PR rtl-optimization/82913
[official-gcc.git] / gcc / rtl.h
blob8de5a1cada5a9d65f4f8b11bb826d441ba7e6298
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
174 /* True if OFFSET is known. */
175 bool offset_known_p;
177 /* True if SIZE is known. */
178 bool size_known_p;
181 /* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
188 struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 HOST_WIDE_INT offset; /* Offset from start of DECL. */
193 /* Common union for an element of an rtx. */
195 union rtunion
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
212 /* Describes the properties of a REG. */
213 struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
225 /* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228 struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
232 /* The block that contains this object. */
233 struct object_block *block;
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
240 /* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242 struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
273 struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
277 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278 #define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
283 /* RTL expression ("rtx"). */
285 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
286 field for gengtype to recognize that inheritance is occurring,
287 so that all subclasses are redirected to the traversal hook for the
288 base class.
289 However, all of the fields are in the base class, and special-casing
290 is at work. Hence we use desc and tag of 0, generating a switch
291 statement of the form:
292 switch (0)
294 case 0: // all the work happens here
296 in order to work with the existing special-casing in gengtype. */
298 struct GTY((desc("0"), tag("0"),
299 chain_next ("RTX_NEXT (&%h)"),
300 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
301 /* The kind of expression this is. */
302 ENUM_BITFIELD(rtx_code) code: 16;
304 /* The kind of value the expression has. */
305 ENUM_BITFIELD(machine_mode) mode : 8;
307 /* 1 in a MEM if we should keep the alias set for this mem unchanged
308 when we access a component.
309 1 in a JUMP_INSN if it is a crossing jump.
310 1 in a CALL_INSN if it is a sibling call.
311 1 in a SET that is for a return.
312 In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
314 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
315 1 in a SUBREG generated by LRA for reload insns.
316 1 in a REG if this is a static chain register.
317 1 in a CALL for calls instrumented by Pointer Bounds Checker.
318 Dumped as "/j" in RTL dumps. */
319 unsigned int jump : 1;
320 /* In a CODE_LABEL, part of the two-bit alternate entry field.
321 1 in a MEM if it cannot trap.
322 1 in a CALL_INSN logically equivalent to
323 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
324 Dumped as "/c" in RTL dumps. */
325 unsigned int call : 1;
326 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
327 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
328 1 in a SYMBOL_REF if it addresses something in the per-function
329 constants pool.
330 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
331 1 in a NOTE, or EXPR_LIST for a const call.
332 1 in a JUMP_INSN of an annulling branch.
333 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
334 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
335 1 in a clobber temporarily created for LRA.
336 Dumped as "/u" in RTL dumps. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a
348 scheduling barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
350 Dumped as "/v" in RTL dumps. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure.
365 Dumped as "/s" in RTL dumps. */
366 unsigned int in_struct : 1;
367 /* At the end of RTL generation, 1 if this rtx is used. This is used for
368 copying shared structure. See `unshare_all_rtl'.
369 In a REG, this is not needed for that purpose, and used instead
370 in `leaf_renumber_regs_insn'.
371 1 in a SYMBOL_REF, means that emit_library_call
372 has used it as the function.
373 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
374 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
375 unsigned int used : 1;
376 /* 1 in an INSN or a SET if this rtx is related to the call frame,
377 either changing how we compute the frame address or saving and
378 restoring registers in the prologue and epilogue.
379 1 in a REG or MEM if it is a pointer.
380 1 in a SYMBOL_REF if it addresses something in the per-function
381 constant string pool.
382 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
383 Dumped as "/f" in RTL dumps. */
384 unsigned frame_related : 1;
385 /* 1 in a REG or PARALLEL that is the current function's return value.
386 1 in a SYMBOL_REF for a weak symbol.
387 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
388 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
389 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
390 Dumped as "/i" in RTL dumps. */
391 unsigned return_val : 1;
393 union {
394 /* The final union field is aligned to 64 bits on LP64 hosts,
395 giving a 32-bit gap after the fields above. We optimize the
396 layout for that case and use the gap for extra code-specific
397 information. */
399 /* The ORIGINAL_REGNO of a REG. */
400 unsigned int original_regno;
402 /* The INSN_UID of an RTX_INSN-class code. */
403 int insn_uid;
405 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
406 unsigned int symbol_ref_flags;
408 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
409 enum var_init_status var_location_status;
411 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
412 HOST_WIDE_INTs in the hwivec_def. */
413 unsigned int num_elem;
414 } GTY ((skip)) u2;
416 /* The first element of the operands of this rtx.
417 The number of operands and their types are controlled
418 by the `code' field, according to rtl.def. */
419 union u {
420 rtunion fld[1];
421 HOST_WIDE_INT hwint[1];
422 struct reg_info reg;
423 struct block_symbol block_sym;
424 struct real_value rv;
425 struct fixed_value fv;
426 struct hwivec_def hwiv;
427 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
430 /* A node for constructing singly-linked lists of rtx. */
432 class GTY(()) rtx_expr_list : public rtx_def
434 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
436 public:
437 /* Get next in list. */
438 rtx_expr_list *next () const;
440 /* Get at the underlying rtx. */
441 rtx element () const;
444 template <>
445 template <>
446 inline bool
447 is_a_helper <rtx_expr_list *>::test (rtx rt)
449 return rt->code == EXPR_LIST;
452 class GTY(()) rtx_insn_list : public rtx_def
454 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
456 This is an instance of:
458 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
460 i.e. a node for constructing singly-linked lists of rtx_insn *, where
461 the list is "external" to the insn (as opposed to the doubly-linked
462 list embedded within rtx_insn itself). */
464 public:
465 /* Get next in list. */
466 rtx_insn_list *next () const;
468 /* Get at the underlying instruction. */
469 rtx_insn *insn () const;
473 template <>
474 template <>
475 inline bool
476 is_a_helper <rtx_insn_list *>::test (rtx rt)
478 return rt->code == INSN_LIST;
481 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
482 typically (but not always) of rtx_insn *, used in the late passes. */
484 class GTY(()) rtx_sequence : public rtx_def
486 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
488 public:
489 /* Get number of elements in sequence. */
490 int len () const;
492 /* Get i-th element of the sequence. */
493 rtx element (int index) const;
495 /* Get i-th element of the sequence, with a checked cast to
496 rtx_insn *. */
497 rtx_insn *insn (int index) const;
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_sequence *>::test (rtx rt)
505 return rt->code == SEQUENCE;
508 template <>
509 template <>
510 inline bool
511 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
513 return rt->code == SEQUENCE;
516 class GTY(()) rtx_insn : public rtx_def
518 public:
519 /* No extra fields, but adds the invariant:
521 (INSN_P (X)
522 || NOTE_P (X)
523 || JUMP_TABLE_DATA_P (X)
524 || BARRIER_P (X)
525 || LABEL_P (X))
527 i.e. that we must be able to use the following:
528 INSN_UID ()
529 NEXT_INSN ()
530 PREV_INSN ()
531 i.e. we have an rtx that has an INSN_UID field and can be part of
532 a linked list of insns.
535 /* Returns true if this insn has been deleted. */
537 bool deleted () const { return volatil; }
539 /* Mark this insn as deleted. */
541 void set_deleted () { volatil = true; }
543 /* Mark this insn as not deleted. */
545 void set_undeleted () { volatil = false; }
548 /* Subclasses of rtx_insn. */
550 class GTY(()) rtx_debug_insn : public rtx_insn
552 /* No extra fields, but adds the invariant:
553 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
554 i.e. an annotation for tracking variable assignments.
556 This is an instance of:
557 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
558 from rtl.def. */
561 class GTY(()) rtx_nonjump_insn : public rtx_insn
563 /* No extra fields, but adds the invariant:
564 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
565 i.e an instruction that cannot jump.
567 This is an instance of:
568 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
569 from rtl.def. */
572 class GTY(()) rtx_jump_insn : public rtx_insn
574 public:
575 /* No extra fields, but adds the invariant:
576 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
577 i.e. an instruction that can possibly jump.
579 This is an instance of:
580 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
581 from rtl.def. */
583 /* Returns jump target of this instruction. The returned value is not
584 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
585 expression. Also, when the code label is marked "deleted", it is
586 replaced by a NOTE. In some cases the value is NULL_RTX. */
588 inline rtx jump_label () const;
590 /* Returns jump target cast to rtx_code_label *. */
592 inline rtx_code_label *jump_target () const;
594 /* Set jump target. */
596 inline void set_jump_target (rtx_code_label *);
599 class GTY(()) rtx_call_insn : public rtx_insn
601 /* No extra fields, but adds the invariant:
602 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
603 i.e. an instruction that can possibly call a subroutine
604 but which will not change which instruction comes next
605 in the current function.
607 This is an instance of:
608 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
609 from rtl.def. */
612 class GTY(()) rtx_jump_table_data : public rtx_insn
614 /* No extra fields, but adds the invariant:
615 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
616 i.e. a data for a jump table, considered an instruction for
617 historical reasons.
619 This is an instance of:
620 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
621 from rtl.def. */
623 public:
625 /* This can be either:
627 (a) a table of absolute jumps, in which case PATTERN (this) is an
628 ADDR_VEC with arg 0 a vector of labels, or
630 (b) a table of relative jumps (e.g. for -fPIC), in which case
631 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
632 arg 1 the vector of labels.
634 This method gets the underlying vec. */
636 inline rtvec get_labels () const;
637 inline scalar_int_mode get_data_mode () const;
640 class GTY(()) rtx_barrier : public rtx_insn
642 /* No extra fields, but adds the invariant:
643 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
644 i.e. a marker that indicates that control will not flow through.
646 This is an instance of:
647 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
648 from rtl.def. */
651 class GTY(()) rtx_code_label : public rtx_insn
653 /* No extra fields, but adds the invariant:
654 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
655 i.e. a label in the assembler.
657 This is an instance of:
658 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
659 from rtl.def. */
662 class GTY(()) rtx_note : public rtx_insn
664 /* No extra fields, but adds the invariant:
665 NOTE_P(X) aka (GET_CODE (X) == NOTE)
666 i.e. a note about the corresponding source code.
668 This is an instance of:
669 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
670 from rtl.def. */
673 /* The size in bytes of an rtx header (code, mode and flags). */
674 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
676 /* The size in bytes of an rtx with code CODE. */
677 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
679 #define NULL_RTX (rtx) 0
681 /* The "next" and "previous" RTX, relative to this one. */
683 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
684 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
686 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
688 #define RTX_PREV(X) ((INSN_P (X) \
689 || NOTE_P (X) \
690 || JUMP_TABLE_DATA_P (X) \
691 || BARRIER_P (X) \
692 || LABEL_P (X)) \
693 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
694 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
695 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
697 /* Define macros to access the `code' field of the rtx. */
699 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
700 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
702 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
703 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
705 /* RTL vector. These appear inside RTX's when there is a need
706 for a variable number of things. The principle use is inside
707 PARALLEL expressions. */
709 struct GTY(()) rtvec_def {
710 int num_elem; /* number of elements */
711 rtx GTY ((length ("%h.num_elem"))) elem[1];
714 #define NULL_RTVEC (rtvec) 0
716 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
717 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
719 /* Predicate yielding nonzero iff X is an rtx for a register. */
720 #define REG_P(X) (GET_CODE (X) == REG)
722 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
723 #define MEM_P(X) (GET_CODE (X) == MEM)
725 #if TARGET_SUPPORTS_WIDE_INT
727 /* Match CONST_*s that can represent compile-time constant integers. */
728 #define CASE_CONST_SCALAR_INT \
729 case CONST_INT: \
730 case CONST_WIDE_INT
732 /* Match CONST_*s for which pointer equality corresponds to value
733 equality. */
734 #define CASE_CONST_UNIQUE \
735 case CONST_INT: \
736 case CONST_WIDE_INT: \
737 case CONST_DOUBLE: \
738 case CONST_FIXED
740 /* Match all CONST_* rtxes. */
741 #define CASE_CONST_ANY \
742 case CONST_INT: \
743 case CONST_WIDE_INT: \
744 case CONST_DOUBLE: \
745 case CONST_FIXED: \
746 case CONST_VECTOR
748 #else
750 /* Match CONST_*s that can represent compile-time constant integers. */
751 #define CASE_CONST_SCALAR_INT \
752 case CONST_INT: \
753 case CONST_DOUBLE
755 /* Match CONST_*s for which pointer equality corresponds to value
756 equality. */
757 #define CASE_CONST_UNIQUE \
758 case CONST_INT: \
759 case CONST_DOUBLE: \
760 case CONST_FIXED
762 /* Match all CONST_* rtxes. */
763 #define CASE_CONST_ANY \
764 case CONST_INT: \
765 case CONST_DOUBLE: \
766 case CONST_FIXED: \
767 case CONST_VECTOR
768 #endif
770 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
771 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
773 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
774 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
776 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
777 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
779 /* Predicate yielding true iff X is an rtx for a double-int
780 or floating point constant. */
781 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
783 /* Predicate yielding true iff X is an rtx for a double-int. */
784 #define CONST_DOUBLE_AS_INT_P(X) \
785 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
787 /* Predicate yielding true iff X is an rtx for a integer const. */
788 #if TARGET_SUPPORTS_WIDE_INT
789 #define CONST_SCALAR_INT_P(X) \
790 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
791 #else
792 #define CONST_SCALAR_INT_P(X) \
793 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
794 #endif
796 /* Predicate yielding true iff X is an rtx for a double-int. */
797 #define CONST_DOUBLE_AS_FLOAT_P(X) \
798 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
800 /* Predicate yielding nonzero iff X is a label insn. */
801 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
803 /* Predicate yielding nonzero iff X is a jump insn. */
804 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
806 /* Predicate yielding nonzero iff X is a call insn. */
807 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
809 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
810 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
812 /* Predicate yielding nonzero iff X is a debug note/insn. */
813 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
815 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
816 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
818 /* Nonzero if DEBUG_INSN_P may possibly hold. */
819 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
821 /* Predicate yielding nonzero iff X is a real insn. */
822 #define INSN_P(X) \
823 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
825 /* Predicate yielding nonzero iff X is a note insn. */
826 #define NOTE_P(X) (GET_CODE (X) == NOTE)
828 /* Predicate yielding nonzero iff X is a barrier insn. */
829 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
831 /* Predicate yielding nonzero iff X is a data for a jump table. */
832 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
834 /* Predicate yielding nonzero iff RTX is a subreg. */
835 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
837 /* Predicate yielding true iff RTX is a symbol ref. */
838 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
840 template <>
841 template <>
842 inline bool
843 is_a_helper <rtx_insn *>::test (rtx rt)
845 return (INSN_P (rt)
846 || NOTE_P (rt)
847 || JUMP_TABLE_DATA_P (rt)
848 || BARRIER_P (rt)
849 || LABEL_P (rt));
852 template <>
853 template <>
854 inline bool
855 is_a_helper <const rtx_insn *>::test (const_rtx rt)
857 return (INSN_P (rt)
858 || NOTE_P (rt)
859 || JUMP_TABLE_DATA_P (rt)
860 || BARRIER_P (rt)
861 || LABEL_P (rt));
864 template <>
865 template <>
866 inline bool
867 is_a_helper <rtx_debug_insn *>::test (rtx rt)
869 return DEBUG_INSN_P (rt);
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
877 return NONJUMP_INSN_P (rt);
880 template <>
881 template <>
882 inline bool
883 is_a_helper <rtx_jump_insn *>::test (rtx rt)
885 return JUMP_P (rt);
888 template <>
889 template <>
890 inline bool
891 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
893 return JUMP_P (insn);
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_call_insn *>::test (rtx rt)
901 return CALL_P (rt);
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
909 return CALL_P (insn);
912 template <>
913 template <>
914 inline bool
915 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
917 return JUMP_TABLE_DATA_P (rt);
920 template <>
921 template <>
922 inline bool
923 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
925 return JUMP_TABLE_DATA_P (insn);
928 template <>
929 template <>
930 inline bool
931 is_a_helper <rtx_barrier *>::test (rtx rt)
933 return BARRIER_P (rt);
936 template <>
937 template <>
938 inline bool
939 is_a_helper <rtx_code_label *>::test (rtx rt)
941 return LABEL_P (rt);
944 template <>
945 template <>
946 inline bool
947 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
949 return LABEL_P (insn);
952 template <>
953 template <>
954 inline bool
955 is_a_helper <rtx_note *>::test (rtx rt)
957 return NOTE_P (rt);
960 template <>
961 template <>
962 inline bool
963 is_a_helper <rtx_note *>::test (rtx_insn *insn)
965 return NOTE_P (insn);
968 /* Predicate yielding nonzero iff X is a return or simple_return. */
969 #define ANY_RETURN_P(X) \
970 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
972 /* 1 if X is a unary operator. */
974 #define UNARY_P(X) \
975 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
977 /* 1 if X is a binary operator. */
979 #define BINARY_P(X) \
980 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
982 /* 1 if X is an arithmetic operator. */
984 #define ARITHMETIC_P(X) \
985 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
986 == RTX_ARITHMETIC_RESULT)
988 /* 1 if X is an arithmetic operator. */
990 #define COMMUTATIVE_ARITH_P(X) \
991 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
993 /* 1 if X is a commutative arithmetic operator or a comparison operator.
994 These two are sometimes selected together because it is possible to
995 swap the two operands. */
997 #define SWAPPABLE_OPERANDS_P(X) \
998 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
999 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1000 | (1 << RTX_COMPARE)))
1002 /* 1 if X is a non-commutative operator. */
1004 #define NON_COMMUTATIVE_P(X) \
1005 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1006 == RTX_NON_COMMUTATIVE_RESULT)
1008 /* 1 if X is a commutative operator on integers. */
1010 #define COMMUTATIVE_P(X) \
1011 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1012 == RTX_COMMUTATIVE_RESULT)
1014 /* 1 if X is a relational operator. */
1016 #define COMPARISON_P(X) \
1017 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1019 /* 1 if X is a constant value that is an integer. */
1021 #define CONSTANT_P(X) \
1022 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1024 /* 1 if X can be used to represent an object. */
1025 #define OBJECT_P(X) \
1026 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1028 /* General accessor macros for accessing the fields of an rtx. */
1030 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1031 /* The bit with a star outside the statement expr and an & inside is
1032 so that N can be evaluated only once. */
1033 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1034 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1035 const enum rtx_code _code = GET_CODE (_rtx); \
1036 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1037 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1038 __FUNCTION__); \
1039 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1040 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1041 __FUNCTION__); \
1042 &_rtx->u.fld[_n]; }))
1044 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1045 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1046 const enum rtx_code _code = GET_CODE (_rtx); \
1047 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1048 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1049 __FUNCTION__); \
1050 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1051 && GET_RTX_FORMAT (_code)[_n] != C2) \
1052 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1053 __FUNCTION__); \
1054 &_rtx->u.fld[_n]; }))
1056 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1057 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1058 if (GET_CODE (_rtx) != (C)) \
1059 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1060 __FUNCTION__); \
1061 &_rtx->u.fld[_n]; }))
1063 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1064 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1065 const enum rtx_code _code = GET_CODE (_rtx); \
1066 if (_code != (C1) && _code != (C2)) \
1067 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1068 __FUNCTION__); \
1069 &_rtx->u.fld[_n]; }))
1071 #define RTVEC_ELT(RTVEC, I) __extension__ \
1072 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1073 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1074 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1075 __FUNCTION__); \
1076 &_rtvec->elem[_i]; }))
1078 #define XWINT(RTX, N) __extension__ \
1079 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1080 const enum rtx_code _code = GET_CODE (_rtx); \
1081 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1082 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1083 __FUNCTION__); \
1084 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1085 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1086 __FUNCTION__); \
1087 &_rtx->u.hwint[_n]; }))
1089 #define CWI_ELT(RTX, I) __extension__ \
1090 (*({ __typeof (RTX) const _cwi = (RTX); \
1091 int _max = CWI_GET_NUM_ELEM (_cwi); \
1092 const int _i = (I); \
1093 if (_i < 0 || _i >= _max) \
1094 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1095 __FUNCTION__); \
1096 &_cwi->u.hwiv.elem[_i]; }))
1098 #define XCWINT(RTX, N, C) __extension__ \
1099 (*({ __typeof (RTX) const _rtx = (RTX); \
1100 if (GET_CODE (_rtx) != (C)) \
1101 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1102 __FUNCTION__); \
1103 &_rtx->u.hwint[N]; }))
1105 #define XCMWINT(RTX, N, C, M) __extension__ \
1106 (*({ __typeof (RTX) const _rtx = (RTX); \
1107 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1108 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1109 __LINE__, __FUNCTION__); \
1110 &_rtx->u.hwint[N]; }))
1112 #define XCNMPRV(RTX, C, M) __extension__ \
1113 ({ __typeof (RTX) const _rtx = (RTX); \
1114 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1115 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1116 __LINE__, __FUNCTION__); \
1117 &_rtx->u.rv; })
1119 #define XCNMPFV(RTX, C, M) __extension__ \
1120 ({ __typeof (RTX) const _rtx = (RTX); \
1121 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1122 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1123 __LINE__, __FUNCTION__); \
1124 &_rtx->u.fv; })
1126 #define REG_CHECK(RTX) __extension__ \
1127 ({ __typeof (RTX) const _rtx = (RTX); \
1128 if (GET_CODE (_rtx) != REG) \
1129 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1130 __FUNCTION__); \
1131 &_rtx->u.reg; })
1133 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1134 ({ __typeof (RTX) const _symbol = (RTX); \
1135 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1136 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1137 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1138 __FUNCTION__); \
1139 &_symbol->u.block_sym; })
1141 #define HWIVEC_CHECK(RTX,C) __extension__ \
1142 ({ __typeof (RTX) const _symbol = (RTX); \
1143 RTL_CHECKC1 (_symbol, 0, C); \
1144 &_symbol->u.hwiv; })
1146 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1147 const char *)
1148 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1149 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1150 const char *)
1151 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1152 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1153 int, const char *)
1154 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1155 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1156 int, const char *)
1157 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1158 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1159 const char *, int, const char *)
1160 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1161 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1162 bool, const char *, int, const char *)
1163 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1164 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1165 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1166 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1167 const char *)
1168 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1169 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1170 const char *)
1171 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1173 #else /* not ENABLE_RTL_CHECKING */
1175 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1176 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1177 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1178 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1179 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1180 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1181 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1182 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1183 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1184 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1185 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1186 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1187 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1188 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1189 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1191 #endif
1193 /* General accessor macros for accessing the flags of an rtx. */
1195 /* Access an individual rtx flag, with no checking of any kind. */
1196 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1198 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1199 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1200 ({ __typeof (RTX) const _rtx = (RTX); \
1201 if (GET_CODE (_rtx) != C1) \
1202 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1203 __FUNCTION__); \
1204 _rtx; })
1206 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1207 ({ __typeof (RTX) const _rtx = (RTX); \
1208 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1209 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1210 __FUNCTION__); \
1211 _rtx; })
1213 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1214 ({ __typeof (RTX) const _rtx = (RTX); \
1215 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1216 && GET_CODE (_rtx) != C3) \
1217 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1218 __FUNCTION__); \
1219 _rtx; })
1221 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1222 ({ __typeof (RTX) const _rtx = (RTX); \
1223 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1224 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1225 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1226 __FUNCTION__); \
1227 _rtx; })
1229 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1230 ({ __typeof (RTX) const _rtx = (RTX); \
1231 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1232 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1233 && GET_CODE (_rtx) != C5) \
1234 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1235 __FUNCTION__); \
1236 _rtx; })
1238 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1239 __extension__ \
1240 ({ __typeof (RTX) const _rtx = (RTX); \
1241 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1242 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1243 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1244 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1245 __FUNCTION__); \
1246 _rtx; })
1248 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1249 __extension__ \
1250 ({ __typeof (RTX) const _rtx = (RTX); \
1251 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1252 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1253 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1254 && GET_CODE (_rtx) != C7) \
1255 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1256 __FUNCTION__); \
1257 _rtx; })
1259 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1260 __extension__ \
1261 ({ __typeof (RTX) const _rtx = (RTX); \
1262 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1263 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1264 __FUNCTION__); \
1265 _rtx; })
1267 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1268 int, const char *)
1269 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1272 #else /* not ENABLE_RTL_FLAG_CHECKING */
1274 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1275 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1276 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1277 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1278 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1279 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1280 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1281 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1282 #endif
1284 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1285 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1286 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1287 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1288 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1289 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1290 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1291 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1292 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1293 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1295 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1296 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1298 /* These are like XINT, etc. except that they expect a '0' field instead
1299 of the normal type code. */
1301 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1302 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1303 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1304 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1305 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1306 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1307 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1308 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1309 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1310 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1311 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1312 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1314 /* Access a '0' field with any type. */
1315 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1317 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1318 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1319 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1320 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1321 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1322 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1323 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1324 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1325 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1326 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1328 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1329 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1331 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1334 /* Methods of rtx_expr_list. */
1336 inline rtx_expr_list *rtx_expr_list::next () const
1338 rtx tmp = XEXP (this, 1);
1339 return safe_as_a <rtx_expr_list *> (tmp);
1342 inline rtx rtx_expr_list::element () const
1344 return XEXP (this, 0);
1347 /* Methods of rtx_insn_list. */
1349 inline rtx_insn_list *rtx_insn_list::next () const
1351 rtx tmp = XEXP (this, 1);
1352 return safe_as_a <rtx_insn_list *> (tmp);
1355 inline rtx_insn *rtx_insn_list::insn () const
1357 rtx tmp = XEXP (this, 0);
1358 return safe_as_a <rtx_insn *> (tmp);
1361 /* Methods of rtx_sequence. */
1363 inline int rtx_sequence::len () const
1365 return XVECLEN (this, 0);
1368 inline rtx rtx_sequence::element (int index) const
1370 return XVECEXP (this, 0, index);
1373 inline rtx_insn *rtx_sequence::insn (int index) const
1375 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1378 /* ACCESS MACROS for particular fields of insns. */
1380 /* Holds a unique number for each insn.
1381 These are not necessarily sequentially increasing. */
1382 inline int INSN_UID (const_rtx insn)
1384 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1385 (insn))->u2.insn_uid;
1387 inline int& INSN_UID (rtx insn)
1389 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1390 (insn))->u2.insn_uid;
1393 /* Chain insns together in sequence. */
1395 /* For now these are split in two: an rvalue form:
1396 PREV_INSN/NEXT_INSN
1397 and an lvalue form:
1398 SET_NEXT_INSN/SET_PREV_INSN. */
1400 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1402 rtx prev = XEXP (insn, 0);
1403 return safe_as_a <rtx_insn *> (prev);
1406 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1408 return XEXP (insn, 0);
1411 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1413 rtx next = XEXP (insn, 1);
1414 return safe_as_a <rtx_insn *> (next);
1417 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1419 return XEXP (insn, 1);
1422 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1424 return XBBDEF (insn, 2);
1427 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1429 return XBBDEF (insn, 2);
1432 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1434 BLOCK_FOR_INSN (insn) = bb;
1437 /* The body of an insn. */
1438 inline rtx PATTERN (const_rtx insn)
1440 return XEXP (insn, 3);
1443 inline rtx& PATTERN (rtx insn)
1445 return XEXP (insn, 3);
1448 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1450 return XUINT (insn, 4);
1453 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1455 return XUINT (insn, 4);
1458 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1460 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1463 /* LOCATION of an RTX if relevant. */
1464 #define RTL_LOCATION(X) (INSN_P (X) ? \
1465 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1466 : UNKNOWN_LOCATION)
1468 /* Code number of instruction, from when it was recognized.
1469 -1 means this instruction has not been recognized yet. */
1470 #define INSN_CODE(INSN) XINT (INSN, 5)
1472 inline rtvec rtx_jump_table_data::get_labels () const
1474 rtx pat = PATTERN (this);
1475 if (GET_CODE (pat) == ADDR_VEC)
1476 return XVEC (pat, 0);
1477 else
1478 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1481 /* Return the mode of the data in the table, which is always a scalar
1482 integer. */
1484 inline scalar_int_mode
1485 rtx_jump_table_data::get_data_mode () const
1487 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1490 /* If LABEL is followed by a jump table, return the table, otherwise
1491 return null. */
1493 inline rtx_jump_table_data *
1494 jump_table_for_label (const rtx_code_label *label)
1496 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1499 #define RTX_FRAME_RELATED_P(RTX) \
1500 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1501 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1503 /* 1 if JUMP RTX is a crossing jump. */
1504 #define CROSSING_JUMP_P(RTX) \
1505 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1507 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1508 TREE_READONLY. */
1509 #define RTL_CONST_CALL_P(RTX) \
1510 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1512 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1513 DECL_PURE_P. */
1514 #define RTL_PURE_CALL_P(RTX) \
1515 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1517 /* 1 if RTX is a call to a const or pure function. */
1518 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1519 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1521 /* 1 if RTX is a call to a looping const or pure function. Built from
1522 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1523 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1524 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1526 /* 1 if RTX is a call_insn for a sibling call. */
1527 #define SIBLING_CALL_P(RTX) \
1528 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1530 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1531 #define INSN_ANNULLED_BRANCH_P(RTX) \
1532 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1534 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1535 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1536 executed if the branch is taken. For annulled branches with this bit
1537 clear, the insn should be executed only if the branch is not taken. */
1538 #define INSN_FROM_TARGET_P(RTX) \
1539 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1540 CALL_INSN)->in_struct)
1542 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1543 See the comments for ADDR_DIFF_VEC in rtl.def. */
1544 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1546 /* In a VALUE, the value cselib has assigned to RTX.
1547 This is a "struct cselib_val", see cselib.h. */
1548 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1550 /* Holds a list of notes on what this insn does to various REGs.
1551 It is a chain of EXPR_LIST rtx's, where the second operand is the
1552 chain pointer and the first operand is the REG being described.
1553 The mode field of the EXPR_LIST contains not a real machine mode
1554 but a value from enum reg_note. */
1555 #define REG_NOTES(INSN) XEXP(INSN, 6)
1557 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1558 question. */
1559 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1561 enum reg_note
1563 #define DEF_REG_NOTE(NAME) NAME,
1564 #include "reg-notes.def"
1565 #undef DEF_REG_NOTE
1566 REG_NOTE_MAX
1569 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1570 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1571 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1572 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1574 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1576 extern const char * const reg_note_name[];
1577 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1579 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1580 USE and CLOBBER expressions.
1581 USE expressions list the registers filled with arguments that
1582 are passed to the function.
1583 CLOBBER expressions document the registers explicitly clobbered
1584 by this CALL_INSN.
1585 Pseudo registers can not be mentioned in this list. */
1586 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1588 /* The label-number of a code-label. The assembler label
1589 is made from `L' and the label-number printed in decimal.
1590 Label numbers are unique in a compilation. */
1591 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1593 /* In a NOTE that is a line number, this is a string for the file name that the
1594 line is in. We use the same field to record block numbers temporarily in
1595 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1596 between ints and pointers if we use a different macro for the block number.)
1599 /* Opaque data. */
1600 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1601 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1602 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1603 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1604 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1605 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1606 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1607 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1608 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1610 /* In a NOTE that is a line number, this is the line number.
1611 Other kinds of NOTEs are identified by negative numbers here. */
1612 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1614 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1615 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1616 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1618 /* Variable declaration and the location of a variable. */
1619 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1620 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1622 /* Initialization status of the variable in the location. Status
1623 can be unknown, uninitialized or initialized. See enumeration
1624 type below. */
1625 #define PAT_VAR_LOCATION_STATUS(PAT) \
1626 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1627 ->u2.var_location_status)
1629 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1630 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1631 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1632 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1633 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1634 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1635 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1637 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1638 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1640 /* Accessors for a tree-expanded var location debug insn. */
1641 #define INSN_VAR_LOCATION_DECL(INSN) \
1642 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1643 #define INSN_VAR_LOCATION_LOC(INSN) \
1644 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1645 #define INSN_VAR_LOCATION_STATUS(INSN) \
1646 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1648 /* Expand to the RTL that denotes an unknown variable location in a
1649 DEBUG_INSN. */
1650 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1652 /* Determine whether X is such an unknown location. */
1653 #define VAR_LOC_UNKNOWN_P(X) \
1654 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1656 /* 1 if RTX is emitted after a call, but it should take effect before
1657 the call returns. */
1658 #define NOTE_DURING_CALL_P(RTX) \
1659 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1661 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1662 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1664 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1665 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1667 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1668 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1670 /* Codes that appear in the NOTE_KIND field for kinds of notes
1671 that are not line numbers. These codes are all negative.
1673 Notice that we do not try to use zero here for any of
1674 the special note codes because sometimes the source line
1675 actually can be zero! This happens (for example) when we
1676 are generating code for the per-translation-unit constructor
1677 and destructor routines for some C++ translation unit. */
1679 enum insn_note
1681 #define DEF_INSN_NOTE(NAME) NAME,
1682 #include "insn-notes.def"
1683 #undef DEF_INSN_NOTE
1685 NOTE_INSN_MAX
1688 /* Names for NOTE insn's other than line numbers. */
1690 extern const char * const note_insn_name[NOTE_INSN_MAX];
1691 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1692 (note_insn_name[(NOTE_CODE)])
1694 /* The name of a label, in case it corresponds to an explicit label
1695 in the input source code. */
1696 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1698 /* In jump.c, each label contains a count of the number
1699 of LABEL_REFs that point at it, so unused labels can be deleted. */
1700 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1702 /* Labels carry a two-bit field composed of the ->jump and ->call
1703 bits. This field indicates whether the label is an alternate
1704 entry point, and if so, what kind. */
1705 enum label_kind
1707 LABEL_NORMAL = 0, /* ordinary label */
1708 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1709 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1710 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1713 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1715 /* Retrieve the kind of LABEL. */
1716 #define LABEL_KIND(LABEL) __extension__ \
1717 ({ __typeof (LABEL) const _label = (LABEL); \
1718 if (! LABEL_P (_label)) \
1719 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1720 __FUNCTION__); \
1721 (enum label_kind) ((_label->jump << 1) | _label->call); })
1723 /* Set the kind of LABEL. */
1724 #define SET_LABEL_KIND(LABEL, KIND) do { \
1725 __typeof (LABEL) const _label = (LABEL); \
1726 const unsigned int _kind = (KIND); \
1727 if (! LABEL_P (_label)) \
1728 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1729 __FUNCTION__); \
1730 _label->jump = ((_kind >> 1) & 1); \
1731 _label->call = (_kind & 1); \
1732 } while (0)
1734 #else
1736 /* Retrieve the kind of LABEL. */
1737 #define LABEL_KIND(LABEL) \
1738 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1740 /* Set the kind of LABEL. */
1741 #define SET_LABEL_KIND(LABEL, KIND) do { \
1742 rtx const _label = (LABEL); \
1743 const unsigned int _kind = (KIND); \
1744 _label->jump = ((_kind >> 1) & 1); \
1745 _label->call = (_kind & 1); \
1746 } while (0)
1748 #endif /* rtl flag checking */
1750 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1752 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1753 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1754 be decremented and possibly the label can be deleted. */
1755 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1757 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1759 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1762 /* Methods of rtx_jump_insn. */
1764 inline rtx rtx_jump_insn::jump_label () const
1766 return JUMP_LABEL (this);
1769 inline rtx_code_label *rtx_jump_insn::jump_target () const
1771 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1774 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1776 JUMP_LABEL (this) = target;
1779 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1780 goes through all the LABEL_REFs that jump to that label. The chain
1781 eventually winds up at the CODE_LABEL: it is circular. */
1782 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1784 /* Get the label that a LABEL_REF references. */
1785 static inline rtx_insn *
1786 label_ref_label (const_rtx ref)
1788 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1791 /* Set the label that LABEL_REF ref refers to. */
1793 static inline void
1794 set_label_ref_label (rtx ref, rtx_insn *label)
1796 XCEXP (ref, 0, LABEL_REF) = label;
1799 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1800 be used on RHS. Use SET_REGNO to change the value. */
1801 #define REGNO(RTX) (rhs_regno(RTX))
1802 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1804 /* Return the number of consecutive registers in a REG. This is always
1805 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1806 hard registers. */
1807 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1809 /* ORIGINAL_REGNO holds the number the register originally had; for a
1810 pseudo register turned into a hard reg this will hold the old pseudo
1811 register number. */
1812 #define ORIGINAL_REGNO(RTX) \
1813 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1815 /* Force the REGNO macro to only be used on the lhs. */
1816 static inline unsigned int
1817 rhs_regno (const_rtx x)
1819 return REG_CHECK (x)->regno;
1822 /* Return the final register in REG X plus one. */
1823 static inline unsigned int
1824 END_REGNO (const_rtx x)
1826 return REGNO (x) + REG_NREGS (x);
1829 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1830 bypassing the df machinery. */
1831 static inline void
1832 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1834 reg_info *reg = REG_CHECK (x);
1835 reg->regno = regno;
1836 reg->nregs = nregs;
1839 /* 1 if RTX is a reg or parallel that is the current function's return
1840 value. */
1841 #define REG_FUNCTION_VALUE_P(RTX) \
1842 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1844 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1845 #define REG_USERVAR_P(RTX) \
1846 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1848 /* 1 if RTX is a reg that holds a pointer value. */
1849 #define REG_POINTER(RTX) \
1850 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1852 /* 1 if RTX is a mem that holds a pointer value. */
1853 #define MEM_POINTER(RTX) \
1854 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1856 /* 1 if the given register REG corresponds to a hard register. */
1857 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1859 /* 1 if the given register number REG_NO corresponds to a hard register. */
1860 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1862 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1863 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1864 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1866 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1867 elements actually needed to represent the constant.
1868 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1869 significant HOST_WIDE_INT. */
1870 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1871 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1872 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1874 /* For a CONST_DOUBLE:
1875 #if TARGET_SUPPORTS_WIDE_INT == 0
1876 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1877 low-order word and ..._HIGH the high-order.
1878 #endif
1879 For a float, there is a REAL_VALUE_TYPE structure, and
1880 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1881 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1882 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1883 #define CONST_DOUBLE_REAL_VALUE(r) \
1884 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1886 #define CONST_FIXED_VALUE(r) \
1887 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1888 #define CONST_FIXED_VALUE_HIGH(r) \
1889 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1890 #define CONST_FIXED_VALUE_LOW(r) \
1891 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1893 /* For a CONST_VECTOR, return element #n. */
1894 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1896 /* For a CONST_VECTOR, return the number of elements in a vector. */
1897 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1899 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1900 SUBREG_BYTE extracts the byte-number. */
1902 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1903 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1905 /* in rtlanal.c */
1906 /* Return the right cost to give to an operation
1907 to make the cost of the corresponding register-to-register instruction
1908 N times that of a fast register-to-register instruction. */
1909 #define COSTS_N_INSNS(N) ((N) * 4)
1911 /* Maximum cost of an rtl expression. This value has the special meaning
1912 not to use an rtx with this cost under any circumstances. */
1913 #define MAX_COST INT_MAX
1915 /* Return true if CODE always has VOIDmode. */
1917 static inline bool
1918 always_void_p (enum rtx_code code)
1920 return code == SET;
1923 /* A structure to hold all available cost information about an rtl
1924 expression. */
1925 struct full_rtx_costs
1927 int speed;
1928 int size;
1931 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1932 static inline void
1933 init_costs_to_max (struct full_rtx_costs *c)
1935 c->speed = MAX_COST;
1936 c->size = MAX_COST;
1939 /* Initialize a full_rtx_costs structure C to zero cost. */
1940 static inline void
1941 init_costs_to_zero (struct full_rtx_costs *c)
1943 c->speed = 0;
1944 c->size = 0;
1947 /* Compare two full_rtx_costs structures A and B, returning true
1948 if A < B when optimizing for speed. */
1949 static inline bool
1950 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1951 bool speed)
1953 if (speed)
1954 return (a->speed < b->speed
1955 || (a->speed == b->speed && a->size < b->size));
1956 else
1957 return (a->size < b->size
1958 || (a->size == b->size && a->speed < b->speed));
1961 /* Increase both members of the full_rtx_costs structure C by the
1962 cost of N insns. */
1963 static inline void
1964 costs_add_n_insns (struct full_rtx_costs *c, int n)
1966 c->speed += COSTS_N_INSNS (n);
1967 c->size += COSTS_N_INSNS (n);
1970 /* Describes the shape of a subreg:
1972 inner_mode == the mode of the SUBREG_REG
1973 offset == the SUBREG_BYTE
1974 outer_mode == the mode of the SUBREG itself. */
1975 struct subreg_shape {
1976 subreg_shape (machine_mode, unsigned int, machine_mode);
1977 bool operator == (const subreg_shape &) const;
1978 bool operator != (const subreg_shape &) const;
1979 unsigned int unique_id () const;
1981 machine_mode inner_mode;
1982 unsigned int offset;
1983 machine_mode outer_mode;
1986 inline
1987 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1988 unsigned int offset_in,
1989 machine_mode outer_mode_in)
1990 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1993 inline bool
1994 subreg_shape::operator == (const subreg_shape &other) const
1996 return (inner_mode == other.inner_mode
1997 && offset == other.offset
1998 && outer_mode == other.outer_mode);
2001 inline bool
2002 subreg_shape::operator != (const subreg_shape &other) const
2004 return !operator == (other);
2007 /* Return an integer that uniquely identifies this shape. Structures
2008 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2009 current mode is anywhere near being 65536 bytes in size, so the
2010 id comfortably fits in an int. */
2012 inline unsigned int
2013 subreg_shape::unique_id () const
2015 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2016 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2019 /* Return the shape of a SUBREG rtx. */
2021 static inline subreg_shape
2022 shape_of_subreg (const_rtx x)
2024 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2025 SUBREG_BYTE (x), GET_MODE (x));
2028 /* Information about an address. This structure is supposed to be able
2029 to represent all supported target addresses. Please extend it if it
2030 is not yet general enough. */
2031 struct address_info {
2032 /* The mode of the value being addressed, or VOIDmode if this is
2033 a load-address operation with no known address mode. */
2034 machine_mode mode;
2036 /* The address space. */
2037 addr_space_t as;
2039 /* True if this is an RTX_AUTOINC address. */
2040 bool autoinc_p;
2042 /* A pointer to the top-level address. */
2043 rtx *outer;
2045 /* A pointer to the inner address, after all address mutations
2046 have been stripped from the top-level address. It can be one
2047 of the following:
2049 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2051 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2052 points to the step value, depending on whether the step is variable
2053 or constant respectively. SEGMENT is null.
2055 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2056 with null fields evaluating to 0. */
2057 rtx *inner;
2059 /* Components that make up *INNER. Each one may be null or nonnull.
2060 When nonnull, their meanings are as follows:
2062 - *SEGMENT is the "segment" of memory to which the address refers.
2063 This value is entirely target-specific and is only called a "segment"
2064 because that's its most typical use. It contains exactly one UNSPEC,
2065 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2066 reloading.
2068 - *BASE is a variable expression representing a base address.
2069 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2071 - *INDEX is a variable expression representing an index value.
2072 It may be a scaled expression, such as a MULT. It has exactly
2073 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2075 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2076 unmutated RTX_CONST_OBJ. */
2077 rtx *segment;
2078 rtx *base;
2079 rtx *index;
2080 rtx *disp;
2082 rtx *segment_term;
2083 rtx *base_term;
2084 rtx *index_term;
2085 rtx *disp_term;
2087 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2088 of BASE_TERM, otherwise it is null. */
2089 rtx *base_term2;
2091 /* ADDRESS if this structure describes an address operand, MEM if
2092 it describes a MEM address. */
2093 enum rtx_code addr_outer_code;
2095 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2096 enum rtx_code base_outer_code;
2099 /* This is used to bundle an rtx and a mode together so that the pair
2100 can be used with the wi:: routines. If we ever put modes into rtx
2101 integer constants, this should go away and then just pass an rtx in. */
2102 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2104 namespace wi
2106 template <>
2107 struct int_traits <rtx_mode_t>
2109 static const enum precision_type precision_type = VAR_PRECISION;
2110 static const bool host_dependent_precision = false;
2111 /* This ought to be true, except for the special case that BImode
2112 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2113 static const bool is_sign_extended = false;
2114 static unsigned int get_precision (const rtx_mode_t &);
2115 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2116 const rtx_mode_t &);
2120 inline unsigned int
2121 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2123 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2126 inline wi::storage_ref
2127 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2128 unsigned int precision,
2129 const rtx_mode_t &x)
2131 gcc_checking_assert (precision == get_precision (x));
2132 switch (GET_CODE (x.first))
2134 case CONST_INT:
2135 if (precision < HOST_BITS_PER_WIDE_INT)
2136 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2137 targets is 1 rather than -1. */
2138 gcc_checking_assert (INTVAL (x.first)
2139 == sext_hwi (INTVAL (x.first), precision)
2140 || (x.second == BImode && INTVAL (x.first) == 1));
2142 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2144 case CONST_WIDE_INT:
2145 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2146 CONST_WIDE_INT_NUNITS (x.first), precision);
2148 #if TARGET_SUPPORTS_WIDE_INT == 0
2149 case CONST_DOUBLE:
2150 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2151 #endif
2153 default:
2154 gcc_unreachable ();
2158 namespace wi
2160 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2161 wide_int min_value (machine_mode, signop);
2162 wide_int max_value (machine_mode, signop);
2165 inline wi::hwi_with_prec
2166 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2168 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2171 /* Produce the smallest number that is represented in MODE. The precision
2172 is taken from MODE and the sign from SGN. */
2173 inline wide_int
2174 wi::min_value (machine_mode mode, signop sgn)
2176 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2179 /* Produce the largest number that is represented in MODE. The precision
2180 is taken from MODE and the sign from SGN. */
2181 inline wide_int
2182 wi::max_value (machine_mode mode, signop sgn)
2184 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2187 extern void init_rtlanal (void);
2188 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2189 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2190 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2191 struct full_rtx_costs *);
2192 extern unsigned int subreg_lsb (const_rtx);
2193 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2194 unsigned int);
2195 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2196 unsigned int);
2197 extern bool read_modify_subreg_p (const_rtx);
2199 /* Return the subreg byte offset for a subreg whose outer mode is
2200 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2201 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2202 the inner value. This is the inverse of subreg_lsb_1 (which converts
2203 byte offsets to bit shifts). */
2205 inline unsigned int
2206 subreg_offset_from_lsb (machine_mode outer_mode,
2207 machine_mode inner_mode,
2208 unsigned int lsb_shift)
2210 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2211 GET_MODE_SIZE (inner_mode), lsb_shift);
2214 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2215 unsigned int, machine_mode);
2216 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2217 unsigned int, machine_mode);
2218 extern unsigned int subreg_regno (const_rtx);
2219 extern int simplify_subreg_regno (unsigned int, machine_mode,
2220 unsigned int, machine_mode);
2221 extern unsigned int subreg_nregs (const_rtx);
2222 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2223 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2224 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2225 extern bool constant_pool_constant_p (rtx);
2226 extern bool truncated_to_mode (machine_mode, const_rtx);
2227 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2228 extern void split_double (rtx, rtx *, rtx *);
2229 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2230 extern void decompose_address (struct address_info *, rtx *,
2231 machine_mode, addr_space_t, enum rtx_code);
2232 extern void decompose_lea_address (struct address_info *, rtx *);
2233 extern void decompose_mem_address (struct address_info *, rtx);
2234 extern void update_address (struct address_info *);
2235 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2236 extern enum rtx_code get_index_code (const struct address_info *);
2238 /* 1 if RTX is a subreg containing a reg that is already known to be
2239 sign- or zero-extended from the mode of the subreg to the mode of
2240 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2241 extension.
2243 When used as a LHS, is means that this extension must be done
2244 when assigning to SUBREG_REG. */
2246 #define SUBREG_PROMOTED_VAR_P(RTX) \
2247 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2249 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2250 this gives the necessary extensions:
2251 0 - signed (SPR_SIGNED)
2252 1 - normal unsigned (SPR_UNSIGNED)
2253 2 - value is both sign and unsign extended for mode
2254 (SPR_SIGNED_AND_UNSIGNED).
2255 -1 - pointer unsigned, which most often can be handled like unsigned
2256 extension, except for generating instructions where we need to
2257 emit special code (ptr_extend insns) on some architectures
2258 (SPR_POINTER). */
2260 const int SRP_POINTER = -1;
2261 const int SRP_SIGNED = 0;
2262 const int SRP_UNSIGNED = 1;
2263 const int SRP_SIGNED_AND_UNSIGNED = 2;
2265 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2266 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2267 do { \
2268 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2269 (RTX), SUBREG); \
2270 switch (VAL) \
2272 case SRP_POINTER: \
2273 _rtx->volatil = 0; \
2274 _rtx->unchanging = 0; \
2275 break; \
2276 case SRP_SIGNED: \
2277 _rtx->volatil = 0; \
2278 _rtx->unchanging = 1; \
2279 break; \
2280 case SRP_UNSIGNED: \
2281 _rtx->volatil = 1; \
2282 _rtx->unchanging = 0; \
2283 break; \
2284 case SRP_SIGNED_AND_UNSIGNED: \
2285 _rtx->volatil = 1; \
2286 _rtx->unchanging = 1; \
2287 break; \
2289 } while (0)
2291 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2292 including SRP_SIGNED_AND_UNSIGNED if promoted for
2293 both signed and unsigned. */
2294 #define SUBREG_PROMOTED_GET(RTX) \
2295 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2296 + (RTX)->unchanging - 1)
2298 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2299 #define SUBREG_PROMOTED_SIGN(RTX) \
2300 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2301 : (RTX)->unchanging - 1)
2303 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2304 for SIGNED type. */
2305 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2306 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2308 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2309 for UNSIGNED type. */
2310 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2311 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2313 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2314 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2315 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2316 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2317 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2319 /* True if the REG is the static chain register for some CALL_INSN. */
2320 #define STATIC_CHAIN_REG_P(RTX) \
2321 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2323 /* True if the subreg was generated by LRA for reload insns. Such
2324 subregs are valid only during LRA. */
2325 #define LRA_SUBREG_P(RTX) \
2326 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2328 /* True if call is instrumented by Pointer Bounds Checker. */
2329 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2330 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2332 /* Access various components of an ASM_OPERANDS rtx. */
2334 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2335 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2336 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2337 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2338 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2339 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2340 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2341 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2342 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2343 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2344 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2345 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2346 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2347 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2348 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2349 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2350 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2351 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2353 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2354 #define MEM_READONLY_P(RTX) \
2355 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2357 /* 1 if RTX is a mem and we should keep the alias set for this mem
2358 unchanged when we access a component. Set to 1, or example, when we
2359 are already in a non-addressable component of an aggregate. */
2360 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2361 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2363 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2364 #define MEM_VOLATILE_P(RTX) \
2365 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2366 ASM_INPUT)->volatil)
2368 /* 1 if RTX is a mem that cannot trap. */
2369 #define MEM_NOTRAP_P(RTX) \
2370 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2372 /* The memory attribute block. We provide access macros for each value
2373 in the block and provide defaults if none specified. */
2374 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2376 /* The register attribute block. We provide access macros for each value
2377 in the block and provide defaults if none specified. */
2378 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2380 #ifndef GENERATOR_FILE
2381 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2382 set, and may alias anything. Otherwise, the MEM can only alias
2383 MEMs in a conflicting alias set. This value is set in a
2384 language-dependent manner in the front-end, and should not be
2385 altered in the back-end. These set numbers are tested with
2386 alias_sets_conflict_p. */
2387 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2389 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2390 refer to part of a DECL. It may also be a COMPONENT_REF. */
2391 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2393 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2394 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2396 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2397 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2399 /* For a MEM rtx, the address space. */
2400 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2402 /* For a MEM rtx, true if its MEM_SIZE is known. */
2403 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2405 /* For a MEM rtx, the size in bytes of the MEM. */
2406 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2408 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2409 mode as a default when STRICT_ALIGNMENT, but not if not. */
2410 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2411 #else
2412 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2413 #endif
2415 /* For a REG rtx, the decl it is known to refer to, if it is known to
2416 refer to part of a DECL. */
2417 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2419 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2420 HOST_WIDE_INT. */
2421 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2423 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2424 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2425 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2426 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2427 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2428 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2429 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2430 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2432 /* 1 if RTX is a label_ref for a nonlocal label. */
2433 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2434 REG_LABEL_TARGET note. */
2435 #define LABEL_REF_NONLOCAL_P(RTX) \
2436 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2438 /* 1 if RTX is a code_label that should always be considered to be needed. */
2439 #define LABEL_PRESERVE_P(RTX) \
2440 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2442 /* During sched, 1 if RTX is an insn that must be scheduled together
2443 with the preceding insn. */
2444 #define SCHED_GROUP_P(RTX) \
2445 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2446 JUMP_INSN, CALL_INSN)->in_struct)
2448 /* For a SET rtx, SET_DEST is the place that is set
2449 and SET_SRC is the value it is set to. */
2450 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2451 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2452 #define SET_IS_RETURN_P(RTX) \
2453 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2455 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2456 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2457 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2459 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2460 conditionally executing the code on, COND_EXEC_CODE is the code
2461 to execute if the condition is true. */
2462 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2463 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2465 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2466 constants pool. */
2467 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2468 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2470 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2471 tree constant pool. This information is private to varasm.c. */
2472 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2473 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2474 (RTX), SYMBOL_REF)->frame_related)
2476 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2477 #define SYMBOL_REF_FLAG(RTX) \
2478 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2480 /* 1 if RTX is a symbol_ref that has been the library function in
2481 emit_library_call. */
2482 #define SYMBOL_REF_USED(RTX) \
2483 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2485 /* 1 if RTX is a symbol_ref for a weak symbol. */
2486 #define SYMBOL_REF_WEAK(RTX) \
2487 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2489 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2490 SYMBOL_REF_CONSTANT. */
2491 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2493 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2494 pool symbol. */
2495 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2496 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2498 /* The tree (decl or constant) associated with the symbol, or null. */
2499 #define SYMBOL_REF_DECL(RTX) \
2500 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2502 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2503 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2504 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2506 /* The rtx constant pool entry for a symbol, or null. */
2507 #define SYMBOL_REF_CONSTANT(RTX) \
2508 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2510 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2511 information derivable from the tree decl associated with this symbol.
2512 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2513 decl. In some cases this is a bug. But beyond that, it's nice to cache
2514 this information to avoid recomputing it. Finally, this allows space for
2515 the target to store more than one bit of information, as with
2516 SYMBOL_REF_FLAG. */
2517 #define SYMBOL_REF_FLAGS(RTX) \
2518 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2519 ->u2.symbol_ref_flags)
2521 /* These flags are common enough to be defined for all targets. They
2522 are computed by the default version of targetm.encode_section_info. */
2524 /* Set if this symbol is a function. */
2525 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2526 #define SYMBOL_REF_FUNCTION_P(RTX) \
2527 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2528 /* Set if targetm.binds_local_p is true. */
2529 #define SYMBOL_FLAG_LOCAL (1 << 1)
2530 #define SYMBOL_REF_LOCAL_P(RTX) \
2531 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2532 /* Set if targetm.in_small_data_p is true. */
2533 #define SYMBOL_FLAG_SMALL (1 << 2)
2534 #define SYMBOL_REF_SMALL_P(RTX) \
2535 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2536 /* The three-bit field at [5:3] is true for TLS variables; use
2537 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2538 #define SYMBOL_FLAG_TLS_SHIFT 3
2539 #define SYMBOL_REF_TLS_MODEL(RTX) \
2540 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2541 /* Set if this symbol is not defined in this translation unit. */
2542 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2543 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2544 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2545 /* Set if this symbol has a block_symbol structure associated with it. */
2546 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2547 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2548 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2549 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2550 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2551 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2552 #define SYMBOL_REF_ANCHOR_P(RTX) \
2553 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2555 /* Subsequent bits are available for the target to use. */
2556 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2557 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2559 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2560 structure to which the symbol belongs, or NULL if it has not been
2561 assigned a block. */
2562 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2564 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2565 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2566 RTX has not yet been assigned to a block, or it has not been given an
2567 offset within that block. */
2568 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2570 /* True if RTX is flagged to be a scheduling barrier. */
2571 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2572 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2574 /* Indicate whether the machine has any sort of auto increment addressing.
2575 If not, we can avoid checking for REG_INC notes. */
2577 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2578 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2579 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2580 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2581 #define AUTO_INC_DEC 1
2582 #else
2583 #define AUTO_INC_DEC 0
2584 #endif
2586 /* Define a macro to look for REG_INC notes,
2587 but save time on machines where they never exist. */
2589 #if AUTO_INC_DEC
2590 #define FIND_REG_INC_NOTE(INSN, REG) \
2591 ((REG) != NULL_RTX && REG_P ((REG)) \
2592 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2593 : find_reg_note ((INSN), REG_INC, (REG)))
2594 #else
2595 #define FIND_REG_INC_NOTE(INSN, REG) 0
2596 #endif
2598 #ifndef HAVE_PRE_INCREMENT
2599 #define HAVE_PRE_INCREMENT 0
2600 #endif
2602 #ifndef HAVE_PRE_DECREMENT
2603 #define HAVE_PRE_DECREMENT 0
2604 #endif
2606 #ifndef HAVE_POST_INCREMENT
2607 #define HAVE_POST_INCREMENT 0
2608 #endif
2610 #ifndef HAVE_POST_DECREMENT
2611 #define HAVE_POST_DECREMENT 0
2612 #endif
2614 #ifndef HAVE_POST_MODIFY_DISP
2615 #define HAVE_POST_MODIFY_DISP 0
2616 #endif
2618 #ifndef HAVE_POST_MODIFY_REG
2619 #define HAVE_POST_MODIFY_REG 0
2620 #endif
2622 #ifndef HAVE_PRE_MODIFY_DISP
2623 #define HAVE_PRE_MODIFY_DISP 0
2624 #endif
2626 #ifndef HAVE_PRE_MODIFY_REG
2627 #define HAVE_PRE_MODIFY_REG 0
2628 #endif
2631 /* Some architectures do not have complete pre/post increment/decrement
2632 instruction sets, or only move some modes efficiently. These macros
2633 allow us to tune autoincrement generation. */
2635 #ifndef USE_LOAD_POST_INCREMENT
2636 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2637 #endif
2639 #ifndef USE_LOAD_POST_DECREMENT
2640 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2641 #endif
2643 #ifndef USE_LOAD_PRE_INCREMENT
2644 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2645 #endif
2647 #ifndef USE_LOAD_PRE_DECREMENT
2648 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2649 #endif
2651 #ifndef USE_STORE_POST_INCREMENT
2652 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2653 #endif
2655 #ifndef USE_STORE_POST_DECREMENT
2656 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2657 #endif
2659 #ifndef USE_STORE_PRE_INCREMENT
2660 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2661 #endif
2663 #ifndef USE_STORE_PRE_DECREMENT
2664 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2665 #endif
2667 /* Nonzero when we are generating CONCATs. */
2668 extern int generating_concat_p;
2670 /* Nonzero when we are expanding trees to RTL. */
2671 extern int currently_expanding_to_rtl;
2673 /* Generally useful functions. */
2675 #ifndef GENERATOR_FILE
2676 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2677 rather than size. */
2679 static inline int
2680 set_rtx_cost (rtx x, bool speed_p)
2682 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2685 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2687 static inline void
2688 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2690 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2693 /* Return the cost of moving X into a register, relative to the cost
2694 of a register move. SPEED_P is true if optimizing for speed rather
2695 than size. */
2697 static inline int
2698 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2700 return rtx_cost (x, mode, SET, 1, speed_p);
2703 /* Like set_src_cost, but return both the speed and size costs in C. */
2705 static inline void
2706 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2708 get_full_rtx_cost (x, mode, SET, 1, c);
2710 #endif
2712 /* A convenience macro to validate the arguments of a zero_extract
2713 expression. It determines whether SIZE lies inclusively within
2714 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2715 and the sum lies inclusively within [1, RANGE]. RANGE must be
2716 >= 1, but SIZE and POS may be negative. */
2717 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2718 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2719 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2720 - (unsigned HOST_WIDE_INT)(POS)))
2722 /* In explow.c */
2723 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2724 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2725 extern HOST_WIDE_INT get_stack_check_protect (void);
2727 /* In rtl.c */
2728 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2729 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2730 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2731 #define const_wide_int_alloc(NWORDS) \
2732 rtx_alloc_v (CONST_WIDE_INT, \
2733 (sizeof (struct hwivec_def) \
2734 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2736 extern rtvec rtvec_alloc (int);
2737 extern rtvec shallow_copy_rtvec (rtvec);
2738 extern bool shared_const_p (const_rtx);
2739 extern rtx copy_rtx (rtx);
2740 extern enum rtx_code classify_insn (rtx);
2741 extern void dump_rtx_statistics (void);
2743 /* In emit-rtl.c */
2744 extern rtx copy_rtx_if_shared (rtx);
2746 /* In rtl.c */
2747 extern unsigned int rtx_size (const_rtx);
2748 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2749 extern int rtx_equal_p (const_rtx, const_rtx);
2750 extern bool rtvec_all_equal_p (const_rtvec);
2752 /* Return true if X is some form of vector constant. */
2754 inline bool
2755 const_vec_p (const_rtx x)
2757 return VECTOR_MODE_P (GET_MODE (x)) && CONSTANT_P (x);
2760 /* Return true if X is a vector constant with a duplicated element value. */
2762 inline bool
2763 const_vec_duplicate_p (const_rtx x)
2765 return ((GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2766 || (GET_CODE (x) == CONST
2767 && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE));
2770 /* Return true if X is a vector constant with a duplicated element value.
2771 Store the duplicated element in *ELT if so. */
2773 template <typename T>
2774 inline bool
2775 const_vec_duplicate_p (T x, T *elt)
2777 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2779 *elt = CONST_VECTOR_ELT (x, 0);
2780 return true;
2782 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2784 *elt = XEXP (XEXP (x, 0), 0);
2785 return true;
2787 return false;
2790 /* Return true if X is a vector with a duplicated element value, either
2791 constant or nonconstant. Store the duplicated element in *ELT if so. */
2793 template <typename T>
2794 inline bool
2795 vec_duplicate_p (T x, T *elt)
2797 if (GET_CODE (x) == VEC_DUPLICATE)
2799 *elt = XEXP (x, 0);
2800 return true;
2802 return const_vec_duplicate_p (x, elt);
2805 /* If X is a vector constant with a duplicated element value, return that
2806 element value, otherwise return X. */
2808 template <typename T>
2809 inline T
2810 unwrap_const_vec_duplicate (T x)
2812 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2813 return CONST_VECTOR_ELT (x, 0);
2814 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2815 return XEXP (XEXP (x, 0), 0);
2816 return x;
2819 /* In emit-rtl.c. */
2820 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
2822 /* Return true if X is a constant vector that contains a linear series
2823 of the form:
2825 { B, B + S, B + 2 * S, B + 3 * S, ... }
2827 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
2829 inline bool
2830 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2832 if (GET_CODE (x) == CONST_VECTOR
2833 && GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
2834 return const_vec_series_p_1 (x, base_out, step_out);
2835 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_SERIES)
2837 *base_out = XEXP (XEXP (x, 0), 0);
2838 *step_out = XEXP (XEXP (x, 0), 1);
2839 return true;
2841 return false;
2844 /* Return true if X is a vector that contains a linear series of the
2845 form:
2847 { B, B + S, B + 2 * S, B + 3 * S, ... }
2849 where B and S are constant or nonconstant. Store B and S in
2850 *BASE_OUT and *STEP_OUT on sucess. */
2852 inline bool
2853 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2855 if (GET_CODE (x) == VEC_SERIES)
2857 *base_out = XEXP (x, 0);
2858 *step_out = XEXP (x, 1);
2859 return true;
2861 return const_vec_series_p (x, base_out, step_out);
2864 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2866 inline scalar_int_mode
2867 subreg_unpromoted_mode (rtx x)
2869 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2870 return as_a <scalar_int_mode> (GET_MODE (x));
2873 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2875 inline scalar_int_mode
2876 subreg_promoted_mode (rtx x)
2878 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2879 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
2882 /* In emit-rtl.c */
2883 extern rtvec gen_rtvec_v (int, rtx *);
2884 extern rtvec gen_rtvec_v (int, rtx_insn **);
2885 extern rtx gen_reg_rtx (machine_mode);
2886 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2887 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2888 extern rtx gen_reg_rtx_and_attrs (rtx);
2889 extern rtx_code_label *gen_label_rtx (void);
2890 extern rtx gen_lowpart_common (machine_mode, rtx);
2892 /* In cse.c */
2893 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2895 /* In emit-rtl.c */
2896 extern rtx gen_highpart (machine_mode, rtx);
2897 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2898 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2900 /* In emit-rtl.c */
2901 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2902 extern int subreg_lowpart_p (const_rtx);
2903 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2905 /* Return true if a subreg of mode OUTERMODE would only access part of
2906 an inner register with mode INNERMODE. The other bits of the inner
2907 register would then be "don't care" on read. The behavior for writes
2908 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
2909 chunk would be clobbered but other bits would be preserved. */
2911 inline bool
2912 partial_subreg_p (machine_mode outermode, machine_mode innermode)
2914 return GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode);
2917 /* Likewise return true if X is a subreg that is smaller than the inner
2918 register. Use read_modify_subreg_p to test whether writing to such
2919 a subreg preserves any part of the inner register. */
2921 inline bool
2922 partial_subreg_p (const_rtx x)
2924 if (GET_CODE (x) != SUBREG)
2925 return false;
2926 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2929 /* Return true if a subreg with the given outer and inner modes is
2930 paradoxical. */
2932 inline bool
2933 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
2935 return GET_MODE_PRECISION (outermode) > GET_MODE_PRECISION (innermode);
2938 /* Return true if X is a paradoxical subreg, false otherwise. */
2940 inline bool
2941 paradoxical_subreg_p (const_rtx x)
2943 if (GET_CODE (x) != SUBREG)
2944 return false;
2945 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2948 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2950 inline unsigned int
2951 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2953 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2954 GET_MODE_SIZE (innermode));
2957 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
2958 return the smaller of the two modes if they are different sizes,
2959 otherwise return the outer mode. */
2961 inline machine_mode
2962 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
2964 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
2967 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
2968 return the mode that is big enough to hold both the outer and inner
2969 values. Prefer the outer mode in the event of a tie. */
2971 inline machine_mode
2972 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
2974 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
2977 /* Likewise for subreg X. */
2979 inline machine_mode
2980 wider_subreg_mode (const_rtx x)
2982 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2985 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
2987 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
2989 inline unsigned int
2990 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
2992 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
2993 GET_MODE_SIZE (innermode));
2996 extern int byte_lowpart_offset (machine_mode, machine_mode);
2997 extern int subreg_memory_offset (machine_mode, machine_mode, unsigned int);
2998 extern int subreg_memory_offset (const_rtx);
2999 extern rtx make_safe_from (rtx, rtx);
3000 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3001 addr_space_t, bool, bool);
3002 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3003 addr_space_t);
3004 #define convert_memory_address(to_mode,x) \
3005 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3006 extern const char *get_insn_name (int);
3007 extern rtx_insn *get_last_insn_anywhere (void);
3008 extern rtx_insn *get_first_nonnote_insn (void);
3009 extern rtx_insn *get_last_nonnote_insn (void);
3010 extern void start_sequence (void);
3011 extern void push_to_sequence (rtx_insn *);
3012 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3013 extern void end_sequence (void);
3014 #if TARGET_SUPPORTS_WIDE_INT == 0
3015 extern double_int rtx_to_double_int (const_rtx);
3016 #endif
3017 extern void cwi_output_hex (FILE *, const_rtx);
3018 #ifndef GENERATOR_FILE
3019 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
3020 #endif
3021 #if TARGET_SUPPORTS_WIDE_INT == 0
3022 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3023 machine_mode);
3024 #endif
3026 /* In varasm.c */
3027 extern rtx force_const_mem (machine_mode, rtx);
3029 /* In varasm.c */
3031 struct function;
3032 extern rtx get_pool_constant (const_rtx);
3033 extern rtx get_pool_constant_mark (rtx, bool *);
3034 extern fixed_size_mode get_pool_mode (const_rtx);
3035 extern rtx simplify_subtraction (rtx);
3036 extern void decide_function_section (tree);
3038 /* In emit-rtl.c */
3039 extern rtx_insn *emit_insn_before (rtx, rtx);
3040 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3041 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
3042 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
3043 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3044 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
3045 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3046 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3047 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
3048 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3049 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
3050 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
3051 extern rtx_barrier *emit_barrier_before (rtx);
3052 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
3053 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3054 extern rtx_insn *emit_insn_after (rtx, rtx);
3055 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
3056 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
3057 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
3058 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
3059 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
3060 extern rtx_insn *emit_call_insn_after (rtx, rtx);
3061 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
3062 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
3063 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
3064 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
3065 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
3066 extern rtx_barrier *emit_barrier_after (rtx);
3067 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
3068 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3069 extern rtx_insn *emit_insn (rtx);
3070 extern rtx_insn *emit_debug_insn (rtx);
3071 extern rtx_insn *emit_jump_insn (rtx);
3072 extern rtx_insn *emit_call_insn (rtx);
3073 extern rtx_code_label *emit_label (rtx);
3074 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3075 extern rtx_barrier *emit_barrier (void);
3076 extern rtx_note *emit_note (enum insn_note);
3077 extern rtx_note *emit_note_copy (rtx_note *);
3078 extern rtx_insn *gen_clobber (rtx);
3079 extern rtx_insn *emit_clobber (rtx);
3080 extern rtx_insn *gen_use (rtx);
3081 extern rtx_insn *emit_use (rtx);
3082 extern rtx_insn *make_insn_raw (rtx);
3083 extern void add_function_usage_to (rtx, rtx);
3084 extern rtx_call_insn *last_call_insn (void);
3085 extern rtx_insn *previous_insn (rtx_insn *);
3086 extern rtx_insn *next_insn (rtx_insn *);
3087 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3088 extern rtx_insn *prev_nonnote_insn_bb (rtx_insn *);
3089 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3090 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
3091 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3092 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3093 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3094 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3095 extern rtx_insn *prev_real_insn (rtx_insn *);
3096 extern rtx_insn *next_real_insn (rtx);
3097 extern rtx_insn *prev_active_insn (rtx_insn *);
3098 extern rtx_insn *next_active_insn (rtx_insn *);
3099 extern int active_insn_p (const rtx_insn *);
3100 extern rtx_insn *next_cc0_user (rtx_insn *);
3101 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3103 /* In emit-rtl.c */
3104 extern int insn_line (const rtx_insn *);
3105 extern const char * insn_file (const rtx_insn *);
3106 extern tree insn_scope (const rtx_insn *);
3107 extern expanded_location insn_location (const rtx_insn *);
3108 extern location_t prologue_location, epilogue_location;
3110 /* In jump.c */
3111 extern enum rtx_code reverse_condition (enum rtx_code);
3112 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3113 extern enum rtx_code swap_condition (enum rtx_code);
3114 extern enum rtx_code unsigned_condition (enum rtx_code);
3115 extern enum rtx_code signed_condition (enum rtx_code);
3116 extern void mark_jump_label (rtx, rtx_insn *, int);
3118 /* In jump.c */
3119 extern rtx_insn *delete_related_insns (rtx);
3121 /* In recog.c */
3122 extern rtx *find_constant_term_loc (rtx *);
3124 /* In emit-rtl.c */
3125 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3127 /* In insn-recog.c (generated by genrecog). */
3128 extern rtx_insn *split_insns (rtx, rtx_insn *);
3130 /* In simplify-rtx.c */
3131 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3132 rtx, machine_mode);
3133 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3134 machine_mode);
3135 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3136 rtx, rtx);
3137 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3138 rtx);
3139 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3140 machine_mode, rtx, rtx, rtx);
3141 extern rtx simplify_const_relational_operation (enum rtx_code,
3142 machine_mode, rtx, rtx);
3143 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3144 machine_mode, rtx, rtx);
3145 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3146 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3147 machine_mode);
3148 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3149 machine_mode, rtx, rtx, rtx);
3150 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3151 machine_mode, rtx, rtx);
3152 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
3153 unsigned int);
3154 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
3155 unsigned int);
3156 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3157 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3158 rtx (*fn) (rtx, const_rtx, void *), void *);
3159 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3160 extern rtx simplify_rtx (const_rtx);
3161 extern rtx avoid_constant_pool_reference (rtx);
3162 extern rtx delegitimize_mem_from_attrs (rtx);
3163 extern bool mode_signbit_p (machine_mode, const_rtx);
3164 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3165 extern bool val_signbit_known_set_p (machine_mode,
3166 unsigned HOST_WIDE_INT);
3167 extern bool val_signbit_known_clear_p (machine_mode,
3168 unsigned HOST_WIDE_INT);
3170 /* In reginfo.c */
3171 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3172 bool);
3173 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3175 /* In emit-rtl.c */
3176 extern rtx set_for_reg_notes (rtx);
3177 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3178 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3179 extern void set_insn_deleted (rtx);
3181 /* Functions in rtlanal.c */
3183 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3184 extern bool contains_symbol_ref_p (const_rtx);
3185 extern bool contains_symbolic_reference_p (const_rtx);
3187 /* Handle the cheap and common cases inline for performance. */
3189 inline rtx single_set (const rtx_insn *insn)
3191 if (!INSN_P (insn))
3192 return NULL_RTX;
3194 if (GET_CODE (PATTERN (insn)) == SET)
3195 return PATTERN (insn);
3197 /* Defer to the more expensive case. */
3198 return single_set_2 (insn, PATTERN (insn));
3201 extern scalar_int_mode get_address_mode (rtx mem);
3202 extern int rtx_addr_can_trap_p (const_rtx);
3203 extern bool nonzero_address_p (const_rtx);
3204 extern int rtx_unstable_p (const_rtx);
3205 extern bool rtx_varies_p (const_rtx, bool);
3206 extern bool rtx_addr_varies_p (const_rtx, bool);
3207 extern rtx get_call_rtx_from (rtx);
3208 extern HOST_WIDE_INT get_integer_term (const_rtx);
3209 extern rtx get_related_value (const_rtx);
3210 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3211 extern void split_const (rtx, rtx *, rtx *);
3212 extern bool unsigned_reg_p (rtx);
3213 extern int reg_mentioned_p (const_rtx, const_rtx);
3214 extern int count_occurrences (const_rtx, const_rtx, int);
3215 extern int reg_referenced_p (const_rtx, const_rtx);
3216 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3217 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3218 extern int commutative_operand_precedence (rtx);
3219 extern bool swap_commutative_operands_p (rtx, rtx);
3220 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3221 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3222 extern int modified_in_p (const_rtx, const_rtx);
3223 extern int reg_set_p (const_rtx, const_rtx);
3224 extern int multiple_sets (const_rtx);
3225 extern int set_noop_p (const_rtx);
3226 extern int noop_move_p (const rtx_insn *);
3227 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3228 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3229 extern const_rtx set_of (const_rtx, const_rtx);
3230 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3231 extern void record_hard_reg_uses (rtx *, void *);
3232 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3233 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3234 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3235 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3236 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3237 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3238 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3239 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3240 extern rtx find_reg_equal_equiv_note (const_rtx);
3241 extern rtx find_constant_src (const rtx_insn *);
3242 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3243 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3244 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3245 extern void add_reg_note (rtx, enum reg_note, rtx);
3246 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3247 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3248 extern rtx duplicate_reg_note (rtx);
3249 extern void remove_note (rtx_insn *, const_rtx);
3250 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3251 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3252 extern int side_effects_p (const_rtx);
3253 extern int volatile_refs_p (const_rtx);
3254 extern int volatile_insn_p (const_rtx);
3255 extern int may_trap_p_1 (const_rtx, unsigned);
3256 extern int may_trap_p (const_rtx);
3257 extern int may_trap_or_fault_p (const_rtx);
3258 extern bool can_throw_internal (const_rtx);
3259 extern bool can_throw_external (const_rtx);
3260 extern bool insn_could_throw_p (const_rtx);
3261 extern bool insn_nothrow_p (const_rtx);
3262 extern bool can_nonlocal_goto (const rtx_insn *);
3263 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3264 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3265 extern int inequality_comparisons_p (const_rtx);
3266 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3267 extern void replace_label (rtx *, rtx, rtx, bool);
3268 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3269 extern bool rtx_referenced_p (const_rtx, const_rtx);
3270 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3271 extern int computed_jump_p (const rtx_insn *);
3272 extern bool tls_referenced_p (const_rtx);
3273 extern bool contains_mem_rtx_p (rtx x);
3275 /* Overload for refers_to_regno_p for checking a single register. */
3276 inline bool
3277 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3279 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3282 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3283 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3284 NULL. The callback is passed the same opaque ARG passed to
3285 for_each_inc_dec. Return zero to continue looking for other
3286 autoinc operations or any other value to interrupt the traversal and
3287 return that value to the caller of for_each_inc_dec. */
3288 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3289 rtx srcoff, void *arg);
3290 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3292 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3293 rtx *, rtx *);
3294 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3295 rtx_equal_p_callback_function);
3297 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3298 machine_mode *);
3299 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3300 bool, hash_rtx_callback_function);
3302 extern rtx regno_use_in (unsigned int, rtx);
3303 extern int auto_inc_p (const_rtx);
3304 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3305 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3306 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3307 extern int loc_mentioned_in_p (rtx *, const_rtx);
3308 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3309 extern bool keep_with_call_p (const rtx_insn *);
3310 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3311 extern int pattern_cost (rtx, bool);
3312 extern int insn_cost (rtx_insn *, bool);
3313 extern unsigned seq_cost (const rtx_insn *, bool);
3315 /* Given an insn and condition, return a canonical description of
3316 the test being made. */
3317 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3318 int, int);
3320 /* Given a JUMP_INSN, return a canonical description of the test
3321 being made. */
3322 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3324 /* Information about a subreg of a hard register. */
3325 struct subreg_info
3327 /* Offset of first hard register involved in the subreg. */
3328 int offset;
3329 /* Number of hard registers involved in the subreg. In the case of
3330 a paradoxical subreg, this is the number of registers that would
3331 be modified by writing to the subreg; some of them may be don't-care
3332 when reading from the subreg. */
3333 int nregs;
3334 /* Whether this subreg can be represented as a hard reg with the new
3335 mode (by adding OFFSET to the original hard register). */
3336 bool representable_p;
3339 extern void subreg_get_info (unsigned int, machine_mode,
3340 unsigned int, machine_mode,
3341 struct subreg_info *);
3343 /* lists.c */
3345 extern void free_EXPR_LIST_list (rtx_expr_list **);
3346 extern void free_INSN_LIST_list (rtx_insn_list **);
3347 extern void free_EXPR_LIST_node (rtx);
3348 extern void free_INSN_LIST_node (rtx);
3349 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3350 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3351 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3352 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3353 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3354 extern rtx remove_list_elem (rtx, rtx *);
3355 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3356 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3359 /* reginfo.c */
3361 /* Resize reg info. */
3362 extern bool resize_reg_info (void);
3363 /* Free up register info memory. */
3364 extern void free_reg_info (void);
3365 extern void init_subregs_of_mode (void);
3366 extern void finish_subregs_of_mode (void);
3368 /* recog.c */
3369 extern rtx extract_asm_operands (rtx);
3370 extern int asm_noperands (const_rtx);
3371 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3372 machine_mode *, location_t *);
3373 extern void get_referenced_operands (const char *, bool *, unsigned int);
3375 extern enum reg_class reg_preferred_class (int);
3376 extern enum reg_class reg_alternate_class (int);
3377 extern enum reg_class reg_allocno_class (int);
3378 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3379 enum reg_class);
3381 extern void split_all_insns (void);
3382 extern unsigned int split_all_insns_noflow (void);
3384 #define MAX_SAVED_CONST_INT 64
3385 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3387 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3388 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3389 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3390 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3391 extern GTY(()) rtx const_true_rtx;
3393 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3395 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3396 same as VOIDmode. */
3398 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3400 /* Likewise, for the constants 1 and 2 and -1. */
3402 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3403 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3404 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3406 extern GTY(()) rtx pc_rtx;
3407 extern GTY(()) rtx cc0_rtx;
3408 extern GTY(()) rtx ret_rtx;
3409 extern GTY(()) rtx simple_return_rtx;
3410 extern GTY(()) rtx_insn *invalid_insn_rtx;
3412 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3413 is used to represent the frame pointer. This is because the
3414 hard frame pointer and the automatic variables are separated by an amount
3415 that cannot be determined until after register allocation. We can assume
3416 that in this case ELIMINABLE_REGS will be defined, one action of which
3417 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3418 #ifndef HARD_FRAME_POINTER_REGNUM
3419 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3420 #endif
3422 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3423 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3424 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3425 #endif
3427 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3428 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3429 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3430 #endif
3432 /* Index labels for global_rtl. */
3433 enum global_rtl_index
3435 GR_STACK_POINTER,
3436 GR_FRAME_POINTER,
3437 /* For register elimination to work properly these hard_frame_pointer_rtx,
3438 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3439 the same register. */
3440 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3441 GR_ARG_POINTER = GR_FRAME_POINTER,
3442 #endif
3443 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3444 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3445 #else
3446 GR_HARD_FRAME_POINTER,
3447 #endif
3448 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3449 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3450 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3451 #else
3452 GR_ARG_POINTER,
3453 #endif
3454 #endif
3455 GR_VIRTUAL_INCOMING_ARGS,
3456 GR_VIRTUAL_STACK_ARGS,
3457 GR_VIRTUAL_STACK_DYNAMIC,
3458 GR_VIRTUAL_OUTGOING_ARGS,
3459 GR_VIRTUAL_CFA,
3460 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3462 GR_MAX
3465 /* Target-dependent globals. */
3466 struct GTY(()) target_rtl {
3467 /* All references to the hard registers in global_rtl_index go through
3468 these unique rtl objects. On machines where the frame-pointer and
3469 arg-pointer are the same register, they use the same unique object.
3471 After register allocation, other rtl objects which used to be pseudo-regs
3472 may be clobbered to refer to the frame-pointer register.
3473 But references that were originally to the frame-pointer can be
3474 distinguished from the others because they contain frame_pointer_rtx.
3476 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3477 tricky: until register elimination has taken place hard_frame_pointer_rtx
3478 should be used if it is being set, and frame_pointer_rtx otherwise. After
3479 register elimination hard_frame_pointer_rtx should always be used.
3480 On machines where the two registers are same (most) then these are the
3481 same. */
3482 rtx x_global_rtl[GR_MAX];
3484 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3485 rtx x_pic_offset_table_rtx;
3487 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3488 This is used to implement __builtin_return_address for some machines;
3489 see for instance the MIPS port. */
3490 rtx x_return_address_pointer_rtx;
3492 /* Commonly used RTL for hard registers. These objects are not
3493 necessarily unique, so we allocate them separately from global_rtl.
3494 They are initialized once per compilation unit, then copied into
3495 regno_reg_rtx at the beginning of each function. */
3496 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3498 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3499 rtx x_top_of_stack[MAX_MACHINE_MODE];
3501 /* Static hunks of RTL used by the aliasing code; these are treated
3502 as persistent to avoid unnecessary RTL allocations. */
3503 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3505 /* The default memory attributes for each mode. */
3506 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3508 /* Track if RTL has been initialized. */
3509 bool target_specific_initialized;
3512 extern GTY(()) struct target_rtl default_target_rtl;
3513 #if SWITCHABLE_TARGET
3514 extern struct target_rtl *this_target_rtl;
3515 #else
3516 #define this_target_rtl (&default_target_rtl)
3517 #endif
3519 #define global_rtl \
3520 (this_target_rtl->x_global_rtl)
3521 #define pic_offset_table_rtx \
3522 (this_target_rtl->x_pic_offset_table_rtx)
3523 #define return_address_pointer_rtx \
3524 (this_target_rtl->x_return_address_pointer_rtx)
3525 #define top_of_stack \
3526 (this_target_rtl->x_top_of_stack)
3527 #define mode_mem_attrs \
3528 (this_target_rtl->x_mode_mem_attrs)
3530 /* All references to certain hard regs, except those created
3531 by allocating pseudo regs into them (when that's possible),
3532 go through these unique rtx objects. */
3533 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3534 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3535 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3536 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3538 #ifndef GENERATOR_FILE
3539 /* Return the attributes of a MEM rtx. */
3540 static inline const struct mem_attrs *
3541 get_mem_attrs (const_rtx x)
3543 struct mem_attrs *attrs;
3545 attrs = MEM_ATTRS (x);
3546 if (!attrs)
3547 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3548 return attrs;
3550 #endif
3552 /* Include the RTL generation functions. */
3554 #ifndef GENERATOR_FILE
3555 #include "genrtl.h"
3556 #undef gen_rtx_ASM_INPUT
3557 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3558 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3559 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3560 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3561 #endif
3563 /* There are some RTL codes that require special attention; the
3564 generation functions included above do the raw handling. If you
3565 add to this list, modify special_rtx in gengenrtl.c as well. */
3567 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3568 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3569 extern rtx_insn *
3570 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3571 basic_block bb, rtx pattern, int location, int code,
3572 rtx reg_notes);
3573 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3574 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3575 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3576 extern rtx gen_raw_REG (machine_mode, unsigned int);
3577 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3578 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3579 extern rtx gen_rtx_MEM (machine_mode, rtx);
3580 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3581 enum var_init_status);
3583 #ifdef GENERATOR_FILE
3584 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3585 #else
3586 static inline void
3587 PUT_MODE (rtx x, machine_mode mode)
3589 if (REG_P (x))
3590 set_mode_and_regno (x, mode, REGNO (x));
3591 else
3592 PUT_MODE_RAW (x, mode);
3594 #endif
3596 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3598 /* Virtual registers are used during RTL generation to refer to locations into
3599 the stack frame when the actual location isn't known until RTL generation
3600 is complete. The routine instantiate_virtual_regs replaces these with
3601 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3602 a constant. */
3604 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3606 /* This points to the first word of the incoming arguments passed on the stack,
3607 either by the caller or by the callee when pretending it was passed by the
3608 caller. */
3610 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3612 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3614 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3615 variable on the stack. Otherwise, it points to the first variable on
3616 the stack. */
3618 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3620 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3622 /* This points to the location of dynamically-allocated memory on the stack
3623 immediately after the stack pointer has been adjusted by the amount
3624 desired. */
3626 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3628 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3630 /* This points to the location in the stack at which outgoing arguments should
3631 be written when the stack is pre-pushed (arguments pushed using push
3632 insns always use sp). */
3634 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3636 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3638 /* This points to the Canonical Frame Address of the function. This
3639 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3640 but is calculated relative to the arg pointer for simplicity; the
3641 frame pointer nor stack pointer are necessarily fixed relative to
3642 the CFA until after reload. */
3644 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3646 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3648 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3650 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3651 when finalized. */
3653 #define virtual_preferred_stack_boundary_rtx \
3654 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3656 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3657 ((FIRST_VIRTUAL_REGISTER) + 5)
3659 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3661 /* Nonzero if REGNUM is a pointer into the stack frame. */
3662 #define REGNO_PTR_FRAME_P(REGNUM) \
3663 ((REGNUM) == STACK_POINTER_REGNUM \
3664 || (REGNUM) == FRAME_POINTER_REGNUM \
3665 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3666 || (REGNUM) == ARG_POINTER_REGNUM \
3667 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3668 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3670 /* REGNUM never really appearing in the INSN stream. */
3671 #define INVALID_REGNUM (~(unsigned int) 0)
3673 /* REGNUM for which no debug information can be generated. */
3674 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3676 extern rtx output_constant_def (tree, int);
3677 extern rtx lookup_constant_def (tree);
3679 /* Nonzero after end of reload pass.
3680 Set to 1 or 0 by reload1.c. */
3682 extern int reload_completed;
3684 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3685 extern int epilogue_completed;
3687 /* Set to 1 while reload_as_needed is operating.
3688 Required by some machines to handle any generated moves differently. */
3690 extern int reload_in_progress;
3692 /* Set to 1 while in lra. */
3693 extern int lra_in_progress;
3695 /* This macro indicates whether you may create a new
3696 pseudo-register. */
3698 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3700 #ifdef STACK_REGS
3701 /* Nonzero after end of regstack pass.
3702 Set to 1 or 0 by reg-stack.c. */
3703 extern int regstack_completed;
3704 #endif
3706 /* If this is nonzero, we do not bother generating VOLATILE
3707 around volatile memory references, and we are willing to
3708 output indirect addresses. If cse is to follow, we reject
3709 indirect addresses so a useful potential cse is generated;
3710 if it is used only once, instruction combination will produce
3711 the same indirect address eventually. */
3712 extern int cse_not_expected;
3714 /* Translates rtx code to tree code, for those codes needed by
3715 real_arithmetic. The function returns an int because the caller may not
3716 know what `enum tree_code' means. */
3718 extern int rtx_to_tree_code (enum rtx_code);
3720 /* In cse.c */
3721 extern int delete_trivially_dead_insns (rtx_insn *, int);
3722 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3723 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3725 /* In dse.c */
3726 extern bool check_for_inc_dec (rtx_insn *insn);
3728 /* In jump.c */
3729 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3730 extern bool jump_to_label_p (const rtx_insn *);
3731 extern int condjump_p (const rtx_insn *);
3732 extern int any_condjump_p (const rtx_insn *);
3733 extern int any_uncondjump_p (const rtx_insn *);
3734 extern rtx pc_set (const rtx_insn *);
3735 extern rtx condjump_label (const rtx_insn *);
3736 extern int simplejump_p (const rtx_insn *);
3737 extern int returnjump_p (const rtx_insn *);
3738 extern int eh_returnjump_p (rtx_insn *);
3739 extern int onlyjump_p (const rtx_insn *);
3740 extern int only_sets_cc0_p (const_rtx);
3741 extern int sets_cc0_p (const_rtx);
3742 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3743 extern int invert_jump (rtx_jump_insn *, rtx, int);
3744 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3745 extern int true_regnum (const_rtx);
3746 extern unsigned int reg_or_subregno (const_rtx);
3747 extern int redirect_jump_1 (rtx_insn *, rtx);
3748 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3749 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3750 extern void rebuild_jump_labels (rtx_insn *);
3751 extern void rebuild_jump_labels_chain (rtx_insn *);
3752 extern rtx reversed_comparison (const_rtx, machine_mode);
3753 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3754 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3755 const_rtx, const rtx_insn *);
3756 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3757 extern int condjump_in_parallel_p (const rtx_insn *);
3759 /* In emit-rtl.c. */
3760 extern int max_reg_num (void);
3761 extern int max_label_num (void);
3762 extern int get_first_label_num (void);
3763 extern void maybe_set_first_label_num (rtx_code_label *);
3764 extern void delete_insns_since (rtx_insn *);
3765 extern void mark_reg_pointer (rtx, int);
3766 extern void mark_user_reg (rtx);
3767 extern void reset_used_flags (rtx);
3768 extern void set_used_flags (rtx);
3769 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3770 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3771 extern int get_max_insn_count (void);
3772 extern int in_sequence_p (void);
3773 extern void init_emit (void);
3774 extern void init_emit_regs (void);
3775 extern void init_derived_machine_modes (void);
3776 extern void init_emit_once (void);
3777 extern void push_topmost_sequence (void);
3778 extern void pop_topmost_sequence (void);
3779 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3780 extern unsigned int unshare_all_rtl (void);
3781 extern void unshare_all_rtl_again (rtx_insn *);
3782 extern void unshare_all_rtl_in_chain (rtx_insn *);
3783 extern void verify_rtl_sharing (void);
3784 extern void add_insn (rtx_insn *);
3785 extern void add_insn_before (rtx, rtx, basic_block);
3786 extern void add_insn_after (rtx, rtx, basic_block);
3787 extern void remove_insn (rtx);
3788 extern rtx_insn *emit (rtx, bool = true);
3789 extern void emit_insn_at_entry (rtx);
3790 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3791 extern rtx gen_const_mem (machine_mode, rtx);
3792 extern rtx gen_frame_mem (machine_mode, rtx);
3793 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3794 extern bool validate_subreg (machine_mode, machine_mode,
3795 const_rtx, unsigned int);
3797 /* In combine.c */
3798 extern unsigned int extended_count (const_rtx, machine_mode, int);
3799 extern rtx remove_death (unsigned int, rtx_insn *);
3800 extern void dump_combine_stats (FILE *);
3801 extern void dump_combine_total_stats (FILE *);
3802 extern rtx make_compound_operation (rtx, enum rtx_code);
3804 /* In sched-rgn.c. */
3805 extern void schedule_insns (void);
3807 /* In sched-ebb.c. */
3808 extern void schedule_ebbs (void);
3810 /* In sel-sched-dump.c. */
3811 extern void sel_sched_fix_param (const char *param, const char *val);
3813 /* In print-rtl.c */
3814 extern const char *print_rtx_head;
3815 extern void debug (const rtx_def &ref);
3816 extern void debug (const rtx_def *ptr);
3817 extern void debug_rtx (const_rtx);
3818 extern void debug_rtx_list (const rtx_insn *, int);
3819 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3820 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3821 extern void print_mem_expr (FILE *, const_tree);
3822 extern void print_rtl (FILE *, const_rtx);
3823 extern void print_simple_rtl (FILE *, const_rtx);
3824 extern int print_rtl_single (FILE *, const_rtx);
3825 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3826 extern void print_inline_rtx (FILE *, const_rtx, int);
3828 /* In stmt.c */
3829 extern void expand_null_return (void);
3830 extern void expand_naked_return (void);
3831 extern void emit_jump (rtx);
3833 /* In expr.c */
3834 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3835 unsigned int, int);
3836 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3837 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3839 /* In expmed.c */
3840 extern void init_expmed (void);
3841 extern void expand_inc (rtx, rtx);
3842 extern void expand_dec (rtx, rtx);
3844 /* In lower-subreg.c */
3845 extern void init_lower_subreg (void);
3847 /* In gcse.c */
3848 extern bool can_copy_p (machine_mode);
3849 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3850 extern rtx fis_get_condition (rtx_insn *);
3852 /* In ira.c */
3853 extern HARD_REG_SET eliminable_regset;
3854 extern void mark_elimination (int, int);
3856 /* In reginfo.c */
3857 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3858 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3859 extern void globalize_reg (tree, int);
3860 extern void init_reg_modes_target (void);
3861 extern void init_regs (void);
3862 extern void reinit_regs (void);
3863 extern void init_fake_stack_mems (void);
3864 extern void save_register_info (void);
3865 extern void init_reg_sets (void);
3866 extern void regclass (rtx, int);
3867 extern void reg_scan (rtx_insn *, unsigned int);
3868 extern void fix_register (const char *, int, int);
3869 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3871 /* In reload1.c */
3872 extern int function_invariant_p (const_rtx);
3874 /* In calls.c */
3875 enum libcall_type
3877 LCT_NORMAL = 0,
3878 LCT_CONST = 1,
3879 LCT_PURE = 2,
3880 LCT_NORETURN = 3,
3881 LCT_THROW = 4,
3882 LCT_RETURNS_TWICE = 5
3885 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
3886 machine_mode, int, rtx_mode_t *);
3888 /* Output a library call and discard the returned value. FUN is the
3889 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
3890 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
3891 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
3892 another LCT_ value for other types of library calls.
3894 There are different overloads of this function for different numbers
3895 of arguments. In each case the argument value is followed by its mode. */
3897 inline void
3898 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
3900 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
3903 inline void
3904 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3905 rtx arg1, machine_mode arg1_mode)
3907 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
3908 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
3911 inline void
3912 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3913 rtx arg1, machine_mode arg1_mode,
3914 rtx arg2, machine_mode arg2_mode)
3916 rtx_mode_t args[] = {
3917 rtx_mode_t (arg1, arg1_mode),
3918 rtx_mode_t (arg2, arg2_mode)
3920 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
3923 inline void
3924 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3925 rtx arg1, machine_mode arg1_mode,
3926 rtx arg2, machine_mode arg2_mode,
3927 rtx arg3, machine_mode arg3_mode)
3929 rtx_mode_t args[] = {
3930 rtx_mode_t (arg1, arg1_mode),
3931 rtx_mode_t (arg2, arg2_mode),
3932 rtx_mode_t (arg3, arg3_mode)
3934 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
3937 inline void
3938 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3939 rtx arg1, machine_mode arg1_mode,
3940 rtx arg2, machine_mode arg2_mode,
3941 rtx arg3, machine_mode arg3_mode,
3942 rtx arg4, machine_mode arg4_mode)
3944 rtx_mode_t args[] = {
3945 rtx_mode_t (arg1, arg1_mode),
3946 rtx_mode_t (arg2, arg2_mode),
3947 rtx_mode_t (arg3, arg3_mode),
3948 rtx_mode_t (arg4, arg4_mode)
3950 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
3953 /* Like emit_library_call, but return the value produced by the call.
3954 Use VALUE to store the result if it is nonnull, otherwise pick a
3955 convenient location. */
3957 inline rtx
3958 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
3959 machine_mode outmode)
3961 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
3964 inline rtx
3965 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
3966 machine_mode outmode,
3967 rtx arg1, machine_mode arg1_mode)
3969 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
3970 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
3973 inline rtx
3974 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
3975 machine_mode outmode,
3976 rtx arg1, machine_mode arg1_mode,
3977 rtx arg2, machine_mode arg2_mode)
3979 rtx_mode_t args[] = {
3980 rtx_mode_t (arg1, arg1_mode),
3981 rtx_mode_t (arg2, arg2_mode)
3983 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
3986 inline rtx
3987 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
3988 machine_mode outmode,
3989 rtx arg1, machine_mode arg1_mode,
3990 rtx arg2, machine_mode arg2_mode,
3991 rtx arg3, machine_mode arg3_mode)
3993 rtx_mode_t args[] = {
3994 rtx_mode_t (arg1, arg1_mode),
3995 rtx_mode_t (arg2, arg2_mode),
3996 rtx_mode_t (arg3, arg3_mode)
3998 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4001 inline rtx
4002 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4003 machine_mode outmode,
4004 rtx arg1, machine_mode arg1_mode,
4005 rtx arg2, machine_mode arg2_mode,
4006 rtx arg3, machine_mode arg3_mode,
4007 rtx arg4, machine_mode arg4_mode)
4009 rtx_mode_t args[] = {
4010 rtx_mode_t (arg1, arg1_mode),
4011 rtx_mode_t (arg2, arg2_mode),
4012 rtx_mode_t (arg3, arg3_mode),
4013 rtx_mode_t (arg4, arg4_mode)
4015 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4018 /* In varasm.c */
4019 extern void init_varasm_once (void);
4021 extern rtx make_debug_expr_from_rtl (const_rtx);
4023 /* In read-rtl.c */
4024 #ifdef GENERATOR_FILE
4025 extern bool read_rtx (const char *, vec<rtx> *);
4026 #endif
4028 /* In alias.c */
4029 extern rtx canon_rtx (rtx);
4030 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4031 extern rtx get_addr (rtx);
4032 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4033 const_rtx, rtx);
4034 extern int read_dependence (const_rtx, const_rtx);
4035 extern int anti_dependence (const_rtx, const_rtx);
4036 extern int canon_anti_dependence (const_rtx, bool,
4037 const_rtx, machine_mode, rtx);
4038 extern int output_dependence (const_rtx, const_rtx);
4039 extern int canon_output_dependence (const_rtx, bool,
4040 const_rtx, machine_mode, rtx);
4041 extern int may_alias_p (const_rtx, const_rtx);
4042 extern void init_alias_target (void);
4043 extern void init_alias_analysis (void);
4044 extern void end_alias_analysis (void);
4045 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4046 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4047 extern bool may_be_sp_based_p (rtx);
4048 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4049 extern rtx get_reg_known_value (unsigned int);
4050 extern bool get_reg_known_equiv_p (unsigned int);
4051 extern rtx get_reg_base_value (unsigned int);
4053 #ifdef STACK_REGS
4054 extern int stack_regs_mentioned (const_rtx insn);
4055 #endif
4057 /* In toplev.c */
4058 extern GTY(()) rtx stack_limit_rtx;
4060 /* In var-tracking.c */
4061 extern unsigned int variable_tracking_main (void);
4063 /* In stor-layout.c. */
4064 extern void get_mode_bounds (scalar_int_mode, int,
4065 scalar_int_mode, rtx *, rtx *);
4067 /* In loop-iv.c */
4068 extern rtx canon_condition (rtx);
4069 extern void simplify_using_condition (rtx, rtx *, bitmap);
4071 /* In final.c */
4072 extern unsigned int compute_alignments (void);
4073 extern void update_alignments (vec<rtx> &);
4074 extern int asm_str_count (const char *templ);
4076 struct rtl_hooks
4078 rtx (*gen_lowpart) (machine_mode, rtx);
4079 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4080 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4081 unsigned HOST_WIDE_INT *);
4082 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4083 unsigned int *);
4084 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4086 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4089 /* Each pass can provide its own. */
4090 extern struct rtl_hooks rtl_hooks;
4092 /* ... but then it has to restore these. */
4093 extern const struct rtl_hooks general_rtl_hooks;
4095 /* Keep this for the nonce. */
4096 #define gen_lowpart rtl_hooks.gen_lowpart
4098 extern void insn_locations_init (void);
4099 extern void insn_locations_finalize (void);
4100 extern void set_curr_insn_location (location_t);
4101 extern location_t curr_insn_location (void);
4103 /* rtl-error.c */
4104 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4105 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4106 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4107 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4109 #define fatal_insn(msgid, insn) \
4110 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4111 #define fatal_insn_not_found(insn) \
4112 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4114 /* reginfo.c */
4115 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4117 /* Information about the function that is propagated by the RTL backend.
4118 Available only for functions that has been already assembled. */
4120 struct GTY(()) cgraph_rtl_info {
4121 unsigned int preferred_incoming_stack_boundary;
4123 /* Call unsaved hard registers really used by the corresponding
4124 function (including ones used by functions called by the
4125 function). */
4126 HARD_REG_SET function_used_regs;
4127 /* Set if function_used_regs is valid. */
4128 unsigned function_used_regs_valid: 1;
4131 /* If loads from memories of mode MODE always sign or zero extend,
4132 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4133 otherwise. */
4135 inline rtx_code
4136 load_extend_op (machine_mode mode)
4138 scalar_int_mode int_mode;
4139 if (is_a <scalar_int_mode> (mode, &int_mode)
4140 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4141 return LOAD_EXTEND_OP (int_mode);
4142 return UNKNOWN;
4145 /* gtype-desc.c. */
4146 extern void gt_ggc_mx (rtx &);
4147 extern void gt_pch_nx (rtx &);
4148 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4150 #endif /* ! GCC_RTL_H */