PR rtl-optimization/82913
[official-gcc.git] / gcc / sched-deps.c
bloba64e4e17bbc8115982d253d041032243e9506802
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "params.h"
40 #include "cselib.h"
42 #ifdef INSN_SCHEDULING
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
64 gcc_assert (ds & DEP_ANTI);
66 return REG_DEP_ANTI;
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
73 switch (dk)
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
90 /* Functions to operate with dependence information container - dep_t. */
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
106 /* Init DEP with the arguments.
107 While most of the scheduler (including targets) only need the major type
108 of the dependency, it is convenient to hide full dep_status from them. */
109 void
110 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
112 ds_t ds;
114 if ((current_sched_info->flags & USE_DEPS_LIST))
115 ds = dk_to_ds (kind);
116 else
117 ds = 0;
119 init_dep_1 (dep, pro, con, kind, ds);
122 /* Make a copy of FROM in TO. */
123 static void
124 copy_dep (dep_t to, dep_t from)
126 memcpy (to, from, sizeof (*to));
129 static void dump_ds (FILE *, ds_t);
131 /* Define flags for dump_dep (). */
133 /* Dump producer of the dependence. */
134 #define DUMP_DEP_PRO (2)
136 /* Dump consumer of the dependence. */
137 #define DUMP_DEP_CON (4)
139 /* Dump type of the dependence. */
140 #define DUMP_DEP_TYPE (8)
142 /* Dump status of the dependence. */
143 #define DUMP_DEP_STATUS (16)
145 /* Dump all information about the dependence. */
146 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
147 |DUMP_DEP_STATUS)
149 /* Dump DEP to DUMP.
150 FLAGS is a bit mask specifying what information about DEP needs
151 to be printed.
152 If FLAGS has the very first bit set, then dump all information about DEP
153 and propagate this bit into the callee dump functions. */
154 static void
155 dump_dep (FILE *dump, dep_t dep, int flags)
157 if (flags & 1)
158 flags |= DUMP_DEP_ALL;
160 fprintf (dump, "<");
162 if (flags & DUMP_DEP_PRO)
163 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
165 if (flags & DUMP_DEP_CON)
166 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
168 if (flags & DUMP_DEP_TYPE)
170 char t;
171 enum reg_note type = DEP_TYPE (dep);
173 switch (type)
175 case REG_DEP_TRUE:
176 t = 't';
177 break;
179 case REG_DEP_OUTPUT:
180 t = 'o';
181 break;
183 case REG_DEP_CONTROL:
184 t = 'c';
185 break;
187 case REG_DEP_ANTI:
188 t = 'a';
189 break;
191 default:
192 gcc_unreachable ();
193 break;
196 fprintf (dump, "%c; ", t);
199 if (flags & DUMP_DEP_STATUS)
201 if (current_sched_info->flags & USE_DEPS_LIST)
202 dump_ds (dump, DEP_STATUS (dep));
205 fprintf (dump, ">");
208 /* Default flags for dump_dep (). */
209 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
211 /* Dump all fields of DEP to STDERR. */
212 void
213 sd_debug_dep (dep_t dep)
215 dump_dep (stderr, dep, 1);
216 fprintf (stderr, "\n");
219 /* Determine whether DEP is a dependency link of a non-debug insn on a
220 debug insn. */
222 static inline bool
223 depl_on_debug_p (dep_link_t dep)
225 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
226 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
229 /* Functions to operate with a single link from the dependencies lists -
230 dep_link_t. */
232 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
233 PREV_NEXT_P. */
234 static void
235 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
237 dep_link_t next = *prev_nextp;
239 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
240 && DEP_LINK_NEXT (l) == NULL);
242 /* Init node being inserted. */
243 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
244 DEP_LINK_NEXT (l) = next;
246 /* Fix next node. */
247 if (next != NULL)
249 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
251 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
254 /* Fix prev node. */
255 *prev_nextp = l;
258 /* Add dep_link LINK to deps_list L. */
259 static void
260 add_to_deps_list (dep_link_t link, deps_list_t l)
262 attach_dep_link (link, &DEPS_LIST_FIRST (l));
264 /* Don't count debug deps. */
265 if (!depl_on_debug_p (link))
266 ++DEPS_LIST_N_LINKS (l);
269 /* Detach dep_link L from the list. */
270 static void
271 detach_dep_link (dep_link_t l)
273 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
274 dep_link_t next = DEP_LINK_NEXT (l);
276 *prev_nextp = next;
278 if (next != NULL)
279 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
281 DEP_LINK_PREV_NEXTP (l) = NULL;
282 DEP_LINK_NEXT (l) = NULL;
285 /* Remove link LINK from list LIST. */
286 static void
287 remove_from_deps_list (dep_link_t link, deps_list_t list)
289 detach_dep_link (link);
291 /* Don't count debug deps. */
292 if (!depl_on_debug_p (link))
293 --DEPS_LIST_N_LINKS (list);
296 /* Move link LINK from list FROM to list TO. */
297 static void
298 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
300 remove_from_deps_list (link, from);
301 add_to_deps_list (link, to);
304 /* Return true of LINK is not attached to any list. */
305 static bool
306 dep_link_is_detached_p (dep_link_t link)
308 return DEP_LINK_PREV_NEXTP (link) == NULL;
311 /* Pool to hold all dependency nodes (dep_node_t). */
312 static object_allocator<_dep_node> *dn_pool;
314 /* Number of dep_nodes out there. */
315 static int dn_pool_diff = 0;
317 /* Create a dep_node. */
318 static dep_node_t
319 create_dep_node (void)
321 dep_node_t n = dn_pool->allocate ();
322 dep_link_t back = DEP_NODE_BACK (n);
323 dep_link_t forw = DEP_NODE_FORW (n);
325 DEP_LINK_NODE (back) = n;
326 DEP_LINK_NEXT (back) = NULL;
327 DEP_LINK_PREV_NEXTP (back) = NULL;
329 DEP_LINK_NODE (forw) = n;
330 DEP_LINK_NEXT (forw) = NULL;
331 DEP_LINK_PREV_NEXTP (forw) = NULL;
333 ++dn_pool_diff;
335 return n;
338 /* Delete dep_node N. N must not be connected to any deps_list. */
339 static void
340 delete_dep_node (dep_node_t n)
342 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
343 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
345 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
347 --dn_pool_diff;
349 dn_pool->remove (n);
352 /* Pool to hold dependencies lists (deps_list_t). */
353 static object_allocator<_deps_list> *dl_pool;
355 /* Number of deps_lists out there. */
356 static int dl_pool_diff = 0;
358 /* Functions to operate with dependences lists - deps_list_t. */
360 /* Return true if list L is empty. */
361 static bool
362 deps_list_empty_p (deps_list_t l)
364 return DEPS_LIST_N_LINKS (l) == 0;
367 /* Create a new deps_list. */
368 static deps_list_t
369 create_deps_list (void)
371 deps_list_t l = dl_pool->allocate ();
373 DEPS_LIST_FIRST (l) = NULL;
374 DEPS_LIST_N_LINKS (l) = 0;
376 ++dl_pool_diff;
377 return l;
380 /* Free deps_list L. */
381 static void
382 free_deps_list (deps_list_t l)
384 gcc_assert (deps_list_empty_p (l));
386 --dl_pool_diff;
388 dl_pool->remove (l);
391 /* Return true if there is no dep_nodes and deps_lists out there.
392 After the region is scheduled all the dependency nodes and lists
393 should [generally] be returned to pool. */
394 bool
395 deps_pools_are_empty_p (void)
397 return dn_pool_diff == 0 && dl_pool_diff == 0;
400 /* Remove all elements from L. */
401 static void
402 clear_deps_list (deps_list_t l)
406 dep_link_t link = DEPS_LIST_FIRST (l);
408 if (link == NULL)
409 break;
411 remove_from_deps_list (link, l);
413 while (1);
416 /* Decide whether a dependency should be treated as a hard or a speculative
417 dependency. */
418 static bool
419 dep_spec_p (dep_t dep)
421 if (current_sched_info->flags & DO_SPECULATION)
423 if (DEP_STATUS (dep) & SPECULATIVE)
424 return true;
426 if (current_sched_info->flags & DO_PREDICATION)
428 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
429 return true;
431 if (DEP_REPLACE (dep) != NULL)
432 return true;
433 return false;
436 static regset reg_pending_sets;
437 static regset reg_pending_clobbers;
438 static regset reg_pending_uses;
439 static regset reg_pending_control_uses;
440 static enum reg_pending_barrier_mode reg_pending_barrier;
442 /* Hard registers implicitly clobbered or used (or may be implicitly
443 clobbered or used) by the currently analyzed insn. For example,
444 insn in its constraint has one register class. Even if there is
445 currently no hard register in the insn, the particular hard
446 register will be in the insn after reload pass because the
447 constraint requires it. */
448 static HARD_REG_SET implicit_reg_pending_clobbers;
449 static HARD_REG_SET implicit_reg_pending_uses;
451 /* To speed up the test for duplicate dependency links we keep a
452 record of dependencies created by add_dependence when the average
453 number of instructions in a basic block is very large.
455 Studies have shown that there is typically around 5 instructions between
456 branches for typical C code. So we can make a guess that the average
457 basic block is approximately 5 instructions long; we will choose 100X
458 the average size as a very large basic block.
460 Each insn has associated bitmaps for its dependencies. Each bitmap
461 has enough entries to represent a dependency on any other insn in
462 the insn chain. All bitmap for true dependencies cache is
463 allocated then the rest two ones are also allocated. */
464 static bitmap_head *true_dependency_cache = NULL;
465 static bitmap_head *output_dependency_cache = NULL;
466 static bitmap_head *anti_dependency_cache = NULL;
467 static bitmap_head *control_dependency_cache = NULL;
468 static bitmap_head *spec_dependency_cache = NULL;
469 static int cache_size;
471 /* True if we should mark added dependencies as a non-register deps. */
472 static bool mark_as_hard;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
476 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
477 enum reg_note, bool);
478 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
479 rtx_insn_list **, int, enum reg_note,
480 bool);
481 static void delete_all_dependences (rtx_insn *);
482 static void chain_to_prev_insn (rtx_insn *);
484 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
485 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
486 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
489 static bool sched_has_condition_p (const rtx_insn *);
490 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
492 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
493 rtx, rtx);
494 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
496 static void check_dep (dep_t, bool);
499 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
501 static int
502 deps_may_trap_p (const_rtx mem)
504 const_rtx addr = XEXP (mem, 0);
506 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
508 const_rtx t = get_reg_known_value (REGNO (addr));
509 if (t)
510 addr = t;
512 return rtx_addr_can_trap_p (addr);
516 /* Find the condition under which INSN is executed. If REV is not NULL,
517 it is set to TRUE when the returned comparison should be reversed
518 to get the actual condition. */
519 static rtx
520 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
522 rtx pat = PATTERN (insn);
523 rtx src;
525 if (rev)
526 *rev = false;
528 if (GET_CODE (pat) == COND_EXEC)
529 return COND_EXEC_TEST (pat);
531 if (!any_condjump_p (insn) || !onlyjump_p (insn))
532 return 0;
534 src = SET_SRC (pc_set (insn));
536 if (XEXP (src, 2) == pc_rtx)
537 return XEXP (src, 0);
538 else if (XEXP (src, 1) == pc_rtx)
540 rtx cond = XEXP (src, 0);
541 enum rtx_code revcode = reversed_comparison_code (cond, insn);
543 if (revcode == UNKNOWN)
544 return 0;
546 if (rev)
547 *rev = true;
548 return cond;
551 return 0;
554 /* Return the condition under which INSN does not execute (i.e. the
555 not-taken condition for a conditional branch), or NULL if we cannot
556 find such a condition. The caller should make a copy of the condition
557 before using it. */
559 sched_get_reverse_condition_uncached (const rtx_insn *insn)
561 bool rev;
562 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
563 if (cond == NULL_RTX)
564 return cond;
565 if (!rev)
567 enum rtx_code revcode = reversed_comparison_code (cond, insn);
568 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
569 XEXP (cond, 0),
570 XEXP (cond, 1));
572 return cond;
575 /* Caching variant of sched_get_condition_with_rev_uncached.
576 We only do actual work the first time we come here for an insn; the
577 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
578 static rtx
579 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
581 bool tmp;
583 if (INSN_LUID (insn) == 0)
584 return sched_get_condition_with_rev_uncached (insn, rev);
586 if (INSN_CACHED_COND (insn) == const_true_rtx)
587 return NULL_RTX;
589 if (INSN_CACHED_COND (insn) != NULL_RTX)
591 if (rev)
592 *rev = INSN_REVERSE_COND (insn);
593 return INSN_CACHED_COND (insn);
596 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
597 INSN_REVERSE_COND (insn) = tmp;
599 if (INSN_CACHED_COND (insn) == NULL_RTX)
601 INSN_CACHED_COND (insn) = const_true_rtx;
602 return NULL_RTX;
605 if (rev)
606 *rev = INSN_REVERSE_COND (insn);
607 return INSN_CACHED_COND (insn);
610 /* True when we can find a condition under which INSN is executed. */
611 static bool
612 sched_has_condition_p (const rtx_insn *insn)
614 return !! sched_get_condition_with_rev (insn, NULL);
619 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
620 static int
621 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
623 if (COMPARISON_P (cond1)
624 && COMPARISON_P (cond2)
625 && GET_CODE (cond1) ==
626 (rev1==rev2
627 ? reversed_comparison_code (cond2, NULL)
628 : GET_CODE (cond2))
629 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
630 && XEXP (cond1, 1) == XEXP (cond2, 1))
631 return 1;
632 return 0;
635 /* Return true if insn1 and insn2 can never depend on one another because
636 the conditions under which they are executed are mutually exclusive. */
637 bool
638 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
640 rtx cond1, cond2;
641 bool rev1 = false, rev2 = false;
643 /* df doesn't handle conditional lifetimes entirely correctly;
644 calls mess up the conditional lifetimes. */
645 if (!CALL_P (insn1) && !CALL_P (insn2))
647 cond1 = sched_get_condition_with_rev (insn1, &rev1);
648 cond2 = sched_get_condition_with_rev (insn2, &rev2);
649 if (cond1 && cond2
650 && conditions_mutex_p (cond1, cond2, rev1, rev2)
651 /* Make sure first instruction doesn't affect condition of second
652 instruction if switched. */
653 && !modified_in_p (cond1, insn2)
654 /* Make sure second instruction doesn't affect condition of first
655 instruction if switched. */
656 && !modified_in_p (cond2, insn1))
657 return true;
659 return false;
663 /* Return true if INSN can potentially be speculated with type DS. */
664 bool
665 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
667 if (HAS_INTERNAL_DEP (insn))
668 return false;
670 if (!NONJUMP_INSN_P (insn))
671 return false;
673 if (SCHED_GROUP_P (insn))
674 return false;
676 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
677 return false;
679 if (side_effects_p (PATTERN (insn)))
680 return false;
682 if (ds & BE_IN_SPEC)
683 /* The following instructions, which depend on a speculatively scheduled
684 instruction, cannot be speculatively scheduled along. */
686 if (may_trap_or_fault_p (PATTERN (insn)))
687 /* If instruction might fault, it cannot be speculatively scheduled.
688 For control speculation it's obvious why and for data speculation
689 it's because the insn might get wrong input if speculation
690 wasn't successful. */
691 return false;
693 if ((ds & BE_IN_DATA)
694 && sched_has_condition_p (insn))
695 /* If this is a predicated instruction, then it cannot be
696 speculatively scheduled. See PR35659. */
697 return false;
700 return true;
703 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
704 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
705 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
706 This function is used to switch sd_iterator to the next list.
707 !!! For internal use only. Might consider moving it to sched-int.h. */
708 void
709 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
710 deps_list_t *list_ptr, bool *resolved_p_ptr)
712 sd_list_types_def types = *types_ptr;
714 if (types & SD_LIST_HARD_BACK)
716 *list_ptr = INSN_HARD_BACK_DEPS (insn);
717 *resolved_p_ptr = false;
718 *types_ptr = types & ~SD_LIST_HARD_BACK;
720 else if (types & SD_LIST_SPEC_BACK)
722 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
723 *resolved_p_ptr = false;
724 *types_ptr = types & ~SD_LIST_SPEC_BACK;
726 else if (types & SD_LIST_FORW)
728 *list_ptr = INSN_FORW_DEPS (insn);
729 *resolved_p_ptr = false;
730 *types_ptr = types & ~SD_LIST_FORW;
732 else if (types & SD_LIST_RES_BACK)
734 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
735 *resolved_p_ptr = true;
736 *types_ptr = types & ~SD_LIST_RES_BACK;
738 else if (types & SD_LIST_RES_FORW)
740 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
741 *resolved_p_ptr = true;
742 *types_ptr = types & ~SD_LIST_RES_FORW;
744 else
746 *list_ptr = NULL;
747 *resolved_p_ptr = false;
748 *types_ptr = SD_LIST_NONE;
752 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
754 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
756 int size = 0;
758 while (list_types != SD_LIST_NONE)
760 deps_list_t list;
761 bool resolved_p;
763 sd_next_list (insn, &list_types, &list, &resolved_p);
764 if (list)
765 size += DEPS_LIST_N_LINKS (list);
768 return size;
771 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
773 bool
774 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
776 while (list_types != SD_LIST_NONE)
778 deps_list_t list;
779 bool resolved_p;
781 sd_next_list (insn, &list_types, &list, &resolved_p);
782 if (!deps_list_empty_p (list))
783 return false;
786 return true;
789 /* Initialize data for INSN. */
790 void
791 sd_init_insn (rtx_insn *insn)
793 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
794 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
795 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
796 INSN_FORW_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
799 /* ??? It would be nice to allocate dependency caches here. */
802 /* Free data for INSN. */
803 void
804 sd_finish_insn (rtx_insn *insn)
806 /* ??? It would be nice to deallocate dependency caches here. */
808 free_deps_list (INSN_HARD_BACK_DEPS (insn));
809 INSN_HARD_BACK_DEPS (insn) = NULL;
811 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
812 INSN_SPEC_BACK_DEPS (insn) = NULL;
814 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
815 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
817 free_deps_list (INSN_FORW_DEPS (insn));
818 INSN_FORW_DEPS (insn) = NULL;
820 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
821 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
824 /* Find a dependency between producer PRO and consumer CON.
825 Search through resolved dependency lists if RESOLVED_P is true.
826 If no such dependency is found return NULL,
827 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
828 with an iterator pointing to it. */
829 static dep_t
830 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
831 sd_iterator_def *sd_it_ptr)
833 sd_list_types_def pro_list_type;
834 sd_list_types_def con_list_type;
835 sd_iterator_def sd_it;
836 dep_t dep;
837 bool found_p = false;
839 if (resolved_p)
841 pro_list_type = SD_LIST_RES_FORW;
842 con_list_type = SD_LIST_RES_BACK;
844 else
846 pro_list_type = SD_LIST_FORW;
847 con_list_type = SD_LIST_BACK;
850 /* Walk through either back list of INSN or forw list of ELEM
851 depending on which one is shorter. */
852 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
854 /* Find the dep_link with producer PRO in consumer's back_deps. */
855 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
856 if (DEP_PRO (dep) == pro)
858 found_p = true;
859 break;
862 else
864 /* Find the dep_link with consumer CON in producer's forw_deps. */
865 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
866 if (DEP_CON (dep) == con)
868 found_p = true;
869 break;
873 if (found_p)
875 if (sd_it_ptr != NULL)
876 *sd_it_ptr = sd_it;
878 return dep;
881 return NULL;
884 /* Find a dependency between producer PRO and consumer CON.
885 Use dependency [if available] to check if dependency is present at all.
886 Search through resolved dependency lists if RESOLVED_P is true.
887 If the dependency or NULL if none found. */
888 dep_t
889 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
891 if (true_dependency_cache != NULL)
892 /* Avoiding the list walk below can cut compile times dramatically
893 for some code. */
895 int elem_luid = INSN_LUID (pro);
896 int insn_luid = INSN_LUID (con);
898 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
902 return NULL;
905 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
908 /* Add or update a dependence described by DEP.
909 MEM1 and MEM2, if non-null, correspond to memory locations in case of
910 data speculation.
912 The function returns a value indicating if an old entry has been changed
913 or a new entry has been added to insn's backward deps.
915 This function merely checks if producer and consumer is the same insn
916 and doesn't create a dep in this case. Actual manipulation of
917 dependence data structures is performed in add_or_update_dep_1. */
918 static enum DEPS_ADJUST_RESULT
919 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
921 rtx_insn *elem = DEP_PRO (dep);
922 rtx_insn *insn = DEP_CON (dep);
924 gcc_assert (INSN_P (insn) && INSN_P (elem));
926 /* Don't depend an insn on itself. */
927 if (insn == elem)
929 if (sched_deps_info->generate_spec_deps)
930 /* INSN has an internal dependence, which we can't overcome. */
931 HAS_INTERNAL_DEP (insn) = 1;
933 return DEP_NODEP;
936 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
939 /* Ask dependency caches what needs to be done for dependence DEP.
940 Return DEP_CREATED if new dependence should be created and there is no
941 need to try to find one searching the dependencies lists.
942 Return DEP_PRESENT if there already is a dependence described by DEP and
943 hence nothing is to be done.
944 Return DEP_CHANGED if there already is a dependence, but it should be
945 updated to incorporate additional information from DEP. */
946 static enum DEPS_ADJUST_RESULT
947 ask_dependency_caches (dep_t dep)
949 int elem_luid = INSN_LUID (DEP_PRO (dep));
950 int insn_luid = INSN_LUID (DEP_CON (dep));
952 gcc_assert (true_dependency_cache != NULL
953 && output_dependency_cache != NULL
954 && anti_dependency_cache != NULL
955 && control_dependency_cache != NULL);
957 if (!(current_sched_info->flags & USE_DEPS_LIST))
959 enum reg_note present_dep_type;
961 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
962 present_dep_type = REG_DEP_TRUE;
963 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_OUTPUT;
965 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_ANTI;
967 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_CONTROL;
969 else
970 /* There is no existing dep so it should be created. */
971 return DEP_CREATED;
973 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
974 /* DEP does not add anything to the existing dependence. */
975 return DEP_PRESENT;
977 else
979 ds_t present_dep_types = 0;
981 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
982 present_dep_types |= DEP_TRUE;
983 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_OUTPUT;
985 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_ANTI;
987 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_CONTROL;
990 if (present_dep_types == 0)
991 /* There is no existing dep so it should be created. */
992 return DEP_CREATED;
994 if (!(current_sched_info->flags & DO_SPECULATION)
995 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
997 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
998 == present_dep_types)
999 /* DEP does not add anything to the existing dependence. */
1000 return DEP_PRESENT;
1002 else
1004 /* Only true dependencies can be data speculative and
1005 only anti dependencies can be control speculative. */
1006 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1007 == present_dep_types);
1009 /* if (DEP is SPECULATIVE) then
1010 ..we should update DEP_STATUS
1011 else
1012 ..we should reset existing dep to non-speculative. */
1016 return DEP_CHANGED;
1019 /* Set dependency caches according to DEP. */
1020 static void
1021 set_dependency_caches (dep_t dep)
1023 int elem_luid = INSN_LUID (DEP_PRO (dep));
1024 int insn_luid = INSN_LUID (DEP_CON (dep));
1026 if (!(current_sched_info->flags & USE_DEPS_LIST))
1028 switch (DEP_TYPE (dep))
1030 case REG_DEP_TRUE:
1031 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1032 break;
1034 case REG_DEP_OUTPUT:
1035 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1036 break;
1038 case REG_DEP_ANTI:
1039 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1040 break;
1042 case REG_DEP_CONTROL:
1043 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1044 break;
1046 default:
1047 gcc_unreachable ();
1050 else
1052 ds_t ds = DEP_STATUS (dep);
1054 if (ds & DEP_TRUE)
1055 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1056 if (ds & DEP_OUTPUT)
1057 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_ANTI)
1059 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_CONTROL)
1061 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1063 if (ds & SPECULATIVE)
1065 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1066 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1071 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1072 caches accordingly. */
1073 static void
1074 update_dependency_caches (dep_t dep, enum reg_note old_type)
1076 int elem_luid = INSN_LUID (DEP_PRO (dep));
1077 int insn_luid = INSN_LUID (DEP_CON (dep));
1079 /* Clear corresponding cache entry because type of the link
1080 may have changed. Keep them if we use_deps_list. */
1081 if (!(current_sched_info->flags & USE_DEPS_LIST))
1083 switch (old_type)
1085 case REG_DEP_OUTPUT:
1086 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1087 break;
1089 case REG_DEP_ANTI:
1090 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1091 break;
1093 case REG_DEP_CONTROL:
1094 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1095 break;
1097 default:
1098 gcc_unreachable ();
1102 set_dependency_caches (dep);
1105 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1106 static void
1107 change_spec_dep_to_hard (sd_iterator_def sd_it)
1109 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1110 dep_link_t link = DEP_NODE_BACK (node);
1111 dep_t dep = DEP_NODE_DEP (node);
1112 rtx_insn *elem = DEP_PRO (dep);
1113 rtx_insn *insn = DEP_CON (dep);
1115 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1117 DEP_STATUS (dep) &= ~SPECULATIVE;
1119 if (true_dependency_cache != NULL)
1120 /* Clear the cache entry. */
1121 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1122 INSN_LUID (elem));
1125 /* Update DEP to incorporate information from NEW_DEP.
1126 SD_IT points to DEP in case it should be moved to another list.
1127 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1128 data-speculative dependence should be updated. */
1129 static enum DEPS_ADJUST_RESULT
1130 update_dep (dep_t dep, dep_t new_dep,
1131 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1132 rtx mem1 ATTRIBUTE_UNUSED,
1133 rtx mem2 ATTRIBUTE_UNUSED)
1135 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1136 enum reg_note old_type = DEP_TYPE (dep);
1137 bool was_spec = dep_spec_p (dep);
1139 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1140 DEP_MULTIPLE (dep) = 1;
1142 /* If this is a more restrictive type of dependence than the
1143 existing one, then change the existing dependence to this
1144 type. */
1145 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1147 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1148 res = DEP_CHANGED;
1151 if (current_sched_info->flags & USE_DEPS_LIST)
1152 /* Update DEP_STATUS. */
1154 ds_t dep_status = DEP_STATUS (dep);
1155 ds_t ds = DEP_STATUS (new_dep);
1156 ds_t new_status = ds | dep_status;
1158 if (new_status & SPECULATIVE)
1160 /* Either existing dep or a dep we're adding or both are
1161 speculative. */
1162 if (!(ds & SPECULATIVE)
1163 || !(dep_status & SPECULATIVE))
1164 /* The new dep can't be speculative. */
1165 new_status &= ~SPECULATIVE;
1166 else
1168 /* Both are speculative. Merge probabilities. */
1169 if (mem1 != NULL)
1171 dw_t dw;
1173 dw = estimate_dep_weak (mem1, mem2);
1174 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1177 new_status = ds_merge (dep_status, ds);
1181 ds = new_status;
1183 if (dep_status != ds)
1185 DEP_STATUS (dep) = ds;
1186 res = DEP_CHANGED;
1190 if (was_spec && !dep_spec_p (dep))
1191 /* The old dep was speculative, but now it isn't. */
1192 change_spec_dep_to_hard (sd_it);
1194 if (true_dependency_cache != NULL
1195 && res == DEP_CHANGED)
1196 update_dependency_caches (dep, old_type);
1198 return res;
1201 /* Add or update a dependence described by DEP.
1202 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1203 data speculation.
1205 The function returns a value indicating if an old entry has been changed
1206 or a new entry has been added to insn's backward deps or nothing has
1207 been updated at all. */
1208 static enum DEPS_ADJUST_RESULT
1209 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1210 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1212 bool maybe_present_p = true;
1213 bool present_p = false;
1215 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1216 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1218 if (flag_checking)
1219 check_dep (new_dep, mem1 != NULL);
1221 if (true_dependency_cache != NULL)
1223 switch (ask_dependency_caches (new_dep))
1225 case DEP_PRESENT:
1226 dep_t present_dep;
1227 sd_iterator_def sd_it;
1229 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1230 DEP_CON (new_dep),
1231 resolved_p, &sd_it);
1232 DEP_MULTIPLE (present_dep) = 1;
1233 return DEP_PRESENT;
1235 case DEP_CHANGED:
1236 maybe_present_p = true;
1237 present_p = true;
1238 break;
1240 case DEP_CREATED:
1241 maybe_present_p = false;
1242 present_p = false;
1243 break;
1245 default:
1246 gcc_unreachable ();
1247 break;
1251 /* Check that we don't already have this dependence. */
1252 if (maybe_present_p)
1254 dep_t present_dep;
1255 sd_iterator_def sd_it;
1257 gcc_assert (true_dependency_cache == NULL || present_p);
1259 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1260 DEP_CON (new_dep),
1261 resolved_p, &sd_it);
1263 if (present_dep != NULL)
1264 /* We found an existing dependency between ELEM and INSN. */
1265 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1266 else
1267 /* We didn't find a dep, it shouldn't present in the cache. */
1268 gcc_assert (!present_p);
1271 /* Might want to check one level of transitivity to save conses.
1272 This check should be done in maybe_add_or_update_dep_1.
1273 Since we made it to add_or_update_dep_1, we must create
1274 (or update) a link. */
1276 if (mem1 != NULL_RTX)
1278 gcc_assert (sched_deps_info->generate_spec_deps);
1279 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1280 estimate_dep_weak (mem1, mem2));
1283 sd_add_dep (new_dep, resolved_p);
1285 return DEP_CREATED;
1288 /* Initialize BACK_LIST_PTR with consumer's backward list and
1289 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1290 initialize with lists that hold resolved deps. */
1291 static void
1292 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1293 deps_list_t *back_list_ptr,
1294 deps_list_t *forw_list_ptr)
1296 rtx_insn *con = DEP_CON (dep);
1298 if (!resolved_p)
1300 if (dep_spec_p (dep))
1301 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1302 else
1303 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1305 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1307 else
1309 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1310 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 /* Add dependence described by DEP.
1315 If RESOLVED_P is true treat the dependence as a resolved one. */
1316 void
1317 sd_add_dep (dep_t dep, bool resolved_p)
1319 dep_node_t n = create_dep_node ();
1320 deps_list_t con_back_deps;
1321 deps_list_t pro_forw_deps;
1322 rtx_insn *elem = DEP_PRO (dep);
1323 rtx_insn *insn = DEP_CON (dep);
1325 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1327 if ((current_sched_info->flags & DO_SPECULATION) == 0
1328 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1329 DEP_STATUS (dep) &= ~SPECULATIVE;
1331 copy_dep (DEP_NODE_DEP (n), dep);
1333 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1335 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1337 if (flag_checking)
1338 check_dep (dep, false);
1340 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1342 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1343 in the bitmap caches of dependency information. */
1344 if (true_dependency_cache != NULL)
1345 set_dependency_caches (dep);
1348 /* Add or update backward dependence between INSN and ELEM
1349 with given type DEP_TYPE and dep_status DS.
1350 This function is a convenience wrapper. */
1351 enum DEPS_ADJUST_RESULT
1352 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1354 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1357 /* Resolved dependence pointed to by SD_IT.
1358 SD_IT will advance to the next element. */
1359 void
1360 sd_resolve_dep (sd_iterator_def sd_it)
1362 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1363 dep_t dep = DEP_NODE_DEP (node);
1364 rtx_insn *pro = DEP_PRO (dep);
1365 rtx_insn *con = DEP_CON (dep);
1367 if (dep_spec_p (dep))
1368 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1369 INSN_RESOLVED_BACK_DEPS (con));
1370 else
1371 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1372 INSN_RESOLVED_BACK_DEPS (con));
1374 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1375 INSN_RESOLVED_FORW_DEPS (pro));
1378 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1379 pointed to by SD_IT to unresolved state. */
1380 void
1381 sd_unresolve_dep (sd_iterator_def sd_it)
1383 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1384 dep_t dep = DEP_NODE_DEP (node);
1385 rtx_insn *pro = DEP_PRO (dep);
1386 rtx_insn *con = DEP_CON (dep);
1388 if (dep_spec_p (dep))
1389 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1390 INSN_SPEC_BACK_DEPS (con));
1391 else
1392 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1393 INSN_HARD_BACK_DEPS (con));
1395 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1396 INSN_FORW_DEPS (pro));
1399 /* Make TO depend on all the FROM's producers.
1400 If RESOLVED_P is true add dependencies to the resolved lists. */
1401 void
1402 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1404 sd_list_types_def list_type;
1405 sd_iterator_def sd_it;
1406 dep_t dep;
1408 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1410 FOR_EACH_DEP (from, list_type, sd_it, dep)
1412 dep_def _new_dep, *new_dep = &_new_dep;
1414 copy_dep (new_dep, dep);
1415 DEP_CON (new_dep) = to;
1416 sd_add_dep (new_dep, resolved_p);
1420 /* Remove a dependency referred to by SD_IT.
1421 SD_IT will point to the next dependence after removal. */
1422 void
1423 sd_delete_dep (sd_iterator_def sd_it)
1425 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1426 dep_t dep = DEP_NODE_DEP (n);
1427 rtx_insn *pro = DEP_PRO (dep);
1428 rtx_insn *con = DEP_CON (dep);
1429 deps_list_t con_back_deps;
1430 deps_list_t pro_forw_deps;
1432 if (true_dependency_cache != NULL)
1434 int elem_luid = INSN_LUID (pro);
1435 int insn_luid = INSN_LUID (con);
1437 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1438 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1442 if (current_sched_info->flags & DO_SPECULATION)
1443 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1446 get_back_and_forw_lists (dep, sd_it.resolved_p,
1447 &con_back_deps, &pro_forw_deps);
1449 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1450 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1452 delete_dep_node (n);
1455 /* Dump size of the lists. */
1456 #define DUMP_LISTS_SIZE (2)
1458 /* Dump dependencies of the lists. */
1459 #define DUMP_LISTS_DEPS (4)
1461 /* Dump all information about the lists. */
1462 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1464 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1465 FLAGS is a bit mask specifying what information about the lists needs
1466 to be printed.
1467 If FLAGS has the very first bit set, then dump all information about
1468 the lists and propagate this bit into the callee dump functions. */
1469 static void
1470 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1472 sd_iterator_def sd_it;
1473 dep_t dep;
1474 int all;
1476 all = (flags & 1);
1478 if (all)
1479 flags |= DUMP_LISTS_ALL;
1481 fprintf (dump, "[");
1483 if (flags & DUMP_LISTS_SIZE)
1484 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1486 if (flags & DUMP_LISTS_DEPS)
1488 FOR_EACH_DEP (insn, types, sd_it, dep)
1490 dump_dep (dump, dep, dump_dep_flags | all);
1491 fprintf (dump, " ");
1496 /* Dump all information about deps_lists of INSN specified by TYPES
1497 to STDERR. */
1498 void
1499 sd_debug_lists (rtx insn, sd_list_types_def types)
1501 dump_lists (stderr, insn, types, 1);
1502 fprintf (stderr, "\n");
1505 /* A wrapper around add_dependence_1, to add a dependence of CON on
1506 PRO, with type DEP_TYPE. This function implements special handling
1507 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1508 the type to REG_DEP_ANTI if we can determine that predication is
1509 impossible; otherwise we add additional true dependencies on the
1510 INSN_COND_DEPS list of the jump (which PRO must be). */
1511 void
1512 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1514 if (dep_type == REG_DEP_CONTROL
1515 && !(current_sched_info->flags & DO_PREDICATION))
1516 dep_type = REG_DEP_ANTI;
1518 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1519 so we must also make the insn dependent on the setter of the
1520 condition. */
1521 if (dep_type == REG_DEP_CONTROL)
1523 rtx_insn *real_pro = pro;
1524 rtx_insn *other = real_insn_for_shadow (real_pro);
1525 rtx cond;
1527 if (other != NULL_RTX)
1528 real_pro = other;
1529 cond = sched_get_reverse_condition_uncached (real_pro);
1530 /* Verify that the insn does not use a different value in
1531 the condition register than the one that was present at
1532 the jump. */
1533 if (cond == NULL_RTX)
1534 dep_type = REG_DEP_ANTI;
1535 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1537 HARD_REG_SET uses;
1538 CLEAR_HARD_REG_SET (uses);
1539 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1540 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1541 dep_type = REG_DEP_ANTI;
1543 if (dep_type == REG_DEP_CONTROL)
1545 if (sched_verbose >= 5)
1546 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1547 INSN_UID (real_pro));
1548 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1549 REG_DEP_TRUE, false);
1553 add_dependence_1 (con, pro, dep_type);
1556 /* A convenience wrapper to operate on an entire list. HARD should be
1557 true if DEP_NONREG should be set on newly created dependencies. */
1559 static void
1560 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1561 enum reg_note dep_type, bool hard)
1563 mark_as_hard = hard;
1564 for (; list; list = list->next ())
1566 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1567 add_dependence (insn, list->insn (), dep_type);
1569 mark_as_hard = false;
1572 /* Similar, but free *LISTP at the same time, when the context
1573 is not readonly. HARD should be true if DEP_NONREG should be set on
1574 newly created dependencies. */
1576 static void
1577 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1578 rtx_insn_list **listp,
1579 int uncond, enum reg_note dep_type, bool hard)
1581 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1583 /* We don't want to short-circuit dependencies involving debug
1584 insns, because they may cause actual dependencies to be
1585 disregarded. */
1586 if (deps->readonly || DEBUG_INSN_P (insn))
1587 return;
1589 free_INSN_LIST_list (listp);
1592 /* Remove all occurrences of INSN from LIST. Return the number of
1593 occurrences removed. */
1595 static int
1596 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1598 int removed = 0;
1600 while (*listp)
1602 if ((*listp)->insn () == insn)
1604 remove_free_INSN_LIST_node (listp);
1605 removed++;
1606 continue;
1609 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1612 return removed;
1615 /* Same as above, but process two lists at once. */
1616 static int
1617 remove_from_both_dependence_lists (rtx_insn *insn,
1618 rtx_insn_list **listp,
1619 rtx_expr_list **exprp)
1621 int removed = 0;
1623 while (*listp)
1625 if (XEXP (*listp, 0) == insn)
1627 remove_free_INSN_LIST_node (listp);
1628 remove_free_EXPR_LIST_node (exprp);
1629 removed++;
1630 continue;
1633 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1634 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1637 return removed;
1640 /* Clear all dependencies for an insn. */
1641 static void
1642 delete_all_dependences (rtx_insn *insn)
1644 sd_iterator_def sd_it;
1645 dep_t dep;
1647 /* The below cycle can be optimized to clear the caches and back_deps
1648 in one call but that would provoke duplication of code from
1649 delete_dep (). */
1651 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1652 sd_iterator_cond (&sd_it, &dep);)
1653 sd_delete_dep (sd_it);
1656 /* All insns in a scheduling group except the first should only have
1657 dependencies on the previous insn in the group. So we find the
1658 first instruction in the scheduling group by walking the dependence
1659 chains backwards. Then we add the dependencies for the group to
1660 the previous nonnote insn. */
1662 static void
1663 chain_to_prev_insn (rtx_insn *insn)
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667 rtx_insn *prev_nonnote;
1669 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 rtx_insn *i = insn;
1672 rtx_insn *pro = DEP_PRO (dep);
1676 i = prev_nonnote_insn (i);
1678 if (pro == i)
1679 goto next_link;
1680 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682 if (! sched_insns_conditions_mutex_p (i, pro))
1683 add_dependence (i, pro, DEP_TYPE (dep));
1684 next_link:;
1687 delete_all_dependences (insn);
1689 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1690 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1691 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1692 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1695 /* Process an insn's memory dependencies. There are four kinds of
1696 dependencies:
1698 (0) read dependence: read follows read
1699 (1) true dependence: read follows write
1700 (2) output dependence: write follows write
1701 (3) anti dependence: write follows read
1703 We are careful to build only dependencies which actually exist, and
1704 use transitivity to avoid building too many links. */
1706 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1707 The MEM is a memory reference contained within INSN, which we are saving
1708 so that we can do memory aliasing on it. */
1710 static void
1711 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1712 rtx_insn *insn, rtx mem)
1714 rtx_insn_list **insn_list;
1715 rtx_insn_list *insn_node;
1716 rtx_expr_list **mem_list;
1717 rtx_expr_list *mem_node;
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1727 else
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1734 insn_node = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = insn_node;
1737 if (sched_deps_info->use_cselib)
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1743 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = mem_node;
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1755 if (for_write)
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1778 if (DEBUG_INSN_P (insn))
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1787 if (!deps->readonly)
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1795 mark_as_hard = false;
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1801 /* Implement hooks for haifa scheduler. */
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1806 gcc_assert (insn && !cur_insn);
1808 cur_insn = insn;
1811 static void
1812 haifa_finish_insn (void)
1814 cur_insn = NULL;
1817 void
1818 haifa_note_reg_set (int regno)
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1823 void
1824 haifa_note_reg_clobber (int regno)
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1829 void
1830 haifa_note_reg_use (int regno)
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1838 if (!(ds & SPECULATIVE))
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1847 dep_def _dep, *dep = &_dep;
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1869 static void
1870 note_reg_use (int r)
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1876 static void
1877 note_reg_set (int r)
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1883 static void
1884 note_reg_clobber (int r)
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx_insn *insn)
1931 struct reg_use_data *use;
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1945 struct reg_set_data *set;
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 struct reg_use_data *use, *use2, *next;
1961 struct deps_reg *reg_last;
1963 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1967 continue;
1969 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1970 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1971 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1972 /* Ignore use which is not dying. */
1973 continue;
1975 use = create_insn_reg_use (i, insn);
1976 use->next_regno_use = use;
1977 reg_last = &deps->reg_last[i];
1979 /* Create the cycle list of uses. */
1980 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1982 use2 = create_insn_reg_use (i, list->insn ());
1983 next = use->next_regno_use;
1984 use->next_regno_use = use2;
1985 use2->next_regno_use = next;
1990 /* Register pressure info for the currently processed insn. */
1991 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993 /* Return TRUE if INSN has the use structure for REGNO. */
1994 static bool
1995 insn_use_p (rtx insn, int regno)
1997 struct reg_use_data *use;
1999 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2000 if (use->regno == regno)
2001 return true;
2002 return false;
2005 /* Update the register pressure info after birth of pseudo register REGNO
2006 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2007 the register is in clobber or unused after the insn. */
2008 static void
2009 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 int incr, new_incr;
2012 enum reg_class cl;
2014 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2015 cl = sched_regno_pressure_class[regno];
2016 if (cl != NO_REGS)
2018 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2019 if (clobber_p)
2021 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2022 reg_pressure_info[cl].clobber_increase = new_incr;
2024 else if (unused_p)
2026 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2027 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 else
2031 new_incr = reg_pressure_info[cl].set_increase + incr;
2032 reg_pressure_info[cl].set_increase = new_incr;
2033 if (! insn_use_p (insn, regno))
2034 reg_pressure_info[cl].change += incr;
2035 create_insn_reg_set (regno, insn);
2037 gcc_assert (new_incr < (1 << INCREASE_BITS));
2041 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2042 hard registers involved in the birth. */
2043 static void
2044 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2045 bool clobber_p, bool unused_p)
2047 enum reg_class cl;
2048 int new_incr, last = regno + nregs;
2050 while (regno < last)
2052 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2053 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 cl = sched_regno_pressure_class[regno];
2056 if (cl != NO_REGS)
2058 if (clobber_p)
2060 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2061 reg_pressure_info[cl].clobber_increase = new_incr;
2063 else if (unused_p)
2065 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2066 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 else
2070 new_incr = reg_pressure_info[cl].set_increase + 1;
2071 reg_pressure_info[cl].set_increase = new_incr;
2072 if (! insn_use_p (insn, regno))
2073 reg_pressure_info[cl].change += 1;
2074 create_insn_reg_set (regno, insn);
2076 gcc_assert (new_incr < (1 << INCREASE_BITS));
2079 regno++;
2083 /* Update the register pressure info after birth of pseudo or hard
2084 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2085 correspondingly that the register is in clobber or unused after the
2086 insn. */
2087 static void
2088 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 int regno;
2092 if (GET_CODE (reg) == SUBREG)
2093 reg = SUBREG_REG (reg);
2095 if (! REG_P (reg))
2096 return;
2098 regno = REGNO (reg);
2099 if (regno < FIRST_PSEUDO_REGISTER)
2100 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2101 clobber_p, unused_p);
2102 else
2103 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2106 /* Update the register pressure info after death of pseudo register
2107 REGNO. */
2108 static void
2109 mark_pseudo_death (int regno)
2111 int incr;
2112 enum reg_class cl;
2114 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2118 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2119 reg_pressure_info[cl].change -= incr;
2123 /* Like mark_pseudo_death except that NREGS saying how many hard
2124 registers involved in the death. */
2125 static void
2126 mark_hard_regno_death (int regno, int nregs)
2128 enum reg_class cl;
2129 int last = regno + nregs;
2131 while (regno < last)
2133 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2134 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2136 cl = sched_regno_pressure_class[regno];
2137 if (cl != NO_REGS)
2138 reg_pressure_info[cl].change -= 1;
2140 regno++;
2144 /* Update the register pressure info after death of pseudo or hard
2145 register REG. */
2146 static void
2147 mark_reg_death (rtx reg)
2149 int regno;
2151 if (GET_CODE (reg) == SUBREG)
2152 reg = SUBREG_REG (reg);
2154 if (! REG_P (reg))
2155 return;
2157 regno = REGNO (reg);
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 mark_hard_regno_death (regno, REG_NREGS (reg));
2160 else
2161 mark_pseudo_death (regno);
2164 /* Process SETTER of REG. DATA is an insn containing the setter. */
2165 static void
2166 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2168 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2169 return;
2170 mark_insn_reg_birth
2171 ((rtx) data, reg, false,
2172 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2175 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2176 static void
2177 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2179 if (GET_CODE (setter) == CLOBBER)
2180 mark_insn_reg_birth ((rtx) data, reg, true, false);
2183 /* Set up reg pressure info related to INSN. */
2184 void
2185 init_insn_reg_pressure_info (rtx_insn *insn)
2187 int i, len;
2188 enum reg_class cl;
2189 static struct reg_pressure_data *pressure_info;
2190 rtx link;
2192 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2194 if (! INSN_P (insn))
2195 return;
2197 for (i = 0; i < ira_pressure_classes_num; i++)
2199 cl = ira_pressure_classes[i];
2200 reg_pressure_info[cl].clobber_increase = 0;
2201 reg_pressure_info[cl].set_increase = 0;
2202 reg_pressure_info[cl].unused_set_increase = 0;
2203 reg_pressure_info[cl].change = 0;
2206 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2208 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2210 if (AUTO_INC_DEC)
2211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2212 if (REG_NOTE_KIND (link) == REG_INC)
2213 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2216 if (REG_NOTE_KIND (link) == REG_DEAD)
2217 mark_reg_death (XEXP (link, 0));
2219 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2220 pressure_info
2221 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2222 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2223 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2224 * sizeof (int), 1);
2225 for (i = 0; i < ira_pressure_classes_num; i++)
2227 cl = ira_pressure_classes[i];
2228 pressure_info[i].clobber_increase
2229 = reg_pressure_info[cl].clobber_increase;
2230 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2231 pressure_info[i].unused_set_increase
2232 = reg_pressure_info[cl].unused_set_increase;
2233 pressure_info[i].change = reg_pressure_info[cl].change;
2240 /* Internal variable for sched_analyze_[12] () functions.
2241 If it is nonzero, this means that sched_analyze_[12] looks
2242 at the most toplevel SET. */
2243 static bool can_start_lhs_rhs_p;
2245 /* Extend reg info for the deps context DEPS given that
2246 we have just generated a register numbered REGNO. */
2247 static void
2248 extend_deps_reg_info (struct deps_desc *deps, int regno)
2250 int max_regno = regno + 1;
2252 gcc_assert (!reload_completed);
2254 /* In a readonly context, it would not hurt to extend info,
2255 but it should not be needed. */
2256 if (reload_completed && deps->readonly)
2258 deps->max_reg = max_regno;
2259 return;
2262 if (max_regno > deps->max_reg)
2264 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2265 max_regno);
2266 memset (&deps->reg_last[deps->max_reg],
2267 0, (max_regno - deps->max_reg)
2268 * sizeof (struct deps_reg));
2269 deps->max_reg = max_regno;
2273 /* Extends REG_INFO_P if needed. */
2274 void
2275 maybe_extend_reg_info_p (void)
2277 /* Extend REG_INFO_P, if needed. */
2278 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2280 size_t new_reg_info_p_size = max_regno + 128;
2282 gcc_assert (!reload_completed && sel_sched_p ());
2284 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2285 new_reg_info_p_size,
2286 reg_info_p_size,
2287 sizeof (*reg_info_p));
2288 reg_info_p_size = new_reg_info_p_size;
2292 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2293 The type of the reference is specified by REF and can be SET,
2294 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2296 static void
2297 sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
2298 enum rtx_code ref, rtx_insn *insn)
2300 /* We could emit new pseudos in renaming. Extend the reg structures. */
2301 if (!reload_completed && sel_sched_p ()
2302 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2303 extend_deps_reg_info (deps, regno);
2305 maybe_extend_reg_info_p ();
2307 /* A hard reg in a wide mode may really be multiple registers.
2308 If so, mark all of them just like the first. */
2309 if (regno < FIRST_PSEUDO_REGISTER)
2311 int i = hard_regno_nregs (regno, mode);
2312 if (ref == SET)
2314 while (--i >= 0)
2315 note_reg_set (regno + i);
2317 else if (ref == USE)
2319 while (--i >= 0)
2320 note_reg_use (regno + i);
2322 else
2324 while (--i >= 0)
2325 note_reg_clobber (regno + i);
2329 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2330 it does not reload. Ignore these as they have served their
2331 purpose already. */
2332 else if (regno >= deps->max_reg)
2334 enum rtx_code code = GET_CODE (PATTERN (insn));
2335 gcc_assert (code == USE || code == CLOBBER);
2338 else
2340 if (ref == SET)
2341 note_reg_set (regno);
2342 else if (ref == USE)
2343 note_reg_use (regno);
2344 else
2345 note_reg_clobber (regno);
2347 /* Pseudos that are REG_EQUIV to something may be replaced
2348 by that during reloading. We need only add dependencies for
2349 the address in the REG_EQUIV note. */
2350 if (!reload_completed && get_reg_known_equiv_p (regno))
2352 rtx t = get_reg_known_value (regno);
2353 if (MEM_P (t))
2354 sched_analyze_2 (deps, XEXP (t, 0), insn);
2357 /* Don't let it cross a call after scheduling if it doesn't
2358 already cross one. */
2359 if (REG_N_CALLS_CROSSED (regno) == 0)
2361 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2362 deps->sched_before_next_call
2363 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2364 else
2365 add_dependence_list (insn, deps->last_function_call, 1,
2366 REG_DEP_ANTI, false);
2371 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2372 rtx, X, creating all dependencies generated by the write to the
2373 destination of X, and reads of everything mentioned. */
2375 static void
2376 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2378 rtx dest = XEXP (x, 0);
2379 enum rtx_code code = GET_CODE (x);
2380 bool cslr_p = can_start_lhs_rhs_p;
2382 can_start_lhs_rhs_p = false;
2384 gcc_assert (dest);
2385 if (dest == 0)
2386 return;
2388 if (cslr_p && sched_deps_info->start_lhs)
2389 sched_deps_info->start_lhs (dest);
2391 if (GET_CODE (dest) == PARALLEL)
2393 int i;
2395 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2396 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2397 sched_analyze_1 (deps,
2398 gen_rtx_CLOBBER (VOIDmode,
2399 XEXP (XVECEXP (dest, 0, i), 0)),
2400 insn);
2402 if (cslr_p && sched_deps_info->finish_lhs)
2403 sched_deps_info->finish_lhs ();
2405 if (code == SET)
2407 can_start_lhs_rhs_p = cslr_p;
2409 sched_analyze_2 (deps, SET_SRC (x), insn);
2411 can_start_lhs_rhs_p = false;
2414 return;
2417 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2418 || GET_CODE (dest) == ZERO_EXTRACT)
2420 if (GET_CODE (dest) == STRICT_LOW_PART
2421 || GET_CODE (dest) == ZERO_EXTRACT
2422 || read_modify_subreg_p (dest))
2424 /* These both read and modify the result. We must handle
2425 them as writes to get proper dependencies for following
2426 instructions. We must handle them as reads to get proper
2427 dependencies from this to previous instructions.
2428 Thus we need to call sched_analyze_2. */
2430 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2432 if (GET_CODE (dest) == ZERO_EXTRACT)
2434 /* The second and third arguments are values read by this insn. */
2435 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2436 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2438 dest = XEXP (dest, 0);
2441 if (REG_P (dest))
2443 int regno = REGNO (dest);
2444 machine_mode mode = GET_MODE (dest);
2446 sched_analyze_reg (deps, regno, mode, code, insn);
2448 #ifdef STACK_REGS
2449 /* Treat all writes to a stack register as modifying the TOS. */
2450 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2452 /* Avoid analyzing the same register twice. */
2453 if (regno != FIRST_STACK_REG)
2454 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2456 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2457 FIRST_STACK_REG);
2459 #endif
2461 else if (MEM_P (dest))
2463 /* Writing memory. */
2464 rtx t = dest;
2466 if (sched_deps_info->use_cselib)
2468 machine_mode address_mode = get_address_mode (dest);
2470 t = shallow_copy_rtx (dest);
2471 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2472 GET_MODE (t), insn);
2473 XEXP (t, 0)
2474 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2475 insn);
2477 t = canon_rtx (t);
2479 /* Pending lists can't get larger with a readonly context. */
2480 if (!deps->readonly
2481 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2482 >= MAX_PENDING_LIST_LENGTH))
2484 /* Flush all pending reads and writes to prevent the pending lists
2485 from getting any larger. Insn scheduling runs too slowly when
2486 these lists get long. When compiling GCC with itself,
2487 this flush occurs 8 times for sparc, and 10 times for m88k using
2488 the default value of 32. */
2489 flush_pending_lists (deps, insn, false, true);
2491 else
2493 rtx_insn_list *pending;
2494 rtx_expr_list *pending_mem;
2496 pending = deps->pending_read_insns;
2497 pending_mem = deps->pending_read_mems;
2498 while (pending)
2500 if (anti_dependence (pending_mem->element (), t)
2501 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2502 note_mem_dep (t, pending_mem->element (), pending->insn (),
2503 DEP_ANTI);
2505 pending = pending->next ();
2506 pending_mem = pending_mem->next ();
2509 pending = deps->pending_write_insns;
2510 pending_mem = deps->pending_write_mems;
2511 while (pending)
2513 if (output_dependence (pending_mem->element (), t)
2514 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2515 note_mem_dep (t, pending_mem->element (),
2516 pending->insn (),
2517 DEP_OUTPUT);
2519 pending = pending->next ();
2520 pending_mem = pending_mem-> next ();
2523 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2524 REG_DEP_ANTI, true);
2525 add_dependence_list (insn, deps->pending_jump_insns, 1,
2526 REG_DEP_CONTROL, true);
2528 if (!deps->readonly)
2529 add_insn_mem_dependence (deps, false, insn, dest);
2531 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2534 if (cslr_p && sched_deps_info->finish_lhs)
2535 sched_deps_info->finish_lhs ();
2537 /* Analyze reads. */
2538 if (GET_CODE (x) == SET)
2540 can_start_lhs_rhs_p = cslr_p;
2542 sched_analyze_2 (deps, SET_SRC (x), insn);
2544 can_start_lhs_rhs_p = false;
2548 /* Analyze the uses of memory and registers in rtx X in INSN. */
2549 static void
2550 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2552 int i;
2553 int j;
2554 enum rtx_code code;
2555 const char *fmt;
2556 bool cslr_p = can_start_lhs_rhs_p;
2558 can_start_lhs_rhs_p = false;
2560 gcc_assert (x);
2561 if (x == 0)
2562 return;
2564 if (cslr_p && sched_deps_info->start_rhs)
2565 sched_deps_info->start_rhs (x);
2567 code = GET_CODE (x);
2569 switch (code)
2571 CASE_CONST_ANY:
2572 case SYMBOL_REF:
2573 case CONST:
2574 case LABEL_REF:
2575 /* Ignore constants. */
2576 if (cslr_p && sched_deps_info->finish_rhs)
2577 sched_deps_info->finish_rhs ();
2579 return;
2581 case CC0:
2582 if (!HAVE_cc0)
2583 gcc_unreachable ();
2585 /* User of CC0 depends on immediately preceding insn. */
2586 SCHED_GROUP_P (insn) = 1;
2587 /* Don't move CC0 setter to another block (it can set up the
2588 same flag for previous CC0 users which is safe). */
2589 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2594 return;
2596 case REG:
2598 int regno = REGNO (x);
2599 machine_mode mode = GET_MODE (x);
2601 sched_analyze_reg (deps, regno, mode, USE, insn);
2603 #ifdef STACK_REGS
2604 /* Treat all reads of a stack register as modifying the TOS. */
2605 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2607 /* Avoid analyzing the same register twice. */
2608 if (regno != FIRST_STACK_REG)
2609 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2612 #endif
2614 if (cslr_p && sched_deps_info->finish_rhs)
2615 sched_deps_info->finish_rhs ();
2617 return;
2620 case MEM:
2622 /* Reading memory. */
2623 rtx_insn_list *u;
2624 rtx_insn_list *pending;
2625 rtx_expr_list *pending_mem;
2626 rtx t = x;
2628 if (sched_deps_info->use_cselib)
2630 machine_mode address_mode = get_address_mode (t);
2632 t = shallow_copy_rtx (t);
2633 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2634 GET_MODE (t), insn);
2635 XEXP (t, 0)
2636 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2637 insn);
2640 if (!DEBUG_INSN_P (insn))
2642 t = canon_rtx (t);
2643 pending = deps->pending_read_insns;
2644 pending_mem = deps->pending_read_mems;
2645 while (pending)
2647 if (read_dependence (pending_mem->element (), t)
2648 && ! sched_insns_conditions_mutex_p (insn,
2649 pending->insn ()))
2650 note_mem_dep (t, pending_mem->element (),
2651 pending->insn (),
2652 DEP_ANTI);
2654 pending = pending->next ();
2655 pending_mem = pending_mem->next ();
2658 pending = deps->pending_write_insns;
2659 pending_mem = deps->pending_write_mems;
2660 while (pending)
2662 if (true_dependence (pending_mem->element (), VOIDmode, t)
2663 && ! sched_insns_conditions_mutex_p (insn,
2664 pending->insn ()))
2665 note_mem_dep (t, pending_mem->element (),
2666 pending->insn (),
2667 sched_deps_info->generate_spec_deps
2668 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2670 pending = pending->next ();
2671 pending_mem = pending_mem->next ();
2674 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2675 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2677 for (u = deps->pending_jump_insns; u; u = u->next ())
2678 if (deps_may_trap_p (x))
2680 if ((sched_deps_info->generate_spec_deps)
2681 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2683 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2684 MAX_DEP_WEAK);
2686 note_dep (u->insn (), ds);
2688 else
2689 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2693 /* Always add these dependencies to pending_reads, since
2694 this insn may be followed by a write. */
2695 if (!deps->readonly)
2697 if ((deps->pending_read_list_length
2698 + deps->pending_write_list_length)
2699 >= MAX_PENDING_LIST_LENGTH
2700 && !DEBUG_INSN_P (insn))
2701 flush_pending_lists (deps, insn, true, true);
2702 add_insn_mem_dependence (deps, true, insn, x);
2705 sched_analyze_2 (deps, XEXP (x, 0), insn);
2707 if (cslr_p && sched_deps_info->finish_rhs)
2708 sched_deps_info->finish_rhs ();
2710 return;
2713 /* Force pending stores to memory in case a trap handler needs them.
2714 Also force pending loads from memory; loads and stores can segfault
2715 and the signal handler won't be triggered if the trap insn was moved
2716 above load or store insn. */
2717 case TRAP_IF:
2718 flush_pending_lists (deps, insn, true, true);
2719 break;
2721 case PREFETCH:
2722 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2723 reg_pending_barrier = TRUE_BARRIER;
2724 /* Prefetch insn contains addresses only. So if the prefetch
2725 address has no registers, there will be no dependencies on
2726 the prefetch insn. This is wrong with result code
2727 correctness point of view as such prefetch can be moved below
2728 a jump insn which usually generates MOVE_BARRIER preventing
2729 to move insns containing registers or memories through the
2730 barrier. It is also wrong with generated code performance
2731 point of view as prefetch withouth dependecies will have a
2732 tendency to be issued later instead of earlier. It is hard
2733 to generate accurate dependencies for prefetch insns as
2734 prefetch has only the start address but it is better to have
2735 something than nothing. */
2736 if (!deps->readonly)
2738 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2739 if (sched_deps_info->use_cselib)
2740 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2741 add_insn_mem_dependence (deps, true, insn, x);
2743 break;
2745 case UNSPEC_VOLATILE:
2746 flush_pending_lists (deps, insn, true, true);
2747 /* FALLTHRU */
2749 case ASM_OPERANDS:
2750 case ASM_INPUT:
2752 /* Traditional and volatile asm instructions must be considered to use
2753 and clobber all hard registers, all pseudo-registers and all of
2754 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2756 Consider for instance a volatile asm that changes the fpu rounding
2757 mode. An insn should not be moved across this even if it only uses
2758 pseudo-regs because it might give an incorrectly rounded result. */
2759 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2760 && !DEBUG_INSN_P (insn))
2761 reg_pending_barrier = TRUE_BARRIER;
2763 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2764 We can not just fall through here since then we would be confused
2765 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2766 traditional asms unlike their normal usage. */
2768 if (code == ASM_OPERANDS)
2770 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2771 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2773 if (cslr_p && sched_deps_info->finish_rhs)
2774 sched_deps_info->finish_rhs ();
2776 return;
2778 break;
2781 case PRE_DEC:
2782 case POST_DEC:
2783 case PRE_INC:
2784 case POST_INC:
2785 /* These both read and modify the result. We must handle them as writes
2786 to get proper dependencies for following instructions. We must handle
2787 them as reads to get proper dependencies from this to previous
2788 instructions. Thus we need to pass them to both sched_analyze_1
2789 and sched_analyze_2. We must call sched_analyze_2 first in order
2790 to get the proper antecedent for the read. */
2791 sched_analyze_2 (deps, XEXP (x, 0), insn);
2792 sched_analyze_1 (deps, x, insn);
2794 if (cslr_p && sched_deps_info->finish_rhs)
2795 sched_deps_info->finish_rhs ();
2797 return;
2799 case POST_MODIFY:
2800 case PRE_MODIFY:
2801 /* op0 = op0 + op1 */
2802 sched_analyze_2 (deps, XEXP (x, 0), insn);
2803 sched_analyze_2 (deps, XEXP (x, 1), insn);
2804 sched_analyze_1 (deps, x, insn);
2806 if (cslr_p && sched_deps_info->finish_rhs)
2807 sched_deps_info->finish_rhs ();
2809 return;
2811 default:
2812 break;
2815 /* Other cases: walk the insn. */
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2819 if (fmt[i] == 'e')
2820 sched_analyze_2 (deps, XEXP (x, i), insn);
2821 else if (fmt[i] == 'E')
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2826 if (cslr_p && sched_deps_info->finish_rhs)
2827 sched_deps_info->finish_rhs ();
2830 /* Try to group two fusible insns together to prevent scheduler
2831 from scheduling them apart. */
2833 static void
2834 sched_macro_fuse_insns (rtx_insn *insn)
2836 rtx_insn *prev;
2837 prev = prev_nonnote_nondebug_insn (insn);
2838 if (!prev)
2839 return;
2841 if (any_condjump_p (insn))
2843 unsigned int condreg1, condreg2;
2844 rtx cc_reg_1;
2845 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2846 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2847 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2848 && modified_in_p (cc_reg_1, prev))
2850 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2851 SCHED_GROUP_P (insn) = 1;
2852 return;
2856 if (single_set (insn) && single_set (prev))
2858 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2859 SCHED_GROUP_P (insn) = 1;
2863 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2864 void
2865 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2867 extract_insn (insn);
2868 preprocess_constraints (insn);
2869 alternative_mask preferred = get_preferred_alternatives (insn);
2870 ira_implicitly_set_insn_hard_regs (temp, preferred);
2871 AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
2874 /* Analyze an INSN with pattern X to find all dependencies. */
2875 static void
2876 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2878 RTX_CODE code = GET_CODE (x);
2879 rtx link;
2880 unsigned i;
2881 reg_set_iterator rsi;
2883 if (! reload_completed)
2885 HARD_REG_SET temp;
2886 get_implicit_reg_pending_clobbers (&temp, insn);
2887 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2890 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2891 && code == SET);
2893 /* Group compare and branch insns for macro-fusion. */
2894 if (targetm.sched.macro_fusion_p
2895 && targetm.sched.macro_fusion_p ())
2896 sched_macro_fuse_insns (insn);
2898 if (may_trap_p (x))
2899 /* Avoid moving trapping instructions across function calls that might
2900 not always return. */
2901 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2902 1, REG_DEP_ANTI, true);
2904 /* We must avoid creating a situation in which two successors of the
2905 current block have different unwind info after scheduling. If at any
2906 point the two paths re-join this leads to incorrect unwind info. */
2907 /* ??? There are certain situations involving a forced frame pointer in
2908 which, with extra effort, we could fix up the unwind info at a later
2909 CFG join. However, it seems better to notice these cases earlier
2910 during prologue generation and avoid marking the frame pointer setup
2911 as frame-related at all. */
2912 if (RTX_FRAME_RELATED_P (insn))
2914 /* Make sure prologue insn is scheduled before next jump. */
2915 deps->sched_before_next_jump
2916 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2918 /* Make sure epilogue insn is scheduled after preceding jumps. */
2919 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2920 true);
2923 if (code == COND_EXEC)
2925 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2927 /* ??? Should be recording conditions so we reduce the number of
2928 false dependencies. */
2929 x = COND_EXEC_CODE (x);
2930 code = GET_CODE (x);
2932 if (code == SET || code == CLOBBER)
2934 sched_analyze_1 (deps, x, insn);
2936 /* Bare clobber insns are used for letting life analysis, reg-stack
2937 and others know that a value is dead. Depend on the last call
2938 instruction so that reg-stack won't get confused. */
2939 if (code == CLOBBER)
2940 add_dependence_list (insn, deps->last_function_call, 1,
2941 REG_DEP_OUTPUT, true);
2943 else if (code == PARALLEL)
2945 for (i = XVECLEN (x, 0); i--;)
2947 rtx sub = XVECEXP (x, 0, i);
2948 code = GET_CODE (sub);
2950 if (code == COND_EXEC)
2952 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2953 sub = COND_EXEC_CODE (sub);
2954 code = GET_CODE (sub);
2956 if (code == SET || code == CLOBBER)
2957 sched_analyze_1 (deps, sub, insn);
2958 else
2959 sched_analyze_2 (deps, sub, insn);
2962 else
2963 sched_analyze_2 (deps, x, insn);
2965 /* Mark registers CLOBBERED or used by called function. */
2966 if (CALL_P (insn))
2968 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2970 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2971 sched_analyze_1 (deps, XEXP (link, 0), insn);
2972 else if (GET_CODE (XEXP (link, 0)) != SET)
2973 sched_analyze_2 (deps, XEXP (link, 0), insn);
2975 /* Don't schedule anything after a tail call, tail call needs
2976 to use at least all call-saved registers. */
2977 if (SIBLING_CALL_P (insn))
2978 reg_pending_barrier = TRUE_BARRIER;
2979 else if (find_reg_note (insn, REG_SETJMP, NULL))
2980 reg_pending_barrier = MOVE_BARRIER;
2983 if (JUMP_P (insn))
2985 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2986 if (next && BARRIER_P (next))
2987 reg_pending_barrier = MOVE_BARRIER;
2988 else
2990 rtx_insn_list *pending;
2991 rtx_expr_list *pending_mem;
2993 if (sched_deps_info->compute_jump_reg_dependencies)
2995 (*sched_deps_info->compute_jump_reg_dependencies)
2996 (insn, reg_pending_control_uses);
2998 /* Make latency of jump equal to 0 by using anti-dependence. */
2999 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3001 struct deps_reg *reg_last = &deps->reg_last[i];
3002 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3003 false);
3004 add_dependence_list (insn, reg_last->implicit_sets,
3005 0, REG_DEP_ANTI, false);
3006 add_dependence_list (insn, reg_last->clobbers, 0,
3007 REG_DEP_ANTI, false);
3011 /* All memory writes and volatile reads must happen before the
3012 jump. Non-volatile reads must happen before the jump iff
3013 the result is needed by the above register used mask. */
3015 pending = deps->pending_write_insns;
3016 pending_mem = deps->pending_write_mems;
3017 while (pending)
3019 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3020 add_dependence (insn, pending->insn (),
3021 REG_DEP_OUTPUT);
3022 pending = pending->next ();
3023 pending_mem = pending_mem->next ();
3026 pending = deps->pending_read_insns;
3027 pending_mem = deps->pending_read_mems;
3028 while (pending)
3030 if (MEM_VOLATILE_P (pending_mem->element ())
3031 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3032 add_dependence (insn, pending->insn (),
3033 REG_DEP_OUTPUT);
3034 pending = pending->next ();
3035 pending_mem = pending_mem->next ();
3038 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3039 REG_DEP_ANTI, true);
3040 add_dependence_list (insn, deps->pending_jump_insns, 1,
3041 REG_DEP_ANTI, true);
3045 /* If this instruction can throw an exception, then moving it changes
3046 where block boundaries fall. This is mighty confusing elsewhere.
3047 Therefore, prevent such an instruction from being moved. Same for
3048 non-jump instructions that define block boundaries.
3049 ??? Unclear whether this is still necessary in EBB mode. If not,
3050 add_branch_dependences should be adjusted for RGN mode instead. */
3051 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3052 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3053 reg_pending_barrier = MOVE_BARRIER;
3055 if (sched_pressure != SCHED_PRESSURE_NONE)
3057 setup_insn_reg_uses (deps, insn);
3058 init_insn_reg_pressure_info (insn);
3061 /* Add register dependencies for insn. */
3062 if (DEBUG_INSN_P (insn))
3064 rtx_insn *prev = deps->last_debug_insn;
3065 rtx_insn_list *u;
3067 if (!deps->readonly)
3068 deps->last_debug_insn = insn;
3070 if (prev)
3071 add_dependence (insn, prev, REG_DEP_ANTI);
3073 add_dependence_list (insn, deps->last_function_call, 1,
3074 REG_DEP_ANTI, false);
3076 if (!sel_sched_p ())
3077 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3078 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3080 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3082 struct deps_reg *reg_last = &deps->reg_last[i];
3083 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3084 /* There's no point in making REG_DEP_CONTROL dependencies for
3085 debug insns. */
3086 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3087 false);
3089 if (!deps->readonly)
3090 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3092 CLEAR_REG_SET (reg_pending_uses);
3094 /* Quite often, a debug insn will refer to stuff in the
3095 previous instruction, but the reason we want this
3096 dependency here is to make sure the scheduler doesn't
3097 gratuitously move a debug insn ahead. This could dirty
3098 DF flags and cause additional analysis that wouldn't have
3099 occurred in compilation without debug insns, and such
3100 additional analysis can modify the generated code. */
3101 prev = PREV_INSN (insn);
3103 if (prev && NONDEBUG_INSN_P (prev))
3104 add_dependence (insn, prev, REG_DEP_ANTI);
3106 else
3108 regset_head set_or_clobbered;
3110 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3112 struct deps_reg *reg_last = &deps->reg_last[i];
3113 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3114 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3115 false);
3116 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3117 false);
3119 if (!deps->readonly)
3121 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3122 reg_last->uses_length++;
3126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3127 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3129 struct deps_reg *reg_last = &deps->reg_last[i];
3130 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3131 add_dependence_list (insn, reg_last->implicit_sets, 0,
3132 REG_DEP_ANTI, false);
3133 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3134 false);
3136 if (!deps->readonly)
3138 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3139 reg_last->uses_length++;
3143 if (targetm.sched.exposed_pipeline)
3145 INIT_REG_SET (&set_or_clobbered);
3146 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3147 reg_pending_sets);
3148 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3150 struct deps_reg *reg_last = &deps->reg_last[i];
3151 rtx list;
3152 for (list = reg_last->uses; list; list = XEXP (list, 1))
3154 rtx other = XEXP (list, 0);
3155 if (INSN_CACHED_COND (other) != const_true_rtx
3156 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3157 INSN_CACHED_COND (other) = const_true_rtx;
3162 /* If the current insn is conditional, we can't free any
3163 of the lists. */
3164 if (sched_has_condition_p (insn))
3166 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3168 struct deps_reg *reg_last = &deps->reg_last[i];
3169 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3170 false);
3171 add_dependence_list (insn, reg_last->implicit_sets, 0,
3172 REG_DEP_ANTI, false);
3173 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3174 false);
3175 add_dependence_list (insn, reg_last->control_uses, 0,
3176 REG_DEP_CONTROL, false);
3178 if (!deps->readonly)
3180 reg_last->clobbers
3181 = alloc_INSN_LIST (insn, reg_last->clobbers);
3182 reg_last->clobbers_length++;
3185 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3187 struct deps_reg *reg_last = &deps->reg_last[i];
3188 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3189 false);
3190 add_dependence_list (insn, reg_last->implicit_sets, 0,
3191 REG_DEP_ANTI, false);
3192 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3193 false);
3194 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3195 false);
3196 add_dependence_list (insn, reg_last->control_uses, 0,
3197 REG_DEP_CONTROL, false);
3199 if (!deps->readonly)
3200 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3203 else
3205 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3207 struct deps_reg *reg_last = &deps->reg_last[i];
3208 if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3209 || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3211 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3212 REG_DEP_OUTPUT, false);
3213 add_dependence_list_and_free (deps, insn,
3214 &reg_last->implicit_sets, 0,
3215 REG_DEP_ANTI, false);
3216 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3217 REG_DEP_ANTI, false);
3218 add_dependence_list_and_free (deps, insn,
3219 &reg_last->control_uses, 0,
3220 REG_DEP_ANTI, false);
3221 add_dependence_list_and_free (deps, insn,
3222 &reg_last->clobbers, 0,
3223 REG_DEP_OUTPUT, false);
3225 if (!deps->readonly)
3227 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3228 reg_last->clobbers_length = 0;
3229 reg_last->uses_length = 0;
3232 else
3234 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3235 false);
3236 add_dependence_list (insn, reg_last->implicit_sets, 0,
3237 REG_DEP_ANTI, false);
3238 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3239 false);
3240 add_dependence_list (insn, reg_last->control_uses, 0,
3241 REG_DEP_CONTROL, false);
3244 if (!deps->readonly)
3246 reg_last->clobbers_length++;
3247 reg_last->clobbers
3248 = alloc_INSN_LIST (insn, reg_last->clobbers);
3251 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3253 struct deps_reg *reg_last = &deps->reg_last[i];
3255 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3256 REG_DEP_OUTPUT, false);
3257 add_dependence_list_and_free (deps, insn,
3258 &reg_last->implicit_sets,
3259 0, REG_DEP_ANTI, false);
3260 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3261 REG_DEP_OUTPUT, false);
3262 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3263 REG_DEP_ANTI, false);
3264 add_dependence_list (insn, reg_last->control_uses, 0,
3265 REG_DEP_CONTROL, false);
3267 if (!deps->readonly)
3269 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3270 reg_last->uses_length = 0;
3271 reg_last->clobbers_length = 0;
3275 if (!deps->readonly)
3277 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3279 struct deps_reg *reg_last = &deps->reg_last[i];
3280 reg_last->control_uses
3281 = alloc_INSN_LIST (insn, reg_last->control_uses);
3286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3287 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3289 struct deps_reg *reg_last = &deps->reg_last[i];
3290 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3291 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3292 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3293 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3294 false);
3296 if (!deps->readonly)
3297 reg_last->implicit_sets
3298 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3301 if (!deps->readonly)
3303 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3304 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3305 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3306 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3307 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3308 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3309 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3311 /* Set up the pending barrier found. */
3312 deps->last_reg_pending_barrier = reg_pending_barrier;
3315 CLEAR_REG_SET (reg_pending_uses);
3316 CLEAR_REG_SET (reg_pending_clobbers);
3317 CLEAR_REG_SET (reg_pending_sets);
3318 CLEAR_REG_SET (reg_pending_control_uses);
3319 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3320 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3322 /* Add dependencies if a scheduling barrier was found. */
3323 if (reg_pending_barrier)
3325 /* In the case of barrier the most added dependencies are not
3326 real, so we use anti-dependence here. */
3327 if (sched_has_condition_p (insn))
3329 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3331 struct deps_reg *reg_last = &deps->reg_last[i];
3332 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3333 true);
3334 add_dependence_list (insn, reg_last->sets, 0,
3335 reg_pending_barrier == TRUE_BARRIER
3336 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3337 add_dependence_list (insn, reg_last->implicit_sets, 0,
3338 REG_DEP_ANTI, true);
3339 add_dependence_list (insn, reg_last->clobbers, 0,
3340 reg_pending_barrier == TRUE_BARRIER
3341 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3344 else
3346 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3348 struct deps_reg *reg_last = &deps->reg_last[i];
3349 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3350 REG_DEP_ANTI, true);
3351 add_dependence_list_and_free (deps, insn,
3352 &reg_last->control_uses, 0,
3353 REG_DEP_CONTROL, true);
3354 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3355 reg_pending_barrier == TRUE_BARRIER
3356 ? REG_DEP_TRUE : REG_DEP_ANTI,
3357 true);
3358 add_dependence_list_and_free (deps, insn,
3359 &reg_last->implicit_sets, 0,
3360 REG_DEP_ANTI, true);
3361 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3362 reg_pending_barrier == TRUE_BARRIER
3363 ? REG_DEP_TRUE : REG_DEP_ANTI,
3364 true);
3366 if (!deps->readonly)
3368 reg_last->uses_length = 0;
3369 reg_last->clobbers_length = 0;
3374 if (!deps->readonly)
3375 for (i = 0; i < (unsigned)deps->max_reg; i++)
3377 struct deps_reg *reg_last = &deps->reg_last[i];
3378 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3379 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3382 /* Don't flush pending lists on speculative checks for
3383 selective scheduling. */
3384 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3385 flush_pending_lists (deps, insn, true, true);
3387 reg_pending_barrier = NOT_A_BARRIER;
3390 /* If a post-call group is still open, see if it should remain so.
3391 This insn must be a simple move of a hard reg to a pseudo or
3392 vice-versa.
3394 We must avoid moving these insns for correctness on targets
3395 with small register classes, and for special registers like
3396 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3397 hard regs for all targets. */
3399 if (deps->in_post_call_group_p)
3401 rtx tmp, set = single_set (insn);
3402 int src_regno, dest_regno;
3404 if (set == NULL)
3406 if (DEBUG_INSN_P (insn))
3407 /* We don't want to mark debug insns as part of the same
3408 sched group. We know they really aren't, but if we use
3409 debug insns to tell that a call group is over, we'll
3410 get different code if debug insns are not there and
3411 instructions that follow seem like they should be part
3412 of the call group.
3414 Also, if we did, chain_to_prev_insn would move the
3415 deps of the debug insn to the call insn, modifying
3416 non-debug post-dependency counts of the debug insn
3417 dependencies and otherwise messing with the scheduling
3418 order.
3420 Instead, let such debug insns be scheduled freely, but
3421 keep the call group open in case there are insns that
3422 should be part of it afterwards. Since we grant debug
3423 insns higher priority than even sched group insns, it
3424 will all turn out all right. */
3425 goto debug_dont_end_call_group;
3426 else
3427 goto end_call_group;
3430 tmp = SET_DEST (set);
3431 if (GET_CODE (tmp) == SUBREG)
3432 tmp = SUBREG_REG (tmp);
3433 if (REG_P (tmp))
3434 dest_regno = REGNO (tmp);
3435 else
3436 goto end_call_group;
3438 tmp = SET_SRC (set);
3439 if (GET_CODE (tmp) == SUBREG)
3440 tmp = SUBREG_REG (tmp);
3441 if ((GET_CODE (tmp) == PLUS
3442 || GET_CODE (tmp) == MINUS)
3443 && REG_P (XEXP (tmp, 0))
3444 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3445 && dest_regno == STACK_POINTER_REGNUM)
3446 src_regno = STACK_POINTER_REGNUM;
3447 else if (REG_P (tmp))
3448 src_regno = REGNO (tmp);
3449 else
3450 goto end_call_group;
3452 if (src_regno < FIRST_PSEUDO_REGISTER
3453 || dest_regno < FIRST_PSEUDO_REGISTER)
3455 if (!deps->readonly
3456 && deps->in_post_call_group_p == post_call_initial)
3457 deps->in_post_call_group_p = post_call;
3459 if (!sel_sched_p () || sched_emulate_haifa_p)
3461 SCHED_GROUP_P (insn) = 1;
3462 CANT_MOVE (insn) = 1;
3465 else
3467 end_call_group:
3468 if (!deps->readonly)
3469 deps->in_post_call_group_p = not_post_call;
3473 debug_dont_end_call_group:
3474 if ((current_sched_info->flags & DO_SPECULATION)
3475 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3476 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3477 be speculated. */
3479 if (sel_sched_p ())
3480 sel_mark_hard_insn (insn);
3481 else
3483 sd_iterator_def sd_it;
3484 dep_t dep;
3486 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3487 sd_iterator_cond (&sd_it, &dep);)
3488 change_spec_dep_to_hard (sd_it);
3492 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3493 honor their original ordering. */
3494 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3496 if (deps->last_args_size)
3497 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3498 if (!deps->readonly)
3499 deps->last_args_size = insn;
3502 /* We must not mix prologue and epilogue insns. See PR78029. */
3503 if (prologue_contains (insn))
3505 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3506 if (!deps->readonly)
3508 if (deps->last_logue_was_epilogue)
3509 free_INSN_LIST_list (&deps->last_prologue);
3510 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3511 deps->last_logue_was_epilogue = false;
3515 if (epilogue_contains (insn))
3517 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3518 if (!deps->readonly)
3520 if (!deps->last_logue_was_epilogue)
3521 free_INSN_LIST_list (&deps->last_epilogue);
3522 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3523 deps->last_logue_was_epilogue = true;
3528 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3529 longjmp, loop forever, ...). */
3530 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3531 test for ECF_NORETURN? */
3532 static bool
3533 call_may_noreturn_p (rtx_insn *insn)
3535 rtx call;
3537 /* const or pure calls that aren't looping will always return. */
3538 if (RTL_CONST_OR_PURE_CALL_P (insn)
3539 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3540 return false;
3542 call = get_call_rtx_from (insn);
3543 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3545 rtx symbol = XEXP (XEXP (call, 0), 0);
3546 if (SYMBOL_REF_DECL (symbol)
3547 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3549 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3550 == BUILT_IN_NORMAL)
3551 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3553 case BUILT_IN_BCMP:
3554 case BUILT_IN_BCOPY:
3555 case BUILT_IN_BZERO:
3556 case BUILT_IN_INDEX:
3557 case BUILT_IN_MEMCHR:
3558 case BUILT_IN_MEMCMP:
3559 case BUILT_IN_MEMCPY:
3560 case BUILT_IN_MEMMOVE:
3561 case BUILT_IN_MEMPCPY:
3562 case BUILT_IN_MEMSET:
3563 case BUILT_IN_RINDEX:
3564 case BUILT_IN_STPCPY:
3565 case BUILT_IN_STPNCPY:
3566 case BUILT_IN_STRCAT:
3567 case BUILT_IN_STRCHR:
3568 case BUILT_IN_STRCMP:
3569 case BUILT_IN_STRCPY:
3570 case BUILT_IN_STRCSPN:
3571 case BUILT_IN_STRLEN:
3572 case BUILT_IN_STRNCAT:
3573 case BUILT_IN_STRNCMP:
3574 case BUILT_IN_STRNCPY:
3575 case BUILT_IN_STRPBRK:
3576 case BUILT_IN_STRRCHR:
3577 case BUILT_IN_STRSPN:
3578 case BUILT_IN_STRSTR:
3579 /* Assume certain string/memory builtins always return. */
3580 return false;
3581 default:
3582 break;
3587 /* For all other calls assume that they might not always return. */
3588 return true;
3591 /* Return true if INSN should be made dependent on the previous instruction
3592 group, and if all INSN's dependencies should be moved to the first
3593 instruction of that group. */
3595 static bool
3596 chain_to_prev_insn_p (rtx_insn *insn)
3598 /* INSN forms a group with the previous instruction. */
3599 if (SCHED_GROUP_P (insn))
3600 return true;
3602 /* If the previous instruction clobbers a register R and this one sets
3603 part of R, the clobber was added specifically to help us track the
3604 liveness of R. There's no point scheduling the clobber and leaving
3605 INSN behind, especially if we move the clobber to another block. */
3606 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3607 if (prev
3608 && INSN_P (prev)
3609 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3610 && GET_CODE (PATTERN (prev)) == CLOBBER)
3612 rtx x = XEXP (PATTERN (prev), 0);
3613 if (set_of (x, insn))
3614 return true;
3617 return false;
3620 /* Analyze INSN with DEPS as a context. */
3621 void
3622 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3624 if (sched_deps_info->start_insn)
3625 sched_deps_info->start_insn (insn);
3627 /* Record the condition for this insn. */
3628 if (NONDEBUG_INSN_P (insn))
3630 rtx t;
3631 sched_get_condition_with_rev (insn, NULL);
3632 t = INSN_CACHED_COND (insn);
3633 INSN_COND_DEPS (insn) = NULL;
3634 if (reload_completed
3635 && (current_sched_info->flags & DO_PREDICATION)
3636 && COMPARISON_P (t)
3637 && REG_P (XEXP (t, 0))
3638 && CONSTANT_P (XEXP (t, 1)))
3640 unsigned int regno;
3641 int nregs;
3642 rtx_insn_list *cond_deps = NULL;
3643 t = XEXP (t, 0);
3644 regno = REGNO (t);
3645 nregs = REG_NREGS (t);
3646 while (nregs-- > 0)
3648 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3649 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3650 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3651 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3653 INSN_COND_DEPS (insn) = cond_deps;
3657 if (JUMP_P (insn))
3659 /* Make each JUMP_INSN (but not a speculative check)
3660 a scheduling barrier for memory references. */
3661 if (!deps->readonly
3662 && !(sel_sched_p ()
3663 && sel_insn_is_speculation_check (insn)))
3665 /* Keep the list a reasonable size. */
3666 if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3667 flush_pending_lists (deps, insn, true, true);
3668 else
3669 deps->pending_jump_insns
3670 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3673 /* For each insn which shouldn't cross a jump, add a dependence. */
3674 add_dependence_list_and_free (deps, insn,
3675 &deps->sched_before_next_jump, 1,
3676 REG_DEP_ANTI, true);
3678 sched_analyze_insn (deps, PATTERN (insn), insn);
3680 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3682 sched_analyze_insn (deps, PATTERN (insn), insn);
3684 else if (CALL_P (insn))
3686 int i;
3688 CANT_MOVE (insn) = 1;
3690 if (find_reg_note (insn, REG_SETJMP, NULL))
3692 /* This is setjmp. Assume that all registers, not just
3693 hard registers, may be clobbered by this call. */
3694 reg_pending_barrier = MOVE_BARRIER;
3696 else
3698 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3699 /* A call may read and modify global register variables. */
3700 if (global_regs[i])
3702 SET_REGNO_REG_SET (reg_pending_sets, i);
3703 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3705 /* Other call-clobbered hard regs may be clobbered.
3706 Since we only have a choice between 'might be clobbered'
3707 and 'definitely not clobbered', we must include all
3708 partly call-clobbered registers here. */
3709 else if (targetm.hard_regno_call_part_clobbered (i,
3710 reg_raw_mode[i])
3711 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3712 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3713 /* We don't know what set of fixed registers might be used
3714 by the function, but it is certain that the stack pointer
3715 is among them, but be conservative. */
3716 else if (fixed_regs[i])
3717 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3718 /* The frame pointer is normally not used by the function
3719 itself, but by the debugger. */
3720 /* ??? MIPS o32 is an exception. It uses the frame pointer
3721 in the macro expansion of jal but does not represent this
3722 fact in the call_insn rtl. */
3723 else if (i == FRAME_POINTER_REGNUM
3724 || (i == HARD_FRAME_POINTER_REGNUM
3725 && (! reload_completed || frame_pointer_needed)))
3726 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3729 /* For each insn which shouldn't cross a call, add a dependence
3730 between that insn and this call insn. */
3731 add_dependence_list_and_free (deps, insn,
3732 &deps->sched_before_next_call, 1,
3733 REG_DEP_ANTI, true);
3735 sched_analyze_insn (deps, PATTERN (insn), insn);
3737 /* If CALL would be in a sched group, then this will violate
3738 convention that sched group insns have dependencies only on the
3739 previous instruction.
3741 Of course one can say: "Hey! What about head of the sched group?"
3742 And I will answer: "Basic principles (one dep per insn) are always
3743 the same." */
3744 gcc_assert (!SCHED_GROUP_P (insn));
3746 /* In the absence of interprocedural alias analysis, we must flush
3747 all pending reads and writes, and start new dependencies starting
3748 from here. But only flush writes for constant calls (which may
3749 be passed a pointer to something we haven't written yet). */
3750 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3752 if (!deps->readonly)
3754 /* Remember the last function call for limiting lifetimes. */
3755 free_INSN_LIST_list (&deps->last_function_call);
3756 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3758 if (call_may_noreturn_p (insn))
3760 /* Remember the last function call that might not always return
3761 normally for limiting moves of trapping insns. */
3762 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3763 deps->last_function_call_may_noreturn
3764 = alloc_INSN_LIST (insn, NULL_RTX);
3767 /* Before reload, begin a post-call group, so as to keep the
3768 lifetimes of hard registers correct. */
3769 if (! reload_completed)
3770 deps->in_post_call_group_p = post_call;
3774 if (sched_deps_info->use_cselib)
3775 cselib_process_insn (insn);
3777 if (sched_deps_info->finish_insn)
3778 sched_deps_info->finish_insn ();
3780 /* Fixup the dependencies in the sched group. */
3781 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3782 && chain_to_prev_insn_p (insn)
3783 && !sel_sched_p ())
3784 chain_to_prev_insn (insn);
3787 /* Initialize DEPS for the new block beginning with HEAD. */
3788 void
3789 deps_start_bb (struct deps_desc *deps, rtx_insn *head)
3791 gcc_assert (!deps->readonly);
3793 /* Before reload, if the previous block ended in a call, show that
3794 we are inside a post-call group, so as to keep the lifetimes of
3795 hard registers correct. */
3796 if (! reload_completed && !LABEL_P (head))
3798 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3800 if (insn && CALL_P (insn))
3801 deps->in_post_call_group_p = post_call_initial;
3805 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3806 dependencies for each insn. */
3807 void
3808 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3810 rtx_insn *insn;
3812 if (sched_deps_info->use_cselib)
3813 cselib_init (CSELIB_RECORD_MEMORY);
3815 deps_start_bb (deps, head);
3817 for (insn = head;; insn = NEXT_INSN (insn))
3820 if (INSN_P (insn))
3822 /* And initialize deps_lists. */
3823 sd_init_insn (insn);
3824 /* Clean up SCHED_GROUP_P which may be set by last
3825 scheduler pass. */
3826 if (SCHED_GROUP_P (insn))
3827 SCHED_GROUP_P (insn) = 0;
3830 deps_analyze_insn (deps, insn);
3832 if (insn == tail)
3834 if (sched_deps_info->use_cselib)
3835 cselib_finish ();
3836 return;
3839 gcc_unreachable ();
3842 /* Helper for sched_free_deps ().
3843 Delete INSN's (RESOLVED_P) backward dependencies. */
3844 static void
3845 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3847 sd_iterator_def sd_it;
3848 dep_t dep;
3849 sd_list_types_def types;
3851 if (resolved_p)
3852 types = SD_LIST_RES_BACK;
3853 else
3854 types = SD_LIST_BACK;
3856 for (sd_it = sd_iterator_start (insn, types);
3857 sd_iterator_cond (&sd_it, &dep);)
3859 dep_link_t link = *sd_it.linkp;
3860 dep_node_t node = DEP_LINK_NODE (link);
3861 deps_list_t back_list;
3862 deps_list_t forw_list;
3864 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3865 remove_from_deps_list (link, back_list);
3866 delete_dep_node (node);
3870 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3871 deps_lists. */
3872 void
3873 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3875 rtx_insn *insn;
3876 rtx_insn *next_tail = NEXT_INSN (tail);
3878 /* We make two passes since some insns may be scheduled before their
3879 dependencies are resolved. */
3880 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3881 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3883 /* Clear forward deps and leave the dep_nodes to the
3884 corresponding back_deps list. */
3885 if (resolved_p)
3886 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3887 else
3888 clear_deps_list (INSN_FORW_DEPS (insn));
3890 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3891 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3893 /* Clear resolved back deps together with its dep_nodes. */
3894 delete_dep_nodes_in_back_deps (insn, resolved_p);
3896 sd_finish_insn (insn);
3900 /* Initialize variables for region data dependence analysis.
3901 When LAZY_REG_LAST is true, do not allocate reg_last array
3902 of struct deps_desc immediately. */
3904 void
3905 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3907 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3909 deps->max_reg = max_reg;
3910 if (lazy_reg_last)
3911 deps->reg_last = NULL;
3912 else
3913 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3914 INIT_REG_SET (&deps->reg_last_in_use);
3916 deps->pending_read_insns = 0;
3917 deps->pending_read_mems = 0;
3918 deps->pending_write_insns = 0;
3919 deps->pending_write_mems = 0;
3920 deps->pending_jump_insns = 0;
3921 deps->pending_read_list_length = 0;
3922 deps->pending_write_list_length = 0;
3923 deps->pending_flush_length = 0;
3924 deps->last_pending_memory_flush = 0;
3925 deps->last_function_call = 0;
3926 deps->last_function_call_may_noreturn = 0;
3927 deps->sched_before_next_call = 0;
3928 deps->sched_before_next_jump = 0;
3929 deps->in_post_call_group_p = not_post_call;
3930 deps->last_debug_insn = 0;
3931 deps->last_args_size = 0;
3932 deps->last_prologue = 0;
3933 deps->last_epilogue = 0;
3934 deps->last_logue_was_epilogue = false;
3935 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3936 deps->readonly = 0;
3939 /* Init only reg_last field of DEPS, which was not allocated before as
3940 we inited DEPS lazily. */
3941 void
3942 init_deps_reg_last (struct deps_desc *deps)
3944 gcc_assert (deps && deps->max_reg > 0);
3945 gcc_assert (deps->reg_last == NULL);
3947 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3951 /* Free insn lists found in DEPS. */
3953 void
3954 free_deps (struct deps_desc *deps)
3956 unsigned i;
3957 reg_set_iterator rsi;
3959 /* We set max_reg to 0 when this context was already freed. */
3960 if (deps->max_reg == 0)
3962 gcc_assert (deps->reg_last == NULL);
3963 return;
3965 deps->max_reg = 0;
3967 free_INSN_LIST_list (&deps->pending_read_insns);
3968 free_EXPR_LIST_list (&deps->pending_read_mems);
3969 free_INSN_LIST_list (&deps->pending_write_insns);
3970 free_EXPR_LIST_list (&deps->pending_write_mems);
3971 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3973 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3974 times. For a testcase with 42000 regs and 8000 small basic blocks,
3975 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3976 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3978 struct deps_reg *reg_last = &deps->reg_last[i];
3979 if (reg_last->uses)
3980 free_INSN_LIST_list (&reg_last->uses);
3981 if (reg_last->sets)
3982 free_INSN_LIST_list (&reg_last->sets);
3983 if (reg_last->implicit_sets)
3984 free_INSN_LIST_list (&reg_last->implicit_sets);
3985 if (reg_last->control_uses)
3986 free_INSN_LIST_list (&reg_last->control_uses);
3987 if (reg_last->clobbers)
3988 free_INSN_LIST_list (&reg_last->clobbers);
3990 CLEAR_REG_SET (&deps->reg_last_in_use);
3992 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3993 it at all. */
3994 free (deps->reg_last);
3995 deps->reg_last = NULL;
3997 deps = NULL;
4000 /* Remove INSN from dependence contexts DEPS. */
4001 void
4002 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
4004 int removed;
4005 unsigned i;
4006 reg_set_iterator rsi;
4008 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4009 &deps->pending_read_mems);
4010 if (!DEBUG_INSN_P (insn))
4011 deps->pending_read_list_length -= removed;
4012 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4013 &deps->pending_write_mems);
4014 deps->pending_write_list_length -= removed;
4016 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4017 deps->pending_flush_length -= removed;
4018 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4019 deps->pending_flush_length -= removed;
4021 unsigned to_clear = -1U;
4022 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4024 if (to_clear != -1U)
4026 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4027 to_clear = -1U;
4029 struct deps_reg *reg_last = &deps->reg_last[i];
4030 if (reg_last->uses)
4031 remove_from_dependence_list (insn, &reg_last->uses);
4032 if (reg_last->sets)
4033 remove_from_dependence_list (insn, &reg_last->sets);
4034 if (reg_last->implicit_sets)
4035 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4036 if (reg_last->clobbers)
4037 remove_from_dependence_list (insn, &reg_last->clobbers);
4038 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4039 && !reg_last->clobbers)
4040 to_clear = i;
4042 if (to_clear != -1U)
4043 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4045 if (CALL_P (insn))
4047 remove_from_dependence_list (insn, &deps->last_function_call);
4048 remove_from_dependence_list (insn,
4049 &deps->last_function_call_may_noreturn);
4051 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4054 /* Init deps data vector. */
4055 static void
4056 init_deps_data_vector (void)
4058 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4059 if (reserve > 0 && ! h_d_i_d.space (reserve))
4060 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4063 /* If it is profitable to use them, initialize or extend (depending on
4064 GLOBAL_P) dependency data. */
4065 void
4066 sched_deps_init (bool global_p)
4068 /* Average number of insns in the basic block.
4069 '+ 1' is used to make it nonzero. */
4070 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4072 init_deps_data_vector ();
4074 /* We use another caching mechanism for selective scheduling, so
4075 we don't use this one. */
4076 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4078 /* ?!? We could save some memory by computing a per-region luid mapping
4079 which could reduce both the number of vectors in the cache and the
4080 size of each vector. Instead we just avoid the cache entirely unless
4081 the average number of instructions in a basic block is very high. See
4082 the comment before the declaration of true_dependency_cache for
4083 what we consider "very high". */
4084 cache_size = 0;
4085 extend_dependency_caches (sched_max_luid, true);
4088 if (global_p)
4090 dl_pool = new object_allocator<_deps_list> ("deps_list");
4091 /* Allocate lists for one block at a time. */
4092 dn_pool = new object_allocator<_dep_node> ("dep_node");
4093 /* Allocate nodes for one block at a time. */
4098 /* Create or extend (depending on CREATE_P) dependency caches to
4099 size N. */
4100 void
4101 extend_dependency_caches (int n, bool create_p)
4103 if (create_p || true_dependency_cache)
4105 int i, luid = cache_size + n;
4107 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4108 luid);
4109 output_dependency_cache = XRESIZEVEC (bitmap_head,
4110 output_dependency_cache, luid);
4111 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4112 luid);
4113 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4114 luid);
4116 if (current_sched_info->flags & DO_SPECULATION)
4117 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4118 luid);
4120 for (i = cache_size; i < luid; i++)
4122 bitmap_initialize (&true_dependency_cache[i], 0);
4123 bitmap_initialize (&output_dependency_cache[i], 0);
4124 bitmap_initialize (&anti_dependency_cache[i], 0);
4125 bitmap_initialize (&control_dependency_cache[i], 0);
4127 if (current_sched_info->flags & DO_SPECULATION)
4128 bitmap_initialize (&spec_dependency_cache[i], 0);
4130 cache_size = luid;
4134 /* Finalize dependency information for the whole function. */
4135 void
4136 sched_deps_finish (void)
4138 gcc_assert (deps_pools_are_empty_p ());
4139 delete dn_pool;
4140 delete dl_pool;
4141 dn_pool = NULL;
4142 dl_pool = NULL;
4144 h_d_i_d.release ();
4145 cache_size = 0;
4147 if (true_dependency_cache)
4149 int i;
4151 for (i = 0; i < cache_size; i++)
4153 bitmap_clear (&true_dependency_cache[i]);
4154 bitmap_clear (&output_dependency_cache[i]);
4155 bitmap_clear (&anti_dependency_cache[i]);
4156 bitmap_clear (&control_dependency_cache[i]);
4158 if (sched_deps_info->generate_spec_deps)
4159 bitmap_clear (&spec_dependency_cache[i]);
4161 free (true_dependency_cache);
4162 true_dependency_cache = NULL;
4163 free (output_dependency_cache);
4164 output_dependency_cache = NULL;
4165 free (anti_dependency_cache);
4166 anti_dependency_cache = NULL;
4167 free (control_dependency_cache);
4168 control_dependency_cache = NULL;
4170 if (sched_deps_info->generate_spec_deps)
4172 free (spec_dependency_cache);
4173 spec_dependency_cache = NULL;
4179 /* Initialize some global variables needed by the dependency analysis
4180 code. */
4182 void
4183 init_deps_global (void)
4185 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4186 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4187 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4188 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4189 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4190 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4191 reg_pending_barrier = NOT_A_BARRIER;
4193 if (!sel_sched_p () || sched_emulate_haifa_p)
4195 sched_deps_info->start_insn = haifa_start_insn;
4196 sched_deps_info->finish_insn = haifa_finish_insn;
4198 sched_deps_info->note_reg_set = haifa_note_reg_set;
4199 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4200 sched_deps_info->note_reg_use = haifa_note_reg_use;
4202 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4203 sched_deps_info->note_dep = haifa_note_dep;
4207 /* Free everything used by the dependency analysis code. */
4209 void
4210 finish_deps_global (void)
4212 FREE_REG_SET (reg_pending_sets);
4213 FREE_REG_SET (reg_pending_clobbers);
4214 FREE_REG_SET (reg_pending_uses);
4215 FREE_REG_SET (reg_pending_control_uses);
4218 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4219 dw_t
4220 estimate_dep_weak (rtx mem1, rtx mem2)
4222 if (mem1 == mem2)
4223 /* MEMs are the same - don't speculate. */
4224 return MIN_DEP_WEAK;
4226 rtx r1 = XEXP (mem1, 0);
4227 rtx r2 = XEXP (mem2, 0);
4229 if (sched_deps_info->use_cselib)
4231 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4232 dangling at this point, since we never preserve them. Instead we
4233 canonicalize manually to get stable VALUEs out of hashing. */
4234 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4235 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4236 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4237 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4240 if (r1 == r2
4241 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4242 /* Again, MEMs are the same. */
4243 return MIN_DEP_WEAK;
4244 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4245 /* Different addressing modes - reason to be more speculative,
4246 than usual. */
4247 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4248 else
4249 /* We can't say anything about the dependence. */
4250 return UNCERTAIN_DEP_WEAK;
4253 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4254 This function can handle same INSN and ELEM (INSN == ELEM).
4255 It is a convenience wrapper. */
4256 static void
4257 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4259 ds_t ds;
4260 bool internal;
4262 if (dep_type == REG_DEP_TRUE)
4263 ds = DEP_TRUE;
4264 else if (dep_type == REG_DEP_OUTPUT)
4265 ds = DEP_OUTPUT;
4266 else if (dep_type == REG_DEP_CONTROL)
4267 ds = DEP_CONTROL;
4268 else
4270 gcc_assert (dep_type == REG_DEP_ANTI);
4271 ds = DEP_ANTI;
4274 /* When add_dependence is called from inside sched-deps.c, we expect
4275 cur_insn to be non-null. */
4276 internal = cur_insn != NULL;
4277 if (internal)
4278 gcc_assert (insn == cur_insn);
4279 else
4280 cur_insn = insn;
4282 note_dep (elem, ds);
4283 if (!internal)
4284 cur_insn = NULL;
4287 /* Return weakness of speculative type TYPE in the dep_status DS,
4288 without checking to prevent ICEs on malformed input. */
4289 static dw_t
4290 get_dep_weak_1 (ds_t ds, ds_t type)
4292 ds = ds & type;
4294 switch (type)
4296 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4297 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4298 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4299 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4300 default: gcc_unreachable ();
4303 return (dw_t) ds;
4306 /* Return weakness of speculative type TYPE in the dep_status DS. */
4307 dw_t
4308 get_dep_weak (ds_t ds, ds_t type)
4310 dw_t dw = get_dep_weak_1 (ds, type);
4312 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4313 return dw;
4316 /* Return the dep_status, which has the same parameters as DS, except for
4317 speculative type TYPE, that will have weakness DW. */
4318 ds_t
4319 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4321 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4323 ds &= ~type;
4324 switch (type)
4326 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4327 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4328 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4329 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4330 default: gcc_unreachable ();
4332 return ds;
4335 /* Return the join of two dep_statuses DS1 and DS2.
4336 If MAX_P is true then choose the greater probability,
4337 otherwise multiply probabilities.
4338 This function assumes that both DS1 and DS2 contain speculative bits. */
4339 static ds_t
4340 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4342 ds_t ds, t;
4344 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4346 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4348 t = FIRST_SPEC_TYPE;
4351 if ((ds1 & t) && !(ds2 & t))
4352 ds |= ds1 & t;
4353 else if (!(ds1 & t) && (ds2 & t))
4354 ds |= ds2 & t;
4355 else if ((ds1 & t) && (ds2 & t))
4357 dw_t dw1 = get_dep_weak (ds1, t);
4358 dw_t dw2 = get_dep_weak (ds2, t);
4359 ds_t dw;
4361 if (!max_p)
4363 dw = ((ds_t) dw1) * ((ds_t) dw2);
4364 dw /= MAX_DEP_WEAK;
4365 if (dw < MIN_DEP_WEAK)
4366 dw = MIN_DEP_WEAK;
4368 else
4370 if (dw1 >= dw2)
4371 dw = dw1;
4372 else
4373 dw = dw2;
4376 ds = set_dep_weak (ds, t, (dw_t) dw);
4379 if (t == LAST_SPEC_TYPE)
4380 break;
4381 t <<= SPEC_TYPE_SHIFT;
4383 while (1);
4385 return ds;
4388 /* Return the join of two dep_statuses DS1 and DS2.
4389 This function assumes that both DS1 and DS2 contain speculative bits. */
4390 ds_t
4391 ds_merge (ds_t ds1, ds_t ds2)
4393 return ds_merge_1 (ds1, ds2, false);
4396 /* Return the join of two dep_statuses DS1 and DS2. */
4397 ds_t
4398 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4400 ds_t new_status = ds | ds2;
4402 if (new_status & SPECULATIVE)
4404 if ((ds && !(ds & SPECULATIVE))
4405 || (ds2 && !(ds2 & SPECULATIVE)))
4406 /* Then this dep can't be speculative. */
4407 new_status &= ~SPECULATIVE;
4408 else
4410 /* Both are speculative. Merging probabilities. */
4411 if (mem1)
4413 dw_t dw;
4415 dw = estimate_dep_weak (mem1, mem2);
4416 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4419 if (!ds)
4420 new_status = ds2;
4421 else if (!ds2)
4422 new_status = ds;
4423 else
4424 new_status = ds_merge (ds2, ds);
4428 return new_status;
4431 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4432 probabilities. */
4433 ds_t
4434 ds_max_merge (ds_t ds1, ds_t ds2)
4436 if (ds1 == 0 && ds2 == 0)
4437 return 0;
4439 if (ds1 == 0 && ds2 != 0)
4440 return ds2;
4442 if (ds1 != 0 && ds2 == 0)
4443 return ds1;
4445 return ds_merge_1 (ds1, ds2, true);
4448 /* Return the probability of speculation success for the speculation
4449 status DS. */
4450 dw_t
4451 ds_weak (ds_t ds)
4453 ds_t res = 1, dt;
4454 int n = 0;
4456 dt = FIRST_SPEC_TYPE;
4459 if (ds & dt)
4461 res *= (ds_t) get_dep_weak (ds, dt);
4462 n++;
4465 if (dt == LAST_SPEC_TYPE)
4466 break;
4467 dt <<= SPEC_TYPE_SHIFT;
4469 while (1);
4471 gcc_assert (n);
4472 while (--n)
4473 res /= MAX_DEP_WEAK;
4475 if (res < MIN_DEP_WEAK)
4476 res = MIN_DEP_WEAK;
4478 gcc_assert (res <= MAX_DEP_WEAK);
4480 return (dw_t) res;
4483 /* Return a dep status that contains all speculation types of DS. */
4484 ds_t
4485 ds_get_speculation_types (ds_t ds)
4487 if (ds & BEGIN_DATA)
4488 ds |= BEGIN_DATA;
4489 if (ds & BE_IN_DATA)
4490 ds |= BE_IN_DATA;
4491 if (ds & BEGIN_CONTROL)
4492 ds |= BEGIN_CONTROL;
4493 if (ds & BE_IN_CONTROL)
4494 ds |= BE_IN_CONTROL;
4496 return ds & SPECULATIVE;
4499 /* Return a dep status that contains maximal weakness for each speculation
4500 type present in DS. */
4501 ds_t
4502 ds_get_max_dep_weak (ds_t ds)
4504 if (ds & BEGIN_DATA)
4505 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4506 if (ds & BE_IN_DATA)
4507 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4508 if (ds & BEGIN_CONTROL)
4509 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4510 if (ds & BE_IN_CONTROL)
4511 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4513 return ds;
4516 /* Dump information about the dependence status S. */
4517 static void
4518 dump_ds (FILE *f, ds_t s)
4520 fprintf (f, "{");
4522 if (s & BEGIN_DATA)
4523 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4524 if (s & BE_IN_DATA)
4525 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4526 if (s & BEGIN_CONTROL)
4527 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4528 if (s & BE_IN_CONTROL)
4529 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4531 if (s & HARD_DEP)
4532 fprintf (f, "HARD_DEP; ");
4534 if (s & DEP_TRUE)
4535 fprintf (f, "DEP_TRUE; ");
4536 if (s & DEP_OUTPUT)
4537 fprintf (f, "DEP_OUTPUT; ");
4538 if (s & DEP_ANTI)
4539 fprintf (f, "DEP_ANTI; ");
4540 if (s & DEP_CONTROL)
4541 fprintf (f, "DEP_CONTROL; ");
4543 fprintf (f, "}");
4546 DEBUG_FUNCTION void
4547 debug_ds (ds_t s)
4549 dump_ds (stderr, s);
4550 fprintf (stderr, "\n");
4553 /* Verify that dependence type and status are consistent.
4554 If RELAXED_P is true, then skip dep_weakness checks. */
4555 static void
4556 check_dep (dep_t dep, bool relaxed_p)
4558 enum reg_note dt = DEP_TYPE (dep);
4559 ds_t ds = DEP_STATUS (dep);
4561 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4563 if (!(current_sched_info->flags & USE_DEPS_LIST))
4565 gcc_assert (ds == 0);
4566 return;
4569 /* Check that dependence type contains the same bits as the status. */
4570 if (dt == REG_DEP_TRUE)
4571 gcc_assert (ds & DEP_TRUE);
4572 else if (dt == REG_DEP_OUTPUT)
4573 gcc_assert ((ds & DEP_OUTPUT)
4574 && !(ds & DEP_TRUE));
4575 else if (dt == REG_DEP_ANTI)
4576 gcc_assert ((ds & DEP_ANTI)
4577 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4578 else
4579 gcc_assert (dt == REG_DEP_CONTROL
4580 && (ds & DEP_CONTROL)
4581 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4583 /* HARD_DEP can not appear in dep_status of a link. */
4584 gcc_assert (!(ds & HARD_DEP));
4586 /* Check that dependence status is set correctly when speculation is not
4587 supported. */
4588 if (!sched_deps_info->generate_spec_deps)
4589 gcc_assert (!(ds & SPECULATIVE));
4590 else if (ds & SPECULATIVE)
4592 if (!relaxed_p)
4594 ds_t type = FIRST_SPEC_TYPE;
4596 /* Check that dependence weakness is in proper range. */
4599 if (ds & type)
4600 get_dep_weak (ds, type);
4602 if (type == LAST_SPEC_TYPE)
4603 break;
4604 type <<= SPEC_TYPE_SHIFT;
4606 while (1);
4609 if (ds & BEGIN_SPEC)
4611 /* Only true dependence can be data speculative. */
4612 if (ds & BEGIN_DATA)
4613 gcc_assert (ds & DEP_TRUE);
4615 /* Control dependencies in the insn scheduler are represented by
4616 anti-dependencies, therefore only anti dependence can be
4617 control speculative. */
4618 if (ds & BEGIN_CONTROL)
4619 gcc_assert (ds & DEP_ANTI);
4621 else
4623 /* Subsequent speculations should resolve true dependencies. */
4624 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4627 /* Check that true and anti dependencies can't have other speculative
4628 statuses. */
4629 if (ds & DEP_TRUE)
4630 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4631 /* An output dependence can't be speculative at all. */
4632 gcc_assert (!(ds & DEP_OUTPUT));
4633 if (ds & DEP_ANTI)
4634 gcc_assert (ds & BEGIN_CONTROL);
4638 /* The following code discovers opportunities to switch a memory reference
4639 and an increment by modifying the address. We ensure that this is done
4640 only for dependencies that are only used to show a single register
4641 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4642 instruction involved is subject to only one dep that can cause a pattern
4643 change.
4645 When we discover a suitable dependency, we fill in the dep_replacement
4646 structure to show how to modify the memory reference. */
4648 /* Holds information about a pair of memory reference and register increment
4649 insns which depend on each other, but could possibly be interchanged. */
4650 struct mem_inc_info
4652 rtx_insn *inc_insn;
4653 rtx_insn *mem_insn;
4655 rtx *mem_loc;
4656 /* A register occurring in the memory address for which we wish to break
4657 the dependence. This must be identical to the destination register of
4658 the increment. */
4659 rtx mem_reg0;
4660 /* Any kind of index that is added to that register. */
4661 rtx mem_index;
4662 /* The constant offset used in the memory address. */
4663 HOST_WIDE_INT mem_constant;
4664 /* The constant added in the increment insn. Negated if the increment is
4665 after the memory address. */
4666 HOST_WIDE_INT inc_constant;
4667 /* The source register used in the increment. May be different from mem_reg0
4668 if the increment occurs before the memory address. */
4669 rtx inc_input;
4672 /* Verify that the memory location described in MII can be replaced with
4673 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4674 insn remains unchanged by this function. */
4676 static rtx
4677 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4679 rtx mem = *mii->mem_loc;
4680 rtx new_mem;
4682 /* Jump through a lot of hoops to keep the attributes up to date. We
4683 do not want to call one of the change address variants that take
4684 an offset even though we know the offset in many cases. These
4685 assume you are changing where the address is pointing by the
4686 offset. */
4687 new_mem = replace_equiv_address_nv (mem, new_addr);
4688 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4690 if (sched_verbose >= 5)
4691 fprintf (sched_dump, "validation failure\n");
4692 return NULL_RTX;
4695 /* Put back the old one. */
4696 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4698 return new_mem;
4701 /* Return true if INSN is of a form "a = b op c" where a and b are
4702 regs. op is + if c is a reg and +|- if c is a const. Fill in
4703 informantion in MII about what is found.
4704 BEFORE_MEM indicates whether the increment is found before or after
4705 a corresponding memory reference. */
4707 static bool
4708 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4710 rtx pat = single_set (insn);
4711 rtx src, cst;
4712 bool regs_equal;
4714 if (RTX_FRAME_RELATED_P (insn) || !pat)
4715 return false;
4717 /* Do not allow breaking data dependencies for insns that are marked
4718 with REG_STACK_CHECK. */
4719 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4720 return false;
4722 /* Result must be single reg. */
4723 if (!REG_P (SET_DEST (pat)))
4724 return false;
4726 if (GET_CODE (SET_SRC (pat)) != PLUS)
4727 return false;
4729 mii->inc_insn = insn;
4730 src = SET_SRC (pat);
4731 mii->inc_input = XEXP (src, 0);
4733 if (!REG_P (XEXP (src, 0)))
4734 return false;
4736 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4737 return false;
4739 cst = XEXP (src, 1);
4740 if (!CONST_INT_P (cst))
4741 return false;
4742 mii->inc_constant = INTVAL (cst);
4744 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4746 if (!before_mem)
4748 mii->inc_constant = -mii->inc_constant;
4749 if (!regs_equal)
4750 return false;
4753 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4755 /* Note that the sign has already been reversed for !before_mem. */
4756 if (STACK_GROWS_DOWNWARD)
4757 return mii->inc_constant > 0;
4758 else
4759 return mii->inc_constant < 0;
4761 return true;
4764 /* Once a suitable mem reference has been found and the corresponding data
4765 in MII has been filled in, this function is called to find a suitable
4766 add or inc insn involving the register we found in the memory
4767 reference. */
4769 static bool
4770 find_inc (struct mem_inc_info *mii, bool backwards)
4772 sd_iterator_def sd_it;
4773 dep_t dep;
4775 sd_it = sd_iterator_start (mii->mem_insn,
4776 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4777 while (sd_iterator_cond (&sd_it, &dep))
4779 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4780 rtx_insn *pro = DEP_PRO (dep);
4781 rtx_insn *con = DEP_CON (dep);
4782 rtx_insn *inc_cand = backwards ? pro : con;
4783 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4784 goto next;
4785 if (parse_add_or_inc (mii, inc_cand, backwards))
4787 struct dep_replacement *desc;
4788 df_ref def;
4789 rtx newaddr, newmem;
4791 if (sched_verbose >= 5)
4792 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4793 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4795 /* Need to assure that none of the operands of the inc
4796 instruction are assigned to by the mem insn. */
4797 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4798 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4799 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4801 if (sched_verbose >= 5)
4802 fprintf (sched_dump,
4803 "inc conflicts with store failure.\n");
4804 goto next;
4807 newaddr = mii->inc_input;
4808 if (mii->mem_index != NULL_RTX)
4809 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4810 mii->mem_index);
4811 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4812 mii->mem_constant + mii->inc_constant);
4813 newmem = attempt_change (mii, newaddr);
4814 if (newmem == NULL_RTX)
4815 goto next;
4816 if (sched_verbose >= 5)
4817 fprintf (sched_dump, "successful address replacement\n");
4818 desc = XCNEW (struct dep_replacement);
4819 DEP_REPLACE (dep) = desc;
4820 desc->loc = mii->mem_loc;
4821 desc->newval = newmem;
4822 desc->orig = *desc->loc;
4823 desc->insn = mii->mem_insn;
4824 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4825 INSN_SPEC_BACK_DEPS (con));
4826 if (backwards)
4828 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4829 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4830 REG_DEP_TRUE);
4832 else
4834 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4835 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4836 REG_DEP_ANTI);
4838 return true;
4840 next:
4841 sd_iterator_next (&sd_it);
4843 return false;
4846 /* A recursive function that walks ADDRESS_OF_X to find memory references
4847 which could be modified during scheduling. We call find_inc for each
4848 one we find that has a recognizable form. MII holds information about
4849 the pair of memory/increment instructions.
4850 We ensure that every instruction with a memory reference (which will be
4851 the location of the replacement) is assigned at most one breakable
4852 dependency. */
4854 static bool
4855 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4857 rtx x = *address_of_x;
4858 enum rtx_code code = GET_CODE (x);
4859 const char *const fmt = GET_RTX_FORMAT (code);
4860 int i;
4862 if (code == MEM)
4864 rtx reg0 = XEXP (x, 0);
4866 mii->mem_loc = address_of_x;
4867 mii->mem_index = NULL_RTX;
4868 mii->mem_constant = 0;
4869 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4871 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4872 reg0 = XEXP (reg0, 0);
4874 if (GET_CODE (reg0) == PLUS)
4876 mii->mem_index = XEXP (reg0, 1);
4877 reg0 = XEXP (reg0, 0);
4879 if (REG_P (reg0))
4881 df_ref use;
4882 int occurrences = 0;
4884 /* Make sure this reg appears only once in this insn. Can't use
4885 count_occurrences since that only works for pseudos. */
4886 FOR_EACH_INSN_USE (use, mii->mem_insn)
4887 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4888 if (++occurrences > 1)
4890 if (sched_verbose >= 5)
4891 fprintf (sched_dump, "mem count failure\n");
4892 return false;
4895 mii->mem_reg0 = reg0;
4896 return find_inc (mii, true) || find_inc (mii, false);
4898 return false;
4901 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4903 /* If REG occurs inside a MEM used in a bit-field reference,
4904 that is unacceptable. */
4905 return false;
4908 /* Time for some deep diving. */
4909 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4911 if (fmt[i] == 'e')
4913 if (find_mem (mii, &XEXP (x, i)))
4914 return true;
4916 else if (fmt[i] == 'E')
4918 int j;
4919 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4920 if (find_mem (mii, &XVECEXP (x, i, j)))
4921 return true;
4924 return false;
4928 /* Examine the instructions between HEAD and TAIL and try to find
4929 dependencies that can be broken by modifying one of the patterns. */
4931 void
4932 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4934 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4935 int success_in_block = 0;
4937 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4939 struct mem_inc_info mii;
4941 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4942 continue;
4944 mii.mem_insn = insn;
4945 if (find_mem (&mii, &PATTERN (insn)))
4946 success_in_block++;
4948 if (success_in_block && sched_verbose >= 5)
4949 fprintf (sched_dump, "%d candidates for address modification found.\n",
4950 success_in_block);
4953 #endif /* INSN_SCHEDULING */