* gcc.target/powerpc/altivec-volatile.c: Adjust expected warning.
[official-gcc.git] / gcc / gimple.c
blobfa5b8041ae914d1bd55f75e92b3a41ee20fe936a
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static htab_t gimple_types;
45 static struct pointer_map_t *type_hash_cache;
47 /* Global type comparison cache. */
48 static htab_t gtc_visited;
49 static struct obstack gtc_ob;
51 /* All the tuples have their operand vector (if present) at the very bottom
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
55 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
57 EXPORTED_CONST size_t gimple_ops_offset_[] = {
58 #include "gsstruct.def"
60 #undef DEFGSSTRUCT
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63 static const size_t gsstruct_code_size[] = {
64 #include "gsstruct.def"
66 #undef DEFGSSTRUCT
68 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69 const char *const gimple_code_name[] = {
70 #include "gimple.def"
72 #undef DEFGSCODE
74 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
76 #include "gimple.def"
78 #undef DEFGSCODE
80 #ifdef GATHER_STATISTICS
81 /* Gimple stats. */
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
95 #endif /* GATHER_STATISTICS */
97 /* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
101 /* Private API manipulation functions shared only with some
102 other files. */
103 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
106 /* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
110 /* Set the code for statement G to CODE. */
112 static inline void
113 gimple_set_code (gimple g, enum gimple_code code)
115 g->gsbase.code = code;
118 /* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
121 static inline size_t
122 gimple_size (enum gimple_code code)
124 return gsstruct_code_size[gss_for_code (code)];
127 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
130 gimple
131 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
133 size_t size;
134 gimple stmt;
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
140 #ifdef GATHER_STATISTICS
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
146 #endif
148 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
156 return stmt;
159 /* Set SUBCODE to be the code of the expression computed by statement G. */
161 static inline void
162 gimple_set_subcode (gimple g, unsigned subcode)
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
172 /* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
174 for the new tuple. NUM_OPS is the number of operands to allocate. */
176 #define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
179 static gimple
180 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
181 unsigned num_ops MEM_STAT_DECL)
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
186 return s;
190 /* Build a GIMPLE_RETURN statement returning RETVAL. */
192 gimple
193 gimple_build_return (tree retval)
195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
201 /* Reset alias information on call S. */
203 void
204 gimple_call_reset_alias_info (gimple s)
206 if (gimple_call_flags (s) & ECF_CONST)
207 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
208 else
209 pt_solution_reset (gimple_call_use_set (s));
210 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
211 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_clobber_set (s));
216 /* Helper for gimple_build_call, gimple_build_call_vec and
217 gimple_build_call_from_tree. Build the basic components of a
218 GIMPLE_CALL statement to function FN with NARGS arguments. */
220 static inline gimple
221 gimple_build_call_1 (tree fn, unsigned nargs)
223 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
224 if (TREE_CODE (fn) == FUNCTION_DECL)
225 fn = build_fold_addr_expr (fn);
226 gimple_set_op (s, 1, fn);
227 gimple_call_reset_alias_info (s);
228 return s;
232 /* Build a GIMPLE_CALL statement to function FN with the arguments
233 specified in vector ARGS. */
235 gimple
236 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
238 unsigned i;
239 unsigned nargs = VEC_length (tree, args);
240 gimple call = gimple_build_call_1 (fn, nargs);
242 for (i = 0; i < nargs; i++)
243 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
245 return call;
249 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
250 arguments. The ... are the arguments. */
252 gimple
253 gimple_build_call (tree fn, unsigned nargs, ...)
255 va_list ap;
256 gimple call;
257 unsigned i;
259 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
261 call = gimple_build_call_1 (fn, nargs);
263 va_start (ap, nargs);
264 for (i = 0; i < nargs; i++)
265 gimple_call_set_arg (call, i, va_arg (ap, tree));
266 va_end (ap);
268 return call;
272 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
273 assumed to be in GIMPLE form already. Minimal checking is done of
274 this fact. */
276 gimple
277 gimple_build_call_from_tree (tree t)
279 unsigned i, nargs;
280 gimple call;
281 tree fndecl = get_callee_fndecl (t);
283 gcc_assert (TREE_CODE (t) == CALL_EXPR);
285 nargs = call_expr_nargs (t);
286 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
288 for (i = 0; i < nargs; i++)
289 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
291 gimple_set_block (call, TREE_BLOCK (t));
293 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
294 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
295 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
296 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
297 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
298 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
299 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
300 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
301 gimple_set_no_warning (call, TREE_NO_WARNING (t));
303 return call;
307 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
308 *OP1_P, *OP2_P and *OP3_P respectively. */
310 void
311 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
312 tree *op2_p, tree *op3_p)
314 enum gimple_rhs_class grhs_class;
316 *subcode_p = TREE_CODE (expr);
317 grhs_class = get_gimple_rhs_class (*subcode_p);
319 if (grhs_class == GIMPLE_TERNARY_RHS)
321 *op1_p = TREE_OPERAND (expr, 0);
322 *op2_p = TREE_OPERAND (expr, 1);
323 *op3_p = TREE_OPERAND (expr, 2);
325 else if (grhs_class == GIMPLE_BINARY_RHS)
327 *op1_p = TREE_OPERAND (expr, 0);
328 *op2_p = TREE_OPERAND (expr, 1);
329 *op3_p = NULL_TREE;
331 else if (grhs_class == GIMPLE_UNARY_RHS)
333 *op1_p = TREE_OPERAND (expr, 0);
334 *op2_p = NULL_TREE;
335 *op3_p = NULL_TREE;
337 else if (grhs_class == GIMPLE_SINGLE_RHS)
339 *op1_p = expr;
340 *op2_p = NULL_TREE;
341 *op3_p = NULL_TREE;
343 else
344 gcc_unreachable ();
348 /* Build a GIMPLE_ASSIGN statement.
350 LHS of the assignment.
351 RHS of the assignment which can be unary or binary. */
353 gimple
354 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
356 enum tree_code subcode;
357 tree op1, op2, op3;
359 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
360 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
361 PASS_MEM_STAT);
365 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
366 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
367 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
369 gimple
370 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
371 tree op2, tree op3 MEM_STAT_DECL)
373 unsigned num_ops;
374 gimple p;
376 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
377 code). */
378 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
380 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
381 PASS_MEM_STAT);
382 gimple_assign_set_lhs (p, lhs);
383 gimple_assign_set_rhs1 (p, op1);
384 if (op2)
386 gcc_assert (num_ops > 2);
387 gimple_assign_set_rhs2 (p, op2);
390 if (op3)
392 gcc_assert (num_ops > 3);
393 gimple_assign_set_rhs3 (p, op3);
396 return p;
400 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
402 DST/SRC are the destination and source respectively. You can pass
403 ungimplified trees in DST or SRC, in which case they will be
404 converted to a gimple operand if necessary.
406 This function returns the newly created GIMPLE_ASSIGN tuple. */
408 gimple
409 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
411 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
412 gimplify_and_add (t, seq_p);
413 ggc_free (t);
414 return gimple_seq_last_stmt (*seq_p);
418 /* Build a GIMPLE_COND statement.
420 PRED is the condition used to compare LHS and the RHS.
421 T_LABEL is the label to jump to if the condition is true.
422 F_LABEL is the label to jump to otherwise. */
424 gimple
425 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
426 tree t_label, tree f_label)
428 gimple p;
430 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
431 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
432 gimple_cond_set_lhs (p, lhs);
433 gimple_cond_set_rhs (p, rhs);
434 gimple_cond_set_true_label (p, t_label);
435 gimple_cond_set_false_label (p, f_label);
436 return p;
440 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
442 void
443 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
444 tree *lhs_p, tree *rhs_p)
446 location_t loc = EXPR_LOCATION (cond);
447 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
448 || TREE_CODE (cond) == TRUTH_NOT_EXPR
449 || is_gimple_min_invariant (cond)
450 || SSA_VAR_P (cond));
452 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
454 /* Canonicalize conditionals of the form 'if (!VAL)'. */
455 if (*code_p == TRUTH_NOT_EXPR)
457 *code_p = EQ_EXPR;
458 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
459 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
461 /* Canonicalize conditionals of the form 'if (VAL)' */
462 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
464 *code_p = NE_EXPR;
465 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
466 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
471 /* Build a GIMPLE_COND statement from the conditional expression tree
472 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
474 gimple
475 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
477 enum tree_code code;
478 tree lhs, rhs;
480 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
481 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
484 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
485 boolean expression tree COND. */
487 void
488 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
490 enum tree_code code;
491 tree lhs, rhs;
493 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
494 gimple_cond_set_condition (stmt, code, lhs, rhs);
497 /* Build a GIMPLE_LABEL statement for LABEL. */
499 gimple
500 gimple_build_label (tree label)
502 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
503 gimple_label_set_label (p, label);
504 return p;
507 /* Build a GIMPLE_GOTO statement to label DEST. */
509 gimple
510 gimple_build_goto (tree dest)
512 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
513 gimple_goto_set_dest (p, dest);
514 return p;
518 /* Build a GIMPLE_NOP statement. */
520 gimple
521 gimple_build_nop (void)
523 return gimple_alloc (GIMPLE_NOP, 0);
527 /* Build a GIMPLE_BIND statement.
528 VARS are the variables in BODY.
529 BLOCK is the containing block. */
531 gimple
532 gimple_build_bind (tree vars, gimple_seq body, tree block)
534 gimple p = gimple_alloc (GIMPLE_BIND, 0);
535 gimple_bind_set_vars (p, vars);
536 if (body)
537 gimple_bind_set_body (p, body);
538 if (block)
539 gimple_bind_set_block (p, block);
540 return p;
543 /* Helper function to set the simple fields of a asm stmt.
545 STRING is a pointer to a string that is the asm blocks assembly code.
546 NINPUT is the number of register inputs.
547 NOUTPUT is the number of register outputs.
548 NCLOBBERS is the number of clobbered registers.
551 static inline gimple
552 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
553 unsigned nclobbers, unsigned nlabels)
555 gimple p;
556 int size = strlen (string);
558 /* ASMs with labels cannot have outputs. This should have been
559 enforced by the front end. */
560 gcc_assert (nlabels == 0 || noutputs == 0);
562 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
563 ninputs + noutputs + nclobbers + nlabels);
565 p->gimple_asm.ni = ninputs;
566 p->gimple_asm.no = noutputs;
567 p->gimple_asm.nc = nclobbers;
568 p->gimple_asm.nl = nlabels;
569 p->gimple_asm.string = ggc_alloc_string (string, size);
571 #ifdef GATHER_STATISTICS
572 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
573 #endif
575 return p;
578 /* Build a GIMPLE_ASM statement.
580 STRING is the assembly code.
581 NINPUT is the number of register inputs.
582 NOUTPUT is the number of register outputs.
583 NCLOBBERS is the number of clobbered registers.
584 INPUTS is a vector of the input register parameters.
585 OUTPUTS is a vector of the output register parameters.
586 CLOBBERS is a vector of the clobbered register parameters.
587 LABELS is a vector of destination labels. */
589 gimple
590 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
591 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
592 VEC(tree,gc)* labels)
594 gimple p;
595 unsigned i;
597 p = gimple_build_asm_1 (string,
598 VEC_length (tree, inputs),
599 VEC_length (tree, outputs),
600 VEC_length (tree, clobbers),
601 VEC_length (tree, labels));
603 for (i = 0; i < VEC_length (tree, inputs); i++)
604 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
606 for (i = 0; i < VEC_length (tree, outputs); i++)
607 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
609 for (i = 0; i < VEC_length (tree, clobbers); i++)
610 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
612 for (i = 0; i < VEC_length (tree, labels); i++)
613 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
615 return p;
618 /* Build a GIMPLE_CATCH statement.
620 TYPES are the catch types.
621 HANDLER is the exception handler. */
623 gimple
624 gimple_build_catch (tree types, gimple_seq handler)
626 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
627 gimple_catch_set_types (p, types);
628 if (handler)
629 gimple_catch_set_handler (p, handler);
631 return p;
634 /* Build a GIMPLE_EH_FILTER statement.
636 TYPES are the filter's types.
637 FAILURE is the filter's failure action. */
639 gimple
640 gimple_build_eh_filter (tree types, gimple_seq failure)
642 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
643 gimple_eh_filter_set_types (p, types);
644 if (failure)
645 gimple_eh_filter_set_failure (p, failure);
647 return p;
650 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
652 gimple
653 gimple_build_eh_must_not_throw (tree decl)
655 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
657 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
658 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
659 gimple_eh_must_not_throw_set_fndecl (p, decl);
661 return p;
664 /* Build a GIMPLE_TRY statement.
666 EVAL is the expression to evaluate.
667 CLEANUP is the cleanup expression.
668 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
669 whether this is a try/catch or a try/finally respectively. */
671 gimple
672 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
673 enum gimple_try_flags kind)
675 gimple p;
677 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
678 p = gimple_alloc (GIMPLE_TRY, 0);
679 gimple_set_subcode (p, kind);
680 if (eval)
681 gimple_try_set_eval (p, eval);
682 if (cleanup)
683 gimple_try_set_cleanup (p, cleanup);
685 return p;
688 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
690 CLEANUP is the cleanup expression. */
692 gimple
693 gimple_build_wce (gimple_seq cleanup)
695 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
696 if (cleanup)
697 gimple_wce_set_cleanup (p, cleanup);
699 return p;
703 /* Build a GIMPLE_RESX statement. */
705 gimple
706 gimple_build_resx (int region)
708 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
709 p->gimple_eh_ctrl.region = region;
710 return p;
714 /* The helper for constructing a gimple switch statement.
715 INDEX is the switch's index.
716 NLABELS is the number of labels in the switch excluding the default.
717 DEFAULT_LABEL is the default label for the switch statement. */
719 gimple
720 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
722 /* nlabels + 1 default label + 1 index. */
723 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
724 1 + (default_label != NULL) + nlabels);
725 gimple_switch_set_index (p, index);
726 if (default_label)
727 gimple_switch_set_default_label (p, default_label);
728 return p;
732 /* Build a GIMPLE_SWITCH statement.
734 INDEX is the switch's index.
735 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
736 ... are the labels excluding the default. */
738 gimple
739 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
741 va_list al;
742 unsigned i, offset;
743 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
745 /* Store the rest of the labels. */
746 va_start (al, default_label);
747 offset = (default_label != NULL);
748 for (i = 0; i < nlabels; i++)
749 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
750 va_end (al);
752 return p;
756 /* Build a GIMPLE_SWITCH statement.
758 INDEX is the switch's index.
759 DEFAULT_LABEL is the default label
760 ARGS is a vector of labels excluding the default. */
762 gimple
763 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
765 unsigned i, offset, nlabels = VEC_length (tree, args);
766 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
768 /* Copy the labels from the vector to the switch statement. */
769 offset = (default_label != NULL);
770 for (i = 0; i < nlabels; i++)
771 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
773 return p;
776 /* Build a GIMPLE_EH_DISPATCH statement. */
778 gimple
779 gimple_build_eh_dispatch (int region)
781 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
782 p->gimple_eh_ctrl.region = region;
783 return p;
786 /* Build a new GIMPLE_DEBUG_BIND statement.
788 VAR is bound to VALUE; block and location are taken from STMT. */
790 gimple
791 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
793 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
794 (unsigned)GIMPLE_DEBUG_BIND, 2
795 PASS_MEM_STAT);
797 gimple_debug_bind_set_var (p, var);
798 gimple_debug_bind_set_value (p, value);
799 if (stmt)
801 gimple_set_block (p, gimple_block (stmt));
802 gimple_set_location (p, gimple_location (stmt));
805 return p;
809 /* Build a GIMPLE_OMP_CRITICAL statement.
811 BODY is the sequence of statements for which only one thread can execute.
812 NAME is optional identifier for this critical block. */
814 gimple
815 gimple_build_omp_critical (gimple_seq body, tree name)
817 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
818 gimple_omp_critical_set_name (p, name);
819 if (body)
820 gimple_omp_set_body (p, body);
822 return p;
825 /* Build a GIMPLE_OMP_FOR statement.
827 BODY is sequence of statements inside the for loop.
828 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
829 lastprivate, reductions, ordered, schedule, and nowait.
830 COLLAPSE is the collapse count.
831 PRE_BODY is the sequence of statements that are loop invariant. */
833 gimple
834 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
835 gimple_seq pre_body)
837 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
838 if (body)
839 gimple_omp_set_body (p, body);
840 gimple_omp_for_set_clauses (p, clauses);
841 p->gimple_omp_for.collapse = collapse;
842 p->gimple_omp_for.iter
843 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
844 if (pre_body)
845 gimple_omp_for_set_pre_body (p, pre_body);
847 return p;
851 /* Build a GIMPLE_OMP_PARALLEL statement.
853 BODY is sequence of statements which are executed in parallel.
854 CLAUSES, are the OMP parallel construct's clauses.
855 CHILD_FN is the function created for the parallel threads to execute.
856 DATA_ARG are the shared data argument(s). */
858 gimple
859 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
860 tree data_arg)
862 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
863 if (body)
864 gimple_omp_set_body (p, body);
865 gimple_omp_parallel_set_clauses (p, clauses);
866 gimple_omp_parallel_set_child_fn (p, child_fn);
867 gimple_omp_parallel_set_data_arg (p, data_arg);
869 return p;
873 /* Build a GIMPLE_OMP_TASK statement.
875 BODY is sequence of statements which are executed by the explicit task.
876 CLAUSES, are the OMP parallel construct's clauses.
877 CHILD_FN is the function created for the parallel threads to execute.
878 DATA_ARG are the shared data argument(s).
879 COPY_FN is the optional function for firstprivate initialization.
880 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
882 gimple
883 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
884 tree data_arg, tree copy_fn, tree arg_size,
885 tree arg_align)
887 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
888 if (body)
889 gimple_omp_set_body (p, body);
890 gimple_omp_task_set_clauses (p, clauses);
891 gimple_omp_task_set_child_fn (p, child_fn);
892 gimple_omp_task_set_data_arg (p, data_arg);
893 gimple_omp_task_set_copy_fn (p, copy_fn);
894 gimple_omp_task_set_arg_size (p, arg_size);
895 gimple_omp_task_set_arg_align (p, arg_align);
897 return p;
901 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
903 BODY is the sequence of statements in the section. */
905 gimple
906 gimple_build_omp_section (gimple_seq body)
908 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
909 if (body)
910 gimple_omp_set_body (p, body);
912 return p;
916 /* Build a GIMPLE_OMP_MASTER statement.
918 BODY is the sequence of statements to be executed by just the master. */
920 gimple
921 gimple_build_omp_master (gimple_seq body)
923 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
924 if (body)
925 gimple_omp_set_body (p, body);
927 return p;
931 /* Build a GIMPLE_OMP_CONTINUE statement.
933 CONTROL_DEF is the definition of the control variable.
934 CONTROL_USE is the use of the control variable. */
936 gimple
937 gimple_build_omp_continue (tree control_def, tree control_use)
939 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
940 gimple_omp_continue_set_control_def (p, control_def);
941 gimple_omp_continue_set_control_use (p, control_use);
942 return p;
945 /* Build a GIMPLE_OMP_ORDERED statement.
947 BODY is the sequence of statements inside a loop that will executed in
948 sequence. */
950 gimple
951 gimple_build_omp_ordered (gimple_seq body)
953 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
954 if (body)
955 gimple_omp_set_body (p, body);
957 return p;
961 /* Build a GIMPLE_OMP_RETURN statement.
962 WAIT_P is true if this is a non-waiting return. */
964 gimple
965 gimple_build_omp_return (bool wait_p)
967 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
968 if (wait_p)
969 gimple_omp_return_set_nowait (p);
971 return p;
975 /* Build a GIMPLE_OMP_SECTIONS statement.
977 BODY is a sequence of section statements.
978 CLAUSES are any of the OMP sections contsruct's clauses: private,
979 firstprivate, lastprivate, reduction, and nowait. */
981 gimple
982 gimple_build_omp_sections (gimple_seq body, tree clauses)
984 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
985 if (body)
986 gimple_omp_set_body (p, body);
987 gimple_omp_sections_set_clauses (p, clauses);
989 return p;
993 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
995 gimple
996 gimple_build_omp_sections_switch (void)
998 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1002 /* Build a GIMPLE_OMP_SINGLE statement.
1004 BODY is the sequence of statements that will be executed once.
1005 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1006 copyprivate, nowait. */
1008 gimple
1009 gimple_build_omp_single (gimple_seq body, tree clauses)
1011 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1012 if (body)
1013 gimple_omp_set_body (p, body);
1014 gimple_omp_single_set_clauses (p, clauses);
1016 return p;
1020 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1022 gimple
1023 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1025 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1026 gimple_omp_atomic_load_set_lhs (p, lhs);
1027 gimple_omp_atomic_load_set_rhs (p, rhs);
1028 return p;
1031 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1033 VAL is the value we are storing. */
1035 gimple
1036 gimple_build_omp_atomic_store (tree val)
1038 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1039 gimple_omp_atomic_store_set_val (p, val);
1040 return p;
1043 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1044 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1046 gimple
1047 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1049 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1050 /* Ensure all the predictors fit into the lower bits of the subcode. */
1051 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1052 gimple_predict_set_predictor (p, predictor);
1053 gimple_predict_set_outcome (p, outcome);
1054 return p;
1057 #if defined ENABLE_GIMPLE_CHECKING
1058 /* Complain of a gimple type mismatch and die. */
1060 void
1061 gimple_check_failed (const_gimple gs, const char *file, int line,
1062 const char *function, enum gimple_code code,
1063 enum tree_code subcode)
1065 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1066 gimple_code_name[code],
1067 tree_code_name[subcode],
1068 gimple_code_name[gimple_code (gs)],
1069 gs->gsbase.subcode > 0
1070 ? tree_code_name[gs->gsbase.subcode]
1071 : "",
1072 function, trim_filename (file), line);
1074 #endif /* ENABLE_GIMPLE_CHECKING */
1077 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1078 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1079 instead. */
1081 gimple_seq
1082 gimple_seq_alloc (void)
1084 gimple_seq seq = gimple_seq_cache;
1085 if (seq)
1087 gimple_seq_cache = gimple_seq_cache->next_free;
1088 gcc_assert (gimple_seq_cache != seq);
1089 memset (seq, 0, sizeof (*seq));
1091 else
1093 seq = ggc_alloc_cleared_gimple_seq_d ();
1094 #ifdef GATHER_STATISTICS
1095 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1096 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1097 #endif
1100 return seq;
1103 /* Return SEQ to the free pool of GIMPLE sequences. */
1105 void
1106 gimple_seq_free (gimple_seq seq)
1108 if (seq == NULL)
1109 return;
1111 gcc_assert (gimple_seq_first (seq) == NULL);
1112 gcc_assert (gimple_seq_last (seq) == NULL);
1114 /* If this triggers, it's a sign that the same list is being freed
1115 twice. */
1116 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1118 /* Add SEQ to the pool of free sequences. */
1119 seq->next_free = gimple_seq_cache;
1120 gimple_seq_cache = seq;
1124 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1125 *SEQ_P is NULL, a new sequence is allocated. */
1127 void
1128 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1130 gimple_stmt_iterator si;
1132 if (gs == NULL)
1133 return;
1135 if (*seq_p == NULL)
1136 *seq_p = gimple_seq_alloc ();
1138 si = gsi_last (*seq_p);
1139 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1143 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1144 NULL, a new sequence is allocated. */
1146 void
1147 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1149 gimple_stmt_iterator si;
1151 if (src == NULL)
1152 return;
1154 if (*dst_p == NULL)
1155 *dst_p = gimple_seq_alloc ();
1157 si = gsi_last (*dst_p);
1158 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1162 /* Helper function of empty_body_p. Return true if STMT is an empty
1163 statement. */
1165 static bool
1166 empty_stmt_p (gimple stmt)
1168 if (gimple_code (stmt) == GIMPLE_NOP)
1169 return true;
1170 if (gimple_code (stmt) == GIMPLE_BIND)
1171 return empty_body_p (gimple_bind_body (stmt));
1172 return false;
1176 /* Return true if BODY contains nothing but empty statements. */
1178 bool
1179 empty_body_p (gimple_seq body)
1181 gimple_stmt_iterator i;
1183 if (gimple_seq_empty_p (body))
1184 return true;
1185 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1186 if (!empty_stmt_p (gsi_stmt (i))
1187 && !is_gimple_debug (gsi_stmt (i)))
1188 return false;
1190 return true;
1194 /* Perform a deep copy of sequence SRC and return the result. */
1196 gimple_seq
1197 gimple_seq_copy (gimple_seq src)
1199 gimple_stmt_iterator gsi;
1200 gimple_seq new_seq = gimple_seq_alloc ();
1201 gimple stmt;
1203 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1205 stmt = gimple_copy (gsi_stmt (gsi));
1206 gimple_seq_add_stmt (&new_seq, stmt);
1209 return new_seq;
1213 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1214 on each one. WI is as in walk_gimple_stmt.
1216 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1217 value is stored in WI->CALLBACK_RESULT and the statement that
1218 produced the value is returned.
1220 Otherwise, all the statements are walked and NULL returned. */
1222 gimple
1223 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1224 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1226 gimple_stmt_iterator gsi;
1228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1230 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1231 if (ret)
1233 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1234 to hold it. */
1235 gcc_assert (wi);
1236 wi->callback_result = ret;
1237 return gsi_stmt (gsi);
1241 if (wi)
1242 wi->callback_result = NULL_TREE;
1244 return NULL;
1248 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1250 static tree
1251 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1252 struct walk_stmt_info *wi)
1254 tree ret, op;
1255 unsigned noutputs;
1256 const char **oconstraints;
1257 unsigned i, n;
1258 const char *constraint;
1259 bool allows_mem, allows_reg, is_inout;
1261 noutputs = gimple_asm_noutputs (stmt);
1262 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1264 if (wi)
1265 wi->is_lhs = true;
1267 for (i = 0; i < noutputs; i++)
1269 op = gimple_asm_output_op (stmt, i);
1270 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1271 oconstraints[i] = constraint;
1272 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1273 &is_inout);
1274 if (wi)
1275 wi->val_only = (allows_reg || !allows_mem);
1276 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1277 if (ret)
1278 return ret;
1281 n = gimple_asm_ninputs (stmt);
1282 for (i = 0; i < n; i++)
1284 op = gimple_asm_input_op (stmt, i);
1285 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1286 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1287 oconstraints, &allows_mem, &allows_reg);
1288 if (wi)
1290 wi->val_only = (allows_reg || !allows_mem);
1291 /* Although input "m" is not really a LHS, we need a lvalue. */
1292 wi->is_lhs = !wi->val_only;
1294 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1295 if (ret)
1296 return ret;
1299 if (wi)
1301 wi->is_lhs = false;
1302 wi->val_only = true;
1305 n = gimple_asm_nlabels (stmt);
1306 for (i = 0; i < n; i++)
1308 op = gimple_asm_label_op (stmt, i);
1309 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1310 if (ret)
1311 return ret;
1314 return NULL_TREE;
1318 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1319 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1321 CALLBACK_OP is called on each operand of STMT via walk_tree.
1322 Additional parameters to walk_tree must be stored in WI. For each operand
1323 OP, walk_tree is called as:
1325 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1327 If CALLBACK_OP returns non-NULL for an operand, the remaining
1328 operands are not scanned.
1330 The return value is that returned by the last call to walk_tree, or
1331 NULL_TREE if no CALLBACK_OP is specified. */
1333 tree
1334 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1335 struct walk_stmt_info *wi)
1337 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1338 unsigned i;
1339 tree ret = NULL_TREE;
1341 switch (gimple_code (stmt))
1343 case GIMPLE_ASSIGN:
1344 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1345 is a register variable, we may use a COMPONENT_REF on the RHS. */
1346 if (wi)
1348 tree lhs = gimple_assign_lhs (stmt);
1349 wi->val_only
1350 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1351 || !gimple_assign_single_p (stmt);
1354 for (i = 1; i < gimple_num_ops (stmt); i++)
1356 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1357 pset);
1358 if (ret)
1359 return ret;
1362 /* Walk the LHS. If the RHS is appropriate for a memory, we
1363 may use a COMPONENT_REF on the LHS. */
1364 if (wi)
1366 /* If the RHS has more than 1 operand, it is not appropriate
1367 for the memory. */
1368 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1369 || !gimple_assign_single_p (stmt);
1370 wi->is_lhs = true;
1373 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1374 if (ret)
1375 return ret;
1377 if (wi)
1379 wi->val_only = true;
1380 wi->is_lhs = false;
1382 break;
1384 case GIMPLE_CALL:
1385 if (wi)
1386 wi->is_lhs = false;
1388 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1389 if (ret)
1390 return ret;
1392 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1393 if (ret)
1394 return ret;
1396 for (i = 0; i < gimple_call_num_args (stmt); i++)
1398 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1399 pset);
1400 if (ret)
1401 return ret;
1404 if (wi)
1405 wi->is_lhs = true;
1407 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1408 if (ret)
1409 return ret;
1411 if (wi)
1412 wi->is_lhs = false;
1413 break;
1415 case GIMPLE_CATCH:
1416 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1417 pset);
1418 if (ret)
1419 return ret;
1420 break;
1422 case GIMPLE_EH_FILTER:
1423 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1424 pset);
1425 if (ret)
1426 return ret;
1427 break;
1429 case GIMPLE_ASM:
1430 ret = walk_gimple_asm (stmt, callback_op, wi);
1431 if (ret)
1432 return ret;
1433 break;
1435 case GIMPLE_OMP_CONTINUE:
1436 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1437 callback_op, wi, pset);
1438 if (ret)
1439 return ret;
1441 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1442 callback_op, wi, pset);
1443 if (ret)
1444 return ret;
1445 break;
1447 case GIMPLE_OMP_CRITICAL:
1448 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1449 pset);
1450 if (ret)
1451 return ret;
1452 break;
1454 case GIMPLE_OMP_FOR:
1455 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1456 pset);
1457 if (ret)
1458 return ret;
1459 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1461 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1462 wi, pset);
1463 if (ret)
1464 return ret;
1465 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1466 wi, pset);
1467 if (ret)
1468 return ret;
1469 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1470 wi, pset);
1471 if (ret)
1472 return ret;
1473 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1474 wi, pset);
1476 if (ret)
1477 return ret;
1478 break;
1480 case GIMPLE_OMP_PARALLEL:
1481 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1482 wi, pset);
1483 if (ret)
1484 return ret;
1485 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1486 wi, pset);
1487 if (ret)
1488 return ret;
1489 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1490 wi, pset);
1491 if (ret)
1492 return ret;
1493 break;
1495 case GIMPLE_OMP_TASK:
1496 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1497 wi, pset);
1498 if (ret)
1499 return ret;
1500 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1501 wi, pset);
1502 if (ret)
1503 return ret;
1504 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1505 wi, pset);
1506 if (ret)
1507 return ret;
1508 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1509 wi, pset);
1510 if (ret)
1511 return ret;
1512 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1513 wi, pset);
1514 if (ret)
1515 return ret;
1516 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1517 wi, pset);
1518 if (ret)
1519 return ret;
1520 break;
1522 case GIMPLE_OMP_SECTIONS:
1523 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1524 wi, pset);
1525 if (ret)
1526 return ret;
1528 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1529 wi, pset);
1530 if (ret)
1531 return ret;
1533 break;
1535 case GIMPLE_OMP_SINGLE:
1536 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1537 pset);
1538 if (ret)
1539 return ret;
1540 break;
1542 case GIMPLE_OMP_ATOMIC_LOAD:
1543 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1544 pset);
1545 if (ret)
1546 return ret;
1548 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1549 pset);
1550 if (ret)
1551 return ret;
1552 break;
1554 case GIMPLE_OMP_ATOMIC_STORE:
1555 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1556 wi, pset);
1557 if (ret)
1558 return ret;
1559 break;
1561 /* Tuples that do not have operands. */
1562 case GIMPLE_NOP:
1563 case GIMPLE_RESX:
1564 case GIMPLE_OMP_RETURN:
1565 case GIMPLE_PREDICT:
1566 break;
1568 default:
1570 enum gimple_statement_structure_enum gss;
1571 gss = gimple_statement_structure (stmt);
1572 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1573 for (i = 0; i < gimple_num_ops (stmt); i++)
1575 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1576 if (ret)
1577 return ret;
1580 break;
1583 return NULL_TREE;
1587 /* Walk the current statement in GSI (optionally using traversal state
1588 stored in WI). If WI is NULL, no state is kept during traversal.
1589 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1590 that it has handled all the operands of the statement, its return
1591 value is returned. Otherwise, the return value from CALLBACK_STMT
1592 is discarded and its operands are scanned.
1594 If CALLBACK_STMT is NULL or it didn't handle the operands,
1595 CALLBACK_OP is called on each operand of the statement via
1596 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1597 operand, the remaining operands are not scanned. In this case, the
1598 return value from CALLBACK_OP is returned.
1600 In any other case, NULL_TREE is returned. */
1602 tree
1603 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1604 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1606 gimple ret;
1607 tree tree_ret;
1608 gimple stmt = gsi_stmt (*gsi);
1610 if (wi)
1611 wi->gsi = *gsi;
1613 if (wi && wi->want_locations && gimple_has_location (stmt))
1614 input_location = gimple_location (stmt);
1616 ret = NULL;
1618 /* Invoke the statement callback. Return if the callback handled
1619 all of STMT operands by itself. */
1620 if (callback_stmt)
1622 bool handled_ops = false;
1623 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1624 if (handled_ops)
1625 return tree_ret;
1627 /* If CALLBACK_STMT did not handle operands, it should not have
1628 a value to return. */
1629 gcc_assert (tree_ret == NULL);
1631 /* Re-read stmt in case the callback changed it. */
1632 stmt = gsi_stmt (*gsi);
1635 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1636 if (callback_op)
1638 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1639 if (tree_ret)
1640 return tree_ret;
1643 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1644 switch (gimple_code (stmt))
1646 case GIMPLE_BIND:
1647 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1648 callback_op, wi);
1649 if (ret)
1650 return wi->callback_result;
1651 break;
1653 case GIMPLE_CATCH:
1654 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1655 callback_op, wi);
1656 if (ret)
1657 return wi->callback_result;
1658 break;
1660 case GIMPLE_EH_FILTER:
1661 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1662 callback_op, wi);
1663 if (ret)
1664 return wi->callback_result;
1665 break;
1667 case GIMPLE_TRY:
1668 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1669 wi);
1670 if (ret)
1671 return wi->callback_result;
1673 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1674 callback_op, wi);
1675 if (ret)
1676 return wi->callback_result;
1677 break;
1679 case GIMPLE_OMP_FOR:
1680 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1681 callback_op, wi);
1682 if (ret)
1683 return wi->callback_result;
1685 /* FALL THROUGH. */
1686 case GIMPLE_OMP_CRITICAL:
1687 case GIMPLE_OMP_MASTER:
1688 case GIMPLE_OMP_ORDERED:
1689 case GIMPLE_OMP_SECTION:
1690 case GIMPLE_OMP_PARALLEL:
1691 case GIMPLE_OMP_TASK:
1692 case GIMPLE_OMP_SECTIONS:
1693 case GIMPLE_OMP_SINGLE:
1694 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1695 wi);
1696 if (ret)
1697 return wi->callback_result;
1698 break;
1700 case GIMPLE_WITH_CLEANUP_EXPR:
1701 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1702 callback_op, wi);
1703 if (ret)
1704 return wi->callback_result;
1705 break;
1707 default:
1708 gcc_assert (!gimple_has_substatements (stmt));
1709 break;
1712 return NULL;
1716 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1718 void
1719 gimple_set_body (tree fndecl, gimple_seq seq)
1721 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1722 if (fn == NULL)
1724 /* If FNDECL still does not have a function structure associated
1725 with it, then it does not make sense for it to receive a
1726 GIMPLE body. */
1727 gcc_assert (seq == NULL);
1729 else
1730 fn->gimple_body = seq;
1734 /* Return the body of GIMPLE statements for function FN. After the
1735 CFG pass, the function body doesn't exist anymore because it has
1736 been split up into basic blocks. In this case, it returns
1737 NULL. */
1739 gimple_seq
1740 gimple_body (tree fndecl)
1742 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1743 return fn ? fn->gimple_body : NULL;
1746 /* Return true when FNDECL has Gimple body either in unlowered
1747 or CFG form. */
1748 bool
1749 gimple_has_body_p (tree fndecl)
1751 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1752 return (gimple_body (fndecl) || (fn && fn->cfg));
1755 /* Detect flags from a GIMPLE_CALL. This is just like
1756 call_expr_flags, but for gimple tuples. */
1759 gimple_call_flags (const_gimple stmt)
1761 int flags;
1762 tree decl = gimple_call_fndecl (stmt);
1763 tree t;
1765 if (decl)
1766 flags = flags_from_decl_or_type (decl);
1767 else
1769 t = TREE_TYPE (gimple_call_fn (stmt));
1770 if (t && TREE_CODE (t) == POINTER_TYPE)
1771 flags = flags_from_decl_or_type (TREE_TYPE (t));
1772 else
1773 flags = 0;
1776 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1777 flags |= ECF_NOTHROW;
1779 return flags;
1782 /* Detects argument flags for argument number ARG on call STMT. */
1785 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1787 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1788 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1789 if (!attr)
1790 return 0;
1792 attr = TREE_VALUE (TREE_VALUE (attr));
1793 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1794 return 0;
1796 switch (TREE_STRING_POINTER (attr)[1 + arg])
1798 case 'x':
1799 case 'X':
1800 return EAF_UNUSED;
1802 case 'R':
1803 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1805 case 'r':
1806 return EAF_NOCLOBBER | EAF_NOESCAPE;
1808 case 'W':
1809 return EAF_DIRECT | EAF_NOESCAPE;
1811 case 'w':
1812 return EAF_NOESCAPE;
1814 case '.':
1815 default:
1816 return 0;
1820 /* Detects return flags for the call STMT. */
1823 gimple_call_return_flags (const_gimple stmt)
1825 tree type;
1826 tree attr = NULL_TREE;
1828 if (gimple_call_flags (stmt) & ECF_MALLOC)
1829 return ERF_NOALIAS;
1831 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1832 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1833 if (!attr)
1834 return 0;
1836 attr = TREE_VALUE (TREE_VALUE (attr));
1837 if (TREE_STRING_LENGTH (attr) < 1)
1838 return 0;
1840 switch (TREE_STRING_POINTER (attr)[0])
1842 case '1':
1843 case '2':
1844 case '3':
1845 case '4':
1846 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1848 case 'm':
1849 return ERF_NOALIAS;
1851 case '.':
1852 default:
1853 return 0;
1857 /* Return true if GS is a copy assignment. */
1859 bool
1860 gimple_assign_copy_p (gimple gs)
1862 return gimple_code (gs) == GIMPLE_ASSIGN
1863 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1864 == GIMPLE_SINGLE_RHS
1865 && is_gimple_val (gimple_op (gs, 1));
1869 /* Return true if GS is a SSA_NAME copy assignment. */
1871 bool
1872 gimple_assign_ssa_name_copy_p (gimple gs)
1874 return (gimple_code (gs) == GIMPLE_ASSIGN
1875 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1876 == GIMPLE_SINGLE_RHS)
1877 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1878 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1882 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1883 there is no operator associated with the assignment itself.
1884 Unlike gimple_assign_copy_p, this predicate returns true for
1885 any RHS operand, including those that perform an operation
1886 and do not have the semantics of a copy, such as COND_EXPR. */
1888 bool
1889 gimple_assign_single_p (gimple gs)
1891 return (gimple_code (gs) == GIMPLE_ASSIGN
1892 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1893 == GIMPLE_SINGLE_RHS);
1896 /* Return true if GS is an assignment with a unary RHS, but the
1897 operator has no effect on the assigned value. The logic is adapted
1898 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1899 instances in which STRIP_NOPS was previously applied to the RHS of
1900 an assignment.
1902 NOTE: In the use cases that led to the creation of this function
1903 and of gimple_assign_single_p, it is typical to test for either
1904 condition and to proceed in the same manner. In each case, the
1905 assigned value is represented by the single RHS operand of the
1906 assignment. I suspect there may be cases where gimple_assign_copy_p,
1907 gimple_assign_single_p, or equivalent logic is used where a similar
1908 treatment of unary NOPs is appropriate. */
1910 bool
1911 gimple_assign_unary_nop_p (gimple gs)
1913 return (gimple_code (gs) == GIMPLE_ASSIGN
1914 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1915 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1916 && gimple_assign_rhs1 (gs) != error_mark_node
1917 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1918 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1921 /* Set BB to be the basic block holding G. */
1923 void
1924 gimple_set_bb (gimple stmt, basic_block bb)
1926 stmt->gsbase.bb = bb;
1928 /* If the statement is a label, add the label to block-to-labels map
1929 so that we can speed up edge creation for GIMPLE_GOTOs. */
1930 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1932 tree t;
1933 int uid;
1935 t = gimple_label_label (stmt);
1936 uid = LABEL_DECL_UID (t);
1937 if (uid == -1)
1939 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1940 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1941 if (old_len <= (unsigned) uid)
1943 unsigned new_len = 3 * uid / 2 + 1;
1945 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1946 new_len);
1950 VEC_replace (basic_block, label_to_block_map, uid, bb);
1955 /* Modify the RHS of the assignment pointed-to by GSI using the
1956 operands in the expression tree EXPR.
1958 NOTE: The statement pointed-to by GSI may be reallocated if it
1959 did not have enough operand slots.
1961 This function is useful to convert an existing tree expression into
1962 the flat representation used for the RHS of a GIMPLE assignment.
1963 It will reallocate memory as needed to expand or shrink the number
1964 of operand slots needed to represent EXPR.
1966 NOTE: If you find yourself building a tree and then calling this
1967 function, you are most certainly doing it the slow way. It is much
1968 better to build a new assignment or to use the function
1969 gimple_assign_set_rhs_with_ops, which does not require an
1970 expression tree to be built. */
1972 void
1973 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1975 enum tree_code subcode;
1976 tree op1, op2, op3;
1978 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1979 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1983 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1984 operands OP1, OP2 and OP3.
1986 NOTE: The statement pointed-to by GSI may be reallocated if it
1987 did not have enough operand slots. */
1989 void
1990 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1991 tree op1, tree op2, tree op3)
1993 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1994 gimple stmt = gsi_stmt (*gsi);
1996 /* If the new CODE needs more operands, allocate a new statement. */
1997 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1999 tree lhs = gimple_assign_lhs (stmt);
2000 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2001 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2002 gsi_replace (gsi, new_stmt, true);
2003 stmt = new_stmt;
2005 /* The LHS needs to be reset as this also changes the SSA name
2006 on the LHS. */
2007 gimple_assign_set_lhs (stmt, lhs);
2010 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2011 gimple_set_subcode (stmt, code);
2012 gimple_assign_set_rhs1 (stmt, op1);
2013 if (new_rhs_ops > 1)
2014 gimple_assign_set_rhs2 (stmt, op2);
2015 if (new_rhs_ops > 2)
2016 gimple_assign_set_rhs3 (stmt, op3);
2020 /* Return the LHS of a statement that performs an assignment,
2021 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2022 for a call to a function that returns no value, or for a
2023 statement other than an assignment or a call. */
2025 tree
2026 gimple_get_lhs (const_gimple stmt)
2028 enum gimple_code code = gimple_code (stmt);
2030 if (code == GIMPLE_ASSIGN)
2031 return gimple_assign_lhs (stmt);
2032 else if (code == GIMPLE_CALL)
2033 return gimple_call_lhs (stmt);
2034 else
2035 return NULL_TREE;
2039 /* Set the LHS of a statement that performs an assignment,
2040 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2042 void
2043 gimple_set_lhs (gimple stmt, tree lhs)
2045 enum gimple_code code = gimple_code (stmt);
2047 if (code == GIMPLE_ASSIGN)
2048 gimple_assign_set_lhs (stmt, lhs);
2049 else if (code == GIMPLE_CALL)
2050 gimple_call_set_lhs (stmt, lhs);
2051 else
2052 gcc_unreachable();
2055 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2056 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2057 expression with a different value.
2059 This will update any annotations (say debug bind stmts) referring
2060 to the original LHS, so that they use the RHS instead. This is
2061 done even if NLHS and LHS are the same, for it is understood that
2062 the RHS will be modified afterwards, and NLHS will not be assigned
2063 an equivalent value.
2065 Adjusting any non-annotation uses of the LHS, if needed, is a
2066 responsibility of the caller.
2068 The effect of this call should be pretty much the same as that of
2069 inserting a copy of STMT before STMT, and then removing the
2070 original stmt, at which time gsi_remove() would have update
2071 annotations, but using this function saves all the inserting,
2072 copying and removing. */
2074 void
2075 gimple_replace_lhs (gimple stmt, tree nlhs)
2077 if (MAY_HAVE_DEBUG_STMTS)
2079 tree lhs = gimple_get_lhs (stmt);
2081 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2083 insert_debug_temp_for_var_def (NULL, lhs);
2086 gimple_set_lhs (stmt, nlhs);
2089 /* Return a deep copy of statement STMT. All the operands from STMT
2090 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2091 and VUSE operand arrays are set to empty in the new copy. */
2093 gimple
2094 gimple_copy (gimple stmt)
2096 enum gimple_code code = gimple_code (stmt);
2097 unsigned num_ops = gimple_num_ops (stmt);
2098 gimple copy = gimple_alloc (code, num_ops);
2099 unsigned i;
2101 /* Shallow copy all the fields from STMT. */
2102 memcpy (copy, stmt, gimple_size (code));
2104 /* If STMT has sub-statements, deep-copy them as well. */
2105 if (gimple_has_substatements (stmt))
2107 gimple_seq new_seq;
2108 tree t;
2110 switch (gimple_code (stmt))
2112 case GIMPLE_BIND:
2113 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2114 gimple_bind_set_body (copy, new_seq);
2115 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2116 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2117 break;
2119 case GIMPLE_CATCH:
2120 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2121 gimple_catch_set_handler (copy, new_seq);
2122 t = unshare_expr (gimple_catch_types (stmt));
2123 gimple_catch_set_types (copy, t);
2124 break;
2126 case GIMPLE_EH_FILTER:
2127 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2128 gimple_eh_filter_set_failure (copy, new_seq);
2129 t = unshare_expr (gimple_eh_filter_types (stmt));
2130 gimple_eh_filter_set_types (copy, t);
2131 break;
2133 case GIMPLE_TRY:
2134 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2135 gimple_try_set_eval (copy, new_seq);
2136 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2137 gimple_try_set_cleanup (copy, new_seq);
2138 break;
2140 case GIMPLE_OMP_FOR:
2141 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2142 gimple_omp_for_set_pre_body (copy, new_seq);
2143 t = unshare_expr (gimple_omp_for_clauses (stmt));
2144 gimple_omp_for_set_clauses (copy, t);
2145 copy->gimple_omp_for.iter
2146 = ggc_alloc_vec_gimple_omp_for_iter
2147 (gimple_omp_for_collapse (stmt));
2148 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2150 gimple_omp_for_set_cond (copy, i,
2151 gimple_omp_for_cond (stmt, i));
2152 gimple_omp_for_set_index (copy, i,
2153 gimple_omp_for_index (stmt, i));
2154 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2155 gimple_omp_for_set_initial (copy, i, t);
2156 t = unshare_expr (gimple_omp_for_final (stmt, i));
2157 gimple_omp_for_set_final (copy, i, t);
2158 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2159 gimple_omp_for_set_incr (copy, i, t);
2161 goto copy_omp_body;
2163 case GIMPLE_OMP_PARALLEL:
2164 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2165 gimple_omp_parallel_set_clauses (copy, t);
2166 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2167 gimple_omp_parallel_set_child_fn (copy, t);
2168 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2169 gimple_omp_parallel_set_data_arg (copy, t);
2170 goto copy_omp_body;
2172 case GIMPLE_OMP_TASK:
2173 t = unshare_expr (gimple_omp_task_clauses (stmt));
2174 gimple_omp_task_set_clauses (copy, t);
2175 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2176 gimple_omp_task_set_child_fn (copy, t);
2177 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2178 gimple_omp_task_set_data_arg (copy, t);
2179 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2180 gimple_omp_task_set_copy_fn (copy, t);
2181 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2182 gimple_omp_task_set_arg_size (copy, t);
2183 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2184 gimple_omp_task_set_arg_align (copy, t);
2185 goto copy_omp_body;
2187 case GIMPLE_OMP_CRITICAL:
2188 t = unshare_expr (gimple_omp_critical_name (stmt));
2189 gimple_omp_critical_set_name (copy, t);
2190 goto copy_omp_body;
2192 case GIMPLE_OMP_SECTIONS:
2193 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2194 gimple_omp_sections_set_clauses (copy, t);
2195 t = unshare_expr (gimple_omp_sections_control (stmt));
2196 gimple_omp_sections_set_control (copy, t);
2197 /* FALLTHRU */
2199 case GIMPLE_OMP_SINGLE:
2200 case GIMPLE_OMP_SECTION:
2201 case GIMPLE_OMP_MASTER:
2202 case GIMPLE_OMP_ORDERED:
2203 copy_omp_body:
2204 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2205 gimple_omp_set_body (copy, new_seq);
2206 break;
2208 case GIMPLE_WITH_CLEANUP_EXPR:
2209 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2210 gimple_wce_set_cleanup (copy, new_seq);
2211 break;
2213 default:
2214 gcc_unreachable ();
2218 /* Make copy of operands. */
2219 if (num_ops > 0)
2221 for (i = 0; i < num_ops; i++)
2222 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2224 /* Clear out SSA operand vectors on COPY. */
2225 if (gimple_has_ops (stmt))
2227 gimple_set_def_ops (copy, NULL);
2228 gimple_set_use_ops (copy, NULL);
2231 if (gimple_has_mem_ops (stmt))
2233 gimple_set_vdef (copy, gimple_vdef (stmt));
2234 gimple_set_vuse (copy, gimple_vuse (stmt));
2237 /* SSA operands need to be updated. */
2238 gimple_set_modified (copy, true);
2241 return copy;
2245 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2246 a MODIFIED field. */
2248 void
2249 gimple_set_modified (gimple s, bool modifiedp)
2251 if (gimple_has_ops (s))
2253 s->gsbase.modified = (unsigned) modifiedp;
2255 if (modifiedp
2256 && cfun->gimple_df
2257 && is_gimple_call (s)
2258 && gimple_call_noreturn_p (s))
2259 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2264 /* Return true if statement S has side-effects. We consider a
2265 statement to have side effects if:
2267 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2268 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2270 bool
2271 gimple_has_side_effects (const_gimple s)
2273 unsigned i;
2275 if (is_gimple_debug (s))
2276 return false;
2278 /* We don't have to scan the arguments to check for
2279 volatile arguments, though, at present, we still
2280 do a scan to check for TREE_SIDE_EFFECTS. */
2281 if (gimple_has_volatile_ops (s))
2282 return true;
2284 if (is_gimple_call (s))
2286 unsigned nargs = gimple_call_num_args (s);
2288 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2289 return true;
2290 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2291 /* An infinite loop is considered a side effect. */
2292 return true;
2294 if (gimple_call_lhs (s)
2295 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2297 gcc_assert (gimple_has_volatile_ops (s));
2298 return true;
2301 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2302 return true;
2304 for (i = 0; i < nargs; i++)
2305 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2307 gcc_assert (gimple_has_volatile_ops (s));
2308 return true;
2311 return false;
2313 else
2315 for (i = 0; i < gimple_num_ops (s); i++)
2316 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2318 gcc_assert (gimple_has_volatile_ops (s));
2319 return true;
2323 return false;
2326 /* Return true if the RHS of statement S has side effects.
2327 We may use it to determine if it is admissable to replace
2328 an assignment or call with a copy of a previously-computed
2329 value. In such cases, side-effects due the the LHS are
2330 preserved. */
2332 bool
2333 gimple_rhs_has_side_effects (const_gimple s)
2335 unsigned i;
2337 if (is_gimple_call (s))
2339 unsigned nargs = gimple_call_num_args (s);
2341 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2342 return true;
2344 /* We cannot use gimple_has_volatile_ops here,
2345 because we must ignore a volatile LHS. */
2346 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2347 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2349 gcc_assert (gimple_has_volatile_ops (s));
2350 return true;
2353 for (i = 0; i < nargs; i++)
2354 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2355 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2356 return true;
2358 return false;
2360 else if (is_gimple_assign (s))
2362 /* Skip the first operand, the LHS. */
2363 for (i = 1; i < gimple_num_ops (s); i++)
2364 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2365 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2367 gcc_assert (gimple_has_volatile_ops (s));
2368 return true;
2371 else if (is_gimple_debug (s))
2372 return false;
2373 else
2375 /* For statements without an LHS, examine all arguments. */
2376 for (i = 0; i < gimple_num_ops (s); i++)
2377 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2378 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2380 gcc_assert (gimple_has_volatile_ops (s));
2381 return true;
2385 return false;
2389 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2390 Return true if S can trap. If INCLUDE_LHS is true and S is a
2391 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2392 Otherwise, only the RHS of the assignment is checked. */
2394 static bool
2395 gimple_could_trap_p_1 (gimple s, bool include_lhs)
2397 unsigned i, start;
2398 tree t, div = NULL_TREE;
2399 enum tree_code op;
2401 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2403 for (i = start; i < gimple_num_ops (s); i++)
2404 if (tree_could_trap_p (gimple_op (s, i)))
2405 return true;
2407 switch (gimple_code (s))
2409 case GIMPLE_ASM:
2410 return gimple_asm_volatile_p (s);
2412 case GIMPLE_CALL:
2413 t = gimple_call_fndecl (s);
2414 /* Assume that calls to weak functions may trap. */
2415 if (!t || !DECL_P (t) || DECL_WEAK (t))
2416 return true;
2417 return false;
2419 case GIMPLE_ASSIGN:
2420 t = gimple_expr_type (s);
2421 op = gimple_assign_rhs_code (s);
2422 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2423 div = gimple_assign_rhs2 (s);
2424 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2425 (INTEGRAL_TYPE_P (t)
2426 && TYPE_OVERFLOW_TRAPS (t)),
2427 div));
2429 default:
2430 break;
2433 return false;
2438 /* Return true if statement S can trap. */
2440 bool
2441 gimple_could_trap_p (gimple s)
2443 return gimple_could_trap_p_1 (s, true);
2447 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2449 bool
2450 gimple_assign_rhs_could_trap_p (gimple s)
2452 gcc_assert (is_gimple_assign (s));
2453 return gimple_could_trap_p_1 (s, false);
2457 /* Print debugging information for gimple stmts generated. */
2459 void
2460 dump_gimple_statistics (void)
2462 #ifdef GATHER_STATISTICS
2463 int i, total_tuples = 0, total_bytes = 0;
2465 fprintf (stderr, "\nGIMPLE statements\n");
2466 fprintf (stderr, "Kind Stmts Bytes\n");
2467 fprintf (stderr, "---------------------------------------\n");
2468 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2470 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2471 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2472 total_tuples += gimple_alloc_counts[i];
2473 total_bytes += gimple_alloc_sizes[i];
2475 fprintf (stderr, "---------------------------------------\n");
2476 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2477 fprintf (stderr, "---------------------------------------\n");
2478 #else
2479 fprintf (stderr, "No gimple statistics\n");
2480 #endif
2484 /* Return the number of operands needed on the RHS of a GIMPLE
2485 assignment for an expression with tree code CODE. */
2487 unsigned
2488 get_gimple_rhs_num_ops (enum tree_code code)
2490 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2492 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2493 return 1;
2494 else if (rhs_class == GIMPLE_BINARY_RHS)
2495 return 2;
2496 else if (rhs_class == GIMPLE_TERNARY_RHS)
2497 return 3;
2498 else
2499 gcc_unreachable ();
2502 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2503 (unsigned char) \
2504 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2505 : ((TYPE) == tcc_binary \
2506 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2507 : ((TYPE) == tcc_constant \
2508 || (TYPE) == tcc_declaration \
2509 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2510 : ((SYM) == TRUTH_AND_EXPR \
2511 || (SYM) == TRUTH_OR_EXPR \
2512 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2513 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2514 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2515 || (SYM) == WIDEN_MULT_MINUS_EXPR) ? GIMPLE_TERNARY_RHS \
2516 : ((SYM) == COND_EXPR \
2517 || (SYM) == CONSTRUCTOR \
2518 || (SYM) == OBJ_TYPE_REF \
2519 || (SYM) == ASSERT_EXPR \
2520 || (SYM) == ADDR_EXPR \
2521 || (SYM) == WITH_SIZE_EXPR \
2522 || (SYM) == SSA_NAME \
2523 || (SYM) == POLYNOMIAL_CHREC \
2524 || (SYM) == DOT_PROD_EXPR \
2525 || (SYM) == VEC_COND_EXPR \
2526 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2527 : GIMPLE_INVALID_RHS),
2528 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2530 const unsigned char gimple_rhs_class_table[] = {
2531 #include "all-tree.def"
2534 #undef DEFTREECODE
2535 #undef END_OF_BASE_TREE_CODES
2537 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2539 /* Validation of GIMPLE expressions. */
2541 /* Return true if OP is an acceptable tree node to be used as a GIMPLE
2542 operand. */
2544 bool
2545 is_gimple_operand (const_tree op)
2547 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2550 /* Returns true iff T is a valid RHS for an assignment to a renamed
2551 user -- or front-end generated artificial -- variable. */
2553 bool
2554 is_gimple_reg_rhs (tree t)
2556 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2559 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2560 LHS, or for a call argument. */
2562 bool
2563 is_gimple_mem_rhs (tree t)
2565 /* If we're dealing with a renamable type, either source or dest must be
2566 a renamed variable. */
2567 if (is_gimple_reg_type (TREE_TYPE (t)))
2568 return is_gimple_val (t);
2569 else
2570 return is_gimple_val (t) || is_gimple_lvalue (t);
2573 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2575 bool
2576 is_gimple_lvalue (tree t)
2578 return (is_gimple_addressable (t)
2579 || TREE_CODE (t) == WITH_SIZE_EXPR
2580 /* These are complex lvalues, but don't have addresses, so they
2581 go here. */
2582 || TREE_CODE (t) == BIT_FIELD_REF);
2585 /* Return true if T is a GIMPLE condition. */
2587 bool
2588 is_gimple_condexpr (tree t)
2590 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2591 && !tree_could_trap_p (t)
2592 && is_gimple_val (TREE_OPERAND (t, 0))
2593 && is_gimple_val (TREE_OPERAND (t, 1))));
2596 /* Return true if T is something whose address can be taken. */
2598 bool
2599 is_gimple_addressable (tree t)
2601 return (is_gimple_id (t) || handled_component_p (t)
2602 || TREE_CODE (t) == MEM_REF);
2605 /* Return true if T is a valid gimple constant. */
2607 bool
2608 is_gimple_constant (const_tree t)
2610 switch (TREE_CODE (t))
2612 case INTEGER_CST:
2613 case REAL_CST:
2614 case FIXED_CST:
2615 case STRING_CST:
2616 case COMPLEX_CST:
2617 case VECTOR_CST:
2618 return true;
2620 /* Vector constant constructors are gimple invariant. */
2621 case CONSTRUCTOR:
2622 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2623 return TREE_CONSTANT (t);
2624 else
2625 return false;
2627 default:
2628 return false;
2632 /* Return true if T is a gimple address. */
2634 bool
2635 is_gimple_address (const_tree t)
2637 tree op;
2639 if (TREE_CODE (t) != ADDR_EXPR)
2640 return false;
2642 op = TREE_OPERAND (t, 0);
2643 while (handled_component_p (op))
2645 if ((TREE_CODE (op) == ARRAY_REF
2646 || TREE_CODE (op) == ARRAY_RANGE_REF)
2647 && !is_gimple_val (TREE_OPERAND (op, 1)))
2648 return false;
2650 op = TREE_OPERAND (op, 0);
2653 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2654 return true;
2656 switch (TREE_CODE (op))
2658 case PARM_DECL:
2659 case RESULT_DECL:
2660 case LABEL_DECL:
2661 case FUNCTION_DECL:
2662 case VAR_DECL:
2663 case CONST_DECL:
2664 return true;
2666 default:
2667 return false;
2671 /* Strip out all handled components that produce invariant
2672 offsets. */
2674 static const_tree
2675 strip_invariant_refs (const_tree op)
2677 while (handled_component_p (op))
2679 switch (TREE_CODE (op))
2681 case ARRAY_REF:
2682 case ARRAY_RANGE_REF:
2683 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2684 || TREE_OPERAND (op, 2) != NULL_TREE
2685 || TREE_OPERAND (op, 3) != NULL_TREE)
2686 return NULL;
2687 break;
2689 case COMPONENT_REF:
2690 if (TREE_OPERAND (op, 2) != NULL_TREE)
2691 return NULL;
2692 break;
2694 default:;
2696 op = TREE_OPERAND (op, 0);
2699 return op;
2702 /* Return true if T is a gimple invariant address. */
2704 bool
2705 is_gimple_invariant_address (const_tree t)
2707 const_tree op;
2709 if (TREE_CODE (t) != ADDR_EXPR)
2710 return false;
2712 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2713 if (!op)
2714 return false;
2716 if (TREE_CODE (op) == MEM_REF)
2718 const_tree op0 = TREE_OPERAND (op, 0);
2719 return (TREE_CODE (op0) == ADDR_EXPR
2720 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2721 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2724 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2727 /* Return true if T is a gimple invariant address at IPA level
2728 (so addresses of variables on stack are not allowed). */
2730 bool
2731 is_gimple_ip_invariant_address (const_tree t)
2733 const_tree op;
2735 if (TREE_CODE (t) != ADDR_EXPR)
2736 return false;
2738 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2740 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2743 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2744 form of function invariant. */
2746 bool
2747 is_gimple_min_invariant (const_tree t)
2749 if (TREE_CODE (t) == ADDR_EXPR)
2750 return is_gimple_invariant_address (t);
2752 return is_gimple_constant (t);
2755 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2756 form of gimple minimal invariant. */
2758 bool
2759 is_gimple_ip_invariant (const_tree t)
2761 if (TREE_CODE (t) == ADDR_EXPR)
2762 return is_gimple_ip_invariant_address (t);
2764 return is_gimple_constant (t);
2767 /* Return true if T looks like a valid GIMPLE statement. */
2769 bool
2770 is_gimple_stmt (tree t)
2772 const enum tree_code code = TREE_CODE (t);
2774 switch (code)
2776 case NOP_EXPR:
2777 /* The only valid NOP_EXPR is the empty statement. */
2778 return IS_EMPTY_STMT (t);
2780 case BIND_EXPR:
2781 case COND_EXPR:
2782 /* These are only valid if they're void. */
2783 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2785 case SWITCH_EXPR:
2786 case GOTO_EXPR:
2787 case RETURN_EXPR:
2788 case LABEL_EXPR:
2789 case CASE_LABEL_EXPR:
2790 case TRY_CATCH_EXPR:
2791 case TRY_FINALLY_EXPR:
2792 case EH_FILTER_EXPR:
2793 case CATCH_EXPR:
2794 case ASM_EXPR:
2795 case STATEMENT_LIST:
2796 case OMP_PARALLEL:
2797 case OMP_FOR:
2798 case OMP_SECTIONS:
2799 case OMP_SECTION:
2800 case OMP_SINGLE:
2801 case OMP_MASTER:
2802 case OMP_ORDERED:
2803 case OMP_CRITICAL:
2804 case OMP_TASK:
2805 /* These are always void. */
2806 return true;
2808 case CALL_EXPR:
2809 case MODIFY_EXPR:
2810 case PREDICT_EXPR:
2811 /* These are valid regardless of their type. */
2812 return true;
2814 default:
2815 return false;
2819 /* Return true if T is a variable. */
2821 bool
2822 is_gimple_variable (tree t)
2824 return (TREE_CODE (t) == VAR_DECL
2825 || TREE_CODE (t) == PARM_DECL
2826 || TREE_CODE (t) == RESULT_DECL
2827 || TREE_CODE (t) == SSA_NAME);
2830 /* Return true if T is a GIMPLE identifier (something with an address). */
2832 bool
2833 is_gimple_id (tree t)
2835 return (is_gimple_variable (t)
2836 || TREE_CODE (t) == FUNCTION_DECL
2837 || TREE_CODE (t) == LABEL_DECL
2838 || TREE_CODE (t) == CONST_DECL
2839 /* Allow string constants, since they are addressable. */
2840 || TREE_CODE (t) == STRING_CST);
2843 /* Return true if TYPE is a suitable type for a scalar register variable. */
2845 bool
2846 is_gimple_reg_type (tree type)
2848 return !AGGREGATE_TYPE_P (type);
2851 /* Return true if T is a non-aggregate register variable. */
2853 bool
2854 is_gimple_reg (tree t)
2856 if (TREE_CODE (t) == SSA_NAME)
2857 t = SSA_NAME_VAR (t);
2859 if (!is_gimple_variable (t))
2860 return false;
2862 if (!is_gimple_reg_type (TREE_TYPE (t)))
2863 return false;
2865 /* A volatile decl is not acceptable because we can't reuse it as
2866 needed. We need to copy it into a temp first. */
2867 if (TREE_THIS_VOLATILE (t))
2868 return false;
2870 /* We define "registers" as things that can be renamed as needed,
2871 which with our infrastructure does not apply to memory. */
2872 if (needs_to_live_in_memory (t))
2873 return false;
2875 /* Hard register variables are an interesting case. For those that
2876 are call-clobbered, we don't know where all the calls are, since
2877 we don't (want to) take into account which operations will turn
2878 into libcalls at the rtl level. For those that are call-saved,
2879 we don't currently model the fact that calls may in fact change
2880 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2881 level, and so miss variable changes that might imply. All around,
2882 it seems safest to not do too much optimization with these at the
2883 tree level at all. We'll have to rely on the rtl optimizers to
2884 clean this up, as there we've got all the appropriate bits exposed. */
2885 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2886 return false;
2888 /* Complex and vector values must have been put into SSA-like form.
2889 That is, no assignments to the individual components. */
2890 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2891 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2892 return DECL_GIMPLE_REG_P (t);
2894 return true;
2898 /* Return true if T is a GIMPLE variable whose address is not needed. */
2900 bool
2901 is_gimple_non_addressable (tree t)
2903 if (TREE_CODE (t) == SSA_NAME)
2904 t = SSA_NAME_VAR (t);
2906 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2909 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2911 bool
2912 is_gimple_val (tree t)
2914 /* Make loads from volatiles and memory vars explicit. */
2915 if (is_gimple_variable (t)
2916 && is_gimple_reg_type (TREE_TYPE (t))
2917 && !is_gimple_reg (t))
2918 return false;
2920 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2923 /* Similarly, but accept hard registers as inputs to asm statements. */
2925 bool
2926 is_gimple_asm_val (tree t)
2928 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2929 return true;
2931 return is_gimple_val (t);
2934 /* Return true if T is a GIMPLE minimal lvalue. */
2936 bool
2937 is_gimple_min_lval (tree t)
2939 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2940 return false;
2941 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2944 /* Return true if T is a typecast operation. */
2946 bool
2947 is_gimple_cast (tree t)
2949 return (CONVERT_EXPR_P (t)
2950 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2953 /* Return true if T is a valid function operand of a CALL_EXPR. */
2955 bool
2956 is_gimple_call_addr (tree t)
2958 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2961 /* Return true if T is a valid address operand of a MEM_REF. */
2963 bool
2964 is_gimple_mem_ref_addr (tree t)
2966 return (is_gimple_reg (t)
2967 || TREE_CODE (t) == INTEGER_CST
2968 || (TREE_CODE (t) == ADDR_EXPR
2969 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2970 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2973 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2974 Otherwise, return NULL_TREE. */
2976 tree
2977 get_call_expr_in (tree t)
2979 if (TREE_CODE (t) == MODIFY_EXPR)
2980 t = TREE_OPERAND (t, 1);
2981 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2982 t = TREE_OPERAND (t, 0);
2983 if (TREE_CODE (t) == CALL_EXPR)
2984 return t;
2985 return NULL_TREE;
2989 /* Given a memory reference expression T, return its base address.
2990 The base address of a memory reference expression is the main
2991 object being referenced. For instance, the base address for
2992 'array[i].fld[j]' is 'array'. You can think of this as stripping
2993 away the offset part from a memory address.
2995 This function calls handled_component_p to strip away all the inner
2996 parts of the memory reference until it reaches the base object. */
2998 tree
2999 get_base_address (tree t)
3001 while (handled_component_p (t))
3002 t = TREE_OPERAND (t, 0);
3004 if (TREE_CODE (t) == MEM_REF
3005 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3006 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3008 if (SSA_VAR_P (t)
3009 || TREE_CODE (t) == STRING_CST
3010 || TREE_CODE (t) == CONSTRUCTOR
3011 || INDIRECT_REF_P (t)
3012 || TREE_CODE (t) == MEM_REF)
3013 return t;
3014 else
3015 return NULL_TREE;
3018 void
3019 recalculate_side_effects (tree t)
3021 enum tree_code code = TREE_CODE (t);
3022 int len = TREE_OPERAND_LENGTH (t);
3023 int i;
3025 switch (TREE_CODE_CLASS (code))
3027 case tcc_expression:
3028 switch (code)
3030 case INIT_EXPR:
3031 case MODIFY_EXPR:
3032 case VA_ARG_EXPR:
3033 case PREDECREMENT_EXPR:
3034 case PREINCREMENT_EXPR:
3035 case POSTDECREMENT_EXPR:
3036 case POSTINCREMENT_EXPR:
3037 /* All of these have side-effects, no matter what their
3038 operands are. */
3039 return;
3041 default:
3042 break;
3044 /* Fall through. */
3046 case tcc_comparison: /* a comparison expression */
3047 case tcc_unary: /* a unary arithmetic expression */
3048 case tcc_binary: /* a binary arithmetic expression */
3049 case tcc_reference: /* a reference */
3050 case tcc_vl_exp: /* a function call */
3051 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3052 for (i = 0; i < len; ++i)
3054 tree op = TREE_OPERAND (t, i);
3055 if (op && TREE_SIDE_EFFECTS (op))
3056 TREE_SIDE_EFFECTS (t) = 1;
3058 break;
3060 case tcc_constant:
3061 /* No side-effects. */
3062 return;
3064 default:
3065 gcc_unreachable ();
3069 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3070 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3071 we failed to create one. */
3073 tree
3074 canonicalize_cond_expr_cond (tree t)
3076 /* Strip conversions around boolean operations. */
3077 if (CONVERT_EXPR_P (t)
3078 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3079 t = TREE_OPERAND (t, 0);
3081 /* For (bool)x use x != 0. */
3082 if (CONVERT_EXPR_P (t)
3083 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3085 tree top0 = TREE_OPERAND (t, 0);
3086 t = build2 (NE_EXPR, TREE_TYPE (t),
3087 top0, build_int_cst (TREE_TYPE (top0), 0));
3089 /* For !x use x == 0. */
3090 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3092 tree top0 = TREE_OPERAND (t, 0);
3093 t = build2 (EQ_EXPR, TREE_TYPE (t),
3094 top0, build_int_cst (TREE_TYPE (top0), 0));
3096 /* For cmp ? 1 : 0 use cmp. */
3097 else if (TREE_CODE (t) == COND_EXPR
3098 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3099 && integer_onep (TREE_OPERAND (t, 1))
3100 && integer_zerop (TREE_OPERAND (t, 2)))
3102 tree top0 = TREE_OPERAND (t, 0);
3103 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3104 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3107 if (is_gimple_condexpr (t))
3108 return t;
3110 return NULL_TREE;
3113 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3114 the positions marked by the set ARGS_TO_SKIP. */
3116 gimple
3117 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3119 int i;
3120 tree fn = gimple_call_fn (stmt);
3121 int nargs = gimple_call_num_args (stmt);
3122 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3123 gimple new_stmt;
3125 for (i = 0; i < nargs; i++)
3126 if (!bitmap_bit_p (args_to_skip, i))
3127 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3129 new_stmt = gimple_build_call_vec (fn, vargs);
3130 VEC_free (tree, heap, vargs);
3131 if (gimple_call_lhs (stmt))
3132 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3134 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3135 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3137 gimple_set_block (new_stmt, gimple_block (stmt));
3138 if (gimple_has_location (stmt))
3139 gimple_set_location (new_stmt, gimple_location (stmt));
3140 gimple_call_copy_flags (new_stmt, stmt);
3141 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3143 gimple_set_modified (new_stmt, true);
3145 return new_stmt;
3149 static hashval_t gimple_type_hash (const void *);
3151 /* Structure used to maintain a cache of some type pairs compared by
3152 gimple_types_compatible_p when comparing aggregate types. There are
3153 four possible values for SAME_P:
3155 -2: The pair (T1, T2) has just been inserted in the table.
3156 -1: The pair (T1, T2) is currently being compared.
3157 0: T1 and T2 are different types.
3158 1: T1 and T2 are the same type.
3160 This table is only used when comparing aggregate types to avoid
3161 infinite recursion due to self-referential types. */
3162 struct type_pair_d
3164 unsigned int uid1;
3165 unsigned int uid2;
3166 int same_p;
3168 typedef struct type_pair_d *type_pair_t;
3170 /* Return a hash value for the type pair pointed-to by P. */
3172 static hashval_t
3173 type_pair_hash (const void *p)
3175 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3176 hashval_t val1 = pair->uid1;
3177 hashval_t val2 = pair->uid2;
3178 return (iterative_hash_hashval_t (val2, val1)
3179 ^ iterative_hash_hashval_t (val1, val2));
3182 /* Compare two type pairs pointed-to by P1 and P2. */
3184 static int
3185 type_pair_eq (const void *p1, const void *p2)
3187 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3188 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3189 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3190 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3193 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3194 entry if none existed. */
3196 static type_pair_t
3197 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3199 struct type_pair_d pair;
3200 type_pair_t p;
3201 void **slot;
3203 if (*visited_p == NULL)
3205 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3206 gcc_obstack_init (ob_p);
3209 pair.uid1 = TYPE_UID (t1);
3210 pair.uid2 = TYPE_UID (t2);
3211 slot = htab_find_slot (*visited_p, &pair, INSERT);
3213 if (*slot)
3214 p = *((type_pair_t *) slot);
3215 else
3217 p = XOBNEW (ob_p, struct type_pair_d);
3218 p->uid1 = TYPE_UID (t1);
3219 p->uid2 = TYPE_UID (t2);
3220 p->same_p = -2;
3221 *slot = (void *) p;
3224 return p;
3228 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3229 true then if any type has no name return false, otherwise return
3230 true if both types have no names. */
3232 static bool
3233 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3235 tree name1 = TYPE_NAME (t1);
3236 tree name2 = TYPE_NAME (t2);
3238 /* Consider anonymous types all unique for completion. */
3239 if (for_completion_p
3240 && (!name1 || !name2))
3241 return false;
3243 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3245 name1 = DECL_NAME (name1);
3246 if (for_completion_p
3247 && !name1)
3248 return false;
3250 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3252 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3254 name2 = DECL_NAME (name2);
3255 if (for_completion_p
3256 && !name2)
3257 return false;
3259 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3261 /* Identifiers can be compared with pointer equality rather
3262 than a string comparison. */
3263 if (name1 == name2)
3264 return true;
3266 return false;
3269 /* Return true if the field decls F1 and F2 are at the same offset.
3271 This is intended to be used on GIMPLE types only. In order to
3272 compare GENERIC types, use fields_compatible_p instead. */
3274 bool
3275 gimple_compare_field_offset (tree f1, tree f2)
3277 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3279 tree offset1 = DECL_FIELD_OFFSET (f1);
3280 tree offset2 = DECL_FIELD_OFFSET (f2);
3281 return ((offset1 == offset2
3282 /* Once gimplification is done, self-referential offsets are
3283 instantiated as operand #2 of the COMPONENT_REF built for
3284 each access and reset. Therefore, they are not relevant
3285 anymore and fields are interchangeable provided that they
3286 represent the same access. */
3287 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3288 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3289 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3290 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3291 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3292 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3293 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3294 || operand_equal_p (offset1, offset2, 0))
3295 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3296 DECL_FIELD_BIT_OFFSET (f2)));
3299 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3300 should be, so handle differing ones specially by decomposing
3301 the offset into a byte and bit offset manually. */
3302 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3303 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3305 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3306 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3307 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3308 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3309 + bit_offset1 / BITS_PER_UNIT);
3310 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3311 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3312 + bit_offset2 / BITS_PER_UNIT);
3313 if (byte_offset1 != byte_offset2)
3314 return false;
3315 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3318 return false;
3321 /* Return 1 iff T1 and T2 are structurally identical.
3322 Otherwise, return 0. */
3324 static int
3325 gimple_types_compatible_p (tree t1, tree t2)
3327 type_pair_t p = NULL;
3329 /* Check first for the obvious case of pointer identity. */
3330 if (t1 == t2)
3331 return 1;
3333 /* Check that we have two types to compare. */
3334 if (t1 == NULL_TREE || t2 == NULL_TREE)
3335 return 0;
3337 /* Can't be the same type if the types don't have the same code. */
3338 if (TREE_CODE (t1) != TREE_CODE (t2))
3339 return 0;
3341 /* Can't be the same type if they have different CV qualifiers. */
3342 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3343 return 0;
3345 /* Void types are always the same. */
3346 if (TREE_CODE (t1) == VOID_TYPE)
3347 return 1;
3349 /* Do some simple checks before doing three hashtable queries. */
3350 if (INTEGRAL_TYPE_P (t1)
3351 || SCALAR_FLOAT_TYPE_P (t1)
3352 || FIXED_POINT_TYPE_P (t1)
3353 || TREE_CODE (t1) == VECTOR_TYPE
3354 || TREE_CODE (t1) == COMPLEX_TYPE
3355 || TREE_CODE (t1) == OFFSET_TYPE)
3357 /* Can't be the same type if they have different alignment,
3358 sign, precision or mode. */
3359 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3360 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3361 || TYPE_MODE (t1) != TYPE_MODE (t2)
3362 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3363 return 0;
3365 if (TREE_CODE (t1) == INTEGER_TYPE
3366 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3367 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3368 return 0;
3370 /* That's all we need to check for float and fixed-point types. */
3371 if (SCALAR_FLOAT_TYPE_P (t1)
3372 || FIXED_POINT_TYPE_P (t1))
3373 return 1;
3375 /* Perform cheap tail-recursion for vector and complex types. */
3376 if (TREE_CODE (t1) == VECTOR_TYPE
3377 || TREE_CODE (t1) == COMPLEX_TYPE)
3378 return gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2));
3380 /* For integral types fall thru to more complex checks. */
3383 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3385 /* Can't be the same type if they have different alignment or mode. */
3386 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3387 || TYPE_MODE (t1) != TYPE_MODE (t2))
3388 return 0;
3391 /* If the hash values of t1 and t2 are different the types can't
3392 possibly be the same. This helps keeping the type-pair hashtable
3393 small, only tracking comparisons for hash collisions. */
3394 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3395 return 0;
3397 /* If we've visited this type pair before (in the case of aggregates
3398 with self-referential types), and we made a decision, return it. */
3399 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3400 if (p->same_p == 0 || p->same_p == 1)
3402 /* We have already decided whether T1 and T2 are the
3403 same, return the cached result. */
3404 return p->same_p == 1;
3406 else if (p->same_p == -1)
3408 /* We are currently comparing this pair of types, assume
3409 that they are the same and let the caller decide. */
3410 return 1;
3413 gcc_assert (p->same_p == -2);
3415 /* Mark the (T1, T2) comparison in progress. */
3416 p->same_p = -1;
3418 /* If their attributes are not the same they can't be the same type. */
3419 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3420 goto different_types;
3422 /* Do type-specific comparisons. */
3423 switch (TREE_CODE (t1))
3425 case ARRAY_TYPE:
3426 /* Array types are the same if the element types are the same and
3427 the number of elements are the same. */
3428 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3429 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3430 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3431 goto different_types;
3432 else
3434 tree i1 = TYPE_DOMAIN (t1);
3435 tree i2 = TYPE_DOMAIN (t2);
3437 /* For an incomplete external array, the type domain can be
3438 NULL_TREE. Check this condition also. */
3439 if (i1 == NULL_TREE && i2 == NULL_TREE)
3440 goto same_types;
3441 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3442 goto different_types;
3443 /* If for a complete array type the possibly gimplified sizes
3444 are different the types are different. */
3445 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3446 || (TYPE_SIZE (i1)
3447 && TYPE_SIZE (i2)
3448 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3449 goto different_types;
3450 else
3452 tree min1 = TYPE_MIN_VALUE (i1);
3453 tree min2 = TYPE_MIN_VALUE (i2);
3454 tree max1 = TYPE_MAX_VALUE (i1);
3455 tree max2 = TYPE_MAX_VALUE (i2);
3457 /* The minimum/maximum values have to be the same. */
3458 if ((min1 == min2
3459 || (min1 && min2
3460 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3461 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3462 || operand_equal_p (min1, min2, 0))))
3463 && (max1 == max2
3464 || (max1 && max2
3465 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3466 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3467 || operand_equal_p (max1, max2, 0)))))
3468 goto same_types;
3469 else
3470 goto different_types;
3474 case METHOD_TYPE:
3475 /* Method types should belong to the same class. */
3476 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1),
3477 TYPE_METHOD_BASETYPE (t2)))
3478 goto different_types;
3480 /* Fallthru */
3482 case FUNCTION_TYPE:
3483 /* Function types are the same if the return type and arguments types
3484 are the same. */
3485 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3486 goto different_types;
3487 else
3489 if (!targetm.comp_type_attributes (t1, t2))
3490 goto different_types;
3492 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3493 goto same_types;
3494 else
3496 tree parms1, parms2;
3498 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3499 parms1 && parms2;
3500 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3502 if (!gimple_types_compatible_p (TREE_VALUE (parms1),
3503 TREE_VALUE (parms2)))
3504 goto different_types;
3507 if (parms1 || parms2)
3508 goto different_types;
3510 goto same_types;
3514 case OFFSET_TYPE:
3516 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3517 || !gimple_types_compatible_p (TYPE_OFFSET_BASETYPE (t1),
3518 TYPE_OFFSET_BASETYPE (t2)))
3519 goto different_types;
3521 goto same_types;
3524 case POINTER_TYPE:
3525 case REFERENCE_TYPE:
3527 /* If the two pointers have different ref-all attributes,
3528 they can't be the same type. */
3529 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3530 goto different_types;
3532 /* If one pointer points to an incomplete type variant of
3533 the other pointed-to type they are the same. */
3534 if (TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
3535 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (t1))
3536 && (!COMPLETE_TYPE_P (TREE_TYPE (t1))
3537 || !COMPLETE_TYPE_P (TREE_TYPE (t2)))
3538 && TYPE_QUALS (TREE_TYPE (t1)) == TYPE_QUALS (TREE_TYPE (t2))
3539 && compare_type_names_p (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
3540 TYPE_MAIN_VARIANT (TREE_TYPE (t2)), true))
3542 /* Replace the pointed-to incomplete type with the
3543 complete one.
3544 ??? This simple name-based merging causes at least some
3545 of the ICEs in canonicalizing FIELD_DECLs during stmt
3546 read. For example in GCC we have two different struct deps
3547 and we mismatch the use in struct cpp_reader in sched-int.h
3548 vs. mkdeps.c. Of course the whole exercise is for TBAA
3549 with structs which contain pointers to incomplete types
3550 in one unit and to complete ones in another. So we
3551 probably should merge these types only with more context. */
3552 if (COMPLETE_TYPE_P (TREE_TYPE (t2)))
3553 TREE_TYPE (t1) = TREE_TYPE (t2);
3554 else
3555 TREE_TYPE (t2) = TREE_TYPE (t1);
3556 goto same_types;
3559 /* Otherwise, pointer and reference types are the same if the
3560 pointed-to types are the same. */
3561 if (gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3562 goto same_types;
3564 goto different_types;
3567 case INTEGER_TYPE:
3568 case BOOLEAN_TYPE:
3570 tree min1 = TYPE_MIN_VALUE (t1);
3571 tree max1 = TYPE_MAX_VALUE (t1);
3572 tree min2 = TYPE_MIN_VALUE (t2);
3573 tree max2 = TYPE_MAX_VALUE (t2);
3574 bool min_equal_p = false;
3575 bool max_equal_p = false;
3577 /* If either type has a minimum value, the other type must
3578 have the same. */
3579 if (min1 == NULL_TREE && min2 == NULL_TREE)
3580 min_equal_p = true;
3581 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3582 min_equal_p = true;
3584 /* Likewise, if either type has a maximum value, the other
3585 type must have the same. */
3586 if (max1 == NULL_TREE && max2 == NULL_TREE)
3587 max_equal_p = true;
3588 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3589 max_equal_p = true;
3591 if (!min_equal_p || !max_equal_p)
3592 goto different_types;
3594 goto same_types;
3597 case ENUMERAL_TYPE:
3599 /* FIXME lto, we cannot check bounds on enumeral types because
3600 different front ends will produce different values.
3601 In C, enumeral types are integers, while in C++ each element
3602 will have its own symbolic value. We should decide how enums
3603 are to be represented in GIMPLE and have each front end lower
3604 to that. */
3605 tree v1, v2;
3607 /* For enumeral types, all the values must be the same. */
3608 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3609 goto same_types;
3611 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3612 v1 && v2;
3613 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3615 tree c1 = TREE_VALUE (v1);
3616 tree c2 = TREE_VALUE (v2);
3618 if (TREE_CODE (c1) == CONST_DECL)
3619 c1 = DECL_INITIAL (c1);
3621 if (TREE_CODE (c2) == CONST_DECL)
3622 c2 = DECL_INITIAL (c2);
3624 if (tree_int_cst_equal (c1, c2) != 1)
3625 goto different_types;
3628 /* If one enumeration has more values than the other, they
3629 are not the same. */
3630 if (v1 || v2)
3631 goto different_types;
3633 goto same_types;
3636 case RECORD_TYPE:
3637 case UNION_TYPE:
3638 case QUAL_UNION_TYPE:
3640 tree f1, f2;
3642 /* The struct tags shall compare equal. */
3643 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3644 TYPE_MAIN_VARIANT (t2), false))
3645 goto different_types;
3647 /* For aggregate types, all the fields must be the same. */
3648 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3649 f1 && f2;
3650 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3652 /* The fields must have the same name, offset and type. */
3653 if (DECL_NAME (f1) != DECL_NAME (f2)
3654 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3655 || !gimple_compare_field_offset (f1, f2)
3656 || !gimple_types_compatible_p (TREE_TYPE (f1),
3657 TREE_TYPE (f2)))
3658 goto different_types;
3661 /* If one aggregate has more fields than the other, they
3662 are not the same. */
3663 if (f1 || f2)
3664 goto different_types;
3666 goto same_types;
3669 default:
3670 gcc_unreachable ();
3673 /* Common exit path for types that are not compatible. */
3674 different_types:
3675 p->same_p = 0;
3676 return 0;
3678 /* Common exit path for types that are compatible. */
3679 same_types:
3680 p->same_p = 1;
3681 return 1;
3687 /* Per pointer state for the SCC finding. The on_sccstack flag
3688 is not strictly required, it is true when there is no hash value
3689 recorded for the type and false otherwise. But querying that
3690 is slower. */
3692 struct sccs
3694 unsigned int dfsnum;
3695 unsigned int low;
3696 bool on_sccstack;
3697 hashval_t hash;
3700 static unsigned int next_dfs_num;
3702 static hashval_t
3703 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3704 struct pointer_map_t *, struct obstack *);
3706 /* DFS visit the edge from the callers type with state *STATE to T.
3707 Update the callers type hash V with the hash for T if it is not part
3708 of the SCC containing the callers type and return it.
3709 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3711 static hashval_t
3712 visit (tree t, struct sccs *state, hashval_t v,
3713 VEC (tree, heap) **sccstack,
3714 struct pointer_map_t *sccstate,
3715 struct obstack *sccstate_obstack)
3717 struct sccs *cstate = NULL;
3718 void **slot;
3720 /* If there is a hash value recorded for this type then it can't
3721 possibly be part of our parent SCC. Simply mix in its hash. */
3722 if ((slot = pointer_map_contains (type_hash_cache, t)))
3723 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3725 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3726 cstate = (struct sccs *)*slot;
3727 if (!cstate)
3729 hashval_t tem;
3730 /* Not yet visited. DFS recurse. */
3731 tem = iterative_hash_gimple_type (t, v,
3732 sccstack, sccstate, sccstate_obstack);
3733 if (!cstate)
3734 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3735 state->low = MIN (state->low, cstate->low);
3736 /* If the type is no longer on the SCC stack and thus is not part
3737 of the parents SCC mix in its hash value. Otherwise we will
3738 ignore the type for hashing purposes and return the unaltered
3739 hash value. */
3740 if (!cstate->on_sccstack)
3741 return tem;
3743 if (cstate->dfsnum < state->dfsnum
3744 && cstate->on_sccstack)
3745 state->low = MIN (cstate->dfsnum, state->low);
3747 /* We are part of our parents SCC, skip this type during hashing
3748 and return the unaltered hash value. */
3749 return v;
3752 /* Hash NAME with the previous hash value V and return it. */
3754 static hashval_t
3755 iterative_hash_name (tree name, hashval_t v)
3757 if (!name)
3758 return v;
3759 if (TREE_CODE (name) == TYPE_DECL)
3760 name = DECL_NAME (name);
3761 if (!name)
3762 return v;
3763 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3764 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3767 /* Returning a hash value for gimple type TYPE combined with VAL.
3768 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3770 To hash a type we end up hashing in types that are reachable.
3771 Through pointers we can end up with cycles which messes up the
3772 required property that we need to compute the same hash value
3773 for structurally equivalent types. To avoid this we have to
3774 hash all types in a cycle (the SCC) in a commutative way. The
3775 easiest way is to not mix in the hashes of the SCC members at
3776 all. To make this work we have to delay setting the hash
3777 values of the SCC until it is complete. */
3779 static hashval_t
3780 iterative_hash_gimple_type (tree type, hashval_t val,
3781 VEC(tree, heap) **sccstack,
3782 struct pointer_map_t *sccstate,
3783 struct obstack *sccstate_obstack)
3785 hashval_t v;
3786 void **slot;
3787 struct sccs *state;
3789 #ifdef ENABLE_CHECKING
3790 /* Not visited during this DFS walk nor during previous walks. */
3791 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3792 && !pointer_map_contains (sccstate, type));
3793 #endif
3794 state = XOBNEW (sccstate_obstack, struct sccs);
3795 *pointer_map_insert (sccstate, type) = state;
3797 VEC_safe_push (tree, heap, *sccstack, type);
3798 state->dfsnum = next_dfs_num++;
3799 state->low = state->dfsnum;
3800 state->on_sccstack = true;
3802 /* Combine a few common features of types so that types are grouped into
3803 smaller sets; when searching for existing matching types to merge,
3804 only existing types having the same features as the new type will be
3805 checked. */
3806 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3807 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
3808 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3810 /* Do not hash the types size as this will cause differences in
3811 hash values for the complete vs. the incomplete type variant. */
3813 /* Incorporate common features of numerical types. */
3814 if (INTEGRAL_TYPE_P (type)
3815 || SCALAR_FLOAT_TYPE_P (type)
3816 || FIXED_POINT_TYPE_P (type))
3818 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3819 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3820 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3823 /* For pointer and reference types, fold in information about the type
3824 pointed to but do not recurse into possibly incomplete types to
3825 avoid hash differences for complete vs. incomplete types. */
3826 if (POINTER_TYPE_P (type))
3828 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
3830 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3831 v = iterative_hash_name
3832 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
3834 else
3835 v = visit (TREE_TYPE (type), state, v,
3836 sccstack, sccstate, sccstate_obstack);
3839 /* For integer types hash the types min/max values and the string flag. */
3840 if (TREE_CODE (type) == INTEGER_TYPE)
3842 /* OMP lowering can introduce error_mark_node in place of
3843 random local decls in types. */
3844 if (TYPE_MIN_VALUE (type) != error_mark_node)
3845 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
3846 if (TYPE_MAX_VALUE (type) != error_mark_node)
3847 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
3848 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3851 /* For array types hash their domain and the string flag. */
3852 if (TREE_CODE (type) == ARRAY_TYPE
3853 && TYPE_DOMAIN (type))
3855 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3856 v = visit (TYPE_DOMAIN (type), state, v,
3857 sccstack, sccstate, sccstate_obstack);
3860 /* Recurse for aggregates with a single element type. */
3861 if (TREE_CODE (type) == ARRAY_TYPE
3862 || TREE_CODE (type) == COMPLEX_TYPE
3863 || TREE_CODE (type) == VECTOR_TYPE)
3864 v = visit (TREE_TYPE (type), state, v,
3865 sccstack, sccstate, sccstate_obstack);
3867 /* Incorporate function return and argument types. */
3868 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3870 unsigned na;
3871 tree p;
3873 /* For method types also incorporate their parent class. */
3874 if (TREE_CODE (type) == METHOD_TYPE)
3875 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
3876 sccstack, sccstate, sccstate_obstack);
3878 v = visit (TREE_TYPE (type), state, v,
3879 sccstack, sccstate, sccstate_obstack);
3881 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3883 v = visit (TREE_VALUE (p), state, v,
3884 sccstack, sccstate, sccstate_obstack);
3885 na++;
3888 v = iterative_hash_hashval_t (na, v);
3891 if (TREE_CODE (type) == RECORD_TYPE
3892 || TREE_CODE (type) == UNION_TYPE
3893 || TREE_CODE (type) == QUAL_UNION_TYPE)
3895 unsigned nf;
3896 tree f;
3898 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
3900 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3902 v = iterative_hash_name (DECL_NAME (f), v);
3903 v = visit (TREE_TYPE (f), state, v,
3904 sccstack, sccstate, sccstate_obstack);
3905 nf++;
3908 v = iterative_hash_hashval_t (nf, v);
3911 /* Record hash for us. */
3912 state->hash = v;
3914 /* See if we found an SCC. */
3915 if (state->low == state->dfsnum)
3917 tree x;
3919 /* Pop off the SCC and set its hash values. */
3922 struct sccs *cstate;
3923 x = VEC_pop (tree, *sccstack);
3924 gcc_assert (!pointer_map_contains (type_hash_cache, x));
3925 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3926 cstate->on_sccstack = false;
3927 slot = pointer_map_insert (type_hash_cache, x);
3928 *slot = (void *) (size_t) cstate->hash;
3930 while (x != type);
3933 return iterative_hash_hashval_t (v, val);
3937 /* Returns a hash value for P (assumed to be a type). The hash value
3938 is computed using some distinguishing features of the type. Note
3939 that we cannot use pointer hashing here as we may be dealing with
3940 two distinct instances of the same type.
3942 This function should produce the same hash value for two compatible
3943 types according to gimple_types_compatible_p. */
3945 static hashval_t
3946 gimple_type_hash (const void *p)
3948 const_tree t = (const_tree) p;
3949 VEC(tree, heap) *sccstack = NULL;
3950 struct pointer_map_t *sccstate;
3951 struct obstack sccstate_obstack;
3952 hashval_t val;
3953 void **slot;
3955 if (type_hash_cache == NULL)
3956 type_hash_cache = pointer_map_create ();
3958 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
3959 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
3961 /* Perform a DFS walk and pre-hash all reachable types. */
3962 next_dfs_num = 1;
3963 sccstate = pointer_map_create ();
3964 gcc_obstack_init (&sccstate_obstack);
3965 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
3966 &sccstack, sccstate, &sccstate_obstack);
3967 VEC_free (tree, heap, sccstack);
3968 pointer_map_destroy (sccstate);
3969 obstack_free (&sccstate_obstack, NULL);
3971 return val;
3975 /* Returns nonzero if P1 and P2 are equal. */
3977 static int
3978 gimple_type_eq (const void *p1, const void *p2)
3980 const_tree t1 = (const_tree) p1;
3981 const_tree t2 = (const_tree) p2;
3982 return gimple_types_compatible_p (CONST_CAST_TREE (t1), CONST_CAST_TREE (t2));
3986 /* Register type T in the global type table gimple_types.
3987 If another type T', compatible with T, already existed in
3988 gimple_types then return T', otherwise return T. This is used by
3989 LTO to merge identical types read from different TUs. */
3991 tree
3992 gimple_register_type (tree t)
3994 void **slot;
3996 gcc_assert (TYPE_P (t));
3998 /* In TYPE_CANONICAL we cache the result of gimple_register_type.
3999 It is initially set to NULL during LTO streaming. */
4000 if (TYPE_CANONICAL (t))
4001 return TYPE_CANONICAL (t);
4003 /* Always register the main variant first. This is important so we
4004 pick up the non-typedef variants as canonical, otherwise we'll end
4005 up taking typedef ids for structure tags during comparison. */
4006 if (TYPE_MAIN_VARIANT (t) != t)
4007 gimple_register_type (TYPE_MAIN_VARIANT (t));
4009 if (gimple_types == NULL)
4010 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
4012 slot = htab_find_slot (gimple_types, t, INSERT);
4013 if (*slot
4014 && *(tree *)slot != t)
4016 tree new_type = (tree) *((tree *) slot);
4018 /* Do not merge types with different addressability. */
4019 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4021 /* If t is not its main variant then make t unreachable from its
4022 main variant list. Otherwise we'd queue up a lot of duplicates
4023 there. */
4024 if (t != TYPE_MAIN_VARIANT (t))
4026 tree tem = TYPE_MAIN_VARIANT (t);
4027 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4028 tem = TYPE_NEXT_VARIANT (tem);
4029 if (tem)
4030 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4031 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4034 /* If we are a pointer then remove us from the pointer-to or
4035 reference-to chain. Otherwise we'd queue up a lot of duplicates
4036 there. */
4037 if (TREE_CODE (t) == POINTER_TYPE)
4039 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4040 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4041 else
4043 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4044 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4045 tem = TYPE_NEXT_PTR_TO (tem);
4046 if (tem)
4047 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4049 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4051 else if (TREE_CODE (t) == REFERENCE_TYPE)
4053 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4054 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4055 else
4057 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4058 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4059 tem = TYPE_NEXT_REF_TO (tem);
4060 if (tem)
4061 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4063 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4066 TYPE_CANONICAL (t) = new_type;
4067 t = new_type;
4069 else
4071 TYPE_CANONICAL (t) = t;
4072 *slot = (void *) t;
4075 return t;
4079 /* Show statistics on references to the global type table gimple_types. */
4081 void
4082 print_gimple_types_stats (void)
4084 if (gimple_types)
4085 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4086 "%ld searches, %ld collisions (ratio: %f)\n",
4087 (long) htab_size (gimple_types),
4088 (long) htab_elements (gimple_types),
4089 (long) gimple_types->searches,
4090 (long) gimple_types->collisions,
4091 htab_collisions (gimple_types));
4092 else
4093 fprintf (stderr, "GIMPLE type table is empty\n");
4094 if (gtc_visited)
4095 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4096 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4097 (long) htab_size (gtc_visited),
4098 (long) htab_elements (gtc_visited),
4099 (long) gtc_visited->searches,
4100 (long) gtc_visited->collisions,
4101 htab_collisions (gtc_visited));
4102 else
4103 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4106 /* Free the gimple type hashtables used for LTO type merging. */
4108 void
4109 free_gimple_type_tables (void)
4111 /* Last chance to print stats for the tables. */
4112 if (flag_lto_report)
4113 print_gimple_types_stats ();
4115 if (gimple_types)
4117 htab_delete (gimple_types);
4118 gimple_types = NULL;
4120 if (type_hash_cache)
4122 pointer_map_destroy (type_hash_cache);
4123 type_hash_cache = NULL;
4125 if (gtc_visited)
4127 htab_delete (gtc_visited);
4128 obstack_free (&gtc_ob, NULL);
4129 gtc_visited = NULL;
4134 /* Return a type the same as TYPE except unsigned or
4135 signed according to UNSIGNEDP. */
4137 static tree
4138 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4140 tree type1;
4142 type1 = TYPE_MAIN_VARIANT (type);
4143 if (type1 == signed_char_type_node
4144 || type1 == char_type_node
4145 || type1 == unsigned_char_type_node)
4146 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4147 if (type1 == integer_type_node || type1 == unsigned_type_node)
4148 return unsignedp ? unsigned_type_node : integer_type_node;
4149 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4150 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4151 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4152 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4153 if (type1 == long_long_integer_type_node
4154 || type1 == long_long_unsigned_type_node)
4155 return unsignedp
4156 ? long_long_unsigned_type_node
4157 : long_long_integer_type_node;
4158 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4159 return unsignedp
4160 ? int128_unsigned_type_node
4161 : int128_integer_type_node;
4162 #if HOST_BITS_PER_WIDE_INT >= 64
4163 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4164 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4165 #endif
4166 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4167 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4168 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4169 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4170 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4171 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4172 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4173 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4175 #define GIMPLE_FIXED_TYPES(NAME) \
4176 if (type1 == short_ ## NAME ## _type_node \
4177 || type1 == unsigned_short_ ## NAME ## _type_node) \
4178 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4179 : short_ ## NAME ## _type_node; \
4180 if (type1 == NAME ## _type_node \
4181 || type1 == unsigned_ ## NAME ## _type_node) \
4182 return unsignedp ? unsigned_ ## NAME ## _type_node \
4183 : NAME ## _type_node; \
4184 if (type1 == long_ ## NAME ## _type_node \
4185 || type1 == unsigned_long_ ## NAME ## _type_node) \
4186 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4187 : long_ ## NAME ## _type_node; \
4188 if (type1 == long_long_ ## NAME ## _type_node \
4189 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4190 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4191 : long_long_ ## NAME ## _type_node;
4193 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4194 if (type1 == NAME ## _type_node \
4195 || type1 == u ## NAME ## _type_node) \
4196 return unsignedp ? u ## NAME ## _type_node \
4197 : NAME ## _type_node;
4199 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4200 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4201 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4202 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4203 : sat_ ## short_ ## NAME ## _type_node; \
4204 if (type1 == sat_ ## NAME ## _type_node \
4205 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4206 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4207 : sat_ ## NAME ## _type_node; \
4208 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4209 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4210 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4211 : sat_ ## long_ ## NAME ## _type_node; \
4212 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4213 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4214 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4215 : sat_ ## long_long_ ## NAME ## _type_node;
4217 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4218 if (type1 == sat_ ## NAME ## _type_node \
4219 || type1 == sat_ ## u ## NAME ## _type_node) \
4220 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4221 : sat_ ## NAME ## _type_node;
4223 GIMPLE_FIXED_TYPES (fract);
4224 GIMPLE_FIXED_TYPES_SAT (fract);
4225 GIMPLE_FIXED_TYPES (accum);
4226 GIMPLE_FIXED_TYPES_SAT (accum);
4228 GIMPLE_FIXED_MODE_TYPES (qq);
4229 GIMPLE_FIXED_MODE_TYPES (hq);
4230 GIMPLE_FIXED_MODE_TYPES (sq);
4231 GIMPLE_FIXED_MODE_TYPES (dq);
4232 GIMPLE_FIXED_MODE_TYPES (tq);
4233 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4234 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4235 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4236 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4237 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4238 GIMPLE_FIXED_MODE_TYPES (ha);
4239 GIMPLE_FIXED_MODE_TYPES (sa);
4240 GIMPLE_FIXED_MODE_TYPES (da);
4241 GIMPLE_FIXED_MODE_TYPES (ta);
4242 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4243 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4244 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4245 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4247 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4248 the precision; they have precision set to match their range, but
4249 may use a wider mode to match an ABI. If we change modes, we may
4250 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4251 the precision as well, so as to yield correct results for
4252 bit-field types. C++ does not have these separate bit-field
4253 types, and producing a signed or unsigned variant of an
4254 ENUMERAL_TYPE may cause other problems as well. */
4255 if (!INTEGRAL_TYPE_P (type)
4256 || TYPE_UNSIGNED (type) == unsignedp)
4257 return type;
4259 #define TYPE_OK(node) \
4260 (TYPE_MODE (type) == TYPE_MODE (node) \
4261 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4262 if (TYPE_OK (signed_char_type_node))
4263 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4264 if (TYPE_OK (integer_type_node))
4265 return unsignedp ? unsigned_type_node : integer_type_node;
4266 if (TYPE_OK (short_integer_type_node))
4267 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4268 if (TYPE_OK (long_integer_type_node))
4269 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4270 if (TYPE_OK (long_long_integer_type_node))
4271 return (unsignedp
4272 ? long_long_unsigned_type_node
4273 : long_long_integer_type_node);
4274 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4275 return (unsignedp
4276 ? int128_unsigned_type_node
4277 : int128_integer_type_node);
4279 #if HOST_BITS_PER_WIDE_INT >= 64
4280 if (TYPE_OK (intTI_type_node))
4281 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4282 #endif
4283 if (TYPE_OK (intDI_type_node))
4284 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4285 if (TYPE_OK (intSI_type_node))
4286 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4287 if (TYPE_OK (intHI_type_node))
4288 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4289 if (TYPE_OK (intQI_type_node))
4290 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4292 #undef GIMPLE_FIXED_TYPES
4293 #undef GIMPLE_FIXED_MODE_TYPES
4294 #undef GIMPLE_FIXED_TYPES_SAT
4295 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4296 #undef TYPE_OK
4298 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4302 /* Return an unsigned type the same as TYPE in other respects. */
4304 tree
4305 gimple_unsigned_type (tree type)
4307 return gimple_signed_or_unsigned_type (true, type);
4311 /* Return a signed type the same as TYPE in other respects. */
4313 tree
4314 gimple_signed_type (tree type)
4316 return gimple_signed_or_unsigned_type (false, type);
4320 /* Return the typed-based alias set for T, which may be an expression
4321 or a type. Return -1 if we don't do anything special. */
4323 alias_set_type
4324 gimple_get_alias_set (tree t)
4326 tree u;
4328 /* Permit type-punning when accessing a union, provided the access
4329 is directly through the union. For example, this code does not
4330 permit taking the address of a union member and then storing
4331 through it. Even the type-punning allowed here is a GCC
4332 extension, albeit a common and useful one; the C standard says
4333 that such accesses have implementation-defined behavior. */
4334 for (u = t;
4335 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4336 u = TREE_OPERAND (u, 0))
4337 if (TREE_CODE (u) == COMPONENT_REF
4338 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4339 return 0;
4341 /* That's all the expressions we handle specially. */
4342 if (!TYPE_P (t))
4343 return -1;
4345 /* For convenience, follow the C standard when dealing with
4346 character types. Any object may be accessed via an lvalue that
4347 has character type. */
4348 if (t == char_type_node
4349 || t == signed_char_type_node
4350 || t == unsigned_char_type_node)
4351 return 0;
4353 /* Allow aliasing between signed and unsigned variants of the same
4354 type. We treat the signed variant as canonical. */
4355 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4357 tree t1 = gimple_signed_type (t);
4359 /* t1 == t can happen for boolean nodes which are always unsigned. */
4360 if (t1 != t)
4361 return get_alias_set (t1);
4363 else if (POINTER_TYPE_P (t))
4365 /* From the common C and C++ langhook implementation:
4367 Unfortunately, there is no canonical form of a pointer type.
4368 In particular, if we have `typedef int I', then `int *', and
4369 `I *' are different types. So, we have to pick a canonical
4370 representative. We do this below.
4372 Technically, this approach is actually more conservative that
4373 it needs to be. In particular, `const int *' and `int *'
4374 should be in different alias sets, according to the C and C++
4375 standard, since their types are not the same, and so,
4376 technically, an `int **' and `const int **' cannot point at
4377 the same thing.
4379 But, the standard is wrong. In particular, this code is
4380 legal C++:
4382 int *ip;
4383 int **ipp = &ip;
4384 const int* const* cipp = ipp;
4385 And, it doesn't make sense for that to be legal unless you
4386 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4387 the pointed-to types. This issue has been reported to the
4388 C++ committee. */
4390 /* In addition to the above canonicalization issue with LTO
4391 we should also canonicalize `T (*)[]' to `T *' avoiding
4392 alias issues with pointer-to element types and pointer-to
4393 array types.
4395 Likewise we need to deal with the situation of incomplete
4396 pointed-to types and make `*(struct X **)&a' and
4397 `*(struct X {} **)&a' alias. Otherwise we will have to
4398 guarantee that all pointer-to incomplete type variants
4399 will be replaced by pointer-to complete type variants if
4400 they are available.
4402 With LTO the convenient situation of using `void *' to
4403 access and store any pointer type will also become
4404 more apparent (and `void *' is just another pointer-to
4405 incomplete type). Assigning alias-set zero to `void *'
4406 and all pointer-to incomplete types is a not appealing
4407 solution. Assigning an effective alias-set zero only
4408 affecting pointers might be - by recording proper subset
4409 relationships of all pointer alias-sets.
4411 Pointer-to function types are another grey area which
4412 needs caution. Globbing them all into one alias-set
4413 or the above effective zero set would work. */
4415 /* For now just assign the same alias-set to all pointers.
4416 That's simple and avoids all the above problems. */
4417 if (t != ptr_type_node)
4418 return get_alias_set (ptr_type_node);
4421 return -1;
4425 /* Data structure used to count the number of dereferences to PTR
4426 inside an expression. */
4427 struct count_ptr_d
4429 tree ptr;
4430 unsigned num_stores;
4431 unsigned num_loads;
4434 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4435 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4437 static tree
4438 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4440 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4441 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4443 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4444 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4445 the address of 'fld' as 'ptr + offsetof(fld)'. */
4446 if (TREE_CODE (*tp) == ADDR_EXPR)
4448 *walk_subtrees = 0;
4449 return NULL_TREE;
4452 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4454 if (wi_p->is_lhs)
4455 count_p->num_stores++;
4456 else
4457 count_p->num_loads++;
4460 return NULL_TREE;
4463 /* Count the number of direct and indirect uses for pointer PTR in
4464 statement STMT. The number of direct uses is stored in
4465 *NUM_USES_P. Indirect references are counted separately depending
4466 on whether they are store or load operations. The counts are
4467 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4469 void
4470 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4471 unsigned *num_loads_p, unsigned *num_stores_p)
4473 ssa_op_iter i;
4474 tree use;
4476 *num_uses_p = 0;
4477 *num_loads_p = 0;
4478 *num_stores_p = 0;
4480 /* Find out the total number of uses of PTR in STMT. */
4481 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4482 if (use == ptr)
4483 (*num_uses_p)++;
4485 /* Now count the number of indirect references to PTR. This is
4486 truly awful, but we don't have much choice. There are no parent
4487 pointers inside INDIRECT_REFs, so an expression like
4488 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4489 find all the indirect and direct uses of x_1 inside. The only
4490 shortcut we can take is the fact that GIMPLE only allows
4491 INDIRECT_REFs inside the expressions below. */
4492 if (is_gimple_assign (stmt)
4493 || gimple_code (stmt) == GIMPLE_RETURN
4494 || gimple_code (stmt) == GIMPLE_ASM
4495 || is_gimple_call (stmt))
4497 struct walk_stmt_info wi;
4498 struct count_ptr_d count;
4500 count.ptr = ptr;
4501 count.num_stores = 0;
4502 count.num_loads = 0;
4504 memset (&wi, 0, sizeof (wi));
4505 wi.info = &count;
4506 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4508 *num_stores_p = count.num_stores;
4509 *num_loads_p = count.num_loads;
4512 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4515 /* From a tree operand OP return the base of a load or store operation
4516 or NULL_TREE if OP is not a load or a store. */
4518 static tree
4519 get_base_loadstore (tree op)
4521 while (handled_component_p (op))
4522 op = TREE_OPERAND (op, 0);
4523 if (DECL_P (op)
4524 || INDIRECT_REF_P (op)
4525 || TREE_CODE (op) == MEM_REF
4526 || TREE_CODE (op) == TARGET_MEM_REF)
4527 return op;
4528 return NULL_TREE;
4531 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4532 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4533 passing the STMT, the base of the operand and DATA to it. The base
4534 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4535 or the argument of an address expression.
4536 Returns the results of these callbacks or'ed. */
4538 bool
4539 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4540 bool (*visit_load)(gimple, tree, void *),
4541 bool (*visit_store)(gimple, tree, void *),
4542 bool (*visit_addr)(gimple, tree, void *))
4544 bool ret = false;
4545 unsigned i;
4546 if (gimple_assign_single_p (stmt))
4548 tree lhs, rhs;
4549 if (visit_store)
4551 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4552 if (lhs)
4553 ret |= visit_store (stmt, lhs, data);
4555 rhs = gimple_assign_rhs1 (stmt);
4556 while (handled_component_p (rhs))
4557 rhs = TREE_OPERAND (rhs, 0);
4558 if (visit_addr)
4560 if (TREE_CODE (rhs) == ADDR_EXPR)
4561 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4562 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4563 && TMR_BASE (rhs) != NULL_TREE
4564 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4565 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4566 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4567 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4568 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4569 0), data);
4570 lhs = gimple_assign_lhs (stmt);
4571 if (TREE_CODE (lhs) == TARGET_MEM_REF
4572 && TMR_BASE (lhs) != NULL_TREE
4573 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4574 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4576 if (visit_load)
4578 rhs = get_base_loadstore (rhs);
4579 if (rhs)
4580 ret |= visit_load (stmt, rhs, data);
4583 else if (visit_addr
4584 && (is_gimple_assign (stmt)
4585 || gimple_code (stmt) == GIMPLE_COND))
4587 for (i = 0; i < gimple_num_ops (stmt); ++i)
4588 if (gimple_op (stmt, i)
4589 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4590 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4592 else if (is_gimple_call (stmt))
4594 if (visit_store)
4596 tree lhs = gimple_call_lhs (stmt);
4597 if (lhs)
4599 lhs = get_base_loadstore (lhs);
4600 if (lhs)
4601 ret |= visit_store (stmt, lhs, data);
4604 if (visit_load || visit_addr)
4605 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4607 tree rhs = gimple_call_arg (stmt, i);
4608 if (visit_addr
4609 && TREE_CODE (rhs) == ADDR_EXPR)
4610 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4611 else if (visit_load)
4613 rhs = get_base_loadstore (rhs);
4614 if (rhs)
4615 ret |= visit_load (stmt, rhs, data);
4618 if (visit_addr
4619 && gimple_call_chain (stmt)
4620 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4621 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4622 data);
4623 if (visit_addr
4624 && gimple_call_return_slot_opt_p (stmt)
4625 && gimple_call_lhs (stmt) != NULL_TREE
4626 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4627 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4629 else if (gimple_code (stmt) == GIMPLE_ASM)
4631 unsigned noutputs;
4632 const char *constraint;
4633 const char **oconstraints;
4634 bool allows_mem, allows_reg, is_inout;
4635 noutputs = gimple_asm_noutputs (stmt);
4636 oconstraints = XALLOCAVEC (const char *, noutputs);
4637 if (visit_store || visit_addr)
4638 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4640 tree link = gimple_asm_output_op (stmt, i);
4641 tree op = get_base_loadstore (TREE_VALUE (link));
4642 if (op && visit_store)
4643 ret |= visit_store (stmt, op, data);
4644 if (visit_addr)
4646 constraint = TREE_STRING_POINTER
4647 (TREE_VALUE (TREE_PURPOSE (link)));
4648 oconstraints[i] = constraint;
4649 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4650 &allows_reg, &is_inout);
4651 if (op && !allows_reg && allows_mem)
4652 ret |= visit_addr (stmt, op, data);
4655 if (visit_load || visit_addr)
4656 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4658 tree link = gimple_asm_input_op (stmt, i);
4659 tree op = TREE_VALUE (link);
4660 if (visit_addr
4661 && TREE_CODE (op) == ADDR_EXPR)
4662 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4663 else if (visit_load || visit_addr)
4665 op = get_base_loadstore (op);
4666 if (op)
4668 if (visit_load)
4669 ret |= visit_load (stmt, op, data);
4670 if (visit_addr)
4672 constraint = TREE_STRING_POINTER
4673 (TREE_VALUE (TREE_PURPOSE (link)));
4674 parse_input_constraint (&constraint, 0, 0, noutputs,
4675 0, oconstraints,
4676 &allows_mem, &allows_reg);
4677 if (!allows_reg && allows_mem)
4678 ret |= visit_addr (stmt, op, data);
4684 else if (gimple_code (stmt) == GIMPLE_RETURN)
4686 tree op = gimple_return_retval (stmt);
4687 if (op)
4689 if (visit_addr
4690 && TREE_CODE (op) == ADDR_EXPR)
4691 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4692 else if (visit_load)
4694 op = get_base_loadstore (op);
4695 if (op)
4696 ret |= visit_load (stmt, op, data);
4700 else if (visit_addr
4701 && gimple_code (stmt) == GIMPLE_PHI)
4703 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4705 tree op = PHI_ARG_DEF (stmt, i);
4706 if (TREE_CODE (op) == ADDR_EXPR)
4707 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4711 return ret;
4714 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4715 should make a faster clone for this case. */
4717 bool
4718 walk_stmt_load_store_ops (gimple stmt, void *data,
4719 bool (*visit_load)(gimple, tree, void *),
4720 bool (*visit_store)(gimple, tree, void *))
4722 return walk_stmt_load_store_addr_ops (stmt, data,
4723 visit_load, visit_store, NULL);
4726 /* Helper for gimple_ior_addresses_taken_1. */
4728 static bool
4729 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4730 tree addr, void *data)
4732 bitmap addresses_taken = (bitmap)data;
4733 addr = get_base_address (addr);
4734 if (addr
4735 && DECL_P (addr))
4737 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4738 return true;
4740 return false;
4743 /* Set the bit for the uid of all decls that have their address taken
4744 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4745 were any in this stmt. */
4747 bool
4748 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4750 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4751 gimple_ior_addresses_taken_1);
4755 /* Return a printable name for symbol DECL. */
4757 const char *
4758 gimple_decl_printable_name (tree decl, int verbosity)
4760 if (!DECL_NAME (decl))
4761 return NULL;
4763 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4765 const char *str, *mangled_str;
4766 int dmgl_opts = DMGL_NO_OPTS;
4768 if (verbosity >= 2)
4770 dmgl_opts = DMGL_VERBOSE
4771 | DMGL_ANSI
4772 | DMGL_GNU_V3
4773 | DMGL_RET_POSTFIX;
4774 if (TREE_CODE (decl) == FUNCTION_DECL)
4775 dmgl_opts |= DMGL_PARAMS;
4778 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4779 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4780 return (str) ? str : mangled_str;
4783 return IDENTIFIER_POINTER (DECL_NAME (decl));
4786 /* Return true when STMT is builtins call to CODE. */
4788 bool
4789 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
4791 tree fndecl;
4792 return (is_gimple_call (stmt)
4793 && (fndecl = gimple_call_fndecl (stmt)) != NULL
4794 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
4795 && DECL_FUNCTION_CODE (fndecl) == code);
4798 #include "gt-gimple.h"