PR rtl-optimization/82913
[official-gcc.git] / gcc / stor-layout.c
blob7730ac33e4f62673f021ee95610c2e5e2e2843cb
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
65 tree
66 variable_size (tree size)
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
83 return save_expr (size);
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
89 /* Return true if T is a self-referential component reference. */
91 static bool
92 self_referential_component_ref_p (tree t)
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 enum tree_code code = TREE_CODE (*tp);
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
117 *walk_subtrees = 0;
118 return NULL_TREE;
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 *walk_subtrees = 0;
126 return NULL_TREE;
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
147 return copy_tree_r (tp, walk_subtrees, data);
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
153 static tree
154 self_referential_size (tree size)
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 tree subst, param_name, param_type, param_decl;
186 if (DECL_P (ref))
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
208 size = substitute_in_expr (size, subst, param_decl);
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
215 self_refs.release ();
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
273 void
274 finalize_size_functions (void)
276 unsigned int i;
277 tree fndecl;
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
292 vec_free (size_functions);
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
300 opt_machine_mode
301 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
303 machine_mode mode;
304 int i;
306 if (limit && size > MAX_FIXED_MODE_SIZE)
307 return opt_machine_mode ();
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (GET_MODE_PRECISION (mode) == size)
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (int_n_data[i].bitsize == size
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return opt_machine_mode ();
323 /* Similar, except passed a tree node. */
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
343 machine_mode
344 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (GET_MODE_PRECISION (mode) >= size)
353 break;
355 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
356 for (i = 0; i < NUM_INT_N_ENTS; i ++)
357 if (int_n_data[i].bitsize >= size
358 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
359 && int_n_enabled_p[i])
360 mode = int_n_data[i].m;
362 if (mode == VOIDmode)
363 gcc_unreachable ();
365 return mode;
368 /* Return an integer mode of exactly the same size as MODE, if one exists. */
370 opt_scalar_int_mode
371 int_mode_for_mode (machine_mode mode)
373 switch (GET_MODE_CLASS (mode))
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 return as_a <scalar_int_mode> (mode);
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_VECTOR_INT:
384 case MODE_VECTOR_FLOAT:
385 case MODE_FRACT:
386 case MODE_ACCUM:
387 case MODE_UFRACT:
388 case MODE_UACCUM:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
396 case MODE_RANDOM:
397 if (mode == BLKmode)
398 return opt_scalar_int_mode ();
400 /* fall through */
402 case MODE_CC:
403 default:
404 gcc_unreachable ();
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409 if one exists. */
411 opt_machine_mode
412 bitwise_mode_for_mode (machine_mode mode)
414 /* Quick exit if we already have a suitable mode. */
415 unsigned int bitsize = GET_MODE_BITSIZE (mode);
416 scalar_int_mode int_mode;
417 if (is_a <scalar_int_mode> (mode, &int_mode)
418 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
419 return int_mode;
421 /* Reuse the sanity checks from int_mode_for_mode. */
422 gcc_checking_assert ((int_mode_for_mode (mode), true));
424 /* Try to replace complex modes with complex modes. In general we
425 expect both components to be processed independently, so we only
426 care whether there is a register for the inner mode. */
427 if (COMPLEX_MODE_P (mode))
429 machine_mode trial = mode;
430 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
431 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
432 && have_regs_of_mode[GET_MODE_INNER (trial)])
433 return trial;
436 /* Try to replace vector modes with vector modes. Also try using vector
437 modes if an integer mode would be too big. */
438 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
440 machine_mode trial = mode;
441 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
442 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
443 && have_regs_of_mode[trial]
444 && targetm.vector_mode_supported_p (trial))
445 return trial;
448 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
449 return mode_for_size (bitsize, MODE_INT, true);
452 /* Find a type that can be used for efficient bitwise operations on MODE.
453 Return null if no such mode exists. */
455 tree
456 bitwise_type_for_mode (machine_mode mode)
458 if (!bitwise_mode_for_mode (mode).exists (&mode))
459 return NULL_TREE;
461 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
462 tree inner_type = build_nonstandard_integer_type (inner_size, true);
464 if (VECTOR_MODE_P (mode))
465 return build_vector_type_for_mode (inner_type, mode);
467 if (COMPLEX_MODE_P (mode))
468 return build_complex_type (inner_type);
470 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
471 return inner_type;
474 /* Find a mode that is suitable for representing a vector with NUNITS
475 elements of mode INNERMODE, if one exists. The returned mode can be
476 either an integer mode or a vector mode. */
478 opt_machine_mode
479 mode_for_vector (scalar_mode innermode, unsigned nunits)
481 machine_mode mode;
483 /* First, look for a supported vector type. */
484 if (SCALAR_FLOAT_MODE_P (innermode))
485 mode = MIN_MODE_VECTOR_FLOAT;
486 else if (SCALAR_FRACT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FRACT;
488 else if (SCALAR_UFRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_UFRACT;
490 else if (SCALAR_ACCUM_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_ACCUM;
492 else if (SCALAR_UACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_UACCUM;
494 else
495 mode = MIN_MODE_VECTOR_INT;
497 /* Do not check vector_mode_supported_p here. We'll do that
498 later in vector_type_mode. */
499 FOR_EACH_MODE_FROM (mode, mode)
500 if (GET_MODE_NUNITS (mode) == nunits
501 && GET_MODE_INNER (mode) == innermode)
502 return mode;
504 /* For integers, try mapping it to a same-sized scalar mode. */
505 if (GET_MODE_CLASS (innermode) == MODE_INT)
507 unsigned int nbits = nunits * GET_MODE_BITSIZE (innermode);
508 if (int_mode_for_size (nbits, 0).exists (&mode)
509 && have_regs_of_mode[mode])
510 return mode;
513 return opt_machine_mode ();
516 /* Return the mode for a vector that has NUNITS integer elements of
517 INT_BITS bits each, if such a mode exists. The mode can be either
518 an integer mode or a vector mode. */
520 opt_machine_mode
521 mode_for_int_vector (unsigned int int_bits, unsigned int nunits)
523 scalar_int_mode int_mode;
524 machine_mode vec_mode;
525 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
526 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
527 return vec_mode;
528 return opt_machine_mode ();
531 /* Return the alignment of MODE. This will be bounded by 1 and
532 BIGGEST_ALIGNMENT. */
534 unsigned int
535 get_mode_alignment (machine_mode mode)
537 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
540 /* Return the natural mode of an array, given that it is SIZE bytes in
541 total and has elements of type ELEM_TYPE. */
543 static machine_mode
544 mode_for_array (tree elem_type, tree size)
546 tree elem_size;
547 unsigned HOST_WIDE_INT int_size, int_elem_size;
548 bool limit_p;
550 /* One-element arrays get the component type's mode. */
551 elem_size = TYPE_SIZE (elem_type);
552 if (simple_cst_equal (size, elem_size))
553 return TYPE_MODE (elem_type);
555 limit_p = true;
556 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
558 int_size = tree_to_uhwi (size);
559 int_elem_size = tree_to_uhwi (elem_size);
560 if (int_elem_size > 0
561 && int_size % int_elem_size == 0
562 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
563 int_size / int_elem_size))
564 limit_p = false;
566 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
569 /* Subroutine of layout_decl: Force alignment required for the data type.
570 But if the decl itself wants greater alignment, don't override that. */
572 static inline void
573 do_type_align (tree type, tree decl)
575 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
577 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
578 if (TREE_CODE (decl) == FIELD_DECL)
579 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
581 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
582 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
585 /* Set the size, mode and alignment of a ..._DECL node.
586 TYPE_DECL does need this for C++.
587 Note that LABEL_DECL and CONST_DECL nodes do not need this,
588 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
589 Don't call layout_decl for them.
591 KNOWN_ALIGN is the amount of alignment we can assume this
592 decl has with no special effort. It is relevant only for FIELD_DECLs
593 and depends on the previous fields.
594 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
595 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
596 the record will be aligned to suit. */
598 void
599 layout_decl (tree decl, unsigned int known_align)
601 tree type = TREE_TYPE (decl);
602 enum tree_code code = TREE_CODE (decl);
603 rtx rtl = NULL_RTX;
604 location_t loc = DECL_SOURCE_LOCATION (decl);
606 if (code == CONST_DECL)
607 return;
609 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
610 || code == TYPE_DECL || code == FIELD_DECL);
612 rtl = DECL_RTL_IF_SET (decl);
614 if (type == error_mark_node)
615 type = void_type_node;
617 /* Usually the size and mode come from the data type without change,
618 however, the front-end may set the explicit width of the field, so its
619 size may not be the same as the size of its type. This happens with
620 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
621 also happens with other fields. For example, the C++ front-end creates
622 zero-sized fields corresponding to empty base classes, and depends on
623 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
624 size in bytes from the size in bits. If we have already set the mode,
625 don't set it again since we can be called twice for FIELD_DECLs. */
627 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
628 if (DECL_MODE (decl) == VOIDmode)
629 SET_DECL_MODE (decl, TYPE_MODE (type));
631 if (DECL_SIZE (decl) == 0)
633 DECL_SIZE (decl) = TYPE_SIZE (type);
634 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
636 else if (DECL_SIZE_UNIT (decl) == 0)
637 DECL_SIZE_UNIT (decl)
638 = fold_convert_loc (loc, sizetype,
639 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
640 bitsize_unit_node));
642 if (code != FIELD_DECL)
643 /* For non-fields, update the alignment from the type. */
644 do_type_align (type, decl);
645 else
646 /* For fields, it's a bit more complicated... */
648 bool old_user_align = DECL_USER_ALIGN (decl);
649 bool zero_bitfield = false;
650 bool packed_p = DECL_PACKED (decl);
651 unsigned int mfa;
653 if (DECL_BIT_FIELD (decl))
655 DECL_BIT_FIELD_TYPE (decl) = type;
657 /* A zero-length bit-field affects the alignment of the next
658 field. In essence such bit-fields are not influenced by
659 any packing due to #pragma pack or attribute packed. */
660 if (integer_zerop (DECL_SIZE (decl))
661 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
663 zero_bitfield = true;
664 packed_p = false;
665 if (PCC_BITFIELD_TYPE_MATTERS)
666 do_type_align (type, decl);
667 else
669 #ifdef EMPTY_FIELD_BOUNDARY
670 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
672 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
673 DECL_USER_ALIGN (decl) = 0;
675 #endif
679 /* See if we can use an ordinary integer mode for a bit-field.
680 Conditions are: a fixed size that is correct for another mode,
681 occupying a complete byte or bytes on proper boundary. */
682 if (TYPE_SIZE (type) != 0
683 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
684 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
686 machine_mode xmode;
687 if (mode_for_size_tree (DECL_SIZE (decl),
688 MODE_INT, 1).exists (&xmode))
690 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
691 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
692 && (known_align == 0 || known_align >= xalign))
694 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
695 SET_DECL_MODE (decl, xmode);
696 DECL_BIT_FIELD (decl) = 0;
701 /* Turn off DECL_BIT_FIELD if we won't need it set. */
702 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
703 && known_align >= TYPE_ALIGN (type)
704 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
705 DECL_BIT_FIELD (decl) = 0;
707 else if (packed_p && DECL_USER_ALIGN (decl))
708 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
709 round up; we'll reduce it again below. We want packing to
710 supersede USER_ALIGN inherited from the type, but defer to
711 alignment explicitly specified on the field decl. */;
712 else
713 do_type_align (type, decl);
715 /* If the field is packed and not explicitly aligned, give it the
716 minimum alignment. Note that do_type_align may set
717 DECL_USER_ALIGN, so we need to check old_user_align instead. */
718 if (packed_p
719 && !old_user_align)
720 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
722 if (! packed_p && ! DECL_USER_ALIGN (decl))
724 /* Some targets (i.e. i386, VMS) limit struct field alignment
725 to a lower boundary than alignment of variables unless
726 it was overridden by attribute aligned. */
727 #ifdef BIGGEST_FIELD_ALIGNMENT
728 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
729 (unsigned) BIGGEST_FIELD_ALIGNMENT));
730 #endif
731 #ifdef ADJUST_FIELD_ALIGN
732 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
733 DECL_ALIGN (decl)));
734 #endif
737 if (zero_bitfield)
738 mfa = initial_max_fld_align * BITS_PER_UNIT;
739 else
740 mfa = maximum_field_alignment;
741 /* Should this be controlled by DECL_USER_ALIGN, too? */
742 if (mfa != 0)
743 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
746 /* Evaluate nonconstant size only once, either now or as soon as safe. */
747 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
748 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
749 if (DECL_SIZE_UNIT (decl) != 0
750 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
751 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
753 /* If requested, warn about definitions of large data objects. */
754 if (warn_larger_than
755 && (code == VAR_DECL || code == PARM_DECL)
756 && ! DECL_EXTERNAL (decl))
758 tree size = DECL_SIZE_UNIT (decl);
760 if (size != 0 && TREE_CODE (size) == INTEGER_CST
761 && compare_tree_int (size, larger_than_size) > 0)
763 int size_as_int = TREE_INT_CST_LOW (size);
765 if (compare_tree_int (size, size_as_int) == 0)
766 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
767 else
768 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
769 decl, larger_than_size);
773 /* If the RTL was already set, update its mode and mem attributes. */
774 if (rtl)
776 PUT_MODE (rtl, DECL_MODE (decl));
777 SET_DECL_RTL (decl, 0);
778 if (MEM_P (rtl))
779 set_mem_attributes (rtl, decl, 1);
780 SET_DECL_RTL (decl, rtl);
784 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
785 results of a previous call to layout_decl and calls it again. */
787 void
788 relayout_decl (tree decl)
790 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
791 SET_DECL_MODE (decl, VOIDmode);
792 if (!DECL_USER_ALIGN (decl))
793 SET_DECL_ALIGN (decl, 0);
794 if (DECL_RTL_SET_P (decl))
795 SET_DECL_RTL (decl, 0);
797 layout_decl (decl, 0);
800 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
801 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
802 is to be passed to all other layout functions for this record. It is the
803 responsibility of the caller to call `free' for the storage returned.
804 Note that garbage collection is not permitted until we finish laying
805 out the record. */
807 record_layout_info
808 start_record_layout (tree t)
810 record_layout_info rli = XNEW (struct record_layout_info_s);
812 rli->t = t;
814 /* If the type has a minimum specified alignment (via an attribute
815 declaration, for example) use it -- otherwise, start with a
816 one-byte alignment. */
817 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
818 rli->unpacked_align = rli->record_align;
819 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
821 #ifdef STRUCTURE_SIZE_BOUNDARY
822 /* Packed structures don't need to have minimum size. */
823 if (! TYPE_PACKED (t))
825 unsigned tmp;
827 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
828 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
829 if (maximum_field_alignment != 0)
830 tmp = MIN (tmp, maximum_field_alignment);
831 rli->record_align = MAX (rli->record_align, tmp);
833 #endif
835 rli->offset = size_zero_node;
836 rli->bitpos = bitsize_zero_node;
837 rli->prev_field = 0;
838 rli->pending_statics = 0;
839 rli->packed_maybe_necessary = 0;
840 rli->remaining_in_alignment = 0;
842 return rli;
845 /* Return the combined bit position for the byte offset OFFSET and the
846 bit position BITPOS.
848 These functions operate on byte and bit positions present in FIELD_DECLs
849 and assume that these expressions result in no (intermediate) overflow.
850 This assumption is necessary to fold the expressions as much as possible,
851 so as to avoid creating artificially variable-sized types in languages
852 supporting variable-sized types like Ada. */
854 tree
855 bit_from_pos (tree offset, tree bitpos)
857 return size_binop (PLUS_EXPR, bitpos,
858 size_binop (MULT_EXPR,
859 fold_convert (bitsizetype, offset),
860 bitsize_unit_node));
863 /* Return the combined truncated byte position for the byte offset OFFSET and
864 the bit position BITPOS. */
866 tree
867 byte_from_pos (tree offset, tree bitpos)
869 tree bytepos;
870 if (TREE_CODE (bitpos) == MULT_EXPR
871 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
872 bytepos = TREE_OPERAND (bitpos, 0);
873 else
874 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
875 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
878 /* Split the bit position POS into a byte offset *POFFSET and a bit
879 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
881 void
882 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
883 tree pos)
885 tree toff_align = bitsize_int (off_align);
886 if (TREE_CODE (pos) == MULT_EXPR
887 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
889 *poffset = size_binop (MULT_EXPR,
890 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
891 size_int (off_align / BITS_PER_UNIT));
892 *pbitpos = bitsize_zero_node;
894 else
896 *poffset = size_binop (MULT_EXPR,
897 fold_convert (sizetype,
898 size_binop (FLOOR_DIV_EXPR, pos,
899 toff_align)),
900 size_int (off_align / BITS_PER_UNIT));
901 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
905 /* Given a pointer to bit and byte offsets and an offset alignment,
906 normalize the offsets so they are within the alignment. */
908 void
909 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
911 /* If the bit position is now larger than it should be, adjust it
912 downwards. */
913 if (compare_tree_int (*pbitpos, off_align) >= 0)
915 tree offset, bitpos;
916 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
917 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
918 *pbitpos = bitpos;
922 /* Print debugging information about the information in RLI. */
924 DEBUG_FUNCTION void
925 debug_rli (record_layout_info rli)
927 print_node_brief (stderr, "type", rli->t, 0);
928 print_node_brief (stderr, "\noffset", rli->offset, 0);
929 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
931 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
932 rli->record_align, rli->unpacked_align,
933 rli->offset_align);
935 /* The ms_struct code is the only that uses this. */
936 if (targetm.ms_bitfield_layout_p (rli->t))
937 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
939 if (rli->packed_maybe_necessary)
940 fprintf (stderr, "packed may be necessary\n");
942 if (!vec_safe_is_empty (rli->pending_statics))
944 fprintf (stderr, "pending statics:\n");
945 debug_vec_tree (rli->pending_statics);
949 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
950 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
952 void
953 normalize_rli (record_layout_info rli)
955 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
958 /* Returns the size in bytes allocated so far. */
960 tree
961 rli_size_unit_so_far (record_layout_info rli)
963 return byte_from_pos (rli->offset, rli->bitpos);
966 /* Returns the size in bits allocated so far. */
968 tree
969 rli_size_so_far (record_layout_info rli)
971 return bit_from_pos (rli->offset, rli->bitpos);
974 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
975 the next available location within the record is given by KNOWN_ALIGN.
976 Update the variable alignment fields in RLI, and return the alignment
977 to give the FIELD. */
979 unsigned int
980 update_alignment_for_field (record_layout_info rli, tree field,
981 unsigned int known_align)
983 /* The alignment required for FIELD. */
984 unsigned int desired_align;
985 /* The type of this field. */
986 tree type = TREE_TYPE (field);
987 /* True if the field was explicitly aligned by the user. */
988 bool user_align;
989 bool is_bitfield;
991 /* Do not attempt to align an ERROR_MARK node */
992 if (TREE_CODE (type) == ERROR_MARK)
993 return 0;
995 /* Lay out the field so we know what alignment it needs. */
996 layout_decl (field, known_align);
997 desired_align = DECL_ALIGN (field);
998 user_align = DECL_USER_ALIGN (field);
1000 is_bitfield = (type != error_mark_node
1001 && DECL_BIT_FIELD_TYPE (field)
1002 && ! integer_zerop (TYPE_SIZE (type)));
1004 /* Record must have at least as much alignment as any field.
1005 Otherwise, the alignment of the field within the record is
1006 meaningless. */
1007 if (targetm.ms_bitfield_layout_p (rli->t))
1009 /* Here, the alignment of the underlying type of a bitfield can
1010 affect the alignment of a record; even a zero-sized field
1011 can do this. The alignment should be to the alignment of
1012 the type, except that for zero-size bitfields this only
1013 applies if there was an immediately prior, nonzero-size
1014 bitfield. (That's the way it is, experimentally.) */
1015 if ((!is_bitfield && !DECL_PACKED (field))
1016 || ((DECL_SIZE (field) == NULL_TREE
1017 || !integer_zerop (DECL_SIZE (field)))
1018 ? !DECL_PACKED (field)
1019 : (rli->prev_field
1020 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1021 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1023 unsigned int type_align = TYPE_ALIGN (type);
1024 type_align = MAX (type_align, desired_align);
1025 if (maximum_field_alignment != 0)
1026 type_align = MIN (type_align, maximum_field_alignment);
1027 rli->record_align = MAX (rli->record_align, type_align);
1028 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1031 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1033 /* Named bit-fields cause the entire structure to have the
1034 alignment implied by their type. Some targets also apply the same
1035 rules to unnamed bitfields. */
1036 if (DECL_NAME (field) != 0
1037 || targetm.align_anon_bitfield ())
1039 unsigned int type_align = TYPE_ALIGN (type);
1041 #ifdef ADJUST_FIELD_ALIGN
1042 if (! TYPE_USER_ALIGN (type))
1043 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1044 #endif
1046 /* Targets might chose to handle unnamed and hence possibly
1047 zero-width bitfield. Those are not influenced by #pragmas
1048 or packed attributes. */
1049 if (integer_zerop (DECL_SIZE (field)))
1051 if (initial_max_fld_align)
1052 type_align = MIN (type_align,
1053 initial_max_fld_align * BITS_PER_UNIT);
1055 else if (maximum_field_alignment != 0)
1056 type_align = MIN (type_align, maximum_field_alignment);
1057 else if (DECL_PACKED (field))
1058 type_align = MIN (type_align, BITS_PER_UNIT);
1060 /* The alignment of the record is increased to the maximum
1061 of the current alignment, the alignment indicated on the
1062 field (i.e., the alignment specified by an __aligned__
1063 attribute), and the alignment indicated by the type of
1064 the field. */
1065 rli->record_align = MAX (rli->record_align, desired_align);
1066 rli->record_align = MAX (rli->record_align, type_align);
1068 if (warn_packed)
1069 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1070 user_align |= TYPE_USER_ALIGN (type);
1073 else
1075 rli->record_align = MAX (rli->record_align, desired_align);
1076 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1079 TYPE_USER_ALIGN (rli->t) |= user_align;
1081 return desired_align;
1084 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1085 the field alignment of FIELD or FIELD isn't aligned. */
1087 static void
1088 handle_warn_if_not_align (tree field, unsigned int record_align)
1090 tree type = TREE_TYPE (field);
1092 if (type == error_mark_node)
1093 return;
1095 unsigned int warn_if_not_align = 0;
1097 int opt_w = 0;
1099 if (warn_if_not_aligned)
1101 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1102 if (!warn_if_not_align)
1103 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1104 if (warn_if_not_align)
1105 opt_w = OPT_Wif_not_aligned;
1108 if (!warn_if_not_align
1109 && warn_packed_not_aligned
1110 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1112 warn_if_not_align = TYPE_ALIGN (type);
1113 opt_w = OPT_Wpacked_not_aligned;
1116 if (!warn_if_not_align)
1117 return;
1119 tree context = DECL_CONTEXT (field);
1121 warn_if_not_align /= BITS_PER_UNIT;
1122 record_align /= BITS_PER_UNIT;
1123 if ((record_align % warn_if_not_align) != 0)
1124 warning (opt_w, "alignment %u of %qT is less than %u",
1125 record_align, context, warn_if_not_align);
1127 unsigned HOST_WIDE_INT off
1128 = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1129 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) / BITS_PER_UNIT);
1130 if ((off % warn_if_not_align) != 0)
1131 warning (opt_w, "%q+D offset %wu in %qT isn't aligned to %u",
1132 field, off, context, warn_if_not_align);
1135 /* Called from place_field to handle unions. */
1137 static void
1138 place_union_field (record_layout_info rli, tree field)
1140 update_alignment_for_field (rli, field, /*known_align=*/0);
1142 DECL_FIELD_OFFSET (field) = size_zero_node;
1143 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1144 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1145 handle_warn_if_not_align (field, rli->record_align);
1147 /* If this is an ERROR_MARK return *after* having set the
1148 field at the start of the union. This helps when parsing
1149 invalid fields. */
1150 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1151 return;
1153 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1154 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1155 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1157 /* We assume the union's size will be a multiple of a byte so we don't
1158 bother with BITPOS. */
1159 if (TREE_CODE (rli->t) == UNION_TYPE)
1160 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1161 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1162 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1163 DECL_SIZE_UNIT (field), rli->offset);
1166 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1167 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1168 units of alignment than the underlying TYPE. */
1169 static int
1170 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1171 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1173 /* Note that the calculation of OFFSET might overflow; we calculate it so
1174 that we still get the right result as long as ALIGN is a power of two. */
1175 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1177 offset = offset % align;
1178 return ((offset + size + align - 1) / align
1179 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1182 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1183 is a FIELD_DECL to be added after those fields already present in
1184 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1185 callers that desire that behavior must manually perform that step.) */
1187 void
1188 place_field (record_layout_info rli, tree field)
1190 /* The alignment required for FIELD. */
1191 unsigned int desired_align;
1192 /* The alignment FIELD would have if we just dropped it into the
1193 record as it presently stands. */
1194 unsigned int known_align;
1195 unsigned int actual_align;
1196 /* The type of this field. */
1197 tree type = TREE_TYPE (field);
1199 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1201 /* If FIELD is static, then treat it like a separate variable, not
1202 really like a structure field. If it is a FUNCTION_DECL, it's a
1203 method. In both cases, all we do is lay out the decl, and we do
1204 it *after* the record is laid out. */
1205 if (VAR_P (field))
1207 vec_safe_push (rli->pending_statics, field);
1208 return;
1211 /* Enumerators and enum types which are local to this class need not
1212 be laid out. Likewise for initialized constant fields. */
1213 else if (TREE_CODE (field) != FIELD_DECL)
1214 return;
1216 /* Unions are laid out very differently than records, so split
1217 that code off to another function. */
1218 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1220 place_union_field (rli, field);
1221 return;
1224 else if (TREE_CODE (type) == ERROR_MARK)
1226 /* Place this field at the current allocation position, so we
1227 maintain monotonicity. */
1228 DECL_FIELD_OFFSET (field) = rli->offset;
1229 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1230 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1231 handle_warn_if_not_align (field, rli->record_align);
1232 return;
1235 if (AGGREGATE_TYPE_P (type)
1236 && TYPE_TYPELESS_STORAGE (type))
1237 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1239 /* Work out the known alignment so far. Note that A & (-A) is the
1240 value of the least-significant bit in A that is one. */
1241 if (! integer_zerop (rli->bitpos))
1242 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1243 else if (integer_zerop (rli->offset))
1244 known_align = 0;
1245 else if (tree_fits_uhwi_p (rli->offset))
1246 known_align = (BITS_PER_UNIT
1247 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1248 else
1249 known_align = rli->offset_align;
1251 desired_align = update_alignment_for_field (rli, field, known_align);
1252 if (known_align == 0)
1253 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1255 if (warn_packed && DECL_PACKED (field))
1257 if (known_align >= TYPE_ALIGN (type))
1259 if (TYPE_ALIGN (type) > desired_align)
1261 if (STRICT_ALIGNMENT)
1262 warning (OPT_Wattributes, "packed attribute causes "
1263 "inefficient alignment for %q+D", field);
1264 /* Don't warn if DECL_PACKED was set by the type. */
1265 else if (!TYPE_PACKED (rli->t))
1266 warning (OPT_Wattributes, "packed attribute is "
1267 "unnecessary for %q+D", field);
1270 else
1271 rli->packed_maybe_necessary = 1;
1274 /* Does this field automatically have alignment it needs by virtue
1275 of the fields that precede it and the record's own alignment? */
1276 if (known_align < desired_align)
1278 /* No, we need to skip space before this field.
1279 Bump the cumulative size to multiple of field alignment. */
1281 if (!targetm.ms_bitfield_layout_p (rli->t)
1282 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1283 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1285 /* If the alignment is still within offset_align, just align
1286 the bit position. */
1287 if (desired_align < rli->offset_align)
1288 rli->bitpos = round_up (rli->bitpos, desired_align);
1289 else
1291 /* First adjust OFFSET by the partial bits, then align. */
1292 rli->offset
1293 = size_binop (PLUS_EXPR, rli->offset,
1294 fold_convert (sizetype,
1295 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1296 bitsize_unit_node)));
1297 rli->bitpos = bitsize_zero_node;
1299 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1302 if (! TREE_CONSTANT (rli->offset))
1303 rli->offset_align = desired_align;
1304 if (targetm.ms_bitfield_layout_p (rli->t))
1305 rli->prev_field = NULL;
1308 /* Handle compatibility with PCC. Note that if the record has any
1309 variable-sized fields, we need not worry about compatibility. */
1310 if (PCC_BITFIELD_TYPE_MATTERS
1311 && ! targetm.ms_bitfield_layout_p (rli->t)
1312 && TREE_CODE (field) == FIELD_DECL
1313 && type != error_mark_node
1314 && DECL_BIT_FIELD (field)
1315 && (! DECL_PACKED (field)
1316 /* Enter for these packed fields only to issue a warning. */
1317 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1318 && maximum_field_alignment == 0
1319 && ! integer_zerop (DECL_SIZE (field))
1320 && tree_fits_uhwi_p (DECL_SIZE (field))
1321 && tree_fits_uhwi_p (rli->offset)
1322 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1324 unsigned int type_align = TYPE_ALIGN (type);
1325 tree dsize = DECL_SIZE (field);
1326 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1327 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1328 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1330 #ifdef ADJUST_FIELD_ALIGN
1331 if (! TYPE_USER_ALIGN (type))
1332 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1333 #endif
1335 /* A bit field may not span more units of alignment of its type
1336 than its type itself. Advance to next boundary if necessary. */
1337 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1339 if (DECL_PACKED (field))
1341 if (warn_packed_bitfield_compat == 1)
1342 inform
1343 (input_location,
1344 "offset of packed bit-field %qD has changed in GCC 4.4",
1345 field);
1347 else
1348 rli->bitpos = round_up (rli->bitpos, type_align);
1351 if (! DECL_PACKED (field))
1352 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1354 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1355 TYPE_WARN_IF_NOT_ALIGN (type));
1358 #ifdef BITFIELD_NBYTES_LIMITED
1359 if (BITFIELD_NBYTES_LIMITED
1360 && ! targetm.ms_bitfield_layout_p (rli->t)
1361 && TREE_CODE (field) == FIELD_DECL
1362 && type != error_mark_node
1363 && DECL_BIT_FIELD_TYPE (field)
1364 && ! DECL_PACKED (field)
1365 && ! integer_zerop (DECL_SIZE (field))
1366 && tree_fits_uhwi_p (DECL_SIZE (field))
1367 && tree_fits_uhwi_p (rli->offset)
1368 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1370 unsigned int type_align = TYPE_ALIGN (type);
1371 tree dsize = DECL_SIZE (field);
1372 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1373 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1374 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1376 #ifdef ADJUST_FIELD_ALIGN
1377 if (! TYPE_USER_ALIGN (type))
1378 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1379 #endif
1381 if (maximum_field_alignment != 0)
1382 type_align = MIN (type_align, maximum_field_alignment);
1383 /* ??? This test is opposite the test in the containing if
1384 statement, so this code is unreachable currently. */
1385 else if (DECL_PACKED (field))
1386 type_align = MIN (type_align, BITS_PER_UNIT);
1388 /* A bit field may not span the unit of alignment of its type.
1389 Advance to next boundary if necessary. */
1390 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1391 rli->bitpos = round_up (rli->bitpos, type_align);
1393 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1394 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1395 TYPE_WARN_IF_NOT_ALIGN (type));
1397 #endif
1399 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1400 A subtlety:
1401 When a bit field is inserted into a packed record, the whole
1402 size of the underlying type is used by one or more same-size
1403 adjacent bitfields. (That is, if its long:3, 32 bits is
1404 used in the record, and any additional adjacent long bitfields are
1405 packed into the same chunk of 32 bits. However, if the size
1406 changes, a new field of that size is allocated.) In an unpacked
1407 record, this is the same as using alignment, but not equivalent
1408 when packing.
1410 Note: for compatibility, we use the type size, not the type alignment
1411 to determine alignment, since that matches the documentation */
1413 if (targetm.ms_bitfield_layout_p (rli->t))
1415 tree prev_saved = rli->prev_field;
1416 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1418 /* This is a bitfield if it exists. */
1419 if (rli->prev_field)
1421 /* If both are bitfields, nonzero, and the same size, this is
1422 the middle of a run. Zero declared size fields are special
1423 and handled as "end of run". (Note: it's nonzero declared
1424 size, but equal type sizes!) (Since we know that both
1425 the current and previous fields are bitfields by the
1426 time we check it, DECL_SIZE must be present for both.) */
1427 if (DECL_BIT_FIELD_TYPE (field)
1428 && !integer_zerop (DECL_SIZE (field))
1429 && !integer_zerop (DECL_SIZE (rli->prev_field))
1430 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1431 && tree_fits_uhwi_p (TYPE_SIZE (type))
1432 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1434 /* We're in the middle of a run of equal type size fields; make
1435 sure we realign if we run out of bits. (Not decl size,
1436 type size!) */
1437 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1439 if (rli->remaining_in_alignment < bitsize)
1441 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1443 /* out of bits; bump up to next 'word'. */
1444 rli->bitpos
1445 = size_binop (PLUS_EXPR, rli->bitpos,
1446 bitsize_int (rli->remaining_in_alignment));
1447 rli->prev_field = field;
1448 if (typesize < bitsize)
1449 rli->remaining_in_alignment = 0;
1450 else
1451 rli->remaining_in_alignment = typesize - bitsize;
1453 else
1454 rli->remaining_in_alignment -= bitsize;
1456 else
1458 /* End of a run: if leaving a run of bitfields of the same type
1459 size, we have to "use up" the rest of the bits of the type
1460 size.
1462 Compute the new position as the sum of the size for the prior
1463 type and where we first started working on that type.
1464 Note: since the beginning of the field was aligned then
1465 of course the end will be too. No round needed. */
1467 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1469 rli->bitpos
1470 = size_binop (PLUS_EXPR, rli->bitpos,
1471 bitsize_int (rli->remaining_in_alignment));
1473 else
1474 /* We "use up" size zero fields; the code below should behave
1475 as if the prior field was not a bitfield. */
1476 prev_saved = NULL;
1478 /* Cause a new bitfield to be captured, either this time (if
1479 currently a bitfield) or next time we see one. */
1480 if (!DECL_BIT_FIELD_TYPE (field)
1481 || integer_zerop (DECL_SIZE (field)))
1482 rli->prev_field = NULL;
1485 normalize_rli (rli);
1488 /* If we're starting a new run of same type size bitfields
1489 (or a run of non-bitfields), set up the "first of the run"
1490 fields.
1492 That is, if the current field is not a bitfield, or if there
1493 was a prior bitfield the type sizes differ, or if there wasn't
1494 a prior bitfield the size of the current field is nonzero.
1496 Note: we must be sure to test ONLY the type size if there was
1497 a prior bitfield and ONLY for the current field being zero if
1498 there wasn't. */
1500 if (!DECL_BIT_FIELD_TYPE (field)
1501 || (prev_saved != NULL
1502 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1503 : !integer_zerop (DECL_SIZE (field)) ))
1505 /* Never smaller than a byte for compatibility. */
1506 unsigned int type_align = BITS_PER_UNIT;
1508 /* (When not a bitfield), we could be seeing a flex array (with
1509 no DECL_SIZE). Since we won't be using remaining_in_alignment
1510 until we see a bitfield (and come by here again) we just skip
1511 calculating it. */
1512 if (DECL_SIZE (field) != NULL
1513 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1514 && tree_fits_uhwi_p (DECL_SIZE (field)))
1516 unsigned HOST_WIDE_INT bitsize
1517 = tree_to_uhwi (DECL_SIZE (field));
1518 unsigned HOST_WIDE_INT typesize
1519 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1521 if (typesize < bitsize)
1522 rli->remaining_in_alignment = 0;
1523 else
1524 rli->remaining_in_alignment = typesize - bitsize;
1527 /* Now align (conventionally) for the new type. */
1528 type_align = TYPE_ALIGN (TREE_TYPE (field));
1530 if (maximum_field_alignment != 0)
1531 type_align = MIN (type_align, maximum_field_alignment);
1533 rli->bitpos = round_up (rli->bitpos, type_align);
1535 /* If we really aligned, don't allow subsequent bitfields
1536 to undo that. */
1537 rli->prev_field = NULL;
1541 /* Offset so far becomes the position of this field after normalizing. */
1542 normalize_rli (rli);
1543 DECL_FIELD_OFFSET (field) = rli->offset;
1544 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1545 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1546 handle_warn_if_not_align (field, rli->record_align);
1548 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1549 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1550 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1552 /* If this field ended up more aligned than we thought it would be (we
1553 approximate this by seeing if its position changed), lay out the field
1554 again; perhaps we can use an integral mode for it now. */
1555 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1556 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1557 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1558 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1559 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1560 actual_align = (BITS_PER_UNIT
1561 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1562 else
1563 actual_align = DECL_OFFSET_ALIGN (field);
1564 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1565 store / extract bit field operations will check the alignment of the
1566 record against the mode of bit fields. */
1568 if (known_align != actual_align)
1569 layout_decl (field, actual_align);
1571 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1572 rli->prev_field = field;
1574 /* Now add size of this field to the size of the record. If the size is
1575 not constant, treat the field as being a multiple of bytes and just
1576 adjust the offset, resetting the bit position. Otherwise, apportion the
1577 size amongst the bit position and offset. First handle the case of an
1578 unspecified size, which can happen when we have an invalid nested struct
1579 definition, such as struct j { struct j { int i; } }. The error message
1580 is printed in finish_struct. */
1581 if (DECL_SIZE (field) == 0)
1582 /* Do nothing. */;
1583 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1584 || TREE_OVERFLOW (DECL_SIZE (field)))
1586 rli->offset
1587 = size_binop (PLUS_EXPR, rli->offset,
1588 fold_convert (sizetype,
1589 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1590 bitsize_unit_node)));
1591 rli->offset
1592 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1593 rli->bitpos = bitsize_zero_node;
1594 rli->offset_align = MIN (rli->offset_align, desired_align);
1596 else if (targetm.ms_bitfield_layout_p (rli->t))
1598 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1600 /* If we ended a bitfield before the full length of the type then
1601 pad the struct out to the full length of the last type. */
1602 if ((DECL_CHAIN (field) == NULL
1603 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1604 && DECL_BIT_FIELD_TYPE (field)
1605 && !integer_zerop (DECL_SIZE (field)))
1606 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1607 bitsize_int (rli->remaining_in_alignment));
1609 normalize_rli (rli);
1611 else
1613 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1614 normalize_rli (rli);
1618 /* Assuming that all the fields have been laid out, this function uses
1619 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1620 indicated by RLI. */
1622 static void
1623 finalize_record_size (record_layout_info rli)
1625 tree unpadded_size, unpadded_size_unit;
1627 /* Now we want just byte and bit offsets, so set the offset alignment
1628 to be a byte and then normalize. */
1629 rli->offset_align = BITS_PER_UNIT;
1630 normalize_rli (rli);
1632 /* Determine the desired alignment. */
1633 #ifdef ROUND_TYPE_ALIGN
1634 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1635 rli->record_align));
1636 #else
1637 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1638 #endif
1640 /* Compute the size so far. Be sure to allow for extra bits in the
1641 size in bytes. We have guaranteed above that it will be no more
1642 than a single byte. */
1643 unpadded_size = rli_size_so_far (rli);
1644 unpadded_size_unit = rli_size_unit_so_far (rli);
1645 if (! integer_zerop (rli->bitpos))
1646 unpadded_size_unit
1647 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1649 /* Round the size up to be a multiple of the required alignment. */
1650 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1651 TYPE_SIZE_UNIT (rli->t)
1652 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1654 if (TREE_CONSTANT (unpadded_size)
1655 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1656 && input_location != BUILTINS_LOCATION)
1657 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1659 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1660 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1661 && TREE_CONSTANT (unpadded_size))
1663 tree unpacked_size;
1665 #ifdef ROUND_TYPE_ALIGN
1666 rli->unpacked_align
1667 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1668 #else
1669 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1670 #endif
1672 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1673 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1675 if (TYPE_NAME (rli->t))
1677 tree name;
1679 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1680 name = TYPE_NAME (rli->t);
1681 else
1682 name = DECL_NAME (TYPE_NAME (rli->t));
1684 if (STRICT_ALIGNMENT)
1685 warning (OPT_Wpacked, "packed attribute causes inefficient "
1686 "alignment for %qE", name);
1687 else
1688 warning (OPT_Wpacked,
1689 "packed attribute is unnecessary for %qE", name);
1691 else
1693 if (STRICT_ALIGNMENT)
1694 warning (OPT_Wpacked,
1695 "packed attribute causes inefficient alignment");
1696 else
1697 warning (OPT_Wpacked, "packed attribute is unnecessary");
1703 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1705 void
1706 compute_record_mode (tree type)
1708 tree field;
1709 machine_mode mode = VOIDmode;
1711 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1712 However, if possible, we use a mode that fits in a register
1713 instead, in order to allow for better optimization down the
1714 line. */
1715 SET_TYPE_MODE (type, BLKmode);
1717 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1718 return;
1720 /* A record which has any BLKmode members must itself be
1721 BLKmode; it can't go in a register. Unless the member is
1722 BLKmode only because it isn't aligned. */
1723 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1725 if (TREE_CODE (field) != FIELD_DECL)
1726 continue;
1728 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1729 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1730 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1731 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1732 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1733 || ! tree_fits_uhwi_p (bit_position (field))
1734 || DECL_SIZE (field) == 0
1735 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1736 return;
1738 /* If this field is the whole struct, remember its mode so
1739 that, say, we can put a double in a class into a DF
1740 register instead of forcing it to live in the stack. */
1741 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1742 mode = DECL_MODE (field);
1744 /* With some targets, it is sub-optimal to access an aligned
1745 BLKmode structure as a scalar. */
1746 if (targetm.member_type_forces_blk (field, mode))
1747 return;
1750 /* If we only have one real field; use its mode if that mode's size
1751 matches the type's size. This only applies to RECORD_TYPE. This
1752 does not apply to unions. */
1753 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1754 && tree_fits_uhwi_p (TYPE_SIZE (type))
1755 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1757 else
1758 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1760 /* If structure's known alignment is less than what the scalar
1761 mode would need, and it matters, then stick with BLKmode. */
1762 if (mode != BLKmode
1763 && STRICT_ALIGNMENT
1764 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1765 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1767 /* If this is the only reason this type is BLKmode, then
1768 don't force containing types to be BLKmode. */
1769 TYPE_NO_FORCE_BLK (type) = 1;
1770 mode = BLKmode;
1773 SET_TYPE_MODE (type, mode);
1776 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1777 out. */
1779 static void
1780 finalize_type_size (tree type)
1782 /* Normally, use the alignment corresponding to the mode chosen.
1783 However, where strict alignment is not required, avoid
1784 over-aligning structures, since most compilers do not do this
1785 alignment. */
1786 if (TYPE_MODE (type) != BLKmode
1787 && TYPE_MODE (type) != VOIDmode
1788 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1790 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1792 /* Don't override a larger alignment requirement coming from a user
1793 alignment of one of the fields. */
1794 if (mode_align >= TYPE_ALIGN (type))
1796 SET_TYPE_ALIGN (type, mode_align);
1797 TYPE_USER_ALIGN (type) = 0;
1801 /* Do machine-dependent extra alignment. */
1802 #ifdef ROUND_TYPE_ALIGN
1803 SET_TYPE_ALIGN (type,
1804 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1805 #endif
1807 /* If we failed to find a simple way to calculate the unit size
1808 of the type, find it by division. */
1809 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1810 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1811 result will fit in sizetype. We will get more efficient code using
1812 sizetype, so we force a conversion. */
1813 TYPE_SIZE_UNIT (type)
1814 = fold_convert (sizetype,
1815 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1816 bitsize_unit_node));
1818 if (TYPE_SIZE (type) != 0)
1820 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1821 TYPE_SIZE_UNIT (type)
1822 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1825 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1826 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1827 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1828 if (TYPE_SIZE_UNIT (type) != 0
1829 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1830 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1832 /* Also layout any other variants of the type. */
1833 if (TYPE_NEXT_VARIANT (type)
1834 || type != TYPE_MAIN_VARIANT (type))
1836 tree variant;
1837 /* Record layout info of this variant. */
1838 tree size = TYPE_SIZE (type);
1839 tree size_unit = TYPE_SIZE_UNIT (type);
1840 unsigned int align = TYPE_ALIGN (type);
1841 unsigned int precision = TYPE_PRECISION (type);
1842 unsigned int user_align = TYPE_USER_ALIGN (type);
1843 machine_mode mode = TYPE_MODE (type);
1845 /* Copy it into all variants. */
1846 for (variant = TYPE_MAIN_VARIANT (type);
1847 variant != 0;
1848 variant = TYPE_NEXT_VARIANT (variant))
1850 TYPE_SIZE (variant) = size;
1851 TYPE_SIZE_UNIT (variant) = size_unit;
1852 unsigned valign = align;
1853 if (TYPE_USER_ALIGN (variant))
1854 valign = MAX (valign, TYPE_ALIGN (variant));
1855 else
1856 TYPE_USER_ALIGN (variant) = user_align;
1857 SET_TYPE_ALIGN (variant, valign);
1858 TYPE_PRECISION (variant) = precision;
1859 SET_TYPE_MODE (variant, mode);
1864 /* Return a new underlying object for a bitfield started with FIELD. */
1866 static tree
1867 start_bitfield_representative (tree field)
1869 tree repr = make_node (FIELD_DECL);
1870 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1871 /* Force the representative to begin at a BITS_PER_UNIT aligned
1872 boundary - C++ may use tail-padding of a base object to
1873 continue packing bits so the bitfield region does not start
1874 at bit zero (see g++.dg/abi/bitfield5.C for example).
1875 Unallocated bits may happen for other reasons as well,
1876 for example Ada which allows explicit bit-granular structure layout. */
1877 DECL_FIELD_BIT_OFFSET (repr)
1878 = size_binop (BIT_AND_EXPR,
1879 DECL_FIELD_BIT_OFFSET (field),
1880 bitsize_int (~(BITS_PER_UNIT - 1)));
1881 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1882 DECL_SIZE (repr) = DECL_SIZE (field);
1883 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1884 DECL_PACKED (repr) = DECL_PACKED (field);
1885 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1886 /* There are no indirect accesses to this field. If we introduce
1887 some then they have to use the record alias set. This makes
1888 sure to properly conflict with [indirect] accesses to addressable
1889 fields of the bitfield group. */
1890 DECL_NONADDRESSABLE_P (repr) = 1;
1891 return repr;
1894 /* Finish up a bitfield group that was started by creating the underlying
1895 object REPR with the last field in the bitfield group FIELD. */
1897 static void
1898 finish_bitfield_representative (tree repr, tree field)
1900 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1901 tree nextf, size;
1903 size = size_diffop (DECL_FIELD_OFFSET (field),
1904 DECL_FIELD_OFFSET (repr));
1905 while (TREE_CODE (size) == COMPOUND_EXPR)
1906 size = TREE_OPERAND (size, 1);
1907 gcc_assert (tree_fits_uhwi_p (size));
1908 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1909 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1910 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1911 + tree_to_uhwi (DECL_SIZE (field)));
1913 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1914 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1916 /* Now nothing tells us how to pad out bitsize ... */
1917 nextf = DECL_CHAIN (field);
1918 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1919 nextf = DECL_CHAIN (nextf);
1920 if (nextf)
1922 tree maxsize;
1923 /* If there was an error, the field may be not laid out
1924 correctly. Don't bother to do anything. */
1925 if (TREE_TYPE (nextf) == error_mark_node)
1926 return;
1927 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1928 DECL_FIELD_OFFSET (repr));
1929 if (tree_fits_uhwi_p (maxsize))
1931 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1932 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1933 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1934 /* If the group ends within a bitfield nextf does not need to be
1935 aligned to BITS_PER_UNIT. Thus round up. */
1936 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1938 else
1939 maxbitsize = bitsize;
1941 else
1943 /* Note that if the C++ FE sets up tail-padding to be re-used it
1944 creates a as-base variant of the type with TYPE_SIZE adjusted
1945 accordingly. So it is safe to include tail-padding here. */
1946 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1947 (DECL_CONTEXT (field));
1948 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1949 /* We cannot generally rely on maxsize to fold to an integer constant,
1950 so use bitsize as fallback for this case. */
1951 if (tree_fits_uhwi_p (maxsize))
1952 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1953 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1954 else
1955 maxbitsize = bitsize;
1958 /* Only if we don't artificially break up the representative in
1959 the middle of a large bitfield with different possibly
1960 overlapping representatives. And all representatives start
1961 at byte offset. */
1962 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1964 /* Find the smallest nice mode to use. */
1965 opt_scalar_int_mode mode_iter;
1966 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1967 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
1968 break;
1970 scalar_int_mode mode;
1971 if (!mode_iter.exists (&mode)
1972 || GET_MODE_BITSIZE (mode) > maxbitsize
1973 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
1975 /* We really want a BLKmode representative only as a last resort,
1976 considering the member b in
1977 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1978 Otherwise we simply want to split the representative up
1979 allowing for overlaps within the bitfield region as required for
1980 struct { int a : 7; int b : 7;
1981 int c : 10; int d; } __attribute__((packed));
1982 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1983 DECL_SIZE (repr) = bitsize_int (bitsize);
1984 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1985 SET_DECL_MODE (repr, BLKmode);
1986 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1987 bitsize / BITS_PER_UNIT);
1989 else
1991 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1992 DECL_SIZE (repr) = bitsize_int (modesize);
1993 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1994 SET_DECL_MODE (repr, mode);
1995 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1998 /* Remember whether the bitfield group is at the end of the
1999 structure or not. */
2000 DECL_CHAIN (repr) = nextf;
2003 /* Compute and set FIELD_DECLs for the underlying objects we should
2004 use for bitfield access for the structure T. */
2006 void
2007 finish_bitfield_layout (tree t)
2009 tree field, prev;
2010 tree repr = NULL_TREE;
2012 /* Unions would be special, for the ease of type-punning optimizations
2013 we could use the underlying type as hint for the representative
2014 if the bitfield would fit and the representative would not exceed
2015 the union in size. */
2016 if (TREE_CODE (t) != RECORD_TYPE)
2017 return;
2019 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2020 field; field = DECL_CHAIN (field))
2022 if (TREE_CODE (field) != FIELD_DECL)
2023 continue;
2025 /* In the C++ memory model, consecutive bit fields in a structure are
2026 considered one memory location and updating a memory location
2027 may not store into adjacent memory locations. */
2028 if (!repr
2029 && DECL_BIT_FIELD_TYPE (field))
2031 /* Start new representative. */
2032 repr = start_bitfield_representative (field);
2034 else if (repr
2035 && ! DECL_BIT_FIELD_TYPE (field))
2037 /* Finish off new representative. */
2038 finish_bitfield_representative (repr, prev);
2039 repr = NULL_TREE;
2041 else if (DECL_BIT_FIELD_TYPE (field))
2043 gcc_assert (repr != NULL_TREE);
2045 /* Zero-size bitfields finish off a representative and
2046 do not have a representative themselves. This is
2047 required by the C++ memory model. */
2048 if (integer_zerop (DECL_SIZE (field)))
2050 finish_bitfield_representative (repr, prev);
2051 repr = NULL_TREE;
2054 /* We assume that either DECL_FIELD_OFFSET of the representative
2055 and each bitfield member is a constant or they are equal.
2056 This is because we need to be able to compute the bit-offset
2057 of each field relative to the representative in get_bit_range
2058 during RTL expansion.
2059 If these constraints are not met, simply force a new
2060 representative to be generated. That will at most
2061 generate worse code but still maintain correctness with
2062 respect to the C++ memory model. */
2063 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2064 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2065 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2066 DECL_FIELD_OFFSET (field), 0)))
2068 finish_bitfield_representative (repr, prev);
2069 repr = start_bitfield_representative (field);
2072 else
2073 continue;
2075 if (repr)
2076 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2078 prev = field;
2081 if (repr)
2082 finish_bitfield_representative (repr, prev);
2085 /* Do all of the work required to layout the type indicated by RLI,
2086 once the fields have been laid out. This function will call `free'
2087 for RLI, unless FREE_P is false. Passing a value other than false
2088 for FREE_P is bad practice; this option only exists to support the
2089 G++ 3.2 ABI. */
2091 void
2092 finish_record_layout (record_layout_info rli, int free_p)
2094 tree variant;
2096 /* Compute the final size. */
2097 finalize_record_size (rli);
2099 /* Compute the TYPE_MODE for the record. */
2100 compute_record_mode (rli->t);
2102 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2103 finalize_type_size (rli->t);
2105 /* Compute bitfield representatives. */
2106 finish_bitfield_layout (rli->t);
2108 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2109 With C++ templates, it is too early to do this when the attribute
2110 is being parsed. */
2111 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2112 variant = TYPE_NEXT_VARIANT (variant))
2114 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2115 TYPE_REVERSE_STORAGE_ORDER (variant)
2116 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2119 /* Lay out any static members. This is done now because their type
2120 may use the record's type. */
2121 while (!vec_safe_is_empty (rli->pending_statics))
2122 layout_decl (rli->pending_statics->pop (), 0);
2124 /* Clean up. */
2125 if (free_p)
2127 vec_free (rli->pending_statics);
2128 free (rli);
2133 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2134 NAME, its fields are chained in reverse on FIELDS.
2136 If ALIGN_TYPE is non-null, it is given the same alignment as
2137 ALIGN_TYPE. */
2139 void
2140 finish_builtin_struct (tree type, const char *name, tree fields,
2141 tree align_type)
2143 tree tail, next;
2145 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2147 DECL_FIELD_CONTEXT (fields) = type;
2148 next = DECL_CHAIN (fields);
2149 DECL_CHAIN (fields) = tail;
2151 TYPE_FIELDS (type) = tail;
2153 if (align_type)
2155 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2156 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2157 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2158 TYPE_WARN_IF_NOT_ALIGN (align_type));
2161 layout_type (type);
2162 #if 0 /* not yet, should get fixed properly later */
2163 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2164 #else
2165 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2166 TYPE_DECL, get_identifier (name), type);
2167 #endif
2168 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2169 layout_decl (TYPE_NAME (type), 0);
2172 /* Calculate the mode, size, and alignment for TYPE.
2173 For an array type, calculate the element separation as well.
2174 Record TYPE on the chain of permanent or temporary types
2175 so that dbxout will find out about it.
2177 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2178 layout_type does nothing on such a type.
2180 If the type is incomplete, its TYPE_SIZE remains zero. */
2182 void
2183 layout_type (tree type)
2185 gcc_assert (type);
2187 if (type == error_mark_node)
2188 return;
2190 /* We don't want finalize_type_size to copy an alignment attribute to
2191 variants that don't have it. */
2192 type = TYPE_MAIN_VARIANT (type);
2194 /* Do nothing if type has been laid out before. */
2195 if (TYPE_SIZE (type))
2196 return;
2198 switch (TREE_CODE (type))
2200 case LANG_TYPE:
2201 /* This kind of type is the responsibility
2202 of the language-specific code. */
2203 gcc_unreachable ();
2205 case BOOLEAN_TYPE:
2206 case INTEGER_TYPE:
2207 case ENUMERAL_TYPE:
2209 scalar_int_mode mode
2210 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2211 SET_TYPE_MODE (type, mode);
2212 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2213 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2214 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2215 break;
2218 case REAL_TYPE:
2220 /* Allow the caller to choose the type mode, which is how decimal
2221 floats are distinguished from binary ones. */
2222 if (TYPE_MODE (type) == VOIDmode)
2223 SET_TYPE_MODE
2224 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2225 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2226 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2227 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2228 break;
2231 case FIXED_POINT_TYPE:
2233 /* TYPE_MODE (type) has been set already. */
2234 scalar_mode mode = SCALAR_TYPE_MODE (type);
2235 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2236 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2237 break;
2240 case COMPLEX_TYPE:
2241 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2242 SET_TYPE_MODE (type,
2243 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2245 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2246 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2247 break;
2249 case VECTOR_TYPE:
2251 int nunits = TYPE_VECTOR_SUBPARTS (type);
2252 tree innertype = TREE_TYPE (type);
2254 gcc_assert (!(nunits & (nunits - 1)));
2256 /* Find an appropriate mode for the vector type. */
2257 if (TYPE_MODE (type) == VOIDmode)
2258 SET_TYPE_MODE (type,
2259 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2260 nunits).else_blk ());
2262 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2263 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2264 /* Several boolean vector elements may fit in a single unit. */
2265 if (VECTOR_BOOLEAN_TYPE_P (type)
2266 && type->type_common.mode != BLKmode)
2267 TYPE_SIZE_UNIT (type)
2268 = size_int (GET_MODE_SIZE (type->type_common.mode));
2269 else
2270 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2271 TYPE_SIZE_UNIT (innertype),
2272 size_int (nunits));
2273 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2274 TYPE_SIZE (innertype),
2275 bitsize_int (nunits));
2277 /* For vector types, we do not default to the mode's alignment.
2278 Instead, query a target hook, defaulting to natural alignment.
2279 This prevents ABI changes depending on whether or not native
2280 vector modes are supported. */
2281 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2283 /* However, if the underlying mode requires a bigger alignment than
2284 what the target hook provides, we cannot use the mode. For now,
2285 simply reject that case. */
2286 gcc_assert (TYPE_ALIGN (type)
2287 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2288 break;
2291 case VOID_TYPE:
2292 /* This is an incomplete type and so doesn't have a size. */
2293 SET_TYPE_ALIGN (type, 1);
2294 TYPE_USER_ALIGN (type) = 0;
2295 SET_TYPE_MODE (type, VOIDmode);
2296 break;
2298 case POINTER_BOUNDS_TYPE:
2299 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2300 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2301 break;
2303 case OFFSET_TYPE:
2304 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2305 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2306 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2307 integral, which may be an __intN. */
2308 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2309 TYPE_PRECISION (type) = POINTER_SIZE;
2310 break;
2312 case FUNCTION_TYPE:
2313 case METHOD_TYPE:
2314 /* It's hard to see what the mode and size of a function ought to
2315 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2316 make it consistent with that. */
2317 SET_TYPE_MODE (type,
2318 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2319 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2320 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2321 break;
2323 case POINTER_TYPE:
2324 case REFERENCE_TYPE:
2326 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2327 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2328 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2329 TYPE_UNSIGNED (type) = 1;
2330 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2332 break;
2334 case ARRAY_TYPE:
2336 tree index = TYPE_DOMAIN (type);
2337 tree element = TREE_TYPE (type);
2339 /* We need to know both bounds in order to compute the size. */
2340 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2341 && TYPE_SIZE (element))
2343 tree ub = TYPE_MAX_VALUE (index);
2344 tree lb = TYPE_MIN_VALUE (index);
2345 tree element_size = TYPE_SIZE (element);
2346 tree length;
2348 /* Make sure that an array of zero-sized element is zero-sized
2349 regardless of its extent. */
2350 if (integer_zerop (element_size))
2351 length = size_zero_node;
2353 /* The computation should happen in the original signedness so
2354 that (possible) negative values are handled appropriately
2355 when determining overflow. */
2356 else
2358 /* ??? When it is obvious that the range is signed
2359 represent it using ssizetype. */
2360 if (TREE_CODE (lb) == INTEGER_CST
2361 && TREE_CODE (ub) == INTEGER_CST
2362 && TYPE_UNSIGNED (TREE_TYPE (lb))
2363 && tree_int_cst_lt (ub, lb))
2365 lb = wide_int_to_tree (ssizetype,
2366 offset_int::from (wi::to_wide (lb),
2367 SIGNED));
2368 ub = wide_int_to_tree (ssizetype,
2369 offset_int::from (wi::to_wide (ub),
2370 SIGNED));
2372 length
2373 = fold_convert (sizetype,
2374 size_binop (PLUS_EXPR,
2375 build_int_cst (TREE_TYPE (lb), 1),
2376 size_binop (MINUS_EXPR, ub, lb)));
2379 /* ??? We have no way to distinguish a null-sized array from an
2380 array spanning the whole sizetype range, so we arbitrarily
2381 decide that [0, -1] is the only valid representation. */
2382 if (integer_zerop (length)
2383 && TREE_OVERFLOW (length)
2384 && integer_zerop (lb))
2385 length = size_zero_node;
2387 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2388 fold_convert (bitsizetype,
2389 length));
2391 /* If we know the size of the element, calculate the total size
2392 directly, rather than do some division thing below. This
2393 optimization helps Fortran assumed-size arrays (where the
2394 size of the array is determined at runtime) substantially. */
2395 if (TYPE_SIZE_UNIT (element))
2396 TYPE_SIZE_UNIT (type)
2397 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2400 /* Now round the alignment and size,
2401 using machine-dependent criteria if any. */
2403 unsigned align = TYPE_ALIGN (element);
2404 if (TYPE_USER_ALIGN (type))
2405 align = MAX (align, TYPE_ALIGN (type));
2406 else
2407 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2408 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2409 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2410 TYPE_WARN_IF_NOT_ALIGN (element));
2411 #ifdef ROUND_TYPE_ALIGN
2412 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2413 #else
2414 align = MAX (align, BITS_PER_UNIT);
2415 #endif
2416 SET_TYPE_ALIGN (type, align);
2417 SET_TYPE_MODE (type, BLKmode);
2418 if (TYPE_SIZE (type) != 0
2419 && ! targetm.member_type_forces_blk (type, VOIDmode)
2420 /* BLKmode elements force BLKmode aggregate;
2421 else extract/store fields may lose. */
2422 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2423 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2425 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2426 TYPE_SIZE (type)));
2427 if (TYPE_MODE (type) != BLKmode
2428 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2429 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2431 TYPE_NO_FORCE_BLK (type) = 1;
2432 SET_TYPE_MODE (type, BLKmode);
2435 if (AGGREGATE_TYPE_P (element))
2436 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2437 /* When the element size is constant, check that it is at least as
2438 large as the element alignment. */
2439 if (TYPE_SIZE_UNIT (element)
2440 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2441 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2442 TYPE_ALIGN_UNIT. */
2443 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2444 && !integer_zerop (TYPE_SIZE_UNIT (element))
2445 && compare_tree_int (TYPE_SIZE_UNIT (element),
2446 TYPE_ALIGN_UNIT (element)) < 0)
2447 error ("alignment of array elements is greater than element size");
2448 break;
2451 case RECORD_TYPE:
2452 case UNION_TYPE:
2453 case QUAL_UNION_TYPE:
2455 tree field;
2456 record_layout_info rli;
2458 /* Initialize the layout information. */
2459 rli = start_record_layout (type);
2461 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2462 in the reverse order in building the COND_EXPR that denotes
2463 its size. We reverse them again later. */
2464 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2465 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2467 /* Place all the fields. */
2468 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2469 place_field (rli, field);
2471 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2472 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2474 /* Finish laying out the record. */
2475 finish_record_layout (rli, /*free_p=*/true);
2477 break;
2479 default:
2480 gcc_unreachable ();
2483 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2484 records and unions, finish_record_layout already called this
2485 function. */
2486 if (!RECORD_OR_UNION_TYPE_P (type))
2487 finalize_type_size (type);
2489 /* We should never see alias sets on incomplete aggregates. And we
2490 should not call layout_type on not incomplete aggregates. */
2491 if (AGGREGATE_TYPE_P (type))
2492 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2495 /* Return the least alignment required for type TYPE. */
2497 unsigned int
2498 min_align_of_type (tree type)
2500 unsigned int align = TYPE_ALIGN (type);
2501 if (!TYPE_USER_ALIGN (type))
2503 align = MIN (align, BIGGEST_ALIGNMENT);
2504 #ifdef BIGGEST_FIELD_ALIGNMENT
2505 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2506 #endif
2507 unsigned int field_align = align;
2508 #ifdef ADJUST_FIELD_ALIGN
2509 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2510 #endif
2511 align = MIN (align, field_align);
2513 return align / BITS_PER_UNIT;
2516 /* Create and return a type for signed integers of PRECISION bits. */
2518 tree
2519 make_signed_type (int precision)
2521 tree type = make_node (INTEGER_TYPE);
2523 TYPE_PRECISION (type) = precision;
2525 fixup_signed_type (type);
2526 return type;
2529 /* Create and return a type for unsigned integers of PRECISION bits. */
2531 tree
2532 make_unsigned_type (int precision)
2534 tree type = make_node (INTEGER_TYPE);
2536 TYPE_PRECISION (type) = precision;
2538 fixup_unsigned_type (type);
2539 return type;
2542 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2543 and SATP. */
2545 tree
2546 make_fract_type (int precision, int unsignedp, int satp)
2548 tree type = make_node (FIXED_POINT_TYPE);
2550 TYPE_PRECISION (type) = precision;
2552 if (satp)
2553 TYPE_SATURATING (type) = 1;
2555 /* Lay out the type: set its alignment, size, etc. */
2556 TYPE_UNSIGNED (type) = unsignedp;
2557 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2558 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2559 layout_type (type);
2561 return type;
2564 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2565 and SATP. */
2567 tree
2568 make_accum_type (int precision, int unsignedp, int satp)
2570 tree type = make_node (FIXED_POINT_TYPE);
2572 TYPE_PRECISION (type) = precision;
2574 if (satp)
2575 TYPE_SATURATING (type) = 1;
2577 /* Lay out the type: set its alignment, size, etc. */
2578 TYPE_UNSIGNED (type) = unsignedp;
2579 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2580 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2581 layout_type (type);
2583 return type;
2586 /* Initialize sizetypes so layout_type can use them. */
2588 void
2589 initialize_sizetypes (void)
2591 int precision, bprecision;
2593 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2594 if (strcmp (SIZETYPE, "unsigned int") == 0)
2595 precision = INT_TYPE_SIZE;
2596 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2597 precision = LONG_TYPE_SIZE;
2598 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2599 precision = LONG_LONG_TYPE_SIZE;
2600 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2601 precision = SHORT_TYPE_SIZE;
2602 else
2604 int i;
2606 precision = -1;
2607 for (i = 0; i < NUM_INT_N_ENTS; i++)
2608 if (int_n_enabled_p[i])
2610 char name[50];
2611 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2613 if (strcmp (name, SIZETYPE) == 0)
2615 precision = int_n_data[i].bitsize;
2618 if (precision == -1)
2619 gcc_unreachable ();
2622 bprecision
2623 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2624 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2625 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2626 bprecision = HOST_BITS_PER_DOUBLE_INT;
2628 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2629 sizetype = make_node (INTEGER_TYPE);
2630 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2631 TYPE_PRECISION (sizetype) = precision;
2632 TYPE_UNSIGNED (sizetype) = 1;
2633 bitsizetype = make_node (INTEGER_TYPE);
2634 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2635 TYPE_PRECISION (bitsizetype) = bprecision;
2636 TYPE_UNSIGNED (bitsizetype) = 1;
2638 /* Now layout both types manually. */
2639 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2640 SET_TYPE_MODE (sizetype, mode);
2641 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2642 TYPE_SIZE (sizetype) = bitsize_int (precision);
2643 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2644 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2646 mode = smallest_int_mode_for_size (bprecision);
2647 SET_TYPE_MODE (bitsizetype, mode);
2648 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2649 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2650 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2651 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2653 /* Create the signed variants of *sizetype. */
2654 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2655 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2656 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2657 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2660 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2661 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2662 for TYPE, based on the PRECISION and whether or not the TYPE
2663 IS_UNSIGNED. PRECISION need not correspond to a width supported
2664 natively by the hardware; for example, on a machine with 8-bit,
2665 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2666 61. */
2668 void
2669 set_min_and_max_values_for_integral_type (tree type,
2670 int precision,
2671 signop sgn)
2673 /* For bitfields with zero width we end up creating integer types
2674 with zero precision. Don't assign any minimum/maximum values
2675 to those types, they don't have any valid value. */
2676 if (precision < 1)
2677 return;
2679 TYPE_MIN_VALUE (type)
2680 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2681 TYPE_MAX_VALUE (type)
2682 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2685 /* Set the extreme values of TYPE based on its precision in bits,
2686 then lay it out. Used when make_signed_type won't do
2687 because the tree code is not INTEGER_TYPE. */
2689 void
2690 fixup_signed_type (tree type)
2692 int precision = TYPE_PRECISION (type);
2694 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2696 /* Lay out the type: set its alignment, size, etc. */
2697 layout_type (type);
2700 /* Set the extreme values of TYPE based on its precision in bits,
2701 then lay it out. This is used both in `make_unsigned_type'
2702 and for enumeral types. */
2704 void
2705 fixup_unsigned_type (tree type)
2707 int precision = TYPE_PRECISION (type);
2709 TYPE_UNSIGNED (type) = 1;
2711 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2713 /* Lay out the type: set its alignment, size, etc. */
2714 layout_type (type);
2717 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2718 starting at BITPOS.
2720 BITREGION_START is the bit position of the first bit in this
2721 sequence of bit fields. BITREGION_END is the last bit in this
2722 sequence. If these two fields are non-zero, we should restrict the
2723 memory access to that range. Otherwise, we are allowed to touch
2724 any adjacent non bit-fields.
2726 ALIGN is the alignment of the underlying object in bits.
2727 VOLATILEP says whether the bitfield is volatile. */
2729 bit_field_mode_iterator
2730 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2731 HOST_WIDE_INT bitregion_start,
2732 HOST_WIDE_INT bitregion_end,
2733 unsigned int align, bool volatilep)
2734 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2735 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2736 m_bitregion_end (bitregion_end), m_align (align),
2737 m_volatilep (volatilep), m_count (0)
2739 if (!m_bitregion_end)
2741 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2742 the bitfield is mapped and won't trap, provided that ALIGN isn't
2743 too large. The cap is the biggest required alignment for data,
2744 or at least the word size. And force one such chunk at least. */
2745 unsigned HOST_WIDE_INT units
2746 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2747 if (bitsize <= 0)
2748 bitsize = 1;
2749 m_bitregion_end = bitpos + bitsize + units - 1;
2750 m_bitregion_end -= m_bitregion_end % units + 1;
2754 /* Calls to this function return successively larger modes that can be used
2755 to represent the bitfield. Return true if another bitfield mode is
2756 available, storing it in *OUT_MODE if so. */
2758 bool
2759 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2761 scalar_int_mode mode;
2762 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2764 unsigned int unit = GET_MODE_BITSIZE (mode);
2766 /* Skip modes that don't have full precision. */
2767 if (unit != GET_MODE_PRECISION (mode))
2768 continue;
2770 /* Stop if the mode is too wide to handle efficiently. */
2771 if (unit > MAX_FIXED_MODE_SIZE)
2772 break;
2774 /* Don't deliver more than one multiword mode; the smallest one
2775 should be used. */
2776 if (m_count > 0 && unit > BITS_PER_WORD)
2777 break;
2779 /* Skip modes that are too small. */
2780 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2781 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2782 if (subend > unit)
2783 continue;
2785 /* Stop if the mode goes outside the bitregion. */
2786 HOST_WIDE_INT start = m_bitpos - substart;
2787 if (m_bitregion_start && start < m_bitregion_start)
2788 break;
2789 HOST_WIDE_INT end = start + unit;
2790 if (end > m_bitregion_end + 1)
2791 break;
2793 /* Stop if the mode requires too much alignment. */
2794 if (GET_MODE_ALIGNMENT (mode) > m_align
2795 && targetm.slow_unaligned_access (mode, m_align))
2796 break;
2798 *out_mode = mode;
2799 m_mode = GET_MODE_WIDER_MODE (mode);
2800 m_count++;
2801 return true;
2803 return false;
2806 /* Return true if smaller modes are generally preferred for this kind
2807 of bitfield. */
2809 bool
2810 bit_field_mode_iterator::prefer_smaller_modes ()
2812 return (m_volatilep
2813 ? targetm.narrow_volatile_bitfield ()
2814 : !SLOW_BYTE_ACCESS);
2817 /* Find the best machine mode to use when referencing a bit field of length
2818 BITSIZE bits starting at BITPOS.
2820 BITREGION_START is the bit position of the first bit in this
2821 sequence of bit fields. BITREGION_END is the last bit in this
2822 sequence. If these two fields are non-zero, we should restrict the
2823 memory access to that range. Otherwise, we are allowed to touch
2824 any adjacent non bit-fields.
2826 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2827 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2828 doesn't want to apply a specific limit.
2830 If no mode meets all these conditions, we return VOIDmode.
2832 The underlying object is known to be aligned to a boundary of ALIGN bits.
2834 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2835 smallest mode meeting these conditions.
2837 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2838 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2839 all the conditions.
2841 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2842 decide which of the above modes should be used. */
2844 bool
2845 get_best_mode (int bitsize, int bitpos,
2846 unsigned HOST_WIDE_INT bitregion_start,
2847 unsigned HOST_WIDE_INT bitregion_end,
2848 unsigned int align,
2849 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2850 scalar_int_mode *best_mode)
2852 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2853 bitregion_end, align, volatilep);
2854 scalar_int_mode mode;
2855 bool found = false;
2856 while (iter.next_mode (&mode)
2857 /* ??? For historical reasons, reject modes that would normally
2858 receive greater alignment, even if unaligned accesses are
2859 acceptable. This has both advantages and disadvantages.
2860 Removing this check means that something like:
2862 struct s { unsigned int x; unsigned int y; };
2863 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2865 can be implemented using a single load and compare on
2866 64-bit machines that have no alignment restrictions.
2867 For example, on powerpc64-linux-gnu, we would generate:
2869 ld 3,0(3)
2870 cntlzd 3,3
2871 srdi 3,3,6
2874 rather than:
2876 lwz 9,0(3)
2877 cmpwi 7,9,0
2878 bne 7,.L3
2879 lwz 3,4(3)
2880 cntlzw 3,3
2881 srwi 3,3,5
2882 extsw 3,3
2884 .p2align 4,,15
2885 .L3:
2886 li 3,0
2889 However, accessing more than one field can make life harder
2890 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2891 has a series of unsigned short copies followed by a series of
2892 unsigned short comparisons. With this check, both the copies
2893 and comparisons remain 16-bit accesses and FRE is able
2894 to eliminate the latter. Without the check, the comparisons
2895 can be done using 2 64-bit operations, which FRE isn't able
2896 to handle in the same way.
2898 Either way, it would probably be worth disabling this check
2899 during expand. One particular example where removing the
2900 check would help is the get_best_mode call in store_bit_field.
2901 If we are given a memory bitregion of 128 bits that is aligned
2902 to a 64-bit boundary, and the bitfield we want to modify is
2903 in the second half of the bitregion, this check causes
2904 store_bitfield to turn the memory into a 64-bit reference
2905 to the _first_ half of the region. We later use
2906 adjust_bitfield_address to get a reference to the correct half,
2907 but doing so looks to adjust_bitfield_address as though we are
2908 moving past the end of the original object, so it drops the
2909 associated MEM_EXPR and MEM_OFFSET. Removing the check
2910 causes store_bit_field to keep a 128-bit memory reference,
2911 so that the final bitfield reference still has a MEM_EXPR
2912 and MEM_OFFSET. */
2913 && GET_MODE_ALIGNMENT (mode) <= align
2914 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
2916 *best_mode = mode;
2917 found = true;
2918 if (iter.prefer_smaller_modes ())
2919 break;
2922 return found;
2925 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2926 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2928 void
2929 get_mode_bounds (scalar_int_mode mode, int sign,
2930 scalar_int_mode target_mode,
2931 rtx *mmin, rtx *mmax)
2933 unsigned size = GET_MODE_PRECISION (mode);
2934 unsigned HOST_WIDE_INT min_val, max_val;
2936 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2938 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2939 if (mode == BImode)
2941 if (STORE_FLAG_VALUE < 0)
2943 min_val = STORE_FLAG_VALUE;
2944 max_val = 0;
2946 else
2948 min_val = 0;
2949 max_val = STORE_FLAG_VALUE;
2952 else if (sign)
2954 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2955 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2957 else
2959 min_val = 0;
2960 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2963 *mmin = gen_int_mode (min_val, target_mode);
2964 *mmax = gen_int_mode (max_val, target_mode);
2967 #include "gt-stor-layout.h"