* gcc.target/powerpc/altivec-volatile.c: Adjust expected warning.
[official-gcc.git] / gcc / tree-cfg.c
blob87603e7003702851724b04e1141ef4ad8d425be6
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "toplev.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
163 void
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun);
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
176 static void
177 build_gimple_cfg (gimple_seq seq)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184 init_empty_tree_cfg ();
186 found_computed_goto = 0;
187 make_blocks (seq);
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
233 #ifdef ENABLE_CHECKING
234 verify_stmts ();
235 #endif
238 static unsigned int
239 execute_build_cfg (void)
241 gimple_seq body = gimple_body (current_function_decl);
243 build_gimple_cfg (body);
244 gimple_set_body (current_function_decl, NULL);
245 if (dump_file && (dump_flags & TDF_DETAILS))
247 fprintf (dump_file, "Scope blocks:\n");
248 dump_scope_blocks (dump_file, dump_flags);
250 return 0;
253 struct gimple_opt_pass pass_build_cfg =
256 GIMPLE_PASS,
257 "cfg", /* name */
258 NULL, /* gate */
259 execute_build_cfg, /* execute */
260 NULL, /* sub */
261 NULL, /* next */
262 0, /* static_pass_number */
263 TV_TREE_CFG, /* tv_id */
264 PROP_gimple_leh, /* properties_required */
265 PROP_cfg, /* properties_provided */
266 0, /* properties_destroyed */
267 0, /* todo_flags_start */
268 TODO_verify_stmts | TODO_cleanup_cfg
269 | TODO_dump_func /* todo_flags_finish */
274 /* Return true if T is a computed goto. */
276 static bool
277 computed_goto_p (gimple t)
279 return (gimple_code (t) == GIMPLE_GOTO
280 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
284 /* Search the CFG for any computed gotos. If found, factor them to a
285 common computed goto site. Also record the location of that site so
286 that we can un-factor the gotos after we have converted back to
287 normal form. */
289 static void
290 factor_computed_gotos (void)
292 basic_block bb;
293 tree factored_label_decl = NULL;
294 tree var = NULL;
295 gimple factored_computed_goto_label = NULL;
296 gimple factored_computed_goto = NULL;
298 /* We know there are one or more computed gotos in this function.
299 Examine the last statement in each basic block to see if the block
300 ends with a computed goto. */
302 FOR_EACH_BB (bb)
304 gimple_stmt_iterator gsi = gsi_last_bb (bb);
305 gimple last;
307 if (gsi_end_p (gsi))
308 continue;
310 last = gsi_stmt (gsi);
312 /* Ignore the computed goto we create when we factor the original
313 computed gotos. */
314 if (last == factored_computed_goto)
315 continue;
317 /* If the last statement is a computed goto, factor it. */
318 if (computed_goto_p (last))
320 gimple assignment;
322 /* The first time we find a computed goto we need to create
323 the factored goto block and the variable each original
324 computed goto will use for their goto destination. */
325 if (!factored_computed_goto)
327 basic_block new_bb = create_empty_bb (bb);
328 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
330 /* Create the destination of the factored goto. Each original
331 computed goto will put its desired destination into this
332 variable and jump to the label we create immediately
333 below. */
334 var = create_tmp_var (ptr_type_node, "gotovar");
336 /* Build a label for the new block which will contain the
337 factored computed goto. */
338 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
339 factored_computed_goto_label
340 = gimple_build_label (factored_label_decl);
341 gsi_insert_after (&new_gsi, factored_computed_goto_label,
342 GSI_NEW_STMT);
344 /* Build our new computed goto. */
345 factored_computed_goto = gimple_build_goto (var);
346 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
349 /* Copy the original computed goto's destination into VAR. */
350 assignment = gimple_build_assign (var, gimple_goto_dest (last));
351 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
353 /* And re-vector the computed goto to the new destination. */
354 gimple_goto_set_dest (last, factored_label_decl);
360 /* Build a flowgraph for the sequence of stmts SEQ. */
362 static void
363 make_blocks (gimple_seq seq)
365 gimple_stmt_iterator i = gsi_start (seq);
366 gimple stmt = NULL;
367 bool start_new_block = true;
368 bool first_stmt_of_seq = true;
369 basic_block bb = ENTRY_BLOCK_PTR;
371 while (!gsi_end_p (i))
373 gimple prev_stmt;
375 prev_stmt = stmt;
376 stmt = gsi_stmt (i);
378 /* If the statement starts a new basic block or if we have determined
379 in a previous pass that we need to create a new block for STMT, do
380 so now. */
381 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
383 if (!first_stmt_of_seq)
384 seq = gsi_split_seq_before (&i);
385 bb = create_basic_block (seq, NULL, bb);
386 start_new_block = false;
389 /* Now add STMT to BB and create the subgraphs for special statement
390 codes. */
391 gimple_set_bb (stmt, bb);
393 if (computed_goto_p (stmt))
394 found_computed_goto = true;
396 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
397 next iteration. */
398 if (stmt_ends_bb_p (stmt))
400 /* If the stmt can make abnormal goto use a new temporary
401 for the assignment to the LHS. This makes sure the old value
402 of the LHS is available on the abnormal edge. Otherwise
403 we will end up with overlapping life-ranges for abnormal
404 SSA names. */
405 if (gimple_has_lhs (stmt)
406 && stmt_can_make_abnormal_goto (stmt)
407 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
409 tree lhs = gimple_get_lhs (stmt);
410 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
411 gimple s = gimple_build_assign (lhs, tmp);
412 gimple_set_location (s, gimple_location (stmt));
413 gimple_set_block (s, gimple_block (stmt));
414 gimple_set_lhs (stmt, tmp);
415 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
416 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
417 DECL_GIMPLE_REG_P (tmp) = 1;
418 gsi_insert_after (&i, s, GSI_SAME_STMT);
420 start_new_block = true;
423 gsi_next (&i);
424 first_stmt_of_seq = false;
429 /* Create and return a new empty basic block after bb AFTER. */
431 static basic_block
432 create_bb (void *h, void *e, basic_block after)
434 basic_block bb;
436 gcc_assert (!e);
438 /* Create and initialize a new basic block. Since alloc_block uses
439 GC allocation that clears memory to allocate a basic block, we do
440 not have to clear the newly allocated basic block here. */
441 bb = alloc_block ();
443 bb->index = last_basic_block;
444 bb->flags = BB_NEW;
445 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
446 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
448 /* Add the new block to the linked list of blocks. */
449 link_block (bb, after);
451 /* Grow the basic block array if needed. */
452 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
454 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
455 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
458 /* Add the newly created block to the array. */
459 SET_BASIC_BLOCK (last_basic_block, bb);
461 n_basic_blocks++;
462 last_basic_block++;
464 return bb;
468 /*---------------------------------------------------------------------------
469 Edge creation
470 ---------------------------------------------------------------------------*/
472 /* Fold COND_EXPR_COND of each COND_EXPR. */
474 void
475 fold_cond_expr_cond (void)
477 basic_block bb;
479 FOR_EACH_BB (bb)
481 gimple stmt = last_stmt (bb);
483 if (stmt && gimple_code (stmt) == GIMPLE_COND)
485 location_t loc = gimple_location (stmt);
486 tree cond;
487 bool zerop, onep;
489 fold_defer_overflow_warnings ();
490 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
491 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
492 if (cond)
494 zerop = integer_zerop (cond);
495 onep = integer_onep (cond);
497 else
498 zerop = onep = false;
500 fold_undefer_overflow_warnings (zerop || onep,
501 stmt,
502 WARN_STRICT_OVERFLOW_CONDITIONAL);
503 if (zerop)
504 gimple_cond_make_false (stmt);
505 else if (onep)
506 gimple_cond_make_true (stmt);
511 /* Join all the blocks in the flowgraph. */
513 static void
514 make_edges (void)
516 basic_block bb;
517 struct omp_region *cur_region = NULL;
519 /* Create an edge from entry to the first block with executable
520 statements in it. */
521 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
523 /* Traverse the basic block array placing edges. */
524 FOR_EACH_BB (bb)
526 gimple last = last_stmt (bb);
527 bool fallthru;
529 if (last)
531 enum gimple_code code = gimple_code (last);
532 switch (code)
534 case GIMPLE_GOTO:
535 make_goto_expr_edges (bb);
536 fallthru = false;
537 break;
538 case GIMPLE_RETURN:
539 make_edge (bb, EXIT_BLOCK_PTR, 0);
540 fallthru = false;
541 break;
542 case GIMPLE_COND:
543 make_cond_expr_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_SWITCH:
547 make_gimple_switch_edges (bb);
548 fallthru = false;
549 break;
550 case GIMPLE_RESX:
551 make_eh_edges (last);
552 fallthru = false;
553 break;
554 case GIMPLE_EH_DISPATCH:
555 fallthru = make_eh_dispatch_edges (last);
556 break;
558 case GIMPLE_CALL:
559 /* If this function receives a nonlocal goto, then we need to
560 make edges from this call site to all the nonlocal goto
561 handlers. */
562 if (stmt_can_make_abnormal_goto (last))
563 make_abnormal_goto_edges (bb, true);
565 /* If this statement has reachable exception handlers, then
566 create abnormal edges to them. */
567 make_eh_edges (last);
569 /* BUILTIN_RETURN is really a return statement. */
570 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
571 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
572 /* Some calls are known not to return. */
573 else
574 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
575 break;
577 case GIMPLE_ASSIGN:
578 /* A GIMPLE_ASSIGN may throw internally and thus be considered
579 control-altering. */
580 if (is_ctrl_altering_stmt (last))
581 make_eh_edges (last);
582 fallthru = true;
583 break;
585 case GIMPLE_ASM:
586 make_gimple_asm_edges (bb);
587 fallthru = true;
588 break;
590 case GIMPLE_OMP_PARALLEL:
591 case GIMPLE_OMP_TASK:
592 case GIMPLE_OMP_FOR:
593 case GIMPLE_OMP_SINGLE:
594 case GIMPLE_OMP_MASTER:
595 case GIMPLE_OMP_ORDERED:
596 case GIMPLE_OMP_CRITICAL:
597 case GIMPLE_OMP_SECTION:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
602 case GIMPLE_OMP_SECTIONS:
603 cur_region = new_omp_region (bb, code, cur_region);
604 fallthru = true;
605 break;
607 case GIMPLE_OMP_SECTIONS_SWITCH:
608 fallthru = false;
609 break;
611 case GIMPLE_OMP_ATOMIC_LOAD:
612 case GIMPLE_OMP_ATOMIC_STORE:
613 fallthru = true;
614 break;
616 case GIMPLE_OMP_RETURN:
617 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
618 somewhere other than the next block. This will be
619 created later. */
620 cur_region->exit = bb;
621 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
622 cur_region = cur_region->outer;
623 break;
625 case GIMPLE_OMP_CONTINUE:
626 cur_region->cont = bb;
627 switch (cur_region->type)
629 case GIMPLE_OMP_FOR:
630 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
631 succs edges as abnormal to prevent splitting
632 them. */
633 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
634 /* Make the loopback edge. */
635 make_edge (bb, single_succ (cur_region->entry),
636 EDGE_ABNORMAL);
638 /* Create an edge from GIMPLE_OMP_FOR to exit, which
639 corresponds to the case that the body of the loop
640 is not executed at all. */
641 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
642 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
643 fallthru = false;
644 break;
646 case GIMPLE_OMP_SECTIONS:
647 /* Wire up the edges into and out of the nested sections. */
649 basic_block switch_bb = single_succ (cur_region->entry);
651 struct omp_region *i;
652 for (i = cur_region->inner; i ; i = i->next)
654 gcc_assert (i->type == GIMPLE_OMP_SECTION);
655 make_edge (switch_bb, i->entry, 0);
656 make_edge (i->exit, bb, EDGE_FALLTHRU);
659 /* Make the loopback edge to the block with
660 GIMPLE_OMP_SECTIONS_SWITCH. */
661 make_edge (bb, switch_bb, 0);
663 /* Make the edge from the switch to exit. */
664 make_edge (switch_bb, bb->next_bb, 0);
665 fallthru = false;
667 break;
669 default:
670 gcc_unreachable ();
672 break;
674 default:
675 gcc_assert (!stmt_ends_bb_p (last));
676 fallthru = true;
679 else
680 fallthru = true;
682 if (fallthru)
684 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
685 if (last)
686 assign_discriminator (gimple_location (last), bb->next_bb);
690 if (root_omp_region)
691 free_omp_regions ();
693 /* Fold COND_EXPR_COND of each COND_EXPR. */
694 fold_cond_expr_cond ();
697 /* Trivial hash function for a location_t. ITEM is a pointer to
698 a hash table entry that maps a location_t to a discriminator. */
700 static unsigned int
701 locus_map_hash (const void *item)
703 return ((const struct locus_discrim_map *) item)->locus;
706 /* Equality function for the locus-to-discriminator map. VA and VB
707 point to the two hash table entries to compare. */
709 static int
710 locus_map_eq (const void *va, const void *vb)
712 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
713 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
714 return a->locus == b->locus;
717 /* Find the next available discriminator value for LOCUS. The
718 discriminator distinguishes among several basic blocks that
719 share a common locus, allowing for more accurate sample-based
720 profiling. */
722 static int
723 next_discriminator_for_locus (location_t locus)
725 struct locus_discrim_map item;
726 struct locus_discrim_map **slot;
728 item.locus = locus;
729 item.discriminator = 0;
730 slot = (struct locus_discrim_map **)
731 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
732 (hashval_t) locus, INSERT);
733 gcc_assert (slot);
734 if (*slot == HTAB_EMPTY_ENTRY)
736 *slot = XNEW (struct locus_discrim_map);
737 gcc_assert (*slot);
738 (*slot)->locus = locus;
739 (*slot)->discriminator = 0;
741 (*slot)->discriminator++;
742 return (*slot)->discriminator;
745 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
747 static bool
748 same_line_p (location_t locus1, location_t locus2)
750 expanded_location from, to;
752 if (locus1 == locus2)
753 return true;
755 from = expand_location (locus1);
756 to = expand_location (locus2);
758 if (from.line != to.line)
759 return false;
760 if (from.file == to.file)
761 return true;
762 return (from.file != NULL
763 && to.file != NULL
764 && strcmp (from.file, to.file) == 0);
767 /* Assign a unique discriminator value to block BB if it begins at the same
768 LOCUS as its predecessor block. */
770 static void
771 assign_discriminator (location_t locus, basic_block bb)
773 gimple first_in_to_bb, last_in_to_bb;
775 if (locus == 0 || bb->discriminator != 0)
776 return;
778 first_in_to_bb = first_non_label_stmt (bb);
779 last_in_to_bb = last_stmt (bb);
780 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
781 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
782 bb->discriminator = next_discriminator_for_locus (locus);
785 /* Create the edges for a GIMPLE_COND starting at block BB. */
787 static void
788 make_cond_expr_edges (basic_block bb)
790 gimple entry = last_stmt (bb);
791 gimple then_stmt, else_stmt;
792 basic_block then_bb, else_bb;
793 tree then_label, else_label;
794 edge e;
795 location_t entry_locus;
797 gcc_assert (entry);
798 gcc_assert (gimple_code (entry) == GIMPLE_COND);
800 entry_locus = gimple_location (entry);
802 /* Entry basic blocks for each component. */
803 then_label = gimple_cond_true_label (entry);
804 else_label = gimple_cond_false_label (entry);
805 then_bb = label_to_block (then_label);
806 else_bb = label_to_block (else_label);
807 then_stmt = first_stmt (then_bb);
808 else_stmt = first_stmt (else_bb);
810 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
811 assign_discriminator (entry_locus, then_bb);
812 e->goto_locus = gimple_location (then_stmt);
813 if (e->goto_locus)
814 e->goto_block = gimple_block (then_stmt);
815 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
816 if (e)
818 assign_discriminator (entry_locus, else_bb);
819 e->goto_locus = gimple_location (else_stmt);
820 if (e->goto_locus)
821 e->goto_block = gimple_block (else_stmt);
824 /* We do not need the labels anymore. */
825 gimple_cond_set_true_label (entry, NULL_TREE);
826 gimple_cond_set_false_label (entry, NULL_TREE);
830 /* Called for each element in the hash table (P) as we delete the
831 edge to cases hash table.
833 Clear all the TREE_CHAINs to prevent problems with copying of
834 SWITCH_EXPRs and structure sharing rules, then free the hash table
835 element. */
837 static bool
838 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
839 void *data ATTRIBUTE_UNUSED)
841 tree t, next;
843 for (t = (tree) *value; t; t = next)
845 next = TREE_CHAIN (t);
846 TREE_CHAIN (t) = NULL;
849 *value = NULL;
850 return false;
853 /* Start recording information mapping edges to case labels. */
855 void
856 start_recording_case_labels (void)
858 gcc_assert (edge_to_cases == NULL);
859 edge_to_cases = pointer_map_create ();
860 touched_switch_bbs = BITMAP_ALLOC (NULL);
863 /* Return nonzero if we are recording information for case labels. */
865 static bool
866 recording_case_labels_p (void)
868 return (edge_to_cases != NULL);
871 /* Stop recording information mapping edges to case labels and
872 remove any information we have recorded. */
873 void
874 end_recording_case_labels (void)
876 bitmap_iterator bi;
877 unsigned i;
878 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
879 pointer_map_destroy (edge_to_cases);
880 edge_to_cases = NULL;
881 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
883 basic_block bb = BASIC_BLOCK (i);
884 if (bb)
886 gimple stmt = last_stmt (bb);
887 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
888 group_case_labels_stmt (stmt);
891 BITMAP_FREE (touched_switch_bbs);
894 /* If we are inside a {start,end}_recording_cases block, then return
895 a chain of CASE_LABEL_EXPRs from T which reference E.
897 Otherwise return NULL. */
899 static tree
900 get_cases_for_edge (edge e, gimple t)
902 void **slot;
903 size_t i, n;
905 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
906 chains available. Return NULL so the caller can detect this case. */
907 if (!recording_case_labels_p ())
908 return NULL;
910 slot = pointer_map_contains (edge_to_cases, e);
911 if (slot)
912 return (tree) *slot;
914 /* If we did not find E in the hash table, then this must be the first
915 time we have been queried for information about E & T. Add all the
916 elements from T to the hash table then perform the query again. */
918 n = gimple_switch_num_labels (t);
919 for (i = 0; i < n; i++)
921 tree elt = gimple_switch_label (t, i);
922 tree lab = CASE_LABEL (elt);
923 basic_block label_bb = label_to_block (lab);
924 edge this_edge = find_edge (e->src, label_bb);
926 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
927 a new chain. */
928 slot = pointer_map_insert (edge_to_cases, this_edge);
929 TREE_CHAIN (elt) = (tree) *slot;
930 *slot = elt;
933 return (tree) *pointer_map_contains (edge_to_cases, e);
936 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
938 static void
939 make_gimple_switch_edges (basic_block bb)
941 gimple entry = last_stmt (bb);
942 location_t entry_locus;
943 size_t i, n;
945 entry_locus = gimple_location (entry);
947 n = gimple_switch_num_labels (entry);
949 for (i = 0; i < n; ++i)
951 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
952 basic_block label_bb = label_to_block (lab);
953 make_edge (bb, label_bb, 0);
954 assign_discriminator (entry_locus, label_bb);
959 /* Return the basic block holding label DEST. */
961 basic_block
962 label_to_block_fn (struct function *ifun, tree dest)
964 int uid = LABEL_DECL_UID (dest);
966 /* We would die hard when faced by an undefined label. Emit a label to
967 the very first basic block. This will hopefully make even the dataflow
968 and undefined variable warnings quite right. */
969 if (seen_error () && uid < 0)
971 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
972 gimple stmt;
974 stmt = gimple_build_label (dest);
975 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
976 uid = LABEL_DECL_UID (dest);
978 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
979 <= (unsigned int) uid)
980 return NULL;
981 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
984 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
985 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
987 void
988 make_abnormal_goto_edges (basic_block bb, bool for_call)
990 basic_block target_bb;
991 gimple_stmt_iterator gsi;
993 FOR_EACH_BB (target_bb)
994 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
996 gimple label_stmt = gsi_stmt (gsi);
997 tree target;
999 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1000 break;
1002 target = gimple_label_label (label_stmt);
1004 /* Make an edge to every label block that has been marked as a
1005 potential target for a computed goto or a non-local goto. */
1006 if ((FORCED_LABEL (target) && !for_call)
1007 || (DECL_NONLOCAL (target) && for_call))
1009 make_edge (bb, target_bb, EDGE_ABNORMAL);
1010 break;
1015 /* Create edges for a goto statement at block BB. */
1017 static void
1018 make_goto_expr_edges (basic_block bb)
1020 gimple_stmt_iterator last = gsi_last_bb (bb);
1021 gimple goto_t = gsi_stmt (last);
1023 /* A simple GOTO creates normal edges. */
1024 if (simple_goto_p (goto_t))
1026 tree dest = gimple_goto_dest (goto_t);
1027 basic_block label_bb = label_to_block (dest);
1028 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1029 e->goto_locus = gimple_location (goto_t);
1030 assign_discriminator (e->goto_locus, label_bb);
1031 if (e->goto_locus)
1032 e->goto_block = gimple_block (goto_t);
1033 gsi_remove (&last, true);
1034 return;
1037 /* A computed GOTO creates abnormal edges. */
1038 make_abnormal_goto_edges (bb, false);
1041 /* Create edges for an asm statement with labels at block BB. */
1043 static void
1044 make_gimple_asm_edges (basic_block bb)
1046 gimple stmt = last_stmt (bb);
1047 location_t stmt_loc = gimple_location (stmt);
1048 int i, n = gimple_asm_nlabels (stmt);
1050 for (i = 0; i < n; ++i)
1052 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1053 basic_block label_bb = label_to_block (label);
1054 make_edge (bb, label_bb, 0);
1055 assign_discriminator (stmt_loc, label_bb);
1059 /*---------------------------------------------------------------------------
1060 Flowgraph analysis
1061 ---------------------------------------------------------------------------*/
1063 /* Cleanup useless labels in basic blocks. This is something we wish
1064 to do early because it allows us to group case labels before creating
1065 the edges for the CFG, and it speeds up block statement iterators in
1066 all passes later on.
1067 We rerun this pass after CFG is created, to get rid of the labels that
1068 are no longer referenced. After then we do not run it any more, since
1069 (almost) no new labels should be created. */
1071 /* A map from basic block index to the leading label of that block. */
1072 static struct label_record
1074 /* The label. */
1075 tree label;
1077 /* True if the label is referenced from somewhere. */
1078 bool used;
1079 } *label_for_bb;
1081 /* Given LABEL return the first label in the same basic block. */
1083 static tree
1084 main_block_label (tree label)
1086 basic_block bb = label_to_block (label);
1087 tree main_label = label_for_bb[bb->index].label;
1089 /* label_to_block possibly inserted undefined label into the chain. */
1090 if (!main_label)
1092 label_for_bb[bb->index].label = label;
1093 main_label = label;
1096 label_for_bb[bb->index].used = true;
1097 return main_label;
1100 /* Clean up redundant labels within the exception tree. */
1102 static void
1103 cleanup_dead_labels_eh (void)
1105 eh_landing_pad lp;
1106 eh_region r;
1107 tree lab;
1108 int i;
1110 if (cfun->eh == NULL)
1111 return;
1113 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1114 if (lp && lp->post_landing_pad)
1116 lab = main_block_label (lp->post_landing_pad);
1117 if (lab != lp->post_landing_pad)
1119 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1120 EH_LANDING_PAD_NR (lab) = lp->index;
1124 FOR_ALL_EH_REGION (r)
1125 switch (r->type)
1127 case ERT_CLEANUP:
1128 case ERT_MUST_NOT_THROW:
1129 break;
1131 case ERT_TRY:
1133 eh_catch c;
1134 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1136 lab = c->label;
1137 if (lab)
1138 c->label = main_block_label (lab);
1141 break;
1143 case ERT_ALLOWED_EXCEPTIONS:
1144 lab = r->u.allowed.label;
1145 if (lab)
1146 r->u.allowed.label = main_block_label (lab);
1147 break;
1152 /* Cleanup redundant labels. This is a three-step process:
1153 1) Find the leading label for each block.
1154 2) Redirect all references to labels to the leading labels.
1155 3) Cleanup all useless labels. */
1157 void
1158 cleanup_dead_labels (void)
1160 basic_block bb;
1161 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1163 /* Find a suitable label for each block. We use the first user-defined
1164 label if there is one, or otherwise just the first label we see. */
1165 FOR_EACH_BB (bb)
1167 gimple_stmt_iterator i;
1169 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1171 tree label;
1172 gimple stmt = gsi_stmt (i);
1174 if (gimple_code (stmt) != GIMPLE_LABEL)
1175 break;
1177 label = gimple_label_label (stmt);
1179 /* If we have not yet seen a label for the current block,
1180 remember this one and see if there are more labels. */
1181 if (!label_for_bb[bb->index].label)
1183 label_for_bb[bb->index].label = label;
1184 continue;
1187 /* If we did see a label for the current block already, but it
1188 is an artificially created label, replace it if the current
1189 label is a user defined label. */
1190 if (!DECL_ARTIFICIAL (label)
1191 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1193 label_for_bb[bb->index].label = label;
1194 break;
1199 /* Now redirect all jumps/branches to the selected label.
1200 First do so for each block ending in a control statement. */
1201 FOR_EACH_BB (bb)
1203 gimple stmt = last_stmt (bb);
1204 if (!stmt)
1205 continue;
1207 switch (gimple_code (stmt))
1209 case GIMPLE_COND:
1211 tree true_label = gimple_cond_true_label (stmt);
1212 tree false_label = gimple_cond_false_label (stmt);
1214 if (true_label)
1215 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1216 if (false_label)
1217 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1218 break;
1221 case GIMPLE_SWITCH:
1223 size_t i, n = gimple_switch_num_labels (stmt);
1225 /* Replace all destination labels. */
1226 for (i = 0; i < n; ++i)
1228 tree case_label = gimple_switch_label (stmt, i);
1229 tree label = main_block_label (CASE_LABEL (case_label));
1230 CASE_LABEL (case_label) = label;
1232 break;
1235 case GIMPLE_ASM:
1237 int i, n = gimple_asm_nlabels (stmt);
1239 for (i = 0; i < n; ++i)
1241 tree cons = gimple_asm_label_op (stmt, i);
1242 tree label = main_block_label (TREE_VALUE (cons));
1243 TREE_VALUE (cons) = label;
1245 break;
1248 /* We have to handle gotos until they're removed, and we don't
1249 remove them until after we've created the CFG edges. */
1250 case GIMPLE_GOTO:
1251 if (!computed_goto_p (stmt))
1253 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1254 gimple_goto_set_dest (stmt, new_dest);
1256 break;
1258 default:
1259 break;
1263 /* Do the same for the exception region tree labels. */
1264 cleanup_dead_labels_eh ();
1266 /* Finally, purge dead labels. All user-defined labels and labels that
1267 can be the target of non-local gotos and labels which have their
1268 address taken are preserved. */
1269 FOR_EACH_BB (bb)
1271 gimple_stmt_iterator i;
1272 tree label_for_this_bb = label_for_bb[bb->index].label;
1274 if (!label_for_this_bb)
1275 continue;
1277 /* If the main label of the block is unused, we may still remove it. */
1278 if (!label_for_bb[bb->index].used)
1279 label_for_this_bb = NULL;
1281 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1283 tree label;
1284 gimple stmt = gsi_stmt (i);
1286 if (gimple_code (stmt) != GIMPLE_LABEL)
1287 break;
1289 label = gimple_label_label (stmt);
1291 if (label == label_for_this_bb
1292 || !DECL_ARTIFICIAL (label)
1293 || DECL_NONLOCAL (label)
1294 || FORCED_LABEL (label))
1295 gsi_next (&i);
1296 else
1297 gsi_remove (&i, true);
1301 free (label_for_bb);
1304 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1305 the ones jumping to the same label.
1306 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1308 static void
1309 group_case_labels_stmt (gimple stmt)
1311 int old_size = gimple_switch_num_labels (stmt);
1312 int i, j, new_size = old_size;
1313 tree default_case = NULL_TREE;
1314 tree default_label = NULL_TREE;
1315 bool has_default;
1317 /* The default label is always the first case in a switch
1318 statement after gimplification if it was not optimized
1319 away */
1320 if (!CASE_LOW (gimple_switch_default_label (stmt))
1321 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1323 default_case = gimple_switch_default_label (stmt);
1324 default_label = CASE_LABEL (default_case);
1325 has_default = true;
1327 else
1328 has_default = false;
1330 /* Look for possible opportunities to merge cases. */
1331 if (has_default)
1332 i = 1;
1333 else
1334 i = 0;
1335 while (i < old_size)
1337 tree base_case, base_label, base_high;
1338 base_case = gimple_switch_label (stmt, i);
1340 gcc_assert (base_case);
1341 base_label = CASE_LABEL (base_case);
1343 /* Discard cases that have the same destination as the
1344 default case. */
1345 if (base_label == default_label)
1347 gimple_switch_set_label (stmt, i, NULL_TREE);
1348 i++;
1349 new_size--;
1350 continue;
1353 base_high = CASE_HIGH (base_case)
1354 ? CASE_HIGH (base_case)
1355 : CASE_LOW (base_case);
1356 i++;
1358 /* Try to merge case labels. Break out when we reach the end
1359 of the label vector or when we cannot merge the next case
1360 label with the current one. */
1361 while (i < old_size)
1363 tree merge_case = gimple_switch_label (stmt, i);
1364 tree merge_label = CASE_LABEL (merge_case);
1365 tree t = int_const_binop (PLUS_EXPR, base_high,
1366 integer_one_node, 1);
1368 /* Merge the cases if they jump to the same place,
1369 and their ranges are consecutive. */
1370 if (merge_label == base_label
1371 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1373 base_high = CASE_HIGH (merge_case) ?
1374 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1375 CASE_HIGH (base_case) = base_high;
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 new_size--;
1378 i++;
1380 else
1381 break;
1385 /* Compress the case labels in the label vector, and adjust the
1386 length of the vector. */
1387 for (i = 0, j = 0; i < new_size; i++)
1389 while (! gimple_switch_label (stmt, j))
1390 j++;
1391 gimple_switch_set_label (stmt, i,
1392 gimple_switch_label (stmt, j++));
1395 gcc_assert (new_size <= old_size);
1396 gimple_switch_set_num_labels (stmt, new_size);
1399 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1400 and scan the sorted vector of cases. Combine the ones jumping to the
1401 same label. */
1403 void
1404 group_case_labels (void)
1406 basic_block bb;
1408 FOR_EACH_BB (bb)
1410 gimple stmt = last_stmt (bb);
1411 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1412 group_case_labels_stmt (stmt);
1416 /* Checks whether we can merge block B into block A. */
1418 static bool
1419 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1421 gimple stmt;
1422 gimple_stmt_iterator gsi;
1423 gimple_seq phis;
1425 if (!single_succ_p (a))
1426 return false;
1428 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1429 return false;
1431 if (single_succ (a) != b)
1432 return false;
1434 if (!single_pred_p (b))
1435 return false;
1437 if (b == EXIT_BLOCK_PTR)
1438 return false;
1440 /* If A ends by a statement causing exceptions or something similar, we
1441 cannot merge the blocks. */
1442 stmt = last_stmt (a);
1443 if (stmt && stmt_ends_bb_p (stmt))
1444 return false;
1446 /* Do not allow a block with only a non-local label to be merged. */
1447 if (stmt
1448 && gimple_code (stmt) == GIMPLE_LABEL
1449 && DECL_NONLOCAL (gimple_label_label (stmt)))
1450 return false;
1452 /* Examine the labels at the beginning of B. */
1453 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1455 tree lab;
1456 stmt = gsi_stmt (gsi);
1457 if (gimple_code (stmt) != GIMPLE_LABEL)
1458 break;
1459 lab = gimple_label_label (stmt);
1461 /* Do not remove user labels. */
1462 if (!DECL_ARTIFICIAL (lab))
1463 return false;
1466 /* Protect the loop latches. */
1467 if (current_loops && b->loop_father->latch == b)
1468 return false;
1470 /* It must be possible to eliminate all phi nodes in B. If ssa form
1471 is not up-to-date and a name-mapping is registered, we cannot eliminate
1472 any phis. Symbols marked for renaming are never a problem though. */
1473 phis = phi_nodes (b);
1474 if (!gimple_seq_empty_p (phis)
1475 && name_mappings_registered_p ())
1476 return false;
1478 /* When not optimizing, don't merge if we'd lose goto_locus. */
1479 if (!optimize
1480 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1482 location_t goto_locus = single_succ_edge (a)->goto_locus;
1483 gimple_stmt_iterator prev, next;
1484 prev = gsi_last_nondebug_bb (a);
1485 next = gsi_after_labels (b);
1486 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1487 gsi_next_nondebug (&next);
1488 if ((gsi_end_p (prev)
1489 || gimple_location (gsi_stmt (prev)) != goto_locus)
1490 && (gsi_end_p (next)
1491 || gimple_location (gsi_stmt (next)) != goto_locus))
1492 return false;
1495 return true;
1498 /* Return true if the var whose chain of uses starts at PTR has no
1499 nondebug uses. */
1500 bool
1501 has_zero_uses_1 (const ssa_use_operand_t *head)
1503 const ssa_use_operand_t *ptr;
1505 for (ptr = head->next; ptr != head; ptr = ptr->next)
1506 if (!is_gimple_debug (USE_STMT (ptr)))
1507 return false;
1509 return true;
1512 /* Return true if the var whose chain of uses starts at PTR has a
1513 single nondebug use. Set USE_P and STMT to that single nondebug
1514 use, if so, or to NULL otherwise. */
1515 bool
1516 single_imm_use_1 (const ssa_use_operand_t *head,
1517 use_operand_p *use_p, gimple *stmt)
1519 ssa_use_operand_t *ptr, *single_use = 0;
1521 for (ptr = head->next; ptr != head; ptr = ptr->next)
1522 if (!is_gimple_debug (USE_STMT (ptr)))
1524 if (single_use)
1526 single_use = NULL;
1527 break;
1529 single_use = ptr;
1532 if (use_p)
1533 *use_p = single_use;
1535 if (stmt)
1536 *stmt = single_use ? single_use->loc.stmt : NULL;
1538 return !!single_use;
1541 /* Replaces all uses of NAME by VAL. */
1543 void
1544 replace_uses_by (tree name, tree val)
1546 imm_use_iterator imm_iter;
1547 use_operand_p use;
1548 gimple stmt;
1549 edge e;
1551 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1553 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1555 replace_exp (use, val);
1557 if (gimple_code (stmt) == GIMPLE_PHI)
1559 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1560 if (e->flags & EDGE_ABNORMAL)
1562 /* This can only occur for virtual operands, since
1563 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1564 would prevent replacement. */
1565 gcc_assert (!is_gimple_reg (name));
1566 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1571 if (gimple_code (stmt) != GIMPLE_PHI)
1573 size_t i;
1575 fold_stmt_inplace (stmt);
1576 if (cfgcleanup_altered_bbs)
1577 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1579 /* FIXME. This should go in update_stmt. */
1580 for (i = 0; i < gimple_num_ops (stmt); i++)
1582 tree op = gimple_op (stmt, i);
1583 /* Operands may be empty here. For example, the labels
1584 of a GIMPLE_COND are nulled out following the creation
1585 of the corresponding CFG edges. */
1586 if (op && TREE_CODE (op) == ADDR_EXPR)
1587 recompute_tree_invariant_for_addr_expr (op);
1590 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1591 update_stmt (stmt);
1595 gcc_assert (has_zero_uses (name));
1597 /* Also update the trees stored in loop structures. */
1598 if (current_loops)
1600 struct loop *loop;
1601 loop_iterator li;
1603 FOR_EACH_LOOP (li, loop, 0)
1605 substitute_in_loop_info (loop, name, val);
1610 /* Merge block B into block A. */
1612 static void
1613 gimple_merge_blocks (basic_block a, basic_block b)
1615 gimple_stmt_iterator last, gsi, psi;
1616 gimple_seq phis = phi_nodes (b);
1618 if (dump_file)
1619 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1621 /* Remove all single-valued PHI nodes from block B of the form
1622 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1623 gsi = gsi_last_bb (a);
1624 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1626 gimple phi = gsi_stmt (psi);
1627 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1628 gimple copy;
1629 bool may_replace_uses = !is_gimple_reg (def)
1630 || may_propagate_copy (def, use);
1632 /* In case we maintain loop closed ssa form, do not propagate arguments
1633 of loop exit phi nodes. */
1634 if (current_loops
1635 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1636 && is_gimple_reg (def)
1637 && TREE_CODE (use) == SSA_NAME
1638 && a->loop_father != b->loop_father)
1639 may_replace_uses = false;
1641 if (!may_replace_uses)
1643 gcc_assert (is_gimple_reg (def));
1645 /* Note that just emitting the copies is fine -- there is no problem
1646 with ordering of phi nodes. This is because A is the single
1647 predecessor of B, therefore results of the phi nodes cannot
1648 appear as arguments of the phi nodes. */
1649 copy = gimple_build_assign (def, use);
1650 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1651 remove_phi_node (&psi, false);
1653 else
1655 /* If we deal with a PHI for virtual operands, we can simply
1656 propagate these without fussing with folding or updating
1657 the stmt. */
1658 if (!is_gimple_reg (def))
1660 imm_use_iterator iter;
1661 use_operand_p use_p;
1662 gimple stmt;
1664 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1665 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1666 SET_USE (use_p, use);
1668 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1669 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1671 else
1672 replace_uses_by (def, use);
1674 remove_phi_node (&psi, true);
1678 /* Ensure that B follows A. */
1679 move_block_after (b, a);
1681 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1682 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1684 /* Remove labels from B and set gimple_bb to A for other statements. */
1685 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1687 gimple stmt = gsi_stmt (gsi);
1688 if (gimple_code (stmt) == GIMPLE_LABEL)
1690 tree label = gimple_label_label (stmt);
1691 int lp_nr;
1693 gsi_remove (&gsi, false);
1695 /* Now that we can thread computed gotos, we might have
1696 a situation where we have a forced label in block B
1697 However, the label at the start of block B might still be
1698 used in other ways (think about the runtime checking for
1699 Fortran assigned gotos). So we can not just delete the
1700 label. Instead we move the label to the start of block A. */
1701 if (FORCED_LABEL (label))
1703 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1704 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1707 lp_nr = EH_LANDING_PAD_NR (label);
1708 if (lp_nr)
1710 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1711 lp->post_landing_pad = NULL;
1714 else
1716 gimple_set_bb (stmt, a);
1717 gsi_next (&gsi);
1721 /* Merge the sequences. */
1722 last = gsi_last_bb (a);
1723 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1724 set_bb_seq (b, NULL);
1726 if (cfgcleanup_altered_bbs)
1727 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1731 /* Return the one of two successors of BB that is not reachable by a
1732 complex edge, if there is one. Else, return BB. We use
1733 this in optimizations that use post-dominators for their heuristics,
1734 to catch the cases in C++ where function calls are involved. */
1736 basic_block
1737 single_noncomplex_succ (basic_block bb)
1739 edge e0, e1;
1740 if (EDGE_COUNT (bb->succs) != 2)
1741 return bb;
1743 e0 = EDGE_SUCC (bb, 0);
1744 e1 = EDGE_SUCC (bb, 1);
1745 if (e0->flags & EDGE_COMPLEX)
1746 return e1->dest;
1747 if (e1->flags & EDGE_COMPLEX)
1748 return e0->dest;
1750 return bb;
1753 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1755 void
1756 notice_special_calls (gimple call)
1758 int flags = gimple_call_flags (call);
1760 if (flags & ECF_MAY_BE_ALLOCA)
1761 cfun->calls_alloca = true;
1762 if (flags & ECF_RETURNS_TWICE)
1763 cfun->calls_setjmp = true;
1767 /* Clear flags set by notice_special_calls. Used by dead code removal
1768 to update the flags. */
1770 void
1771 clear_special_calls (void)
1773 cfun->calls_alloca = false;
1774 cfun->calls_setjmp = false;
1777 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1779 static void
1780 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1782 /* Since this block is no longer reachable, we can just delete all
1783 of its PHI nodes. */
1784 remove_phi_nodes (bb);
1786 /* Remove edges to BB's successors. */
1787 while (EDGE_COUNT (bb->succs) > 0)
1788 remove_edge (EDGE_SUCC (bb, 0));
1792 /* Remove statements of basic block BB. */
1794 static void
1795 remove_bb (basic_block bb)
1797 gimple_stmt_iterator i;
1799 if (dump_file)
1801 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1802 if (dump_flags & TDF_DETAILS)
1804 dump_bb (bb, dump_file, 0);
1805 fprintf (dump_file, "\n");
1809 if (current_loops)
1811 struct loop *loop = bb->loop_father;
1813 /* If a loop gets removed, clean up the information associated
1814 with it. */
1815 if (loop->latch == bb
1816 || loop->header == bb)
1817 free_numbers_of_iterations_estimates_loop (loop);
1820 /* Remove all the instructions in the block. */
1821 if (bb_seq (bb) != NULL)
1823 /* Walk backwards so as to get a chance to substitute all
1824 released DEFs into debug stmts. See
1825 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1826 details. */
1827 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1829 gimple stmt = gsi_stmt (i);
1830 if (gimple_code (stmt) == GIMPLE_LABEL
1831 && (FORCED_LABEL (gimple_label_label (stmt))
1832 || DECL_NONLOCAL (gimple_label_label (stmt))))
1834 basic_block new_bb;
1835 gimple_stmt_iterator new_gsi;
1837 /* A non-reachable non-local label may still be referenced.
1838 But it no longer needs to carry the extra semantics of
1839 non-locality. */
1840 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1842 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1843 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1846 new_bb = bb->prev_bb;
1847 new_gsi = gsi_start_bb (new_bb);
1848 gsi_remove (&i, false);
1849 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1851 else
1853 /* Release SSA definitions if we are in SSA. Note that we
1854 may be called when not in SSA. For example,
1855 final_cleanup calls this function via
1856 cleanup_tree_cfg. */
1857 if (gimple_in_ssa_p (cfun))
1858 release_defs (stmt);
1860 gsi_remove (&i, true);
1863 if (gsi_end_p (i))
1864 i = gsi_last_bb (bb);
1865 else
1866 gsi_prev (&i);
1870 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1871 bb->il.gimple = NULL;
1875 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1876 predicate VAL, return the edge that will be taken out of the block.
1877 If VAL does not match a unique edge, NULL is returned. */
1879 edge
1880 find_taken_edge (basic_block bb, tree val)
1882 gimple stmt;
1884 stmt = last_stmt (bb);
1886 gcc_assert (stmt);
1887 gcc_assert (is_ctrl_stmt (stmt));
1889 if (val == NULL)
1890 return NULL;
1892 if (!is_gimple_min_invariant (val))
1893 return NULL;
1895 if (gimple_code (stmt) == GIMPLE_COND)
1896 return find_taken_edge_cond_expr (bb, val);
1898 if (gimple_code (stmt) == GIMPLE_SWITCH)
1899 return find_taken_edge_switch_expr (bb, val);
1901 if (computed_goto_p (stmt))
1903 /* Only optimize if the argument is a label, if the argument is
1904 not a label then we can not construct a proper CFG.
1906 It may be the case that we only need to allow the LABEL_REF to
1907 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1908 appear inside a LABEL_EXPR just to be safe. */
1909 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1910 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1911 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1912 return NULL;
1915 gcc_unreachable ();
1918 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1919 statement, determine which of the outgoing edges will be taken out of the
1920 block. Return NULL if either edge may be taken. */
1922 static edge
1923 find_taken_edge_computed_goto (basic_block bb, tree val)
1925 basic_block dest;
1926 edge e = NULL;
1928 dest = label_to_block (val);
1929 if (dest)
1931 e = find_edge (bb, dest);
1932 gcc_assert (e != NULL);
1935 return e;
1938 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1939 statement, determine which of the two edges will be taken out of the
1940 block. Return NULL if either edge may be taken. */
1942 static edge
1943 find_taken_edge_cond_expr (basic_block bb, tree val)
1945 edge true_edge, false_edge;
1947 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1949 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1950 return (integer_zerop (val) ? false_edge : true_edge);
1953 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1954 statement, determine which edge will be taken out of the block. Return
1955 NULL if any edge may be taken. */
1957 static edge
1958 find_taken_edge_switch_expr (basic_block bb, tree val)
1960 basic_block dest_bb;
1961 edge e;
1962 gimple switch_stmt;
1963 tree taken_case;
1965 switch_stmt = last_stmt (bb);
1966 taken_case = find_case_label_for_value (switch_stmt, val);
1967 dest_bb = label_to_block (CASE_LABEL (taken_case));
1969 e = find_edge (bb, dest_bb);
1970 gcc_assert (e);
1971 return e;
1975 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1976 We can make optimal use here of the fact that the case labels are
1977 sorted: We can do a binary search for a case matching VAL. */
1979 static tree
1980 find_case_label_for_value (gimple switch_stmt, tree val)
1982 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1983 tree default_case = gimple_switch_default_label (switch_stmt);
1985 for (low = 0, high = n; high - low > 1; )
1987 size_t i = (high + low) / 2;
1988 tree t = gimple_switch_label (switch_stmt, i);
1989 int cmp;
1991 /* Cache the result of comparing CASE_LOW and val. */
1992 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1994 if (cmp > 0)
1995 high = i;
1996 else
1997 low = i;
1999 if (CASE_HIGH (t) == NULL)
2001 /* A singe-valued case label. */
2002 if (cmp == 0)
2003 return t;
2005 else
2007 /* A case range. We can only handle integer ranges. */
2008 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2009 return t;
2013 return default_case;
2017 /* Dump a basic block on stderr. */
2019 void
2020 gimple_debug_bb (basic_block bb)
2022 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2026 /* Dump basic block with index N on stderr. */
2028 basic_block
2029 gimple_debug_bb_n (int n)
2031 gimple_debug_bb (BASIC_BLOCK (n));
2032 return BASIC_BLOCK (n);
2036 /* Dump the CFG on stderr.
2038 FLAGS are the same used by the tree dumping functions
2039 (see TDF_* in tree-pass.h). */
2041 void
2042 gimple_debug_cfg (int flags)
2044 gimple_dump_cfg (stderr, flags);
2048 /* Dump the program showing basic block boundaries on the given FILE.
2050 FLAGS are the same used by the tree dumping functions (see TDF_* in
2051 tree.h). */
2053 void
2054 gimple_dump_cfg (FILE *file, int flags)
2056 if (flags & TDF_DETAILS)
2058 const char *funcname
2059 = lang_hooks.decl_printable_name (current_function_decl, 2);
2061 fputc ('\n', file);
2062 fprintf (file, ";; Function %s\n\n", funcname);
2063 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2064 n_basic_blocks, n_edges, last_basic_block);
2066 brief_dump_cfg (file);
2067 fprintf (file, "\n");
2070 if (flags & TDF_STATS)
2071 dump_cfg_stats (file);
2073 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2077 /* Dump CFG statistics on FILE. */
2079 void
2080 dump_cfg_stats (FILE *file)
2082 static long max_num_merged_labels = 0;
2083 unsigned long size, total = 0;
2084 long num_edges;
2085 basic_block bb;
2086 const char * const fmt_str = "%-30s%-13s%12s\n";
2087 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2088 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2089 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2090 const char *funcname
2091 = lang_hooks.decl_printable_name (current_function_decl, 2);
2094 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2096 fprintf (file, "---------------------------------------------------------\n");
2097 fprintf (file, fmt_str, "", " Number of ", "Memory");
2098 fprintf (file, fmt_str, "", " instances ", "used ");
2099 fprintf (file, "---------------------------------------------------------\n");
2101 size = n_basic_blocks * sizeof (struct basic_block_def);
2102 total += size;
2103 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2104 SCALE (size), LABEL (size));
2106 num_edges = 0;
2107 FOR_EACH_BB (bb)
2108 num_edges += EDGE_COUNT (bb->succs);
2109 size = num_edges * sizeof (struct edge_def);
2110 total += size;
2111 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2115 LABEL (total));
2116 fprintf (file, "---------------------------------------------------------\n");
2117 fprintf (file, "\n");
2119 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2120 max_num_merged_labels = cfg_stats.num_merged_labels;
2122 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2123 cfg_stats.num_merged_labels, max_num_merged_labels);
2125 fprintf (file, "\n");
2129 /* Dump CFG statistics on stderr. Keep extern so that it's always
2130 linked in the final executable. */
2132 DEBUG_FUNCTION void
2133 debug_cfg_stats (void)
2135 dump_cfg_stats (stderr);
2139 /* Dump the flowgraph to a .vcg FILE. */
2141 static void
2142 gimple_cfg2vcg (FILE *file)
2144 edge e;
2145 edge_iterator ei;
2146 basic_block bb;
2147 const char *funcname
2148 = lang_hooks.decl_printable_name (current_function_decl, 2);
2150 /* Write the file header. */
2151 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2152 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2153 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2155 /* Write blocks and edges. */
2156 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2158 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2159 e->dest->index);
2161 if (e->flags & EDGE_FAKE)
2162 fprintf (file, " linestyle: dotted priority: 10");
2163 else
2164 fprintf (file, " linestyle: solid priority: 100");
2166 fprintf (file, " }\n");
2168 fputc ('\n', file);
2170 FOR_EACH_BB (bb)
2172 enum gimple_code head_code, end_code;
2173 const char *head_name, *end_name;
2174 int head_line = 0;
2175 int end_line = 0;
2176 gimple first = first_stmt (bb);
2177 gimple last = last_stmt (bb);
2179 if (first)
2181 head_code = gimple_code (first);
2182 head_name = gimple_code_name[head_code];
2183 head_line = get_lineno (first);
2185 else
2186 head_name = "no-statement";
2188 if (last)
2190 end_code = gimple_code (last);
2191 end_name = gimple_code_name[end_code];
2192 end_line = get_lineno (last);
2194 else
2195 end_name = "no-statement";
2197 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2198 bb->index, bb->index, head_name, head_line, end_name,
2199 end_line);
2201 FOR_EACH_EDGE (e, ei, bb->succs)
2203 if (e->dest == EXIT_BLOCK_PTR)
2204 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2205 else
2206 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " priority: 10 linestyle: dotted");
2210 else
2211 fprintf (file, " priority: 100 linestyle: solid");
2213 fprintf (file, " }\n");
2216 if (bb->next_bb != EXIT_BLOCK_PTR)
2217 fputc ('\n', file);
2220 fputs ("}\n\n", file);
2225 /*---------------------------------------------------------------------------
2226 Miscellaneous helpers
2227 ---------------------------------------------------------------------------*/
2229 /* Return true if T represents a stmt that always transfers control. */
2231 bool
2232 is_ctrl_stmt (gimple t)
2234 switch (gimple_code (t))
2236 case GIMPLE_COND:
2237 case GIMPLE_SWITCH:
2238 case GIMPLE_GOTO:
2239 case GIMPLE_RETURN:
2240 case GIMPLE_RESX:
2241 return true;
2242 default:
2243 return false;
2248 /* Return true if T is a statement that may alter the flow of control
2249 (e.g., a call to a non-returning function). */
2251 bool
2252 is_ctrl_altering_stmt (gimple t)
2254 gcc_assert (t);
2256 switch (gimple_code (t))
2258 case GIMPLE_CALL:
2260 int flags = gimple_call_flags (t);
2262 /* A non-pure/const call alters flow control if the current
2263 function has nonlocal labels. */
2264 if (!(flags & (ECF_CONST | ECF_PURE)) && cfun->has_nonlocal_label)
2265 return true;
2267 /* A call also alters control flow if it does not return. */
2268 if (flags & ECF_NORETURN)
2269 return true;
2271 /* BUILT_IN_RETURN call is same as return statement. */
2272 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2273 return true;
2275 break;
2277 case GIMPLE_EH_DISPATCH:
2278 /* EH_DISPATCH branches to the individual catch handlers at
2279 this level of a try or allowed-exceptions region. It can
2280 fallthru to the next statement as well. */
2281 return true;
2283 case GIMPLE_ASM:
2284 if (gimple_asm_nlabels (t) > 0)
2285 return true;
2286 break;
2288 CASE_GIMPLE_OMP:
2289 /* OpenMP directives alter control flow. */
2290 return true;
2292 default:
2293 break;
2296 /* If a statement can throw, it alters control flow. */
2297 return stmt_can_throw_internal (t);
2301 /* Return true if T is a simple local goto. */
2303 bool
2304 simple_goto_p (gimple t)
2306 return (gimple_code (t) == GIMPLE_GOTO
2307 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2311 /* Return true if T can make an abnormal transfer of control flow.
2312 Transfers of control flow associated with EH are excluded. */
2314 bool
2315 stmt_can_make_abnormal_goto (gimple t)
2317 if (computed_goto_p (t))
2318 return true;
2319 if (is_gimple_call (t))
2320 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2321 return false;
2325 /* Return true if STMT should start a new basic block. PREV_STMT is
2326 the statement preceding STMT. It is used when STMT is a label or a
2327 case label. Labels should only start a new basic block if their
2328 previous statement wasn't a label. Otherwise, sequence of labels
2329 would generate unnecessary basic blocks that only contain a single
2330 label. */
2332 static inline bool
2333 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2335 if (stmt == NULL)
2336 return false;
2338 /* Labels start a new basic block only if the preceding statement
2339 wasn't a label of the same type. This prevents the creation of
2340 consecutive blocks that have nothing but a single label. */
2341 if (gimple_code (stmt) == GIMPLE_LABEL)
2343 /* Nonlocal and computed GOTO targets always start a new block. */
2344 if (DECL_NONLOCAL (gimple_label_label (stmt))
2345 || FORCED_LABEL (gimple_label_label (stmt)))
2346 return true;
2348 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2350 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2351 return true;
2353 cfg_stats.num_merged_labels++;
2354 return false;
2356 else
2357 return true;
2360 return false;
2364 /* Return true if T should end a basic block. */
2366 bool
2367 stmt_ends_bb_p (gimple t)
2369 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2372 /* Remove block annotations and other data structures. */
2374 void
2375 delete_tree_cfg_annotations (void)
2377 label_to_block_map = NULL;
2381 /* Return the first statement in basic block BB. */
2383 gimple
2384 first_stmt (basic_block bb)
2386 gimple_stmt_iterator i = gsi_start_bb (bb);
2387 gimple stmt = NULL;
2389 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2391 gsi_next (&i);
2392 stmt = NULL;
2394 return stmt;
2397 /* Return the first non-label statement in basic block BB. */
2399 static gimple
2400 first_non_label_stmt (basic_block bb)
2402 gimple_stmt_iterator i = gsi_start_bb (bb);
2403 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2404 gsi_next (&i);
2405 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2408 /* Return the last statement in basic block BB. */
2410 gimple
2411 last_stmt (basic_block bb)
2413 gimple_stmt_iterator i = gsi_last_bb (bb);
2414 gimple stmt = NULL;
2416 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2418 gsi_prev (&i);
2419 stmt = NULL;
2421 return stmt;
2424 /* Return the last statement of an otherwise empty block. Return NULL
2425 if the block is totally empty, or if it contains more than one
2426 statement. */
2428 gimple
2429 last_and_only_stmt (basic_block bb)
2431 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2432 gimple last, prev;
2434 if (gsi_end_p (i))
2435 return NULL;
2437 last = gsi_stmt (i);
2438 gsi_prev_nondebug (&i);
2439 if (gsi_end_p (i))
2440 return last;
2442 /* Empty statements should no longer appear in the instruction stream.
2443 Everything that might have appeared before should be deleted by
2444 remove_useless_stmts, and the optimizers should just gsi_remove
2445 instead of smashing with build_empty_stmt.
2447 Thus the only thing that should appear here in a block containing
2448 one executable statement is a label. */
2449 prev = gsi_stmt (i);
2450 if (gimple_code (prev) == GIMPLE_LABEL)
2451 return last;
2452 else
2453 return NULL;
2456 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2458 static void
2459 reinstall_phi_args (edge new_edge, edge old_edge)
2461 edge_var_map_vector v;
2462 edge_var_map *vm;
2463 int i;
2464 gimple_stmt_iterator phis;
2466 v = redirect_edge_var_map_vector (old_edge);
2467 if (!v)
2468 return;
2470 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2471 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2472 i++, gsi_next (&phis))
2474 gimple phi = gsi_stmt (phis);
2475 tree result = redirect_edge_var_map_result (vm);
2476 tree arg = redirect_edge_var_map_def (vm);
2478 gcc_assert (result == gimple_phi_result (phi));
2480 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2483 redirect_edge_var_map_clear (old_edge);
2486 /* Returns the basic block after which the new basic block created
2487 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2488 near its "logical" location. This is of most help to humans looking
2489 at debugging dumps. */
2491 static basic_block
2492 split_edge_bb_loc (edge edge_in)
2494 basic_block dest = edge_in->dest;
2495 basic_block dest_prev = dest->prev_bb;
2497 if (dest_prev)
2499 edge e = find_edge (dest_prev, dest);
2500 if (e && !(e->flags & EDGE_COMPLEX))
2501 return edge_in->src;
2503 return dest_prev;
2506 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2507 Abort on abnormal edges. */
2509 static basic_block
2510 gimple_split_edge (edge edge_in)
2512 basic_block new_bb, after_bb, dest;
2513 edge new_edge, e;
2515 /* Abnormal edges cannot be split. */
2516 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2518 dest = edge_in->dest;
2520 after_bb = split_edge_bb_loc (edge_in);
2522 new_bb = create_empty_bb (after_bb);
2523 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2524 new_bb->count = edge_in->count;
2525 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2526 new_edge->probability = REG_BR_PROB_BASE;
2527 new_edge->count = edge_in->count;
2529 e = redirect_edge_and_branch (edge_in, new_bb);
2530 gcc_assert (e == edge_in);
2531 reinstall_phi_args (new_edge, e);
2533 return new_bb;
2537 /* Verify properties of the address expression T with base object BASE. */
2539 static tree
2540 verify_address (tree t, tree base)
2542 bool old_constant;
2543 bool old_side_effects;
2544 bool new_constant;
2545 bool new_side_effects;
2547 old_constant = TREE_CONSTANT (t);
2548 old_side_effects = TREE_SIDE_EFFECTS (t);
2550 recompute_tree_invariant_for_addr_expr (t);
2551 new_side_effects = TREE_SIDE_EFFECTS (t);
2552 new_constant = TREE_CONSTANT (t);
2554 if (old_constant != new_constant)
2556 error ("constant not recomputed when ADDR_EXPR changed");
2557 return t;
2559 if (old_side_effects != new_side_effects)
2561 error ("side effects not recomputed when ADDR_EXPR changed");
2562 return t;
2565 if (!(TREE_CODE (base) == VAR_DECL
2566 || TREE_CODE (base) == PARM_DECL
2567 || TREE_CODE (base) == RESULT_DECL))
2568 return NULL_TREE;
2570 if (DECL_GIMPLE_REG_P (base))
2572 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2573 return base;
2576 return NULL_TREE;
2579 /* Callback for walk_tree, check that all elements with address taken are
2580 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2581 inside a PHI node. */
2583 static tree
2584 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2586 tree t = *tp, x;
2588 if (TYPE_P (t))
2589 *walk_subtrees = 0;
2591 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2592 #define CHECK_OP(N, MSG) \
2593 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2594 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2596 switch (TREE_CODE (t))
2598 case SSA_NAME:
2599 if (SSA_NAME_IN_FREE_LIST (t))
2601 error ("SSA name in freelist but still referenced");
2602 return *tp;
2604 break;
2606 case INDIRECT_REF:
2607 error ("INDIRECT_REF in gimple IL");
2608 return t;
2610 case MEM_REF:
2611 x = TREE_OPERAND (t, 0);
2612 if (!is_gimple_mem_ref_addr (x))
2614 error ("Invalid first operand of MEM_REF.");
2615 return x;
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2620 error ("Invalid offset operand of MEM_REF.");
2621 return TREE_OPERAND (t, 1);
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2636 break;
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples.");
2640 return *tp;
2642 case ADDR_EXPR:
2644 tree tem;
2646 gcc_assert (is_gimple_address (t));
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2664 if (!TREE_ADDRESSABLE (x))
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2670 break;
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2677 error ("non-integral used in condition");
2678 return x;
2680 if (!is_gimple_condexpr (x))
2682 error ("invalid conditional operand");
2683 return x;
2685 break;
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2750 t = TREE_OPERAND (t, 0);
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2755 error ("invalid reference prefix");
2756 return t;
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype.");
2787 return t;
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2833 default:
2834 break;
2836 return NULL;
2838 #undef CHECK_OP
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2848 tree op;
2850 if (is_gimple_id (expr))
2851 return false;
2853 if (TREE_CODE (expr) != MISALIGNED_INDIRECT_REF
2854 && TREE_CODE (expr) != TARGET_MEM_REF
2855 && TREE_CODE (expr) != MEM_REF)
2857 error ("invalid expression for min lvalue");
2858 return true;
2861 /* TARGET_MEM_REFs are strange beasts. */
2862 if (TREE_CODE (expr) == TARGET_MEM_REF)
2863 return false;
2865 op = TREE_OPERAND (expr, 0);
2866 if (!is_gimple_val (op))
2868 error ("invalid operand in indirect reference");
2869 debug_generic_stmt (op);
2870 return true;
2872 /* Memory references now generally can involve a value conversion. */
2874 return false;
2877 /* Verify if EXPR is a valid GIMPLE reference expression. If
2878 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2879 if there is an error, otherwise false. */
2881 static bool
2882 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2884 while (handled_component_p (expr))
2886 tree op = TREE_OPERAND (expr, 0);
2888 if (TREE_CODE (expr) == ARRAY_REF
2889 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2891 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2892 || (TREE_OPERAND (expr, 2)
2893 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2894 || (TREE_OPERAND (expr, 3)
2895 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2897 error ("invalid operands to array reference");
2898 debug_generic_stmt (expr);
2899 return true;
2903 /* Verify if the reference array element types are compatible. */
2904 if (TREE_CODE (expr) == ARRAY_REF
2905 && !useless_type_conversion_p (TREE_TYPE (expr),
2906 TREE_TYPE (TREE_TYPE (op))))
2908 error ("type mismatch in array reference");
2909 debug_generic_stmt (TREE_TYPE (expr));
2910 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2911 return true;
2913 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2914 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2915 TREE_TYPE (TREE_TYPE (op))))
2917 error ("type mismatch in array range reference");
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2920 return true;
2923 if ((TREE_CODE (expr) == REALPART_EXPR
2924 || TREE_CODE (expr) == IMAGPART_EXPR)
2925 && !useless_type_conversion_p (TREE_TYPE (expr),
2926 TREE_TYPE (TREE_TYPE (op))))
2928 error ("type mismatch in real/imagpart reference");
2929 debug_generic_stmt (TREE_TYPE (expr));
2930 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2931 return true;
2934 if (TREE_CODE (expr) == COMPONENT_REF
2935 && !useless_type_conversion_p (TREE_TYPE (expr),
2936 TREE_TYPE (TREE_OPERAND (expr, 1))))
2938 error ("type mismatch in component reference");
2939 debug_generic_stmt (TREE_TYPE (expr));
2940 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2941 return true;
2944 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2946 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2947 that their operand is not an SSA name or an invariant when
2948 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2949 bug). Otherwise there is nothing to verify, gross mismatches at
2950 most invoke undefined behavior. */
2951 if (require_lvalue
2952 && (TREE_CODE (op) == SSA_NAME
2953 || is_gimple_min_invariant (op)))
2955 error ("Conversion of an SSA_NAME on the left hand side.");
2956 debug_generic_stmt (expr);
2957 return true;
2959 else if (TREE_CODE (op) == SSA_NAME
2960 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2962 error ("Conversion of register to a different size.");
2963 debug_generic_stmt (expr);
2964 return true;
2966 else if (!handled_component_p (op))
2967 return false;
2970 expr = op;
2973 if (TREE_CODE (expr) == MEM_REF)
2975 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2977 error ("Invalid address operand in MEM_REF.");
2978 debug_generic_stmt (expr);
2979 return true;
2981 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2982 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2984 error ("Invalid offset operand in MEM_REF.");
2985 debug_generic_stmt (expr);
2986 return true;
2990 return ((require_lvalue || !is_gimple_min_invariant (expr))
2991 && verify_types_in_gimple_min_lval (expr));
2994 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2995 list of pointer-to types that is trivially convertible to DEST. */
2997 static bool
2998 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3000 tree src;
3002 if (!TYPE_POINTER_TO (src_obj))
3003 return true;
3005 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3006 if (useless_type_conversion_p (dest, src))
3007 return true;
3009 return false;
3012 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3013 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3015 static bool
3016 valid_fixed_convert_types_p (tree type1, tree type2)
3018 return (FIXED_POINT_TYPE_P (type1)
3019 && (INTEGRAL_TYPE_P (type2)
3020 || SCALAR_FLOAT_TYPE_P (type2)
3021 || FIXED_POINT_TYPE_P (type2)));
3024 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3025 is a problem, otherwise false. */
3027 static bool
3028 verify_gimple_call (gimple stmt)
3030 tree fn = gimple_call_fn (stmt);
3031 tree fntype;
3032 unsigned i;
3034 if (TREE_CODE (fn) != OBJ_TYPE_REF
3035 && !is_gimple_val (fn))
3037 error ("invalid function in gimple call");
3038 debug_generic_stmt (fn);
3039 return true;
3042 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3043 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3044 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3046 error ("non-function in gimple call");
3047 return true;
3050 if (gimple_call_lhs (stmt)
3051 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3052 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3054 error ("invalid LHS in gimple call");
3055 return true;
3058 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3060 error ("LHS in noreturn call");
3061 return true;
3064 fntype = TREE_TYPE (TREE_TYPE (fn));
3065 if (gimple_call_lhs (stmt)
3066 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3067 TREE_TYPE (fntype))
3068 /* ??? At least C++ misses conversions at assignments from
3069 void * call results.
3070 ??? Java is completely off. Especially with functions
3071 returning java.lang.Object.
3072 For now simply allow arbitrary pointer type conversions. */
3073 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3074 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3076 error ("invalid conversion in gimple call");
3077 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3078 debug_generic_stmt (TREE_TYPE (fntype));
3079 return true;
3082 if (gimple_call_chain (stmt)
3083 && !is_gimple_val (gimple_call_chain (stmt)))
3085 error ("invalid static chain in gimple call");
3086 debug_generic_stmt (gimple_call_chain (stmt));
3087 return true;
3090 /* If there is a static chain argument, this should not be an indirect
3091 call, and the decl should have DECL_STATIC_CHAIN set. */
3092 if (gimple_call_chain (stmt))
3094 if (TREE_CODE (fn) != ADDR_EXPR
3095 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
3097 error ("static chain in indirect gimple call");
3098 return true;
3100 fn = TREE_OPERAND (fn, 0);
3102 if (!DECL_STATIC_CHAIN (fn))
3104 error ("static chain with function that doesn't use one");
3105 return true;
3109 /* ??? The C frontend passes unpromoted arguments in case it
3110 didn't see a function declaration before the call. So for now
3111 leave the call arguments mostly unverified. Once we gimplify
3112 unit-at-a-time we have a chance to fix this. */
3114 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3116 tree arg = gimple_call_arg (stmt, i);
3117 if (!is_gimple_operand (arg))
3119 error ("invalid argument to gimple call");
3120 debug_generic_expr (arg);
3124 return false;
3127 /* Verifies the gimple comparison with the result type TYPE and
3128 the operands OP0 and OP1. */
3130 static bool
3131 verify_gimple_comparison (tree type, tree op0, tree op1)
3133 tree op0_type = TREE_TYPE (op0);
3134 tree op1_type = TREE_TYPE (op1);
3136 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3138 error ("invalid operands in gimple comparison");
3139 return true;
3142 /* For comparisons we do not have the operations type as the
3143 effective type the comparison is carried out in. Instead
3144 we require that either the first operand is trivially
3145 convertible into the second, or the other way around.
3146 The resulting type of a comparison may be any integral type.
3147 Because we special-case pointers to void we allow
3148 comparisons of pointers with the same mode as well. */
3149 if ((!useless_type_conversion_p (op0_type, op1_type)
3150 && !useless_type_conversion_p (op1_type, op0_type)
3151 && (!POINTER_TYPE_P (op0_type)
3152 || !POINTER_TYPE_P (op1_type)
3153 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3154 || !INTEGRAL_TYPE_P (type))
3156 error ("type mismatch in comparison expression");
3157 debug_generic_expr (type);
3158 debug_generic_expr (op0_type);
3159 debug_generic_expr (op1_type);
3160 return true;
3163 return false;
3166 /* Verify a gimple assignment statement STMT with an unary rhs.
3167 Returns true if anything is wrong. */
3169 static bool
3170 verify_gimple_assign_unary (gimple stmt)
3172 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3173 tree lhs = gimple_assign_lhs (stmt);
3174 tree lhs_type = TREE_TYPE (lhs);
3175 tree rhs1 = gimple_assign_rhs1 (stmt);
3176 tree rhs1_type = TREE_TYPE (rhs1);
3178 if (!is_gimple_reg (lhs)
3179 && !(optimize == 0
3180 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3182 error ("non-register as LHS of unary operation");
3183 return true;
3186 if (!is_gimple_val (rhs1))
3188 error ("invalid operand in unary operation");
3189 return true;
3192 /* First handle conversions. */
3193 switch (rhs_code)
3195 CASE_CONVERT:
3197 /* Allow conversions between integral types and pointers only if
3198 there is no sign or zero extension involved.
3199 For targets were the precision of sizetype doesn't match that
3200 of pointers we need to allow arbitrary conversions from and
3201 to sizetype. */
3202 if ((POINTER_TYPE_P (lhs_type)
3203 && INTEGRAL_TYPE_P (rhs1_type)
3204 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3205 || rhs1_type == sizetype))
3206 || (POINTER_TYPE_P (rhs1_type)
3207 && INTEGRAL_TYPE_P (lhs_type)
3208 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3209 || lhs_type == sizetype)))
3210 return false;
3212 /* Allow conversion from integer to offset type and vice versa. */
3213 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3214 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3215 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3216 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3217 return false;
3219 /* Otherwise assert we are converting between types of the
3220 same kind. */
3221 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3223 error ("invalid types in nop conversion");
3224 debug_generic_expr (lhs_type);
3225 debug_generic_expr (rhs1_type);
3226 return true;
3229 return false;
3232 case ADDR_SPACE_CONVERT_EXPR:
3234 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3235 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3236 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3238 error ("invalid types in address space conversion");
3239 debug_generic_expr (lhs_type);
3240 debug_generic_expr (rhs1_type);
3241 return true;
3244 return false;
3247 case FIXED_CONVERT_EXPR:
3249 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3250 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3252 error ("invalid types in fixed-point conversion");
3253 debug_generic_expr (lhs_type);
3254 debug_generic_expr (rhs1_type);
3255 return true;
3258 return false;
3261 case FLOAT_EXPR:
3263 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3265 error ("invalid types in conversion to floating point");
3266 debug_generic_expr (lhs_type);
3267 debug_generic_expr (rhs1_type);
3268 return true;
3271 return false;
3274 case FIX_TRUNC_EXPR:
3276 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3278 error ("invalid types in conversion to integer");
3279 debug_generic_expr (lhs_type);
3280 debug_generic_expr (rhs1_type);
3281 return true;
3284 return false;
3287 case VEC_UNPACK_HI_EXPR:
3288 case VEC_UNPACK_LO_EXPR:
3289 case REDUC_MAX_EXPR:
3290 case REDUC_MIN_EXPR:
3291 case REDUC_PLUS_EXPR:
3292 case VEC_UNPACK_FLOAT_HI_EXPR:
3293 case VEC_UNPACK_FLOAT_LO_EXPR:
3294 /* FIXME. */
3295 return false;
3297 case TRUTH_NOT_EXPR:
3298 case NEGATE_EXPR:
3299 case ABS_EXPR:
3300 case BIT_NOT_EXPR:
3301 case PAREN_EXPR:
3302 case NON_LVALUE_EXPR:
3303 case CONJ_EXPR:
3304 break;
3306 default:
3307 gcc_unreachable ();
3310 /* For the remaining codes assert there is no conversion involved. */
3311 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3313 error ("non-trivial conversion in unary operation");
3314 debug_generic_expr (lhs_type);
3315 debug_generic_expr (rhs1_type);
3316 return true;
3319 return false;
3322 /* Verify a gimple assignment statement STMT with a binary rhs.
3323 Returns true if anything is wrong. */
3325 static bool
3326 verify_gimple_assign_binary (gimple stmt)
3328 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3329 tree lhs = gimple_assign_lhs (stmt);
3330 tree lhs_type = TREE_TYPE (lhs);
3331 tree rhs1 = gimple_assign_rhs1 (stmt);
3332 tree rhs1_type = TREE_TYPE (rhs1);
3333 tree rhs2 = gimple_assign_rhs2 (stmt);
3334 tree rhs2_type = TREE_TYPE (rhs2);
3336 if (!is_gimple_reg (lhs)
3337 && !(optimize == 0
3338 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3340 error ("non-register as LHS of binary operation");
3341 return true;
3344 if (!is_gimple_val (rhs1)
3345 || !is_gimple_val (rhs2))
3347 error ("invalid operands in binary operation");
3348 return true;
3351 /* First handle operations that involve different types. */
3352 switch (rhs_code)
3354 case COMPLEX_EXPR:
3356 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3357 || !(INTEGRAL_TYPE_P (rhs1_type)
3358 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3359 || !(INTEGRAL_TYPE_P (rhs2_type)
3360 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3362 error ("type mismatch in complex expression");
3363 debug_generic_expr (lhs_type);
3364 debug_generic_expr (rhs1_type);
3365 debug_generic_expr (rhs2_type);
3366 return true;
3369 return false;
3372 case LSHIFT_EXPR:
3373 case RSHIFT_EXPR:
3374 case LROTATE_EXPR:
3375 case RROTATE_EXPR:
3377 /* Shifts and rotates are ok on integral types, fixed point
3378 types and integer vector types. */
3379 if ((!INTEGRAL_TYPE_P (rhs1_type)
3380 && !FIXED_POINT_TYPE_P (rhs1_type)
3381 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3382 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3383 || (!INTEGRAL_TYPE_P (rhs2_type)
3384 /* Vector shifts of vectors are also ok. */
3385 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3386 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3387 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3388 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3389 || !useless_type_conversion_p (lhs_type, rhs1_type))
3391 error ("type mismatch in shift expression");
3392 debug_generic_expr (lhs_type);
3393 debug_generic_expr (rhs1_type);
3394 debug_generic_expr (rhs2_type);
3395 return true;
3398 return false;
3401 case VEC_LSHIFT_EXPR:
3402 case VEC_RSHIFT_EXPR:
3404 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3405 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3406 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3407 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3408 || (!INTEGRAL_TYPE_P (rhs2_type)
3409 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3410 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3411 || !useless_type_conversion_p (lhs_type, rhs1_type))
3413 error ("type mismatch in vector shift expression");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 debug_generic_expr (rhs2_type);
3417 return true;
3419 /* For shifting a vector of floating point components we
3420 only allow shifting by a constant multiple of the element size. */
3421 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3422 && (TREE_CODE (rhs2) != INTEGER_CST
3423 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3424 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3426 error ("non-element sized vector shift of floating point vector");
3427 return true;
3430 return false;
3433 case PLUS_EXPR:
3435 /* We use regular PLUS_EXPR for vectors.
3436 ??? This just makes the checker happy and may not be what is
3437 intended. */
3438 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3439 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3441 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3442 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3444 error ("invalid non-vector operands to vector valued plus");
3445 return true;
3447 lhs_type = TREE_TYPE (lhs_type);
3448 rhs1_type = TREE_TYPE (rhs1_type);
3449 rhs2_type = TREE_TYPE (rhs2_type);
3450 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3451 the pointer to 2nd place. */
3452 if (POINTER_TYPE_P (rhs2_type))
3454 tree tem = rhs1_type;
3455 rhs1_type = rhs2_type;
3456 rhs2_type = tem;
3458 goto do_pointer_plus_expr_check;
3461 /* Fallthru. */
3462 case MINUS_EXPR:
3464 if (POINTER_TYPE_P (lhs_type)
3465 || POINTER_TYPE_P (rhs1_type)
3466 || POINTER_TYPE_P (rhs2_type))
3468 error ("invalid (pointer) operands to plus/minus");
3469 return true;
3472 /* Continue with generic binary expression handling. */
3473 break;
3476 case POINTER_PLUS_EXPR:
3478 do_pointer_plus_expr_check:
3479 if (!POINTER_TYPE_P (rhs1_type)
3480 || !useless_type_conversion_p (lhs_type, rhs1_type)
3481 || !useless_type_conversion_p (sizetype, rhs2_type))
3483 error ("type mismatch in pointer plus expression");
3484 debug_generic_stmt (lhs_type);
3485 debug_generic_stmt (rhs1_type);
3486 debug_generic_stmt (rhs2_type);
3487 return true;
3490 return false;
3493 case TRUTH_ANDIF_EXPR:
3494 case TRUTH_ORIF_EXPR:
3495 gcc_unreachable ();
3497 case TRUTH_AND_EXPR:
3498 case TRUTH_OR_EXPR:
3499 case TRUTH_XOR_EXPR:
3501 /* We allow any kind of integral typed argument and result. */
3502 if (!INTEGRAL_TYPE_P (rhs1_type)
3503 || !INTEGRAL_TYPE_P (rhs2_type)
3504 || !INTEGRAL_TYPE_P (lhs_type))
3506 error ("type mismatch in binary truth expression");
3507 debug_generic_expr (lhs_type);
3508 debug_generic_expr (rhs1_type);
3509 debug_generic_expr (rhs2_type);
3510 return true;
3513 return false;
3516 case LT_EXPR:
3517 case LE_EXPR:
3518 case GT_EXPR:
3519 case GE_EXPR:
3520 case EQ_EXPR:
3521 case NE_EXPR:
3522 case UNORDERED_EXPR:
3523 case ORDERED_EXPR:
3524 case UNLT_EXPR:
3525 case UNLE_EXPR:
3526 case UNGT_EXPR:
3527 case UNGE_EXPR:
3528 case UNEQ_EXPR:
3529 case LTGT_EXPR:
3530 /* Comparisons are also binary, but the result type is not
3531 connected to the operand types. */
3532 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3534 case WIDEN_MULT_EXPR:
3535 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3536 return true;
3537 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3538 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3540 case WIDEN_SUM_EXPR:
3541 case VEC_WIDEN_MULT_HI_EXPR:
3542 case VEC_WIDEN_MULT_LO_EXPR:
3543 case VEC_PACK_TRUNC_EXPR:
3544 case VEC_PACK_SAT_EXPR:
3545 case VEC_PACK_FIX_TRUNC_EXPR:
3546 case VEC_EXTRACT_EVEN_EXPR:
3547 case VEC_EXTRACT_ODD_EXPR:
3548 case VEC_INTERLEAVE_HIGH_EXPR:
3549 case VEC_INTERLEAVE_LOW_EXPR:
3550 /* FIXME. */
3551 return false;
3553 case MULT_EXPR:
3554 case TRUNC_DIV_EXPR:
3555 case CEIL_DIV_EXPR:
3556 case FLOOR_DIV_EXPR:
3557 case ROUND_DIV_EXPR:
3558 case TRUNC_MOD_EXPR:
3559 case CEIL_MOD_EXPR:
3560 case FLOOR_MOD_EXPR:
3561 case ROUND_MOD_EXPR:
3562 case RDIV_EXPR:
3563 case EXACT_DIV_EXPR:
3564 case MIN_EXPR:
3565 case MAX_EXPR:
3566 case BIT_IOR_EXPR:
3567 case BIT_XOR_EXPR:
3568 case BIT_AND_EXPR:
3569 /* Continue with generic binary expression handling. */
3570 break;
3572 default:
3573 gcc_unreachable ();
3576 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3577 || !useless_type_conversion_p (lhs_type, rhs2_type))
3579 error ("type mismatch in binary expression");
3580 debug_generic_stmt (lhs_type);
3581 debug_generic_stmt (rhs1_type);
3582 debug_generic_stmt (rhs2_type);
3583 return true;
3586 return false;
3589 /* Verify a gimple assignment statement STMT with a ternary rhs.
3590 Returns true if anything is wrong. */
3592 static bool
3593 verify_gimple_assign_ternary (gimple stmt)
3595 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3596 tree lhs = gimple_assign_lhs (stmt);
3597 tree lhs_type = TREE_TYPE (lhs);
3598 tree rhs1 = gimple_assign_rhs1 (stmt);
3599 tree rhs1_type = TREE_TYPE (rhs1);
3600 tree rhs2 = gimple_assign_rhs2 (stmt);
3601 tree rhs2_type = TREE_TYPE (rhs2);
3602 tree rhs3 = gimple_assign_rhs3 (stmt);
3603 tree rhs3_type = TREE_TYPE (rhs3);
3605 if (!is_gimple_reg (lhs)
3606 && !(optimize == 0
3607 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3609 error ("non-register as LHS of ternary operation");
3610 return true;
3613 if (!is_gimple_val (rhs1)
3614 || !is_gimple_val (rhs2)
3615 || !is_gimple_val (rhs3))
3617 error ("invalid operands in ternary operation");
3618 return true;
3621 /* First handle operations that involve different types. */
3622 switch (rhs_code)
3624 case WIDEN_MULT_PLUS_EXPR:
3625 case WIDEN_MULT_MINUS_EXPR:
3626 if ((!INTEGRAL_TYPE_P (rhs1_type)
3627 && !FIXED_POINT_TYPE_P (rhs1_type))
3628 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3629 || !useless_type_conversion_p (lhs_type, rhs3_type)
3630 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3631 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3633 error ("type mismatch in widening multiply-accumulate expression");
3634 debug_generic_expr (lhs_type);
3635 debug_generic_expr (rhs1_type);
3636 debug_generic_expr (rhs2_type);
3637 debug_generic_expr (rhs3_type);
3638 return true;
3640 break;
3642 default:
3643 gcc_unreachable ();
3645 return false;
3648 /* Verify a gimple assignment statement STMT with a single rhs.
3649 Returns true if anything is wrong. */
3651 static bool
3652 verify_gimple_assign_single (gimple stmt)
3654 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3655 tree lhs = gimple_assign_lhs (stmt);
3656 tree lhs_type = TREE_TYPE (lhs);
3657 tree rhs1 = gimple_assign_rhs1 (stmt);
3658 tree rhs1_type = TREE_TYPE (rhs1);
3659 bool res = false;
3661 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3663 error ("non-trivial conversion at assignment");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 return true;
3669 if (handled_component_p (lhs))
3670 res |= verify_types_in_gimple_reference (lhs, true);
3672 /* Special codes we cannot handle via their class. */
3673 switch (rhs_code)
3675 case ADDR_EXPR:
3677 tree op = TREE_OPERAND (rhs1, 0);
3678 if (!is_gimple_addressable (op))
3680 error ("invalid operand in unary expression");
3681 return true;
3684 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3685 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3686 TREE_TYPE (op)))
3688 error ("type mismatch in address expression");
3689 debug_generic_stmt (TREE_TYPE (rhs1));
3690 debug_generic_stmt (TREE_TYPE (op));
3691 return true;
3694 return verify_types_in_gimple_reference (op, true);
3697 /* tcc_reference */
3698 case INDIRECT_REF:
3699 error ("INDIRECT_REF in gimple IL");
3700 return true;
3702 case COMPONENT_REF:
3703 case BIT_FIELD_REF:
3704 case MISALIGNED_INDIRECT_REF:
3705 case ARRAY_REF:
3706 case ARRAY_RANGE_REF:
3707 case VIEW_CONVERT_EXPR:
3708 case REALPART_EXPR:
3709 case IMAGPART_EXPR:
3710 case TARGET_MEM_REF:
3711 case MEM_REF:
3712 if (!is_gimple_reg (lhs)
3713 && is_gimple_reg_type (TREE_TYPE (lhs)))
3715 error ("invalid rhs for gimple memory store");
3716 debug_generic_stmt (lhs);
3717 debug_generic_stmt (rhs1);
3718 return true;
3720 return res || verify_types_in_gimple_reference (rhs1, false);
3722 /* tcc_constant */
3723 case SSA_NAME:
3724 case INTEGER_CST:
3725 case REAL_CST:
3726 case FIXED_CST:
3727 case COMPLEX_CST:
3728 case VECTOR_CST:
3729 case STRING_CST:
3730 return res;
3732 /* tcc_declaration */
3733 case CONST_DECL:
3734 return res;
3735 case VAR_DECL:
3736 case PARM_DECL:
3737 if (!is_gimple_reg (lhs)
3738 && !is_gimple_reg (rhs1)
3739 && is_gimple_reg_type (TREE_TYPE (lhs)))
3741 error ("invalid rhs for gimple memory store");
3742 debug_generic_stmt (lhs);
3743 debug_generic_stmt (rhs1);
3744 return true;
3746 return res;
3748 case COND_EXPR:
3749 if (!is_gimple_reg (lhs)
3750 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3751 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3752 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3753 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3754 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3755 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3757 error ("invalid COND_EXPR in gimple assignment");
3758 debug_generic_stmt (rhs1);
3759 return true;
3761 return res;
3763 case CONSTRUCTOR:
3764 case OBJ_TYPE_REF:
3765 case ASSERT_EXPR:
3766 case WITH_SIZE_EXPR:
3767 case POLYNOMIAL_CHREC:
3768 case DOT_PROD_EXPR:
3769 case VEC_COND_EXPR:
3770 case REALIGN_LOAD_EXPR:
3771 /* FIXME. */
3772 return res;
3774 default:;
3777 return res;
3780 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3781 is a problem, otherwise false. */
3783 static bool
3784 verify_gimple_assign (gimple stmt)
3786 switch (gimple_assign_rhs_class (stmt))
3788 case GIMPLE_SINGLE_RHS:
3789 return verify_gimple_assign_single (stmt);
3791 case GIMPLE_UNARY_RHS:
3792 return verify_gimple_assign_unary (stmt);
3794 case GIMPLE_BINARY_RHS:
3795 return verify_gimple_assign_binary (stmt);
3797 case GIMPLE_TERNARY_RHS:
3798 return verify_gimple_assign_ternary (stmt);
3800 default:
3801 gcc_unreachable ();
3805 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3806 is a problem, otherwise false. */
3808 static bool
3809 verify_gimple_return (gimple stmt)
3811 tree op = gimple_return_retval (stmt);
3812 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3814 /* We cannot test for present return values as we do not fix up missing
3815 return values from the original source. */
3816 if (op == NULL)
3817 return false;
3819 if (!is_gimple_val (op)
3820 && TREE_CODE (op) != RESULT_DECL)
3822 error ("invalid operand in return statement");
3823 debug_generic_stmt (op);
3824 return true;
3827 if ((TREE_CODE (op) == RESULT_DECL
3828 && DECL_BY_REFERENCE (op))
3829 || (TREE_CODE (op) == SSA_NAME
3830 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3831 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3832 op = TREE_TYPE (op);
3834 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3836 error ("invalid conversion in return statement");
3837 debug_generic_stmt (restype);
3838 debug_generic_stmt (TREE_TYPE (op));
3839 return true;
3842 return false;
3846 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3847 is a problem, otherwise false. */
3849 static bool
3850 verify_gimple_goto (gimple stmt)
3852 tree dest = gimple_goto_dest (stmt);
3854 /* ??? We have two canonical forms of direct goto destinations, a
3855 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3856 if (TREE_CODE (dest) != LABEL_DECL
3857 && (!is_gimple_val (dest)
3858 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3860 error ("goto destination is neither a label nor a pointer");
3861 return true;
3864 return false;
3867 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3868 is a problem, otherwise false. */
3870 static bool
3871 verify_gimple_switch (gimple stmt)
3873 if (!is_gimple_val (gimple_switch_index (stmt)))
3875 error ("invalid operand to switch statement");
3876 debug_generic_stmt (gimple_switch_index (stmt));
3877 return true;
3880 return false;
3884 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3885 and false otherwise. */
3887 static bool
3888 verify_gimple_phi (gimple stmt)
3890 tree type = TREE_TYPE (gimple_phi_result (stmt));
3891 unsigned i;
3893 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3895 error ("Invalid PHI result");
3896 return true;
3899 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3901 tree arg = gimple_phi_arg_def (stmt, i);
3902 if ((is_gimple_reg (gimple_phi_result (stmt))
3903 && !is_gimple_val (arg))
3904 || (!is_gimple_reg (gimple_phi_result (stmt))
3905 && !is_gimple_addressable (arg)))
3907 error ("Invalid PHI argument");
3908 debug_generic_stmt (arg);
3909 return true;
3911 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3913 error ("Incompatible types in PHI argument %u", i);
3914 debug_generic_stmt (type);
3915 debug_generic_stmt (TREE_TYPE (arg));
3916 return true;
3920 return false;
3924 /* Verify a gimple debug statement STMT.
3925 Returns true if anything is wrong. */
3927 static bool
3928 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3930 /* There isn't much that could be wrong in a gimple debug stmt. A
3931 gimple debug bind stmt, for example, maps a tree, that's usually
3932 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3933 component or member of an aggregate type, to another tree, that
3934 can be an arbitrary expression. These stmts expand into debug
3935 insns, and are converted to debug notes by var-tracking.c. */
3936 return false;
3940 /* Verify the GIMPLE statement STMT. Returns true if there is an
3941 error, otherwise false. */
3943 static bool
3944 verify_types_in_gimple_stmt (gimple stmt)
3946 switch (gimple_code (stmt))
3948 case GIMPLE_ASSIGN:
3949 return verify_gimple_assign (stmt);
3951 case GIMPLE_LABEL:
3952 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3954 case GIMPLE_CALL:
3955 return verify_gimple_call (stmt);
3957 case GIMPLE_COND:
3958 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3960 error ("invalid comparison code in gimple cond");
3961 return true;
3963 if (!(!gimple_cond_true_label (stmt)
3964 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3965 || !(!gimple_cond_false_label (stmt)
3966 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3968 error ("invalid labels in gimple cond");
3969 return true;
3972 return verify_gimple_comparison (boolean_type_node,
3973 gimple_cond_lhs (stmt),
3974 gimple_cond_rhs (stmt));
3976 case GIMPLE_GOTO:
3977 return verify_gimple_goto (stmt);
3979 case GIMPLE_SWITCH:
3980 return verify_gimple_switch (stmt);
3982 case GIMPLE_RETURN:
3983 return verify_gimple_return (stmt);
3985 case GIMPLE_ASM:
3986 return false;
3988 case GIMPLE_PHI:
3989 return verify_gimple_phi (stmt);
3991 /* Tuples that do not have tree operands. */
3992 case GIMPLE_NOP:
3993 case GIMPLE_PREDICT:
3994 case GIMPLE_RESX:
3995 case GIMPLE_EH_DISPATCH:
3996 case GIMPLE_EH_MUST_NOT_THROW:
3997 return false;
3999 CASE_GIMPLE_OMP:
4000 /* OpenMP directives are validated by the FE and never operated
4001 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4002 non-gimple expressions when the main index variable has had
4003 its address taken. This does not affect the loop itself
4004 because the header of an GIMPLE_OMP_FOR is merely used to determine
4005 how to setup the parallel iteration. */
4006 return false;
4008 case GIMPLE_DEBUG:
4009 return verify_gimple_debug (stmt);
4011 default:
4012 gcc_unreachable ();
4016 /* Verify the GIMPLE statements inside the sequence STMTS. */
4018 static bool
4019 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4021 gimple_stmt_iterator ittr;
4022 bool err = false;
4024 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4026 gimple stmt = gsi_stmt (ittr);
4028 switch (gimple_code (stmt))
4030 case GIMPLE_BIND:
4031 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4032 break;
4034 case GIMPLE_TRY:
4035 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4036 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4037 break;
4039 case GIMPLE_EH_FILTER:
4040 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4041 break;
4043 case GIMPLE_CATCH:
4044 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4045 break;
4047 default:
4049 bool err2 = verify_types_in_gimple_stmt (stmt);
4050 if (err2)
4051 debug_gimple_stmt (stmt);
4052 err |= err2;
4057 return err;
4061 /* Verify the GIMPLE statements inside the statement list STMTS. */
4063 void
4064 verify_types_in_gimple_seq (gimple_seq stmts)
4066 if (verify_types_in_gimple_seq_2 (stmts))
4067 internal_error ("verify_gimple failed");
4071 /* Verify STMT, return true if STMT is not in GIMPLE form.
4072 TODO: Implement type checking. */
4074 static bool
4075 verify_stmt (gimple_stmt_iterator *gsi)
4077 tree addr;
4078 struct walk_stmt_info wi;
4079 bool last_in_block = gsi_one_before_end_p (*gsi);
4080 gimple stmt = gsi_stmt (*gsi);
4081 int lp_nr;
4083 if (is_gimple_omp (stmt))
4085 /* OpenMP directives are validated by the FE and never operated
4086 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4087 non-gimple expressions when the main index variable has had
4088 its address taken. This does not affect the loop itself
4089 because the header of an GIMPLE_OMP_FOR is merely used to determine
4090 how to setup the parallel iteration. */
4091 return false;
4094 /* FIXME. The C frontend passes unpromoted arguments in case it
4095 didn't see a function declaration before the call. */
4096 if (is_gimple_call (stmt))
4098 tree decl;
4100 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4102 error ("invalid function in call statement");
4103 return true;
4106 decl = gimple_call_fndecl (stmt);
4107 if (decl
4108 && TREE_CODE (decl) == FUNCTION_DECL
4109 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4110 && (!DECL_PURE_P (decl))
4111 && (!TREE_READONLY (decl)))
4113 error ("invalid pure const state for function");
4114 return true;
4118 if (is_gimple_debug (stmt))
4119 return false;
4121 memset (&wi, 0, sizeof (wi));
4122 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4123 if (addr)
4125 debug_generic_expr (addr);
4126 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4127 debug_gimple_stmt (stmt);
4128 return true;
4131 /* If the statement is marked as part of an EH region, then it is
4132 expected that the statement could throw. Verify that when we
4133 have optimizations that simplify statements such that we prove
4134 that they cannot throw, that we update other data structures
4135 to match. */
4136 lp_nr = lookup_stmt_eh_lp (stmt);
4137 if (lp_nr != 0)
4139 if (!stmt_could_throw_p (stmt))
4141 error ("statement marked for throw, but doesn%'t");
4142 goto fail;
4144 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4146 error ("statement marked for throw in middle of block");
4147 goto fail;
4151 return false;
4153 fail:
4154 debug_gimple_stmt (stmt);
4155 return true;
4159 /* Return true when the T can be shared. */
4161 bool
4162 tree_node_can_be_shared (tree t)
4164 if (IS_TYPE_OR_DECL_P (t)
4165 || is_gimple_min_invariant (t)
4166 || TREE_CODE (t) == SSA_NAME
4167 || t == error_mark_node
4168 || TREE_CODE (t) == IDENTIFIER_NODE)
4169 return true;
4171 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4172 return true;
4174 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4175 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4176 || TREE_CODE (t) == COMPONENT_REF
4177 || TREE_CODE (t) == REALPART_EXPR
4178 || TREE_CODE (t) == IMAGPART_EXPR)
4179 t = TREE_OPERAND (t, 0);
4181 if (DECL_P (t))
4182 return true;
4184 return false;
4188 /* Called via walk_gimple_stmt. Verify tree sharing. */
4190 static tree
4191 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4193 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4194 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4196 if (tree_node_can_be_shared (*tp))
4198 *walk_subtrees = false;
4199 return NULL;
4202 if (pointer_set_insert (visited, *tp))
4203 return *tp;
4205 return NULL;
4209 static bool eh_error_found;
4210 static int
4211 verify_eh_throw_stmt_node (void **slot, void *data)
4213 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4214 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4216 if (!pointer_set_contains (visited, node->stmt))
4218 error ("Dead STMT in EH table");
4219 debug_gimple_stmt (node->stmt);
4220 eh_error_found = true;
4222 return 1;
4226 /* Verify the GIMPLE statements in every basic block. */
4228 DEBUG_FUNCTION void
4229 verify_stmts (void)
4231 basic_block bb;
4232 gimple_stmt_iterator gsi;
4233 bool err = false;
4234 struct pointer_set_t *visited, *visited_stmts;
4235 tree addr;
4236 struct walk_stmt_info wi;
4238 timevar_push (TV_TREE_STMT_VERIFY);
4239 visited = pointer_set_create ();
4240 visited_stmts = pointer_set_create ();
4242 memset (&wi, 0, sizeof (wi));
4243 wi.info = (void *) visited;
4245 FOR_EACH_BB (bb)
4247 gimple phi;
4248 size_t i;
4250 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4252 phi = gsi_stmt (gsi);
4253 pointer_set_insert (visited_stmts, phi);
4254 if (gimple_bb (phi) != bb)
4256 error ("gimple_bb (phi) is set to a wrong basic block");
4257 err |= true;
4260 for (i = 0; i < gimple_phi_num_args (phi); i++)
4262 tree t = gimple_phi_arg_def (phi, i);
4263 tree addr;
4265 if (!t)
4267 error ("missing PHI def");
4268 debug_gimple_stmt (phi);
4269 err |= true;
4270 continue;
4272 /* Addressable variables do have SSA_NAMEs but they
4273 are not considered gimple values. */
4274 else if (TREE_CODE (t) != SSA_NAME
4275 && TREE_CODE (t) != FUNCTION_DECL
4276 && !is_gimple_min_invariant (t))
4278 error ("PHI argument is not a GIMPLE value");
4279 debug_gimple_stmt (phi);
4280 debug_generic_expr (t);
4281 err |= true;
4284 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4285 if (addr)
4287 error ("incorrect sharing of tree nodes");
4288 debug_gimple_stmt (phi);
4289 debug_generic_expr (addr);
4290 err |= true;
4294 #ifdef ENABLE_TYPES_CHECKING
4295 if (verify_gimple_phi (phi))
4297 debug_gimple_stmt (phi);
4298 err |= true;
4300 #endif
4303 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4305 gimple stmt = gsi_stmt (gsi);
4307 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4308 || gimple_code (stmt) == GIMPLE_BIND)
4310 error ("invalid GIMPLE statement");
4311 debug_gimple_stmt (stmt);
4312 err |= true;
4315 pointer_set_insert (visited_stmts, stmt);
4317 if (gimple_bb (stmt) != bb)
4319 error ("gimple_bb (stmt) is set to a wrong basic block");
4320 debug_gimple_stmt (stmt);
4321 err |= true;
4324 if (gimple_code (stmt) == GIMPLE_LABEL)
4326 tree decl = gimple_label_label (stmt);
4327 int uid = LABEL_DECL_UID (decl);
4329 if (uid == -1
4330 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4332 error ("incorrect entry in label_to_block_map");
4333 err |= true;
4336 uid = EH_LANDING_PAD_NR (decl);
4337 if (uid)
4339 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4340 if (decl != lp->post_landing_pad)
4342 error ("incorrect setting of landing pad number");
4343 err |= true;
4348 err |= verify_stmt (&gsi);
4350 #ifdef ENABLE_TYPES_CHECKING
4351 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4353 debug_gimple_stmt (stmt);
4354 err |= true;
4356 #endif
4357 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4358 if (addr)
4360 error ("incorrect sharing of tree nodes");
4361 debug_gimple_stmt (stmt);
4362 debug_generic_expr (addr);
4363 err |= true;
4365 gsi_next (&gsi);
4369 eh_error_found = false;
4370 if (get_eh_throw_stmt_table (cfun))
4371 htab_traverse (get_eh_throw_stmt_table (cfun),
4372 verify_eh_throw_stmt_node,
4373 visited_stmts);
4375 if (err | eh_error_found)
4376 internal_error ("verify_stmts failed");
4378 pointer_set_destroy (visited);
4379 pointer_set_destroy (visited_stmts);
4380 verify_histograms ();
4381 timevar_pop (TV_TREE_STMT_VERIFY);
4385 /* Verifies that the flow information is OK. */
4387 static int
4388 gimple_verify_flow_info (void)
4390 int err = 0;
4391 basic_block bb;
4392 gimple_stmt_iterator gsi;
4393 gimple stmt;
4394 edge e;
4395 edge_iterator ei;
4397 if (ENTRY_BLOCK_PTR->il.gimple)
4399 error ("ENTRY_BLOCK has IL associated with it");
4400 err = 1;
4403 if (EXIT_BLOCK_PTR->il.gimple)
4405 error ("EXIT_BLOCK has IL associated with it");
4406 err = 1;
4409 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4410 if (e->flags & EDGE_FALLTHRU)
4412 error ("fallthru to exit from bb %d", e->src->index);
4413 err = 1;
4416 FOR_EACH_BB (bb)
4418 bool found_ctrl_stmt = false;
4420 stmt = NULL;
4422 /* Skip labels on the start of basic block. */
4423 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4425 tree label;
4426 gimple prev_stmt = stmt;
4428 stmt = gsi_stmt (gsi);
4430 if (gimple_code (stmt) != GIMPLE_LABEL)
4431 break;
4433 label = gimple_label_label (stmt);
4434 if (prev_stmt && DECL_NONLOCAL (label))
4436 error ("nonlocal label ");
4437 print_generic_expr (stderr, label, 0);
4438 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4439 bb->index);
4440 err = 1;
4443 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4445 error ("EH landing pad label ");
4446 print_generic_expr (stderr, label, 0);
4447 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4448 bb->index);
4449 err = 1;
4452 if (label_to_block (label) != bb)
4454 error ("label ");
4455 print_generic_expr (stderr, label, 0);
4456 fprintf (stderr, " to block does not match in bb %d",
4457 bb->index);
4458 err = 1;
4461 if (decl_function_context (label) != current_function_decl)
4463 error ("label ");
4464 print_generic_expr (stderr, label, 0);
4465 fprintf (stderr, " has incorrect context in bb %d",
4466 bb->index);
4467 err = 1;
4471 /* Verify that body of basic block BB is free of control flow. */
4472 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4474 gimple stmt = gsi_stmt (gsi);
4476 if (found_ctrl_stmt)
4478 error ("control flow in the middle of basic block %d",
4479 bb->index);
4480 err = 1;
4483 if (stmt_ends_bb_p (stmt))
4484 found_ctrl_stmt = true;
4486 if (gimple_code (stmt) == GIMPLE_LABEL)
4488 error ("label ");
4489 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4490 fprintf (stderr, " in the middle of basic block %d", bb->index);
4491 err = 1;
4495 gsi = gsi_last_bb (bb);
4496 if (gsi_end_p (gsi))
4497 continue;
4499 stmt = gsi_stmt (gsi);
4501 if (gimple_code (stmt) == GIMPLE_LABEL)
4502 continue;
4504 err |= verify_eh_edges (stmt);
4506 if (is_ctrl_stmt (stmt))
4508 FOR_EACH_EDGE (e, ei, bb->succs)
4509 if (e->flags & EDGE_FALLTHRU)
4511 error ("fallthru edge after a control statement in bb %d",
4512 bb->index);
4513 err = 1;
4517 if (gimple_code (stmt) != GIMPLE_COND)
4519 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4520 after anything else but if statement. */
4521 FOR_EACH_EDGE (e, ei, bb->succs)
4522 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4524 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4525 bb->index);
4526 err = 1;
4530 switch (gimple_code (stmt))
4532 case GIMPLE_COND:
4534 edge true_edge;
4535 edge false_edge;
4537 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4539 if (!true_edge
4540 || !false_edge
4541 || !(true_edge->flags & EDGE_TRUE_VALUE)
4542 || !(false_edge->flags & EDGE_FALSE_VALUE)
4543 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4544 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4545 || EDGE_COUNT (bb->succs) >= 3)
4547 error ("wrong outgoing edge flags at end of bb %d",
4548 bb->index);
4549 err = 1;
4552 break;
4554 case GIMPLE_GOTO:
4555 if (simple_goto_p (stmt))
4557 error ("explicit goto at end of bb %d", bb->index);
4558 err = 1;
4560 else
4562 /* FIXME. We should double check that the labels in the
4563 destination blocks have their address taken. */
4564 FOR_EACH_EDGE (e, ei, bb->succs)
4565 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4566 | EDGE_FALSE_VALUE))
4567 || !(e->flags & EDGE_ABNORMAL))
4569 error ("wrong outgoing edge flags at end of bb %d",
4570 bb->index);
4571 err = 1;
4574 break;
4576 case GIMPLE_CALL:
4577 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4578 break;
4579 /* ... fallthru ... */
4580 case GIMPLE_RETURN:
4581 if (!single_succ_p (bb)
4582 || (single_succ_edge (bb)->flags
4583 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4584 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4586 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4587 err = 1;
4589 if (single_succ (bb) != EXIT_BLOCK_PTR)
4591 error ("return edge does not point to exit in bb %d",
4592 bb->index);
4593 err = 1;
4595 break;
4597 case GIMPLE_SWITCH:
4599 tree prev;
4600 edge e;
4601 size_t i, n;
4603 n = gimple_switch_num_labels (stmt);
4605 /* Mark all the destination basic blocks. */
4606 for (i = 0; i < n; ++i)
4608 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4609 basic_block label_bb = label_to_block (lab);
4610 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4611 label_bb->aux = (void *)1;
4614 /* Verify that the case labels are sorted. */
4615 prev = gimple_switch_label (stmt, 0);
4616 for (i = 1; i < n; ++i)
4618 tree c = gimple_switch_label (stmt, i);
4619 if (!CASE_LOW (c))
4621 error ("found default case not at the start of "
4622 "case vector");
4623 err = 1;
4624 continue;
4626 if (CASE_LOW (prev)
4627 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4629 error ("case labels not sorted: ");
4630 print_generic_expr (stderr, prev, 0);
4631 fprintf (stderr," is greater than ");
4632 print_generic_expr (stderr, c, 0);
4633 fprintf (stderr," but comes before it.\n");
4634 err = 1;
4636 prev = c;
4638 /* VRP will remove the default case if it can prove it will
4639 never be executed. So do not verify there always exists
4640 a default case here. */
4642 FOR_EACH_EDGE (e, ei, bb->succs)
4644 if (!e->dest->aux)
4646 error ("extra outgoing edge %d->%d",
4647 bb->index, e->dest->index);
4648 err = 1;
4651 e->dest->aux = (void *)2;
4652 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4653 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4655 error ("wrong outgoing edge flags at end of bb %d",
4656 bb->index);
4657 err = 1;
4661 /* Check that we have all of them. */
4662 for (i = 0; i < n; ++i)
4664 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4665 basic_block label_bb = label_to_block (lab);
4667 if (label_bb->aux != (void *)2)
4669 error ("missing edge %i->%i", bb->index, label_bb->index);
4670 err = 1;
4674 FOR_EACH_EDGE (e, ei, bb->succs)
4675 e->dest->aux = (void *)0;
4677 break;
4679 case GIMPLE_EH_DISPATCH:
4680 err |= verify_eh_dispatch_edge (stmt);
4681 break;
4683 default:
4684 break;
4688 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4689 verify_dominators (CDI_DOMINATORS);
4691 return err;
4695 /* Updates phi nodes after creating a forwarder block joined
4696 by edge FALLTHRU. */
4698 static void
4699 gimple_make_forwarder_block (edge fallthru)
4701 edge e;
4702 edge_iterator ei;
4703 basic_block dummy, bb;
4704 tree var;
4705 gimple_stmt_iterator gsi;
4707 dummy = fallthru->src;
4708 bb = fallthru->dest;
4710 if (single_pred_p (bb))
4711 return;
4713 /* If we redirected a branch we must create new PHI nodes at the
4714 start of BB. */
4715 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4717 gimple phi, new_phi;
4719 phi = gsi_stmt (gsi);
4720 var = gimple_phi_result (phi);
4721 new_phi = create_phi_node (var, bb);
4722 SSA_NAME_DEF_STMT (var) = new_phi;
4723 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4724 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4725 UNKNOWN_LOCATION);
4728 /* Add the arguments we have stored on edges. */
4729 FOR_EACH_EDGE (e, ei, bb->preds)
4731 if (e == fallthru)
4732 continue;
4734 flush_pending_stmts (e);
4739 /* Return a non-special label in the head of basic block BLOCK.
4740 Create one if it doesn't exist. */
4742 tree
4743 gimple_block_label (basic_block bb)
4745 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4746 bool first = true;
4747 tree label;
4748 gimple stmt;
4750 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4752 stmt = gsi_stmt (i);
4753 if (gimple_code (stmt) != GIMPLE_LABEL)
4754 break;
4755 label = gimple_label_label (stmt);
4756 if (!DECL_NONLOCAL (label))
4758 if (!first)
4759 gsi_move_before (&i, &s);
4760 return label;
4764 label = create_artificial_label (UNKNOWN_LOCATION);
4765 stmt = gimple_build_label (label);
4766 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4767 return label;
4771 /* Attempt to perform edge redirection by replacing a possibly complex
4772 jump instruction by a goto or by removing the jump completely.
4773 This can apply only if all edges now point to the same block. The
4774 parameters and return values are equivalent to
4775 redirect_edge_and_branch. */
4777 static edge
4778 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4780 basic_block src = e->src;
4781 gimple_stmt_iterator i;
4782 gimple stmt;
4784 /* We can replace or remove a complex jump only when we have exactly
4785 two edges. */
4786 if (EDGE_COUNT (src->succs) != 2
4787 /* Verify that all targets will be TARGET. Specifically, the
4788 edge that is not E must also go to TARGET. */
4789 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4790 return NULL;
4792 i = gsi_last_bb (src);
4793 if (gsi_end_p (i))
4794 return NULL;
4796 stmt = gsi_stmt (i);
4798 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4800 gsi_remove (&i, true);
4801 e = ssa_redirect_edge (e, target);
4802 e->flags = EDGE_FALLTHRU;
4803 return e;
4806 return NULL;
4810 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4811 edge representing the redirected branch. */
4813 static edge
4814 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4816 basic_block bb = e->src;
4817 gimple_stmt_iterator gsi;
4818 edge ret;
4819 gimple stmt;
4821 if (e->flags & EDGE_ABNORMAL)
4822 return NULL;
4824 if (e->dest == dest)
4825 return NULL;
4827 if (e->flags & EDGE_EH)
4828 return redirect_eh_edge (e, dest);
4830 if (e->src != ENTRY_BLOCK_PTR)
4832 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4833 if (ret)
4834 return ret;
4837 gsi = gsi_last_bb (bb);
4838 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4840 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4842 case GIMPLE_COND:
4843 /* For COND_EXPR, we only need to redirect the edge. */
4844 break;
4846 case GIMPLE_GOTO:
4847 /* No non-abnormal edges should lead from a non-simple goto, and
4848 simple ones should be represented implicitly. */
4849 gcc_unreachable ();
4851 case GIMPLE_SWITCH:
4853 tree label = gimple_block_label (dest);
4854 tree cases = get_cases_for_edge (e, stmt);
4856 /* If we have a list of cases associated with E, then use it
4857 as it's a lot faster than walking the entire case vector. */
4858 if (cases)
4860 edge e2 = find_edge (e->src, dest);
4861 tree last, first;
4863 first = cases;
4864 while (cases)
4866 last = cases;
4867 CASE_LABEL (cases) = label;
4868 cases = TREE_CHAIN (cases);
4871 /* If there was already an edge in the CFG, then we need
4872 to move all the cases associated with E to E2. */
4873 if (e2)
4875 tree cases2 = get_cases_for_edge (e2, stmt);
4877 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4878 TREE_CHAIN (cases2) = first;
4880 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4882 else
4884 size_t i, n = gimple_switch_num_labels (stmt);
4886 for (i = 0; i < n; i++)
4888 tree elt = gimple_switch_label (stmt, i);
4889 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4890 CASE_LABEL (elt) = label;
4894 break;
4896 case GIMPLE_ASM:
4898 int i, n = gimple_asm_nlabels (stmt);
4899 tree label = NULL;
4901 for (i = 0; i < n; ++i)
4903 tree cons = gimple_asm_label_op (stmt, i);
4904 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4906 if (!label)
4907 label = gimple_block_label (dest);
4908 TREE_VALUE (cons) = label;
4912 /* If we didn't find any label matching the former edge in the
4913 asm labels, we must be redirecting the fallthrough
4914 edge. */
4915 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4917 break;
4919 case GIMPLE_RETURN:
4920 gsi_remove (&gsi, true);
4921 e->flags |= EDGE_FALLTHRU;
4922 break;
4924 case GIMPLE_OMP_RETURN:
4925 case GIMPLE_OMP_CONTINUE:
4926 case GIMPLE_OMP_SECTIONS_SWITCH:
4927 case GIMPLE_OMP_FOR:
4928 /* The edges from OMP constructs can be simply redirected. */
4929 break;
4931 case GIMPLE_EH_DISPATCH:
4932 if (!(e->flags & EDGE_FALLTHRU))
4933 redirect_eh_dispatch_edge (stmt, e, dest);
4934 break;
4936 default:
4937 /* Otherwise it must be a fallthru edge, and we don't need to
4938 do anything besides redirecting it. */
4939 gcc_assert (e->flags & EDGE_FALLTHRU);
4940 break;
4943 /* Update/insert PHI nodes as necessary. */
4945 /* Now update the edges in the CFG. */
4946 e = ssa_redirect_edge (e, dest);
4948 return e;
4951 /* Returns true if it is possible to remove edge E by redirecting
4952 it to the destination of the other edge from E->src. */
4954 static bool
4955 gimple_can_remove_branch_p (const_edge e)
4957 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4958 return false;
4960 return true;
4963 /* Simple wrapper, as we can always redirect fallthru edges. */
4965 static basic_block
4966 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4968 e = gimple_redirect_edge_and_branch (e, dest);
4969 gcc_assert (e);
4971 return NULL;
4975 /* Splits basic block BB after statement STMT (but at least after the
4976 labels). If STMT is NULL, BB is split just after the labels. */
4978 static basic_block
4979 gimple_split_block (basic_block bb, void *stmt)
4981 gimple_stmt_iterator gsi;
4982 gimple_stmt_iterator gsi_tgt;
4983 gimple act;
4984 gimple_seq list;
4985 basic_block new_bb;
4986 edge e;
4987 edge_iterator ei;
4989 new_bb = create_empty_bb (bb);
4991 /* Redirect the outgoing edges. */
4992 new_bb->succs = bb->succs;
4993 bb->succs = NULL;
4994 FOR_EACH_EDGE (e, ei, new_bb->succs)
4995 e->src = new_bb;
4997 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4998 stmt = NULL;
5000 /* Move everything from GSI to the new basic block. */
5001 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5003 act = gsi_stmt (gsi);
5004 if (gimple_code (act) == GIMPLE_LABEL)
5005 continue;
5007 if (!stmt)
5008 break;
5010 if (stmt == act)
5012 gsi_next (&gsi);
5013 break;
5017 if (gsi_end_p (gsi))
5018 return new_bb;
5020 /* Split the statement list - avoid re-creating new containers as this
5021 brings ugly quadratic memory consumption in the inliner.
5022 (We are still quadratic since we need to update stmt BB pointers,
5023 sadly.) */
5024 list = gsi_split_seq_before (&gsi);
5025 set_bb_seq (new_bb, list);
5026 for (gsi_tgt = gsi_start (list);
5027 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5028 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5030 return new_bb;
5034 /* Moves basic block BB after block AFTER. */
5036 static bool
5037 gimple_move_block_after (basic_block bb, basic_block after)
5039 if (bb->prev_bb == after)
5040 return true;
5042 unlink_block (bb);
5043 link_block (bb, after);
5045 return true;
5049 /* Return true if basic_block can be duplicated. */
5051 static bool
5052 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5054 return true;
5057 /* Create a duplicate of the basic block BB. NOTE: This does not
5058 preserve SSA form. */
5060 static basic_block
5061 gimple_duplicate_bb (basic_block bb)
5063 basic_block new_bb;
5064 gimple_stmt_iterator gsi, gsi_tgt;
5065 gimple_seq phis = phi_nodes (bb);
5066 gimple phi, stmt, copy;
5068 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5070 /* Copy the PHI nodes. We ignore PHI node arguments here because
5071 the incoming edges have not been setup yet. */
5072 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5074 phi = gsi_stmt (gsi);
5075 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5076 create_new_def_for (gimple_phi_result (copy), copy,
5077 gimple_phi_result_ptr (copy));
5080 gsi_tgt = gsi_start_bb (new_bb);
5081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5083 def_operand_p def_p;
5084 ssa_op_iter op_iter;
5086 stmt = gsi_stmt (gsi);
5087 if (gimple_code (stmt) == GIMPLE_LABEL)
5088 continue;
5090 /* Create a new copy of STMT and duplicate STMT's virtual
5091 operands. */
5092 copy = gimple_copy (stmt);
5093 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5095 maybe_duplicate_eh_stmt (copy, stmt);
5096 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5098 /* Create new names for all the definitions created by COPY and
5099 add replacement mappings for each new name. */
5100 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5101 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5104 return new_bb;
5107 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5109 static void
5110 add_phi_args_after_copy_edge (edge e_copy)
5112 basic_block bb, bb_copy = e_copy->src, dest;
5113 edge e;
5114 edge_iterator ei;
5115 gimple phi, phi_copy;
5116 tree def;
5117 gimple_stmt_iterator psi, psi_copy;
5119 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5120 return;
5122 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5124 if (e_copy->dest->flags & BB_DUPLICATED)
5125 dest = get_bb_original (e_copy->dest);
5126 else
5127 dest = e_copy->dest;
5129 e = find_edge (bb, dest);
5130 if (!e)
5132 /* During loop unrolling the target of the latch edge is copied.
5133 In this case we are not looking for edge to dest, but to
5134 duplicated block whose original was dest. */
5135 FOR_EACH_EDGE (e, ei, bb->succs)
5137 if ((e->dest->flags & BB_DUPLICATED)
5138 && get_bb_original (e->dest) == dest)
5139 break;
5142 gcc_assert (e != NULL);
5145 for (psi = gsi_start_phis (e->dest),
5146 psi_copy = gsi_start_phis (e_copy->dest);
5147 !gsi_end_p (psi);
5148 gsi_next (&psi), gsi_next (&psi_copy))
5150 phi = gsi_stmt (psi);
5151 phi_copy = gsi_stmt (psi_copy);
5152 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5153 add_phi_arg (phi_copy, def, e_copy,
5154 gimple_phi_arg_location_from_edge (phi, e));
5159 /* Basic block BB_COPY was created by code duplication. Add phi node
5160 arguments for edges going out of BB_COPY. The blocks that were
5161 duplicated have BB_DUPLICATED set. */
5163 void
5164 add_phi_args_after_copy_bb (basic_block bb_copy)
5166 edge e_copy;
5167 edge_iterator ei;
5169 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5171 add_phi_args_after_copy_edge (e_copy);
5175 /* Blocks in REGION_COPY array of length N_REGION were created by
5176 duplication of basic blocks. Add phi node arguments for edges
5177 going from these blocks. If E_COPY is not NULL, also add
5178 phi node arguments for its destination.*/
5180 void
5181 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5182 edge e_copy)
5184 unsigned i;
5186 for (i = 0; i < n_region; i++)
5187 region_copy[i]->flags |= BB_DUPLICATED;
5189 for (i = 0; i < n_region; i++)
5190 add_phi_args_after_copy_bb (region_copy[i]);
5191 if (e_copy)
5192 add_phi_args_after_copy_edge (e_copy);
5194 for (i = 0; i < n_region; i++)
5195 region_copy[i]->flags &= ~BB_DUPLICATED;
5198 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5199 important exit edge EXIT. By important we mean that no SSA name defined
5200 inside region is live over the other exit edges of the region. All entry
5201 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5202 to the duplicate of the region. SSA form, dominance and loop information
5203 is updated. The new basic blocks are stored to REGION_COPY in the same
5204 order as they had in REGION, provided that REGION_COPY is not NULL.
5205 The function returns false if it is unable to copy the region,
5206 true otherwise. */
5208 bool
5209 gimple_duplicate_sese_region (edge entry, edge exit,
5210 basic_block *region, unsigned n_region,
5211 basic_block *region_copy)
5213 unsigned i;
5214 bool free_region_copy = false, copying_header = false;
5215 struct loop *loop = entry->dest->loop_father;
5216 edge exit_copy;
5217 VEC (basic_block, heap) *doms;
5218 edge redirected;
5219 int total_freq = 0, entry_freq = 0;
5220 gcov_type total_count = 0, entry_count = 0;
5222 if (!can_copy_bbs_p (region, n_region))
5223 return false;
5225 /* Some sanity checking. Note that we do not check for all possible
5226 missuses of the functions. I.e. if you ask to copy something weird,
5227 it will work, but the state of structures probably will not be
5228 correct. */
5229 for (i = 0; i < n_region; i++)
5231 /* We do not handle subloops, i.e. all the blocks must belong to the
5232 same loop. */
5233 if (region[i]->loop_father != loop)
5234 return false;
5236 if (region[i] != entry->dest
5237 && region[i] == loop->header)
5238 return false;
5241 set_loop_copy (loop, loop);
5243 /* In case the function is used for loop header copying (which is the primary
5244 use), ensure that EXIT and its copy will be new latch and entry edges. */
5245 if (loop->header == entry->dest)
5247 copying_header = true;
5248 set_loop_copy (loop, loop_outer (loop));
5250 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5251 return false;
5253 for (i = 0; i < n_region; i++)
5254 if (region[i] != exit->src
5255 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5256 return false;
5259 if (!region_copy)
5261 region_copy = XNEWVEC (basic_block, n_region);
5262 free_region_copy = true;
5265 gcc_assert (!need_ssa_update_p (cfun));
5267 /* Record blocks outside the region that are dominated by something
5268 inside. */
5269 doms = NULL;
5270 initialize_original_copy_tables ();
5272 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5274 if (entry->dest->count)
5276 total_count = entry->dest->count;
5277 entry_count = entry->count;
5278 /* Fix up corner cases, to avoid division by zero or creation of negative
5279 frequencies. */
5280 if (entry_count > total_count)
5281 entry_count = total_count;
5283 else
5285 total_freq = entry->dest->frequency;
5286 entry_freq = EDGE_FREQUENCY (entry);
5287 /* Fix up corner cases, to avoid division by zero or creation of negative
5288 frequencies. */
5289 if (total_freq == 0)
5290 total_freq = 1;
5291 else if (entry_freq > total_freq)
5292 entry_freq = total_freq;
5295 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5296 split_edge_bb_loc (entry));
5297 if (total_count)
5299 scale_bbs_frequencies_gcov_type (region, n_region,
5300 total_count - entry_count,
5301 total_count);
5302 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5303 total_count);
5305 else
5307 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5308 total_freq);
5309 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5312 if (copying_header)
5314 loop->header = exit->dest;
5315 loop->latch = exit->src;
5318 /* Redirect the entry and add the phi node arguments. */
5319 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5320 gcc_assert (redirected != NULL);
5321 flush_pending_stmts (entry);
5323 /* Concerning updating of dominators: We must recount dominators
5324 for entry block and its copy. Anything that is outside of the
5325 region, but was dominated by something inside needs recounting as
5326 well. */
5327 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5328 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5329 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5330 VEC_free (basic_block, heap, doms);
5332 /* Add the other PHI node arguments. */
5333 add_phi_args_after_copy (region_copy, n_region, NULL);
5335 /* Update the SSA web. */
5336 update_ssa (TODO_update_ssa);
5338 if (free_region_copy)
5339 free (region_copy);
5341 free_original_copy_tables ();
5342 return true;
5345 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5346 are stored to REGION_COPY in the same order in that they appear
5347 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5348 the region, EXIT an exit from it. The condition guarding EXIT
5349 is moved to ENTRY. Returns true if duplication succeeds, false
5350 otherwise.
5352 For example,
5354 some_code;
5355 if (cond)
5357 else
5360 is transformed to
5362 if (cond)
5364 some_code;
5367 else
5369 some_code;
5374 bool
5375 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5376 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5377 basic_block *region_copy ATTRIBUTE_UNUSED)
5379 unsigned i;
5380 bool free_region_copy = false;
5381 struct loop *loop = exit->dest->loop_father;
5382 struct loop *orig_loop = entry->dest->loop_father;
5383 basic_block switch_bb, entry_bb, nentry_bb;
5384 VEC (basic_block, heap) *doms;
5385 int total_freq = 0, exit_freq = 0;
5386 gcov_type total_count = 0, exit_count = 0;
5387 edge exits[2], nexits[2], e;
5388 gimple_stmt_iterator gsi,gsi1;
5389 gimple cond_stmt;
5390 edge sorig, snew;
5391 basic_block exit_bb;
5392 basic_block iters_bb;
5393 tree new_rhs;
5394 gimple_stmt_iterator psi;
5395 gimple phi;
5396 tree def;
5398 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5399 exits[0] = exit;
5400 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5402 if (!can_copy_bbs_p (region, n_region))
5403 return false;
5405 initialize_original_copy_tables ();
5406 set_loop_copy (orig_loop, loop);
5407 duplicate_subloops (orig_loop, loop);
5409 if (!region_copy)
5411 region_copy = XNEWVEC (basic_block, n_region);
5412 free_region_copy = true;
5415 gcc_assert (!need_ssa_update_p (cfun));
5417 /* Record blocks outside the region that are dominated by something
5418 inside. */
5419 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5421 if (exit->src->count)
5423 total_count = exit->src->count;
5424 exit_count = exit->count;
5425 /* Fix up corner cases, to avoid division by zero or creation of negative
5426 frequencies. */
5427 if (exit_count > total_count)
5428 exit_count = total_count;
5430 else
5432 total_freq = exit->src->frequency;
5433 exit_freq = EDGE_FREQUENCY (exit);
5434 /* Fix up corner cases, to avoid division by zero or creation of negative
5435 frequencies. */
5436 if (total_freq == 0)
5437 total_freq = 1;
5438 if (exit_freq > total_freq)
5439 exit_freq = total_freq;
5442 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5443 split_edge_bb_loc (exit));
5444 if (total_count)
5446 scale_bbs_frequencies_gcov_type (region, n_region,
5447 total_count - exit_count,
5448 total_count);
5449 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5450 total_count);
5452 else
5454 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5455 total_freq);
5456 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5459 /* Create the switch block, and put the exit condition to it. */
5460 entry_bb = entry->dest;
5461 nentry_bb = get_bb_copy (entry_bb);
5462 if (!last_stmt (entry->src)
5463 || !stmt_ends_bb_p (last_stmt (entry->src)))
5464 switch_bb = entry->src;
5465 else
5466 switch_bb = split_edge (entry);
5467 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5469 gsi = gsi_last_bb (switch_bb);
5470 cond_stmt = last_stmt (exit->src);
5471 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5472 cond_stmt = gimple_copy (cond_stmt);
5474 /* If the block consisting of the exit condition has the latch as
5475 successor, then the body of the loop is executed before
5476 the exit condition is tested. In such case, moving the
5477 condition to the entry, causes that the loop will iterate
5478 one less iteration (which is the wanted outcome, since we
5479 peel out the last iteration). If the body is executed after
5480 the condition, moving the condition to the entry requires
5481 decrementing one iteration. */
5482 if (exits[1]->dest == orig_loop->latch)
5483 new_rhs = gimple_cond_rhs (cond_stmt);
5484 else
5486 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5487 gimple_cond_rhs (cond_stmt),
5488 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5490 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5492 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5493 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5494 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5495 break;
5497 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5498 NULL_TREE,false,GSI_CONTINUE_LINKING);
5501 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5502 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5503 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5505 sorig = single_succ_edge (switch_bb);
5506 sorig->flags = exits[1]->flags;
5507 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5509 /* Register the new edge from SWITCH_BB in loop exit lists. */
5510 rescan_loop_exit (snew, true, false);
5512 /* Add the PHI node arguments. */
5513 add_phi_args_after_copy (region_copy, n_region, snew);
5515 /* Get rid of now superfluous conditions and associated edges (and phi node
5516 arguments). */
5517 exit_bb = exit->dest;
5519 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5520 PENDING_STMT (e) = NULL;
5522 /* The latch of ORIG_LOOP was copied, and so was the backedge
5523 to the original header. We redirect this backedge to EXIT_BB. */
5524 for (i = 0; i < n_region; i++)
5525 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5527 gcc_assert (single_succ_edge (region_copy[i]));
5528 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5529 PENDING_STMT (e) = NULL;
5530 for (psi = gsi_start_phis (exit_bb);
5531 !gsi_end_p (psi);
5532 gsi_next (&psi))
5534 phi = gsi_stmt (psi);
5535 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5536 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5539 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5540 PENDING_STMT (e) = NULL;
5542 /* Anything that is outside of the region, but was dominated by something
5543 inside needs to update dominance info. */
5544 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5545 VEC_free (basic_block, heap, doms);
5546 /* Update the SSA web. */
5547 update_ssa (TODO_update_ssa);
5549 if (free_region_copy)
5550 free (region_copy);
5552 free_original_copy_tables ();
5553 return true;
5556 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5557 adding blocks when the dominator traversal reaches EXIT. This
5558 function silently assumes that ENTRY strictly dominates EXIT. */
5560 void
5561 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5562 VEC(basic_block,heap) **bbs_p)
5564 basic_block son;
5566 for (son = first_dom_son (CDI_DOMINATORS, entry);
5567 son;
5568 son = next_dom_son (CDI_DOMINATORS, son))
5570 VEC_safe_push (basic_block, heap, *bbs_p, son);
5571 if (son != exit)
5572 gather_blocks_in_sese_region (son, exit, bbs_p);
5576 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5577 The duplicates are recorded in VARS_MAP. */
5579 static void
5580 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5581 tree to_context)
5583 tree t = *tp, new_t;
5584 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5585 void **loc;
5587 if (DECL_CONTEXT (t) == to_context)
5588 return;
5590 loc = pointer_map_contains (vars_map, t);
5592 if (!loc)
5594 loc = pointer_map_insert (vars_map, t);
5596 if (SSA_VAR_P (t))
5598 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5599 add_local_decl (f, new_t);
5601 else
5603 gcc_assert (TREE_CODE (t) == CONST_DECL);
5604 new_t = copy_node (t);
5606 DECL_CONTEXT (new_t) = to_context;
5608 *loc = new_t;
5610 else
5611 new_t = (tree) *loc;
5613 *tp = new_t;
5617 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5618 VARS_MAP maps old ssa names and var_decls to the new ones. */
5620 static tree
5621 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5622 tree to_context)
5624 void **loc;
5625 tree new_name, decl = SSA_NAME_VAR (name);
5627 gcc_assert (is_gimple_reg (name));
5629 loc = pointer_map_contains (vars_map, name);
5631 if (!loc)
5633 replace_by_duplicate_decl (&decl, vars_map, to_context);
5635 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5636 if (gimple_in_ssa_p (cfun))
5637 add_referenced_var (decl);
5639 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5640 if (SSA_NAME_IS_DEFAULT_DEF (name))
5641 set_default_def (decl, new_name);
5642 pop_cfun ();
5644 loc = pointer_map_insert (vars_map, name);
5645 *loc = new_name;
5647 else
5648 new_name = (tree) *loc;
5650 return new_name;
5653 struct move_stmt_d
5655 tree orig_block;
5656 tree new_block;
5657 tree from_context;
5658 tree to_context;
5659 struct pointer_map_t *vars_map;
5660 htab_t new_label_map;
5661 struct pointer_map_t *eh_map;
5662 bool remap_decls_p;
5665 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5666 contained in *TP if it has been ORIG_BLOCK previously and change the
5667 DECL_CONTEXT of every local variable referenced in *TP. */
5669 static tree
5670 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5672 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5673 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5674 tree t = *tp;
5676 if (EXPR_P (t))
5677 /* We should never have TREE_BLOCK set on non-statements. */
5678 gcc_assert (!TREE_BLOCK (t));
5680 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5682 if (TREE_CODE (t) == SSA_NAME)
5683 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5684 else if (TREE_CODE (t) == LABEL_DECL)
5686 if (p->new_label_map)
5688 struct tree_map in, *out;
5689 in.base.from = t;
5690 out = (struct tree_map *)
5691 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5692 if (out)
5693 *tp = t = out->to;
5696 DECL_CONTEXT (t) = p->to_context;
5698 else if (p->remap_decls_p)
5700 /* Replace T with its duplicate. T should no longer appear in the
5701 parent function, so this looks wasteful; however, it may appear
5702 in referenced_vars, and more importantly, as virtual operands of
5703 statements, and in alias lists of other variables. It would be
5704 quite difficult to expunge it from all those places. ??? It might
5705 suffice to do this for addressable variables. */
5706 if ((TREE_CODE (t) == VAR_DECL
5707 && !is_global_var (t))
5708 || TREE_CODE (t) == CONST_DECL)
5709 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5711 if (SSA_VAR_P (t)
5712 && gimple_in_ssa_p (cfun))
5714 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5715 add_referenced_var (*tp);
5716 pop_cfun ();
5719 *walk_subtrees = 0;
5721 else if (TYPE_P (t))
5722 *walk_subtrees = 0;
5724 return NULL_TREE;
5727 /* Helper for move_stmt_r. Given an EH region number for the source
5728 function, map that to the duplicate EH regio number in the dest. */
5730 static int
5731 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5733 eh_region old_r, new_r;
5734 void **slot;
5736 old_r = get_eh_region_from_number (old_nr);
5737 slot = pointer_map_contains (p->eh_map, old_r);
5738 new_r = (eh_region) *slot;
5740 return new_r->index;
5743 /* Similar, but operate on INTEGER_CSTs. */
5745 static tree
5746 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5748 int old_nr, new_nr;
5750 old_nr = tree_low_cst (old_t_nr, 0);
5751 new_nr = move_stmt_eh_region_nr (old_nr, p);
5753 return build_int_cst (NULL, new_nr);
5756 /* Like move_stmt_op, but for gimple statements.
5758 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5759 contained in the current statement in *GSI_P and change the
5760 DECL_CONTEXT of every local variable referenced in the current
5761 statement. */
5763 static tree
5764 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5765 struct walk_stmt_info *wi)
5767 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5768 gimple stmt = gsi_stmt (*gsi_p);
5769 tree block = gimple_block (stmt);
5771 if (p->orig_block == NULL_TREE
5772 || block == p->orig_block
5773 || block == NULL_TREE)
5774 gimple_set_block (stmt, p->new_block);
5775 #ifdef ENABLE_CHECKING
5776 else if (block != p->new_block)
5778 while (block && block != p->orig_block)
5779 block = BLOCK_SUPERCONTEXT (block);
5780 gcc_assert (block);
5782 #endif
5784 switch (gimple_code (stmt))
5786 case GIMPLE_CALL:
5787 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5789 tree r, fndecl = gimple_call_fndecl (stmt);
5790 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5791 switch (DECL_FUNCTION_CODE (fndecl))
5793 case BUILT_IN_EH_COPY_VALUES:
5794 r = gimple_call_arg (stmt, 1);
5795 r = move_stmt_eh_region_tree_nr (r, p);
5796 gimple_call_set_arg (stmt, 1, r);
5797 /* FALLTHRU */
5799 case BUILT_IN_EH_POINTER:
5800 case BUILT_IN_EH_FILTER:
5801 r = gimple_call_arg (stmt, 0);
5802 r = move_stmt_eh_region_tree_nr (r, p);
5803 gimple_call_set_arg (stmt, 0, r);
5804 break;
5806 default:
5807 break;
5810 break;
5812 case GIMPLE_RESX:
5814 int r = gimple_resx_region (stmt);
5815 r = move_stmt_eh_region_nr (r, p);
5816 gimple_resx_set_region (stmt, r);
5818 break;
5820 case GIMPLE_EH_DISPATCH:
5822 int r = gimple_eh_dispatch_region (stmt);
5823 r = move_stmt_eh_region_nr (r, p);
5824 gimple_eh_dispatch_set_region (stmt, r);
5826 break;
5828 case GIMPLE_OMP_RETURN:
5829 case GIMPLE_OMP_CONTINUE:
5830 break;
5831 default:
5832 if (is_gimple_omp (stmt))
5834 /* Do not remap variables inside OMP directives. Variables
5835 referenced in clauses and directive header belong to the
5836 parent function and should not be moved into the child
5837 function. */
5838 bool save_remap_decls_p = p->remap_decls_p;
5839 p->remap_decls_p = false;
5840 *handled_ops_p = true;
5842 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5843 move_stmt_op, wi);
5845 p->remap_decls_p = save_remap_decls_p;
5847 break;
5850 return NULL_TREE;
5853 /* Move basic block BB from function CFUN to function DEST_FN. The
5854 block is moved out of the original linked list and placed after
5855 block AFTER in the new list. Also, the block is removed from the
5856 original array of blocks and placed in DEST_FN's array of blocks.
5857 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5858 updated to reflect the moved edges.
5860 The local variables are remapped to new instances, VARS_MAP is used
5861 to record the mapping. */
5863 static void
5864 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5865 basic_block after, bool update_edge_count_p,
5866 struct move_stmt_d *d)
5868 struct control_flow_graph *cfg;
5869 edge_iterator ei;
5870 edge e;
5871 gimple_stmt_iterator si;
5872 unsigned old_len, new_len;
5874 /* Remove BB from dominance structures. */
5875 delete_from_dominance_info (CDI_DOMINATORS, bb);
5876 if (current_loops)
5877 remove_bb_from_loops (bb);
5879 /* Link BB to the new linked list. */
5880 move_block_after (bb, after);
5882 /* Update the edge count in the corresponding flowgraphs. */
5883 if (update_edge_count_p)
5884 FOR_EACH_EDGE (e, ei, bb->succs)
5886 cfun->cfg->x_n_edges--;
5887 dest_cfun->cfg->x_n_edges++;
5890 /* Remove BB from the original basic block array. */
5891 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5892 cfun->cfg->x_n_basic_blocks--;
5894 /* Grow DEST_CFUN's basic block array if needed. */
5895 cfg = dest_cfun->cfg;
5896 cfg->x_n_basic_blocks++;
5897 if (bb->index >= cfg->x_last_basic_block)
5898 cfg->x_last_basic_block = bb->index + 1;
5900 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5901 if ((unsigned) cfg->x_last_basic_block >= old_len)
5903 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5904 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5905 new_len);
5908 VEC_replace (basic_block, cfg->x_basic_block_info,
5909 bb->index, bb);
5911 /* Remap the variables in phi nodes. */
5912 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5914 gimple phi = gsi_stmt (si);
5915 use_operand_p use;
5916 tree op = PHI_RESULT (phi);
5917 ssa_op_iter oi;
5919 if (!is_gimple_reg (op))
5921 /* Remove the phi nodes for virtual operands (alias analysis will be
5922 run for the new function, anyway). */
5923 remove_phi_node (&si, true);
5924 continue;
5927 SET_PHI_RESULT (phi,
5928 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5929 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5931 op = USE_FROM_PTR (use);
5932 if (TREE_CODE (op) == SSA_NAME)
5933 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5936 gsi_next (&si);
5939 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5941 gimple stmt = gsi_stmt (si);
5942 struct walk_stmt_info wi;
5944 memset (&wi, 0, sizeof (wi));
5945 wi.info = d;
5946 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5948 if (gimple_code (stmt) == GIMPLE_LABEL)
5950 tree label = gimple_label_label (stmt);
5951 int uid = LABEL_DECL_UID (label);
5953 gcc_assert (uid > -1);
5955 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5956 if (old_len <= (unsigned) uid)
5958 new_len = 3 * uid / 2 + 1;
5959 VEC_safe_grow_cleared (basic_block, gc,
5960 cfg->x_label_to_block_map, new_len);
5963 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5964 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5966 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5968 if (uid >= dest_cfun->cfg->last_label_uid)
5969 dest_cfun->cfg->last_label_uid = uid + 1;
5972 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5973 remove_stmt_from_eh_lp_fn (cfun, stmt);
5975 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5976 gimple_remove_stmt_histograms (cfun, stmt);
5978 /* We cannot leave any operands allocated from the operand caches of
5979 the current function. */
5980 free_stmt_operands (stmt);
5981 push_cfun (dest_cfun);
5982 update_stmt (stmt);
5983 pop_cfun ();
5986 FOR_EACH_EDGE (e, ei, bb->succs)
5987 if (e->goto_locus)
5989 tree block = e->goto_block;
5990 if (d->orig_block == NULL_TREE
5991 || block == d->orig_block)
5992 e->goto_block = d->new_block;
5993 #ifdef ENABLE_CHECKING
5994 else if (block != d->new_block)
5996 while (block && block != d->orig_block)
5997 block = BLOCK_SUPERCONTEXT (block);
5998 gcc_assert (block);
6000 #endif
6004 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6005 the outermost EH region. Use REGION as the incoming base EH region. */
6007 static eh_region
6008 find_outermost_region_in_block (struct function *src_cfun,
6009 basic_block bb, eh_region region)
6011 gimple_stmt_iterator si;
6013 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6015 gimple stmt = gsi_stmt (si);
6016 eh_region stmt_region;
6017 int lp_nr;
6019 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6020 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6021 if (stmt_region)
6023 if (region == NULL)
6024 region = stmt_region;
6025 else if (stmt_region != region)
6027 region = eh_region_outermost (src_cfun, stmt_region, region);
6028 gcc_assert (region != NULL);
6033 return region;
6036 static tree
6037 new_label_mapper (tree decl, void *data)
6039 htab_t hash = (htab_t) data;
6040 struct tree_map *m;
6041 void **slot;
6043 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6045 m = XNEW (struct tree_map);
6046 m->hash = DECL_UID (decl);
6047 m->base.from = decl;
6048 m->to = create_artificial_label (UNKNOWN_LOCATION);
6049 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6050 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6051 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6053 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6054 gcc_assert (*slot == NULL);
6056 *slot = m;
6058 return m->to;
6061 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6062 subblocks. */
6064 static void
6065 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6066 tree to_context)
6068 tree *tp, t;
6070 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
6072 t = *tp;
6073 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6074 continue;
6075 replace_by_duplicate_decl (&t, vars_map, to_context);
6076 if (t != *tp)
6078 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6080 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6081 DECL_HAS_VALUE_EXPR_P (t) = 1;
6083 TREE_CHAIN (t) = TREE_CHAIN (*tp);
6084 *tp = t;
6088 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6089 replace_block_vars_by_duplicates (block, vars_map, to_context);
6092 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6093 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6094 single basic block in the original CFG and the new basic block is
6095 returned. DEST_CFUN must not have a CFG yet.
6097 Note that the region need not be a pure SESE region. Blocks inside
6098 the region may contain calls to abort/exit. The only restriction
6099 is that ENTRY_BB should be the only entry point and it must
6100 dominate EXIT_BB.
6102 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6103 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6104 to the new function.
6106 All local variables referenced in the region are assumed to be in
6107 the corresponding BLOCK_VARS and unexpanded variable lists
6108 associated with DEST_CFUN. */
6110 basic_block
6111 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6112 basic_block exit_bb, tree orig_block)
6114 VEC(basic_block,heap) *bbs, *dom_bbs;
6115 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6116 basic_block after, bb, *entry_pred, *exit_succ, abb;
6117 struct function *saved_cfun = cfun;
6118 int *entry_flag, *exit_flag;
6119 unsigned *entry_prob, *exit_prob;
6120 unsigned i, num_entry_edges, num_exit_edges;
6121 edge e;
6122 edge_iterator ei;
6123 htab_t new_label_map;
6124 struct pointer_map_t *vars_map, *eh_map;
6125 struct loop *loop = entry_bb->loop_father;
6126 struct move_stmt_d d;
6128 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6129 region. */
6130 gcc_assert (entry_bb != exit_bb
6131 && (!exit_bb
6132 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6134 /* Collect all the blocks in the region. Manually add ENTRY_BB
6135 because it won't be added by dfs_enumerate_from. */
6136 bbs = NULL;
6137 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6138 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6140 /* The blocks that used to be dominated by something in BBS will now be
6141 dominated by the new block. */
6142 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6143 VEC_address (basic_block, bbs),
6144 VEC_length (basic_block, bbs));
6146 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6147 the predecessor edges to ENTRY_BB and the successor edges to
6148 EXIT_BB so that we can re-attach them to the new basic block that
6149 will replace the region. */
6150 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6151 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6152 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6153 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6154 i = 0;
6155 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6157 entry_prob[i] = e->probability;
6158 entry_flag[i] = e->flags;
6159 entry_pred[i++] = e->src;
6160 remove_edge (e);
6163 if (exit_bb)
6165 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6166 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6167 sizeof (basic_block));
6168 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6169 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6170 i = 0;
6171 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6173 exit_prob[i] = e->probability;
6174 exit_flag[i] = e->flags;
6175 exit_succ[i++] = e->dest;
6176 remove_edge (e);
6179 else
6181 num_exit_edges = 0;
6182 exit_succ = NULL;
6183 exit_flag = NULL;
6184 exit_prob = NULL;
6187 /* Switch context to the child function to initialize DEST_FN's CFG. */
6188 gcc_assert (dest_cfun->cfg == NULL);
6189 push_cfun (dest_cfun);
6191 init_empty_tree_cfg ();
6193 /* Initialize EH information for the new function. */
6194 eh_map = NULL;
6195 new_label_map = NULL;
6196 if (saved_cfun->eh)
6198 eh_region region = NULL;
6200 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6201 region = find_outermost_region_in_block (saved_cfun, bb, region);
6203 init_eh_for_function ();
6204 if (region != NULL)
6206 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6207 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6208 new_label_mapper, new_label_map);
6212 pop_cfun ();
6214 /* Move blocks from BBS into DEST_CFUN. */
6215 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6216 after = dest_cfun->cfg->x_entry_block_ptr;
6217 vars_map = pointer_map_create ();
6219 memset (&d, 0, sizeof (d));
6220 d.orig_block = orig_block;
6221 d.new_block = DECL_INITIAL (dest_cfun->decl);
6222 d.from_context = cfun->decl;
6223 d.to_context = dest_cfun->decl;
6224 d.vars_map = vars_map;
6225 d.new_label_map = new_label_map;
6226 d.eh_map = eh_map;
6227 d.remap_decls_p = true;
6229 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6231 /* No need to update edge counts on the last block. It has
6232 already been updated earlier when we detached the region from
6233 the original CFG. */
6234 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6235 after = bb;
6238 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6239 if (orig_block)
6241 tree block;
6242 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6243 == NULL_TREE);
6244 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6245 = BLOCK_SUBBLOCKS (orig_block);
6246 for (block = BLOCK_SUBBLOCKS (orig_block);
6247 block; block = BLOCK_CHAIN (block))
6248 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6249 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6252 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6253 vars_map, dest_cfun->decl);
6255 if (new_label_map)
6256 htab_delete (new_label_map);
6257 if (eh_map)
6258 pointer_map_destroy (eh_map);
6259 pointer_map_destroy (vars_map);
6261 /* Rewire the entry and exit blocks. The successor to the entry
6262 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6263 the child function. Similarly, the predecessor of DEST_FN's
6264 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6265 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6266 various CFG manipulation function get to the right CFG.
6268 FIXME, this is silly. The CFG ought to become a parameter to
6269 these helpers. */
6270 push_cfun (dest_cfun);
6271 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6272 if (exit_bb)
6273 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6274 pop_cfun ();
6276 /* Back in the original function, the SESE region has disappeared,
6277 create a new basic block in its place. */
6278 bb = create_empty_bb (entry_pred[0]);
6279 if (current_loops)
6280 add_bb_to_loop (bb, loop);
6281 for (i = 0; i < num_entry_edges; i++)
6283 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6284 e->probability = entry_prob[i];
6287 for (i = 0; i < num_exit_edges; i++)
6289 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6290 e->probability = exit_prob[i];
6293 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6294 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6295 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6296 VEC_free (basic_block, heap, dom_bbs);
6298 if (exit_bb)
6300 free (exit_prob);
6301 free (exit_flag);
6302 free (exit_succ);
6304 free (entry_prob);
6305 free (entry_flag);
6306 free (entry_pred);
6307 VEC_free (basic_block, heap, bbs);
6309 return bb;
6313 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6316 void
6317 dump_function_to_file (tree fn, FILE *file, int flags)
6319 tree arg, var;
6320 struct function *dsf;
6321 bool ignore_topmost_bind = false, any_var = false;
6322 basic_block bb;
6323 tree chain;
6325 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6327 arg = DECL_ARGUMENTS (fn);
6328 while (arg)
6330 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6331 fprintf (file, " ");
6332 print_generic_expr (file, arg, dump_flags);
6333 if (flags & TDF_VERBOSE)
6334 print_node (file, "", arg, 4);
6335 if (TREE_CHAIN (arg))
6336 fprintf (file, ", ");
6337 arg = TREE_CHAIN (arg);
6339 fprintf (file, ")\n");
6341 if (flags & TDF_VERBOSE)
6342 print_node (file, "", fn, 2);
6344 dsf = DECL_STRUCT_FUNCTION (fn);
6345 if (dsf && (flags & TDF_EH))
6346 dump_eh_tree (file, dsf);
6348 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6350 dump_node (fn, TDF_SLIM | flags, file);
6351 return;
6354 /* Switch CFUN to point to FN. */
6355 push_cfun (DECL_STRUCT_FUNCTION (fn));
6357 /* When GIMPLE is lowered, the variables are no longer available in
6358 BIND_EXPRs, so display them separately. */
6359 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6361 unsigned ix;
6362 ignore_topmost_bind = true;
6364 fprintf (file, "{\n");
6365 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6367 print_generic_decl (file, var, flags);
6368 if (flags & TDF_VERBOSE)
6369 print_node (file, "", var, 4);
6370 fprintf (file, "\n");
6372 any_var = true;
6376 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6378 /* If the CFG has been built, emit a CFG-based dump. */
6379 check_bb_profile (ENTRY_BLOCK_PTR, file);
6380 if (!ignore_topmost_bind)
6381 fprintf (file, "{\n");
6383 if (any_var && n_basic_blocks)
6384 fprintf (file, "\n");
6386 FOR_EACH_BB (bb)
6387 gimple_dump_bb (bb, file, 2, flags);
6389 fprintf (file, "}\n");
6390 check_bb_profile (EXIT_BLOCK_PTR, file);
6392 else if (DECL_SAVED_TREE (fn) == NULL)
6394 /* The function is now in GIMPLE form but the CFG has not been
6395 built yet. Emit the single sequence of GIMPLE statements
6396 that make up its body. */
6397 gimple_seq body = gimple_body (fn);
6399 if (gimple_seq_first_stmt (body)
6400 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6401 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6402 print_gimple_seq (file, body, 0, flags);
6403 else
6405 if (!ignore_topmost_bind)
6406 fprintf (file, "{\n");
6408 if (any_var)
6409 fprintf (file, "\n");
6411 print_gimple_seq (file, body, 2, flags);
6412 fprintf (file, "}\n");
6415 else
6417 int indent;
6419 /* Make a tree based dump. */
6420 chain = DECL_SAVED_TREE (fn);
6422 if (chain && TREE_CODE (chain) == BIND_EXPR)
6424 if (ignore_topmost_bind)
6426 chain = BIND_EXPR_BODY (chain);
6427 indent = 2;
6429 else
6430 indent = 0;
6432 else
6434 if (!ignore_topmost_bind)
6435 fprintf (file, "{\n");
6436 indent = 2;
6439 if (any_var)
6440 fprintf (file, "\n");
6442 print_generic_stmt_indented (file, chain, flags, indent);
6443 if (ignore_topmost_bind)
6444 fprintf (file, "}\n");
6447 fprintf (file, "\n\n");
6449 /* Restore CFUN. */
6450 pop_cfun ();
6454 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6456 DEBUG_FUNCTION void
6457 debug_function (tree fn, int flags)
6459 dump_function_to_file (fn, stderr, flags);
6463 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6465 static void
6466 print_pred_bbs (FILE *file, basic_block bb)
6468 edge e;
6469 edge_iterator ei;
6471 FOR_EACH_EDGE (e, ei, bb->preds)
6472 fprintf (file, "bb_%d ", e->src->index);
6476 /* Print on FILE the indexes for the successors of basic_block BB. */
6478 static void
6479 print_succ_bbs (FILE *file, basic_block bb)
6481 edge e;
6482 edge_iterator ei;
6484 FOR_EACH_EDGE (e, ei, bb->succs)
6485 fprintf (file, "bb_%d ", e->dest->index);
6488 /* Print to FILE the basic block BB following the VERBOSITY level. */
6490 void
6491 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6493 char *s_indent = (char *) alloca ((size_t) indent + 1);
6494 memset ((void *) s_indent, ' ', (size_t) indent);
6495 s_indent[indent] = '\0';
6497 /* Print basic_block's header. */
6498 if (verbosity >= 2)
6500 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6501 print_pred_bbs (file, bb);
6502 fprintf (file, "}, succs = {");
6503 print_succ_bbs (file, bb);
6504 fprintf (file, "})\n");
6507 /* Print basic_block's body. */
6508 if (verbosity >= 3)
6510 fprintf (file, "%s {\n", s_indent);
6511 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6512 fprintf (file, "%s }\n", s_indent);
6516 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6518 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6519 VERBOSITY level this outputs the contents of the loop, or just its
6520 structure. */
6522 static void
6523 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6525 char *s_indent;
6526 basic_block bb;
6528 if (loop == NULL)
6529 return;
6531 s_indent = (char *) alloca ((size_t) indent + 1);
6532 memset ((void *) s_indent, ' ', (size_t) indent);
6533 s_indent[indent] = '\0';
6535 /* Print loop's header. */
6536 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6537 loop->num, loop->header->index, loop->latch->index);
6538 fprintf (file, ", niter = ");
6539 print_generic_expr (file, loop->nb_iterations, 0);
6541 if (loop->any_upper_bound)
6543 fprintf (file, ", upper_bound = ");
6544 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6547 if (loop->any_estimate)
6549 fprintf (file, ", estimate = ");
6550 dump_double_int (file, loop->nb_iterations_estimate, true);
6552 fprintf (file, ")\n");
6554 /* Print loop's body. */
6555 if (verbosity >= 1)
6557 fprintf (file, "%s{\n", s_indent);
6558 FOR_EACH_BB (bb)
6559 if (bb->loop_father == loop)
6560 print_loops_bb (file, bb, indent, verbosity);
6562 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6563 fprintf (file, "%s}\n", s_indent);
6567 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6568 spaces. Following VERBOSITY level this outputs the contents of the
6569 loop, or just its structure. */
6571 static void
6572 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6574 if (loop == NULL)
6575 return;
6577 print_loop (file, loop, indent, verbosity);
6578 print_loop_and_siblings (file, loop->next, indent, verbosity);
6581 /* Follow a CFG edge from the entry point of the program, and on entry
6582 of a loop, pretty print the loop structure on FILE. */
6584 void
6585 print_loops (FILE *file, int verbosity)
6587 basic_block bb;
6589 bb = ENTRY_BLOCK_PTR;
6590 if (bb && bb->loop_father)
6591 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6595 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6597 DEBUG_FUNCTION void
6598 debug_loops (int verbosity)
6600 print_loops (stderr, verbosity);
6603 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6605 DEBUG_FUNCTION void
6606 debug_loop (struct loop *loop, int verbosity)
6608 print_loop (stderr, loop, 0, verbosity);
6611 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6612 level. */
6614 DEBUG_FUNCTION void
6615 debug_loop_num (unsigned num, int verbosity)
6617 debug_loop (get_loop (num), verbosity);
6620 /* Return true if BB ends with a call, possibly followed by some
6621 instructions that must stay with the call. Return false,
6622 otherwise. */
6624 static bool
6625 gimple_block_ends_with_call_p (basic_block bb)
6627 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6628 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6632 /* Return true if BB ends with a conditional branch. Return false,
6633 otherwise. */
6635 static bool
6636 gimple_block_ends_with_condjump_p (const_basic_block bb)
6638 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6639 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6643 /* Return true if we need to add fake edge to exit at statement T.
6644 Helper function for gimple_flow_call_edges_add. */
6646 static bool
6647 need_fake_edge_p (gimple t)
6649 tree fndecl = NULL_TREE;
6650 int call_flags = 0;
6652 /* NORETURN and LONGJMP calls already have an edge to exit.
6653 CONST and PURE calls do not need one.
6654 We don't currently check for CONST and PURE here, although
6655 it would be a good idea, because those attributes are
6656 figured out from the RTL in mark_constant_function, and
6657 the counter incrementation code from -fprofile-arcs
6658 leads to different results from -fbranch-probabilities. */
6659 if (is_gimple_call (t))
6661 fndecl = gimple_call_fndecl (t);
6662 call_flags = gimple_call_flags (t);
6665 if (is_gimple_call (t)
6666 && fndecl
6667 && DECL_BUILT_IN (fndecl)
6668 && (call_flags & ECF_NOTHROW)
6669 && !(call_flags & ECF_RETURNS_TWICE)
6670 /* fork() doesn't really return twice, but the effect of
6671 wrapping it in __gcov_fork() which calls __gcov_flush()
6672 and clears the counters before forking has the same
6673 effect as returning twice. Force a fake edge. */
6674 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6675 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6676 return false;
6678 if (is_gimple_call (t)
6679 && !(call_flags & ECF_NORETURN))
6680 return true;
6682 if (gimple_code (t) == GIMPLE_ASM
6683 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6684 return true;
6686 return false;
6690 /* Add fake edges to the function exit for any non constant and non
6691 noreturn calls, volatile inline assembly in the bitmap of blocks
6692 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6693 the number of blocks that were split.
6695 The goal is to expose cases in which entering a basic block does
6696 not imply that all subsequent instructions must be executed. */
6698 static int
6699 gimple_flow_call_edges_add (sbitmap blocks)
6701 int i;
6702 int blocks_split = 0;
6703 int last_bb = last_basic_block;
6704 bool check_last_block = false;
6706 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6707 return 0;
6709 if (! blocks)
6710 check_last_block = true;
6711 else
6712 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6714 /* In the last basic block, before epilogue generation, there will be
6715 a fallthru edge to EXIT. Special care is required if the last insn
6716 of the last basic block is a call because make_edge folds duplicate
6717 edges, which would result in the fallthru edge also being marked
6718 fake, which would result in the fallthru edge being removed by
6719 remove_fake_edges, which would result in an invalid CFG.
6721 Moreover, we can't elide the outgoing fake edge, since the block
6722 profiler needs to take this into account in order to solve the minimal
6723 spanning tree in the case that the call doesn't return.
6725 Handle this by adding a dummy instruction in a new last basic block. */
6726 if (check_last_block)
6728 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6729 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6730 gimple t = NULL;
6732 if (!gsi_end_p (gsi))
6733 t = gsi_stmt (gsi);
6735 if (t && need_fake_edge_p (t))
6737 edge e;
6739 e = find_edge (bb, EXIT_BLOCK_PTR);
6740 if (e)
6742 gsi_insert_on_edge (e, gimple_build_nop ());
6743 gsi_commit_edge_inserts ();
6748 /* Now add fake edges to the function exit for any non constant
6749 calls since there is no way that we can determine if they will
6750 return or not... */
6751 for (i = 0; i < last_bb; i++)
6753 basic_block bb = BASIC_BLOCK (i);
6754 gimple_stmt_iterator gsi;
6755 gimple stmt, last_stmt;
6757 if (!bb)
6758 continue;
6760 if (blocks && !TEST_BIT (blocks, i))
6761 continue;
6763 gsi = gsi_last_bb (bb);
6764 if (!gsi_end_p (gsi))
6766 last_stmt = gsi_stmt (gsi);
6769 stmt = gsi_stmt (gsi);
6770 if (need_fake_edge_p (stmt))
6772 edge e;
6774 /* The handling above of the final block before the
6775 epilogue should be enough to verify that there is
6776 no edge to the exit block in CFG already.
6777 Calling make_edge in such case would cause us to
6778 mark that edge as fake and remove it later. */
6779 #ifdef ENABLE_CHECKING
6780 if (stmt == last_stmt)
6782 e = find_edge (bb, EXIT_BLOCK_PTR);
6783 gcc_assert (e == NULL);
6785 #endif
6787 /* Note that the following may create a new basic block
6788 and renumber the existing basic blocks. */
6789 if (stmt != last_stmt)
6791 e = split_block (bb, stmt);
6792 if (e)
6793 blocks_split++;
6795 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6797 gsi_prev (&gsi);
6799 while (!gsi_end_p (gsi));
6803 if (blocks_split)
6804 verify_flow_info ();
6806 return blocks_split;
6809 /* Purge dead abnormal call edges from basic block BB. */
6811 bool
6812 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6814 bool changed = gimple_purge_dead_eh_edges (bb);
6816 if (cfun->has_nonlocal_label)
6818 gimple stmt = last_stmt (bb);
6819 edge_iterator ei;
6820 edge e;
6822 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6823 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6825 if (e->flags & EDGE_ABNORMAL)
6827 remove_edge (e);
6828 changed = true;
6830 else
6831 ei_next (&ei);
6834 /* See gimple_purge_dead_eh_edges below. */
6835 if (changed)
6836 free_dominance_info (CDI_DOMINATORS);
6839 return changed;
6842 /* Removes edge E and all the blocks dominated by it, and updates dominance
6843 information. The IL in E->src needs to be updated separately.
6844 If dominance info is not available, only the edge E is removed.*/
6846 void
6847 remove_edge_and_dominated_blocks (edge e)
6849 VEC (basic_block, heap) *bbs_to_remove = NULL;
6850 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6851 bitmap df, df_idom;
6852 edge f;
6853 edge_iterator ei;
6854 bool none_removed = false;
6855 unsigned i;
6856 basic_block bb, dbb;
6857 bitmap_iterator bi;
6859 if (!dom_info_available_p (CDI_DOMINATORS))
6861 remove_edge (e);
6862 return;
6865 /* No updating is needed for edges to exit. */
6866 if (e->dest == EXIT_BLOCK_PTR)
6868 if (cfgcleanup_altered_bbs)
6869 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6870 remove_edge (e);
6871 return;
6874 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6875 that is not dominated by E->dest, then this set is empty. Otherwise,
6876 all the basic blocks dominated by E->dest are removed.
6878 Also, to DF_IDOM we store the immediate dominators of the blocks in
6879 the dominance frontier of E (i.e., of the successors of the
6880 removed blocks, if there are any, and of E->dest otherwise). */
6881 FOR_EACH_EDGE (f, ei, e->dest->preds)
6883 if (f == e)
6884 continue;
6886 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6888 none_removed = true;
6889 break;
6893 df = BITMAP_ALLOC (NULL);
6894 df_idom = BITMAP_ALLOC (NULL);
6896 if (none_removed)
6897 bitmap_set_bit (df_idom,
6898 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6899 else
6901 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6902 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6904 FOR_EACH_EDGE (f, ei, bb->succs)
6906 if (f->dest != EXIT_BLOCK_PTR)
6907 bitmap_set_bit (df, f->dest->index);
6910 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6911 bitmap_clear_bit (df, bb->index);
6913 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6915 bb = BASIC_BLOCK (i);
6916 bitmap_set_bit (df_idom,
6917 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6921 if (cfgcleanup_altered_bbs)
6923 /* Record the set of the altered basic blocks. */
6924 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6925 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6928 /* Remove E and the cancelled blocks. */
6929 if (none_removed)
6930 remove_edge (e);
6931 else
6933 /* Walk backwards so as to get a chance to substitute all
6934 released DEFs into debug stmts. See
6935 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6936 details. */
6937 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6938 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6941 /* Update the dominance information. The immediate dominator may change only
6942 for blocks whose immediate dominator belongs to DF_IDOM:
6944 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6945 removal. Let Z the arbitrary block such that idom(Z) = Y and
6946 Z dominates X after the removal. Before removal, there exists a path P
6947 from Y to X that avoids Z. Let F be the last edge on P that is
6948 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6949 dominates W, and because of P, Z does not dominate W), and W belongs to
6950 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6951 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6953 bb = BASIC_BLOCK (i);
6954 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6955 dbb;
6956 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6957 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6960 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6962 BITMAP_FREE (df);
6963 BITMAP_FREE (df_idom);
6964 VEC_free (basic_block, heap, bbs_to_remove);
6965 VEC_free (basic_block, heap, bbs_to_fix_dom);
6968 /* Purge dead EH edges from basic block BB. */
6970 bool
6971 gimple_purge_dead_eh_edges (basic_block bb)
6973 bool changed = false;
6974 edge e;
6975 edge_iterator ei;
6976 gimple stmt = last_stmt (bb);
6978 if (stmt && stmt_can_throw_internal (stmt))
6979 return false;
6981 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6983 if (e->flags & EDGE_EH)
6985 remove_edge_and_dominated_blocks (e);
6986 changed = true;
6988 else
6989 ei_next (&ei);
6992 return changed;
6995 bool
6996 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6998 bool changed = false;
6999 unsigned i;
7000 bitmap_iterator bi;
7002 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7004 basic_block bb = BASIC_BLOCK (i);
7006 /* Earlier gimple_purge_dead_eh_edges could have removed
7007 this basic block already. */
7008 gcc_assert (bb || changed);
7009 if (bb != NULL)
7010 changed |= gimple_purge_dead_eh_edges (bb);
7013 return changed;
7016 /* This function is called whenever a new edge is created or
7017 redirected. */
7019 static void
7020 gimple_execute_on_growing_pred (edge e)
7022 basic_block bb = e->dest;
7024 if (!gimple_seq_empty_p (phi_nodes (bb)))
7025 reserve_phi_args_for_new_edge (bb);
7028 /* This function is called immediately before edge E is removed from
7029 the edge vector E->dest->preds. */
7031 static void
7032 gimple_execute_on_shrinking_pred (edge e)
7034 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7035 remove_phi_args (e);
7038 /*---------------------------------------------------------------------------
7039 Helper functions for Loop versioning
7040 ---------------------------------------------------------------------------*/
7042 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7043 of 'first'. Both of them are dominated by 'new_head' basic block. When
7044 'new_head' was created by 'second's incoming edge it received phi arguments
7045 on the edge by split_edge(). Later, additional edge 'e' was created to
7046 connect 'new_head' and 'first'. Now this routine adds phi args on this
7047 additional edge 'e' that new_head to second edge received as part of edge
7048 splitting. */
7050 static void
7051 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7052 basic_block new_head, edge e)
7054 gimple phi1, phi2;
7055 gimple_stmt_iterator psi1, psi2;
7056 tree def;
7057 edge e2 = find_edge (new_head, second);
7059 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7060 edge, we should always have an edge from NEW_HEAD to SECOND. */
7061 gcc_assert (e2 != NULL);
7063 /* Browse all 'second' basic block phi nodes and add phi args to
7064 edge 'e' for 'first' head. PHI args are always in correct order. */
7066 for (psi2 = gsi_start_phis (second),
7067 psi1 = gsi_start_phis (first);
7068 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7069 gsi_next (&psi2), gsi_next (&psi1))
7071 phi1 = gsi_stmt (psi1);
7072 phi2 = gsi_stmt (psi2);
7073 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7074 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7079 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7080 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7081 the destination of the ELSE part. */
7083 static void
7084 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7085 basic_block second_head ATTRIBUTE_UNUSED,
7086 basic_block cond_bb, void *cond_e)
7088 gimple_stmt_iterator gsi;
7089 gimple new_cond_expr;
7090 tree cond_expr = (tree) cond_e;
7091 edge e0;
7093 /* Build new conditional expr */
7094 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7095 NULL_TREE, NULL_TREE);
7097 /* Add new cond in cond_bb. */
7098 gsi = gsi_last_bb (cond_bb);
7099 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7101 /* Adjust edges appropriately to connect new head with first head
7102 as well as second head. */
7103 e0 = single_succ_edge (cond_bb);
7104 e0->flags &= ~EDGE_FALLTHRU;
7105 e0->flags |= EDGE_FALSE_VALUE;
7108 struct cfg_hooks gimple_cfg_hooks = {
7109 "gimple",
7110 gimple_verify_flow_info,
7111 gimple_dump_bb, /* dump_bb */
7112 create_bb, /* create_basic_block */
7113 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7114 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7115 gimple_can_remove_branch_p, /* can_remove_branch_p */
7116 remove_bb, /* delete_basic_block */
7117 gimple_split_block, /* split_block */
7118 gimple_move_block_after, /* move_block_after */
7119 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7120 gimple_merge_blocks, /* merge_blocks */
7121 gimple_predict_edge, /* predict_edge */
7122 gimple_predicted_by_p, /* predicted_by_p */
7123 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7124 gimple_duplicate_bb, /* duplicate_block */
7125 gimple_split_edge, /* split_edge */
7126 gimple_make_forwarder_block, /* make_forward_block */
7127 NULL, /* tidy_fallthru_edge */
7128 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7129 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7130 gimple_flow_call_edges_add, /* flow_call_edges_add */
7131 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7132 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7133 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7134 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7135 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7136 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7137 flush_pending_stmts /* flush_pending_stmts */
7141 /* Split all critical edges. */
7143 static unsigned int
7144 split_critical_edges (void)
7146 basic_block bb;
7147 edge e;
7148 edge_iterator ei;
7150 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7151 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7152 mappings around the calls to split_edge. */
7153 start_recording_case_labels ();
7154 FOR_ALL_BB (bb)
7156 FOR_EACH_EDGE (e, ei, bb->succs)
7158 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7159 split_edge (e);
7160 /* PRE inserts statements to edges and expects that
7161 since split_critical_edges was done beforehand, committing edge
7162 insertions will not split more edges. In addition to critical
7163 edges we must split edges that have multiple successors and
7164 end by control flow statements, such as RESX.
7165 Go ahead and split them too. This matches the logic in
7166 gimple_find_edge_insert_loc. */
7167 else if ((!single_pred_p (e->dest)
7168 || !gimple_seq_empty_p (phi_nodes (e->dest))
7169 || e->dest == EXIT_BLOCK_PTR)
7170 && e->src != ENTRY_BLOCK_PTR
7171 && !(e->flags & EDGE_ABNORMAL))
7173 gimple_stmt_iterator gsi;
7175 gsi = gsi_last_bb (e->src);
7176 if (!gsi_end_p (gsi)
7177 && stmt_ends_bb_p (gsi_stmt (gsi))
7178 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7179 && !gimple_call_builtin_p (gsi_stmt (gsi),
7180 BUILT_IN_RETURN)))
7181 split_edge (e);
7185 end_recording_case_labels ();
7186 return 0;
7189 struct gimple_opt_pass pass_split_crit_edges =
7192 GIMPLE_PASS,
7193 "crited", /* name */
7194 NULL, /* gate */
7195 split_critical_edges, /* execute */
7196 NULL, /* sub */
7197 NULL, /* next */
7198 0, /* static_pass_number */
7199 TV_TREE_SPLIT_EDGES, /* tv_id */
7200 PROP_cfg, /* properties required */
7201 PROP_no_crit_edges, /* properties_provided */
7202 0, /* properties_destroyed */
7203 0, /* todo_flags_start */
7204 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7209 /* Build a ternary operation and gimplify it. Emit code before GSI.
7210 Return the gimple_val holding the result. */
7212 tree
7213 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7214 tree type, tree a, tree b, tree c)
7216 tree ret;
7217 location_t loc = gimple_location (gsi_stmt (*gsi));
7219 ret = fold_build3_loc (loc, code, type, a, b, c);
7220 STRIP_NOPS (ret);
7222 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7223 GSI_SAME_STMT);
7226 /* Build a binary operation and gimplify it. Emit code before GSI.
7227 Return the gimple_val holding the result. */
7229 tree
7230 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7231 tree type, tree a, tree b)
7233 tree ret;
7235 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7236 STRIP_NOPS (ret);
7238 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7239 GSI_SAME_STMT);
7242 /* Build a unary operation and gimplify it. Emit code before GSI.
7243 Return the gimple_val holding the result. */
7245 tree
7246 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7247 tree a)
7249 tree ret;
7251 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7252 STRIP_NOPS (ret);
7254 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7255 GSI_SAME_STMT);
7260 /* Emit return warnings. */
7262 static unsigned int
7263 execute_warn_function_return (void)
7265 source_location location;
7266 gimple last;
7267 edge e;
7268 edge_iterator ei;
7270 /* If we have a path to EXIT, then we do return. */
7271 if (TREE_THIS_VOLATILE (cfun->decl)
7272 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7274 location = UNKNOWN_LOCATION;
7275 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7277 last = last_stmt (e->src);
7278 if ((gimple_code (last) == GIMPLE_RETURN
7279 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7280 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7281 break;
7283 if (location == UNKNOWN_LOCATION)
7284 location = cfun->function_end_locus;
7285 warning_at (location, 0, "%<noreturn%> function does return");
7288 /* If we see "return;" in some basic block, then we do reach the end
7289 without returning a value. */
7290 else if (warn_return_type
7291 && !TREE_NO_WARNING (cfun->decl)
7292 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7293 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7295 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7297 gimple last = last_stmt (e->src);
7298 if (gimple_code (last) == GIMPLE_RETURN
7299 && gimple_return_retval (last) == NULL
7300 && !gimple_no_warning_p (last))
7302 location = gimple_location (last);
7303 if (location == UNKNOWN_LOCATION)
7304 location = cfun->function_end_locus;
7305 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7306 TREE_NO_WARNING (cfun->decl) = 1;
7307 break;
7311 return 0;
7315 /* Given a basic block B which ends with a conditional and has
7316 precisely two successors, determine which of the edges is taken if
7317 the conditional is true and which is taken if the conditional is
7318 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7320 void
7321 extract_true_false_edges_from_block (basic_block b,
7322 edge *true_edge,
7323 edge *false_edge)
7325 edge e = EDGE_SUCC (b, 0);
7327 if (e->flags & EDGE_TRUE_VALUE)
7329 *true_edge = e;
7330 *false_edge = EDGE_SUCC (b, 1);
7332 else
7334 *false_edge = e;
7335 *true_edge = EDGE_SUCC (b, 1);
7339 struct gimple_opt_pass pass_warn_function_return =
7342 GIMPLE_PASS,
7343 "*warn_function_return", /* name */
7344 NULL, /* gate */
7345 execute_warn_function_return, /* execute */
7346 NULL, /* sub */
7347 NULL, /* next */
7348 0, /* static_pass_number */
7349 TV_NONE, /* tv_id */
7350 PROP_cfg, /* properties_required */
7351 0, /* properties_provided */
7352 0, /* properties_destroyed */
7353 0, /* todo_flags_start */
7354 0 /* todo_flags_finish */
7358 /* Emit noreturn warnings. */
7360 static unsigned int
7361 execute_warn_function_noreturn (void)
7363 if (!TREE_THIS_VOLATILE (current_function_decl)
7364 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7365 warn_function_noreturn (current_function_decl);
7366 return 0;
7369 static bool
7370 gate_warn_function_noreturn (void)
7372 return warn_suggest_attribute_noreturn;
7375 struct gimple_opt_pass pass_warn_function_noreturn =
7378 GIMPLE_PASS,
7379 "*warn_function_noreturn", /* name */
7380 gate_warn_function_noreturn, /* gate */
7381 execute_warn_function_noreturn, /* execute */
7382 NULL, /* sub */
7383 NULL, /* next */
7384 0, /* static_pass_number */
7385 TV_NONE, /* tv_id */
7386 PROP_cfg, /* properties_required */
7387 0, /* properties_provided */
7388 0, /* properties_destroyed */
7389 0, /* todo_flags_start */
7390 0 /* todo_flags_finish */
7395 /* Walk a gimplified function and warn for functions whose return value is
7396 ignored and attribute((warn_unused_result)) is set. This is done before
7397 inlining, so we don't have to worry about that. */
7399 static void
7400 do_warn_unused_result (gimple_seq seq)
7402 tree fdecl, ftype;
7403 gimple_stmt_iterator i;
7405 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7407 gimple g = gsi_stmt (i);
7409 switch (gimple_code (g))
7411 case GIMPLE_BIND:
7412 do_warn_unused_result (gimple_bind_body (g));
7413 break;
7414 case GIMPLE_TRY:
7415 do_warn_unused_result (gimple_try_eval (g));
7416 do_warn_unused_result (gimple_try_cleanup (g));
7417 break;
7418 case GIMPLE_CATCH:
7419 do_warn_unused_result (gimple_catch_handler (g));
7420 break;
7421 case GIMPLE_EH_FILTER:
7422 do_warn_unused_result (gimple_eh_filter_failure (g));
7423 break;
7425 case GIMPLE_CALL:
7426 if (gimple_call_lhs (g))
7427 break;
7429 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7430 LHS. All calls whose value is ignored should be
7431 represented like this. Look for the attribute. */
7432 fdecl = gimple_call_fndecl (g);
7433 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7435 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7437 location_t loc = gimple_location (g);
7439 if (fdecl)
7440 warning_at (loc, OPT_Wunused_result,
7441 "ignoring return value of %qD, "
7442 "declared with attribute warn_unused_result",
7443 fdecl);
7444 else
7445 warning_at (loc, OPT_Wunused_result,
7446 "ignoring return value of function "
7447 "declared with attribute warn_unused_result");
7449 break;
7451 default:
7452 /* Not a container, not a call, or a call whose value is used. */
7453 break;
7458 static unsigned int
7459 run_warn_unused_result (void)
7461 do_warn_unused_result (gimple_body (current_function_decl));
7462 return 0;
7465 static bool
7466 gate_warn_unused_result (void)
7468 return flag_warn_unused_result;
7471 struct gimple_opt_pass pass_warn_unused_result =
7474 GIMPLE_PASS,
7475 "*warn_unused_result", /* name */
7476 gate_warn_unused_result, /* gate */
7477 run_warn_unused_result, /* execute */
7478 NULL, /* sub */
7479 NULL, /* next */
7480 0, /* static_pass_number */
7481 TV_NONE, /* tv_id */
7482 PROP_gimple_any, /* properties_required */
7483 0, /* properties_provided */
7484 0, /* properties_destroyed */
7485 0, /* todo_flags_start */
7486 0, /* todo_flags_finish */