* gcc.target/powerpc/altivec-volatile.c: Adjust expected warning.
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob2e65d10db9a6992893ba343c68915c5ff8adc984
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "domwalk.h"
36 #include "params.h"
37 #include "tree-pass.h"
38 #include "flags.h"
39 #include "hashtab.h"
40 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h"
44 /* TODO: Support for predicated code motion. I.e.
46 while (1)
48 if (cond)
50 a = inv;
51 something;
55 Where COND and INV are is invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to
58 if (cond)
59 a = inv;
60 while (1)
62 if (cond)
63 something;
64 } */
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
69 struct depend
71 gimple stmt;
72 struct depend *next;
75 /* The auxiliary data kept for each statement. */
77 struct lim_aux_data
79 struct loop *max_loop; /* The outermost loop in that the statement
80 is invariant. */
82 struct loop *tgt_loop; /* The loop out of that we want to move the
83 invariant. */
85 struct loop *always_executed_in;
86 /* The outermost loop for that we are sure
87 the statement is executed if the loop
88 is entered. */
90 unsigned cost; /* Cost of the computation performed by the
91 statement. */
93 struct depend *depends; /* List of statements that must be also hoisted
94 out of the loop when this statement is
95 hoisted; i.e. those that define the operands
96 of the statement and are inside of the
97 MAX_LOOP loop. */
100 /* Maps statements to their lim_aux_data. */
102 static struct pointer_map_t *lim_aux_data_map;
104 /* Description of a memory reference location. */
106 typedef struct mem_ref_loc
108 tree *ref; /* The reference itself. */
109 gimple stmt; /* The statement in that it occurs. */
110 } *mem_ref_loc_p;
112 DEF_VEC_P(mem_ref_loc_p);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
115 /* The list of memory reference locations in a loop. */
117 typedef struct mem_ref_locs
119 VEC (mem_ref_loc_p, heap) *locs;
120 } *mem_ref_locs_p;
122 DEF_VEC_P(mem_ref_locs_p);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
125 /* Description of a memory reference. */
127 typedef struct mem_ref
129 tree mem; /* The memory itself. */
130 unsigned id; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */
132 hashval_t hash; /* Its hash value. */
133 bitmap stored; /* The set of loops in that this memory location
134 is stored to. */
135 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
136 /* The locations of the accesses. Vector
137 indexed by the loop number. */
138 bitmap vops; /* Vops corresponding to this memory
139 location. */
141 /* The following sets are computed on demand. We keep both set and
142 its complement, so that we know whether the information was
143 already computed or not. */
144 bitmap indep_loop; /* The set of loops in that the memory
145 reference is independent, meaning:
146 If it is stored in the loop, this store
147 is independent on all other loads and
148 stores.
149 If it is only loaded, then it is independent
150 on all stores in the loop. */
151 bitmap dep_loop; /* The complement of INDEP_LOOP. */
153 bitmap indep_ref; /* The set of memory references on that
154 this reference is independent. */
155 bitmap dep_ref; /* The complement of DEP_REF. */
156 } *mem_ref_p;
158 DEF_VEC_P(mem_ref_p);
159 DEF_VEC_ALLOC_P(mem_ref_p, heap);
161 DEF_VEC_P(bitmap);
162 DEF_VEC_ALLOC_P(bitmap, heap);
164 DEF_VEC_P(htab_t);
165 DEF_VEC_ALLOC_P(htab_t, heap);
167 /* Description of memory accesses in loops. */
169 static struct
171 /* The hash table of memory references accessed in loops. */
172 htab_t refs;
174 /* The list of memory references. */
175 VEC (mem_ref_p, heap) *refs_list;
177 /* The set of memory references accessed in each loop. */
178 VEC (bitmap, heap) *refs_in_loop;
180 /* The set of memory references accessed in each loop, including
181 subloops. */
182 VEC (bitmap, heap) *all_refs_in_loop;
184 /* The set of virtual operands clobbered in a given loop. */
185 VEC (bitmap, heap) *clobbered_vops;
187 /* Map from the pair (loop, virtual operand) to the set of refs that
188 touch the virtual operand in the loop. */
189 VEC (htab_t, heap) *vop_ref_map;
191 /* Cache for expanding memory addresses. */
192 struct pointer_map_t *ttae_cache;
193 } memory_accesses;
195 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
197 /* Minimum cost of an expensive expression. */
198 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
200 /* The outermost loop for that execution of the header guarantees that the
201 block will be executed. */
202 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
204 static struct lim_aux_data *
205 init_lim_data (gimple stmt)
207 void **p = pointer_map_insert (lim_aux_data_map, stmt);
209 *p = XCNEW (struct lim_aux_data);
210 return (struct lim_aux_data *) *p;
213 static struct lim_aux_data *
214 get_lim_data (gimple stmt)
216 void **p = pointer_map_contains (lim_aux_data_map, stmt);
217 if (!p)
218 return NULL;
220 return (struct lim_aux_data *) *p;
223 /* Releases the memory occupied by DATA. */
225 static void
226 free_lim_aux_data (struct lim_aux_data *data)
228 struct depend *dep, *next;
230 for (dep = data->depends; dep; dep = next)
232 next = dep->next;
233 free (dep);
235 free (data);
238 static void
239 clear_lim_data (gimple stmt)
241 void **p = pointer_map_contains (lim_aux_data_map, stmt);
242 if (!p)
243 return;
245 free_lim_aux_data ((struct lim_aux_data *) *p);
246 *p = NULL;
249 /* Calls CBCK for each index in memory reference ADDR_P. There are two
250 kinds situations handled; in each of these cases, the memory reference
251 and DATA are passed to the callback:
253 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
254 pass the pointer to the index to the callback.
256 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
257 pointer to addr to the callback.
259 If the callback returns false, the whole search stops and false is returned.
260 Otherwise the function returns true after traversing through the whole
261 reference *ADDR_P. */
263 bool
264 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
266 tree *nxt, *idx;
268 for (; ; addr_p = nxt)
270 switch (TREE_CODE (*addr_p))
272 case SSA_NAME:
273 return cbck (*addr_p, addr_p, data);
275 case MISALIGNED_INDIRECT_REF:
276 case MEM_REF:
277 nxt = &TREE_OPERAND (*addr_p, 0);
278 return cbck (*addr_p, nxt, data);
280 case BIT_FIELD_REF:
281 case VIEW_CONVERT_EXPR:
282 case REALPART_EXPR:
283 case IMAGPART_EXPR:
284 nxt = &TREE_OPERAND (*addr_p, 0);
285 break;
287 case COMPONENT_REF:
288 /* If the component has varying offset, it behaves like index
289 as well. */
290 idx = &TREE_OPERAND (*addr_p, 2);
291 if (*idx
292 && !cbck (*addr_p, idx, data))
293 return false;
295 nxt = &TREE_OPERAND (*addr_p, 0);
296 break;
298 case ARRAY_REF:
299 case ARRAY_RANGE_REF:
300 nxt = &TREE_OPERAND (*addr_p, 0);
301 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
302 return false;
303 break;
305 case VAR_DECL:
306 case PARM_DECL:
307 case STRING_CST:
308 case RESULT_DECL:
309 case VECTOR_CST:
310 case COMPLEX_CST:
311 case INTEGER_CST:
312 case REAL_CST:
313 case FIXED_CST:
314 case CONSTRUCTOR:
315 return true;
317 case ADDR_EXPR:
318 gcc_assert (is_gimple_min_invariant (*addr_p));
319 return true;
321 case TARGET_MEM_REF:
322 idx = &TMR_BASE (*addr_p);
323 if (*idx
324 && !cbck (*addr_p, idx, data))
325 return false;
326 idx = &TMR_INDEX (*addr_p);
327 if (*idx
328 && !cbck (*addr_p, idx, data))
329 return false;
330 return true;
332 default:
333 gcc_unreachable ();
338 /* If it is possible to hoist the statement STMT unconditionally,
339 returns MOVE_POSSIBLE.
340 If it is possible to hoist the statement STMT, but we must avoid making
341 it executed if it would not be executed in the original program (e.g.
342 because it may trap), return MOVE_PRESERVE_EXECUTION.
343 Otherwise return MOVE_IMPOSSIBLE. */
345 enum move_pos
346 movement_possibility (gimple stmt)
348 tree lhs;
349 enum move_pos ret = MOVE_POSSIBLE;
351 if (flag_unswitch_loops
352 && gimple_code (stmt) == GIMPLE_COND)
354 /* If we perform unswitching, force the operands of the invariant
355 condition to be moved out of the loop. */
356 return MOVE_POSSIBLE;
359 if (gimple_code (stmt) == GIMPLE_PHI
360 && gimple_phi_num_args (stmt) <= 2
361 && is_gimple_reg (gimple_phi_result (stmt))
362 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
363 return MOVE_POSSIBLE;
365 if (gimple_get_lhs (stmt) == NULL_TREE)
366 return MOVE_IMPOSSIBLE;
368 if (gimple_vdef (stmt))
369 return MOVE_IMPOSSIBLE;
371 if (stmt_ends_bb_p (stmt)
372 || gimple_has_volatile_ops (stmt)
373 || gimple_has_side_effects (stmt)
374 || stmt_could_throw_p (stmt))
375 return MOVE_IMPOSSIBLE;
377 if (is_gimple_call (stmt))
379 /* While pure or const call is guaranteed to have no side effects, we
380 cannot move it arbitrarily. Consider code like
382 char *s = something ();
384 while (1)
386 if (s)
387 t = strlen (s);
388 else
389 t = 0;
392 Here the strlen call cannot be moved out of the loop, even though
393 s is invariant. In addition to possibly creating a call with
394 invalid arguments, moving out a function call that is not executed
395 may cause performance regressions in case the call is costly and
396 not executed at all. */
397 ret = MOVE_PRESERVE_EXECUTION;
398 lhs = gimple_call_lhs (stmt);
400 else if (is_gimple_assign (stmt))
401 lhs = gimple_assign_lhs (stmt);
402 else
403 return MOVE_IMPOSSIBLE;
405 if (TREE_CODE (lhs) == SSA_NAME
406 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
407 return MOVE_IMPOSSIBLE;
409 if (TREE_CODE (lhs) != SSA_NAME
410 || gimple_could_trap_p (stmt))
411 return MOVE_PRESERVE_EXECUTION;
413 return ret;
416 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
417 loop to that we could move the expression using DEF if it did not have
418 other operands, i.e. the outermost loop enclosing LOOP in that the value
419 of DEF is invariant. */
421 static struct loop *
422 outermost_invariant_loop (tree def, struct loop *loop)
424 gimple def_stmt;
425 basic_block def_bb;
426 struct loop *max_loop;
427 struct lim_aux_data *lim_data;
429 if (!def)
430 return superloop_at_depth (loop, 1);
432 if (TREE_CODE (def) != SSA_NAME)
434 gcc_assert (is_gimple_min_invariant (def));
435 return superloop_at_depth (loop, 1);
438 def_stmt = SSA_NAME_DEF_STMT (def);
439 def_bb = gimple_bb (def_stmt);
440 if (!def_bb)
441 return superloop_at_depth (loop, 1);
443 max_loop = find_common_loop (loop, def_bb->loop_father);
445 lim_data = get_lim_data (def_stmt);
446 if (lim_data != NULL && lim_data->max_loop != NULL)
447 max_loop = find_common_loop (max_loop,
448 loop_outer (lim_data->max_loop));
449 if (max_loop == loop)
450 return NULL;
451 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
453 return max_loop;
456 /* DATA is a structure containing information associated with a statement
457 inside LOOP. DEF is one of the operands of this statement.
459 Find the outermost loop enclosing LOOP in that value of DEF is invariant
460 and record this in DATA->max_loop field. If DEF itself is defined inside
461 this loop as well (i.e. we need to hoist it out of the loop if we want
462 to hoist the statement represented by DATA), record the statement in that
463 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
464 add the cost of the computation of DEF to the DATA->cost.
466 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
468 static bool
469 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
470 bool add_cost)
472 gimple def_stmt = SSA_NAME_DEF_STMT (def);
473 basic_block def_bb = gimple_bb (def_stmt);
474 struct loop *max_loop;
475 struct depend *dep;
476 struct lim_aux_data *def_data;
478 if (!def_bb)
479 return true;
481 max_loop = outermost_invariant_loop (def, loop);
482 if (!max_loop)
483 return false;
485 if (flow_loop_nested_p (data->max_loop, max_loop))
486 data->max_loop = max_loop;
488 def_data = get_lim_data (def_stmt);
489 if (!def_data)
490 return true;
492 if (add_cost
493 /* Only add the cost if the statement defining DEF is inside LOOP,
494 i.e. if it is likely that by moving the invariants dependent
495 on it, we will be able to avoid creating a new register for
496 it (since it will be only used in these dependent invariants). */
497 && def_bb->loop_father == loop)
498 data->cost += def_data->cost;
500 dep = XNEW (struct depend);
501 dep->stmt = def_stmt;
502 dep->next = data->depends;
503 data->depends = dep;
505 return true;
508 /* Returns an estimate for a cost of statement STMT. TODO -- the values here
509 are just ad-hoc constants. The estimates should be based on target-specific
510 values. */
512 static unsigned
513 stmt_cost (gimple stmt)
515 tree fndecl;
516 unsigned cost = 1;
518 /* Always try to create possibilities for unswitching. */
519 if (gimple_code (stmt) == GIMPLE_COND
520 || gimple_code (stmt) == GIMPLE_PHI)
521 return LIM_EXPENSIVE;
523 /* Hoisting memory references out should almost surely be a win. */
524 if (gimple_references_memory_p (stmt))
525 cost += 20;
527 if (is_gimple_call (stmt))
529 /* We should be hoisting calls if possible. */
531 /* Unless the call is a builtin_constant_p; this always folds to a
532 constant, so moving it is useless. */
533 fndecl = gimple_call_fndecl (stmt);
534 if (fndecl
535 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
536 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
537 return 0;
539 return cost + 20;
542 if (gimple_code (stmt) != GIMPLE_ASSIGN)
543 return cost;
545 switch (gimple_assign_rhs_code (stmt))
547 case MULT_EXPR:
548 case TRUNC_DIV_EXPR:
549 case CEIL_DIV_EXPR:
550 case FLOOR_DIV_EXPR:
551 case ROUND_DIV_EXPR:
552 case EXACT_DIV_EXPR:
553 case CEIL_MOD_EXPR:
554 case FLOOR_MOD_EXPR:
555 case ROUND_MOD_EXPR:
556 case TRUNC_MOD_EXPR:
557 case RDIV_EXPR:
558 /* Division and multiplication are usually expensive. */
559 cost += 20;
560 break;
562 case LSHIFT_EXPR:
563 case RSHIFT_EXPR:
564 cost += 20;
565 break;
567 default:
568 break;
571 return cost;
574 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
575 REF is independent. If REF is not independent in LOOP, NULL is returned
576 instead. */
578 static struct loop *
579 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
581 struct loop *aloop;
583 if (bitmap_bit_p (ref->stored, loop->num))
584 return NULL;
586 for (aloop = outer;
587 aloop != loop;
588 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
589 if (!bitmap_bit_p (ref->stored, aloop->num)
590 && ref_indep_loop_p (aloop, ref))
591 return aloop;
593 if (ref_indep_loop_p (loop, ref))
594 return loop;
595 else
596 return NULL;
599 /* If there is a simple load or store to a memory reference in STMT, returns
600 the location of the memory reference, and sets IS_STORE according to whether
601 it is a store or load. Otherwise, returns NULL. */
603 static tree *
604 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
606 tree *lhs;
607 enum tree_code code;
609 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
610 if (gimple_code (stmt) != GIMPLE_ASSIGN)
611 return NULL;
613 code = gimple_assign_rhs_code (stmt);
615 lhs = gimple_assign_lhs_ptr (stmt);
617 if (TREE_CODE (*lhs) == SSA_NAME)
619 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
620 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
621 return NULL;
623 *is_store = false;
624 return gimple_assign_rhs1_ptr (stmt);
626 else if (code == SSA_NAME
627 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
628 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
630 *is_store = true;
631 return lhs;
633 else
634 return NULL;
637 /* Returns the memory reference contained in STMT. */
639 static mem_ref_p
640 mem_ref_in_stmt (gimple stmt)
642 bool store;
643 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
644 hashval_t hash;
645 mem_ref_p ref;
647 if (!mem)
648 return NULL;
649 gcc_assert (!store);
651 hash = iterative_hash_expr (*mem, 0);
652 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
654 gcc_assert (ref != NULL);
655 return ref;
658 /* From a controlling predicate in DOM determine the arguments from
659 the PHI node PHI that are chosen if the predicate evaluates to
660 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
661 they are non-NULL. Returns true if the arguments can be determined,
662 else return false. */
664 static bool
665 extract_true_false_args_from_phi (basic_block dom, gimple phi,
666 tree *true_arg_p, tree *false_arg_p)
668 basic_block bb = gimple_bb (phi);
669 edge true_edge, false_edge, tem;
670 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
672 /* We have to verify that one edge into the PHI node is dominated
673 by the true edge of the predicate block and the other edge
674 dominated by the false edge. This ensures that the PHI argument
675 we are going to take is completely determined by the path we
676 take from the predicate block. */
677 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
678 tem = EDGE_PRED (bb, 0);
679 if (tem == true_edge
680 || tem->src == true_edge->dest
681 || dominated_by_p (CDI_DOMINATORS,
682 tem->src, true_edge->dest))
683 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
684 else if (tem == false_edge
685 || tem->src == false_edge->dest
686 || dominated_by_p (CDI_DOMINATORS,
687 tem->src, false_edge->dest))
688 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
689 else
690 return false;
691 tem = EDGE_PRED (bb, 1);
692 if (tem == true_edge
693 || tem->src == true_edge->dest
694 || dominated_by_p (CDI_DOMINATORS,
695 tem->src, true_edge->dest))
696 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
697 else if (tem == false_edge
698 || tem->src == false_edge->dest
699 || dominated_by_p (CDI_DOMINATORS,
700 tem->src, false_edge->dest))
701 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
702 else
703 return false;
704 if (!arg0 || !arg1)
705 return false;
707 if (true_arg_p)
708 *true_arg_p = arg0;
709 if (false_arg_p)
710 *false_arg_p = arg1;
712 return true;
715 /* Determine the outermost loop to that it is possible to hoist a statement
716 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
717 the outermost loop in that the value computed by STMT is invariant.
718 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
719 we preserve the fact whether STMT is executed. It also fills other related
720 information to LIM_DATA (STMT).
722 The function returns false if STMT cannot be hoisted outside of the loop it
723 is defined in, and true otherwise. */
725 static bool
726 determine_max_movement (gimple stmt, bool must_preserve_exec)
728 basic_block bb = gimple_bb (stmt);
729 struct loop *loop = bb->loop_father;
730 struct loop *level;
731 struct lim_aux_data *lim_data = get_lim_data (stmt);
732 tree val;
733 ssa_op_iter iter;
735 if (must_preserve_exec)
736 level = ALWAYS_EXECUTED_IN (bb);
737 else
738 level = superloop_at_depth (loop, 1);
739 lim_data->max_loop = level;
741 if (gimple_code (stmt) == GIMPLE_PHI)
743 use_operand_p use_p;
744 unsigned min_cost = UINT_MAX;
745 unsigned total_cost = 0;
746 struct lim_aux_data *def_data;
748 /* We will end up promoting dependencies to be unconditionally
749 evaluated. For this reason the PHI cost (and thus the
750 cost we remove from the loop by doing the invariant motion)
751 is that of the cheapest PHI argument dependency chain. */
752 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
754 val = USE_FROM_PTR (use_p);
755 if (TREE_CODE (val) != SSA_NAME)
756 continue;
757 if (!add_dependency (val, lim_data, loop, false))
758 return false;
759 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
760 if (def_data)
762 min_cost = MIN (min_cost, def_data->cost);
763 total_cost += def_data->cost;
767 lim_data->cost += min_cost;
769 if (gimple_phi_num_args (stmt) > 1)
771 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
772 gimple cond;
773 if (gsi_end_p (gsi_last_bb (dom)))
774 return false;
775 cond = gsi_stmt (gsi_last_bb (dom));
776 if (gimple_code (cond) != GIMPLE_COND)
777 return false;
778 /* Verify that this is an extended form of a diamond and
779 the PHI arguments are completely controlled by the
780 predicate in DOM. */
781 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
782 return false;
784 /* Fold in dependencies and cost of the condition. */
785 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
787 if (!add_dependency (val, lim_data, loop, false))
788 return false;
789 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
790 if (def_data)
791 total_cost += def_data->cost;
794 /* We want to avoid unconditionally executing very expensive
795 operations. As costs for our dependencies cannot be
796 negative just claim we are not invariand for this case.
797 We also are not sure whether the control-flow inside the
798 loop will vanish. */
799 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
800 && !(min_cost != 0
801 && total_cost / min_cost <= 2))
802 return false;
804 /* Assume that the control-flow in the loop will vanish.
805 ??? We should verify this and not artificially increase
806 the cost if that is not the case. */
807 lim_data->cost += stmt_cost (stmt);
810 return true;
812 else
813 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
814 if (!add_dependency (val, lim_data, loop, true))
815 return false;
817 if (gimple_vuse (stmt))
819 mem_ref_p ref = mem_ref_in_stmt (stmt);
821 if (ref)
823 lim_data->max_loop
824 = outermost_indep_loop (lim_data->max_loop, loop, ref);
825 if (!lim_data->max_loop)
826 return false;
828 else
830 if ((val = gimple_vuse (stmt)) != NULL_TREE)
832 if (!add_dependency (val, lim_data, loop, false))
833 return false;
838 lim_data->cost += stmt_cost (stmt);
840 return true;
843 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
844 and that one of the operands of this statement is computed by STMT.
845 Ensure that STMT (together with all the statements that define its
846 operands) is hoisted at least out of the loop LEVEL. */
848 static void
849 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
851 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
852 struct depend *dep;
853 struct lim_aux_data *lim_data;
855 stmt_loop = find_common_loop (orig_loop, stmt_loop);
856 lim_data = get_lim_data (stmt);
857 if (lim_data != NULL && lim_data->tgt_loop != NULL)
858 stmt_loop = find_common_loop (stmt_loop,
859 loop_outer (lim_data->tgt_loop));
860 if (flow_loop_nested_p (stmt_loop, level))
861 return;
863 gcc_assert (level == lim_data->max_loop
864 || flow_loop_nested_p (lim_data->max_loop, level));
866 lim_data->tgt_loop = level;
867 for (dep = lim_data->depends; dep; dep = dep->next)
868 set_level (dep->stmt, orig_loop, level);
871 /* Determines an outermost loop from that we want to hoist the statement STMT.
872 For now we chose the outermost possible loop. TODO -- use profiling
873 information to set it more sanely. */
875 static void
876 set_profitable_level (gimple stmt)
878 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
881 /* Returns true if STMT is a call that has side effects. */
883 static bool
884 nonpure_call_p (gimple stmt)
886 if (gimple_code (stmt) != GIMPLE_CALL)
887 return false;
889 return gimple_has_side_effects (stmt);
892 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
894 static gimple
895 rewrite_reciprocal (gimple_stmt_iterator *bsi)
897 gimple stmt, stmt1, stmt2;
898 tree var, name, lhs, type;
899 tree real_one;
900 gimple_stmt_iterator gsi;
902 stmt = gsi_stmt (*bsi);
903 lhs = gimple_assign_lhs (stmt);
904 type = TREE_TYPE (lhs);
906 var = create_tmp_var (type, "reciptmp");
907 add_referenced_var (var);
908 DECL_GIMPLE_REG_P (var) = 1;
910 /* For vectors, create a VECTOR_CST full of 1's. */
911 if (TREE_CODE (type) == VECTOR_TYPE)
913 int i, len;
914 tree list = NULL_TREE;
915 real_one = build_real (TREE_TYPE (type), dconst1);
916 len = TYPE_VECTOR_SUBPARTS (type);
917 for (i = 0; i < len; i++)
918 list = tree_cons (NULL, real_one, list);
919 real_one = build_vector (type, list);
921 else
922 real_one = build_real (type, dconst1);
924 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
925 var, real_one, gimple_assign_rhs2 (stmt));
926 name = make_ssa_name (var, stmt1);
927 gimple_assign_set_lhs (stmt1, name);
929 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
930 gimple_assign_rhs1 (stmt));
932 /* Replace division stmt with reciprocal and multiply stmts.
933 The multiply stmt is not invariant, so update iterator
934 and avoid rescanning. */
935 gsi = *bsi;
936 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
937 gsi_replace (&gsi, stmt2, true);
939 /* Continue processing with invariant reciprocal statement. */
940 return stmt1;
943 /* Check if the pattern at *BSI is a bittest of the form
944 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
946 static gimple
947 rewrite_bittest (gimple_stmt_iterator *bsi)
949 gimple stmt, use_stmt, stmt1, stmt2;
950 tree lhs, var, name, t, a, b;
951 use_operand_p use;
953 stmt = gsi_stmt (*bsi);
954 lhs = gimple_assign_lhs (stmt);
956 /* Verify that the single use of lhs is a comparison against zero. */
957 if (TREE_CODE (lhs) != SSA_NAME
958 || !single_imm_use (lhs, &use, &use_stmt)
959 || gimple_code (use_stmt) != GIMPLE_COND)
960 return stmt;
961 if (gimple_cond_lhs (use_stmt) != lhs
962 || (gimple_cond_code (use_stmt) != NE_EXPR
963 && gimple_cond_code (use_stmt) != EQ_EXPR)
964 || !integer_zerop (gimple_cond_rhs (use_stmt)))
965 return stmt;
967 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
968 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
969 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
970 return stmt;
972 /* There is a conversion in between possibly inserted by fold. */
973 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
975 t = gimple_assign_rhs1 (stmt1);
976 if (TREE_CODE (t) != SSA_NAME
977 || !has_single_use (t))
978 return stmt;
979 stmt1 = SSA_NAME_DEF_STMT (t);
980 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
981 return stmt;
984 /* Verify that B is loop invariant but A is not. Verify that with
985 all the stmt walking we are still in the same loop. */
986 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
987 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
988 return stmt;
990 a = gimple_assign_rhs1 (stmt1);
991 b = gimple_assign_rhs2 (stmt1);
993 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
994 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
996 gimple_stmt_iterator rsi;
998 /* 1 << B */
999 var = create_tmp_var (TREE_TYPE (a), "shifttmp");
1000 add_referenced_var (var);
1001 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1002 build_int_cst (TREE_TYPE (a), 1), b);
1003 stmt1 = gimple_build_assign (var, t);
1004 name = make_ssa_name (var, stmt1);
1005 gimple_assign_set_lhs (stmt1, name);
1007 /* A & (1 << B) */
1008 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1009 stmt2 = gimple_build_assign (var, t);
1010 name = make_ssa_name (var, stmt2);
1011 gimple_assign_set_lhs (stmt2, name);
1013 /* Replace the SSA_NAME we compare against zero. Adjust
1014 the type of zero accordingly. */
1015 SET_USE (use, name);
1016 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1018 /* Don't use gsi_replace here, none of the new assignments sets
1019 the variable originally set in stmt. Move bsi to stmt1, and
1020 then remove the original stmt, so that we get a chance to
1021 retain debug info for it. */
1022 rsi = *bsi;
1023 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1024 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1025 gsi_remove (&rsi, true);
1027 return stmt1;
1030 return stmt;
1034 /* Determine the outermost loops in that statements in basic block BB are
1035 invariant, and record them to the LIM_DATA associated with the statements.
1036 Callback for walk_dominator_tree. */
1038 static void
1039 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1040 basic_block bb)
1042 enum move_pos pos;
1043 gimple_stmt_iterator bsi;
1044 gimple stmt;
1045 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1046 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1047 struct lim_aux_data *lim_data;
1049 if (!loop_outer (bb->loop_father))
1050 return;
1052 if (dump_file && (dump_flags & TDF_DETAILS))
1053 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1054 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1056 /* Look at PHI nodes, but only if there is at most two.
1057 ??? We could relax this further by post-processing the inserted
1058 code and transforming adjacent cond-exprs with the same predicate
1059 to control flow again. */
1060 bsi = gsi_start_phis (bb);
1061 if (!gsi_end_p (bsi)
1062 && ((gsi_next (&bsi), gsi_end_p (bsi))
1063 || (gsi_next (&bsi), gsi_end_p (bsi))))
1064 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1066 stmt = gsi_stmt (bsi);
1068 pos = movement_possibility (stmt);
1069 if (pos == MOVE_IMPOSSIBLE)
1070 continue;
1072 lim_data = init_lim_data (stmt);
1073 lim_data->always_executed_in = outermost;
1075 if (!determine_max_movement (stmt, false))
1077 lim_data->max_loop = NULL;
1078 continue;
1081 if (dump_file && (dump_flags & TDF_DETAILS))
1083 print_gimple_stmt (dump_file, stmt, 2, 0);
1084 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1085 loop_depth (lim_data->max_loop),
1086 lim_data->cost);
1089 if (lim_data->cost >= LIM_EXPENSIVE)
1090 set_profitable_level (stmt);
1093 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1095 stmt = gsi_stmt (bsi);
1097 pos = movement_possibility (stmt);
1098 if (pos == MOVE_IMPOSSIBLE)
1100 if (nonpure_call_p (stmt))
1102 maybe_never = true;
1103 outermost = NULL;
1105 /* Make sure to note always_executed_in for stores to make
1106 store-motion work. */
1107 else if (stmt_makes_single_store (stmt))
1109 struct lim_aux_data *lim_data = init_lim_data (stmt);
1110 lim_data->always_executed_in = outermost;
1112 continue;
1115 if (is_gimple_assign (stmt)
1116 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1117 == GIMPLE_BINARY_RHS))
1119 tree op0 = gimple_assign_rhs1 (stmt);
1120 tree op1 = gimple_assign_rhs2 (stmt);
1121 struct loop *ol1 = outermost_invariant_loop (op1,
1122 loop_containing_stmt (stmt));
1124 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1125 to be hoisted out of loop, saving expensive divide. */
1126 if (pos == MOVE_POSSIBLE
1127 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1128 && flag_unsafe_math_optimizations
1129 && !flag_trapping_math
1130 && ol1 != NULL
1131 && outermost_invariant_loop (op0, ol1) == NULL)
1132 stmt = rewrite_reciprocal (&bsi);
1134 /* If the shift count is invariant, convert (A >> B) & 1 to
1135 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1136 saving an expensive shift. */
1137 if (pos == MOVE_POSSIBLE
1138 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1139 && integer_onep (op1)
1140 && TREE_CODE (op0) == SSA_NAME
1141 && has_single_use (op0))
1142 stmt = rewrite_bittest (&bsi);
1145 lim_data = init_lim_data (stmt);
1146 lim_data->always_executed_in = outermost;
1148 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1149 continue;
1151 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1153 lim_data->max_loop = NULL;
1154 continue;
1157 if (dump_file && (dump_flags & TDF_DETAILS))
1159 print_gimple_stmt (dump_file, stmt, 2, 0);
1160 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1161 loop_depth (lim_data->max_loop),
1162 lim_data->cost);
1165 if (lim_data->cost >= LIM_EXPENSIVE)
1166 set_profitable_level (stmt);
1170 /* For each statement determines the outermost loop in that it is invariant,
1171 statements on whose motion it depends and the cost of the computation.
1172 This information is stored to the LIM_DATA structure associated with
1173 each statement. */
1175 static void
1176 determine_invariantness (void)
1178 struct dom_walk_data walk_data;
1180 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1181 walk_data.dom_direction = CDI_DOMINATORS;
1182 walk_data.before_dom_children = determine_invariantness_stmt;
1184 init_walk_dominator_tree (&walk_data);
1185 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1186 fini_walk_dominator_tree (&walk_data);
1189 /* Hoist the statements in basic block BB out of the loops prescribed by
1190 data stored in LIM_DATA structures associated with each statement. Callback
1191 for walk_dominator_tree. */
1193 static void
1194 move_computations_stmt (struct dom_walk_data *dw_data,
1195 basic_block bb)
1197 struct loop *level;
1198 gimple_stmt_iterator bsi;
1199 gimple stmt;
1200 unsigned cost = 0;
1201 struct lim_aux_data *lim_data;
1203 if (!loop_outer (bb->loop_father))
1204 return;
1206 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1208 gimple new_stmt;
1209 stmt = gsi_stmt (bsi);
1211 lim_data = get_lim_data (stmt);
1212 if (lim_data == NULL)
1214 gsi_next (&bsi);
1215 continue;
1218 cost = lim_data->cost;
1219 level = lim_data->tgt_loop;
1220 clear_lim_data (stmt);
1222 if (!level)
1224 gsi_next (&bsi);
1225 continue;
1228 if (dump_file && (dump_flags & TDF_DETAILS))
1230 fprintf (dump_file, "Moving PHI node\n");
1231 print_gimple_stmt (dump_file, stmt, 0, 0);
1232 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1233 cost, level->num);
1236 if (gimple_phi_num_args (stmt) == 1)
1238 tree arg = PHI_ARG_DEF (stmt, 0);
1239 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1240 gimple_phi_result (stmt),
1241 arg, NULL_TREE);
1242 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1244 else
1246 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1247 gimple cond = gsi_stmt (gsi_last_bb (dom));
1248 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1249 /* Get the PHI arguments corresponding to the true and false
1250 edges of COND. */
1251 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1252 gcc_assert (arg0 && arg1);
1253 t = build2 (gimple_cond_code (cond), boolean_type_node,
1254 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1255 t = build3 (COND_EXPR, TREE_TYPE (gimple_phi_result (stmt)),
1256 t, arg0, arg1);
1257 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1258 gimple_phi_result (stmt),
1259 t, NULL_TREE);
1260 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1261 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1263 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1264 remove_phi_node (&bsi, false);
1267 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1269 stmt = gsi_stmt (bsi);
1271 lim_data = get_lim_data (stmt);
1272 if (lim_data == NULL)
1274 gsi_next (&bsi);
1275 continue;
1278 cost = lim_data->cost;
1279 level = lim_data->tgt_loop;
1280 clear_lim_data (stmt);
1282 if (!level)
1284 gsi_next (&bsi);
1285 continue;
1288 /* We do not really want to move conditionals out of the loop; we just
1289 placed it here to force its operands to be moved if necessary. */
1290 if (gimple_code (stmt) == GIMPLE_COND)
1291 continue;
1293 if (dump_file && (dump_flags & TDF_DETAILS))
1295 fprintf (dump_file, "Moving statement\n");
1296 print_gimple_stmt (dump_file, stmt, 0, 0);
1297 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1298 cost, level->num);
1301 mark_virtual_ops_for_renaming (stmt);
1302 gsi_insert_on_edge (loop_preheader_edge (level), stmt);
1303 gsi_remove (&bsi, false);
1307 /* Hoist the statements out of the loops prescribed by data stored in
1308 LIM_DATA structures associated with each statement.*/
1310 static unsigned int
1311 move_computations (void)
1313 struct dom_walk_data walk_data;
1314 unsigned int todo = 0;
1316 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1317 walk_data.global_data = &todo;
1318 walk_data.dom_direction = CDI_DOMINATORS;
1319 walk_data.before_dom_children = move_computations_stmt;
1321 init_walk_dominator_tree (&walk_data);
1322 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1323 fini_walk_dominator_tree (&walk_data);
1325 gsi_commit_edge_inserts ();
1326 if (need_ssa_update_p (cfun))
1327 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1329 return todo;
1332 /* Checks whether the statement defining variable *INDEX can be hoisted
1333 out of the loop passed in DATA. Callback for for_each_index. */
1335 static bool
1336 may_move_till (tree ref, tree *index, void *data)
1338 struct loop *loop = (struct loop *) data, *max_loop;
1340 /* If REF is an array reference, check also that the step and the lower
1341 bound is invariant in LOOP. */
1342 if (TREE_CODE (ref) == ARRAY_REF)
1344 tree step = TREE_OPERAND (ref, 3);
1345 tree lbound = TREE_OPERAND (ref, 2);
1347 max_loop = outermost_invariant_loop (step, loop);
1348 if (!max_loop)
1349 return false;
1351 max_loop = outermost_invariant_loop (lbound, loop);
1352 if (!max_loop)
1353 return false;
1356 max_loop = outermost_invariant_loop (*index, loop);
1357 if (!max_loop)
1358 return false;
1360 return true;
1363 /* If OP is SSA NAME, force the statement that defines it to be
1364 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1366 static void
1367 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1369 gimple stmt;
1371 if (!op
1372 || is_gimple_min_invariant (op))
1373 return;
1375 gcc_assert (TREE_CODE (op) == SSA_NAME);
1377 stmt = SSA_NAME_DEF_STMT (op);
1378 if (gimple_nop_p (stmt))
1379 return;
1381 set_level (stmt, orig_loop, loop);
1384 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1385 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1386 for_each_index. */
1388 struct fmt_data
1390 struct loop *loop;
1391 struct loop *orig_loop;
1394 static bool
1395 force_move_till (tree ref, tree *index, void *data)
1397 struct fmt_data *fmt_data = (struct fmt_data *) data;
1399 if (TREE_CODE (ref) == ARRAY_REF)
1401 tree step = TREE_OPERAND (ref, 3);
1402 tree lbound = TREE_OPERAND (ref, 2);
1404 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1405 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1408 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1410 return true;
1413 /* A hash function for struct mem_ref object OBJ. */
1415 static hashval_t
1416 memref_hash (const void *obj)
1418 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1420 return mem->hash;
1423 /* An equality function for struct mem_ref object OBJ1 with
1424 memory reference OBJ2. */
1426 static int
1427 memref_eq (const void *obj1, const void *obj2)
1429 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1431 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1434 /* Releases list of memory reference locations ACCS. */
1436 static void
1437 free_mem_ref_locs (mem_ref_locs_p accs)
1439 unsigned i;
1440 mem_ref_loc_p loc;
1442 if (!accs)
1443 return;
1445 for (i = 0; VEC_iterate (mem_ref_loc_p, accs->locs, i, loc); i++)
1446 free (loc);
1447 VEC_free (mem_ref_loc_p, heap, accs->locs);
1448 free (accs);
1451 /* A function to free the mem_ref object OBJ. */
1453 static void
1454 memref_free (void *obj)
1456 struct mem_ref *const mem = (struct mem_ref *) obj;
1457 unsigned i;
1458 mem_ref_locs_p accs;
1460 BITMAP_FREE (mem->stored);
1461 BITMAP_FREE (mem->indep_loop);
1462 BITMAP_FREE (mem->dep_loop);
1463 BITMAP_FREE (mem->indep_ref);
1464 BITMAP_FREE (mem->dep_ref);
1466 for (i = 0; VEC_iterate (mem_ref_locs_p, mem->accesses_in_loop, i, accs); i++)
1467 free_mem_ref_locs (accs);
1468 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1470 BITMAP_FREE (mem->vops);
1471 free (mem);
1474 /* Allocates and returns a memory reference description for MEM whose hash
1475 value is HASH and id is ID. */
1477 static mem_ref_p
1478 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1480 mem_ref_p ref = XNEW (struct mem_ref);
1481 ref->mem = mem;
1482 ref->id = id;
1483 ref->hash = hash;
1484 ref->stored = BITMAP_ALLOC (NULL);
1485 ref->indep_loop = BITMAP_ALLOC (NULL);
1486 ref->dep_loop = BITMAP_ALLOC (NULL);
1487 ref->indep_ref = BITMAP_ALLOC (NULL);
1488 ref->dep_ref = BITMAP_ALLOC (NULL);
1489 ref->accesses_in_loop = NULL;
1490 ref->vops = BITMAP_ALLOC (NULL);
1492 return ref;
1495 /* Allocates and returns the new list of locations. */
1497 static mem_ref_locs_p
1498 mem_ref_locs_alloc (void)
1500 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1501 accs->locs = NULL;
1502 return accs;
1505 /* Records memory reference location *LOC in LOOP to the memory reference
1506 description REF. The reference occurs in statement STMT. */
1508 static void
1509 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1511 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1512 mem_ref_locs_p accs;
1513 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1515 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1516 <= (unsigned) loop->num)
1517 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1518 loop->num + 1);
1519 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1520 if (!accs)
1522 accs = mem_ref_locs_alloc ();
1523 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1526 aref->stmt = stmt;
1527 aref->ref = loc;
1529 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1530 bitmap_set_bit (ril, ref->id);
1533 /* Marks reference REF as stored in LOOP. */
1535 static void
1536 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1538 for (;
1539 loop != current_loops->tree_root
1540 && !bitmap_bit_p (ref->stored, loop->num);
1541 loop = loop_outer (loop))
1542 bitmap_set_bit (ref->stored, loop->num);
1545 /* Gathers memory references in statement STMT in LOOP, storing the
1546 information about them in the memory_accesses structure. Marks
1547 the vops accessed through unrecognized statements there as
1548 well. */
1550 static void
1551 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1553 tree *mem = NULL;
1554 hashval_t hash;
1555 PTR *slot;
1556 mem_ref_p ref;
1557 tree vname;
1558 bool is_stored;
1559 bitmap clvops;
1560 unsigned id;
1562 if (!gimple_vuse (stmt))
1563 return;
1565 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1566 if (!mem)
1567 goto fail;
1569 hash = iterative_hash_expr (*mem, 0);
1570 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1572 if (*slot)
1574 ref = (mem_ref_p) *slot;
1575 id = ref->id;
1577 else
1579 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1580 ref = mem_ref_alloc (*mem, hash, id);
1581 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1582 *slot = ref;
1584 if (dump_file && (dump_flags & TDF_DETAILS))
1586 fprintf (dump_file, "Memory reference %u: ", id);
1587 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1588 fprintf (dump_file, "\n");
1591 if (is_stored)
1592 mark_ref_stored (ref, loop);
1594 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1595 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname)));
1596 record_mem_ref_loc (ref, loop, stmt, mem);
1597 return;
1599 fail:
1600 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1601 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1602 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname)));
1605 /* Gathers memory references in loops. */
1607 static void
1608 gather_mem_refs_in_loops (void)
1610 gimple_stmt_iterator bsi;
1611 basic_block bb;
1612 struct loop *loop;
1613 loop_iterator li;
1614 bitmap clvo, clvi;
1615 bitmap lrefs, alrefs, alrefso;
1617 FOR_EACH_BB (bb)
1619 loop = bb->loop_father;
1620 if (loop == current_loops->tree_root)
1621 continue;
1623 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1624 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1627 /* Propagate the information about clobbered vops and accessed memory
1628 references up the loop hierarchy. */
1629 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1631 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1632 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1633 bitmap_ior_into (alrefs, lrefs);
1635 if (loop_outer (loop) == current_loops->tree_root)
1636 continue;
1638 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1639 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops,
1640 loop_outer (loop)->num);
1641 bitmap_ior_into (clvo, clvi);
1643 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1644 loop_outer (loop)->num);
1645 bitmap_ior_into (alrefso, alrefs);
1649 /* Element of the hash table that maps vops to memory references. */
1651 struct vop_to_refs_elt
1653 /* DECL_UID of the vop. */
1654 unsigned uid;
1656 /* List of the all references. */
1657 bitmap refs_all;
1659 /* List of stored references. */
1660 bitmap refs_stored;
1663 /* A hash function for struct vop_to_refs_elt object OBJ. */
1665 static hashval_t
1666 vtoe_hash (const void *obj)
1668 const struct vop_to_refs_elt *const vtoe =
1669 (const struct vop_to_refs_elt *) obj;
1671 return vtoe->uid;
1674 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1675 uid of a vop OBJ2. */
1677 static int
1678 vtoe_eq (const void *obj1, const void *obj2)
1680 const struct vop_to_refs_elt *const vtoe =
1681 (const struct vop_to_refs_elt *) obj1;
1682 const unsigned *const uid = (const unsigned *) obj2;
1684 return vtoe->uid == *uid;
1687 /* A function to free the struct vop_to_refs_elt object. */
1689 static void
1690 vtoe_free (void *obj)
1692 struct vop_to_refs_elt *const vtoe =
1693 (struct vop_to_refs_elt *) obj;
1695 BITMAP_FREE (vtoe->refs_all);
1696 BITMAP_FREE (vtoe->refs_stored);
1697 free (vtoe);
1700 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1701 if the reference REF is stored. */
1703 static void
1704 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored)
1706 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT);
1707 struct vop_to_refs_elt *vtoe;
1709 if (!*slot)
1711 vtoe = XNEW (struct vop_to_refs_elt);
1712 vtoe->uid = vop;
1713 vtoe->refs_all = BITMAP_ALLOC (NULL);
1714 vtoe->refs_stored = BITMAP_ALLOC (NULL);
1715 *slot = vtoe;
1717 else
1718 vtoe = (struct vop_to_refs_elt *) *slot;
1720 bitmap_set_bit (vtoe->refs_all, ref);
1721 if (stored)
1722 bitmap_set_bit (vtoe->refs_stored, ref);
1725 /* Returns the set of references that access VOP according to the table
1726 VOP_TO_REFS. */
1728 static bitmap
1729 get_vop_accesses (htab_t vop_to_refs, unsigned vop)
1731 struct vop_to_refs_elt *const vtoe =
1732 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1733 return vtoe->refs_all;
1736 /* Returns the set of stores that access VOP according to the table
1737 VOP_TO_REFS. */
1739 static bitmap
1740 get_vop_stores (htab_t vop_to_refs, unsigned vop)
1742 struct vop_to_refs_elt *const vtoe =
1743 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1744 return vtoe->refs_stored;
1747 /* Adds REF to mapping from virtual operands to references in LOOP. */
1749 static void
1750 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref)
1752 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
1753 bool stored = bitmap_bit_p (ref->stored, loop->num);
1754 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops,
1755 loop->num);
1756 bitmap_iterator bi;
1757 unsigned vop;
1759 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi)
1761 record_vop_access (map, vop, ref->id, stored);
1765 /* Create a mapping from virtual operands to references that touch them
1766 in LOOP. */
1768 static void
1769 create_vop_ref_mapping_loop (struct loop *loop)
1771 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1772 struct loop *sloop;
1773 bitmap_iterator bi;
1774 unsigned i;
1775 mem_ref_p ref;
1777 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1779 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1780 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop))
1781 add_vop_ref_mapping (sloop, ref);
1785 /* For each non-clobbered virtual operand and each loop, record the memory
1786 references in this loop that touch the operand. */
1788 static void
1789 create_vop_ref_mapping (void)
1791 loop_iterator li;
1792 struct loop *loop;
1794 FOR_EACH_LOOP (li, loop, 0)
1796 create_vop_ref_mapping_loop (loop);
1800 /* Gathers information about memory accesses in the loops. */
1802 static void
1803 analyze_memory_references (void)
1805 unsigned i;
1806 bitmap empty;
1807 htab_t hempty;
1809 memory_accesses.refs
1810 = htab_create (100, memref_hash, memref_eq, memref_free);
1811 memory_accesses.refs_list = NULL;
1812 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1813 number_of_loops ());
1814 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1815 number_of_loops ());
1816 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap,
1817 number_of_loops ());
1818 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap,
1819 number_of_loops ());
1821 for (i = 0; i < number_of_loops (); i++)
1823 empty = BITMAP_ALLOC (NULL);
1824 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1825 empty = BITMAP_ALLOC (NULL);
1826 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1827 empty = BITMAP_ALLOC (NULL);
1828 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty);
1829 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free);
1830 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty);
1833 memory_accesses.ttae_cache = NULL;
1835 gather_mem_refs_in_loops ();
1836 create_vop_ref_mapping ();
1839 /* Returns true if a region of size SIZE1 at position 0 and a region of
1840 size SIZE2 at position DIFF cannot overlap. */
1842 static bool
1843 cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2)
1845 double_int d, bound;
1847 /* Unless the difference is a constant, we fail. */
1848 if (diff->n != 0)
1849 return false;
1851 d = diff->offset;
1852 if (double_int_negative_p (d))
1854 /* The second object is before the first one, we succeed if the last
1855 element of the second object is before the start of the first one. */
1856 bound = double_int_add (d, double_int_add (size2, double_int_minus_one));
1857 return double_int_negative_p (bound);
1859 else
1861 /* We succeed if the second object starts after the first one ends. */
1862 return double_int_scmp (size1, d) <= 0;
1866 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1867 tree_to_aff_combination_expand. */
1869 static bool
1870 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1872 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1873 object and their offset differ in such a way that the locations cannot
1874 overlap, then they cannot alias. */
1875 double_int size1, size2;
1876 aff_tree off1, off2;
1878 /* Perform basic offset and type-based disambiguation. */
1879 if (!refs_may_alias_p (mem1, mem2))
1880 return false;
1882 /* The expansion of addresses may be a bit expensive, thus we only do
1883 the check at -O2 and higher optimization levels. */
1884 if (optimize < 2)
1885 return true;
1887 get_inner_reference_aff (mem1, &off1, &size1);
1888 get_inner_reference_aff (mem2, &off2, &size2);
1889 aff_combination_expand (&off1, ttae_cache);
1890 aff_combination_expand (&off2, ttae_cache);
1891 aff_combination_scale (&off1, double_int_minus_one);
1892 aff_combination_add (&off2, &off1);
1894 if (cannot_overlap_p (&off2, size1, size2))
1895 return false;
1897 return true;
1900 /* Rewrites location LOC by TMP_VAR. */
1902 static void
1903 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1905 mark_virtual_ops_for_renaming (loc->stmt);
1906 *loc->ref = tmp_var;
1907 update_stmt (loc->stmt);
1910 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1912 static void
1913 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1914 VEC (mem_ref_loc_p, heap) **locs)
1916 mem_ref_locs_p accs;
1917 unsigned i;
1918 mem_ref_loc_p loc;
1919 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1920 loop->num);
1921 struct loop *subloop;
1923 if (!bitmap_bit_p (refs, ref->id))
1924 return;
1926 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1927 > (unsigned) loop->num)
1929 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1930 if (accs)
1932 for (i = 0; VEC_iterate (mem_ref_loc_p, accs->locs, i, loc); i++)
1933 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1937 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1938 get_all_locs_in_loop (subloop, ref, locs);
1941 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1943 static void
1944 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1946 unsigned i;
1947 mem_ref_loc_p loc;
1948 VEC (mem_ref_loc_p, heap) *locs = NULL;
1950 get_all_locs_in_loop (loop, ref, &locs);
1951 for (i = 0; VEC_iterate (mem_ref_loc_p, locs, i, loc); i++)
1952 rewrite_mem_ref_loc (loc, tmp_var);
1953 VEC_free (mem_ref_loc_p, heap, locs);
1956 /* The name and the length of the currently generated variable
1957 for lsm. */
1958 #define MAX_LSM_NAME_LENGTH 40
1959 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1960 static int lsm_tmp_name_length;
1962 /* Adds S to lsm_tmp_name. */
1964 static void
1965 lsm_tmp_name_add (const char *s)
1967 int l = strlen (s) + lsm_tmp_name_length;
1968 if (l > MAX_LSM_NAME_LENGTH)
1969 return;
1971 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1972 lsm_tmp_name_length = l;
1975 /* Stores the name for temporary variable that replaces REF to
1976 lsm_tmp_name. */
1978 static void
1979 gen_lsm_tmp_name (tree ref)
1981 const char *name;
1983 switch (TREE_CODE (ref))
1985 case MISALIGNED_INDIRECT_REF:
1986 case MEM_REF:
1987 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1988 lsm_tmp_name_add ("_");
1989 break;
1991 case ADDR_EXPR:
1992 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1993 break;
1995 case BIT_FIELD_REF:
1996 case VIEW_CONVERT_EXPR:
1997 case ARRAY_RANGE_REF:
1998 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1999 break;
2001 case REALPART_EXPR:
2002 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2003 lsm_tmp_name_add ("_RE");
2004 break;
2006 case IMAGPART_EXPR:
2007 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2008 lsm_tmp_name_add ("_IM");
2009 break;
2011 case COMPONENT_REF:
2012 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2013 lsm_tmp_name_add ("_");
2014 name = get_name (TREE_OPERAND (ref, 1));
2015 if (!name)
2016 name = "F";
2017 lsm_tmp_name_add (name);
2018 break;
2020 case ARRAY_REF:
2021 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2022 lsm_tmp_name_add ("_I");
2023 break;
2025 case SSA_NAME:
2026 ref = SSA_NAME_VAR (ref);
2027 /* Fallthru. */
2029 case VAR_DECL:
2030 case PARM_DECL:
2031 name = get_name (ref);
2032 if (!name)
2033 name = "D";
2034 lsm_tmp_name_add (name);
2035 break;
2037 case STRING_CST:
2038 lsm_tmp_name_add ("S");
2039 break;
2041 case RESULT_DECL:
2042 lsm_tmp_name_add ("R");
2043 break;
2045 case INTEGER_CST:
2046 /* Nothing. */
2047 break;
2049 default:
2050 gcc_unreachable ();
2054 /* Determines name for temporary variable that replaces REF.
2055 The name is accumulated into the lsm_tmp_name variable.
2056 N is added to the name of the temporary. */
2058 char *
2059 get_lsm_tmp_name (tree ref, unsigned n)
2061 char ns[2];
2063 lsm_tmp_name_length = 0;
2064 gen_lsm_tmp_name (ref);
2065 lsm_tmp_name_add ("_lsm");
2066 if (n < 10)
2068 ns[0] = '0' + n;
2069 ns[1] = 0;
2070 lsm_tmp_name_add (ns);
2072 return lsm_tmp_name;
2075 /* Executes store motion of memory reference REF from LOOP.
2076 Exits from the LOOP are stored in EXITS. The initialization of the
2077 temporary variable is put to the preheader of the loop, and assignments
2078 to the reference from the temporary variable are emitted to exits. */
2080 static void
2081 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2083 tree tmp_var;
2084 unsigned i;
2085 gimple load, store;
2086 struct fmt_data fmt_data;
2087 edge ex;
2088 struct lim_aux_data *lim_data;
2090 if (dump_file && (dump_flags & TDF_DETAILS))
2092 fprintf (dump_file, "Executing store motion of ");
2093 print_generic_expr (dump_file, ref->mem, 0);
2094 fprintf (dump_file, " from loop %d\n", loop->num);
2097 tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
2098 get_lsm_tmp_name (ref->mem, ~0));
2100 fmt_data.loop = loop;
2101 fmt_data.orig_loop = loop;
2102 for_each_index (&ref->mem, force_move_till, &fmt_data);
2104 rewrite_mem_refs (loop, ref, tmp_var);
2106 /* Emit the load & stores. */
2107 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2108 lim_data = init_lim_data (load);
2109 lim_data->max_loop = loop;
2110 lim_data->tgt_loop = loop;
2112 /* Put this into the latch, so that we are sure it will be processed after
2113 all dependencies. */
2114 gsi_insert_on_edge (loop_latch_edge (loop), load);
2116 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
2118 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2119 gsi_insert_on_edge (ex, store);
2123 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2124 edges of the LOOP. */
2126 static void
2127 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2128 VEC (edge, heap) *exits)
2130 mem_ref_p ref;
2131 unsigned i;
2132 bitmap_iterator bi;
2134 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2136 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2137 execute_sm (loop, exits, ref);
2141 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2142 make sure REF is always stored to in LOOP. */
2144 static bool
2145 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2147 VEC (mem_ref_loc_p, heap) *locs = NULL;
2148 unsigned i;
2149 mem_ref_loc_p loc;
2150 bool ret = false;
2151 struct loop *must_exec;
2152 tree base;
2154 base = get_base_address (ref->mem);
2155 if (INDIRECT_REF_P (base)
2156 || TREE_CODE (base) == MEM_REF)
2157 base = TREE_OPERAND (base, 0);
2159 get_all_locs_in_loop (loop, ref, &locs);
2160 for (i = 0; VEC_iterate (mem_ref_loc_p, locs, i, loc); i++)
2162 if (!get_lim_data (loc->stmt))
2163 continue;
2165 /* If we require an always executed store make sure the statement
2166 stores to the reference. */
2167 if (stored_p)
2169 tree lhs;
2170 if (!gimple_get_lhs (loc->stmt))
2171 continue;
2172 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2173 if (!lhs)
2174 continue;
2175 if (INDIRECT_REF_P (lhs)
2176 || TREE_CODE (lhs) == MEM_REF)
2177 lhs = TREE_OPERAND (lhs, 0);
2178 if (lhs != base)
2179 continue;
2182 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2183 if (!must_exec)
2184 continue;
2186 if (must_exec == loop
2187 || flow_loop_nested_p (must_exec, loop))
2189 ret = true;
2190 break;
2193 VEC_free (mem_ref_loc_p, heap, locs);
2195 return ret;
2198 /* Returns true if REF1 and REF2 are independent. */
2200 static bool
2201 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2203 if (ref1 == ref2
2204 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2205 return true;
2206 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2207 return false;
2209 if (dump_file && (dump_flags & TDF_DETAILS))
2210 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2211 ref1->id, ref2->id);
2213 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2214 &memory_accesses.ttae_cache))
2216 bitmap_set_bit (ref1->dep_ref, ref2->id);
2217 bitmap_set_bit (ref2->dep_ref, ref1->id);
2218 if (dump_file && (dump_flags & TDF_DETAILS))
2219 fprintf (dump_file, "dependent.\n");
2220 return false;
2222 else
2224 bitmap_set_bit (ref1->indep_ref, ref2->id);
2225 bitmap_set_bit (ref2->indep_ref, ref1->id);
2226 if (dump_file && (dump_flags & TDF_DETAILS))
2227 fprintf (dump_file, "independent.\n");
2228 return true;
2232 /* Records the information whether REF is independent in LOOP (according
2233 to INDEP). */
2235 static void
2236 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2238 if (indep)
2239 bitmap_set_bit (ref->indep_loop, loop->num);
2240 else
2241 bitmap_set_bit (ref->dep_loop, loop->num);
2244 /* Returns true if REF is independent on all other memory references in
2245 LOOP. */
2247 static bool
2248 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2250 bitmap clobbers, refs_to_check, refs;
2251 unsigned i;
2252 bitmap_iterator bi;
2253 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2254 htab_t map;
2255 mem_ref_p aref;
2257 /* If the reference is clobbered, it is not independent. */
2258 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
2259 if (bitmap_intersect_p (ref->vops, clobbers))
2260 return false;
2262 refs_to_check = BITMAP_ALLOC (NULL);
2264 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
2265 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi)
2267 if (stored)
2268 refs = get_vop_accesses (map, i);
2269 else
2270 refs = get_vop_stores (map, i);
2272 bitmap_ior_into (refs_to_check, refs);
2275 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2277 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2278 if (!refs_independent_p (ref, aref))
2280 ret = false;
2281 record_indep_loop (loop, aref, false);
2282 break;
2286 BITMAP_FREE (refs_to_check);
2287 return ret;
2290 /* Returns true if REF is independent on all other memory references in
2291 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2293 static bool
2294 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2296 bool ret;
2298 if (bitmap_bit_p (ref->indep_loop, loop->num))
2299 return true;
2300 if (bitmap_bit_p (ref->dep_loop, loop->num))
2301 return false;
2303 ret = ref_indep_loop_p_1 (loop, ref);
2305 if (dump_file && (dump_flags & TDF_DETAILS))
2306 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2307 ref->id, loop->num, ret ? "independent" : "dependent");
2309 record_indep_loop (loop, ref, ret);
2311 return ret;
2314 /* Returns true if we can perform store motion of REF from LOOP. */
2316 static bool
2317 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2319 tree base;
2321 /* Unless the reference is stored in the loop, there is nothing to do. */
2322 if (!bitmap_bit_p (ref->stored, loop->num))
2323 return false;
2325 /* It should be movable. */
2326 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2327 || TREE_THIS_VOLATILE (ref->mem)
2328 || !for_each_index (&ref->mem, may_move_till, loop))
2329 return false;
2331 /* If it can trap, it must be always executed in LOOP.
2332 Readonly memory locations may trap when storing to them, but
2333 tree_could_trap_p is a predicate for rvalues, so check that
2334 explicitly. */
2335 base = get_base_address (ref->mem);
2336 if ((tree_could_trap_p (ref->mem)
2337 || (DECL_P (base) && TREE_READONLY (base)))
2338 && !ref_always_accessed_p (loop, ref, true))
2339 return false;
2341 /* And it must be independent on all other memory references
2342 in LOOP. */
2343 if (!ref_indep_loop_p (loop, ref))
2344 return false;
2346 return true;
2349 /* Marks the references in LOOP for that store motion should be performed
2350 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2351 motion was performed in one of the outer loops. */
2353 static void
2354 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2356 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2357 loop->num);
2358 unsigned i;
2359 bitmap_iterator bi;
2360 mem_ref_p ref;
2362 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2364 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2365 if (can_sm_ref_p (loop, ref))
2366 bitmap_set_bit (refs_to_sm, i);
2370 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2371 for a store motion optimization (i.e. whether we can insert statement
2372 on its exits). */
2374 static bool
2375 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2376 VEC (edge, heap) *exits)
2378 unsigned i;
2379 edge ex;
2381 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
2382 if (ex->flags & EDGE_ABNORMAL)
2383 return false;
2385 return true;
2388 /* Try to perform store motion for all memory references modified inside
2389 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2390 store motion was executed in one of the outer loops. */
2392 static void
2393 store_motion_loop (struct loop *loop, bitmap sm_executed)
2395 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2396 struct loop *subloop;
2397 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2399 if (loop_suitable_for_sm (loop, exits))
2401 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2402 hoist_memory_references (loop, sm_in_loop, exits);
2404 VEC_free (edge, heap, exits);
2406 bitmap_ior_into (sm_executed, sm_in_loop);
2407 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2408 store_motion_loop (subloop, sm_executed);
2409 bitmap_and_compl_into (sm_executed, sm_in_loop);
2410 BITMAP_FREE (sm_in_loop);
2413 /* Try to perform store motion for all memory references modified inside
2414 loops. */
2416 static void
2417 store_motion (void)
2419 struct loop *loop;
2420 bitmap sm_executed = BITMAP_ALLOC (NULL);
2422 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2423 store_motion_loop (loop, sm_executed);
2425 BITMAP_FREE (sm_executed);
2426 gsi_commit_edge_inserts ();
2429 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2430 for each such basic block bb records the outermost loop for that execution
2431 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2432 blocks that contain a nonpure call. */
2434 static void
2435 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2437 basic_block bb = NULL, *bbs, last = NULL;
2438 unsigned i;
2439 edge e;
2440 struct loop *inn_loop = loop;
2442 if (!loop->header->aux)
2444 bbs = get_loop_body_in_dom_order (loop);
2446 for (i = 0; i < loop->num_nodes; i++)
2448 edge_iterator ei;
2449 bb = bbs[i];
2451 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2452 last = bb;
2454 if (TEST_BIT (contains_call, bb->index))
2455 break;
2457 FOR_EACH_EDGE (e, ei, bb->succs)
2458 if (!flow_bb_inside_loop_p (loop, e->dest))
2459 break;
2460 if (e)
2461 break;
2463 /* A loop might be infinite (TODO use simple loop analysis
2464 to disprove this if possible). */
2465 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2466 break;
2468 if (!flow_bb_inside_loop_p (inn_loop, bb))
2469 break;
2471 if (bb->loop_father->header == bb)
2473 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2474 break;
2476 /* In a loop that is always entered we may proceed anyway.
2477 But record that we entered it and stop once we leave it. */
2478 inn_loop = bb->loop_father;
2482 while (1)
2484 last->aux = loop;
2485 if (last == loop->header)
2486 break;
2487 last = get_immediate_dominator (CDI_DOMINATORS, last);
2490 free (bbs);
2493 for (loop = loop->inner; loop; loop = loop->next)
2494 fill_always_executed_in (loop, contains_call);
2497 /* Compute the global information needed by the loop invariant motion pass. */
2499 static void
2500 tree_ssa_lim_initialize (void)
2502 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2503 gimple_stmt_iterator bsi;
2504 struct loop *loop;
2505 basic_block bb;
2507 sbitmap_zero (contains_call);
2508 FOR_EACH_BB (bb)
2510 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2512 if (nonpure_call_p (gsi_stmt (bsi)))
2513 break;
2516 if (!gsi_end_p (bsi))
2517 SET_BIT (contains_call, bb->index);
2520 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2521 fill_always_executed_in (loop, contains_call);
2523 sbitmap_free (contains_call);
2525 lim_aux_data_map = pointer_map_create ();
2528 /* Cleans up after the invariant motion pass. */
2530 static void
2531 tree_ssa_lim_finalize (void)
2533 basic_block bb;
2534 unsigned i;
2535 bitmap b;
2536 htab_t h;
2538 FOR_EACH_BB (bb)
2540 bb->aux = NULL;
2543 pointer_map_destroy (lim_aux_data_map);
2545 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2546 htab_delete (memory_accesses.refs);
2548 for (i = 0; VEC_iterate (bitmap, memory_accesses.refs_in_loop, i, b); i++)
2549 BITMAP_FREE (b);
2550 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2552 for (i = 0; VEC_iterate (bitmap, memory_accesses.all_refs_in_loop, i, b); i++)
2553 BITMAP_FREE (b);
2554 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2556 for (i = 0; VEC_iterate (bitmap, memory_accesses.clobbered_vops, i, b); i++)
2557 BITMAP_FREE (b);
2558 VEC_free (bitmap, heap, memory_accesses.clobbered_vops);
2560 for (i = 0; VEC_iterate (htab_t, memory_accesses.vop_ref_map, i, h); i++)
2561 htab_delete (h);
2562 VEC_free (htab_t, heap, memory_accesses.vop_ref_map);
2564 if (memory_accesses.ttae_cache)
2565 pointer_map_destroy (memory_accesses.ttae_cache);
2568 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2569 i.e. those that are likely to be win regardless of the register pressure. */
2571 unsigned int
2572 tree_ssa_lim (void)
2574 unsigned int todo;
2576 tree_ssa_lim_initialize ();
2578 /* Gathers information about memory accesses in the loops. */
2579 analyze_memory_references ();
2581 /* For each statement determine the outermost loop in that it is
2582 invariant and cost for computing the invariant. */
2583 determine_invariantness ();
2585 /* Execute store motion. Force the necessary invariants to be moved
2586 out of the loops as well. */
2587 store_motion ();
2589 /* Move the expressions that are expensive enough. */
2590 todo = move_computations ();
2592 tree_ssa_lim_finalize ();
2594 return todo;