow. */
1166 if (REAL_VALUE_ISNAN (d1))
1168 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1169 is off. */
1170 d1.signalling = 0;
1171 t = build_real (type, d1);
1172 return t;
1174 else if (REAL_VALUE_ISNAN (d2))
1176 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1177 is off. */
1178 d2.signalling = 0;
1179 t = build_real (type, d2);
1180 return t;
1183 inexact = real_arithmetic (&value, code, &d1, &d2);
1184 real_convert (&result, mode, &value);
1186 /* Don't constant fold this floating point operation if
1187 the result has overflowed and flag_trapping_math. */
1188 if (flag_trapping_math
1189 && MODE_HAS_INFINITIES (mode)
1190 && REAL_VALUE_ISINF (result)
1191 && !REAL_VALUE_ISINF (d1)
1192 && !REAL_VALUE_ISINF (d2))
1193 return NULL_TREE;
1195 /* Don't constant fold this floating point operation if the
1196 result may dependent upon the run-time rounding mode and
1197 flag_rounding_math is set, or if GCC's software emulation
1198 is unable to accurately represent the result. */
1199 if ((flag_rounding_math
1200 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1201 && (inexact || !real_identical (&result, &value)))
1202 return NULL_TREE;
1204 t = build_real (type, result);
1206 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1207 return t;
1210 if (TREE_CODE (arg1) == FIXED_CST)
1212 FIXED_VALUE_TYPE f1;
1213 FIXED_VALUE_TYPE f2;
1214 FIXED_VALUE_TYPE result;
1215 tree t, type;
1216 int sat_p;
1217 bool overflow_p;
1219 /* The following codes are handled by fixed_arithmetic. */
1220 switch (code)
1222 case PLUS_EXPR:
1223 case MINUS_EXPR:
1224 case MULT_EXPR:
1225 case TRUNC_DIV_EXPR:
1226 if (TREE_CODE (arg2) != FIXED_CST)
1227 return NULL_TREE;
1228 f2 = TREE_FIXED_CST (arg2);
1229 break;
1231 case LSHIFT_EXPR:
1232 case RSHIFT_EXPR:
1234 if (TREE_CODE (arg2) != INTEGER_CST)
1235 return NULL_TREE;
1236 wide_int w2 = arg2;
1237 f2.data.high = w2.elt (1);
1238 f2.data.low = w2.elt (0);
1239 f2.mode = SImode;
1241 break;
1243 default:
1244 return NULL_TREE;
1247 f1 = TREE_FIXED_CST (arg1);
1248 type = TREE_TYPE (arg1);
1249 sat_p = TYPE_SATURATING (type);
1250 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1251 t = build_fixed (type, result);
1252 /* Propagate overflow flags. */
1253 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1254 TREE_OVERFLOW (t) = 1;
1255 return t;
1258 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1260 tree type = TREE_TYPE (arg1);
1261 tree r1 = TREE_REALPART (arg1);
1262 tree i1 = TREE_IMAGPART (arg1);
1263 tree r2 = TREE_REALPART (arg2);
1264 tree i2 = TREE_IMAGPART (arg2);
1265 tree real, imag;
1267 switch (code)
1269 case PLUS_EXPR:
1270 case MINUS_EXPR:
1271 real = const_binop (code, r1, r2);
1272 imag = const_binop (code, i1, i2);
1273 break;
1275 case MULT_EXPR:
1276 if (COMPLEX_FLOAT_TYPE_P (type))
1277 return do_mpc_arg2 (arg1, arg2, type,
1278 /* do_nonfinite= */ folding_initializer,
1279 mpc_mul);
1281 real = const_binop (MINUS_EXPR,
1282 const_binop (MULT_EXPR, r1, r2),
1283 const_binop (MULT_EXPR, i1, i2));
1284 imag = const_binop (PLUS_EXPR,
1285 const_binop (MULT_EXPR, r1, i2),
1286 const_binop (MULT_EXPR, i1, r2));
1287 break;
1289 case RDIV_EXPR:
1290 if (COMPLEX_FLOAT_TYPE_P (type))
1291 return do_mpc_arg2 (arg1, arg2, type,
1292 /* do_nonfinite= */ folding_initializer,
1293 mpc_div);
1294 /* Fallthru. */
1295 case TRUNC_DIV_EXPR:
1296 case CEIL_DIV_EXPR:
1297 case FLOOR_DIV_EXPR:
1298 case ROUND_DIV_EXPR:
1299 if (flag_complex_method == 0)
1301 /* Keep this algorithm in sync with
1302 tree-complex.c:expand_complex_div_straight().
1304 Expand complex division to scalars, straightforward algorithm.
1305 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1306 t = br*br + bi*bi
1308 tree magsquared
1309 = const_binop (PLUS_EXPR,
1310 const_binop (MULT_EXPR, r2, r2),
1311 const_binop (MULT_EXPR, i2, i2));
1312 tree t1
1313 = const_binop (PLUS_EXPR,
1314 const_binop (MULT_EXPR, r1, r2),
1315 const_binop (MULT_EXPR, i1, i2));
1316 tree t2
1317 = const_binop (MINUS_EXPR,
1318 const_binop (MULT_EXPR, i1, r2),
1319 const_binop (MULT_EXPR, r1, i2));
1321 real = const_binop (code, t1, magsquared);
1322 imag = const_binop (code, t2, magsquared);
1324 else
1326 /* Keep this algorithm in sync with
1327 tree-complex.c:expand_complex_div_wide().
1329 Expand complex division to scalars, modified algorithm to minimize
1330 overflow with wide input ranges. */
1331 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1332 fold_abs_const (r2, TREE_TYPE (type)),
1333 fold_abs_const (i2, TREE_TYPE (type)));
1335 if (integer_nonzerop (compare))
1337 /* In the TRUE branch, we compute
1338 ratio = br/bi;
1339 div = (br * ratio) + bi;
1340 tr = (ar * ratio) + ai;
1341 ti = (ai * ratio) - ar;
1342 tr = tr / div;
1343 ti = ti / div; */
1344 tree ratio = const_binop (code, r2, i2);
1345 tree div = const_binop (PLUS_EXPR, i2,
1346 const_binop (MULT_EXPR, r2, ratio));
1347 real = const_binop (MULT_EXPR, r1, ratio);
1348 real = const_binop (PLUS_EXPR, real, i1);
1349 real = const_binop (code, real, div);
1351 imag = const_binop (MULT_EXPR, i1, ratio);
1352 imag = const_binop (MINUS_EXPR, imag, r1);
1353 imag = const_binop (code, imag, div);
1355 else
1357 /* In the FALSE branch, we compute
1358 ratio = d/c;
1359 divisor = (d * ratio) + c;
1360 tr = (b * ratio) + a;
1361 ti = b - (a * ratio);
1362 tr = tr / div;
1363 ti = ti / div; */
1364 tree ratio = const_binop (code, i2, r2);
1365 tree div = const_binop (PLUS_EXPR, r2,
1366 const_binop (MULT_EXPR, i2, ratio));
1368 real = const_binop (MULT_EXPR, i1, ratio);
1369 real = const_binop (PLUS_EXPR, real, r1);
1370 real = const_binop (code, real, div);
1372 imag = const_binop (MULT_EXPR, r1, ratio);
1373 imag = const_binop (MINUS_EXPR, i1, imag);
1374 imag = const_binop (code, imag, div);
1377 break;
1379 default:
1380 return NULL_TREE;
1383 if (real && imag)
1384 return build_complex (type, real, imag);
1387 if (TREE_CODE (arg1) == VECTOR_CST
1388 && TREE_CODE (arg2) == VECTOR_CST)
1390 tree type = TREE_TYPE (arg1);
1391 int count = TYPE_VECTOR_SUBPARTS (type), i;
1392 tree *elts = XALLOCAVEC (tree, count);
1394 for (i = 0; i < count; i++)
1396 tree elem1 = VECTOR_CST_ELT (arg1, i);
1397 tree elem2 = VECTOR_CST_ELT (arg2, i);
1399 elts[i] = const_binop (code, elem1, elem2);
1401 /* It is possible that const_binop cannot handle the given
1402 code and return NULL_TREE */
1403 if (elts[i] == NULL_TREE)
1404 return NULL_TREE;
1407 return build_vector (type, elts);
1410 /* Shifts allow a scalar offset for a vector. */
1411 if (TREE_CODE (arg1) == VECTOR_CST
1412 && TREE_CODE (arg2) == INTEGER_CST)
1414 tree type = TREE_TYPE (arg1);
1415 int count = TYPE_VECTOR_SUBPARTS (type), i;
1416 tree *elts = XALLOCAVEC (tree, count);
1418 for (i = 0; i < count; i++)
1420 tree elem1 = VECTOR_CST_ELT (arg1, i);
1422 elts[i] = const_binop (code, elem1, arg2);
1424 /* It is possible that const_binop cannot handle the given
1425 code and return NULL_TREE. */
1426 if (elts[i] == NULL_TREE)
1427 return NULL_TREE;
1430 return build_vector (type, elts);
1432 return NULL_TREE;
1435 /* Overload that adds a TYPE parameter to be able to dispatch
1436 to fold_relational_const. */
1438 tree
1439 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1441 if (TREE_CODE_CLASS (code) == tcc_comparison)
1442 return fold_relational_const (code, type, arg1, arg2);
1444 /* ??? Until we make the const_binop worker take the type of the
1445 result as argument put those cases that need it here. */
1446 switch (code)
1448 case COMPLEX_EXPR:
1449 if ((TREE_CODE (arg1) == REAL_CST
1450 && TREE_CODE (arg2) == REAL_CST)
1451 || (TREE_CODE (arg1) == INTEGER_CST
1452 && TREE_CODE (arg2) == INTEGER_CST))
1453 return build_complex (type, arg1, arg2);
1454 return NULL_TREE;
1456 case VEC_PACK_TRUNC_EXPR:
1457 case VEC_PACK_FIX_TRUNC_EXPR:
1459 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1460 tree *elts;
1462 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1463 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1464 if (TREE_CODE (arg1) != VECTOR_CST
1465 || TREE_CODE (arg2) != VECTOR_CST)
1466 return NULL_TREE;
1468 elts = XALLOCAVEC (tree, nelts);
1469 if (!vec_cst_ctor_to_array (arg1, elts)
1470 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1471 return NULL_TREE;
1473 for (i = 0; i < nelts; i++)
1475 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1476 ? NOP_EXPR : FIX_TRUNC_EXPR,
1477 TREE_TYPE (type), elts[i]);
1478 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1479 return NULL_TREE;
1482 return build_vector (type, elts);
1485 case VEC_WIDEN_MULT_LO_EXPR:
1486 case VEC_WIDEN_MULT_HI_EXPR:
1487 case VEC_WIDEN_MULT_EVEN_EXPR:
1488 case VEC_WIDEN_MULT_ODD_EXPR:
1490 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1491 unsigned int out, ofs, scale;
1492 tree *elts;
1494 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1495 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1496 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1497 return NULL_TREE;
1499 elts = XALLOCAVEC (tree, nelts * 4);
1500 if (!vec_cst_ctor_to_array (arg1, elts)
1501 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1502 return NULL_TREE;
1504 if (code == VEC_WIDEN_MULT_LO_EXPR)
1505 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1506 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1507 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1508 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1509 scale = 1, ofs = 0;
1510 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1511 scale = 1, ofs = 1;
1513 for (out = 0; out < nelts; out++)
1515 unsigned int in1 = (out << scale) + ofs;
1516 unsigned int in2 = in1 + nelts * 2;
1517 tree t1, t2;
1519 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1520 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1522 if (t1 == NULL_TREE || t2 == NULL_TREE)
1523 return NULL_TREE;
1524 elts[out] = const_binop (MULT_EXPR, t1, t2);
1525 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1526 return NULL_TREE;
1529 return build_vector (type, elts);
1532 default:;
1535 if (TREE_CODE_CLASS (code) != tcc_binary)
1536 return NULL_TREE;
1538 /* Make sure type and arg0 have the same saturating flag. */
1539 gcc_checking_assert (TYPE_SATURATING (type)
1540 == TYPE_SATURATING (TREE_TYPE (arg1)));
1542 return const_binop (code, arg1, arg2);
1545 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1546 Return zero if computing the constants is not possible. */
1548 tree
1549 const_unop (enum tree_code code, tree type, tree arg0)
1551 /* Don't perform the operation, other than NEGATE and ABS, if
1552 flag_signaling_nans is on and the operand is a signaling NaN. */
1553 if (TREE_CODE (arg0) == REAL_CST
1554 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1555 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1556 && code != NEGATE_EXPR
1557 && code != ABS_EXPR)
1558 return NULL_TREE;
1560 switch (code)
1562 CASE_CONVERT:
1563 case FLOAT_EXPR:
1564 case FIX_TRUNC_EXPR:
1565 case FIXED_CONVERT_EXPR:
1566 return fold_convert_const (code, type, arg0);
1568 case ADDR_SPACE_CONVERT_EXPR:
1569 /* If the source address is 0, and the source address space
1570 cannot have a valid object at 0, fold to dest type null. */
1571 if (integer_zerop (arg0)
1572 && !(targetm.addr_space.zero_address_valid
1573 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1574 return fold_convert_const (code, type, arg0);
1575 break;
1577 case VIEW_CONVERT_EXPR:
1578 return fold_view_convert_expr (type, arg0);
1580 case NEGATE_EXPR:
1582 /* Can't call fold_negate_const directly here as that doesn't
1583 handle all cases and we might not be able to negate some
1584 constants. */
1585 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1586 if (tem && CONSTANT_CLASS_P (tem))
1587 return tem;
1588 break;
1591 case ABS_EXPR:
1592 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1593 return fold_abs_const (arg0, type);
1594 break;
1596 case CONJ_EXPR:
1597 if (TREE_CODE (arg0) == COMPLEX_CST)
1599 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1600 TREE_TYPE (type));
1601 return build_complex (type, TREE_REALPART (arg0), ipart);
1603 break;
1605 case BIT_NOT_EXPR:
1606 if (TREE_CODE (arg0) == INTEGER_CST)
1607 return fold_not_const (arg0, type);
1608 /* Perform BIT_NOT_EXPR on each element individually. */
1609 else if (TREE_CODE (arg0) == VECTOR_CST)
1611 tree *elements;
1612 tree elem;
1613 unsigned count = VECTOR_CST_NELTS (arg0), i;
1615 elements = XALLOCAVEC (tree, count);
1616 for (i = 0; i < count; i++)
1618 elem = VECTOR_CST_ELT (arg0, i);
1619 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1620 if (elem == NULL_TREE)
1621 break;
1622 elements[i] = elem;
1624 if (i == count)
1625 return build_vector (type, elements);
1627 break;
1629 case TRUTH_NOT_EXPR:
1630 if (TREE_CODE (arg0) == INTEGER_CST)
1631 return constant_boolean_node (integer_zerop (arg0), type);
1632 break;
1634 case REALPART_EXPR:
1635 if (TREE_CODE (arg0) == COMPLEX_CST)
1636 return fold_convert (type, TREE_REALPART (arg0));
1637 break;
1639 case IMAGPART_EXPR:
1640 if (TREE_CODE (arg0) == COMPLEX_CST)
1641 return fold_convert (type, TREE_IMAGPART (arg0));
1642 break;
1644 case VEC_UNPACK_LO_EXPR:
1645 case VEC_UNPACK_HI_EXPR:
1646 case VEC_UNPACK_FLOAT_LO_EXPR:
1647 case VEC_UNPACK_FLOAT_HI_EXPR:
1649 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1650 tree *elts;
1651 enum tree_code subcode;
1653 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1654 if (TREE_CODE (arg0) != VECTOR_CST)
1655 return NULL_TREE;
1657 elts = XALLOCAVEC (tree, nelts * 2);
1658 if (!vec_cst_ctor_to_array (arg0, elts))
1659 return NULL_TREE;
1661 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1662 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1663 elts += nelts;
1665 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1666 subcode = NOP_EXPR;
1667 else
1668 subcode = FLOAT_EXPR;
1670 for (i = 0; i < nelts; i++)
1672 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1673 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1674 return NULL_TREE;
1677 return build_vector (type, elts);
1680 case REDUC_MIN_EXPR:
1681 case REDUC_MAX_EXPR:
1682 case REDUC_PLUS_EXPR:
1684 unsigned int nelts, i;
1685 tree *elts;
1686 enum tree_code subcode;
1688 if (TREE_CODE (arg0) != VECTOR_CST)
1689 return NULL_TREE;
1690 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1692 elts = XALLOCAVEC (tree, nelts);
1693 if (!vec_cst_ctor_to_array (arg0, elts))
1694 return NULL_TREE;
1696 switch (code)
1698 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1699 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1700 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1701 default: gcc_unreachable ();
1704 for (i = 1; i < nelts; i++)
1706 elts[0] = const_binop (subcode, elts[0], elts[i]);
1707 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1708 return NULL_TREE;
1711 return elts[0];
1714 default:
1715 break;
1718 return NULL_TREE;
1721 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1722 indicates which particular sizetype to create. */
1724 tree
1725 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1727 return build_int_cst (sizetype_tab[(int) kind], number);
1730 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1731 is a tree code. The type of the result is taken from the operands.
1732 Both must be equivalent integer types, ala int_binop_types_match_p.
1733 If the operands are constant, so is the result. */
1735 tree
1736 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1738 tree type = TREE_TYPE (arg0);
1740 if (arg0 == error_mark_node || arg1 == error_mark_node)
1741 return error_mark_node;
1743 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1744 TREE_TYPE (arg1)));
1746 /* Handle the special case of two integer constants faster. */
1747 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1749 /* And some specific cases even faster than that. */
1750 if (code == PLUS_EXPR)
1752 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1753 return arg1;
1754 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1755 return arg0;
1757 else if (code == MINUS_EXPR)
1759 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1760 return arg0;
1762 else if (code == MULT_EXPR)
1764 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1765 return arg1;
1768 /* Handle general case of two integer constants. For sizetype
1769 constant calculations we always want to know about overflow,
1770 even in the unsigned case. */
1771 return int_const_binop_1 (code, arg0, arg1, -1);
1774 return fold_build2_loc (loc, code, type, arg0, arg1);
1777 /* Given two values, either both of sizetype or both of bitsizetype,
1778 compute the difference between the two values. Return the value
1779 in signed type corresponding to the type of the operands. */
1781 tree
1782 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1784 tree type = TREE_TYPE (arg0);
1785 tree ctype;
1787 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1788 TREE_TYPE (arg1)));
1790 /* If the type is already signed, just do the simple thing. */
1791 if (!TYPE_UNSIGNED (type))
1792 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1794 if (type == sizetype)
1795 ctype = ssizetype;
1796 else if (type == bitsizetype)
1797 ctype = sbitsizetype;
1798 else
1799 ctype = signed_type_for (type);
1801 /* If either operand is not a constant, do the conversions to the signed
1802 type and subtract. The hardware will do the right thing with any
1803 overflow in the subtraction. */
1804 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1805 return size_binop_loc (loc, MINUS_EXPR,
1806 fold_convert_loc (loc, ctype, arg0),
1807 fold_convert_loc (loc, ctype, arg1));
1809 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1810 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1811 overflow) and negate (which can't either). Special-case a result
1812 of zero while we're here. */
1813 if (tree_int_cst_equal (arg0, arg1))
1814 return build_int_cst (ctype, 0);
1815 else if (tree_int_cst_lt (arg1, arg0))
1816 return fold_convert_loc (loc, ctype,
1817 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1818 else
1819 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1820 fold_convert_loc (loc, ctype,
1821 size_binop_loc (loc,
1822 MINUS_EXPR,
1823 arg1, arg0)));
1826 /* A subroutine of fold_convert_const handling conversions of an
1827 INTEGER_CST to another integer type. */
1829 static tree
1830 fold_convert_const_int_from_int (tree type, const_tree arg1)
1832 /* Given an integer constant, make new constant with new type,
1833 appropriately sign-extended or truncated. Use widest_int
1834 so that any extension is done according ARG1's type. */
1835 return force_fit_type (type, wi::to_widest (arg1),
1836 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1837 TREE_OVERFLOW (arg1));
1840 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1841 to an integer type. */
1843 static tree
1844 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1846 bool overflow = false;
1847 tree t;
1849 /* The following code implements the floating point to integer
1850 conversion rules required by the Java Language Specification,
1851 that IEEE NaNs are mapped to zero and values that overflow
1852 the target precision saturate, i.e. values greater than
1853 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1854 are mapped to INT_MIN. These semantics are allowed by the
1855 C and C++ standards that simply state that the behavior of
1856 FP-to-integer conversion is unspecified upon overflow. */
1858 wide_int val;
1859 REAL_VALUE_TYPE r;
1860 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1862 switch (code)
1864 case FIX_TRUNC_EXPR:
1865 real_trunc (&r, VOIDmode, &x);
1866 break;
1868 default:
1869 gcc_unreachable ();
1872 /* If R is NaN, return zero and show we have an overflow. */
1873 if (REAL_VALUE_ISNAN (r))
1875 overflow = true;
1876 val = wi::zero (TYPE_PRECISION (type));
1879 /* See if R is less than the lower bound or greater than the
1880 upper bound. */
1882 if (! overflow)
1884 tree lt = TYPE_MIN_VALUE (type);
1885 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1886 if (real_less (&r, &l))
1888 overflow = true;
1889 val = lt;
1893 if (! overflow)
1895 tree ut = TYPE_MAX_VALUE (type);
1896 if (ut)
1898 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1899 if (real_less (&u, &r))
1901 overflow = true;
1902 val = ut;
1907 if (! overflow)
1908 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1910 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1911 return t;
1914 /* A subroutine of fold_convert_const handling conversions of a
1915 FIXED_CST to an integer type. */
1917 static tree
1918 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1920 tree t;
1921 double_int temp, temp_trunc;
1922 unsigned int mode;
1924 /* Right shift FIXED_CST to temp by fbit. */
1925 temp = TREE_FIXED_CST (arg1).data;
1926 mode = TREE_FIXED_CST (arg1).mode;
1927 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1929 temp = temp.rshift (GET_MODE_FBIT (mode),
1930 HOST_BITS_PER_DOUBLE_INT,
1931 SIGNED_FIXED_POINT_MODE_P (mode));
1933 /* Left shift temp to temp_trunc by fbit. */
1934 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1935 HOST_BITS_PER_DOUBLE_INT,
1936 SIGNED_FIXED_POINT_MODE_P (mode));
1938 else
1940 temp = double_int_zero;
1941 temp_trunc = double_int_zero;
1944 /* If FIXED_CST is negative, we need to round the value toward 0.
1945 By checking if the fractional bits are not zero to add 1 to temp. */
1946 if (SIGNED_FIXED_POINT_MODE_P (mode)
1947 && temp_trunc.is_negative ()
1948 && TREE_FIXED_CST (arg1).data != temp_trunc)
1949 temp += double_int_one;
1951 /* Given a fixed-point constant, make new constant with new type,
1952 appropriately sign-extended or truncated. */
1953 t = force_fit_type (type, temp, -1,
1954 (temp.is_negative ()
1955 && (TYPE_UNSIGNED (type)
1956 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1957 | TREE_OVERFLOW (arg1));
1959 return t;
1962 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1963 to another floating point type. */
1965 static tree
1966 fold_convert_const_real_from_real (tree type, const_tree arg1)
1968 REAL_VALUE_TYPE value;
1969 tree t;
1971 /* Don't perform the operation if flag_signaling_nans is on
1972 and the operand is a signaling NaN. */
1973 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1974 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1975 return NULL_TREE;
1977 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1978 t = build_real (type, value);
1980 /* If converting an infinity or NAN to a representation that doesn't
1981 have one, set the overflow bit so that we can produce some kind of
1982 error message at the appropriate point if necessary. It's not the
1983 most user-friendly message, but it's better than nothing. */
1984 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1985 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1986 TREE_OVERFLOW (t) = 1;
1987 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1988 && !MODE_HAS_NANS (TYPE_MODE (type)))
1989 TREE_OVERFLOW (t) = 1;
1990 /* Regular overflow, conversion produced an infinity in a mode that
1991 can't represent them. */
1992 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1993 && REAL_VALUE_ISINF (value)
1994 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1995 TREE_OVERFLOW (t) = 1;
1996 else
1997 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1998 return t;
2001 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2002 to a floating point type. */
2004 static tree
2005 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2007 REAL_VALUE_TYPE value;
2008 tree t;
2010 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2011 t = build_real (type, value);
2013 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2014 return t;
2017 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2018 to another fixed-point type. */
2020 static tree
2021 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2023 FIXED_VALUE_TYPE value;
2024 tree t;
2025 bool overflow_p;
2027 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2028 TYPE_SATURATING (type));
2029 t = build_fixed (type, value);
2031 /* Propagate overflow flags. */
2032 if (overflow_p | TREE_OVERFLOW (arg1))
2033 TREE_OVERFLOW (t) = 1;
2034 return t;
2037 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2038 to a fixed-point type. */
2040 static tree
2041 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2043 FIXED_VALUE_TYPE value;
2044 tree t;
2045 bool overflow_p;
2046 double_int di;
2048 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2050 di.low = TREE_INT_CST_ELT (arg1, 0);
2051 if (TREE_INT_CST_NUNITS (arg1) == 1)
2052 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2053 else
2054 di.high = TREE_INT_CST_ELT (arg1, 1);
2056 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2057 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2058 TYPE_SATURATING (type));
2059 t = build_fixed (type, value);
2061 /* Propagate overflow flags. */
2062 if (overflow_p | TREE_OVERFLOW (arg1))
2063 TREE_OVERFLOW (t) = 1;
2064 return t;
2067 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2068 to a fixed-point type. */
2070 static tree
2071 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2073 FIXED_VALUE_TYPE value;
2074 tree t;
2075 bool overflow_p;
2077 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2078 &TREE_REAL_CST (arg1),
2079 TYPE_SATURATING (type));
2080 t = build_fixed (type, value);
2082 /* Propagate overflow flags. */
2083 if (overflow_p | TREE_OVERFLOW (arg1))
2084 TREE_OVERFLOW (t) = 1;
2085 return t;
2088 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2089 type TYPE. If no simplification can be done return NULL_TREE. */
2091 static tree
2092 fold_convert_const (enum tree_code code, tree type, tree arg1)
2094 if (TREE_TYPE (arg1) == type)
2095 return arg1;
2097 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2098 || TREE_CODE (type) == OFFSET_TYPE)
2100 if (TREE_CODE (arg1) == INTEGER_CST)
2101 return fold_convert_const_int_from_int (type, arg1);
2102 else if (TREE_CODE (arg1) == REAL_CST)
2103 return fold_convert_const_int_from_real (code, type, arg1);
2104 else if (TREE_CODE (arg1) == FIXED_CST)
2105 return fold_convert_const_int_from_fixed (type, arg1);
2107 else if (TREE_CODE (type) == REAL_TYPE)
2109 if (TREE_CODE (arg1) == INTEGER_CST)
2110 return build_real_from_int_cst (type, arg1);
2111 else if (TREE_CODE (arg1) == REAL_CST)
2112 return fold_convert_const_real_from_real (type, arg1);
2113 else if (TREE_CODE (arg1) == FIXED_CST)
2114 return fold_convert_const_real_from_fixed (type, arg1);
2116 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2118 if (TREE_CODE (arg1) == FIXED_CST)
2119 return fold_convert_const_fixed_from_fixed (type, arg1);
2120 else if (TREE_CODE (arg1) == INTEGER_CST)
2121 return fold_convert_const_fixed_from_int (type, arg1);
2122 else if (TREE_CODE (arg1) == REAL_CST)
2123 return fold_convert_const_fixed_from_real (type, arg1);
2125 else if (TREE_CODE (type) == VECTOR_TYPE)
2127 if (TREE_CODE (arg1) == VECTOR_CST
2128 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2130 int len = TYPE_VECTOR_SUBPARTS (type);
2131 tree elttype = TREE_TYPE (type);
2132 tree *v = XALLOCAVEC (tree, len);
2133 for (int i = 0; i < len; ++i)
2135 tree elt = VECTOR_CST_ELT (arg1, i);
2136 tree cvt = fold_convert_const (code, elttype, elt);
2137 if (cvt == NULL_TREE)
2138 return NULL_TREE;
2139 v[i] = cvt;
2141 return build_vector (type, v);
2144 return NULL_TREE;
2147 /* Construct a vector of zero elements of vector type TYPE. */
2149 static tree
2150 build_zero_vector (tree type)
2152 tree t;
2154 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2155 return build_vector_from_val (type, t);
2158 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2160 bool
2161 fold_convertible_p (const_tree type, const_tree arg)
2163 tree orig = TREE_TYPE (arg);
2165 if (type == orig)
2166 return true;
2168 if (TREE_CODE (arg) == ERROR_MARK
2169 || TREE_CODE (type) == ERROR_MARK
2170 || TREE_CODE (orig) == ERROR_MARK)
2171 return false;
2173 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2174 return true;
2176 switch (TREE_CODE (type))
2178 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2179 case POINTER_TYPE: case REFERENCE_TYPE:
2180 case OFFSET_TYPE:
2181 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2182 || TREE_CODE (orig) == OFFSET_TYPE);
2184 case REAL_TYPE:
2185 case FIXED_POINT_TYPE:
2186 case VECTOR_TYPE:
2187 case VOID_TYPE:
2188 return TREE_CODE (type) == TREE_CODE (orig);
2190 default:
2191 return false;
2195 /* Convert expression ARG to type TYPE. Used by the middle-end for
2196 simple conversions in preference to calling the front-end's convert. */
2198 tree
2199 fold_convert_loc (location_t loc, tree type, tree arg)
2201 tree orig = TREE_TYPE (arg);
2202 tree tem;
2204 if (type == orig)
2205 return arg;
2207 if (TREE_CODE (arg) == ERROR_MARK
2208 || TREE_CODE (type) == ERROR_MARK
2209 || TREE_CODE (orig) == ERROR_MARK)
2210 return error_mark_node;
2212 switch (TREE_CODE (type))
2214 case POINTER_TYPE:
2215 case REFERENCE_TYPE:
2216 /* Handle conversions between pointers to different address spaces. */
2217 if (POINTER_TYPE_P (orig)
2218 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2219 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2220 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2221 /* fall through */
2223 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2224 case OFFSET_TYPE:
2225 if (TREE_CODE (arg) == INTEGER_CST)
2227 tem = fold_convert_const (NOP_EXPR, type, arg);
2228 if (tem != NULL_TREE)
2229 return tem;
2231 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2232 || TREE_CODE (orig) == OFFSET_TYPE)
2233 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2234 if (TREE_CODE (orig) == COMPLEX_TYPE)
2235 return fold_convert_loc (loc, type,
2236 fold_build1_loc (loc, REALPART_EXPR,
2237 TREE_TYPE (orig), arg));
2238 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2239 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2240 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2242 case REAL_TYPE:
2243 if (TREE_CODE (arg) == INTEGER_CST)
2245 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2246 if (tem != NULL_TREE)
2247 return tem;
2249 else if (TREE_CODE (arg) == REAL_CST)
2251 tem = fold_convert_const (NOP_EXPR, type, arg);
2252 if (tem != NULL_TREE)
2253 return tem;
2255 else if (TREE_CODE (arg) == FIXED_CST)
2257 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2258 if (tem != NULL_TREE)
2259 return tem;
2262 switch (TREE_CODE (orig))
2264 case INTEGER_TYPE:
2265 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2266 case POINTER_TYPE: case REFERENCE_TYPE:
2267 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2269 case REAL_TYPE:
2270 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2272 case FIXED_POINT_TYPE:
2273 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2275 case COMPLEX_TYPE:
2276 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2277 return fold_convert_loc (loc, type, tem);
2279 default:
2280 gcc_unreachable ();
2283 case FIXED_POINT_TYPE:
2284 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2285 || TREE_CODE (arg) == REAL_CST)
2287 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2288 if (tem != NULL_TREE)
2289 goto fold_convert_exit;
2292 switch (TREE_CODE (orig))
2294 case FIXED_POINT_TYPE:
2295 case INTEGER_TYPE:
2296 case ENUMERAL_TYPE:
2297 case BOOLEAN_TYPE:
2298 case REAL_TYPE:
2299 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2301 case COMPLEX_TYPE:
2302 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2303 return fold_convert_loc (loc, type, tem);
2305 default:
2306 gcc_unreachable ();
2309 case COMPLEX_TYPE:
2310 switch (TREE_CODE (orig))
2312 case INTEGER_TYPE:
2313 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2314 case POINTER_TYPE: case REFERENCE_TYPE:
2315 case REAL_TYPE:
2316 case FIXED_POINT_TYPE:
2317 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2318 fold_convert_loc (loc, TREE_TYPE (type), arg),
2319 fold_convert_loc (loc, TREE_TYPE (type),
2320 integer_zero_node));
2321 case COMPLEX_TYPE:
2323 tree rpart, ipart;
2325 if (TREE_CODE (arg) == COMPLEX_EXPR)
2327 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2328 TREE_OPERAND (arg, 0));
2329 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2330 TREE_OPERAND (arg, 1));
2331 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2334 arg = save_expr (arg);
2335 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2336 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2337 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2338 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2339 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2342 default:
2343 gcc_unreachable ();
2346 case VECTOR_TYPE:
2347 if (integer_zerop (arg))
2348 return build_zero_vector (type);
2349 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2350 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2351 || TREE_CODE (orig) == VECTOR_TYPE);
2352 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2354 case VOID_TYPE:
2355 tem = fold_ignored_result (arg);
2356 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2358 default:
2359 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2360 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2361 gcc_unreachable ();
2363 fold_convert_exit:
2364 protected_set_expr_location_unshare (tem, loc);
2365 return tem;
2368 /* Return false if expr can be assumed not to be an lvalue, true
2369 otherwise. */
2371 static bool
2372 maybe_lvalue_p (const_tree x)
2374 /* We only need to wrap lvalue tree codes. */
2375 switch (TREE_CODE (x))
2377 case VAR_DECL:
2378 case PARM_DECL:
2379 case RESULT_DECL:
2380 case LABEL_DECL:
2381 case FUNCTION_DECL:
2382 case SSA_NAME:
2384 case COMPONENT_REF:
2385 case MEM_REF:
2386 case INDIRECT_REF:
2387 case ARRAY_REF:
2388 case ARRAY_RANGE_REF:
2389 case BIT_FIELD_REF:
2390 case OBJ_TYPE_REF:
2392 case REALPART_EXPR:
2393 case IMAGPART_EXPR:
2394 case PREINCREMENT_EXPR:
2395 case PREDECREMENT_EXPR:
2396 case SAVE_EXPR:
2397 case TRY_CATCH_EXPR:
2398 case WITH_CLEANUP_EXPR:
2399 case COMPOUND_EXPR:
2400 case MODIFY_EXPR:
2401 case TARGET_EXPR:
2402 case COND_EXPR:
2403 case BIND_EXPR:
2404 break;
2406 default:
2407 /* Assume the worst for front-end tree codes. */
2408 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2409 break;
2410 return false;
2413 return true;
2416 /* Return an expr equal to X but certainly not valid as an lvalue. */
2418 tree
2419 non_lvalue_loc (location_t loc, tree x)
2421 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2422 us. */
2423 if (in_gimple_form)
2424 return x;
2426 if (! maybe_lvalue_p (x))
2427 return x;
2428 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2431 /* When pedantic, return an expr equal to X but certainly not valid as a
2432 pedantic lvalue. Otherwise, return X. */
2434 static tree
2435 pedantic_non_lvalue_loc (location_t loc, tree x)
2437 return protected_set_expr_location_unshare (x, loc);
2440 /* Given a tree comparison code, return the code that is the logical inverse.
2441 It is generally not safe to do this for floating-point comparisons, except
2442 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2443 ERROR_MARK in this case. */
2445 enum tree_code
2446 invert_tree_comparison (enum tree_code code, bool honor_nans)
2448 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2449 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2450 return ERROR_MARK;
2452 switch (code)
2454 case EQ_EXPR:
2455 return NE_EXPR;
2456 case NE_EXPR:
2457 return EQ_EXPR;
2458 case GT_EXPR:
2459 return honor_nans ? UNLE_EXPR : LE_EXPR;
2460 case GE_EXPR:
2461 return honor_nans ? UNLT_EXPR : LT_EXPR;
2462 case LT_EXPR:
2463 return honor_nans ? UNGE_EXPR : GE_EXPR;
2464 case LE_EXPR:
2465 return honor_nans ? UNGT_EXPR : GT_EXPR;
2466 case LTGT_EXPR:
2467 return UNEQ_EXPR;
2468 case UNEQ_EXPR:
2469 return LTGT_EXPR;
2470 case UNGT_EXPR:
2471 return LE_EXPR;
2472 case UNGE_EXPR:
2473 return LT_EXPR;
2474 case UNLT_EXPR:
2475 return GE_EXPR;
2476 case UNLE_EXPR:
2477 return GT_EXPR;
2478 case ORDERED_EXPR:
2479 return UNORDERED_EXPR;
2480 case UNORDERED_EXPR:
2481 return ORDERED_EXPR;
2482 default:
2483 gcc_unreachable ();
2487 /* Similar, but return the comparison that results if the operands are
2488 swapped. This is safe for floating-point. */
2490 enum tree_code
2491 swap_tree_comparison (enum tree_code code)
2493 switch (code)
2495 case EQ_EXPR:
2496 case NE_EXPR:
2497 case ORDERED_EXPR:
2498 case UNORDERED_EXPR:
2499 case LTGT_EXPR:
2500 case UNEQ_EXPR:
2501 return code;
2502 case GT_EXPR:
2503 return LT_EXPR;
2504 case GE_EXPR:
2505 return LE_EXPR;
2506 case LT_EXPR:
2507 return GT_EXPR;
2508 case LE_EXPR:
2509 return GE_EXPR;
2510 case UNGT_EXPR:
2511 return UNLT_EXPR;
2512 case UNGE_EXPR:
2513 return UNLE_EXPR;
2514 case UNLT_EXPR:
2515 return UNGT_EXPR;
2516 case UNLE_EXPR:
2517 return UNGE_EXPR;
2518 default:
2519 gcc_unreachable ();
2524 /* Convert a comparison tree code from an enum tree_code representation
2525 into a compcode bit-based encoding. This function is the inverse of
2526 compcode_to_comparison. */
2528 static enum comparison_code
2529 comparison_to_compcode (enum tree_code code)
2531 switch (code)
2533 case LT_EXPR:
2534 return COMPCODE_LT;
2535 case EQ_EXPR:
2536 return COMPCODE_EQ;
2537 case LE_EXPR:
2538 return COMPCODE_LE;
2539 case GT_EXPR:
2540 return COMPCODE_GT;
2541 case NE_EXPR:
2542 return COMPCODE_NE;
2543 case GE_EXPR:
2544 return COMPCODE_GE;
2545 case ORDERED_EXPR:
2546 return COMPCODE_ORD;
2547 case UNORDERED_EXPR:
2548 return COMPCODE_UNORD;
2549 case UNLT_EXPR:
2550 return COMPCODE_UNLT;
2551 case UNEQ_EXPR:
2552 return COMPCODE_UNEQ;
2553 case UNLE_EXPR:
2554 return COMPCODE_UNLE;
2555 case UNGT_EXPR:
2556 return COMPCODE_UNGT;
2557 case LTGT_EXPR:
2558 return COMPCODE_LTGT;
2559 case UNGE_EXPR:
2560 return COMPCODE_UNGE;
2561 default:
2562 gcc_unreachable ();
2566 /* Convert a compcode bit-based encoding of a comparison operator back
2567 to GCC's enum tree_code representation. This function is the
2568 inverse of comparison_to_compcode. */
2570 static enum tree_code
2571 compcode_to_comparison (enum comparison_code code)
2573 switch (code)
2575 case COMPCODE_LT:
2576 return LT_EXPR;
2577 case COMPCODE_EQ:
2578 return EQ_EXPR;
2579 case COMPCODE_LE:
2580 return LE_EXPR;
2581 case COMPCODE_GT:
2582 return GT_EXPR;
2583 case COMPCODE_NE:
2584 return NE_EXPR;
2585 case COMPCODE_GE:
2586 return GE_EXPR;
2587 case COMPCODE_ORD:
2588 return ORDERED_EXPR;
2589 case COMPCODE_UNORD:
2590 return UNORDERED_EXPR;
2591 case COMPCODE_UNLT:
2592 return UNLT_EXPR;
2593 case COMPCODE_UNEQ:
2594 return UNEQ_EXPR;
2595 case COMPCODE_UNLE:
2596 return UNLE_EXPR;
2597 case COMPCODE_UNGT:
2598 return UNGT_EXPR;
2599 case COMPCODE_LTGT:
2600 return LTGT_EXPR;
2601 case COMPCODE_UNGE:
2602 return UNGE_EXPR;
2603 default:
2604 gcc_unreachable ();
2608 /* Return a tree for the comparison which is the combination of
2609 doing the AND or OR (depending on CODE) of the two operations LCODE
2610 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2611 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2612 if this makes the transformation invalid. */
2614 tree
2615 combine_comparisons (location_t loc,
2616 enum tree_code code, enum tree_code lcode,
2617 enum tree_code rcode, tree truth_type,
2618 tree ll_arg, tree lr_arg)
2620 bool honor_nans = HONOR_NANS (ll_arg);
2621 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2622 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2623 int compcode;
2625 switch (code)
2627 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2628 compcode = lcompcode & rcompcode;
2629 break;
2631 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2632 compcode = lcompcode | rcompcode;
2633 break;
2635 default:
2636 return NULL_TREE;
2639 if (!honor_nans)
2641 /* Eliminate unordered comparisons, as well as LTGT and ORD
2642 which are not used unless the mode has NaNs. */
2643 compcode &= ~COMPCODE_UNORD;
2644 if (compcode == COMPCODE_LTGT)
2645 compcode = COMPCODE_NE;
2646 else if (compcode == COMPCODE_ORD)
2647 compcode = COMPCODE_TRUE;
2649 else if (flag_trapping_math)
2651 /* Check that the original operation and the optimized ones will trap
2652 under the same condition. */
2653 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2654 && (lcompcode != COMPCODE_EQ)
2655 && (lcompcode != COMPCODE_ORD);
2656 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2657 && (rcompcode != COMPCODE_EQ)
2658 && (rcompcode != COMPCODE_ORD);
2659 bool trap = (compcode & COMPCODE_UNORD) == 0
2660 && (compcode != COMPCODE_EQ)
2661 && (compcode != COMPCODE_ORD);
2663 /* In a short-circuited boolean expression the LHS might be
2664 such that the RHS, if evaluated, will never trap. For
2665 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2666 if neither x nor y is NaN. (This is a mixed blessing: for
2667 example, the expression above will never trap, hence
2668 optimizing it to x < y would be invalid). */
2669 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2670 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2671 rtrap = false;
2673 /* If the comparison was short-circuited, and only the RHS
2674 trapped, we may now generate a spurious trap. */
2675 if (rtrap && !ltrap
2676 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2677 return NULL_TREE;
2679 /* If we changed the conditions that cause a trap, we lose. */
2680 if ((ltrap || rtrap) != trap)
2681 return NULL_TREE;
2684 if (compcode == COMPCODE_TRUE)
2685 return constant_boolean_node (true, truth_type);
2686 else if (compcode == COMPCODE_FALSE)
2687 return constant_boolean_node (false, truth_type);
2688 else
2690 enum tree_code tcode;
2692 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2693 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2697 /* Return nonzero if two operands (typically of the same tree node)
2698 are necessarily equal. FLAGS modifies behavior as follows:
2700 If OEP_ONLY_CONST is set, only return nonzero for constants.
2701 This function tests whether the operands are indistinguishable;
2702 it does not test whether they are equal using C's == operation.
2703 The distinction is important for IEEE floating point, because
2704 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2705 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2707 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2708 even though it may hold multiple values during a function.
2709 This is because a GCC tree node guarantees that nothing else is
2710 executed between the evaluation of its "operands" (which may often
2711 be evaluated in arbitrary order). Hence if the operands themselves
2712 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2713 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2714 unset means assuming isochronic (or instantaneous) tree equivalence.
2715 Unless comparing arbitrary expression trees, such as from different
2716 statements, this flag can usually be left unset.
2718 If OEP_PURE_SAME is set, then pure functions with identical arguments
2719 are considered the same. It is used when the caller has other ways
2720 to ensure that global memory is unchanged in between.
2722 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2723 not values of expressions.
2725 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2726 any operand with side effect. This is unnecesarily conservative in the
2727 case we know that arg0 and arg1 are in disjoint code paths (such as in
2728 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2729 addresses with TREE_CONSTANT flag set so we know that &var == &var
2730 even if var is volatile. */
2733 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2735 /* When checking, verify at the outermost operand_equal_p call that
2736 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2737 hash value. */
2738 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2740 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2742 if (arg0 != arg1)
2744 inchash::hash hstate0 (0), hstate1 (0);
2745 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2746 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2747 hashval_t h0 = hstate0.end ();
2748 hashval_t h1 = hstate1.end ();
2749 gcc_assert (h0 == h1);
2751 return 1;
2753 else
2754 return 0;
2757 /* If either is ERROR_MARK, they aren't equal. */
2758 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2759 || TREE_TYPE (arg0) == error_mark_node
2760 || TREE_TYPE (arg1) == error_mark_node)
2761 return 0;
2763 /* Similar, if either does not have a type (like a released SSA name),
2764 they aren't equal. */
2765 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2766 return 0;
2768 /* We cannot consider pointers to different address space equal. */
2769 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2770 && POINTER_TYPE_P (TREE_TYPE (arg1))
2771 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2772 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2773 return 0;
2775 /* Check equality of integer constants before bailing out due to
2776 precision differences. */
2777 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2779 /* Address of INTEGER_CST is not defined; check that we did not forget
2780 to drop the OEP_ADDRESS_OF flags. */
2781 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2782 return tree_int_cst_equal (arg0, arg1);
2785 if (!(flags & OEP_ADDRESS_OF))
2787 /* If both types don't have the same signedness, then we can't consider
2788 them equal. We must check this before the STRIP_NOPS calls
2789 because they may change the signedness of the arguments. As pointers
2790 strictly don't have a signedness, require either two pointers or
2791 two non-pointers as well. */
2792 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2793 || POINTER_TYPE_P (TREE_TYPE (arg0))
2794 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2795 return 0;
2797 /* If both types don't have the same precision, then it is not safe
2798 to strip NOPs. */
2799 if (element_precision (TREE_TYPE (arg0))
2800 != element_precision (TREE_TYPE (arg1)))
2801 return 0;
2803 STRIP_NOPS (arg0);
2804 STRIP_NOPS (arg1);
2806 #if 0
2807 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2808 sanity check once the issue is solved. */
2809 else
2810 /* Addresses of conversions and SSA_NAMEs (and many other things)
2811 are not defined. Check that we did not forget to drop the
2812 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2813 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2814 && TREE_CODE (arg0) != SSA_NAME);
2815 #endif
2817 /* In case both args are comparisons but with different comparison
2818 code, try to swap the comparison operands of one arg to produce
2819 a match and compare that variant. */
2820 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2821 && COMPARISON_CLASS_P (arg0)
2822 && COMPARISON_CLASS_P (arg1))
2824 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2826 if (TREE_CODE (arg0) == swap_code)
2827 return operand_equal_p (TREE_OPERAND (arg0, 0),
2828 TREE_OPERAND (arg1, 1), flags)
2829 && operand_equal_p (TREE_OPERAND (arg0, 1),
2830 TREE_OPERAND (arg1, 0), flags);
2833 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2835 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2836 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2838 else if (flags & OEP_ADDRESS_OF)
2840 /* If we are interested in comparing addresses ignore
2841 MEM_REF wrappings of the base that can appear just for
2842 TBAA reasons. */
2843 if (TREE_CODE (arg0) == MEM_REF
2844 && DECL_P (arg1)
2845 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2846 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2847 && integer_zerop (TREE_OPERAND (arg0, 1)))
2848 return 1;
2849 else if (TREE_CODE (arg1) == MEM_REF
2850 && DECL_P (arg0)
2851 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2852 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2853 && integer_zerop (TREE_OPERAND (arg1, 1)))
2854 return 1;
2855 return 0;
2857 else
2858 return 0;
2861 /* When not checking adddresses, this is needed for conversions and for
2862 COMPONENT_REF. Might as well play it safe and always test this. */
2863 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2864 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2865 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2866 && !(flags & OEP_ADDRESS_OF)))
2867 return 0;
2869 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2870 We don't care about side effects in that case because the SAVE_EXPR
2871 takes care of that for us. In all other cases, two expressions are
2872 equal if they have no side effects. If we have two identical
2873 expressions with side effects that should be treated the same due
2874 to the only side effects being identical SAVE_EXPR's, that will
2875 be detected in the recursive calls below.
2876 If we are taking an invariant address of two identical objects
2877 they are necessarily equal as well. */
2878 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2879 && (TREE_CODE (arg0) == SAVE_EXPR
2880 || (flags & OEP_MATCH_SIDE_EFFECTS)
2881 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2882 return 1;
2884 /* Next handle constant cases, those for which we can return 1 even
2885 if ONLY_CONST is set. */
2886 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2887 switch (TREE_CODE (arg0))
2889 case INTEGER_CST:
2890 return tree_int_cst_equal (arg0, arg1);
2892 case FIXED_CST:
2893 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2894 TREE_FIXED_CST (arg1));
2896 case REAL_CST:
2897 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2898 return 1;
2901 if (!HONOR_SIGNED_ZEROS (arg0))
2903 /* If we do not distinguish between signed and unsigned zero,
2904 consider them equal. */
2905 if (real_zerop (arg0) && real_zerop (arg1))
2906 return 1;
2908 return 0;
2910 case VECTOR_CST:
2912 unsigned i;
2914 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2915 return 0;
2917 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2919 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2920 VECTOR_CST_ELT (arg1, i), flags))
2921 return 0;
2923 return 1;
2926 case COMPLEX_CST:
2927 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2928 flags)
2929 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2930 flags));
2932 case STRING_CST:
2933 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2934 && ! memcmp (TREE_STRING_POINTER (arg0),
2935 TREE_STRING_POINTER (arg1),
2936 TREE_STRING_LENGTH (arg0)));
2938 case ADDR_EXPR:
2939 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2940 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2941 flags | OEP_ADDRESS_OF
2942 | OEP_MATCH_SIDE_EFFECTS);
2943 case CONSTRUCTOR:
2944 /* In GIMPLE empty constructors are allowed in initializers of
2945 aggregates. */
2946 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2947 default:
2948 break;
2951 if (flags & OEP_ONLY_CONST)
2952 return 0;
2954 /* Define macros to test an operand from arg0 and arg1 for equality and a
2955 variant that allows null and views null as being different from any
2956 non-null value. In the latter case, if either is null, the both
2957 must be; otherwise, do the normal comparison. */
2958 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2959 TREE_OPERAND (arg1, N), flags)
2961 #define OP_SAME_WITH_NULL(N) \
2962 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2963 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2965 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2967 case tcc_unary:
2968 /* Two conversions are equal only if signedness and modes match. */
2969 switch (TREE_CODE (arg0))
2971 CASE_CONVERT:
2972 case FIX_TRUNC_EXPR:
2973 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2974 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2975 return 0;
2976 break;
2977 default:
2978 break;
2981 return OP_SAME (0);
2984 case tcc_comparison:
2985 case tcc_binary:
2986 if (OP_SAME (0) && OP_SAME (1))
2987 return 1;
2989 /* For commutative ops, allow the other order. */
2990 return (commutative_tree_code (TREE_CODE (arg0))
2991 && operand_equal_p (TREE_OPERAND (arg0, 0),
2992 TREE_OPERAND (arg1, 1), flags)
2993 && operand_equal_p (TREE_OPERAND (arg0, 1),
2994 TREE_OPERAND (arg1, 0), flags));
2996 case tcc_reference:
2997 /* If either of the pointer (or reference) expressions we are
2998 dereferencing contain a side effect, these cannot be equal,
2999 but their addresses can be. */
3000 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3001 && (TREE_SIDE_EFFECTS (arg0)
3002 || TREE_SIDE_EFFECTS (arg1)))
3003 return 0;
3005 switch (TREE_CODE (arg0))
3007 case INDIRECT_REF:
3008 if (!(flags & OEP_ADDRESS_OF)
3009 && (TYPE_ALIGN (TREE_TYPE (arg0))
3010 != TYPE_ALIGN (TREE_TYPE (arg1))))
3011 return 0;
3012 flags &= ~OEP_ADDRESS_OF;
3013 return OP_SAME (0);
3015 case IMAGPART_EXPR:
3016 /* Require the same offset. */
3017 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3018 TYPE_SIZE (TREE_TYPE (arg1)),
3019 flags & ~OEP_ADDRESS_OF))
3020 return 0;
3022 /* Fallthru. */
3023 case REALPART_EXPR:
3024 case VIEW_CONVERT_EXPR:
3025 return OP_SAME (0);
3027 case TARGET_MEM_REF:
3028 case MEM_REF:
3029 if (!(flags & OEP_ADDRESS_OF))
3031 /* Require equal access sizes */
3032 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3033 && (!TYPE_SIZE (TREE_TYPE (arg0))
3034 || !TYPE_SIZE (TREE_TYPE (arg1))
3035 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3036 TYPE_SIZE (TREE_TYPE (arg1)),
3037 flags)))
3038 return 0;
3039 /* Verify that access happens in similar types. */
3040 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3041 return 0;
3042 /* Verify that accesses are TBAA compatible. */
3043 if (!alias_ptr_types_compatible_p
3044 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3045 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3046 || (MR_DEPENDENCE_CLIQUE (arg0)
3047 != MR_DEPENDENCE_CLIQUE (arg1))
3048 || (MR_DEPENDENCE_BASE (arg0)
3049 != MR_DEPENDENCE_BASE (arg1)))
3050 return 0;
3051 /* Verify that alignment is compatible. */
3052 if (TYPE_ALIGN (TREE_TYPE (arg0))
3053 != TYPE_ALIGN (TREE_TYPE (arg1)))
3054 return 0;
3056 flags &= ~OEP_ADDRESS_OF;
3057 return (OP_SAME (0) && OP_SAME (1)
3058 /* TARGET_MEM_REF require equal extra operands. */
3059 && (TREE_CODE (arg0) != TARGET_MEM_REF
3060 || (OP_SAME_WITH_NULL (2)
3061 && OP_SAME_WITH_NULL (3)
3062 && OP_SAME_WITH_NULL (4))));
3064 case ARRAY_REF:
3065 case ARRAY_RANGE_REF:
3066 if (!OP_SAME (0))
3067 return 0;
3068 flags &= ~OEP_ADDRESS_OF;
3069 /* Compare the array index by value if it is constant first as we
3070 may have different types but same value here. */
3071 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3072 TREE_OPERAND (arg1, 1))
3073 || OP_SAME (1))
3074 && OP_SAME_WITH_NULL (2)
3075 && OP_SAME_WITH_NULL (3)
3076 /* Compare low bound and element size as with OEP_ADDRESS_OF
3077 we have to account for the offset of the ref. */
3078 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3079 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3080 || (operand_equal_p (array_ref_low_bound
3081 (CONST_CAST_TREE (arg0)),
3082 array_ref_low_bound
3083 (CONST_CAST_TREE (arg1)), flags)
3084 && operand_equal_p (array_ref_element_size
3085 (CONST_CAST_TREE (arg0)),
3086 array_ref_element_size
3087 (CONST_CAST_TREE (arg1)),
3088 flags))));
3090 case COMPONENT_REF:
3091 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3092 may be NULL when we're called to compare MEM_EXPRs. */
3093 if (!OP_SAME_WITH_NULL (0)
3094 || !OP_SAME (1))
3095 return 0;
3096 flags &= ~OEP_ADDRESS_OF;
3097 return OP_SAME_WITH_NULL (2);
3099 case BIT_FIELD_REF:
3100 if (!OP_SAME (0))
3101 return 0;
3102 flags &= ~OEP_ADDRESS_OF;
3103 return OP_SAME (1) && OP_SAME (2);
3105 default:
3106 return 0;
3109 case tcc_expression:
3110 switch (TREE_CODE (arg0))
3112 case ADDR_EXPR:
3113 /* Be sure we pass right ADDRESS_OF flag. */
3114 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3115 return operand_equal_p (TREE_OPERAND (arg0, 0),
3116 TREE_OPERAND (arg1, 0),
3117 flags | OEP_ADDRESS_OF);
3119 case TRUTH_NOT_EXPR:
3120 return OP_SAME (0);
3122 case TRUTH_ANDIF_EXPR:
3123 case TRUTH_ORIF_EXPR:
3124 return OP_SAME (0) && OP_SAME (1);
3126 case FMA_EXPR:
3127 case WIDEN_MULT_PLUS_EXPR:
3128 case WIDEN_MULT_MINUS_EXPR:
3129 if (!OP_SAME (2))
3130 return 0;
3131 /* The multiplcation operands are commutative. */
3132 /* FALLTHRU */
3134 case TRUTH_AND_EXPR:
3135 case TRUTH_OR_EXPR:
3136 case TRUTH_XOR_EXPR:
3137 if (OP_SAME (0) && OP_SAME (1))
3138 return 1;
3140 /* Otherwise take into account this is a commutative operation. */
3141 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3142 TREE_OPERAND (arg1, 1), flags)
3143 && operand_equal_p (TREE_OPERAND (arg0, 1),
3144 TREE_OPERAND (arg1, 0), flags));
3146 case COND_EXPR:
3147 if (! OP_SAME (1) || ! OP_SAME (2))
3148 return 0;
3149 flags &= ~OEP_ADDRESS_OF;
3150 return OP_SAME (0);
3152 case VEC_COND_EXPR:
3153 case DOT_PROD_EXPR:
3154 case BIT_INSERT_EXPR:
3155 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3157 default:
3158 return 0;
3161 case tcc_vl_exp:
3162 switch (TREE_CODE (arg0))
3164 case CALL_EXPR:
3165 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3166 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3167 /* If not both CALL_EXPRs are either internal or normal function
3168 functions, then they are not equal. */
3169 return 0;
3170 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3172 /* If the CALL_EXPRs call different internal functions, then they
3173 are not equal. */
3174 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3175 return 0;
3177 else
3179 /* If the CALL_EXPRs call different functions, then they are not
3180 equal. */
3181 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3182 flags))
3183 return 0;
3186 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3188 unsigned int cef = call_expr_flags (arg0);
3189 if (flags & OEP_PURE_SAME)
3190 cef &= ECF_CONST | ECF_PURE;
3191 else
3192 cef &= ECF_CONST;
3193 if (!cef)
3194 return 0;
3197 /* Now see if all the arguments are the same. */
3199 const_call_expr_arg_iterator iter0, iter1;
3200 const_tree a0, a1;
3201 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3202 a1 = first_const_call_expr_arg (arg1, &iter1);
3203 a0 && a1;
3204 a0 = next_const_call_expr_arg (&iter0),
3205 a1 = next_const_call_expr_arg (&iter1))
3206 if (! operand_equal_p (a0, a1, flags))
3207 return 0;
3209 /* If we get here and both argument lists are exhausted
3210 then the CALL_EXPRs are equal. */
3211 return ! (a0 || a1);
3213 default:
3214 return 0;
3217 case tcc_declaration:
3218 /* Consider __builtin_sqrt equal to sqrt. */
3219 return (TREE_CODE (arg0) == FUNCTION_DECL
3220 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3221 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3222 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3224 case tcc_exceptional:
3225 if (TREE_CODE (arg0) == CONSTRUCTOR)
3227 /* In GIMPLE constructors are used only to build vectors from
3228 elements. Individual elements in the constructor must be
3229 indexed in increasing order and form an initial sequence.
3231 We make no effort to compare constructors in generic.
3232 (see sem_variable::equals in ipa-icf which can do so for
3233 constants). */
3234 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3235 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3236 return 0;
3238 /* Be sure that vectors constructed have the same representation.
3239 We only tested element precision and modes to match.
3240 Vectors may be BLKmode and thus also check that the number of
3241 parts match. */
3242 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3243 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3244 return 0;
3246 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3247 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3248 unsigned int len = vec_safe_length (v0);
3250 if (len != vec_safe_length (v1))
3251 return 0;
3253 for (unsigned int i = 0; i < len; i++)
3255 constructor_elt *c0 = &(*v0)[i];
3256 constructor_elt *c1 = &(*v1)[i];
3258 if (!operand_equal_p (c0->value, c1->value, flags)
3259 /* In GIMPLE the indexes can be either NULL or matching i.
3260 Double check this so we won't get false
3261 positives for GENERIC. */
3262 || (c0->index
3263 && (TREE_CODE (c0->index) != INTEGER_CST
3264 || !compare_tree_int (c0->index, i)))
3265 || (c1->index
3266 && (TREE_CODE (c1->index) != INTEGER_CST
3267 || !compare_tree_int (c1->index, i))))
3268 return 0;
3270 return 1;
3272 return 0;
3274 default:
3275 return 0;
3278 #undef OP_SAME
3279 #undef OP_SAME_WITH_NULL
3282 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3283 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3285 When in doubt, return 0. */
3287 static int
3288 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3290 int unsignedp1, unsignedpo;
3291 tree primarg0, primarg1, primother;
3292 unsigned int correct_width;
3294 if (operand_equal_p (arg0, arg1, 0))
3295 return 1;
3297 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3298 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3299 return 0;
3301 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3302 and see if the inner values are the same. This removes any
3303 signedness comparison, which doesn't matter here. */
3304 primarg0 = arg0, primarg1 = arg1;
3305 STRIP_NOPS (primarg0);
3306 STRIP_NOPS (primarg1);
3307 if (operand_equal_p (primarg0, primarg1, 0))
3308 return 1;
3310 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3311 actual comparison operand, ARG0.
3313 First throw away any conversions to wider types
3314 already present in the operands. */
3316 primarg1 = get_narrower (arg1, &unsignedp1);
3317 primother = get_narrower (other, &unsignedpo);
3319 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3320 if (unsignedp1 == unsignedpo
3321 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3322 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3324 tree type = TREE_TYPE (arg0);
3326 /* Make sure shorter operand is extended the right way
3327 to match the longer operand. */
3328 primarg1 = fold_convert (signed_or_unsigned_type_for
3329 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3331 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3332 return 1;
3335 return 0;
3338 /* See if ARG is an expression that is either a comparison or is performing
3339 arithmetic on comparisons. The comparisons must only be comparing
3340 two different values, which will be stored in *CVAL1 and *CVAL2; if
3341 they are nonzero it means that some operands have already been found.
3342 No variables may be used anywhere else in the expression except in the
3343 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3344 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3346 If this is true, return 1. Otherwise, return zero. */
3348 static int
3349 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3351 enum tree_code code = TREE_CODE (arg);
3352 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3354 /* We can handle some of the tcc_expression cases here. */
3355 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3356 tclass = tcc_unary;
3357 else if (tclass == tcc_expression
3358 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3359 || code == COMPOUND_EXPR))
3360 tclass = tcc_binary;
3362 else if (tclass == tcc_expression && code == SAVE_EXPR
3363 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3365 /* If we've already found a CVAL1 or CVAL2, this expression is
3366 two complex to handle. */
3367 if (*cval1 || *cval2)
3368 return 0;
3370 tclass = tcc_unary;
3371 *save_p = 1;
3374 switch (tclass)
3376 case tcc_unary:
3377 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3379 case tcc_binary:
3380 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3381 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3382 cval1, cval2, save_p));
3384 case tcc_constant:
3385 return 1;
3387 case tcc_expression:
3388 if (code == COND_EXPR)
3389 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3390 cval1, cval2, save_p)
3391 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3392 cval1, cval2, save_p)
3393 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3394 cval1, cval2, save_p));
3395 return 0;
3397 case tcc_comparison:
3398 /* First see if we can handle the first operand, then the second. For
3399 the second operand, we know *CVAL1 can't be zero. It must be that
3400 one side of the comparison is each of the values; test for the
3401 case where this isn't true by failing if the two operands
3402 are the same. */
3404 if (operand_equal_p (TREE_OPERAND (arg, 0),
3405 TREE_OPERAND (arg, 1), 0))
3406 return 0;
3408 if (*cval1 == 0)
3409 *cval1 = TREE_OPERAND (arg, 0);
3410 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3412 else if (*cval2 == 0)
3413 *cval2 = TREE_OPERAND (arg, 0);
3414 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3416 else
3417 return 0;
3419 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3421 else if (*cval2 == 0)
3422 *cval2 = TREE_OPERAND (arg, 1);
3423 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3425 else
3426 return 0;
3428 return 1;
3430 default:
3431 return 0;
3435 /* ARG is a tree that is known to contain just arithmetic operations and
3436 comparisons. Evaluate the operations in the tree substituting NEW0 for
3437 any occurrence of OLD0 as an operand of a comparison and likewise for
3438 NEW1 and OLD1. */
3440 static tree
3441 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3442 tree old1, tree new1)
3444 tree type = TREE_TYPE (arg);
3445 enum tree_code code = TREE_CODE (arg);
3446 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3448 /* We can handle some of the tcc_expression cases here. */
3449 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3450 tclass = tcc_unary;
3451 else if (tclass == tcc_expression
3452 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3453 tclass = tcc_binary;
3455 switch (tclass)
3457 case tcc_unary:
3458 return fold_build1_loc (loc, code, type,
3459 eval_subst (loc, TREE_OPERAND (arg, 0),
3460 old0, new0, old1, new1));
3462 case tcc_binary:
3463 return fold_build2_loc (loc, code, type,
3464 eval_subst (loc, TREE_OPERAND (arg, 0),
3465 old0, new0, old1, new1),
3466 eval_subst (loc, TREE_OPERAND (arg, 1),
3467 old0, new0, old1, new1));
3469 case tcc_expression:
3470 switch (code)
3472 case SAVE_EXPR:
3473 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3474 old1, new1);
3476 case COMPOUND_EXPR:
3477 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3478 old1, new1);
3480 case COND_EXPR:
3481 return fold_build3_loc (loc, code, type,
3482 eval_subst (loc, TREE_OPERAND (arg, 0),
3483 old0, new0, old1, new1),
3484 eval_subst (loc, TREE_OPERAND (arg, 1),
3485 old0, new0, old1, new1),
3486 eval_subst (loc, TREE_OPERAND (arg, 2),
3487 old0, new0, old1, new1));
3488 default:
3489 break;
3491 /* Fall through - ??? */
3493 case tcc_comparison:
3495 tree arg0 = TREE_OPERAND (arg, 0);
3496 tree arg1 = TREE_OPERAND (arg, 1);
3498 /* We need to check both for exact equality and tree equality. The
3499 former will be true if the operand has a side-effect. In that
3500 case, we know the operand occurred exactly once. */
3502 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3503 arg0 = new0;
3504 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3505 arg0 = new1;
3507 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3508 arg1 = new0;
3509 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3510 arg1 = new1;
3512 return fold_build2_loc (loc, code, type, arg0, arg1);
3515 default:
3516 return arg;
3520 /* Return a tree for the case when the result of an expression is RESULT
3521 converted to TYPE and OMITTED was previously an operand of the expression
3522 but is now not needed (e.g., we folded OMITTED * 0).
3524 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3525 the conversion of RESULT to TYPE. */
3527 tree
3528 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3530 tree t = fold_convert_loc (loc, type, result);
3532 /* If the resulting operand is an empty statement, just return the omitted
3533 statement casted to void. */
3534 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3535 return build1_loc (loc, NOP_EXPR, void_type_node,
3536 fold_ignored_result (omitted));
3538 if (TREE_SIDE_EFFECTS (omitted))
3539 return build2_loc (loc, COMPOUND_EXPR, type,
3540 fold_ignored_result (omitted), t);
3542 return non_lvalue_loc (loc, t);
3545 /* Return a tree for the case when the result of an expression is RESULT
3546 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3547 of the expression but are now not needed.
3549 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3550 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3551 evaluated before OMITTED2. Otherwise, if neither has side effects,
3552 just do the conversion of RESULT to TYPE. */
3554 tree
3555 omit_two_operands_loc (location_t loc, tree type, tree result,
3556 tree omitted1, tree omitted2)
3558 tree t = fold_convert_loc (loc, type, result);
3560 if (TREE_SIDE_EFFECTS (omitted2))
3561 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3562 if (TREE_SIDE_EFFECTS (omitted1))
3563 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3565 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3569 /* Return a simplified tree node for the truth-negation of ARG. This
3570 never alters ARG itself. We assume that ARG is an operation that
3571 returns a truth value (0 or 1).
3573 FIXME: one would think we would fold the result, but it causes
3574 problems with the dominator optimizer. */
3576 static tree
3577 fold_truth_not_expr (location_t loc, tree arg)
3579 tree type = TREE_TYPE (arg);
3580 enum tree_code code = TREE_CODE (arg);
3581 location_t loc1, loc2;
3583 /* If this is a comparison, we can simply invert it, except for
3584 floating-point non-equality comparisons, in which case we just
3585 enclose a TRUTH_NOT_EXPR around what we have. */
3587 if (TREE_CODE_CLASS (code) == tcc_comparison)
3589 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3590 if (FLOAT_TYPE_P (op_type)
3591 && flag_trapping_math
3592 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3593 && code != NE_EXPR && code != EQ_EXPR)
3594 return NULL_TREE;
3596 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3597 if (code == ERROR_MARK)
3598 return NULL_TREE;
3600 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3601 TREE_OPERAND (arg, 1));
3602 if (TREE_NO_WARNING (arg))
3603 TREE_NO_WARNING (ret) = 1;
3604 return ret;
3607 switch (code)
3609 case INTEGER_CST:
3610 return constant_boolean_node (integer_zerop (arg), type);
3612 case TRUTH_AND_EXPR:
3613 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3614 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3615 return build2_loc (loc, TRUTH_OR_EXPR, type,
3616 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3617 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3619 case TRUTH_OR_EXPR:
3620 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3621 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3622 return build2_loc (loc, TRUTH_AND_EXPR, type,
3623 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3624 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3626 case TRUTH_XOR_EXPR:
3627 /* Here we can invert either operand. We invert the first operand
3628 unless the second operand is a TRUTH_NOT_EXPR in which case our
3629 result is the XOR of the first operand with the inside of the
3630 negation of the second operand. */
3632 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3633 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3634 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3635 else
3636 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3637 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3638 TREE_OPERAND (arg, 1));
3640 case TRUTH_ANDIF_EXPR:
3641 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3642 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3643 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3644 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3645 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3647 case TRUTH_ORIF_EXPR:
3648 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3649 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3650 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3651 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3652 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3654 case TRUTH_NOT_EXPR:
3655 return TREE_OPERAND (arg, 0);
3657 case COND_EXPR:
3659 tree arg1 = TREE_OPERAND (arg, 1);
3660 tree arg2 = TREE_OPERAND (arg, 2);
3662 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3663 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3665 /* A COND_EXPR may have a throw as one operand, which
3666 then has void type. Just leave void operands
3667 as they are. */
3668 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3669 VOID_TYPE_P (TREE_TYPE (arg1))
3670 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3671 VOID_TYPE_P (TREE_TYPE (arg2))
3672 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3675 case COMPOUND_EXPR:
3676 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3677 return build2_loc (loc, COMPOUND_EXPR, type,
3678 TREE_OPERAND (arg, 0),
3679 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3681 case NON_LVALUE_EXPR:
3682 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3683 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3685 CASE_CONVERT:
3686 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3687 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3689 /* fall through */
3691 case FLOAT_EXPR:
3692 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3693 return build1_loc (loc, TREE_CODE (arg), type,
3694 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3696 case BIT_AND_EXPR:
3697 if (!integer_onep (TREE_OPERAND (arg, 1)))
3698 return NULL_TREE;
3699 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3701 case SAVE_EXPR:
3702 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3704 case CLEANUP_POINT_EXPR:
3705 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3706 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3707 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3709 default:
3710 return NULL_TREE;
3714 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3715 assume that ARG is an operation that returns a truth value (0 or 1
3716 for scalars, 0 or -1 for vectors). Return the folded expression if
3717 folding is successful. Otherwise, return NULL_TREE. */
3719 static tree
3720 fold_invert_truthvalue (location_t loc, tree arg)
3722 tree type = TREE_TYPE (arg);
3723 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3724 ? BIT_NOT_EXPR
3725 : TRUTH_NOT_EXPR,
3726 type, arg);
3729 /* Return a simplified tree node for the truth-negation of ARG. This
3730 never alters ARG itself. We assume that ARG is an operation that
3731 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3733 tree
3734 invert_truthvalue_loc (location_t loc, tree arg)
3736 if (TREE_CODE (arg) == ERROR_MARK)
3737 return arg;
3739 tree type = TREE_TYPE (arg);
3740 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3741 ? BIT_NOT_EXPR
3742 : TRUTH_NOT_EXPR,
3743 type, arg);
3746 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3747 with code CODE. This optimization is unsafe. */
3748 static tree
3749 distribute_real_division (location_t loc, enum tree_code code, tree type,
3750 tree arg0, tree arg1)
3752 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3753 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3755 /* (A / C) +- (B / C) -> (A +- B) / C. */
3756 if (mul0 == mul1
3757 && operand_equal_p (TREE_OPERAND (arg0, 1),
3758 TREE_OPERAND (arg1, 1), 0))
3759 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3760 fold_build2_loc (loc, code, type,
3761 TREE_OPERAND (arg0, 0),
3762 TREE_OPERAND (arg1, 0)),
3763 TREE_OPERAND (arg0, 1));
3765 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3766 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3767 TREE_OPERAND (arg1, 0), 0)
3768 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3769 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3771 REAL_VALUE_TYPE r0, r1;
3772 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3773 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3774 if (!mul0)
3775 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3776 if (!mul1)
3777 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3778 real_arithmetic (&r0, code, &r0, &r1);
3779 return fold_build2_loc (loc, MULT_EXPR, type,
3780 TREE_OPERAND (arg0, 0),
3781 build_real (type, r0));
3784 return NULL_TREE;
3787 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3788 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3789 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3790 is the original memory reference used to preserve the alias set of
3791 the access. */
3793 static tree
3794 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3795 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3796 int unsignedp, int reversep)
3798 tree result, bftype;
3800 alias_set_type iset = get_alias_set (orig_inner);
3801 if (iset == 0 && get_alias_set (inner) != iset)
3802 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3803 build_fold_addr_expr (inner),
3804 build_int_cst (ptr_type_node, 0));
3806 if (bitpos == 0 && !reversep)
3808 tree size = TYPE_SIZE (TREE_TYPE (inner));
3809 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3810 || POINTER_TYPE_P (TREE_TYPE (inner)))
3811 && tree_fits_shwi_p (size)
3812 && tree_to_shwi (size) == bitsize)
3813 return fold_convert_loc (loc, type, inner);
3816 bftype = type;
3817 if (TYPE_PRECISION (bftype) != bitsize
3818 || TYPE_UNSIGNED (bftype) == !unsignedp)
3819 bftype = build_nonstandard_integer_type (bitsize, 0);
3821 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3822 size_int (bitsize), bitsize_int (bitpos));
3823 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3825 if (bftype != type)
3826 result = fold_convert_loc (loc, type, result);
3828 return result;
3831 /* Optimize a bit-field compare.
3833 There are two cases: First is a compare against a constant and the
3834 second is a comparison of two items where the fields are at the same
3835 bit position relative to the start of a chunk (byte, halfword, word)
3836 large enough to contain it. In these cases we can avoid the shift
3837 implicit in bitfield extractions.
3839 For constants, we emit a compare of the shifted constant with the
3840 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3841 compared. For two fields at the same position, we do the ANDs with the
3842 similar mask and compare the result of the ANDs.
3844 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3845 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3846 are the left and right operands of the comparison, respectively.
3848 If the optimization described above can be done, we return the resulting
3849 tree. Otherwise we return zero. */
3851 static tree
3852 optimize_bit_field_compare (location_t loc, enum tree_code code,
3853 tree compare_type, tree lhs, tree rhs)
3855 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3856 tree type = TREE_TYPE (lhs);
3857 tree unsigned_type;
3858 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3859 machine_mode lmode, rmode, nmode;
3860 int lunsignedp, runsignedp;
3861 int lreversep, rreversep;
3862 int lvolatilep = 0, rvolatilep = 0;
3863 tree linner, rinner = NULL_TREE;
3864 tree mask;
3865 tree offset;
3867 /* Get all the information about the extractions being done. If the bit size
3868 if the same as the size of the underlying object, we aren't doing an
3869 extraction at all and so can do nothing. We also don't want to
3870 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3871 then will no longer be able to replace it. */
3872 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3873 &lunsignedp, &lreversep, &lvolatilep);
3874 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3875 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3876 return 0;
3878 if (const_p)
3879 rreversep = lreversep;
3880 else
3882 /* If this is not a constant, we can only do something if bit positions,
3883 sizes, signedness and storage order are the same. */
3884 rinner
3885 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3886 &runsignedp, &rreversep, &rvolatilep);
3888 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3889 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3890 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3891 return 0;
3894 /* Honor the C++ memory model and mimic what RTL expansion does. */
3895 unsigned HOST_WIDE_INT bitstart = 0;
3896 unsigned HOST_WIDE_INT bitend = 0;
3897 if (TREE_CODE (lhs) == COMPONENT_REF)
3899 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3900 if (offset != NULL_TREE)
3901 return 0;
3904 /* See if we can find a mode to refer to this field. We should be able to,
3905 but fail if we can't. */
3906 nmode = get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3907 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3908 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3909 TYPE_ALIGN (TREE_TYPE (rinner))),
3910 word_mode, false);
3911 if (nmode == VOIDmode)
3912 return 0;
3914 /* Set signed and unsigned types of the precision of this mode for the
3915 shifts below. */
3916 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3918 /* Compute the bit position and size for the new reference and our offset
3919 within it. If the new reference is the same size as the original, we
3920 won't optimize anything, so return zero. */
3921 nbitsize = GET_MODE_BITSIZE (nmode);
3922 nbitpos = lbitpos & ~ (nbitsize - 1);
3923 lbitpos -= nbitpos;
3924 if (nbitsize == lbitsize)
3925 return 0;
3927 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3928 lbitpos = nbitsize - lbitsize - lbitpos;
3930 /* Make the mask to be used against the extracted field. */
3931 mask = build_int_cst_type (unsigned_type, -1);
3932 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3933 mask = const_binop (RSHIFT_EXPR, mask,
3934 size_int (nbitsize - lbitsize - lbitpos));
3936 if (! const_p)
3937 /* If not comparing with constant, just rework the comparison
3938 and return. */
3939 return fold_build2_loc (loc, code, compare_type,
3940 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3941 make_bit_field_ref (loc, linner, lhs,
3942 unsigned_type,
3943 nbitsize, nbitpos,
3944 1, lreversep),
3945 mask),
3946 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3947 make_bit_field_ref (loc, rinner, rhs,
3948 unsigned_type,
3949 nbitsize, nbitpos,
3950 1, rreversep),
3951 mask));
3953 /* Otherwise, we are handling the constant case. See if the constant is too
3954 big for the field. Warn and return a tree for 0 (false) if so. We do
3955 this not only for its own sake, but to avoid having to test for this
3956 error case below. If we didn't, we might generate wrong code.
3958 For unsigned fields, the constant shifted right by the field length should
3959 be all zero. For signed fields, the high-order bits should agree with
3960 the sign bit. */
3962 if (lunsignedp)
3964 if (wi::lrshift (rhs, lbitsize) != 0)
3966 warning (0, "comparison is always %d due to width of bit-field",
3967 code == NE_EXPR);
3968 return constant_boolean_node (code == NE_EXPR, compare_type);
3971 else
3973 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3974 if (tem != 0 && tem != -1)
3976 warning (0, "comparison is always %d due to width of bit-field",
3977 code == NE_EXPR);
3978 return constant_boolean_node (code == NE_EXPR, compare_type);
3982 /* Single-bit compares should always be against zero. */
3983 if (lbitsize == 1 && ! integer_zerop (rhs))
3985 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3986 rhs = build_int_cst (type, 0);
3989 /* Make a new bitfield reference, shift the constant over the
3990 appropriate number of bits and mask it with the computed mask
3991 (in case this was a signed field). If we changed it, make a new one. */
3992 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
3993 nbitsize, nbitpos, 1, lreversep);
3995 rhs = const_binop (BIT_AND_EXPR,
3996 const_binop (LSHIFT_EXPR,
3997 fold_convert_loc (loc, unsigned_type, rhs),
3998 size_int (lbitpos)),
3999 mask);
4001 lhs = build2_loc (loc, code, compare_type,
4002 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4003 return lhs;
4006 /* Subroutine for fold_truth_andor_1: decode a field reference.
4008 If EXP is a comparison reference, we return the innermost reference.
4010 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4011 set to the starting bit number.
4013 If the innermost field can be completely contained in a mode-sized
4014 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4016 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4017 otherwise it is not changed.
4019 *PUNSIGNEDP is set to the signedness of the field.
4021 *PREVERSEP is set to the storage order of the field.
4023 *PMASK is set to the mask used. This is either contained in a
4024 BIT_AND_EXPR or derived from the width of the field.
4026 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4028 Return 0 if this is not a component reference or is one that we can't
4029 do anything with. */
4031 static tree
4032 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4033 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4034 int *punsignedp, int *preversep, int *pvolatilep,
4035 tree *pmask, tree *pand_mask)
4037 tree exp = *exp_;
4038 tree outer_type = 0;
4039 tree and_mask = 0;
4040 tree mask, inner, offset;
4041 tree unsigned_type;
4042 unsigned int precision;
4044 /* All the optimizations using this function assume integer fields.
4045 There are problems with FP fields since the type_for_size call
4046 below can fail for, e.g., XFmode. */
4047 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4048 return 0;
4050 /* We are interested in the bare arrangement of bits, so strip everything
4051 that doesn't affect the machine mode. However, record the type of the
4052 outermost expression if it may matter below. */
4053 if (CONVERT_EXPR_P (exp)
4054 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4055 outer_type = TREE_TYPE (exp);
4056 STRIP_NOPS (exp);
4058 if (TREE_CODE (exp) == BIT_AND_EXPR)
4060 and_mask = TREE_OPERAND (exp, 1);
4061 exp = TREE_OPERAND (exp, 0);
4062 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4063 if (TREE_CODE (and_mask) != INTEGER_CST)
4064 return 0;
4067 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4068 punsignedp, preversep, pvolatilep);
4069 if ((inner == exp && and_mask == 0)
4070 || *pbitsize < 0 || offset != 0
4071 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4072 return 0;
4074 *exp_ = exp;
4076 /* If the number of bits in the reference is the same as the bitsize of
4077 the outer type, then the outer type gives the signedness. Otherwise
4078 (in case of a small bitfield) the signedness is unchanged. */
4079 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4080 *punsignedp = TYPE_UNSIGNED (outer_type);
4082 /* Compute the mask to access the bitfield. */
4083 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4084 precision = TYPE_PRECISION (unsigned_type);
4086 mask = build_int_cst_type (unsigned_type, -1);
4088 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4089 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4091 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4092 if (and_mask != 0)
4093 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4094 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4096 *pmask = mask;
4097 *pand_mask = and_mask;
4098 return inner;
4101 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4102 bit positions and MASK is SIGNED. */
4104 static int
4105 all_ones_mask_p (const_tree mask, unsigned int size)
4107 tree type = TREE_TYPE (mask);
4108 unsigned int precision = TYPE_PRECISION (type);
4110 /* If this function returns true when the type of the mask is
4111 UNSIGNED, then there will be errors. In particular see
4112 gcc.c-torture/execute/990326-1.c. There does not appear to be
4113 any documentation paper trail as to why this is so. But the pre
4114 wide-int worked with that restriction and it has been preserved
4115 here. */
4116 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4117 return false;
4119 return wi::mask (size, false, precision) == mask;
4122 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4123 represents the sign bit of EXP's type. If EXP represents a sign
4124 or zero extension, also test VAL against the unextended type.
4125 The return value is the (sub)expression whose sign bit is VAL,
4126 or NULL_TREE otherwise. */
4128 tree
4129 sign_bit_p (tree exp, const_tree val)
4131 int width;
4132 tree t;
4134 /* Tree EXP must have an integral type. */
4135 t = TREE_TYPE (exp);
4136 if (! INTEGRAL_TYPE_P (t))
4137 return NULL_TREE;
4139 /* Tree VAL must be an integer constant. */
4140 if (TREE_CODE (val) != INTEGER_CST
4141 || TREE_OVERFLOW (val))
4142 return NULL_TREE;
4144 width = TYPE_PRECISION (t);
4145 if (wi::only_sign_bit_p (val, width))
4146 return exp;
4148 /* Handle extension from a narrower type. */
4149 if (TREE_CODE (exp) == NOP_EXPR
4150 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4151 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4153 return NULL_TREE;
4156 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4157 to be evaluated unconditionally. */
4159 static int
4160 simple_operand_p (const_tree exp)
4162 /* Strip any conversions that don't change the machine mode. */
4163 STRIP_NOPS (exp);
4165 return (CONSTANT_CLASS_P (exp)
4166 || TREE_CODE (exp) == SSA_NAME
4167 || (DECL_P (exp)
4168 && ! TREE_ADDRESSABLE (exp)
4169 && ! TREE_THIS_VOLATILE (exp)
4170 && ! DECL_NONLOCAL (exp)
4171 /* Don't regard global variables as simple. They may be
4172 allocated in ways unknown to the compiler (shared memory,
4173 #pragma weak, etc). */
4174 && ! TREE_PUBLIC (exp)
4175 && ! DECL_EXTERNAL (exp)
4176 /* Weakrefs are not safe to be read, since they can be NULL.
4177 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4178 have DECL_WEAK flag set. */
4179 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4180 /* Loading a static variable is unduly expensive, but global
4181 registers aren't expensive. */
4182 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4185 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4186 to be evaluated unconditionally.
4187 I addition to simple_operand_p, we assume that comparisons, conversions,
4188 and logic-not operations are simple, if their operands are simple, too. */
4190 static bool
4191 simple_operand_p_2 (tree exp)
4193 enum tree_code code;
4195 if (TREE_SIDE_EFFECTS (exp)
4196 || tree_could_trap_p (exp))
4197 return false;
4199 while (CONVERT_EXPR_P (exp))
4200 exp = TREE_OPERAND (exp, 0);
4202 code = TREE_CODE (exp);
4204 if (TREE_CODE_CLASS (code) == tcc_comparison)
4205 return (simple_operand_p (TREE_OPERAND (exp, 0))
4206 && simple_operand_p (TREE_OPERAND (exp, 1)));
4208 if (code == TRUTH_NOT_EXPR)
4209 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4211 return simple_operand_p (exp);
4215 /* The following functions are subroutines to fold_range_test and allow it to
4216 try to change a logical combination of comparisons into a range test.
4218 For example, both
4219 X == 2 || X == 3 || X == 4 || X == 5
4221 X >= 2 && X <= 5
4222 are converted to
4223 (unsigned) (X - 2) <= 3
4225 We describe each set of comparisons as being either inside or outside
4226 a range, using a variable named like IN_P, and then describe the
4227 range with a lower and upper bound. If one of the bounds is omitted,
4228 it represents either the highest or lowest value of the type.
4230 In the comments below, we represent a range by two numbers in brackets
4231 preceded by a "+" to designate being inside that range, or a "-" to
4232 designate being outside that range, so the condition can be inverted by
4233 flipping the prefix. An omitted bound is represented by a "-". For
4234 example, "- [-, 10]" means being outside the range starting at the lowest
4235 possible value and ending at 10, in other words, being greater than 10.
4236 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4237 always false.
4239 We set up things so that the missing bounds are handled in a consistent
4240 manner so neither a missing bound nor "true" and "false" need to be
4241 handled using a special case. */
4243 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4244 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4245 and UPPER1_P are nonzero if the respective argument is an upper bound
4246 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4247 must be specified for a comparison. ARG1 will be converted to ARG0's
4248 type if both are specified. */
4250 static tree
4251 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4252 tree arg1, int upper1_p)
4254 tree tem;
4255 int result;
4256 int sgn0, sgn1;
4258 /* If neither arg represents infinity, do the normal operation.
4259 Else, if not a comparison, return infinity. Else handle the special
4260 comparison rules. Note that most of the cases below won't occur, but
4261 are handled for consistency. */
4263 if (arg0 != 0 && arg1 != 0)
4265 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4266 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4267 STRIP_NOPS (tem);
4268 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4271 if (TREE_CODE_CLASS (code) != tcc_comparison)
4272 return 0;
4274 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4275 for neither. In real maths, we cannot assume open ended ranges are
4276 the same. But, this is computer arithmetic, where numbers are finite.
4277 We can therefore make the transformation of any unbounded range with
4278 the value Z, Z being greater than any representable number. This permits
4279 us to treat unbounded ranges as equal. */
4280 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4281 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4282 switch (code)
4284 case EQ_EXPR:
4285 result = sgn0 == sgn1;
4286 break;
4287 case NE_EXPR:
4288 result = sgn0 != sgn1;
4289 break;
4290 case LT_EXPR:
4291 result = sgn0 < sgn1;
4292 break;
4293 case LE_EXPR:
4294 result = sgn0 <= sgn1;
4295 break;
4296 case GT_EXPR:
4297 result = sgn0 > sgn1;
4298 break;
4299 case GE_EXPR:
4300 result = sgn0 >= sgn1;
4301 break;
4302 default:
4303 gcc_unreachable ();
4306 return constant_boolean_node (result, type);
4309 /* Helper routine for make_range. Perform one step for it, return
4310 new expression if the loop should continue or NULL_TREE if it should
4311 stop. */
4313 tree
4314 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4315 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4316 bool *strict_overflow_p)
4318 tree arg0_type = TREE_TYPE (arg0);
4319 tree n_low, n_high, low = *p_low, high = *p_high;
4320 int in_p = *p_in_p, n_in_p;
4322 switch (code)
4324 case TRUTH_NOT_EXPR:
4325 /* We can only do something if the range is testing for zero. */
4326 if (low == NULL_TREE || high == NULL_TREE
4327 || ! integer_zerop (low) || ! integer_zerop (high))
4328 return NULL_TREE;
4329 *p_in_p = ! in_p;
4330 return arg0;
4332 case EQ_EXPR: case NE_EXPR:
4333 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4334 /* We can only do something if the range is testing for zero
4335 and if the second operand is an integer constant. Note that
4336 saying something is "in" the range we make is done by
4337 complementing IN_P since it will set in the initial case of
4338 being not equal to zero; "out" is leaving it alone. */
4339 if (low == NULL_TREE || high == NULL_TREE
4340 || ! integer_zerop (low) || ! integer_zerop (high)
4341 || TREE_CODE (arg1) != INTEGER_CST)
4342 return NULL_TREE;
4344 switch (code)
4346 case NE_EXPR: /* - [c, c] */
4347 low = high = arg1;
4348 break;
4349 case EQ_EXPR: /* + [c, c] */
4350 in_p = ! in_p, low = high = arg1;
4351 break;
4352 case GT_EXPR: /* - [-, c] */
4353 low = 0, high = arg1;
4354 break;
4355 case GE_EXPR: /* + [c, -] */
4356 in_p = ! in_p, low = arg1, high = 0;
4357 break;
4358 case LT_EXPR: /* - [c, -] */
4359 low = arg1, high = 0;
4360 break;
4361 case LE_EXPR: /* + [-, c] */
4362 in_p = ! in_p, low = 0, high = arg1;
4363 break;
4364 default:
4365 gcc_unreachable ();
4368 /* If this is an unsigned comparison, we also know that EXP is
4369 greater than or equal to zero. We base the range tests we make
4370 on that fact, so we record it here so we can parse existing
4371 range tests. We test arg0_type since often the return type
4372 of, e.g. EQ_EXPR, is boolean. */
4373 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4375 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4376 in_p, low, high, 1,
4377 build_int_cst (arg0_type, 0),
4378 NULL_TREE))
4379 return NULL_TREE;
4381 in_p = n_in_p, low = n_low, high = n_high;
4383 /* If the high bound is missing, but we have a nonzero low
4384 bound, reverse the range so it goes from zero to the low bound
4385 minus 1. */
4386 if (high == 0 && low && ! integer_zerop (low))
4388 in_p = ! in_p;
4389 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4390 build_int_cst (TREE_TYPE (low), 1), 0);
4391 low = build_int_cst (arg0_type, 0);
4395 *p_low = low;
4396 *p_high = high;
4397 *p_in_p = in_p;
4398 return arg0;
4400 case NEGATE_EXPR:
4401 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4402 low and high are non-NULL, then normalize will DTRT. */
4403 if (!TYPE_UNSIGNED (arg0_type)
4404 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4406 if (low == NULL_TREE)
4407 low = TYPE_MIN_VALUE (arg0_type);
4408 if (high == NULL_TREE)
4409 high = TYPE_MAX_VALUE (arg0_type);
4412 /* (-x) IN [a,b] -> x in [-b, -a] */
4413 n_low = range_binop (MINUS_EXPR, exp_type,
4414 build_int_cst (exp_type, 0),
4415 0, high, 1);
4416 n_high = range_binop (MINUS_EXPR, exp_type,
4417 build_int_cst (exp_type, 0),
4418 0, low, 0);
4419 if (n_high != 0 && TREE_OVERFLOW (n_high))
4420 return NULL_TREE;
4421 goto normalize;
4423 case BIT_NOT_EXPR:
4424 /* ~ X -> -X - 1 */
4425 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4426 build_int_cst (exp_type, 1));
4428 case PLUS_EXPR:
4429 case MINUS_EXPR:
4430 if (TREE_CODE (arg1) != INTEGER_CST)
4431 return NULL_TREE;
4433 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4434 move a constant to the other side. */
4435 if (!TYPE_UNSIGNED (arg0_type)
4436 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4437 return NULL_TREE;
4439 /* If EXP is signed, any overflow in the computation is undefined,
4440 so we don't worry about it so long as our computations on
4441 the bounds don't overflow. For unsigned, overflow is defined
4442 and this is exactly the right thing. */
4443 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4444 arg0_type, low, 0, arg1, 0);
4445 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4446 arg0_type, high, 1, arg1, 0);
4447 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4448 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4449 return NULL_TREE;
4451 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4452 *strict_overflow_p = true;
4454 normalize:
4455 /* Check for an unsigned range which has wrapped around the maximum
4456 value thus making n_high < n_low, and normalize it. */
4457 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4459 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4460 build_int_cst (TREE_TYPE (n_high), 1), 0);
4461 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4462 build_int_cst (TREE_TYPE (n_low), 1), 0);
4464 /* If the range is of the form +/- [ x+1, x ], we won't
4465 be able to normalize it. But then, it represents the
4466 whole range or the empty set, so make it
4467 +/- [ -, - ]. */
4468 if (tree_int_cst_equal (n_low, low)
4469 && tree_int_cst_equal (n_high, high))
4470 low = high = 0;
4471 else
4472 in_p = ! in_p;
4474 else
4475 low = n_low, high = n_high;
4477 *p_low = low;
4478 *p_high = high;
4479 *p_in_p = in_p;
4480 return arg0;
4482 CASE_CONVERT:
4483 case NON_LVALUE_EXPR:
4484 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4485 return NULL_TREE;
4487 if (! INTEGRAL_TYPE_P (arg0_type)
4488 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4489 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4490 return NULL_TREE;
4492 n_low = low, n_high = high;
4494 if (n_low != 0)
4495 n_low = fold_convert_loc (loc, arg0_type, n_low);
4497 if (n_high != 0)
4498 n_high = fold_convert_loc (loc, arg0_type, n_high);
4500 /* If we're converting arg0 from an unsigned type, to exp,
4501 a signed type, we will be doing the comparison as unsigned.
4502 The tests above have already verified that LOW and HIGH
4503 are both positive.
4505 So we have to ensure that we will handle large unsigned
4506 values the same way that the current signed bounds treat
4507 negative values. */
4509 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4511 tree high_positive;
4512 tree equiv_type;
4513 /* For fixed-point modes, we need to pass the saturating flag
4514 as the 2nd parameter. */
4515 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4516 equiv_type
4517 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4518 TYPE_SATURATING (arg0_type));
4519 else
4520 equiv_type
4521 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4523 /* A range without an upper bound is, naturally, unbounded.
4524 Since convert would have cropped a very large value, use
4525 the max value for the destination type. */
4526 high_positive
4527 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4528 : TYPE_MAX_VALUE (arg0_type);
4530 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4531 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4532 fold_convert_loc (loc, arg0_type,
4533 high_positive),
4534 build_int_cst (arg0_type, 1));
4536 /* If the low bound is specified, "and" the range with the
4537 range for which the original unsigned value will be
4538 positive. */
4539 if (low != 0)
4541 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4542 1, fold_convert_loc (loc, arg0_type,
4543 integer_zero_node),
4544 high_positive))
4545 return NULL_TREE;
4547 in_p = (n_in_p == in_p);
4549 else
4551 /* Otherwise, "or" the range with the range of the input
4552 that will be interpreted as negative. */
4553 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4554 1, fold_convert_loc (loc, arg0_type,
4555 integer_zero_node),
4556 high_positive))
4557 return NULL_TREE;
4559 in_p = (in_p != n_in_p);
4563 *p_low = n_low;
4564 *p_high = n_high;
4565 *p_in_p = in_p;
4566 return arg0;
4568 default:
4569 return NULL_TREE;
4573 /* Given EXP, a logical expression, set the range it is testing into
4574 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4575 actually being tested. *PLOW and *PHIGH will be made of the same
4576 type as the returned expression. If EXP is not a comparison, we
4577 will most likely not be returning a useful value and range. Set
4578 *STRICT_OVERFLOW_P to true if the return value is only valid
4579 because signed overflow is undefined; otherwise, do not change
4580 *STRICT_OVERFLOW_P. */
4582 tree
4583 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4584 bool *strict_overflow_p)
4586 enum tree_code code;
4587 tree arg0, arg1 = NULL_TREE;
4588 tree exp_type, nexp;
4589 int in_p;
4590 tree low, high;
4591 location_t loc = EXPR_LOCATION (exp);
4593 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4594 and see if we can refine the range. Some of the cases below may not
4595 happen, but it doesn't seem worth worrying about this. We "continue"
4596 the outer loop when we've changed something; otherwise we "break"
4597 the switch, which will "break" the while. */
4599 in_p = 0;
4600 low = high = build_int_cst (TREE_TYPE (exp), 0);
4602 while (1)
4604 code = TREE_CODE (exp);
4605 exp_type = TREE_TYPE (exp);
4606 arg0 = NULL_TREE;
4608 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4610 if (TREE_OPERAND_LENGTH (exp) > 0)
4611 arg0 = TREE_OPERAND (exp, 0);
4612 if (TREE_CODE_CLASS (code) == tcc_binary
4613 || TREE_CODE_CLASS (code) == tcc_comparison
4614 || (TREE_CODE_CLASS (code) == tcc_expression
4615 && TREE_OPERAND_LENGTH (exp) > 1))
4616 arg1 = TREE_OPERAND (exp, 1);
4618 if (arg0 == NULL_TREE)
4619 break;
4621 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4622 &high, &in_p, strict_overflow_p);
4623 if (nexp == NULL_TREE)
4624 break;
4625 exp = nexp;
4628 /* If EXP is a constant, we can evaluate whether this is true or false. */
4629 if (TREE_CODE (exp) == INTEGER_CST)
4631 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4632 exp, 0, low, 0))
4633 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4634 exp, 1, high, 1)));
4635 low = high = 0;
4636 exp = 0;
4639 *pin_p = in_p, *plow = low, *phigh = high;
4640 return exp;
4643 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4644 type, TYPE, return an expression to test if EXP is in (or out of, depending
4645 on IN_P) the range. Return 0 if the test couldn't be created. */
4647 tree
4648 build_range_check (location_t loc, tree type, tree exp, int in_p,
4649 tree low, tree high)
4651 tree etype = TREE_TYPE (exp), value;
4653 /* Disable this optimization for function pointer expressions
4654 on targets that require function pointer canonicalization. */
4655 if (targetm.have_canonicalize_funcptr_for_compare ()
4656 && TREE_CODE (etype) == POINTER_TYPE
4657 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4658 return NULL_TREE;
4660 if (! in_p)
4662 value = build_range_check (loc, type, exp, 1, low, high);
4663 if (value != 0)
4664 return invert_truthvalue_loc (loc, value);
4666 return 0;
4669 if (low == 0 && high == 0)
4670 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4672 if (low == 0)
4673 return fold_build2_loc (loc, LE_EXPR, type, exp,
4674 fold_convert_loc (loc, etype, high));
4676 if (high == 0)
4677 return fold_build2_loc (loc, GE_EXPR, type, exp,
4678 fold_convert_loc (loc, etype, low));
4680 if (operand_equal_p (low, high, 0))
4681 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4682 fold_convert_loc (loc, etype, low));
4684 if (integer_zerop (low))
4686 if (! TYPE_UNSIGNED (etype))
4688 etype = unsigned_type_for (etype);
4689 high = fold_convert_loc (loc, etype, high);
4690 exp = fold_convert_loc (loc, etype, exp);
4692 return build_range_check (loc, type, exp, 1, 0, high);
4695 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4696 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4698 int prec = TYPE_PRECISION (etype);
4700 if (wi::mask (prec - 1, false, prec) == high)
4702 if (TYPE_UNSIGNED (etype))
4704 tree signed_etype = signed_type_for (etype);
4705 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4706 etype
4707 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4708 else
4709 etype = signed_etype;
4710 exp = fold_convert_loc (loc, etype, exp);
4712 return fold_build2_loc (loc, GT_EXPR, type, exp,
4713 build_int_cst (etype, 0));
4717 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4718 This requires wrap-around arithmetics for the type of the expression.
4719 First make sure that arithmetics in this type is valid, then make sure
4720 that it wraps around. */
4721 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4722 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4723 TYPE_UNSIGNED (etype));
4725 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4727 tree utype, minv, maxv;
4729 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4730 for the type in question, as we rely on this here. */
4731 utype = unsigned_type_for (etype);
4732 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4733 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4734 build_int_cst (TREE_TYPE (maxv), 1), 1);
4735 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4737 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4738 minv, 1, maxv, 1)))
4739 etype = utype;
4740 else
4741 return 0;
4744 high = fold_convert_loc (loc, etype, high);
4745 low = fold_convert_loc (loc, etype, low);
4746 exp = fold_convert_loc (loc, etype, exp);
4748 value = const_binop (MINUS_EXPR, high, low);
4751 if (POINTER_TYPE_P (etype))
4753 if (value != 0 && !TREE_OVERFLOW (value))
4755 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4756 return build_range_check (loc, type,
4757 fold_build_pointer_plus_loc (loc, exp, low),
4758 1, build_int_cst (etype, 0), value);
4760 return 0;
4763 if (value != 0 && !TREE_OVERFLOW (value))
4764 return build_range_check (loc, type,
4765 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4766 1, build_int_cst (etype, 0), value);
4768 return 0;
4771 /* Return the predecessor of VAL in its type, handling the infinite case. */
4773 static tree
4774 range_predecessor (tree val)
4776 tree type = TREE_TYPE (val);
4778 if (INTEGRAL_TYPE_P (type)
4779 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4780 return 0;
4781 else
4782 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4783 build_int_cst (TREE_TYPE (val), 1), 0);
4786 /* Return the successor of VAL in its type, handling the infinite case. */
4788 static tree
4789 range_successor (tree val)
4791 tree type = TREE_TYPE (val);
4793 if (INTEGRAL_TYPE_P (type)
4794 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4795 return 0;
4796 else
4797 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4798 build_int_cst (TREE_TYPE (val), 1), 0);
4801 /* Given two ranges, see if we can merge them into one. Return 1 if we
4802 can, 0 if we can't. Set the output range into the specified parameters. */
4804 bool
4805 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4806 tree high0, int in1_p, tree low1, tree high1)
4808 int no_overlap;
4809 int subset;
4810 int temp;
4811 tree tem;
4812 int in_p;
4813 tree low, high;
4814 int lowequal = ((low0 == 0 && low1 == 0)
4815 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4816 low0, 0, low1, 0)));
4817 int highequal = ((high0 == 0 && high1 == 0)
4818 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4819 high0, 1, high1, 1)));
4821 /* Make range 0 be the range that starts first, or ends last if they
4822 start at the same value. Swap them if it isn't. */
4823 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4824 low0, 0, low1, 0))
4825 || (lowequal
4826 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4827 high1, 1, high0, 1))))
4829 temp = in0_p, in0_p = in1_p, in1_p = temp;
4830 tem = low0, low0 = low1, low1 = tem;
4831 tem = high0, high0 = high1, high1 = tem;
4834 /* Now flag two cases, whether the ranges are disjoint or whether the
4835 second range is totally subsumed in the first. Note that the tests
4836 below are simplified by the ones above. */
4837 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4838 high0, 1, low1, 0));
4839 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4840 high1, 1, high0, 1));
4842 /* We now have four cases, depending on whether we are including or
4843 excluding the two ranges. */
4844 if (in0_p && in1_p)
4846 /* If they don't overlap, the result is false. If the second range
4847 is a subset it is the result. Otherwise, the range is from the start
4848 of the second to the end of the first. */
4849 if (no_overlap)
4850 in_p = 0, low = high = 0;
4851 else if (subset)
4852 in_p = 1, low = low1, high = high1;
4853 else
4854 in_p = 1, low = low1, high = high0;
4857 else if (in0_p && ! in1_p)
4859 /* If they don't overlap, the result is the first range. If they are
4860 equal, the result is false. If the second range is a subset of the
4861 first, and the ranges begin at the same place, we go from just after
4862 the end of the second range to the end of the first. If the second
4863 range is not a subset of the first, or if it is a subset and both
4864 ranges end at the same place, the range starts at the start of the
4865 first range and ends just before the second range.
4866 Otherwise, we can't describe this as a single range. */
4867 if (no_overlap)
4868 in_p = 1, low = low0, high = high0;
4869 else if (lowequal && highequal)
4870 in_p = 0, low = high = 0;
4871 else if (subset && lowequal)
4873 low = range_successor (high1);
4874 high = high0;
4875 in_p = 1;
4876 if (low == 0)
4878 /* We are in the weird situation where high0 > high1 but
4879 high1 has no successor. Punt. */
4880 return 0;
4883 else if (! subset || highequal)
4885 low = low0;
4886 high = range_predecessor (low1);
4887 in_p = 1;
4888 if (high == 0)
4890 /* low0 < low1 but low1 has no predecessor. Punt. */
4891 return 0;
4894 else
4895 return 0;
4898 else if (! in0_p && in1_p)
4900 /* If they don't overlap, the result is the second range. If the second
4901 is a subset of the first, the result is false. Otherwise,
4902 the range starts just after the first range and ends at the
4903 end of the second. */
4904 if (no_overlap)
4905 in_p = 1, low = low1, high = high1;
4906 else if (subset || highequal)
4907 in_p = 0, low = high = 0;
4908 else
4910 low = range_successor (high0);
4911 high = high1;
4912 in_p = 1;
4913 if (low == 0)
4915 /* high1 > high0 but high0 has no successor. Punt. */
4916 return 0;
4921 else
4923 /* The case where we are excluding both ranges. Here the complex case
4924 is if they don't overlap. In that case, the only time we have a
4925 range is if they are adjacent. If the second is a subset of the
4926 first, the result is the first. Otherwise, the range to exclude
4927 starts at the beginning of the first range and ends at the end of the
4928 second. */
4929 if (no_overlap)
4931 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4932 range_successor (high0),
4933 1, low1, 0)))
4934 in_p = 0, low = low0, high = high1;
4935 else
4937 /* Canonicalize - [min, x] into - [-, x]. */
4938 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4939 switch (TREE_CODE (TREE_TYPE (low0)))
4941 case ENUMERAL_TYPE:
4942 if (TYPE_PRECISION (TREE_TYPE (low0))
4943 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4944 break;
4945 /* FALLTHROUGH */
4946 case INTEGER_TYPE:
4947 if (tree_int_cst_equal (low0,
4948 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4949 low0 = 0;
4950 break;
4951 case POINTER_TYPE:
4952 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4953 && integer_zerop (low0))
4954 low0 = 0;
4955 break;
4956 default:
4957 break;
4960 /* Canonicalize - [x, max] into - [x, -]. */
4961 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4962 switch (TREE_CODE (TREE_TYPE (high1)))
4964 case ENUMERAL_TYPE:
4965 if (TYPE_PRECISION (TREE_TYPE (high1))
4966 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4967 break;
4968 /* FALLTHROUGH */
4969 case INTEGER_TYPE:
4970 if (tree_int_cst_equal (high1,
4971 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4972 high1 = 0;
4973 break;
4974 case POINTER_TYPE:
4975 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4976 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4977 high1, 1,
4978 build_int_cst (TREE_TYPE (high1), 1),
4979 1)))
4980 high1 = 0;
4981 break;
4982 default:
4983 break;
4986 /* The ranges might be also adjacent between the maximum and
4987 minimum values of the given type. For
4988 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4989 return + [x + 1, y - 1]. */
4990 if (low0 == 0 && high1 == 0)
4992 low = range_successor (high0);
4993 high = range_predecessor (low1);
4994 if (low == 0 || high == 0)
4995 return 0;
4997 in_p = 1;
4999 else
5000 return 0;
5003 else if (subset)
5004 in_p = 0, low = low0, high = high0;
5005 else
5006 in_p = 0, low = low0, high = high1;
5009 *pin_p = in_p, *plow = low, *phigh = high;
5010 return 1;
5014 /* Subroutine of fold, looking inside expressions of the form
5015 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5016 of the COND_EXPR. This function is being used also to optimize
5017 A op B ? C : A, by reversing the comparison first.
5019 Return a folded expression whose code is not a COND_EXPR
5020 anymore, or NULL_TREE if no folding opportunity is found. */
5022 static tree
5023 fold_cond_expr_with_comparison (location_t loc, tree type,
5024 tree arg0, tree arg1, tree arg2)
5026 enum tree_code comp_code = TREE_CODE (arg0);
5027 tree arg00 = TREE_OPERAND (arg0, 0);
5028 tree arg01 = TREE_OPERAND (arg0, 1);
5029 tree arg1_type = TREE_TYPE (arg1);
5030 tree tem;
5032 STRIP_NOPS (arg1);
5033 STRIP_NOPS (arg2);
5035 /* If we have A op 0 ? A : -A, consider applying the following
5036 transformations:
5038 A == 0? A : -A same as -A
5039 A != 0? A : -A same as A
5040 A >= 0? A : -A same as abs (A)
5041 A > 0? A : -A same as abs (A)
5042 A <= 0? A : -A same as -abs (A)
5043 A < 0? A : -A same as -abs (A)
5045 None of these transformations work for modes with signed
5046 zeros. If A is +/-0, the first two transformations will
5047 change the sign of the result (from +0 to -0, or vice
5048 versa). The last four will fix the sign of the result,
5049 even though the original expressions could be positive or
5050 negative, depending on the sign of A.
5052 Note that all these transformations are correct if A is
5053 NaN, since the two alternatives (A and -A) are also NaNs. */
5054 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5055 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5056 ? real_zerop (arg01)
5057 : integer_zerop (arg01))
5058 && ((TREE_CODE (arg2) == NEGATE_EXPR
5059 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5060 /* In the case that A is of the form X-Y, '-A' (arg2) may
5061 have already been folded to Y-X, check for that. */
5062 || (TREE_CODE (arg1) == MINUS_EXPR
5063 && TREE_CODE (arg2) == MINUS_EXPR
5064 && operand_equal_p (TREE_OPERAND (arg1, 0),
5065 TREE_OPERAND (arg2, 1), 0)
5066 && operand_equal_p (TREE_OPERAND (arg1, 1),
5067 TREE_OPERAND (arg2, 0), 0))))
5068 switch (comp_code)
5070 case EQ_EXPR:
5071 case UNEQ_EXPR:
5072 tem = fold_convert_loc (loc, arg1_type, arg1);
5073 return fold_convert_loc (loc, type, negate_expr (tem));
5074 case NE_EXPR:
5075 case LTGT_EXPR:
5076 return fold_convert_loc (loc, type, arg1);
5077 case UNGE_EXPR:
5078 case UNGT_EXPR:
5079 if (flag_trapping_math)
5080 break;
5081 /* Fall through. */
5082 case GE_EXPR:
5083 case GT_EXPR:
5084 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5085 break;
5086 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5087 return fold_convert_loc (loc, type, tem);
5088 case UNLE_EXPR:
5089 case UNLT_EXPR:
5090 if (flag_trapping_math)
5091 break;
5092 /* FALLTHRU */
5093 case LE_EXPR:
5094 case LT_EXPR:
5095 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5096 break;
5097 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5098 return negate_expr (fold_convert_loc (loc, type, tem));
5099 default:
5100 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5101 break;
5104 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5105 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5106 both transformations are correct when A is NaN: A != 0
5107 is then true, and A == 0 is false. */
5109 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5110 && integer_zerop (arg01) && integer_zerop (arg2))
5112 if (comp_code == NE_EXPR)
5113 return fold_convert_loc (loc, type, arg1);
5114 else if (comp_code == EQ_EXPR)
5115 return build_zero_cst (type);
5118 /* Try some transformations of A op B ? A : B.
5120 A == B? A : B same as B
5121 A != B? A : B same as A
5122 A >= B? A : B same as max (A, B)
5123 A > B? A : B same as max (B, A)
5124 A <= B? A : B same as min (A, B)
5125 A < B? A : B same as min (B, A)
5127 As above, these transformations don't work in the presence
5128 of signed zeros. For example, if A and B are zeros of
5129 opposite sign, the first two transformations will change
5130 the sign of the result. In the last four, the original
5131 expressions give different results for (A=+0, B=-0) and
5132 (A=-0, B=+0), but the transformed expressions do not.
5134 The first two transformations are correct if either A or B
5135 is a NaN. In the first transformation, the condition will
5136 be false, and B will indeed be chosen. In the case of the
5137 second transformation, the condition A != B will be true,
5138 and A will be chosen.
5140 The conversions to max() and min() are not correct if B is
5141 a number and A is not. The conditions in the original
5142 expressions will be false, so all four give B. The min()
5143 and max() versions would give a NaN instead. */
5144 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5145 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5146 /* Avoid these transformations if the COND_EXPR may be used
5147 as an lvalue in the C++ front-end. PR c++/19199. */
5148 && (in_gimple_form
5149 || VECTOR_TYPE_P (type)
5150 || (! lang_GNU_CXX ()
5151 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5152 || ! maybe_lvalue_p (arg1)
5153 || ! maybe_lvalue_p (arg2)))
5155 tree comp_op0 = arg00;
5156 tree comp_op1 = arg01;
5157 tree comp_type = TREE_TYPE (comp_op0);
5159 switch (comp_code)
5161 case EQ_EXPR:
5162 return fold_convert_loc (loc, type, arg2);
5163 case NE_EXPR:
5164 return fold_convert_loc (loc, type, arg1);
5165 case LE_EXPR:
5166 case LT_EXPR:
5167 case UNLE_EXPR:
5168 case UNLT_EXPR:
5169 /* In C++ a ?: expression can be an lvalue, so put the
5170 operand which will be used if they are equal first
5171 so that we can convert this back to the
5172 corresponding COND_EXPR. */
5173 if (!HONOR_NANS (arg1))
5175 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5176 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5177 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5178 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5179 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5180 comp_op1, comp_op0);
5181 return fold_convert_loc (loc, type, tem);
5183 break;
5184 case GE_EXPR:
5185 case GT_EXPR:
5186 case UNGE_EXPR:
5187 case UNGT_EXPR:
5188 if (!HONOR_NANS (arg1))
5190 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5191 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5192 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5193 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5194 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5195 comp_op1, comp_op0);
5196 return fold_convert_loc (loc, type, tem);
5198 break;
5199 case UNEQ_EXPR:
5200 if (!HONOR_NANS (arg1))
5201 return fold_convert_loc (loc, type, arg2);
5202 break;
5203 case LTGT_EXPR:
5204 if (!HONOR_NANS (arg1))
5205 return fold_convert_loc (loc, type, arg1);
5206 break;
5207 default:
5208 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5209 break;
5213 return NULL_TREE;
5218 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5219 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5220 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5221 false) >= 2)
5222 #endif
5224 /* EXP is some logical combination of boolean tests. See if we can
5225 merge it into some range test. Return the new tree if so. */
5227 static tree
5228 fold_range_test (location_t loc, enum tree_code code, tree type,
5229 tree op0, tree op1)
5231 int or_op = (code == TRUTH_ORIF_EXPR
5232 || code == TRUTH_OR_EXPR);
5233 int in0_p, in1_p, in_p;
5234 tree low0, low1, low, high0, high1, high;
5235 bool strict_overflow_p = false;
5236 tree tem, lhs, rhs;
5237 const char * const warnmsg = G_("assuming signed overflow does not occur "
5238 "when simplifying range test");
5240 if (!INTEGRAL_TYPE_P (type))
5241 return 0;
5243 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5244 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5246 /* If this is an OR operation, invert both sides; we will invert
5247 again at the end. */
5248 if (or_op)
5249 in0_p = ! in0_p, in1_p = ! in1_p;
5251 /* If both expressions are the same, if we can merge the ranges, and we
5252 can build the range test, return it or it inverted. If one of the
5253 ranges is always true or always false, consider it to be the same
5254 expression as the other. */
5255 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5256 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5257 in1_p, low1, high1)
5258 && 0 != (tem = (build_range_check (loc, type,
5259 lhs != 0 ? lhs
5260 : rhs != 0 ? rhs : integer_zero_node,
5261 in_p, low, high))))
5263 if (strict_overflow_p)
5264 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5265 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5268 /* On machines where the branch cost is expensive, if this is a
5269 short-circuited branch and the underlying object on both sides
5270 is the same, make a non-short-circuit operation. */
5271 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5272 && lhs != 0 && rhs != 0
5273 && (code == TRUTH_ANDIF_EXPR
5274 || code == TRUTH_ORIF_EXPR)
5275 && operand_equal_p (lhs, rhs, 0))
5277 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5278 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5279 which cases we can't do this. */
5280 if (simple_operand_p (lhs))
5281 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5282 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5283 type, op0, op1);
5285 else if (!lang_hooks.decls.global_bindings_p ()
5286 && !CONTAINS_PLACEHOLDER_P (lhs))
5288 tree common = save_expr (lhs);
5290 if (0 != (lhs = build_range_check (loc, type, common,
5291 or_op ? ! in0_p : in0_p,
5292 low0, high0))
5293 && (0 != (rhs = build_range_check (loc, type, common,
5294 or_op ? ! in1_p : in1_p,
5295 low1, high1))))
5297 if (strict_overflow_p)
5298 fold_overflow_warning (warnmsg,
5299 WARN_STRICT_OVERFLOW_COMPARISON);
5300 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5301 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5302 type, lhs, rhs);
5307 return 0;
5310 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5311 bit value. Arrange things so the extra bits will be set to zero if and
5312 only if C is signed-extended to its full width. If MASK is nonzero,
5313 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5315 static tree
5316 unextend (tree c, int p, int unsignedp, tree mask)
5318 tree type = TREE_TYPE (c);
5319 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5320 tree temp;
5322 if (p == modesize || unsignedp)
5323 return c;
5325 /* We work by getting just the sign bit into the low-order bit, then
5326 into the high-order bit, then sign-extend. We then XOR that value
5327 with C. */
5328 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5330 /* We must use a signed type in order to get an arithmetic right shift.
5331 However, we must also avoid introducing accidental overflows, so that
5332 a subsequent call to integer_zerop will work. Hence we must
5333 do the type conversion here. At this point, the constant is either
5334 zero or one, and the conversion to a signed type can never overflow.
5335 We could get an overflow if this conversion is done anywhere else. */
5336 if (TYPE_UNSIGNED (type))
5337 temp = fold_convert (signed_type_for (type), temp);
5339 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5340 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5341 if (mask != 0)
5342 temp = const_binop (BIT_AND_EXPR, temp,
5343 fold_convert (TREE_TYPE (c), mask));
5344 /* If necessary, convert the type back to match the type of C. */
5345 if (TYPE_UNSIGNED (type))
5346 temp = fold_convert (type, temp);
5348 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5351 /* For an expression that has the form
5352 (A && B) || ~B
5354 (A || B) && ~B,
5355 we can drop one of the inner expressions and simplify to
5356 A || ~B
5358 A && ~B
5359 LOC is the location of the resulting expression. OP is the inner
5360 logical operation; the left-hand side in the examples above, while CMPOP
5361 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5362 removing a condition that guards another, as in
5363 (A != NULL && A->...) || A == NULL
5364 which we must not transform. If RHS_ONLY is true, only eliminate the
5365 right-most operand of the inner logical operation. */
5367 static tree
5368 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5369 bool rhs_only)
5371 tree type = TREE_TYPE (cmpop);
5372 enum tree_code code = TREE_CODE (cmpop);
5373 enum tree_code truthop_code = TREE_CODE (op);
5374 tree lhs = TREE_OPERAND (op, 0);
5375 tree rhs = TREE_OPERAND (op, 1);
5376 tree orig_lhs = lhs, orig_rhs = rhs;
5377 enum tree_code rhs_code = TREE_CODE (rhs);
5378 enum tree_code lhs_code = TREE_CODE (lhs);
5379 enum tree_code inv_code;
5381 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5382 return NULL_TREE;
5384 if (TREE_CODE_CLASS (code) != tcc_comparison)
5385 return NULL_TREE;
5387 if (rhs_code == truthop_code)
5389 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5390 if (newrhs != NULL_TREE)
5392 rhs = newrhs;
5393 rhs_code = TREE_CODE (rhs);
5396 if (lhs_code == truthop_code && !rhs_only)
5398 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5399 if (newlhs != NULL_TREE)
5401 lhs = newlhs;
5402 lhs_code = TREE_CODE (lhs);
5406 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5407 if (inv_code == rhs_code
5408 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5409 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5410 return lhs;
5411 if (!rhs_only && inv_code == lhs_code
5412 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5413 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5414 return rhs;
5415 if (rhs != orig_rhs || lhs != orig_lhs)
5416 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5417 lhs, rhs);
5418 return NULL_TREE;
5421 /* Find ways of folding logical expressions of LHS and RHS:
5422 Try to merge two comparisons to the same innermost item.
5423 Look for range tests like "ch >= '0' && ch <= '9'".
5424 Look for combinations of simple terms on machines with expensive branches
5425 and evaluate the RHS unconditionally.
5427 For example, if we have p->a == 2 && p->b == 4 and we can make an
5428 object large enough to span both A and B, we can do this with a comparison
5429 against the object ANDed with the a mask.
5431 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5432 operations to do this with one comparison.
5434 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5435 function and the one above.
5437 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5438 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5440 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5441 two operands.
5443 We return the simplified tree or 0 if no optimization is possible. */
5445 static tree
5446 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5447 tree lhs, tree rhs)
5449 /* If this is the "or" of two comparisons, we can do something if
5450 the comparisons are NE_EXPR. If this is the "and", we can do something
5451 if the comparisons are EQ_EXPR. I.e.,
5452 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5454 WANTED_CODE is this operation code. For single bit fields, we can
5455 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5456 comparison for one-bit fields. */
5458 enum tree_code wanted_code;
5459 enum tree_code lcode, rcode;
5460 tree ll_arg, lr_arg, rl_arg, rr_arg;
5461 tree ll_inner, lr_inner, rl_inner, rr_inner;
5462 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5463 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5464 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5465 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5466 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5467 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5468 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5469 machine_mode lnmode, rnmode;
5470 tree ll_mask, lr_mask, rl_mask, rr_mask;
5471 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5472 tree l_const, r_const;
5473 tree lntype, rntype, result;
5474 HOST_WIDE_INT first_bit, end_bit;
5475 int volatilep;
5477 /* Start by getting the comparison codes. Fail if anything is volatile.
5478 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5479 it were surrounded with a NE_EXPR. */
5481 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5482 return 0;
5484 lcode = TREE_CODE (lhs);
5485 rcode = TREE_CODE (rhs);
5487 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5489 lhs = build2 (NE_EXPR, truth_type, lhs,
5490 build_int_cst (TREE_TYPE (lhs), 0));
5491 lcode = NE_EXPR;
5494 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5496 rhs = build2 (NE_EXPR, truth_type, rhs,
5497 build_int_cst (TREE_TYPE (rhs), 0));
5498 rcode = NE_EXPR;
5501 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5502 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5503 return 0;
5505 ll_arg = TREE_OPERAND (lhs, 0);
5506 lr_arg = TREE_OPERAND (lhs, 1);
5507 rl_arg = TREE_OPERAND (rhs, 0);
5508 rr_arg = TREE_OPERAND (rhs, 1);
5510 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5511 if (simple_operand_p (ll_arg)
5512 && simple_operand_p (lr_arg))
5514 if (operand_equal_p (ll_arg, rl_arg, 0)
5515 && operand_equal_p (lr_arg, rr_arg, 0))
5517 result = combine_comparisons (loc, code, lcode, rcode,
5518 truth_type, ll_arg, lr_arg);
5519 if (result)
5520 return result;
5522 else if (operand_equal_p (ll_arg, rr_arg, 0)
5523 && operand_equal_p (lr_arg, rl_arg, 0))
5525 result = combine_comparisons (loc, code, lcode,
5526 swap_tree_comparison (rcode),
5527 truth_type, ll_arg, lr_arg);
5528 if (result)
5529 return result;
5533 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5534 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5536 /* If the RHS can be evaluated unconditionally and its operands are
5537 simple, it wins to evaluate the RHS unconditionally on machines
5538 with expensive branches. In this case, this isn't a comparison
5539 that can be merged. */
5541 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5542 false) >= 2
5543 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5544 && simple_operand_p (rl_arg)
5545 && simple_operand_p (rr_arg))
5547 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5548 if (code == TRUTH_OR_EXPR
5549 && lcode == NE_EXPR && integer_zerop (lr_arg)
5550 && rcode == NE_EXPR && integer_zerop (rr_arg)
5551 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5552 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5553 return build2_loc (loc, NE_EXPR, truth_type,
5554 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5555 ll_arg, rl_arg),
5556 build_int_cst (TREE_TYPE (ll_arg), 0));
5558 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5559 if (code == TRUTH_AND_EXPR
5560 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5561 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5562 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5563 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5564 return build2_loc (loc, EQ_EXPR, truth_type,
5565 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5566 ll_arg, rl_arg),
5567 build_int_cst (TREE_TYPE (ll_arg), 0));
5570 /* See if the comparisons can be merged. Then get all the parameters for
5571 each side. */
5573 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5574 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5575 return 0;
5577 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5578 volatilep = 0;
5579 ll_inner = decode_field_reference (loc, &ll_arg,
5580 &ll_bitsize, &ll_bitpos, &ll_mode,
5581 &ll_unsignedp, &ll_reversep, &volatilep,
5582 &ll_mask, &ll_and_mask);
5583 lr_inner = decode_field_reference (loc, &lr_arg,
5584 &lr_bitsize, &lr_bitpos, &lr_mode,
5585 &lr_unsignedp, &lr_reversep, &volatilep,
5586 &lr_mask, &lr_and_mask);
5587 rl_inner = decode_field_reference (loc, &rl_arg,
5588 &rl_bitsize, &rl_bitpos, &rl_mode,
5589 &rl_unsignedp, &rl_reversep, &volatilep,
5590 &rl_mask, &rl_and_mask);
5591 rr_inner = decode_field_reference (loc, &rr_arg,
5592 &rr_bitsize, &rr_bitpos, &rr_mode,
5593 &rr_unsignedp, &rr_reversep, &volatilep,
5594 &rr_mask, &rr_and_mask);
5596 /* It must be true that the inner operation on the lhs of each
5597 comparison must be the same if we are to be able to do anything.
5598 Then see if we have constants. If not, the same must be true for
5599 the rhs's. */
5600 if (volatilep
5601 || ll_reversep != rl_reversep
5602 || ll_inner == 0 || rl_inner == 0
5603 || ! operand_equal_p (ll_inner, rl_inner, 0))
5604 return 0;
5606 if (TREE_CODE (lr_arg) == INTEGER_CST
5607 && TREE_CODE (rr_arg) == INTEGER_CST)
5609 l_const = lr_arg, r_const = rr_arg;
5610 lr_reversep = ll_reversep;
5612 else if (lr_reversep != rr_reversep
5613 || lr_inner == 0 || rr_inner == 0
5614 || ! operand_equal_p (lr_inner, rr_inner, 0))
5615 return 0;
5616 else
5617 l_const = r_const = 0;
5619 /* If either comparison code is not correct for our logical operation,
5620 fail. However, we can convert a one-bit comparison against zero into
5621 the opposite comparison against that bit being set in the field. */
5623 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5624 if (lcode != wanted_code)
5626 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5628 /* Make the left operand unsigned, since we are only interested
5629 in the value of one bit. Otherwise we are doing the wrong
5630 thing below. */
5631 ll_unsignedp = 1;
5632 l_const = ll_mask;
5634 else
5635 return 0;
5638 /* This is analogous to the code for l_const above. */
5639 if (rcode != wanted_code)
5641 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5643 rl_unsignedp = 1;
5644 r_const = rl_mask;
5646 else
5647 return 0;
5650 /* See if we can find a mode that contains both fields being compared on
5651 the left. If we can't, fail. Otherwise, update all constants and masks
5652 to be relative to a field of that size. */
5653 first_bit = MIN (ll_bitpos, rl_bitpos);
5654 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5655 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5656 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5657 volatilep);
5658 if (lnmode == VOIDmode)
5659 return 0;
5661 lnbitsize = GET_MODE_BITSIZE (lnmode);
5662 lnbitpos = first_bit & ~ (lnbitsize - 1);
5663 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5664 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5666 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5668 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5669 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5672 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5673 size_int (xll_bitpos));
5674 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5675 size_int (xrl_bitpos));
5677 if (l_const)
5679 l_const = fold_convert_loc (loc, lntype, l_const);
5680 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5681 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5682 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5683 fold_build1_loc (loc, BIT_NOT_EXPR,
5684 lntype, ll_mask))))
5686 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5688 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5691 if (r_const)
5693 r_const = fold_convert_loc (loc, lntype, r_const);
5694 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5695 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5696 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5697 fold_build1_loc (loc, BIT_NOT_EXPR,
5698 lntype, rl_mask))))
5700 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5702 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5706 /* If the right sides are not constant, do the same for it. Also,
5707 disallow this optimization if a size or signedness mismatch occurs
5708 between the left and right sides. */
5709 if (l_const == 0)
5711 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5712 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5713 /* Make sure the two fields on the right
5714 correspond to the left without being swapped. */
5715 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5716 return 0;
5718 first_bit = MIN (lr_bitpos, rr_bitpos);
5719 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5720 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5721 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5722 volatilep);
5723 if (rnmode == VOIDmode)
5724 return 0;
5726 rnbitsize = GET_MODE_BITSIZE (rnmode);
5727 rnbitpos = first_bit & ~ (rnbitsize - 1);
5728 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5729 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5731 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5733 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5734 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5737 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5738 rntype, lr_mask),
5739 size_int (xlr_bitpos));
5740 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5741 rntype, rr_mask),
5742 size_int (xrr_bitpos));
5744 /* Make a mask that corresponds to both fields being compared.
5745 Do this for both items being compared. If the operands are the
5746 same size and the bits being compared are in the same position
5747 then we can do this by masking both and comparing the masked
5748 results. */
5749 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5750 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5751 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5753 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5754 lntype, lnbitsize, lnbitpos,
5755 ll_unsignedp || rl_unsignedp, ll_reversep);
5756 if (! all_ones_mask_p (ll_mask, lnbitsize))
5757 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5759 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5760 rntype, rnbitsize, rnbitpos,
5761 lr_unsignedp || rr_unsignedp, lr_reversep);
5762 if (! all_ones_mask_p (lr_mask, rnbitsize))
5763 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5765 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5768 /* There is still another way we can do something: If both pairs of
5769 fields being compared are adjacent, we may be able to make a wider
5770 field containing them both.
5772 Note that we still must mask the lhs/rhs expressions. Furthermore,
5773 the mask must be shifted to account for the shift done by
5774 make_bit_field_ref. */
5775 if ((ll_bitsize + ll_bitpos == rl_bitpos
5776 && lr_bitsize + lr_bitpos == rr_bitpos)
5777 || (ll_bitpos == rl_bitpos + rl_bitsize
5778 && lr_bitpos == rr_bitpos + rr_bitsize))
5780 tree type;
5782 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5783 ll_bitsize + rl_bitsize,
5784 MIN (ll_bitpos, rl_bitpos),
5785 ll_unsignedp, ll_reversep);
5786 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5787 lr_bitsize + rr_bitsize,
5788 MIN (lr_bitpos, rr_bitpos),
5789 lr_unsignedp, lr_reversep);
5791 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5792 size_int (MIN (xll_bitpos, xrl_bitpos)));
5793 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5794 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5796 /* Convert to the smaller type before masking out unwanted bits. */
5797 type = lntype;
5798 if (lntype != rntype)
5800 if (lnbitsize > rnbitsize)
5802 lhs = fold_convert_loc (loc, rntype, lhs);
5803 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5804 type = rntype;
5806 else if (lnbitsize < rnbitsize)
5808 rhs = fold_convert_loc (loc, lntype, rhs);
5809 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5810 type = lntype;
5814 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5815 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5817 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5818 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5820 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5823 return 0;
5826 /* Handle the case of comparisons with constants. If there is something in
5827 common between the masks, those bits of the constants must be the same.
5828 If not, the condition is always false. Test for this to avoid generating
5829 incorrect code below. */
5830 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5831 if (! integer_zerop (result)
5832 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5833 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5835 if (wanted_code == NE_EXPR)
5837 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5838 return constant_boolean_node (true, truth_type);
5840 else
5842 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5843 return constant_boolean_node (false, truth_type);
5847 /* Construct the expression we will return. First get the component
5848 reference we will make. Unless the mask is all ones the width of
5849 that field, perform the mask operation. Then compare with the
5850 merged constant. */
5851 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5852 lntype, lnbitsize, lnbitpos,
5853 ll_unsignedp || rl_unsignedp, ll_reversep);
5855 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5856 if (! all_ones_mask_p (ll_mask, lnbitsize))
5857 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5859 return build2_loc (loc, wanted_code, truth_type, result,
5860 const_binop (BIT_IOR_EXPR, l_const, r_const));
5863 /* T is an integer expression that is being multiplied, divided, or taken a
5864 modulus (CODE says which and what kind of divide or modulus) by a
5865 constant C. See if we can eliminate that operation by folding it with
5866 other operations already in T. WIDE_TYPE, if non-null, is a type that
5867 should be used for the computation if wider than our type.
5869 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5870 (X * 2) + (Y * 4). We must, however, be assured that either the original
5871 expression would not overflow or that overflow is undefined for the type
5872 in the language in question.
5874 If we return a non-null expression, it is an equivalent form of the
5875 original computation, but need not be in the original type.
5877 We set *STRICT_OVERFLOW_P to true if the return values depends on
5878 signed overflow being undefined. Otherwise we do not change
5879 *STRICT_OVERFLOW_P. */
5881 static tree
5882 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5883 bool *strict_overflow_p)
5885 /* To avoid exponential search depth, refuse to allow recursion past
5886 three levels. Beyond that (1) it's highly unlikely that we'll find
5887 something interesting and (2) we've probably processed it before
5888 when we built the inner expression. */
5890 static int depth;
5891 tree ret;
5893 if (depth > 3)
5894 return NULL;
5896 depth++;
5897 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5898 depth--;
5900 return ret;
5903 static tree
5904 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5905 bool *strict_overflow_p)
5907 tree type = TREE_TYPE (t);
5908 enum tree_code tcode = TREE_CODE (t);
5909 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5910 > GET_MODE_SIZE (TYPE_MODE (type)))
5911 ? wide_type : type);
5912 tree t1, t2;
5913 int same_p = tcode == code;
5914 tree op0 = NULL_TREE, op1 = NULL_TREE;
5915 bool sub_strict_overflow_p;
5917 /* Don't deal with constants of zero here; they confuse the code below. */
5918 if (integer_zerop (c))
5919 return NULL_TREE;
5921 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5922 op0 = TREE_OPERAND (t, 0);
5924 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5925 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5927 /* Note that we need not handle conditional operations here since fold
5928 already handles those cases. So just do arithmetic here. */
5929 switch (tcode)
5931 case INTEGER_CST:
5932 /* For a constant, we can always simplify if we are a multiply
5933 or (for divide and modulus) if it is a multiple of our constant. */
5934 if (code == MULT_EXPR
5935 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5937 tree tem = const_binop (code, fold_convert (ctype, t),
5938 fold_convert (ctype, c));
5939 /* If the multiplication overflowed, we lost information on it.
5940 See PR68142 and PR69845. */
5941 if (TREE_OVERFLOW (tem))
5942 return NULL_TREE;
5943 return tem;
5945 break;
5947 CASE_CONVERT: case NON_LVALUE_EXPR:
5948 /* If op0 is an expression ... */
5949 if ((COMPARISON_CLASS_P (op0)
5950 || UNARY_CLASS_P (op0)
5951 || BINARY_CLASS_P (op0)
5952 || VL_EXP_CLASS_P (op0)
5953 || EXPRESSION_CLASS_P (op0))
5954 /* ... and has wrapping overflow, and its type is smaller
5955 than ctype, then we cannot pass through as widening. */
5956 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5957 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5958 && (TYPE_PRECISION (ctype)
5959 > TYPE_PRECISION (TREE_TYPE (op0))))
5960 /* ... or this is a truncation (t is narrower than op0),
5961 then we cannot pass through this narrowing. */
5962 || (TYPE_PRECISION (type)
5963 < TYPE_PRECISION (TREE_TYPE (op0)))
5964 /* ... or signedness changes for division or modulus,
5965 then we cannot pass through this conversion. */
5966 || (code != MULT_EXPR
5967 && (TYPE_UNSIGNED (ctype)
5968 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5969 /* ... or has undefined overflow while the converted to
5970 type has not, we cannot do the operation in the inner type
5971 as that would introduce undefined overflow. */
5972 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5973 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5974 && !TYPE_OVERFLOW_UNDEFINED (type))))
5975 break;
5977 /* Pass the constant down and see if we can make a simplification. If
5978 we can, replace this expression with the inner simplification for
5979 possible later conversion to our or some other type. */
5980 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5981 && TREE_CODE (t2) == INTEGER_CST
5982 && !TREE_OVERFLOW (t2)
5983 && (0 != (t1 = extract_muldiv (op0, t2, code,
5984 code == MULT_EXPR
5985 ? ctype : NULL_TREE,
5986 strict_overflow_p))))
5987 return t1;
5988 break;
5990 case ABS_EXPR:
5991 /* If widening the type changes it from signed to unsigned, then we
5992 must avoid building ABS_EXPR itself as unsigned. */
5993 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5995 tree cstype = (*signed_type_for) (ctype);
5996 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5997 != 0)
5999 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6000 return fold_convert (ctype, t1);
6002 break;
6004 /* If the constant is negative, we cannot simplify this. */
6005 if (tree_int_cst_sgn (c) == -1)
6006 break;
6007 /* FALLTHROUGH */
6008 case NEGATE_EXPR:
6009 /* For division and modulus, type can't be unsigned, as e.g.
6010 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6011 For signed types, even with wrapping overflow, this is fine. */
6012 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6013 break;
6014 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6015 != 0)
6016 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6017 break;
6019 case MIN_EXPR: case MAX_EXPR:
6020 /* If widening the type changes the signedness, then we can't perform
6021 this optimization as that changes the result. */
6022 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6023 break;
6025 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6026 sub_strict_overflow_p = false;
6027 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6028 &sub_strict_overflow_p)) != 0
6029 && (t2 = extract_muldiv (op1, c, code, wide_type,
6030 &sub_strict_overflow_p)) != 0)
6032 if (tree_int_cst_sgn (c) < 0)
6033 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6034 if (sub_strict_overflow_p)
6035 *strict_overflow_p = true;
6036 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6037 fold_convert (ctype, t2));
6039 break;
6041 case LSHIFT_EXPR: case RSHIFT_EXPR:
6042 /* If the second operand is constant, this is a multiplication
6043 or floor division, by a power of two, so we can treat it that
6044 way unless the multiplier or divisor overflows. Signed
6045 left-shift overflow is implementation-defined rather than
6046 undefined in C90, so do not convert signed left shift into
6047 multiplication. */
6048 if (TREE_CODE (op1) == INTEGER_CST
6049 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6050 /* const_binop may not detect overflow correctly,
6051 so check for it explicitly here. */
6052 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6053 && 0 != (t1 = fold_convert (ctype,
6054 const_binop (LSHIFT_EXPR,
6055 size_one_node,
6056 op1)))
6057 && !TREE_OVERFLOW (t1))
6058 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6059 ? MULT_EXPR : FLOOR_DIV_EXPR,
6060 ctype,
6061 fold_convert (ctype, op0),
6062 t1),
6063 c, code, wide_type, strict_overflow_p);
6064 break;
6066 case PLUS_EXPR: case MINUS_EXPR:
6067 /* See if we can eliminate the operation on both sides. If we can, we
6068 can return a new PLUS or MINUS. If we can't, the only remaining
6069 cases where we can do anything are if the second operand is a
6070 constant. */
6071 sub_strict_overflow_p = false;
6072 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6073 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6074 if (t1 != 0 && t2 != 0
6075 && (code == MULT_EXPR
6076 /* If not multiplication, we can only do this if both operands
6077 are divisible by c. */
6078 || (multiple_of_p (ctype, op0, c)
6079 && multiple_of_p (ctype, op1, c))))
6081 if (sub_strict_overflow_p)
6082 *strict_overflow_p = true;
6083 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6084 fold_convert (ctype, t2));
6087 /* If this was a subtraction, negate OP1 and set it to be an addition.
6088 This simplifies the logic below. */
6089 if (tcode == MINUS_EXPR)
6091 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6092 /* If OP1 was not easily negatable, the constant may be OP0. */
6093 if (TREE_CODE (op0) == INTEGER_CST)
6095 std::swap (op0, op1);
6096 std::swap (t1, t2);
6100 if (TREE_CODE (op1) != INTEGER_CST)
6101 break;
6103 /* If either OP1 or C are negative, this optimization is not safe for
6104 some of the division and remainder types while for others we need
6105 to change the code. */
6106 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6108 if (code == CEIL_DIV_EXPR)
6109 code = FLOOR_DIV_EXPR;
6110 else if (code == FLOOR_DIV_EXPR)
6111 code = CEIL_DIV_EXPR;
6112 else if (code != MULT_EXPR
6113 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6114 break;
6117 /* If it's a multiply or a division/modulus operation of a multiple
6118 of our constant, do the operation and verify it doesn't overflow. */
6119 if (code == MULT_EXPR
6120 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6122 op1 = const_binop (code, fold_convert (ctype, op1),
6123 fold_convert (ctype, c));
6124 /* We allow the constant to overflow with wrapping semantics. */
6125 if (op1 == 0
6126 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6127 break;
6129 else
6130 break;
6132 /* If we have an unsigned type, we cannot widen the operation since it
6133 will change the result if the original computation overflowed. */
6134 if (TYPE_UNSIGNED (ctype) && ctype != type)
6135 break;
6137 /* If we were able to eliminate our operation from the first side,
6138 apply our operation to the second side and reform the PLUS. */
6139 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6140 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6142 /* The last case is if we are a multiply. In that case, we can
6143 apply the distributive law to commute the multiply and addition
6144 if the multiplication of the constants doesn't overflow
6145 and overflow is defined. With undefined overflow
6146 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6147 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6148 return fold_build2 (tcode, ctype,
6149 fold_build2 (code, ctype,
6150 fold_convert (ctype, op0),
6151 fold_convert (ctype, c)),
6152 op1);
6154 break;
6156 case MULT_EXPR:
6157 /* We have a special case here if we are doing something like
6158 (C * 8) % 4 since we know that's zero. */
6159 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6160 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6161 /* If the multiplication can overflow we cannot optimize this. */
6162 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6163 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6164 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6166 *strict_overflow_p = true;
6167 return omit_one_operand (type, integer_zero_node, op0);
6170 /* ... fall through ... */
6172 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6173 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6174 /* If we can extract our operation from the LHS, do so and return a
6175 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6176 do something only if the second operand is a constant. */
6177 if (same_p
6178 && (t1 = extract_muldiv (op0, c, code, wide_type,
6179 strict_overflow_p)) != 0)
6180 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6181 fold_convert (ctype, op1));
6182 else if (tcode == MULT_EXPR && code == MULT_EXPR
6183 && (t1 = extract_muldiv (op1, c, code, wide_type,
6184 strict_overflow_p)) != 0)
6185 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6186 fold_convert (ctype, t1));
6187 else if (TREE_CODE (op1) != INTEGER_CST)
6188 return 0;
6190 /* If these are the same operation types, we can associate them
6191 assuming no overflow. */
6192 if (tcode == code)
6194 bool overflow_p = false;
6195 bool overflow_mul_p;
6196 signop sign = TYPE_SIGN (ctype);
6197 unsigned prec = TYPE_PRECISION (ctype);
6198 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6199 wi::to_wide (c, prec),
6200 sign, &overflow_mul_p);
6201 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6202 if (overflow_mul_p
6203 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6204 overflow_p = true;
6205 if (!overflow_p)
6206 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6207 wide_int_to_tree (ctype, mul));
6210 /* If these operations "cancel" each other, we have the main
6211 optimizations of this pass, which occur when either constant is a
6212 multiple of the other, in which case we replace this with either an
6213 operation or CODE or TCODE.
6215 If we have an unsigned type, we cannot do this since it will change
6216 the result if the original computation overflowed. */
6217 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6218 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6219 || (tcode == MULT_EXPR
6220 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6221 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6222 && code != MULT_EXPR)))
6224 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6226 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6227 *strict_overflow_p = true;
6228 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6229 fold_convert (ctype,
6230 const_binop (TRUNC_DIV_EXPR,
6231 op1, c)));
6233 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6235 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6236 *strict_overflow_p = true;
6237 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6238 fold_convert (ctype,
6239 const_binop (TRUNC_DIV_EXPR,
6240 c, op1)));
6243 break;
6245 default:
6246 break;
6249 return 0;
6252 /* Return a node which has the indicated constant VALUE (either 0 or
6253 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6254 and is of the indicated TYPE. */
6256 tree
6257 constant_boolean_node (bool value, tree type)
6259 if (type == integer_type_node)
6260 return value ? integer_one_node : integer_zero_node;
6261 else if (type == boolean_type_node)
6262 return value ? boolean_true_node : boolean_false_node;
6263 else if (TREE_CODE (type) == VECTOR_TYPE)
6264 return build_vector_from_val (type,
6265 build_int_cst (TREE_TYPE (type),
6266 value ? -1 : 0));
6267 else
6268 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6272 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6273 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6274 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6275 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6276 COND is the first argument to CODE; otherwise (as in the example
6277 given here), it is the second argument. TYPE is the type of the
6278 original expression. Return NULL_TREE if no simplification is
6279 possible. */
6281 static tree
6282 fold_binary_op_with_conditional_arg (location_t loc,
6283 enum tree_code code,
6284 tree type, tree op0, tree op1,
6285 tree cond, tree arg, int cond_first_p)
6287 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6288 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6289 tree test, true_value, false_value;
6290 tree lhs = NULL_TREE;
6291 tree rhs = NULL_TREE;
6292 enum tree_code cond_code = COND_EXPR;
6294 if (TREE_CODE (cond) == COND_EXPR
6295 || TREE_CODE (cond) == VEC_COND_EXPR)
6297 test = TREE_OPERAND (cond, 0);
6298 true_value = TREE_OPERAND (cond, 1);
6299 false_value = TREE_OPERAND (cond, 2);
6300 /* If this operand throws an expression, then it does not make
6301 sense to try to perform a logical or arithmetic operation
6302 involving it. */
6303 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6304 lhs = true_value;
6305 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6306 rhs = false_value;
6308 else if (!(TREE_CODE (type) != VECTOR_TYPE
6309 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6311 tree testtype = TREE_TYPE (cond);
6312 test = cond;
6313 true_value = constant_boolean_node (true, testtype);
6314 false_value = constant_boolean_node (false, testtype);
6316 else
6317 /* Detect the case of mixing vector and scalar types - bail out. */
6318 return NULL_TREE;
6320 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6321 cond_code = VEC_COND_EXPR;
6323 /* This transformation is only worthwhile if we don't have to wrap ARG
6324 in a SAVE_EXPR and the operation can be simplified without recursing
6325 on at least one of the branches once its pushed inside the COND_EXPR. */
6326 if (!TREE_CONSTANT (arg)
6327 && (TREE_SIDE_EFFECTS (arg)
6328 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6329 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6330 return NULL_TREE;
6332 arg = fold_convert_loc (loc, arg_type, arg);
6333 if (lhs == 0)
6335 true_value = fold_convert_loc (loc, cond_type, true_value);
6336 if (cond_first_p)
6337 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6338 else
6339 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6341 if (rhs == 0)
6343 false_value = fold_convert_loc (loc, cond_type, false_value);
6344 if (cond_first_p)
6345 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6346 else
6347 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6350 /* Check that we have simplified at least one of the branches. */
6351 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6352 return NULL_TREE;
6354 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6358 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6360 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6361 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6362 ADDEND is the same as X.
6364 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6365 and finite. The problematic cases are when X is zero, and its mode
6366 has signed zeros. In the case of rounding towards -infinity,
6367 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6368 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6370 bool
6371 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6373 if (!real_zerop (addend))
6374 return false;
6376 /* Don't allow the fold with -fsignaling-nans. */
6377 if (HONOR_SNANS (element_mode (type)))
6378 return false;
6380 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6381 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6382 return true;
6384 /* In a vector or complex, we would need to check the sign of all zeros. */
6385 if (TREE_CODE (addend) != REAL_CST)
6386 return false;
6388 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6389 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6390 negate = !negate;
6392 /* The mode has signed zeros, and we have to honor their sign.
6393 In this situation, there is only one case we can return true for.
6394 X - 0 is the same as X unless rounding towards -infinity is
6395 supported. */
6396 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6399 /* Subroutine of fold() that optimizes comparisons of a division by
6400 a nonzero integer constant against an integer constant, i.e.
6401 X/C1 op C2.
6403 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6404 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6405 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6407 The function returns the constant folded tree if a simplification
6408 can be made, and NULL_TREE otherwise. */
6410 static tree
6411 fold_div_compare (location_t loc,
6412 enum tree_code code, tree type, tree arg0, tree arg1)
6414 tree prod, tmp, hi, lo;
6415 tree arg00 = TREE_OPERAND (arg0, 0);
6416 tree arg01 = TREE_OPERAND (arg0, 1);
6417 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6418 bool neg_overflow = false;
6419 bool overflow;
6421 /* We have to do this the hard way to detect unsigned overflow.
6422 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6423 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6424 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6425 neg_overflow = false;
6427 if (sign == UNSIGNED)
6429 tmp = int_const_binop (MINUS_EXPR, arg01,
6430 build_int_cst (TREE_TYPE (arg01), 1));
6431 lo = prod;
6433 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6434 val = wi::add (prod, tmp, sign, &overflow);
6435 hi = force_fit_type (TREE_TYPE (arg00), val,
6436 -1, overflow | TREE_OVERFLOW (prod));
6438 else if (tree_int_cst_sgn (arg01) >= 0)
6440 tmp = int_const_binop (MINUS_EXPR, arg01,
6441 build_int_cst (TREE_TYPE (arg01), 1));
6442 switch (tree_int_cst_sgn (arg1))
6444 case -1:
6445 neg_overflow = true;
6446 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6447 hi = prod;
6448 break;
6450 case 0:
6451 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6452 hi = tmp;
6453 break;
6455 case 1:
6456 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6457 lo = prod;
6458 break;
6460 default:
6461 gcc_unreachable ();
6464 else
6466 /* A negative divisor reverses the relational operators. */
6467 code = swap_tree_comparison (code);
6469 tmp = int_const_binop (PLUS_EXPR, arg01,
6470 build_int_cst (TREE_TYPE (arg01), 1));
6471 switch (tree_int_cst_sgn (arg1))
6473 case -1:
6474 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6475 lo = prod;
6476 break;
6478 case 0:
6479 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6480 lo = tmp;
6481 break;
6483 case 1:
6484 neg_overflow = true;
6485 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6486 hi = prod;
6487 break;
6489 default:
6490 gcc_unreachable ();
6494 switch (code)
6496 case EQ_EXPR:
6497 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6498 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6499 if (TREE_OVERFLOW (hi))
6500 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6501 if (TREE_OVERFLOW (lo))
6502 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6503 return build_range_check (loc, type, arg00, 1, lo, hi);
6505 case NE_EXPR:
6506 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6507 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6508 if (TREE_OVERFLOW (hi))
6509 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6510 if (TREE_OVERFLOW (lo))
6511 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6512 return build_range_check (loc, type, arg00, 0, lo, hi);
6514 case LT_EXPR:
6515 if (TREE_OVERFLOW (lo))
6517 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6518 return omit_one_operand_loc (loc, type, tmp, arg00);
6520 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6522 case LE_EXPR:
6523 if (TREE_OVERFLOW (hi))
6525 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6526 return omit_one_operand_loc (loc, type, tmp, arg00);
6528 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6530 case GT_EXPR:
6531 if (TREE_OVERFLOW (hi))
6533 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6534 return omit_one_operand_loc (loc, type, tmp, arg00);
6536 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6538 case GE_EXPR:
6539 if (TREE_OVERFLOW (lo))
6541 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6542 return omit_one_operand_loc (loc, type, tmp, arg00);
6544 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6546 default:
6547 break;
6550 return NULL_TREE;
6554 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6555 equality/inequality test, then return a simplified form of the test
6556 using a sign testing. Otherwise return NULL. TYPE is the desired
6557 result type. */
6559 static tree
6560 fold_single_bit_test_into_sign_test (location_t loc,
6561 enum tree_code code, tree arg0, tree arg1,
6562 tree result_type)
6564 /* If this is testing a single bit, we can optimize the test. */
6565 if ((code == NE_EXPR || code == EQ_EXPR)
6566 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6567 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6569 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6570 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6571 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6573 if (arg00 != NULL_TREE
6574 /* This is only a win if casting to a signed type is cheap,
6575 i.e. when arg00's type is not a partial mode. */
6576 && TYPE_PRECISION (TREE_TYPE (arg00))
6577 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6579 tree stype = signed_type_for (TREE_TYPE (arg00));
6580 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6581 result_type,
6582 fold_convert_loc (loc, stype, arg00),
6583 build_int_cst (stype, 0));
6587 return NULL_TREE;
6590 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6591 equality/inequality test, then return a simplified form of
6592 the test using shifts and logical operations. Otherwise return
6593 NULL. TYPE is the desired result type. */
6595 tree
6596 fold_single_bit_test (location_t loc, enum tree_code code,
6597 tree arg0, tree arg1, tree result_type)
6599 /* If this is testing a single bit, we can optimize the test. */
6600 if ((code == NE_EXPR || code == EQ_EXPR)
6601 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6602 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6604 tree inner = TREE_OPERAND (arg0, 0);
6605 tree type = TREE_TYPE (arg0);
6606 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6607 machine_mode operand_mode = TYPE_MODE (type);
6608 int ops_unsigned;
6609 tree signed_type, unsigned_type, intermediate_type;
6610 tree tem, one;
6612 /* First, see if we can fold the single bit test into a sign-bit
6613 test. */
6614 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6615 result_type);
6616 if (tem)
6617 return tem;
6619 /* Otherwise we have (A & C) != 0 where C is a single bit,
6620 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6621 Similarly for (A & C) == 0. */
6623 /* If INNER is a right shift of a constant and it plus BITNUM does
6624 not overflow, adjust BITNUM and INNER. */
6625 if (TREE_CODE (inner) == RSHIFT_EXPR
6626 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6627 && bitnum < TYPE_PRECISION (type)
6628 && wi::ltu_p (TREE_OPERAND (inner, 1),
6629 TYPE_PRECISION (type) - bitnum))
6631 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6632 inner = TREE_OPERAND (inner, 0);
6635 /* If we are going to be able to omit the AND below, we must do our
6636 operations as unsigned. If we must use the AND, we have a choice.
6637 Normally unsigned is faster, but for some machines signed is. */
6638 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6639 && !flag_syntax_only) ? 0 : 1;
6641 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6642 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6643 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6644 inner = fold_convert_loc (loc, intermediate_type, inner);
6646 if (bitnum != 0)
6647 inner = build2 (RSHIFT_EXPR, intermediate_type,
6648 inner, size_int (bitnum));
6650 one = build_int_cst (intermediate_type, 1);
6652 if (code == EQ_EXPR)
6653 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6655 /* Put the AND last so it can combine with more things. */
6656 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6658 /* Make sure to return the proper type. */
6659 inner = fold_convert_loc (loc, result_type, inner);
6661 return inner;
6663 return NULL_TREE;
6666 /* Test whether it is preferable two swap two operands, ARG0 and
6667 ARG1, for example because ARG0 is an integer constant and ARG1
6668 isn't. */
6670 bool
6671 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6673 if (CONSTANT_CLASS_P (arg1))
6674 return 0;
6675 if (CONSTANT_CLASS_P (arg0))
6676 return 1;
6678 STRIP_NOPS (arg0);
6679 STRIP_NOPS (arg1);
6681 if (TREE_CONSTANT (arg1))
6682 return 0;
6683 if (TREE_CONSTANT (arg0))
6684 return 1;
6686 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6687 for commutative and comparison operators. Ensuring a canonical
6688 form allows the optimizers to find additional redundancies without
6689 having to explicitly check for both orderings. */
6690 if (TREE_CODE (arg0) == SSA_NAME
6691 && TREE_CODE (arg1) == SSA_NAME
6692 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6693 return 1;
6695 /* Put SSA_NAMEs last. */
6696 if (TREE_CODE (arg1) == SSA_NAME)
6697 return 0;
6698 if (TREE_CODE (arg0) == SSA_NAME)
6699 return 1;
6701 /* Put variables last. */
6702 if (DECL_P (arg1))
6703 return 0;
6704 if (DECL_P (arg0))
6705 return 1;
6707 return 0;
6711 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6712 means A >= Y && A != MAX, but in this case we know that
6713 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6715 static tree
6716 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6718 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6720 if (TREE_CODE (bound) == LT_EXPR)
6721 a = TREE_OPERAND (bound, 0);
6722 else if (TREE_CODE (bound) == GT_EXPR)
6723 a = TREE_OPERAND (bound, 1);
6724 else
6725 return NULL_TREE;
6727 typea = TREE_TYPE (a);
6728 if (!INTEGRAL_TYPE_P (typea)
6729 && !POINTER_TYPE_P (typea))
6730 return NULL_TREE;
6732 if (TREE_CODE (ineq) == LT_EXPR)
6734 a1 = TREE_OPERAND (ineq, 1);
6735 y = TREE_OPERAND (ineq, 0);
6737 else if (TREE_CODE (ineq) == GT_EXPR)
6739 a1 = TREE_OPERAND (ineq, 0);
6740 y = TREE_OPERAND (ineq, 1);
6742 else
6743 return NULL_TREE;
6745 if (TREE_TYPE (a1) != typea)
6746 return NULL_TREE;
6748 if (POINTER_TYPE_P (typea))
6750 /* Convert the pointer types into integer before taking the difference. */
6751 tree ta = fold_convert_loc (loc, ssizetype, a);
6752 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6753 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6755 else
6756 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6758 if (!diff || !integer_onep (diff))
6759 return NULL_TREE;
6761 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6764 /* Fold a sum or difference of at least one multiplication.
6765 Returns the folded tree or NULL if no simplification could be made. */
6767 static tree
6768 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6769 tree arg0, tree arg1)
6771 tree arg00, arg01, arg10, arg11;
6772 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6774 /* (A * C) +- (B * C) -> (A+-B) * C.
6775 (A * C) +- A -> A * (C+-1).
6776 We are most concerned about the case where C is a constant,
6777 but other combinations show up during loop reduction. Since
6778 it is not difficult, try all four possibilities. */
6780 if (TREE_CODE (arg0) == MULT_EXPR)
6782 arg00 = TREE_OPERAND (arg0, 0);
6783 arg01 = TREE_OPERAND (arg0, 1);
6785 else if (TREE_CODE (arg0) == INTEGER_CST)
6787 arg00 = build_one_cst (type);
6788 arg01 = arg0;
6790 else
6792 /* We cannot generate constant 1 for fract. */
6793 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6794 return NULL_TREE;
6795 arg00 = arg0;
6796 arg01 = build_one_cst (type);
6798 if (TREE_CODE (arg1) == MULT_EXPR)
6800 arg10 = TREE_OPERAND (arg1, 0);
6801 arg11 = TREE_OPERAND (arg1, 1);
6803 else if (TREE_CODE (arg1) == INTEGER_CST)
6805 arg10 = build_one_cst (type);
6806 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6807 the purpose of this canonicalization. */
6808 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6809 && negate_expr_p (arg1)
6810 && code == PLUS_EXPR)
6812 arg11 = negate_expr (arg1);
6813 code = MINUS_EXPR;
6815 else
6816 arg11 = arg1;
6818 else
6820 /* We cannot generate constant 1 for fract. */
6821 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6822 return NULL_TREE;
6823 arg10 = arg1;
6824 arg11 = build_one_cst (type);
6826 same = NULL_TREE;
6828 if (operand_equal_p (arg01, arg11, 0))
6829 same = arg01, alt0 = arg00, alt1 = arg10;
6830 else if (operand_equal_p (arg00, arg10, 0))
6831 same = arg00, alt0 = arg01, alt1 = arg11;
6832 else if (operand_equal_p (arg00, arg11, 0))
6833 same = arg00, alt0 = arg01, alt1 = arg10;
6834 else if (operand_equal_p (arg01, arg10, 0))
6835 same = arg01, alt0 = arg00, alt1 = arg11;
6837 /* No identical multiplicands; see if we can find a common
6838 power-of-two factor in non-power-of-two multiplies. This
6839 can help in multi-dimensional array access. */
6840 else if (tree_fits_shwi_p (arg01)
6841 && tree_fits_shwi_p (arg11))
6843 HOST_WIDE_INT int01, int11, tmp;
6844 bool swap = false;
6845 tree maybe_same;
6846 int01 = tree_to_shwi (arg01);
6847 int11 = tree_to_shwi (arg11);
6849 /* Move min of absolute values to int11. */
6850 if (absu_hwi (int01) < absu_hwi (int11))
6852 tmp = int01, int01 = int11, int11 = tmp;
6853 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6854 maybe_same = arg01;
6855 swap = true;
6857 else
6858 maybe_same = arg11;
6860 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6861 /* The remainder should not be a constant, otherwise we
6862 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6863 increased the number of multiplications necessary. */
6864 && TREE_CODE (arg10) != INTEGER_CST)
6866 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6867 build_int_cst (TREE_TYPE (arg00),
6868 int01 / int11));
6869 alt1 = arg10;
6870 same = maybe_same;
6871 if (swap)
6872 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6876 if (same)
6877 return fold_build2_loc (loc, MULT_EXPR, type,
6878 fold_build2_loc (loc, code, type,
6879 fold_convert_loc (loc, type, alt0),
6880 fold_convert_loc (loc, type, alt1)),
6881 fold_convert_loc (loc, type, same));
6883 return NULL_TREE;
6886 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6887 specified by EXPR into the buffer PTR of length LEN bytes.
6888 Return the number of bytes placed in the buffer, or zero
6889 upon failure. */
6891 static int
6892 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6894 tree type = TREE_TYPE (expr);
6895 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6896 int byte, offset, word, words;
6897 unsigned char value;
6899 if ((off == -1 && total_bytes > len)
6900 || off >= total_bytes)
6901 return 0;
6902 if (off == -1)
6903 off = 0;
6904 words = total_bytes / UNITS_PER_WORD;
6906 for (byte = 0; byte < total_bytes; byte++)
6908 int bitpos = byte * BITS_PER_UNIT;
6909 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6910 number of bytes. */
6911 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6913 if (total_bytes > UNITS_PER_WORD)
6915 word = byte / UNITS_PER_WORD;
6916 if (WORDS_BIG_ENDIAN)
6917 word = (words - 1) - word;
6918 offset = word * UNITS_PER_WORD;
6919 if (BYTES_BIG_ENDIAN)
6920 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6921 else
6922 offset += byte % UNITS_PER_WORD;
6924 else
6925 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6926 if (offset >= off
6927 && offset - off < len)
6928 ptr[offset - off] = value;
6930 return MIN (len, total_bytes - off);
6934 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6935 specified by EXPR into the buffer PTR of length LEN bytes.
6936 Return the number of bytes placed in the buffer, or zero
6937 upon failure. */
6939 static int
6940 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
6942 tree type = TREE_TYPE (expr);
6943 machine_mode mode = TYPE_MODE (type);
6944 int total_bytes = GET_MODE_SIZE (mode);
6945 FIXED_VALUE_TYPE value;
6946 tree i_value, i_type;
6948 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
6949 return 0;
6951 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
6953 if (NULL_TREE == i_type
6954 || TYPE_PRECISION (i_type) != total_bytes)
6955 return 0;
6957 value = TREE_FIXED_CST (expr);
6958 i_value = double_int_to_tree (i_type, value.data);
6960 return native_encode_int (i_value, ptr, len, off);
6964 /* Subroutine of native_encode_expr. Encode the REAL_CST
6965 specified by EXPR into the buffer PTR of length LEN bytes.
6966 Return the number of bytes placed in the buffer, or zero
6967 upon failure. */
6969 static int
6970 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
6972 tree type = TREE_TYPE (expr);
6973 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6974 int byte, offset, word, words, bitpos;
6975 unsigned char value;
6977 /* There are always 32 bits in each long, no matter the size of
6978 the hosts long. We handle floating point representations with
6979 up to 192 bits. */
6980 long tmp[6];
6982 if ((off == -1 && total_bytes > len)
6983 || off >= total_bytes)
6984 return 0;
6985 if (off == -1)
6986 off = 0;
6987 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
6989 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6991 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
6992 bitpos += BITS_PER_UNIT)
6994 byte = (bitpos / BITS_PER_UNIT) & 3;
6995 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6997 if (UNITS_PER_WORD < 4)
6999 word = byte / UNITS_PER_WORD;
7000 if (WORDS_BIG_ENDIAN)
7001 word = (words - 1) - word;
7002 offset = word * UNITS_PER_WORD;
7003 if (BYTES_BIG_ENDIAN)
7004 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7005 else
7006 offset += byte % UNITS_PER_WORD;
7008 else
7010 offset = byte;
7011 if (BYTES_BIG_ENDIAN)
7013 /* Reverse bytes within each long, or within the entire float
7014 if it's smaller than a long (for HFmode). */
7015 offset = MIN (3, total_bytes - 1) - offset;
7016 gcc_assert (offset >= 0);
7019 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7020 if (offset >= off
7021 && offset - off < len)
7022 ptr[offset - off] = value;
7024 return MIN (len, total_bytes - off);
7027 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7028 specified by EXPR into the buffer PTR of length LEN bytes.
7029 Return the number of bytes placed in the buffer, or zero
7030 upon failure. */
7032 static int
7033 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7035 int rsize, isize;
7036 tree part;
7038 part = TREE_REALPART (expr);
7039 rsize = native_encode_expr (part, ptr, len, off);
7040 if (off == -1
7041 && rsize == 0)
7042 return 0;
7043 part = TREE_IMAGPART (expr);
7044 if (off != -1)
7045 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7046 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7047 if (off == -1
7048 && isize != rsize)
7049 return 0;
7050 return rsize + isize;
7054 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7055 specified by EXPR into the buffer PTR of length LEN bytes.
7056 Return the number of bytes placed in the buffer, or zero
7057 upon failure. */
7059 static int
7060 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7062 unsigned i, count;
7063 int size, offset;
7064 tree itype, elem;
7066 offset = 0;
7067 count = VECTOR_CST_NELTS (expr);
7068 itype = TREE_TYPE (TREE_TYPE (expr));
7069 size = GET_MODE_SIZE (TYPE_MODE (itype));
7070 for (i = 0; i < count; i++)
7072 if (off >= size)
7074 off -= size;
7075 continue;
7077 elem = VECTOR_CST_ELT (expr, i);
7078 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7079 if ((off == -1 && res != size)
7080 || res == 0)
7081 return 0;
7082 offset += res;
7083 if (offset >= len)
7084 return offset;
7085 if (off != -1)
7086 off = 0;
7088 return offset;
7092 /* Subroutine of native_encode_expr. Encode the STRING_CST
7093 specified by EXPR into the buffer PTR of length LEN bytes.
7094 Return the number of bytes placed in the buffer, or zero
7095 upon failure. */
7097 static int
7098 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7100 tree type = TREE_TYPE (expr);
7101 HOST_WIDE_INT total_bytes;
7103 if (TREE_CODE (type) != ARRAY_TYPE
7104 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7105 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7106 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7107 return 0;
7108 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7109 if ((off == -1 && total_bytes > len)
7110 || off >= total_bytes)
7111 return 0;
7112 if (off == -1)
7113 off = 0;
7114 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7116 int written = 0;
7117 if (off < TREE_STRING_LENGTH (expr))
7119 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7120 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7122 memset (ptr + written, 0,
7123 MIN (total_bytes - written, len - written));
7125 else
7126 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7127 return MIN (total_bytes - off, len);
7131 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7132 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7133 buffer PTR of length LEN bytes. If OFF is not -1 then start
7134 the encoding at byte offset OFF and encode at most LEN bytes.
7135 Return the number of bytes placed in the buffer, or zero upon failure. */
7138 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7140 /* We don't support starting at negative offset and -1 is special. */
7141 if (off < -1)
7142 return 0;
7144 switch (TREE_CODE (expr))
7146 case INTEGER_CST:
7147 return native_encode_int (expr, ptr, len, off);
7149 case REAL_CST:
7150 return native_encode_real (expr, ptr, len, off);
7152 case FIXED_CST:
7153 return native_encode_fixed (expr, ptr, len, off);
7155 case COMPLEX_CST:
7156 return native_encode_complex (expr, ptr, len, off);
7158 case VECTOR_CST:
7159 return native_encode_vector (expr, ptr, len, off);
7161 case STRING_CST:
7162 return native_encode_string (expr, ptr, len, off);
7164 default:
7165 return 0;
7170 /* Subroutine of native_interpret_expr. Interpret the contents of
7171 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7172 If the buffer cannot be interpreted, return NULL_TREE. */
7174 static tree
7175 native_interpret_int (tree type, const unsigned char *ptr, int len)
7177 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7179 if (total_bytes > len
7180 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7181 return NULL_TREE;
7183 wide_int result = wi::from_buffer (ptr, total_bytes);
7185 return wide_int_to_tree (type, result);
7189 /* Subroutine of native_interpret_expr. Interpret the contents of
7190 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7191 If the buffer cannot be interpreted, return NULL_TREE. */
7193 static tree
7194 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7196 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7197 double_int result;
7198 FIXED_VALUE_TYPE fixed_value;
7200 if (total_bytes > len
7201 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7202 return NULL_TREE;
7204 result = double_int::from_buffer (ptr, total_bytes);
7205 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7207 return build_fixed (type, fixed_value);
7211 /* Subroutine of native_interpret_expr. Interpret the contents of
7212 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7213 If the buffer cannot be interpreted, return NULL_TREE. */
7215 static tree
7216 native_interpret_real (tree type, const unsigned char *ptr, int len)
7218 machine_mode mode = TYPE_MODE (type);
7219 int total_bytes = GET_MODE_SIZE (mode);
7220 unsigned char value;
7221 /* There are always 32 bits in each long, no matter the size of
7222 the hosts long. We handle floating point representations with
7223 up to 192 bits. */
7224 REAL_VALUE_TYPE r;
7225 long tmp[6];
7227 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7228 if (total_bytes > len || total_bytes > 24)
7229 return NULL_TREE;
7230 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7232 memset (tmp, 0, sizeof (tmp));
7233 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7234 bitpos += BITS_PER_UNIT)
7236 /* Both OFFSET and BYTE index within a long;
7237 bitpos indexes the whole float. */
7238 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7239 if (UNITS_PER_WORD < 4)
7241 int word = byte / UNITS_PER_WORD;
7242 if (WORDS_BIG_ENDIAN)
7243 word = (words - 1) - word;
7244 offset = word * UNITS_PER_WORD;
7245 if (BYTES_BIG_ENDIAN)
7246 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7247 else
7248 offset += byte % UNITS_PER_WORD;
7250 else
7252 offset = byte;
7253 if (BYTES_BIG_ENDIAN)
7255 /* Reverse bytes within each long, or within the entire float
7256 if it's smaller than a long (for HFmode). */
7257 offset = MIN (3, total_bytes - 1) - offset;
7258 gcc_assert (offset >= 0);
7261 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7263 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7266 real_from_target (&r, tmp, mode);
7267 return build_real (type, r);
7271 /* Subroutine of native_interpret_expr. Interpret the contents of
7272 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7273 If the buffer cannot be interpreted, return NULL_TREE. */
7275 static tree
7276 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7278 tree etype, rpart, ipart;
7279 int size;
7281 etype = TREE_TYPE (type);
7282 size = GET_MODE_SIZE (TYPE_MODE (etype));
7283 if (size * 2 > len)
7284 return NULL_TREE;
7285 rpart = native_interpret_expr (etype, ptr, size);
7286 if (!rpart)
7287 return NULL_TREE;
7288 ipart = native_interpret_expr (etype, ptr+size, size);
7289 if (!ipart)
7290 return NULL_TREE;
7291 return build_complex (type, rpart, ipart);
7295 /* Subroutine of native_interpret_expr. Interpret the contents of
7296 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7297 If the buffer cannot be interpreted, return NULL_TREE. */
7299 static tree
7300 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7302 tree etype, elem;
7303 int i, size, count;
7304 tree *elements;
7306 etype = TREE_TYPE (type);
7307 size = GET_MODE_SIZE (TYPE_MODE (etype));
7308 count = TYPE_VECTOR_SUBPARTS (type);
7309 if (size * count > len)
7310 return NULL_TREE;
7312 elements = XALLOCAVEC (tree, count);
7313 for (i = count - 1; i >= 0; i--)
7315 elem = native_interpret_expr (etype, ptr+(i*size), size);
7316 if (!elem)
7317 return NULL_TREE;
7318 elements[i] = elem;
7320 return build_vector (type, elements);
7324 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7325 the buffer PTR of length LEN as a constant of type TYPE. For
7326 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7327 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7328 return NULL_TREE. */
7330 tree
7331 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7333 switch (TREE_CODE (type))
7335 case INTEGER_TYPE:
7336 case ENUMERAL_TYPE:
7337 case BOOLEAN_TYPE:
7338 case POINTER_TYPE:
7339 case REFERENCE_TYPE:
7340 return native_interpret_int (type, ptr, len);
7342 case REAL_TYPE:
7343 return native_interpret_real (type, ptr, len);
7345 case FIXED_POINT_TYPE:
7346 return native_interpret_fixed (type, ptr, len);
7348 case COMPLEX_TYPE:
7349 return native_interpret_complex (type, ptr, len);
7351 case VECTOR_TYPE:
7352 return native_interpret_vector (type, ptr, len);
7354 default:
7355 return NULL_TREE;
7359 /* Returns true if we can interpret the contents of a native encoding
7360 as TYPE. */
7362 static bool
7363 can_native_interpret_type_p (tree type)
7365 switch (TREE_CODE (type))
7367 case INTEGER_TYPE:
7368 case ENUMERAL_TYPE:
7369 case BOOLEAN_TYPE:
7370 case POINTER_TYPE:
7371 case REFERENCE_TYPE:
7372 case FIXED_POINT_TYPE:
7373 case REAL_TYPE:
7374 case COMPLEX_TYPE:
7375 case VECTOR_TYPE:
7376 return true;
7377 default:
7378 return false;
7382 /* Return true iff a constant of type TYPE is accepted by
7383 native_encode_expr. */
7385 bool
7386 can_native_encode_type_p (tree type)
7388 switch (TREE_CODE (type))
7390 case INTEGER_TYPE:
7391 case REAL_TYPE:
7392 case FIXED_POINT_TYPE:
7393 case COMPLEX_TYPE:
7394 case VECTOR_TYPE:
7395 case POINTER_TYPE:
7396 return true;
7397 default:
7398 return false;
7402 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7403 TYPE at compile-time. If we're unable to perform the conversion
7404 return NULL_TREE. */
7406 static tree
7407 fold_view_convert_expr (tree type, tree expr)
7409 /* We support up to 512-bit values (for V8DFmode). */
7410 unsigned char buffer[64];
7411 int len;
7413 /* Check that the host and target are sane. */
7414 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7415 return NULL_TREE;
7417 len = native_encode_expr (expr, buffer, sizeof (buffer));
7418 if (len == 0)
7419 return NULL_TREE;
7421 return native_interpret_expr (type, buffer, len);
7424 /* Build an expression for the address of T. Folds away INDIRECT_REF
7425 to avoid confusing the gimplify process. */
7427 tree
7428 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7430 /* The size of the object is not relevant when talking about its address. */
7431 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7432 t = TREE_OPERAND (t, 0);
7434 if (TREE_CODE (t) == INDIRECT_REF)
7436 t = TREE_OPERAND (t, 0);
7438 if (TREE_TYPE (t) != ptrtype)
7439 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7441 else if (TREE_CODE (t) == MEM_REF
7442 && integer_zerop (TREE_OPERAND (t, 1)))
7443 return TREE_OPERAND (t, 0);
7444 else if (TREE_CODE (t) == MEM_REF
7445 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7446 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7447 TREE_OPERAND (t, 0),
7448 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7449 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7451 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7453 if (TREE_TYPE (t) != ptrtype)
7454 t = fold_convert_loc (loc, ptrtype, t);
7456 else
7457 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7459 return t;
7462 /* Build an expression for the address of T. */
7464 tree
7465 build_fold_addr_expr_loc (location_t loc, tree t)
7467 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7469 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7472 /* Fold a unary expression of code CODE and type TYPE with operand
7473 OP0. Return the folded expression if folding is successful.
7474 Otherwise, return NULL_TREE. */
7476 tree
7477 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7479 tree tem;
7480 tree arg0;
7481 enum tree_code_class kind = TREE_CODE_CLASS (code);
7483 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7484 && TREE_CODE_LENGTH (code) == 1);
7486 arg0 = op0;
7487 if (arg0)
7489 if (CONVERT_EXPR_CODE_P (code)
7490 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7492 /* Don't use STRIP_NOPS, because signedness of argument type
7493 matters. */
7494 STRIP_SIGN_NOPS (arg0);
7496 else
7498 /* Strip any conversions that don't change the mode. This
7499 is safe for every expression, except for a comparison
7500 expression because its signedness is derived from its
7501 operands.
7503 Note that this is done as an internal manipulation within
7504 the constant folder, in order to find the simplest
7505 representation of the arguments so that their form can be
7506 studied. In any cases, the appropriate type conversions
7507 should be put back in the tree that will get out of the
7508 constant folder. */
7509 STRIP_NOPS (arg0);
7512 if (CONSTANT_CLASS_P (arg0))
7514 tree tem = const_unop (code, type, arg0);
7515 if (tem)
7517 if (TREE_TYPE (tem) != type)
7518 tem = fold_convert_loc (loc, type, tem);
7519 return tem;
7524 tem = generic_simplify (loc, code, type, op0);
7525 if (tem)
7526 return tem;
7528 if (TREE_CODE_CLASS (code) == tcc_unary)
7530 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7531 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7532 fold_build1_loc (loc, code, type,
7533 fold_convert_loc (loc, TREE_TYPE (op0),
7534 TREE_OPERAND (arg0, 1))));
7535 else if (TREE_CODE (arg0) == COND_EXPR)
7537 tree arg01 = TREE_OPERAND (arg0, 1);
7538 tree arg02 = TREE_OPERAND (arg0, 2);
7539 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7540 arg01 = fold_build1_loc (loc, code, type,
7541 fold_convert_loc (loc,
7542 TREE_TYPE (op0), arg01));
7543 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7544 arg02 = fold_build1_loc (loc, code, type,
7545 fold_convert_loc (loc,
7546 TREE_TYPE (op0), arg02));
7547 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7548 arg01, arg02);
7550 /* If this was a conversion, and all we did was to move into
7551 inside the COND_EXPR, bring it back out. But leave it if
7552 it is a conversion from integer to integer and the
7553 result precision is no wider than a word since such a
7554 conversion is cheap and may be optimized away by combine,
7555 while it couldn't if it were outside the COND_EXPR. Then return
7556 so we don't get into an infinite recursion loop taking the
7557 conversion out and then back in. */
7559 if ((CONVERT_EXPR_CODE_P (code)
7560 || code == NON_LVALUE_EXPR)
7561 && TREE_CODE (tem) == COND_EXPR
7562 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7563 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7564 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7565 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7566 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7567 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7568 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7569 && (INTEGRAL_TYPE_P
7570 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7571 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7572 || flag_syntax_only))
7573 tem = build1_loc (loc, code, type,
7574 build3 (COND_EXPR,
7575 TREE_TYPE (TREE_OPERAND
7576 (TREE_OPERAND (tem, 1), 0)),
7577 TREE_OPERAND (tem, 0),
7578 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7579 TREE_OPERAND (TREE_OPERAND (tem, 2),
7580 0)));
7581 return tem;
7585 switch (code)
7587 case NON_LVALUE_EXPR:
7588 if (!maybe_lvalue_p (op0))
7589 return fold_convert_loc (loc, type, op0);
7590 return NULL_TREE;
7592 CASE_CONVERT:
7593 case FLOAT_EXPR:
7594 case FIX_TRUNC_EXPR:
7595 if (COMPARISON_CLASS_P (op0))
7597 /* If we have (type) (a CMP b) and type is an integral type, return
7598 new expression involving the new type. Canonicalize
7599 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7600 non-integral type.
7601 Do not fold the result as that would not simplify further, also
7602 folding again results in recursions. */
7603 if (TREE_CODE (type) == BOOLEAN_TYPE)
7604 return build2_loc (loc, TREE_CODE (op0), type,
7605 TREE_OPERAND (op0, 0),
7606 TREE_OPERAND (op0, 1));
7607 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7608 && TREE_CODE (type) != VECTOR_TYPE)
7609 return build3_loc (loc, COND_EXPR, type, op0,
7610 constant_boolean_node (true, type),
7611 constant_boolean_node (false, type));
7614 /* Handle (T *)&A.B.C for A being of type T and B and C
7615 living at offset zero. This occurs frequently in
7616 C++ upcasting and then accessing the base. */
7617 if (TREE_CODE (op0) == ADDR_EXPR
7618 && POINTER_TYPE_P (type)
7619 && handled_component_p (TREE_OPERAND (op0, 0)))
7621 HOST_WIDE_INT bitsize, bitpos;
7622 tree offset;
7623 machine_mode mode;
7624 int unsignedp, reversep, volatilep;
7625 tree base
7626 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7627 &offset, &mode, &unsignedp, &reversep,
7628 &volatilep);
7629 /* If the reference was to a (constant) zero offset, we can use
7630 the address of the base if it has the same base type
7631 as the result type and the pointer type is unqualified. */
7632 if (! offset && bitpos == 0
7633 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7634 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7635 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7636 return fold_convert_loc (loc, type,
7637 build_fold_addr_expr_loc (loc, base));
7640 if (TREE_CODE (op0) == MODIFY_EXPR
7641 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7642 /* Detect assigning a bitfield. */
7643 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7644 && DECL_BIT_FIELD
7645 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7647 /* Don't leave an assignment inside a conversion
7648 unless assigning a bitfield. */
7649 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7650 /* First do the assignment, then return converted constant. */
7651 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7652 TREE_NO_WARNING (tem) = 1;
7653 TREE_USED (tem) = 1;
7654 return tem;
7657 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7658 constants (if x has signed type, the sign bit cannot be set
7659 in c). This folds extension into the BIT_AND_EXPR.
7660 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7661 very likely don't have maximal range for their precision and this
7662 transformation effectively doesn't preserve non-maximal ranges. */
7663 if (TREE_CODE (type) == INTEGER_TYPE
7664 && TREE_CODE (op0) == BIT_AND_EXPR
7665 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7667 tree and_expr = op0;
7668 tree and0 = TREE_OPERAND (and_expr, 0);
7669 tree and1 = TREE_OPERAND (and_expr, 1);
7670 int change = 0;
7672 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7673 || (TYPE_PRECISION (type)
7674 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7675 change = 1;
7676 else if (TYPE_PRECISION (TREE_TYPE (and1))
7677 <= HOST_BITS_PER_WIDE_INT
7678 && tree_fits_uhwi_p (and1))
7680 unsigned HOST_WIDE_INT cst;
7682 cst = tree_to_uhwi (and1);
7683 cst &= HOST_WIDE_INT_M1U
7684 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7685 change = (cst == 0);
7686 if (change
7687 && !flag_syntax_only
7688 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7689 == ZERO_EXTEND))
7691 tree uns = unsigned_type_for (TREE_TYPE (and0));
7692 and0 = fold_convert_loc (loc, uns, and0);
7693 and1 = fold_convert_loc (loc, uns, and1);
7696 if (change)
7698 tem = force_fit_type (type, wi::to_widest (and1), 0,
7699 TREE_OVERFLOW (and1));
7700 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7701 fold_convert_loc (loc, type, and0), tem);
7705 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7706 cast (T1)X will fold away. We assume that this happens when X itself
7707 is a cast. */
7708 if (POINTER_TYPE_P (type)
7709 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7710 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7712 tree arg00 = TREE_OPERAND (arg0, 0);
7713 tree arg01 = TREE_OPERAND (arg0, 1);
7715 return fold_build_pointer_plus_loc
7716 (loc, fold_convert_loc (loc, type, arg00), arg01);
7719 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7720 of the same precision, and X is an integer type not narrower than
7721 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7722 if (INTEGRAL_TYPE_P (type)
7723 && TREE_CODE (op0) == BIT_NOT_EXPR
7724 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7725 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7726 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7728 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7729 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7730 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7731 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7732 fold_convert_loc (loc, type, tem));
7735 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7736 type of X and Y (integer types only). */
7737 if (INTEGRAL_TYPE_P (type)
7738 && TREE_CODE (op0) == MULT_EXPR
7739 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7740 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7742 /* Be careful not to introduce new overflows. */
7743 tree mult_type;
7744 if (TYPE_OVERFLOW_WRAPS (type))
7745 mult_type = type;
7746 else
7747 mult_type = unsigned_type_for (type);
7749 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7751 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7752 fold_convert_loc (loc, mult_type,
7753 TREE_OPERAND (op0, 0)),
7754 fold_convert_loc (loc, mult_type,
7755 TREE_OPERAND (op0, 1)));
7756 return fold_convert_loc (loc, type, tem);
7760 return NULL_TREE;
7762 case VIEW_CONVERT_EXPR:
7763 if (TREE_CODE (op0) == MEM_REF)
7765 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7766 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7767 tem = fold_build2_loc (loc, MEM_REF, type,
7768 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7769 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7770 return tem;
7773 return NULL_TREE;
7775 case NEGATE_EXPR:
7776 tem = fold_negate_expr (loc, arg0);
7777 if (tem)
7778 return fold_convert_loc (loc, type, tem);
7779 return NULL_TREE;
7781 case ABS_EXPR:
7782 /* Convert fabs((double)float) into (double)fabsf(float). */
7783 if (TREE_CODE (arg0) == NOP_EXPR
7784 && TREE_CODE (type) == REAL_TYPE)
7786 tree targ0 = strip_float_extensions (arg0);
7787 if (targ0 != arg0)
7788 return fold_convert_loc (loc, type,
7789 fold_build1_loc (loc, ABS_EXPR,
7790 TREE_TYPE (targ0),
7791 targ0));
7793 return NULL_TREE;
7795 case BIT_NOT_EXPR:
7796 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7797 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7798 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7799 fold_convert_loc (loc, type,
7800 TREE_OPERAND (arg0, 0)))))
7801 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7802 fold_convert_loc (loc, type,
7803 TREE_OPERAND (arg0, 1)));
7804 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7805 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7806 fold_convert_loc (loc, type,
7807 TREE_OPERAND (arg0, 1)))))
7808 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7809 fold_convert_loc (loc, type,
7810 TREE_OPERAND (arg0, 0)), tem);
7812 return NULL_TREE;
7814 case TRUTH_NOT_EXPR:
7815 /* Note that the operand of this must be an int
7816 and its values must be 0 or 1.
7817 ("true" is a fixed value perhaps depending on the language,
7818 but we don't handle values other than 1 correctly yet.) */
7819 tem = fold_truth_not_expr (loc, arg0);
7820 if (!tem)
7821 return NULL_TREE;
7822 return fold_convert_loc (loc, type, tem);
7824 case INDIRECT_REF:
7825 /* Fold *&X to X if X is an lvalue. */
7826 if (TREE_CODE (op0) == ADDR_EXPR)
7828 tree op00 = TREE_OPERAND (op0, 0);
7829 if ((VAR_P (op00)
7830 || TREE_CODE (op00) == PARM_DECL
7831 || TREE_CODE (op00) == RESULT_DECL)
7832 && !TREE_READONLY (op00))
7833 return op00;
7835 return NULL_TREE;
7837 default:
7838 return NULL_TREE;
7839 } /* switch (code) */
7843 /* If the operation was a conversion do _not_ mark a resulting constant
7844 with TREE_OVERFLOW if the original constant was not. These conversions
7845 have implementation defined behavior and retaining the TREE_OVERFLOW
7846 flag here would confuse later passes such as VRP. */
7847 tree
7848 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7849 tree type, tree op0)
7851 tree res = fold_unary_loc (loc, code, type, op0);
7852 if (res
7853 && TREE_CODE (res) == INTEGER_CST
7854 && TREE_CODE (op0) == INTEGER_CST
7855 && CONVERT_EXPR_CODE_P (code))
7856 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7858 return res;
7861 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7862 operands OP0 and OP1. LOC is the location of the resulting expression.
7863 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7864 Return the folded expression if folding is successful. Otherwise,
7865 return NULL_TREE. */
7866 static tree
7867 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7868 tree arg0, tree arg1, tree op0, tree op1)
7870 tree tem;
7872 /* We only do these simplifications if we are optimizing. */
7873 if (!optimize)
7874 return NULL_TREE;
7876 /* Check for things like (A || B) && (A || C). We can convert this
7877 to A || (B && C). Note that either operator can be any of the four
7878 truth and/or operations and the transformation will still be
7879 valid. Also note that we only care about order for the
7880 ANDIF and ORIF operators. If B contains side effects, this
7881 might change the truth-value of A. */
7882 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7883 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7884 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7885 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7886 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7887 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7889 tree a00 = TREE_OPERAND (arg0, 0);
7890 tree a01 = TREE_OPERAND (arg0, 1);
7891 tree a10 = TREE_OPERAND (arg1, 0);
7892 tree a11 = TREE_OPERAND (arg1, 1);
7893 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7894 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7895 && (code == TRUTH_AND_EXPR
7896 || code == TRUTH_OR_EXPR));
7898 if (operand_equal_p (a00, a10, 0))
7899 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7900 fold_build2_loc (loc, code, type, a01, a11));
7901 else if (commutative && operand_equal_p (a00, a11, 0))
7902 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7903 fold_build2_loc (loc, code, type, a01, a10));
7904 else if (commutative && operand_equal_p (a01, a10, 0))
7905 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7906 fold_build2_loc (loc, code, type, a00, a11));
7908 /* This case if tricky because we must either have commutative
7909 operators or else A10 must not have side-effects. */
7911 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7912 && operand_equal_p (a01, a11, 0))
7913 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7914 fold_build2_loc (loc, code, type, a00, a10),
7915 a01);
7918 /* See if we can build a range comparison. */
7919 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7920 return tem;
7922 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7923 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7925 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7926 if (tem)
7927 return fold_build2_loc (loc, code, type, tem, arg1);
7930 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7931 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7933 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7934 if (tem)
7935 return fold_build2_loc (loc, code, type, arg0, tem);
7938 /* Check for the possibility of merging component references. If our
7939 lhs is another similar operation, try to merge its rhs with our
7940 rhs. Then try to merge our lhs and rhs. */
7941 if (TREE_CODE (arg0) == code
7942 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7943 TREE_OPERAND (arg0, 1), arg1)))
7944 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7946 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7947 return tem;
7949 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7950 && (code == TRUTH_AND_EXPR
7951 || code == TRUTH_ANDIF_EXPR
7952 || code == TRUTH_OR_EXPR
7953 || code == TRUTH_ORIF_EXPR))
7955 enum tree_code ncode, icode;
7957 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
7958 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
7959 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
7961 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
7962 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
7963 We don't want to pack more than two leafs to a non-IF AND/OR
7964 expression.
7965 If tree-code of left-hand operand isn't an AND/OR-IF code and not
7966 equal to IF-CODE, then we don't want to add right-hand operand.
7967 If the inner right-hand side of left-hand operand has
7968 side-effects, or isn't simple, then we can't add to it,
7969 as otherwise we might destroy if-sequence. */
7970 if (TREE_CODE (arg0) == icode
7971 && simple_operand_p_2 (arg1)
7972 /* Needed for sequence points to handle trappings, and
7973 side-effects. */
7974 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
7976 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
7977 arg1);
7978 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
7979 tem);
7981 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
7982 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
7983 else if (TREE_CODE (arg1) == icode
7984 && simple_operand_p_2 (arg0)
7985 /* Needed for sequence points to handle trappings, and
7986 side-effects. */
7987 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
7989 tem = fold_build2_loc (loc, ncode, type,
7990 arg0, TREE_OPERAND (arg1, 0));
7991 return fold_build2_loc (loc, icode, type, tem,
7992 TREE_OPERAND (arg1, 1));
7994 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
7995 into (A OR B).
7996 For sequence point consistancy, we need to check for trapping,
7997 and side-effects. */
7998 else if (code == icode && simple_operand_p_2 (arg0)
7999 && simple_operand_p_2 (arg1))
8000 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8003 return NULL_TREE;
8006 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8007 by changing CODE to reduce the magnitude of constants involved in
8008 ARG0 of the comparison.
8009 Returns a canonicalized comparison tree if a simplification was
8010 possible, otherwise returns NULL_TREE.
8011 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8012 valid if signed overflow is undefined. */
8014 static tree
8015 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8016 tree arg0, tree arg1,
8017 bool *strict_overflow_p)
8019 enum tree_code code0 = TREE_CODE (arg0);
8020 tree t, cst0 = NULL_TREE;
8021 int sgn0;
8023 /* Match A +- CST code arg1. We can change this only if overflow
8024 is undefined. */
8025 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8026 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8027 /* In principle pointers also have undefined overflow behavior,
8028 but that causes problems elsewhere. */
8029 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8030 && (code0 == MINUS_EXPR
8031 || code0 == PLUS_EXPR)
8032 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8033 return NULL_TREE;
8035 /* Identify the constant in arg0 and its sign. */
8036 cst0 = TREE_OPERAND (arg0, 1);
8037 sgn0 = tree_int_cst_sgn (cst0);
8039 /* Overflowed constants and zero will cause problems. */
8040 if (integer_zerop (cst0)
8041 || TREE_OVERFLOW (cst0))
8042 return NULL_TREE;
8044 /* See if we can reduce the magnitude of the constant in
8045 arg0 by changing the comparison code. */
8046 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8047 if (code == LT_EXPR
8048 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8049 code = LE_EXPR;
8050 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8051 else if (code == GT_EXPR
8052 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8053 code = GE_EXPR;
8054 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8055 else if (code == LE_EXPR
8056 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8057 code = LT_EXPR;
8058 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8059 else if (code == GE_EXPR
8060 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8061 code = GT_EXPR;
8062 else
8063 return NULL_TREE;
8064 *strict_overflow_p = true;
8066 /* Now build the constant reduced in magnitude. But not if that
8067 would produce one outside of its types range. */
8068 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8069 && ((sgn0 == 1
8070 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8071 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8072 || (sgn0 == -1
8073 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8074 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8075 return NULL_TREE;
8077 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8078 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8079 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8080 t = fold_convert (TREE_TYPE (arg1), t);
8082 return fold_build2_loc (loc, code, type, t, arg1);
8085 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8086 overflow further. Try to decrease the magnitude of constants involved
8087 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8088 and put sole constants at the second argument position.
8089 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8091 static tree
8092 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8093 tree arg0, tree arg1)
8095 tree t;
8096 bool strict_overflow_p;
8097 const char * const warnmsg = G_("assuming signed overflow does not occur "
8098 "when reducing constant in comparison");
8100 /* Try canonicalization by simplifying arg0. */
8101 strict_overflow_p = false;
8102 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8103 &strict_overflow_p);
8104 if (t)
8106 if (strict_overflow_p)
8107 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8108 return t;
8111 /* Try canonicalization by simplifying arg1 using the swapped
8112 comparison. */
8113 code = swap_tree_comparison (code);
8114 strict_overflow_p = false;
8115 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8116 &strict_overflow_p);
8117 if (t && strict_overflow_p)
8118 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8119 return t;
8122 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8123 space. This is used to avoid issuing overflow warnings for
8124 expressions like &p->x which can not wrap. */
8126 static bool
8127 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8129 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8130 return true;
8132 if (bitpos < 0)
8133 return true;
8135 wide_int wi_offset;
8136 int precision = TYPE_PRECISION (TREE_TYPE (base));
8137 if (offset == NULL_TREE)
8138 wi_offset = wi::zero (precision);
8139 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8140 return true;
8141 else
8142 wi_offset = offset;
8144 bool overflow;
8145 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8146 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8147 if (overflow)
8148 return true;
8150 if (!wi::fits_uhwi_p (total))
8151 return true;
8153 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8154 if (size <= 0)
8155 return true;
8157 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8158 array. */
8159 if (TREE_CODE (base) == ADDR_EXPR)
8161 HOST_WIDE_INT base_size;
8163 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8164 if (base_size > 0 && size < base_size)
8165 size = base_size;
8168 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8171 /* Return a positive integer when the symbol DECL is known to have
8172 a nonzero address, zero when it's known not to (e.g., it's a weak
8173 symbol), and a negative integer when the symbol is not yet in the
8174 symbol table and so whether or not its address is zero is unknown. */
8175 static int
8176 maybe_nonzero_address (tree decl)
8178 if (DECL_P (decl) && decl_in_symtab_p (decl))
8179 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8180 return symbol->nonzero_address ();
8182 return -1;
8185 /* Subroutine of fold_binary. This routine performs all of the
8186 transformations that are common to the equality/inequality
8187 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8188 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8189 fold_binary should call fold_binary. Fold a comparison with
8190 tree code CODE and type TYPE with operands OP0 and OP1. Return
8191 the folded comparison or NULL_TREE. */
8193 static tree
8194 fold_comparison (location_t loc, enum tree_code code, tree type,
8195 tree op0, tree op1)
8197 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8198 tree arg0, arg1, tem;
8200 arg0 = op0;
8201 arg1 = op1;
8203 STRIP_SIGN_NOPS (arg0);
8204 STRIP_SIGN_NOPS (arg1);
8206 /* For comparisons of pointers we can decompose it to a compile time
8207 comparison of the base objects and the offsets into the object.
8208 This requires at least one operand being an ADDR_EXPR or a
8209 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8210 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8211 && (TREE_CODE (arg0) == ADDR_EXPR
8212 || TREE_CODE (arg1) == ADDR_EXPR
8213 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8214 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8216 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8217 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8218 machine_mode mode;
8219 int volatilep, reversep, unsignedp;
8220 bool indirect_base0 = false, indirect_base1 = false;
8222 /* Get base and offset for the access. Strip ADDR_EXPR for
8223 get_inner_reference, but put it back by stripping INDIRECT_REF
8224 off the base object if possible. indirect_baseN will be true
8225 if baseN is not an address but refers to the object itself. */
8226 base0 = arg0;
8227 if (TREE_CODE (arg0) == ADDR_EXPR)
8229 base0
8230 = get_inner_reference (TREE_OPERAND (arg0, 0),
8231 &bitsize, &bitpos0, &offset0, &mode,
8232 &unsignedp, &reversep, &volatilep);
8233 if (TREE_CODE (base0) == INDIRECT_REF)
8234 base0 = TREE_OPERAND (base0, 0);
8235 else
8236 indirect_base0 = true;
8238 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8240 base0 = TREE_OPERAND (arg0, 0);
8241 STRIP_SIGN_NOPS (base0);
8242 if (TREE_CODE (base0) == ADDR_EXPR)
8244 base0
8245 = get_inner_reference (TREE_OPERAND (base0, 0),
8246 &bitsize, &bitpos0, &offset0, &mode,
8247 &unsignedp, &reversep, &volatilep);
8248 if (TREE_CODE (base0) == INDIRECT_REF)
8249 base0 = TREE_OPERAND (base0, 0);
8250 else
8251 indirect_base0 = true;
8253 if (offset0 == NULL_TREE || integer_zerop (offset0))
8254 offset0 = TREE_OPERAND (arg0, 1);
8255 else
8256 offset0 = size_binop (PLUS_EXPR, offset0,
8257 TREE_OPERAND (arg0, 1));
8258 if (TREE_CODE (offset0) == INTEGER_CST)
8260 offset_int tem = wi::sext (wi::to_offset (offset0),
8261 TYPE_PRECISION (sizetype));
8262 tem <<= LOG2_BITS_PER_UNIT;
8263 tem += bitpos0;
8264 if (wi::fits_shwi_p (tem))
8266 bitpos0 = tem.to_shwi ();
8267 offset0 = NULL_TREE;
8272 base1 = arg1;
8273 if (TREE_CODE (arg1) == ADDR_EXPR)
8275 base1
8276 = get_inner_reference (TREE_OPERAND (arg1, 0),
8277 &bitsize, &bitpos1, &offset1, &mode,
8278 &unsignedp, &reversep, &volatilep);
8279 if (TREE_CODE (base1) == INDIRECT_REF)
8280 base1 = TREE_OPERAND (base1, 0);
8281 else
8282 indirect_base1 = true;
8284 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8286 base1 = TREE_OPERAND (arg1, 0);
8287 STRIP_SIGN_NOPS (base1);
8288 if (TREE_CODE (base1) == ADDR_EXPR)
8290 base1
8291 = get_inner_reference (TREE_OPERAND (base1, 0),
8292 &bitsize, &bitpos1, &offset1, &mode,
8293 &unsignedp, &reversep, &volatilep);
8294 if (TREE_CODE (base1) == INDIRECT_REF)
8295 base1 = TREE_OPERAND (base1, 0);
8296 else
8297 indirect_base1 = true;
8299 if (offset1 == NULL_TREE || integer_zerop (offset1))
8300 offset1 = TREE_OPERAND (arg1, 1);
8301 else
8302 offset1 = size_binop (PLUS_EXPR, offset1,
8303 TREE_OPERAND (arg1, 1));
8304 if (TREE_CODE (offset1) == INTEGER_CST)
8306 offset_int tem = wi::sext (wi::to_offset (offset1),
8307 TYPE_PRECISION (sizetype));
8308 tem <<= LOG2_BITS_PER_UNIT;
8309 tem += bitpos1;
8310 if (wi::fits_shwi_p (tem))
8312 bitpos1 = tem.to_shwi ();
8313 offset1 = NULL_TREE;
8318 /* If we have equivalent bases we might be able to simplify. */
8319 if (indirect_base0 == indirect_base1
8320 && operand_equal_p (base0, base1,
8321 indirect_base0 ? OEP_ADDRESS_OF : 0))
8323 /* We can fold this expression to a constant if the non-constant
8324 offset parts are equal. */
8325 if ((offset0 == offset1
8326 || (offset0 && offset1
8327 && operand_equal_p (offset0, offset1, 0)))
8328 && (equality_code
8329 || (indirect_base0
8330 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8331 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8334 if (!equality_code
8335 && bitpos0 != bitpos1
8336 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8337 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8338 fold_overflow_warning (("assuming pointer wraparound does not "
8339 "occur when comparing P +- C1 with "
8340 "P +- C2"),
8341 WARN_STRICT_OVERFLOW_CONDITIONAL);
8343 switch (code)
8345 case EQ_EXPR:
8346 return constant_boolean_node (bitpos0 == bitpos1, type);
8347 case NE_EXPR:
8348 return constant_boolean_node (bitpos0 != bitpos1, type);
8349 case LT_EXPR:
8350 return constant_boolean_node (bitpos0 < bitpos1, type);
8351 case LE_EXPR:
8352 return constant_boolean_node (bitpos0 <= bitpos1, type);
8353 case GE_EXPR:
8354 return constant_boolean_node (bitpos0 >= bitpos1, type);
8355 case GT_EXPR:
8356 return constant_boolean_node (bitpos0 > bitpos1, type);
8357 default:;
8360 /* We can simplify the comparison to a comparison of the variable
8361 offset parts if the constant offset parts are equal.
8362 Be careful to use signed sizetype here because otherwise we
8363 mess with array offsets in the wrong way. This is possible
8364 because pointer arithmetic is restricted to retain within an
8365 object and overflow on pointer differences is undefined as of
8366 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8367 else if (bitpos0 == bitpos1
8368 && (equality_code
8369 || (indirect_base0
8370 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8371 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8373 /* By converting to signed sizetype we cover middle-end pointer
8374 arithmetic which operates on unsigned pointer types of size
8375 type size and ARRAY_REF offsets which are properly sign or
8376 zero extended from their type in case it is narrower than
8377 sizetype. */
8378 if (offset0 == NULL_TREE)
8379 offset0 = build_int_cst (ssizetype, 0);
8380 else
8381 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8382 if (offset1 == NULL_TREE)
8383 offset1 = build_int_cst (ssizetype, 0);
8384 else
8385 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8387 if (!equality_code
8388 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8389 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8390 fold_overflow_warning (("assuming pointer wraparound does not "
8391 "occur when comparing P +- C1 with "
8392 "P +- C2"),
8393 WARN_STRICT_OVERFLOW_COMPARISON);
8395 return fold_build2_loc (loc, code, type, offset0, offset1);
8398 /* For equal offsets we can simplify to a comparison of the
8399 base addresses. */
8400 else if (bitpos0 == bitpos1
8401 && (indirect_base0
8402 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8403 && (indirect_base1
8404 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8405 && ((offset0 == offset1)
8406 || (offset0 && offset1
8407 && operand_equal_p (offset0, offset1, 0))))
8409 if (indirect_base0)
8410 base0 = build_fold_addr_expr_loc (loc, base0);
8411 if (indirect_base1)
8412 base1 = build_fold_addr_expr_loc (loc, base1);
8413 return fold_build2_loc (loc, code, type, base0, base1);
8415 /* Comparison between an ordinary (non-weak) symbol and a null
8416 pointer can be eliminated since such symbols must have a non
8417 null address. In C, relational expressions between pointers
8418 to objects and null pointers are undefined. The results
8419 below follow the C++ rules with the additional property that
8420 every object pointer compares greater than a null pointer.
8422 else if (DECL_P (base0)
8423 && maybe_nonzero_address (base0) > 0
8424 /* Avoid folding references to struct members at offset 0 to
8425 prevent tests like '&ptr->firstmember == 0' from getting
8426 eliminated. When ptr is null, although the -> expression
8427 is strictly speaking invalid, GCC retains it as a matter
8428 of QoI. See PR c/44555. */
8429 && (offset0 == NULL_TREE && bitpos0 != 0)
8430 /* The caller guarantees that when one of the arguments is
8431 constant (i.e., null in this case) it is second. */
8432 && integer_zerop (arg1))
8434 switch (code)
8436 case EQ_EXPR:
8437 case LE_EXPR:
8438 case LT_EXPR:
8439 return constant_boolean_node (false, type);
8440 case GE_EXPR:
8441 case GT_EXPR:
8442 case NE_EXPR:
8443 return constant_boolean_node (true, type);
8444 default:
8445 gcc_unreachable ();
8450 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8451 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8452 the resulting offset is smaller in absolute value than the
8453 original one and has the same sign. */
8454 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8455 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8456 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8457 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8458 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8459 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8460 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8461 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8463 tree const1 = TREE_OPERAND (arg0, 1);
8464 tree const2 = TREE_OPERAND (arg1, 1);
8465 tree variable1 = TREE_OPERAND (arg0, 0);
8466 tree variable2 = TREE_OPERAND (arg1, 0);
8467 tree cst;
8468 const char * const warnmsg = G_("assuming signed overflow does not "
8469 "occur when combining constants around "
8470 "a comparison");
8472 /* Put the constant on the side where it doesn't overflow and is
8473 of lower absolute value and of same sign than before. */
8474 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8475 ? MINUS_EXPR : PLUS_EXPR,
8476 const2, const1);
8477 if (!TREE_OVERFLOW (cst)
8478 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8479 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8481 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8482 return fold_build2_loc (loc, code, type,
8483 variable1,
8484 fold_build2_loc (loc, TREE_CODE (arg1),
8485 TREE_TYPE (arg1),
8486 variable2, cst));
8489 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8490 ? MINUS_EXPR : PLUS_EXPR,
8491 const1, const2);
8492 if (!TREE_OVERFLOW (cst)
8493 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8494 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8496 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8497 return fold_build2_loc (loc, code, type,
8498 fold_build2_loc (loc, TREE_CODE (arg0),
8499 TREE_TYPE (arg0),
8500 variable1, cst),
8501 variable2);
8505 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8506 if (tem)
8507 return tem;
8509 /* If we are comparing an expression that just has comparisons
8510 of two integer values, arithmetic expressions of those comparisons,
8511 and constants, we can simplify it. There are only three cases
8512 to check: the two values can either be equal, the first can be
8513 greater, or the second can be greater. Fold the expression for
8514 those three values. Since each value must be 0 or 1, we have
8515 eight possibilities, each of which corresponds to the constant 0
8516 or 1 or one of the six possible comparisons.
8518 This handles common cases like (a > b) == 0 but also handles
8519 expressions like ((x > y) - (y > x)) > 0, which supposedly
8520 occur in macroized code. */
8522 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8524 tree cval1 = 0, cval2 = 0;
8525 int save_p = 0;
8527 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8528 /* Don't handle degenerate cases here; they should already
8529 have been handled anyway. */
8530 && cval1 != 0 && cval2 != 0
8531 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8532 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8533 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8534 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8535 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8536 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8537 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8539 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8540 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8542 /* We can't just pass T to eval_subst in case cval1 or cval2
8543 was the same as ARG1. */
8545 tree high_result
8546 = fold_build2_loc (loc, code, type,
8547 eval_subst (loc, arg0, cval1, maxval,
8548 cval2, minval),
8549 arg1);
8550 tree equal_result
8551 = fold_build2_loc (loc, code, type,
8552 eval_subst (loc, arg0, cval1, maxval,
8553 cval2, maxval),
8554 arg1);
8555 tree low_result
8556 = fold_build2_loc (loc, code, type,
8557 eval_subst (loc, arg0, cval1, minval,
8558 cval2, maxval),
8559 arg1);
8561 /* All three of these results should be 0 or 1. Confirm they are.
8562 Then use those values to select the proper code to use. */
8564 if (TREE_CODE (high_result) == INTEGER_CST
8565 && TREE_CODE (equal_result) == INTEGER_CST
8566 && TREE_CODE (low_result) == INTEGER_CST)
8568 /* Make a 3-bit mask with the high-order bit being the
8569 value for `>', the next for '=', and the low for '<'. */
8570 switch ((integer_onep (high_result) * 4)
8571 + (integer_onep (equal_result) * 2)
8572 + integer_onep (low_result))
8574 case 0:
8575 /* Always false. */
8576 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8577 case 1:
8578 code = LT_EXPR;
8579 break;
8580 case 2:
8581 code = EQ_EXPR;
8582 break;
8583 case 3:
8584 code = LE_EXPR;
8585 break;
8586 case 4:
8587 code = GT_EXPR;
8588 break;
8589 case 5:
8590 code = NE_EXPR;
8591 break;
8592 case 6:
8593 code = GE_EXPR;
8594 break;
8595 case 7:
8596 /* Always true. */
8597 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8600 if (save_p)
8602 tem = save_expr (build2 (code, type, cval1, cval2));
8603 SET_EXPR_LOCATION (tem, loc);
8604 return tem;
8606 return fold_build2_loc (loc, code, type, cval1, cval2);
8611 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8612 into a single range test. */
8613 if (TREE_CODE (arg0) == TRUNC_DIV_EXPR
8614 && TREE_CODE (arg1) == INTEGER_CST
8615 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8616 && !integer_zerop (TREE_OPERAND (arg0, 1))
8617 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8618 && !TREE_OVERFLOW (arg1))
8620 tem = fold_div_compare (loc, code, type, arg0, arg1);
8621 if (tem != NULL_TREE)
8622 return tem;
8625 return NULL_TREE;
8629 /* Subroutine of fold_binary. Optimize complex multiplications of the
8630 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8631 argument EXPR represents the expression "z" of type TYPE. */
8633 static tree
8634 fold_mult_zconjz (location_t loc, tree type, tree expr)
8636 tree itype = TREE_TYPE (type);
8637 tree rpart, ipart, tem;
8639 if (TREE_CODE (expr) == COMPLEX_EXPR)
8641 rpart = TREE_OPERAND (expr, 0);
8642 ipart = TREE_OPERAND (expr, 1);
8644 else if (TREE_CODE (expr) == COMPLEX_CST)
8646 rpart = TREE_REALPART (expr);
8647 ipart = TREE_IMAGPART (expr);
8649 else
8651 expr = save_expr (expr);
8652 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8653 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8656 rpart = save_expr (rpart);
8657 ipart = save_expr (ipart);
8658 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8659 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8660 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8661 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8662 build_zero_cst (itype));
8666 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8667 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8669 static bool
8670 vec_cst_ctor_to_array (tree arg, tree *elts)
8672 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8674 if (TREE_CODE (arg) == VECTOR_CST)
8676 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8677 elts[i] = VECTOR_CST_ELT (arg, i);
8679 else if (TREE_CODE (arg) == CONSTRUCTOR)
8681 constructor_elt *elt;
8683 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8684 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8685 return false;
8686 else
8687 elts[i] = elt->value;
8689 else
8690 return false;
8691 for (; i < nelts; i++)
8692 elts[i]
8693 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8694 return true;
8697 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8698 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8699 NULL_TREE otherwise. */
8701 static tree
8702 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8704 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8705 tree *elts;
8706 bool need_ctor = false;
8708 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8709 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8710 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8711 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8712 return NULL_TREE;
8714 elts = XALLOCAVEC (tree, nelts * 3);
8715 if (!vec_cst_ctor_to_array (arg0, elts)
8716 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8717 return NULL_TREE;
8719 for (i = 0; i < nelts; i++)
8721 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8722 need_ctor = true;
8723 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8726 if (need_ctor)
8728 vec<constructor_elt, va_gc> *v;
8729 vec_alloc (v, nelts);
8730 for (i = 0; i < nelts; i++)
8731 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8732 return build_constructor (type, v);
8734 else
8735 return build_vector (type, &elts[2 * nelts]);
8738 /* Try to fold a pointer difference of type TYPE two address expressions of
8739 array references AREF0 and AREF1 using location LOC. Return a
8740 simplified expression for the difference or NULL_TREE. */
8742 static tree
8743 fold_addr_of_array_ref_difference (location_t loc, tree type,
8744 tree aref0, tree aref1)
8746 tree base0 = TREE_OPERAND (aref0, 0);
8747 tree base1 = TREE_OPERAND (aref1, 0);
8748 tree base_offset = build_int_cst (type, 0);
8750 /* If the bases are array references as well, recurse. If the bases
8751 are pointer indirections compute the difference of the pointers.
8752 If the bases are equal, we are set. */
8753 if ((TREE_CODE (base0) == ARRAY_REF
8754 && TREE_CODE (base1) == ARRAY_REF
8755 && (base_offset
8756 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8757 || (INDIRECT_REF_P (base0)
8758 && INDIRECT_REF_P (base1)
8759 && (base_offset
8760 = fold_binary_loc (loc, MINUS_EXPR, type,
8761 fold_convert (type, TREE_OPERAND (base0, 0)),
8762 fold_convert (type,
8763 TREE_OPERAND (base1, 0)))))
8764 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8766 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8767 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8768 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8769 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8770 return fold_build2_loc (loc, PLUS_EXPR, type,
8771 base_offset,
8772 fold_build2_loc (loc, MULT_EXPR, type,
8773 diff, esz));
8775 return NULL_TREE;
8778 /* If the real or vector real constant CST of type TYPE has an exact
8779 inverse, return it, else return NULL. */
8781 tree
8782 exact_inverse (tree type, tree cst)
8784 REAL_VALUE_TYPE r;
8785 tree unit_type, *elts;
8786 machine_mode mode;
8787 unsigned vec_nelts, i;
8789 switch (TREE_CODE (cst))
8791 case REAL_CST:
8792 r = TREE_REAL_CST (cst);
8794 if (exact_real_inverse (TYPE_MODE (type), &r))
8795 return build_real (type, r);
8797 return NULL_TREE;
8799 case VECTOR_CST:
8800 vec_nelts = VECTOR_CST_NELTS (cst);
8801 elts = XALLOCAVEC (tree, vec_nelts);
8802 unit_type = TREE_TYPE (type);
8803 mode = TYPE_MODE (unit_type);
8805 for (i = 0; i < vec_nelts; i++)
8807 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8808 if (!exact_real_inverse (mode, &r))
8809 return NULL_TREE;
8810 elts[i] = build_real (unit_type, r);
8813 return build_vector (type, elts);
8815 default:
8816 return NULL_TREE;
8820 /* Mask out the tz least significant bits of X of type TYPE where
8821 tz is the number of trailing zeroes in Y. */
8822 static wide_int
8823 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8825 int tz = wi::ctz (y);
8826 if (tz > 0)
8827 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8828 return x;
8831 /* Return true when T is an address and is known to be nonzero.
8832 For floating point we further ensure that T is not denormal.
8833 Similar logic is present in nonzero_address in rtlanal.h.
8835 If the return value is based on the assumption that signed overflow
8836 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8837 change *STRICT_OVERFLOW_P. */
8839 static bool
8840 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8842 tree type = TREE_TYPE (t);
8843 enum tree_code code;
8845 /* Doing something useful for floating point would need more work. */
8846 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8847 return false;
8849 code = TREE_CODE (t);
8850 switch (TREE_CODE_CLASS (code))
8852 case tcc_unary:
8853 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8854 strict_overflow_p);
8855 case tcc_binary:
8856 case tcc_comparison:
8857 return tree_binary_nonzero_warnv_p (code, type,
8858 TREE_OPERAND (t, 0),
8859 TREE_OPERAND (t, 1),
8860 strict_overflow_p);
8861 case tcc_constant:
8862 case tcc_declaration:
8863 case tcc_reference:
8864 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8866 default:
8867 break;
8870 switch (code)
8872 case TRUTH_NOT_EXPR:
8873 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8874 strict_overflow_p);
8876 case TRUTH_AND_EXPR:
8877 case TRUTH_OR_EXPR:
8878 case TRUTH_XOR_EXPR:
8879 return tree_binary_nonzero_warnv_p (code, type,
8880 TREE_OPERAND (t, 0),
8881 TREE_OPERAND (t, 1),
8882 strict_overflow_p);
8884 case COND_EXPR:
8885 case CONSTRUCTOR:
8886 case OBJ_TYPE_REF:
8887 case ASSERT_EXPR:
8888 case ADDR_EXPR:
8889 case WITH_SIZE_EXPR:
8890 case SSA_NAME:
8891 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8893 case COMPOUND_EXPR:
8894 case MODIFY_EXPR:
8895 case BIND_EXPR:
8896 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8897 strict_overflow_p);
8899 case SAVE_EXPR:
8900 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8901 strict_overflow_p);
8903 case CALL_EXPR:
8905 tree fndecl = get_callee_fndecl (t);
8906 if (!fndecl) return false;
8907 if (flag_delete_null_pointer_checks && !flag_check_new
8908 && DECL_IS_OPERATOR_NEW (fndecl)
8909 && !TREE_NOTHROW (fndecl))
8910 return true;
8911 if (flag_delete_null_pointer_checks
8912 && lookup_attribute ("returns_nonnull",
8913 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
8914 return true;
8915 return alloca_call_p (t);
8918 default:
8919 break;
8921 return false;
8924 /* Return true when T is an address and is known to be nonzero.
8925 Handle warnings about undefined signed overflow. */
8927 bool
8928 tree_expr_nonzero_p (tree t)
8930 bool ret, strict_overflow_p;
8932 strict_overflow_p = false;
8933 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
8934 if (strict_overflow_p)
8935 fold_overflow_warning (("assuming signed overflow does not occur when "
8936 "determining that expression is always "
8937 "non-zero"),
8938 WARN_STRICT_OVERFLOW_MISC);
8939 return ret;
8942 /* Return true if T is known not to be equal to an integer W. */
8944 bool
8945 expr_not_equal_to (tree t, const wide_int &w)
8947 wide_int min, max, nz;
8948 value_range_type rtype;
8949 switch (TREE_CODE (t))
8951 case INTEGER_CST:
8952 return wi::ne_p (t, w);
8954 case SSA_NAME:
8955 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
8956 return false;
8957 rtype = get_range_info (t, &min, &max);
8958 if (rtype == VR_RANGE)
8960 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
8961 return true;
8962 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
8963 return true;
8965 else if (rtype == VR_ANTI_RANGE
8966 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
8967 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
8968 return true;
8969 /* If T has some known zero bits and W has any of those bits set,
8970 then T is known not to be equal to W. */
8971 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
8972 TYPE_PRECISION (TREE_TYPE (t))), 0))
8973 return true;
8974 return false;
8976 default:
8977 return false;
8981 /* Fold a binary expression of code CODE and type TYPE with operands
8982 OP0 and OP1. LOC is the location of the resulting expression.
8983 Return the folded expression if folding is successful. Otherwise,
8984 return NULL_TREE. */
8986 tree
8987 fold_binary_loc (location_t loc,
8988 enum tree_code code, tree type, tree op0, tree op1)
8990 enum tree_code_class kind = TREE_CODE_CLASS (code);
8991 tree arg0, arg1, tem;
8992 tree t1 = NULL_TREE;
8993 bool strict_overflow_p;
8994 unsigned int prec;
8996 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8997 && TREE_CODE_LENGTH (code) == 2
8998 && op0 != NULL_TREE
8999 && op1 != NULL_TREE);
9001 arg0 = op0;
9002 arg1 = op1;
9004 /* Strip any conversions that don't change the mode. This is
9005 safe for every expression, except for a comparison expression
9006 because its signedness is derived from its operands. So, in
9007 the latter case, only strip conversions that don't change the
9008 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9009 preserved.
9011 Note that this is done as an internal manipulation within the
9012 constant folder, in order to find the simplest representation
9013 of the arguments so that their form can be studied. In any
9014 cases, the appropriate type conversions should be put back in
9015 the tree that will get out of the constant folder. */
9017 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9019 STRIP_SIGN_NOPS (arg0);
9020 STRIP_SIGN_NOPS (arg1);
9022 else
9024 STRIP_NOPS (arg0);
9025 STRIP_NOPS (arg1);
9028 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9029 constant but we can't do arithmetic on them. */
9030 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9032 tem = const_binop (code, type, arg0, arg1);
9033 if (tem != NULL_TREE)
9035 if (TREE_TYPE (tem) != type)
9036 tem = fold_convert_loc (loc, type, tem);
9037 return tem;
9041 /* If this is a commutative operation, and ARG0 is a constant, move it
9042 to ARG1 to reduce the number of tests below. */
9043 if (commutative_tree_code (code)
9044 && tree_swap_operands_p (arg0, arg1))
9045 return fold_build2_loc (loc, code, type, op1, op0);
9047 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9048 to ARG1 to reduce the number of tests below. */
9049 if (kind == tcc_comparison
9050 && tree_swap_operands_p (arg0, arg1))
9051 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9053 tem = generic_simplify (loc, code, type, op0, op1);
9054 if (tem)
9055 return tem;
9057 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9059 First check for cases where an arithmetic operation is applied to a
9060 compound, conditional, or comparison operation. Push the arithmetic
9061 operation inside the compound or conditional to see if any folding
9062 can then be done. Convert comparison to conditional for this purpose.
9063 The also optimizes non-constant cases that used to be done in
9064 expand_expr.
9066 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9067 one of the operands is a comparison and the other is a comparison, a
9068 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9069 code below would make the expression more complex. Change it to a
9070 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9071 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9073 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9074 || code == EQ_EXPR || code == NE_EXPR)
9075 && TREE_CODE (type) != VECTOR_TYPE
9076 && ((truth_value_p (TREE_CODE (arg0))
9077 && (truth_value_p (TREE_CODE (arg1))
9078 || (TREE_CODE (arg1) == BIT_AND_EXPR
9079 && integer_onep (TREE_OPERAND (arg1, 1)))))
9080 || (truth_value_p (TREE_CODE (arg1))
9081 && (truth_value_p (TREE_CODE (arg0))
9082 || (TREE_CODE (arg0) == BIT_AND_EXPR
9083 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9085 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9086 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9087 : TRUTH_XOR_EXPR,
9088 boolean_type_node,
9089 fold_convert_loc (loc, boolean_type_node, arg0),
9090 fold_convert_loc (loc, boolean_type_node, arg1));
9092 if (code == EQ_EXPR)
9093 tem = invert_truthvalue_loc (loc, tem);
9095 return fold_convert_loc (loc, type, tem);
9098 if (TREE_CODE_CLASS (code) == tcc_binary
9099 || TREE_CODE_CLASS (code) == tcc_comparison)
9101 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9103 tem = fold_build2_loc (loc, code, type,
9104 fold_convert_loc (loc, TREE_TYPE (op0),
9105 TREE_OPERAND (arg0, 1)), op1);
9106 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9107 tem);
9109 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9111 tem = fold_build2_loc (loc, code, type, op0,
9112 fold_convert_loc (loc, TREE_TYPE (op1),
9113 TREE_OPERAND (arg1, 1)));
9114 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9115 tem);
9118 if (TREE_CODE (arg0) == COND_EXPR
9119 || TREE_CODE (arg0) == VEC_COND_EXPR
9120 || COMPARISON_CLASS_P (arg0))
9122 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9123 arg0, arg1,
9124 /*cond_first_p=*/1);
9125 if (tem != NULL_TREE)
9126 return tem;
9129 if (TREE_CODE (arg1) == COND_EXPR
9130 || TREE_CODE (arg1) == VEC_COND_EXPR
9131 || COMPARISON_CLASS_P (arg1))
9133 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9134 arg1, arg0,
9135 /*cond_first_p=*/0);
9136 if (tem != NULL_TREE)
9137 return tem;
9141 switch (code)
9143 case MEM_REF:
9144 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9145 if (TREE_CODE (arg0) == ADDR_EXPR
9146 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9148 tree iref = TREE_OPERAND (arg0, 0);
9149 return fold_build2 (MEM_REF, type,
9150 TREE_OPERAND (iref, 0),
9151 int_const_binop (PLUS_EXPR, arg1,
9152 TREE_OPERAND (iref, 1)));
9155 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9156 if (TREE_CODE (arg0) == ADDR_EXPR
9157 && handled_component_p (TREE_OPERAND (arg0, 0)))
9159 tree base;
9160 HOST_WIDE_INT coffset;
9161 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9162 &coffset);
9163 if (!base)
9164 return NULL_TREE;
9165 return fold_build2 (MEM_REF, type,
9166 build_fold_addr_expr (base),
9167 int_const_binop (PLUS_EXPR, arg1,
9168 size_int (coffset)));
9171 return NULL_TREE;
9173 case POINTER_PLUS_EXPR:
9174 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9175 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9176 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9177 return fold_convert_loc (loc, type,
9178 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9179 fold_convert_loc (loc, sizetype,
9180 arg1),
9181 fold_convert_loc (loc, sizetype,
9182 arg0)));
9184 return NULL_TREE;
9186 case PLUS_EXPR:
9187 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9189 /* X + (X / CST) * -CST is X % CST. */
9190 if (TREE_CODE (arg1) == MULT_EXPR
9191 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9192 && operand_equal_p (arg0,
9193 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9195 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9196 tree cst1 = TREE_OPERAND (arg1, 1);
9197 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9198 cst1, cst0);
9199 if (sum && integer_zerop (sum))
9200 return fold_convert_loc (loc, type,
9201 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9202 TREE_TYPE (arg0), arg0,
9203 cst0));
9207 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9208 one. Make sure the type is not saturating and has the signedness of
9209 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9210 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9211 if ((TREE_CODE (arg0) == MULT_EXPR
9212 || TREE_CODE (arg1) == MULT_EXPR)
9213 && !TYPE_SATURATING (type)
9214 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9215 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9216 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9218 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9219 if (tem)
9220 return tem;
9223 if (! FLOAT_TYPE_P (type))
9225 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9226 (plus (plus (mult) (mult)) (foo)) so that we can
9227 take advantage of the factoring cases below. */
9228 if (ANY_INTEGRAL_TYPE_P (type)
9229 && TYPE_OVERFLOW_WRAPS (type)
9230 && (((TREE_CODE (arg0) == PLUS_EXPR
9231 || TREE_CODE (arg0) == MINUS_EXPR)
9232 && TREE_CODE (arg1) == MULT_EXPR)
9233 || ((TREE_CODE (arg1) == PLUS_EXPR
9234 || TREE_CODE (arg1) == MINUS_EXPR)
9235 && TREE_CODE (arg0) == MULT_EXPR)))
9237 tree parg0, parg1, parg, marg;
9238 enum tree_code pcode;
9240 if (TREE_CODE (arg1) == MULT_EXPR)
9241 parg = arg0, marg = arg1;
9242 else
9243 parg = arg1, marg = arg0;
9244 pcode = TREE_CODE (parg);
9245 parg0 = TREE_OPERAND (parg, 0);
9246 parg1 = TREE_OPERAND (parg, 1);
9247 STRIP_NOPS (parg0);
9248 STRIP_NOPS (parg1);
9250 if (TREE_CODE (parg0) == MULT_EXPR
9251 && TREE_CODE (parg1) != MULT_EXPR)
9252 return fold_build2_loc (loc, pcode, type,
9253 fold_build2_loc (loc, PLUS_EXPR, type,
9254 fold_convert_loc (loc, type,
9255 parg0),
9256 fold_convert_loc (loc, type,
9257 marg)),
9258 fold_convert_loc (loc, type, parg1));
9259 if (TREE_CODE (parg0) != MULT_EXPR
9260 && TREE_CODE (parg1) == MULT_EXPR)
9261 return
9262 fold_build2_loc (loc, PLUS_EXPR, type,
9263 fold_convert_loc (loc, type, parg0),
9264 fold_build2_loc (loc, pcode, type,
9265 fold_convert_loc (loc, type, marg),
9266 fold_convert_loc (loc, type,
9267 parg1)));
9270 else
9272 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9273 to __complex__ ( x, y ). This is not the same for SNaNs or
9274 if signed zeros are involved. */
9275 if (!HONOR_SNANS (element_mode (arg0))
9276 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9277 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9279 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9280 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9281 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9282 bool arg0rz = false, arg0iz = false;
9283 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9284 || (arg0i && (arg0iz = real_zerop (arg0i))))
9286 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9287 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9288 if (arg0rz && arg1i && real_zerop (arg1i))
9290 tree rp = arg1r ? arg1r
9291 : build1 (REALPART_EXPR, rtype, arg1);
9292 tree ip = arg0i ? arg0i
9293 : build1 (IMAGPART_EXPR, rtype, arg0);
9294 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9296 else if (arg0iz && arg1r && real_zerop (arg1r))
9298 tree rp = arg0r ? arg0r
9299 : build1 (REALPART_EXPR, rtype, arg0);
9300 tree ip = arg1i ? arg1i
9301 : build1 (IMAGPART_EXPR, rtype, arg1);
9302 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9307 if (flag_unsafe_math_optimizations
9308 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9309 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9310 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9311 return tem;
9313 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9314 We associate floats only if the user has specified
9315 -fassociative-math. */
9316 if (flag_associative_math
9317 && TREE_CODE (arg1) == PLUS_EXPR
9318 && TREE_CODE (arg0) != MULT_EXPR)
9320 tree tree10 = TREE_OPERAND (arg1, 0);
9321 tree tree11 = TREE_OPERAND (arg1, 1);
9322 if (TREE_CODE (tree11) == MULT_EXPR
9323 && TREE_CODE (tree10) == MULT_EXPR)
9325 tree tree0;
9326 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9327 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9330 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9331 We associate floats only if the user has specified
9332 -fassociative-math. */
9333 if (flag_associative_math
9334 && TREE_CODE (arg0) == PLUS_EXPR
9335 && TREE_CODE (arg1) != MULT_EXPR)
9337 tree tree00 = TREE_OPERAND (arg0, 0);
9338 tree tree01 = TREE_OPERAND (arg0, 1);
9339 if (TREE_CODE (tree01) == MULT_EXPR
9340 && TREE_CODE (tree00) == MULT_EXPR)
9342 tree tree0;
9343 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9344 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9349 bit_rotate:
9350 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9351 is a rotate of A by C1 bits. */
9352 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9353 is a rotate of A by B bits. */
9355 enum tree_code code0, code1;
9356 tree rtype;
9357 code0 = TREE_CODE (arg0);
9358 code1 = TREE_CODE (arg1);
9359 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9360 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9361 && operand_equal_p (TREE_OPERAND (arg0, 0),
9362 TREE_OPERAND (arg1, 0), 0)
9363 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9364 TYPE_UNSIGNED (rtype))
9365 /* Only create rotates in complete modes. Other cases are not
9366 expanded properly. */
9367 && (element_precision (rtype)
9368 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9370 tree tree01, tree11;
9371 enum tree_code code01, code11;
9373 tree01 = TREE_OPERAND (arg0, 1);
9374 tree11 = TREE_OPERAND (arg1, 1);
9375 STRIP_NOPS (tree01);
9376 STRIP_NOPS (tree11);
9377 code01 = TREE_CODE (tree01);
9378 code11 = TREE_CODE (tree11);
9379 if (code01 == INTEGER_CST
9380 && code11 == INTEGER_CST
9381 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9382 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9384 tem = build2_loc (loc, LROTATE_EXPR,
9385 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9386 TREE_OPERAND (arg0, 0),
9387 code0 == LSHIFT_EXPR
9388 ? TREE_OPERAND (arg0, 1)
9389 : TREE_OPERAND (arg1, 1));
9390 return fold_convert_loc (loc, type, tem);
9392 else if (code11 == MINUS_EXPR)
9394 tree tree110, tree111;
9395 tree110 = TREE_OPERAND (tree11, 0);
9396 tree111 = TREE_OPERAND (tree11, 1);
9397 STRIP_NOPS (tree110);
9398 STRIP_NOPS (tree111);
9399 if (TREE_CODE (tree110) == INTEGER_CST
9400 && 0 == compare_tree_int (tree110,
9401 element_precision
9402 (TREE_TYPE (TREE_OPERAND
9403 (arg0, 0))))
9404 && operand_equal_p (tree01, tree111, 0))
9405 return
9406 fold_convert_loc (loc, type,
9407 build2 ((code0 == LSHIFT_EXPR
9408 ? LROTATE_EXPR
9409 : RROTATE_EXPR),
9410 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9411 TREE_OPERAND (arg0, 0),
9412 TREE_OPERAND (arg0, 1)));
9414 else if (code01 == MINUS_EXPR)
9416 tree tree010, tree011;
9417 tree010 = TREE_OPERAND (tree01, 0);
9418 tree011 = TREE_OPERAND (tree01, 1);
9419 STRIP_NOPS (tree010);
9420 STRIP_NOPS (tree011);
9421 if (TREE_CODE (tree010) == INTEGER_CST
9422 && 0 == compare_tree_int (tree010,
9423 element_precision
9424 (TREE_TYPE (TREE_OPERAND
9425 (arg0, 0))))
9426 && operand_equal_p (tree11, tree011, 0))
9427 return fold_convert_loc
9428 (loc, type,
9429 build2 ((code0 != LSHIFT_EXPR
9430 ? LROTATE_EXPR
9431 : RROTATE_EXPR),
9432 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9433 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9438 associate:
9439 /* In most languages, can't associate operations on floats through
9440 parentheses. Rather than remember where the parentheses were, we
9441 don't associate floats at all, unless the user has specified
9442 -fassociative-math.
9443 And, we need to make sure type is not saturating. */
9445 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9446 && !TYPE_SATURATING (type))
9448 tree var0, con0, lit0, minus_lit0;
9449 tree var1, con1, lit1, minus_lit1;
9450 tree atype = type;
9451 bool ok = true;
9453 /* Split both trees into variables, constants, and literals. Then
9454 associate each group together, the constants with literals,
9455 then the result with variables. This increases the chances of
9456 literals being recombined later and of generating relocatable
9457 expressions for the sum of a constant and literal. */
9458 var0 = split_tree (loc, arg0, type, code,
9459 &con0, &lit0, &minus_lit0, 0);
9460 var1 = split_tree (loc, arg1, type, code,
9461 &con1, &lit1, &minus_lit1, code == MINUS_EXPR);
9463 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9464 if (code == MINUS_EXPR)
9465 code = PLUS_EXPR;
9467 /* With undefined overflow prefer doing association in a type
9468 which wraps on overflow, if that is one of the operand types. */
9469 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9470 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9472 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9473 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9474 atype = TREE_TYPE (arg0);
9475 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9476 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9477 atype = TREE_TYPE (arg1);
9478 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9481 /* With undefined overflow we can only associate constants with one
9482 variable, and constants whose association doesn't overflow. */
9483 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9484 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9486 if (var0 && var1)
9488 tree tmp0 = var0;
9489 tree tmp1 = var1;
9490 bool one_neg = false;
9492 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9494 tmp0 = TREE_OPERAND (tmp0, 0);
9495 one_neg = !one_neg;
9497 if (CONVERT_EXPR_P (tmp0)
9498 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9499 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9500 <= TYPE_PRECISION (atype)))
9501 tmp0 = TREE_OPERAND (tmp0, 0);
9502 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9504 tmp1 = TREE_OPERAND (tmp1, 0);
9505 one_neg = !one_neg;
9507 if (CONVERT_EXPR_P (tmp1)
9508 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9509 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9510 <= TYPE_PRECISION (atype)))
9511 tmp1 = TREE_OPERAND (tmp1, 0);
9512 /* The only case we can still associate with two variables
9513 is if they cancel out. */
9514 if (!one_neg
9515 || !operand_equal_p (tmp0, tmp1, 0))
9516 ok = false;
9520 /* Only do something if we found more than two objects. Otherwise,
9521 nothing has changed and we risk infinite recursion. */
9522 if (ok
9523 && (2 < ((var0 != 0) + (var1 != 0)
9524 + (con0 != 0) + (con1 != 0)
9525 + (lit0 != 0) + (lit1 != 0)
9526 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9528 bool any_overflows = false;
9529 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9530 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9531 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9532 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9533 var0 = associate_trees (loc, var0, var1, code, atype);
9534 con0 = associate_trees (loc, con0, con1, code, atype);
9535 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9536 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9537 code, atype);
9539 /* Preserve the MINUS_EXPR if the negative part of the literal is
9540 greater than the positive part. Otherwise, the multiplicative
9541 folding code (i.e extract_muldiv) may be fooled in case
9542 unsigned constants are subtracted, like in the following
9543 example: ((X*2 + 4) - 8U)/2. */
9544 if (minus_lit0 && lit0)
9546 if (TREE_CODE (lit0) == INTEGER_CST
9547 && TREE_CODE (minus_lit0) == INTEGER_CST
9548 && tree_int_cst_lt (lit0, minus_lit0))
9550 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9551 MINUS_EXPR, atype);
9552 lit0 = 0;
9554 else
9556 lit0 = associate_trees (loc, lit0, minus_lit0,
9557 MINUS_EXPR, atype);
9558 minus_lit0 = 0;
9562 /* Don't introduce overflows through reassociation. */
9563 if (!any_overflows
9564 && ((lit0 && TREE_OVERFLOW_P (lit0))
9565 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9566 return NULL_TREE;
9568 if (minus_lit0)
9570 if (con0 == 0)
9571 return
9572 fold_convert_loc (loc, type,
9573 associate_trees (loc, var0, minus_lit0,
9574 MINUS_EXPR, atype));
9575 else
9577 con0 = associate_trees (loc, con0, minus_lit0,
9578 MINUS_EXPR, atype);
9579 return
9580 fold_convert_loc (loc, type,
9581 associate_trees (loc, var0, con0,
9582 PLUS_EXPR, atype));
9586 con0 = associate_trees (loc, con0, lit0, code, atype);
9587 return
9588 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9589 code, atype));
9593 return NULL_TREE;
9595 case MINUS_EXPR:
9596 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9597 if (TREE_CODE (arg0) == NEGATE_EXPR
9598 && negate_expr_p (op1))
9599 return fold_build2_loc (loc, MINUS_EXPR, type,
9600 negate_expr (op1),
9601 fold_convert_loc (loc, type,
9602 TREE_OPERAND (arg0, 0)));
9604 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9605 __complex__ ( x, -y ). This is not the same for SNaNs or if
9606 signed zeros are involved. */
9607 if (!HONOR_SNANS (element_mode (arg0))
9608 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9609 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9611 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9612 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9613 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9614 bool arg0rz = false, arg0iz = false;
9615 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9616 || (arg0i && (arg0iz = real_zerop (arg0i))))
9618 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9619 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9620 if (arg0rz && arg1i && real_zerop (arg1i))
9622 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9623 arg1r ? arg1r
9624 : build1 (REALPART_EXPR, rtype, arg1));
9625 tree ip = arg0i ? arg0i
9626 : build1 (IMAGPART_EXPR, rtype, arg0);
9627 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9629 else if (arg0iz && arg1r && real_zerop (arg1r))
9631 tree rp = arg0r ? arg0r
9632 : build1 (REALPART_EXPR, rtype, arg0);
9633 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9634 arg1i ? arg1i
9635 : build1 (IMAGPART_EXPR, rtype, arg1));
9636 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9641 /* A - B -> A + (-B) if B is easily negatable. */
9642 if (negate_expr_p (op1)
9643 && ! TYPE_OVERFLOW_SANITIZED (type)
9644 && ((FLOAT_TYPE_P (type)
9645 /* Avoid this transformation if B is a positive REAL_CST. */
9646 && (TREE_CODE (op1) != REAL_CST
9647 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9648 || INTEGRAL_TYPE_P (type)))
9649 return fold_build2_loc (loc, PLUS_EXPR, type,
9650 fold_convert_loc (loc, type, arg0),
9651 negate_expr (op1));
9653 /* Fold &a[i] - &a[j] to i-j. */
9654 if (TREE_CODE (arg0) == ADDR_EXPR
9655 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9656 && TREE_CODE (arg1) == ADDR_EXPR
9657 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9659 tree tem = fold_addr_of_array_ref_difference (loc, type,
9660 TREE_OPERAND (arg0, 0),
9661 TREE_OPERAND (arg1, 0));
9662 if (tem)
9663 return tem;
9666 if (FLOAT_TYPE_P (type)
9667 && flag_unsafe_math_optimizations
9668 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9669 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9670 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9671 return tem;
9673 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9674 one. Make sure the type is not saturating and has the signedness of
9675 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9676 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9677 if ((TREE_CODE (arg0) == MULT_EXPR
9678 || TREE_CODE (arg1) == MULT_EXPR)
9679 && !TYPE_SATURATING (type)
9680 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9681 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9682 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9684 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9685 if (tem)
9686 return tem;
9689 goto associate;
9691 case MULT_EXPR:
9692 if (! FLOAT_TYPE_P (type))
9694 /* Transform x * -C into -x * C if x is easily negatable. */
9695 if (TREE_CODE (op1) == INTEGER_CST
9696 && tree_int_cst_sgn (op1) == -1
9697 && negate_expr_p (op0)
9698 && (tem = negate_expr (op1)) != op1
9699 && ! TREE_OVERFLOW (tem))
9700 return fold_build2_loc (loc, MULT_EXPR, type,
9701 fold_convert_loc (loc, type,
9702 negate_expr (op0)), tem);
9704 strict_overflow_p = false;
9705 if (TREE_CODE (arg1) == INTEGER_CST
9706 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9707 &strict_overflow_p)))
9709 if (strict_overflow_p)
9710 fold_overflow_warning (("assuming signed overflow does not "
9711 "occur when simplifying "
9712 "multiplication"),
9713 WARN_STRICT_OVERFLOW_MISC);
9714 return fold_convert_loc (loc, type, tem);
9717 /* Optimize z * conj(z) for integer complex numbers. */
9718 if (TREE_CODE (arg0) == CONJ_EXPR
9719 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9720 return fold_mult_zconjz (loc, type, arg1);
9721 if (TREE_CODE (arg1) == CONJ_EXPR
9722 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9723 return fold_mult_zconjz (loc, type, arg0);
9725 else
9727 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9728 This is not the same for NaNs or if signed zeros are
9729 involved. */
9730 if (!HONOR_NANS (arg0)
9731 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9732 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9733 && TREE_CODE (arg1) == COMPLEX_CST
9734 && real_zerop (TREE_REALPART (arg1)))
9736 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9737 if (real_onep (TREE_IMAGPART (arg1)))
9738 return
9739 fold_build2_loc (loc, COMPLEX_EXPR, type,
9740 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9741 rtype, arg0)),
9742 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9743 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9744 return
9745 fold_build2_loc (loc, COMPLEX_EXPR, type,
9746 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9747 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9748 rtype, arg0)));
9751 /* Optimize z * conj(z) for floating point complex numbers.
9752 Guarded by flag_unsafe_math_optimizations as non-finite
9753 imaginary components don't produce scalar results. */
9754 if (flag_unsafe_math_optimizations
9755 && TREE_CODE (arg0) == CONJ_EXPR
9756 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9757 return fold_mult_zconjz (loc, type, arg1);
9758 if (flag_unsafe_math_optimizations
9759 && TREE_CODE (arg1) == CONJ_EXPR
9760 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9761 return fold_mult_zconjz (loc, type, arg0);
9763 goto associate;
9765 case BIT_IOR_EXPR:
9766 /* Canonicalize (X & C1) | C2. */
9767 if (TREE_CODE (arg0) == BIT_AND_EXPR
9768 && TREE_CODE (arg1) == INTEGER_CST
9769 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9771 int width = TYPE_PRECISION (type), w;
9772 wide_int c1 = TREE_OPERAND (arg0, 1);
9773 wide_int c2 = arg1;
9775 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9776 if ((c1 & c2) == c1)
9777 return omit_one_operand_loc (loc, type, arg1,
9778 TREE_OPERAND (arg0, 0));
9780 wide_int msk = wi::mask (width, false,
9781 TYPE_PRECISION (TREE_TYPE (arg1)));
9783 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9784 if (msk.and_not (c1 | c2) == 0)
9785 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9786 TREE_OPERAND (arg0, 0), arg1);
9788 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9789 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9790 mode which allows further optimizations. */
9791 c1 &= msk;
9792 c2 &= msk;
9793 wide_int c3 = c1.and_not (c2);
9794 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9796 wide_int mask = wi::mask (w, false,
9797 TYPE_PRECISION (type));
9798 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9800 c3 = mask;
9801 break;
9805 if (c3 != c1)
9806 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9807 fold_build2_loc (loc, BIT_AND_EXPR, type,
9808 TREE_OPERAND (arg0, 0),
9809 wide_int_to_tree (type,
9810 c3)),
9811 arg1);
9814 /* See if this can be simplified into a rotate first. If that
9815 is unsuccessful continue in the association code. */
9816 goto bit_rotate;
9818 case BIT_XOR_EXPR:
9819 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9820 if (TREE_CODE (arg0) == BIT_AND_EXPR
9821 && INTEGRAL_TYPE_P (type)
9822 && integer_onep (TREE_OPERAND (arg0, 1))
9823 && integer_onep (arg1))
9824 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9825 build_zero_cst (TREE_TYPE (arg0)));
9827 /* See if this can be simplified into a rotate first. If that
9828 is unsuccessful continue in the association code. */
9829 goto bit_rotate;
9831 case BIT_AND_EXPR:
9832 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9833 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9834 && INTEGRAL_TYPE_P (type)
9835 && integer_onep (TREE_OPERAND (arg0, 1))
9836 && integer_onep (arg1))
9838 tree tem2;
9839 tem = TREE_OPERAND (arg0, 0);
9840 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9841 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9842 tem, tem2);
9843 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9844 build_zero_cst (TREE_TYPE (tem)));
9846 /* Fold ~X & 1 as (X & 1) == 0. */
9847 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9848 && INTEGRAL_TYPE_P (type)
9849 && integer_onep (arg1))
9851 tree tem2;
9852 tem = TREE_OPERAND (arg0, 0);
9853 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9854 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9855 tem, tem2);
9856 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9857 build_zero_cst (TREE_TYPE (tem)));
9859 /* Fold !X & 1 as X == 0. */
9860 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9861 && integer_onep (arg1))
9863 tem = TREE_OPERAND (arg0, 0);
9864 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9865 build_zero_cst (TREE_TYPE (tem)));
9868 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9869 multiple of 1 << CST. */
9870 if (TREE_CODE (arg1) == INTEGER_CST)
9872 wide_int cst1 = arg1;
9873 wide_int ncst1 = -cst1;
9874 if ((cst1 & ncst1) == ncst1
9875 && multiple_of_p (type, arg0,
9876 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9877 return fold_convert_loc (loc, type, arg0);
9880 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9881 bits from CST2. */
9882 if (TREE_CODE (arg1) == INTEGER_CST
9883 && TREE_CODE (arg0) == MULT_EXPR
9884 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9886 wide_int warg1 = arg1;
9887 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
9889 if (masked == 0)
9890 return omit_two_operands_loc (loc, type, build_zero_cst (type),
9891 arg0, arg1);
9892 else if (masked != warg1)
9894 /* Avoid the transform if arg1 is a mask of some
9895 mode which allows further optimizations. */
9896 int pop = wi::popcount (warg1);
9897 if (!(pop >= BITS_PER_UNIT
9898 && pow2p_hwi (pop)
9899 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
9900 return fold_build2_loc (loc, code, type, op0,
9901 wide_int_to_tree (type, masked));
9905 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
9906 ((A & N) + B) & M -> (A + B) & M
9907 Similarly if (N & M) == 0,
9908 ((A | N) + B) & M -> (A + B) & M
9909 and for - instead of + (or unary - instead of +)
9910 and/or ^ instead of |.
9911 If B is constant and (B & M) == 0, fold into A & M. */
9912 if (TREE_CODE (arg1) == INTEGER_CST)
9914 wide_int cst1 = arg1;
9915 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
9916 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9917 && (TREE_CODE (arg0) == PLUS_EXPR
9918 || TREE_CODE (arg0) == MINUS_EXPR
9919 || TREE_CODE (arg0) == NEGATE_EXPR)
9920 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
9921 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
9923 tree pmop[2];
9924 int which = 0;
9925 wide_int cst0;
9927 /* Now we know that arg0 is (C + D) or (C - D) or
9928 -C and arg1 (M) is == (1LL << cst) - 1.
9929 Store C into PMOP[0] and D into PMOP[1]. */
9930 pmop[0] = TREE_OPERAND (arg0, 0);
9931 pmop[1] = NULL;
9932 if (TREE_CODE (arg0) != NEGATE_EXPR)
9934 pmop[1] = TREE_OPERAND (arg0, 1);
9935 which = 1;
9938 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
9939 which = -1;
9941 for (; which >= 0; which--)
9942 switch (TREE_CODE (pmop[which]))
9944 case BIT_AND_EXPR:
9945 case BIT_IOR_EXPR:
9946 case BIT_XOR_EXPR:
9947 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
9948 != INTEGER_CST)
9949 break;
9950 cst0 = TREE_OPERAND (pmop[which], 1);
9951 cst0 &= cst1;
9952 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
9954 if (cst0 != cst1)
9955 break;
9957 else if (cst0 != 0)
9958 break;
9959 /* If C or D is of the form (A & N) where
9960 (N & M) == M, or of the form (A | N) or
9961 (A ^ N) where (N & M) == 0, replace it with A. */
9962 pmop[which] = TREE_OPERAND (pmop[which], 0);
9963 break;
9964 case INTEGER_CST:
9965 /* If C or D is a N where (N & M) == 0, it can be
9966 omitted (assumed 0). */
9967 if ((TREE_CODE (arg0) == PLUS_EXPR
9968 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
9969 && (cst1 & pmop[which]) == 0)
9970 pmop[which] = NULL;
9971 break;
9972 default:
9973 break;
9976 /* Only build anything new if we optimized one or both arguments
9977 above. */
9978 if (pmop[0] != TREE_OPERAND (arg0, 0)
9979 || (TREE_CODE (arg0) != NEGATE_EXPR
9980 && pmop[1] != TREE_OPERAND (arg0, 1)))
9982 tree utype = TREE_TYPE (arg0);
9983 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9985 /* Perform the operations in a type that has defined
9986 overflow behavior. */
9987 utype = unsigned_type_for (TREE_TYPE (arg0));
9988 if (pmop[0] != NULL)
9989 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
9990 if (pmop[1] != NULL)
9991 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
9994 if (TREE_CODE (arg0) == NEGATE_EXPR)
9995 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
9996 else if (TREE_CODE (arg0) == PLUS_EXPR)
9998 if (pmop[0] != NULL && pmop[1] != NULL)
9999 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10000 pmop[0], pmop[1]);
10001 else if (pmop[0] != NULL)
10002 tem = pmop[0];
10003 else if (pmop[1] != NULL)
10004 tem = pmop[1];
10005 else
10006 return build_int_cst (type, 0);
10008 else if (pmop[0] == NULL)
10009 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10010 else
10011 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10012 pmop[0], pmop[1]);
10013 /* TEM is now the new binary +, - or unary - replacement. */
10014 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10015 fold_convert_loc (loc, utype, arg1));
10016 return fold_convert_loc (loc, type, tem);
10021 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10022 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10023 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10025 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10027 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10028 if (mask == -1)
10029 return
10030 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10033 goto associate;
10035 case RDIV_EXPR:
10036 /* Don't touch a floating-point divide by zero unless the mode
10037 of the constant can represent infinity. */
10038 if (TREE_CODE (arg1) == REAL_CST
10039 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10040 && real_zerop (arg1))
10041 return NULL_TREE;
10043 /* (-A) / (-B) -> A / B */
10044 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10045 return fold_build2_loc (loc, RDIV_EXPR, type,
10046 TREE_OPERAND (arg0, 0),
10047 negate_expr (arg1));
10048 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10049 return fold_build2_loc (loc, RDIV_EXPR, type,
10050 negate_expr (arg0),
10051 TREE_OPERAND (arg1, 0));
10052 return NULL_TREE;
10054 case TRUNC_DIV_EXPR:
10055 /* Fall through */
10057 case FLOOR_DIV_EXPR:
10058 /* Simplify A / (B << N) where A and B are positive and B is
10059 a power of 2, to A >> (N + log2(B)). */
10060 strict_overflow_p = false;
10061 if (TREE_CODE (arg1) == LSHIFT_EXPR
10062 && (TYPE_UNSIGNED (type)
10063 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10065 tree sval = TREE_OPERAND (arg1, 0);
10066 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10068 tree sh_cnt = TREE_OPERAND (arg1, 1);
10069 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10070 wi::exact_log2 (sval));
10072 if (strict_overflow_p)
10073 fold_overflow_warning (("assuming signed overflow does not "
10074 "occur when simplifying A / (B << N)"),
10075 WARN_STRICT_OVERFLOW_MISC);
10077 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10078 sh_cnt, pow2);
10079 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10080 fold_convert_loc (loc, type, arg0), sh_cnt);
10084 /* Fall through */
10086 case ROUND_DIV_EXPR:
10087 case CEIL_DIV_EXPR:
10088 case EXACT_DIV_EXPR:
10089 if (integer_zerop (arg1))
10090 return NULL_TREE;
10092 /* Convert -A / -B to A / B when the type is signed and overflow is
10093 undefined. */
10094 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10095 && TREE_CODE (arg0) == NEGATE_EXPR
10096 && negate_expr_p (op1))
10098 if (INTEGRAL_TYPE_P (type))
10099 fold_overflow_warning (("assuming signed overflow does not occur "
10100 "when distributing negation across "
10101 "division"),
10102 WARN_STRICT_OVERFLOW_MISC);
10103 return fold_build2_loc (loc, code, type,
10104 fold_convert_loc (loc, type,
10105 TREE_OPERAND (arg0, 0)),
10106 negate_expr (op1));
10108 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10109 && TREE_CODE (arg1) == NEGATE_EXPR
10110 && negate_expr_p (op0))
10112 if (INTEGRAL_TYPE_P (type))
10113 fold_overflow_warning (("assuming signed overflow does not occur "
10114 "when distributing negation across "
10115 "division"),
10116 WARN_STRICT_OVERFLOW_MISC);
10117 return fold_build2_loc (loc, code, type,
10118 negate_expr (op0),
10119 fold_convert_loc (loc, type,
10120 TREE_OPERAND (arg1, 0)));
10123 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10124 operation, EXACT_DIV_EXPR.
10126 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10127 At one time others generated faster code, it's not clear if they do
10128 after the last round to changes to the DIV code in expmed.c. */
10129 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10130 && multiple_of_p (type, arg0, arg1))
10131 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10132 fold_convert (type, arg0),
10133 fold_convert (type, arg1));
10135 strict_overflow_p = false;
10136 if (TREE_CODE (arg1) == INTEGER_CST
10137 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10138 &strict_overflow_p)))
10140 if (strict_overflow_p)
10141 fold_overflow_warning (("assuming signed overflow does not occur "
10142 "when simplifying division"),
10143 WARN_STRICT_OVERFLOW_MISC);
10144 return fold_convert_loc (loc, type, tem);
10147 return NULL_TREE;
10149 case CEIL_MOD_EXPR:
10150 case FLOOR_MOD_EXPR:
10151 case ROUND_MOD_EXPR:
10152 case TRUNC_MOD_EXPR:
10153 strict_overflow_p = false;
10154 if (TREE_CODE (arg1) == INTEGER_CST
10155 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10156 &strict_overflow_p)))
10158 if (strict_overflow_p)
10159 fold_overflow_warning (("assuming signed overflow does not occur "
10160 "when simplifying modulus"),
10161 WARN_STRICT_OVERFLOW_MISC);
10162 return fold_convert_loc (loc, type, tem);
10165 return NULL_TREE;
10167 case LROTATE_EXPR:
10168 case RROTATE_EXPR:
10169 case RSHIFT_EXPR:
10170 case LSHIFT_EXPR:
10171 /* Since negative shift count is not well-defined,
10172 don't try to compute it in the compiler. */
10173 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10174 return NULL_TREE;
10176 prec = element_precision (type);
10178 /* If we have a rotate of a bit operation with the rotate count and
10179 the second operand of the bit operation both constant,
10180 permute the two operations. */
10181 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10182 && (TREE_CODE (arg0) == BIT_AND_EXPR
10183 || TREE_CODE (arg0) == BIT_IOR_EXPR
10184 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10185 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10187 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10188 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10189 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10190 fold_build2_loc (loc, code, type,
10191 arg00, arg1),
10192 fold_build2_loc (loc, code, type,
10193 arg01, arg1));
10196 /* Two consecutive rotates adding up to the some integer
10197 multiple of the precision of the type can be ignored. */
10198 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10199 && TREE_CODE (arg0) == RROTATE_EXPR
10200 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10201 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10202 prec) == 0)
10203 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10205 return NULL_TREE;
10207 case MIN_EXPR:
10208 case MAX_EXPR:
10209 goto associate;
10211 case TRUTH_ANDIF_EXPR:
10212 /* Note that the operands of this must be ints
10213 and their values must be 0 or 1.
10214 ("true" is a fixed value perhaps depending on the language.) */
10215 /* If first arg is constant zero, return it. */
10216 if (integer_zerop (arg0))
10217 return fold_convert_loc (loc, type, arg0);
10218 /* FALLTHRU */
10219 case TRUTH_AND_EXPR:
10220 /* If either arg is constant true, drop it. */
10221 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10222 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10223 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10224 /* Preserve sequence points. */
10225 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10226 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10227 /* If second arg is constant zero, result is zero, but first arg
10228 must be evaluated. */
10229 if (integer_zerop (arg1))
10230 return omit_one_operand_loc (loc, type, arg1, arg0);
10231 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10232 case will be handled here. */
10233 if (integer_zerop (arg0))
10234 return omit_one_operand_loc (loc, type, arg0, arg1);
10236 /* !X && X is always false. */
10237 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10238 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10239 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10240 /* X && !X is always false. */
10241 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10242 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10243 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10245 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10246 means A >= Y && A != MAX, but in this case we know that
10247 A < X <= MAX. */
10249 if (!TREE_SIDE_EFFECTS (arg0)
10250 && !TREE_SIDE_EFFECTS (arg1))
10252 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10253 if (tem && !operand_equal_p (tem, arg0, 0))
10254 return fold_build2_loc (loc, code, type, tem, arg1);
10256 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10257 if (tem && !operand_equal_p (tem, arg1, 0))
10258 return fold_build2_loc (loc, code, type, arg0, tem);
10261 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10262 != NULL_TREE)
10263 return tem;
10265 return NULL_TREE;
10267 case TRUTH_ORIF_EXPR:
10268 /* Note that the operands of this must be ints
10269 and their values must be 0 or true.
10270 ("true" is a fixed value perhaps depending on the language.) */
10271 /* If first arg is constant true, return it. */
10272 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10273 return fold_convert_loc (loc, type, arg0);
10274 /* FALLTHRU */
10275 case TRUTH_OR_EXPR:
10276 /* If either arg is constant zero, drop it. */
10277 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10278 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10279 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10280 /* Preserve sequence points. */
10281 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10282 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10283 /* If second arg is constant true, result is true, but we must
10284 evaluate first arg. */
10285 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10286 return omit_one_operand_loc (loc, type, arg1, arg0);
10287 /* Likewise for first arg, but note this only occurs here for
10288 TRUTH_OR_EXPR. */
10289 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10290 return omit_one_operand_loc (loc, type, arg0, arg1);
10292 /* !X || X is always true. */
10293 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10294 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10295 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10296 /* X || !X is always true. */
10297 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10298 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10299 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10301 /* (X && !Y) || (!X && Y) is X ^ Y */
10302 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10303 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10305 tree a0, a1, l0, l1, n0, n1;
10307 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10308 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10310 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10311 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10313 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10314 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10316 if ((operand_equal_p (n0, a0, 0)
10317 && operand_equal_p (n1, a1, 0))
10318 || (operand_equal_p (n0, a1, 0)
10319 && operand_equal_p (n1, a0, 0)))
10320 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10323 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10324 != NULL_TREE)
10325 return tem;
10327 return NULL_TREE;
10329 case TRUTH_XOR_EXPR:
10330 /* If the second arg is constant zero, drop it. */
10331 if (integer_zerop (arg1))
10332 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10333 /* If the second arg is constant true, this is a logical inversion. */
10334 if (integer_onep (arg1))
10336 tem = invert_truthvalue_loc (loc, arg0);
10337 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10339 /* Identical arguments cancel to zero. */
10340 if (operand_equal_p (arg0, arg1, 0))
10341 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10343 /* !X ^ X is always true. */
10344 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10345 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10346 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10348 /* X ^ !X is always true. */
10349 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10350 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10351 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10353 return NULL_TREE;
10355 case EQ_EXPR:
10356 case NE_EXPR:
10357 STRIP_NOPS (arg0);
10358 STRIP_NOPS (arg1);
10360 tem = fold_comparison (loc, code, type, op0, op1);
10361 if (tem != NULL_TREE)
10362 return tem;
10364 /* bool_var != 1 becomes !bool_var. */
10365 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10366 && code == NE_EXPR)
10367 return fold_convert_loc (loc, type,
10368 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10369 TREE_TYPE (arg0), arg0));
10371 /* bool_var == 0 becomes !bool_var. */
10372 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10373 && code == EQ_EXPR)
10374 return fold_convert_loc (loc, type,
10375 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10376 TREE_TYPE (arg0), arg0));
10378 /* !exp != 0 becomes !exp */
10379 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10380 && code == NE_EXPR)
10381 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10383 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10384 if ((TREE_CODE (arg0) == PLUS_EXPR
10385 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10386 || TREE_CODE (arg0) == MINUS_EXPR)
10387 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10388 0)),
10389 arg1, 0)
10390 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10391 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10393 tree val = TREE_OPERAND (arg0, 1);
10394 val = fold_build2_loc (loc, code, type, val,
10395 build_int_cst (TREE_TYPE (val), 0));
10396 return omit_two_operands_loc (loc, type, val,
10397 TREE_OPERAND (arg0, 0), arg1);
10400 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10401 if ((TREE_CODE (arg1) == PLUS_EXPR
10402 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10403 || TREE_CODE (arg1) == MINUS_EXPR)
10404 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10405 0)),
10406 arg0, 0)
10407 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10408 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10410 tree val = TREE_OPERAND (arg1, 1);
10411 val = fold_build2_loc (loc, code, type, val,
10412 build_int_cst (TREE_TYPE (val), 0));
10413 return omit_two_operands_loc (loc, type, val,
10414 TREE_OPERAND (arg1, 0), arg0);
10417 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10418 if (TREE_CODE (arg0) == MINUS_EXPR
10419 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10420 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10421 1)),
10422 arg1, 0)
10423 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10424 return omit_two_operands_loc (loc, type,
10425 code == NE_EXPR
10426 ? boolean_true_node : boolean_false_node,
10427 TREE_OPERAND (arg0, 1), arg1);
10429 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10430 if (TREE_CODE (arg1) == MINUS_EXPR
10431 && TREE_CODE (TREE_OPERAND (arg1, 0)) == INTEGER_CST
10432 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10433 1)),
10434 arg0, 0)
10435 && wi::extract_uhwi (TREE_OPERAND (arg1, 0), 0, 1) == 1)
10436 return omit_two_operands_loc (loc, type,
10437 code == NE_EXPR
10438 ? boolean_true_node : boolean_false_node,
10439 TREE_OPERAND (arg1, 1), arg0);
10441 /* If this is an EQ or NE comparison with zero and ARG0 is
10442 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10443 two operations, but the latter can be done in one less insn
10444 on machines that have only two-operand insns or on which a
10445 constant cannot be the first operand. */
10446 if (TREE_CODE (arg0) == BIT_AND_EXPR
10447 && integer_zerop (arg1))
10449 tree arg00 = TREE_OPERAND (arg0, 0);
10450 tree arg01 = TREE_OPERAND (arg0, 1);
10451 if (TREE_CODE (arg00) == LSHIFT_EXPR
10452 && integer_onep (TREE_OPERAND (arg00, 0)))
10454 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10455 arg01, TREE_OPERAND (arg00, 1));
10456 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10457 build_int_cst (TREE_TYPE (arg0), 1));
10458 return fold_build2_loc (loc, code, type,
10459 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10460 arg1);
10462 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10463 && integer_onep (TREE_OPERAND (arg01, 0)))
10465 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10466 arg00, TREE_OPERAND (arg01, 1));
10467 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10468 build_int_cst (TREE_TYPE (arg0), 1));
10469 return fold_build2_loc (loc, code, type,
10470 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10471 arg1);
10475 /* If this is an NE or EQ comparison of zero against the result of a
10476 signed MOD operation whose second operand is a power of 2, make
10477 the MOD operation unsigned since it is simpler and equivalent. */
10478 if (integer_zerop (arg1)
10479 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10480 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10481 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10482 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10483 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10484 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10486 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10487 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10488 fold_convert_loc (loc, newtype,
10489 TREE_OPERAND (arg0, 0)),
10490 fold_convert_loc (loc, newtype,
10491 TREE_OPERAND (arg0, 1)));
10493 return fold_build2_loc (loc, code, type, newmod,
10494 fold_convert_loc (loc, newtype, arg1));
10497 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10498 C1 is a valid shift constant, and C2 is a power of two, i.e.
10499 a single bit. */
10500 if (TREE_CODE (arg0) == BIT_AND_EXPR
10501 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10502 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10503 == INTEGER_CST
10504 && integer_pow2p (TREE_OPERAND (arg0, 1))
10505 && integer_zerop (arg1))
10507 tree itype = TREE_TYPE (arg0);
10508 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10509 prec = TYPE_PRECISION (itype);
10511 /* Check for a valid shift count. */
10512 if (wi::ltu_p (arg001, prec))
10514 tree arg01 = TREE_OPERAND (arg0, 1);
10515 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10516 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10517 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10518 can be rewritten as (X & (C2 << C1)) != 0. */
10519 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10521 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10522 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10523 return fold_build2_loc (loc, code, type, tem,
10524 fold_convert_loc (loc, itype, arg1));
10526 /* Otherwise, for signed (arithmetic) shifts,
10527 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10528 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10529 else if (!TYPE_UNSIGNED (itype))
10530 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10531 arg000, build_int_cst (itype, 0));
10532 /* Otherwise, of unsigned (logical) shifts,
10533 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10534 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10535 else
10536 return omit_one_operand_loc (loc, type,
10537 code == EQ_EXPR ? integer_one_node
10538 : integer_zero_node,
10539 arg000);
10543 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10544 Similarly for NE_EXPR. */
10545 if (TREE_CODE (arg0) == BIT_AND_EXPR
10546 && TREE_CODE (arg1) == INTEGER_CST
10547 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10549 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10550 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10551 TREE_OPERAND (arg0, 1));
10552 tree dandnotc
10553 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10554 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10555 notc);
10556 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10557 if (integer_nonzerop (dandnotc))
10558 return omit_one_operand_loc (loc, type, rslt, arg0);
10561 /* If this is a comparison of a field, we may be able to simplify it. */
10562 if ((TREE_CODE (arg0) == COMPONENT_REF
10563 || TREE_CODE (arg0) == BIT_FIELD_REF)
10564 /* Handle the constant case even without -O
10565 to make sure the warnings are given. */
10566 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10568 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10569 if (t1)
10570 return t1;
10573 /* Optimize comparisons of strlen vs zero to a compare of the
10574 first character of the string vs zero. To wit,
10575 strlen(ptr) == 0 => *ptr == 0
10576 strlen(ptr) != 0 => *ptr != 0
10577 Other cases should reduce to one of these two (or a constant)
10578 due to the return value of strlen being unsigned. */
10579 if (TREE_CODE (arg0) == CALL_EXPR
10580 && integer_zerop (arg1))
10582 tree fndecl = get_callee_fndecl (arg0);
10584 if (fndecl
10585 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10586 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10587 && call_expr_nargs (arg0) == 1
10588 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10590 tree iref = build_fold_indirect_ref_loc (loc,
10591 CALL_EXPR_ARG (arg0, 0));
10592 return fold_build2_loc (loc, code, type, iref,
10593 build_int_cst (TREE_TYPE (iref), 0));
10597 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10598 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10599 if (TREE_CODE (arg0) == RSHIFT_EXPR
10600 && integer_zerop (arg1)
10601 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10603 tree arg00 = TREE_OPERAND (arg0, 0);
10604 tree arg01 = TREE_OPERAND (arg0, 1);
10605 tree itype = TREE_TYPE (arg00);
10606 if (wi::eq_p (arg01, element_precision (itype) - 1))
10608 if (TYPE_UNSIGNED (itype))
10610 itype = signed_type_for (itype);
10611 arg00 = fold_convert_loc (loc, itype, arg00);
10613 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10614 type, arg00, build_zero_cst (itype));
10618 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10619 (X & C) == 0 when C is a single bit. */
10620 if (TREE_CODE (arg0) == BIT_AND_EXPR
10621 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10622 && integer_zerop (arg1)
10623 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10625 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10626 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10627 TREE_OPERAND (arg0, 1));
10628 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10629 type, tem,
10630 fold_convert_loc (loc, TREE_TYPE (arg0),
10631 arg1));
10634 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10635 constant C is a power of two, i.e. a single bit. */
10636 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10637 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10638 && integer_zerop (arg1)
10639 && integer_pow2p (TREE_OPERAND (arg0, 1))
10640 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10641 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10643 tree arg00 = TREE_OPERAND (arg0, 0);
10644 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10645 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10648 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10649 when is C is a power of two, i.e. a single bit. */
10650 if (TREE_CODE (arg0) == BIT_AND_EXPR
10651 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10652 && integer_zerop (arg1)
10653 && integer_pow2p (TREE_OPERAND (arg0, 1))
10654 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10655 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10657 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10658 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10659 arg000, TREE_OPERAND (arg0, 1));
10660 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10661 tem, build_int_cst (TREE_TYPE (tem), 0));
10664 if (integer_zerop (arg1)
10665 && tree_expr_nonzero_p (arg0))
10667 tree res = constant_boolean_node (code==NE_EXPR, type);
10668 return omit_one_operand_loc (loc, type, res, arg0);
10671 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10672 if (TREE_CODE (arg0) == BIT_AND_EXPR
10673 && TREE_CODE (arg1) == BIT_AND_EXPR)
10675 tree arg00 = TREE_OPERAND (arg0, 0);
10676 tree arg01 = TREE_OPERAND (arg0, 1);
10677 tree arg10 = TREE_OPERAND (arg1, 0);
10678 tree arg11 = TREE_OPERAND (arg1, 1);
10679 tree itype = TREE_TYPE (arg0);
10681 if (operand_equal_p (arg01, arg11, 0))
10682 return fold_build2_loc (loc, code, type,
10683 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10684 fold_build2_loc (loc,
10685 BIT_XOR_EXPR, itype,
10686 arg00, arg10),
10687 arg01),
10688 build_zero_cst (itype));
10690 if (operand_equal_p (arg01, arg10, 0))
10691 return fold_build2_loc (loc, code, type,
10692 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10693 fold_build2_loc (loc,
10694 BIT_XOR_EXPR, itype,
10695 arg00, arg11),
10696 arg01),
10697 build_zero_cst (itype));
10699 if (operand_equal_p (arg00, arg11, 0))
10700 return fold_build2_loc (loc, code, type,
10701 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10702 fold_build2_loc (loc,
10703 BIT_XOR_EXPR, itype,
10704 arg01, arg10),
10705 arg00),
10706 build_zero_cst (itype));
10708 if (operand_equal_p (arg00, arg10, 0))
10709 return fold_build2_loc (loc, code, type,
10710 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10711 fold_build2_loc (loc,
10712 BIT_XOR_EXPR, itype,
10713 arg01, arg11),
10714 arg00),
10715 build_zero_cst (itype));
10718 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10719 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10721 tree arg00 = TREE_OPERAND (arg0, 0);
10722 tree arg01 = TREE_OPERAND (arg0, 1);
10723 tree arg10 = TREE_OPERAND (arg1, 0);
10724 tree arg11 = TREE_OPERAND (arg1, 1);
10725 tree itype = TREE_TYPE (arg0);
10727 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10728 operand_equal_p guarantees no side-effects so we don't need
10729 to use omit_one_operand on Z. */
10730 if (operand_equal_p (arg01, arg11, 0))
10731 return fold_build2_loc (loc, code, type, arg00,
10732 fold_convert_loc (loc, TREE_TYPE (arg00),
10733 arg10));
10734 if (operand_equal_p (arg01, arg10, 0))
10735 return fold_build2_loc (loc, code, type, arg00,
10736 fold_convert_loc (loc, TREE_TYPE (arg00),
10737 arg11));
10738 if (operand_equal_p (arg00, arg11, 0))
10739 return fold_build2_loc (loc, code, type, arg01,
10740 fold_convert_loc (loc, TREE_TYPE (arg01),
10741 arg10));
10742 if (operand_equal_p (arg00, arg10, 0))
10743 return fold_build2_loc (loc, code, type, arg01,
10744 fold_convert_loc (loc, TREE_TYPE (arg01),
10745 arg11));
10747 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10748 if (TREE_CODE (arg01) == INTEGER_CST
10749 && TREE_CODE (arg11) == INTEGER_CST)
10751 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10752 fold_convert_loc (loc, itype, arg11));
10753 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10754 return fold_build2_loc (loc, code, type, tem,
10755 fold_convert_loc (loc, itype, arg10));
10759 /* Attempt to simplify equality/inequality comparisons of complex
10760 values. Only lower the comparison if the result is known or
10761 can be simplified to a single scalar comparison. */
10762 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10763 || TREE_CODE (arg0) == COMPLEX_CST)
10764 && (TREE_CODE (arg1) == COMPLEX_EXPR
10765 || TREE_CODE (arg1) == COMPLEX_CST))
10767 tree real0, imag0, real1, imag1;
10768 tree rcond, icond;
10770 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10772 real0 = TREE_OPERAND (arg0, 0);
10773 imag0 = TREE_OPERAND (arg0, 1);
10775 else
10777 real0 = TREE_REALPART (arg0);
10778 imag0 = TREE_IMAGPART (arg0);
10781 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10783 real1 = TREE_OPERAND (arg1, 0);
10784 imag1 = TREE_OPERAND (arg1, 1);
10786 else
10788 real1 = TREE_REALPART (arg1);
10789 imag1 = TREE_IMAGPART (arg1);
10792 rcond = fold_binary_loc (loc, code, type, real0, real1);
10793 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10795 if (integer_zerop (rcond))
10797 if (code == EQ_EXPR)
10798 return omit_two_operands_loc (loc, type, boolean_false_node,
10799 imag0, imag1);
10800 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10802 else
10804 if (code == NE_EXPR)
10805 return omit_two_operands_loc (loc, type, boolean_true_node,
10806 imag0, imag1);
10807 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10811 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10812 if (icond && TREE_CODE (icond) == INTEGER_CST)
10814 if (integer_zerop (icond))
10816 if (code == EQ_EXPR)
10817 return omit_two_operands_loc (loc, type, boolean_false_node,
10818 real0, real1);
10819 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10821 else
10823 if (code == NE_EXPR)
10824 return omit_two_operands_loc (loc, type, boolean_true_node,
10825 real0, real1);
10826 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10831 return NULL_TREE;
10833 case LT_EXPR:
10834 case GT_EXPR:
10835 case LE_EXPR:
10836 case GE_EXPR:
10837 tem = fold_comparison (loc, code, type, op0, op1);
10838 if (tem != NULL_TREE)
10839 return tem;
10841 /* Transform comparisons of the form X +- C CMP X. */
10842 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10843 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10844 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10845 && !HONOR_SNANS (arg0))
10846 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10847 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10849 tree arg01 = TREE_OPERAND (arg0, 1);
10850 enum tree_code code0 = TREE_CODE (arg0);
10851 int is_positive;
10853 if (TREE_CODE (arg01) == REAL_CST)
10854 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10855 else
10856 is_positive = tree_int_cst_sgn (arg01);
10858 /* (X - c) > X becomes false. */
10859 if (code == GT_EXPR
10860 && ((code0 == MINUS_EXPR && is_positive >= 0)
10861 || (code0 == PLUS_EXPR && is_positive <= 0)))
10863 if (TREE_CODE (arg01) == INTEGER_CST
10864 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10865 fold_overflow_warning (("assuming signed overflow does not "
10866 "occur when assuming that (X - c) > X "
10867 "is always false"),
10868 WARN_STRICT_OVERFLOW_ALL);
10869 return constant_boolean_node (0, type);
10872 /* Likewise (X + c) < X becomes false. */
10873 if (code == LT_EXPR
10874 && ((code0 == PLUS_EXPR && is_positive >= 0)
10875 || (code0 == MINUS_EXPR && is_positive <= 0)))
10877 if (TREE_CODE (arg01) == INTEGER_CST
10878 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10879 fold_overflow_warning (("assuming signed overflow does not "
10880 "occur when assuming that "
10881 "(X + c) < X is always false"),
10882 WARN_STRICT_OVERFLOW_ALL);
10883 return constant_boolean_node (0, type);
10886 /* Convert (X - c) <= X to true. */
10887 if (!HONOR_NANS (arg1)
10888 && code == LE_EXPR
10889 && ((code0 == MINUS_EXPR && is_positive >= 0)
10890 || (code0 == PLUS_EXPR && is_positive <= 0)))
10892 if (TREE_CODE (arg01) == INTEGER_CST
10893 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10894 fold_overflow_warning (("assuming signed overflow does not "
10895 "occur when assuming that "
10896 "(X - c) <= X is always true"),
10897 WARN_STRICT_OVERFLOW_ALL);
10898 return constant_boolean_node (1, type);
10901 /* Convert (X + c) >= X to true. */
10902 if (!HONOR_NANS (arg1)
10903 && code == GE_EXPR
10904 && ((code0 == PLUS_EXPR && is_positive >= 0)
10905 || (code0 == MINUS_EXPR && is_positive <= 0)))
10907 if (TREE_CODE (arg01) == INTEGER_CST
10908 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10909 fold_overflow_warning (("assuming signed overflow does not "
10910 "occur when assuming that "
10911 "(X + c) >= X is always true"),
10912 WARN_STRICT_OVERFLOW_ALL);
10913 return constant_boolean_node (1, type);
10916 if (TREE_CODE (arg01) == INTEGER_CST)
10918 /* Convert X + c > X and X - c < X to true for integers. */
10919 if (code == GT_EXPR
10920 && ((code0 == PLUS_EXPR && is_positive > 0)
10921 || (code0 == MINUS_EXPR && is_positive < 0)))
10923 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10924 fold_overflow_warning (("assuming signed overflow does "
10925 "not occur when assuming that "
10926 "(X + c) > X is always true"),
10927 WARN_STRICT_OVERFLOW_ALL);
10928 return constant_boolean_node (1, type);
10931 if (code == LT_EXPR
10932 && ((code0 == MINUS_EXPR && is_positive > 0)
10933 || (code0 == PLUS_EXPR && is_positive < 0)))
10935 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10936 fold_overflow_warning (("assuming signed overflow does "
10937 "not occur when assuming that "
10938 "(X - c) < X is always true"),
10939 WARN_STRICT_OVERFLOW_ALL);
10940 return constant_boolean_node (1, type);
10943 /* Convert X + c <= X and X - c >= X to false for integers. */
10944 if (code == LE_EXPR
10945 && ((code0 == PLUS_EXPR && is_positive > 0)
10946 || (code0 == MINUS_EXPR && is_positive < 0)))
10948 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10949 fold_overflow_warning (("assuming signed overflow does "
10950 "not occur when assuming that "
10951 "(X + c) <= X is always false"),
10952 WARN_STRICT_OVERFLOW_ALL);
10953 return constant_boolean_node (0, type);
10956 if (code == GE_EXPR
10957 && ((code0 == MINUS_EXPR && is_positive > 0)
10958 || (code0 == PLUS_EXPR && is_positive < 0)))
10960 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10961 fold_overflow_warning (("assuming signed overflow does "
10962 "not occur when assuming that "
10963 "(X - c) >= X is always false"),
10964 WARN_STRICT_OVERFLOW_ALL);
10965 return constant_boolean_node (0, type);
10970 /* If we are comparing an ABS_EXPR with a constant, we can
10971 convert all the cases into explicit comparisons, but they may
10972 well not be faster than doing the ABS and one comparison.
10973 But ABS (X) <= C is a range comparison, which becomes a subtraction
10974 and a comparison, and is probably faster. */
10975 if (code == LE_EXPR
10976 && TREE_CODE (arg1) == INTEGER_CST
10977 && TREE_CODE (arg0) == ABS_EXPR
10978 && ! TREE_SIDE_EFFECTS (arg0)
10979 && (0 != (tem = negate_expr (arg1)))
10980 && TREE_CODE (tem) == INTEGER_CST
10981 && !TREE_OVERFLOW (tem))
10982 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
10983 build2 (GE_EXPR, type,
10984 TREE_OPERAND (arg0, 0), tem),
10985 build2 (LE_EXPR, type,
10986 TREE_OPERAND (arg0, 0), arg1));
10988 /* Convert ABS_EXPR<x> >= 0 to true. */
10989 strict_overflow_p = false;
10990 if (code == GE_EXPR
10991 && (integer_zerop (arg1)
10992 || (! HONOR_NANS (arg0)
10993 && real_zerop (arg1)))
10994 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
10996 if (strict_overflow_p)
10997 fold_overflow_warning (("assuming signed overflow does not occur "
10998 "when simplifying comparison of "
10999 "absolute value and zero"),
11000 WARN_STRICT_OVERFLOW_CONDITIONAL);
11001 return omit_one_operand_loc (loc, type,
11002 constant_boolean_node (true, type),
11003 arg0);
11006 /* Convert ABS_EXPR<x> < 0 to false. */
11007 strict_overflow_p = false;
11008 if (code == LT_EXPR
11009 && (integer_zerop (arg1) || real_zerop (arg1))
11010 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11012 if (strict_overflow_p)
11013 fold_overflow_warning (("assuming signed overflow does not occur "
11014 "when simplifying comparison of "
11015 "absolute value and zero"),
11016 WARN_STRICT_OVERFLOW_CONDITIONAL);
11017 return omit_one_operand_loc (loc, type,
11018 constant_boolean_node (false, type),
11019 arg0);
11022 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11023 and similarly for >= into !=. */
11024 if ((code == LT_EXPR || code == GE_EXPR)
11025 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11026 && TREE_CODE (arg1) == LSHIFT_EXPR
11027 && integer_onep (TREE_OPERAND (arg1, 0)))
11028 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11029 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11030 TREE_OPERAND (arg1, 1)),
11031 build_zero_cst (TREE_TYPE (arg0)));
11033 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11034 otherwise Y might be >= # of bits in X's type and thus e.g.
11035 (unsigned char) (1 << Y) for Y 15 might be 0.
11036 If the cast is widening, then 1 << Y should have unsigned type,
11037 otherwise if Y is number of bits in the signed shift type minus 1,
11038 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11039 31 might be 0xffffffff80000000. */
11040 if ((code == LT_EXPR || code == GE_EXPR)
11041 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11042 && CONVERT_EXPR_P (arg1)
11043 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11044 && (element_precision (TREE_TYPE (arg1))
11045 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11046 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11047 || (element_precision (TREE_TYPE (arg1))
11048 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11049 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11051 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11052 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11053 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11054 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11055 build_zero_cst (TREE_TYPE (arg0)));
11058 return NULL_TREE;
11060 case UNORDERED_EXPR:
11061 case ORDERED_EXPR:
11062 case UNLT_EXPR:
11063 case UNLE_EXPR:
11064 case UNGT_EXPR:
11065 case UNGE_EXPR:
11066 case UNEQ_EXPR:
11067 case LTGT_EXPR:
11068 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11070 tree targ0 = strip_float_extensions (arg0);
11071 tree targ1 = strip_float_extensions (arg1);
11072 tree newtype = TREE_TYPE (targ0);
11074 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11075 newtype = TREE_TYPE (targ1);
11077 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11078 return fold_build2_loc (loc, code, type,
11079 fold_convert_loc (loc, newtype, targ0),
11080 fold_convert_loc (loc, newtype, targ1));
11083 return NULL_TREE;
11085 case COMPOUND_EXPR:
11086 /* When pedantic, a compound expression can be neither an lvalue
11087 nor an integer constant expression. */
11088 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11089 return NULL_TREE;
11090 /* Don't let (0, 0) be null pointer constant. */
11091 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11092 : fold_convert_loc (loc, type, arg1);
11093 return pedantic_non_lvalue_loc (loc, tem);
11095 case ASSERT_EXPR:
11096 /* An ASSERT_EXPR should never be passed to fold_binary. */
11097 gcc_unreachable ();
11099 default:
11100 return NULL_TREE;
11101 } /* switch (code) */
11104 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11105 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11106 of GOTO_EXPR. */
11108 static tree
11109 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11111 switch (TREE_CODE (*tp))
11113 case LABEL_EXPR:
11114 return *tp;
11116 case GOTO_EXPR:
11117 *walk_subtrees = 0;
11119 /* fall through */
11121 default:
11122 return NULL_TREE;
11126 /* Return whether the sub-tree ST contains a label which is accessible from
11127 outside the sub-tree. */
11129 static bool
11130 contains_label_p (tree st)
11132 return
11133 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11136 /* Fold a ternary expression of code CODE and type TYPE with operands
11137 OP0, OP1, and OP2. Return the folded expression if folding is
11138 successful. Otherwise, return NULL_TREE. */
11140 tree
11141 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11142 tree op0, tree op1, tree op2)
11144 tree tem;
11145 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11146 enum tree_code_class kind = TREE_CODE_CLASS (code);
11148 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11149 && TREE_CODE_LENGTH (code) == 3);
11151 /* If this is a commutative operation, and OP0 is a constant, move it
11152 to OP1 to reduce the number of tests below. */
11153 if (commutative_ternary_tree_code (code)
11154 && tree_swap_operands_p (op0, op1))
11155 return fold_build3_loc (loc, code, type, op1, op0, op2);
11157 tem = generic_simplify (loc, code, type, op0, op1, op2);
11158 if (tem)
11159 return tem;
11161 /* Strip any conversions that don't change the mode. This is safe
11162 for every expression, except for a comparison expression because
11163 its signedness is derived from its operands. So, in the latter
11164 case, only strip conversions that don't change the signedness.
11166 Note that this is done as an internal manipulation within the
11167 constant folder, in order to find the simplest representation of
11168 the arguments so that their form can be studied. In any cases,
11169 the appropriate type conversions should be put back in the tree
11170 that will get out of the constant folder. */
11171 if (op0)
11173 arg0 = op0;
11174 STRIP_NOPS (arg0);
11177 if (op1)
11179 arg1 = op1;
11180 STRIP_NOPS (arg1);
11183 if (op2)
11185 arg2 = op2;
11186 STRIP_NOPS (arg2);
11189 switch (code)
11191 case COMPONENT_REF:
11192 if (TREE_CODE (arg0) == CONSTRUCTOR
11193 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11195 unsigned HOST_WIDE_INT idx;
11196 tree field, value;
11197 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11198 if (field == arg1)
11199 return value;
11201 return NULL_TREE;
11203 case COND_EXPR:
11204 case VEC_COND_EXPR:
11205 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11206 so all simple results must be passed through pedantic_non_lvalue. */
11207 if (TREE_CODE (arg0) == INTEGER_CST)
11209 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11210 tem = integer_zerop (arg0) ? op2 : op1;
11211 /* Only optimize constant conditions when the selected branch
11212 has the same type as the COND_EXPR. This avoids optimizing
11213 away "c ? x : throw", where the throw has a void type.
11214 Avoid throwing away that operand which contains label. */
11215 if ((!TREE_SIDE_EFFECTS (unused_op)
11216 || !contains_label_p (unused_op))
11217 && (! VOID_TYPE_P (TREE_TYPE (tem))
11218 || VOID_TYPE_P (type)))
11219 return pedantic_non_lvalue_loc (loc, tem);
11220 return NULL_TREE;
11222 else if (TREE_CODE (arg0) == VECTOR_CST)
11224 if ((TREE_CODE (arg1) == VECTOR_CST
11225 || TREE_CODE (arg1) == CONSTRUCTOR)
11226 && (TREE_CODE (arg2) == VECTOR_CST
11227 || TREE_CODE (arg2) == CONSTRUCTOR))
11229 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11230 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11231 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11232 for (i = 0; i < nelts; i++)
11234 tree val = VECTOR_CST_ELT (arg0, i);
11235 if (integer_all_onesp (val))
11236 sel[i] = i;
11237 else if (integer_zerop (val))
11238 sel[i] = nelts + i;
11239 else /* Currently unreachable. */
11240 return NULL_TREE;
11242 tree t = fold_vec_perm (type, arg1, arg2, sel);
11243 if (t != NULL_TREE)
11244 return t;
11248 /* If we have A op B ? A : C, we may be able to convert this to a
11249 simpler expression, depending on the operation and the values
11250 of B and C. Signed zeros prevent all of these transformations,
11251 for reasons given above each one.
11253 Also try swapping the arguments and inverting the conditional. */
11254 if (COMPARISON_CLASS_P (arg0)
11255 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11256 arg1, TREE_OPERAND (arg0, 1))
11257 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11259 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11260 if (tem)
11261 return tem;
11264 if (COMPARISON_CLASS_P (arg0)
11265 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11266 op2,
11267 TREE_OPERAND (arg0, 1))
11268 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11270 location_t loc0 = expr_location_or (arg0, loc);
11271 tem = fold_invert_truthvalue (loc0, arg0);
11272 if (tem && COMPARISON_CLASS_P (tem))
11274 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11275 if (tem)
11276 return tem;
11280 /* If the second operand is simpler than the third, swap them
11281 since that produces better jump optimization results. */
11282 if (truth_value_p (TREE_CODE (arg0))
11283 && tree_swap_operands_p (op1, op2))
11285 location_t loc0 = expr_location_or (arg0, loc);
11286 /* See if this can be inverted. If it can't, possibly because
11287 it was a floating-point inequality comparison, don't do
11288 anything. */
11289 tem = fold_invert_truthvalue (loc0, arg0);
11290 if (tem)
11291 return fold_build3_loc (loc, code, type, tem, op2, op1);
11294 /* Convert A ? 1 : 0 to simply A. */
11295 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11296 : (integer_onep (op1)
11297 && !VECTOR_TYPE_P (type)))
11298 && integer_zerop (op2)
11299 /* If we try to convert OP0 to our type, the
11300 call to fold will try to move the conversion inside
11301 a COND, which will recurse. In that case, the COND_EXPR
11302 is probably the best choice, so leave it alone. */
11303 && type == TREE_TYPE (arg0))
11304 return pedantic_non_lvalue_loc (loc, arg0);
11306 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11307 over COND_EXPR in cases such as floating point comparisons. */
11308 if (integer_zerop (op1)
11309 && code == COND_EXPR
11310 && integer_onep (op2)
11311 && !VECTOR_TYPE_P (type)
11312 && truth_value_p (TREE_CODE (arg0)))
11313 return pedantic_non_lvalue_loc (loc,
11314 fold_convert_loc (loc, type,
11315 invert_truthvalue_loc (loc,
11316 arg0)));
11318 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11319 if (TREE_CODE (arg0) == LT_EXPR
11320 && integer_zerop (TREE_OPERAND (arg0, 1))
11321 && integer_zerop (op2)
11322 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11324 /* sign_bit_p looks through both zero and sign extensions,
11325 but for this optimization only sign extensions are
11326 usable. */
11327 tree tem2 = TREE_OPERAND (arg0, 0);
11328 while (tem != tem2)
11330 if (TREE_CODE (tem2) != NOP_EXPR
11331 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11333 tem = NULL_TREE;
11334 break;
11336 tem2 = TREE_OPERAND (tem2, 0);
11338 /* sign_bit_p only checks ARG1 bits within A's precision.
11339 If <sign bit of A> has wider type than A, bits outside
11340 of A's precision in <sign bit of A> need to be checked.
11341 If they are all 0, this optimization needs to be done
11342 in unsigned A's type, if they are all 1 in signed A's type,
11343 otherwise this can't be done. */
11344 if (tem
11345 && TYPE_PRECISION (TREE_TYPE (tem))
11346 < TYPE_PRECISION (TREE_TYPE (arg1))
11347 && TYPE_PRECISION (TREE_TYPE (tem))
11348 < TYPE_PRECISION (type))
11350 int inner_width, outer_width;
11351 tree tem_type;
11353 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11354 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11355 if (outer_width > TYPE_PRECISION (type))
11356 outer_width = TYPE_PRECISION (type);
11358 wide_int mask = wi::shifted_mask
11359 (inner_width, outer_width - inner_width, false,
11360 TYPE_PRECISION (TREE_TYPE (arg1)));
11362 wide_int common = mask & arg1;
11363 if (common == mask)
11365 tem_type = signed_type_for (TREE_TYPE (tem));
11366 tem = fold_convert_loc (loc, tem_type, tem);
11368 else if (common == 0)
11370 tem_type = unsigned_type_for (TREE_TYPE (tem));
11371 tem = fold_convert_loc (loc, tem_type, tem);
11373 else
11374 tem = NULL;
11377 if (tem)
11378 return
11379 fold_convert_loc (loc, type,
11380 fold_build2_loc (loc, BIT_AND_EXPR,
11381 TREE_TYPE (tem), tem,
11382 fold_convert_loc (loc,
11383 TREE_TYPE (tem),
11384 arg1)));
11387 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11388 already handled above. */
11389 if (TREE_CODE (arg0) == BIT_AND_EXPR
11390 && integer_onep (TREE_OPERAND (arg0, 1))
11391 && integer_zerop (op2)
11392 && integer_pow2p (arg1))
11394 tree tem = TREE_OPERAND (arg0, 0);
11395 STRIP_NOPS (tem);
11396 if (TREE_CODE (tem) == RSHIFT_EXPR
11397 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11398 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11399 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11400 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11401 TREE_OPERAND (tem, 0), arg1);
11404 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11405 is probably obsolete because the first operand should be a
11406 truth value (that's why we have the two cases above), but let's
11407 leave it in until we can confirm this for all front-ends. */
11408 if (integer_zerop (op2)
11409 && TREE_CODE (arg0) == NE_EXPR
11410 && integer_zerop (TREE_OPERAND (arg0, 1))
11411 && integer_pow2p (arg1)
11412 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11413 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11414 arg1, OEP_ONLY_CONST))
11415 return pedantic_non_lvalue_loc (loc,
11416 fold_convert_loc (loc, type,
11417 TREE_OPERAND (arg0, 0)));
11419 /* Disable the transformations below for vectors, since
11420 fold_binary_op_with_conditional_arg may undo them immediately,
11421 yielding an infinite loop. */
11422 if (code == VEC_COND_EXPR)
11423 return NULL_TREE;
11425 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11426 if (integer_zerop (op2)
11427 && truth_value_p (TREE_CODE (arg0))
11428 && truth_value_p (TREE_CODE (arg1))
11429 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11430 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11431 : TRUTH_ANDIF_EXPR,
11432 type, fold_convert_loc (loc, type, arg0), arg1);
11434 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11435 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11436 && truth_value_p (TREE_CODE (arg0))
11437 && truth_value_p (TREE_CODE (arg1))
11438 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11440 location_t loc0 = expr_location_or (arg0, loc);
11441 /* Only perform transformation if ARG0 is easily inverted. */
11442 tem = fold_invert_truthvalue (loc0, arg0);
11443 if (tem)
11444 return fold_build2_loc (loc, code == VEC_COND_EXPR
11445 ? BIT_IOR_EXPR
11446 : TRUTH_ORIF_EXPR,
11447 type, fold_convert_loc (loc, type, tem),
11448 arg1);
11451 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11452 if (integer_zerop (arg1)
11453 && truth_value_p (TREE_CODE (arg0))
11454 && truth_value_p (TREE_CODE (op2))
11455 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11457 location_t loc0 = expr_location_or (arg0, loc);
11458 /* Only perform transformation if ARG0 is easily inverted. */
11459 tem = fold_invert_truthvalue (loc0, arg0);
11460 if (tem)
11461 return fold_build2_loc (loc, code == VEC_COND_EXPR
11462 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11463 type, fold_convert_loc (loc, type, tem),
11464 op2);
11467 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11468 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11469 && truth_value_p (TREE_CODE (arg0))
11470 && truth_value_p (TREE_CODE (op2))
11471 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11472 return fold_build2_loc (loc, code == VEC_COND_EXPR
11473 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11474 type, fold_convert_loc (loc, type, arg0), op2);
11476 return NULL_TREE;
11478 case CALL_EXPR:
11479 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11480 of fold_ternary on them. */
11481 gcc_unreachable ();
11483 case BIT_FIELD_REF:
11484 if (TREE_CODE (arg0) == VECTOR_CST
11485 && (type == TREE_TYPE (TREE_TYPE (arg0))
11486 || (TREE_CODE (type) == VECTOR_TYPE
11487 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11489 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11490 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11491 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11492 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11494 if (n != 0
11495 && (idx % width) == 0
11496 && (n % width) == 0
11497 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11499 idx = idx / width;
11500 n = n / width;
11502 if (TREE_CODE (arg0) == VECTOR_CST)
11504 if (n == 1)
11505 return VECTOR_CST_ELT (arg0, idx);
11507 tree *vals = XALLOCAVEC (tree, n);
11508 for (unsigned i = 0; i < n; ++i)
11509 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11510 return build_vector (type, vals);
11515 /* On constants we can use native encode/interpret to constant
11516 fold (nearly) all BIT_FIELD_REFs. */
11517 if (CONSTANT_CLASS_P (arg0)
11518 && can_native_interpret_type_p (type)
11519 && BITS_PER_UNIT == 8)
11521 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11522 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11523 /* Limit us to a reasonable amount of work. To relax the
11524 other limitations we need bit-shifting of the buffer
11525 and rounding up the size. */
11526 if (bitpos % BITS_PER_UNIT == 0
11527 && bitsize % BITS_PER_UNIT == 0
11528 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11530 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11531 unsigned HOST_WIDE_INT len
11532 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11533 bitpos / BITS_PER_UNIT);
11534 if (len > 0
11535 && len * BITS_PER_UNIT >= bitsize)
11537 tree v = native_interpret_expr (type, b,
11538 bitsize / BITS_PER_UNIT);
11539 if (v)
11540 return v;
11545 return NULL_TREE;
11547 case FMA_EXPR:
11548 /* For integers we can decompose the FMA if possible. */
11549 if (TREE_CODE (arg0) == INTEGER_CST
11550 && TREE_CODE (arg1) == INTEGER_CST)
11551 return fold_build2_loc (loc, PLUS_EXPR, type,
11552 const_binop (MULT_EXPR, arg0, arg1), arg2);
11553 if (integer_zerop (arg2))
11554 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11556 return fold_fma (loc, type, arg0, arg1, arg2);
11558 case VEC_PERM_EXPR:
11559 if (TREE_CODE (arg2) == VECTOR_CST)
11561 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11562 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11563 unsigned char *sel2 = sel + nelts;
11564 bool need_mask_canon = false;
11565 bool need_mask_canon2 = false;
11566 bool all_in_vec0 = true;
11567 bool all_in_vec1 = true;
11568 bool maybe_identity = true;
11569 bool single_arg = (op0 == op1);
11570 bool changed = false;
11572 mask2 = 2 * nelts - 1;
11573 mask = single_arg ? (nelts - 1) : mask2;
11574 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11575 for (i = 0; i < nelts; i++)
11577 tree val = VECTOR_CST_ELT (arg2, i);
11578 if (TREE_CODE (val) != INTEGER_CST)
11579 return NULL_TREE;
11581 /* Make sure that the perm value is in an acceptable
11582 range. */
11583 wide_int t = val;
11584 need_mask_canon |= wi::gtu_p (t, mask);
11585 need_mask_canon2 |= wi::gtu_p (t, mask2);
11586 sel[i] = t.to_uhwi () & mask;
11587 sel2[i] = t.to_uhwi () & mask2;
11589 if (sel[i] < nelts)
11590 all_in_vec1 = false;
11591 else
11592 all_in_vec0 = false;
11594 if ((sel[i] & (nelts-1)) != i)
11595 maybe_identity = false;
11598 if (maybe_identity)
11600 if (all_in_vec0)
11601 return op0;
11602 if (all_in_vec1)
11603 return op1;
11606 if (all_in_vec0)
11607 op1 = op0;
11608 else if (all_in_vec1)
11610 op0 = op1;
11611 for (i = 0; i < nelts; i++)
11612 sel[i] -= nelts;
11613 need_mask_canon = true;
11616 if ((TREE_CODE (op0) == VECTOR_CST
11617 || TREE_CODE (op0) == CONSTRUCTOR)
11618 && (TREE_CODE (op1) == VECTOR_CST
11619 || TREE_CODE (op1) == CONSTRUCTOR))
11621 tree t = fold_vec_perm (type, op0, op1, sel);
11622 if (t != NULL_TREE)
11623 return t;
11626 if (op0 == op1 && !single_arg)
11627 changed = true;
11629 /* Some targets are deficient and fail to expand a single
11630 argument permutation while still allowing an equivalent
11631 2-argument version. */
11632 if (need_mask_canon && arg2 == op2
11633 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11634 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11636 need_mask_canon = need_mask_canon2;
11637 sel = sel2;
11640 if (need_mask_canon && arg2 == op2)
11642 tree *tsel = XALLOCAVEC (tree, nelts);
11643 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11644 for (i = 0; i < nelts; i++)
11645 tsel[i] = build_int_cst (eltype, sel[i]);
11646 op2 = build_vector (TREE_TYPE (arg2), tsel);
11647 changed = true;
11650 if (changed)
11651 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11653 return NULL_TREE;
11655 case BIT_INSERT_EXPR:
11656 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11657 if (TREE_CODE (arg0) == INTEGER_CST
11658 && TREE_CODE (arg1) == INTEGER_CST)
11660 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11661 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11662 wide_int tem = wi::bit_and (arg0,
11663 wi::shifted_mask (bitpos, bitsize, true,
11664 TYPE_PRECISION (type)));
11665 wide_int tem2
11666 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11667 bitsize), bitpos);
11668 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11670 else if (TREE_CODE (arg0) == VECTOR_CST
11671 && CONSTANT_CLASS_P (arg1)
11672 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11673 TREE_TYPE (arg1)))
11675 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11676 unsigned HOST_WIDE_INT elsize
11677 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11678 if (bitpos % elsize == 0)
11680 unsigned k = bitpos / elsize;
11681 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11682 return arg0;
11683 else
11685 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11686 memcpy (elts, VECTOR_CST_ELTS (arg0),
11687 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11688 elts[k] = arg1;
11689 return build_vector (type, elts);
11693 return NULL_TREE;
11695 default:
11696 return NULL_TREE;
11697 } /* switch (code) */
11700 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11701 of an array (or vector). */
11703 tree
11704 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11706 tree index_type = NULL_TREE;
11707 offset_int low_bound = 0;
11709 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11711 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11712 if (domain_type && TYPE_MIN_VALUE (domain_type))
11714 /* Static constructors for variably sized objects makes no sense. */
11715 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11716 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11717 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11721 if (index_type)
11722 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11723 TYPE_SIGN (index_type));
11725 offset_int index = low_bound - 1;
11726 if (index_type)
11727 index = wi::ext (index, TYPE_PRECISION (index_type),
11728 TYPE_SIGN (index_type));
11730 offset_int max_index;
11731 unsigned HOST_WIDE_INT cnt;
11732 tree cfield, cval;
11734 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11736 /* Array constructor might explicitly set index, or specify a range,
11737 or leave index NULL meaning that it is next index after previous
11738 one. */
11739 if (cfield)
11741 if (TREE_CODE (cfield) == INTEGER_CST)
11742 max_index = index = wi::to_offset (cfield);
11743 else
11745 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11746 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11747 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11750 else
11752 index += 1;
11753 if (index_type)
11754 index = wi::ext (index, TYPE_PRECISION (index_type),
11755 TYPE_SIGN (index_type));
11756 max_index = index;
11759 /* Do we have match? */
11760 if (wi::cmpu (access_index, index) >= 0
11761 && wi::cmpu (access_index, max_index) <= 0)
11762 return cval;
11764 return NULL_TREE;
11767 /* Perform constant folding and related simplification of EXPR.
11768 The related simplifications include x*1 => x, x*0 => 0, etc.,
11769 and application of the associative law.
11770 NOP_EXPR conversions may be removed freely (as long as we
11771 are careful not to change the type of the overall expression).
11772 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11773 but we can constant-fold them if they have constant operands. */
11775 #ifdef ENABLE_FOLD_CHECKING
11776 # define fold(x) fold_1 (x)
11777 static tree fold_1 (tree);
11778 static
11779 #endif
11780 tree
11781 fold (tree expr)
11783 const tree t = expr;
11784 enum tree_code code = TREE_CODE (t);
11785 enum tree_code_class kind = TREE_CODE_CLASS (code);
11786 tree tem;
11787 location_t loc = EXPR_LOCATION (expr);
11789 /* Return right away if a constant. */
11790 if (kind == tcc_constant)
11791 return t;
11793 /* CALL_EXPR-like objects with variable numbers of operands are
11794 treated specially. */
11795 if (kind == tcc_vl_exp)
11797 if (code == CALL_EXPR)
11799 tem = fold_call_expr (loc, expr, false);
11800 return tem ? tem : expr;
11802 return expr;
11805 if (IS_EXPR_CODE_CLASS (kind))
11807 tree type = TREE_TYPE (t);
11808 tree op0, op1, op2;
11810 switch (TREE_CODE_LENGTH (code))
11812 case 1:
11813 op0 = TREE_OPERAND (t, 0);
11814 tem = fold_unary_loc (loc, code, type, op0);
11815 return tem ? tem : expr;
11816 case 2:
11817 op0 = TREE_OPERAND (t, 0);
11818 op1 = TREE_OPERAND (t, 1);
11819 tem = fold_binary_loc (loc, code, type, op0, op1);
11820 return tem ? tem : expr;
11821 case 3:
11822 op0 = TREE_OPERAND (t, 0);
11823 op1 = TREE_OPERAND (t, 1);
11824 op2 = TREE_OPERAND (t, 2);
11825 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11826 return tem ? tem : expr;
11827 default:
11828 break;
11832 switch (code)
11834 case ARRAY_REF:
11836 tree op0 = TREE_OPERAND (t, 0);
11837 tree op1 = TREE_OPERAND (t, 1);
11839 if (TREE_CODE (op1) == INTEGER_CST
11840 && TREE_CODE (op0) == CONSTRUCTOR
11841 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11843 tree val = get_array_ctor_element_at_index (op0,
11844 wi::to_offset (op1));
11845 if (val)
11846 return val;
11849 return t;
11852 /* Return a VECTOR_CST if possible. */
11853 case CONSTRUCTOR:
11855 tree type = TREE_TYPE (t);
11856 if (TREE_CODE (type) != VECTOR_TYPE)
11857 return t;
11859 unsigned i;
11860 tree val;
11861 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11862 if (! CONSTANT_CLASS_P (val))
11863 return t;
11865 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11868 case CONST_DECL:
11869 return fold (DECL_INITIAL (t));
11871 default:
11872 return t;
11873 } /* switch (code) */
11876 #ifdef ENABLE_FOLD_CHECKING
11877 #undef fold
11879 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11880 hash_table<nofree_ptr_hash<const tree_node> > *);
11881 static void fold_check_failed (const_tree, const_tree);
11882 void print_fold_checksum (const_tree);
11884 /* When --enable-checking=fold, compute a digest of expr before
11885 and after actual fold call to see if fold did not accidentally
11886 change original expr. */
11888 tree
11889 fold (tree expr)
11891 tree ret;
11892 struct md5_ctx ctx;
11893 unsigned char checksum_before[16], checksum_after[16];
11894 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11896 md5_init_ctx (&ctx);
11897 fold_checksum_tree (expr, &ctx, &ht);
11898 md5_finish_ctx (&ctx, checksum_before);
11899 ht.empty ();
11901 ret = fold_1 (expr);
11903 md5_init_ctx (&ctx);
11904 fold_checksum_tree (expr, &ctx, &ht);
11905 md5_finish_ctx (&ctx, checksum_after);
11907 if (memcmp (checksum_before, checksum_after, 16))
11908 fold_check_failed (expr, ret);
11910 return ret;
11913 void
11914 print_fold_checksum (const_tree expr)
11916 struct md5_ctx ctx;
11917 unsigned char checksum[16], cnt;
11918 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11920 md5_init_ctx (&ctx);
11921 fold_checksum_tree (expr, &ctx, &ht);
11922 md5_finish_ctx (&ctx, checksum);
11923 for (cnt = 0; cnt < 16; ++cnt)
11924 fprintf (stderr, "%02x", checksum[cnt]);
11925 putc ('\n', stderr);
11928 static void
11929 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
11931 internal_error ("fold check: original tree changed by fold");
11934 static void
11935 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
11936 hash_table<nofree_ptr_hash <const tree_node> > *ht)
11938 const tree_node **slot;
11939 enum tree_code code;
11940 union tree_node buf;
11941 int i, len;
11943 recursive_label:
11944 if (expr == NULL)
11945 return;
11946 slot = ht->find_slot (expr, INSERT);
11947 if (*slot != NULL)
11948 return;
11949 *slot = expr;
11950 code = TREE_CODE (expr);
11951 if (TREE_CODE_CLASS (code) == tcc_declaration
11952 && HAS_DECL_ASSEMBLER_NAME_P (expr))
11954 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
11955 memcpy ((char *) &buf, expr, tree_size (expr));
11956 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
11957 buf.decl_with_vis.symtab_node = NULL;
11958 expr = (tree) &buf;
11960 else if (TREE_CODE_CLASS (code) == tcc_type
11961 && (TYPE_POINTER_TO (expr)
11962 || TYPE_REFERENCE_TO (expr)
11963 || TYPE_CACHED_VALUES_P (expr)
11964 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
11965 || TYPE_NEXT_VARIANT (expr)
11966 || TYPE_ALIAS_SET_KNOWN_P (expr)))
11968 /* Allow these fields to be modified. */
11969 tree tmp;
11970 memcpy ((char *) &buf, expr, tree_size (expr));
11971 expr = tmp = (tree) &buf;
11972 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
11973 TYPE_POINTER_TO (tmp) = NULL;
11974 TYPE_REFERENCE_TO (tmp) = NULL;
11975 TYPE_NEXT_VARIANT (tmp) = NULL;
11976 TYPE_ALIAS_SET (tmp) = -1;
11977 if (TYPE_CACHED_VALUES_P (tmp))
11979 TYPE_CACHED_VALUES_P (tmp) = 0;
11980 TYPE_CACHED_VALUES (tmp) = NULL;
11983 md5_process_bytes (expr, tree_size (expr), ctx);
11984 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
11985 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
11986 if (TREE_CODE_CLASS (code) != tcc_type
11987 && TREE_CODE_CLASS (code) != tcc_declaration
11988 && code != TREE_LIST
11989 && code != SSA_NAME
11990 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
11991 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
11992 switch (TREE_CODE_CLASS (code))
11994 case tcc_constant:
11995 switch (code)
11997 case STRING_CST:
11998 md5_process_bytes (TREE_STRING_POINTER (expr),
11999 TREE_STRING_LENGTH (expr), ctx);
12000 break;
12001 case COMPLEX_CST:
12002 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12003 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12004 break;
12005 case VECTOR_CST:
12006 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12007 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12008 break;
12009 default:
12010 break;
12012 break;
12013 case tcc_exceptional:
12014 switch (code)
12016 case TREE_LIST:
12017 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12018 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12019 expr = TREE_CHAIN (expr);
12020 goto recursive_label;
12021 break;
12022 case TREE_VEC:
12023 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12024 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12025 break;
12026 default:
12027 break;
12029 break;
12030 case tcc_expression:
12031 case tcc_reference:
12032 case tcc_comparison:
12033 case tcc_unary:
12034 case tcc_binary:
12035 case tcc_statement:
12036 case tcc_vl_exp:
12037 len = TREE_OPERAND_LENGTH (expr);
12038 for (i = 0; i < len; ++i)
12039 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12040 break;
12041 case tcc_declaration:
12042 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12043 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12044 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12046 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12047 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12048 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12049 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12050 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12053 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12055 if (TREE_CODE (expr) == FUNCTION_DECL)
12057 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12058 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12060 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12062 break;
12063 case tcc_type:
12064 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12065 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12066 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12067 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12068 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12069 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12070 if (INTEGRAL_TYPE_P (expr)
12071 || SCALAR_FLOAT_TYPE_P (expr))
12073 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12074 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12076 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12077 if (TREE_CODE (expr) == RECORD_TYPE
12078 || TREE_CODE (expr) == UNION_TYPE
12079 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12080 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12081 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12082 break;
12083 default:
12084 break;
12088 /* Helper function for outputting the checksum of a tree T. When
12089 debugging with gdb, you can "define mynext" to be "next" followed
12090 by "call debug_fold_checksum (op0)", then just trace down till the
12091 outputs differ. */
12093 DEBUG_FUNCTION void
12094 debug_fold_checksum (const_tree t)
12096 int i;
12097 unsigned char checksum[16];
12098 struct md5_ctx ctx;
12099 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12101 md5_init_ctx (&ctx);
12102 fold_checksum_tree (t, &ctx, &ht);
12103 md5_finish_ctx (&ctx, checksum);
12104 ht.empty ();
12106 for (i = 0; i < 16; i++)
12107 fprintf (stderr, "%d ", checksum[i]);
12109 fprintf (stderr, "\n");
12112 #endif
12114 /* Fold a unary tree expression with code CODE of type TYPE with an
12115 operand OP0. LOC is the location of the resulting expression.
12116 Return a folded expression if successful. Otherwise, return a tree
12117 expression with code CODE of type TYPE with an operand OP0. */
12119 tree
12120 fold_build1_stat_loc (location_t loc,
12121 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12123 tree tem;
12124 #ifdef ENABLE_FOLD_CHECKING
12125 unsigned char checksum_before[16], checksum_after[16];
12126 struct md5_ctx ctx;
12127 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12129 md5_init_ctx (&ctx);
12130 fold_checksum_tree (op0, &ctx, &ht);
12131 md5_finish_ctx (&ctx, checksum_before);
12132 ht.empty ();
12133 #endif
12135 tem = fold_unary_loc (loc, code, type, op0);
12136 if (!tem)
12137 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12139 #ifdef ENABLE_FOLD_CHECKING
12140 md5_init_ctx (&ctx);
12141 fold_checksum_tree (op0, &ctx, &ht);
12142 md5_finish_ctx (&ctx, checksum_after);
12144 if (memcmp (checksum_before, checksum_after, 16))
12145 fold_check_failed (op0, tem);
12146 #endif
12147 return tem;
12150 /* Fold a binary tree expression with code CODE of type TYPE with
12151 operands OP0 and OP1. LOC is the location of the resulting
12152 expression. Return a folded expression if successful. Otherwise,
12153 return a tree expression with code CODE of type TYPE with operands
12154 OP0 and OP1. */
12156 tree
12157 fold_build2_stat_loc (location_t loc,
12158 enum tree_code code, tree type, tree op0, tree op1
12159 MEM_STAT_DECL)
12161 tree tem;
12162 #ifdef ENABLE_FOLD_CHECKING
12163 unsigned char checksum_before_op0[16],
12164 checksum_before_op1[16],
12165 checksum_after_op0[16],
12166 checksum_after_op1[16];
12167 struct md5_ctx ctx;
12168 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12170 md5_init_ctx (&ctx);
12171 fold_checksum_tree (op0, &ctx, &ht);
12172 md5_finish_ctx (&ctx, checksum_before_op0);
12173 ht.empty ();
12175 md5_init_ctx (&ctx);
12176 fold_checksum_tree (op1, &ctx, &ht);
12177 md5_finish_ctx (&ctx, checksum_before_op1);
12178 ht.empty ();
12179 #endif
12181 tem = fold_binary_loc (loc, code, type, op0, op1);
12182 if (!tem)
12183 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12185 #ifdef ENABLE_FOLD_CHECKING
12186 md5_init_ctx (&ctx);
12187 fold_checksum_tree (op0, &ctx, &ht);
12188 md5_finish_ctx (&ctx, checksum_after_op0);
12189 ht.empty ();
12191 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12192 fold_check_failed (op0, tem);
12194 md5_init_ctx (&ctx);
12195 fold_checksum_tree (op1, &ctx, &ht);
12196 md5_finish_ctx (&ctx, checksum_after_op1);
12198 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12199 fold_check_failed (op1, tem);
12200 #endif
12201 return tem;
12204 /* Fold a ternary tree expression with code CODE of type TYPE with
12205 operands OP0, OP1, and OP2. Return a folded expression if
12206 successful. Otherwise, return a tree expression with code CODE of
12207 type TYPE with operands OP0, OP1, and OP2. */
12209 tree
12210 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12211 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12213 tree tem;
12214 #ifdef ENABLE_FOLD_CHECKING
12215 unsigned char checksum_before_op0[16],
12216 checksum_before_op1[16],
12217 checksum_before_op2[16],
12218 checksum_after_op0[16],
12219 checksum_after_op1[16],
12220 checksum_after_op2[16];
12221 struct md5_ctx ctx;
12222 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12224 md5_init_ctx (&ctx);
12225 fold_checksum_tree (op0, &ctx, &ht);
12226 md5_finish_ctx (&ctx, checksum_before_op0);
12227 ht.empty ();
12229 md5_init_ctx (&ctx);
12230 fold_checksum_tree (op1, &ctx, &ht);
12231 md5_finish_ctx (&ctx, checksum_before_op1);
12232 ht.empty ();
12234 md5_init_ctx (&ctx);
12235 fold_checksum_tree (op2, &ctx, &ht);
12236 md5_finish_ctx (&ctx, checksum_before_op2);
12237 ht.empty ();
12238 #endif
12240 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12241 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12242 if (!tem)
12243 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12245 #ifdef ENABLE_FOLD_CHECKING
12246 md5_init_ctx (&ctx);
12247 fold_checksum_tree (op0, &ctx, &ht);
12248 md5_finish_ctx (&ctx, checksum_after_op0);
12249 ht.empty ();
12251 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12252 fold_check_failed (op0, tem);
12254 md5_init_ctx (&ctx);
12255 fold_checksum_tree (op1, &ctx, &ht);
12256 md5_finish_ctx (&ctx, checksum_after_op1);
12257 ht.empty ();
12259 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12260 fold_check_failed (op1, tem);
12262 md5_init_ctx (&ctx);
12263 fold_checksum_tree (op2, &ctx, &ht);
12264 md5_finish_ctx (&ctx, checksum_after_op2);
12266 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12267 fold_check_failed (op2, tem);
12268 #endif
12269 return tem;
12272 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12273 arguments in ARGARRAY, and a null static chain.
12274 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12275 of type TYPE from the given operands as constructed by build_call_array. */
12277 tree
12278 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12279 int nargs, tree *argarray)
12281 tree tem;
12282 #ifdef ENABLE_FOLD_CHECKING
12283 unsigned char checksum_before_fn[16],
12284 checksum_before_arglist[16],
12285 checksum_after_fn[16],
12286 checksum_after_arglist[16];
12287 struct md5_ctx ctx;
12288 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12289 int i;
12291 md5_init_ctx (&ctx);
12292 fold_checksum_tree (fn, &ctx, &ht);
12293 md5_finish_ctx (&ctx, checksum_before_fn);
12294 ht.empty ();
12296 md5_init_ctx (&ctx);
12297 for (i = 0; i < nargs; i++)
12298 fold_checksum_tree (argarray[i], &ctx, &ht);
12299 md5_finish_ctx (&ctx, checksum_before_arglist);
12300 ht.empty ();
12301 #endif
12303 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12304 if (!tem)
12305 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12307 #ifdef ENABLE_FOLD_CHECKING
12308 md5_init_ctx (&ctx);
12309 fold_checksum_tree (fn, &ctx, &ht);
12310 md5_finish_ctx (&ctx, checksum_after_fn);
12311 ht.empty ();
12313 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12314 fold_check_failed (fn, tem);
12316 md5_init_ctx (&ctx);
12317 for (i = 0; i < nargs; i++)
12318 fold_checksum_tree (argarray[i], &ctx, &ht);
12319 md5_finish_ctx (&ctx, checksum_after_arglist);
12321 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12322 fold_check_failed (NULL_TREE, tem);
12323 #endif
12324 return tem;
12327 /* Perform constant folding and related simplification of initializer
12328 expression EXPR. These behave identically to "fold_buildN" but ignore
12329 potential run-time traps and exceptions that fold must preserve. */
12331 #define START_FOLD_INIT \
12332 int saved_signaling_nans = flag_signaling_nans;\
12333 int saved_trapping_math = flag_trapping_math;\
12334 int saved_rounding_math = flag_rounding_math;\
12335 int saved_trapv = flag_trapv;\
12336 int saved_folding_initializer = folding_initializer;\
12337 flag_signaling_nans = 0;\
12338 flag_trapping_math = 0;\
12339 flag_rounding_math = 0;\
12340 flag_trapv = 0;\
12341 folding_initializer = 1;
12343 #define END_FOLD_INIT \
12344 flag_signaling_nans = saved_signaling_nans;\
12345 flag_trapping_math = saved_trapping_math;\
12346 flag_rounding_math = saved_rounding_math;\
12347 flag_trapv = saved_trapv;\
12348 folding_initializer = saved_folding_initializer;
12350 tree
12351 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12352 tree type, tree op)
12354 tree result;
12355 START_FOLD_INIT;
12357 result = fold_build1_loc (loc, code, type, op);
12359 END_FOLD_INIT;
12360 return result;
12363 tree
12364 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12365 tree type, tree op0, tree op1)
12367 tree result;
12368 START_FOLD_INIT;
12370 result = fold_build2_loc (loc, code, type, op0, op1);
12372 END_FOLD_INIT;
12373 return result;
12376 tree
12377 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12378 int nargs, tree *argarray)
12380 tree result;
12381 START_FOLD_INIT;
12383 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12385 END_FOLD_INIT;
12386 return result;
12389 #undef START_FOLD_INIT
12390 #undef END_FOLD_INIT
12392 /* Determine if first argument is a multiple of second argument. Return 0 if
12393 it is not, or we cannot easily determined it to be.
12395 An example of the sort of thing we care about (at this point; this routine
12396 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12397 fold cases do now) is discovering that
12399 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12401 is a multiple of
12403 SAVE_EXPR (J * 8)
12405 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12407 This code also handles discovering that
12409 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12411 is a multiple of 8 so we don't have to worry about dealing with a
12412 possible remainder.
12414 Note that we *look* inside a SAVE_EXPR only to determine how it was
12415 calculated; it is not safe for fold to do much of anything else with the
12416 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12417 at run time. For example, the latter example above *cannot* be implemented
12418 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12419 evaluation time of the original SAVE_EXPR is not necessarily the same at
12420 the time the new expression is evaluated. The only optimization of this
12421 sort that would be valid is changing
12423 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12425 divided by 8 to
12427 SAVE_EXPR (I) * SAVE_EXPR (J)
12429 (where the same SAVE_EXPR (J) is used in the original and the
12430 transformed version). */
12433 multiple_of_p (tree type, const_tree top, const_tree bottom)
12435 gimple *stmt;
12436 tree t1, op1, op2;
12438 if (operand_equal_p (top, bottom, 0))
12439 return 1;
12441 if (TREE_CODE (type) != INTEGER_TYPE)
12442 return 0;
12444 switch (TREE_CODE (top))
12446 case BIT_AND_EXPR:
12447 /* Bitwise and provides a power of two multiple. If the mask is
12448 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12449 if (!integer_pow2p (bottom))
12450 return 0;
12451 /* FALLTHRU */
12453 case MULT_EXPR:
12454 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12455 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12457 case MINUS_EXPR:
12458 /* It is impossible to prove if op0 - op1 is multiple of bottom
12459 precisely, so be conservative here checking if both op0 and op1
12460 are multiple of bottom. Note we check the second operand first
12461 since it's usually simpler. */
12462 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12463 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12465 case PLUS_EXPR:
12466 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12467 as op0 - 3 if the expression has unsigned type. For example,
12468 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12469 op1 = TREE_OPERAND (top, 1);
12470 if (TYPE_UNSIGNED (type)
12471 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12472 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12473 return (multiple_of_p (type, op1, bottom)
12474 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12476 case LSHIFT_EXPR:
12477 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12479 op1 = TREE_OPERAND (top, 1);
12480 /* const_binop may not detect overflow correctly,
12481 so check for it explicitly here. */
12482 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12483 && 0 != (t1 = fold_convert (type,
12484 const_binop (LSHIFT_EXPR,
12485 size_one_node,
12486 op1)))
12487 && !TREE_OVERFLOW (t1))
12488 return multiple_of_p (type, t1, bottom);
12490 return 0;
12492 case NOP_EXPR:
12493 /* Can't handle conversions from non-integral or wider integral type. */
12494 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12495 || (TYPE_PRECISION (type)
12496 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12497 return 0;
12499 /* fall through */
12501 case SAVE_EXPR:
12502 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12504 case COND_EXPR:
12505 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12506 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12508 case INTEGER_CST:
12509 if (TREE_CODE (bottom) != INTEGER_CST
12510 || integer_zerop (bottom)
12511 || (TYPE_UNSIGNED (type)
12512 && (tree_int_cst_sgn (top) < 0
12513 || tree_int_cst_sgn (bottom) < 0)))
12514 return 0;
12515 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12516 SIGNED);
12518 case SSA_NAME:
12519 if (TREE_CODE (bottom) == INTEGER_CST
12520 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12521 && gimple_code (stmt) == GIMPLE_ASSIGN)
12523 enum tree_code code = gimple_assign_rhs_code (stmt);
12525 /* Check for special cases to see if top is defined as multiple
12526 of bottom:
12528 top = (X & ~(bottom - 1) ; bottom is power of 2
12532 Y = X % bottom
12533 top = X - Y. */
12534 if (code == BIT_AND_EXPR
12535 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12536 && TREE_CODE (op2) == INTEGER_CST
12537 && integer_pow2p (bottom)
12538 && wi::multiple_of_p (wi::to_widest (op2),
12539 wi::to_widest (bottom), UNSIGNED))
12540 return 1;
12542 op1 = gimple_assign_rhs1 (stmt);
12543 if (code == MINUS_EXPR
12544 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12545 && TREE_CODE (op2) == SSA_NAME
12546 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12547 && gimple_code (stmt) == GIMPLE_ASSIGN
12548 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12549 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12550 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12551 return 1;
12554 /* fall through */
12556 default:
12557 return 0;
12561 #define tree_expr_nonnegative_warnv_p(X, Y) \
12562 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12564 #define RECURSE(X) \
12565 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12567 /* Return true if CODE or TYPE is known to be non-negative. */
12569 static bool
12570 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12572 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12573 && truth_value_p (code))
12574 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12575 have a signed:1 type (where the value is -1 and 0). */
12576 return true;
12577 return false;
12580 /* Return true if (CODE OP0) is known to be non-negative. If the return
12581 value is based on the assumption that signed overflow is undefined,
12582 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12583 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12585 bool
12586 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12587 bool *strict_overflow_p, int depth)
12589 if (TYPE_UNSIGNED (type))
12590 return true;
12592 switch (code)
12594 case ABS_EXPR:
12595 /* We can't return 1 if flag_wrapv is set because
12596 ABS_EXPR<INT_MIN> = INT_MIN. */
12597 if (!ANY_INTEGRAL_TYPE_P (type))
12598 return true;
12599 if (TYPE_OVERFLOW_UNDEFINED (type))
12601 *strict_overflow_p = true;
12602 return true;
12604 break;
12606 case NON_LVALUE_EXPR:
12607 case FLOAT_EXPR:
12608 case FIX_TRUNC_EXPR:
12609 return RECURSE (op0);
12611 CASE_CONVERT:
12613 tree inner_type = TREE_TYPE (op0);
12614 tree outer_type = type;
12616 if (TREE_CODE (outer_type) == REAL_TYPE)
12618 if (TREE_CODE (inner_type) == REAL_TYPE)
12619 return RECURSE (op0);
12620 if (INTEGRAL_TYPE_P (inner_type))
12622 if (TYPE_UNSIGNED (inner_type))
12623 return true;
12624 return RECURSE (op0);
12627 else if (INTEGRAL_TYPE_P (outer_type))
12629 if (TREE_CODE (inner_type) == REAL_TYPE)
12630 return RECURSE (op0);
12631 if (INTEGRAL_TYPE_P (inner_type))
12632 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12633 && TYPE_UNSIGNED (inner_type);
12636 break;
12638 default:
12639 return tree_simple_nonnegative_warnv_p (code, type);
12642 /* We don't know sign of `t', so be conservative and return false. */
12643 return false;
12646 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12647 value is based on the assumption that signed overflow is undefined,
12648 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12649 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12651 bool
12652 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12653 tree op1, bool *strict_overflow_p,
12654 int depth)
12656 if (TYPE_UNSIGNED (type))
12657 return true;
12659 switch (code)
12661 case POINTER_PLUS_EXPR:
12662 case PLUS_EXPR:
12663 if (FLOAT_TYPE_P (type))
12664 return RECURSE (op0) && RECURSE (op1);
12666 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12667 both unsigned and at least 2 bits shorter than the result. */
12668 if (TREE_CODE (type) == INTEGER_TYPE
12669 && TREE_CODE (op0) == NOP_EXPR
12670 && TREE_CODE (op1) == NOP_EXPR)
12672 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12673 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12674 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12675 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12677 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12678 TYPE_PRECISION (inner2)) + 1;
12679 return prec < TYPE_PRECISION (type);
12682 break;
12684 case MULT_EXPR:
12685 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12687 /* x * x is always non-negative for floating point x
12688 or without overflow. */
12689 if (operand_equal_p (op0, op1, 0)
12690 || (RECURSE (op0) && RECURSE (op1)))
12692 if (ANY_INTEGRAL_TYPE_P (type)
12693 && TYPE_OVERFLOW_UNDEFINED (type))
12694 *strict_overflow_p = true;
12695 return true;
12699 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12700 both unsigned and their total bits is shorter than the result. */
12701 if (TREE_CODE (type) == INTEGER_TYPE
12702 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12703 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12705 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12706 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12707 : TREE_TYPE (op0);
12708 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12709 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12710 : TREE_TYPE (op1);
12712 bool unsigned0 = TYPE_UNSIGNED (inner0);
12713 bool unsigned1 = TYPE_UNSIGNED (inner1);
12715 if (TREE_CODE (op0) == INTEGER_CST)
12716 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12718 if (TREE_CODE (op1) == INTEGER_CST)
12719 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12721 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12722 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12724 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12725 ? tree_int_cst_min_precision (op0, UNSIGNED)
12726 : TYPE_PRECISION (inner0);
12728 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12729 ? tree_int_cst_min_precision (op1, UNSIGNED)
12730 : TYPE_PRECISION (inner1);
12732 return precision0 + precision1 < TYPE_PRECISION (type);
12735 return false;
12737 case BIT_AND_EXPR:
12738 case MAX_EXPR:
12739 return RECURSE (op0) || RECURSE (op1);
12741 case BIT_IOR_EXPR:
12742 case BIT_XOR_EXPR:
12743 case MIN_EXPR:
12744 case RDIV_EXPR:
12745 case TRUNC_DIV_EXPR:
12746 case CEIL_DIV_EXPR:
12747 case FLOOR_DIV_EXPR:
12748 case ROUND_DIV_EXPR:
12749 return RECURSE (op0) && RECURSE (op1);
12751 case TRUNC_MOD_EXPR:
12752 return RECURSE (op0);
12754 case FLOOR_MOD_EXPR:
12755 return RECURSE (op1);
12757 case CEIL_MOD_EXPR:
12758 case ROUND_MOD_EXPR:
12759 default:
12760 return tree_simple_nonnegative_warnv_p (code, type);
12763 /* We don't know sign of `t', so be conservative and return false. */
12764 return false;
12767 /* Return true if T is known to be non-negative. If the return
12768 value is based on the assumption that signed overflow is undefined,
12769 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12770 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12772 bool
12773 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12775 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12776 return true;
12778 switch (TREE_CODE (t))
12780 case INTEGER_CST:
12781 return tree_int_cst_sgn (t) >= 0;
12783 case REAL_CST:
12784 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12786 case FIXED_CST:
12787 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12789 case COND_EXPR:
12790 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12792 case SSA_NAME:
12793 /* Limit the depth of recursion to avoid quadratic behavior.
12794 This is expected to catch almost all occurrences in practice.
12795 If this code misses important cases that unbounded recursion
12796 would not, passes that need this information could be revised
12797 to provide it through dataflow propagation. */
12798 return (!name_registered_for_update_p (t)
12799 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12800 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12801 strict_overflow_p, depth));
12803 default:
12804 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12808 /* Return true if T is known to be non-negative. If the return
12809 value is based on the assumption that signed overflow is undefined,
12810 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12811 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12813 bool
12814 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12815 bool *strict_overflow_p, int depth)
12817 switch (fn)
12819 CASE_CFN_ACOS:
12820 CASE_CFN_ACOSH:
12821 CASE_CFN_CABS:
12822 CASE_CFN_COSH:
12823 CASE_CFN_ERFC:
12824 CASE_CFN_EXP:
12825 CASE_CFN_EXP10:
12826 CASE_CFN_EXP2:
12827 CASE_CFN_FABS:
12828 CASE_CFN_FDIM:
12829 CASE_CFN_HYPOT:
12830 CASE_CFN_POW10:
12831 CASE_CFN_FFS:
12832 CASE_CFN_PARITY:
12833 CASE_CFN_POPCOUNT:
12834 CASE_CFN_CLZ:
12835 CASE_CFN_CLRSB:
12836 case CFN_BUILT_IN_BSWAP32:
12837 case CFN_BUILT_IN_BSWAP64:
12838 /* Always true. */
12839 return true;
12841 CASE_CFN_SQRT:
12842 /* sqrt(-0.0) is -0.0. */
12843 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12844 return true;
12845 return RECURSE (arg0);
12847 CASE_CFN_ASINH:
12848 CASE_CFN_ATAN:
12849 CASE_CFN_ATANH:
12850 CASE_CFN_CBRT:
12851 CASE_CFN_CEIL:
12852 CASE_CFN_ERF:
12853 CASE_CFN_EXPM1:
12854 CASE_CFN_FLOOR:
12855 CASE_CFN_FMOD:
12856 CASE_CFN_FREXP:
12857 CASE_CFN_ICEIL:
12858 CASE_CFN_IFLOOR:
12859 CASE_CFN_IRINT:
12860 CASE_CFN_IROUND:
12861 CASE_CFN_LCEIL:
12862 CASE_CFN_LDEXP:
12863 CASE_CFN_LFLOOR:
12864 CASE_CFN_LLCEIL:
12865 CASE_CFN_LLFLOOR:
12866 CASE_CFN_LLRINT:
12867 CASE_CFN_LLROUND:
12868 CASE_CFN_LRINT:
12869 CASE_CFN_LROUND:
12870 CASE_CFN_MODF:
12871 CASE_CFN_NEARBYINT:
12872 CASE_CFN_RINT:
12873 CASE_CFN_ROUND:
12874 CASE_CFN_SCALB:
12875 CASE_CFN_SCALBLN:
12876 CASE_CFN_SCALBN:
12877 CASE_CFN_SIGNBIT:
12878 CASE_CFN_SIGNIFICAND:
12879 CASE_CFN_SINH:
12880 CASE_CFN_TANH:
12881 CASE_CFN_TRUNC:
12882 /* True if the 1st argument is nonnegative. */
12883 return RECURSE (arg0);
12885 CASE_CFN_FMAX:
12886 /* True if the 1st OR 2nd arguments are nonnegative. */
12887 return RECURSE (arg0) || RECURSE (arg1);
12889 CASE_CFN_FMIN:
12890 /* True if the 1st AND 2nd arguments are nonnegative. */
12891 return RECURSE (arg0) && RECURSE (arg1);
12893 CASE_CFN_COPYSIGN:
12894 /* True if the 2nd argument is nonnegative. */
12895 return RECURSE (arg1);
12897 CASE_CFN_POWI:
12898 /* True if the 1st argument is nonnegative or the second
12899 argument is an even integer. */
12900 if (TREE_CODE (arg1) == INTEGER_CST
12901 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
12902 return true;
12903 return RECURSE (arg0);
12905 CASE_CFN_POW:
12906 /* True if the 1st argument is nonnegative or the second
12907 argument is an even integer valued real. */
12908 if (TREE_CODE (arg1) == REAL_CST)
12910 REAL_VALUE_TYPE c;
12911 HOST_WIDE_INT n;
12913 c = TREE_REAL_CST (arg1);
12914 n = real_to_integer (&c);
12915 if ((n & 1) == 0)
12917 REAL_VALUE_TYPE cint;
12918 real_from_integer (&cint, VOIDmode, n, SIGNED);
12919 if (real_identical (&c, &cint))
12920 return true;
12923 return RECURSE (arg0);
12925 default:
12926 break;
12928 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
12931 /* Return true if T is known to be non-negative. If the return
12932 value is based on the assumption that signed overflow is undefined,
12933 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12934 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12936 static bool
12937 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12939 enum tree_code code = TREE_CODE (t);
12940 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12941 return true;
12943 switch (code)
12945 case TARGET_EXPR:
12947 tree temp = TARGET_EXPR_SLOT (t);
12948 t = TARGET_EXPR_INITIAL (t);
12950 /* If the initializer is non-void, then it's a normal expression
12951 that will be assigned to the slot. */
12952 if (!VOID_TYPE_P (t))
12953 return RECURSE (t);
12955 /* Otherwise, the initializer sets the slot in some way. One common
12956 way is an assignment statement at the end of the initializer. */
12957 while (1)
12959 if (TREE_CODE (t) == BIND_EXPR)
12960 t = expr_last (BIND_EXPR_BODY (t));
12961 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
12962 || TREE_CODE (t) == TRY_CATCH_EXPR)
12963 t = expr_last (TREE_OPERAND (t, 0));
12964 else if (TREE_CODE (t) == STATEMENT_LIST)
12965 t = expr_last (t);
12966 else
12967 break;
12969 if (TREE_CODE (t) == MODIFY_EXPR
12970 && TREE_OPERAND (t, 0) == temp)
12971 return RECURSE (TREE_OPERAND (t, 1));
12973 return false;
12976 case CALL_EXPR:
12978 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
12979 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
12981 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
12982 get_call_combined_fn (t),
12983 arg0,
12984 arg1,
12985 strict_overflow_p, depth);
12987 case COMPOUND_EXPR:
12988 case MODIFY_EXPR:
12989 return RECURSE (TREE_OPERAND (t, 1));
12991 case BIND_EXPR:
12992 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
12994 case SAVE_EXPR:
12995 return RECURSE (TREE_OPERAND (t, 0));
12997 default:
12998 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13002 #undef RECURSE
13003 #undef tree_expr_nonnegative_warnv_p
13005 /* Return true if T is known to be non-negative. If the return
13006 value is based on the assumption that signed overflow is undefined,
13007 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13008 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13010 bool
13011 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13013 enum tree_code code;
13014 if (t == error_mark_node)
13015 return false;
13017 code = TREE_CODE (t);
13018 switch (TREE_CODE_CLASS (code))
13020 case tcc_binary:
13021 case tcc_comparison:
13022 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13023 TREE_TYPE (t),
13024 TREE_OPERAND (t, 0),
13025 TREE_OPERAND (t, 1),
13026 strict_overflow_p, depth);
13028 case tcc_unary:
13029 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13030 TREE_TYPE (t),
13031 TREE_OPERAND (t, 0),
13032 strict_overflow_p, depth);
13034 case tcc_constant:
13035 case tcc_declaration:
13036 case tcc_reference:
13037 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13039 default:
13040 break;
13043 switch (code)
13045 case TRUTH_AND_EXPR:
13046 case TRUTH_OR_EXPR:
13047 case TRUTH_XOR_EXPR:
13048 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13049 TREE_TYPE (t),
13050 TREE_OPERAND (t, 0),
13051 TREE_OPERAND (t, 1),
13052 strict_overflow_p, depth);
13053 case TRUTH_NOT_EXPR:
13054 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13055 TREE_TYPE (t),
13056 TREE_OPERAND (t, 0),
13057 strict_overflow_p, depth);
13059 case COND_EXPR:
13060 case CONSTRUCTOR:
13061 case OBJ_TYPE_REF:
13062 case ASSERT_EXPR:
13063 case ADDR_EXPR:
13064 case WITH_SIZE_EXPR:
13065 case SSA_NAME:
13066 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13068 default:
13069 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13073 /* Return true if `t' is known to be non-negative. Handle warnings
13074 about undefined signed overflow. */
13076 bool
13077 tree_expr_nonnegative_p (tree t)
13079 bool ret, strict_overflow_p;
13081 strict_overflow_p = false;
13082 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13083 if (strict_overflow_p)
13084 fold_overflow_warning (("assuming signed overflow does not occur when "
13085 "determining that expression is always "
13086 "non-negative"),
13087 WARN_STRICT_OVERFLOW_MISC);
13088 return ret;
13092 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13093 For floating point we further ensure that T is not denormal.
13094 Similar logic is present in nonzero_address in rtlanal.h.
13096 If the return value is based on the assumption that signed overflow
13097 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13098 change *STRICT_OVERFLOW_P. */
13100 bool
13101 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13102 bool *strict_overflow_p)
13104 switch (code)
13106 case ABS_EXPR:
13107 return tree_expr_nonzero_warnv_p (op0,
13108 strict_overflow_p);
13110 case NOP_EXPR:
13112 tree inner_type = TREE_TYPE (op0);
13113 tree outer_type = type;
13115 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13116 && tree_expr_nonzero_warnv_p (op0,
13117 strict_overflow_p));
13119 break;
13121 case NON_LVALUE_EXPR:
13122 return tree_expr_nonzero_warnv_p (op0,
13123 strict_overflow_p);
13125 default:
13126 break;
13129 return false;
13132 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13133 For floating point we further ensure that T is not denormal.
13134 Similar logic is present in nonzero_address in rtlanal.h.
13136 If the return value is based on the assumption that signed overflow
13137 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13138 change *STRICT_OVERFLOW_P. */
13140 bool
13141 tree_binary_nonzero_warnv_p (enum tree_code code,
13142 tree type,
13143 tree op0,
13144 tree op1, bool *strict_overflow_p)
13146 bool sub_strict_overflow_p;
13147 switch (code)
13149 case POINTER_PLUS_EXPR:
13150 case PLUS_EXPR:
13151 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13153 /* With the presence of negative values it is hard
13154 to say something. */
13155 sub_strict_overflow_p = false;
13156 if (!tree_expr_nonnegative_warnv_p (op0,
13157 &sub_strict_overflow_p)
13158 || !tree_expr_nonnegative_warnv_p (op1,
13159 &sub_strict_overflow_p))
13160 return false;
13161 /* One of operands must be positive and the other non-negative. */
13162 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13163 overflows, on a twos-complement machine the sum of two
13164 nonnegative numbers can never be zero. */
13165 return (tree_expr_nonzero_warnv_p (op0,
13166 strict_overflow_p)
13167 || tree_expr_nonzero_warnv_p (op1,
13168 strict_overflow_p));
13170 break;
13172 case MULT_EXPR:
13173 if (TYPE_OVERFLOW_UNDEFINED (type))
13175 if (tree_expr_nonzero_warnv_p (op0,
13176 strict_overflow_p)
13177 && tree_expr_nonzero_warnv_p (op1,
13178 strict_overflow_p))
13180 *strict_overflow_p = true;
13181 return true;
13184 break;
13186 case MIN_EXPR:
13187 sub_strict_overflow_p = false;
13188 if (tree_expr_nonzero_warnv_p (op0,
13189 &sub_strict_overflow_p)
13190 && tree_expr_nonzero_warnv_p (op1,
13191 &sub_strict_overflow_p))
13193 if (sub_strict_overflow_p)
13194 *strict_overflow_p = true;
13196 break;
13198 case MAX_EXPR:
13199 sub_strict_overflow_p = false;
13200 if (tree_expr_nonzero_warnv_p (op0,
13201 &sub_strict_overflow_p))
13203 if (sub_strict_overflow_p)
13204 *strict_overflow_p = true;
13206 /* When both operands are nonzero, then MAX must be too. */
13207 if (tree_expr_nonzero_warnv_p (op1,
13208 strict_overflow_p))
13209 return true;
13211 /* MAX where operand 0 is positive is positive. */
13212 return tree_expr_nonnegative_warnv_p (op0,
13213 strict_overflow_p);
13215 /* MAX where operand 1 is positive is positive. */
13216 else if (tree_expr_nonzero_warnv_p (op1,
13217 &sub_strict_overflow_p)
13218 && tree_expr_nonnegative_warnv_p (op1,
13219 &sub_strict_overflow_p))
13221 if (sub_strict_overflow_p)
13222 *strict_overflow_p = true;
13223 return true;
13225 break;
13227 case BIT_IOR_EXPR:
13228 return (tree_expr_nonzero_warnv_p (op1,
13229 strict_overflow_p)
13230 || tree_expr_nonzero_warnv_p (op0,
13231 strict_overflow_p));
13233 default:
13234 break;
13237 return false;
13240 /* Return true when T is an address and is known to be nonzero.
13241 For floating point we further ensure that T is not denormal.
13242 Similar logic is present in nonzero_address in rtlanal.h.
13244 If the return value is based on the assumption that signed overflow
13245 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13246 change *STRICT_OVERFLOW_P. */
13248 bool
13249 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13251 bool sub_strict_overflow_p;
13252 switch (TREE_CODE (t))
13254 case INTEGER_CST:
13255 return !integer_zerop (t);
13257 case ADDR_EXPR:
13259 tree base = TREE_OPERAND (t, 0);
13261 if (!DECL_P (base))
13262 base = get_base_address (base);
13264 if (base && TREE_CODE (base) == TARGET_EXPR)
13265 base = TARGET_EXPR_SLOT (base);
13267 if (!base)
13268 return false;
13270 /* For objects in symbol table check if we know they are non-zero.
13271 Don't do anything for variables and functions before symtab is built;
13272 it is quite possible that they will be declared weak later. */
13273 int nonzero_addr = maybe_nonzero_address (base);
13274 if (nonzero_addr >= 0)
13275 return nonzero_addr;
13277 /* Function local objects are never NULL. */
13278 if (DECL_P (base)
13279 && (DECL_CONTEXT (base)
13280 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13281 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13282 return true;
13284 /* Constants are never weak. */
13285 if (CONSTANT_CLASS_P (base))
13286 return true;
13288 return false;
13291 case COND_EXPR:
13292 sub_strict_overflow_p = false;
13293 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13294 &sub_strict_overflow_p)
13295 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13296 &sub_strict_overflow_p))
13298 if (sub_strict_overflow_p)
13299 *strict_overflow_p = true;
13300 return true;
13302 break;
13304 default:
13305 break;
13307 return false;
13310 #define integer_valued_real_p(X) \
13311 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13313 #define RECURSE(X) \
13314 ((integer_valued_real_p) (X, depth + 1))
13316 /* Return true if the floating point result of (CODE OP0) has an
13317 integer value. We also allow +Inf, -Inf and NaN to be considered
13318 integer values. Return false for signaling NaN.
13320 DEPTH is the current nesting depth of the query. */
13322 bool
13323 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13325 switch (code)
13327 case FLOAT_EXPR:
13328 return true;
13330 case ABS_EXPR:
13331 return RECURSE (op0);
13333 CASE_CONVERT:
13335 tree type = TREE_TYPE (op0);
13336 if (TREE_CODE (type) == INTEGER_TYPE)
13337 return true;
13338 if (TREE_CODE (type) == REAL_TYPE)
13339 return RECURSE (op0);
13340 break;
13343 default:
13344 break;
13346 return false;
13349 /* Return true if the floating point result of (CODE OP0 OP1) has an
13350 integer value. We also allow +Inf, -Inf and NaN to be considered
13351 integer values. Return false for signaling NaN.
13353 DEPTH is the current nesting depth of the query. */
13355 bool
13356 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13358 switch (code)
13360 case PLUS_EXPR:
13361 case MINUS_EXPR:
13362 case MULT_EXPR:
13363 case MIN_EXPR:
13364 case MAX_EXPR:
13365 return RECURSE (op0) && RECURSE (op1);
13367 default:
13368 break;
13370 return false;
13373 /* Return true if the floating point result of calling FNDECL with arguments
13374 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13375 considered integer values. Return false for signaling NaN. If FNDECL
13376 takes fewer than 2 arguments, the remaining ARGn are null.
13378 DEPTH is the current nesting depth of the query. */
13380 bool
13381 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13383 switch (fn)
13385 CASE_CFN_CEIL:
13386 CASE_CFN_FLOOR:
13387 CASE_CFN_NEARBYINT:
13388 CASE_CFN_RINT:
13389 CASE_CFN_ROUND:
13390 CASE_CFN_TRUNC:
13391 return true;
13393 CASE_CFN_FMIN:
13394 CASE_CFN_FMAX:
13395 return RECURSE (arg0) && RECURSE (arg1);
13397 default:
13398 break;
13400 return false;
13403 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13404 has an integer value. We also allow +Inf, -Inf and NaN to be
13405 considered integer values. Return false for signaling NaN.
13407 DEPTH is the current nesting depth of the query. */
13409 bool
13410 integer_valued_real_single_p (tree t, int depth)
13412 switch (TREE_CODE (t))
13414 case REAL_CST:
13415 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13417 case COND_EXPR:
13418 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13420 case SSA_NAME:
13421 /* Limit the depth of recursion to avoid quadratic behavior.
13422 This is expected to catch almost all occurrences in practice.
13423 If this code misses important cases that unbounded recursion
13424 would not, passes that need this information could be revised
13425 to provide it through dataflow propagation. */
13426 return (!name_registered_for_update_p (t)
13427 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13428 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13429 depth));
13431 default:
13432 break;
13434 return false;
13437 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13438 has an integer value. We also allow +Inf, -Inf and NaN to be
13439 considered integer values. Return false for signaling NaN.
13441 DEPTH is the current nesting depth of the query. */
13443 static bool
13444 integer_valued_real_invalid_p (tree t, int depth)
13446 switch (TREE_CODE (t))
13448 case COMPOUND_EXPR:
13449 case MODIFY_EXPR:
13450 case BIND_EXPR:
13451 return RECURSE (TREE_OPERAND (t, 1));
13453 case SAVE_EXPR:
13454 return RECURSE (TREE_OPERAND (t, 0));
13456 default:
13457 break;
13459 return false;
13462 #undef RECURSE
13463 #undef integer_valued_real_p
13465 /* Return true if the floating point expression T has an integer value.
13466 We also allow +Inf, -Inf and NaN to be considered integer values.
13467 Return false for signaling NaN.
13469 DEPTH is the current nesting depth of the query. */
13471 bool
13472 integer_valued_real_p (tree t, int depth)
13474 if (t == error_mark_node)
13475 return false;
13477 tree_code code = TREE_CODE (t);
13478 switch (TREE_CODE_CLASS (code))
13480 case tcc_binary:
13481 case tcc_comparison:
13482 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13483 TREE_OPERAND (t, 1), depth);
13485 case tcc_unary:
13486 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13488 case tcc_constant:
13489 case tcc_declaration:
13490 case tcc_reference:
13491 return integer_valued_real_single_p (t, depth);
13493 default:
13494 break;
13497 switch (code)
13499 case COND_EXPR:
13500 case SSA_NAME:
13501 return integer_valued_real_single_p (t, depth);
13503 case CALL_EXPR:
13505 tree arg0 = (call_expr_nargs (t) > 0
13506 ? CALL_EXPR_ARG (t, 0)
13507 : NULL_TREE);
13508 tree arg1 = (call_expr_nargs (t) > 1
13509 ? CALL_EXPR_ARG (t, 1)
13510 : NULL_TREE);
13511 return integer_valued_real_call_p (get_call_combined_fn (t),
13512 arg0, arg1, depth);
13515 default:
13516 return integer_valued_real_invalid_p (t, depth);
13520 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13521 attempt to fold the expression to a constant without modifying TYPE,
13522 OP0 or OP1.
13524 If the expression could be simplified to a constant, then return
13525 the constant. If the expression would not be simplified to a
13526 constant, then return NULL_TREE. */
13528 tree
13529 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13531 tree tem = fold_binary (code, type, op0, op1);
13532 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13535 /* Given the components of a unary expression CODE, TYPE and OP0,
13536 attempt to fold the expression to a constant without modifying
13537 TYPE or OP0.
13539 If the expression could be simplified to a constant, then return
13540 the constant. If the expression would not be simplified to a
13541 constant, then return NULL_TREE. */
13543 tree
13544 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13546 tree tem = fold_unary (code, type, op0);
13547 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13550 /* If EXP represents referencing an element in a constant string
13551 (either via pointer arithmetic or array indexing), return the
13552 tree representing the value accessed, otherwise return NULL. */
13554 tree
13555 fold_read_from_constant_string (tree exp)
13557 if ((TREE_CODE (exp) == INDIRECT_REF
13558 || TREE_CODE (exp) == ARRAY_REF)
13559 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13561 tree exp1 = TREE_OPERAND (exp, 0);
13562 tree index;
13563 tree string;
13564 location_t loc = EXPR_LOCATION (exp);
13566 if (TREE_CODE (exp) == INDIRECT_REF)
13567 string = string_constant (exp1, &index);
13568 else
13570 tree low_bound = array_ref_low_bound (exp);
13571 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13573 /* Optimize the special-case of a zero lower bound.
13575 We convert the low_bound to sizetype to avoid some problems
13576 with constant folding. (E.g. suppose the lower bound is 1,
13577 and its mode is QI. Without the conversion,l (ARRAY
13578 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13579 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13580 if (! integer_zerop (low_bound))
13581 index = size_diffop_loc (loc, index,
13582 fold_convert_loc (loc, sizetype, low_bound));
13584 string = exp1;
13587 if (string
13588 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13589 && TREE_CODE (string) == STRING_CST
13590 && TREE_CODE (index) == INTEGER_CST
13591 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13592 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13593 == MODE_INT)
13594 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13595 return build_int_cst_type (TREE_TYPE (exp),
13596 (TREE_STRING_POINTER (string)
13597 [TREE_INT_CST_LOW (index)]));
13599 return NULL;
13602 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13603 an integer constant, real, or fixed-point constant.
13605 TYPE is the type of the result. */
13607 static tree
13608 fold_negate_const (tree arg0, tree type)
13610 tree t = NULL_TREE;
13612 switch (TREE_CODE (arg0))
13614 case INTEGER_CST:
13616 bool overflow;
13617 wide_int val = wi::neg (arg0, &overflow);
13618 t = force_fit_type (type, val, 1,
13619 (overflow | TREE_OVERFLOW (arg0))
13620 && !TYPE_UNSIGNED (type));
13621 break;
13624 case REAL_CST:
13625 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13626 break;
13628 case FIXED_CST:
13630 FIXED_VALUE_TYPE f;
13631 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13632 &(TREE_FIXED_CST (arg0)), NULL,
13633 TYPE_SATURATING (type));
13634 t = build_fixed (type, f);
13635 /* Propagate overflow flags. */
13636 if (overflow_p | TREE_OVERFLOW (arg0))
13637 TREE_OVERFLOW (t) = 1;
13638 break;
13641 default:
13642 gcc_unreachable ();
13645 return t;
13648 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13649 an integer constant or real constant.
13651 TYPE is the type of the result. */
13653 tree
13654 fold_abs_const (tree arg0, tree type)
13656 tree t = NULL_TREE;
13658 switch (TREE_CODE (arg0))
13660 case INTEGER_CST:
13662 /* If the value is unsigned or non-negative, then the absolute value
13663 is the same as the ordinary value. */
13664 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13665 t = arg0;
13667 /* If the value is negative, then the absolute value is
13668 its negation. */
13669 else
13671 bool overflow;
13672 wide_int val = wi::neg (arg0, &overflow);
13673 t = force_fit_type (type, val, -1,
13674 overflow | TREE_OVERFLOW (arg0));
13677 break;
13679 case REAL_CST:
13680 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13681 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13682 else
13683 t = arg0;
13684 break;
13686 default:
13687 gcc_unreachable ();
13690 return t;
13693 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13694 constant. TYPE is the type of the result. */
13696 static tree
13697 fold_not_const (const_tree arg0, tree type)
13699 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13701 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13704 /* Given CODE, a relational operator, the target type, TYPE and two
13705 constant operands OP0 and OP1, return the result of the
13706 relational operation. If the result is not a compile time
13707 constant, then return NULL_TREE. */
13709 static tree
13710 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13712 int result, invert;
13714 /* From here on, the only cases we handle are when the result is
13715 known to be a constant. */
13717 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13719 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13720 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13722 /* Handle the cases where either operand is a NaN. */
13723 if (real_isnan (c0) || real_isnan (c1))
13725 switch (code)
13727 case EQ_EXPR:
13728 case ORDERED_EXPR:
13729 result = 0;
13730 break;
13732 case NE_EXPR:
13733 case UNORDERED_EXPR:
13734 case UNLT_EXPR:
13735 case UNLE_EXPR:
13736 case UNGT_EXPR:
13737 case UNGE_EXPR:
13738 case UNEQ_EXPR:
13739 result = 1;
13740 break;
13742 case LT_EXPR:
13743 case LE_EXPR:
13744 case GT_EXPR:
13745 case GE_EXPR:
13746 case LTGT_EXPR:
13747 if (flag_trapping_math)
13748 return NULL_TREE;
13749 result = 0;
13750 break;
13752 default:
13753 gcc_unreachable ();
13756 return constant_boolean_node (result, type);
13759 return constant_boolean_node (real_compare (code, c0, c1), type);
13762 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13764 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13765 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13766 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13769 /* Handle equality/inequality of complex constants. */
13770 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13772 tree rcond = fold_relational_const (code, type,
13773 TREE_REALPART (op0),
13774 TREE_REALPART (op1));
13775 tree icond = fold_relational_const (code, type,
13776 TREE_IMAGPART (op0),
13777 TREE_IMAGPART (op1));
13778 if (code == EQ_EXPR)
13779 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13780 else if (code == NE_EXPR)
13781 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13782 else
13783 return NULL_TREE;
13786 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13788 if (!VECTOR_TYPE_P (type))
13790 /* Have vector comparison with scalar boolean result. */
13791 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13792 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13793 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13795 tree elem0 = VECTOR_CST_ELT (op0, i);
13796 tree elem1 = VECTOR_CST_ELT (op1, i);
13797 tree tmp = fold_relational_const (code, type, elem0, elem1);
13798 if (tmp == NULL_TREE)
13799 return NULL_TREE;
13800 if (integer_zerop (tmp))
13801 return constant_boolean_node (false, type);
13803 return constant_boolean_node (true, type);
13805 unsigned count = VECTOR_CST_NELTS (op0);
13806 tree *elts = XALLOCAVEC (tree, count);
13807 gcc_assert (VECTOR_CST_NELTS (op1) == count
13808 && TYPE_VECTOR_SUBPARTS (type) == count);
13810 for (unsigned i = 0; i < count; i++)
13812 tree elem_type = TREE_TYPE (type);
13813 tree elem0 = VECTOR_CST_ELT (op0, i);
13814 tree elem1 = VECTOR_CST_ELT (op1, i);
13816 tree tem = fold_relational_const (code, elem_type,
13817 elem0, elem1);
13819 if (tem == NULL_TREE)
13820 return NULL_TREE;
13822 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13825 return build_vector (type, elts);
13828 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13830 To compute GT, swap the arguments and do LT.
13831 To compute GE, do LT and invert the result.
13832 To compute LE, swap the arguments, do LT and invert the result.
13833 To compute NE, do EQ and invert the result.
13835 Therefore, the code below must handle only EQ and LT. */
13837 if (code == LE_EXPR || code == GT_EXPR)
13839 std::swap (op0, op1);
13840 code = swap_tree_comparison (code);
13843 /* Note that it is safe to invert for real values here because we
13844 have already handled the one case that it matters. */
13846 invert = 0;
13847 if (code == NE_EXPR || code == GE_EXPR)
13849 invert = 1;
13850 code = invert_tree_comparison (code, false);
13853 /* Compute a result for LT or EQ if args permit;
13854 Otherwise return T. */
13855 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13857 if (code == EQ_EXPR)
13858 result = tree_int_cst_equal (op0, op1);
13859 else
13860 result = tree_int_cst_lt (op0, op1);
13862 else
13863 return NULL_TREE;
13865 if (invert)
13866 result ^= 1;
13867 return constant_boolean_node (result, type);
13870 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13871 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13872 itself. */
13874 tree
13875 fold_build_cleanup_point_expr (tree type, tree expr)
13877 /* If the expression does not have side effects then we don't have to wrap
13878 it with a cleanup point expression. */
13879 if (!TREE_SIDE_EFFECTS (expr))
13880 return expr;
13882 /* If the expression is a return, check to see if the expression inside the
13883 return has no side effects or the right hand side of the modify expression
13884 inside the return. If either don't have side effects set we don't need to
13885 wrap the expression in a cleanup point expression. Note we don't check the
13886 left hand side of the modify because it should always be a return decl. */
13887 if (TREE_CODE (expr) == RETURN_EXPR)
13889 tree op = TREE_OPERAND (expr, 0);
13890 if (!op || !TREE_SIDE_EFFECTS (op))
13891 return expr;
13892 op = TREE_OPERAND (op, 1);
13893 if (!TREE_SIDE_EFFECTS (op))
13894 return expr;
13897 return build1 (CLEANUP_POINT_EXPR, type, expr);
13900 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13901 of an indirection through OP0, or NULL_TREE if no simplification is
13902 possible. */
13904 tree
13905 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13907 tree sub = op0;
13908 tree subtype;
13910 STRIP_NOPS (sub);
13911 subtype = TREE_TYPE (sub);
13912 if (!POINTER_TYPE_P (subtype))
13913 return NULL_TREE;
13915 if (TREE_CODE (sub) == ADDR_EXPR)
13917 tree op = TREE_OPERAND (sub, 0);
13918 tree optype = TREE_TYPE (op);
13919 /* *&CONST_DECL -> to the value of the const decl. */
13920 if (TREE_CODE (op) == CONST_DECL)
13921 return DECL_INITIAL (op);
13922 /* *&p => p; make sure to handle *&"str"[cst] here. */
13923 if (type == optype)
13925 tree fop = fold_read_from_constant_string (op);
13926 if (fop)
13927 return fop;
13928 else
13929 return op;
13931 /* *(foo *)&fooarray => fooarray[0] */
13932 else if (TREE_CODE (optype) == ARRAY_TYPE
13933 && type == TREE_TYPE (optype)
13934 && (!in_gimple_form
13935 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
13937 tree type_domain = TYPE_DOMAIN (optype);
13938 tree min_val = size_zero_node;
13939 if (type_domain && TYPE_MIN_VALUE (type_domain))
13940 min_val = TYPE_MIN_VALUE (type_domain);
13941 if (in_gimple_form
13942 && TREE_CODE (min_val) != INTEGER_CST)
13943 return NULL_TREE;
13944 return build4_loc (loc, ARRAY_REF, type, op, min_val,
13945 NULL_TREE, NULL_TREE);
13947 /* *(foo *)&complexfoo => __real__ complexfoo */
13948 else if (TREE_CODE (optype) == COMPLEX_TYPE
13949 && type == TREE_TYPE (optype))
13950 return fold_build1_loc (loc, REALPART_EXPR, type, op);
13951 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
13952 else if (TREE_CODE (optype) == VECTOR_TYPE
13953 && type == TREE_TYPE (optype))
13955 tree part_width = TYPE_SIZE (type);
13956 tree index = bitsize_int (0);
13957 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
13961 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
13962 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
13964 tree op00 = TREE_OPERAND (sub, 0);
13965 tree op01 = TREE_OPERAND (sub, 1);
13967 STRIP_NOPS (op00);
13968 if (TREE_CODE (op00) == ADDR_EXPR)
13970 tree op00type;
13971 op00 = TREE_OPERAND (op00, 0);
13972 op00type = TREE_TYPE (op00);
13974 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
13975 if (TREE_CODE (op00type) == VECTOR_TYPE
13976 && type == TREE_TYPE (op00type))
13978 tree part_width = TYPE_SIZE (type);
13979 unsigned HOST_WIDE_INT max_offset
13980 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
13981 * TYPE_VECTOR_SUBPARTS (op00type));
13982 if (tree_int_cst_sign_bit (op01) == 0
13983 && compare_tree_int (op01, max_offset) == -1)
13985 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
13986 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
13987 tree index = bitsize_int (indexi);
13988 return fold_build3_loc (loc,
13989 BIT_FIELD_REF, type, op00,
13990 part_width, index);
13993 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
13994 else if (TREE_CODE (op00type) == COMPLEX_TYPE
13995 && type == TREE_TYPE (op00type))
13997 tree size = TYPE_SIZE_UNIT (type);
13998 if (tree_int_cst_equal (size, op01))
13999 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14001 /* ((foo *)&fooarray)[1] => fooarray[1] */
14002 else if (TREE_CODE (op00type) == ARRAY_TYPE
14003 && type == TREE_TYPE (op00type))
14005 tree type_domain = TYPE_DOMAIN (op00type);
14006 tree min_val = size_zero_node;
14007 if (type_domain && TYPE_MIN_VALUE (type_domain))
14008 min_val = TYPE_MIN_VALUE (type_domain);
14009 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14010 TYPE_SIZE_UNIT (type));
14011 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14012 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14013 NULL_TREE, NULL_TREE);
14018 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14019 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14020 && type == TREE_TYPE (TREE_TYPE (subtype))
14021 && (!in_gimple_form
14022 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14024 tree type_domain;
14025 tree min_val = size_zero_node;
14026 sub = build_fold_indirect_ref_loc (loc, sub);
14027 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14028 if (type_domain && TYPE_MIN_VALUE (type_domain))
14029 min_val = TYPE_MIN_VALUE (type_domain);
14030 if (in_gimple_form
14031 && TREE_CODE (min_val) != INTEGER_CST)
14032 return NULL_TREE;
14033 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14034 NULL_TREE);
14037 return NULL_TREE;
14040 /* Builds an expression for an indirection through T, simplifying some
14041 cases. */
14043 tree
14044 build_fold_indirect_ref_loc (location_t loc, tree t)
14046 tree type = TREE_TYPE (TREE_TYPE (t));
14047 tree sub = fold_indirect_ref_1 (loc, type, t);
14049 if (sub)
14050 return sub;
14052 return build1_loc (loc, INDIRECT_REF, type, t);
14055 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14057 tree
14058 fold_indirect_ref_loc (location_t loc, tree t)
14060 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14062 if (sub)
14063 return sub;
14064 else
14065 return t;
14068 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14069 whose result is ignored. The type of the returned tree need not be
14070 the same as the original expression. */
14072 tree
14073 fold_ignored_result (tree t)
14075 if (!TREE_SIDE_EFFECTS (t))
14076 return integer_zero_node;
14078 for (;;)
14079 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14081 case tcc_unary:
14082 t = TREE_OPERAND (t, 0);
14083 break;
14085 case tcc_binary:
14086 case tcc_comparison:
14087 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14088 t = TREE_OPERAND (t, 0);
14089 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14090 t = TREE_OPERAND (t, 1);
14091 else
14092 return t;
14093 break;
14095 case tcc_expression:
14096 switch (TREE_CODE (t))
14098 case COMPOUND_EXPR:
14099 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14100 return t;
14101 t = TREE_OPERAND (t, 0);
14102 break;
14104 case COND_EXPR:
14105 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14106 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14107 return t;
14108 t = TREE_OPERAND (t, 0);
14109 break;
14111 default:
14112 return t;
14114 break;
14116 default:
14117 return t;
14121 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14123 tree
14124 round_up_loc (location_t loc, tree value, unsigned int divisor)
14126 tree div = NULL_TREE;
14128 if (divisor == 1)
14129 return value;
14131 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14132 have to do anything. Only do this when we are not given a const,
14133 because in that case, this check is more expensive than just
14134 doing it. */
14135 if (TREE_CODE (value) != INTEGER_CST)
14137 div = build_int_cst (TREE_TYPE (value), divisor);
14139 if (multiple_of_p (TREE_TYPE (value), value, div))
14140 return value;
14143 /* If divisor is a power of two, simplify this to bit manipulation. */
14144 if (pow2_or_zerop (divisor))
14146 if (TREE_CODE (value) == INTEGER_CST)
14148 wide_int val = value;
14149 bool overflow_p;
14151 if ((val & (divisor - 1)) == 0)
14152 return value;
14154 overflow_p = TREE_OVERFLOW (value);
14155 val += divisor - 1;
14156 val &= - (int) divisor;
14157 if (val == 0)
14158 overflow_p = true;
14160 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14162 else
14164 tree t;
14166 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14167 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14168 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14169 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14172 else
14174 if (!div)
14175 div = build_int_cst (TREE_TYPE (value), divisor);
14176 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14177 value = size_binop_loc (loc, MULT_EXPR, value, div);
14180 return value;
14183 /* Likewise, but round down. */
14185 tree
14186 round_down_loc (location_t loc, tree value, int divisor)
14188 tree div = NULL_TREE;
14190 gcc_assert (divisor > 0);
14191 if (divisor == 1)
14192 return value;
14194 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14195 have to do anything. Only do this when we are not given a const,
14196 because in that case, this check is more expensive than just
14197 doing it. */
14198 if (TREE_CODE (value) != INTEGER_CST)
14200 div = build_int_cst (TREE_TYPE (value), divisor);
14202 if (multiple_of_p (TREE_TYPE (value), value, div))
14203 return value;
14206 /* If divisor is a power of two, simplify this to bit manipulation. */
14207 if (pow2_or_zerop (divisor))
14209 tree t;
14211 t = build_int_cst (TREE_TYPE (value), -divisor);
14212 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14214 else
14216 if (!div)
14217 div = build_int_cst (TREE_TYPE (value), divisor);
14218 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14219 value = size_binop_loc (loc, MULT_EXPR, value, div);
14222 return value;
14225 /* Returns the pointer to the base of the object addressed by EXP and
14226 extracts the information about the offset of the access, storing it
14227 to PBITPOS and POFFSET. */
14229 static tree
14230 split_address_to_core_and_offset (tree exp,
14231 HOST_WIDE_INT *pbitpos, tree *poffset)
14233 tree core;
14234 machine_mode mode;
14235 int unsignedp, reversep, volatilep;
14236 HOST_WIDE_INT bitsize;
14237 location_t loc = EXPR_LOCATION (exp);
14239 if (TREE_CODE (exp) == ADDR_EXPR)
14241 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14242 poffset, &mode, &unsignedp, &reversep,
14243 &volatilep);
14244 core = build_fold_addr_expr_loc (loc, core);
14246 else
14248 core = exp;
14249 *pbitpos = 0;
14250 *poffset = NULL_TREE;
14253 return core;
14256 /* Returns true if addresses of E1 and E2 differ by a constant, false
14257 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14259 bool
14260 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14262 tree core1, core2;
14263 HOST_WIDE_INT bitpos1, bitpos2;
14264 tree toffset1, toffset2, tdiff, type;
14266 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14267 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14269 if (bitpos1 % BITS_PER_UNIT != 0
14270 || bitpos2 % BITS_PER_UNIT != 0
14271 || !operand_equal_p (core1, core2, 0))
14272 return false;
14274 if (toffset1 && toffset2)
14276 type = TREE_TYPE (toffset1);
14277 if (type != TREE_TYPE (toffset2))
14278 toffset2 = fold_convert (type, toffset2);
14280 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14281 if (!cst_and_fits_in_hwi (tdiff))
14282 return false;
14284 *diff = int_cst_value (tdiff);
14286 else if (toffset1 || toffset2)
14288 /* If only one of the offsets is non-constant, the difference cannot
14289 be a constant. */
14290 return false;
14292 else
14293 *diff = 0;
14295 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14296 return true;
14299 /* Return OFF converted to a pointer offset type suitable as offset for
14300 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14301 tree
14302 convert_to_ptrofftype_loc (location_t loc, tree off)
14304 return fold_convert_loc (loc, sizetype, off);
14307 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14308 tree
14309 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14311 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14312 ptr, convert_to_ptrofftype_loc (loc, off));
14315 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14316 tree
14317 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14319 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14320 ptr, size_int (off));
14323 /* Return a char pointer for a C string if it is a string constant
14324 or sum of string constant and integer constant. We only support
14325 string constants properly terminated with '\0' character.
14326 If STRLEN is a valid pointer, length (including terminating character)
14327 of returned string is stored to the argument. */
14329 const char *
14330 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14332 tree offset_node;
14334 if (strlen)
14335 *strlen = 0;
14337 src = string_constant (src, &offset_node);
14338 if (src == 0)
14339 return NULL;
14341 unsigned HOST_WIDE_INT offset = 0;
14342 if (offset_node != NULL_TREE)
14344 if (!tree_fits_uhwi_p (offset_node))
14345 return NULL;
14346 else
14347 offset = tree_to_uhwi (offset_node);
14350 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14351 const char *string = TREE_STRING_POINTER (src);
14353 /* Support only properly null-terminated strings. */
14354 if (string_length == 0
14355 || string[string_length - 1] != '\0'
14356 || offset >= string_length)
14357 return NULL;
14359 if (strlen)
14360 *strlen = string_length - offset;
14361 return string + offset;
14364 #if CHECKING_P
14366 namespace selftest {
14368 /* Helper functions for writing tests of folding trees. */
14370 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14372 static void
14373 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14374 tree constant)
14376 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14379 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14380 wrapping WRAPPED_EXPR. */
14382 static void
14383 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14384 tree wrapped_expr)
14386 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14387 ASSERT_NE (wrapped_expr, result);
14388 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14389 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14392 /* Verify that various arithmetic binary operations are folded
14393 correctly. */
14395 static void
14396 test_arithmetic_folding ()
14398 tree type = integer_type_node;
14399 tree x = create_tmp_var_raw (type, "x");
14400 tree zero = build_zero_cst (type);
14401 tree one = build_int_cst (type, 1);
14403 /* Addition. */
14404 /* 1 <-- (0 + 1) */
14405 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14406 one);
14407 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14408 one);
14410 /* (nonlvalue)x <-- (x + 0) */
14411 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14414 /* Subtraction. */
14415 /* 0 <-- (x - x) */
14416 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14417 zero);
14418 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14421 /* Multiplication. */
14422 /* 0 <-- (x * 0) */
14423 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14424 zero);
14426 /* (nonlvalue)x <-- (x * 1) */
14427 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14431 /* Verify that various binary operations on vectors are folded
14432 correctly. */
14434 static void
14435 test_vector_folding ()
14437 tree inner_type = integer_type_node;
14438 tree type = build_vector_type (inner_type, 4);
14439 tree zero = build_zero_cst (type);
14440 tree one = build_one_cst (type);
14442 /* Verify equality tests that return a scalar boolean result. */
14443 tree res_type = boolean_type_node;
14444 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14445 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14446 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14447 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14450 /* Run all of the selftests within this file. */
14452 void
14453 fold_const_c_tests ()
14455 test_arithmetic_folding ();
14456 test_vector_folding ();
14459 } // namespace selftest
14461 #endif /* CHECKING_P */