* gcc.target/powerpc/altivec-volatile.c: Adjust expected warning.
[official-gcc.git] / gcc / emit-rtl.c
blob35ca9d40d3bdcc0bbfaaaa214abff828f2faf2f7
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
63 /* Commonly used modes. */
65 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
66 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
67 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
68 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
70 /* Datastructures maintained for currently processed function in RTL form. */
72 struct rtl_data x_rtl;
74 /* Indexed by pseudo register number, gives the rtx for that pseudo.
75 Allocated in parallel with regno_pointer_align.
76 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
77 with length attribute nested in top level structures. */
79 rtx * regno_reg_rtx;
81 /* This is *not* reset after each function. It gives each CODE_LABEL
82 in the entire compilation a unique label number. */
84 static GTY(()) int label_num = 1;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these are unique; no other rtx-object will be equal to any
89 of these. */
91 rtx global_rtl[GR_MAX];
93 /* Commonly used RTL for hard registers. These objects are not necessarily
94 unique, so we allocate them separately from global_rtl. They are
95 initialized once per compilation unit, then copied into regno_reg_rtx
96 at the beginning of each function. */
97 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
100 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
101 record a copy of const[012]_rtx. */
103 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105 rtx const_true_rtx;
107 REAL_VALUE_TYPE dconst0;
108 REAL_VALUE_TYPE dconst1;
109 REAL_VALUE_TYPE dconst2;
110 REAL_VALUE_TYPE dconstm1;
111 REAL_VALUE_TYPE dconsthalf;
113 /* Record fixed-point constant 0 and 1. */
114 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
115 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
117 /* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
128 should be used if it is being set, and frame_pointer_rtx otherwise. After
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
131 same.
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
158 /* A hash table storing register attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
160 htab_t reg_attrs_htab;
162 /* A hash table storing all CONST_DOUBLEs. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
164 htab_t const_double_htab;
166 /* A hash table storing all CONST_FIXEDs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_fixed_htab;
170 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
171 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
172 #define last_location (crtl->emit.x_last_location)
173 #define first_label_num (crtl->emit.x_first_label_num)
175 static rtx make_call_insn_raw (rtx);
176 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
177 static void set_used_decls (tree);
178 static void mark_label_nuses (rtx);
179 static hashval_t const_int_htab_hash (const void *);
180 static int const_int_htab_eq (const void *, const void *);
181 static hashval_t const_double_htab_hash (const void *);
182 static int const_double_htab_eq (const void *, const void *);
183 static rtx lookup_const_double (rtx);
184 static hashval_t const_fixed_htab_hash (const void *);
185 static int const_fixed_htab_eq (const void *, const void *);
186 static rtx lookup_const_fixed (rtx);
187 static hashval_t mem_attrs_htab_hash (const void *);
188 static int mem_attrs_htab_eq (const void *, const void *);
189 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
190 addr_space_t, enum machine_mode);
191 static hashval_t reg_attrs_htab_hash (const void *);
192 static int reg_attrs_htab_eq (const void *, const void *);
193 static reg_attrs *get_reg_attrs (tree, int);
194 static rtx gen_const_vector (enum machine_mode, int);
195 static void copy_rtx_if_shared_1 (rtx *orig);
197 /* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199 int split_branch_probability = -1;
201 /* Returns a hash code for X (which is a really a CONST_INT). */
203 static hashval_t
204 const_int_htab_hash (const void *x)
206 return (hashval_t) INTVAL ((const_rtx) x);
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_INT) is the same as that given by Y (which is really a
211 HOST_WIDE_INT *). */
213 static int
214 const_int_htab_eq (const void *x, const void *y)
216 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
220 static hashval_t
221 const_double_htab_hash (const void *x)
223 const_rtx const value = (const_rtx) x;
224 hashval_t h;
226 if (GET_MODE (value) == VOIDmode)
227 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
228 else
230 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
231 /* MODE is used in the comparison, so it should be in the hash. */
232 h ^= GET_MODE (value);
234 return h;
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...) */
239 static int
240 const_double_htab_eq (const void *x, const void *y)
242 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 if (GET_MODE (a) == VOIDmode)
247 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
248 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
249 else
250 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
251 CONST_DOUBLE_REAL_VALUE (b));
254 /* Returns a hash code for X (which is really a CONST_FIXED). */
256 static hashval_t
257 const_fixed_htab_hash (const void *x)
259 const_rtx const value = (const_rtx) x;
260 hashval_t h;
262 h = fixed_hash (CONST_FIXED_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 return h;
268 /* Returns nonzero if the value represented by X (really a ...)
269 is the same as that represented by Y (really a ...). */
271 static int
272 const_fixed_htab_eq (const void *x, const void *y)
274 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
281 /* Returns a hash code for X (which is a really a mem_attrs *). */
283 static hashval_t
284 mem_attrs_htab_hash (const void *x)
286 const mem_attrs *const p = (const mem_attrs *) x;
288 return (p->alias ^ (p->align * 1000)
289 ^ (p->addrspace * 4000)
290 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
291 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
292 ^ (size_t) iterative_hash_expr (p->expr, 0));
295 /* Returns nonzero if the value represented by X (which is really a
296 mem_attrs *) is the same as that given by Y (which is also really a
297 mem_attrs *). */
299 static int
300 mem_attrs_htab_eq (const void *x, const void *y)
302 const mem_attrs *const p = (const mem_attrs *) x;
303 const mem_attrs *const q = (const mem_attrs *) y;
305 return (p->alias == q->alias && p->offset == q->offset
306 && p->size == q->size && p->align == q->align
307 && p->addrspace == q->addrspace
308 && (p->expr == q->expr
309 || (p->expr != NULL_TREE && q->expr != NULL_TREE
310 && operand_equal_p (p->expr, q->expr, 0))));
313 /* Allocate a new mem_attrs structure and insert it into the hash table if
314 one identical to it is not already in the table. We are doing this for
315 MEM of mode MODE. */
317 static mem_attrs *
318 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
319 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
321 mem_attrs attrs;
322 void **slot;
324 /* If everything is the default, we can just return zero.
325 This must match what the corresponding MEM_* macros return when the
326 field is not present. */
327 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
328 && (size == 0
329 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
330 && (STRICT_ALIGNMENT && mode != BLKmode
331 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
332 return 0;
334 attrs.alias = alias;
335 attrs.expr = expr;
336 attrs.offset = offset;
337 attrs.size = size;
338 attrs.align = align;
339 attrs.addrspace = addrspace;
341 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
342 if (*slot == 0)
344 *slot = ggc_alloc_mem_attrs ();
345 memcpy (*slot, &attrs, sizeof (mem_attrs));
348 return (mem_attrs *) *slot;
351 /* Returns a hash code for X (which is a really a reg_attrs *). */
353 static hashval_t
354 reg_attrs_htab_hash (const void *x)
356 const reg_attrs *const p = (const reg_attrs *) x;
358 return ((p->offset * 1000) ^ (long) p->decl);
361 /* Returns nonzero if the value represented by X (which is really a
362 reg_attrs *) is the same as that given by Y (which is also really a
363 reg_attrs *). */
365 static int
366 reg_attrs_htab_eq (const void *x, const void *y)
368 const reg_attrs *const p = (const reg_attrs *) x;
369 const reg_attrs *const q = (const reg_attrs *) y;
371 return (p->decl == q->decl && p->offset == q->offset);
373 /* Allocate a new reg_attrs structure and insert it into the hash table if
374 one identical to it is not already in the table. We are doing this for
375 MEM of mode MODE. */
377 static reg_attrs *
378 get_reg_attrs (tree decl, int offset)
380 reg_attrs attrs;
381 void **slot;
383 /* If everything is the default, we can just return zero. */
384 if (decl == 0 && offset == 0)
385 return 0;
387 attrs.decl = decl;
388 attrs.offset = offset;
390 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
391 if (*slot == 0)
393 *slot = ggc_alloc_reg_attrs ();
394 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 return (reg_attrs *) *slot;
401 #if !HAVE_blockage
402 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
403 across this insn. */
406 gen_blockage (void)
408 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
409 MEM_VOLATILE_P (x) = true;
410 return x;
412 #endif
415 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
416 don't attempt to share with the various global pieces of rtl (such as
417 frame_pointer_rtx). */
420 gen_raw_REG (enum machine_mode mode, int regno)
422 rtx x = gen_rtx_raw_REG (mode, regno);
423 ORIGINAL_REGNO (x) = regno;
424 return x;
427 /* There are some RTL codes that require special attention; the generation
428 functions do the raw handling. If you add to this list, modify
429 special_rtx in gengenrtl.c as well. */
432 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
434 void **slot;
436 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
437 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
439 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
440 if (const_true_rtx && arg == STORE_FLAG_VALUE)
441 return const_true_rtx;
442 #endif
444 /* Look up the CONST_INT in the hash table. */
445 slot = htab_find_slot_with_hash (const_int_htab, &arg,
446 (hashval_t) arg, INSERT);
447 if (*slot == 0)
448 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
450 return (rtx) *slot;
454 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
456 return GEN_INT (trunc_int_for_mode (c, mode));
459 /* CONST_DOUBLEs might be created from pairs of integers, or from
460 REAL_VALUE_TYPEs. Also, their length is known only at run time,
461 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
463 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
464 hash table. If so, return its counterpart; otherwise add it
465 to the hash table and return it. */
466 static rtx
467 lookup_const_double (rtx real)
469 void **slot = htab_find_slot (const_double_htab, real, INSERT);
470 if (*slot == 0)
471 *slot = real;
473 return (rtx) *slot;
476 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
477 VALUE in mode MODE. */
479 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
481 rtx real = rtx_alloc (CONST_DOUBLE);
482 PUT_MODE (real, mode);
484 real->u.rv = value;
486 return lookup_const_double (real);
489 /* Determine whether FIXED, a CONST_FIXED, already exists in the
490 hash table. If so, return its counterpart; otherwise add it
491 to the hash table and return it. */
493 static rtx
494 lookup_const_fixed (rtx fixed)
496 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
497 if (*slot == 0)
498 *slot = fixed;
500 return (rtx) *slot;
503 /* Return a CONST_FIXED rtx for a fixed-point value specified by
504 VALUE in mode MODE. */
507 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
509 rtx fixed = rtx_alloc (CONST_FIXED);
510 PUT_MODE (fixed, mode);
512 fixed->u.fv = value;
514 return lookup_const_fixed (fixed);
517 /* Constructs double_int from rtx CST. */
519 double_int
520 rtx_to_double_int (const_rtx cst)
522 double_int r;
524 if (CONST_INT_P (cst))
525 r = shwi_to_double_int (INTVAL (cst));
526 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
528 r.low = CONST_DOUBLE_LOW (cst);
529 r.high = CONST_DOUBLE_HIGH (cst);
531 else
532 gcc_unreachable ();
534 return r;
538 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
539 a double_int. */
542 immed_double_int_const (double_int i, enum machine_mode mode)
544 return immed_double_const (i.low, i.high, mode);
547 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
548 of ints: I0 is the low-order word and I1 is the high-order word.
549 Do not use this routine for non-integer modes; convert to
550 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
553 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
555 rtx value;
556 unsigned int i;
558 /* There are the following cases (note that there are no modes with
559 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
561 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
562 gen_int_mode.
563 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
564 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
565 from copies of the sign bit, and sign of i0 and i1 are the same), then
566 we return a CONST_INT for i0.
567 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
568 if (mode != VOIDmode)
570 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
571 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
572 /* We can get a 0 for an error mark. */
573 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
574 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
576 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
577 return gen_int_mode (i0, mode);
579 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
582 /* If this integer fits in one word, return a CONST_INT. */
583 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
584 return GEN_INT (i0);
586 /* We use VOIDmode for integers. */
587 value = rtx_alloc (CONST_DOUBLE);
588 PUT_MODE (value, VOIDmode);
590 CONST_DOUBLE_LOW (value) = i0;
591 CONST_DOUBLE_HIGH (value) = i1;
593 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
594 XWINT (value, i) = 0;
596 return lookup_const_double (value);
600 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
602 /* In case the MD file explicitly references the frame pointer, have
603 all such references point to the same frame pointer. This is
604 used during frame pointer elimination to distinguish the explicit
605 references to these registers from pseudos that happened to be
606 assigned to them.
608 If we have eliminated the frame pointer or arg pointer, we will
609 be using it as a normal register, for example as a spill
610 register. In such cases, we might be accessing it in a mode that
611 is not Pmode and therefore cannot use the pre-allocated rtx.
613 Also don't do this when we are making new REGs in reload, since
614 we don't want to get confused with the real pointers. */
616 if (mode == Pmode && !reload_in_progress)
618 if (regno == FRAME_POINTER_REGNUM
619 && (!reload_completed || frame_pointer_needed))
620 return frame_pointer_rtx;
621 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
622 if (regno == HARD_FRAME_POINTER_REGNUM
623 && (!reload_completed || frame_pointer_needed))
624 return hard_frame_pointer_rtx;
625 #endif
626 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
627 if (regno == ARG_POINTER_REGNUM)
628 return arg_pointer_rtx;
629 #endif
630 #ifdef RETURN_ADDRESS_POINTER_REGNUM
631 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
632 return return_address_pointer_rtx;
633 #endif
634 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
635 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
636 return pic_offset_table_rtx;
637 if (regno == STACK_POINTER_REGNUM)
638 return stack_pointer_rtx;
641 #if 0
642 /* If the per-function register table has been set up, try to re-use
643 an existing entry in that table to avoid useless generation of RTL.
645 This code is disabled for now until we can fix the various backends
646 which depend on having non-shared hard registers in some cases. Long
647 term we want to re-enable this code as it can significantly cut down
648 on the amount of useless RTL that gets generated.
650 We'll also need to fix some code that runs after reload that wants to
651 set ORIGINAL_REGNO. */
653 if (cfun
654 && cfun->emit
655 && regno_reg_rtx
656 && regno < FIRST_PSEUDO_REGISTER
657 && reg_raw_mode[regno] == mode)
658 return regno_reg_rtx[regno];
659 #endif
661 return gen_raw_REG (mode, regno);
665 gen_rtx_MEM (enum machine_mode mode, rtx addr)
667 rtx rt = gen_rtx_raw_MEM (mode, addr);
669 /* This field is not cleared by the mere allocation of the rtx, so
670 we clear it here. */
671 MEM_ATTRS (rt) = 0;
673 return rt;
676 /* Generate a memory referring to non-trapping constant memory. */
679 gen_const_mem (enum machine_mode mode, rtx addr)
681 rtx mem = gen_rtx_MEM (mode, addr);
682 MEM_READONLY_P (mem) = 1;
683 MEM_NOTRAP_P (mem) = 1;
684 return mem;
687 /* Generate a MEM referring to fixed portions of the frame, e.g., register
688 save areas. */
691 gen_frame_mem (enum machine_mode mode, rtx addr)
693 rtx mem = gen_rtx_MEM (mode, addr);
694 MEM_NOTRAP_P (mem) = 1;
695 set_mem_alias_set (mem, get_frame_alias_set ());
696 return mem;
699 /* Generate a MEM referring to a temporary use of the stack, not part
700 of the fixed stack frame. For example, something which is pushed
701 by a target splitter. */
703 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
705 rtx mem = gen_rtx_MEM (mode, addr);
706 MEM_NOTRAP_P (mem) = 1;
707 if (!cfun->calls_alloca)
708 set_mem_alias_set (mem, get_frame_alias_set ());
709 return mem;
712 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
713 this construct would be valid, and false otherwise. */
715 bool
716 validate_subreg (enum machine_mode omode, enum machine_mode imode,
717 const_rtx reg, unsigned int offset)
719 unsigned int isize = GET_MODE_SIZE (imode);
720 unsigned int osize = GET_MODE_SIZE (omode);
722 /* All subregs must be aligned. */
723 if (offset % osize != 0)
724 return false;
726 /* The subreg offset cannot be outside the inner object. */
727 if (offset >= isize)
728 return false;
730 /* ??? This should not be here. Temporarily continue to allow word_mode
731 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
732 Generally, backends are doing something sketchy but it'll take time to
733 fix them all. */
734 if (omode == word_mode)
736 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
737 is the culprit here, and not the backends. */
738 else if (osize >= UNITS_PER_WORD && isize >= osize)
740 /* Allow component subregs of complex and vector. Though given the below
741 extraction rules, it's not always clear what that means. */
742 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
743 && GET_MODE_INNER (imode) == omode)
745 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
746 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
747 represent this. It's questionable if this ought to be represented at
748 all -- why can't this all be hidden in post-reload splitters that make
749 arbitrarily mode changes to the registers themselves. */
750 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
752 /* Subregs involving floating point modes are not allowed to
753 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
754 (subreg:SI (reg:DF) 0) isn't. */
755 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
757 if (isize != osize)
758 return false;
761 /* Paradoxical subregs must have offset zero. */
762 if (osize > isize)
763 return offset == 0;
765 /* This is a normal subreg. Verify that the offset is representable. */
767 /* For hard registers, we already have most of these rules collected in
768 subreg_offset_representable_p. */
769 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
771 unsigned int regno = REGNO (reg);
773 #ifdef CANNOT_CHANGE_MODE_CLASS
774 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
775 && GET_MODE_INNER (imode) == omode)
777 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
778 return false;
779 #endif
781 return subreg_offset_representable_p (regno, imode, offset, omode);
784 /* For pseudo registers, we want most of the same checks. Namely:
785 If the register no larger than a word, the subreg must be lowpart.
786 If the register is larger than a word, the subreg must be the lowpart
787 of a subword. A subreg does *not* perform arbitrary bit extraction.
788 Given that we've already checked mode/offset alignment, we only have
789 to check subword subregs here. */
790 if (osize < UNITS_PER_WORD)
792 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
793 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
794 if (offset % UNITS_PER_WORD != low_off)
795 return false;
797 return true;
801 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
803 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
804 return gen_rtx_raw_SUBREG (mode, reg, offset);
807 /* Generate a SUBREG representing the least-significant part of REG if MODE
808 is smaller than mode of REG, otherwise paradoxical SUBREG. */
811 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
813 enum machine_mode inmode;
815 inmode = GET_MODE (reg);
816 if (inmode == VOIDmode)
817 inmode = mode;
818 return gen_rtx_SUBREG (mode, reg,
819 subreg_lowpart_offset (mode, inmode));
823 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
825 rtvec
826 gen_rtvec (int n, ...)
828 int i;
829 rtvec rt_val;
830 va_list p;
832 va_start (p, n);
834 /* Don't allocate an empty rtvec... */
835 if (n == 0)
836 return NULL_RTVEC;
838 rt_val = rtvec_alloc (n);
840 for (i = 0; i < n; i++)
841 rt_val->elem[i] = va_arg (p, rtx);
843 va_end (p);
844 return rt_val;
847 rtvec
848 gen_rtvec_v (int n, rtx *argp)
850 int i;
851 rtvec rt_val;
853 /* Don't allocate an empty rtvec... */
854 if (n == 0)
855 return NULL_RTVEC;
857 rt_val = rtvec_alloc (n);
859 for (i = 0; i < n; i++)
860 rt_val->elem[i] = *argp++;
862 return rt_val;
865 /* Return the number of bytes between the start of an OUTER_MODE
866 in-memory value and the start of an INNER_MODE in-memory value,
867 given that the former is a lowpart of the latter. It may be a
868 paradoxical lowpart, in which case the offset will be negative
869 on big-endian targets. */
872 byte_lowpart_offset (enum machine_mode outer_mode,
873 enum machine_mode inner_mode)
875 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
876 return subreg_lowpart_offset (outer_mode, inner_mode);
877 else
878 return -subreg_lowpart_offset (inner_mode, outer_mode);
881 /* Generate a REG rtx for a new pseudo register of mode MODE.
882 This pseudo is assigned the next sequential register number. */
885 gen_reg_rtx (enum machine_mode mode)
887 rtx val;
888 unsigned int align = GET_MODE_ALIGNMENT (mode);
890 gcc_assert (can_create_pseudo_p ());
892 /* If a virtual register with bigger mode alignment is generated,
893 increase stack alignment estimation because it might be spilled
894 to stack later. */
895 if (SUPPORTS_STACK_ALIGNMENT
896 && crtl->stack_alignment_estimated < align
897 && !crtl->stack_realign_processed)
899 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
900 if (crtl->stack_alignment_estimated < min_align)
901 crtl->stack_alignment_estimated = min_align;
904 if (generating_concat_p
905 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
906 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
908 /* For complex modes, don't make a single pseudo.
909 Instead, make a CONCAT of two pseudos.
910 This allows noncontiguous allocation of the real and imaginary parts,
911 which makes much better code. Besides, allocating DCmode
912 pseudos overstrains reload on some machines like the 386. */
913 rtx realpart, imagpart;
914 enum machine_mode partmode = GET_MODE_INNER (mode);
916 realpart = gen_reg_rtx (partmode);
917 imagpart = gen_reg_rtx (partmode);
918 return gen_rtx_CONCAT (mode, realpart, imagpart);
921 /* Make sure regno_pointer_align, and regno_reg_rtx are large
922 enough to have an element for this pseudo reg number. */
924 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
926 int old_size = crtl->emit.regno_pointer_align_length;
927 char *tmp;
928 rtx *new1;
930 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
931 memset (tmp + old_size, 0, old_size);
932 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
934 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
935 memset (new1 + old_size, 0, old_size * sizeof (rtx));
936 regno_reg_rtx = new1;
938 crtl->emit.regno_pointer_align_length = old_size * 2;
941 val = gen_raw_REG (mode, reg_rtx_no);
942 regno_reg_rtx[reg_rtx_no++] = val;
943 return val;
946 /* Update NEW with the same attributes as REG, but with OFFSET added
947 to the REG_OFFSET. */
949 static void
950 update_reg_offset (rtx new_rtx, rtx reg, int offset)
952 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
953 REG_OFFSET (reg) + offset);
956 /* Generate a register with same attributes as REG, but with OFFSET
957 added to the REG_OFFSET. */
960 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
961 int offset)
963 rtx new_rtx = gen_rtx_REG (mode, regno);
965 update_reg_offset (new_rtx, reg, offset);
966 return new_rtx;
969 /* Generate a new pseudo-register with the same attributes as REG, but
970 with OFFSET added to the REG_OFFSET. */
973 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
975 rtx new_rtx = gen_reg_rtx (mode);
977 update_reg_offset (new_rtx, reg, offset);
978 return new_rtx;
981 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
982 new register is a (possibly paradoxical) lowpart of the old one. */
984 void
985 adjust_reg_mode (rtx reg, enum machine_mode mode)
987 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
988 PUT_MODE (reg, mode);
991 /* Copy REG's attributes from X, if X has any attributes. If REG and X
992 have different modes, REG is a (possibly paradoxical) lowpart of X. */
994 void
995 set_reg_attrs_from_value (rtx reg, rtx x)
997 int offset;
999 /* Hard registers can be reused for multiple purposes within the same
1000 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1001 on them is wrong. */
1002 if (HARD_REGISTER_P (reg))
1003 return;
1005 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1006 if (MEM_P (x))
1008 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
1009 REG_ATTRS (reg)
1010 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
1011 if (MEM_POINTER (x))
1012 mark_reg_pointer (reg, 0);
1014 else if (REG_P (x))
1016 if (REG_ATTRS (x))
1017 update_reg_offset (reg, x, offset);
1018 if (REG_POINTER (x))
1019 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1023 /* Generate a REG rtx for a new pseudo register, copying the mode
1024 and attributes from X. */
1027 gen_reg_rtx_and_attrs (rtx x)
1029 rtx reg = gen_reg_rtx (GET_MODE (x));
1030 set_reg_attrs_from_value (reg, x);
1031 return reg;
1034 /* Set the register attributes for registers contained in PARM_RTX.
1035 Use needed values from memory attributes of MEM. */
1037 void
1038 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1040 if (REG_P (parm_rtx))
1041 set_reg_attrs_from_value (parm_rtx, mem);
1042 else if (GET_CODE (parm_rtx) == PARALLEL)
1044 /* Check for a NULL entry in the first slot, used to indicate that the
1045 parameter goes both on the stack and in registers. */
1046 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1047 for (; i < XVECLEN (parm_rtx, 0); i++)
1049 rtx x = XVECEXP (parm_rtx, 0, i);
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0))
1052 = get_reg_attrs (MEM_EXPR (mem),
1053 INTVAL (XEXP (x, 1)));
1058 /* Set the REG_ATTRS for registers in value X, given that X represents
1059 decl T. */
1061 void
1062 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1064 if (GET_CODE (x) == SUBREG)
1066 gcc_assert (subreg_lowpart_p (x));
1067 x = SUBREG_REG (x);
1069 if (REG_P (x))
1070 REG_ATTRS (x)
1071 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1072 DECL_MODE (t)));
1073 if (GET_CODE (x) == CONCAT)
1075 if (REG_P (XEXP (x, 0)))
1076 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1077 if (REG_P (XEXP (x, 1)))
1078 REG_ATTRS (XEXP (x, 1))
1079 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1081 if (GET_CODE (x) == PARALLEL)
1083 int i, start;
1085 /* Check for a NULL entry, used to indicate that the parameter goes
1086 both on the stack and in registers. */
1087 if (XEXP (XVECEXP (x, 0, 0), 0))
1088 start = 0;
1089 else
1090 start = 1;
1092 for (i = start; i < XVECLEN (x, 0); i++)
1094 rtx y = XVECEXP (x, 0, i);
1095 if (REG_P (XEXP (y, 0)))
1096 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1101 /* Assign the RTX X to declaration T. */
1103 void
1104 set_decl_rtl (tree t, rtx x)
1106 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1107 if (x)
1108 set_reg_attrs_for_decl_rtl (t, x);
1111 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1112 if the ABI requires the parameter to be passed by reference. */
1114 void
1115 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1117 DECL_INCOMING_RTL (t) = x;
1118 if (x && !by_reference_p)
1119 set_reg_attrs_for_decl_rtl (t, x);
1122 /* Identify REG (which may be a CONCAT) as a user register. */
1124 void
1125 mark_user_reg (rtx reg)
1127 if (GET_CODE (reg) == CONCAT)
1129 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1130 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1132 else
1134 gcc_assert (REG_P (reg));
1135 REG_USERVAR_P (reg) = 1;
1139 /* Identify REG as a probable pointer register and show its alignment
1140 as ALIGN, if nonzero. */
1142 void
1143 mark_reg_pointer (rtx reg, int align)
1145 if (! REG_POINTER (reg))
1147 REG_POINTER (reg) = 1;
1149 if (align)
1150 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1152 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1153 /* We can no-longer be sure just how aligned this pointer is. */
1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1157 /* Return 1 plus largest pseudo reg number used in the current function. */
1160 max_reg_num (void)
1162 return reg_rtx_no;
1165 /* Return 1 + the largest label number used so far in the current function. */
1168 max_label_num (void)
1170 return label_num;
1173 /* Return first label number used in this function (if any were used). */
1176 get_first_label_num (void)
1178 return first_label_num;
1181 /* If the rtx for label was created during the expansion of a nested
1182 function, then first_label_num won't include this label number.
1183 Fix this now so that array indices work later. */
1185 void
1186 maybe_set_first_label_num (rtx x)
1188 if (CODE_LABEL_NUMBER (x) < first_label_num)
1189 first_label_num = CODE_LABEL_NUMBER (x);
1192 /* Return a value representing some low-order bits of X, where the number
1193 of low-order bits is given by MODE. Note that no conversion is done
1194 between floating-point and fixed-point values, rather, the bit
1195 representation is returned.
1197 This function handles the cases in common between gen_lowpart, below,
1198 and two variants in cse.c and combine.c. These are the cases that can
1199 be safely handled at all points in the compilation.
1201 If this is not a case we can handle, return 0. */
1204 gen_lowpart_common (enum machine_mode mode, rtx x)
1206 int msize = GET_MODE_SIZE (mode);
1207 int xsize;
1208 int offset = 0;
1209 enum machine_mode innermode;
1211 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1212 so we have to make one up. Yuk. */
1213 innermode = GET_MODE (x);
1214 if (CONST_INT_P (x)
1215 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1216 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1217 else if (innermode == VOIDmode)
1218 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1220 xsize = GET_MODE_SIZE (innermode);
1222 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1224 if (innermode == mode)
1225 return x;
1227 /* MODE must occupy no more words than the mode of X. */
1228 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1229 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1230 return 0;
1232 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1233 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1234 return 0;
1236 offset = subreg_lowpart_offset (mode, innermode);
1238 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1239 && (GET_MODE_CLASS (mode) == MODE_INT
1240 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1242 /* If we are getting the low-order part of something that has been
1243 sign- or zero-extended, we can either just use the object being
1244 extended or make a narrower extension. If we want an even smaller
1245 piece than the size of the object being extended, call ourselves
1246 recursively.
1248 This case is used mostly by combine and cse. */
1250 if (GET_MODE (XEXP (x, 0)) == mode)
1251 return XEXP (x, 0);
1252 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1253 return gen_lowpart_common (mode, XEXP (x, 0));
1254 else if (msize < xsize)
1255 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1257 else if (GET_CODE (x) == SUBREG || REG_P (x)
1258 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1259 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1260 return simplify_gen_subreg (mode, x, innermode, offset);
1262 /* Otherwise, we can't do this. */
1263 return 0;
1267 gen_highpart (enum machine_mode mode, rtx x)
1269 unsigned int msize = GET_MODE_SIZE (mode);
1270 rtx result;
1272 /* This case loses if X is a subreg. To catch bugs early,
1273 complain if an invalid MODE is used even in other cases. */
1274 gcc_assert (msize <= UNITS_PER_WORD
1275 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1277 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1278 subreg_highpart_offset (mode, GET_MODE (x)));
1279 gcc_assert (result);
1281 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1282 the target if we have a MEM. gen_highpart must return a valid operand,
1283 emitting code if necessary to do so. */
1284 if (MEM_P (result))
1286 result = validize_mem (result);
1287 gcc_assert (result);
1290 return result;
1293 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1294 be VOIDmode constant. */
1296 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1298 if (GET_MODE (exp) != VOIDmode)
1300 gcc_assert (GET_MODE (exp) == innermode);
1301 return gen_highpart (outermode, exp);
1303 return simplify_gen_subreg (outermode, exp, innermode,
1304 subreg_highpart_offset (outermode, innermode));
1307 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1309 unsigned int
1310 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1312 unsigned int offset = 0;
1313 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1315 if (difference > 0)
1317 if (WORDS_BIG_ENDIAN)
1318 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1319 if (BYTES_BIG_ENDIAN)
1320 offset += difference % UNITS_PER_WORD;
1323 return offset;
1326 /* Return offset in bytes to get OUTERMODE high part
1327 of the value in mode INNERMODE stored in memory in target format. */
1328 unsigned int
1329 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1331 unsigned int offset = 0;
1332 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1334 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1336 if (difference > 0)
1338 if (! WORDS_BIG_ENDIAN)
1339 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1340 if (! BYTES_BIG_ENDIAN)
1341 offset += difference % UNITS_PER_WORD;
1344 return offset;
1347 /* Return 1 iff X, assumed to be a SUBREG,
1348 refers to the least significant part of its containing reg.
1349 If X is not a SUBREG, always return 1 (it is its own low part!). */
1352 subreg_lowpart_p (const_rtx x)
1354 if (GET_CODE (x) != SUBREG)
1355 return 1;
1356 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1357 return 0;
1359 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1360 == SUBREG_BYTE (x));
1363 /* Return subword OFFSET of operand OP.
1364 The word number, OFFSET, is interpreted as the word number starting
1365 at the low-order address. OFFSET 0 is the low-order word if not
1366 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1368 If we cannot extract the required word, we return zero. Otherwise,
1369 an rtx corresponding to the requested word will be returned.
1371 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1372 reload has completed, a valid address will always be returned. After
1373 reload, if a valid address cannot be returned, we return zero.
1375 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1376 it is the responsibility of the caller.
1378 MODE is the mode of OP in case it is a CONST_INT.
1380 ??? This is still rather broken for some cases. The problem for the
1381 moment is that all callers of this thing provide no 'goal mode' to
1382 tell us to work with. This exists because all callers were written
1383 in a word based SUBREG world.
1384 Now use of this function can be deprecated by simplify_subreg in most
1385 cases.
1389 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1391 if (mode == VOIDmode)
1392 mode = GET_MODE (op);
1394 gcc_assert (mode != VOIDmode);
1396 /* If OP is narrower than a word, fail. */
1397 if (mode != BLKmode
1398 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1399 return 0;
1401 /* If we want a word outside OP, return zero. */
1402 if (mode != BLKmode
1403 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1404 return const0_rtx;
1406 /* Form a new MEM at the requested address. */
1407 if (MEM_P (op))
1409 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1411 if (! validate_address)
1412 return new_rtx;
1414 else if (reload_completed)
1416 if (! strict_memory_address_addr_space_p (word_mode,
1417 XEXP (new_rtx, 0),
1418 MEM_ADDR_SPACE (op)))
1419 return 0;
1421 else
1422 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1425 /* Rest can be handled by simplify_subreg. */
1426 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1429 /* Similar to `operand_subword', but never return 0. If we can't
1430 extract the required subword, put OP into a register and try again.
1431 The second attempt must succeed. We always validate the address in
1432 this case.
1434 MODE is the mode of OP, in case it is CONST_INT. */
1437 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1439 rtx result = operand_subword (op, offset, 1, mode);
1441 if (result)
1442 return result;
1444 if (mode != BLKmode && mode != VOIDmode)
1446 /* If this is a register which can not be accessed by words, copy it
1447 to a pseudo register. */
1448 if (REG_P (op))
1449 op = copy_to_reg (op);
1450 else
1451 op = force_reg (mode, op);
1454 result = operand_subword (op, offset, 1, mode);
1455 gcc_assert (result);
1457 return result;
1460 /* Returns 1 if both MEM_EXPR can be considered equal
1461 and 0 otherwise. */
1464 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1466 if (expr1 == expr2)
1467 return 1;
1469 if (! expr1 || ! expr2)
1470 return 0;
1472 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1473 return 0;
1475 return operand_equal_p (expr1, expr2, 0);
1478 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1479 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1480 -1 if not known. */
1483 get_mem_align_offset (rtx mem, unsigned int align)
1485 tree expr;
1486 unsigned HOST_WIDE_INT offset;
1488 /* This function can't use
1489 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1490 || !CONST_INT_P (MEM_OFFSET (mem))
1491 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1492 < align))
1493 return -1;
1494 else
1495 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1496 for two reasons:
1497 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1498 for <variable>. get_inner_reference doesn't handle it and
1499 even if it did, the alignment in that case needs to be determined
1500 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1501 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1502 isn't sufficiently aligned, the object it is in might be. */
1503 gcc_assert (MEM_P (mem));
1504 expr = MEM_EXPR (mem);
1505 if (expr == NULL_TREE
1506 || MEM_OFFSET (mem) == NULL_RTX
1507 || !CONST_INT_P (MEM_OFFSET (mem)))
1508 return -1;
1510 offset = INTVAL (MEM_OFFSET (mem));
1511 if (DECL_P (expr))
1513 if (DECL_ALIGN (expr) < align)
1514 return -1;
1516 else if (INDIRECT_REF_P (expr))
1518 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1519 return -1;
1521 else if (TREE_CODE (expr) == COMPONENT_REF)
1523 while (1)
1525 tree inner = TREE_OPERAND (expr, 0);
1526 tree field = TREE_OPERAND (expr, 1);
1527 tree byte_offset = component_ref_field_offset (expr);
1528 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1530 if (!byte_offset
1531 || !host_integerp (byte_offset, 1)
1532 || !host_integerp (bit_offset, 1))
1533 return -1;
1535 offset += tree_low_cst (byte_offset, 1);
1536 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1538 if (inner == NULL_TREE)
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1541 < (unsigned int) align)
1542 return -1;
1543 break;
1545 else if (DECL_P (inner))
1547 if (DECL_ALIGN (inner) < align)
1548 return -1;
1549 break;
1551 else if (TREE_CODE (inner) != COMPONENT_REF)
1552 return -1;
1553 expr = inner;
1556 else
1557 return -1;
1559 return offset & ((align / BITS_PER_UNIT) - 1);
1562 /* Given REF (a MEM) and T, either the type of X or the expression
1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
1567 void
1568 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1569 HOST_WIDE_INT bitpos)
1571 alias_set_type alias = MEM_ALIAS_SET (ref);
1572 tree expr = MEM_EXPR (ref);
1573 rtx offset = MEM_OFFSET (ref);
1574 rtx size = MEM_SIZE (ref);
1575 unsigned int align = MEM_ALIGN (ref);
1576 HOST_WIDE_INT apply_bitpos = 0;
1577 tree type;
1579 /* It can happen that type_for_mode was given a mode for which there
1580 is no language-level type. In which case it returns NULL, which
1581 we can see here. */
1582 if (t == NULL_TREE)
1583 return;
1585 type = TYPE_P (t) ? t : TREE_TYPE (t);
1586 if (type == error_mark_node)
1587 return;
1589 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1590 wrong answer, as it assumes that DECL_RTL already has the right alias
1591 info. Callers should not set DECL_RTL until after the call to
1592 set_mem_attributes. */
1593 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1595 /* Get the alias set from the expression or type (perhaps using a
1596 front-end routine) and use it. */
1597 alias = get_alias_set (t);
1599 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1600 MEM_IN_STRUCT_P (ref)
1601 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1602 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1604 /* If we are making an object of this type, or if this is a DECL, we know
1605 that it is a scalar if the type is not an aggregate. */
1606 if ((objectp || DECL_P (t))
1607 && ! AGGREGATE_TYPE_P (type)
1608 && TREE_CODE (type) != COMPLEX_TYPE)
1609 MEM_SCALAR_P (ref) = 1;
1611 /* We can set the alignment from the type if we are making an object,
1612 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1613 if (objectp || TREE_CODE (t) == INDIRECT_REF
1614 || TYPE_ALIGN_OK (type))
1615 align = MAX (align, TYPE_ALIGN (type));
1616 else if (TREE_CODE (t) == MEM_REF)
1618 unsigned HOST_WIDE_INT aoff = BITS_PER_UNIT;
1619 if (host_integerp (TREE_OPERAND (t, 1), 1))
1621 unsigned HOST_WIDE_INT ioff = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1622 aoff = (ioff & -ioff) * BITS_PER_UNIT;
1624 if (TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
1625 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0)))
1626 align = MAX (align,
1627 DECL_ALIGN (TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
1628 else if (TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
1629 && CONSTANT_CLASS_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0)))
1631 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
1632 #ifdef CONSTANT_ALIGNMENT
1633 align = CONSTANT_ALIGNMENT (TREE_OPERAND (TREE_OPERAND (t, 0), 0), align);
1634 #endif
1636 else
1637 /* This technically isn't correct. We can't really derive
1638 alignment information from types. */
1639 align = MAX (align,
1640 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 1)))));
1641 if (!integer_zerop (TREE_OPERAND (t, 1))
1642 && aoff < align)
1643 align = aoff;
1645 else
1646 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1648 if (integer_zerop (TREE_OPERAND (t, 1)))
1649 /* We don't know anything about the alignment. */
1650 align = BITS_PER_UNIT;
1651 else
1652 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1655 /* If the size is known, we can set that. */
1656 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1657 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1659 /* If T is not a type, we may be able to deduce some more information about
1660 the expression. */
1661 if (! TYPE_P (t))
1663 tree base;
1664 bool align_computed = false;
1666 if (TREE_THIS_VOLATILE (t))
1667 MEM_VOLATILE_P (ref) = 1;
1669 /* Now remove any conversions: they don't change what the underlying
1670 object is. Likewise for SAVE_EXPR. */
1671 while (CONVERT_EXPR_P (t)
1672 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1673 || TREE_CODE (t) == SAVE_EXPR)
1674 t = TREE_OPERAND (t, 0);
1676 /* We may look through structure-like accesses for the purposes of
1677 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1678 base = t;
1679 while (TREE_CODE (base) == COMPONENT_REF
1680 || TREE_CODE (base) == REALPART_EXPR
1681 || TREE_CODE (base) == IMAGPART_EXPR
1682 || TREE_CODE (base) == BIT_FIELD_REF)
1683 base = TREE_OPERAND (base, 0);
1685 if (TREE_CODE (base) == MEM_REF
1686 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
1687 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
1688 if (DECL_P (base))
1690 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1691 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1692 else
1693 MEM_NOTRAP_P (ref) = 1;
1695 else
1696 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1698 base = get_base_address (base);
1699 if (base && DECL_P (base)
1700 && TREE_READONLY (base)
1701 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1702 MEM_READONLY_P (ref) = 1;
1704 /* If this expression uses it's parent's alias set, mark it such
1705 that we won't change it. */
1706 if (component_uses_parent_alias_set (t))
1707 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1709 /* If this is a decl, set the attributes of the MEM from it. */
1710 if (DECL_P (t))
1712 expr = t;
1713 offset = const0_rtx;
1714 apply_bitpos = bitpos;
1715 size = (DECL_SIZE_UNIT (t)
1716 && host_integerp (DECL_SIZE_UNIT (t), 1)
1717 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1718 align = DECL_ALIGN (t);
1719 align_computed = true;
1722 /* If this is a constant, we know the alignment. */
1723 else if (CONSTANT_CLASS_P (t))
1725 align = TYPE_ALIGN (type);
1726 #ifdef CONSTANT_ALIGNMENT
1727 align = CONSTANT_ALIGNMENT (t, align);
1728 #endif
1729 align_computed = true;
1732 /* If this is a field reference and not a bit-field, record it. */
1733 /* ??? There is some information that can be gleaned from bit-fields,
1734 such as the word offset in the structure that might be modified.
1735 But skip it for now. */
1736 else if (TREE_CODE (t) == COMPONENT_REF
1737 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1739 expr = t;
1740 offset = const0_rtx;
1741 apply_bitpos = bitpos;
1742 /* ??? Any reason the field size would be different than
1743 the size we got from the type? */
1746 /* If this is an array reference, look for an outer field reference. */
1747 else if (TREE_CODE (t) == ARRAY_REF)
1749 tree off_tree = size_zero_node;
1750 /* We can't modify t, because we use it at the end of the
1751 function. */
1752 tree t2 = t;
1756 tree index = TREE_OPERAND (t2, 1);
1757 tree low_bound = array_ref_low_bound (t2);
1758 tree unit_size = array_ref_element_size (t2);
1760 /* We assume all arrays have sizes that are a multiple of a byte.
1761 First subtract the lower bound, if any, in the type of the
1762 index, then convert to sizetype and multiply by the size of
1763 the array element. */
1764 if (! integer_zerop (low_bound))
1765 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1766 index, low_bound);
1768 off_tree = size_binop (PLUS_EXPR,
1769 size_binop (MULT_EXPR,
1770 fold_convert (sizetype,
1771 index),
1772 unit_size),
1773 off_tree);
1774 t2 = TREE_OPERAND (t2, 0);
1776 while (TREE_CODE (t2) == ARRAY_REF);
1778 if (DECL_P (t2))
1780 expr = t2;
1781 offset = NULL;
1782 if (host_integerp (off_tree, 1))
1784 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1785 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1786 align = DECL_ALIGN (t2);
1787 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1788 align = aoff;
1789 align_computed = true;
1790 offset = GEN_INT (ioff);
1791 apply_bitpos = bitpos;
1794 else if (TREE_CODE (t2) == COMPONENT_REF)
1796 expr = t2;
1797 offset = NULL;
1798 if (host_integerp (off_tree, 1))
1800 offset = GEN_INT (tree_low_cst (off_tree, 1));
1801 apply_bitpos = bitpos;
1803 /* ??? Any reason the field size would be different than
1804 the size we got from the type? */
1807 /* If this is an indirect reference, record it. */
1808 else if (TREE_CODE (t) == MEM_REF
1809 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1811 expr = t;
1812 offset = const0_rtx;
1813 apply_bitpos = bitpos;
1817 /* If this is an indirect reference, record it. */
1818 else if (TREE_CODE (t) == MEM_REF
1819 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1821 expr = t;
1822 offset = const0_rtx;
1823 apply_bitpos = bitpos;
1826 if (!align_computed && !INDIRECT_REF_P (t))
1828 unsigned int obj_align
1829 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1830 align = MAX (align, obj_align);
1834 /* If we modified OFFSET based on T, then subtract the outstanding
1835 bit position offset. Similarly, increase the size of the accessed
1836 object to contain the negative offset. */
1837 if (apply_bitpos)
1839 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1840 if (size)
1841 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1844 /* Now set the attributes we computed above. */
1845 MEM_ATTRS (ref)
1846 = get_mem_attrs (alias, expr, offset, size, align,
1847 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1849 /* If this is already known to be a scalar or aggregate, we are done. */
1850 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1851 return;
1853 /* If it is a reference into an aggregate, this is part of an aggregate.
1854 Otherwise we don't know. */
1855 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1856 || TREE_CODE (t) == ARRAY_RANGE_REF
1857 || TREE_CODE (t) == BIT_FIELD_REF)
1858 MEM_IN_STRUCT_P (ref) = 1;
1861 void
1862 set_mem_attributes (rtx ref, tree t, int objectp)
1864 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1867 /* Set the alias set of MEM to SET. */
1869 void
1870 set_mem_alias_set (rtx mem, alias_set_type set)
1872 #ifdef ENABLE_CHECKING
1873 /* If the new and old alias sets don't conflict, something is wrong. */
1874 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1875 #endif
1877 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1878 MEM_SIZE (mem), MEM_ALIGN (mem),
1879 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1882 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1884 void
1885 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1887 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1888 MEM_OFFSET (mem), MEM_SIZE (mem),
1889 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1892 /* Set the alignment of MEM to ALIGN bits. */
1894 void
1895 set_mem_align (rtx mem, unsigned int align)
1897 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1898 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1899 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1902 /* Set the expr for MEM to EXPR. */
1904 void
1905 set_mem_expr (rtx mem, tree expr)
1907 MEM_ATTRS (mem)
1908 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1909 MEM_SIZE (mem), MEM_ALIGN (mem),
1910 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1913 /* Set the offset of MEM to OFFSET. */
1915 void
1916 set_mem_offset (rtx mem, rtx offset)
1918 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1919 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1920 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1923 /* Set the size of MEM to SIZE. */
1925 void
1926 set_mem_size (rtx mem, rtx size)
1928 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1929 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1930 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1933 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1934 and its address changed to ADDR. (VOIDmode means don't change the mode.
1935 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1936 returned memory location is required to be valid. The memory
1937 attributes are not changed. */
1939 static rtx
1940 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1942 addr_space_t as;
1943 rtx new_rtx;
1945 gcc_assert (MEM_P (memref));
1946 as = MEM_ADDR_SPACE (memref);
1947 if (mode == VOIDmode)
1948 mode = GET_MODE (memref);
1949 if (addr == 0)
1950 addr = XEXP (memref, 0);
1951 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1952 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1953 return memref;
1955 if (validate)
1957 if (reload_in_progress || reload_completed)
1958 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1959 else
1960 addr = memory_address_addr_space (mode, addr, as);
1963 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1964 return memref;
1966 new_rtx = gen_rtx_MEM (mode, addr);
1967 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1968 return new_rtx;
1971 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1972 way we are changing MEMREF, so we only preserve the alias set. */
1975 change_address (rtx memref, enum machine_mode mode, rtx addr)
1977 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1978 enum machine_mode mmode = GET_MODE (new_rtx);
1979 unsigned int align;
1981 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1982 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1984 /* If there are no changes, just return the original memory reference. */
1985 if (new_rtx == memref)
1987 if (MEM_ATTRS (memref) == 0
1988 || (MEM_EXPR (memref) == NULL
1989 && MEM_OFFSET (memref) == NULL
1990 && MEM_SIZE (memref) == size
1991 && MEM_ALIGN (memref) == align))
1992 return new_rtx;
1994 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1995 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1998 MEM_ATTRS (new_rtx)
1999 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
2000 MEM_ADDR_SPACE (memref), mmode);
2002 return new_rtx;
2005 /* Return a memory reference like MEMREF, but with its mode changed
2006 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2007 nonzero, the memory address is forced to be valid.
2008 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2009 and caller is responsible for adjusting MEMREF base register. */
2012 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2013 int validate, int adjust)
2015 rtx addr = XEXP (memref, 0);
2016 rtx new_rtx;
2017 rtx memoffset = MEM_OFFSET (memref);
2018 rtx size = 0;
2019 unsigned int memalign = MEM_ALIGN (memref);
2020 addr_space_t as = MEM_ADDR_SPACE (memref);
2021 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2022 int pbits;
2024 /* If there are no changes, just return the original memory reference. */
2025 if (mode == GET_MODE (memref) && !offset
2026 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2027 return memref;
2029 /* ??? Prefer to create garbage instead of creating shared rtl.
2030 This may happen even if offset is nonzero -- consider
2031 (plus (plus reg reg) const_int) -- so do this always. */
2032 addr = copy_rtx (addr);
2034 /* Convert a possibly large offset to a signed value within the
2035 range of the target address space. */
2036 pbits = GET_MODE_BITSIZE (address_mode);
2037 if (HOST_BITS_PER_WIDE_INT > pbits)
2039 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2040 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2041 >> shift);
2044 if (adjust)
2046 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2047 object, we can merge it into the LO_SUM. */
2048 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2049 && offset >= 0
2050 && (unsigned HOST_WIDE_INT) offset
2051 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2052 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2053 plus_constant (XEXP (addr, 1), offset));
2054 else
2055 addr = plus_constant (addr, offset);
2058 new_rtx = change_address_1 (memref, mode, addr, validate);
2060 /* If the address is a REG, change_address_1 rightfully returns memref,
2061 but this would destroy memref's MEM_ATTRS. */
2062 if (new_rtx == memref && offset != 0)
2063 new_rtx = copy_rtx (new_rtx);
2065 /* Compute the new values of the memory attributes due to this adjustment.
2066 We add the offsets and update the alignment. */
2067 if (memoffset)
2068 memoffset = GEN_INT (offset + INTVAL (memoffset));
2070 /* Compute the new alignment by taking the MIN of the alignment and the
2071 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2072 if zero. */
2073 if (offset != 0)
2074 memalign
2075 = MIN (memalign,
2076 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2078 /* We can compute the size in a number of ways. */
2079 if (GET_MODE (new_rtx) != BLKmode)
2080 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2081 else if (MEM_SIZE (memref))
2082 size = plus_constant (MEM_SIZE (memref), -offset);
2084 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2085 memoffset, size, memalign, as,
2086 GET_MODE (new_rtx));
2088 /* At some point, we should validate that this offset is within the object,
2089 if all the appropriate values are known. */
2090 return new_rtx;
2093 /* Return a memory reference like MEMREF, but with its mode changed
2094 to MODE and its address changed to ADDR, which is assumed to be
2095 MEMREF offset by OFFSET bytes. If VALIDATE is
2096 nonzero, the memory address is forced to be valid. */
2099 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2100 HOST_WIDE_INT offset, int validate)
2102 memref = change_address_1 (memref, VOIDmode, addr, validate);
2103 return adjust_address_1 (memref, mode, offset, validate, 0);
2106 /* Return a memory reference like MEMREF, but whose address is changed by
2107 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2108 known to be in OFFSET (possibly 1). */
2111 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2113 rtx new_rtx, addr = XEXP (memref, 0);
2114 addr_space_t as = MEM_ADDR_SPACE (memref);
2115 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2117 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2119 /* At this point we don't know _why_ the address is invalid. It
2120 could have secondary memory references, multiplies or anything.
2122 However, if we did go and rearrange things, we can wind up not
2123 being able to recognize the magic around pic_offset_table_rtx.
2124 This stuff is fragile, and is yet another example of why it is
2125 bad to expose PIC machinery too early. */
2126 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2127 && GET_CODE (addr) == PLUS
2128 && XEXP (addr, 0) == pic_offset_table_rtx)
2130 addr = force_reg (GET_MODE (addr), addr);
2131 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2134 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2135 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2137 /* If there are no changes, just return the original memory reference. */
2138 if (new_rtx == memref)
2139 return new_rtx;
2141 /* Update the alignment to reflect the offset. Reset the offset, which
2142 we don't know. */
2143 MEM_ATTRS (new_rtx)
2144 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2145 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2146 as, GET_MODE (new_rtx));
2147 return new_rtx;
2150 /* Return a memory reference like MEMREF, but with its address changed to
2151 ADDR. The caller is asserting that the actual piece of memory pointed
2152 to is the same, just the form of the address is being changed, such as
2153 by putting something into a register. */
2156 replace_equiv_address (rtx memref, rtx addr)
2158 /* change_address_1 copies the memory attribute structure without change
2159 and that's exactly what we want here. */
2160 update_temp_slot_address (XEXP (memref, 0), addr);
2161 return change_address_1 (memref, VOIDmode, addr, 1);
2164 /* Likewise, but the reference is not required to be valid. */
2167 replace_equiv_address_nv (rtx memref, rtx addr)
2169 return change_address_1 (memref, VOIDmode, addr, 0);
2172 /* Return a memory reference like MEMREF, but with its mode widened to
2173 MODE and offset by OFFSET. This would be used by targets that e.g.
2174 cannot issue QImode memory operations and have to use SImode memory
2175 operations plus masking logic. */
2178 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2180 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2181 tree expr = MEM_EXPR (new_rtx);
2182 rtx memoffset = MEM_OFFSET (new_rtx);
2183 unsigned int size = GET_MODE_SIZE (mode);
2185 /* If there are no changes, just return the original memory reference. */
2186 if (new_rtx == memref)
2187 return new_rtx;
2189 /* If we don't know what offset we were at within the expression, then
2190 we can't know if we've overstepped the bounds. */
2191 if (! memoffset)
2192 expr = NULL_TREE;
2194 while (expr)
2196 if (TREE_CODE (expr) == COMPONENT_REF)
2198 tree field = TREE_OPERAND (expr, 1);
2199 tree offset = component_ref_field_offset (expr);
2201 if (! DECL_SIZE_UNIT (field))
2203 expr = NULL_TREE;
2204 break;
2207 /* Is the field at least as large as the access? If so, ok,
2208 otherwise strip back to the containing structure. */
2209 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2210 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2211 && INTVAL (memoffset) >= 0)
2212 break;
2214 if (! host_integerp (offset, 1))
2216 expr = NULL_TREE;
2217 break;
2220 expr = TREE_OPERAND (expr, 0);
2221 memoffset
2222 = (GEN_INT (INTVAL (memoffset)
2223 + tree_low_cst (offset, 1)
2224 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2225 / BITS_PER_UNIT)));
2227 /* Similarly for the decl. */
2228 else if (DECL_P (expr)
2229 && DECL_SIZE_UNIT (expr)
2230 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2231 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2232 && (! memoffset || INTVAL (memoffset) >= 0))
2233 break;
2234 else
2236 /* The widened memory access overflows the expression, which means
2237 that it could alias another expression. Zap it. */
2238 expr = NULL_TREE;
2239 break;
2243 if (! expr)
2244 memoffset = NULL_RTX;
2246 /* The widened memory may alias other stuff, so zap the alias set. */
2247 /* ??? Maybe use get_alias_set on any remaining expression. */
2249 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2250 MEM_ALIGN (new_rtx),
2251 MEM_ADDR_SPACE (new_rtx), mode);
2253 return new_rtx;
2256 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2257 static GTY(()) tree spill_slot_decl;
2259 tree
2260 get_spill_slot_decl (bool force_build_p)
2262 tree d = spill_slot_decl;
2263 rtx rd;
2265 if (d || !force_build_p)
2266 return d;
2268 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2269 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2270 DECL_ARTIFICIAL (d) = 1;
2271 DECL_IGNORED_P (d) = 1;
2272 TREE_USED (d) = 1;
2273 TREE_THIS_NOTRAP (d) = 1;
2274 spill_slot_decl = d;
2276 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2277 MEM_NOTRAP_P (rd) = 1;
2278 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2279 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2280 SET_DECL_RTL (d, rd);
2282 return d;
2285 /* Given MEM, a result from assign_stack_local, fill in the memory
2286 attributes as appropriate for a register allocator spill slot.
2287 These slots are not aliasable by other memory. We arrange for
2288 them all to use a single MEM_EXPR, so that the aliasing code can
2289 work properly in the case of shared spill slots. */
2291 void
2292 set_mem_attrs_for_spill (rtx mem)
2294 alias_set_type alias;
2295 rtx addr, offset;
2296 tree expr;
2298 expr = get_spill_slot_decl (true);
2299 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2301 /* We expect the incoming memory to be of the form:
2302 (mem:MODE (plus (reg sfp) (const_int offset)))
2303 with perhaps the plus missing for offset = 0. */
2304 addr = XEXP (mem, 0);
2305 offset = const0_rtx;
2306 if (GET_CODE (addr) == PLUS
2307 && CONST_INT_P (XEXP (addr, 1)))
2308 offset = XEXP (addr, 1);
2310 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2311 MEM_SIZE (mem), MEM_ALIGN (mem),
2312 ADDR_SPACE_GENERIC, GET_MODE (mem));
2313 MEM_NOTRAP_P (mem) = 1;
2316 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2319 gen_label_rtx (void)
2321 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2322 NULL, label_num++, NULL);
2325 /* For procedure integration. */
2327 /* Install new pointers to the first and last insns in the chain.
2328 Also, set cur_insn_uid to one higher than the last in use.
2329 Used for an inline-procedure after copying the insn chain. */
2331 void
2332 set_new_first_and_last_insn (rtx first, rtx last)
2334 rtx insn;
2336 set_first_insn (first);
2337 set_last_insn (last);
2338 cur_insn_uid = 0;
2340 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2342 int debug_count = 0;
2344 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2345 cur_debug_insn_uid = 0;
2347 for (insn = first; insn; insn = NEXT_INSN (insn))
2348 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2349 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2350 else
2352 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2353 if (DEBUG_INSN_P (insn))
2354 debug_count++;
2357 if (debug_count)
2358 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2359 else
2360 cur_debug_insn_uid++;
2362 else
2363 for (insn = first; insn; insn = NEXT_INSN (insn))
2364 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2366 cur_insn_uid++;
2369 /* Go through all the RTL insn bodies and copy any invalid shared
2370 structure. This routine should only be called once. */
2372 static void
2373 unshare_all_rtl_1 (rtx insn)
2375 /* Unshare just about everything else. */
2376 unshare_all_rtl_in_chain (insn);
2378 /* Make sure the addresses of stack slots found outside the insn chain
2379 (such as, in DECL_RTL of a variable) are not shared
2380 with the insn chain.
2382 This special care is necessary when the stack slot MEM does not
2383 actually appear in the insn chain. If it does appear, its address
2384 is unshared from all else at that point. */
2385 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2388 /* Go through all the RTL insn bodies and copy any invalid shared
2389 structure, again. This is a fairly expensive thing to do so it
2390 should be done sparingly. */
2392 void
2393 unshare_all_rtl_again (rtx insn)
2395 rtx p;
2396 tree decl;
2398 for (p = insn; p; p = NEXT_INSN (p))
2399 if (INSN_P (p))
2401 reset_used_flags (PATTERN (p));
2402 reset_used_flags (REG_NOTES (p));
2405 /* Make sure that virtual stack slots are not shared. */
2406 set_used_decls (DECL_INITIAL (cfun->decl));
2408 /* Make sure that virtual parameters are not shared. */
2409 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2410 set_used_flags (DECL_RTL (decl));
2412 reset_used_flags (stack_slot_list);
2414 unshare_all_rtl_1 (insn);
2417 unsigned int
2418 unshare_all_rtl (void)
2420 unshare_all_rtl_1 (get_insns ());
2421 return 0;
2424 struct rtl_opt_pass pass_unshare_all_rtl =
2427 RTL_PASS,
2428 "unshare", /* name */
2429 NULL, /* gate */
2430 unshare_all_rtl, /* execute */
2431 NULL, /* sub */
2432 NULL, /* next */
2433 0, /* static_pass_number */
2434 TV_NONE, /* tv_id */
2435 0, /* properties_required */
2436 0, /* properties_provided */
2437 0, /* properties_destroyed */
2438 0, /* todo_flags_start */
2439 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2444 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2445 Recursively does the same for subexpressions. */
2447 static void
2448 verify_rtx_sharing (rtx orig, rtx insn)
2450 rtx x = orig;
2451 int i;
2452 enum rtx_code code;
2453 const char *format_ptr;
2455 if (x == 0)
2456 return;
2458 code = GET_CODE (x);
2460 /* These types may be freely shared. */
2462 switch (code)
2464 case REG:
2465 case DEBUG_EXPR:
2466 case VALUE:
2467 case CONST_INT:
2468 case CONST_DOUBLE:
2469 case CONST_FIXED:
2470 case CONST_VECTOR:
2471 case SYMBOL_REF:
2472 case LABEL_REF:
2473 case CODE_LABEL:
2474 case PC:
2475 case CC0:
2476 case SCRATCH:
2477 return;
2478 /* SCRATCH must be shared because they represent distinct values. */
2479 case CLOBBER:
2480 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2481 return;
2482 break;
2484 case CONST:
2485 if (shared_const_p (orig))
2486 return;
2487 break;
2489 case MEM:
2490 /* A MEM is allowed to be shared if its address is constant. */
2491 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2492 || reload_completed || reload_in_progress)
2493 return;
2495 break;
2497 default:
2498 break;
2501 /* This rtx may not be shared. If it has already been seen,
2502 replace it with a copy of itself. */
2503 #ifdef ENABLE_CHECKING
2504 if (RTX_FLAG (x, used))
2506 error ("invalid rtl sharing found in the insn");
2507 debug_rtx (insn);
2508 error ("shared rtx");
2509 debug_rtx (x);
2510 internal_error ("internal consistency failure");
2512 #endif
2513 gcc_assert (!RTX_FLAG (x, used));
2515 RTX_FLAG (x, used) = 1;
2517 /* Now scan the subexpressions recursively. */
2519 format_ptr = GET_RTX_FORMAT (code);
2521 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2523 switch (*format_ptr++)
2525 case 'e':
2526 verify_rtx_sharing (XEXP (x, i), insn);
2527 break;
2529 case 'E':
2530 if (XVEC (x, i) != NULL)
2532 int j;
2533 int len = XVECLEN (x, i);
2535 for (j = 0; j < len; j++)
2537 /* We allow sharing of ASM_OPERANDS inside single
2538 instruction. */
2539 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2540 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2541 == ASM_OPERANDS))
2542 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2543 else
2544 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2547 break;
2550 return;
2553 /* Go through all the RTL insn bodies and check that there is no unexpected
2554 sharing in between the subexpressions. */
2556 DEBUG_FUNCTION void
2557 verify_rtl_sharing (void)
2559 rtx p;
2561 for (p = get_insns (); p; p = NEXT_INSN (p))
2562 if (INSN_P (p))
2564 reset_used_flags (PATTERN (p));
2565 reset_used_flags (REG_NOTES (p));
2566 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2568 int i;
2569 rtx q, sequence = PATTERN (p);
2571 for (i = 0; i < XVECLEN (sequence, 0); i++)
2573 q = XVECEXP (sequence, 0, i);
2574 gcc_assert (INSN_P (q));
2575 reset_used_flags (PATTERN (q));
2576 reset_used_flags (REG_NOTES (q));
2581 for (p = get_insns (); p; p = NEXT_INSN (p))
2582 if (INSN_P (p))
2584 verify_rtx_sharing (PATTERN (p), p);
2585 verify_rtx_sharing (REG_NOTES (p), p);
2589 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2590 Assumes the mark bits are cleared at entry. */
2592 void
2593 unshare_all_rtl_in_chain (rtx insn)
2595 for (; insn; insn = NEXT_INSN (insn))
2596 if (INSN_P (insn))
2598 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2599 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2603 /* Go through all virtual stack slots of a function and mark them as
2604 shared. We never replace the DECL_RTLs themselves with a copy,
2605 but expressions mentioned into a DECL_RTL cannot be shared with
2606 expressions in the instruction stream.
2608 Note that reload may convert pseudo registers into memories in-place.
2609 Pseudo registers are always shared, but MEMs never are. Thus if we
2610 reset the used flags on MEMs in the instruction stream, we must set
2611 them again on MEMs that appear in DECL_RTLs. */
2613 static void
2614 set_used_decls (tree blk)
2616 tree t;
2618 /* Mark decls. */
2619 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2620 if (DECL_RTL_SET_P (t))
2621 set_used_flags (DECL_RTL (t));
2623 /* Now process sub-blocks. */
2624 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2625 set_used_decls (t);
2628 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2629 Recursively does the same for subexpressions. Uses
2630 copy_rtx_if_shared_1 to reduce stack space. */
2633 copy_rtx_if_shared (rtx orig)
2635 copy_rtx_if_shared_1 (&orig);
2636 return orig;
2639 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2640 use. Recursively does the same for subexpressions. */
2642 static void
2643 copy_rtx_if_shared_1 (rtx *orig1)
2645 rtx x;
2646 int i;
2647 enum rtx_code code;
2648 rtx *last_ptr;
2649 const char *format_ptr;
2650 int copied = 0;
2651 int length;
2653 /* Repeat is used to turn tail-recursion into iteration. */
2654 repeat:
2655 x = *orig1;
2657 if (x == 0)
2658 return;
2660 code = GET_CODE (x);
2662 /* These types may be freely shared. */
2664 switch (code)
2666 case REG:
2667 case DEBUG_EXPR:
2668 case VALUE:
2669 case CONST_INT:
2670 case CONST_DOUBLE:
2671 case CONST_FIXED:
2672 case CONST_VECTOR:
2673 case SYMBOL_REF:
2674 case LABEL_REF:
2675 case CODE_LABEL:
2676 case PC:
2677 case CC0:
2678 case SCRATCH:
2679 /* SCRATCH must be shared because they represent distinct values. */
2680 return;
2681 case CLOBBER:
2682 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2683 return;
2684 break;
2686 case CONST:
2687 if (shared_const_p (x))
2688 return;
2689 break;
2691 case DEBUG_INSN:
2692 case INSN:
2693 case JUMP_INSN:
2694 case CALL_INSN:
2695 case NOTE:
2696 case BARRIER:
2697 /* The chain of insns is not being copied. */
2698 return;
2700 default:
2701 break;
2704 /* This rtx may not be shared. If it has already been seen,
2705 replace it with a copy of itself. */
2707 if (RTX_FLAG (x, used))
2709 x = shallow_copy_rtx (x);
2710 copied = 1;
2712 RTX_FLAG (x, used) = 1;
2714 /* Now scan the subexpressions recursively.
2715 We can store any replaced subexpressions directly into X
2716 since we know X is not shared! Any vectors in X
2717 must be copied if X was copied. */
2719 format_ptr = GET_RTX_FORMAT (code);
2720 length = GET_RTX_LENGTH (code);
2721 last_ptr = NULL;
2723 for (i = 0; i < length; i++)
2725 switch (*format_ptr++)
2727 case 'e':
2728 if (last_ptr)
2729 copy_rtx_if_shared_1 (last_ptr);
2730 last_ptr = &XEXP (x, i);
2731 break;
2733 case 'E':
2734 if (XVEC (x, i) != NULL)
2736 int j;
2737 int len = XVECLEN (x, i);
2739 /* Copy the vector iff I copied the rtx and the length
2740 is nonzero. */
2741 if (copied && len > 0)
2742 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2744 /* Call recursively on all inside the vector. */
2745 for (j = 0; j < len; j++)
2747 if (last_ptr)
2748 copy_rtx_if_shared_1 (last_ptr);
2749 last_ptr = &XVECEXP (x, i, j);
2752 break;
2755 *orig1 = x;
2756 if (last_ptr)
2758 orig1 = last_ptr;
2759 goto repeat;
2761 return;
2764 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2765 to look for shared sub-parts. */
2767 void
2768 reset_used_flags (rtx x)
2770 int i, j;
2771 enum rtx_code code;
2772 const char *format_ptr;
2773 int length;
2775 /* Repeat is used to turn tail-recursion into iteration. */
2776 repeat:
2777 if (x == 0)
2778 return;
2780 code = GET_CODE (x);
2782 /* These types may be freely shared so we needn't do any resetting
2783 for them. */
2785 switch (code)
2787 case REG:
2788 case DEBUG_EXPR:
2789 case VALUE:
2790 case CONST_INT:
2791 case CONST_DOUBLE:
2792 case CONST_FIXED:
2793 case CONST_VECTOR:
2794 case SYMBOL_REF:
2795 case CODE_LABEL:
2796 case PC:
2797 case CC0:
2798 return;
2800 case DEBUG_INSN:
2801 case INSN:
2802 case JUMP_INSN:
2803 case CALL_INSN:
2804 case NOTE:
2805 case LABEL_REF:
2806 case BARRIER:
2807 /* The chain of insns is not being copied. */
2808 return;
2810 default:
2811 break;
2814 RTX_FLAG (x, used) = 0;
2816 format_ptr = GET_RTX_FORMAT (code);
2817 length = GET_RTX_LENGTH (code);
2819 for (i = 0; i < length; i++)
2821 switch (*format_ptr++)
2823 case 'e':
2824 if (i == length-1)
2826 x = XEXP (x, i);
2827 goto repeat;
2829 reset_used_flags (XEXP (x, i));
2830 break;
2832 case 'E':
2833 for (j = 0; j < XVECLEN (x, i); j++)
2834 reset_used_flags (XVECEXP (x, i, j));
2835 break;
2840 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2841 to look for shared sub-parts. */
2843 void
2844 set_used_flags (rtx x)
2846 int i, j;
2847 enum rtx_code code;
2848 const char *format_ptr;
2850 if (x == 0)
2851 return;
2853 code = GET_CODE (x);
2855 /* These types may be freely shared so we needn't do any resetting
2856 for them. */
2858 switch (code)
2860 case REG:
2861 case DEBUG_EXPR:
2862 case VALUE:
2863 case CONST_INT:
2864 case CONST_DOUBLE:
2865 case CONST_FIXED:
2866 case CONST_VECTOR:
2867 case SYMBOL_REF:
2868 case CODE_LABEL:
2869 case PC:
2870 case CC0:
2871 return;
2873 case DEBUG_INSN:
2874 case INSN:
2875 case JUMP_INSN:
2876 case CALL_INSN:
2877 case NOTE:
2878 case LABEL_REF:
2879 case BARRIER:
2880 /* The chain of insns is not being copied. */
2881 return;
2883 default:
2884 break;
2887 RTX_FLAG (x, used) = 1;
2889 format_ptr = GET_RTX_FORMAT (code);
2890 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2892 switch (*format_ptr++)
2894 case 'e':
2895 set_used_flags (XEXP (x, i));
2896 break;
2898 case 'E':
2899 for (j = 0; j < XVECLEN (x, i); j++)
2900 set_used_flags (XVECEXP (x, i, j));
2901 break;
2906 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2907 Return X or the rtx for the pseudo reg the value of X was copied into.
2908 OTHER must be valid as a SET_DEST. */
2911 make_safe_from (rtx x, rtx other)
2913 while (1)
2914 switch (GET_CODE (other))
2916 case SUBREG:
2917 other = SUBREG_REG (other);
2918 break;
2919 case STRICT_LOW_PART:
2920 case SIGN_EXTEND:
2921 case ZERO_EXTEND:
2922 other = XEXP (other, 0);
2923 break;
2924 default:
2925 goto done;
2927 done:
2928 if ((MEM_P (other)
2929 && ! CONSTANT_P (x)
2930 && !REG_P (x)
2931 && GET_CODE (x) != SUBREG)
2932 || (REG_P (other)
2933 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2934 || reg_mentioned_p (other, x))))
2936 rtx temp = gen_reg_rtx (GET_MODE (x));
2937 emit_move_insn (temp, x);
2938 return temp;
2940 return x;
2943 /* Emission of insns (adding them to the doubly-linked list). */
2945 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2948 get_last_insn_anywhere (void)
2950 struct sequence_stack *stack;
2951 if (get_last_insn ())
2952 return get_last_insn ();
2953 for (stack = seq_stack; stack; stack = stack->next)
2954 if (stack->last != 0)
2955 return stack->last;
2956 return 0;
2959 /* Return the first nonnote insn emitted in current sequence or current
2960 function. This routine looks inside SEQUENCEs. */
2963 get_first_nonnote_insn (void)
2965 rtx insn = get_insns ();
2967 if (insn)
2969 if (NOTE_P (insn))
2970 for (insn = next_insn (insn);
2971 insn && NOTE_P (insn);
2972 insn = next_insn (insn))
2973 continue;
2974 else
2976 if (NONJUMP_INSN_P (insn)
2977 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2978 insn = XVECEXP (PATTERN (insn), 0, 0);
2982 return insn;
2985 /* Return the last nonnote insn emitted in current sequence or current
2986 function. This routine looks inside SEQUENCEs. */
2989 get_last_nonnote_insn (void)
2991 rtx insn = get_last_insn ();
2993 if (insn)
2995 if (NOTE_P (insn))
2996 for (insn = previous_insn (insn);
2997 insn && NOTE_P (insn);
2998 insn = previous_insn (insn))
2999 continue;
3000 else
3002 if (NONJUMP_INSN_P (insn)
3003 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3004 insn = XVECEXP (PATTERN (insn), 0,
3005 XVECLEN (PATTERN (insn), 0) - 1);
3009 return insn;
3012 /* Return the number of actual (non-debug) insns emitted in this
3013 function. */
3016 get_max_insn_count (void)
3018 int n = cur_insn_uid;
3020 /* The table size must be stable across -g, to avoid codegen
3021 differences due to debug insns, and not be affected by
3022 -fmin-insn-uid, to avoid excessive table size and to simplify
3023 debugging of -fcompare-debug failures. */
3024 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3025 n -= cur_debug_insn_uid;
3026 else
3027 n -= MIN_NONDEBUG_INSN_UID;
3029 return n;
3033 /* Return the next insn. If it is a SEQUENCE, return the first insn
3034 of the sequence. */
3037 next_insn (rtx insn)
3039 if (insn)
3041 insn = NEXT_INSN (insn);
3042 if (insn && NONJUMP_INSN_P (insn)
3043 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3044 insn = XVECEXP (PATTERN (insn), 0, 0);
3047 return insn;
3050 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3051 of the sequence. */
3054 previous_insn (rtx insn)
3056 if (insn)
3058 insn = PREV_INSN (insn);
3059 if (insn && NONJUMP_INSN_P (insn)
3060 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3061 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3064 return insn;
3067 /* Return the next insn after INSN that is not a NOTE. This routine does not
3068 look inside SEQUENCEs. */
3071 next_nonnote_insn (rtx insn)
3073 while (insn)
3075 insn = NEXT_INSN (insn);
3076 if (insn == 0 || !NOTE_P (insn))
3077 break;
3080 return insn;
3083 /* Return the next insn after INSN that is not a NOTE, but stop the
3084 search before we enter another basic block. This routine does not
3085 look inside SEQUENCEs. */
3088 next_nonnote_insn_bb (rtx insn)
3090 while (insn)
3092 insn = NEXT_INSN (insn);
3093 if (insn == 0 || !NOTE_P (insn))
3094 break;
3095 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3096 return NULL_RTX;
3099 return insn;
3102 /* Return the previous insn before INSN that is not a NOTE. This routine does
3103 not look inside SEQUENCEs. */
3106 prev_nonnote_insn (rtx insn)
3108 while (insn)
3110 insn = PREV_INSN (insn);
3111 if (insn == 0 || !NOTE_P (insn))
3112 break;
3115 return insn;
3118 /* Return the previous insn before INSN that is not a NOTE, but stop
3119 the search before we enter another basic block. This routine does
3120 not look inside SEQUENCEs. */
3123 prev_nonnote_insn_bb (rtx insn)
3125 while (insn)
3127 insn = PREV_INSN (insn);
3128 if (insn == 0 || !NOTE_P (insn))
3129 break;
3130 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3131 return NULL_RTX;
3134 return insn;
3137 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3138 routine does not look inside SEQUENCEs. */
3141 next_nondebug_insn (rtx insn)
3143 while (insn)
3145 insn = NEXT_INSN (insn);
3146 if (insn == 0 || !DEBUG_INSN_P (insn))
3147 break;
3150 return insn;
3153 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3154 This routine does not look inside SEQUENCEs. */
3157 prev_nondebug_insn (rtx insn)
3159 while (insn)
3161 insn = PREV_INSN (insn);
3162 if (insn == 0 || !DEBUG_INSN_P (insn))
3163 break;
3166 return insn;
3169 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3170 or 0, if there is none. This routine does not look inside
3171 SEQUENCEs. */
3174 next_real_insn (rtx insn)
3176 while (insn)
3178 insn = NEXT_INSN (insn);
3179 if (insn == 0 || INSN_P (insn))
3180 break;
3183 return insn;
3186 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3187 or 0, if there is none. This routine does not look inside
3188 SEQUENCEs. */
3191 prev_real_insn (rtx insn)
3193 while (insn)
3195 insn = PREV_INSN (insn);
3196 if (insn == 0 || INSN_P (insn))
3197 break;
3200 return insn;
3203 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3204 This routine does not look inside SEQUENCEs. */
3207 last_call_insn (void)
3209 rtx insn;
3211 for (insn = get_last_insn ();
3212 insn && !CALL_P (insn);
3213 insn = PREV_INSN (insn))
3216 return insn;
3219 /* Find the next insn after INSN that really does something. This routine
3220 does not look inside SEQUENCEs. After reload this also skips over
3221 standalone USE and CLOBBER insn. */
3224 active_insn_p (const_rtx insn)
3226 return (CALL_P (insn) || JUMP_P (insn)
3227 || (NONJUMP_INSN_P (insn)
3228 && (! reload_completed
3229 || (GET_CODE (PATTERN (insn)) != USE
3230 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3234 next_active_insn (rtx insn)
3236 while (insn)
3238 insn = NEXT_INSN (insn);
3239 if (insn == 0 || active_insn_p (insn))
3240 break;
3243 return insn;
3246 /* Find the last insn before INSN that really does something. This routine
3247 does not look inside SEQUENCEs. After reload this also skips over
3248 standalone USE and CLOBBER insn. */
3251 prev_active_insn (rtx insn)
3253 while (insn)
3255 insn = PREV_INSN (insn);
3256 if (insn == 0 || active_insn_p (insn))
3257 break;
3260 return insn;
3263 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3266 next_label (rtx insn)
3268 while (insn)
3270 insn = NEXT_INSN (insn);
3271 if (insn == 0 || LABEL_P (insn))
3272 break;
3275 return insn;
3278 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3281 prev_label (rtx insn)
3283 while (insn)
3285 insn = PREV_INSN (insn);
3286 if (insn == 0 || LABEL_P (insn))
3287 break;
3290 return insn;
3293 /* Return the last label to mark the same position as LABEL. Return null
3294 if LABEL itself is null. */
3297 skip_consecutive_labels (rtx label)
3299 rtx insn;
3301 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3302 if (LABEL_P (insn))
3303 label = insn;
3305 return label;
3308 #ifdef HAVE_cc0
3309 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3310 and REG_CC_USER notes so we can find it. */
3312 void
3313 link_cc0_insns (rtx insn)
3315 rtx user = next_nonnote_insn (insn);
3317 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3318 user = XVECEXP (PATTERN (user), 0, 0);
3320 add_reg_note (user, REG_CC_SETTER, insn);
3321 add_reg_note (insn, REG_CC_USER, user);
3324 /* Return the next insn that uses CC0 after INSN, which is assumed to
3325 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3326 applied to the result of this function should yield INSN).
3328 Normally, this is simply the next insn. However, if a REG_CC_USER note
3329 is present, it contains the insn that uses CC0.
3331 Return 0 if we can't find the insn. */
3334 next_cc0_user (rtx insn)
3336 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3338 if (note)
3339 return XEXP (note, 0);
3341 insn = next_nonnote_insn (insn);
3342 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3343 insn = XVECEXP (PATTERN (insn), 0, 0);
3345 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3346 return insn;
3348 return 0;
3351 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3352 note, it is the previous insn. */
3355 prev_cc0_setter (rtx insn)
3357 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3359 if (note)
3360 return XEXP (note, 0);
3362 insn = prev_nonnote_insn (insn);
3363 gcc_assert (sets_cc0_p (PATTERN (insn)));
3365 return insn;
3367 #endif
3369 #ifdef AUTO_INC_DEC
3370 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3372 static int
3373 find_auto_inc (rtx *xp, void *data)
3375 rtx x = *xp;
3376 rtx reg = (rtx) data;
3378 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3379 return 0;
3381 switch (GET_CODE (x))
3383 case PRE_DEC:
3384 case PRE_INC:
3385 case POST_DEC:
3386 case POST_INC:
3387 case PRE_MODIFY:
3388 case POST_MODIFY:
3389 if (rtx_equal_p (reg, XEXP (x, 0)))
3390 return 1;
3391 break;
3393 default:
3394 gcc_unreachable ();
3396 return -1;
3398 #endif
3400 /* Increment the label uses for all labels present in rtx. */
3402 static void
3403 mark_label_nuses (rtx x)
3405 enum rtx_code code;
3406 int i, j;
3407 const char *fmt;
3409 code = GET_CODE (x);
3410 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3411 LABEL_NUSES (XEXP (x, 0))++;
3413 fmt = GET_RTX_FORMAT (code);
3414 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3416 if (fmt[i] == 'e')
3417 mark_label_nuses (XEXP (x, i));
3418 else if (fmt[i] == 'E')
3419 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3420 mark_label_nuses (XVECEXP (x, i, j));
3425 /* Try splitting insns that can be split for better scheduling.
3426 PAT is the pattern which might split.
3427 TRIAL is the insn providing PAT.
3428 LAST is nonzero if we should return the last insn of the sequence produced.
3430 If this routine succeeds in splitting, it returns the first or last
3431 replacement insn depending on the value of LAST. Otherwise, it
3432 returns TRIAL. If the insn to be returned can be split, it will be. */
3435 try_split (rtx pat, rtx trial, int last)
3437 rtx before = PREV_INSN (trial);
3438 rtx after = NEXT_INSN (trial);
3439 int has_barrier = 0;
3440 rtx note, seq, tem;
3441 int probability;
3442 rtx insn_last, insn;
3443 int njumps = 0;
3445 /* We're not good at redistributing frame information. */
3446 if (RTX_FRAME_RELATED_P (trial))
3447 return trial;
3449 if (any_condjump_p (trial)
3450 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3451 split_branch_probability = INTVAL (XEXP (note, 0));
3452 probability = split_branch_probability;
3454 seq = split_insns (pat, trial);
3456 split_branch_probability = -1;
3458 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3459 We may need to handle this specially. */
3460 if (after && BARRIER_P (after))
3462 has_barrier = 1;
3463 after = NEXT_INSN (after);
3466 if (!seq)
3467 return trial;
3469 /* Avoid infinite loop if any insn of the result matches
3470 the original pattern. */
3471 insn_last = seq;
3472 while (1)
3474 if (INSN_P (insn_last)
3475 && rtx_equal_p (PATTERN (insn_last), pat))
3476 return trial;
3477 if (!NEXT_INSN (insn_last))
3478 break;
3479 insn_last = NEXT_INSN (insn_last);
3482 /* We will be adding the new sequence to the function. The splitters
3483 may have introduced invalid RTL sharing, so unshare the sequence now. */
3484 unshare_all_rtl_in_chain (seq);
3486 /* Mark labels. */
3487 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3489 if (JUMP_P (insn))
3491 mark_jump_label (PATTERN (insn), insn, 0);
3492 njumps++;
3493 if (probability != -1
3494 && any_condjump_p (insn)
3495 && !find_reg_note (insn, REG_BR_PROB, 0))
3497 /* We can preserve the REG_BR_PROB notes only if exactly
3498 one jump is created, otherwise the machine description
3499 is responsible for this step using
3500 split_branch_probability variable. */
3501 gcc_assert (njumps == 1);
3502 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3507 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3508 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3509 if (CALL_P (trial))
3511 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3512 if (CALL_P (insn))
3514 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3515 while (*p)
3516 p = &XEXP (*p, 1);
3517 *p = CALL_INSN_FUNCTION_USAGE (trial);
3518 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3520 /* Update the debug information for the CALL_INSN. */
3521 if (flag_enable_icf_debug)
3522 (*debug_hooks->copy_call_info) (trial, insn);
3526 /* Copy notes, particularly those related to the CFG. */
3527 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3529 switch (REG_NOTE_KIND (note))
3531 case REG_EH_REGION:
3532 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3533 break;
3535 case REG_NORETURN:
3536 case REG_SETJMP:
3537 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3539 if (CALL_P (insn))
3540 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3542 break;
3544 case REG_NON_LOCAL_GOTO:
3545 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3547 if (JUMP_P (insn))
3548 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3550 break;
3552 #ifdef AUTO_INC_DEC
3553 case REG_INC:
3554 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3556 rtx reg = XEXP (note, 0);
3557 if (!FIND_REG_INC_NOTE (insn, reg)
3558 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3559 add_reg_note (insn, REG_INC, reg);
3561 break;
3562 #endif
3564 default:
3565 break;
3569 /* If there are LABELS inside the split insns increment the
3570 usage count so we don't delete the label. */
3571 if (INSN_P (trial))
3573 insn = insn_last;
3574 while (insn != NULL_RTX)
3576 /* JUMP_P insns have already been "marked" above. */
3577 if (NONJUMP_INSN_P (insn))
3578 mark_label_nuses (PATTERN (insn));
3580 insn = PREV_INSN (insn);
3584 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3586 delete_insn (trial);
3587 if (has_barrier)
3588 emit_barrier_after (tem);
3590 /* Recursively call try_split for each new insn created; by the
3591 time control returns here that insn will be fully split, so
3592 set LAST and continue from the insn after the one returned.
3593 We can't use next_active_insn here since AFTER may be a note.
3594 Ignore deleted insns, which can be occur if not optimizing. */
3595 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3596 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3597 tem = try_split (PATTERN (tem), tem, 1);
3599 /* Return either the first or the last insn, depending on which was
3600 requested. */
3601 return last
3602 ? (after ? PREV_INSN (after) : get_last_insn ())
3603 : NEXT_INSN (before);
3606 /* Make and return an INSN rtx, initializing all its slots.
3607 Store PATTERN in the pattern slots. */
3610 make_insn_raw (rtx pattern)
3612 rtx insn;
3614 insn = rtx_alloc (INSN);
3616 INSN_UID (insn) = cur_insn_uid++;
3617 PATTERN (insn) = pattern;
3618 INSN_CODE (insn) = -1;
3619 REG_NOTES (insn) = NULL;
3620 INSN_LOCATOR (insn) = curr_insn_locator ();
3621 BLOCK_FOR_INSN (insn) = NULL;
3623 #ifdef ENABLE_RTL_CHECKING
3624 if (insn
3625 && INSN_P (insn)
3626 && (returnjump_p (insn)
3627 || (GET_CODE (insn) == SET
3628 && SET_DEST (insn) == pc_rtx)))
3630 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3631 debug_rtx (insn);
3633 #endif
3635 return insn;
3638 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3641 make_debug_insn_raw (rtx pattern)
3643 rtx insn;
3645 insn = rtx_alloc (DEBUG_INSN);
3646 INSN_UID (insn) = cur_debug_insn_uid++;
3647 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3648 INSN_UID (insn) = cur_insn_uid++;
3650 PATTERN (insn) = pattern;
3651 INSN_CODE (insn) = -1;
3652 REG_NOTES (insn) = NULL;
3653 INSN_LOCATOR (insn) = curr_insn_locator ();
3654 BLOCK_FOR_INSN (insn) = NULL;
3656 return insn;
3659 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3662 make_jump_insn_raw (rtx pattern)
3664 rtx insn;
3666 insn = rtx_alloc (JUMP_INSN);
3667 INSN_UID (insn) = cur_insn_uid++;
3669 PATTERN (insn) = pattern;
3670 INSN_CODE (insn) = -1;
3671 REG_NOTES (insn) = NULL;
3672 JUMP_LABEL (insn) = NULL;
3673 INSN_LOCATOR (insn) = curr_insn_locator ();
3674 BLOCK_FOR_INSN (insn) = NULL;
3676 return insn;
3679 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3681 static rtx
3682 make_call_insn_raw (rtx pattern)
3684 rtx insn;
3686 insn = rtx_alloc (CALL_INSN);
3687 INSN_UID (insn) = cur_insn_uid++;
3689 PATTERN (insn) = pattern;
3690 INSN_CODE (insn) = -1;
3691 REG_NOTES (insn) = NULL;
3692 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3693 INSN_LOCATOR (insn) = curr_insn_locator ();
3694 BLOCK_FOR_INSN (insn) = NULL;
3696 return insn;
3699 /* Add INSN to the end of the doubly-linked list.
3700 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3702 void
3703 add_insn (rtx insn)
3705 PREV_INSN (insn) = get_last_insn();
3706 NEXT_INSN (insn) = 0;
3708 if (NULL != get_last_insn())
3709 NEXT_INSN (get_last_insn ()) = insn;
3711 if (NULL == get_insns ())
3712 set_first_insn (insn);
3714 set_last_insn (insn);
3717 /* Add INSN into the doubly-linked list after insn AFTER. This and
3718 the next should be the only functions called to insert an insn once
3719 delay slots have been filled since only they know how to update a
3720 SEQUENCE. */
3722 void
3723 add_insn_after (rtx insn, rtx after, basic_block bb)
3725 rtx next = NEXT_INSN (after);
3727 gcc_assert (!optimize || !INSN_DELETED_P (after));
3729 NEXT_INSN (insn) = next;
3730 PREV_INSN (insn) = after;
3732 if (next)
3734 PREV_INSN (next) = insn;
3735 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3736 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3738 else if (get_last_insn () == after)
3739 set_last_insn (insn);
3740 else
3742 struct sequence_stack *stack = seq_stack;
3743 /* Scan all pending sequences too. */
3744 for (; stack; stack = stack->next)
3745 if (after == stack->last)
3747 stack->last = insn;
3748 break;
3751 gcc_assert (stack);
3754 if (!BARRIER_P (after)
3755 && !BARRIER_P (insn)
3756 && (bb = BLOCK_FOR_INSN (after)))
3758 set_block_for_insn (insn, bb);
3759 if (INSN_P (insn))
3760 df_insn_rescan (insn);
3761 /* Should not happen as first in the BB is always
3762 either NOTE or LABEL. */
3763 if (BB_END (bb) == after
3764 /* Avoid clobbering of structure when creating new BB. */
3765 && !BARRIER_P (insn)
3766 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3767 BB_END (bb) = insn;
3770 NEXT_INSN (after) = insn;
3771 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3773 rtx sequence = PATTERN (after);
3774 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3778 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3779 the previous should be the only functions called to insert an insn
3780 once delay slots have been filled since only they know how to
3781 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3782 bb from before. */
3784 void
3785 add_insn_before (rtx insn, rtx before, basic_block bb)
3787 rtx prev = PREV_INSN (before);
3789 gcc_assert (!optimize || !INSN_DELETED_P (before));
3791 PREV_INSN (insn) = prev;
3792 NEXT_INSN (insn) = before;
3794 if (prev)
3796 NEXT_INSN (prev) = insn;
3797 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3799 rtx sequence = PATTERN (prev);
3800 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3803 else if (get_insns () == before)
3804 set_first_insn (insn);
3805 else
3807 struct sequence_stack *stack = seq_stack;
3808 /* Scan all pending sequences too. */
3809 for (; stack; stack = stack->next)
3810 if (before == stack->first)
3812 stack->first = insn;
3813 break;
3816 gcc_assert (stack);
3819 if (!bb
3820 && !BARRIER_P (before)
3821 && !BARRIER_P (insn))
3822 bb = BLOCK_FOR_INSN (before);
3824 if (bb)
3826 set_block_for_insn (insn, bb);
3827 if (INSN_P (insn))
3828 df_insn_rescan (insn);
3829 /* Should not happen as first in the BB is always either NOTE or
3830 LABEL. */
3831 gcc_assert (BB_HEAD (bb) != insn
3832 /* Avoid clobbering of structure when creating new BB. */
3833 || BARRIER_P (insn)
3834 || NOTE_INSN_BASIC_BLOCK_P (insn));
3837 PREV_INSN (before) = insn;
3838 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3839 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3843 /* Replace insn with an deleted instruction note. */
3845 void
3846 set_insn_deleted (rtx insn)
3848 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3849 PUT_CODE (insn, NOTE);
3850 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3854 /* Remove an insn from its doubly-linked list. This function knows how
3855 to handle sequences. */
3856 void
3857 remove_insn (rtx insn)
3859 rtx next = NEXT_INSN (insn);
3860 rtx prev = PREV_INSN (insn);
3861 basic_block bb;
3863 /* Later in the code, the block will be marked dirty. */
3864 df_insn_delete (NULL, INSN_UID (insn));
3866 if (prev)
3868 NEXT_INSN (prev) = next;
3869 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3871 rtx sequence = PATTERN (prev);
3872 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3875 else if (get_insns () == insn)
3877 if (next)
3878 PREV_INSN (next) = NULL;
3879 set_first_insn (next);
3881 else
3883 struct sequence_stack *stack = seq_stack;
3884 /* Scan all pending sequences too. */
3885 for (; stack; stack = stack->next)
3886 if (insn == stack->first)
3888 stack->first = next;
3889 break;
3892 gcc_assert (stack);
3895 if (next)
3897 PREV_INSN (next) = prev;
3898 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3899 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3901 else if (get_last_insn () == insn)
3902 set_last_insn (prev);
3903 else
3905 struct sequence_stack *stack = seq_stack;
3906 /* Scan all pending sequences too. */
3907 for (; stack; stack = stack->next)
3908 if (insn == stack->last)
3910 stack->last = prev;
3911 break;
3914 gcc_assert (stack);
3916 if (!BARRIER_P (insn)
3917 && (bb = BLOCK_FOR_INSN (insn)))
3919 if (INSN_P (insn))
3920 df_set_bb_dirty (bb);
3921 if (BB_HEAD (bb) == insn)
3923 /* Never ever delete the basic block note without deleting whole
3924 basic block. */
3925 gcc_assert (!NOTE_P (insn));
3926 BB_HEAD (bb) = next;
3928 if (BB_END (bb) == insn)
3929 BB_END (bb) = prev;
3933 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3935 void
3936 add_function_usage_to (rtx call_insn, rtx call_fusage)
3938 gcc_assert (call_insn && CALL_P (call_insn));
3940 /* Put the register usage information on the CALL. If there is already
3941 some usage information, put ours at the end. */
3942 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3944 rtx link;
3946 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3947 link = XEXP (link, 1))
3950 XEXP (link, 1) = call_fusage;
3952 else
3953 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3956 /* Delete all insns made since FROM.
3957 FROM becomes the new last instruction. */
3959 void
3960 delete_insns_since (rtx from)
3962 if (from == 0)
3963 set_first_insn (0);
3964 else
3965 NEXT_INSN (from) = 0;
3966 set_last_insn (from);
3969 /* This function is deprecated, please use sequences instead.
3971 Move a consecutive bunch of insns to a different place in the chain.
3972 The insns to be moved are those between FROM and TO.
3973 They are moved to a new position after the insn AFTER.
3974 AFTER must not be FROM or TO or any insn in between.
3976 This function does not know about SEQUENCEs and hence should not be
3977 called after delay-slot filling has been done. */
3979 void
3980 reorder_insns_nobb (rtx from, rtx to, rtx after)
3982 /* Splice this bunch out of where it is now. */
3983 if (PREV_INSN (from))
3984 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3985 if (NEXT_INSN (to))
3986 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3987 if (get_last_insn () == to)
3988 set_last_insn (PREV_INSN (from));
3989 if (get_insns () == from)
3990 set_first_insn (NEXT_INSN (to));
3992 /* Make the new neighbors point to it and it to them. */
3993 if (NEXT_INSN (after))
3994 PREV_INSN (NEXT_INSN (after)) = to;
3996 NEXT_INSN (to) = NEXT_INSN (after);
3997 PREV_INSN (from) = after;
3998 NEXT_INSN (after) = from;
3999 if (after == get_last_insn())
4000 set_last_insn (to);
4003 /* Same as function above, but take care to update BB boundaries. */
4004 void
4005 reorder_insns (rtx from, rtx to, rtx after)
4007 rtx prev = PREV_INSN (from);
4008 basic_block bb, bb2;
4010 reorder_insns_nobb (from, to, after);
4012 if (!BARRIER_P (after)
4013 && (bb = BLOCK_FOR_INSN (after)))
4015 rtx x;
4016 df_set_bb_dirty (bb);
4018 if (!BARRIER_P (from)
4019 && (bb2 = BLOCK_FOR_INSN (from)))
4021 if (BB_END (bb2) == to)
4022 BB_END (bb2) = prev;
4023 df_set_bb_dirty (bb2);
4026 if (BB_END (bb) == after)
4027 BB_END (bb) = to;
4029 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4030 if (!BARRIER_P (x))
4031 df_insn_change_bb (x, bb);
4036 /* Emit insn(s) of given code and pattern
4037 at a specified place within the doubly-linked list.
4039 All of the emit_foo global entry points accept an object
4040 X which is either an insn list or a PATTERN of a single
4041 instruction.
4043 There are thus a few canonical ways to generate code and
4044 emit it at a specific place in the instruction stream. For
4045 example, consider the instruction named SPOT and the fact that
4046 we would like to emit some instructions before SPOT. We might
4047 do it like this:
4049 start_sequence ();
4050 ... emit the new instructions ...
4051 insns_head = get_insns ();
4052 end_sequence ();
4054 emit_insn_before (insns_head, SPOT);
4056 It used to be common to generate SEQUENCE rtl instead, but that
4057 is a relic of the past which no longer occurs. The reason is that
4058 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4059 generated would almost certainly die right after it was created. */
4061 /* Make X be output before the instruction BEFORE. */
4064 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4066 rtx last = before;
4067 rtx insn;
4069 gcc_assert (before);
4071 if (x == NULL_RTX)
4072 return last;
4074 switch (GET_CODE (x))
4076 case DEBUG_INSN:
4077 case INSN:
4078 case JUMP_INSN:
4079 case CALL_INSN:
4080 case CODE_LABEL:
4081 case BARRIER:
4082 case NOTE:
4083 insn = x;
4084 while (insn)
4086 rtx next = NEXT_INSN (insn);
4087 add_insn_before (insn, before, bb);
4088 last = insn;
4089 insn = next;
4091 break;
4093 #ifdef ENABLE_RTL_CHECKING
4094 case SEQUENCE:
4095 gcc_unreachable ();
4096 break;
4097 #endif
4099 default:
4100 last = make_insn_raw (x);
4101 add_insn_before (last, before, bb);
4102 break;
4105 return last;
4108 /* Make an instruction with body X and code JUMP_INSN
4109 and output it before the instruction BEFORE. */
4112 emit_jump_insn_before_noloc (rtx x, rtx before)
4114 rtx insn, last = NULL_RTX;
4116 gcc_assert (before);
4118 switch (GET_CODE (x))
4120 case DEBUG_INSN:
4121 case INSN:
4122 case JUMP_INSN:
4123 case CALL_INSN:
4124 case CODE_LABEL:
4125 case BARRIER:
4126 case NOTE:
4127 insn = x;
4128 while (insn)
4130 rtx next = NEXT_INSN (insn);
4131 add_insn_before (insn, before, NULL);
4132 last = insn;
4133 insn = next;
4135 break;
4137 #ifdef ENABLE_RTL_CHECKING
4138 case SEQUENCE:
4139 gcc_unreachable ();
4140 break;
4141 #endif
4143 default:
4144 last = make_jump_insn_raw (x);
4145 add_insn_before (last, before, NULL);
4146 break;
4149 return last;
4152 /* Make an instruction with body X and code CALL_INSN
4153 and output it before the instruction BEFORE. */
4156 emit_call_insn_before_noloc (rtx x, rtx before)
4158 rtx last = NULL_RTX, insn;
4160 gcc_assert (before);
4162 switch (GET_CODE (x))
4164 case DEBUG_INSN:
4165 case INSN:
4166 case JUMP_INSN:
4167 case CALL_INSN:
4168 case CODE_LABEL:
4169 case BARRIER:
4170 case NOTE:
4171 insn = x;
4172 while (insn)
4174 rtx next = NEXT_INSN (insn);
4175 add_insn_before (insn, before, NULL);
4176 last = insn;
4177 insn = next;
4179 break;
4181 #ifdef ENABLE_RTL_CHECKING
4182 case SEQUENCE:
4183 gcc_unreachable ();
4184 break;
4185 #endif
4187 default:
4188 last = make_call_insn_raw (x);
4189 add_insn_before (last, before, NULL);
4190 break;
4193 return last;
4196 /* Make an instruction with body X and code DEBUG_INSN
4197 and output it before the instruction BEFORE. */
4200 emit_debug_insn_before_noloc (rtx x, rtx before)
4202 rtx last = NULL_RTX, insn;
4204 gcc_assert (before);
4206 switch (GET_CODE (x))
4208 case DEBUG_INSN:
4209 case INSN:
4210 case JUMP_INSN:
4211 case CALL_INSN:
4212 case CODE_LABEL:
4213 case BARRIER:
4214 case NOTE:
4215 insn = x;
4216 while (insn)
4218 rtx next = NEXT_INSN (insn);
4219 add_insn_before (insn, before, NULL);
4220 last = insn;
4221 insn = next;
4223 break;
4225 #ifdef ENABLE_RTL_CHECKING
4226 case SEQUENCE:
4227 gcc_unreachable ();
4228 break;
4229 #endif
4231 default:
4232 last = make_debug_insn_raw (x);
4233 add_insn_before (last, before, NULL);
4234 break;
4237 return last;
4240 /* Make an insn of code BARRIER
4241 and output it before the insn BEFORE. */
4244 emit_barrier_before (rtx before)
4246 rtx insn = rtx_alloc (BARRIER);
4248 INSN_UID (insn) = cur_insn_uid++;
4250 add_insn_before (insn, before, NULL);
4251 return insn;
4254 /* Emit the label LABEL before the insn BEFORE. */
4257 emit_label_before (rtx label, rtx before)
4259 /* This can be called twice for the same label as a result of the
4260 confusion that follows a syntax error! So make it harmless. */
4261 if (INSN_UID (label) == 0)
4263 INSN_UID (label) = cur_insn_uid++;
4264 add_insn_before (label, before, NULL);
4267 return label;
4270 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4273 emit_note_before (enum insn_note subtype, rtx before)
4275 rtx note = rtx_alloc (NOTE);
4276 INSN_UID (note) = cur_insn_uid++;
4277 NOTE_KIND (note) = subtype;
4278 BLOCK_FOR_INSN (note) = NULL;
4279 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4281 add_insn_before (note, before, NULL);
4282 return note;
4285 /* Helper for emit_insn_after, handles lists of instructions
4286 efficiently. */
4288 static rtx
4289 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4291 rtx last;
4292 rtx after_after;
4293 if (!bb && !BARRIER_P (after))
4294 bb = BLOCK_FOR_INSN (after);
4296 if (bb)
4298 df_set_bb_dirty (bb);
4299 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4300 if (!BARRIER_P (last))
4302 set_block_for_insn (last, bb);
4303 df_insn_rescan (last);
4305 if (!BARRIER_P (last))
4307 set_block_for_insn (last, bb);
4308 df_insn_rescan (last);
4310 if (BB_END (bb) == after)
4311 BB_END (bb) = last;
4313 else
4314 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4315 continue;
4317 after_after = NEXT_INSN (after);
4319 NEXT_INSN (after) = first;
4320 PREV_INSN (first) = after;
4321 NEXT_INSN (last) = after_after;
4322 if (after_after)
4323 PREV_INSN (after_after) = last;
4325 if (after == get_last_insn())
4326 set_last_insn (last);
4328 return last;
4331 /* Make X be output after the insn AFTER and set the BB of insn. If
4332 BB is NULL, an attempt is made to infer the BB from AFTER. */
4335 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4337 rtx last = after;
4339 gcc_assert (after);
4341 if (x == NULL_RTX)
4342 return last;
4344 switch (GET_CODE (x))
4346 case DEBUG_INSN:
4347 case INSN:
4348 case JUMP_INSN:
4349 case CALL_INSN:
4350 case CODE_LABEL:
4351 case BARRIER:
4352 case NOTE:
4353 last = emit_insn_after_1 (x, after, bb);
4354 break;
4356 #ifdef ENABLE_RTL_CHECKING
4357 case SEQUENCE:
4358 gcc_unreachable ();
4359 break;
4360 #endif
4362 default:
4363 last = make_insn_raw (x);
4364 add_insn_after (last, after, bb);
4365 break;
4368 return last;
4372 /* Make an insn of code JUMP_INSN with body X
4373 and output it after the insn AFTER. */
4376 emit_jump_insn_after_noloc (rtx x, rtx after)
4378 rtx last;
4380 gcc_assert (after);
4382 switch (GET_CODE (x))
4384 case DEBUG_INSN:
4385 case INSN:
4386 case JUMP_INSN:
4387 case CALL_INSN:
4388 case CODE_LABEL:
4389 case BARRIER:
4390 case NOTE:
4391 last = emit_insn_after_1 (x, after, NULL);
4392 break;
4394 #ifdef ENABLE_RTL_CHECKING
4395 case SEQUENCE:
4396 gcc_unreachable ();
4397 break;
4398 #endif
4400 default:
4401 last = make_jump_insn_raw (x);
4402 add_insn_after (last, after, NULL);
4403 break;
4406 return last;
4409 /* Make an instruction with body X and code CALL_INSN
4410 and output it after the instruction AFTER. */
4413 emit_call_insn_after_noloc (rtx x, rtx after)
4415 rtx last;
4417 gcc_assert (after);
4419 switch (GET_CODE (x))
4421 case DEBUG_INSN:
4422 case INSN:
4423 case JUMP_INSN:
4424 case CALL_INSN:
4425 case CODE_LABEL:
4426 case BARRIER:
4427 case NOTE:
4428 last = emit_insn_after_1 (x, after, NULL);
4429 break;
4431 #ifdef ENABLE_RTL_CHECKING
4432 case SEQUENCE:
4433 gcc_unreachable ();
4434 break;
4435 #endif
4437 default:
4438 last = make_call_insn_raw (x);
4439 add_insn_after (last, after, NULL);
4440 break;
4443 return last;
4446 /* Make an instruction with body X and code CALL_INSN
4447 and output it after the instruction AFTER. */
4450 emit_debug_insn_after_noloc (rtx x, rtx after)
4452 rtx last;
4454 gcc_assert (after);
4456 switch (GET_CODE (x))
4458 case DEBUG_INSN:
4459 case INSN:
4460 case JUMP_INSN:
4461 case CALL_INSN:
4462 case CODE_LABEL:
4463 case BARRIER:
4464 case NOTE:
4465 last = emit_insn_after_1 (x, after, NULL);
4466 break;
4468 #ifdef ENABLE_RTL_CHECKING
4469 case SEQUENCE:
4470 gcc_unreachable ();
4471 break;
4472 #endif
4474 default:
4475 last = make_debug_insn_raw (x);
4476 add_insn_after (last, after, NULL);
4477 break;
4480 return last;
4483 /* Make an insn of code BARRIER
4484 and output it after the insn AFTER. */
4487 emit_barrier_after (rtx after)
4489 rtx insn = rtx_alloc (BARRIER);
4491 INSN_UID (insn) = cur_insn_uid++;
4493 add_insn_after (insn, after, NULL);
4494 return insn;
4497 /* Emit the label LABEL after the insn AFTER. */
4500 emit_label_after (rtx label, rtx after)
4502 /* This can be called twice for the same label
4503 as a result of the confusion that follows a syntax error!
4504 So make it harmless. */
4505 if (INSN_UID (label) == 0)
4507 INSN_UID (label) = cur_insn_uid++;
4508 add_insn_after (label, after, NULL);
4511 return label;
4514 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4517 emit_note_after (enum insn_note subtype, rtx after)
4519 rtx note = rtx_alloc (NOTE);
4520 INSN_UID (note) = cur_insn_uid++;
4521 NOTE_KIND (note) = subtype;
4522 BLOCK_FOR_INSN (note) = NULL;
4523 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4524 add_insn_after (note, after, NULL);
4525 return note;
4528 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4530 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4532 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4534 if (pattern == NULL_RTX || !loc)
4535 return last;
4537 after = NEXT_INSN (after);
4538 while (1)
4540 if (active_insn_p (after) && !INSN_LOCATOR (after))
4541 INSN_LOCATOR (after) = loc;
4542 if (after == last)
4543 break;
4544 after = NEXT_INSN (after);
4546 return last;
4549 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4551 emit_insn_after (rtx pattern, rtx after)
4553 rtx prev = after;
4555 while (DEBUG_INSN_P (prev))
4556 prev = PREV_INSN (prev);
4558 if (INSN_P (prev))
4559 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4560 else
4561 return emit_insn_after_noloc (pattern, after, NULL);
4564 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4566 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4568 rtx last = emit_jump_insn_after_noloc (pattern, after);
4570 if (pattern == NULL_RTX || !loc)
4571 return last;
4573 after = NEXT_INSN (after);
4574 while (1)
4576 if (active_insn_p (after) && !INSN_LOCATOR (after))
4577 INSN_LOCATOR (after) = loc;
4578 if (after == last)
4579 break;
4580 after = NEXT_INSN (after);
4582 return last;
4585 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4587 emit_jump_insn_after (rtx pattern, rtx after)
4589 rtx prev = after;
4591 while (DEBUG_INSN_P (prev))
4592 prev = PREV_INSN (prev);
4594 if (INSN_P (prev))
4595 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4596 else
4597 return emit_jump_insn_after_noloc (pattern, after);
4600 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4602 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4604 rtx last = emit_call_insn_after_noloc (pattern, after);
4606 if (pattern == NULL_RTX || !loc)
4607 return last;
4609 after = NEXT_INSN (after);
4610 while (1)
4612 if (active_insn_p (after) && !INSN_LOCATOR (after))
4613 INSN_LOCATOR (after) = loc;
4614 if (after == last)
4615 break;
4616 after = NEXT_INSN (after);
4618 return last;
4621 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4623 emit_call_insn_after (rtx pattern, rtx after)
4625 rtx prev = after;
4627 while (DEBUG_INSN_P (prev))
4628 prev = PREV_INSN (prev);
4630 if (INSN_P (prev))
4631 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4632 else
4633 return emit_call_insn_after_noloc (pattern, after);
4636 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4638 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4640 rtx last = emit_debug_insn_after_noloc (pattern, after);
4642 if (pattern == NULL_RTX || !loc)
4643 return last;
4645 after = NEXT_INSN (after);
4646 while (1)
4648 if (active_insn_p (after) && !INSN_LOCATOR (after))
4649 INSN_LOCATOR (after) = loc;
4650 if (after == last)
4651 break;
4652 after = NEXT_INSN (after);
4654 return last;
4657 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4659 emit_debug_insn_after (rtx pattern, rtx after)
4661 if (INSN_P (after))
4662 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4663 else
4664 return emit_debug_insn_after_noloc (pattern, after);
4667 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4669 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4671 rtx first = PREV_INSN (before);
4672 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4674 if (pattern == NULL_RTX || !loc)
4675 return last;
4677 if (!first)
4678 first = get_insns ();
4679 else
4680 first = NEXT_INSN (first);
4681 while (1)
4683 if (active_insn_p (first) && !INSN_LOCATOR (first))
4684 INSN_LOCATOR (first) = loc;
4685 if (first == last)
4686 break;
4687 first = NEXT_INSN (first);
4689 return last;
4692 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4694 emit_insn_before (rtx pattern, rtx before)
4696 rtx next = before;
4698 while (DEBUG_INSN_P (next))
4699 next = PREV_INSN (next);
4701 if (INSN_P (next))
4702 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4703 else
4704 return emit_insn_before_noloc (pattern, before, NULL);
4707 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4709 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4711 rtx first = PREV_INSN (before);
4712 rtx last = emit_jump_insn_before_noloc (pattern, before);
4714 if (pattern == NULL_RTX)
4715 return last;
4717 first = NEXT_INSN (first);
4718 while (1)
4720 if (active_insn_p (first) && !INSN_LOCATOR (first))
4721 INSN_LOCATOR (first) = loc;
4722 if (first == last)
4723 break;
4724 first = NEXT_INSN (first);
4726 return last;
4729 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4731 emit_jump_insn_before (rtx pattern, rtx before)
4733 rtx next = before;
4735 while (DEBUG_INSN_P (next))
4736 next = PREV_INSN (next);
4738 if (INSN_P (next))
4739 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4740 else
4741 return emit_jump_insn_before_noloc (pattern, before);
4744 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4746 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4748 rtx first = PREV_INSN (before);
4749 rtx last = emit_call_insn_before_noloc (pattern, before);
4751 if (pattern == NULL_RTX)
4752 return last;
4754 first = NEXT_INSN (first);
4755 while (1)
4757 if (active_insn_p (first) && !INSN_LOCATOR (first))
4758 INSN_LOCATOR (first) = loc;
4759 if (first == last)
4760 break;
4761 first = NEXT_INSN (first);
4763 return last;
4766 /* like emit_call_insn_before_noloc,
4767 but set insn_locator according to before. */
4769 emit_call_insn_before (rtx pattern, rtx before)
4771 rtx next = before;
4773 while (DEBUG_INSN_P (next))
4774 next = PREV_INSN (next);
4776 if (INSN_P (next))
4777 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4778 else
4779 return emit_call_insn_before_noloc (pattern, before);
4782 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4784 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4786 rtx first = PREV_INSN (before);
4787 rtx last = emit_debug_insn_before_noloc (pattern, before);
4789 if (pattern == NULL_RTX)
4790 return last;
4792 first = NEXT_INSN (first);
4793 while (1)
4795 if (active_insn_p (first) && !INSN_LOCATOR (first))
4796 INSN_LOCATOR (first) = loc;
4797 if (first == last)
4798 break;
4799 first = NEXT_INSN (first);
4801 return last;
4804 /* like emit_debug_insn_before_noloc,
4805 but set insn_locator according to before. */
4807 emit_debug_insn_before (rtx pattern, rtx before)
4809 if (INSN_P (before))
4810 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4811 else
4812 return emit_debug_insn_before_noloc (pattern, before);
4815 /* Take X and emit it at the end of the doubly-linked
4816 INSN list.
4818 Returns the last insn emitted. */
4821 emit_insn (rtx x)
4823 rtx last = get_last_insn();
4824 rtx insn;
4826 if (x == NULL_RTX)
4827 return last;
4829 switch (GET_CODE (x))
4831 case DEBUG_INSN:
4832 case INSN:
4833 case JUMP_INSN:
4834 case CALL_INSN:
4835 case CODE_LABEL:
4836 case BARRIER:
4837 case NOTE:
4838 insn = x;
4839 while (insn)
4841 rtx next = NEXT_INSN (insn);
4842 add_insn (insn);
4843 last = insn;
4844 insn = next;
4846 break;
4848 #ifdef ENABLE_RTL_CHECKING
4849 case SEQUENCE:
4850 gcc_unreachable ();
4851 break;
4852 #endif
4854 default:
4855 last = make_insn_raw (x);
4856 add_insn (last);
4857 break;
4860 return last;
4863 /* Make an insn of code DEBUG_INSN with pattern X
4864 and add it to the end of the doubly-linked list. */
4867 emit_debug_insn (rtx x)
4869 rtx last = get_last_insn();
4870 rtx insn;
4872 if (x == NULL_RTX)
4873 return last;
4875 switch (GET_CODE (x))
4877 case DEBUG_INSN:
4878 case INSN:
4879 case JUMP_INSN:
4880 case CALL_INSN:
4881 case CODE_LABEL:
4882 case BARRIER:
4883 case NOTE:
4884 insn = x;
4885 while (insn)
4887 rtx next = NEXT_INSN (insn);
4888 add_insn (insn);
4889 last = insn;
4890 insn = next;
4892 break;
4894 #ifdef ENABLE_RTL_CHECKING
4895 case SEQUENCE:
4896 gcc_unreachable ();
4897 break;
4898 #endif
4900 default:
4901 last = make_debug_insn_raw (x);
4902 add_insn (last);
4903 break;
4906 return last;
4909 /* Make an insn of code JUMP_INSN with pattern X
4910 and add it to the end of the doubly-linked list. */
4913 emit_jump_insn (rtx x)
4915 rtx last = NULL_RTX, insn;
4917 switch (GET_CODE (x))
4919 case DEBUG_INSN:
4920 case INSN:
4921 case JUMP_INSN:
4922 case CALL_INSN:
4923 case CODE_LABEL:
4924 case BARRIER:
4925 case NOTE:
4926 insn = x;
4927 while (insn)
4929 rtx next = NEXT_INSN (insn);
4930 add_insn (insn);
4931 last = insn;
4932 insn = next;
4934 break;
4936 #ifdef ENABLE_RTL_CHECKING
4937 case SEQUENCE:
4938 gcc_unreachable ();
4939 break;
4940 #endif
4942 default:
4943 last = make_jump_insn_raw (x);
4944 add_insn (last);
4945 break;
4948 return last;
4951 /* Make an insn of code CALL_INSN with pattern X
4952 and add it to the end of the doubly-linked list. */
4955 emit_call_insn (rtx x)
4957 rtx insn;
4959 switch (GET_CODE (x))
4961 case DEBUG_INSN:
4962 case INSN:
4963 case JUMP_INSN:
4964 case CALL_INSN:
4965 case CODE_LABEL:
4966 case BARRIER:
4967 case NOTE:
4968 insn = emit_insn (x);
4969 break;
4971 #ifdef ENABLE_RTL_CHECKING
4972 case SEQUENCE:
4973 gcc_unreachable ();
4974 break;
4975 #endif
4977 default:
4978 insn = make_call_insn_raw (x);
4979 add_insn (insn);
4980 break;
4983 return insn;
4986 /* Add the label LABEL to the end of the doubly-linked list. */
4989 emit_label (rtx label)
4991 /* This can be called twice for the same label
4992 as a result of the confusion that follows a syntax error!
4993 So make it harmless. */
4994 if (INSN_UID (label) == 0)
4996 INSN_UID (label) = cur_insn_uid++;
4997 add_insn (label);
4999 return label;
5002 /* Make an insn of code BARRIER
5003 and add it to the end of the doubly-linked list. */
5006 emit_barrier (void)
5008 rtx barrier = rtx_alloc (BARRIER);
5009 INSN_UID (barrier) = cur_insn_uid++;
5010 add_insn (barrier);
5011 return barrier;
5014 /* Emit a copy of note ORIG. */
5017 emit_note_copy (rtx orig)
5019 rtx note;
5021 note = rtx_alloc (NOTE);
5023 INSN_UID (note) = cur_insn_uid++;
5024 NOTE_DATA (note) = NOTE_DATA (orig);
5025 NOTE_KIND (note) = NOTE_KIND (orig);
5026 BLOCK_FOR_INSN (note) = NULL;
5027 add_insn (note);
5029 return note;
5032 /* Make an insn of code NOTE or type NOTE_NO
5033 and add it to the end of the doubly-linked list. */
5036 emit_note (enum insn_note kind)
5038 rtx note;
5040 note = rtx_alloc (NOTE);
5041 INSN_UID (note) = cur_insn_uid++;
5042 NOTE_KIND (note) = kind;
5043 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5044 BLOCK_FOR_INSN (note) = NULL;
5045 add_insn (note);
5046 return note;
5049 /* Emit a clobber of lvalue X. */
5052 emit_clobber (rtx x)
5054 /* CONCATs should not appear in the insn stream. */
5055 if (GET_CODE (x) == CONCAT)
5057 emit_clobber (XEXP (x, 0));
5058 return emit_clobber (XEXP (x, 1));
5060 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5063 /* Return a sequence of insns to clobber lvalue X. */
5066 gen_clobber (rtx x)
5068 rtx seq;
5070 start_sequence ();
5071 emit_clobber (x);
5072 seq = get_insns ();
5073 end_sequence ();
5074 return seq;
5077 /* Emit a use of rvalue X. */
5080 emit_use (rtx x)
5082 /* CONCATs should not appear in the insn stream. */
5083 if (GET_CODE (x) == CONCAT)
5085 emit_use (XEXP (x, 0));
5086 return emit_use (XEXP (x, 1));
5088 return emit_insn (gen_rtx_USE (VOIDmode, x));
5091 /* Return a sequence of insns to use rvalue X. */
5094 gen_use (rtx x)
5096 rtx seq;
5098 start_sequence ();
5099 emit_use (x);
5100 seq = get_insns ();
5101 end_sequence ();
5102 return seq;
5105 /* Cause next statement to emit a line note even if the line number
5106 has not changed. */
5108 void
5109 force_next_line_note (void)
5111 last_location = -1;
5114 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5115 note of this type already exists, remove it first. */
5118 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5120 rtx note = find_reg_note (insn, kind, NULL_RTX);
5122 switch (kind)
5124 case REG_EQUAL:
5125 case REG_EQUIV:
5126 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5127 has multiple sets (some callers assume single_set
5128 means the insn only has one set, when in fact it
5129 means the insn only has one * useful * set). */
5130 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5132 gcc_assert (!note);
5133 return NULL_RTX;
5136 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5137 It serves no useful purpose and breaks eliminate_regs. */
5138 if (GET_CODE (datum) == ASM_OPERANDS)
5139 return NULL_RTX;
5141 if (note)
5143 XEXP (note, 0) = datum;
5144 df_notes_rescan (insn);
5145 return note;
5147 break;
5149 default:
5150 if (note)
5152 XEXP (note, 0) = datum;
5153 return note;
5155 break;
5158 add_reg_note (insn, kind, datum);
5160 switch (kind)
5162 case REG_EQUAL:
5163 case REG_EQUIV:
5164 df_notes_rescan (insn);
5165 break;
5166 default:
5167 break;
5170 return REG_NOTES (insn);
5173 /* Return an indication of which type of insn should have X as a body.
5174 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5176 static enum rtx_code
5177 classify_insn (rtx x)
5179 if (LABEL_P (x))
5180 return CODE_LABEL;
5181 if (GET_CODE (x) == CALL)
5182 return CALL_INSN;
5183 if (GET_CODE (x) == RETURN)
5184 return JUMP_INSN;
5185 if (GET_CODE (x) == SET)
5187 if (SET_DEST (x) == pc_rtx)
5188 return JUMP_INSN;
5189 else if (GET_CODE (SET_SRC (x)) == CALL)
5190 return CALL_INSN;
5191 else
5192 return INSN;
5194 if (GET_CODE (x) == PARALLEL)
5196 int j;
5197 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5198 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5199 return CALL_INSN;
5200 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5201 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5202 return JUMP_INSN;
5203 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5204 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5205 return CALL_INSN;
5207 return INSN;
5210 /* Emit the rtl pattern X as an appropriate kind of insn.
5211 If X is a label, it is simply added into the insn chain. */
5214 emit (rtx x)
5216 enum rtx_code code = classify_insn (x);
5218 switch (code)
5220 case CODE_LABEL:
5221 return emit_label (x);
5222 case INSN:
5223 return emit_insn (x);
5224 case JUMP_INSN:
5226 rtx insn = emit_jump_insn (x);
5227 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5228 return emit_barrier ();
5229 return insn;
5231 case CALL_INSN:
5232 return emit_call_insn (x);
5233 case DEBUG_INSN:
5234 return emit_debug_insn (x);
5235 default:
5236 gcc_unreachable ();
5240 /* Space for free sequence stack entries. */
5241 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5243 /* Begin emitting insns to a sequence. If this sequence will contain
5244 something that might cause the compiler to pop arguments to function
5245 calls (because those pops have previously been deferred; see
5246 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5247 before calling this function. That will ensure that the deferred
5248 pops are not accidentally emitted in the middle of this sequence. */
5250 void
5251 start_sequence (void)
5253 struct sequence_stack *tem;
5255 if (free_sequence_stack != NULL)
5257 tem = free_sequence_stack;
5258 free_sequence_stack = tem->next;
5260 else
5261 tem = ggc_alloc_sequence_stack ();
5263 tem->next = seq_stack;
5264 tem->first = get_insns ();
5265 tem->last = get_last_insn ();
5267 seq_stack = tem;
5269 set_first_insn (0);
5270 set_last_insn (0);
5273 /* Set up the insn chain starting with FIRST as the current sequence,
5274 saving the previously current one. See the documentation for
5275 start_sequence for more information about how to use this function. */
5277 void
5278 push_to_sequence (rtx first)
5280 rtx last;
5282 start_sequence ();
5284 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5286 set_first_insn (first);
5287 set_last_insn (last);
5290 /* Like push_to_sequence, but take the last insn as an argument to avoid
5291 looping through the list. */
5293 void
5294 push_to_sequence2 (rtx first, rtx last)
5296 start_sequence ();
5298 set_first_insn (first);
5299 set_last_insn (last);
5302 /* Set up the outer-level insn chain
5303 as the current sequence, saving the previously current one. */
5305 void
5306 push_topmost_sequence (void)
5308 struct sequence_stack *stack, *top = NULL;
5310 start_sequence ();
5312 for (stack = seq_stack; stack; stack = stack->next)
5313 top = stack;
5315 set_first_insn (top->first);
5316 set_last_insn (top->last);
5319 /* After emitting to the outer-level insn chain, update the outer-level
5320 insn chain, and restore the previous saved state. */
5322 void
5323 pop_topmost_sequence (void)
5325 struct sequence_stack *stack, *top = NULL;
5327 for (stack = seq_stack; stack; stack = stack->next)
5328 top = stack;
5330 top->first = get_insns ();
5331 top->last = get_last_insn ();
5333 end_sequence ();
5336 /* After emitting to a sequence, restore previous saved state.
5338 To get the contents of the sequence just made, you must call
5339 `get_insns' *before* calling here.
5341 If the compiler might have deferred popping arguments while
5342 generating this sequence, and this sequence will not be immediately
5343 inserted into the instruction stream, use do_pending_stack_adjust
5344 before calling get_insns. That will ensure that the deferred
5345 pops are inserted into this sequence, and not into some random
5346 location in the instruction stream. See INHIBIT_DEFER_POP for more
5347 information about deferred popping of arguments. */
5349 void
5350 end_sequence (void)
5352 struct sequence_stack *tem = seq_stack;
5354 set_first_insn (tem->first);
5355 set_last_insn (tem->last);
5356 seq_stack = tem->next;
5358 memset (tem, 0, sizeof (*tem));
5359 tem->next = free_sequence_stack;
5360 free_sequence_stack = tem;
5363 /* Return 1 if currently emitting into a sequence. */
5366 in_sequence_p (void)
5368 return seq_stack != 0;
5371 /* Put the various virtual registers into REGNO_REG_RTX. */
5373 static void
5374 init_virtual_regs (void)
5376 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5377 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5378 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5379 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5380 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5384 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5385 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5386 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5387 static int copy_insn_n_scratches;
5389 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5390 copied an ASM_OPERANDS.
5391 In that case, it is the original input-operand vector. */
5392 static rtvec orig_asm_operands_vector;
5394 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5395 copied an ASM_OPERANDS.
5396 In that case, it is the copied input-operand vector. */
5397 static rtvec copy_asm_operands_vector;
5399 /* Likewise for the constraints vector. */
5400 static rtvec orig_asm_constraints_vector;
5401 static rtvec copy_asm_constraints_vector;
5403 /* Recursively create a new copy of an rtx for copy_insn.
5404 This function differs from copy_rtx in that it handles SCRATCHes and
5405 ASM_OPERANDs properly.
5406 Normally, this function is not used directly; use copy_insn as front end.
5407 However, you could first copy an insn pattern with copy_insn and then use
5408 this function afterwards to properly copy any REG_NOTEs containing
5409 SCRATCHes. */
5412 copy_insn_1 (rtx orig)
5414 rtx copy;
5415 int i, j;
5416 RTX_CODE code;
5417 const char *format_ptr;
5419 if (orig == NULL)
5420 return NULL;
5422 code = GET_CODE (orig);
5424 switch (code)
5426 case REG:
5427 case CONST_INT:
5428 case CONST_DOUBLE:
5429 case CONST_FIXED:
5430 case CONST_VECTOR:
5431 case SYMBOL_REF:
5432 case CODE_LABEL:
5433 case PC:
5434 case CC0:
5435 return orig;
5436 case CLOBBER:
5437 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5438 return orig;
5439 break;
5441 case SCRATCH:
5442 for (i = 0; i < copy_insn_n_scratches; i++)
5443 if (copy_insn_scratch_in[i] == orig)
5444 return copy_insn_scratch_out[i];
5445 break;
5447 case CONST:
5448 if (shared_const_p (orig))
5449 return orig;
5450 break;
5452 /* A MEM with a constant address is not sharable. The problem is that
5453 the constant address may need to be reloaded. If the mem is shared,
5454 then reloading one copy of this mem will cause all copies to appear
5455 to have been reloaded. */
5457 default:
5458 break;
5461 /* Copy the various flags, fields, and other information. We assume
5462 that all fields need copying, and then clear the fields that should
5463 not be copied. That is the sensible default behavior, and forces
5464 us to explicitly document why we are *not* copying a flag. */
5465 copy = shallow_copy_rtx (orig);
5467 /* We do not copy the USED flag, which is used as a mark bit during
5468 walks over the RTL. */
5469 RTX_FLAG (copy, used) = 0;
5471 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5472 if (INSN_P (orig))
5474 RTX_FLAG (copy, jump) = 0;
5475 RTX_FLAG (copy, call) = 0;
5476 RTX_FLAG (copy, frame_related) = 0;
5479 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5481 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5482 switch (*format_ptr++)
5484 case 'e':
5485 if (XEXP (orig, i) != NULL)
5486 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5487 break;
5489 case 'E':
5490 case 'V':
5491 if (XVEC (orig, i) == orig_asm_constraints_vector)
5492 XVEC (copy, i) = copy_asm_constraints_vector;
5493 else if (XVEC (orig, i) == orig_asm_operands_vector)
5494 XVEC (copy, i) = copy_asm_operands_vector;
5495 else if (XVEC (orig, i) != NULL)
5497 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5498 for (j = 0; j < XVECLEN (copy, i); j++)
5499 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5501 break;
5503 case 't':
5504 case 'w':
5505 case 'i':
5506 case 's':
5507 case 'S':
5508 case 'u':
5509 case '0':
5510 /* These are left unchanged. */
5511 break;
5513 default:
5514 gcc_unreachable ();
5517 if (code == SCRATCH)
5519 i = copy_insn_n_scratches++;
5520 gcc_assert (i < MAX_RECOG_OPERANDS);
5521 copy_insn_scratch_in[i] = orig;
5522 copy_insn_scratch_out[i] = copy;
5524 else if (code == ASM_OPERANDS)
5526 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5527 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5528 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5529 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5532 return copy;
5535 /* Create a new copy of an rtx.
5536 This function differs from copy_rtx in that it handles SCRATCHes and
5537 ASM_OPERANDs properly.
5538 INSN doesn't really have to be a full INSN; it could be just the
5539 pattern. */
5541 copy_insn (rtx insn)
5543 copy_insn_n_scratches = 0;
5544 orig_asm_operands_vector = 0;
5545 orig_asm_constraints_vector = 0;
5546 copy_asm_operands_vector = 0;
5547 copy_asm_constraints_vector = 0;
5548 return copy_insn_1 (insn);
5551 /* Initialize data structures and variables in this file
5552 before generating rtl for each function. */
5554 void
5555 init_emit (void)
5557 set_first_insn (NULL);
5558 set_last_insn (NULL);
5559 if (MIN_NONDEBUG_INSN_UID)
5560 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5561 else
5562 cur_insn_uid = 1;
5563 cur_debug_insn_uid = 1;
5564 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5565 last_location = UNKNOWN_LOCATION;
5566 first_label_num = label_num;
5567 seq_stack = NULL;
5569 /* Init the tables that describe all the pseudo regs. */
5571 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5573 crtl->emit.regno_pointer_align
5574 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5576 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5578 /* Put copies of all the hard registers into regno_reg_rtx. */
5579 memcpy (regno_reg_rtx,
5580 static_regno_reg_rtx,
5581 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5583 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5584 init_virtual_regs ();
5586 /* Indicate that the virtual registers and stack locations are
5587 all pointers. */
5588 REG_POINTER (stack_pointer_rtx) = 1;
5589 REG_POINTER (frame_pointer_rtx) = 1;
5590 REG_POINTER (hard_frame_pointer_rtx) = 1;
5591 REG_POINTER (arg_pointer_rtx) = 1;
5593 REG_POINTER (virtual_incoming_args_rtx) = 1;
5594 REG_POINTER (virtual_stack_vars_rtx) = 1;
5595 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5596 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5597 REG_POINTER (virtual_cfa_rtx) = 1;
5599 #ifdef STACK_BOUNDARY
5600 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5601 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5602 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5603 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5605 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5606 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5607 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5608 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5609 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5610 #endif
5612 #ifdef INIT_EXPANDERS
5613 INIT_EXPANDERS;
5614 #endif
5617 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5619 static rtx
5620 gen_const_vector (enum machine_mode mode, int constant)
5622 rtx tem;
5623 rtvec v;
5624 int units, i;
5625 enum machine_mode inner;
5627 units = GET_MODE_NUNITS (mode);
5628 inner = GET_MODE_INNER (mode);
5630 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5632 v = rtvec_alloc (units);
5634 /* We need to call this function after we set the scalar const_tiny_rtx
5635 entries. */
5636 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5638 for (i = 0; i < units; ++i)
5639 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5641 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5642 return tem;
5645 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5646 all elements are zero, and the one vector when all elements are one. */
5648 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5650 enum machine_mode inner = GET_MODE_INNER (mode);
5651 int nunits = GET_MODE_NUNITS (mode);
5652 rtx x;
5653 int i;
5655 /* Check to see if all of the elements have the same value. */
5656 x = RTVEC_ELT (v, nunits - 1);
5657 for (i = nunits - 2; i >= 0; i--)
5658 if (RTVEC_ELT (v, i) != x)
5659 break;
5661 /* If the values are all the same, check to see if we can use one of the
5662 standard constant vectors. */
5663 if (i == -1)
5665 if (x == CONST0_RTX (inner))
5666 return CONST0_RTX (mode);
5667 else if (x == CONST1_RTX (inner))
5668 return CONST1_RTX (mode);
5671 return gen_rtx_raw_CONST_VECTOR (mode, v);
5674 /* Initialise global register information required by all functions. */
5676 void
5677 init_emit_regs (void)
5679 int i;
5681 /* Reset register attributes */
5682 htab_empty (reg_attrs_htab);
5684 /* We need reg_raw_mode, so initialize the modes now. */
5685 init_reg_modes_target ();
5687 /* Assign register numbers to the globally defined register rtx. */
5688 pc_rtx = gen_rtx_PC (VOIDmode);
5689 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5690 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5691 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5692 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5693 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5694 virtual_incoming_args_rtx =
5695 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5696 virtual_stack_vars_rtx =
5697 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5698 virtual_stack_dynamic_rtx =
5699 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5700 virtual_outgoing_args_rtx =
5701 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5702 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5704 /* Initialize RTL for commonly used hard registers. These are
5705 copied into regno_reg_rtx as we begin to compile each function. */
5706 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5707 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5709 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5710 return_address_pointer_rtx
5711 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5712 #endif
5714 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5715 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5716 else
5717 pic_offset_table_rtx = NULL_RTX;
5720 /* Create some permanent unique rtl objects shared between all functions. */
5722 void
5723 init_emit_once (void)
5725 int i;
5726 enum machine_mode mode;
5727 enum machine_mode double_mode;
5729 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5730 hash tables. */
5731 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5732 const_int_htab_eq, NULL);
5734 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5735 const_double_htab_eq, NULL);
5737 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5738 const_fixed_htab_eq, NULL);
5740 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5741 mem_attrs_htab_eq, NULL);
5742 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5743 reg_attrs_htab_eq, NULL);
5745 /* Compute the word and byte modes. */
5747 byte_mode = VOIDmode;
5748 word_mode = VOIDmode;
5749 double_mode = VOIDmode;
5751 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5752 mode != VOIDmode;
5753 mode = GET_MODE_WIDER_MODE (mode))
5755 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5756 && byte_mode == VOIDmode)
5757 byte_mode = mode;
5759 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5760 && word_mode == VOIDmode)
5761 word_mode = mode;
5764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5765 mode != VOIDmode;
5766 mode = GET_MODE_WIDER_MODE (mode))
5768 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5769 && double_mode == VOIDmode)
5770 double_mode = mode;
5773 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5775 #ifdef INIT_EXPANDERS
5776 /* This is to initialize {init|mark|free}_machine_status before the first
5777 call to push_function_context_to. This is needed by the Chill front
5778 end which calls push_function_context_to before the first call to
5779 init_function_start. */
5780 INIT_EXPANDERS;
5781 #endif
5783 /* Create the unique rtx's for certain rtx codes and operand values. */
5785 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5786 tries to use these variables. */
5787 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5788 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5789 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5791 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5792 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5793 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5794 else
5795 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5797 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5798 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5799 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5801 dconstm1 = dconst1;
5802 dconstm1.sign = 1;
5804 dconsthalf = dconst1;
5805 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5807 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5809 const REAL_VALUE_TYPE *const r =
5810 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5812 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5813 mode != VOIDmode;
5814 mode = GET_MODE_WIDER_MODE (mode))
5815 const_tiny_rtx[i][(int) mode] =
5816 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5818 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5819 mode != VOIDmode;
5820 mode = GET_MODE_WIDER_MODE (mode))
5821 const_tiny_rtx[i][(int) mode] =
5822 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5824 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5826 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5827 mode != VOIDmode;
5828 mode = GET_MODE_WIDER_MODE (mode))
5829 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5831 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5832 mode != VOIDmode;
5833 mode = GET_MODE_WIDER_MODE (mode))
5834 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5837 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5838 mode != VOIDmode;
5839 mode = GET_MODE_WIDER_MODE (mode))
5841 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5842 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5845 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5846 mode != VOIDmode;
5847 mode = GET_MODE_WIDER_MODE (mode))
5849 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5850 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5853 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5854 mode != VOIDmode;
5855 mode = GET_MODE_WIDER_MODE (mode))
5857 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5858 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5861 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5862 mode != VOIDmode;
5863 mode = GET_MODE_WIDER_MODE (mode))
5865 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5866 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5869 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5870 mode != VOIDmode;
5871 mode = GET_MODE_WIDER_MODE (mode))
5873 FCONST0(mode).data.high = 0;
5874 FCONST0(mode).data.low = 0;
5875 FCONST0(mode).mode = mode;
5876 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5877 FCONST0 (mode), mode);
5880 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5881 mode != VOIDmode;
5882 mode = GET_MODE_WIDER_MODE (mode))
5884 FCONST0(mode).data.high = 0;
5885 FCONST0(mode).data.low = 0;
5886 FCONST0(mode).mode = mode;
5887 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5888 FCONST0 (mode), mode);
5891 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5892 mode != VOIDmode;
5893 mode = GET_MODE_WIDER_MODE (mode))
5895 FCONST0(mode).data.high = 0;
5896 FCONST0(mode).data.low = 0;
5897 FCONST0(mode).mode = mode;
5898 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5899 FCONST0 (mode), mode);
5901 /* We store the value 1. */
5902 FCONST1(mode).data.high = 0;
5903 FCONST1(mode).data.low = 0;
5904 FCONST1(mode).mode = mode;
5905 lshift_double (1, 0, GET_MODE_FBIT (mode),
5906 2 * HOST_BITS_PER_WIDE_INT,
5907 &FCONST1(mode).data.low,
5908 &FCONST1(mode).data.high,
5909 SIGNED_FIXED_POINT_MODE_P (mode));
5910 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5911 FCONST1 (mode), mode);
5914 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5915 mode != VOIDmode;
5916 mode = GET_MODE_WIDER_MODE (mode))
5918 FCONST0(mode).data.high = 0;
5919 FCONST0(mode).data.low = 0;
5920 FCONST0(mode).mode = mode;
5921 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5922 FCONST0 (mode), mode);
5924 /* We store the value 1. */
5925 FCONST1(mode).data.high = 0;
5926 FCONST1(mode).data.low = 0;
5927 FCONST1(mode).mode = mode;
5928 lshift_double (1, 0, GET_MODE_FBIT (mode),
5929 2 * HOST_BITS_PER_WIDE_INT,
5930 &FCONST1(mode).data.low,
5931 &FCONST1(mode).data.high,
5932 SIGNED_FIXED_POINT_MODE_P (mode));
5933 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5934 FCONST1 (mode), mode);
5937 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5938 mode != VOIDmode;
5939 mode = GET_MODE_WIDER_MODE (mode))
5941 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5944 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5945 mode != VOIDmode;
5946 mode = GET_MODE_WIDER_MODE (mode))
5948 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5951 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5952 mode != VOIDmode;
5953 mode = GET_MODE_WIDER_MODE (mode))
5955 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5956 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5959 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5960 mode != VOIDmode;
5961 mode = GET_MODE_WIDER_MODE (mode))
5963 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5964 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5967 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5968 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5969 const_tiny_rtx[0][i] = const0_rtx;
5971 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5972 if (STORE_FLAG_VALUE == 1)
5973 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5976 /* Produce exact duplicate of insn INSN after AFTER.
5977 Care updating of libcall regions if present. */
5980 emit_copy_of_insn_after (rtx insn, rtx after)
5982 rtx new_rtx, link;
5984 switch (GET_CODE (insn))
5986 case INSN:
5987 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5988 break;
5990 case JUMP_INSN:
5991 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5992 break;
5994 case DEBUG_INSN:
5995 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5996 break;
5998 case CALL_INSN:
5999 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6000 if (CALL_INSN_FUNCTION_USAGE (insn))
6001 CALL_INSN_FUNCTION_USAGE (new_rtx)
6002 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6003 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6004 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6005 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6006 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6007 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6008 break;
6010 default:
6011 gcc_unreachable ();
6014 /* Update LABEL_NUSES. */
6015 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6017 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6019 /* If the old insn is frame related, then so is the new one. This is
6020 primarily needed for IA-64 unwind info which marks epilogue insns,
6021 which may be duplicated by the basic block reordering code. */
6022 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6024 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6025 will make them. REG_LABEL_TARGETs are created there too, but are
6026 supposed to be sticky, so we copy them. */
6027 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6028 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6030 if (GET_CODE (link) == EXPR_LIST)
6031 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6032 copy_insn_1 (XEXP (link, 0)));
6033 else
6034 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6037 INSN_CODE (new_rtx) = INSN_CODE (insn);
6038 return new_rtx;
6041 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6043 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6045 if (hard_reg_clobbers[mode][regno])
6046 return hard_reg_clobbers[mode][regno];
6047 else
6048 return (hard_reg_clobbers[mode][regno] =
6049 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6052 #include "gt-emit-rtl.h"