* gcc.target/powerpc/altivec-volatile.c: Adjust expected warning.
[official-gcc.git] / gcc / cselib.c
blob28ed6d7b348edf187548535bf42018f433b2afa1
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "tree-pass.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45 #include "bitmap.h"
47 static bool cselib_record_memory;
48 static bool cselib_preserve_constants;
49 static int entry_and_rtx_equal_p (const void *, const void *);
50 static hashval_t get_value_hash (const void *);
51 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
52 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
53 static void unchain_one_value (cselib_val *);
54 static void unchain_one_elt_list (struct elt_list **);
55 static void unchain_one_elt_loc_list (struct elt_loc_list **);
56 static int discard_useless_locs (void **, void *);
57 static int discard_useless_values (void **, void *);
58 static void remove_useless_values (void);
59 static unsigned int cselib_hash_rtx (rtx, int);
60 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
61 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
62 static cselib_val *cselib_lookup_mem (rtx, int);
63 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
64 static void cselib_invalidate_mem (rtx);
65 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
66 static void cselib_record_sets (rtx);
68 struct expand_value_data
70 bitmap regs_active;
71 cselib_expand_callback callback;
72 void *callback_arg;
73 bool dummy;
76 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
78 /* There are three ways in which cselib can look up an rtx:
79 - for a REG, the reg_values table (which is indexed by regno) is used
80 - for a MEM, we recursively look up its address and then follow the
81 addr_list of that value
82 - for everything else, we compute a hash value and go through the hash
83 table. Since different rtx's can still have the same hash value,
84 this involves walking the table entries for a given value and comparing
85 the locations of the entries with the rtx we are looking up. */
87 /* A table that enables us to look up elts by their value. */
88 static htab_t cselib_hash_table;
90 /* This is a global so we don't have to pass this through every function.
91 It is used in new_elt_loc_list to set SETTING_INSN. */
92 static rtx cselib_current_insn;
94 /* The unique id that the next create value will take. */
95 static unsigned int next_uid;
97 /* The number of registers we had when the varrays were last resized. */
98 static unsigned int cselib_nregs;
100 /* Count values without known locations, or with only locations that
101 wouldn't have been known except for debug insns. Whenever this
102 grows too big, we remove these useless values from the table.
104 Counting values with only debug values is a bit tricky. We don't
105 want to increment n_useless_values when we create a value for a
106 debug insn, for this would get n_useless_values out of sync, but we
107 want increment it if all locs in the list that were ever referenced
108 in nondebug insns are removed from the list.
110 In the general case, once we do that, we'd have to stop accepting
111 nondebug expressions in the loc list, to avoid having two values
112 equivalent that, without debug insns, would have been made into
113 separate values. However, because debug insns never introduce
114 equivalences themselves (no assignments), the only means for
115 growing loc lists is through nondebug assignments. If the locs
116 also happen to be referenced in debug insns, it will work just fine.
118 A consequence of this is that there's at most one debug-only loc in
119 each loc list. If we keep it in the first entry, testing whether
120 we have a debug-only loc list takes O(1).
122 Furthermore, since any additional entry in a loc list containing a
123 debug loc would have to come from an assignment (nondebug) that
124 references both the initial debug loc and the newly-equivalent loc,
125 the initial debug loc would be promoted to a nondebug loc, and the
126 loc list would not contain debug locs any more.
128 So the only case we have to be careful with in order to keep
129 n_useless_values in sync between debug and nondebug compilations is
130 to avoid incrementing n_useless_values when removing the single loc
131 from a value that turns out to not appear outside debug values. We
132 increment n_useless_debug_values instead, and leave such values
133 alone until, for other reasons, we garbage-collect useless
134 values. */
135 static int n_useless_values;
136 static int n_useless_debug_values;
138 /* Count values whose locs have been taken exclusively from debug
139 insns for the entire life of the value. */
140 static int n_debug_values;
142 /* Number of useless values before we remove them from the hash table. */
143 #define MAX_USELESS_VALUES 32
145 /* This table maps from register number to values. It does not
146 contain pointers to cselib_val structures, but rather elt_lists.
147 The purpose is to be able to refer to the same register in
148 different modes. The first element of the list defines the mode in
149 which the register was set; if the mode is unknown or the value is
150 no longer valid in that mode, ELT will be NULL for the first
151 element. */
152 static struct elt_list **reg_values;
153 static unsigned int reg_values_size;
154 #define REG_VALUES(i) reg_values[i]
156 /* The largest number of hard regs used by any entry added to the
157 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
158 static unsigned int max_value_regs;
160 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
161 in cselib_clear_table() for fast emptying. */
162 static unsigned int *used_regs;
163 static unsigned int n_used_regs;
165 /* We pass this to cselib_invalidate_mem to invalidate all of
166 memory for a non-const call instruction. */
167 static GTY(()) rtx callmem;
169 /* Set by discard_useless_locs if it deleted the last location of any
170 value. */
171 static int values_became_useless;
173 /* Used as stop element of the containing_mem list so we can check
174 presence in the list by checking the next pointer. */
175 static cselib_val dummy_val;
177 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
178 that is constant through the whole function and should never be
179 eliminated. */
180 static cselib_val *cfa_base_preserved_val;
181 static unsigned int cfa_base_preserved_regno;
183 /* Used to list all values that contain memory reference.
184 May or may not contain the useless values - the list is compacted
185 each time memory is invalidated. */
186 static cselib_val *first_containing_mem = &dummy_val;
187 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
189 /* If nonnull, cselib will call this function before freeing useless
190 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
191 void (*cselib_discard_hook) (cselib_val *);
193 /* If nonnull, cselib will call this function before recording sets or
194 even clobbering outputs of INSN. All the recorded sets will be
195 represented in the array sets[n_sets]. new_val_min can be used to
196 tell whether values present in sets are introduced by this
197 instruction. */
198 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
199 int n_sets);
201 #define PRESERVED_VALUE_P(RTX) \
202 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
206 /* Allocate a struct elt_list and fill in its two elements with the
207 arguments. */
209 static inline struct elt_list *
210 new_elt_list (struct elt_list *next, cselib_val *elt)
212 struct elt_list *el;
213 el = (struct elt_list *) pool_alloc (elt_list_pool);
214 el->next = next;
215 el->elt = elt;
216 return el;
219 /* Allocate a struct elt_loc_list and fill in its two elements with the
220 arguments. */
222 static inline struct elt_loc_list *
223 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
225 struct elt_loc_list *el;
226 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
227 el->next = next;
228 el->loc = loc;
229 el->setting_insn = cselib_current_insn;
230 gcc_assert (!next || !next->setting_insn
231 || !DEBUG_INSN_P (next->setting_insn));
233 /* If we're creating the first loc in a debug insn context, we've
234 just created a debug value. Count it. */
235 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
236 n_debug_values++;
238 return el;
241 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
242 originating from a debug insn, maintaining the debug values
243 count. */
245 static inline void
246 promote_debug_loc (struct elt_loc_list *l)
248 if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
249 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
251 n_debug_values--;
252 l->setting_insn = cselib_current_insn;
253 gcc_assert (!l->next);
257 /* The elt_list at *PL is no longer needed. Unchain it and free its
258 storage. */
260 static inline void
261 unchain_one_elt_list (struct elt_list **pl)
263 struct elt_list *l = *pl;
265 *pl = l->next;
266 pool_free (elt_list_pool, l);
269 /* Likewise for elt_loc_lists. */
271 static void
272 unchain_one_elt_loc_list (struct elt_loc_list **pl)
274 struct elt_loc_list *l = *pl;
276 *pl = l->next;
277 pool_free (elt_loc_list_pool, l);
280 /* Likewise for cselib_vals. This also frees the addr_list associated with
281 V. */
283 static void
284 unchain_one_value (cselib_val *v)
286 while (v->addr_list)
287 unchain_one_elt_list (&v->addr_list);
289 pool_free (cselib_val_pool, v);
292 /* Remove all entries from the hash table. Also used during
293 initialization. */
295 void
296 cselib_clear_table (void)
298 cselib_reset_table (1);
301 /* Remove from hash table all VALUEs except constants. */
303 static int
304 preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
306 cselib_val *v = (cselib_val *)*x;
308 if (v->locs != NULL
309 && v->locs->next == NULL)
311 if (CONSTANT_P (v->locs->loc)
312 && (GET_CODE (v->locs->loc) != CONST
313 || !references_value_p (v->locs->loc, 0)))
314 return 1;
315 if (cfa_base_preserved_val)
317 if (v == cfa_base_preserved_val)
318 return 1;
319 if (GET_CODE (v->locs->loc) == PLUS
320 && CONST_INT_P (XEXP (v->locs->loc, 1))
321 && XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
322 return 1;
326 htab_clear_slot (cselib_hash_table, x);
327 return 1;
330 /* Remove all entries from the hash table, arranging for the next
331 value to be numbered NUM. */
333 void
334 cselib_reset_table (unsigned int num)
336 unsigned int i;
338 max_value_regs = 0;
340 if (cfa_base_preserved_val)
342 unsigned int regno = cfa_base_preserved_regno;
343 unsigned int new_used_regs = 0;
344 for (i = 0; i < n_used_regs; i++)
345 if (used_regs[i] == regno)
347 new_used_regs = 1;
348 continue;
350 else
351 REG_VALUES (used_regs[i]) = 0;
352 gcc_assert (new_used_regs == 1);
353 n_used_regs = new_used_regs;
354 used_regs[0] = regno;
355 max_value_regs
356 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
358 else
360 for (i = 0; i < n_used_regs; i++)
361 REG_VALUES (used_regs[i]) = 0;
362 n_used_regs = 0;
365 if (cselib_preserve_constants)
366 htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
367 else
368 htab_empty (cselib_hash_table);
370 n_useless_values = 0;
371 n_useless_debug_values = 0;
372 n_debug_values = 0;
374 next_uid = num;
376 first_containing_mem = &dummy_val;
379 /* Return the number of the next value that will be generated. */
381 unsigned int
382 cselib_get_next_uid (void)
384 return next_uid;
387 /* The equality test for our hash table. The first argument ENTRY is a table
388 element (i.e. a cselib_val), while the second arg X is an rtx. We know
389 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
390 CONST of an appropriate mode. */
392 static int
393 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
395 struct elt_loc_list *l;
396 const cselib_val *const v = (const cselib_val *) entry;
397 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
398 enum machine_mode mode = GET_MODE (x);
400 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
401 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
403 if (mode != GET_MODE (v->val_rtx))
404 return 0;
406 /* Unwrap X if necessary. */
407 if (GET_CODE (x) == CONST
408 && (CONST_INT_P (XEXP (x, 0))
409 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
410 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
411 x = XEXP (x, 0);
413 /* We don't guarantee that distinct rtx's have different hash values,
414 so we need to do a comparison. */
415 for (l = v->locs; l; l = l->next)
416 if (rtx_equal_for_cselib_p (l->loc, x))
418 promote_debug_loc (l);
419 return 1;
422 return 0;
425 /* The hash function for our hash table. The value is always computed with
426 cselib_hash_rtx when adding an element; this function just extracts the
427 hash value from a cselib_val structure. */
429 static hashval_t
430 get_value_hash (const void *entry)
432 const cselib_val *const v = (const cselib_val *) entry;
433 return v->hash;
436 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
437 only return true for values which point to a cselib_val whose value
438 element has been set to zero, which implies the cselib_val will be
439 removed. */
442 references_value_p (const_rtx x, int only_useless)
444 const enum rtx_code code = GET_CODE (x);
445 const char *fmt = GET_RTX_FORMAT (code);
446 int i, j;
448 if (GET_CODE (x) == VALUE
449 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
450 return 1;
452 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
454 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
455 return 1;
456 else if (fmt[i] == 'E')
457 for (j = 0; j < XVECLEN (x, i); j++)
458 if (references_value_p (XVECEXP (x, i, j), only_useless))
459 return 1;
462 return 0;
465 /* For all locations found in X, delete locations that reference useless
466 values (i.e. values without any location). Called through
467 htab_traverse. */
469 static int
470 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
472 cselib_val *v = (cselib_val *)*x;
473 struct elt_loc_list **p = &v->locs;
474 bool had_locs = v->locs != NULL;
475 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
477 while (*p)
479 if (references_value_p ((*p)->loc, 1))
480 unchain_one_elt_loc_list (p);
481 else
482 p = &(*p)->next;
485 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
487 if (setting_insn && DEBUG_INSN_P (setting_insn))
488 n_useless_debug_values++;
489 else
490 n_useless_values++;
491 values_became_useless = 1;
493 return 1;
496 /* If X is a value with no locations, remove it from the hashtable. */
498 static int
499 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
501 cselib_val *v = (cselib_val *)*x;
503 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
505 if (cselib_discard_hook)
506 cselib_discard_hook (v);
508 CSELIB_VAL_PTR (v->val_rtx) = NULL;
509 htab_clear_slot (cselib_hash_table, x);
510 unchain_one_value (v);
511 n_useless_values--;
514 return 1;
517 /* Clean out useless values (i.e. those which no longer have locations
518 associated with them) from the hash table. */
520 static void
521 remove_useless_values (void)
523 cselib_val **p, *v;
525 /* First pass: eliminate locations that reference the value. That in
526 turn can make more values useless. */
529 values_became_useless = 0;
530 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
532 while (values_became_useless);
534 /* Second pass: actually remove the values. */
536 p = &first_containing_mem;
537 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
538 if (v->locs)
540 *p = v;
541 p = &(*p)->next_containing_mem;
543 *p = &dummy_val;
545 n_useless_values += n_useless_debug_values;
546 n_debug_values -= n_useless_debug_values;
547 n_useless_debug_values = 0;
549 htab_traverse (cselib_hash_table, discard_useless_values, 0);
551 gcc_assert (!n_useless_values);
554 /* Arrange for a value to not be removed from the hash table even if
555 it becomes useless. */
557 void
558 cselib_preserve_value (cselib_val *v)
560 PRESERVED_VALUE_P (v->val_rtx) = 1;
563 /* Test whether a value is preserved. */
565 bool
566 cselib_preserved_value_p (cselib_val *v)
568 return PRESERVED_VALUE_P (v->val_rtx);
571 /* Arrange for a REG value to be assumed constant through the whole function,
572 never invalidated and preserved across cselib_reset_table calls. */
574 void
575 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
577 if (cselib_preserve_constants
578 && v->locs
579 && REG_P (v->locs->loc))
581 cfa_base_preserved_val = v;
582 cfa_base_preserved_regno = regno;
586 /* Clean all non-constant expressions in the hash table, but retain
587 their values. */
589 void
590 cselib_preserve_only_values (void)
592 int i;
594 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
595 cselib_invalidate_regno (i, reg_raw_mode[i]);
597 cselib_invalidate_mem (callmem);
599 remove_useless_values ();
601 gcc_assert (first_containing_mem == &dummy_val);
604 /* Return the mode in which a register was last set. If X is not a
605 register, return its mode. If the mode in which the register was
606 set is not known, or the value was already clobbered, return
607 VOIDmode. */
609 enum machine_mode
610 cselib_reg_set_mode (const_rtx x)
612 if (!REG_P (x))
613 return GET_MODE (x);
615 if (REG_VALUES (REGNO (x)) == NULL
616 || REG_VALUES (REGNO (x))->elt == NULL)
617 return VOIDmode;
619 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
622 /* Return nonzero if we can prove that X and Y contain the same value, taking
623 our gathered information into account. */
626 rtx_equal_for_cselib_p (rtx x, rtx y)
628 enum rtx_code code;
629 const char *fmt;
630 int i;
632 if (REG_P (x) || MEM_P (x))
634 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
636 if (e)
637 x = e->val_rtx;
640 if (REG_P (y) || MEM_P (y))
642 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
644 if (e)
645 y = e->val_rtx;
648 if (x == y)
649 return 1;
651 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
652 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
654 if (GET_CODE (x) == VALUE)
656 cselib_val *e = CSELIB_VAL_PTR (x);
657 struct elt_loc_list *l;
659 for (l = e->locs; l; l = l->next)
661 rtx t = l->loc;
663 /* Avoid infinite recursion. */
664 if (REG_P (t) || MEM_P (t))
665 continue;
666 else if (rtx_equal_for_cselib_p (t, y))
667 return 1;
670 return 0;
673 if (GET_CODE (y) == VALUE)
675 cselib_val *e = CSELIB_VAL_PTR (y);
676 struct elt_loc_list *l;
678 for (l = e->locs; l; l = l->next)
680 rtx t = l->loc;
682 if (REG_P (t) || MEM_P (t))
683 continue;
684 else if (rtx_equal_for_cselib_p (x, t))
685 return 1;
688 return 0;
691 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
692 return 0;
694 /* These won't be handled correctly by the code below. */
695 switch (GET_CODE (x))
697 case CONST_DOUBLE:
698 case CONST_FIXED:
699 case DEBUG_EXPR:
700 return 0;
702 case LABEL_REF:
703 return XEXP (x, 0) == XEXP (y, 0);
705 default:
706 break;
709 code = GET_CODE (x);
710 fmt = GET_RTX_FORMAT (code);
712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
714 int j;
716 switch (fmt[i])
718 case 'w':
719 if (XWINT (x, i) != XWINT (y, i))
720 return 0;
721 break;
723 case 'n':
724 case 'i':
725 if (XINT (x, i) != XINT (y, i))
726 return 0;
727 break;
729 case 'V':
730 case 'E':
731 /* Two vectors must have the same length. */
732 if (XVECLEN (x, i) != XVECLEN (y, i))
733 return 0;
735 /* And the corresponding elements must match. */
736 for (j = 0; j < XVECLEN (x, i); j++)
737 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
738 XVECEXP (y, i, j)))
739 return 0;
740 break;
742 case 'e':
743 if (i == 1
744 && targetm.commutative_p (x, UNKNOWN)
745 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
746 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
747 return 1;
748 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
749 return 0;
750 break;
752 case 'S':
753 case 's':
754 if (strcmp (XSTR (x, i), XSTR (y, i)))
755 return 0;
756 break;
758 case 'u':
759 /* These are just backpointers, so they don't matter. */
760 break;
762 case '0':
763 case 't':
764 break;
766 /* It is believed that rtx's at this level will never
767 contain anything but integers and other rtx's,
768 except for within LABEL_REFs and SYMBOL_REFs. */
769 default:
770 gcc_unreachable ();
773 return 1;
776 /* We need to pass down the mode of constants through the hash table
777 functions. For that purpose, wrap them in a CONST of the appropriate
778 mode. */
779 static rtx
780 wrap_constant (enum machine_mode mode, rtx x)
782 if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
783 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
784 return x;
785 gcc_assert (mode != VOIDmode);
786 return gen_rtx_CONST (mode, x);
789 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
790 For registers and memory locations, we look up their cselib_val structure
791 and return its VALUE element.
792 Possible reasons for return 0 are: the object is volatile, or we couldn't
793 find a register or memory location in the table and CREATE is zero. If
794 CREATE is nonzero, table elts are created for regs and mem.
795 N.B. this hash function returns the same hash value for RTXes that
796 differ only in the order of operands, thus it is suitable for comparisons
797 that take commutativity into account.
798 If we wanted to also support associative rules, we'd have to use a different
799 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
800 We used to have a MODE argument for hashing for CONST_INTs, but that
801 didn't make sense, since it caused spurious hash differences between
802 (set (reg:SI 1) (const_int))
803 (plus:SI (reg:SI 2) (reg:SI 1))
805 (plus:SI (reg:SI 2) (const_int))
806 If the mode is important in any context, it must be checked specifically
807 in a comparison anyway, since relying on hash differences is unsafe. */
809 static unsigned int
810 cselib_hash_rtx (rtx x, int create)
812 cselib_val *e;
813 int i, j;
814 enum rtx_code code;
815 const char *fmt;
816 unsigned int hash = 0;
818 code = GET_CODE (x);
819 hash += (unsigned) code + (unsigned) GET_MODE (x);
821 switch (code)
823 case MEM:
824 case REG:
825 e = cselib_lookup (x, GET_MODE (x), create);
826 if (! e)
827 return 0;
829 return e->hash;
831 case DEBUG_EXPR:
832 hash += ((unsigned) DEBUG_EXPR << 7)
833 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
834 return hash ? hash : (unsigned int) DEBUG_EXPR;
836 case CONST_INT:
837 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
838 return hash ? hash : (unsigned int) CONST_INT;
840 case CONST_DOUBLE:
841 /* This is like the general case, except that it only counts
842 the integers representing the constant. */
843 hash += (unsigned) code + (unsigned) GET_MODE (x);
844 if (GET_MODE (x) != VOIDmode)
845 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
846 else
847 hash += ((unsigned) CONST_DOUBLE_LOW (x)
848 + (unsigned) CONST_DOUBLE_HIGH (x));
849 return hash ? hash : (unsigned int) CONST_DOUBLE;
851 case CONST_FIXED:
852 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
853 hash += fixed_hash (CONST_FIXED_VALUE (x));
854 return hash ? hash : (unsigned int) CONST_FIXED;
856 case CONST_VECTOR:
858 int units;
859 rtx elt;
861 units = CONST_VECTOR_NUNITS (x);
863 for (i = 0; i < units; ++i)
865 elt = CONST_VECTOR_ELT (x, i);
866 hash += cselib_hash_rtx (elt, 0);
869 return hash;
872 /* Assume there is only one rtx object for any given label. */
873 case LABEL_REF:
874 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
875 differences and differences between each stage's debugging dumps. */
876 hash += (((unsigned int) LABEL_REF << 7)
877 + CODE_LABEL_NUMBER (XEXP (x, 0)));
878 return hash ? hash : (unsigned int) LABEL_REF;
880 case SYMBOL_REF:
882 /* Don't hash on the symbol's address to avoid bootstrap differences.
883 Different hash values may cause expressions to be recorded in
884 different orders and thus different registers to be used in the
885 final assembler. This also avoids differences in the dump files
886 between various stages. */
887 unsigned int h = 0;
888 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
890 while (*p)
891 h += (h << 7) + *p++; /* ??? revisit */
893 hash += ((unsigned int) SYMBOL_REF << 7) + h;
894 return hash ? hash : (unsigned int) SYMBOL_REF;
897 case PRE_DEC:
898 case PRE_INC:
899 case POST_DEC:
900 case POST_INC:
901 case POST_MODIFY:
902 case PRE_MODIFY:
903 case PC:
904 case CC0:
905 case CALL:
906 case UNSPEC_VOLATILE:
907 return 0;
909 case ASM_OPERANDS:
910 if (MEM_VOLATILE_P (x))
911 return 0;
913 break;
915 default:
916 break;
919 i = GET_RTX_LENGTH (code) - 1;
920 fmt = GET_RTX_FORMAT (code);
921 for (; i >= 0; i--)
923 switch (fmt[i])
925 case 'e':
927 rtx tem = XEXP (x, i);
928 unsigned int tem_hash = cselib_hash_rtx (tem, create);
930 if (tem_hash == 0)
931 return 0;
933 hash += tem_hash;
935 break;
936 case 'E':
937 for (j = 0; j < XVECLEN (x, i); j++)
939 unsigned int tem_hash
940 = cselib_hash_rtx (XVECEXP (x, i, j), create);
942 if (tem_hash == 0)
943 return 0;
945 hash += tem_hash;
947 break;
949 case 's':
951 const unsigned char *p = (const unsigned char *) XSTR (x, i);
953 if (p)
954 while (*p)
955 hash += *p++;
956 break;
959 case 'i':
960 hash += XINT (x, i);
961 break;
963 case '0':
964 case 't':
965 /* unused */
966 break;
968 default:
969 gcc_unreachable ();
973 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
976 /* Create a new value structure for VALUE and initialize it. The mode of the
977 value is MODE. */
979 static inline cselib_val *
980 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
982 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
984 gcc_assert (hash);
985 gcc_assert (next_uid);
987 e->hash = hash;
988 e->uid = next_uid++;
989 /* We use an alloc pool to allocate this RTL construct because it
990 accounts for about 8% of the overall memory usage. We know
991 precisely when we can have VALUE RTXen (when cselib is active)
992 so we don't need to put them in garbage collected memory.
993 ??? Why should a VALUE be an RTX in the first place? */
994 e->val_rtx = (rtx) pool_alloc (value_pool);
995 memset (e->val_rtx, 0, RTX_HDR_SIZE);
996 PUT_CODE (e->val_rtx, VALUE);
997 PUT_MODE (e->val_rtx, mode);
998 CSELIB_VAL_PTR (e->val_rtx) = e;
999 e->addr_list = 0;
1000 e->locs = 0;
1001 e->next_containing_mem = 0;
1003 if (dump_file && (dump_flags & TDF_DETAILS))
1005 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1006 if (flag_dump_noaddr || flag_dump_unnumbered)
1007 fputs ("# ", dump_file);
1008 else
1009 fprintf (dump_file, "%p ", (void*)e);
1010 print_rtl_single (dump_file, x);
1011 fputc ('\n', dump_file);
1014 return e;
1017 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1018 contains the data at this address. X is a MEM that represents the
1019 value. Update the two value structures to represent this situation. */
1021 static void
1022 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1024 struct elt_loc_list *l;
1026 /* Avoid duplicates. */
1027 for (l = mem_elt->locs; l; l = l->next)
1028 if (MEM_P (l->loc)
1029 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1031 promote_debug_loc (l);
1032 return;
1035 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1036 mem_elt->locs
1037 = new_elt_loc_list (mem_elt->locs,
1038 replace_equiv_address_nv (x, addr_elt->val_rtx));
1039 if (mem_elt->next_containing_mem == NULL)
1041 mem_elt->next_containing_mem = first_containing_mem;
1042 first_containing_mem = mem_elt;
1046 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1047 If CREATE, make a new one if we haven't seen it before. */
1049 static cselib_val *
1050 cselib_lookup_mem (rtx x, int create)
1052 enum machine_mode mode = GET_MODE (x);
1053 void **slot;
1054 cselib_val *addr;
1055 cselib_val *mem_elt;
1056 struct elt_list *l;
1058 if (MEM_VOLATILE_P (x) || mode == BLKmode
1059 || !cselib_record_memory
1060 || (FLOAT_MODE_P (mode) && flag_float_store))
1061 return 0;
1063 /* Look up the value for the address. */
1064 addr = cselib_lookup (XEXP (x, 0), mode, create);
1065 if (! addr)
1066 return 0;
1068 /* Find a value that describes a value of our mode at that address. */
1069 for (l = addr->addr_list; l; l = l->next)
1070 if (GET_MODE (l->elt->val_rtx) == mode)
1072 promote_debug_loc (l->elt->locs);
1073 return l->elt;
1076 if (! create)
1077 return 0;
1079 mem_elt = new_cselib_val (next_uid, mode, x);
1080 add_mem_for_addr (addr, mem_elt, x);
1081 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1082 mem_elt->hash, INSERT);
1083 *slot = mem_elt;
1084 return mem_elt;
1087 /* Search thru the possible substitutions in P. We prefer a non reg
1088 substitution because this allows us to expand the tree further. If
1089 we find, just a reg, take the lowest regno. There may be several
1090 non-reg results, we just take the first one because they will all
1091 expand to the same place. */
1093 static rtx
1094 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1095 int max_depth)
1097 rtx reg_result = NULL;
1098 unsigned int regno = UINT_MAX;
1099 struct elt_loc_list *p_in = p;
1101 for (; p; p = p -> next)
1103 /* Avoid infinite recursion trying to expand a reg into a
1104 the same reg. */
1105 if ((REG_P (p->loc))
1106 && (REGNO (p->loc) < regno)
1107 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1109 reg_result = p->loc;
1110 regno = REGNO (p->loc);
1112 /* Avoid infinite recursion and do not try to expand the
1113 value. */
1114 else if (GET_CODE (p->loc) == VALUE
1115 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1116 continue;
1117 else if (!REG_P (p->loc))
1119 rtx result, note;
1120 if (dump_file && (dump_flags & TDF_DETAILS))
1122 print_inline_rtx (dump_file, p->loc, 0);
1123 fprintf (dump_file, "\n");
1125 if (GET_CODE (p->loc) == LO_SUM
1126 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1127 && p->setting_insn
1128 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1129 && XEXP (note, 0) == XEXP (p->loc, 1))
1130 return XEXP (p->loc, 1);
1131 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1132 if (result)
1133 return result;
1138 if (regno != UINT_MAX)
1140 rtx result;
1141 if (dump_file && (dump_flags & TDF_DETAILS))
1142 fprintf (dump_file, "r%d\n", regno);
1144 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1145 if (result)
1146 return result;
1149 if (dump_file && (dump_flags & TDF_DETAILS))
1151 if (reg_result)
1153 print_inline_rtx (dump_file, reg_result, 0);
1154 fprintf (dump_file, "\n");
1156 else
1157 fprintf (dump_file, "NULL\n");
1159 return reg_result;
1163 /* Forward substitute and expand an expression out to its roots.
1164 This is the opposite of common subexpression. Because local value
1165 numbering is such a weak optimization, the expanded expression is
1166 pretty much unique (not from a pointer equals point of view but
1167 from a tree shape point of view.
1169 This function returns NULL if the expansion fails. The expansion
1170 will fail if there is no value number for one of the operands or if
1171 one of the operands has been overwritten between the current insn
1172 and the beginning of the basic block. For instance x has no
1173 expansion in:
1175 r1 <- r1 + 3
1176 x <- r1 + 8
1178 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1179 It is clear on return. */
1182 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1184 struct expand_value_data evd;
1186 evd.regs_active = regs_active;
1187 evd.callback = NULL;
1188 evd.callback_arg = NULL;
1189 evd.dummy = false;
1191 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1194 /* Same as cselib_expand_value_rtx, but using a callback to try to
1195 resolve some expressions. The CB function should return ORIG if it
1196 can't or does not want to deal with a certain RTX. Any other
1197 return value, including NULL, will be used as the expansion for
1198 VALUE, without any further changes. */
1201 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1202 cselib_expand_callback cb, void *data)
1204 struct expand_value_data evd;
1206 evd.regs_active = regs_active;
1207 evd.callback = cb;
1208 evd.callback_arg = data;
1209 evd.dummy = false;
1211 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1214 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1215 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1216 would return NULL or non-NULL, without allocating new rtx. */
1218 bool
1219 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1220 cselib_expand_callback cb, void *data)
1222 struct expand_value_data evd;
1224 evd.regs_active = regs_active;
1225 evd.callback = cb;
1226 evd.callback_arg = data;
1227 evd.dummy = true;
1229 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1232 /* Internal implementation of cselib_expand_value_rtx and
1233 cselib_expand_value_rtx_cb. */
1235 static rtx
1236 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1237 int max_depth)
1239 rtx copy, scopy;
1240 int i, j;
1241 RTX_CODE code;
1242 const char *format_ptr;
1243 enum machine_mode mode;
1245 code = GET_CODE (orig);
1247 /* For the context of dse, if we end up expand into a huge tree, we
1248 will not have a useful address, so we might as well just give up
1249 quickly. */
1250 if (max_depth <= 0)
1251 return NULL;
1253 switch (code)
1255 case REG:
1257 struct elt_list *l = REG_VALUES (REGNO (orig));
1259 if (l && l->elt == NULL)
1260 l = l->next;
1261 for (; l; l = l->next)
1262 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1264 rtx result;
1265 int regno = REGNO (orig);
1267 /* The only thing that we are not willing to do (this
1268 is requirement of dse and if others potential uses
1269 need this function we should add a parm to control
1270 it) is that we will not substitute the
1271 STACK_POINTER_REGNUM, FRAME_POINTER or the
1272 HARD_FRAME_POINTER.
1274 These expansions confuses the code that notices that
1275 stores into the frame go dead at the end of the
1276 function and that the frame is not effected by calls
1277 to subroutines. If you allow the
1278 STACK_POINTER_REGNUM substitution, then dse will
1279 think that parameter pushing also goes dead which is
1280 wrong. If you allow the FRAME_POINTER or the
1281 HARD_FRAME_POINTER then you lose the opportunity to
1282 make the frame assumptions. */
1283 if (regno == STACK_POINTER_REGNUM
1284 || regno == FRAME_POINTER_REGNUM
1285 || regno == HARD_FRAME_POINTER_REGNUM)
1286 return orig;
1288 bitmap_set_bit (evd->regs_active, regno);
1290 if (dump_file && (dump_flags & TDF_DETAILS))
1291 fprintf (dump_file, "expanding: r%d into: ", regno);
1293 result = expand_loc (l->elt->locs, evd, max_depth);
1294 bitmap_clear_bit (evd->regs_active, regno);
1296 if (result)
1297 return result;
1298 else
1299 return orig;
1303 case CONST_INT:
1304 case CONST_DOUBLE:
1305 case CONST_VECTOR:
1306 case SYMBOL_REF:
1307 case CODE_LABEL:
1308 case PC:
1309 case CC0:
1310 case SCRATCH:
1311 /* SCRATCH must be shared because they represent distinct values. */
1312 return orig;
1313 case CLOBBER:
1314 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1315 return orig;
1316 break;
1318 case CONST:
1319 if (shared_const_p (orig))
1320 return orig;
1321 break;
1323 case SUBREG:
1325 rtx subreg;
1327 if (evd->callback)
1329 subreg = evd->callback (orig, evd->regs_active, max_depth,
1330 evd->callback_arg);
1331 if (subreg != orig)
1332 return subreg;
1335 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1336 max_depth - 1);
1337 if (!subreg)
1338 return NULL;
1339 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1340 GET_MODE (SUBREG_REG (orig)),
1341 SUBREG_BYTE (orig));
1342 if (scopy == NULL
1343 || (GET_CODE (scopy) == SUBREG
1344 && !REG_P (SUBREG_REG (scopy))
1345 && !MEM_P (SUBREG_REG (scopy))))
1346 return NULL;
1348 return scopy;
1351 case VALUE:
1353 rtx result;
1355 if (dump_file && (dump_flags & TDF_DETAILS))
1357 fputs ("\nexpanding ", dump_file);
1358 print_rtl_single (dump_file, orig);
1359 fputs (" into...", dump_file);
1362 if (evd->callback)
1364 result = evd->callback (orig, evd->regs_active, max_depth,
1365 evd->callback_arg);
1367 if (result != orig)
1368 return result;
1371 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1372 return result;
1375 case DEBUG_EXPR:
1376 if (evd->callback)
1377 return evd->callback (orig, evd->regs_active, max_depth,
1378 evd->callback_arg);
1379 return orig;
1381 default:
1382 break;
1385 /* Copy the various flags, fields, and other information. We assume
1386 that all fields need copying, and then clear the fields that should
1387 not be copied. That is the sensible default behavior, and forces
1388 us to explicitly document why we are *not* copying a flag. */
1389 if (evd->dummy)
1390 copy = NULL;
1391 else
1392 copy = shallow_copy_rtx (orig);
1394 format_ptr = GET_RTX_FORMAT (code);
1396 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1397 switch (*format_ptr++)
1399 case 'e':
1400 if (XEXP (orig, i) != NULL)
1402 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1403 max_depth - 1);
1404 if (!result)
1405 return NULL;
1406 if (copy)
1407 XEXP (copy, i) = result;
1409 break;
1411 case 'E':
1412 case 'V':
1413 if (XVEC (orig, i) != NULL)
1415 if (copy)
1416 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1417 for (j = 0; j < XVECLEN (orig, i); j++)
1419 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1420 evd, max_depth - 1);
1421 if (!result)
1422 return NULL;
1423 if (copy)
1424 XVECEXP (copy, i, j) = result;
1427 break;
1429 case 't':
1430 case 'w':
1431 case 'i':
1432 case 's':
1433 case 'S':
1434 case 'T':
1435 case 'u':
1436 case 'B':
1437 case '0':
1438 /* These are left unchanged. */
1439 break;
1441 default:
1442 gcc_unreachable ();
1445 if (evd->dummy)
1446 return orig;
1448 mode = GET_MODE (copy);
1449 /* If an operand has been simplified into CONST_INT, which doesn't
1450 have a mode and the mode isn't derivable from whole rtx's mode,
1451 try simplify_*_operation first with mode from original's operand
1452 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1453 scopy = copy;
1454 switch (GET_RTX_CLASS (code))
1456 case RTX_UNARY:
1457 if (CONST_INT_P (XEXP (copy, 0))
1458 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1460 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1461 GET_MODE (XEXP (orig, 0)));
1462 if (scopy)
1463 return scopy;
1465 break;
1466 case RTX_COMM_ARITH:
1467 case RTX_BIN_ARITH:
1468 /* These expressions can derive operand modes from the whole rtx's mode. */
1469 break;
1470 case RTX_TERNARY:
1471 case RTX_BITFIELD_OPS:
1472 if (CONST_INT_P (XEXP (copy, 0))
1473 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1475 scopy = simplify_ternary_operation (code, mode,
1476 GET_MODE (XEXP (orig, 0)),
1477 XEXP (copy, 0), XEXP (copy, 1),
1478 XEXP (copy, 2));
1479 if (scopy)
1480 return scopy;
1482 break;
1483 case RTX_COMPARE:
1484 case RTX_COMM_COMPARE:
1485 if (CONST_INT_P (XEXP (copy, 0))
1486 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1487 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1488 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1490 scopy = simplify_relational_operation (code, mode,
1491 (GET_MODE (XEXP (orig, 0))
1492 != VOIDmode)
1493 ? GET_MODE (XEXP (orig, 0))
1494 : GET_MODE (XEXP (orig, 1)),
1495 XEXP (copy, 0),
1496 XEXP (copy, 1));
1497 if (scopy)
1498 return scopy;
1500 break;
1501 default:
1502 break;
1504 scopy = simplify_rtx (copy);
1505 if (scopy)
1506 return scopy;
1507 return copy;
1510 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1511 with VALUE expressions. This way, it becomes independent of changes
1512 to registers and memory.
1513 X isn't actually modified; if modifications are needed, new rtl is
1514 allocated. However, the return value can share rtl with X. */
1517 cselib_subst_to_values (rtx x)
1519 enum rtx_code code = GET_CODE (x);
1520 const char *fmt = GET_RTX_FORMAT (code);
1521 cselib_val *e;
1522 struct elt_list *l;
1523 rtx copy = x;
1524 int i;
1526 switch (code)
1528 case REG:
1529 l = REG_VALUES (REGNO (x));
1530 if (l && l->elt == NULL)
1531 l = l->next;
1532 for (; l; l = l->next)
1533 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1534 return l->elt->val_rtx;
1536 gcc_unreachable ();
1538 case MEM:
1539 e = cselib_lookup_mem (x, 0);
1540 if (! e)
1542 /* This happens for autoincrements. Assign a value that doesn't
1543 match any other. */
1544 e = new_cselib_val (next_uid, GET_MODE (x), x);
1546 return e->val_rtx;
1548 case CONST_DOUBLE:
1549 case CONST_VECTOR:
1550 case CONST_INT:
1551 case CONST_FIXED:
1552 return x;
1554 case POST_INC:
1555 case PRE_INC:
1556 case POST_DEC:
1557 case PRE_DEC:
1558 case POST_MODIFY:
1559 case PRE_MODIFY:
1560 e = new_cselib_val (next_uid, GET_MODE (x), x);
1561 return e->val_rtx;
1563 default:
1564 break;
1567 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1569 if (fmt[i] == 'e')
1571 rtx t = cselib_subst_to_values (XEXP (x, i));
1573 if (t != XEXP (x, i))
1575 if (x == copy)
1576 copy = shallow_copy_rtx (x);
1577 XEXP (copy, i) = t;
1580 else if (fmt[i] == 'E')
1582 int j;
1584 for (j = 0; j < XVECLEN (x, i); j++)
1586 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
1588 if (t != XVECEXP (x, i, j))
1590 if (XVEC (x, i) == XVEC (copy, i))
1592 if (x == copy)
1593 copy = shallow_copy_rtx (x);
1594 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1596 XVECEXP (copy, i, j) = t;
1602 return copy;
1605 /* Look up the rtl expression X in our tables and return the value it has.
1606 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1607 we create a new one if possible, using mode MODE if X doesn't have a mode
1608 (i.e. because it's a constant). */
1610 static cselib_val *
1611 cselib_lookup_1 (rtx x, enum machine_mode mode, int create)
1613 void **slot;
1614 cselib_val *e;
1615 unsigned int hashval;
1617 if (GET_MODE (x) != VOIDmode)
1618 mode = GET_MODE (x);
1620 if (GET_CODE (x) == VALUE)
1621 return CSELIB_VAL_PTR (x);
1623 if (REG_P (x))
1625 struct elt_list *l;
1626 unsigned int i = REGNO (x);
1628 l = REG_VALUES (i);
1629 if (l && l->elt == NULL)
1630 l = l->next;
1631 for (; l; l = l->next)
1632 if (mode == GET_MODE (l->elt->val_rtx))
1634 promote_debug_loc (l->elt->locs);
1635 return l->elt;
1638 if (! create)
1639 return 0;
1641 if (i < FIRST_PSEUDO_REGISTER)
1643 unsigned int n = hard_regno_nregs[i][mode];
1645 if (n > max_value_regs)
1646 max_value_regs = n;
1649 e = new_cselib_val (next_uid, GET_MODE (x), x);
1650 e->locs = new_elt_loc_list (e->locs, x);
1651 if (REG_VALUES (i) == 0)
1653 /* Maintain the invariant that the first entry of
1654 REG_VALUES, if present, must be the value used to set the
1655 register, or NULL. */
1656 used_regs[n_used_regs++] = i;
1657 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1659 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1660 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->hash, INSERT);
1661 *slot = e;
1662 return e;
1665 if (MEM_P (x))
1666 return cselib_lookup_mem (x, create);
1668 hashval = cselib_hash_rtx (x, create);
1669 /* Can't even create if hashing is not possible. */
1670 if (! hashval)
1671 return 0;
1673 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1674 hashval, create ? INSERT : NO_INSERT);
1675 if (slot == 0)
1676 return 0;
1678 e = (cselib_val *) *slot;
1679 if (e)
1680 return e;
1682 e = new_cselib_val (hashval, mode, x);
1684 /* We have to fill the slot before calling cselib_subst_to_values:
1685 the hash table is inconsistent until we do so, and
1686 cselib_subst_to_values will need to do lookups. */
1687 *slot = (void *) e;
1688 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1689 return e;
1692 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
1694 cselib_val *
1695 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
1696 int create, rtx insn)
1698 cselib_val *ret;
1700 gcc_assert (!cselib_current_insn);
1701 cselib_current_insn = insn;
1703 ret = cselib_lookup (x, mode, create);
1705 cselib_current_insn = NULL;
1707 return ret;
1710 /* Wrapper for cselib_lookup_1, that logs the lookup result and
1711 maintains invariants related with debug insns. */
1713 cselib_val *
1714 cselib_lookup (rtx x, enum machine_mode mode, int create)
1716 cselib_val *ret = cselib_lookup_1 (x, mode, create);
1718 /* ??? Should we return NULL if we're not to create an entry, the
1719 found loc is a debug loc and cselib_current_insn is not DEBUG?
1720 If so, we should also avoid converting val to non-DEBUG; probably
1721 easiest setting cselib_current_insn to NULL before the call
1722 above. */
1724 if (dump_file && (dump_flags & TDF_DETAILS))
1726 fputs ("cselib lookup ", dump_file);
1727 print_inline_rtx (dump_file, x, 2);
1728 fprintf (dump_file, " => %u:%u\n",
1729 ret ? ret->uid : 0,
1730 ret ? ret->hash : 0);
1733 return ret;
1736 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1737 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1738 is used to determine how many hard registers are being changed. If MODE
1739 is VOIDmode, then only REGNO is being changed; this is used when
1740 invalidating call clobbered registers across a call. */
1742 static void
1743 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1745 unsigned int endregno;
1746 unsigned int i;
1748 /* If we see pseudos after reload, something is _wrong_. */
1749 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1750 || reg_renumber[regno] < 0);
1752 /* Determine the range of registers that must be invalidated. For
1753 pseudos, only REGNO is affected. For hard regs, we must take MODE
1754 into account, and we must also invalidate lower register numbers
1755 if they contain values that overlap REGNO. */
1756 if (regno < FIRST_PSEUDO_REGISTER)
1758 gcc_assert (mode != VOIDmode);
1760 if (regno < max_value_regs)
1761 i = 0;
1762 else
1763 i = regno - max_value_regs;
1765 endregno = end_hard_regno (mode, regno);
1767 else
1769 i = regno;
1770 endregno = regno + 1;
1773 for (; i < endregno; i++)
1775 struct elt_list **l = &REG_VALUES (i);
1777 /* Go through all known values for this reg; if it overlaps the range
1778 we're invalidating, remove the value. */
1779 while (*l)
1781 cselib_val *v = (*l)->elt;
1782 bool had_locs;
1783 rtx setting_insn;
1784 struct elt_loc_list **p;
1785 unsigned int this_last = i;
1787 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1788 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
1790 if (this_last < regno || v == NULL
1791 || (v == cfa_base_preserved_val
1792 && i == cfa_base_preserved_regno))
1794 l = &(*l)->next;
1795 continue;
1798 /* We have an overlap. */
1799 if (*l == REG_VALUES (i))
1801 /* Maintain the invariant that the first entry of
1802 REG_VALUES, if present, must be the value used to set
1803 the register, or NULL. This is also nice because
1804 then we won't push the same regno onto user_regs
1805 multiple times. */
1806 (*l)->elt = NULL;
1807 l = &(*l)->next;
1809 else
1810 unchain_one_elt_list (l);
1812 had_locs = v->locs != NULL;
1813 setting_insn = v->locs ? v->locs->setting_insn : NULL;
1815 /* Now, we clear the mapping from value to reg. It must exist, so
1816 this code will crash intentionally if it doesn't. */
1817 for (p = &v->locs; ; p = &(*p)->next)
1819 rtx x = (*p)->loc;
1821 if (REG_P (x) && REGNO (x) == i)
1823 unchain_one_elt_loc_list (p);
1824 break;
1828 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
1830 if (setting_insn && DEBUG_INSN_P (setting_insn))
1831 n_useless_debug_values++;
1832 else
1833 n_useless_values++;
1839 /* Return 1 if X has a value that can vary even between two
1840 executions of the program. 0 means X can be compared reliably
1841 against certain constants or near-constants. */
1843 static bool
1844 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
1846 /* We actually don't need to verify very hard. This is because
1847 if X has actually changed, we invalidate the memory anyway,
1848 so assume that all common memory addresses are
1849 invariant. */
1850 return 0;
1853 /* Invalidate any locations in the table which are changed because of a
1854 store to MEM_RTX. If this is called because of a non-const call
1855 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1857 static void
1858 cselib_invalidate_mem (rtx mem_rtx)
1860 cselib_val **vp, *v, *next;
1861 int num_mems = 0;
1862 rtx mem_addr;
1864 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1865 mem_rtx = canon_rtx (mem_rtx);
1867 vp = &first_containing_mem;
1868 for (v = *vp; v != &dummy_val; v = next)
1870 bool has_mem = false;
1871 struct elt_loc_list **p = &v->locs;
1872 bool had_locs = v->locs != NULL;
1873 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
1875 while (*p)
1877 rtx x = (*p)->loc;
1878 cselib_val *addr;
1879 struct elt_list **mem_chain;
1881 /* MEMs may occur in locations only at the top level; below
1882 that every MEM or REG is substituted by its VALUE. */
1883 if (!MEM_P (x))
1885 p = &(*p)->next;
1886 continue;
1888 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1889 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1890 x, NULL_RTX, cselib_rtx_varies_p))
1892 has_mem = true;
1893 num_mems++;
1894 p = &(*p)->next;
1895 continue;
1898 /* This one overlaps. */
1899 /* We must have a mapping from this MEM's address to the
1900 value (E). Remove that, too. */
1901 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1902 mem_chain = &addr->addr_list;
1903 for (;;)
1905 if ((*mem_chain)->elt == v)
1907 unchain_one_elt_list (mem_chain);
1908 break;
1911 mem_chain = &(*mem_chain)->next;
1914 unchain_one_elt_loc_list (p);
1917 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
1919 if (setting_insn && DEBUG_INSN_P (setting_insn))
1920 n_useless_debug_values++;
1921 else
1922 n_useless_values++;
1925 next = v->next_containing_mem;
1926 if (has_mem)
1928 *vp = v;
1929 vp = &(*vp)->next_containing_mem;
1931 else
1932 v->next_containing_mem = NULL;
1934 *vp = &dummy_val;
1937 /* Invalidate DEST, which is being assigned to or clobbered. */
1939 void
1940 cselib_invalidate_rtx (rtx dest)
1942 while (GET_CODE (dest) == SUBREG
1943 || GET_CODE (dest) == ZERO_EXTRACT
1944 || GET_CODE (dest) == STRICT_LOW_PART)
1945 dest = XEXP (dest, 0);
1947 if (REG_P (dest))
1948 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1949 else if (MEM_P (dest))
1950 cselib_invalidate_mem (dest);
1952 /* Some machines don't define AUTO_INC_DEC, but they still use push
1953 instructions. We need to catch that case here in order to
1954 invalidate the stack pointer correctly. Note that invalidating
1955 the stack pointer is different from invalidating DEST. */
1956 if (push_operand (dest, GET_MODE (dest)))
1957 cselib_invalidate_rtx (stack_pointer_rtx);
1960 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1962 static void
1963 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
1964 void *data ATTRIBUTE_UNUSED)
1966 cselib_invalidate_rtx (dest);
1969 /* Record the result of a SET instruction. DEST is being set; the source
1970 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1971 describes its address. */
1973 static void
1974 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1976 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1978 if (src_elt == 0 || side_effects_p (dest))
1979 return;
1981 if (dreg >= 0)
1983 if (dreg < FIRST_PSEUDO_REGISTER)
1985 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1987 if (n > max_value_regs)
1988 max_value_regs = n;
1991 if (REG_VALUES (dreg) == 0)
1993 used_regs[n_used_regs++] = dreg;
1994 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1996 else
1998 /* The register should have been invalidated. */
1999 gcc_assert (REG_VALUES (dreg)->elt == 0);
2000 REG_VALUES (dreg)->elt = src_elt;
2003 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2004 n_useless_values--;
2005 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
2007 else if (MEM_P (dest) && dest_addr_elt != 0
2008 && cselib_record_memory)
2010 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2011 n_useless_values--;
2012 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2016 /* There is no good way to determine how many elements there can be
2017 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2018 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2020 /* Record the effects of any sets in INSN. */
2021 static void
2022 cselib_record_sets (rtx insn)
2024 int n_sets = 0;
2025 int i;
2026 struct cselib_set sets[MAX_SETS];
2027 rtx body = PATTERN (insn);
2028 rtx cond = 0;
2030 body = PATTERN (insn);
2031 if (GET_CODE (body) == COND_EXEC)
2033 cond = COND_EXEC_TEST (body);
2034 body = COND_EXEC_CODE (body);
2037 /* Find all sets. */
2038 if (GET_CODE (body) == SET)
2040 sets[0].src = SET_SRC (body);
2041 sets[0].dest = SET_DEST (body);
2042 n_sets = 1;
2044 else if (GET_CODE (body) == PARALLEL)
2046 /* Look through the PARALLEL and record the values being
2047 set, if possible. Also handle any CLOBBERs. */
2048 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2050 rtx x = XVECEXP (body, 0, i);
2052 if (GET_CODE (x) == SET)
2054 sets[n_sets].src = SET_SRC (x);
2055 sets[n_sets].dest = SET_DEST (x);
2056 n_sets++;
2061 if (n_sets == 1
2062 && MEM_P (sets[0].src)
2063 && !cselib_record_memory
2064 && MEM_READONLY_P (sets[0].src))
2066 rtx note = find_reg_equal_equiv_note (insn);
2068 if (note && CONSTANT_P (XEXP (note, 0)))
2069 sets[0].src = XEXP (note, 0);
2072 /* Look up the values that are read. Do this before invalidating the
2073 locations that are written. */
2074 for (i = 0; i < n_sets; i++)
2076 rtx dest = sets[i].dest;
2078 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2079 the low part after invalidating any knowledge about larger modes. */
2080 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2081 sets[i].dest = dest = XEXP (dest, 0);
2083 /* We don't know how to record anything but REG or MEM. */
2084 if (REG_P (dest)
2085 || (MEM_P (dest) && cselib_record_memory))
2087 rtx src = sets[i].src;
2088 if (cond)
2089 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2090 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
2091 if (MEM_P (dest))
2093 enum machine_mode address_mode
2094 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2096 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2097 address_mode, 1);
2099 else
2100 sets[i].dest_addr_elt = 0;
2104 if (cselib_record_sets_hook)
2105 cselib_record_sets_hook (insn, sets, n_sets);
2107 /* Invalidate all locations written by this insn. Note that the elts we
2108 looked up in the previous loop aren't affected, just some of their
2109 locations may go away. */
2110 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2112 /* If this is an asm, look for duplicate sets. This can happen when the
2113 user uses the same value as an output multiple times. This is valid
2114 if the outputs are not actually used thereafter. Treat this case as
2115 if the value isn't actually set. We do this by smashing the destination
2116 to pc_rtx, so that we won't record the value later. */
2117 if (n_sets >= 2 && asm_noperands (body) >= 0)
2119 for (i = 0; i < n_sets; i++)
2121 rtx dest = sets[i].dest;
2122 if (REG_P (dest) || MEM_P (dest))
2124 int j;
2125 for (j = i + 1; j < n_sets; j++)
2126 if (rtx_equal_p (dest, sets[j].dest))
2128 sets[i].dest = pc_rtx;
2129 sets[j].dest = pc_rtx;
2135 /* Now enter the equivalences in our tables. */
2136 for (i = 0; i < n_sets; i++)
2138 rtx dest = sets[i].dest;
2139 if (REG_P (dest)
2140 || (MEM_P (dest) && cselib_record_memory))
2141 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2145 /* Record the effects of INSN. */
2147 void
2148 cselib_process_insn (rtx insn)
2150 int i;
2151 rtx x;
2153 cselib_current_insn = insn;
2155 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2156 if (LABEL_P (insn)
2157 || (CALL_P (insn)
2158 && find_reg_note (insn, REG_SETJMP, NULL))
2159 || (NONJUMP_INSN_P (insn)
2160 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2161 && MEM_VOLATILE_P (PATTERN (insn))))
2163 cselib_reset_table (next_uid);
2164 cselib_current_insn = NULL_RTX;
2165 return;
2168 if (! INSN_P (insn))
2170 cselib_current_insn = NULL_RTX;
2171 return;
2174 /* If this is a call instruction, forget anything stored in a
2175 call clobbered register, or, if this is not a const call, in
2176 memory. */
2177 if (CALL_P (insn))
2179 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2180 if (call_used_regs[i]
2181 || (REG_VALUES (i) && REG_VALUES (i)->elt
2182 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2183 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2184 cselib_invalidate_regno (i, reg_raw_mode[i]);
2186 /* Since it is not clear how cselib is going to be used, be
2187 conservative here and treat looping pure or const functions
2188 as if they were regular functions. */
2189 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2190 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2191 cselib_invalidate_mem (callmem);
2194 cselib_record_sets (insn);
2196 #ifdef AUTO_INC_DEC
2197 /* Clobber any registers which appear in REG_INC notes. We
2198 could keep track of the changes to their values, but it is
2199 unlikely to help. */
2200 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
2201 if (REG_NOTE_KIND (x) == REG_INC)
2202 cselib_invalidate_rtx (XEXP (x, 0));
2203 #endif
2205 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2206 after we have processed the insn. */
2207 if (CALL_P (insn))
2208 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2209 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2210 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2212 cselib_current_insn = NULL_RTX;
2214 if (n_useless_values > MAX_USELESS_VALUES
2215 /* remove_useless_values is linear in the hash table size. Avoid
2216 quadratic behavior for very large hashtables with very few
2217 useless elements. */
2218 && ((unsigned int)n_useless_values
2219 > (cselib_hash_table->n_elements
2220 - cselib_hash_table->n_deleted
2221 - n_debug_values) / 4))
2222 remove_useless_values ();
2225 /* Initialize cselib for one pass. The caller must also call
2226 init_alias_analysis. */
2228 void
2229 cselib_init (int record_what)
2231 elt_list_pool = create_alloc_pool ("elt_list",
2232 sizeof (struct elt_list), 10);
2233 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2234 sizeof (struct elt_loc_list), 10);
2235 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2236 sizeof (cselib_val), 10);
2237 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2238 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2239 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2241 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2242 see canon_true_dependence. This is only created once. */
2243 if (! callmem)
2244 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2246 cselib_nregs = max_reg_num ();
2248 /* We preserve reg_values to allow expensive clearing of the whole thing.
2249 Reallocate it however if it happens to be too large. */
2250 if (!reg_values || reg_values_size < cselib_nregs
2251 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2253 if (reg_values)
2254 free (reg_values);
2255 /* Some space for newly emit instructions so we don't end up
2256 reallocating in between passes. */
2257 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2258 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2260 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2261 n_used_regs = 0;
2262 cselib_hash_table = htab_create (31, get_value_hash,
2263 entry_and_rtx_equal_p, NULL);
2264 next_uid = 1;
2267 /* Called when the current user is done with cselib. */
2269 void
2270 cselib_finish (void)
2272 cselib_discard_hook = NULL;
2273 cselib_preserve_constants = false;
2274 cfa_base_preserved_val = NULL;
2275 cfa_base_preserved_regno = INVALID_REGNUM;
2276 free_alloc_pool (elt_list_pool);
2277 free_alloc_pool (elt_loc_list_pool);
2278 free_alloc_pool (cselib_val_pool);
2279 free_alloc_pool (value_pool);
2280 cselib_clear_table ();
2281 htab_delete (cselib_hash_table);
2282 free (used_regs);
2283 used_regs = 0;
2284 cselib_hash_table = 0;
2285 n_useless_values = 0;
2286 n_useless_debug_values = 0;
2287 n_debug_values = 0;
2288 next_uid = 0;
2291 /* Dump the cselib_val *X to FILE *info. */
2293 static int
2294 dump_cselib_val (void **x, void *info)
2296 cselib_val *v = (cselib_val *)*x;
2297 FILE *out = (FILE *)info;
2298 bool need_lf = true;
2300 print_inline_rtx (out, v->val_rtx, 0);
2302 if (v->locs)
2304 struct elt_loc_list *l = v->locs;
2305 if (need_lf)
2307 fputc ('\n', out);
2308 need_lf = false;
2310 fputs (" locs:", out);
2313 fprintf (out, "\n from insn %i ",
2314 INSN_UID (l->setting_insn));
2315 print_inline_rtx (out, l->loc, 4);
2317 while ((l = l->next));
2318 fputc ('\n', out);
2320 else
2322 fputs (" no locs", out);
2323 need_lf = true;
2326 if (v->addr_list)
2328 struct elt_list *e = v->addr_list;
2329 if (need_lf)
2331 fputc ('\n', out);
2332 need_lf = false;
2334 fputs (" addr list:", out);
2337 fputs ("\n ", out);
2338 print_inline_rtx (out, e->elt->val_rtx, 2);
2340 while ((e = e->next));
2341 fputc ('\n', out);
2343 else
2345 fputs (" no addrs", out);
2346 need_lf = true;
2349 if (v->next_containing_mem == &dummy_val)
2350 fputs (" last mem\n", out);
2351 else if (v->next_containing_mem)
2353 fputs (" next mem ", out);
2354 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2355 fputc ('\n', out);
2357 else if (need_lf)
2358 fputc ('\n', out);
2360 return 1;
2363 /* Dump to OUT everything in the CSELIB table. */
2365 void
2366 dump_cselib_table (FILE *out)
2368 fprintf (out, "cselib hash table:\n");
2369 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2370 if (first_containing_mem != &dummy_val)
2372 fputs ("first mem ", out);
2373 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2374 fputc ('\n', out);
2376 fprintf (out, "next uid %i\n", next_uid);
2379 #include "gt-cselib.h"