* gcc.target/powerpc/altivec-volatile.c: Adjust expected warning.
[official-gcc.git] / gcc / ifcvt.c
blob33c9a147a66c7c441306e4c6ca6b021e76e8ee5c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "output.h"
37 #include "optabs.h"
38 #include "toplev.h"
39 #include "tm_p.h"
40 #include "cfgloop.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "vec.h"
46 #include "vecprim.h"
47 #include "dbgcnt.h"
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
51 #endif
52 #ifndef HAVE_incscc
53 #define HAVE_incscc 0
54 #endif
55 #ifndef HAVE_decscc
56 #define HAVE_decscc 0
57 #endif
58 #ifndef HAVE_trap
59 #define HAVE_trap 0
60 #endif
62 #ifndef MAX_CONDITIONAL_EXECUTE
63 #define MAX_CONDITIONAL_EXECUTE \
64 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
65 + 1)
66 #endif
68 #define IFCVT_MULTIPLE_DUMPS 1
70 #define NULL_BLOCK ((basic_block) NULL)
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
79 /* # of changes made. */
80 static int num_true_changes;
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block);
87 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
88 static rtx first_active_insn (basic_block);
89 static rtx last_active_insn (basic_block, int);
90 static basic_block block_fallthru (basic_block);
91 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
92 static rtx cond_exec_get_condition (rtx);
93 static rtx noce_get_condition (rtx, rtx *, bool);
94 static int noce_operand_ok (const_rtx);
95 static void merge_if_block (ce_if_block_t *);
96 static int find_cond_trap (basic_block, edge, edge);
97 static basic_block find_if_header (basic_block, int);
98 static int block_jumps_and_fallthru_p (basic_block, basic_block);
99 static int noce_find_if_block (basic_block, edge, edge, int);
100 static int cond_exec_find_if_block (ce_if_block_t *);
101 static int find_if_case_1 (basic_block, edge, edge);
102 static int find_if_case_2 (basic_block, edge, edge);
103 static int find_memory (rtx *, void *);
104 static int dead_or_predicable (basic_block, basic_block, basic_block,
105 basic_block, int);
106 static void noce_emit_move_insn (rtx, rtx);
107 static rtx block_has_only_trap (basic_block);
109 /* Count the number of non-jump active insns in BB. */
111 static int
112 count_bb_insns (const_basic_block bb)
114 int count = 0;
115 rtx insn = BB_HEAD (bb);
117 while (1)
119 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
120 count++;
122 if (insn == BB_END (bb))
123 break;
124 insn = NEXT_INSN (insn);
127 return count;
130 /* Determine whether the total insn_rtx_cost on non-jump insns in
131 basic block BB is less than MAX_COST. This function returns
132 false if the cost of any instruction could not be estimated. */
134 static bool
135 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
137 int count = 0;
138 rtx insn = BB_HEAD (bb);
139 bool speed = optimize_bb_for_speed_p (bb);
141 while (1)
143 if (NONJUMP_INSN_P (insn))
145 int cost = insn_rtx_cost (PATTERN (insn), speed);
146 if (cost == 0)
147 return false;
149 /* If this instruction is the load or set of a "stack" register,
150 such as a floating point register on x87, then the cost of
151 speculatively executing this insn may need to include
152 the additional cost of popping its result off of the
153 register stack. Unfortunately, correctly recognizing and
154 accounting for this additional overhead is tricky, so for
155 now we simply prohibit such speculative execution. */
156 #ifdef STACK_REGS
158 rtx set = single_set (insn);
159 if (set && STACK_REG_P (SET_DEST (set)))
160 return false;
162 #endif
164 count += cost;
165 if (count >= max_cost)
166 return false;
168 else if (CALL_P (insn))
169 return false;
171 if (insn == BB_END (bb))
172 break;
173 insn = NEXT_INSN (insn);
176 return true;
179 /* Return the first non-jump active insn in the basic block. */
181 static rtx
182 first_active_insn (basic_block bb)
184 rtx insn = BB_HEAD (bb);
186 if (LABEL_P (insn))
188 if (insn == BB_END (bb))
189 return NULL_RTX;
190 insn = NEXT_INSN (insn);
193 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
195 if (insn == BB_END (bb))
196 return NULL_RTX;
197 insn = NEXT_INSN (insn);
200 if (JUMP_P (insn))
201 return NULL_RTX;
203 return insn;
206 /* Return the last non-jump active (non-jump) insn in the basic block. */
208 static rtx
209 last_active_insn (basic_block bb, int skip_use_p)
211 rtx insn = BB_END (bb);
212 rtx head = BB_HEAD (bb);
214 while (NOTE_P (insn)
215 || JUMP_P (insn)
216 || DEBUG_INSN_P (insn)
217 || (skip_use_p
218 && NONJUMP_INSN_P (insn)
219 && GET_CODE (PATTERN (insn)) == USE))
221 if (insn == head)
222 return NULL_RTX;
223 insn = PREV_INSN (insn);
226 if (LABEL_P (insn))
227 return NULL_RTX;
229 return insn;
232 /* Return the basic block reached by falling though the basic block BB. */
234 static basic_block
235 block_fallthru (basic_block bb)
237 edge e;
238 edge_iterator ei;
240 FOR_EACH_EDGE (e, ei, bb->succs)
241 if (e->flags & EDGE_FALLTHRU)
242 break;
244 return (e) ? e->dest : NULL_BLOCK;
247 /* Go through a bunch of insns, converting them to conditional
248 execution format if possible. Return TRUE if all of the non-note
249 insns were processed. */
251 static int
252 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
253 /* if block information */rtx start,
254 /* first insn to look at */rtx end,
255 /* last insn to look at */rtx test,
256 /* conditional execution test */rtx prob_val,
257 /* probability of branch taken. */int mod_ok)
259 int must_be_last = FALSE;
260 rtx insn;
261 rtx xtest;
262 rtx pattern;
264 if (!start || !end)
265 return FALSE;
267 for (insn = start; ; insn = NEXT_INSN (insn))
269 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
270 goto insn_done;
272 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
274 /* Remove USE insns that get in the way. */
275 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
277 /* ??? Ug. Actually unlinking the thing is problematic,
278 given what we'd have to coordinate with our callers. */
279 SET_INSN_DELETED (insn);
280 goto insn_done;
283 /* Last insn wasn't last? */
284 if (must_be_last)
285 return FALSE;
287 if (modified_in_p (test, insn))
289 if (!mod_ok)
290 return FALSE;
291 must_be_last = TRUE;
294 /* Now build the conditional form of the instruction. */
295 pattern = PATTERN (insn);
296 xtest = copy_rtx (test);
298 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
299 two conditions. */
300 if (GET_CODE (pattern) == COND_EXEC)
302 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
303 return FALSE;
305 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
306 COND_EXEC_TEST (pattern));
307 pattern = COND_EXEC_CODE (pattern);
310 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
312 /* If the machine needs to modify the insn being conditionally executed,
313 say for example to force a constant integer operand into a temp
314 register, do so here. */
315 #ifdef IFCVT_MODIFY_INSN
316 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
317 if (! pattern)
318 return FALSE;
319 #endif
321 validate_change (insn, &PATTERN (insn), pattern, 1);
323 if (CALL_P (insn) && prob_val)
324 validate_change (insn, &REG_NOTES (insn),
325 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
326 REG_NOTES (insn)), 1);
328 insn_done:
329 if (insn == end)
330 break;
333 return TRUE;
336 /* Return the condition for a jump. Do not do any special processing. */
338 static rtx
339 cond_exec_get_condition (rtx jump)
341 rtx test_if, cond;
343 if (any_condjump_p (jump))
344 test_if = SET_SRC (pc_set (jump));
345 else
346 return NULL_RTX;
347 cond = XEXP (test_if, 0);
349 /* If this branches to JUMP_LABEL when the condition is false,
350 reverse the condition. */
351 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
352 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
354 enum rtx_code rev = reversed_comparison_code (cond, jump);
355 if (rev == UNKNOWN)
356 return NULL_RTX;
358 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
359 XEXP (cond, 1));
362 return cond;
365 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
366 to conditional execution. Return TRUE if we were successful at
367 converting the block. */
369 static int
370 cond_exec_process_if_block (ce_if_block_t * ce_info,
371 /* if block information */int do_multiple_p)
373 basic_block test_bb = ce_info->test_bb; /* last test block */
374 basic_block then_bb = ce_info->then_bb; /* THEN */
375 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
376 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
377 rtx then_start; /* first insn in THEN block */
378 rtx then_end; /* last insn + 1 in THEN block */
379 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
380 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
381 int max; /* max # of insns to convert. */
382 int then_mod_ok; /* whether conditional mods are ok in THEN */
383 rtx true_expr; /* test for else block insns */
384 rtx false_expr; /* test for then block insns */
385 rtx true_prob_val; /* probability of else block */
386 rtx false_prob_val; /* probability of then block */
387 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
388 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
389 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
390 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
391 int then_n_insns, else_n_insns, n_insns;
392 enum rtx_code false_code;
394 /* If test is comprised of && or || elements, and we've failed at handling
395 all of them together, just use the last test if it is the special case of
396 && elements without an ELSE block. */
397 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
399 if (else_bb || ! ce_info->and_and_p)
400 return FALSE;
402 ce_info->test_bb = test_bb = ce_info->last_test_bb;
403 ce_info->num_multiple_test_blocks = 0;
404 ce_info->num_and_and_blocks = 0;
405 ce_info->num_or_or_blocks = 0;
408 /* Find the conditional jump to the ELSE or JOIN part, and isolate
409 the test. */
410 test_expr = cond_exec_get_condition (BB_END (test_bb));
411 if (! test_expr)
412 return FALSE;
414 /* If the conditional jump is more than just a conditional jump,
415 then we can not do conditional execution conversion on this block. */
416 if (! onlyjump_p (BB_END (test_bb)))
417 return FALSE;
419 /* Collect the bounds of where we're to search, skipping any labels, jumps
420 and notes at the beginning and end of the block. Then count the total
421 number of insns and see if it is small enough to convert. */
422 then_start = first_active_insn (then_bb);
423 then_end = last_active_insn (then_bb, TRUE);
424 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
425 n_insns = then_n_insns;
426 max = MAX_CONDITIONAL_EXECUTE;
428 if (else_bb)
430 int n_matching;
432 max *= 2;
433 else_start = first_active_insn (else_bb);
434 else_end = last_active_insn (else_bb, TRUE);
435 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
436 n_insns += else_n_insns;
438 /* Look for matching sequences at the head and tail of the two blocks,
439 and limit the range of insns to be converted if possible. */
440 n_matching = flow_find_cross_jump (then_bb, else_bb,
441 &then_first_tail, &else_first_tail);
442 if (then_first_tail == BB_HEAD (then_bb))
443 then_start = then_end = NULL_RTX;
444 if (else_first_tail == BB_HEAD (else_bb))
445 else_start = else_end = NULL_RTX;
447 if (n_matching > 0)
449 if (then_end)
450 then_end = prev_active_insn (then_first_tail);
451 if (else_end)
452 else_end = prev_active_insn (else_first_tail);
453 n_insns -= 2 * n_matching;
456 if (then_start && else_start)
458 int longest_match = MIN (then_n_insns - n_matching,
459 else_n_insns - n_matching);
460 n_matching
461 = flow_find_head_matching_sequence (then_bb, else_bb,
462 &then_last_head,
463 &else_last_head,
464 longest_match);
466 if (n_matching > 0)
468 rtx insn;
470 /* We won't pass the insns in the head sequence to
471 cond_exec_process_insns, so we need to test them here
472 to make sure that they don't clobber the condition. */
473 for (insn = BB_HEAD (then_bb);
474 insn != NEXT_INSN (then_last_head);
475 insn = NEXT_INSN (insn))
476 if (!LABEL_P (insn) && !NOTE_P (insn)
477 && !DEBUG_INSN_P (insn)
478 && modified_in_p (test_expr, insn))
479 return FALSE;
482 if (then_last_head == then_end)
483 then_start = then_end = NULL_RTX;
484 if (else_last_head == else_end)
485 else_start = else_end = NULL_RTX;
487 if (n_matching > 0)
489 if (then_start)
490 then_start = next_active_insn (then_last_head);
491 if (else_start)
492 else_start = next_active_insn (else_last_head);
493 n_insns -= 2 * n_matching;
498 if (n_insns > max)
499 return FALSE;
501 /* Map test_expr/test_jump into the appropriate MD tests to use on
502 the conditionally executed code. */
504 true_expr = test_expr;
506 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
507 if (false_code != UNKNOWN)
508 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
509 XEXP (true_expr, 0), XEXP (true_expr, 1));
510 else
511 false_expr = NULL_RTX;
513 #ifdef IFCVT_MODIFY_TESTS
514 /* If the machine description needs to modify the tests, such as setting a
515 conditional execution register from a comparison, it can do so here. */
516 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
518 /* See if the conversion failed. */
519 if (!true_expr || !false_expr)
520 goto fail;
521 #endif
523 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
524 if (true_prob_val)
526 true_prob_val = XEXP (true_prob_val, 0);
527 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
529 else
530 false_prob_val = NULL_RTX;
532 /* If we have && or || tests, do them here. These tests are in the adjacent
533 blocks after the first block containing the test. */
534 if (ce_info->num_multiple_test_blocks > 0)
536 basic_block bb = test_bb;
537 basic_block last_test_bb = ce_info->last_test_bb;
539 if (! false_expr)
540 goto fail;
544 rtx start, end;
545 rtx t, f;
546 enum rtx_code f_code;
548 bb = block_fallthru (bb);
549 start = first_active_insn (bb);
550 end = last_active_insn (bb, TRUE);
551 if (start
552 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
553 false_prob_val, FALSE))
554 goto fail;
556 /* If the conditional jump is more than just a conditional jump, then
557 we can not do conditional execution conversion on this block. */
558 if (! onlyjump_p (BB_END (bb)))
559 goto fail;
561 /* Find the conditional jump and isolate the test. */
562 t = cond_exec_get_condition (BB_END (bb));
563 if (! t)
564 goto fail;
566 f_code = reversed_comparison_code (t, BB_END (bb));
567 if (f_code == UNKNOWN)
568 goto fail;
570 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
571 if (ce_info->and_and_p)
573 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
574 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
576 else
578 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
579 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
582 /* If the machine description needs to modify the tests, such as
583 setting a conditional execution register from a comparison, it can
584 do so here. */
585 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
586 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
588 /* See if the conversion failed. */
589 if (!t || !f)
590 goto fail;
591 #endif
593 true_expr = t;
594 false_expr = f;
596 while (bb != last_test_bb);
599 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
600 on then THEN block. */
601 then_mod_ok = (else_bb == NULL_BLOCK);
603 /* Go through the THEN and ELSE blocks converting the insns if possible
604 to conditional execution. */
606 if (then_end
607 && (! false_expr
608 || ! cond_exec_process_insns (ce_info, then_start, then_end,
609 false_expr, false_prob_val,
610 then_mod_ok)))
611 goto fail;
613 if (else_bb && else_end
614 && ! cond_exec_process_insns (ce_info, else_start, else_end,
615 true_expr, true_prob_val, TRUE))
616 goto fail;
618 /* If we cannot apply the changes, fail. Do not go through the normal fail
619 processing, since apply_change_group will call cancel_changes. */
620 if (! apply_change_group ())
622 #ifdef IFCVT_MODIFY_CANCEL
623 /* Cancel any machine dependent changes. */
624 IFCVT_MODIFY_CANCEL (ce_info);
625 #endif
626 return FALSE;
629 #ifdef IFCVT_MODIFY_FINAL
630 /* Do any machine dependent final modifications. */
631 IFCVT_MODIFY_FINAL (ce_info);
632 #endif
634 /* Conversion succeeded. */
635 if (dump_file)
636 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
637 n_insns, (n_insns == 1) ? " was" : "s were");
639 /* Merge the blocks! If we had matching sequences, make sure to delete one
640 copy at the appropriate location first: delete the copy in the THEN branch
641 for a tail sequence so that the remaining one is executed last for both
642 branches, and delete the copy in the ELSE branch for a head sequence so
643 that the remaining one is executed first for both branches. */
644 if (then_first_tail)
646 rtx from = then_first_tail;
647 if (!INSN_P (from))
648 from = next_active_insn (from);
649 delete_insn_chain (from, BB_END (then_bb), false);
651 if (else_last_head)
652 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
654 merge_if_block (ce_info);
655 cond_exec_changed_p = TRUE;
656 return TRUE;
658 fail:
659 #ifdef IFCVT_MODIFY_CANCEL
660 /* Cancel any machine dependent changes. */
661 IFCVT_MODIFY_CANCEL (ce_info);
662 #endif
664 cancel_changes (0);
665 return FALSE;
668 /* Used by noce_process_if_block to communicate with its subroutines.
670 The subroutines know that A and B may be evaluated freely. They
671 know that X is a register. They should insert new instructions
672 before cond_earliest. */
674 struct noce_if_info
676 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
677 basic_block test_bb, then_bb, else_bb, join_bb;
679 /* The jump that ends TEST_BB. */
680 rtx jump;
682 /* The jump condition. */
683 rtx cond;
685 /* New insns should be inserted before this one. */
686 rtx cond_earliest;
688 /* Insns in the THEN and ELSE block. There is always just this
689 one insns in those blocks. The insns are single_set insns.
690 If there was no ELSE block, INSN_B is the last insn before
691 COND_EARLIEST, or NULL_RTX. In the former case, the insn
692 operands are still valid, as if INSN_B was moved down below
693 the jump. */
694 rtx insn_a, insn_b;
696 /* The SET_SRC of INSN_A and INSN_B. */
697 rtx a, b;
699 /* The SET_DEST of INSN_A. */
700 rtx x;
702 /* True if this if block is not canonical. In the canonical form of
703 if blocks, the THEN_BB is the block reached via the fallthru edge
704 from TEST_BB. For the noce transformations, we allow the symmetric
705 form as well. */
706 bool then_else_reversed;
708 /* Estimated cost of the particular branch instruction. */
709 int branch_cost;
712 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
713 static int noce_try_move (struct noce_if_info *);
714 static int noce_try_store_flag (struct noce_if_info *);
715 static int noce_try_addcc (struct noce_if_info *);
716 static int noce_try_store_flag_constants (struct noce_if_info *);
717 static int noce_try_store_flag_mask (struct noce_if_info *);
718 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
719 rtx, rtx, rtx);
720 static int noce_try_cmove (struct noce_if_info *);
721 static int noce_try_cmove_arith (struct noce_if_info *);
722 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
723 static int noce_try_minmax (struct noce_if_info *);
724 static int noce_try_abs (struct noce_if_info *);
725 static int noce_try_sign_mask (struct noce_if_info *);
727 /* Helper function for noce_try_store_flag*. */
729 static rtx
730 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
731 int normalize)
733 rtx cond = if_info->cond;
734 int cond_complex;
735 enum rtx_code code;
737 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
738 || ! general_operand (XEXP (cond, 1), VOIDmode));
740 /* If earliest == jump, or when the condition is complex, try to
741 build the store_flag insn directly. */
743 if (cond_complex)
745 rtx set = pc_set (if_info->jump);
746 cond = XEXP (SET_SRC (set), 0);
747 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
748 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
749 reversep = !reversep;
750 if (if_info->then_else_reversed)
751 reversep = !reversep;
754 if (reversep)
755 code = reversed_comparison_code (cond, if_info->jump);
756 else
757 code = GET_CODE (cond);
759 if ((if_info->cond_earliest == if_info->jump || cond_complex)
760 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
762 rtx tmp;
764 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
765 XEXP (cond, 1));
766 tmp = gen_rtx_SET (VOIDmode, x, tmp);
768 start_sequence ();
769 tmp = emit_insn (tmp);
771 if (recog_memoized (tmp) >= 0)
773 tmp = get_insns ();
774 end_sequence ();
775 emit_insn (tmp);
777 if_info->cond_earliest = if_info->jump;
779 return x;
782 end_sequence ();
785 /* Don't even try if the comparison operands or the mode of X are weird. */
786 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
787 return NULL_RTX;
789 return emit_store_flag (x, code, XEXP (cond, 0),
790 XEXP (cond, 1), VOIDmode,
791 (code == LTU || code == LEU
792 || code == GEU || code == GTU), normalize);
795 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
796 X is the destination/target and Y is the value to copy. */
798 static void
799 noce_emit_move_insn (rtx x, rtx y)
801 enum machine_mode outmode;
802 rtx outer, inner;
803 int bitpos;
805 if (GET_CODE (x) != STRICT_LOW_PART)
807 rtx seq, insn, target;
808 optab ot;
810 start_sequence ();
811 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
812 otherwise construct a suitable SET pattern ourselves. */
813 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
814 ? emit_move_insn (x, y)
815 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
816 seq = get_insns ();
817 end_sequence ();
819 if (recog_memoized (insn) <= 0)
821 if (GET_CODE (x) == ZERO_EXTRACT)
823 rtx op = XEXP (x, 0);
824 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
825 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
827 /* store_bit_field expects START to be relative to
828 BYTES_BIG_ENDIAN and adjusts this value for machines with
829 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
830 invoke store_bit_field again it is necessary to have the START
831 value from the first call. */
832 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
834 if (MEM_P (op))
835 start = BITS_PER_UNIT - start - size;
836 else
838 gcc_assert (REG_P (op));
839 start = BITS_PER_WORD - start - size;
843 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
844 store_bit_field (op, size, start, GET_MODE (x), y);
845 return;
848 switch (GET_RTX_CLASS (GET_CODE (y)))
850 case RTX_UNARY:
851 ot = code_to_optab[GET_CODE (y)];
852 if (ot)
854 start_sequence ();
855 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
856 if (target != NULL_RTX)
858 if (target != x)
859 emit_move_insn (x, target);
860 seq = get_insns ();
862 end_sequence ();
864 break;
866 case RTX_BIN_ARITH:
867 case RTX_COMM_ARITH:
868 ot = code_to_optab[GET_CODE (y)];
869 if (ot)
871 start_sequence ();
872 target = expand_binop (GET_MODE (y), ot,
873 XEXP (y, 0), XEXP (y, 1),
874 x, 0, OPTAB_DIRECT);
875 if (target != NULL_RTX)
877 if (target != x)
878 emit_move_insn (x, target);
879 seq = get_insns ();
881 end_sequence ();
883 break;
885 default:
886 break;
890 emit_insn (seq);
891 return;
894 outer = XEXP (x, 0);
895 inner = XEXP (outer, 0);
896 outmode = GET_MODE (outer);
897 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
898 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
901 /* Return sequence of instructions generated by if conversion. This
902 function calls end_sequence() to end the current stream, ensures
903 that are instructions are unshared, recognizable non-jump insns.
904 On failure, this function returns a NULL_RTX. */
906 static rtx
907 end_ifcvt_sequence (struct noce_if_info *if_info)
909 rtx insn;
910 rtx seq = get_insns ();
912 set_used_flags (if_info->x);
913 set_used_flags (if_info->cond);
914 unshare_all_rtl_in_chain (seq);
915 end_sequence ();
917 /* Make sure that all of the instructions emitted are recognizable,
918 and that we haven't introduced a new jump instruction.
919 As an exercise for the reader, build a general mechanism that
920 allows proper placement of required clobbers. */
921 for (insn = seq; insn; insn = NEXT_INSN (insn))
922 if (JUMP_P (insn)
923 || recog_memoized (insn) == -1)
924 return NULL_RTX;
926 return seq;
929 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
930 "if (a == b) x = a; else x = b" into "x = b". */
932 static int
933 noce_try_move (struct noce_if_info *if_info)
935 rtx cond = if_info->cond;
936 enum rtx_code code = GET_CODE (cond);
937 rtx y, seq;
939 if (code != NE && code != EQ)
940 return FALSE;
942 /* This optimization isn't valid if either A or B could be a NaN
943 or a signed zero. */
944 if (HONOR_NANS (GET_MODE (if_info->x))
945 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
946 return FALSE;
948 /* Check whether the operands of the comparison are A and in
949 either order. */
950 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
951 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
952 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
953 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
955 y = (code == EQ) ? if_info->a : if_info->b;
957 /* Avoid generating the move if the source is the destination. */
958 if (! rtx_equal_p (if_info->x, y))
960 start_sequence ();
961 noce_emit_move_insn (if_info->x, y);
962 seq = end_ifcvt_sequence (if_info);
963 if (!seq)
964 return FALSE;
966 emit_insn_before_setloc (seq, if_info->jump,
967 INSN_LOCATOR (if_info->insn_a));
969 return TRUE;
971 return FALSE;
974 /* Convert "if (test) x = 1; else x = 0".
976 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
977 tried in noce_try_store_flag_constants after noce_try_cmove has had
978 a go at the conversion. */
980 static int
981 noce_try_store_flag (struct noce_if_info *if_info)
983 int reversep;
984 rtx target, seq;
986 if (CONST_INT_P (if_info->b)
987 && INTVAL (if_info->b) == STORE_FLAG_VALUE
988 && if_info->a == const0_rtx)
989 reversep = 0;
990 else if (if_info->b == const0_rtx
991 && CONST_INT_P (if_info->a)
992 && INTVAL (if_info->a) == STORE_FLAG_VALUE
993 && (reversed_comparison_code (if_info->cond, if_info->jump)
994 != UNKNOWN))
995 reversep = 1;
996 else
997 return FALSE;
999 start_sequence ();
1001 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1002 if (target)
1004 if (target != if_info->x)
1005 noce_emit_move_insn (if_info->x, target);
1007 seq = end_ifcvt_sequence (if_info);
1008 if (! seq)
1009 return FALSE;
1011 emit_insn_before_setloc (seq, if_info->jump,
1012 INSN_LOCATOR (if_info->insn_a));
1013 return TRUE;
1015 else
1017 end_sequence ();
1018 return FALSE;
1022 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1024 static int
1025 noce_try_store_flag_constants (struct noce_if_info *if_info)
1027 rtx target, seq;
1028 int reversep;
1029 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1030 int normalize, can_reverse;
1031 enum machine_mode mode;
1033 if (CONST_INT_P (if_info->a)
1034 && CONST_INT_P (if_info->b))
1036 mode = GET_MODE (if_info->x);
1037 ifalse = INTVAL (if_info->a);
1038 itrue = INTVAL (if_info->b);
1040 /* Make sure we can represent the difference between the two values. */
1041 if ((itrue - ifalse > 0)
1042 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1043 return FALSE;
1045 diff = trunc_int_for_mode (itrue - ifalse, mode);
1047 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1048 != UNKNOWN);
1050 reversep = 0;
1051 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1052 normalize = 0;
1053 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1054 && (STORE_FLAG_VALUE == 1
1055 || if_info->branch_cost >= 2))
1056 normalize = 1;
1057 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1058 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1059 normalize = 1, reversep = 1;
1060 else if (itrue == -1
1061 && (STORE_FLAG_VALUE == -1
1062 || if_info->branch_cost >= 2))
1063 normalize = -1;
1064 else if (ifalse == -1 && can_reverse
1065 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1066 normalize = -1, reversep = 1;
1067 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1068 || if_info->branch_cost >= 3)
1069 normalize = -1;
1070 else
1071 return FALSE;
1073 if (reversep)
1075 tmp = itrue; itrue = ifalse; ifalse = tmp;
1076 diff = trunc_int_for_mode (-diff, mode);
1079 start_sequence ();
1080 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1081 if (! target)
1083 end_sequence ();
1084 return FALSE;
1087 /* if (test) x = 3; else x = 4;
1088 => x = 3 + (test == 0); */
1089 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1091 target = expand_simple_binop (mode,
1092 (diff == STORE_FLAG_VALUE
1093 ? PLUS : MINUS),
1094 GEN_INT (ifalse), target, if_info->x, 0,
1095 OPTAB_WIDEN);
1098 /* if (test) x = 8; else x = 0;
1099 => x = (test != 0) << 3; */
1100 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1102 target = expand_simple_binop (mode, ASHIFT,
1103 target, GEN_INT (tmp), if_info->x, 0,
1104 OPTAB_WIDEN);
1107 /* if (test) x = -1; else x = b;
1108 => x = -(test != 0) | b; */
1109 else if (itrue == -1)
1111 target = expand_simple_binop (mode, IOR,
1112 target, GEN_INT (ifalse), if_info->x, 0,
1113 OPTAB_WIDEN);
1116 /* if (test) x = a; else x = b;
1117 => x = (-(test != 0) & (b - a)) + a; */
1118 else
1120 target = expand_simple_binop (mode, AND,
1121 target, GEN_INT (diff), if_info->x, 0,
1122 OPTAB_WIDEN);
1123 if (target)
1124 target = expand_simple_binop (mode, PLUS,
1125 target, GEN_INT (ifalse),
1126 if_info->x, 0, OPTAB_WIDEN);
1129 if (! target)
1131 end_sequence ();
1132 return FALSE;
1135 if (target != if_info->x)
1136 noce_emit_move_insn (if_info->x, target);
1138 seq = end_ifcvt_sequence (if_info);
1139 if (!seq)
1140 return FALSE;
1142 emit_insn_before_setloc (seq, if_info->jump,
1143 INSN_LOCATOR (if_info->insn_a));
1144 return TRUE;
1147 return FALSE;
1150 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1151 similarly for "foo--". */
1153 static int
1154 noce_try_addcc (struct noce_if_info *if_info)
1156 rtx target, seq;
1157 int subtract, normalize;
1159 if (GET_CODE (if_info->a) == PLUS
1160 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1161 && (reversed_comparison_code (if_info->cond, if_info->jump)
1162 != UNKNOWN))
1164 rtx cond = if_info->cond;
1165 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1167 /* First try to use addcc pattern. */
1168 if (general_operand (XEXP (cond, 0), VOIDmode)
1169 && general_operand (XEXP (cond, 1), VOIDmode))
1171 start_sequence ();
1172 target = emit_conditional_add (if_info->x, code,
1173 XEXP (cond, 0),
1174 XEXP (cond, 1),
1175 VOIDmode,
1176 if_info->b,
1177 XEXP (if_info->a, 1),
1178 GET_MODE (if_info->x),
1179 (code == LTU || code == GEU
1180 || code == LEU || code == GTU));
1181 if (target)
1183 if (target != if_info->x)
1184 noce_emit_move_insn (if_info->x, target);
1186 seq = end_ifcvt_sequence (if_info);
1187 if (!seq)
1188 return FALSE;
1190 emit_insn_before_setloc (seq, if_info->jump,
1191 INSN_LOCATOR (if_info->insn_a));
1192 return TRUE;
1194 end_sequence ();
1197 /* If that fails, construct conditional increment or decrement using
1198 setcc. */
1199 if (if_info->branch_cost >= 2
1200 && (XEXP (if_info->a, 1) == const1_rtx
1201 || XEXP (if_info->a, 1) == constm1_rtx))
1203 start_sequence ();
1204 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1205 subtract = 0, normalize = 0;
1206 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1207 subtract = 1, normalize = 0;
1208 else
1209 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1212 target = noce_emit_store_flag (if_info,
1213 gen_reg_rtx (GET_MODE (if_info->x)),
1214 1, normalize);
1216 if (target)
1217 target = expand_simple_binop (GET_MODE (if_info->x),
1218 subtract ? MINUS : PLUS,
1219 if_info->b, target, if_info->x,
1220 0, OPTAB_WIDEN);
1221 if (target)
1223 if (target != if_info->x)
1224 noce_emit_move_insn (if_info->x, target);
1226 seq = end_ifcvt_sequence (if_info);
1227 if (!seq)
1228 return FALSE;
1230 emit_insn_before_setloc (seq, if_info->jump,
1231 INSN_LOCATOR (if_info->insn_a));
1232 return TRUE;
1234 end_sequence ();
1238 return FALSE;
1241 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1243 static int
1244 noce_try_store_flag_mask (struct noce_if_info *if_info)
1246 rtx target, seq;
1247 int reversep;
1249 reversep = 0;
1250 if ((if_info->branch_cost >= 2
1251 || STORE_FLAG_VALUE == -1)
1252 && ((if_info->a == const0_rtx
1253 && rtx_equal_p (if_info->b, if_info->x))
1254 || ((reversep = (reversed_comparison_code (if_info->cond,
1255 if_info->jump)
1256 != UNKNOWN))
1257 && if_info->b == const0_rtx
1258 && rtx_equal_p (if_info->a, if_info->x))))
1260 start_sequence ();
1261 target = noce_emit_store_flag (if_info,
1262 gen_reg_rtx (GET_MODE (if_info->x)),
1263 reversep, -1);
1264 if (target)
1265 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1266 if_info->x,
1267 target, if_info->x, 0,
1268 OPTAB_WIDEN);
1270 if (target)
1272 if (target != if_info->x)
1273 noce_emit_move_insn (if_info->x, target);
1275 seq = end_ifcvt_sequence (if_info);
1276 if (!seq)
1277 return FALSE;
1279 emit_insn_before_setloc (seq, if_info->jump,
1280 INSN_LOCATOR (if_info->insn_a));
1281 return TRUE;
1284 end_sequence ();
1287 return FALSE;
1290 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1292 static rtx
1293 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1294 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1296 /* If earliest == jump, try to build the cmove insn directly.
1297 This is helpful when combine has created some complex condition
1298 (like for alpha's cmovlbs) that we can't hope to regenerate
1299 through the normal interface. */
1301 if (if_info->cond_earliest == if_info->jump)
1303 rtx tmp;
1305 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1306 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1307 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1309 start_sequence ();
1310 tmp = emit_insn (tmp);
1312 if (recog_memoized (tmp) >= 0)
1314 tmp = get_insns ();
1315 end_sequence ();
1316 emit_insn (tmp);
1318 return x;
1321 end_sequence ();
1324 /* Don't even try if the comparison operands are weird. */
1325 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1326 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1327 return NULL_RTX;
1329 #if HAVE_conditional_move
1330 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1331 vtrue, vfalse, GET_MODE (x),
1332 (code == LTU || code == GEU
1333 || code == LEU || code == GTU));
1334 #else
1335 /* We'll never get here, as noce_process_if_block doesn't call the
1336 functions involved. Ifdef code, however, should be discouraged
1337 because it leads to typos in the code not selected. However,
1338 emit_conditional_move won't exist either. */
1339 return NULL_RTX;
1340 #endif
1343 /* Try only simple constants and registers here. More complex cases
1344 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1345 has had a go at it. */
1347 static int
1348 noce_try_cmove (struct noce_if_info *if_info)
1350 enum rtx_code code;
1351 rtx target, seq;
1353 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1354 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1356 start_sequence ();
1358 code = GET_CODE (if_info->cond);
1359 target = noce_emit_cmove (if_info, if_info->x, code,
1360 XEXP (if_info->cond, 0),
1361 XEXP (if_info->cond, 1),
1362 if_info->a, if_info->b);
1364 if (target)
1366 if (target != if_info->x)
1367 noce_emit_move_insn (if_info->x, target);
1369 seq = end_ifcvt_sequence (if_info);
1370 if (!seq)
1371 return FALSE;
1373 emit_insn_before_setloc (seq, if_info->jump,
1374 INSN_LOCATOR (if_info->insn_a));
1375 return TRUE;
1377 else
1379 end_sequence ();
1380 return FALSE;
1384 return FALSE;
1387 /* Try more complex cases involving conditional_move. */
1389 static int
1390 noce_try_cmove_arith (struct noce_if_info *if_info)
1392 rtx a = if_info->a;
1393 rtx b = if_info->b;
1394 rtx x = if_info->x;
1395 rtx orig_a, orig_b;
1396 rtx insn_a, insn_b;
1397 rtx tmp, target;
1398 int is_mem = 0;
1399 int insn_cost;
1400 enum rtx_code code;
1402 /* A conditional move from two memory sources is equivalent to a
1403 conditional on their addresses followed by a load. Don't do this
1404 early because it'll screw alias analysis. Note that we've
1405 already checked for no side effects. */
1406 /* ??? FIXME: Magic number 5. */
1407 if (cse_not_expected
1408 && MEM_P (a) && MEM_P (b)
1409 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1410 && if_info->branch_cost >= 5)
1412 enum machine_mode address_mode
1413 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1415 a = XEXP (a, 0);
1416 b = XEXP (b, 0);
1417 x = gen_reg_rtx (address_mode);
1418 is_mem = 1;
1421 /* ??? We could handle this if we knew that a load from A or B could
1422 not fault. This is also true if we've already loaded
1423 from the address along the path from ENTRY. */
1424 else if (may_trap_p (a) || may_trap_p (b))
1425 return FALSE;
1427 /* if (test) x = a + b; else x = c - d;
1428 => y = a + b;
1429 x = c - d;
1430 if (test)
1431 x = y;
1434 code = GET_CODE (if_info->cond);
1435 insn_a = if_info->insn_a;
1436 insn_b = if_info->insn_b;
1438 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1439 if insn_rtx_cost can't be estimated. */
1440 if (insn_a)
1442 insn_cost
1443 = insn_rtx_cost (PATTERN (insn_a),
1444 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1445 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1446 return FALSE;
1448 else
1449 insn_cost = 0;
1451 if (insn_b)
1453 insn_cost
1454 += insn_rtx_cost (PATTERN (insn_b),
1455 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1456 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1457 return FALSE;
1460 /* Possibly rearrange operands to make things come out more natural. */
1461 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1463 int reversep = 0;
1464 if (rtx_equal_p (b, x))
1465 reversep = 1;
1466 else if (general_operand (b, GET_MODE (b)))
1467 reversep = 1;
1469 if (reversep)
1471 code = reversed_comparison_code (if_info->cond, if_info->jump);
1472 tmp = a, a = b, b = tmp;
1473 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1477 start_sequence ();
1479 orig_a = a;
1480 orig_b = b;
1482 /* If either operand is complex, load it into a register first.
1483 The best way to do this is to copy the original insn. In this
1484 way we preserve any clobbers etc that the insn may have had.
1485 This is of course not possible in the IS_MEM case. */
1486 if (! general_operand (a, GET_MODE (a)))
1488 rtx set;
1490 if (is_mem)
1492 tmp = gen_reg_rtx (GET_MODE (a));
1493 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1495 else if (! insn_a)
1496 goto end_seq_and_fail;
1497 else
1499 a = gen_reg_rtx (GET_MODE (a));
1500 tmp = copy_rtx (insn_a);
1501 set = single_set (tmp);
1502 SET_DEST (set) = a;
1503 tmp = emit_insn (PATTERN (tmp));
1505 if (recog_memoized (tmp) < 0)
1506 goto end_seq_and_fail;
1508 if (! general_operand (b, GET_MODE (b)))
1510 rtx set, last;
1512 if (is_mem)
1514 tmp = gen_reg_rtx (GET_MODE (b));
1515 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1517 else if (! insn_b)
1518 goto end_seq_and_fail;
1519 else
1521 b = gen_reg_rtx (GET_MODE (b));
1522 tmp = copy_rtx (insn_b);
1523 set = single_set (tmp);
1524 SET_DEST (set) = b;
1525 tmp = PATTERN (tmp);
1528 /* If insn to set up A clobbers any registers B depends on, try to
1529 swap insn that sets up A with the one that sets up B. If even
1530 that doesn't help, punt. */
1531 last = get_last_insn ();
1532 if (last && modified_in_p (orig_b, last))
1534 tmp = emit_insn_before (tmp, get_insns ());
1535 if (modified_in_p (orig_a, tmp))
1536 goto end_seq_and_fail;
1538 else
1539 tmp = emit_insn (tmp);
1541 if (recog_memoized (tmp) < 0)
1542 goto end_seq_and_fail;
1545 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1546 XEXP (if_info->cond, 1), a, b);
1548 if (! target)
1549 goto end_seq_and_fail;
1551 /* If we're handling a memory for above, emit the load now. */
1552 if (is_mem)
1554 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1556 /* Copy over flags as appropriate. */
1557 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1558 MEM_VOLATILE_P (tmp) = 1;
1559 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1560 MEM_IN_STRUCT_P (tmp) = 1;
1561 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1562 MEM_SCALAR_P (tmp) = 1;
1563 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1564 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1565 set_mem_align (tmp,
1566 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1568 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1569 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1571 noce_emit_move_insn (if_info->x, tmp);
1573 else if (target != x)
1574 noce_emit_move_insn (x, target);
1576 tmp = end_ifcvt_sequence (if_info);
1577 if (!tmp)
1578 return FALSE;
1580 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1581 return TRUE;
1583 end_seq_and_fail:
1584 end_sequence ();
1585 return FALSE;
1588 /* For most cases, the simplified condition we found is the best
1589 choice, but this is not the case for the min/max/abs transforms.
1590 For these we wish to know that it is A or B in the condition. */
1592 static rtx
1593 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1594 rtx *earliest)
1596 rtx cond, set, insn;
1597 int reverse;
1599 /* If target is already mentioned in the known condition, return it. */
1600 if (reg_mentioned_p (target, if_info->cond))
1602 *earliest = if_info->cond_earliest;
1603 return if_info->cond;
1606 set = pc_set (if_info->jump);
1607 cond = XEXP (SET_SRC (set), 0);
1608 reverse
1609 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1610 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1611 if (if_info->then_else_reversed)
1612 reverse = !reverse;
1614 /* If we're looking for a constant, try to make the conditional
1615 have that constant in it. There are two reasons why it may
1616 not have the constant we want:
1618 1. GCC may have needed to put the constant in a register, because
1619 the target can't compare directly against that constant. For
1620 this case, we look for a SET immediately before the comparison
1621 that puts a constant in that register.
1623 2. GCC may have canonicalized the conditional, for example
1624 replacing "if x < 4" with "if x <= 3". We can undo that (or
1625 make equivalent types of changes) to get the constants we need
1626 if they're off by one in the right direction. */
1628 if (CONST_INT_P (target))
1630 enum rtx_code code = GET_CODE (if_info->cond);
1631 rtx op_a = XEXP (if_info->cond, 0);
1632 rtx op_b = XEXP (if_info->cond, 1);
1633 rtx prev_insn;
1635 /* First, look to see if we put a constant in a register. */
1636 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1637 if (prev_insn
1638 && BLOCK_FOR_INSN (prev_insn)
1639 == BLOCK_FOR_INSN (if_info->cond_earliest)
1640 && INSN_P (prev_insn)
1641 && GET_CODE (PATTERN (prev_insn)) == SET)
1643 rtx src = find_reg_equal_equiv_note (prev_insn);
1644 if (!src)
1645 src = SET_SRC (PATTERN (prev_insn));
1646 if (CONST_INT_P (src))
1648 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1649 op_a = src;
1650 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1651 op_b = src;
1653 if (CONST_INT_P (op_a))
1655 rtx tmp = op_a;
1656 op_a = op_b;
1657 op_b = tmp;
1658 code = swap_condition (code);
1663 /* Now, look to see if we can get the right constant by
1664 adjusting the conditional. */
1665 if (CONST_INT_P (op_b))
1667 HOST_WIDE_INT desired_val = INTVAL (target);
1668 HOST_WIDE_INT actual_val = INTVAL (op_b);
1670 switch (code)
1672 case LT:
1673 if (actual_val == desired_val + 1)
1675 code = LE;
1676 op_b = GEN_INT (desired_val);
1678 break;
1679 case LE:
1680 if (actual_val == desired_val - 1)
1682 code = LT;
1683 op_b = GEN_INT (desired_val);
1685 break;
1686 case GT:
1687 if (actual_val == desired_val - 1)
1689 code = GE;
1690 op_b = GEN_INT (desired_val);
1692 break;
1693 case GE:
1694 if (actual_val == desired_val + 1)
1696 code = GT;
1697 op_b = GEN_INT (desired_val);
1699 break;
1700 default:
1701 break;
1705 /* If we made any changes, generate a new conditional that is
1706 equivalent to what we started with, but has the right
1707 constants in it. */
1708 if (code != GET_CODE (if_info->cond)
1709 || op_a != XEXP (if_info->cond, 0)
1710 || op_b != XEXP (if_info->cond, 1))
1712 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1713 *earliest = if_info->cond_earliest;
1714 return cond;
1718 cond = canonicalize_condition (if_info->jump, cond, reverse,
1719 earliest, target, false, true);
1720 if (! cond || ! reg_mentioned_p (target, cond))
1721 return NULL;
1723 /* We almost certainly searched back to a different place.
1724 Need to re-verify correct lifetimes. */
1726 /* X may not be mentioned in the range (cond_earliest, jump]. */
1727 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1728 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1729 return NULL;
1731 /* A and B may not be modified in the range [cond_earliest, jump). */
1732 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1733 if (INSN_P (insn)
1734 && (modified_in_p (if_info->a, insn)
1735 || modified_in_p (if_info->b, insn)))
1736 return NULL;
1738 return cond;
1741 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1743 static int
1744 noce_try_minmax (struct noce_if_info *if_info)
1746 rtx cond, earliest, target, seq;
1747 enum rtx_code code, op;
1748 int unsignedp;
1750 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1751 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1752 to get the target to tell us... */
1753 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1754 || HONOR_NANS (GET_MODE (if_info->x)))
1755 return FALSE;
1757 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1758 if (!cond)
1759 return FALSE;
1761 /* Verify the condition is of the form we expect, and canonicalize
1762 the comparison code. */
1763 code = GET_CODE (cond);
1764 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1766 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1767 return FALSE;
1769 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1771 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1772 return FALSE;
1773 code = swap_condition (code);
1775 else
1776 return FALSE;
1778 /* Determine what sort of operation this is. Note that the code is for
1779 a taken branch, so the code->operation mapping appears backwards. */
1780 switch (code)
1782 case LT:
1783 case LE:
1784 case UNLT:
1785 case UNLE:
1786 op = SMAX;
1787 unsignedp = 0;
1788 break;
1789 case GT:
1790 case GE:
1791 case UNGT:
1792 case UNGE:
1793 op = SMIN;
1794 unsignedp = 0;
1795 break;
1796 case LTU:
1797 case LEU:
1798 op = UMAX;
1799 unsignedp = 1;
1800 break;
1801 case GTU:
1802 case GEU:
1803 op = UMIN;
1804 unsignedp = 1;
1805 break;
1806 default:
1807 return FALSE;
1810 start_sequence ();
1812 target = expand_simple_binop (GET_MODE (if_info->x), op,
1813 if_info->a, if_info->b,
1814 if_info->x, unsignedp, OPTAB_WIDEN);
1815 if (! target)
1817 end_sequence ();
1818 return FALSE;
1820 if (target != if_info->x)
1821 noce_emit_move_insn (if_info->x, target);
1823 seq = end_ifcvt_sequence (if_info);
1824 if (!seq)
1825 return FALSE;
1827 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1828 if_info->cond = cond;
1829 if_info->cond_earliest = earliest;
1831 return TRUE;
1834 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1835 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1836 etc. */
1838 static int
1839 noce_try_abs (struct noce_if_info *if_info)
1841 rtx cond, earliest, target, seq, a, b, c;
1842 int negate;
1843 bool one_cmpl = false;
1845 /* Reject modes with signed zeros. */
1846 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1847 return FALSE;
1849 /* Recognize A and B as constituting an ABS or NABS. The canonical
1850 form is a branch around the negation, taken when the object is the
1851 first operand of a comparison against 0 that evaluates to true. */
1852 a = if_info->a;
1853 b = if_info->b;
1854 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1855 negate = 0;
1856 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1858 c = a; a = b; b = c;
1859 negate = 1;
1861 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1863 negate = 0;
1864 one_cmpl = true;
1866 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1868 c = a; a = b; b = c;
1869 negate = 1;
1870 one_cmpl = true;
1872 else
1873 return FALSE;
1875 cond = noce_get_alt_condition (if_info, b, &earliest);
1876 if (!cond)
1877 return FALSE;
1879 /* Verify the condition is of the form we expect. */
1880 if (rtx_equal_p (XEXP (cond, 0), b))
1881 c = XEXP (cond, 1);
1882 else if (rtx_equal_p (XEXP (cond, 1), b))
1884 c = XEXP (cond, 0);
1885 negate = !negate;
1887 else
1888 return FALSE;
1890 /* Verify that C is zero. Search one step backward for a
1891 REG_EQUAL note or a simple source if necessary. */
1892 if (REG_P (c))
1894 rtx set, insn = prev_nonnote_insn (earliest);
1895 if (insn
1896 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1897 && (set = single_set (insn))
1898 && rtx_equal_p (SET_DEST (set), c))
1900 rtx note = find_reg_equal_equiv_note (insn);
1901 if (note)
1902 c = XEXP (note, 0);
1903 else
1904 c = SET_SRC (set);
1906 else
1907 return FALSE;
1909 if (MEM_P (c)
1910 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1911 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1912 c = get_pool_constant (XEXP (c, 0));
1914 /* Work around funny ideas get_condition has wrt canonicalization.
1915 Note that these rtx constants are known to be CONST_INT, and
1916 therefore imply integer comparisons. */
1917 if (c == constm1_rtx && GET_CODE (cond) == GT)
1919 else if (c == const1_rtx && GET_CODE (cond) == LT)
1921 else if (c != CONST0_RTX (GET_MODE (b)))
1922 return FALSE;
1924 /* Determine what sort of operation this is. */
1925 switch (GET_CODE (cond))
1927 case LT:
1928 case LE:
1929 case UNLT:
1930 case UNLE:
1931 negate = !negate;
1932 break;
1933 case GT:
1934 case GE:
1935 case UNGT:
1936 case UNGE:
1937 break;
1938 default:
1939 return FALSE;
1942 start_sequence ();
1943 if (one_cmpl)
1944 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
1945 if_info->x);
1946 else
1947 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1949 /* ??? It's a quandary whether cmove would be better here, especially
1950 for integers. Perhaps combine will clean things up. */
1951 if (target && negate)
1953 if (one_cmpl)
1954 target = expand_simple_unop (GET_MODE (target), NOT, target,
1955 if_info->x, 0);
1956 else
1957 target = expand_simple_unop (GET_MODE (target), NEG, target,
1958 if_info->x, 0);
1961 if (! target)
1963 end_sequence ();
1964 return FALSE;
1967 if (target != if_info->x)
1968 noce_emit_move_insn (if_info->x, target);
1970 seq = end_ifcvt_sequence (if_info);
1971 if (!seq)
1972 return FALSE;
1974 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1975 if_info->cond = cond;
1976 if_info->cond_earliest = earliest;
1978 return TRUE;
1981 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1983 static int
1984 noce_try_sign_mask (struct noce_if_info *if_info)
1986 rtx cond, t, m, c, seq;
1987 enum machine_mode mode;
1988 enum rtx_code code;
1989 bool t_unconditional;
1991 cond = if_info->cond;
1992 code = GET_CODE (cond);
1993 m = XEXP (cond, 0);
1994 c = XEXP (cond, 1);
1996 t = NULL_RTX;
1997 if (if_info->a == const0_rtx)
1999 if ((code == LT && c == const0_rtx)
2000 || (code == LE && c == constm1_rtx))
2001 t = if_info->b;
2003 else if (if_info->b == const0_rtx)
2005 if ((code == GE && c == const0_rtx)
2006 || (code == GT && c == constm1_rtx))
2007 t = if_info->a;
2010 if (! t || side_effects_p (t))
2011 return FALSE;
2013 /* We currently don't handle different modes. */
2014 mode = GET_MODE (t);
2015 if (GET_MODE (m) != mode)
2016 return FALSE;
2018 /* This is only profitable if T is unconditionally executed/evaluated in the
2019 original insn sequence or T is cheap. The former happens if B is the
2020 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2021 INSN_B which can happen for e.g. conditional stores to memory. For the
2022 cost computation use the block TEST_BB where the evaluation will end up
2023 after the transformation. */
2024 t_unconditional =
2025 (t == if_info->b
2026 && (if_info->insn_b == NULL_RTX
2027 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2028 if (!(t_unconditional
2029 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2030 < COSTS_N_INSNS (2))))
2031 return FALSE;
2033 start_sequence ();
2034 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2035 "(signed) m >> 31" directly. This benefits targets with specialized
2036 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2037 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2038 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2039 : NULL_RTX;
2041 if (!t)
2043 end_sequence ();
2044 return FALSE;
2047 noce_emit_move_insn (if_info->x, t);
2049 seq = end_ifcvt_sequence (if_info);
2050 if (!seq)
2051 return FALSE;
2053 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2054 return TRUE;
2058 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2059 transformations. */
2061 static int
2062 noce_try_bitop (struct noce_if_info *if_info)
2064 rtx cond, x, a, result, seq;
2065 enum machine_mode mode;
2066 enum rtx_code code;
2067 int bitnum;
2069 x = if_info->x;
2070 cond = if_info->cond;
2071 code = GET_CODE (cond);
2073 /* Check for no else condition. */
2074 if (! rtx_equal_p (x, if_info->b))
2075 return FALSE;
2077 /* Check for a suitable condition. */
2078 if (code != NE && code != EQ)
2079 return FALSE;
2080 if (XEXP (cond, 1) != const0_rtx)
2081 return FALSE;
2082 cond = XEXP (cond, 0);
2084 /* ??? We could also handle AND here. */
2085 if (GET_CODE (cond) == ZERO_EXTRACT)
2087 if (XEXP (cond, 1) != const1_rtx
2088 || !CONST_INT_P (XEXP (cond, 2))
2089 || ! rtx_equal_p (x, XEXP (cond, 0)))
2090 return FALSE;
2091 bitnum = INTVAL (XEXP (cond, 2));
2092 mode = GET_MODE (x);
2093 if (BITS_BIG_ENDIAN)
2094 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2095 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2096 return FALSE;
2098 else
2099 return FALSE;
2101 a = if_info->a;
2102 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2104 /* Check for "if (X & C) x = x op C". */
2105 if (! rtx_equal_p (x, XEXP (a, 0))
2106 || !CONST_INT_P (XEXP (a, 1))
2107 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2108 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2109 return FALSE;
2111 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2112 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2113 if (GET_CODE (a) == IOR)
2114 result = (code == NE) ? a : NULL_RTX;
2115 else if (code == NE)
2117 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2118 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2119 result = simplify_gen_binary (IOR, mode, x, result);
2121 else
2123 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2124 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2125 result = simplify_gen_binary (AND, mode, x, result);
2128 else if (GET_CODE (a) == AND)
2130 /* Check for "if (X & C) x &= ~C". */
2131 if (! rtx_equal_p (x, XEXP (a, 0))
2132 || !CONST_INT_P (XEXP (a, 1))
2133 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2134 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2135 return FALSE;
2137 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2138 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2139 result = (code == EQ) ? a : NULL_RTX;
2141 else
2142 return FALSE;
2144 if (result)
2146 start_sequence ();
2147 noce_emit_move_insn (x, result);
2148 seq = end_ifcvt_sequence (if_info);
2149 if (!seq)
2150 return FALSE;
2152 emit_insn_before_setloc (seq, if_info->jump,
2153 INSN_LOCATOR (if_info->insn_a));
2155 return TRUE;
2159 /* Similar to get_condition, only the resulting condition must be
2160 valid at JUMP, instead of at EARLIEST.
2162 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2163 THEN block of the caller, and we have to reverse the condition. */
2165 static rtx
2166 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2168 rtx cond, set, tmp;
2169 bool reverse;
2171 if (! any_condjump_p (jump))
2172 return NULL_RTX;
2174 set = pc_set (jump);
2176 /* If this branches to JUMP_LABEL when the condition is false,
2177 reverse the condition. */
2178 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2179 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2181 /* We may have to reverse because the caller's if block is not canonical,
2182 i.e. the THEN block isn't the fallthrough block for the TEST block
2183 (see find_if_header). */
2184 if (then_else_reversed)
2185 reverse = !reverse;
2187 /* If the condition variable is a register and is MODE_INT, accept it. */
2189 cond = XEXP (SET_SRC (set), 0);
2190 tmp = XEXP (cond, 0);
2191 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2193 *earliest = jump;
2195 if (reverse)
2196 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2197 GET_MODE (cond), tmp, XEXP (cond, 1));
2198 return cond;
2201 /* Otherwise, fall back on canonicalize_condition to do the dirty
2202 work of manipulating MODE_CC values and COMPARE rtx codes. */
2203 return canonicalize_condition (jump, cond, reverse, earliest,
2204 NULL_RTX, false, true);
2207 /* Return true if OP is ok for if-then-else processing. */
2209 static int
2210 noce_operand_ok (const_rtx op)
2212 /* We special-case memories, so handle any of them with
2213 no address side effects. */
2214 if (MEM_P (op))
2215 return ! side_effects_p (XEXP (op, 0));
2217 if (side_effects_p (op))
2218 return FALSE;
2220 return ! may_trap_p (op);
2223 /* Return true if a write into MEM may trap or fault. */
2225 static bool
2226 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2228 rtx addr;
2230 if (MEM_READONLY_P (mem))
2231 return true;
2233 if (may_trap_or_fault_p (mem))
2234 return true;
2236 addr = XEXP (mem, 0);
2238 /* Call target hook to avoid the effects of -fpic etc.... */
2239 addr = targetm.delegitimize_address (addr);
2241 while (addr)
2242 switch (GET_CODE (addr))
2244 case CONST:
2245 case PRE_DEC:
2246 case PRE_INC:
2247 case POST_DEC:
2248 case POST_INC:
2249 case POST_MODIFY:
2250 addr = XEXP (addr, 0);
2251 break;
2252 case LO_SUM:
2253 case PRE_MODIFY:
2254 addr = XEXP (addr, 1);
2255 break;
2256 case PLUS:
2257 if (CONST_INT_P (XEXP (addr, 1)))
2258 addr = XEXP (addr, 0);
2259 else
2260 return false;
2261 break;
2262 case LABEL_REF:
2263 return true;
2264 case SYMBOL_REF:
2265 if (SYMBOL_REF_DECL (addr)
2266 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2267 return true;
2268 return false;
2269 default:
2270 return false;
2273 return false;
2276 /* Return whether we can use store speculation for MEM. TOP_BB is the
2277 basic block above the conditional block where we are considering
2278 doing the speculative store. We look for whether MEM is set
2279 unconditionally later in the function. */
2281 static bool
2282 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2284 basic_block dominator;
2286 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2287 dominator != NULL;
2288 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2290 rtx insn;
2292 FOR_BB_INSNS (dominator, insn)
2294 /* If we see something that might be a memory barrier, we
2295 have to stop looking. Even if the MEM is set later in
2296 the function, we still don't want to set it
2297 unconditionally before the barrier. */
2298 if (INSN_P (insn)
2299 && (volatile_insn_p (PATTERN (insn))
2300 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2301 return false;
2303 if (memory_modified_in_insn_p (mem, insn))
2304 return true;
2305 if (modified_in_p (XEXP (mem, 0), insn))
2306 return false;
2311 return false;
2314 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2315 it without using conditional execution. Return TRUE if we were successful
2316 at converting the block. */
2318 static int
2319 noce_process_if_block (struct noce_if_info *if_info)
2321 basic_block test_bb = if_info->test_bb; /* test block */
2322 basic_block then_bb = if_info->then_bb; /* THEN */
2323 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2324 basic_block join_bb = if_info->join_bb; /* JOIN */
2325 rtx jump = if_info->jump;
2326 rtx cond = if_info->cond;
2327 rtx insn_a, insn_b;
2328 rtx set_a, set_b;
2329 rtx orig_x, x, a, b;
2331 /* We're looking for patterns of the form
2333 (1) if (...) x = a; else x = b;
2334 (2) x = b; if (...) x = a;
2335 (3) if (...) x = a; // as if with an initial x = x.
2337 The later patterns require jumps to be more expensive.
2339 ??? For future expansion, look for multiple X in such patterns. */
2341 /* Look for one of the potential sets. */
2342 insn_a = first_active_insn (then_bb);
2343 if (! insn_a
2344 || insn_a != last_active_insn (then_bb, FALSE)
2345 || (set_a = single_set (insn_a)) == NULL_RTX)
2346 return FALSE;
2348 x = SET_DEST (set_a);
2349 a = SET_SRC (set_a);
2351 /* Look for the other potential set. Make sure we've got equivalent
2352 destinations. */
2353 /* ??? This is overconservative. Storing to two different mems is
2354 as easy as conditionally computing the address. Storing to a
2355 single mem merely requires a scratch memory to use as one of the
2356 destination addresses; often the memory immediately below the
2357 stack pointer is available for this. */
2358 set_b = NULL_RTX;
2359 if (else_bb)
2361 insn_b = first_active_insn (else_bb);
2362 if (! insn_b
2363 || insn_b != last_active_insn (else_bb, FALSE)
2364 || (set_b = single_set (insn_b)) == NULL_RTX
2365 || ! rtx_equal_p (x, SET_DEST (set_b)))
2366 return FALSE;
2368 else
2370 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2371 while (insn_b && DEBUG_INSN_P (insn_b))
2372 insn_b = prev_nonnote_insn (insn_b);
2373 /* We're going to be moving the evaluation of B down from above
2374 COND_EARLIEST to JUMP. Make sure the relevant data is still
2375 intact. */
2376 if (! insn_b
2377 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2378 || !NONJUMP_INSN_P (insn_b)
2379 || (set_b = single_set (insn_b)) == NULL_RTX
2380 || ! rtx_equal_p (x, SET_DEST (set_b))
2381 || ! noce_operand_ok (SET_SRC (set_b))
2382 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2383 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2384 /* Likewise with X. In particular this can happen when
2385 noce_get_condition looks farther back in the instruction
2386 stream than one might expect. */
2387 || reg_overlap_mentioned_p (x, cond)
2388 || reg_overlap_mentioned_p (x, a)
2389 || modified_between_p (x, insn_b, jump))
2390 insn_b = set_b = NULL_RTX;
2393 /* If x has side effects then only the if-then-else form is safe to
2394 convert. But even in that case we would need to restore any notes
2395 (such as REG_INC) at then end. That can be tricky if
2396 noce_emit_move_insn expands to more than one insn, so disable the
2397 optimization entirely for now if there are side effects. */
2398 if (side_effects_p (x))
2399 return FALSE;
2401 b = (set_b ? SET_SRC (set_b) : x);
2403 /* Only operate on register destinations, and even then avoid extending
2404 the lifetime of hard registers on small register class machines. */
2405 orig_x = x;
2406 if (!REG_P (x)
2407 || (HARD_REGISTER_P (x)
2408 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2410 if (GET_MODE (x) == BLKmode)
2411 return FALSE;
2413 if (GET_CODE (x) == ZERO_EXTRACT
2414 && (!CONST_INT_P (XEXP (x, 1))
2415 || !CONST_INT_P (XEXP (x, 2))))
2416 return FALSE;
2418 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2419 ? XEXP (x, 0) : x));
2422 /* Don't operate on sources that may trap or are volatile. */
2423 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2424 return FALSE;
2426 retry:
2427 /* Set up the info block for our subroutines. */
2428 if_info->insn_a = insn_a;
2429 if_info->insn_b = insn_b;
2430 if_info->x = x;
2431 if_info->a = a;
2432 if_info->b = b;
2434 /* Try optimizations in some approximation of a useful order. */
2435 /* ??? Should first look to see if X is live incoming at all. If it
2436 isn't, we don't need anything but an unconditional set. */
2438 /* Look and see if A and B are really the same. Avoid creating silly
2439 cmove constructs that no one will fix up later. */
2440 if (rtx_equal_p (a, b))
2442 /* If we have an INSN_B, we don't have to create any new rtl. Just
2443 move the instruction that we already have. If we don't have an
2444 INSN_B, that means that A == X, and we've got a noop move. In
2445 that case don't do anything and let the code below delete INSN_A. */
2446 if (insn_b && else_bb)
2448 rtx note;
2450 if (else_bb && insn_b == BB_END (else_bb))
2451 BB_END (else_bb) = PREV_INSN (insn_b);
2452 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2454 /* If there was a REG_EQUAL note, delete it since it may have been
2455 true due to this insn being after a jump. */
2456 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2457 remove_note (insn_b, note);
2459 insn_b = NULL_RTX;
2461 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2462 x must be executed twice. */
2463 else if (insn_b && side_effects_p (orig_x))
2464 return FALSE;
2466 x = orig_x;
2467 goto success;
2470 if (!set_b && MEM_P (orig_x))
2472 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2473 for optimizations if writing to x may trap or fault,
2474 i.e. it's a memory other than a static var or a stack slot,
2475 is misaligned on strict aligned machines or is read-only. If
2476 x is a read-only memory, then the program is valid only if we
2477 avoid the store into it. If there are stores on both the
2478 THEN and ELSE arms, then we can go ahead with the conversion;
2479 either the program is broken, or the condition is always
2480 false such that the other memory is selected. */
2481 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2482 return FALSE;
2484 /* Avoid store speculation: given "if (...) x = a" where x is a
2485 MEM, we only want to do the store if x is always set
2486 somewhere in the function. This avoids cases like
2487 if (pthread_mutex_trylock(mutex))
2488 ++global_variable;
2489 where we only want global_variable to be changed if the mutex
2490 is held. FIXME: This should ideally be expressed directly in
2491 RTL somehow. */
2492 if (!noce_can_store_speculate_p (test_bb, orig_x))
2493 return FALSE;
2496 if (noce_try_move (if_info))
2497 goto success;
2498 if (noce_try_store_flag (if_info))
2499 goto success;
2500 if (noce_try_bitop (if_info))
2501 goto success;
2502 if (noce_try_minmax (if_info))
2503 goto success;
2504 if (noce_try_abs (if_info))
2505 goto success;
2506 if (HAVE_conditional_move
2507 && noce_try_cmove (if_info))
2508 goto success;
2509 if (! targetm.have_conditional_execution ())
2511 if (noce_try_store_flag_constants (if_info))
2512 goto success;
2513 if (noce_try_addcc (if_info))
2514 goto success;
2515 if (noce_try_store_flag_mask (if_info))
2516 goto success;
2517 if (HAVE_conditional_move
2518 && noce_try_cmove_arith (if_info))
2519 goto success;
2520 if (noce_try_sign_mask (if_info))
2521 goto success;
2524 if (!else_bb && set_b)
2526 insn_b = set_b = NULL_RTX;
2527 b = orig_x;
2528 goto retry;
2531 return FALSE;
2533 success:
2535 /* If we used a temporary, fix it up now. */
2536 if (orig_x != x)
2538 rtx seq;
2540 start_sequence ();
2541 noce_emit_move_insn (orig_x, x);
2542 seq = get_insns ();
2543 set_used_flags (orig_x);
2544 unshare_all_rtl_in_chain (seq);
2545 end_sequence ();
2547 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2550 /* The original THEN and ELSE blocks may now be removed. The test block
2551 must now jump to the join block. If the test block and the join block
2552 can be merged, do so. */
2553 if (else_bb)
2555 delete_basic_block (else_bb);
2556 num_true_changes++;
2558 else
2559 remove_edge (find_edge (test_bb, join_bb));
2561 remove_edge (find_edge (then_bb, join_bb));
2562 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2563 delete_basic_block (then_bb);
2564 num_true_changes++;
2566 if (can_merge_blocks_p (test_bb, join_bb))
2568 merge_blocks (test_bb, join_bb);
2569 num_true_changes++;
2572 num_updated_if_blocks++;
2573 return TRUE;
2576 /* Check whether a block is suitable for conditional move conversion.
2577 Every insn must be a simple set of a register to a constant or a
2578 register. For each assignment, store the value in the array VALS,
2579 indexed by register number, then store the register number in
2580 REGS. COND is the condition we will test. */
2582 static int
2583 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2584 rtx cond)
2586 rtx insn;
2588 /* We can only handle simple jumps at the end of the basic block.
2589 It is almost impossible to update the CFG otherwise. */
2590 insn = BB_END (bb);
2591 if (JUMP_P (insn) && !onlyjump_p (insn))
2592 return FALSE;
2594 FOR_BB_INSNS (bb, insn)
2596 rtx set, dest, src;
2598 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2599 continue;
2600 set = single_set (insn);
2601 if (!set)
2602 return FALSE;
2604 dest = SET_DEST (set);
2605 src = SET_SRC (set);
2606 if (!REG_P (dest)
2607 || (HARD_REGISTER_P (dest)
2608 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2609 return FALSE;
2611 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2612 return FALSE;
2614 if (side_effects_p (src) || side_effects_p (dest))
2615 return FALSE;
2617 if (may_trap_p (src) || may_trap_p (dest))
2618 return FALSE;
2620 /* Don't try to handle this if the source register was
2621 modified earlier in the block. */
2622 if ((REG_P (src)
2623 && vals[REGNO (src)] != NULL)
2624 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2625 && vals[REGNO (SUBREG_REG (src))] != NULL))
2626 return FALSE;
2628 /* Don't try to handle this if the destination register was
2629 modified earlier in the block. */
2630 if (vals[REGNO (dest)] != NULL)
2631 return FALSE;
2633 /* Don't try to handle this if the condition uses the
2634 destination register. */
2635 if (reg_overlap_mentioned_p (dest, cond))
2636 return FALSE;
2638 /* Don't try to handle this if the source register is modified
2639 later in the block. */
2640 if (!CONSTANT_P (src)
2641 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2642 return FALSE;
2644 vals[REGNO (dest)] = src;
2646 VEC_safe_push (int, heap, *regs, REGNO (dest));
2649 return TRUE;
2652 /* Given a basic block BB suitable for conditional move conversion,
2653 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2654 register values depending on COND, emit the insns in the block as
2655 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2656 processed. The caller has started a sequence for the conversion.
2657 Return true if successful, false if something goes wrong. */
2659 static bool
2660 cond_move_convert_if_block (struct noce_if_info *if_infop,
2661 basic_block bb, rtx cond,
2662 rtx *then_vals, rtx *else_vals,
2663 bool else_block_p)
2665 enum rtx_code code;
2666 rtx insn, cond_arg0, cond_arg1;
2668 code = GET_CODE (cond);
2669 cond_arg0 = XEXP (cond, 0);
2670 cond_arg1 = XEXP (cond, 1);
2672 FOR_BB_INSNS (bb, insn)
2674 rtx set, target, dest, t, e;
2675 unsigned int regno;
2677 /* ??? Maybe emit conditional debug insn? */
2678 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2679 continue;
2680 set = single_set (insn);
2681 gcc_assert (set && REG_P (SET_DEST (set)));
2683 dest = SET_DEST (set);
2684 regno = REGNO (dest);
2686 t = then_vals[regno];
2687 e = else_vals[regno];
2689 if (else_block_p)
2691 /* If this register was set in the then block, we already
2692 handled this case there. */
2693 if (t)
2694 continue;
2695 t = dest;
2696 gcc_assert (e);
2698 else
2700 gcc_assert (t);
2701 if (!e)
2702 e = dest;
2705 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2706 t, e);
2707 if (!target)
2708 return false;
2710 if (target != dest)
2711 noce_emit_move_insn (dest, target);
2714 return true;
2717 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2718 it using only conditional moves. Return TRUE if we were successful at
2719 converting the block. */
2721 static int
2722 cond_move_process_if_block (struct noce_if_info *if_info)
2724 basic_block test_bb = if_info->test_bb;
2725 basic_block then_bb = if_info->then_bb;
2726 basic_block else_bb = if_info->else_bb;
2727 basic_block join_bb = if_info->join_bb;
2728 rtx jump = if_info->jump;
2729 rtx cond = if_info->cond;
2730 rtx seq, loc_insn;
2731 int max_reg, size, c, reg;
2732 rtx *then_vals;
2733 rtx *else_vals;
2734 VEC (int, heap) *then_regs = NULL;
2735 VEC (int, heap) *else_regs = NULL;
2736 unsigned int i;
2738 /* Build a mapping for each block to the value used for each
2739 register. */
2740 max_reg = max_reg_num ();
2741 size = (max_reg + 1) * sizeof (rtx);
2742 then_vals = (rtx *) alloca (size);
2743 else_vals = (rtx *) alloca (size);
2744 memset (then_vals, 0, size);
2745 memset (else_vals, 0, size);
2747 /* Make sure the blocks are suitable. */
2748 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2749 || (else_bb
2750 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2752 VEC_free (int, heap, then_regs);
2753 VEC_free (int, heap, else_regs);
2754 return FALSE;
2757 /* Make sure the blocks can be used together. If the same register
2758 is set in both blocks, and is not set to a constant in both
2759 cases, then both blocks must set it to the same register. We
2760 have already verified that if it is set to a register, that the
2761 source register does not change after the assignment. Also count
2762 the number of registers set in only one of the blocks. */
2763 c = 0;
2764 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2766 if (!then_vals[reg] && !else_vals[reg])
2767 continue;
2769 if (!else_vals[reg])
2770 ++c;
2771 else
2773 if (!CONSTANT_P (then_vals[reg])
2774 && !CONSTANT_P (else_vals[reg])
2775 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2777 VEC_free (int, heap, then_regs);
2778 VEC_free (int, heap, else_regs);
2779 return FALSE;
2784 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2785 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2786 if (!then_vals[reg])
2787 ++c;
2789 /* Make sure it is reasonable to convert this block. What matters
2790 is the number of assignments currently made in only one of the
2791 branches, since if we convert we are going to always execute
2792 them. */
2793 if (c > MAX_CONDITIONAL_EXECUTE)
2795 VEC_free (int, heap, then_regs);
2796 VEC_free (int, heap, else_regs);
2797 return FALSE;
2800 /* Try to emit the conditional moves. First do the then block,
2801 then do anything left in the else blocks. */
2802 start_sequence ();
2803 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2804 then_vals, else_vals, false)
2805 || (else_bb
2806 && !cond_move_convert_if_block (if_info, else_bb, cond,
2807 then_vals, else_vals, true)))
2809 end_sequence ();
2810 VEC_free (int, heap, then_regs);
2811 VEC_free (int, heap, else_regs);
2812 return FALSE;
2814 seq = end_ifcvt_sequence (if_info);
2815 if (!seq)
2817 VEC_free (int, heap, then_regs);
2818 VEC_free (int, heap, else_regs);
2819 return FALSE;
2822 loc_insn = first_active_insn (then_bb);
2823 if (!loc_insn)
2825 loc_insn = first_active_insn (else_bb);
2826 gcc_assert (loc_insn);
2828 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2830 if (else_bb)
2832 delete_basic_block (else_bb);
2833 num_true_changes++;
2835 else
2836 remove_edge (find_edge (test_bb, join_bb));
2838 remove_edge (find_edge (then_bb, join_bb));
2839 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2840 delete_basic_block (then_bb);
2841 num_true_changes++;
2843 if (can_merge_blocks_p (test_bb, join_bb))
2845 merge_blocks (test_bb, join_bb);
2846 num_true_changes++;
2849 num_updated_if_blocks++;
2851 VEC_free (int, heap, then_regs);
2852 VEC_free (int, heap, else_regs);
2853 return TRUE;
2857 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2858 IF-THEN-ELSE-JOIN block.
2860 If so, we'll try to convert the insns to not require the branch,
2861 using only transformations that do not require conditional execution.
2863 Return TRUE if we were successful at converting the block. */
2865 static int
2866 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2867 int pass)
2869 basic_block then_bb, else_bb, join_bb;
2870 bool then_else_reversed = false;
2871 rtx jump, cond;
2872 rtx cond_earliest;
2873 struct noce_if_info if_info;
2875 /* We only ever should get here before reload. */
2876 gcc_assert (!reload_completed);
2878 /* Recognize an IF-THEN-ELSE-JOIN block. */
2879 if (single_pred_p (then_edge->dest)
2880 && single_succ_p (then_edge->dest)
2881 && single_pred_p (else_edge->dest)
2882 && single_succ_p (else_edge->dest)
2883 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2885 then_bb = then_edge->dest;
2886 else_bb = else_edge->dest;
2887 join_bb = single_succ (then_bb);
2889 /* Recognize an IF-THEN-JOIN block. */
2890 else if (single_pred_p (then_edge->dest)
2891 && single_succ_p (then_edge->dest)
2892 && single_succ (then_edge->dest) == else_edge->dest)
2894 then_bb = then_edge->dest;
2895 else_bb = NULL_BLOCK;
2896 join_bb = else_edge->dest;
2898 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2899 of basic blocks in cfglayout mode does not matter, so the fallthrough
2900 edge can go to any basic block (and not just to bb->next_bb, like in
2901 cfgrtl mode). */
2902 else if (single_pred_p (else_edge->dest)
2903 && single_succ_p (else_edge->dest)
2904 && single_succ (else_edge->dest) == then_edge->dest)
2906 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2907 To make this work, we have to invert the THEN and ELSE blocks
2908 and reverse the jump condition. */
2909 then_bb = else_edge->dest;
2910 else_bb = NULL_BLOCK;
2911 join_bb = single_succ (then_bb);
2912 then_else_reversed = true;
2914 else
2915 /* Not a form we can handle. */
2916 return FALSE;
2918 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2919 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2920 return FALSE;
2921 if (else_bb
2922 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2923 return FALSE;
2925 num_possible_if_blocks++;
2927 if (dump_file)
2929 fprintf (dump_file,
2930 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2931 (else_bb) ? "-ELSE" : "",
2932 pass, test_bb->index, then_bb->index);
2934 if (else_bb)
2935 fprintf (dump_file, ", else %d", else_bb->index);
2937 fprintf (dump_file, ", join %d\n", join_bb->index);
2940 /* If the conditional jump is more than just a conditional
2941 jump, then we can not do if-conversion on this block. */
2942 jump = BB_END (test_bb);
2943 if (! onlyjump_p (jump))
2944 return FALSE;
2946 /* If this is not a standard conditional jump, we can't parse it. */
2947 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
2948 if (!cond)
2949 return FALSE;
2951 /* We must be comparing objects whose modes imply the size. */
2952 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2953 return FALSE;
2955 /* Initialize an IF_INFO struct to pass around. */
2956 memset (&if_info, 0, sizeof if_info);
2957 if_info.test_bb = test_bb;
2958 if_info.then_bb = then_bb;
2959 if_info.else_bb = else_bb;
2960 if_info.join_bb = join_bb;
2961 if_info.cond = cond;
2962 if_info.cond_earliest = cond_earliest;
2963 if_info.jump = jump;
2964 if_info.then_else_reversed = then_else_reversed;
2965 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
2966 predictable_edge_p (then_edge));
2968 /* Do the real work. */
2970 if (noce_process_if_block (&if_info))
2971 return TRUE;
2973 if (HAVE_conditional_move
2974 && cond_move_process_if_block (&if_info))
2975 return TRUE;
2977 return FALSE;
2981 /* Merge the blocks and mark for local life update. */
2983 static void
2984 merge_if_block (struct ce_if_block * ce_info)
2986 basic_block test_bb = ce_info->test_bb; /* last test block */
2987 basic_block then_bb = ce_info->then_bb; /* THEN */
2988 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2989 basic_block join_bb = ce_info->join_bb; /* join block */
2990 basic_block combo_bb;
2992 /* All block merging is done into the lower block numbers. */
2994 combo_bb = test_bb;
2995 df_set_bb_dirty (test_bb);
2997 /* Merge any basic blocks to handle && and || subtests. Each of
2998 the blocks are on the fallthru path from the predecessor block. */
2999 if (ce_info->num_multiple_test_blocks > 0)
3001 basic_block bb = test_bb;
3002 basic_block last_test_bb = ce_info->last_test_bb;
3003 basic_block fallthru = block_fallthru (bb);
3007 bb = fallthru;
3008 fallthru = block_fallthru (bb);
3009 merge_blocks (combo_bb, bb);
3010 num_true_changes++;
3012 while (bb != last_test_bb);
3015 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3016 label, but it might if there were || tests. That label's count should be
3017 zero, and it normally should be removed. */
3019 if (then_bb)
3021 merge_blocks (combo_bb, then_bb);
3022 num_true_changes++;
3025 /* The ELSE block, if it existed, had a label. That label count
3026 will almost always be zero, but odd things can happen when labels
3027 get their addresses taken. */
3028 if (else_bb)
3030 merge_blocks (combo_bb, else_bb);
3031 num_true_changes++;
3034 /* If there was no join block reported, that means it was not adjacent
3035 to the others, and so we cannot merge them. */
3037 if (! join_bb)
3039 rtx last = BB_END (combo_bb);
3041 /* The outgoing edge for the current COMBO block should already
3042 be correct. Verify this. */
3043 if (EDGE_COUNT (combo_bb->succs) == 0)
3044 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3045 || (NONJUMP_INSN_P (last)
3046 && GET_CODE (PATTERN (last)) == TRAP_IF
3047 && (TRAP_CONDITION (PATTERN (last))
3048 == const_true_rtx)));
3050 else
3051 /* There should still be something at the end of the THEN or ELSE
3052 blocks taking us to our final destination. */
3053 gcc_assert (JUMP_P (last)
3054 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3055 && CALL_P (last)
3056 && SIBLING_CALL_P (last))
3057 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3058 && can_throw_internal (last)));
3061 /* The JOIN block may have had quite a number of other predecessors too.
3062 Since we've already merged the TEST, THEN and ELSE blocks, we should
3063 have only one remaining edge from our if-then-else diamond. If there
3064 is more than one remaining edge, it must come from elsewhere. There
3065 may be zero incoming edges if the THEN block didn't actually join
3066 back up (as with a call to a non-return function). */
3067 else if (EDGE_COUNT (join_bb->preds) < 2
3068 && join_bb != EXIT_BLOCK_PTR)
3070 /* We can merge the JOIN cleanly and update the dataflow try
3071 again on this pass.*/
3072 merge_blocks (combo_bb, join_bb);
3073 num_true_changes++;
3075 else
3077 /* We cannot merge the JOIN. */
3079 /* The outgoing edge for the current COMBO block should already
3080 be correct. Verify this. */
3081 gcc_assert (single_succ_p (combo_bb)
3082 && single_succ (combo_bb) == join_bb);
3084 /* Remove the jump and cruft from the end of the COMBO block. */
3085 if (join_bb != EXIT_BLOCK_PTR)
3086 tidy_fallthru_edge (single_succ_edge (combo_bb));
3089 num_updated_if_blocks++;
3092 /* Find a block ending in a simple IF condition and try to transform it
3093 in some way. When converting a multi-block condition, put the new code
3094 in the first such block and delete the rest. Return a pointer to this
3095 first block if some transformation was done. Return NULL otherwise. */
3097 static basic_block
3098 find_if_header (basic_block test_bb, int pass)
3100 ce_if_block_t ce_info;
3101 edge then_edge;
3102 edge else_edge;
3104 /* The kind of block we're looking for has exactly two successors. */
3105 if (EDGE_COUNT (test_bb->succs) != 2)
3106 return NULL;
3108 then_edge = EDGE_SUCC (test_bb, 0);
3109 else_edge = EDGE_SUCC (test_bb, 1);
3111 if (df_get_bb_dirty (then_edge->dest))
3112 return NULL;
3113 if (df_get_bb_dirty (else_edge->dest))
3114 return NULL;
3116 /* Neither edge should be abnormal. */
3117 if ((then_edge->flags & EDGE_COMPLEX)
3118 || (else_edge->flags & EDGE_COMPLEX))
3119 return NULL;
3121 /* Nor exit the loop. */
3122 if ((then_edge->flags & EDGE_LOOP_EXIT)
3123 || (else_edge->flags & EDGE_LOOP_EXIT))
3124 return NULL;
3126 /* The THEN edge is canonically the one that falls through. */
3127 if (then_edge->flags & EDGE_FALLTHRU)
3129 else if (else_edge->flags & EDGE_FALLTHRU)
3131 edge e = else_edge;
3132 else_edge = then_edge;
3133 then_edge = e;
3135 else
3136 /* Otherwise this must be a multiway branch of some sort. */
3137 return NULL;
3139 memset (&ce_info, 0, sizeof (ce_info));
3140 ce_info.test_bb = test_bb;
3141 ce_info.then_bb = then_edge->dest;
3142 ce_info.else_bb = else_edge->dest;
3143 ce_info.pass = pass;
3145 #ifdef IFCVT_INIT_EXTRA_FIELDS
3146 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3147 #endif
3149 if (!reload_completed
3150 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3151 goto success;
3153 if (reload_completed
3154 && targetm.have_conditional_execution ()
3155 && cond_exec_find_if_block (&ce_info))
3156 goto success;
3158 if (HAVE_trap
3159 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3160 && find_cond_trap (test_bb, then_edge, else_edge))
3161 goto success;
3163 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3164 && (reload_completed || !targetm.have_conditional_execution ()))
3166 if (find_if_case_1 (test_bb, then_edge, else_edge))
3167 goto success;
3168 if (find_if_case_2 (test_bb, then_edge, else_edge))
3169 goto success;
3172 return NULL;
3174 success:
3175 if (dump_file)
3176 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3177 /* Set this so we continue looking. */
3178 cond_exec_changed_p = TRUE;
3179 return ce_info.test_bb;
3182 /* Return true if a block has two edges, one of which falls through to the next
3183 block, and the other jumps to a specific block, so that we can tell if the
3184 block is part of an && test or an || test. Returns either -1 or the number
3185 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3187 static int
3188 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3190 edge cur_edge;
3191 int fallthru_p = FALSE;
3192 int jump_p = FALSE;
3193 rtx insn;
3194 rtx end;
3195 int n_insns = 0;
3196 edge_iterator ei;
3198 if (!cur_bb || !target_bb)
3199 return -1;
3201 /* If no edges, obviously it doesn't jump or fallthru. */
3202 if (EDGE_COUNT (cur_bb->succs) == 0)
3203 return FALSE;
3205 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3207 if (cur_edge->flags & EDGE_COMPLEX)
3208 /* Anything complex isn't what we want. */
3209 return -1;
3211 else if (cur_edge->flags & EDGE_FALLTHRU)
3212 fallthru_p = TRUE;
3214 else if (cur_edge->dest == target_bb)
3215 jump_p = TRUE;
3217 else
3218 return -1;
3221 if ((jump_p & fallthru_p) == 0)
3222 return -1;
3224 /* Don't allow calls in the block, since this is used to group && and ||
3225 together for conditional execution support. ??? we should support
3226 conditional execution support across calls for IA-64 some day, but
3227 for now it makes the code simpler. */
3228 end = BB_END (cur_bb);
3229 insn = BB_HEAD (cur_bb);
3231 while (insn != NULL_RTX)
3233 if (CALL_P (insn))
3234 return -1;
3236 if (INSN_P (insn)
3237 && !JUMP_P (insn)
3238 && !DEBUG_INSN_P (insn)
3239 && GET_CODE (PATTERN (insn)) != USE
3240 && GET_CODE (PATTERN (insn)) != CLOBBER)
3241 n_insns++;
3243 if (insn == end)
3244 break;
3246 insn = NEXT_INSN (insn);
3249 return n_insns;
3252 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3253 block. If so, we'll try to convert the insns to not require the branch.
3254 Return TRUE if we were successful at converting the block. */
3256 static int
3257 cond_exec_find_if_block (struct ce_if_block * ce_info)
3259 basic_block test_bb = ce_info->test_bb;
3260 basic_block then_bb = ce_info->then_bb;
3261 basic_block else_bb = ce_info->else_bb;
3262 basic_block join_bb = NULL_BLOCK;
3263 edge cur_edge;
3264 basic_block next;
3265 edge_iterator ei;
3267 ce_info->last_test_bb = test_bb;
3269 /* We only ever should get here after reload,
3270 and if we have conditional execution. */
3271 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3273 /* Discover if any fall through predecessors of the current test basic block
3274 were && tests (which jump to the else block) or || tests (which jump to
3275 the then block). */
3276 if (single_pred_p (test_bb)
3277 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3279 basic_block bb = single_pred (test_bb);
3280 basic_block target_bb;
3281 int max_insns = MAX_CONDITIONAL_EXECUTE;
3282 int n_insns;
3284 /* Determine if the preceding block is an && or || block. */
3285 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3287 ce_info->and_and_p = TRUE;
3288 target_bb = else_bb;
3290 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3292 ce_info->and_and_p = FALSE;
3293 target_bb = then_bb;
3295 else
3296 target_bb = NULL_BLOCK;
3298 if (target_bb && n_insns <= max_insns)
3300 int total_insns = 0;
3301 int blocks = 0;
3303 ce_info->last_test_bb = test_bb;
3305 /* Found at least one && or || block, look for more. */
3308 ce_info->test_bb = test_bb = bb;
3309 total_insns += n_insns;
3310 blocks++;
3312 if (!single_pred_p (bb))
3313 break;
3315 bb = single_pred (bb);
3316 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3318 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3320 ce_info->num_multiple_test_blocks = blocks;
3321 ce_info->num_multiple_test_insns = total_insns;
3323 if (ce_info->and_and_p)
3324 ce_info->num_and_and_blocks = blocks;
3325 else
3326 ce_info->num_or_or_blocks = blocks;
3330 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3331 other than any || blocks which jump to the THEN block. */
3332 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3333 return FALSE;
3335 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3336 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3338 if (cur_edge->flags & EDGE_COMPLEX)
3339 return FALSE;
3342 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3344 if (cur_edge->flags & EDGE_COMPLEX)
3345 return FALSE;
3348 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3349 if (EDGE_COUNT (then_bb->succs) > 0
3350 && (!single_succ_p (then_bb)
3351 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3352 || (epilogue_completed
3353 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3354 return FALSE;
3356 /* If the THEN block has no successors, conditional execution can still
3357 make a conditional call. Don't do this unless the ELSE block has
3358 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3359 Check for the last insn of the THEN block being an indirect jump, which
3360 is listed as not having any successors, but confuses the rest of the CE
3361 code processing. ??? we should fix this in the future. */
3362 if (EDGE_COUNT (then_bb->succs) == 0)
3364 if (single_pred_p (else_bb))
3366 rtx last_insn = BB_END (then_bb);
3368 while (last_insn
3369 && NOTE_P (last_insn)
3370 && last_insn != BB_HEAD (then_bb))
3371 last_insn = PREV_INSN (last_insn);
3373 if (last_insn
3374 && JUMP_P (last_insn)
3375 && ! simplejump_p (last_insn))
3376 return FALSE;
3378 join_bb = else_bb;
3379 else_bb = NULL_BLOCK;
3381 else
3382 return FALSE;
3385 /* If the THEN block's successor is the other edge out of the TEST block,
3386 then we have an IF-THEN combo without an ELSE. */
3387 else if (single_succ (then_bb) == else_bb)
3389 join_bb = else_bb;
3390 else_bb = NULL_BLOCK;
3393 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3394 has exactly one predecessor and one successor, and the outgoing edge
3395 is not complex, then we have an IF-THEN-ELSE combo. */
3396 else if (single_succ_p (else_bb)
3397 && single_succ (then_bb) == single_succ (else_bb)
3398 && single_pred_p (else_bb)
3399 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3400 && !(epilogue_completed
3401 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3402 join_bb = single_succ (else_bb);
3404 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3405 else
3406 return FALSE;
3408 num_possible_if_blocks++;
3410 if (dump_file)
3412 fprintf (dump_file,
3413 "\nIF-THEN%s block found, pass %d, start block %d "
3414 "[insn %d], then %d [%d]",
3415 (else_bb) ? "-ELSE" : "",
3416 ce_info->pass,
3417 test_bb->index,
3418 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3419 then_bb->index,
3420 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3422 if (else_bb)
3423 fprintf (dump_file, ", else %d [%d]",
3424 else_bb->index,
3425 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3427 fprintf (dump_file, ", join %d [%d]",
3428 join_bb->index,
3429 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3431 if (ce_info->num_multiple_test_blocks > 0)
3432 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3433 ce_info->num_multiple_test_blocks,
3434 (ce_info->and_and_p) ? "&&" : "||",
3435 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3436 ce_info->last_test_bb->index,
3437 ((BB_HEAD (ce_info->last_test_bb))
3438 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3439 : -1));
3441 fputc ('\n', dump_file);
3444 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3445 first condition for free, since we've already asserted that there's a
3446 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3447 we checked the FALLTHRU flag, those are already adjacent to the last IF
3448 block. */
3449 /* ??? As an enhancement, move the ELSE block. Have to deal with
3450 BLOCK notes, if by no other means than backing out the merge if they
3451 exist. Sticky enough I don't want to think about it now. */
3452 next = then_bb;
3453 if (else_bb && (next = next->next_bb) != else_bb)
3454 return FALSE;
3455 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3457 if (else_bb)
3458 join_bb = NULL;
3459 else
3460 return FALSE;
3463 /* Do the real work. */
3465 ce_info->else_bb = else_bb;
3466 ce_info->join_bb = join_bb;
3468 /* If we have && and || tests, try to first handle combining the && and ||
3469 tests into the conditional code, and if that fails, go back and handle
3470 it without the && and ||, which at present handles the && case if there
3471 was no ELSE block. */
3472 if (cond_exec_process_if_block (ce_info, TRUE))
3473 return TRUE;
3475 if (ce_info->num_multiple_test_blocks)
3477 cancel_changes (0);
3479 if (cond_exec_process_if_block (ce_info, FALSE))
3480 return TRUE;
3483 return FALSE;
3486 /* Convert a branch over a trap, or a branch
3487 to a trap, into a conditional trap. */
3489 static int
3490 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3492 basic_block then_bb = then_edge->dest;
3493 basic_block else_bb = else_edge->dest;
3494 basic_block other_bb, trap_bb;
3495 rtx trap, jump, cond, cond_earliest, seq;
3496 enum rtx_code code;
3498 /* Locate the block with the trap instruction. */
3499 /* ??? While we look for no successors, we really ought to allow
3500 EH successors. Need to fix merge_if_block for that to work. */
3501 if ((trap = block_has_only_trap (then_bb)) != NULL)
3502 trap_bb = then_bb, other_bb = else_bb;
3503 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3504 trap_bb = else_bb, other_bb = then_bb;
3505 else
3506 return FALSE;
3508 if (dump_file)
3510 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3511 test_bb->index, trap_bb->index);
3514 /* If this is not a standard conditional jump, we can't parse it. */
3515 jump = BB_END (test_bb);
3516 cond = noce_get_condition (jump, &cond_earliest, false);
3517 if (! cond)
3518 return FALSE;
3520 /* If the conditional jump is more than just a conditional jump, then
3521 we can not do if-conversion on this block. */
3522 if (! onlyjump_p (jump))
3523 return FALSE;
3525 /* We must be comparing objects whose modes imply the size. */
3526 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3527 return FALSE;
3529 /* Reverse the comparison code, if necessary. */
3530 code = GET_CODE (cond);
3531 if (then_bb == trap_bb)
3533 code = reversed_comparison_code (cond, jump);
3534 if (code == UNKNOWN)
3535 return FALSE;
3538 /* Attempt to generate the conditional trap. */
3539 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3540 copy_rtx (XEXP (cond, 1)),
3541 TRAP_CODE (PATTERN (trap)));
3542 if (seq == NULL)
3543 return FALSE;
3545 /* Emit the new insns before cond_earliest. */
3546 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3548 /* Delete the trap block if possible. */
3549 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3550 df_set_bb_dirty (test_bb);
3551 df_set_bb_dirty (then_bb);
3552 df_set_bb_dirty (else_bb);
3554 if (EDGE_COUNT (trap_bb->preds) == 0)
3556 delete_basic_block (trap_bb);
3557 num_true_changes++;
3560 /* Wire together the blocks again. */
3561 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3562 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3563 else
3565 rtx lab, newjump;
3567 lab = JUMP_LABEL (jump);
3568 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3569 LABEL_NUSES (lab) += 1;
3570 JUMP_LABEL (newjump) = lab;
3571 emit_barrier_after (newjump);
3573 delete_insn (jump);
3575 if (can_merge_blocks_p (test_bb, other_bb))
3577 merge_blocks (test_bb, other_bb);
3578 num_true_changes++;
3581 num_updated_if_blocks++;
3582 return TRUE;
3585 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3586 return it. */
3588 static rtx
3589 block_has_only_trap (basic_block bb)
3591 rtx trap;
3593 /* We're not the exit block. */
3594 if (bb == EXIT_BLOCK_PTR)
3595 return NULL_RTX;
3597 /* The block must have no successors. */
3598 if (EDGE_COUNT (bb->succs) > 0)
3599 return NULL_RTX;
3601 /* The only instruction in the THEN block must be the trap. */
3602 trap = first_active_insn (bb);
3603 if (! (trap == BB_END (bb)
3604 && GET_CODE (PATTERN (trap)) == TRAP_IF
3605 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3606 return NULL_RTX;
3608 return trap;
3611 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3612 transformable, but not necessarily the other. There need be no
3613 JOIN block.
3615 Return TRUE if we were successful at converting the block.
3617 Cases we'd like to look at:
3620 if (test) goto over; // x not live
3621 x = a;
3622 goto label;
3623 over:
3625 becomes
3627 x = a;
3628 if (! test) goto label;
3631 if (test) goto E; // x not live
3632 x = big();
3633 goto L;
3635 x = b;
3636 goto M;
3638 becomes
3640 x = b;
3641 if (test) goto M;
3642 x = big();
3643 goto L;
3645 (3) // This one's really only interesting for targets that can do
3646 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3647 // it results in multiple branches on a cache line, which often
3648 // does not sit well with predictors.
3650 if (test1) goto E; // predicted not taken
3651 x = a;
3652 if (test2) goto F;
3655 x = b;
3658 becomes
3660 x = a;
3661 if (test1) goto E;
3662 if (test2) goto F;
3664 Notes:
3666 (A) Don't do (2) if the branch is predicted against the block we're
3667 eliminating. Do it anyway if we can eliminate a branch; this requires
3668 that the sole successor of the eliminated block postdominate the other
3669 side of the if.
3671 (B) With CE, on (3) we can steal from both sides of the if, creating
3673 if (test1) x = a;
3674 if (!test1) x = b;
3675 if (test1) goto J;
3676 if (test2) goto F;
3680 Again, this is most useful if J postdominates.
3682 (C) CE substitutes for helpful life information.
3684 (D) These heuristics need a lot of work. */
3686 /* Tests for case 1 above. */
3688 static int
3689 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3691 basic_block then_bb = then_edge->dest;
3692 basic_block else_bb = else_edge->dest;
3693 basic_block new_bb;
3694 int then_bb_index;
3696 /* If we are partitioning hot/cold basic blocks, we don't want to
3697 mess up unconditional or indirect jumps that cross between hot
3698 and cold sections.
3700 Basic block partitioning may result in some jumps that appear to
3701 be optimizable (or blocks that appear to be mergeable), but which really
3702 must be left untouched (they are required to make it safely across
3703 partition boundaries). See the comments at the top of
3704 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3706 if ((BB_END (then_bb)
3707 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3708 || (BB_END (test_bb)
3709 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3710 || (BB_END (else_bb)
3711 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3712 NULL_RTX)))
3713 return FALSE;
3715 /* THEN has one successor. */
3716 if (!single_succ_p (then_bb))
3717 return FALSE;
3719 /* THEN does not fall through, but is not strange either. */
3720 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3721 return FALSE;
3723 /* THEN has one predecessor. */
3724 if (!single_pred_p (then_bb))
3725 return FALSE;
3727 /* THEN must do something. */
3728 if (forwarder_block_p (then_bb))
3729 return FALSE;
3731 num_possible_if_blocks++;
3732 if (dump_file)
3733 fprintf (dump_file,
3734 "\nIF-CASE-1 found, start %d, then %d\n",
3735 test_bb->index, then_bb->index);
3737 /* THEN is small. */
3738 if (! cheap_bb_rtx_cost_p (then_bb,
3739 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3740 predictable_edge_p (then_edge)))))
3741 return FALSE;
3743 /* Registers set are dead, or are predicable. */
3744 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3745 single_succ (then_bb), 1))
3746 return FALSE;
3748 /* Conversion went ok, including moving the insns and fixing up the
3749 jump. Adjust the CFG to match. */
3751 /* We can avoid creating a new basic block if then_bb is immediately
3752 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3753 thru to else_bb. */
3755 if (then_bb->next_bb == else_bb
3756 && then_bb->prev_bb == test_bb
3757 && else_bb != EXIT_BLOCK_PTR)
3759 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3760 new_bb = 0;
3762 else
3763 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3764 else_bb);
3766 df_set_bb_dirty (test_bb);
3767 df_set_bb_dirty (else_bb);
3769 then_bb_index = then_bb->index;
3770 delete_basic_block (then_bb);
3772 /* Make rest of code believe that the newly created block is the THEN_BB
3773 block we removed. */
3774 if (new_bb)
3776 df_bb_replace (then_bb_index, new_bb);
3777 /* Since the fallthru edge was redirected from test_bb to new_bb,
3778 we need to ensure that new_bb is in the same partition as
3779 test bb (you can not fall through across section boundaries). */
3780 BB_COPY_PARTITION (new_bb, test_bb);
3783 num_true_changes++;
3784 num_updated_if_blocks++;
3786 return TRUE;
3789 /* Test for case 2 above. */
3791 static int
3792 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3794 basic_block then_bb = then_edge->dest;
3795 basic_block else_bb = else_edge->dest;
3796 edge else_succ;
3797 rtx note;
3799 /* If we are partitioning hot/cold basic blocks, we don't want to
3800 mess up unconditional or indirect jumps that cross between hot
3801 and cold sections.
3803 Basic block partitioning may result in some jumps that appear to
3804 be optimizable (or blocks that appear to be mergeable), but which really
3805 must be left untouched (they are required to make it safely across
3806 partition boundaries). See the comments at the top of
3807 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3809 if ((BB_END (then_bb)
3810 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3811 || (BB_END (test_bb)
3812 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3813 || (BB_END (else_bb)
3814 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3815 NULL_RTX)))
3816 return FALSE;
3818 /* ELSE has one successor. */
3819 if (!single_succ_p (else_bb))
3820 return FALSE;
3821 else
3822 else_succ = single_succ_edge (else_bb);
3824 /* ELSE outgoing edge is not complex. */
3825 if (else_succ->flags & EDGE_COMPLEX)
3826 return FALSE;
3828 /* ELSE has one predecessor. */
3829 if (!single_pred_p (else_bb))
3830 return FALSE;
3832 /* THEN is not EXIT. */
3833 if (then_bb->index < NUM_FIXED_BLOCKS)
3834 return FALSE;
3836 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3837 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3838 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3840 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3841 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3842 else_succ->dest))
3844 else
3845 return FALSE;
3847 num_possible_if_blocks++;
3848 if (dump_file)
3849 fprintf (dump_file,
3850 "\nIF-CASE-2 found, start %d, else %d\n",
3851 test_bb->index, else_bb->index);
3853 /* ELSE is small. */
3854 if (! cheap_bb_rtx_cost_p (else_bb,
3855 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3856 predictable_edge_p (else_edge)))))
3857 return FALSE;
3859 /* Registers set are dead, or are predicable. */
3860 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3861 return FALSE;
3863 /* Conversion went ok, including moving the insns and fixing up the
3864 jump. Adjust the CFG to match. */
3866 df_set_bb_dirty (test_bb);
3867 df_set_bb_dirty (then_bb);
3868 delete_basic_block (else_bb);
3870 num_true_changes++;
3871 num_updated_if_blocks++;
3873 /* ??? We may now fallthru from one of THEN's successors into a join
3874 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3876 return TRUE;
3879 /* A subroutine of dead_or_predicable called through for_each_rtx.
3880 Return 1 if a memory is found. */
3882 static int
3883 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3885 return MEM_P (*px);
3888 /* Used by the code above to perform the actual rtl transformations.
3889 Return TRUE if successful.
3891 TEST_BB is the block containing the conditional branch. MERGE_BB
3892 is the block containing the code to manipulate. NEW_DEST is the
3893 label TEST_BB should be branching to after the conversion.
3894 REVERSEP is true if the sense of the branch should be reversed. */
3896 static int
3897 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3898 basic_block other_bb, basic_block new_dest, int reversep)
3900 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3901 /* Number of pending changes. */
3902 int n_validated_changes = 0;
3904 jump = BB_END (test_bb);
3906 /* Find the extent of the real code in the merge block. */
3907 head = BB_HEAD (merge_bb);
3908 end = BB_END (merge_bb);
3910 while (DEBUG_INSN_P (end) && end != head)
3911 end = PREV_INSN (end);
3913 /* If merge_bb ends with a tablejump, predicating/moving insn's
3914 into test_bb and then deleting merge_bb will result in the jumptable
3915 that follows merge_bb being removed along with merge_bb and then we
3916 get an unresolved reference to the jumptable. */
3917 if (tablejump_p (end, NULL, NULL))
3918 return FALSE;
3920 if (LABEL_P (head))
3921 head = NEXT_INSN (head);
3922 while (DEBUG_INSN_P (head) && head != end)
3923 head = NEXT_INSN (head);
3924 if (NOTE_P (head))
3926 if (head == end)
3928 head = end = NULL_RTX;
3929 goto no_body;
3931 head = NEXT_INSN (head);
3932 while (DEBUG_INSN_P (head) && head != end)
3933 head = NEXT_INSN (head);
3936 if (JUMP_P (end))
3938 if (head == end)
3940 head = end = NULL_RTX;
3941 goto no_body;
3943 end = PREV_INSN (end);
3944 while (DEBUG_INSN_P (end) && end != head)
3945 end = PREV_INSN (end);
3948 /* Disable handling dead code by conditional execution if the machine needs
3949 to do anything funny with the tests, etc. */
3950 #ifndef IFCVT_MODIFY_TESTS
3951 if (targetm.have_conditional_execution ())
3953 /* In the conditional execution case, we have things easy. We know
3954 the condition is reversible. We don't have to check life info
3955 because we're going to conditionally execute the code anyway.
3956 All that's left is making sure the insns involved can actually
3957 be predicated. */
3959 rtx cond, prob_val;
3961 cond = cond_exec_get_condition (jump);
3962 if (! cond)
3963 return FALSE;
3965 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3966 if (prob_val)
3967 prob_val = XEXP (prob_val, 0);
3969 if (reversep)
3971 enum rtx_code rev = reversed_comparison_code (cond, jump);
3972 if (rev == UNKNOWN)
3973 return FALSE;
3974 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3975 XEXP (cond, 1));
3976 if (prob_val)
3977 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3980 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
3981 && verify_changes (0))
3982 n_validated_changes = num_validated_changes ();
3983 else
3984 cancel_changes (0);
3986 earliest = jump;
3988 #endif
3989 /* Try the NCE path if the CE path did not result in any changes. */
3990 if (n_validated_changes == 0)
3992 /* In the non-conditional execution case, we have to verify that there
3993 are no trapping operations, no calls, no references to memory, and
3994 that any registers modified are dead at the branch site. */
3996 rtx insn, cond, prev;
3997 bitmap merge_set, merge_set_noclobber, test_live, test_set;
3998 unsigned i, fail = 0;
3999 bitmap_iterator bi;
4001 /* Check for no calls or trapping operations. */
4002 for (insn = head; ; insn = NEXT_INSN (insn))
4004 if (CALL_P (insn))
4005 return FALSE;
4006 if (NONDEBUG_INSN_P (insn))
4008 if (may_trap_p (PATTERN (insn)))
4009 return FALSE;
4011 /* ??? Even non-trapping memories such as stack frame
4012 references must be avoided. For stores, we collect
4013 no lifetime info; for reads, we'd have to assert
4014 true_dependence false against every store in the
4015 TEST range. */
4016 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
4017 return FALSE;
4019 if (insn == end)
4020 break;
4023 if (! any_condjump_p (jump))
4024 return FALSE;
4026 /* Find the extent of the conditional. */
4027 cond = noce_get_condition (jump, &earliest, false);
4028 if (! cond)
4029 return FALSE;
4031 /* Collect:
4032 MERGE_SET = set of registers set in MERGE_BB
4033 MERGE_SET_NOCLOBBER = like MERGE_SET, but only includes registers
4034 that are really set, not just clobbered.
4035 TEST_LIVE = set of registers live at EARLIEST
4036 TEST_SET = set of registers set between EARLIEST and the
4037 end of the block. */
4039 merge_set = BITMAP_ALLOC (&reg_obstack);
4040 merge_set_noclobber = BITMAP_ALLOC (&reg_obstack);
4041 test_live = BITMAP_ALLOC (&reg_obstack);
4042 test_set = BITMAP_ALLOC (&reg_obstack);
4044 /* ??? bb->local_set is only valid during calculate_global_regs_live,
4045 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
4046 since we've already asserted that MERGE_BB is small. */
4047 /* If we allocated new pseudos (e.g. in the conditional move
4048 expander called from noce_emit_cmove), we must resize the
4049 array first. */
4050 if (max_regno < max_reg_num ())
4051 max_regno = max_reg_num ();
4053 FOR_BB_INSNS (merge_bb, insn)
4055 if (NONDEBUG_INSN_P (insn))
4057 df_simulate_find_defs (insn, merge_set);
4058 df_simulate_find_noclobber_defs (insn, merge_set_noclobber);
4062 /* For small register class machines, don't lengthen lifetimes of
4063 hard registers before reload. */
4064 if (! reload_completed
4065 && targetm.small_register_classes_for_mode_p (VOIDmode))
4067 EXECUTE_IF_SET_IN_BITMAP (merge_set_noclobber, 0, i, bi)
4069 if (i < FIRST_PSEUDO_REGISTER
4070 && ! fixed_regs[i]
4071 && ! global_regs[i])
4072 fail = 1;
4076 /* For TEST, we're interested in a range of insns, not a whole block.
4077 Moreover, we're interested in the insns live from OTHER_BB. */
4079 /* The loop below takes the set of live registers
4080 after JUMP, and calculates the live set before EARLIEST. */
4081 bitmap_copy (test_live, df_get_live_in (other_bb));
4082 df_simulate_initialize_backwards (test_bb, test_live);
4083 for (insn = jump; ; insn = prev)
4085 if (INSN_P (insn))
4087 df_simulate_find_defs (insn, test_set);
4088 df_simulate_one_insn_backwards (test_bb, insn, test_live);
4090 prev = PREV_INSN (insn);
4091 if (insn == earliest)
4092 break;
4095 /* We can perform the transformation if
4096 MERGE_SET_NOCLOBBER & TEST_SET
4098 MERGE_SET & TEST_LIVE)
4100 TEST_SET & DF_LIVE_IN (merge_bb)
4101 are empty. */
4103 if (bitmap_intersect_p (test_set, merge_set_noclobber)
4104 || bitmap_intersect_p (test_live, merge_set)
4105 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
4106 fail = 1;
4108 BITMAP_FREE (merge_set_noclobber);
4109 BITMAP_FREE (merge_set);
4110 BITMAP_FREE (test_live);
4111 BITMAP_FREE (test_set);
4113 if (fail)
4114 return FALSE;
4117 no_body:
4118 /* We don't want to use normal invert_jump or redirect_jump because
4119 we don't want to delete_insn called. Also, we want to do our own
4120 change group management. */
4122 old_dest = JUMP_LABEL (jump);
4123 if (other_bb != new_dest)
4125 new_label = block_label (new_dest);
4126 if (reversep
4127 ? ! invert_jump_1 (jump, new_label)
4128 : ! redirect_jump_1 (jump, new_label))
4129 goto cancel;
4132 if (verify_changes (n_validated_changes))
4133 confirm_change_group ();
4134 else
4135 goto cancel;
4137 if (other_bb != new_dest)
4139 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4141 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4142 if (reversep)
4144 gcov_type count, probability;
4145 count = BRANCH_EDGE (test_bb)->count;
4146 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4147 FALLTHRU_EDGE (test_bb)->count = count;
4148 probability = BRANCH_EDGE (test_bb)->probability;
4149 BRANCH_EDGE (test_bb)->probability
4150 = FALLTHRU_EDGE (test_bb)->probability;
4151 FALLTHRU_EDGE (test_bb)->probability = probability;
4152 update_br_prob_note (test_bb);
4156 /* Move the insns out of MERGE_BB to before the branch. */
4157 if (head != NULL)
4159 rtx insn;
4161 if (end == BB_END (merge_bb))
4162 BB_END (merge_bb) = PREV_INSN (head);
4164 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4165 notes might become invalid. */
4166 insn = head;
4169 rtx note, set;
4171 if (! INSN_P (insn))
4172 continue;
4173 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4174 if (! note)
4175 continue;
4176 set = single_set (insn);
4177 if (!set || !function_invariant_p (SET_SRC (set))
4178 || !function_invariant_p (XEXP (note, 0)))
4179 remove_note (insn, note);
4180 } while (insn != end && (insn = NEXT_INSN (insn)));
4182 reorder_insns (head, end, PREV_INSN (earliest));
4185 /* Remove the jump and edge if we can. */
4186 if (other_bb == new_dest)
4188 delete_insn (jump);
4189 remove_edge (BRANCH_EDGE (test_bb));
4190 /* ??? Can't merge blocks here, as then_bb is still in use.
4191 At minimum, the merge will get done just before bb-reorder. */
4194 return TRUE;
4196 cancel:
4197 cancel_changes (0);
4198 return FALSE;
4201 /* Main entry point for all if-conversion. */
4203 static void
4204 if_convert (void)
4206 basic_block bb;
4207 int pass;
4209 if (optimize == 1)
4211 df_live_add_problem ();
4212 df_live_set_all_dirty ();
4215 num_possible_if_blocks = 0;
4216 num_updated_if_blocks = 0;
4217 num_true_changes = 0;
4219 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4220 mark_loop_exit_edges ();
4221 loop_optimizer_finalize ();
4222 free_dominance_info (CDI_DOMINATORS);
4224 /* Compute postdominators. */
4225 calculate_dominance_info (CDI_POST_DOMINATORS);
4227 df_set_flags (DF_LR_RUN_DCE);
4229 /* Go through each of the basic blocks looking for things to convert. If we
4230 have conditional execution, we make multiple passes to allow us to handle
4231 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4232 pass = 0;
4235 df_analyze ();
4236 /* Only need to do dce on the first pass. */
4237 df_clear_flags (DF_LR_RUN_DCE);
4238 cond_exec_changed_p = FALSE;
4239 pass++;
4241 #ifdef IFCVT_MULTIPLE_DUMPS
4242 if (dump_file && pass > 1)
4243 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4244 #endif
4246 FOR_EACH_BB (bb)
4248 basic_block new_bb;
4249 while (!df_get_bb_dirty (bb)
4250 && (new_bb = find_if_header (bb, pass)) != NULL)
4251 bb = new_bb;
4254 #ifdef IFCVT_MULTIPLE_DUMPS
4255 if (dump_file && cond_exec_changed_p)
4257 if (dump_flags & TDF_SLIM)
4258 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4259 else
4260 print_rtl_with_bb (dump_file, get_insns ());
4262 #endif
4264 while (cond_exec_changed_p);
4266 #ifdef IFCVT_MULTIPLE_DUMPS
4267 if (dump_file)
4268 fprintf (dump_file, "\n\n========== no more changes\n");
4269 #endif
4271 free_dominance_info (CDI_POST_DOMINATORS);
4273 if (dump_file)
4274 fflush (dump_file);
4276 clear_aux_for_blocks ();
4278 /* If we allocated new pseudos, we must resize the array for sched1. */
4279 if (max_regno < max_reg_num ())
4280 max_regno = max_reg_num ();
4282 /* Write the final stats. */
4283 if (dump_file && num_possible_if_blocks > 0)
4285 fprintf (dump_file,
4286 "\n%d possible IF blocks searched.\n",
4287 num_possible_if_blocks);
4288 fprintf (dump_file,
4289 "%d IF blocks converted.\n",
4290 num_updated_if_blocks);
4291 fprintf (dump_file,
4292 "%d true changes made.\n\n\n",
4293 num_true_changes);
4296 if (optimize == 1)
4297 df_remove_problem (df_live);
4299 #ifdef ENABLE_CHECKING
4300 verify_flow_info ();
4301 #endif
4304 static bool
4305 gate_handle_if_conversion (void)
4307 return (optimize > 0)
4308 && dbg_cnt (if_conversion);
4311 /* If-conversion and CFG cleanup. */
4312 static unsigned int
4313 rest_of_handle_if_conversion (void)
4315 if (flag_if_conversion)
4317 if (dump_file)
4318 dump_flow_info (dump_file, dump_flags);
4319 cleanup_cfg (CLEANUP_EXPENSIVE);
4320 if_convert ();
4323 cleanup_cfg (0);
4324 return 0;
4327 struct rtl_opt_pass pass_rtl_ifcvt =
4330 RTL_PASS,
4331 "ce1", /* name */
4332 gate_handle_if_conversion, /* gate */
4333 rest_of_handle_if_conversion, /* execute */
4334 NULL, /* sub */
4335 NULL, /* next */
4336 0, /* static_pass_number */
4337 TV_IFCVT, /* tv_id */
4338 0, /* properties_required */
4339 0, /* properties_provided */
4340 0, /* properties_destroyed */
4341 0, /* todo_flags_start */
4342 TODO_df_finish | TODO_verify_rtl_sharing |
4343 TODO_dump_func /* todo_flags_finish */
4347 static bool
4348 gate_handle_if_after_combine (void)
4350 return optimize > 0 && flag_if_conversion
4351 && dbg_cnt (if_after_combine);
4355 /* Rerun if-conversion, as combine may have simplified things enough
4356 to now meet sequence length restrictions. */
4357 static unsigned int
4358 rest_of_handle_if_after_combine (void)
4360 if_convert ();
4361 return 0;
4364 struct rtl_opt_pass pass_if_after_combine =
4367 RTL_PASS,
4368 "ce2", /* name */
4369 gate_handle_if_after_combine, /* gate */
4370 rest_of_handle_if_after_combine, /* execute */
4371 NULL, /* sub */
4372 NULL, /* next */
4373 0, /* static_pass_number */
4374 TV_IFCVT, /* tv_id */
4375 0, /* properties_required */
4376 0, /* properties_provided */
4377 0, /* properties_destroyed */
4378 0, /* todo_flags_start */
4379 TODO_df_finish | TODO_verify_rtl_sharing |
4380 TODO_dump_func |
4381 TODO_ggc_collect /* todo_flags_finish */
4386 static bool
4387 gate_handle_if_after_reload (void)
4389 return optimize > 0 && flag_if_conversion2
4390 && dbg_cnt (if_after_reload);
4393 static unsigned int
4394 rest_of_handle_if_after_reload (void)
4396 if_convert ();
4397 return 0;
4401 struct rtl_opt_pass pass_if_after_reload =
4404 RTL_PASS,
4405 "ce3", /* name */
4406 gate_handle_if_after_reload, /* gate */
4407 rest_of_handle_if_after_reload, /* execute */
4408 NULL, /* sub */
4409 NULL, /* next */
4410 0, /* static_pass_number */
4411 TV_IFCVT2, /* tv_id */
4412 0, /* properties_required */
4413 0, /* properties_provided */
4414 0, /* properties_destroyed */
4415 0, /* todo_flags_start */
4416 TODO_df_finish | TODO_verify_rtl_sharing |
4417 TODO_dump_func |
4418 TODO_ggc_collect /* todo_flags_finish */