PR rtl-optimization/82913
[official-gcc.git] / gcc / tree-vect-data-refs.c
blobca864987a595ccf46aa2e2deb3f25e5d1780f6ee
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "predict.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "ssa.h"
34 #include "optabs-tree.h"
35 #include "cgraph.h"
36 #include "dumpfile.h"
37 #include "alias.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tree-eh.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop.h"
47 #include "cfgloop.h"
48 #include "tree-scalar-evolution.h"
49 #include "tree-vectorizer.h"
50 #include "expr.h"
51 #include "builtins.h"
52 #include "params.h"
53 #include "tree-cfg.h"
54 #include "tree-hash-traits.h"
56 /* Return true if load- or store-lanes optab OPTAB is implemented for
57 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
59 static bool
60 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
61 tree vectype, unsigned HOST_WIDE_INT count)
63 machine_mode mode;
64 scalar_int_mode array_mode;
65 bool limit_p;
67 mode = TYPE_MODE (vectype);
68 limit_p = !targetm.array_mode_supported_p (mode, count);
69 if (!int_mode_for_size (count * GET_MODE_BITSIZE (mode),
70 limit_p).exists (&array_mode))
72 if (dump_enabled_p ())
73 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
74 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
75 GET_MODE_NAME (mode), count);
76 return false;
79 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
81 if (dump_enabled_p ())
82 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
83 "cannot use %s<%s><%s>\n", name,
84 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
85 return false;
88 if (dump_enabled_p ())
89 dump_printf_loc (MSG_NOTE, vect_location,
90 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
91 GET_MODE_NAME (mode));
93 return true;
97 /* Return the smallest scalar part of STMT.
98 This is used to determine the vectype of the stmt. We generally set the
99 vectype according to the type of the result (lhs). For stmts whose
100 result-type is different than the type of the arguments (e.g., demotion,
101 promotion), vectype will be reset appropriately (later). Note that we have
102 to visit the smallest datatype in this function, because that determines the
103 VF. If the smallest datatype in the loop is present only as the rhs of a
104 promotion operation - we'd miss it.
105 Such a case, where a variable of this datatype does not appear in the lhs
106 anywhere in the loop, can only occur if it's an invariant: e.g.:
107 'int_x = (int) short_inv', which we'd expect to have been optimized away by
108 invariant motion. However, we cannot rely on invariant motion to always
109 take invariants out of the loop, and so in the case of promotion we also
110 have to check the rhs.
111 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
112 types. */
114 tree
115 vect_get_smallest_scalar_type (gimple *stmt, HOST_WIDE_INT *lhs_size_unit,
116 HOST_WIDE_INT *rhs_size_unit)
118 tree scalar_type = gimple_expr_type (stmt);
119 HOST_WIDE_INT lhs, rhs;
121 /* During the analysis phase, this function is called on arbitrary
122 statements that might not have scalar results. */
123 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
124 return scalar_type;
126 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
128 if (is_gimple_assign (stmt)
129 && (gimple_assign_cast_p (stmt)
130 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
131 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
132 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
134 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
136 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
137 if (rhs < lhs)
138 scalar_type = rhs_type;
141 *lhs_size_unit = lhs;
142 *rhs_size_unit = rhs;
143 return scalar_type;
147 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
148 tested at run-time. Return TRUE if DDR was successfully inserted.
149 Return false if versioning is not supported. */
151 static bool
152 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
154 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
156 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
157 return false;
159 if (!runtime_alias_check_p (ddr, loop,
160 optimize_loop_nest_for_speed_p (loop)))
161 return false;
163 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
164 return true;
168 /* A subroutine of vect_analyze_data_ref_dependence. Handle
169 DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
170 distances. These distances are conservatively correct but they don't
171 reflect a guaranteed dependence.
173 Return true if this function does all the work necessary to avoid
174 an alias or false if the caller should use the dependence distances
175 to limit the vectorization factor in the usual way. LOOP_DEPTH is
176 the depth of the loop described by LOOP_VINFO and the other arguments
177 are as for vect_analyze_data_ref_dependence. */
179 static bool
180 vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
181 loop_vec_info loop_vinfo,
182 int loop_depth, int *max_vf)
184 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
185 lambda_vector dist_v;
186 unsigned int i;
187 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
189 int dist = dist_v[loop_depth];
190 if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
192 /* If the user asserted safelen >= DIST consecutive iterations
193 can be executed concurrently, assume independence.
195 ??? An alternative would be to add the alias check even
196 in this case, and vectorize the fallback loop with the
197 maximum VF set to safelen. However, if the user has
198 explicitly given a length, it's less likely that that
199 would be a win. */
200 if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
202 if (loop->safelen < *max_vf)
203 *max_vf = loop->safelen;
204 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
205 continue;
208 /* For dependence distances of 2 or more, we have the option
209 of limiting VF or checking for an alias at runtime.
210 Prefer to check at runtime if we can, to avoid limiting
211 the VF unnecessarily when the bases are in fact independent.
213 Note that the alias checks will be removed if the VF ends up
214 being small enough. */
215 return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
218 return true;
222 /* Function vect_analyze_data_ref_dependence.
224 Return TRUE if there (might) exist a dependence between a memory-reference
225 DRA and a memory-reference DRB. When versioning for alias may check a
226 dependence at run-time, return FALSE. Adjust *MAX_VF according to
227 the data dependence. */
229 static bool
230 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
231 loop_vec_info loop_vinfo, int *max_vf)
233 unsigned int i;
234 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
235 struct data_reference *dra = DDR_A (ddr);
236 struct data_reference *drb = DDR_B (ddr);
237 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
238 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
239 lambda_vector dist_v;
240 unsigned int loop_depth;
242 /* In loop analysis all data references should be vectorizable. */
243 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
244 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
245 gcc_unreachable ();
247 /* Independent data accesses. */
248 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
249 return false;
251 if (dra == drb
252 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
253 return false;
255 /* We do not have to consider dependences between accesses that belong
256 to the same group. */
257 if (GROUP_FIRST_ELEMENT (stmtinfo_a)
258 && GROUP_FIRST_ELEMENT (stmtinfo_a) == GROUP_FIRST_ELEMENT (stmtinfo_b))
259 return false;
261 /* Even if we have an anti-dependence then, as the vectorized loop covers at
262 least two scalar iterations, there is always also a true dependence.
263 As the vectorizer does not re-order loads and stores we can ignore
264 the anti-dependence if TBAA can disambiguate both DRs similar to the
265 case with known negative distance anti-dependences (positive
266 distance anti-dependences would violate TBAA constraints). */
267 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
268 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
269 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
270 get_alias_set (DR_REF (drb))))
271 return false;
273 /* Unknown data dependence. */
274 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
276 /* If user asserted safelen consecutive iterations can be
277 executed concurrently, assume independence. */
278 if (loop->safelen >= 2)
280 if (loop->safelen < *max_vf)
281 *max_vf = loop->safelen;
282 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
283 return false;
286 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
287 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
289 if (dump_enabled_p ())
291 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
292 "versioning for alias not supported for: "
293 "can't determine dependence between ");
294 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
295 DR_REF (dra));
296 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
297 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
298 DR_REF (drb));
299 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
301 return true;
304 if (dump_enabled_p ())
306 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
307 "versioning for alias required: "
308 "can't determine dependence between ");
309 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
310 DR_REF (dra));
311 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
312 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
313 DR_REF (drb));
314 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
317 /* Add to list of ddrs that need to be tested at run-time. */
318 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
321 /* Known data dependence. */
322 if (DDR_NUM_DIST_VECTS (ddr) == 0)
324 /* If user asserted safelen consecutive iterations can be
325 executed concurrently, assume independence. */
326 if (loop->safelen >= 2)
328 if (loop->safelen < *max_vf)
329 *max_vf = loop->safelen;
330 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
331 return false;
334 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
335 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
337 if (dump_enabled_p ())
339 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
340 "versioning for alias not supported for: "
341 "bad dist vector for ");
342 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
343 DR_REF (dra));
344 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
345 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
346 DR_REF (drb));
347 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
349 return true;
352 if (dump_enabled_p ())
354 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
355 "versioning for alias required: "
356 "bad dist vector for ");
357 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
358 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
359 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
360 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
362 /* Add to list of ddrs that need to be tested at run-time. */
363 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
366 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
368 if (DDR_COULD_BE_INDEPENDENT_P (ddr)
369 && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
370 loop_depth, max_vf))
371 return false;
373 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
375 int dist = dist_v[loop_depth];
377 if (dump_enabled_p ())
378 dump_printf_loc (MSG_NOTE, vect_location,
379 "dependence distance = %d.\n", dist);
381 if (dist == 0)
383 if (dump_enabled_p ())
385 dump_printf_loc (MSG_NOTE, vect_location,
386 "dependence distance == 0 between ");
387 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
388 dump_printf (MSG_NOTE, " and ");
389 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
390 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
393 /* When we perform grouped accesses and perform implicit CSE
394 by detecting equal accesses and doing disambiguation with
395 runtime alias tests like for
396 .. = a[i];
397 .. = a[i+1];
398 a[i] = ..;
399 a[i+1] = ..;
400 *p = ..;
401 .. = a[i];
402 .. = a[i+1];
403 where we will end up loading { a[i], a[i+1] } once, make
404 sure that inserting group loads before the first load and
405 stores after the last store will do the right thing.
406 Similar for groups like
407 a[i] = ...;
408 ... = a[i];
409 a[i+1] = ...;
410 where loads from the group interleave with the store. */
411 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
412 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
414 gimple *earlier_stmt;
415 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
416 if (DR_IS_WRITE
417 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
419 if (dump_enabled_p ())
420 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
421 "READ_WRITE dependence in interleaving."
422 "\n");
423 return true;
427 continue;
430 if (dist > 0 && DDR_REVERSED_P (ddr))
432 /* If DDR_REVERSED_P the order of the data-refs in DDR was
433 reversed (to make distance vector positive), and the actual
434 distance is negative. */
435 if (dump_enabled_p ())
436 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
437 "dependence distance negative.\n");
438 /* Record a negative dependence distance to later limit the
439 amount of stmt copying / unrolling we can perform.
440 Only need to handle read-after-write dependence. */
441 if (DR_IS_READ (drb)
442 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
443 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
444 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
445 continue;
448 if (abs (dist) >= 2
449 && abs (dist) < *max_vf)
451 /* The dependence distance requires reduction of the maximal
452 vectorization factor. */
453 *max_vf = abs (dist);
454 if (dump_enabled_p ())
455 dump_printf_loc (MSG_NOTE, vect_location,
456 "adjusting maximal vectorization factor to %i\n",
457 *max_vf);
460 if (abs (dist) >= *max_vf)
462 /* Dependence distance does not create dependence, as far as
463 vectorization is concerned, in this case. */
464 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location,
466 "dependence distance >= VF.\n");
467 continue;
470 if (dump_enabled_p ())
472 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
473 "not vectorized, possible dependence "
474 "between data-refs ");
475 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
476 dump_printf (MSG_NOTE, " and ");
477 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
478 dump_printf (MSG_NOTE, "\n");
481 return true;
484 return false;
487 /* Function vect_analyze_data_ref_dependences.
489 Examine all the data references in the loop, and make sure there do not
490 exist any data dependences between them. Set *MAX_VF according to
491 the maximum vectorization factor the data dependences allow. */
493 bool
494 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
496 unsigned int i;
497 struct data_dependence_relation *ddr;
499 if (dump_enabled_p ())
500 dump_printf_loc (MSG_NOTE, vect_location,
501 "=== vect_analyze_data_ref_dependences ===\n");
503 LOOP_VINFO_DDRS (loop_vinfo)
504 .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
505 * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
506 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
507 /* We need read-read dependences to compute STMT_VINFO_SAME_ALIGN_REFS. */
508 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
509 &LOOP_VINFO_DDRS (loop_vinfo),
510 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
511 return false;
513 /* For epilogues we either have no aliases or alias versioning
514 was applied to original loop. Therefore we may just get max_vf
515 using VF of original loop. */
516 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
517 *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
518 else
519 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
520 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
521 return false;
523 return true;
527 /* Function vect_slp_analyze_data_ref_dependence.
529 Return TRUE if there (might) exist a dependence between a memory-reference
530 DRA and a memory-reference DRB. When versioning for alias may check a
531 dependence at run-time, return FALSE. Adjust *MAX_VF according to
532 the data dependence. */
534 static bool
535 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
537 struct data_reference *dra = DDR_A (ddr);
538 struct data_reference *drb = DDR_B (ddr);
540 /* We need to check dependences of statements marked as unvectorizable
541 as well, they still can prohibit vectorization. */
543 /* Independent data accesses. */
544 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
545 return false;
547 if (dra == drb)
548 return false;
550 /* Read-read is OK. */
551 if (DR_IS_READ (dra) && DR_IS_READ (drb))
552 return false;
554 /* If dra and drb are part of the same interleaving chain consider
555 them independent. */
556 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
557 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
558 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
559 return false;
561 /* Unknown data dependence. */
562 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
564 if (dump_enabled_p ())
566 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
567 "can't determine dependence between ");
568 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
569 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
570 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
571 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
574 else if (dump_enabled_p ())
576 dump_printf_loc (MSG_NOTE, vect_location,
577 "determined dependence between ");
578 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
579 dump_printf (MSG_NOTE, " and ");
580 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
581 dump_printf (MSG_NOTE, "\n");
584 return true;
588 /* Analyze dependences involved in the transform of SLP NODE. STORES
589 contain the vector of scalar stores of this instance if we are
590 disambiguating the loads. */
592 static bool
593 vect_slp_analyze_node_dependences (slp_instance instance, slp_tree node,
594 vec<gimple *> stores, gimple *last_store)
596 /* This walks over all stmts involved in the SLP load/store done
597 in NODE verifying we can sink them up to the last stmt in the
598 group. */
599 gimple *last_access = vect_find_last_scalar_stmt_in_slp (node);
600 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
602 gimple *access = SLP_TREE_SCALAR_STMTS (node)[k];
603 if (access == last_access)
604 continue;
605 data_reference *dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (access));
606 for (gimple_stmt_iterator gsi = gsi_for_stmt (access);
607 gsi_stmt (gsi) != last_access; gsi_next (&gsi))
609 gimple *stmt = gsi_stmt (gsi);
610 if (! gimple_vuse (stmt)
611 || (DR_IS_READ (dr_a) && ! gimple_vdef (stmt)))
612 continue;
614 /* If we couldn't record a (single) data reference for this
615 stmt we have to give up. */
616 /* ??? Here and below if dependence analysis fails we can resort
617 to the alias oracle which can handle more kinds of stmts. */
618 data_reference *dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
619 if (!dr_b)
620 return false;
622 bool dependent = false;
623 /* If we run into a store of this same instance (we've just
624 marked those) then delay dependence checking until we run
625 into the last store because this is where it will have
626 been sunk to (and we verify if we can do that as well). */
627 if (gimple_visited_p (stmt))
629 if (stmt != last_store)
630 continue;
631 unsigned i;
632 gimple *store;
633 FOR_EACH_VEC_ELT (stores, i, store)
635 data_reference *store_dr
636 = STMT_VINFO_DATA_REF (vinfo_for_stmt (store));
637 ddr_p ddr = initialize_data_dependence_relation
638 (dr_a, store_dr, vNULL);
639 dependent = vect_slp_analyze_data_ref_dependence (ddr);
640 free_dependence_relation (ddr);
641 if (dependent)
642 break;
645 else
647 ddr_p ddr = initialize_data_dependence_relation (dr_a,
648 dr_b, vNULL);
649 dependent = vect_slp_analyze_data_ref_dependence (ddr);
650 free_dependence_relation (ddr);
652 if (dependent)
653 return false;
656 return true;
660 /* Function vect_analyze_data_ref_dependences.
662 Examine all the data references in the basic-block, and make sure there
663 do not exist any data dependences between them. Set *MAX_VF according to
664 the maximum vectorization factor the data dependences allow. */
666 bool
667 vect_slp_analyze_instance_dependence (slp_instance instance)
669 if (dump_enabled_p ())
670 dump_printf_loc (MSG_NOTE, vect_location,
671 "=== vect_slp_analyze_instance_dependence ===\n");
673 /* The stores of this instance are at the root of the SLP tree. */
674 slp_tree store = SLP_INSTANCE_TREE (instance);
675 if (! STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (store)[0])))
676 store = NULL;
678 /* Verify we can sink stores to the vectorized stmt insert location. */
679 gimple *last_store = NULL;
680 if (store)
682 if (! vect_slp_analyze_node_dependences (instance, store, vNULL, NULL))
683 return false;
685 /* Mark stores in this instance and remember the last one. */
686 last_store = vect_find_last_scalar_stmt_in_slp (store);
687 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
688 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], true);
691 bool res = true;
693 /* Verify we can sink loads to the vectorized stmt insert location,
694 special-casing stores of this instance. */
695 slp_tree load;
696 unsigned int i;
697 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load)
698 if (! vect_slp_analyze_node_dependences (instance, load,
699 store
700 ? SLP_TREE_SCALAR_STMTS (store)
701 : vNULL, last_store))
703 res = false;
704 break;
707 /* Unset the visited flag. */
708 if (store)
709 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
710 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], false);
712 return res;
715 /* Record in VINFO the base alignment guarantee given by DRB. STMT is
716 the statement that contains DRB, which is useful for recording in the
717 dump file. */
719 static void
720 vect_record_base_alignment (vec_info *vinfo, gimple *stmt,
721 innermost_loop_behavior *drb)
723 bool existed;
724 innermost_loop_behavior *&entry
725 = vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
726 if (!existed || entry->base_alignment < drb->base_alignment)
728 entry = drb;
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location,
732 "recording new base alignment for ");
733 dump_generic_expr (MSG_NOTE, TDF_SLIM, drb->base_address);
734 dump_printf (MSG_NOTE, "\n");
735 dump_printf_loc (MSG_NOTE, vect_location,
736 " alignment: %d\n", drb->base_alignment);
737 dump_printf_loc (MSG_NOTE, vect_location,
738 " misalignment: %d\n", drb->base_misalignment);
739 dump_printf_loc (MSG_NOTE, vect_location,
740 " based on: ");
741 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
746 /* If the region we're going to vectorize is reached, all unconditional
747 data references occur at least once. We can therefore pool the base
748 alignment guarantees from each unconditional reference. Do this by
749 going through all the data references in VINFO and checking whether
750 the containing statement makes the reference unconditionally. If so,
751 record the alignment of the base address in VINFO so that it can be
752 used for all other references with the same base. */
754 void
755 vect_record_base_alignments (vec_info *vinfo)
757 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
758 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
759 data_reference *dr;
760 unsigned int i;
761 FOR_EACH_VEC_ELT (vinfo->datarefs, i, dr)
762 if (!DR_IS_CONDITIONAL_IN_STMT (dr))
764 gimple *stmt = DR_STMT (dr);
765 vect_record_base_alignment (vinfo, stmt, &DR_INNERMOST (dr));
767 /* If DR is nested in the loop that is being vectorized, we can also
768 record the alignment of the base wrt the outer loop. */
769 if (loop && nested_in_vect_loop_p (loop, stmt))
771 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
772 vect_record_base_alignment
773 (vinfo, stmt, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
778 /* Return the target alignment for the vectorized form of DR. */
780 static unsigned int
781 vect_calculate_target_alignment (struct data_reference *dr)
783 gimple *stmt = DR_STMT (dr);
784 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
785 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
786 return targetm.vectorize.preferred_vector_alignment (vectype);
789 /* Function vect_compute_data_ref_alignment
791 Compute the misalignment of the data reference DR.
793 Output:
794 1. If during the misalignment computation it is found that the data reference
795 cannot be vectorized then false is returned.
796 2. DR_MISALIGNMENT (DR) is defined.
798 FOR NOW: No analysis is actually performed. Misalignment is calculated
799 only for trivial cases. TODO. */
801 bool
802 vect_compute_data_ref_alignment (struct data_reference *dr)
804 gimple *stmt = DR_STMT (dr);
805 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
806 vec_base_alignments *base_alignments = &stmt_info->vinfo->base_alignments;
807 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
808 struct loop *loop = NULL;
809 tree ref = DR_REF (dr);
810 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
812 if (dump_enabled_p ())
813 dump_printf_loc (MSG_NOTE, vect_location,
814 "vect_compute_data_ref_alignment:\n");
816 if (loop_vinfo)
817 loop = LOOP_VINFO_LOOP (loop_vinfo);
819 /* Initialize misalignment to unknown. */
820 SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN);
822 innermost_loop_behavior *drb = vect_dr_behavior (dr);
823 bool step_preserves_misalignment_p;
825 unsigned HOST_WIDE_INT vector_alignment
826 = vect_calculate_target_alignment (dr) / BITS_PER_UNIT;
827 DR_TARGET_ALIGNMENT (dr) = vector_alignment;
829 /* No step for BB vectorization. */
830 if (!loop)
832 gcc_assert (integer_zerop (drb->step));
833 step_preserves_misalignment_p = true;
836 /* In case the dataref is in an inner-loop of the loop that is being
837 vectorized (LOOP), we use the base and misalignment information
838 relative to the outer-loop (LOOP). This is ok only if the misalignment
839 stays the same throughout the execution of the inner-loop, which is why
840 we have to check that the stride of the dataref in the inner-loop evenly
841 divides by the vector alignment. */
842 else if (nested_in_vect_loop_p (loop, stmt))
844 step_preserves_misalignment_p
845 = (DR_STEP_ALIGNMENT (dr) % vector_alignment) == 0;
847 if (dump_enabled_p ())
849 if (step_preserves_misalignment_p)
850 dump_printf_loc (MSG_NOTE, vect_location,
851 "inner step divides the vector alignment.\n");
852 else
853 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
854 "inner step doesn't divide the vector"
855 " alignment.\n");
859 /* Similarly we can only use base and misalignment information relative to
860 an innermost loop if the misalignment stays the same throughout the
861 execution of the loop. As above, this is the case if the stride of
862 the dataref evenly divides by the alignment. */
863 else
865 unsigned vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
866 step_preserves_misalignment_p
867 = ((DR_STEP_ALIGNMENT (dr) * vf) % vector_alignment) == 0;
869 if (!step_preserves_misalignment_p && dump_enabled_p ())
870 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
871 "step doesn't divide the vector alignment.\n");
874 unsigned int base_alignment = drb->base_alignment;
875 unsigned int base_misalignment = drb->base_misalignment;
877 /* Calculate the maximum of the pooled base address alignment and the
878 alignment that we can compute for DR itself. */
879 innermost_loop_behavior **entry = base_alignments->get (drb->base_address);
880 if (entry && base_alignment < (*entry)->base_alignment)
882 base_alignment = (*entry)->base_alignment;
883 base_misalignment = (*entry)->base_misalignment;
886 if (drb->offset_alignment < vector_alignment
887 || !step_preserves_misalignment_p
888 /* We need to know whether the step wrt the vectorized loop is
889 negative when computing the starting misalignment below. */
890 || TREE_CODE (drb->step) != INTEGER_CST)
892 if (dump_enabled_p ())
894 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
895 "Unknown alignment for access: ");
896 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
897 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
899 return true;
902 if (base_alignment < vector_alignment)
904 tree base = drb->base_address;
905 if (TREE_CODE (base) == ADDR_EXPR)
906 base = TREE_OPERAND (base, 0);
907 if (!vect_can_force_dr_alignment_p (base,
908 vector_alignment * BITS_PER_UNIT))
910 if (dump_enabled_p ())
912 dump_printf_loc (MSG_NOTE, vect_location,
913 "can't force alignment of ref: ");
914 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
915 dump_printf (MSG_NOTE, "\n");
917 return true;
920 if (DECL_USER_ALIGN (base))
922 if (dump_enabled_p ())
924 dump_printf_loc (MSG_NOTE, vect_location,
925 "not forcing alignment of user-aligned "
926 "variable: ");
927 dump_generic_expr (MSG_NOTE, TDF_SLIM, base);
928 dump_printf (MSG_NOTE, "\n");
930 return true;
933 /* Force the alignment of the decl.
934 NOTE: This is the only change to the code we make during
935 the analysis phase, before deciding to vectorize the loop. */
936 if (dump_enabled_p ())
938 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
939 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
940 dump_printf (MSG_NOTE, "\n");
943 DR_VECT_AUX (dr)->base_decl = base;
944 DR_VECT_AUX (dr)->base_misaligned = true;
945 base_misalignment = 0;
947 unsigned int misalignment = (base_misalignment
948 + TREE_INT_CST_LOW (drb->init));
950 /* If this is a backward running DR then first access in the larger
951 vectype actually is N-1 elements before the address in the DR.
952 Adjust misalign accordingly. */
953 if (tree_int_cst_sgn (drb->step) < 0)
954 /* PLUS because STEP is negative. */
955 misalignment += ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
956 * TREE_INT_CST_LOW (drb->step));
958 SET_DR_MISALIGNMENT (dr, misalignment & (vector_alignment - 1));
960 if (dump_enabled_p ())
962 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
963 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
964 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
965 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
968 return true;
971 /* Function vect_update_misalignment_for_peel.
972 Sets DR's misalignment
973 - to 0 if it has the same alignment as DR_PEEL,
974 - to the misalignment computed using NPEEL if DR's salignment is known,
975 - to -1 (unknown) otherwise.
977 DR - the data reference whose misalignment is to be adjusted.
978 DR_PEEL - the data reference whose misalignment is being made
979 zero in the vector loop by the peel.
980 NPEEL - the number of iterations in the peel loop if the misalignment
981 of DR_PEEL is known at compile time. */
983 static void
984 vect_update_misalignment_for_peel (struct data_reference *dr,
985 struct data_reference *dr_peel, int npeel)
987 unsigned int i;
988 vec<dr_p> same_aligned_drs;
989 struct data_reference *current_dr;
990 int dr_size = vect_get_scalar_dr_size (dr);
991 int dr_peel_size = vect_get_scalar_dr_size (dr_peel);
992 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
993 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
995 /* For interleaved data accesses the step in the loop must be multiplied by
996 the size of the interleaving group. */
997 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
998 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
999 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
1000 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
1002 /* It can be assumed that the data refs with the same alignment as dr_peel
1003 are aligned in the vector loop. */
1004 same_aligned_drs
1005 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
1006 FOR_EACH_VEC_ELT (same_aligned_drs, i, current_dr)
1008 if (current_dr != dr)
1009 continue;
1010 gcc_assert (!known_alignment_for_access_p (dr)
1011 || !known_alignment_for_access_p (dr_peel)
1012 || (DR_MISALIGNMENT (dr) / dr_size
1013 == DR_MISALIGNMENT (dr_peel) / dr_peel_size));
1014 SET_DR_MISALIGNMENT (dr, 0);
1015 return;
1018 if (known_alignment_for_access_p (dr)
1019 && known_alignment_for_access_p (dr_peel))
1021 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1022 int misal = DR_MISALIGNMENT (dr);
1023 misal += negative ? -npeel * dr_size : npeel * dr_size;
1024 misal &= DR_TARGET_ALIGNMENT (dr) - 1;
1025 SET_DR_MISALIGNMENT (dr, misal);
1026 return;
1029 if (dump_enabled_p ())
1030 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
1031 "to unknown (-1).\n");
1032 SET_DR_MISALIGNMENT (dr, DR_MISALIGNMENT_UNKNOWN);
1036 /* Function verify_data_ref_alignment
1038 Return TRUE if DR can be handled with respect to alignment. */
1040 static bool
1041 verify_data_ref_alignment (data_reference_p dr)
1043 enum dr_alignment_support supportable_dr_alignment
1044 = vect_supportable_dr_alignment (dr, false);
1045 if (!supportable_dr_alignment)
1047 if (dump_enabled_p ())
1049 if (DR_IS_READ (dr))
1050 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1051 "not vectorized: unsupported unaligned load.");
1052 else
1053 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1054 "not vectorized: unsupported unaligned "
1055 "store.");
1057 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1058 DR_REF (dr));
1059 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1061 return false;
1064 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
1065 dump_printf_loc (MSG_NOTE, vect_location,
1066 "Vectorizing an unaligned access.\n");
1068 return true;
1071 /* Function vect_verify_datarefs_alignment
1073 Return TRUE if all data references in the loop can be
1074 handled with respect to alignment. */
1076 bool
1077 vect_verify_datarefs_alignment (loop_vec_info vinfo)
1079 vec<data_reference_p> datarefs = vinfo->datarefs;
1080 struct data_reference *dr;
1081 unsigned int i;
1083 FOR_EACH_VEC_ELT (datarefs, i, dr)
1085 gimple *stmt = DR_STMT (dr);
1086 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1088 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1089 continue;
1091 /* For interleaving, only the alignment of the first access matters. */
1092 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1093 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1094 continue;
1096 /* Strided accesses perform only component accesses, alignment is
1097 irrelevant for them. */
1098 if (STMT_VINFO_STRIDED_P (stmt_info)
1099 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1100 continue;
1102 if (! verify_data_ref_alignment (dr))
1103 return false;
1106 return true;
1109 /* Given an memory reference EXP return whether its alignment is less
1110 than its size. */
1112 static bool
1113 not_size_aligned (tree exp)
1115 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
1116 return true;
1118 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
1119 > get_object_alignment (exp));
1122 /* Function vector_alignment_reachable_p
1124 Return true if vector alignment for DR is reachable by peeling
1125 a few loop iterations. Return false otherwise. */
1127 static bool
1128 vector_alignment_reachable_p (struct data_reference *dr)
1130 gimple *stmt = DR_STMT (dr);
1131 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1132 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1134 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1136 /* For interleaved access we peel only if number of iterations in
1137 the prolog loop ({VF - misalignment}), is a multiple of the
1138 number of the interleaved accesses. */
1139 int elem_size, mis_in_elements;
1140 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1142 /* FORNOW: handle only known alignment. */
1143 if (!known_alignment_for_access_p (dr))
1144 return false;
1146 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1147 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1149 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1150 return false;
1153 /* If misalignment is known at the compile time then allow peeling
1154 only if natural alignment is reachable through peeling. */
1155 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1157 HOST_WIDE_INT elmsize =
1158 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1159 if (dump_enabled_p ())
1161 dump_printf_loc (MSG_NOTE, vect_location,
1162 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1163 dump_printf (MSG_NOTE,
1164 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1166 if (DR_MISALIGNMENT (dr) % elmsize)
1168 if (dump_enabled_p ())
1169 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1170 "data size does not divide the misalignment.\n");
1171 return false;
1175 if (!known_alignment_for_access_p (dr))
1177 tree type = TREE_TYPE (DR_REF (dr));
1178 bool is_packed = not_size_aligned (DR_REF (dr));
1179 if (dump_enabled_p ())
1180 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1181 "Unknown misalignment, %snaturally aligned\n",
1182 is_packed ? "not " : "");
1183 return targetm.vectorize.vector_alignment_reachable (type, is_packed);
1186 return true;
1190 /* Calculate the cost of the memory access represented by DR. */
1192 static void
1193 vect_get_data_access_cost (struct data_reference *dr,
1194 unsigned int *inside_cost,
1195 unsigned int *outside_cost,
1196 stmt_vector_for_cost *body_cost_vec)
1198 gimple *stmt = DR_STMT (dr);
1199 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1200 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1201 int ncopies;
1203 if (PURE_SLP_STMT (stmt_info))
1204 ncopies = 1;
1205 else
1206 ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
1208 if (DR_IS_READ (dr))
1209 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1210 NULL, body_cost_vec, false);
1211 else
1212 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1214 if (dump_enabled_p ())
1215 dump_printf_loc (MSG_NOTE, vect_location,
1216 "vect_get_data_access_cost: inside_cost = %d, "
1217 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1221 typedef struct _vect_peel_info
1223 struct data_reference *dr;
1224 int npeel;
1225 unsigned int count;
1226 } *vect_peel_info;
1228 typedef struct _vect_peel_extended_info
1230 struct _vect_peel_info peel_info;
1231 unsigned int inside_cost;
1232 unsigned int outside_cost;
1233 } *vect_peel_extended_info;
1236 /* Peeling hashtable helpers. */
1238 struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
1240 static inline hashval_t hash (const _vect_peel_info *);
1241 static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
1244 inline hashval_t
1245 peel_info_hasher::hash (const _vect_peel_info *peel_info)
1247 return (hashval_t) peel_info->npeel;
1250 inline bool
1251 peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
1253 return (a->npeel == b->npeel);
1257 /* Insert DR into peeling hash table with NPEEL as key. */
1259 static void
1260 vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
1261 loop_vec_info loop_vinfo, struct data_reference *dr,
1262 int npeel)
1264 struct _vect_peel_info elem, *slot;
1265 _vect_peel_info **new_slot;
1266 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1268 elem.npeel = npeel;
1269 slot = peeling_htab->find (&elem);
1270 if (slot)
1271 slot->count++;
1272 else
1274 slot = XNEW (struct _vect_peel_info);
1275 slot->npeel = npeel;
1276 slot->dr = dr;
1277 slot->count = 1;
1278 new_slot = peeling_htab->find_slot (slot, INSERT);
1279 *new_slot = slot;
1282 if (!supportable_dr_alignment
1283 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1284 slot->count += VECT_MAX_COST;
1288 /* Traverse peeling hash table to find peeling option that aligns maximum
1289 number of data accesses. */
1292 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1293 _vect_peel_extended_info *max)
1295 vect_peel_info elem = *slot;
1297 if (elem->count > max->peel_info.count
1298 || (elem->count == max->peel_info.count
1299 && max->peel_info.npeel > elem->npeel))
1301 max->peel_info.npeel = elem->npeel;
1302 max->peel_info.count = elem->count;
1303 max->peel_info.dr = elem->dr;
1306 return 1;
1309 /* Get the costs of peeling NPEEL iterations checking data access costs
1310 for all data refs. If UNKNOWN_MISALIGNMENT is true, we assume DR0's
1311 misalignment will be zero after peeling. */
1313 static void
1314 vect_get_peeling_costs_all_drs (vec<data_reference_p> datarefs,
1315 struct data_reference *dr0,
1316 unsigned int *inside_cost,
1317 unsigned int *outside_cost,
1318 stmt_vector_for_cost *body_cost_vec,
1319 unsigned int npeel,
1320 bool unknown_misalignment)
1322 unsigned i;
1323 data_reference *dr;
1325 FOR_EACH_VEC_ELT (datarefs, i, dr)
1327 gimple *stmt = DR_STMT (dr);
1328 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1329 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1330 continue;
1332 /* For interleaving, only the alignment of the first access
1333 matters. */
1334 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1335 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1336 continue;
1338 /* Strided accesses perform only component accesses, alignment is
1339 irrelevant for them. */
1340 if (STMT_VINFO_STRIDED_P (stmt_info)
1341 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1342 continue;
1344 int save_misalignment;
1345 save_misalignment = DR_MISALIGNMENT (dr);
1346 if (npeel == 0)
1348 else if (unknown_misalignment && dr == dr0)
1349 SET_DR_MISALIGNMENT (dr, 0);
1350 else
1351 vect_update_misalignment_for_peel (dr, dr0, npeel);
1352 vect_get_data_access_cost (dr, inside_cost, outside_cost,
1353 body_cost_vec);
1354 SET_DR_MISALIGNMENT (dr, save_misalignment);
1358 /* Traverse peeling hash table and calculate cost for each peeling option.
1359 Find the one with the lowest cost. */
1362 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1363 _vect_peel_extended_info *min)
1365 vect_peel_info elem = *slot;
1366 int dummy;
1367 unsigned int inside_cost = 0, outside_cost = 0;
1368 gimple *stmt = DR_STMT (elem->dr);
1369 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1370 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1371 stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
1372 epilogue_cost_vec;
1374 prologue_cost_vec.create (2);
1375 body_cost_vec.create (2);
1376 epilogue_cost_vec.create (2);
1378 vect_get_peeling_costs_all_drs (LOOP_VINFO_DATAREFS (loop_vinfo),
1379 elem->dr, &inside_cost, &outside_cost,
1380 &body_cost_vec, elem->npeel, false);
1382 body_cost_vec.release ();
1384 outside_cost += vect_get_known_peeling_cost
1385 (loop_vinfo, elem->npeel, &dummy,
1386 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1387 &prologue_cost_vec, &epilogue_cost_vec);
1389 /* Prologue and epilogue costs are added to the target model later.
1390 These costs depend only on the scalar iteration cost, the
1391 number of peeling iterations finally chosen, and the number of
1392 misaligned statements. So discard the information found here. */
1393 prologue_cost_vec.release ();
1394 epilogue_cost_vec.release ();
1396 if (inside_cost < min->inside_cost
1397 || (inside_cost == min->inside_cost
1398 && outside_cost < min->outside_cost))
1400 min->inside_cost = inside_cost;
1401 min->outside_cost = outside_cost;
1402 min->peel_info.dr = elem->dr;
1403 min->peel_info.npeel = elem->npeel;
1404 min->peel_info.count = elem->count;
1407 return 1;
1411 /* Choose best peeling option by traversing peeling hash table and either
1412 choosing an option with the lowest cost (if cost model is enabled) or the
1413 option that aligns as many accesses as possible. */
1415 static struct _vect_peel_extended_info
1416 vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
1417 loop_vec_info loop_vinfo)
1419 struct _vect_peel_extended_info res;
1421 res.peel_info.dr = NULL;
1423 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1425 res.inside_cost = INT_MAX;
1426 res.outside_cost = INT_MAX;
1427 peeling_htab->traverse <_vect_peel_extended_info *,
1428 vect_peeling_hash_get_lowest_cost> (&res);
1430 else
1432 res.peel_info.count = 0;
1433 peeling_htab->traverse <_vect_peel_extended_info *,
1434 vect_peeling_hash_get_most_frequent> (&res);
1435 res.inside_cost = 0;
1436 res.outside_cost = 0;
1439 return res;
1442 /* Return true if the new peeling NPEEL is supported. */
1444 static bool
1445 vect_peeling_supportable (loop_vec_info loop_vinfo, struct data_reference *dr0,
1446 unsigned npeel)
1448 unsigned i;
1449 struct data_reference *dr = NULL;
1450 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1451 gimple *stmt;
1452 stmt_vec_info stmt_info;
1453 enum dr_alignment_support supportable_dr_alignment;
1455 /* Ensure that all data refs can be vectorized after the peel. */
1456 FOR_EACH_VEC_ELT (datarefs, i, dr)
1458 int save_misalignment;
1460 if (dr == dr0)
1461 continue;
1463 stmt = DR_STMT (dr);
1464 stmt_info = vinfo_for_stmt (stmt);
1465 /* For interleaving, only the alignment of the first access
1466 matters. */
1467 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1468 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1469 continue;
1471 /* Strided accesses perform only component accesses, alignment is
1472 irrelevant for them. */
1473 if (STMT_VINFO_STRIDED_P (stmt_info)
1474 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1475 continue;
1477 save_misalignment = DR_MISALIGNMENT (dr);
1478 vect_update_misalignment_for_peel (dr, dr0, npeel);
1479 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1480 SET_DR_MISALIGNMENT (dr, save_misalignment);
1482 if (!supportable_dr_alignment)
1483 return false;
1486 return true;
1489 /* Function vect_enhance_data_refs_alignment
1491 This pass will use loop versioning and loop peeling in order to enhance
1492 the alignment of data references in the loop.
1494 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1495 original loop is to be vectorized. Any other loops that are created by
1496 the transformations performed in this pass - are not supposed to be
1497 vectorized. This restriction will be relaxed.
1499 This pass will require a cost model to guide it whether to apply peeling
1500 or versioning or a combination of the two. For example, the scheme that
1501 intel uses when given a loop with several memory accesses, is as follows:
1502 choose one memory access ('p') which alignment you want to force by doing
1503 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1504 other accesses are not necessarily aligned, or (2) use loop versioning to
1505 generate one loop in which all accesses are aligned, and another loop in
1506 which only 'p' is necessarily aligned.
1508 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1509 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1510 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1512 Devising a cost model is the most critical aspect of this work. It will
1513 guide us on which access to peel for, whether to use loop versioning, how
1514 many versions to create, etc. The cost model will probably consist of
1515 generic considerations as well as target specific considerations (on
1516 powerpc for example, misaligned stores are more painful than misaligned
1517 loads).
1519 Here are the general steps involved in alignment enhancements:
1521 -- original loop, before alignment analysis:
1522 for (i=0; i<N; i++){
1523 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1524 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1527 -- After vect_compute_data_refs_alignment:
1528 for (i=0; i<N; i++){
1529 x = q[i]; # DR_MISALIGNMENT(q) = 3
1530 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1533 -- Possibility 1: we do loop versioning:
1534 if (p is aligned) {
1535 for (i=0; i<N; i++){ # loop 1A
1536 x = q[i]; # DR_MISALIGNMENT(q) = 3
1537 p[i] = y; # DR_MISALIGNMENT(p) = 0
1540 else {
1541 for (i=0; i<N; i++){ # loop 1B
1542 x = q[i]; # DR_MISALIGNMENT(q) = 3
1543 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1547 -- Possibility 2: we do loop peeling:
1548 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1549 x = q[i];
1550 p[i] = y;
1552 for (i = 3; i < N; i++){ # loop 2A
1553 x = q[i]; # DR_MISALIGNMENT(q) = 0
1554 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1557 -- Possibility 3: combination of loop peeling and versioning:
1558 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1559 x = q[i];
1560 p[i] = y;
1562 if (p is aligned) {
1563 for (i = 3; i<N; i++){ # loop 3A
1564 x = q[i]; # DR_MISALIGNMENT(q) = 0
1565 p[i] = y; # DR_MISALIGNMENT(p) = 0
1568 else {
1569 for (i = 3; i<N; i++){ # loop 3B
1570 x = q[i]; # DR_MISALIGNMENT(q) = 0
1571 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1575 These loops are later passed to loop_transform to be vectorized. The
1576 vectorizer will use the alignment information to guide the transformation
1577 (whether to generate regular loads/stores, or with special handling for
1578 misalignment). */
1580 bool
1581 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1583 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1584 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1585 enum dr_alignment_support supportable_dr_alignment;
1586 struct data_reference *dr0 = NULL, *first_store = NULL;
1587 struct data_reference *dr;
1588 unsigned int i, j;
1589 bool do_peeling = false;
1590 bool do_versioning = false;
1591 bool stat;
1592 gimple *stmt;
1593 stmt_vec_info stmt_info;
1594 unsigned int npeel = 0;
1595 bool one_misalignment_known = false;
1596 bool one_misalignment_unknown = false;
1597 bool one_dr_unsupportable = false;
1598 struct data_reference *unsupportable_dr = NULL;
1599 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1600 unsigned possible_npeel_number = 1;
1601 tree vectype;
1602 unsigned int nelements, mis, same_align_drs_max = 0;
1603 hash_table<peel_info_hasher> peeling_htab (1);
1605 if (dump_enabled_p ())
1606 dump_printf_loc (MSG_NOTE, vect_location,
1607 "=== vect_enhance_data_refs_alignment ===\n");
1609 /* Reset data so we can safely be called multiple times. */
1610 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1611 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
1613 /* While cost model enhancements are expected in the future, the high level
1614 view of the code at this time is as follows:
1616 A) If there is a misaligned access then see if peeling to align
1617 this access can make all data references satisfy
1618 vect_supportable_dr_alignment. If so, update data structures
1619 as needed and return true.
1621 B) If peeling wasn't possible and there is a data reference with an
1622 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1623 then see if loop versioning checks can be used to make all data
1624 references satisfy vect_supportable_dr_alignment. If so, update
1625 data structures as needed and return true.
1627 C) If neither peeling nor versioning were successful then return false if
1628 any data reference does not satisfy vect_supportable_dr_alignment.
1630 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1632 Note, Possibility 3 above (which is peeling and versioning together) is not
1633 being done at this time. */
1635 /* (1) Peeling to force alignment. */
1637 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1638 Considerations:
1639 + How many accesses will become aligned due to the peeling
1640 - How many accesses will become unaligned due to the peeling,
1641 and the cost of misaligned accesses.
1642 - The cost of peeling (the extra runtime checks, the increase
1643 in code size). */
1645 FOR_EACH_VEC_ELT (datarefs, i, dr)
1647 stmt = DR_STMT (dr);
1648 stmt_info = vinfo_for_stmt (stmt);
1650 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1651 continue;
1653 /* For interleaving, only the alignment of the first access
1654 matters. */
1655 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1656 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1657 continue;
1659 /* For invariant accesses there is nothing to enhance. */
1660 if (integer_zerop (DR_STEP (dr)))
1661 continue;
1663 /* Strided accesses perform only component accesses, alignment is
1664 irrelevant for them. */
1665 if (STMT_VINFO_STRIDED_P (stmt_info)
1666 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1667 continue;
1669 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1670 do_peeling = vector_alignment_reachable_p (dr);
1671 if (do_peeling)
1673 if (known_alignment_for_access_p (dr))
1675 unsigned int npeel_tmp = 0;
1676 bool negative = tree_int_cst_compare (DR_STEP (dr),
1677 size_zero_node) < 0;
1679 vectype = STMT_VINFO_VECTYPE (stmt_info);
1680 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1681 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1682 unsigned int dr_size = vect_get_scalar_dr_size (dr);
1683 mis = (negative ? DR_MISALIGNMENT (dr) : -DR_MISALIGNMENT (dr));
1684 if (DR_MISALIGNMENT (dr) != 0)
1685 npeel_tmp = (mis & (target_align - 1)) / dr_size;
1687 /* For multiple types, it is possible that the bigger type access
1688 will have more than one peeling option. E.g., a loop with two
1689 types: one of size (vector size / 4), and the other one of
1690 size (vector size / 8). Vectorization factor will 8. If both
1691 accesses are misaligned by 3, the first one needs one scalar
1692 iteration to be aligned, and the second one needs 5. But the
1693 first one will be aligned also by peeling 5 scalar
1694 iterations, and in that case both accesses will be aligned.
1695 Hence, except for the immediate peeling amount, we also want
1696 to try to add full vector size, while we don't exceed
1697 vectorization factor.
1698 We do this automatically for cost model, since we calculate
1699 cost for every peeling option. */
1700 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1702 if (STMT_SLP_TYPE (stmt_info))
1703 possible_npeel_number
1704 = (vf * GROUP_SIZE (stmt_info)) / nelements;
1705 else
1706 possible_npeel_number = vf / nelements;
1708 /* NPEEL_TMP is 0 when there is no misalignment, but also
1709 allow peeling NELEMENTS. */
1710 if (DR_MISALIGNMENT (dr) == 0)
1711 possible_npeel_number++;
1714 /* Save info about DR in the hash table. Also include peeling
1715 amounts according to the explanation above. */
1716 for (j = 0; j < possible_npeel_number; j++)
1718 vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
1719 dr, npeel_tmp);
1720 npeel_tmp += target_align / dr_size;
1723 one_misalignment_known = true;
1725 else
1727 /* If we don't know any misalignment values, we prefer
1728 peeling for data-ref that has the maximum number of data-refs
1729 with the same alignment, unless the target prefers to align
1730 stores over load. */
1731 unsigned same_align_drs
1732 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1733 if (!dr0
1734 || same_align_drs_max < same_align_drs)
1736 same_align_drs_max = same_align_drs;
1737 dr0 = dr;
1739 /* For data-refs with the same number of related
1740 accesses prefer the one where the misalign
1741 computation will be invariant in the outermost loop. */
1742 else if (same_align_drs_max == same_align_drs)
1744 struct loop *ivloop0, *ivloop;
1745 ivloop0 = outermost_invariant_loop_for_expr
1746 (loop, DR_BASE_ADDRESS (dr0));
1747 ivloop = outermost_invariant_loop_for_expr
1748 (loop, DR_BASE_ADDRESS (dr));
1749 if ((ivloop && !ivloop0)
1750 || (ivloop && ivloop0
1751 && flow_loop_nested_p (ivloop, ivloop0)))
1752 dr0 = dr;
1755 one_misalignment_unknown = true;
1757 /* Check for data refs with unsupportable alignment that
1758 can be peeled. */
1759 if (!supportable_dr_alignment)
1761 one_dr_unsupportable = true;
1762 unsupportable_dr = dr;
1765 if (!first_store && DR_IS_WRITE (dr))
1766 first_store = dr;
1769 else
1771 if (!aligned_access_p (dr))
1773 if (dump_enabled_p ())
1774 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1775 "vector alignment may not be reachable\n");
1776 break;
1781 /* Check if we can possibly peel the loop. */
1782 if (!vect_can_advance_ivs_p (loop_vinfo)
1783 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
1784 || loop->inner)
1785 do_peeling = false;
1787 struct _vect_peel_extended_info peel_for_known_alignment;
1788 struct _vect_peel_extended_info peel_for_unknown_alignment;
1789 struct _vect_peel_extended_info best_peel;
1791 peel_for_unknown_alignment.inside_cost = INT_MAX;
1792 peel_for_unknown_alignment.outside_cost = INT_MAX;
1793 peel_for_unknown_alignment.peel_info.count = 0;
1795 if (do_peeling
1796 && one_misalignment_unknown)
1798 /* Check if the target requires to prefer stores over loads, i.e., if
1799 misaligned stores are more expensive than misaligned loads (taking
1800 drs with same alignment into account). */
1801 unsigned int load_inside_cost = 0;
1802 unsigned int load_outside_cost = 0;
1803 unsigned int store_inside_cost = 0;
1804 unsigned int store_outside_cost = 0;
1806 stmt_vector_for_cost dummy;
1807 dummy.create (2);
1808 vect_get_peeling_costs_all_drs (datarefs, dr0,
1809 &load_inside_cost,
1810 &load_outside_cost,
1811 &dummy, vf / 2, true);
1812 dummy.release ();
1814 if (first_store)
1816 dummy.create (2);
1817 vect_get_peeling_costs_all_drs (datarefs, first_store,
1818 &store_inside_cost,
1819 &store_outside_cost,
1820 &dummy, vf / 2, true);
1821 dummy.release ();
1823 else
1825 store_inside_cost = INT_MAX;
1826 store_outside_cost = INT_MAX;
1829 if (load_inside_cost > store_inside_cost
1830 || (load_inside_cost == store_inside_cost
1831 && load_outside_cost > store_outside_cost))
1833 dr0 = first_store;
1834 peel_for_unknown_alignment.inside_cost = store_inside_cost;
1835 peel_for_unknown_alignment.outside_cost = store_outside_cost;
1837 else
1839 peel_for_unknown_alignment.inside_cost = load_inside_cost;
1840 peel_for_unknown_alignment.outside_cost = load_outside_cost;
1843 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
1844 prologue_cost_vec.create (2);
1845 epilogue_cost_vec.create (2);
1847 int dummy2;
1848 peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
1849 (loop_vinfo, vf / 2, &dummy2,
1850 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1851 &prologue_cost_vec, &epilogue_cost_vec);
1853 prologue_cost_vec.release ();
1854 epilogue_cost_vec.release ();
1856 peel_for_unknown_alignment.peel_info.count = 1
1857 + STMT_VINFO_SAME_ALIGN_REFS
1858 (vinfo_for_stmt (DR_STMT (dr0))).length ();
1861 peel_for_unknown_alignment.peel_info.npeel = 0;
1862 peel_for_unknown_alignment.peel_info.dr = dr0;
1864 best_peel = peel_for_unknown_alignment;
1866 peel_for_known_alignment.inside_cost = INT_MAX;
1867 peel_for_known_alignment.outside_cost = INT_MAX;
1868 peel_for_known_alignment.peel_info.count = 0;
1869 peel_for_known_alignment.peel_info.dr = NULL;
1871 if (do_peeling && one_misalignment_known)
1873 /* Peeling is possible, but there is no data access that is not supported
1874 unless aligned. So we try to choose the best possible peeling from
1875 the hash table. */
1876 peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
1877 (&peeling_htab, loop_vinfo);
1880 /* Compare costs of peeling for known and unknown alignment. */
1881 if (peel_for_known_alignment.peel_info.dr != NULL
1882 && peel_for_unknown_alignment.inside_cost
1883 >= peel_for_known_alignment.inside_cost)
1885 best_peel = peel_for_known_alignment;
1887 /* If the best peeling for known alignment has NPEEL == 0, perform no
1888 peeling at all except if there is an unsupportable dr that we can
1889 align. */
1890 if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
1891 do_peeling = false;
1894 /* If there is an unsupportable data ref, prefer this over all choices so far
1895 since we'd have to discard a chosen peeling except when it accidentally
1896 aligned the unsupportable data ref. */
1897 if (one_dr_unsupportable)
1898 dr0 = unsupportable_dr;
1899 else if (do_peeling)
1901 /* Calculate the penalty for no peeling, i.e. leaving everything as-is.
1902 TODO: Use nopeel_outside_cost or get rid of it? */
1903 unsigned nopeel_inside_cost = 0;
1904 unsigned nopeel_outside_cost = 0;
1906 stmt_vector_for_cost dummy;
1907 dummy.create (2);
1908 vect_get_peeling_costs_all_drs (datarefs, NULL, &nopeel_inside_cost,
1909 &nopeel_outside_cost, &dummy, 0, false);
1910 dummy.release ();
1912 /* Add epilogue costs. As we do not peel for alignment here, no prologue
1913 costs will be recorded. */
1914 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
1915 prologue_cost_vec.create (2);
1916 epilogue_cost_vec.create (2);
1918 int dummy2;
1919 nopeel_outside_cost += vect_get_known_peeling_cost
1920 (loop_vinfo, 0, &dummy2,
1921 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1922 &prologue_cost_vec, &epilogue_cost_vec);
1924 prologue_cost_vec.release ();
1925 epilogue_cost_vec.release ();
1927 npeel = best_peel.peel_info.npeel;
1928 dr0 = best_peel.peel_info.dr;
1930 /* If no peeling is not more expensive than the best peeling we
1931 have so far, don't perform any peeling. */
1932 if (nopeel_inside_cost <= best_peel.inside_cost)
1933 do_peeling = false;
1936 if (do_peeling)
1938 stmt = DR_STMT (dr0);
1939 stmt_info = vinfo_for_stmt (stmt);
1940 vectype = STMT_VINFO_VECTYPE (stmt_info);
1942 if (known_alignment_for_access_p (dr0))
1944 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1945 size_zero_node) < 0;
1946 if (!npeel)
1948 /* Since it's known at compile time, compute the number of
1949 iterations in the peeled loop (the peeling factor) for use in
1950 updating DR_MISALIGNMENT values. The peeling factor is the
1951 vectorization factor minus the misalignment as an element
1952 count. */
1953 mis = negative ? DR_MISALIGNMENT (dr0) : -DR_MISALIGNMENT (dr0);
1954 unsigned int target_align = DR_TARGET_ALIGNMENT (dr0);
1955 npeel = ((mis & (target_align - 1))
1956 / vect_get_scalar_dr_size (dr0));
1959 /* For interleaved data access every iteration accesses all the
1960 members of the group, therefore we divide the number of iterations
1961 by the group size. */
1962 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1963 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1964 npeel /= GROUP_SIZE (stmt_info);
1966 if (dump_enabled_p ())
1967 dump_printf_loc (MSG_NOTE, vect_location,
1968 "Try peeling by %d\n", npeel);
1971 /* Ensure that all datarefs can be vectorized after the peel. */
1972 if (!vect_peeling_supportable (loop_vinfo, dr0, npeel))
1973 do_peeling = false;
1975 /* Check if all datarefs are supportable and log. */
1976 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1978 stat = vect_verify_datarefs_alignment (loop_vinfo);
1979 if (!stat)
1980 do_peeling = false;
1981 else
1982 return stat;
1985 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
1986 if (do_peeling)
1988 unsigned max_allowed_peel
1989 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1990 if (max_allowed_peel != (unsigned)-1)
1992 unsigned max_peel = npeel;
1993 if (max_peel == 0)
1995 unsigned int target_align = DR_TARGET_ALIGNMENT (dr0);
1996 max_peel = target_align / vect_get_scalar_dr_size (dr0) - 1;
1998 if (max_peel > max_allowed_peel)
2000 do_peeling = false;
2001 if (dump_enabled_p ())
2002 dump_printf_loc (MSG_NOTE, vect_location,
2003 "Disable peeling, max peels reached: %d\n", max_peel);
2008 /* Cost model #2 - if peeling may result in a remaining loop not
2009 iterating enough to be vectorized then do not peel. */
2010 if (do_peeling
2011 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2013 unsigned max_peel
2014 = npeel == 0 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1 : npeel;
2015 if (LOOP_VINFO_INT_NITERS (loop_vinfo)
2016 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + max_peel)
2017 do_peeling = false;
2020 if (do_peeling)
2022 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
2023 If the misalignment of DR_i is identical to that of dr0 then set
2024 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
2025 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
2026 by the peeling factor times the element size of DR_i (MOD the
2027 vectorization factor times the size). Otherwise, the
2028 misalignment of DR_i must be set to unknown. */
2029 FOR_EACH_VEC_ELT (datarefs, i, dr)
2030 if (dr != dr0)
2032 /* Strided accesses perform only component accesses, alignment
2033 is irrelevant for them. */
2034 stmt_info = vinfo_for_stmt (DR_STMT (dr));
2035 if (STMT_VINFO_STRIDED_P (stmt_info)
2036 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
2037 continue;
2039 vect_update_misalignment_for_peel (dr, dr0, npeel);
2042 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
2043 if (npeel)
2044 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
2045 else
2046 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2047 = DR_MISALIGNMENT (dr0);
2048 SET_DR_MISALIGNMENT (dr0, 0);
2049 if (dump_enabled_p ())
2051 dump_printf_loc (MSG_NOTE, vect_location,
2052 "Alignment of access forced using peeling.\n");
2053 dump_printf_loc (MSG_NOTE, vect_location,
2054 "Peeling for alignment will be applied.\n");
2057 /* The inside-loop cost will be accounted for in vectorizable_load
2058 and vectorizable_store correctly with adjusted alignments.
2059 Drop the body_cst_vec on the floor here. */
2060 stat = vect_verify_datarefs_alignment (loop_vinfo);
2061 gcc_assert (stat);
2062 return stat;
2066 /* (2) Versioning to force alignment. */
2068 /* Try versioning if:
2069 1) optimize loop for speed
2070 2) there is at least one unsupported misaligned data ref with an unknown
2071 misalignment, and
2072 3) all misaligned data refs with a known misalignment are supported, and
2073 4) the number of runtime alignment checks is within reason. */
2075 do_versioning =
2076 optimize_loop_nest_for_speed_p (loop)
2077 && (!loop->inner); /* FORNOW */
2079 if (do_versioning)
2081 FOR_EACH_VEC_ELT (datarefs, i, dr)
2083 stmt = DR_STMT (dr);
2084 stmt_info = vinfo_for_stmt (stmt);
2086 /* For interleaving, only the alignment of the first access
2087 matters. */
2088 if (aligned_access_p (dr)
2089 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
2090 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
2091 continue;
2093 if (STMT_VINFO_STRIDED_P (stmt_info))
2095 /* Strided loads perform only component accesses, alignment is
2096 irrelevant for them. */
2097 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
2098 continue;
2099 do_versioning = false;
2100 break;
2103 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
2105 if (!supportable_dr_alignment)
2107 gimple *stmt;
2108 int mask;
2109 tree vectype;
2111 if (known_alignment_for_access_p (dr)
2112 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2113 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
2115 do_versioning = false;
2116 break;
2119 stmt = DR_STMT (dr);
2120 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2121 gcc_assert (vectype);
2123 /* The rightmost bits of an aligned address must be zeros.
2124 Construct the mask needed for this test. For example,
2125 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2126 mask must be 15 = 0xf. */
2127 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
2129 /* FORNOW: use the same mask to test all potentially unaligned
2130 references in the loop. The vectorizer currently supports
2131 a single vector size, see the reference to
2132 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
2133 vectorization factor is computed. */
2134 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
2135 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
2136 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2137 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
2138 DR_STMT (dr));
2142 /* Versioning requires at least one misaligned data reference. */
2143 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2144 do_versioning = false;
2145 else if (!do_versioning)
2146 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2149 if (do_versioning)
2151 vec<gimple *> may_misalign_stmts
2152 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2153 gimple *stmt;
2155 /* It can now be assumed that the data references in the statements
2156 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2157 of the loop being vectorized. */
2158 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
2160 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2161 dr = STMT_VINFO_DATA_REF (stmt_info);
2162 SET_DR_MISALIGNMENT (dr, 0);
2163 if (dump_enabled_p ())
2164 dump_printf_loc (MSG_NOTE, vect_location,
2165 "Alignment of access forced using versioning.\n");
2168 if (dump_enabled_p ())
2169 dump_printf_loc (MSG_NOTE, vect_location,
2170 "Versioning for alignment will be applied.\n");
2172 /* Peeling and versioning can't be done together at this time. */
2173 gcc_assert (! (do_peeling && do_versioning));
2175 stat = vect_verify_datarefs_alignment (loop_vinfo);
2176 gcc_assert (stat);
2177 return stat;
2180 /* This point is reached if neither peeling nor versioning is being done. */
2181 gcc_assert (! (do_peeling || do_versioning));
2183 stat = vect_verify_datarefs_alignment (loop_vinfo);
2184 return stat;
2188 /* Function vect_find_same_alignment_drs.
2190 Update group and alignment relations according to the chosen
2191 vectorization factor. */
2193 static void
2194 vect_find_same_alignment_drs (struct data_dependence_relation *ddr)
2196 struct data_reference *dra = DDR_A (ddr);
2197 struct data_reference *drb = DDR_B (ddr);
2198 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2199 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2201 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2202 return;
2204 if (dra == drb)
2205 return;
2207 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
2208 || !operand_equal_p (DR_OFFSET (dra), DR_OFFSET (drb), 0)
2209 || !operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2210 return;
2212 /* Two references with distance zero have the same alignment. */
2213 offset_int diff = (wi::to_offset (DR_INIT (dra))
2214 - wi::to_offset (DR_INIT (drb)));
2215 if (diff != 0)
2217 /* Get the wider of the two alignments. */
2218 unsigned int align_a = (vect_calculate_target_alignment (dra)
2219 / BITS_PER_UNIT);
2220 unsigned int align_b = (vect_calculate_target_alignment (drb)
2221 / BITS_PER_UNIT);
2222 unsigned int max_align = MAX (align_a, align_b);
2224 /* Require the gap to be a multiple of the larger vector alignment. */
2225 if (!wi::multiple_of_p (diff, max_align, SIGNED))
2226 return;
2229 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2230 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2231 if (dump_enabled_p ())
2233 dump_printf_loc (MSG_NOTE, vect_location,
2234 "accesses have the same alignment: ");
2235 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2236 dump_printf (MSG_NOTE, " and ");
2237 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2238 dump_printf (MSG_NOTE, "\n");
2243 /* Function vect_analyze_data_refs_alignment
2245 Analyze the alignment of the data-references in the loop.
2246 Return FALSE if a data reference is found that cannot be vectorized. */
2248 bool
2249 vect_analyze_data_refs_alignment (loop_vec_info vinfo)
2251 if (dump_enabled_p ())
2252 dump_printf_loc (MSG_NOTE, vect_location,
2253 "=== vect_analyze_data_refs_alignment ===\n");
2255 /* Mark groups of data references with same alignment using
2256 data dependence information. */
2257 vec<ddr_p> ddrs = vinfo->ddrs;
2258 struct data_dependence_relation *ddr;
2259 unsigned int i;
2261 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2262 vect_find_same_alignment_drs (ddr);
2264 vec<data_reference_p> datarefs = vinfo->datarefs;
2265 struct data_reference *dr;
2267 vect_record_base_alignments (vinfo);
2268 FOR_EACH_VEC_ELT (datarefs, i, dr)
2270 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
2271 if (STMT_VINFO_VECTORIZABLE (stmt_info)
2272 && !vect_compute_data_ref_alignment (dr))
2274 /* Strided accesses perform only component accesses, misalignment
2275 information is irrelevant for them. */
2276 if (STMT_VINFO_STRIDED_P (stmt_info)
2277 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
2278 continue;
2280 if (dump_enabled_p ())
2281 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2282 "not vectorized: can't calculate alignment "
2283 "for data ref.\n");
2285 return false;
2289 return true;
2293 /* Analyze alignment of DRs of stmts in NODE. */
2295 static bool
2296 vect_slp_analyze_and_verify_node_alignment (slp_tree node)
2298 /* We vectorize from the first scalar stmt in the node unless
2299 the node is permuted in which case we start from the first
2300 element in the group. */
2301 gimple *first_stmt = SLP_TREE_SCALAR_STMTS (node)[0];
2302 data_reference_p first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2303 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
2304 first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt));
2306 data_reference_p dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2307 if (! vect_compute_data_ref_alignment (dr)
2308 /* For creating the data-ref pointer we need alignment of the
2309 first element anyway. */
2310 || (dr != first_dr
2311 && ! vect_compute_data_ref_alignment (first_dr))
2312 || ! verify_data_ref_alignment (dr))
2314 if (dump_enabled_p ())
2315 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2316 "not vectorized: bad data alignment in basic "
2317 "block.\n");
2318 return false;
2321 return true;
2324 /* Function vect_slp_analyze_instance_alignment
2326 Analyze the alignment of the data-references in the SLP instance.
2327 Return FALSE if a data reference is found that cannot be vectorized. */
2329 bool
2330 vect_slp_analyze_and_verify_instance_alignment (slp_instance instance)
2332 if (dump_enabled_p ())
2333 dump_printf_loc (MSG_NOTE, vect_location,
2334 "=== vect_slp_analyze_and_verify_instance_alignment ===\n");
2336 slp_tree node;
2337 unsigned i;
2338 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
2339 if (! vect_slp_analyze_and_verify_node_alignment (node))
2340 return false;
2342 node = SLP_INSTANCE_TREE (instance);
2343 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]))
2344 && ! vect_slp_analyze_and_verify_node_alignment
2345 (SLP_INSTANCE_TREE (instance)))
2346 return false;
2348 return true;
2352 /* Analyze groups of accesses: check that DR belongs to a group of
2353 accesses of legal size, step, etc. Detect gaps, single element
2354 interleaving, and other special cases. Set grouped access info.
2355 Collect groups of strided stores for further use in SLP analysis.
2356 Worker for vect_analyze_group_access. */
2358 static bool
2359 vect_analyze_group_access_1 (struct data_reference *dr)
2361 tree step = DR_STEP (dr);
2362 tree scalar_type = TREE_TYPE (DR_REF (dr));
2363 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2364 gimple *stmt = DR_STMT (dr);
2365 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2366 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2367 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2368 HOST_WIDE_INT dr_step = -1;
2369 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2370 bool slp_impossible = false;
2372 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2373 size of the interleaving group (including gaps). */
2374 if (tree_fits_shwi_p (step))
2376 dr_step = tree_to_shwi (step);
2377 /* Check that STEP is a multiple of type size. Otherwise there is
2378 a non-element-sized gap at the end of the group which we
2379 cannot represent in GROUP_GAP or GROUP_SIZE.
2380 ??? As we can handle non-constant step fine here we should
2381 simply remove uses of GROUP_GAP between the last and first
2382 element and instead rely on DR_STEP. GROUP_SIZE then would
2383 simply not include that gap. */
2384 if ((dr_step % type_size) != 0)
2386 if (dump_enabled_p ())
2388 dump_printf_loc (MSG_NOTE, vect_location,
2389 "Step ");
2390 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2391 dump_printf (MSG_NOTE,
2392 " is not a multiple of the element size for ");
2393 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2394 dump_printf (MSG_NOTE, "\n");
2396 return false;
2398 groupsize = absu_hwi (dr_step) / type_size;
2400 else
2401 groupsize = 0;
2403 /* Not consecutive access is possible only if it is a part of interleaving. */
2404 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2406 /* Check if it this DR is a part of interleaving, and is a single
2407 element of the group that is accessed in the loop. */
2409 /* Gaps are supported only for loads. STEP must be a multiple of the type
2410 size. The size of the group must be a power of 2. */
2411 if (DR_IS_READ (dr)
2412 && (dr_step % type_size) == 0
2413 && groupsize > 0
2414 && pow2p_hwi (groupsize))
2416 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2417 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2418 GROUP_GAP (stmt_info) = groupsize - 1;
2419 if (dump_enabled_p ())
2421 dump_printf_loc (MSG_NOTE, vect_location,
2422 "Detected single element interleaving ");
2423 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2424 dump_printf (MSG_NOTE, " step ");
2425 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2426 dump_printf (MSG_NOTE, "\n");
2429 return true;
2432 if (dump_enabled_p ())
2434 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2435 "not consecutive access ");
2436 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2439 if (bb_vinfo)
2441 /* Mark the statement as unvectorizable. */
2442 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2443 return true;
2446 dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
2447 STMT_VINFO_STRIDED_P (stmt_info) = true;
2448 return true;
2451 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2453 /* First stmt in the interleaving chain. Check the chain. */
2454 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2455 struct data_reference *data_ref = dr;
2456 unsigned int count = 1;
2457 tree prev_init = DR_INIT (data_ref);
2458 gimple *prev = stmt;
2459 HOST_WIDE_INT diff, gaps = 0;
2461 while (next)
2463 /* Skip same data-refs. In case that two or more stmts share
2464 data-ref (supported only for loads), we vectorize only the first
2465 stmt, and the rest get their vectorized loads from the first
2466 one. */
2467 if (!tree_int_cst_compare (DR_INIT (data_ref),
2468 DR_INIT (STMT_VINFO_DATA_REF (
2469 vinfo_for_stmt (next)))))
2471 if (DR_IS_WRITE (data_ref))
2473 if (dump_enabled_p ())
2474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2475 "Two store stmts share the same dr.\n");
2476 return false;
2479 if (dump_enabled_p ())
2480 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2481 "Two or more load stmts share the same dr.\n");
2483 /* For load use the same data-ref load. */
2484 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2486 prev = next;
2487 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2488 continue;
2491 prev = next;
2492 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2494 /* All group members have the same STEP by construction. */
2495 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2497 /* Check that the distance between two accesses is equal to the type
2498 size. Otherwise, we have gaps. */
2499 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2500 - TREE_INT_CST_LOW (prev_init)) / type_size;
2501 if (diff != 1)
2503 /* FORNOW: SLP of accesses with gaps is not supported. */
2504 slp_impossible = true;
2505 if (DR_IS_WRITE (data_ref))
2507 if (dump_enabled_p ())
2508 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2509 "interleaved store with gaps\n");
2510 return false;
2513 gaps += diff - 1;
2516 last_accessed_element += diff;
2518 /* Store the gap from the previous member of the group. If there is no
2519 gap in the access, GROUP_GAP is always 1. */
2520 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2522 prev_init = DR_INIT (data_ref);
2523 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2524 /* Count the number of data-refs in the chain. */
2525 count++;
2528 if (groupsize == 0)
2529 groupsize = count + gaps;
2531 /* This could be UINT_MAX but as we are generating code in a very
2532 inefficient way we have to cap earlier. See PR78699 for example. */
2533 if (groupsize > 4096)
2535 if (dump_enabled_p ())
2536 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2537 "group is too large\n");
2538 return false;
2541 /* Check that the size of the interleaving is equal to count for stores,
2542 i.e., that there are no gaps. */
2543 if (groupsize != count
2544 && !DR_IS_READ (dr))
2546 if (dump_enabled_p ())
2547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2548 "interleaved store with gaps\n");
2549 return false;
2552 /* If there is a gap after the last load in the group it is the
2553 difference between the groupsize and the last accessed
2554 element.
2555 When there is no gap, this difference should be 0. */
2556 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - last_accessed_element;
2558 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2559 if (dump_enabled_p ())
2561 dump_printf_loc (MSG_NOTE, vect_location,
2562 "Detected interleaving ");
2563 if (DR_IS_READ (dr))
2564 dump_printf (MSG_NOTE, "load ");
2565 else
2566 dump_printf (MSG_NOTE, "store ");
2567 dump_printf (MSG_NOTE, "of size %u starting with ",
2568 (unsigned)groupsize);
2569 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
2570 if (GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
2571 dump_printf_loc (MSG_NOTE, vect_location,
2572 "There is a gap of %u elements after the group\n",
2573 GROUP_GAP (vinfo_for_stmt (stmt)));
2576 /* SLP: create an SLP data structure for every interleaving group of
2577 stores for further analysis in vect_analyse_slp. */
2578 if (DR_IS_WRITE (dr) && !slp_impossible)
2580 if (loop_vinfo)
2581 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2582 if (bb_vinfo)
2583 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2587 return true;
2590 /* Analyze groups of accesses: check that DR belongs to a group of
2591 accesses of legal size, step, etc. Detect gaps, single element
2592 interleaving, and other special cases. Set grouped access info.
2593 Collect groups of strided stores for further use in SLP analysis. */
2595 static bool
2596 vect_analyze_group_access (struct data_reference *dr)
2598 if (!vect_analyze_group_access_1 (dr))
2600 /* Dissolve the group if present. */
2601 gimple *next;
2602 gimple *stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dr)));
2603 while (stmt)
2605 stmt_vec_info vinfo = vinfo_for_stmt (stmt);
2606 next = GROUP_NEXT_ELEMENT (vinfo);
2607 GROUP_FIRST_ELEMENT (vinfo) = NULL;
2608 GROUP_NEXT_ELEMENT (vinfo) = NULL;
2609 stmt = next;
2611 return false;
2613 return true;
2616 /* Analyze the access pattern of the data-reference DR.
2617 In case of non-consecutive accesses call vect_analyze_group_access() to
2618 analyze groups of accesses. */
2620 static bool
2621 vect_analyze_data_ref_access (struct data_reference *dr)
2623 tree step = DR_STEP (dr);
2624 tree scalar_type = TREE_TYPE (DR_REF (dr));
2625 gimple *stmt = DR_STMT (dr);
2626 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2627 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2628 struct loop *loop = NULL;
2630 if (loop_vinfo)
2631 loop = LOOP_VINFO_LOOP (loop_vinfo);
2633 if (loop_vinfo && !step)
2635 if (dump_enabled_p ())
2636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2637 "bad data-ref access in loop\n");
2638 return false;
2641 /* Allow loads with zero step in inner-loop vectorization. */
2642 if (loop_vinfo && integer_zerop (step))
2644 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2645 if (!nested_in_vect_loop_p (loop, stmt))
2646 return DR_IS_READ (dr);
2647 /* Allow references with zero step for outer loops marked
2648 with pragma omp simd only - it guarantees absence of
2649 loop-carried dependencies between inner loop iterations. */
2650 if (!loop->force_vectorize)
2652 if (dump_enabled_p ())
2653 dump_printf_loc (MSG_NOTE, vect_location,
2654 "zero step in inner loop of nest\n");
2655 return false;
2659 if (loop && nested_in_vect_loop_p (loop, stmt))
2661 /* Interleaved accesses are not yet supported within outer-loop
2662 vectorization for references in the inner-loop. */
2663 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2665 /* For the rest of the analysis we use the outer-loop step. */
2666 step = STMT_VINFO_DR_STEP (stmt_info);
2667 if (integer_zerop (step))
2669 if (dump_enabled_p ())
2670 dump_printf_loc (MSG_NOTE, vect_location,
2671 "zero step in outer loop.\n");
2672 return DR_IS_READ (dr);
2676 /* Consecutive? */
2677 if (TREE_CODE (step) == INTEGER_CST)
2679 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2680 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2681 || (dr_step < 0
2682 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2684 /* Mark that it is not interleaving. */
2685 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2686 return true;
2690 if (loop && nested_in_vect_loop_p (loop, stmt))
2692 if (dump_enabled_p ())
2693 dump_printf_loc (MSG_NOTE, vect_location,
2694 "grouped access in outer loop.\n");
2695 return false;
2699 /* Assume this is a DR handled by non-constant strided load case. */
2700 if (TREE_CODE (step) != INTEGER_CST)
2701 return (STMT_VINFO_STRIDED_P (stmt_info)
2702 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2703 || vect_analyze_group_access (dr)));
2705 /* Not consecutive access - check if it's a part of interleaving group. */
2706 return vect_analyze_group_access (dr);
2709 /* Compare two data-references DRA and DRB to group them into chunks
2710 suitable for grouping. */
2712 static int
2713 dr_group_sort_cmp (const void *dra_, const void *drb_)
2715 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2716 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2717 int cmp;
2719 /* Stabilize sort. */
2720 if (dra == drb)
2721 return 0;
2723 /* DRs in different loops never belong to the same group. */
2724 loop_p loopa = gimple_bb (DR_STMT (dra))->loop_father;
2725 loop_p loopb = gimple_bb (DR_STMT (drb))->loop_father;
2726 if (loopa != loopb)
2727 return loopa->num < loopb->num ? -1 : 1;
2729 /* Ordering of DRs according to base. */
2730 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2731 DR_BASE_ADDRESS (drb));
2732 if (cmp != 0)
2733 return cmp;
2735 /* And according to DR_OFFSET. */
2736 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2737 if (cmp != 0)
2738 return cmp;
2740 /* Put reads before writes. */
2741 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2742 return DR_IS_READ (dra) ? -1 : 1;
2744 /* Then sort after access size. */
2745 cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2746 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2747 if (cmp != 0)
2748 return cmp;
2750 /* And after step. */
2751 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
2752 if (cmp != 0)
2753 return cmp;
2755 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2756 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2757 if (cmp == 0)
2758 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2759 return cmp;
2762 /* Function vect_analyze_data_ref_accesses.
2764 Analyze the access pattern of all the data references in the loop.
2766 FORNOW: the only access pattern that is considered vectorizable is a
2767 simple step 1 (consecutive) access.
2769 FORNOW: handle only arrays and pointer accesses. */
2771 bool
2772 vect_analyze_data_ref_accesses (vec_info *vinfo)
2774 unsigned int i;
2775 vec<data_reference_p> datarefs = vinfo->datarefs;
2776 struct data_reference *dr;
2778 if (dump_enabled_p ())
2779 dump_printf_loc (MSG_NOTE, vect_location,
2780 "=== vect_analyze_data_ref_accesses ===\n");
2782 if (datarefs.is_empty ())
2783 return true;
2785 /* Sort the array of datarefs to make building the interleaving chains
2786 linear. Don't modify the original vector's order, it is needed for
2787 determining what dependencies are reversed. */
2788 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2789 datarefs_copy.qsort (dr_group_sort_cmp);
2791 /* Build the interleaving chains. */
2792 for (i = 0; i < datarefs_copy.length () - 1;)
2794 data_reference_p dra = datarefs_copy[i];
2795 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2796 stmt_vec_info lastinfo = NULL;
2797 if (! STMT_VINFO_VECTORIZABLE (stmtinfo_a))
2799 ++i;
2800 continue;
2802 for (i = i + 1; i < datarefs_copy.length (); ++i)
2804 data_reference_p drb = datarefs_copy[i];
2805 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2806 if (! STMT_VINFO_VECTORIZABLE (stmtinfo_b))
2807 break;
2809 /* ??? Imperfect sorting (non-compatible types, non-modulo
2810 accesses, same accesses) can lead to a group to be artificially
2811 split here as we don't just skip over those. If it really
2812 matters we can push those to a worklist and re-iterate
2813 over them. The we can just skip ahead to the next DR here. */
2815 /* DRs in a different loop should not be put into the same
2816 interleaving group. */
2817 if (gimple_bb (DR_STMT (dra))->loop_father
2818 != gimple_bb (DR_STMT (drb))->loop_father)
2819 break;
2821 /* Check that the data-refs have same first location (except init)
2822 and they are both either store or load (not load and store,
2823 not masked loads or stores). */
2824 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2825 || data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2826 DR_BASE_ADDRESS (drb)) != 0
2827 || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
2828 || !gimple_assign_single_p (DR_STMT (dra))
2829 || !gimple_assign_single_p (DR_STMT (drb)))
2830 break;
2832 /* Check that the data-refs have the same constant size. */
2833 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2834 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2835 if (!tree_fits_uhwi_p (sza)
2836 || !tree_fits_uhwi_p (szb)
2837 || !tree_int_cst_equal (sza, szb))
2838 break;
2840 /* Check that the data-refs have the same step. */
2841 if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
2842 break;
2844 /* Do not place the same access in the interleaving chain twice. */
2845 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2846 break;
2848 /* Check the types are compatible.
2849 ??? We don't distinguish this during sorting. */
2850 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2851 TREE_TYPE (DR_REF (drb))))
2852 break;
2854 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2855 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2856 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2857 gcc_assert (init_a <= init_b);
2859 /* If init_b == init_a + the size of the type * k, we have an
2860 interleaving, and DRA is accessed before DRB. */
2861 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2862 if (type_size_a == 0
2863 || (init_b - init_a) % type_size_a != 0)
2864 break;
2866 /* If we have a store, the accesses are adjacent. This splits
2867 groups into chunks we support (we don't support vectorization
2868 of stores with gaps). */
2869 if (!DR_IS_READ (dra)
2870 && (init_b - (HOST_WIDE_INT) TREE_INT_CST_LOW
2871 (DR_INIT (datarefs_copy[i-1]))
2872 != type_size_a))
2873 break;
2875 /* If the step (if not zero or non-constant) is greater than the
2876 difference between data-refs' inits this splits groups into
2877 suitable sizes. */
2878 if (tree_fits_shwi_p (DR_STEP (dra)))
2880 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2881 if (step != 0 && step <= (init_b - init_a))
2882 break;
2885 if (dump_enabled_p ())
2887 dump_printf_loc (MSG_NOTE, vect_location,
2888 "Detected interleaving ");
2889 if (DR_IS_READ (dra))
2890 dump_printf (MSG_NOTE, "load ");
2891 else
2892 dump_printf (MSG_NOTE, "store ");
2893 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2894 dump_printf (MSG_NOTE, " and ");
2895 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2896 dump_printf (MSG_NOTE, "\n");
2899 /* Link the found element into the group list. */
2900 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2902 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2903 lastinfo = stmtinfo_a;
2905 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2906 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2907 lastinfo = stmtinfo_b;
2911 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2912 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2913 && !vect_analyze_data_ref_access (dr))
2915 if (dump_enabled_p ())
2916 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2917 "not vectorized: complicated access pattern.\n");
2919 if (is_a <bb_vec_info> (vinfo))
2921 /* Mark the statement as not vectorizable. */
2922 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2923 continue;
2925 else
2927 datarefs_copy.release ();
2928 return false;
2932 datarefs_copy.release ();
2933 return true;
2936 /* Function vect_vfa_segment_size.
2938 Create an expression that computes the size of segment
2939 that will be accessed for a data reference. The functions takes into
2940 account that realignment loads may access one more vector.
2942 Input:
2943 DR: The data reference.
2944 LENGTH_FACTOR: segment length to consider.
2946 Return an expression whose value is the size of segment which will be
2947 accessed by DR. */
2949 static tree
2950 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2952 tree segment_length;
2954 if (integer_zerop (DR_STEP (dr)))
2955 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2956 else
2957 segment_length = size_binop (MULT_EXPR,
2958 fold_convert (sizetype, DR_STEP (dr)),
2959 fold_convert (sizetype, length_factor));
2961 if (vect_supportable_dr_alignment (dr, false)
2962 == dr_explicit_realign_optimized)
2964 tree vector_size = TYPE_SIZE_UNIT
2965 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2967 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2969 return segment_length;
2972 /* Function vect_no_alias_p.
2974 Given data references A and B with equal base and offset, the alias
2975 relation can be decided at compilation time, return TRUE if they do
2976 not alias to each other; return FALSE otherwise. SEGMENT_LENGTH_A
2977 and SEGMENT_LENGTH_B are the memory lengths accessed by A and B
2978 respectively. */
2980 static bool
2981 vect_no_alias_p (struct data_reference *a, struct data_reference *b,
2982 tree segment_length_a, tree segment_length_b)
2984 gcc_assert (TREE_CODE (DR_INIT (a)) == INTEGER_CST
2985 && TREE_CODE (DR_INIT (b)) == INTEGER_CST);
2986 if (tree_int_cst_equal (DR_INIT (a), DR_INIT (b)))
2987 return false;
2989 tree seg_a_min = DR_INIT (a);
2990 tree seg_a_max = fold_build2 (PLUS_EXPR, TREE_TYPE (seg_a_min),
2991 seg_a_min, segment_length_a);
2992 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2993 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2994 [a, a+12) */
2995 if (tree_int_cst_compare (DR_STEP (a), size_zero_node) < 0)
2997 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (a)));
2998 seg_a_min = fold_build2 (PLUS_EXPR, TREE_TYPE (seg_a_max),
2999 seg_a_max, unit_size);
3000 seg_a_max = fold_build2 (PLUS_EXPR, TREE_TYPE (DR_INIT (a)),
3001 DR_INIT (a), unit_size);
3003 tree seg_b_min = DR_INIT (b);
3004 tree seg_b_max = fold_build2 (PLUS_EXPR, TREE_TYPE (seg_b_min),
3005 seg_b_min, segment_length_b);
3006 if (tree_int_cst_compare (DR_STEP (b), size_zero_node) < 0)
3008 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (b)));
3009 seg_b_min = fold_build2 (PLUS_EXPR, TREE_TYPE (seg_b_max),
3010 seg_b_max, unit_size);
3011 seg_b_max = fold_build2 (PLUS_EXPR, TREE_TYPE (DR_INIT (b)),
3012 DR_INIT (b), unit_size);
3015 if (tree_int_cst_le (seg_a_max, seg_b_min)
3016 || tree_int_cst_le (seg_b_max, seg_a_min))
3017 return true;
3019 return false;
3022 /* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
3023 in DDR is >= VF. */
3025 static bool
3026 dependence_distance_ge_vf (data_dependence_relation *ddr,
3027 unsigned int loop_depth, unsigned HOST_WIDE_INT vf)
3029 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
3030 || DDR_NUM_DIST_VECTS (ddr) == 0)
3031 return false;
3033 /* If the dependence is exact, we should have limited the VF instead. */
3034 gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
3036 unsigned int i;
3037 lambda_vector dist_v;
3038 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3040 HOST_WIDE_INT dist = dist_v[loop_depth];
3041 if (dist != 0
3042 && !(dist > 0 && DDR_REVERSED_P (ddr))
3043 && (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf)
3044 return false;
3047 if (dump_enabled_p ())
3049 dump_printf_loc (MSG_NOTE, vect_location,
3050 "dependence distance between ");
3051 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
3052 dump_printf (MSG_NOTE, " and ");
3053 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
3054 dump_printf (MSG_NOTE, " is >= VF\n");
3057 return true;
3060 /* Function vect_prune_runtime_alias_test_list.
3062 Prune a list of ddrs to be tested at run-time by versioning for alias.
3063 Merge several alias checks into one if possible.
3064 Return FALSE if resulting list of ddrs is longer then allowed by
3065 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
3067 bool
3068 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
3070 typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
3071 hash_set <tree_pair_hash> compared_objects;
3073 vec<ddr_p> may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
3074 vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
3075 = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3076 vec<vec_object_pair> &check_unequal_addrs
3077 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3078 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3079 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
3081 ddr_p ddr;
3082 unsigned int i;
3083 tree length_factor;
3085 if (dump_enabled_p ())
3086 dump_printf_loc (MSG_NOTE, vect_location,
3087 "=== vect_prune_runtime_alias_test_list ===\n");
3089 if (may_alias_ddrs.is_empty ())
3090 return true;
3092 comp_alias_ddrs.create (may_alias_ddrs.length ());
3094 unsigned int loop_depth
3095 = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
3096 LOOP_VINFO_LOOP_NEST (loop_vinfo));
3098 /* First, we collect all data ref pairs for aliasing checks. */
3099 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
3101 int comp_res;
3102 struct data_reference *dr_a, *dr_b;
3103 gimple *dr_group_first_a, *dr_group_first_b;
3104 tree segment_length_a, segment_length_b;
3105 gimple *stmt_a, *stmt_b;
3107 /* Ignore the alias if the VF we chose ended up being no greater
3108 than the dependence distance. */
3109 if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
3110 continue;
3112 if (DDR_OBJECT_A (ddr))
3114 vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
3115 if (!compared_objects.add (new_pair))
3117 if (dump_enabled_p ())
3119 dump_printf_loc (MSG_NOTE, vect_location, "checking that ");
3120 dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.first);
3121 dump_printf (MSG_NOTE, " and ");
3122 dump_generic_expr (MSG_NOTE, TDF_SLIM, new_pair.second);
3123 dump_printf (MSG_NOTE, " have different addresses\n");
3125 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
3127 continue;
3130 dr_a = DDR_A (ddr);
3131 stmt_a = DR_STMT (DDR_A (ddr));
3132 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
3133 if (dr_group_first_a)
3135 stmt_a = dr_group_first_a;
3136 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
3139 dr_b = DDR_B (ddr);
3140 stmt_b = DR_STMT (DDR_B (ddr));
3141 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
3142 if (dr_group_first_b)
3144 stmt_b = dr_group_first_b;
3145 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
3148 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
3149 length_factor = scalar_loop_iters;
3150 else
3151 length_factor = size_int (vect_factor);
3152 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
3153 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
3155 comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
3156 DR_BASE_ADDRESS (dr_b));
3157 if (comp_res == 0)
3158 comp_res = data_ref_compare_tree (DR_OFFSET (dr_a),
3159 DR_OFFSET (dr_b));
3161 /* Alias is known at compilation time. */
3162 if (comp_res == 0
3163 && TREE_CODE (DR_STEP (dr_a)) == INTEGER_CST
3164 && TREE_CODE (DR_STEP (dr_b)) == INTEGER_CST
3165 && TREE_CODE (segment_length_a) == INTEGER_CST
3166 && TREE_CODE (segment_length_b) == INTEGER_CST)
3168 if (vect_no_alias_p (dr_a, dr_b, segment_length_a, segment_length_b))
3169 continue;
3171 if (dump_enabled_p ())
3172 dump_printf_loc (MSG_NOTE, vect_location,
3173 "not vectorized: compilation time alias.\n");
3175 return false;
3178 dr_with_seg_len_pair_t dr_with_seg_len_pair
3179 (dr_with_seg_len (dr_a, segment_length_a),
3180 dr_with_seg_len (dr_b, segment_length_b));
3182 /* Canonicalize pairs by sorting the two DR members. */
3183 if (comp_res > 0)
3184 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
3186 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
3189 prune_runtime_alias_test_list (&comp_alias_ddrs,
3190 (unsigned HOST_WIDE_INT) vect_factor);
3192 unsigned int count = (comp_alias_ddrs.length ()
3193 + check_unequal_addrs.length ());
3194 dump_printf_loc (MSG_NOTE, vect_location,
3195 "improved number of alias checks from %d to %d\n",
3196 may_alias_ddrs.length (), count);
3197 if ((int) count > PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
3199 if (dump_enabled_p ())
3200 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3201 "number of versioning for alias "
3202 "run-time tests exceeds %d "
3203 "(--param vect-max-version-for-alias-checks)\n",
3204 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
3205 return false;
3208 return true;
3211 /* Return true if a non-affine read or write in STMT is suitable for a
3212 gather load or scatter store. Describe the operation in *INFO if so. */
3214 bool
3215 vect_check_gather_scatter (gimple *stmt, loop_vec_info loop_vinfo,
3216 gather_scatter_info *info)
3218 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
3219 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3220 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3221 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3222 tree offtype = NULL_TREE;
3223 tree decl, base, off;
3224 machine_mode pmode;
3225 int punsignedp, reversep, pvolatilep = 0;
3227 base = DR_REF (dr);
3228 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3229 see if we can use the def stmt of the address. */
3230 if (is_gimple_call (stmt)
3231 && gimple_call_internal_p (stmt)
3232 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
3233 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
3234 && TREE_CODE (base) == MEM_REF
3235 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3236 && integer_zerop (TREE_OPERAND (base, 1))
3237 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3239 gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3240 if (is_gimple_assign (def_stmt)
3241 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3242 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3245 /* The gather and scatter builtins need address of the form
3246 loop_invariant + vector * {1, 2, 4, 8}
3248 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3249 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3250 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3251 multiplications and additions in it. To get a vector, we need
3252 a single SSA_NAME that will be defined in the loop and will
3253 contain everything that is not loop invariant and that can be
3254 vectorized. The following code attempts to find such a preexistng
3255 SSA_NAME OFF and put the loop invariants into a tree BASE
3256 that can be gimplified before the loop. */
3257 base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
3258 &punsignedp, &reversep, &pvolatilep);
3259 gcc_assert (base && (pbitpos % BITS_PER_UNIT) == 0 && !reversep);
3261 if (TREE_CODE (base) == MEM_REF)
3263 if (!integer_zerop (TREE_OPERAND (base, 1)))
3265 if (off == NULL_TREE)
3267 offset_int moff = mem_ref_offset (base);
3268 off = wide_int_to_tree (sizetype, moff);
3270 else
3271 off = size_binop (PLUS_EXPR, off,
3272 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3274 base = TREE_OPERAND (base, 0);
3276 else
3277 base = build_fold_addr_expr (base);
3279 if (off == NULL_TREE)
3280 off = size_zero_node;
3282 /* If base is not loop invariant, either off is 0, then we start with just
3283 the constant offset in the loop invariant BASE and continue with base
3284 as OFF, otherwise give up.
3285 We could handle that case by gimplifying the addition of base + off
3286 into some SSA_NAME and use that as off, but for now punt. */
3287 if (!expr_invariant_in_loop_p (loop, base))
3289 if (!integer_zerop (off))
3290 return false;
3291 off = base;
3292 base = size_int (pbitpos / BITS_PER_UNIT);
3294 /* Otherwise put base + constant offset into the loop invariant BASE
3295 and continue with OFF. */
3296 else
3298 base = fold_convert (sizetype, base);
3299 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3302 /* OFF at this point may be either a SSA_NAME or some tree expression
3303 from get_inner_reference. Try to peel off loop invariants from it
3304 into BASE as long as possible. */
3305 STRIP_NOPS (off);
3306 while (offtype == NULL_TREE)
3308 enum tree_code code;
3309 tree op0, op1, add = NULL_TREE;
3311 if (TREE_CODE (off) == SSA_NAME)
3313 gimple *def_stmt = SSA_NAME_DEF_STMT (off);
3315 if (expr_invariant_in_loop_p (loop, off))
3316 return false;
3318 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3319 break;
3321 op0 = gimple_assign_rhs1 (def_stmt);
3322 code = gimple_assign_rhs_code (def_stmt);
3323 op1 = gimple_assign_rhs2 (def_stmt);
3325 else
3327 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3328 return false;
3329 code = TREE_CODE (off);
3330 extract_ops_from_tree (off, &code, &op0, &op1);
3332 switch (code)
3334 case POINTER_PLUS_EXPR:
3335 case PLUS_EXPR:
3336 if (expr_invariant_in_loop_p (loop, op0))
3338 add = op0;
3339 off = op1;
3340 do_add:
3341 add = fold_convert (sizetype, add);
3342 if (scale != 1)
3343 add = size_binop (MULT_EXPR, add, size_int (scale));
3344 base = size_binop (PLUS_EXPR, base, add);
3345 continue;
3347 if (expr_invariant_in_loop_p (loop, op1))
3349 add = op1;
3350 off = op0;
3351 goto do_add;
3353 break;
3354 case MINUS_EXPR:
3355 if (expr_invariant_in_loop_p (loop, op1))
3357 add = fold_convert (sizetype, op1);
3358 add = size_binop (MINUS_EXPR, size_zero_node, add);
3359 off = op0;
3360 goto do_add;
3362 break;
3363 case MULT_EXPR:
3364 if (scale == 1 && tree_fits_shwi_p (op1))
3366 scale = tree_to_shwi (op1);
3367 off = op0;
3368 continue;
3370 break;
3371 case SSA_NAME:
3372 off = op0;
3373 continue;
3374 CASE_CONVERT:
3375 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3376 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3377 break;
3378 if (TYPE_PRECISION (TREE_TYPE (op0))
3379 == TYPE_PRECISION (TREE_TYPE (off)))
3381 off = op0;
3382 continue;
3384 if (TYPE_PRECISION (TREE_TYPE (op0))
3385 < TYPE_PRECISION (TREE_TYPE (off)))
3387 off = op0;
3388 offtype = TREE_TYPE (off);
3389 STRIP_NOPS (off);
3390 continue;
3392 break;
3393 default:
3394 break;
3396 break;
3399 /* If at the end OFF still isn't a SSA_NAME or isn't
3400 defined in the loop, punt. */
3401 if (TREE_CODE (off) != SSA_NAME
3402 || expr_invariant_in_loop_p (loop, off))
3403 return false;
3405 if (offtype == NULL_TREE)
3406 offtype = TREE_TYPE (off);
3408 if (DR_IS_READ (dr))
3409 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3410 offtype, scale);
3411 else
3412 decl = targetm.vectorize.builtin_scatter (STMT_VINFO_VECTYPE (stmt_info),
3413 offtype, scale);
3415 if (decl == NULL_TREE)
3416 return false;
3418 info->decl = decl;
3419 info->base = base;
3420 info->offset = off;
3421 info->offset_dt = vect_unknown_def_type;
3422 info->offset_vectype = NULL_TREE;
3423 info->scale = scale;
3424 return true;
3427 /* Function vect_analyze_data_refs.
3429 Find all the data references in the loop or basic block.
3431 The general structure of the analysis of data refs in the vectorizer is as
3432 follows:
3433 1- vect_analyze_data_refs(loop/bb): call
3434 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3435 in the loop/bb and their dependences.
3436 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3437 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3438 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3442 bool
3443 vect_analyze_data_refs (vec_info *vinfo, int *min_vf)
3445 struct loop *loop = NULL;
3446 unsigned int i;
3447 struct data_reference *dr;
3448 tree scalar_type;
3450 if (dump_enabled_p ())
3451 dump_printf_loc (MSG_NOTE, vect_location,
3452 "=== vect_analyze_data_refs ===\n");
3454 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
3455 loop = LOOP_VINFO_LOOP (loop_vinfo);
3457 /* Go through the data-refs, check that the analysis succeeded. Update
3458 pointer from stmt_vec_info struct to DR and vectype. */
3460 vec<data_reference_p> datarefs = vinfo->datarefs;
3461 FOR_EACH_VEC_ELT (datarefs, i, dr)
3463 gimple *stmt;
3464 stmt_vec_info stmt_info;
3465 tree base, offset, init;
3466 enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
3467 bool simd_lane_access = false;
3468 int vf;
3470 again:
3471 if (!dr || !DR_REF (dr))
3473 if (dump_enabled_p ())
3474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3475 "not vectorized: unhandled data-ref\n");
3476 return false;
3479 stmt = DR_STMT (dr);
3480 stmt_info = vinfo_for_stmt (stmt);
3482 /* Discard clobbers from the dataref vector. We will remove
3483 clobber stmts during vectorization. */
3484 if (gimple_clobber_p (stmt))
3486 free_data_ref (dr);
3487 if (i == datarefs.length () - 1)
3489 datarefs.pop ();
3490 break;
3492 datarefs.ordered_remove (i);
3493 dr = datarefs[i];
3494 goto again;
3497 /* Check that analysis of the data-ref succeeded. */
3498 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3499 || !DR_STEP (dr))
3501 bool maybe_gather
3502 = DR_IS_READ (dr)
3503 && !TREE_THIS_VOLATILE (DR_REF (dr))
3504 && targetm.vectorize.builtin_gather != NULL;
3505 bool maybe_scatter
3506 = DR_IS_WRITE (dr)
3507 && !TREE_THIS_VOLATILE (DR_REF (dr))
3508 && targetm.vectorize.builtin_scatter != NULL;
3509 bool maybe_simd_lane_access
3510 = is_a <loop_vec_info> (vinfo) && loop->simduid;
3512 /* If target supports vector gather loads or scatter stores, or if
3513 this might be a SIMD lane access, see if they can't be used. */
3514 if (is_a <loop_vec_info> (vinfo)
3515 && (maybe_gather || maybe_scatter || maybe_simd_lane_access)
3516 && !nested_in_vect_loop_p (loop, stmt))
3518 struct data_reference *newdr
3519 = create_data_ref (NULL, loop_containing_stmt (stmt),
3520 DR_REF (dr), stmt, !maybe_scatter,
3521 DR_IS_CONDITIONAL_IN_STMT (dr));
3522 gcc_assert (newdr != NULL && DR_REF (newdr));
3523 if (DR_BASE_ADDRESS (newdr)
3524 && DR_OFFSET (newdr)
3525 && DR_INIT (newdr)
3526 && DR_STEP (newdr)
3527 && integer_zerop (DR_STEP (newdr)))
3529 if (maybe_simd_lane_access)
3531 tree off = DR_OFFSET (newdr);
3532 STRIP_NOPS (off);
3533 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3534 && TREE_CODE (off) == MULT_EXPR
3535 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3537 tree step = TREE_OPERAND (off, 1);
3538 off = TREE_OPERAND (off, 0);
3539 STRIP_NOPS (off);
3540 if (CONVERT_EXPR_P (off)
3541 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3542 0)))
3543 < TYPE_PRECISION (TREE_TYPE (off)))
3544 off = TREE_OPERAND (off, 0);
3545 if (TREE_CODE (off) == SSA_NAME)
3547 gimple *def = SSA_NAME_DEF_STMT (off);
3548 tree reft = TREE_TYPE (DR_REF (newdr));
3549 if (is_gimple_call (def)
3550 && gimple_call_internal_p (def)
3551 && (gimple_call_internal_fn (def)
3552 == IFN_GOMP_SIMD_LANE))
3554 tree arg = gimple_call_arg (def, 0);
3555 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3556 arg = SSA_NAME_VAR (arg);
3557 if (arg == loop->simduid
3558 /* For now. */
3559 && tree_int_cst_equal
3560 (TYPE_SIZE_UNIT (reft),
3561 step))
3563 DR_OFFSET (newdr) = ssize_int (0);
3564 DR_STEP (newdr) = step;
3565 DR_OFFSET_ALIGNMENT (newdr)
3566 = BIGGEST_ALIGNMENT;
3567 DR_STEP_ALIGNMENT (newdr)
3568 = highest_pow2_factor (step);
3569 dr = newdr;
3570 simd_lane_access = true;
3576 if (!simd_lane_access && (maybe_gather || maybe_scatter))
3578 dr = newdr;
3579 if (maybe_gather)
3580 gatherscatter = GATHER;
3581 else
3582 gatherscatter = SCATTER;
3585 if (gatherscatter == SG_NONE && !simd_lane_access)
3586 free_data_ref (newdr);
3589 if (gatherscatter == SG_NONE && !simd_lane_access)
3591 if (dump_enabled_p ())
3593 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3594 "not vectorized: data ref analysis "
3595 "failed ");
3596 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3599 if (is_a <bb_vec_info> (vinfo))
3600 break;
3602 return false;
3606 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3608 if (dump_enabled_p ())
3609 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3610 "not vectorized: base addr of dr is a "
3611 "constant\n");
3613 if (is_a <bb_vec_info> (vinfo))
3614 break;
3616 if (gatherscatter != SG_NONE || simd_lane_access)
3617 free_data_ref (dr);
3618 return false;
3621 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3623 if (dump_enabled_p ())
3625 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3626 "not vectorized: volatile type ");
3627 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3630 if (is_a <bb_vec_info> (vinfo))
3631 break;
3633 return false;
3636 if (stmt_can_throw_internal (stmt))
3638 if (dump_enabled_p ())
3640 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3641 "not vectorized: statement can throw an "
3642 "exception ");
3643 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3646 if (is_a <bb_vec_info> (vinfo))
3647 break;
3649 if (gatherscatter != SG_NONE || simd_lane_access)
3650 free_data_ref (dr);
3651 return false;
3654 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3655 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3657 if (dump_enabled_p ())
3659 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3660 "not vectorized: statement is bitfield "
3661 "access ");
3662 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3665 if (is_a <bb_vec_info> (vinfo))
3666 break;
3668 if (gatherscatter != SG_NONE || simd_lane_access)
3669 free_data_ref (dr);
3670 return false;
3673 base = unshare_expr (DR_BASE_ADDRESS (dr));
3674 offset = unshare_expr (DR_OFFSET (dr));
3675 init = unshare_expr (DR_INIT (dr));
3677 if (is_gimple_call (stmt)
3678 && (!gimple_call_internal_p (stmt)
3679 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3680 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3682 if (dump_enabled_p ())
3684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3685 "not vectorized: dr in a call ");
3686 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3689 if (is_a <bb_vec_info> (vinfo))
3690 break;
3692 if (gatherscatter != SG_NONE || simd_lane_access)
3693 free_data_ref (dr);
3694 return false;
3697 /* Update DR field in stmt_vec_info struct. */
3699 /* If the dataref is in an inner-loop of the loop that is considered for
3700 for vectorization, we also want to analyze the access relative to
3701 the outer-loop (DR contains information only relative to the
3702 inner-most enclosing loop). We do that by building a reference to the
3703 first location accessed by the inner-loop, and analyze it relative to
3704 the outer-loop. */
3705 if (loop && nested_in_vect_loop_p (loop, stmt))
3707 /* Build a reference to the first location accessed by the
3708 inner loop: *(BASE + INIT + OFFSET). By construction,
3709 this address must be invariant in the inner loop, so we
3710 can consider it as being used in the outer loop. */
3711 tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
3712 init, offset);
3713 tree init_addr = fold_build_pointer_plus (base, init_offset);
3714 tree init_ref = build_fold_indirect_ref (init_addr);
3716 if (dump_enabled_p ())
3718 dump_printf_loc (MSG_NOTE, vect_location,
3719 "analyze in outer loop: ");
3720 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_ref);
3721 dump_printf (MSG_NOTE, "\n");
3724 if (!dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
3725 init_ref, loop))
3726 /* dr_analyze_innermost already explained the failure. */
3727 return false;
3729 if (dump_enabled_p ())
3731 dump_printf_loc (MSG_NOTE, vect_location,
3732 "\touter base_address: ");
3733 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3734 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3735 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3736 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3737 STMT_VINFO_DR_OFFSET (stmt_info));
3738 dump_printf (MSG_NOTE,
3739 "\n\touter constant offset from base address: ");
3740 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3741 STMT_VINFO_DR_INIT (stmt_info));
3742 dump_printf (MSG_NOTE, "\n\touter step: ");
3743 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3744 STMT_VINFO_DR_STEP (stmt_info));
3745 dump_printf (MSG_NOTE, "\n\touter base alignment: %d\n",
3746 STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info));
3747 dump_printf (MSG_NOTE, "\n\touter base misalignment: %d\n",
3748 STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info));
3749 dump_printf (MSG_NOTE, "\n\touter offset alignment: %d\n",
3750 STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info));
3751 dump_printf (MSG_NOTE, "\n\touter step alignment: %d\n",
3752 STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
3756 if (STMT_VINFO_DATA_REF (stmt_info))
3758 if (dump_enabled_p ())
3760 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3761 "not vectorized: more than one data ref "
3762 "in stmt: ");
3763 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3766 if (is_a <bb_vec_info> (vinfo))
3767 break;
3769 if (gatherscatter != SG_NONE || simd_lane_access)
3770 free_data_ref (dr);
3771 return false;
3774 STMT_VINFO_DATA_REF (stmt_info) = dr;
3775 if (simd_lane_access)
3777 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3778 free_data_ref (datarefs[i]);
3779 datarefs[i] = dr;
3782 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == ADDR_EXPR
3783 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (dr), 0))
3784 && DECL_NONALIASED (TREE_OPERAND (DR_BASE_ADDRESS (dr), 0)))
3786 if (dump_enabled_p ())
3788 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3789 "not vectorized: base object not addressable "
3790 "for stmt: ");
3791 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3793 if (is_a <bb_vec_info> (vinfo))
3795 /* In BB vectorization the ref can still participate
3796 in dependence analysis, we just can't vectorize it. */
3797 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3798 continue;
3800 return false;
3803 /* Set vectype for STMT. */
3804 scalar_type = TREE_TYPE (DR_REF (dr));
3805 STMT_VINFO_VECTYPE (stmt_info)
3806 = get_vectype_for_scalar_type (scalar_type);
3807 if (!STMT_VINFO_VECTYPE (stmt_info))
3809 if (dump_enabled_p ())
3811 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3812 "not vectorized: no vectype for stmt: ");
3813 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3814 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3815 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3816 scalar_type);
3817 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3820 if (is_a <bb_vec_info> (vinfo))
3822 /* No vector type is fine, the ref can still participate
3823 in dependence analysis, we just can't vectorize it. */
3824 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3825 continue;
3828 if (gatherscatter != SG_NONE || simd_lane_access)
3830 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3831 if (gatherscatter != SG_NONE)
3832 free_data_ref (dr);
3834 return false;
3836 else
3838 if (dump_enabled_p ())
3840 dump_printf_loc (MSG_NOTE, vect_location,
3841 "got vectype for stmt: ");
3842 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3843 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3844 STMT_VINFO_VECTYPE (stmt_info));
3845 dump_printf (MSG_NOTE, "\n");
3849 /* Adjust the minimal vectorization factor according to the
3850 vector type. */
3851 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3852 if (vf > *min_vf)
3853 *min_vf = vf;
3855 if (gatherscatter != SG_NONE)
3857 gather_scatter_info gs_info;
3858 if (!vect_check_gather_scatter (stmt, as_a <loop_vec_info> (vinfo),
3859 &gs_info)
3860 || !get_vectype_for_scalar_type (TREE_TYPE (gs_info.offset)))
3862 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3863 free_data_ref (dr);
3864 if (dump_enabled_p ())
3866 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3867 (gatherscatter == GATHER) ?
3868 "not vectorized: not suitable for gather "
3869 "load " :
3870 "not vectorized: not suitable for scatter "
3871 "store ");
3872 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3874 return false;
3877 free_data_ref (datarefs[i]);
3878 datarefs[i] = dr;
3879 STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
3882 else if (is_a <loop_vec_info> (vinfo)
3883 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3885 if (nested_in_vect_loop_p (loop, stmt))
3887 if (dump_enabled_p ())
3889 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3890 "not vectorized: not suitable for strided "
3891 "load ");
3892 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3894 return false;
3896 STMT_VINFO_STRIDED_P (stmt_info) = true;
3900 /* If we stopped analysis at the first dataref we could not analyze
3901 when trying to vectorize a basic-block mark the rest of the datarefs
3902 as not vectorizable and truncate the vector of datarefs. That
3903 avoids spending useless time in analyzing their dependence. */
3904 if (i != datarefs.length ())
3906 gcc_assert (is_a <bb_vec_info> (vinfo));
3907 for (unsigned j = i; j < datarefs.length (); ++j)
3909 data_reference_p dr = datarefs[j];
3910 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3911 free_data_ref (dr);
3913 datarefs.truncate (i);
3916 return true;
3920 /* Function vect_get_new_vect_var.
3922 Returns a name for a new variable. The current naming scheme appends the
3923 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3924 the name of vectorizer generated variables, and appends that to NAME if
3925 provided. */
3927 tree
3928 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3930 const char *prefix;
3931 tree new_vect_var;
3933 switch (var_kind)
3935 case vect_simple_var:
3936 prefix = "vect";
3937 break;
3938 case vect_scalar_var:
3939 prefix = "stmp";
3940 break;
3941 case vect_mask_var:
3942 prefix = "mask";
3943 break;
3944 case vect_pointer_var:
3945 prefix = "vectp";
3946 break;
3947 default:
3948 gcc_unreachable ();
3951 if (name)
3953 char* tmp = concat (prefix, "_", name, NULL);
3954 new_vect_var = create_tmp_reg (type, tmp);
3955 free (tmp);
3957 else
3958 new_vect_var = create_tmp_reg (type, prefix);
3960 return new_vect_var;
3963 /* Like vect_get_new_vect_var but return an SSA name. */
3965 tree
3966 vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
3968 const char *prefix;
3969 tree new_vect_var;
3971 switch (var_kind)
3973 case vect_simple_var:
3974 prefix = "vect";
3975 break;
3976 case vect_scalar_var:
3977 prefix = "stmp";
3978 break;
3979 case vect_pointer_var:
3980 prefix = "vectp";
3981 break;
3982 default:
3983 gcc_unreachable ();
3986 if (name)
3988 char* tmp = concat (prefix, "_", name, NULL);
3989 new_vect_var = make_temp_ssa_name (type, NULL, tmp);
3990 free (tmp);
3992 else
3993 new_vect_var = make_temp_ssa_name (type, NULL, prefix);
3995 return new_vect_var;
3998 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
4000 static void
4001 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr)
4003 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
4004 int misalign = DR_MISALIGNMENT (dr);
4005 if (misalign == DR_MISALIGNMENT_UNKNOWN)
4006 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
4007 else
4008 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name),
4009 DR_TARGET_ALIGNMENT (dr), misalign);
4012 /* Function vect_create_addr_base_for_vector_ref.
4014 Create an expression that computes the address of the first memory location
4015 that will be accessed for a data reference.
4017 Input:
4018 STMT: The statement containing the data reference.
4019 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
4020 OFFSET: Optional. If supplied, it is be added to the initial address.
4021 LOOP: Specify relative to which loop-nest should the address be computed.
4022 For example, when the dataref is in an inner-loop nested in an
4023 outer-loop that is now being vectorized, LOOP can be either the
4024 outer-loop, or the inner-loop. The first memory location accessed
4025 by the following dataref ('in' points to short):
4027 for (i=0; i<N; i++)
4028 for (j=0; j<M; j++)
4029 s += in[i+j]
4031 is as follows:
4032 if LOOP=i_loop: &in (relative to i_loop)
4033 if LOOP=j_loop: &in+i*2B (relative to j_loop)
4034 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
4035 initial address. Unlike OFFSET, which is number of elements to
4036 be added, BYTE_OFFSET is measured in bytes.
4038 Output:
4039 1. Return an SSA_NAME whose value is the address of the memory location of
4040 the first vector of the data reference.
4041 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
4042 these statement(s) which define the returned SSA_NAME.
4044 FORNOW: We are only handling array accesses with step 1. */
4046 tree
4047 vect_create_addr_base_for_vector_ref (gimple *stmt,
4048 gimple_seq *new_stmt_list,
4049 tree offset,
4050 tree byte_offset)
4052 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4053 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4054 const char *base_name;
4055 tree addr_base;
4056 tree dest;
4057 gimple_seq seq = NULL;
4058 tree vect_ptr_type;
4059 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
4060 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4061 innermost_loop_behavior *drb = vect_dr_behavior (dr);
4063 tree data_ref_base = unshare_expr (drb->base_address);
4064 tree base_offset = unshare_expr (drb->offset);
4065 tree init = unshare_expr (drb->init);
4067 if (loop_vinfo)
4068 base_name = get_name (data_ref_base);
4069 else
4071 base_offset = ssize_int (0);
4072 init = ssize_int (0);
4073 base_name = get_name (DR_REF (dr));
4076 /* Create base_offset */
4077 base_offset = size_binop (PLUS_EXPR,
4078 fold_convert (sizetype, base_offset),
4079 fold_convert (sizetype, init));
4081 if (offset)
4083 offset = fold_build2 (MULT_EXPR, sizetype,
4084 fold_convert (sizetype, offset), step);
4085 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4086 base_offset, offset);
4088 if (byte_offset)
4090 byte_offset = fold_convert (sizetype, byte_offset);
4091 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4092 base_offset, byte_offset);
4095 /* base + base_offset */
4096 if (loop_vinfo)
4097 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
4098 else
4100 addr_base = build1 (ADDR_EXPR,
4101 build_pointer_type (TREE_TYPE (DR_REF (dr))),
4102 unshare_expr (DR_REF (dr)));
4105 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
4106 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
4107 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
4108 gimple_seq_add_seq (new_stmt_list, seq);
4110 if (DR_PTR_INFO (dr)
4111 && TREE_CODE (addr_base) == SSA_NAME
4112 && !SSA_NAME_PTR_INFO (addr_base))
4114 vect_duplicate_ssa_name_ptr_info (addr_base, dr);
4115 if (offset || byte_offset)
4116 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
4119 if (dump_enabled_p ())
4121 dump_printf_loc (MSG_NOTE, vect_location, "created ");
4122 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
4123 dump_printf (MSG_NOTE, "\n");
4126 return addr_base;
4130 /* Function vect_create_data_ref_ptr.
4132 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4133 location accessed in the loop by STMT, along with the def-use update
4134 chain to appropriately advance the pointer through the loop iterations.
4135 Also set aliasing information for the pointer. This pointer is used by
4136 the callers to this function to create a memory reference expression for
4137 vector load/store access.
4139 Input:
4140 1. STMT: a stmt that references memory. Expected to be of the form
4141 GIMPLE_ASSIGN <name, data-ref> or
4142 GIMPLE_ASSIGN <data-ref, name>.
4143 2. AGGR_TYPE: the type of the reference, which should be either a vector
4144 or an array.
4145 3. AT_LOOP: the loop where the vector memref is to be created.
4146 4. OFFSET (optional): an offset to be added to the initial address accessed
4147 by the data-ref in STMT.
4148 5. BSI: location where the new stmts are to be placed if there is no loop
4149 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4150 pointing to the initial address.
4151 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4152 to the initial address accessed by the data-ref in STMT. This is
4153 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4154 in bytes.
4156 Output:
4157 1. Declare a new ptr to vector_type, and have it point to the base of the
4158 data reference (initial addressed accessed by the data reference).
4159 For example, for vector of type V8HI, the following code is generated:
4161 v8hi *ap;
4162 ap = (v8hi *)initial_address;
4164 if OFFSET is not supplied:
4165 initial_address = &a[init];
4166 if OFFSET is supplied:
4167 initial_address = &a[init + OFFSET];
4168 if BYTE_OFFSET is supplied:
4169 initial_address = &a[init] + BYTE_OFFSET;
4171 Return the initial_address in INITIAL_ADDRESS.
4173 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4174 update the pointer in each iteration of the loop.
4176 Return the increment stmt that updates the pointer in PTR_INCR.
4178 3. Set INV_P to true if the access pattern of the data reference in the
4179 vectorized loop is invariant. Set it to false otherwise.
4181 4. Return the pointer. */
4183 tree
4184 vect_create_data_ref_ptr (gimple *stmt, tree aggr_type, struct loop *at_loop,
4185 tree offset, tree *initial_address,
4186 gimple_stmt_iterator *gsi, gimple **ptr_incr,
4187 bool only_init, bool *inv_p, tree byte_offset)
4189 const char *base_name;
4190 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4191 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4192 struct loop *loop = NULL;
4193 bool nested_in_vect_loop = false;
4194 struct loop *containing_loop = NULL;
4195 tree aggr_ptr_type;
4196 tree aggr_ptr;
4197 tree new_temp;
4198 gimple_seq new_stmt_list = NULL;
4199 edge pe = NULL;
4200 basic_block new_bb;
4201 tree aggr_ptr_init;
4202 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4203 tree aptr;
4204 gimple_stmt_iterator incr_gsi;
4205 bool insert_after;
4206 tree indx_before_incr, indx_after_incr;
4207 gimple *incr;
4208 tree step;
4209 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4211 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4212 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4214 if (loop_vinfo)
4216 loop = LOOP_VINFO_LOOP (loop_vinfo);
4217 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4218 containing_loop = (gimple_bb (stmt))->loop_father;
4219 pe = loop_preheader_edge (loop);
4221 else
4223 gcc_assert (bb_vinfo);
4224 only_init = true;
4225 *ptr_incr = NULL;
4228 /* Check the step (evolution) of the load in LOOP, and record
4229 whether it's invariant. */
4230 step = vect_dr_behavior (dr)->step;
4231 if (integer_zerop (step))
4232 *inv_p = true;
4233 else
4234 *inv_p = false;
4236 /* Create an expression for the first address accessed by this load
4237 in LOOP. */
4238 base_name = get_name (DR_BASE_ADDRESS (dr));
4240 if (dump_enabled_p ())
4242 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4243 dump_printf_loc (MSG_NOTE, vect_location,
4244 "create %s-pointer variable to type: ",
4245 get_tree_code_name (TREE_CODE (aggr_type)));
4246 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4247 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4248 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4249 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4250 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4251 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4252 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4253 else
4254 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4255 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4256 dump_printf (MSG_NOTE, "\n");
4259 /* (1) Create the new aggregate-pointer variable.
4260 Vector and array types inherit the alias set of their component
4261 type by default so we need to use a ref-all pointer if the data
4262 reference does not conflict with the created aggregated data
4263 reference because it is not addressable. */
4264 bool need_ref_all = false;
4265 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4266 get_alias_set (DR_REF (dr))))
4267 need_ref_all = true;
4268 /* Likewise for any of the data references in the stmt group. */
4269 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4271 gimple *orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4274 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4275 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4276 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4277 get_alias_set (DR_REF (sdr))))
4279 need_ref_all = true;
4280 break;
4282 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4284 while (orig_stmt);
4286 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4287 need_ref_all);
4288 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4291 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4292 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4293 def-use update cycles for the pointer: one relative to the outer-loop
4294 (LOOP), which is what steps (3) and (4) below do. The other is relative
4295 to the inner-loop (which is the inner-most loop containing the dataref),
4296 and this is done be step (5) below.
4298 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4299 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4300 redundant. Steps (3),(4) create the following:
4302 vp0 = &base_addr;
4303 LOOP: vp1 = phi(vp0,vp2)
4306 vp2 = vp1 + step
4307 goto LOOP
4309 If there is an inner-loop nested in loop, then step (5) will also be
4310 applied, and an additional update in the inner-loop will be created:
4312 vp0 = &base_addr;
4313 LOOP: vp1 = phi(vp0,vp2)
4315 inner: vp3 = phi(vp1,vp4)
4316 vp4 = vp3 + inner_step
4317 if () goto inner
4319 vp2 = vp1 + step
4320 if () goto LOOP */
4322 /* (2) Calculate the initial address of the aggregate-pointer, and set
4323 the aggregate-pointer to point to it before the loop. */
4325 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4327 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4328 offset, byte_offset);
4329 if (new_stmt_list)
4331 if (pe)
4333 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4334 gcc_assert (!new_bb);
4336 else
4337 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4340 *initial_address = new_temp;
4341 aggr_ptr_init = new_temp;
4343 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4344 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4345 inner-loop nested in LOOP (during outer-loop vectorization). */
4347 /* No update in loop is required. */
4348 if (only_init && (!loop_vinfo || at_loop == loop))
4349 aptr = aggr_ptr_init;
4350 else
4352 /* The step of the aggregate pointer is the type size. */
4353 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4354 /* One exception to the above is when the scalar step of the load in
4355 LOOP is zero. In this case the step here is also zero. */
4356 if (*inv_p)
4357 iv_step = size_zero_node;
4358 else if (tree_int_cst_sgn (step) == -1)
4359 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4361 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4363 create_iv (aggr_ptr_init,
4364 fold_convert (aggr_ptr_type, iv_step),
4365 aggr_ptr, loop, &incr_gsi, insert_after,
4366 &indx_before_incr, &indx_after_incr);
4367 incr = gsi_stmt (incr_gsi);
4368 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4370 /* Copy the points-to information if it exists. */
4371 if (DR_PTR_INFO (dr))
4373 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr);
4374 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr);
4376 if (ptr_incr)
4377 *ptr_incr = incr;
4379 aptr = indx_before_incr;
4382 if (!nested_in_vect_loop || only_init)
4383 return aptr;
4386 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4387 nested in LOOP, if exists. */
4389 gcc_assert (nested_in_vect_loop);
4390 if (!only_init)
4392 standard_iv_increment_position (containing_loop, &incr_gsi,
4393 &insert_after);
4394 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4395 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4396 &indx_after_incr);
4397 incr = gsi_stmt (incr_gsi);
4398 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4400 /* Copy the points-to information if it exists. */
4401 if (DR_PTR_INFO (dr))
4403 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr);
4404 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr);
4406 if (ptr_incr)
4407 *ptr_incr = incr;
4409 return indx_before_incr;
4411 else
4412 gcc_unreachable ();
4416 /* Function bump_vector_ptr
4418 Increment a pointer (to a vector type) by vector-size. If requested,
4419 i.e. if PTR-INCR is given, then also connect the new increment stmt
4420 to the existing def-use update-chain of the pointer, by modifying
4421 the PTR_INCR as illustrated below:
4423 The pointer def-use update-chain before this function:
4424 DATAREF_PTR = phi (p_0, p_2)
4425 ....
4426 PTR_INCR: p_2 = DATAREF_PTR + step
4428 The pointer def-use update-chain after this function:
4429 DATAREF_PTR = phi (p_0, p_2)
4430 ....
4431 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4432 ....
4433 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4435 Input:
4436 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4437 in the loop.
4438 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4439 the loop. The increment amount across iterations is expected
4440 to be vector_size.
4441 BSI - location where the new update stmt is to be placed.
4442 STMT - the original scalar memory-access stmt that is being vectorized.
4443 BUMP - optional. The offset by which to bump the pointer. If not given,
4444 the offset is assumed to be vector_size.
4446 Output: Return NEW_DATAREF_PTR as illustrated above.
4450 tree
4451 bump_vector_ptr (tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
4452 gimple *stmt, tree bump)
4454 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4455 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4456 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4457 tree update = TYPE_SIZE_UNIT (vectype);
4458 gassign *incr_stmt;
4459 ssa_op_iter iter;
4460 use_operand_p use_p;
4461 tree new_dataref_ptr;
4463 if (bump)
4464 update = bump;
4466 if (TREE_CODE (dataref_ptr) == SSA_NAME)
4467 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4468 else
4469 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
4470 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4471 dataref_ptr, update);
4472 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4474 /* Copy the points-to information if it exists. */
4475 if (DR_PTR_INFO (dr))
4477 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4478 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4481 if (!ptr_incr)
4482 return new_dataref_ptr;
4484 /* Update the vector-pointer's cross-iteration increment. */
4485 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4487 tree use = USE_FROM_PTR (use_p);
4489 if (use == dataref_ptr)
4490 SET_USE (use_p, new_dataref_ptr);
4491 else
4492 gcc_assert (tree_int_cst_compare (use, update) == 0);
4495 return new_dataref_ptr;
4499 /* Function vect_create_destination_var.
4501 Create a new temporary of type VECTYPE. */
4503 tree
4504 vect_create_destination_var (tree scalar_dest, tree vectype)
4506 tree vec_dest;
4507 const char *name;
4508 char *new_name;
4509 tree type;
4510 enum vect_var_kind kind;
4512 kind = vectype
4513 ? VECTOR_BOOLEAN_TYPE_P (vectype)
4514 ? vect_mask_var
4515 : vect_simple_var
4516 : vect_scalar_var;
4517 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4519 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4521 name = get_name (scalar_dest);
4522 if (name)
4523 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4524 else
4525 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
4526 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4527 free (new_name);
4529 return vec_dest;
4532 /* Function vect_grouped_store_supported.
4534 Returns TRUE if interleave high and interleave low permutations
4535 are supported, and FALSE otherwise. */
4537 bool
4538 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4540 machine_mode mode = TYPE_MODE (vectype);
4542 /* vect_permute_store_chain requires the group size to be equal to 3 or
4543 be a power of two. */
4544 if (count != 3 && exact_log2 (count) == -1)
4546 if (dump_enabled_p ())
4547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4548 "the size of the group of accesses"
4549 " is not a power of 2 or not eqaul to 3\n");
4550 return false;
4553 /* Check that the permutation is supported. */
4554 if (VECTOR_MODE_P (mode))
4556 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4557 auto_vec_perm_indices sel (nelt);
4558 sel.quick_grow (nelt);
4560 if (count == 3)
4562 unsigned int j0 = 0, j1 = 0, j2 = 0;
4563 unsigned int i, j;
4565 for (j = 0; j < 3; j++)
4567 int nelt0 = ((3 - j) * nelt) % 3;
4568 int nelt1 = ((3 - j) * nelt + 1) % 3;
4569 int nelt2 = ((3 - j) * nelt + 2) % 3;
4570 for (i = 0; i < nelt; i++)
4572 if (3 * i + nelt0 < nelt)
4573 sel[3 * i + nelt0] = j0++;
4574 if (3 * i + nelt1 < nelt)
4575 sel[3 * i + nelt1] = nelt + j1++;
4576 if (3 * i + nelt2 < nelt)
4577 sel[3 * i + nelt2] = 0;
4579 if (!can_vec_perm_p (mode, false, &sel))
4581 if (dump_enabled_p ())
4582 dump_printf (MSG_MISSED_OPTIMIZATION,
4583 "permutaion op not supported by target.\n");
4584 return false;
4587 for (i = 0; i < nelt; i++)
4589 if (3 * i + nelt0 < nelt)
4590 sel[3 * i + nelt0] = 3 * i + nelt0;
4591 if (3 * i + nelt1 < nelt)
4592 sel[3 * i + nelt1] = 3 * i + nelt1;
4593 if (3 * i + nelt2 < nelt)
4594 sel[3 * i + nelt2] = nelt + j2++;
4596 if (!can_vec_perm_p (mode, false, &sel))
4598 if (dump_enabled_p ())
4599 dump_printf (MSG_MISSED_OPTIMIZATION,
4600 "permutaion op not supported by target.\n");
4601 return false;
4604 return true;
4606 else
4608 /* If length is not equal to 3 then only power of 2 is supported. */
4609 gcc_assert (pow2p_hwi (count));
4611 for (i = 0; i < nelt / 2; i++)
4613 sel[i * 2] = i;
4614 sel[i * 2 + 1] = i + nelt;
4616 if (can_vec_perm_p (mode, false, &sel))
4618 for (i = 0; i < nelt; i++)
4619 sel[i] += nelt / 2;
4620 if (can_vec_perm_p (mode, false, &sel))
4621 return true;
4626 if (dump_enabled_p ())
4627 dump_printf (MSG_MISSED_OPTIMIZATION,
4628 "permutaion op not supported by target.\n");
4629 return false;
4633 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4634 type VECTYPE. */
4636 bool
4637 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4639 return vect_lanes_optab_supported_p ("vec_store_lanes",
4640 vec_store_lanes_optab,
4641 vectype, count);
4645 /* Function vect_permute_store_chain.
4647 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4648 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4649 the data correctly for the stores. Return the final references for stores
4650 in RESULT_CHAIN.
4652 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4653 The input is 4 vectors each containing 8 elements. We assign a number to
4654 each element, the input sequence is:
4656 1st vec: 0 1 2 3 4 5 6 7
4657 2nd vec: 8 9 10 11 12 13 14 15
4658 3rd vec: 16 17 18 19 20 21 22 23
4659 4th vec: 24 25 26 27 28 29 30 31
4661 The output sequence should be:
4663 1st vec: 0 8 16 24 1 9 17 25
4664 2nd vec: 2 10 18 26 3 11 19 27
4665 3rd vec: 4 12 20 28 5 13 21 30
4666 4th vec: 6 14 22 30 7 15 23 31
4668 i.e., we interleave the contents of the four vectors in their order.
4670 We use interleave_high/low instructions to create such output. The input of
4671 each interleave_high/low operation is two vectors:
4672 1st vec 2nd vec
4673 0 1 2 3 4 5 6 7
4674 the even elements of the result vector are obtained left-to-right from the
4675 high/low elements of the first vector. The odd elements of the result are
4676 obtained left-to-right from the high/low elements of the second vector.
4677 The output of interleave_high will be: 0 4 1 5
4678 and of interleave_low: 2 6 3 7
4681 The permutation is done in log LENGTH stages. In each stage interleave_high
4682 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4683 where the first argument is taken from the first half of DR_CHAIN and the
4684 second argument from it's second half.
4685 In our example,
4687 I1: interleave_high (1st vec, 3rd vec)
4688 I2: interleave_low (1st vec, 3rd vec)
4689 I3: interleave_high (2nd vec, 4th vec)
4690 I4: interleave_low (2nd vec, 4th vec)
4692 The output for the first stage is:
4694 I1: 0 16 1 17 2 18 3 19
4695 I2: 4 20 5 21 6 22 7 23
4696 I3: 8 24 9 25 10 26 11 27
4697 I4: 12 28 13 29 14 30 15 31
4699 The output of the second stage, i.e. the final result is:
4701 I1: 0 8 16 24 1 9 17 25
4702 I2: 2 10 18 26 3 11 19 27
4703 I3: 4 12 20 28 5 13 21 30
4704 I4: 6 14 22 30 7 15 23 31. */
4706 void
4707 vect_permute_store_chain (vec<tree> dr_chain,
4708 unsigned int length,
4709 gimple *stmt,
4710 gimple_stmt_iterator *gsi,
4711 vec<tree> *result_chain)
4713 tree vect1, vect2, high, low;
4714 gimple *perm_stmt;
4715 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4716 tree perm_mask_low, perm_mask_high;
4717 tree data_ref;
4718 tree perm3_mask_low, perm3_mask_high;
4719 unsigned int i, n, log_length = exact_log2 (length);
4720 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4722 auto_vec_perm_indices sel (nelt);
4723 sel.quick_grow (nelt);
4725 result_chain->quick_grow (length);
4726 memcpy (result_chain->address (), dr_chain.address (),
4727 length * sizeof (tree));
4729 if (length == 3)
4731 unsigned int j0 = 0, j1 = 0, j2 = 0;
4733 for (j = 0; j < 3; j++)
4735 int nelt0 = ((3 - j) * nelt) % 3;
4736 int nelt1 = ((3 - j) * nelt + 1) % 3;
4737 int nelt2 = ((3 - j) * nelt + 2) % 3;
4739 for (i = 0; i < nelt; i++)
4741 if (3 * i + nelt0 < nelt)
4742 sel[3 * i + nelt0] = j0++;
4743 if (3 * i + nelt1 < nelt)
4744 sel[3 * i + nelt1] = nelt + j1++;
4745 if (3 * i + nelt2 < nelt)
4746 sel[3 * i + nelt2] = 0;
4748 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4750 for (i = 0; i < nelt; i++)
4752 if (3 * i + nelt0 < nelt)
4753 sel[3 * i + nelt0] = 3 * i + nelt0;
4754 if (3 * i + nelt1 < nelt)
4755 sel[3 * i + nelt1] = 3 * i + nelt1;
4756 if (3 * i + nelt2 < nelt)
4757 sel[3 * i + nelt2] = nelt + j2++;
4759 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4761 vect1 = dr_chain[0];
4762 vect2 = dr_chain[1];
4764 /* Create interleaving stmt:
4765 low = VEC_PERM_EXPR <vect1, vect2,
4766 {j, nelt, *, j + 1, nelt + j + 1, *,
4767 j + 2, nelt + j + 2, *, ...}> */
4768 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4769 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4770 vect2, perm3_mask_low);
4771 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4773 vect1 = data_ref;
4774 vect2 = dr_chain[2];
4775 /* Create interleaving stmt:
4776 low = VEC_PERM_EXPR <vect1, vect2,
4777 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4778 6, 7, nelt + j + 2, ...}> */
4779 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4780 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4781 vect2, perm3_mask_high);
4782 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4783 (*result_chain)[j] = data_ref;
4786 else
4788 /* If length is not equal to 3 then only power of 2 is supported. */
4789 gcc_assert (pow2p_hwi (length));
4791 for (i = 0, n = nelt / 2; i < n; i++)
4793 sel[i * 2] = i;
4794 sel[i * 2 + 1] = i + nelt;
4796 perm_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4798 for (i = 0; i < nelt; i++)
4799 sel[i] += nelt / 2;
4800 perm_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4802 for (i = 0, n = log_length; i < n; i++)
4804 for (j = 0; j < length/2; j++)
4806 vect1 = dr_chain[j];
4807 vect2 = dr_chain[j+length/2];
4809 /* Create interleaving stmt:
4810 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4811 ...}> */
4812 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4813 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
4814 vect2, perm_mask_high);
4815 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4816 (*result_chain)[2*j] = high;
4818 /* Create interleaving stmt:
4819 low = VEC_PERM_EXPR <vect1, vect2,
4820 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4821 ...}> */
4822 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4823 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
4824 vect2, perm_mask_low);
4825 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4826 (*result_chain)[2*j+1] = low;
4828 memcpy (dr_chain.address (), result_chain->address (),
4829 length * sizeof (tree));
4834 /* Function vect_setup_realignment
4836 This function is called when vectorizing an unaligned load using
4837 the dr_explicit_realign[_optimized] scheme.
4838 This function generates the following code at the loop prolog:
4840 p = initial_addr;
4841 x msq_init = *(floor(p)); # prolog load
4842 realignment_token = call target_builtin;
4843 loop:
4844 x msq = phi (msq_init, ---)
4846 The stmts marked with x are generated only for the case of
4847 dr_explicit_realign_optimized.
4849 The code above sets up a new (vector) pointer, pointing to the first
4850 location accessed by STMT, and a "floor-aligned" load using that pointer.
4851 It also generates code to compute the "realignment-token" (if the relevant
4852 target hook was defined), and creates a phi-node at the loop-header bb
4853 whose arguments are the result of the prolog-load (created by this
4854 function) and the result of a load that takes place in the loop (to be
4855 created by the caller to this function).
4857 For the case of dr_explicit_realign_optimized:
4858 The caller to this function uses the phi-result (msq) to create the
4859 realignment code inside the loop, and sets up the missing phi argument,
4860 as follows:
4861 loop:
4862 msq = phi (msq_init, lsq)
4863 lsq = *(floor(p')); # load in loop
4864 result = realign_load (msq, lsq, realignment_token);
4866 For the case of dr_explicit_realign:
4867 loop:
4868 msq = *(floor(p)); # load in loop
4869 p' = p + (VS-1);
4870 lsq = *(floor(p')); # load in loop
4871 result = realign_load (msq, lsq, realignment_token);
4873 Input:
4874 STMT - (scalar) load stmt to be vectorized. This load accesses
4875 a memory location that may be unaligned.
4876 BSI - place where new code is to be inserted.
4877 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4878 is used.
4880 Output:
4881 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4882 target hook, if defined.
4883 Return value - the result of the loop-header phi node. */
4885 tree
4886 vect_setup_realignment (gimple *stmt, gimple_stmt_iterator *gsi,
4887 tree *realignment_token,
4888 enum dr_alignment_support alignment_support_scheme,
4889 tree init_addr,
4890 struct loop **at_loop)
4892 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4893 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4894 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4895 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4896 struct loop *loop = NULL;
4897 edge pe = NULL;
4898 tree scalar_dest = gimple_assign_lhs (stmt);
4899 tree vec_dest;
4900 gimple *inc;
4901 tree ptr;
4902 tree data_ref;
4903 basic_block new_bb;
4904 tree msq_init = NULL_TREE;
4905 tree new_temp;
4906 gphi *phi_stmt;
4907 tree msq = NULL_TREE;
4908 gimple_seq stmts = NULL;
4909 bool inv_p;
4910 bool compute_in_loop = false;
4911 bool nested_in_vect_loop = false;
4912 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4913 struct loop *loop_for_initial_load = NULL;
4915 if (loop_vinfo)
4917 loop = LOOP_VINFO_LOOP (loop_vinfo);
4918 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4921 gcc_assert (alignment_support_scheme == dr_explicit_realign
4922 || alignment_support_scheme == dr_explicit_realign_optimized);
4924 /* We need to generate three things:
4925 1. the misalignment computation
4926 2. the extra vector load (for the optimized realignment scheme).
4927 3. the phi node for the two vectors from which the realignment is
4928 done (for the optimized realignment scheme). */
4930 /* 1. Determine where to generate the misalignment computation.
4932 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4933 calculation will be generated by this function, outside the loop (in the
4934 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4935 caller, inside the loop.
4937 Background: If the misalignment remains fixed throughout the iterations of
4938 the loop, then both realignment schemes are applicable, and also the
4939 misalignment computation can be done outside LOOP. This is because we are
4940 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4941 are a multiple of VS (the Vector Size), and therefore the misalignment in
4942 different vectorized LOOP iterations is always the same.
4943 The problem arises only if the memory access is in an inner-loop nested
4944 inside LOOP, which is now being vectorized using outer-loop vectorization.
4945 This is the only case when the misalignment of the memory access may not
4946 remain fixed throughout the iterations of the inner-loop (as explained in
4947 detail in vect_supportable_dr_alignment). In this case, not only is the
4948 optimized realignment scheme not applicable, but also the misalignment
4949 computation (and generation of the realignment token that is passed to
4950 REALIGN_LOAD) have to be done inside the loop.
4952 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4953 or not, which in turn determines if the misalignment is computed inside
4954 the inner-loop, or outside LOOP. */
4956 if (init_addr != NULL_TREE || !loop_vinfo)
4958 compute_in_loop = true;
4959 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4963 /* 2. Determine where to generate the extra vector load.
4965 For the optimized realignment scheme, instead of generating two vector
4966 loads in each iteration, we generate a single extra vector load in the
4967 preheader of the loop, and in each iteration reuse the result of the
4968 vector load from the previous iteration. In case the memory access is in
4969 an inner-loop nested inside LOOP, which is now being vectorized using
4970 outer-loop vectorization, we need to determine whether this initial vector
4971 load should be generated at the preheader of the inner-loop, or can be
4972 generated at the preheader of LOOP. If the memory access has no evolution
4973 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4974 to be generated inside LOOP (in the preheader of the inner-loop). */
4976 if (nested_in_vect_loop)
4978 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4979 bool invariant_in_outerloop =
4980 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4981 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4983 else
4984 loop_for_initial_load = loop;
4985 if (at_loop)
4986 *at_loop = loop_for_initial_load;
4988 if (loop_for_initial_load)
4989 pe = loop_preheader_edge (loop_for_initial_load);
4991 /* 3. For the case of the optimized realignment, create the first vector
4992 load at the loop preheader. */
4994 if (alignment_support_scheme == dr_explicit_realign_optimized)
4996 /* Create msq_init = *(floor(p1)) in the loop preheader */
4997 gassign *new_stmt;
4999 gcc_assert (!compute_in_loop);
5000 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5001 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
5002 NULL_TREE, &init_addr, NULL, &inc,
5003 true, &inv_p);
5004 if (TREE_CODE (ptr) == SSA_NAME)
5005 new_temp = copy_ssa_name (ptr);
5006 else
5007 new_temp = make_ssa_name (TREE_TYPE (ptr));
5008 unsigned int align = DR_TARGET_ALIGNMENT (dr);
5009 new_stmt = gimple_build_assign
5010 (new_temp, BIT_AND_EXPR, ptr,
5011 build_int_cst (TREE_TYPE (ptr), -(HOST_WIDE_INT) align));
5012 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5013 gcc_assert (!new_bb);
5014 data_ref
5015 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
5016 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
5017 new_stmt = gimple_build_assign (vec_dest, data_ref);
5018 new_temp = make_ssa_name (vec_dest, new_stmt);
5019 gimple_assign_set_lhs (new_stmt, new_temp);
5020 if (pe)
5022 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5023 gcc_assert (!new_bb);
5025 else
5026 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5028 msq_init = gimple_assign_lhs (new_stmt);
5031 /* 4. Create realignment token using a target builtin, if available.
5032 It is done either inside the containing loop, or before LOOP (as
5033 determined above). */
5035 if (targetm.vectorize.builtin_mask_for_load)
5037 gcall *new_stmt;
5038 tree builtin_decl;
5040 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
5041 if (!init_addr)
5043 /* Generate the INIT_ADDR computation outside LOOP. */
5044 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
5045 NULL_TREE);
5046 if (loop)
5048 pe = loop_preheader_edge (loop);
5049 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
5050 gcc_assert (!new_bb);
5052 else
5053 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5056 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
5057 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
5058 vec_dest =
5059 vect_create_destination_var (scalar_dest,
5060 gimple_call_return_type (new_stmt));
5061 new_temp = make_ssa_name (vec_dest, new_stmt);
5062 gimple_call_set_lhs (new_stmt, new_temp);
5064 if (compute_in_loop)
5065 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5066 else
5068 /* Generate the misalignment computation outside LOOP. */
5069 pe = loop_preheader_edge (loop);
5070 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5071 gcc_assert (!new_bb);
5074 *realignment_token = gimple_call_lhs (new_stmt);
5076 /* The result of the CALL_EXPR to this builtin is determined from
5077 the value of the parameter and no global variables are touched
5078 which makes the builtin a "const" function. Requiring the
5079 builtin to have the "const" attribute makes it unnecessary
5080 to call mark_call_clobbered. */
5081 gcc_assert (TREE_READONLY (builtin_decl));
5084 if (alignment_support_scheme == dr_explicit_realign)
5085 return msq;
5087 gcc_assert (!compute_in_loop);
5088 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
5091 /* 5. Create msq = phi <msq_init, lsq> in loop */
5093 pe = loop_preheader_edge (containing_loop);
5094 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5095 msq = make_ssa_name (vec_dest);
5096 phi_stmt = create_phi_node (msq, containing_loop->header);
5097 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
5099 return msq;
5103 /* Function vect_grouped_load_supported.
5105 COUNT is the size of the load group (the number of statements plus the
5106 number of gaps). SINGLE_ELEMENT_P is true if there is actually
5107 only one statement, with a gap of COUNT - 1.
5109 Returns true if a suitable permute exists. */
5111 bool
5112 vect_grouped_load_supported (tree vectype, bool single_element_p,
5113 unsigned HOST_WIDE_INT count)
5115 machine_mode mode = TYPE_MODE (vectype);
5117 /* If this is single-element interleaving with an element distance
5118 that leaves unused vector loads around punt - we at least create
5119 very sub-optimal code in that case (and blow up memory,
5120 see PR65518). */
5121 if (single_element_p && count > TYPE_VECTOR_SUBPARTS (vectype))
5123 if (dump_enabled_p ())
5124 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5125 "single-element interleaving not supported "
5126 "for not adjacent vector loads\n");
5127 return false;
5130 /* vect_permute_load_chain requires the group size to be equal to 3 or
5131 be a power of two. */
5132 if (count != 3 && exact_log2 (count) == -1)
5134 if (dump_enabled_p ())
5135 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5136 "the size of the group of accesses"
5137 " is not a power of 2 or not equal to 3\n");
5138 return false;
5141 /* Check that the permutation is supported. */
5142 if (VECTOR_MODE_P (mode))
5144 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
5145 auto_vec_perm_indices sel (nelt);
5146 sel.quick_grow (nelt);
5148 if (count == 3)
5150 unsigned int k;
5151 for (k = 0; k < 3; k++)
5153 for (i = 0; i < nelt; i++)
5154 if (3 * i + k < 2 * nelt)
5155 sel[i] = 3 * i + k;
5156 else
5157 sel[i] = 0;
5158 if (!can_vec_perm_p (mode, false, &sel))
5160 if (dump_enabled_p ())
5161 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5162 "shuffle of 3 loads is not supported by"
5163 " target\n");
5164 return false;
5166 for (i = 0, j = 0; i < nelt; i++)
5167 if (3 * i + k < 2 * nelt)
5168 sel[i] = i;
5169 else
5170 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5171 if (!can_vec_perm_p (mode, false, &sel))
5173 if (dump_enabled_p ())
5174 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5175 "shuffle of 3 loads is not supported by"
5176 " target\n");
5177 return false;
5180 return true;
5182 else
5184 /* If length is not equal to 3 then only power of 2 is supported. */
5185 gcc_assert (pow2p_hwi (count));
5186 for (i = 0; i < nelt; i++)
5187 sel[i] = i * 2;
5188 if (can_vec_perm_p (mode, false, &sel))
5190 for (i = 0; i < nelt; i++)
5191 sel[i] = i * 2 + 1;
5192 if (can_vec_perm_p (mode, false, &sel))
5193 return true;
5198 if (dump_enabled_p ())
5199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5200 "extract even/odd not supported by target\n");
5201 return false;
5204 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5205 type VECTYPE. */
5207 bool
5208 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5210 return vect_lanes_optab_supported_p ("vec_load_lanes",
5211 vec_load_lanes_optab,
5212 vectype, count);
5215 /* Function vect_permute_load_chain.
5217 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5218 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5219 the input data correctly. Return the final references for loads in
5220 RESULT_CHAIN.
5222 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5223 The input is 4 vectors each containing 8 elements. We assign a number to each
5224 element, the input sequence is:
5226 1st vec: 0 1 2 3 4 5 6 7
5227 2nd vec: 8 9 10 11 12 13 14 15
5228 3rd vec: 16 17 18 19 20 21 22 23
5229 4th vec: 24 25 26 27 28 29 30 31
5231 The output sequence should be:
5233 1st vec: 0 4 8 12 16 20 24 28
5234 2nd vec: 1 5 9 13 17 21 25 29
5235 3rd vec: 2 6 10 14 18 22 26 30
5236 4th vec: 3 7 11 15 19 23 27 31
5238 i.e., the first output vector should contain the first elements of each
5239 interleaving group, etc.
5241 We use extract_even/odd instructions to create such output. The input of
5242 each extract_even/odd operation is two vectors
5243 1st vec 2nd vec
5244 0 1 2 3 4 5 6 7
5246 and the output is the vector of extracted even/odd elements. The output of
5247 extract_even will be: 0 2 4 6
5248 and of extract_odd: 1 3 5 7
5251 The permutation is done in log LENGTH stages. In each stage extract_even
5252 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5253 their order. In our example,
5255 E1: extract_even (1st vec, 2nd vec)
5256 E2: extract_odd (1st vec, 2nd vec)
5257 E3: extract_even (3rd vec, 4th vec)
5258 E4: extract_odd (3rd vec, 4th vec)
5260 The output for the first stage will be:
5262 E1: 0 2 4 6 8 10 12 14
5263 E2: 1 3 5 7 9 11 13 15
5264 E3: 16 18 20 22 24 26 28 30
5265 E4: 17 19 21 23 25 27 29 31
5267 In order to proceed and create the correct sequence for the next stage (or
5268 for the correct output, if the second stage is the last one, as in our
5269 example), we first put the output of extract_even operation and then the
5270 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5271 The input for the second stage is:
5273 1st vec (E1): 0 2 4 6 8 10 12 14
5274 2nd vec (E3): 16 18 20 22 24 26 28 30
5275 3rd vec (E2): 1 3 5 7 9 11 13 15
5276 4th vec (E4): 17 19 21 23 25 27 29 31
5278 The output of the second stage:
5280 E1: 0 4 8 12 16 20 24 28
5281 E2: 2 6 10 14 18 22 26 30
5282 E3: 1 5 9 13 17 21 25 29
5283 E4: 3 7 11 15 19 23 27 31
5285 And RESULT_CHAIN after reordering:
5287 1st vec (E1): 0 4 8 12 16 20 24 28
5288 2nd vec (E3): 1 5 9 13 17 21 25 29
5289 3rd vec (E2): 2 6 10 14 18 22 26 30
5290 4th vec (E4): 3 7 11 15 19 23 27 31. */
5292 static void
5293 vect_permute_load_chain (vec<tree> dr_chain,
5294 unsigned int length,
5295 gimple *stmt,
5296 gimple_stmt_iterator *gsi,
5297 vec<tree> *result_chain)
5299 tree data_ref, first_vect, second_vect;
5300 tree perm_mask_even, perm_mask_odd;
5301 tree perm3_mask_low, perm3_mask_high;
5302 gimple *perm_stmt;
5303 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5304 unsigned int i, j, log_length = exact_log2 (length);
5305 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5307 auto_vec_perm_indices sel (nelt);
5308 sel.quick_grow (nelt);
5310 result_chain->quick_grow (length);
5311 memcpy (result_chain->address (), dr_chain.address (),
5312 length * sizeof (tree));
5314 if (length == 3)
5316 unsigned int k;
5318 for (k = 0; k < 3; k++)
5320 for (i = 0; i < nelt; i++)
5321 if (3 * i + k < 2 * nelt)
5322 sel[i] = 3 * i + k;
5323 else
5324 sel[i] = 0;
5325 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
5327 for (i = 0, j = 0; i < nelt; i++)
5328 if (3 * i + k < 2 * nelt)
5329 sel[i] = i;
5330 else
5331 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5333 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
5335 first_vect = dr_chain[0];
5336 second_vect = dr_chain[1];
5338 /* Create interleaving stmt (low part of):
5339 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5340 ...}> */
5341 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5342 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5343 second_vect, perm3_mask_low);
5344 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5346 /* Create interleaving stmt (high part of):
5347 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5348 ...}> */
5349 first_vect = data_ref;
5350 second_vect = dr_chain[2];
5351 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5352 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5353 second_vect, perm3_mask_high);
5354 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5355 (*result_chain)[k] = data_ref;
5358 else
5360 /* If length is not equal to 3 then only power of 2 is supported. */
5361 gcc_assert (pow2p_hwi (length));
5363 for (i = 0; i < nelt; ++i)
5364 sel[i] = i * 2;
5365 perm_mask_even = vect_gen_perm_mask_checked (vectype, sel);
5367 for (i = 0; i < nelt; ++i)
5368 sel[i] = i * 2 + 1;
5369 perm_mask_odd = vect_gen_perm_mask_checked (vectype, sel);
5371 for (i = 0; i < log_length; i++)
5373 for (j = 0; j < length; j += 2)
5375 first_vect = dr_chain[j];
5376 second_vect = dr_chain[j+1];
5378 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5379 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5380 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5381 first_vect, second_vect,
5382 perm_mask_even);
5383 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5384 (*result_chain)[j/2] = data_ref;
5386 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5387 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5388 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5389 first_vect, second_vect,
5390 perm_mask_odd);
5391 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5392 (*result_chain)[j/2+length/2] = data_ref;
5394 memcpy (dr_chain.address (), result_chain->address (),
5395 length * sizeof (tree));
5400 /* Function vect_shift_permute_load_chain.
5402 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5403 sequence of stmts to reorder the input data accordingly.
5404 Return the final references for loads in RESULT_CHAIN.
5405 Return true if successed, false otherwise.
5407 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5408 The input is 3 vectors each containing 8 elements. We assign a
5409 number to each element, the input sequence is:
5411 1st vec: 0 1 2 3 4 5 6 7
5412 2nd vec: 8 9 10 11 12 13 14 15
5413 3rd vec: 16 17 18 19 20 21 22 23
5415 The output sequence should be:
5417 1st vec: 0 3 6 9 12 15 18 21
5418 2nd vec: 1 4 7 10 13 16 19 22
5419 3rd vec: 2 5 8 11 14 17 20 23
5421 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5423 First we shuffle all 3 vectors to get correct elements order:
5425 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5426 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5427 3rd vec: (16 19 22) (17 20 23) (18 21)
5429 Next we unite and shift vector 3 times:
5431 1st step:
5432 shift right by 6 the concatenation of:
5433 "1st vec" and "2nd vec"
5434 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5435 "2nd vec" and "3rd vec"
5436 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5437 "3rd vec" and "1st vec"
5438 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5439 | New vectors |
5441 So that now new vectors are:
5443 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5444 2nd vec: (10 13) (16 19 22) (17 20 23)
5445 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5447 2nd step:
5448 shift right by 5 the concatenation of:
5449 "1st vec" and "3rd vec"
5450 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5451 "2nd vec" and "1st vec"
5452 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5453 "3rd vec" and "2nd vec"
5454 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5455 | New vectors |
5457 So that now new vectors are:
5459 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5460 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5461 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5463 3rd step:
5464 shift right by 5 the concatenation of:
5465 "1st vec" and "1st vec"
5466 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5467 shift right by 3 the concatenation of:
5468 "2nd vec" and "2nd vec"
5469 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5470 | New vectors |
5472 So that now all vectors are READY:
5473 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5474 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5475 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5477 This algorithm is faster than one in vect_permute_load_chain if:
5478 1. "shift of a concatination" is faster than general permutation.
5479 This is usually so.
5480 2. The TARGET machine can't execute vector instructions in parallel.
5481 This is because each step of the algorithm depends on previous.
5482 The algorithm in vect_permute_load_chain is much more parallel.
5484 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5487 static bool
5488 vect_shift_permute_load_chain (vec<tree> dr_chain,
5489 unsigned int length,
5490 gimple *stmt,
5491 gimple_stmt_iterator *gsi,
5492 vec<tree> *result_chain)
5494 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5495 tree perm2_mask1, perm2_mask2, perm3_mask;
5496 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5497 gimple *perm_stmt;
5499 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5500 unsigned int i;
5501 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5502 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5503 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5505 auto_vec_perm_indices sel (nelt);
5506 sel.quick_grow (nelt);
5508 result_chain->quick_grow (length);
5509 memcpy (result_chain->address (), dr_chain.address (),
5510 length * sizeof (tree));
5512 if (pow2p_hwi (length) && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5514 unsigned int j, log_length = exact_log2 (length);
5515 for (i = 0; i < nelt / 2; ++i)
5516 sel[i] = i * 2;
5517 for (i = 0; i < nelt / 2; ++i)
5518 sel[nelt / 2 + i] = i * 2 + 1;
5519 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5521 if (dump_enabled_p ())
5522 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5523 "shuffle of 2 fields structure is not \
5524 supported by target\n");
5525 return false;
5527 perm2_mask1 = vect_gen_perm_mask_checked (vectype, sel);
5529 for (i = 0; i < nelt / 2; ++i)
5530 sel[i] = i * 2 + 1;
5531 for (i = 0; i < nelt / 2; ++i)
5532 sel[nelt / 2 + i] = i * 2;
5533 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5535 if (dump_enabled_p ())
5536 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5537 "shuffle of 2 fields structure is not \
5538 supported by target\n");
5539 return false;
5541 perm2_mask2 = vect_gen_perm_mask_checked (vectype, sel);
5543 /* Generating permutation constant to shift all elements.
5544 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5545 for (i = 0; i < nelt; i++)
5546 sel[i] = nelt / 2 + i;
5547 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5549 if (dump_enabled_p ())
5550 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5551 "shift permutation is not supported by target\n");
5552 return false;
5554 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5556 /* Generating permutation constant to select vector from 2.
5557 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5558 for (i = 0; i < nelt / 2; i++)
5559 sel[i] = i;
5560 for (i = nelt / 2; i < nelt; i++)
5561 sel[i] = nelt + i;
5562 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5564 if (dump_enabled_p ())
5565 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5566 "select is not supported by target\n");
5567 return false;
5569 select_mask = vect_gen_perm_mask_checked (vectype, sel);
5571 for (i = 0; i < log_length; i++)
5573 for (j = 0; j < length; j += 2)
5575 first_vect = dr_chain[j];
5576 second_vect = dr_chain[j + 1];
5578 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5579 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5580 first_vect, first_vect,
5581 perm2_mask1);
5582 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5583 vect[0] = data_ref;
5585 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5586 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5587 second_vect, second_vect,
5588 perm2_mask2);
5589 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5590 vect[1] = data_ref;
5592 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5593 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5594 vect[0], vect[1], shift1_mask);
5595 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5596 (*result_chain)[j/2 + length/2] = data_ref;
5598 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5599 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5600 vect[0], vect[1], select_mask);
5601 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5602 (*result_chain)[j/2] = data_ref;
5604 memcpy (dr_chain.address (), result_chain->address (),
5605 length * sizeof (tree));
5607 return true;
5609 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5611 unsigned int k = 0, l = 0;
5613 /* Generating permutation constant to get all elements in rigth order.
5614 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5615 for (i = 0; i < nelt; i++)
5617 if (3 * k + (l % 3) >= nelt)
5619 k = 0;
5620 l += (3 - (nelt % 3));
5622 sel[i] = 3 * k + (l % 3);
5623 k++;
5625 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5627 if (dump_enabled_p ())
5628 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5629 "shuffle of 3 fields structure is not \
5630 supported by target\n");
5631 return false;
5633 perm3_mask = vect_gen_perm_mask_checked (vectype, sel);
5635 /* Generating permutation constant to shift all elements.
5636 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5637 for (i = 0; i < nelt; i++)
5638 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5639 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5641 if (dump_enabled_p ())
5642 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5643 "shift permutation is not supported by target\n");
5644 return false;
5646 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5648 /* Generating permutation constant to shift all elements.
5649 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5650 for (i = 0; i < nelt; i++)
5651 sel[i] = 2 * (nelt / 3) + 1 + i;
5652 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5654 if (dump_enabled_p ())
5655 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5656 "shift permutation is not supported by target\n");
5657 return false;
5659 shift2_mask = vect_gen_perm_mask_checked (vectype, sel);
5661 /* Generating permutation constant to shift all elements.
5662 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5663 for (i = 0; i < nelt; i++)
5664 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5665 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5667 if (dump_enabled_p ())
5668 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5669 "shift permutation is not supported by target\n");
5670 return false;
5672 shift3_mask = vect_gen_perm_mask_checked (vectype, sel);
5674 /* Generating permutation constant to shift all elements.
5675 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5676 for (i = 0; i < nelt; i++)
5677 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5678 if (!can_vec_perm_p (TYPE_MODE (vectype), false, &sel))
5680 if (dump_enabled_p ())
5681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5682 "shift permutation is not supported by target\n");
5683 return false;
5685 shift4_mask = vect_gen_perm_mask_checked (vectype, sel);
5687 for (k = 0; k < 3; k++)
5689 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5690 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5691 dr_chain[k], dr_chain[k],
5692 perm3_mask);
5693 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5694 vect[k] = data_ref;
5697 for (k = 0; k < 3; k++)
5699 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5700 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5701 vect[k % 3], vect[(k + 1) % 3],
5702 shift1_mask);
5703 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5704 vect_shift[k] = data_ref;
5707 for (k = 0; k < 3; k++)
5709 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5710 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5711 vect_shift[(4 - k) % 3],
5712 vect_shift[(3 - k) % 3],
5713 shift2_mask);
5714 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5715 vect[k] = data_ref;
5718 (*result_chain)[3 - (nelt % 3)] = vect[2];
5720 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5721 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
5722 vect[0], shift3_mask);
5723 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5724 (*result_chain)[nelt % 3] = data_ref;
5726 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5727 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
5728 vect[1], shift4_mask);
5729 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5730 (*result_chain)[0] = data_ref;
5731 return true;
5733 return false;
5736 /* Function vect_transform_grouped_load.
5738 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5739 to perform their permutation and ascribe the result vectorized statements to
5740 the scalar statements.
5743 void
5744 vect_transform_grouped_load (gimple *stmt, vec<tree> dr_chain, int size,
5745 gimple_stmt_iterator *gsi)
5747 machine_mode mode;
5748 vec<tree> result_chain = vNULL;
5750 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5751 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5752 vectors, that are ready for vector computation. */
5753 result_chain.create (size);
5755 /* If reassociation width for vector type is 2 or greater target machine can
5756 execute 2 or more vector instructions in parallel. Otherwise try to
5757 get chain for loads group using vect_shift_permute_load_chain. */
5758 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5759 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5760 || pow2p_hwi (size)
5761 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5762 gsi, &result_chain))
5763 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5764 vect_record_grouped_load_vectors (stmt, result_chain);
5765 result_chain.release ();
5768 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5769 generated as part of the vectorization of STMT. Assign the statement
5770 for each vector to the associated scalar statement. */
5772 void
5773 vect_record_grouped_load_vectors (gimple *stmt, vec<tree> result_chain)
5775 gimple *first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5776 gimple *next_stmt, *new_stmt;
5777 unsigned int i, gap_count;
5778 tree tmp_data_ref;
5780 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5781 Since we scan the chain starting from it's first node, their order
5782 corresponds the order of data-refs in RESULT_CHAIN. */
5783 next_stmt = first_stmt;
5784 gap_count = 1;
5785 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5787 if (!next_stmt)
5788 break;
5790 /* Skip the gaps. Loads created for the gaps will be removed by dead
5791 code elimination pass later. No need to check for the first stmt in
5792 the group, since it always exists.
5793 GROUP_GAP is the number of steps in elements from the previous
5794 access (if there is no gap GROUP_GAP is 1). We skip loads that
5795 correspond to the gaps. */
5796 if (next_stmt != first_stmt
5797 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5799 gap_count++;
5800 continue;
5803 while (next_stmt)
5805 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5806 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5807 copies, and we put the new vector statement in the first available
5808 RELATED_STMT. */
5809 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5810 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5811 else
5813 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5815 gimple *prev_stmt =
5816 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5817 gimple *rel_stmt =
5818 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5819 while (rel_stmt)
5821 prev_stmt = rel_stmt;
5822 rel_stmt =
5823 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5826 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5827 new_stmt;
5831 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5832 gap_count = 1;
5833 /* If NEXT_STMT accesses the same DR as the previous statement,
5834 put the same TMP_DATA_REF as its vectorized statement; otherwise
5835 get the next data-ref from RESULT_CHAIN. */
5836 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5837 break;
5842 /* Function vect_force_dr_alignment_p.
5844 Returns whether the alignment of a DECL can be forced to be aligned
5845 on ALIGNMENT bit boundary. */
5847 bool
5848 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5850 if (!VAR_P (decl))
5851 return false;
5853 if (decl_in_symtab_p (decl)
5854 && !symtab_node::get (decl)->can_increase_alignment_p ())
5855 return false;
5857 if (TREE_STATIC (decl))
5858 return (alignment <= MAX_OFILE_ALIGNMENT);
5859 else
5860 return (alignment <= MAX_STACK_ALIGNMENT);
5864 /* Return whether the data reference DR is supported with respect to its
5865 alignment.
5866 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5867 it is aligned, i.e., check if it is possible to vectorize it with different
5868 alignment. */
5870 enum dr_alignment_support
5871 vect_supportable_dr_alignment (struct data_reference *dr,
5872 bool check_aligned_accesses)
5874 gimple *stmt = DR_STMT (dr);
5875 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5876 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5877 machine_mode mode = TYPE_MODE (vectype);
5878 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5879 struct loop *vect_loop = NULL;
5880 bool nested_in_vect_loop = false;
5882 if (aligned_access_p (dr) && !check_aligned_accesses)
5883 return dr_aligned;
5885 /* For now assume all conditional loads/stores support unaligned
5886 access without any special code. */
5887 if (is_gimple_call (stmt)
5888 && gimple_call_internal_p (stmt)
5889 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5890 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5891 return dr_unaligned_supported;
5893 if (loop_vinfo)
5895 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5896 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5899 /* Possibly unaligned access. */
5901 /* We can choose between using the implicit realignment scheme (generating
5902 a misaligned_move stmt) and the explicit realignment scheme (generating
5903 aligned loads with a REALIGN_LOAD). There are two variants to the
5904 explicit realignment scheme: optimized, and unoptimized.
5905 We can optimize the realignment only if the step between consecutive
5906 vector loads is equal to the vector size. Since the vector memory
5907 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5908 is guaranteed that the misalignment amount remains the same throughout the
5909 execution of the vectorized loop. Therefore, we can create the
5910 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5911 at the loop preheader.
5913 However, in the case of outer-loop vectorization, when vectorizing a
5914 memory access in the inner-loop nested within the LOOP that is now being
5915 vectorized, while it is guaranteed that the misalignment of the
5916 vectorized memory access will remain the same in different outer-loop
5917 iterations, it is *not* guaranteed that is will remain the same throughout
5918 the execution of the inner-loop. This is because the inner-loop advances
5919 with the original scalar step (and not in steps of VS). If the inner-loop
5920 step happens to be a multiple of VS, then the misalignment remains fixed
5921 and we can use the optimized realignment scheme. For example:
5923 for (i=0; i<N; i++)
5924 for (j=0; j<M; j++)
5925 s += a[i+j];
5927 When vectorizing the i-loop in the above example, the step between
5928 consecutive vector loads is 1, and so the misalignment does not remain
5929 fixed across the execution of the inner-loop, and the realignment cannot
5930 be optimized (as illustrated in the following pseudo vectorized loop):
5932 for (i=0; i<N; i+=4)
5933 for (j=0; j<M; j++){
5934 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5935 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5936 // (assuming that we start from an aligned address).
5939 We therefore have to use the unoptimized realignment scheme:
5941 for (i=0; i<N; i+=4)
5942 for (j=k; j<M; j+=4)
5943 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5944 // that the misalignment of the initial address is
5945 // 0).
5947 The loop can then be vectorized as follows:
5949 for (k=0; k<4; k++){
5950 rt = get_realignment_token (&vp[k]);
5951 for (i=0; i<N; i+=4){
5952 v1 = vp[i+k];
5953 for (j=k; j<M; j+=4){
5954 v2 = vp[i+j+VS-1];
5955 va = REALIGN_LOAD <v1,v2,rt>;
5956 vs += va;
5957 v1 = v2;
5960 } */
5962 if (DR_IS_READ (dr))
5964 bool is_packed = false;
5965 tree type = (TREE_TYPE (DR_REF (dr)));
5967 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5968 && (!targetm.vectorize.builtin_mask_for_load
5969 || targetm.vectorize.builtin_mask_for_load ()))
5971 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5973 /* If we are doing SLP then the accesses need not have the
5974 same alignment, instead it depends on the SLP group size. */
5975 if (loop_vinfo
5976 && STMT_SLP_TYPE (stmt_info)
5977 && (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5978 * GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)))
5979 % TYPE_VECTOR_SUBPARTS (vectype) != 0))
5981 else if (!loop_vinfo
5982 || (nested_in_vect_loop
5983 && (TREE_INT_CST_LOW (DR_STEP (dr))
5984 != GET_MODE_SIZE (TYPE_MODE (vectype)))))
5985 return dr_explicit_realign;
5986 else
5987 return dr_explicit_realign_optimized;
5989 if (!known_alignment_for_access_p (dr))
5990 is_packed = not_size_aligned (DR_REF (dr));
5992 if (targetm.vectorize.support_vector_misalignment
5993 (mode, type, DR_MISALIGNMENT (dr), is_packed))
5994 /* Can't software pipeline the loads, but can at least do them. */
5995 return dr_unaligned_supported;
5997 else
5999 bool is_packed = false;
6000 tree type = (TREE_TYPE (DR_REF (dr)));
6002 if (!known_alignment_for_access_p (dr))
6003 is_packed = not_size_aligned (DR_REF (dr));
6005 if (targetm.vectorize.support_vector_misalignment
6006 (mode, type, DR_MISALIGNMENT (dr), is_packed))
6007 return dr_unaligned_supported;
6010 /* Unsupported. */
6011 return dr_unaligned_unsupported;