PR rtl-optimization/82913
[official-gcc.git] / gcc / gimple-ssa-store-merging.c
blob421498beafb7093128c5ab3b73d5c47c5ba7a4bd
1 /* GIMPLE store merging pass.
2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of this pass is to combine multiple memory stores of
22 constant values, values loaded from memory or bitwise operations
23 on those to consecutive memory locations into fewer wider stores.
24 For example, if we have a sequence peforming four byte stores to
25 consecutive memory locations:
26 [p ] := imm1;
27 [p + 1B] := imm2;
28 [p + 2B] := imm3;
29 [p + 3B] := imm4;
30 we can transform this into a single 4-byte store if the target supports it:
31 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
33 Or:
34 [p ] := [q ];
35 [p + 1B] := [q + 1B];
36 [p + 2B] := [q + 2B];
37 [p + 3B] := [q + 3B];
38 if there is no overlap can be transformed into a single 4-byte
39 load followed by single 4-byte store.
41 Or:
42 [p ] := [q ] ^ imm1;
43 [p + 1B] := [q + 1B] ^ imm2;
44 [p + 2B] := [q + 2B] ^ imm3;
45 [p + 3B] := [q + 3B] ^ imm4;
46 if there is no overlap can be transformed into a single 4-byte
47 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
49 The algorithm is applied to each basic block in three phases:
51 1) Scan through the basic block recording assignments to
52 destinations that can be expressed as a store to memory of a certain size
53 at a certain bit offset from expressions we can handle. For bit-fields
54 we also note the surrounding bit region, bits that could be stored in
55 a read-modify-write operation when storing the bit-field. Record store
56 chains to different bases in a hash_map (m_stores) and make sure to
57 terminate such chains when appropriate (for example when when the stored
58 values get used subsequently).
59 These stores can be a result of structure element initializers, array stores
60 etc. A store_immediate_info object is recorded for every such store.
61 Record as many such assignments to a single base as possible until a
62 statement that interferes with the store sequence is encountered.
63 Each store has up to 2 operands, which can be an immediate constant
64 or a memory load, from which the value to be stored can be computed.
65 At most one of the operands can be a constant. The operands are recorded
66 in store_operand_info struct.
68 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
69 store_immediate_info objects) and coalesce contiguous stores into
70 merged_store_group objects. For bit-fields stores, we don't need to
71 require the stores to be contiguous, just their surrounding bit regions
72 have to be contiguous. If the expression being stored is different
73 between adjacent stores, such as one store storing a constant and
74 following storing a value loaded from memory, or if the loaded memory
75 objects are not adjacent, a new merged_store_group is created as well.
77 For example, given the stores:
78 [p ] := 0;
79 [p + 1B] := 1;
80 [p + 3B] := 0;
81 [p + 4B] := 1;
82 [p + 5B] := 0;
83 [p + 6B] := 0;
84 This phase would produce two merged_store_group objects, one recording the
85 two bytes stored in the memory region [p : p + 1] and another
86 recording the four bytes stored in the memory region [p + 3 : p + 6].
88 3) The merged_store_group objects produced in phase 2) are processed
89 to generate the sequence of wider stores that set the contiguous memory
90 regions to the sequence of bytes that correspond to it. This may emit
91 multiple stores per store group to handle contiguous stores that are not
92 of a size that is a power of 2. For example it can try to emit a 40-bit
93 store as a 32-bit store followed by an 8-bit store.
94 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or
95 TARGET_SLOW_UNALIGNED_ACCESS rules.
97 Note on endianness and example:
98 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
99 [p ] := 0x1234;
100 [p + 2B] := 0x5678;
101 [p + 4B] := 0xab;
102 [p + 5B] := 0xcd;
104 The memory layout for little-endian (LE) and big-endian (BE) must be:
105 p |LE|BE|
106 ---------
107 0 |34|12|
108 1 |12|34|
109 2 |78|56|
110 3 |56|78|
111 4 |ab|ab|
112 5 |cd|cd|
114 To merge these into a single 48-bit merged value 'val' in phase 2)
115 on little-endian we insert stores to higher (consecutive) bitpositions
116 into the most significant bits of the merged value.
117 The final merged value would be: 0xcdab56781234
119 For big-endian we insert stores to higher bitpositions into the least
120 significant bits of the merged value.
121 The final merged value would be: 0x12345678abcd
123 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
124 followed by a 16-bit store. Again, we must consider endianness when
125 breaking down the 48-bit value 'val' computed above.
126 For little endian we emit:
127 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
128 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
130 Whereas for big-endian we emit:
131 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
132 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
134 #include "config.h"
135 #include "system.h"
136 #include "coretypes.h"
137 #include "backend.h"
138 #include "tree.h"
139 #include "gimple.h"
140 #include "builtins.h"
141 #include "fold-const.h"
142 #include "tree-pass.h"
143 #include "ssa.h"
144 #include "gimple-pretty-print.h"
145 #include "alias.h"
146 #include "fold-const.h"
147 #include "params.h"
148 #include "print-tree.h"
149 #include "tree-hash-traits.h"
150 #include "gimple-iterator.h"
151 #include "gimplify.h"
152 #include "stor-layout.h"
153 #include "timevar.h"
154 #include "tree-cfg.h"
155 #include "tree-eh.h"
156 #include "target.h"
157 #include "gimplify-me.h"
158 #include "rtl.h"
159 #include "expr.h" /* For get_bit_range. */
160 #include "selftest.h"
162 /* The maximum size (in bits) of the stores this pass should generate. */
163 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
164 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
166 /* Limit to bound the number of aliasing checks for loads with the same
167 vuse as the corresponding store. */
168 #define MAX_STORE_ALIAS_CHECKS 64
170 namespace {
172 /* Struct recording one operand for the store, which is either a constant,
173 then VAL represents the constant and all the other fields are zero,
174 or a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
175 and the other fields also reflect the memory load. */
177 struct store_operand_info
179 tree val;
180 tree base_addr;
181 unsigned HOST_WIDE_INT bitsize;
182 unsigned HOST_WIDE_INT bitpos;
183 unsigned HOST_WIDE_INT bitregion_start;
184 unsigned HOST_WIDE_INT bitregion_end;
185 gimple *stmt;
186 bool bit_not_p;
187 store_operand_info ();
190 store_operand_info::store_operand_info ()
191 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
192 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
196 /* Struct recording the information about a single store of an immediate
197 to memory. These are created in the first phase and coalesced into
198 merged_store_group objects in the second phase. */
200 struct store_immediate_info
202 unsigned HOST_WIDE_INT bitsize;
203 unsigned HOST_WIDE_INT bitpos;
204 unsigned HOST_WIDE_INT bitregion_start;
205 /* This is one past the last bit of the bit region. */
206 unsigned HOST_WIDE_INT bitregion_end;
207 gimple *stmt;
208 unsigned int order;
209 /* INTEGER_CST for constant stores, MEM_REF for memory copy or
210 BIT_*_EXPR for logical bitwise operation. */
211 enum tree_code rhs_code;
212 bool bit_not_p;
213 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
214 just the first one. */
215 store_operand_info ops[2];
216 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
217 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
218 gimple *, unsigned int, enum tree_code, bool,
219 const store_operand_info &,
220 const store_operand_info &);
223 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
224 unsigned HOST_WIDE_INT bp,
225 unsigned HOST_WIDE_INT brs,
226 unsigned HOST_WIDE_INT bre,
227 gimple *st,
228 unsigned int ord,
229 enum tree_code rhscode,
230 bool bitnotp,
231 const store_operand_info &op0r,
232 const store_operand_info &op1r)
233 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
234 stmt (st), order (ord), rhs_code (rhscode), bit_not_p (bitnotp)
235 #if __cplusplus >= 201103L
236 , ops { op0r, op1r }
239 #else
241 ops[0] = op0r;
242 ops[1] = op1r;
244 #endif
246 /* Struct representing a group of stores to contiguous memory locations.
247 These are produced by the second phase (coalescing) and consumed in the
248 third phase that outputs the widened stores. */
250 struct merged_store_group
252 unsigned HOST_WIDE_INT start;
253 unsigned HOST_WIDE_INT width;
254 unsigned HOST_WIDE_INT bitregion_start;
255 unsigned HOST_WIDE_INT bitregion_end;
256 /* The size of the allocated memory for val and mask. */
257 unsigned HOST_WIDE_INT buf_size;
258 unsigned HOST_WIDE_INT align_base;
259 unsigned HOST_WIDE_INT load_align_base[2];
261 unsigned int align;
262 unsigned int load_align[2];
263 unsigned int first_order;
264 unsigned int last_order;
266 auto_vec<store_immediate_info *> stores;
267 /* We record the first and last original statements in the sequence because
268 we'll need their vuse/vdef and replacement position. It's easier to keep
269 track of them separately as 'stores' is reordered by apply_stores. */
270 gimple *last_stmt;
271 gimple *first_stmt;
272 unsigned char *val;
273 unsigned char *mask;
275 merged_store_group (store_immediate_info *);
276 ~merged_store_group ();
277 void merge_into (store_immediate_info *);
278 void merge_overlapping (store_immediate_info *);
279 bool apply_stores ();
280 private:
281 void do_merge (store_immediate_info *);
284 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
286 static void
287 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
289 if (!fd)
290 return;
292 for (unsigned int i = 0; i < len; i++)
293 fprintf (fd, "%x ", ptr[i]);
294 fprintf (fd, "\n");
297 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
298 bits between adjacent elements. AMNT should be within
299 [0, BITS_PER_UNIT).
300 Example, AMNT = 2:
301 00011111|11100000 << 2 = 01111111|10000000
302 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
304 static void
305 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
307 if (amnt == 0)
308 return;
310 unsigned char carry_over = 0U;
311 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
312 unsigned char clear_mask = (~0U) << amnt;
314 for (unsigned int i = 0; i < sz; i++)
316 unsigned prev_carry_over = carry_over;
317 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
319 ptr[i] <<= amnt;
320 if (i != 0)
322 ptr[i] &= clear_mask;
323 ptr[i] |= prev_carry_over;
328 /* Like shift_bytes_in_array but for big-endian.
329 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
330 bits between adjacent elements. AMNT should be within
331 [0, BITS_PER_UNIT).
332 Example, AMNT = 2:
333 00011111|11100000 >> 2 = 00000111|11111000
334 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
336 static void
337 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
338 unsigned int amnt)
340 if (amnt == 0)
341 return;
343 unsigned char carry_over = 0U;
344 unsigned char carry_mask = ~(~0U << amnt);
346 for (unsigned int i = 0; i < sz; i++)
348 unsigned prev_carry_over = carry_over;
349 carry_over = ptr[i] & carry_mask;
351 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
352 ptr[i] >>= amnt;
353 ptr[i] |= prev_carry_over;
357 /* Clear out LEN bits starting from bit START in the byte array
358 PTR. This clears the bits to the *right* from START.
359 START must be within [0, BITS_PER_UNIT) and counts starting from
360 the least significant bit. */
362 static void
363 clear_bit_region_be (unsigned char *ptr, unsigned int start,
364 unsigned int len)
366 if (len == 0)
367 return;
368 /* Clear len bits to the right of start. */
369 else if (len <= start + 1)
371 unsigned char mask = (~(~0U << len));
372 mask = mask << (start + 1U - len);
373 ptr[0] &= ~mask;
375 else if (start != BITS_PER_UNIT - 1)
377 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
378 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
379 len - (start % BITS_PER_UNIT) - 1);
381 else if (start == BITS_PER_UNIT - 1
382 && len > BITS_PER_UNIT)
384 unsigned int nbytes = len / BITS_PER_UNIT;
385 memset (ptr, 0, nbytes);
386 if (len % BITS_PER_UNIT != 0)
387 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
388 len % BITS_PER_UNIT);
390 else
391 gcc_unreachable ();
394 /* In the byte array PTR clear the bit region starting at bit
395 START and is LEN bits wide.
396 For regions spanning multiple bytes do this recursively until we reach
397 zero LEN or a region contained within a single byte. */
399 static void
400 clear_bit_region (unsigned char *ptr, unsigned int start,
401 unsigned int len)
403 /* Degenerate base case. */
404 if (len == 0)
405 return;
406 else if (start >= BITS_PER_UNIT)
407 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
408 /* Second base case. */
409 else if ((start + len) <= BITS_PER_UNIT)
411 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
412 mask >>= BITS_PER_UNIT - (start + len);
414 ptr[0] &= ~mask;
416 return;
418 /* Clear most significant bits in a byte and proceed with the next byte. */
419 else if (start != 0)
421 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
422 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
424 /* Whole bytes need to be cleared. */
425 else if (start == 0 && len > BITS_PER_UNIT)
427 unsigned int nbytes = len / BITS_PER_UNIT;
428 /* We could recurse on each byte but we clear whole bytes, so a simple
429 memset will do. */
430 memset (ptr, '\0', nbytes);
431 /* Clear the remaining sub-byte region if there is one. */
432 if (len % BITS_PER_UNIT != 0)
433 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
435 else
436 gcc_unreachable ();
439 /* Write BITLEN bits of EXPR to the byte array PTR at
440 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
441 Return true if the operation succeeded. */
443 static bool
444 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
445 unsigned int total_bytes)
447 unsigned int first_byte = bitpos / BITS_PER_UNIT;
448 tree tmp_int = expr;
449 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
450 || (bitpos % BITS_PER_UNIT)
451 || !int_mode_for_size (bitlen, 0).exists ());
453 if (!sub_byte_op_p)
454 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
456 /* LITTLE-ENDIAN
457 We are writing a non byte-sized quantity or at a position that is not
458 at a byte boundary.
459 |--------|--------|--------| ptr + first_byte
461 xxx xxxxxxxx xxx< bp>
462 |______EXPR____|
464 First native_encode_expr EXPR into a temporary buffer and shift each
465 byte in the buffer by 'bp' (carrying the bits over as necessary).
466 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
467 <------bitlen---->< bp>
468 Then we clear the destination bits:
469 |---00000|00000000|000-----| ptr + first_byte
470 <-------bitlen--->< bp>
472 Finally we ORR the bytes of the shifted EXPR into the cleared region:
473 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
475 BIG-ENDIAN
476 We are writing a non byte-sized quantity or at a position that is not
477 at a byte boundary.
478 ptr + first_byte |--------|--------|--------|
480 <bp >xxx xxxxxxxx xxx
481 |_____EXPR_____|
483 First native_encode_expr EXPR into a temporary buffer and shift each
484 byte in the buffer to the right by (carrying the bits over as necessary).
485 We shift by as much as needed to align the most significant bit of EXPR
486 with bitpos:
487 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
488 <---bitlen----> <bp ><-----bitlen----->
489 Then we clear the destination bits:
490 ptr + first_byte |-----000||00000000||00000---|
491 <bp ><-------bitlen----->
493 Finally we ORR the bytes of the shifted EXPR into the cleared region:
494 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
495 The awkwardness comes from the fact that bitpos is counted from the
496 most significant bit of a byte. */
498 /* We must be dealing with fixed-size data at this point, since the
499 total size is also fixed. */
500 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
501 /* Allocate an extra byte so that we have space to shift into. */
502 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
503 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
504 memset (tmpbuf, '\0', byte_size);
505 /* The store detection code should only have allowed constants that are
506 accepted by native_encode_expr. */
507 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
508 gcc_unreachable ();
510 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
511 bytes to write. This means it can write more than
512 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
513 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
514 bitlen and zero out the bits that are not relevant as well (that may
515 contain a sign bit due to sign-extension). */
516 unsigned int padding
517 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
518 /* On big-endian the padding is at the 'front' so just skip the initial
519 bytes. */
520 if (BYTES_BIG_ENDIAN)
521 tmpbuf += padding;
523 byte_size -= padding;
525 if (bitlen % BITS_PER_UNIT != 0)
527 if (BYTES_BIG_ENDIAN)
528 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
529 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
530 else
531 clear_bit_region (tmpbuf, bitlen,
532 byte_size * BITS_PER_UNIT - bitlen);
534 /* Left shifting relies on the last byte being clear if bitlen is
535 a multiple of BITS_PER_UNIT, which might not be clear if
536 there are padding bytes. */
537 else if (!BYTES_BIG_ENDIAN)
538 tmpbuf[byte_size - 1] = '\0';
540 /* Clear the bit region in PTR where the bits from TMPBUF will be
541 inserted into. */
542 if (BYTES_BIG_ENDIAN)
543 clear_bit_region_be (ptr + first_byte,
544 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
545 else
546 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
548 int shift_amnt;
549 int bitlen_mod = bitlen % BITS_PER_UNIT;
550 int bitpos_mod = bitpos % BITS_PER_UNIT;
552 bool skip_byte = false;
553 if (BYTES_BIG_ENDIAN)
555 /* BITPOS and BITLEN are exactly aligned and no shifting
556 is necessary. */
557 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
558 || (bitpos_mod == 0 && bitlen_mod == 0))
559 shift_amnt = 0;
560 /* |. . . . . . . .|
561 <bp > <blen >.
562 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
563 of the value until it aligns with 'bp' in the next byte over. */
564 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
566 shift_amnt = bitlen_mod + bitpos_mod;
567 skip_byte = bitlen_mod != 0;
569 /* |. . . . . . . .|
570 <----bp--->
571 <---blen---->.
572 Shift the value right within the same byte so it aligns with 'bp'. */
573 else
574 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
576 else
577 shift_amnt = bitpos % BITS_PER_UNIT;
579 /* Create the shifted version of EXPR. */
580 if (!BYTES_BIG_ENDIAN)
582 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
583 if (shift_amnt == 0)
584 byte_size--;
586 else
588 gcc_assert (BYTES_BIG_ENDIAN);
589 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
590 /* If shifting right forced us to move into the next byte skip the now
591 empty byte. */
592 if (skip_byte)
594 tmpbuf++;
595 byte_size--;
599 /* Insert the bits from TMPBUF. */
600 for (unsigned int i = 0; i < byte_size; i++)
601 ptr[first_byte + i] |= tmpbuf[i];
603 return true;
606 /* Sorting function for store_immediate_info objects.
607 Sorts them by bitposition. */
609 static int
610 sort_by_bitpos (const void *x, const void *y)
612 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
613 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
615 if ((*tmp)->bitpos < (*tmp2)->bitpos)
616 return -1;
617 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
618 return 1;
619 else
620 /* If they are the same let's use the order which is guaranteed to
621 be different. */
622 return (*tmp)->order - (*tmp2)->order;
625 /* Sorting function for store_immediate_info objects.
626 Sorts them by the order field. */
628 static int
629 sort_by_order (const void *x, const void *y)
631 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
632 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
634 if ((*tmp)->order < (*tmp2)->order)
635 return -1;
636 else if ((*tmp)->order > (*tmp2)->order)
637 return 1;
639 gcc_unreachable ();
642 /* Initialize a merged_store_group object from a store_immediate_info
643 object. */
645 merged_store_group::merged_store_group (store_immediate_info *info)
647 start = info->bitpos;
648 width = info->bitsize;
649 bitregion_start = info->bitregion_start;
650 bitregion_end = info->bitregion_end;
651 /* VAL has memory allocated for it in apply_stores once the group
652 width has been finalized. */
653 val = NULL;
654 mask = NULL;
655 unsigned HOST_WIDE_INT align_bitpos = 0;
656 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
657 &align, &align_bitpos);
658 align_base = start - align_bitpos;
659 for (int i = 0; i < 2; ++i)
661 store_operand_info &op = info->ops[i];
662 if (op.base_addr == NULL_TREE)
664 load_align[i] = 0;
665 load_align_base[i] = 0;
667 else
669 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
670 load_align_base[i] = op.bitpos - align_bitpos;
673 stores.create (1);
674 stores.safe_push (info);
675 last_stmt = info->stmt;
676 last_order = info->order;
677 first_stmt = last_stmt;
678 first_order = last_order;
679 buf_size = 0;
682 merged_store_group::~merged_store_group ()
684 if (val)
685 XDELETEVEC (val);
688 /* Helper method for merge_into and merge_overlapping to do
689 the common part. */
690 void
691 merged_store_group::do_merge (store_immediate_info *info)
693 bitregion_start = MIN (bitregion_start, info->bitregion_start);
694 bitregion_end = MAX (bitregion_end, info->bitregion_end);
696 unsigned int this_align;
697 unsigned HOST_WIDE_INT align_bitpos = 0;
698 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
699 &this_align, &align_bitpos);
700 if (this_align > align)
702 align = this_align;
703 align_base = info->bitpos - align_bitpos;
705 for (int i = 0; i < 2; ++i)
707 store_operand_info &op = info->ops[i];
708 if (!op.base_addr)
709 continue;
711 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
712 if (this_align > load_align[i])
714 load_align[i] = this_align;
715 load_align_base[i] = op.bitpos - align_bitpos;
719 gimple *stmt = info->stmt;
720 stores.safe_push (info);
721 if (info->order > last_order)
723 last_order = info->order;
724 last_stmt = stmt;
726 else if (info->order < first_order)
728 first_order = info->order;
729 first_stmt = stmt;
733 /* Merge a store recorded by INFO into this merged store.
734 The store is not overlapping with the existing recorded
735 stores. */
737 void
738 merged_store_group::merge_into (store_immediate_info *info)
740 unsigned HOST_WIDE_INT wid = info->bitsize;
741 /* Make sure we're inserting in the position we think we're inserting. */
742 gcc_assert (info->bitpos >= start + width
743 && info->bitregion_start <= bitregion_end);
745 width += wid;
746 do_merge (info);
749 /* Merge a store described by INFO into this merged store.
750 INFO overlaps in some way with the current store (i.e. it's not contiguous
751 which is handled by merged_store_group::merge_into). */
753 void
754 merged_store_group::merge_overlapping (store_immediate_info *info)
756 /* If the store extends the size of the group, extend the width. */
757 if (info->bitpos + info->bitsize > start + width)
758 width += info->bitpos + info->bitsize - (start + width);
760 do_merge (info);
763 /* Go through all the recorded stores in this group in program order and
764 apply their values to the VAL byte array to create the final merged
765 value. Return true if the operation succeeded. */
767 bool
768 merged_store_group::apply_stores ()
770 /* Make sure we have more than one store in the group, otherwise we cannot
771 merge anything. */
772 if (bitregion_start % BITS_PER_UNIT != 0
773 || bitregion_end % BITS_PER_UNIT != 0
774 || stores.length () == 1)
775 return false;
777 stores.qsort (sort_by_order);
778 store_immediate_info *info;
779 unsigned int i;
780 /* Create a buffer of a size that is 2 times the number of bytes we're
781 storing. That way native_encode_expr can write power-of-2-sized
782 chunks without overrunning. */
783 buf_size = 2 * ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
784 val = XNEWVEC (unsigned char, 2 * buf_size);
785 mask = val + buf_size;
786 memset (val, 0, buf_size);
787 memset (mask, ~0U, buf_size);
789 FOR_EACH_VEC_ELT (stores, i, info)
791 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
792 tree cst = NULL_TREE;
793 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
794 cst = info->ops[0].val;
795 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
796 cst = info->ops[1].val;
797 bool ret = true;
798 if (cst)
799 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
800 pos_in_buffer, buf_size);
801 if (cst && dump_file && (dump_flags & TDF_DETAILS))
803 if (ret)
805 fprintf (dump_file, "After writing ");
806 print_generic_expr (dump_file, cst, 0);
807 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
808 " at position %d the merged region contains:\n",
809 info->bitsize, pos_in_buffer);
810 dump_char_array (dump_file, val, buf_size);
812 else
813 fprintf (dump_file, "Failed to merge stores\n");
815 if (!ret)
816 return false;
817 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
818 if (BYTES_BIG_ENDIAN)
819 clear_bit_region_be (m, (BITS_PER_UNIT - 1
820 - (pos_in_buffer % BITS_PER_UNIT)),
821 info->bitsize);
822 else
823 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
825 return true;
828 /* Structure describing the store chain. */
830 struct imm_store_chain_info
832 /* Doubly-linked list that imposes an order on chain processing.
833 PNXP (prev's next pointer) points to the head of a list, or to
834 the next field in the previous chain in the list.
835 See pass_store_merging::m_stores_head for more rationale. */
836 imm_store_chain_info *next, **pnxp;
837 tree base_addr;
838 auto_vec<store_immediate_info *> m_store_info;
839 auto_vec<merged_store_group *> m_merged_store_groups;
841 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
842 : next (inspt), pnxp (&inspt), base_addr (b_a)
844 inspt = this;
845 if (next)
847 gcc_checking_assert (pnxp == next->pnxp);
848 next->pnxp = &next;
851 ~imm_store_chain_info ()
853 *pnxp = next;
854 if (next)
856 gcc_checking_assert (&next == next->pnxp);
857 next->pnxp = pnxp;
860 bool terminate_and_process_chain ();
861 bool coalesce_immediate_stores ();
862 bool output_merged_store (merged_store_group *);
863 bool output_merged_stores ();
866 const pass_data pass_data_tree_store_merging = {
867 GIMPLE_PASS, /* type */
868 "store-merging", /* name */
869 OPTGROUP_NONE, /* optinfo_flags */
870 TV_GIMPLE_STORE_MERGING, /* tv_id */
871 PROP_ssa, /* properties_required */
872 0, /* properties_provided */
873 0, /* properties_destroyed */
874 0, /* todo_flags_start */
875 TODO_update_ssa, /* todo_flags_finish */
878 class pass_store_merging : public gimple_opt_pass
880 public:
881 pass_store_merging (gcc::context *ctxt)
882 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
886 /* Pass not supported for PDP-endianness, nor for insane hosts
887 or target character sizes where native_{encode,interpret}_expr
888 doesn't work properly. */
889 virtual bool
890 gate (function *)
892 return flag_store_merging
893 && WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN
894 && CHAR_BIT == 8
895 && BITS_PER_UNIT == 8;
898 virtual unsigned int execute (function *);
900 private:
901 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
903 /* Form a doubly-linked stack of the elements of m_stores, so that
904 we can iterate over them in a predictable way. Using this order
905 avoids extraneous differences in the compiler output just because
906 of tree pointer variations (e.g. different chains end up in
907 different positions of m_stores, so they are handled in different
908 orders, so they allocate or release SSA names in different
909 orders, and when they get reused, subsequent passes end up
910 getting different SSA names, which may ultimately change
911 decisions when going out of SSA). */
912 imm_store_chain_info *m_stores_head;
914 void process_store (gimple *);
915 bool terminate_and_process_all_chains ();
916 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
917 bool terminate_and_release_chain (imm_store_chain_info *);
918 }; // class pass_store_merging
920 /* Terminate and process all recorded chains. Return true if any changes
921 were made. */
923 bool
924 pass_store_merging::terminate_and_process_all_chains ()
926 bool ret = false;
927 while (m_stores_head)
928 ret |= terminate_and_release_chain (m_stores_head);
929 gcc_assert (m_stores.elements () == 0);
930 gcc_assert (m_stores_head == NULL);
932 return ret;
935 /* Terminate all chains that are affected by the statement STMT.
936 CHAIN_INFO is the chain we should ignore from the checks if
937 non-NULL. */
939 bool
940 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
941 **chain_info,
942 gimple *stmt)
944 bool ret = false;
946 /* If the statement doesn't touch memory it can't alias. */
947 if (!gimple_vuse (stmt))
948 return false;
950 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
952 next = cur->next;
954 /* We already checked all the stores in chain_info and terminated the
955 chain if necessary. Skip it here. */
956 if (chain_info && *chain_info == cur)
957 continue;
959 store_immediate_info *info;
960 unsigned int i;
961 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
963 if (ref_maybe_used_by_stmt_p (stmt, gimple_assign_lhs (info->stmt))
964 || stmt_may_clobber_ref_p (stmt, gimple_assign_lhs (info->stmt)))
966 if (dump_file && (dump_flags & TDF_DETAILS))
968 fprintf (dump_file, "stmt causes chain termination:\n");
969 print_gimple_stmt (dump_file, stmt, 0);
971 terminate_and_release_chain (cur);
972 ret = true;
973 break;
978 return ret;
981 /* Helper function. Terminate the recorded chain storing to base object
982 BASE. Return true if the merging and output was successful. The m_stores
983 entry is removed after the processing in any case. */
985 bool
986 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
988 bool ret = chain_info->terminate_and_process_chain ();
989 m_stores.remove (chain_info->base_addr);
990 delete chain_info;
991 return ret;
994 /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
995 may clobber REF. FIRST and LAST must be in the same basic block and
996 have non-NULL vdef. */
998 bool
999 stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
1001 ao_ref r;
1002 ao_ref_init (&r, ref);
1003 unsigned int count = 0;
1004 tree vop = gimple_vdef (last);
1005 gimple *stmt;
1007 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
1010 stmt = SSA_NAME_DEF_STMT (vop);
1011 if (stmt_may_clobber_ref_p_1 (stmt, &r))
1012 return true;
1013 /* Avoid quadratic compile time by bounding the number of checks
1014 we perform. */
1015 if (++count > MAX_STORE_ALIAS_CHECKS)
1016 return true;
1017 vop = gimple_vuse (stmt);
1019 while (stmt != first);
1020 return false;
1023 /* Return true if INFO->ops[IDX] is mergeable with the
1024 corresponding loads already in MERGED_STORE group.
1025 BASE_ADDR is the base address of the whole store group. */
1027 bool
1028 compatible_load_p (merged_store_group *merged_store,
1029 store_immediate_info *info,
1030 tree base_addr, int idx)
1032 store_immediate_info *infof = merged_store->stores[0];
1033 if (!info->ops[idx].base_addr
1034 || info->ops[idx].bit_not_p != infof->ops[idx].bit_not_p
1035 || (info->ops[idx].bitpos - infof->ops[idx].bitpos
1036 != info->bitpos - infof->bitpos)
1037 || !operand_equal_p (info->ops[idx].base_addr,
1038 infof->ops[idx].base_addr, 0))
1039 return false;
1041 store_immediate_info *infol = merged_store->stores.last ();
1042 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
1043 /* In this case all vuses should be the same, e.g.
1044 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
1046 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
1047 and we can emit the coalesced load next to any of those loads. */
1048 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
1049 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
1050 return true;
1052 /* Otherwise, at least for now require that the load has the same
1053 vuse as the store. See following examples. */
1054 if (gimple_vuse (info->stmt) != load_vuse)
1055 return false;
1057 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
1058 || (infof != infol
1059 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
1060 return false;
1062 /* If the load is from the same location as the store, already
1063 the construction of the immediate chain info guarantees no intervening
1064 stores, so no further checks are needed. Example:
1065 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
1066 if (info->ops[idx].bitpos == info->bitpos
1067 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
1068 return true;
1070 /* Otherwise, we need to punt if any of the loads can be clobbered by any
1071 of the stores in the group, or any other stores in between those.
1072 Previous calls to compatible_load_p ensured that for all the
1073 merged_store->stores IDX loads, no stmts starting with
1074 merged_store->first_stmt and ending right before merged_store->last_stmt
1075 clobbers those loads. */
1076 gimple *first = merged_store->first_stmt;
1077 gimple *last = merged_store->last_stmt;
1078 unsigned int i;
1079 store_immediate_info *infoc;
1080 /* The stores are sorted by increasing store bitpos, so if info->stmt store
1081 comes before the so far first load, we'll be changing
1082 merged_store->first_stmt. In that case we need to give up if
1083 any of the earlier processed loads clobber with the stmts in the new
1084 range. */
1085 if (info->order < merged_store->first_order)
1087 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
1088 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
1089 return false;
1090 first = info->stmt;
1092 /* Similarly, we could change merged_store->last_stmt, so ensure
1093 in that case no stmts in the new range clobber any of the earlier
1094 processed loads. */
1095 else if (info->order > merged_store->last_order)
1097 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
1098 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
1099 return false;
1100 last = info->stmt;
1102 /* And finally, we'd be adding a new load to the set, ensure it isn't
1103 clobbered in the new range. */
1104 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
1105 return false;
1107 /* Otherwise, we are looking for:
1108 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
1110 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
1111 return true;
1114 /* Go through the candidate stores recorded in m_store_info and merge them
1115 into merged_store_group objects recorded into m_merged_store_groups
1116 representing the widened stores. Return true if coalescing was successful
1117 and the number of widened stores is fewer than the original number
1118 of stores. */
1120 bool
1121 imm_store_chain_info::coalesce_immediate_stores ()
1123 /* Anything less can't be processed. */
1124 if (m_store_info.length () < 2)
1125 return false;
1127 if (dump_file && (dump_flags & TDF_DETAILS))
1128 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n",
1129 m_store_info.length ());
1131 store_immediate_info *info;
1132 unsigned int i;
1134 /* Order the stores by the bitposition they write to. */
1135 m_store_info.qsort (sort_by_bitpos);
1137 info = m_store_info[0];
1138 merged_store_group *merged_store = new merged_store_group (info);
1140 FOR_EACH_VEC_ELT (m_store_info, i, info)
1142 if (dump_file && (dump_flags & TDF_DETAILS))
1144 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
1145 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n",
1146 i, info->bitsize, info->bitpos);
1147 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
1148 fprintf (dump_file, "\n------------\n");
1151 if (i == 0)
1152 continue;
1154 /* |---store 1---|
1155 |---store 2---|
1156 Overlapping stores. */
1157 unsigned HOST_WIDE_INT start = info->bitpos;
1158 if (IN_RANGE (start, merged_store->start,
1159 merged_store->start + merged_store->width - 1))
1161 /* Only allow overlapping stores of constants. */
1162 if (info->rhs_code == INTEGER_CST
1163 && merged_store->stores[0]->rhs_code == INTEGER_CST)
1165 merged_store->merge_overlapping (info);
1166 continue;
1169 /* |---store 1---||---store 2---|
1170 This store is consecutive to the previous one.
1171 Merge it into the current store group. There can be gaps in between
1172 the stores, but there can't be gaps in between bitregions. */
1173 else if (info->bitregion_start <= merged_store->bitregion_end
1174 && info->rhs_code == merged_store->stores[0]->rhs_code
1175 && info->bit_not_p == merged_store->stores[0]->bit_not_p)
1177 store_immediate_info *infof = merged_store->stores[0];
1179 /* All the rhs_code ops that take 2 operands are commutative,
1180 swap the operands if it could make the operands compatible. */
1181 if (infof->ops[0].base_addr
1182 && infof->ops[1].base_addr
1183 && info->ops[0].base_addr
1184 && info->ops[1].base_addr
1185 && (info->ops[1].bitpos - infof->ops[0].bitpos
1186 == info->bitpos - infof->bitpos)
1187 && operand_equal_p (info->ops[1].base_addr,
1188 infof->ops[0].base_addr, 0))
1189 std::swap (info->ops[0], info->ops[1]);
1190 if ((!infof->ops[0].base_addr
1191 || compatible_load_p (merged_store, info, base_addr, 0))
1192 && (!infof->ops[1].base_addr
1193 || compatible_load_p (merged_store, info, base_addr, 1)))
1195 merged_store->merge_into (info);
1196 continue;
1200 /* |---store 1---| <gap> |---store 2---|.
1201 Gap between stores or the rhs not compatible. Start a new group. */
1203 /* Try to apply all the stores recorded for the group to determine
1204 the bitpattern they write and discard it if that fails.
1205 This will also reject single-store groups. */
1206 if (!merged_store->apply_stores ())
1207 delete merged_store;
1208 else
1209 m_merged_store_groups.safe_push (merged_store);
1211 merged_store = new merged_store_group (info);
1214 /* Record or discard the last store group. */
1215 if (!merged_store->apply_stores ())
1216 delete merged_store;
1217 else
1218 m_merged_store_groups.safe_push (merged_store);
1220 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
1221 bool success
1222 = !m_merged_store_groups.is_empty ()
1223 && m_merged_store_groups.length () < m_store_info.length ();
1225 if (success && dump_file)
1226 fprintf (dump_file, "Coalescing successful!\n"
1227 "Merged into %u stores\n",
1228 m_merged_store_groups.length ());
1230 return success;
1233 /* Return the type to use for the merged stores or loads described by STMTS.
1234 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
1235 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
1236 of the MEM_REFs if any. */
1238 static tree
1239 get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
1240 unsigned short *cliquep, unsigned short *basep)
1242 gimple *stmt;
1243 unsigned int i;
1244 tree type = NULL_TREE;
1245 tree ret = NULL_TREE;
1246 *cliquep = 0;
1247 *basep = 0;
1249 FOR_EACH_VEC_ELT (stmts, i, stmt)
1251 tree ref = is_load ? gimple_assign_rhs1 (stmt)
1252 : gimple_assign_lhs (stmt);
1253 tree type1 = reference_alias_ptr_type (ref);
1254 tree base = get_base_address (ref);
1256 if (i == 0)
1258 if (TREE_CODE (base) == MEM_REF)
1260 *cliquep = MR_DEPENDENCE_CLIQUE (base);
1261 *basep = MR_DEPENDENCE_BASE (base);
1263 ret = type = type1;
1264 continue;
1266 if (!alias_ptr_types_compatible_p (type, type1))
1267 ret = ptr_type_node;
1268 if (TREE_CODE (base) != MEM_REF
1269 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
1270 || *basep != MR_DEPENDENCE_BASE (base))
1272 *cliquep = 0;
1273 *basep = 0;
1276 return ret;
1279 /* Return the location_t information we can find among the statements
1280 in STMTS. */
1282 static location_t
1283 get_location_for_stmts (vec<gimple *> &stmts)
1285 gimple *stmt;
1286 unsigned int i;
1288 FOR_EACH_VEC_ELT (stmts, i, stmt)
1289 if (gimple_has_location (stmt))
1290 return gimple_location (stmt);
1292 return UNKNOWN_LOCATION;
1295 /* Used to decribe a store resulting from splitting a wide store in smaller
1296 regularly-sized stores in split_group. */
1298 struct split_store
1300 unsigned HOST_WIDE_INT bytepos;
1301 unsigned HOST_WIDE_INT size;
1302 unsigned HOST_WIDE_INT align;
1303 auto_vec<store_immediate_info *> orig_stores;
1304 /* True if there is a single orig stmt covering the whole split store. */
1305 bool orig;
1306 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1307 unsigned HOST_WIDE_INT);
1310 /* Simple constructor. */
1312 split_store::split_store (unsigned HOST_WIDE_INT bp,
1313 unsigned HOST_WIDE_INT sz,
1314 unsigned HOST_WIDE_INT al)
1315 : bytepos (bp), size (sz), align (al), orig (false)
1317 orig_stores.create (0);
1320 /* Record all stores in GROUP that write to the region starting at BITPOS and
1321 is of size BITSIZE. Record infos for such statements in STORES if
1322 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
1323 if there is exactly one original store in the range. */
1325 static store_immediate_info *
1326 find_constituent_stores (struct merged_store_group *group,
1327 vec<store_immediate_info *> *stores,
1328 unsigned int *first,
1329 unsigned HOST_WIDE_INT bitpos,
1330 unsigned HOST_WIDE_INT bitsize)
1332 store_immediate_info *info, *ret = NULL;
1333 unsigned int i;
1334 bool second = false;
1335 bool update_first = true;
1336 unsigned HOST_WIDE_INT end = bitpos + bitsize;
1337 for (i = *first; group->stores.iterate (i, &info); ++i)
1339 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
1340 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
1341 if (stmt_end <= bitpos)
1343 /* BITPOS passed to this function never decreases from within the
1344 same split_group call, so optimize and don't scan info records
1345 which are known to end before or at BITPOS next time.
1346 Only do it if all stores before this one also pass this. */
1347 if (update_first)
1348 *first = i + 1;
1349 continue;
1351 else
1352 update_first = false;
1354 /* The stores in GROUP are ordered by bitposition so if we're past
1355 the region for this group return early. */
1356 if (stmt_start >= end)
1357 return ret;
1359 if (stores)
1361 stores->safe_push (info);
1362 if (ret)
1364 ret = NULL;
1365 second = true;
1368 else if (ret)
1369 return NULL;
1370 if (!second)
1371 ret = info;
1373 return ret;
1376 /* Return how many SSA_NAMEs used to compute value to store in the INFO
1377 store have multiple uses. If any SSA_NAME has multiple uses, also
1378 count statements needed to compute it. */
1380 static unsigned
1381 count_multiple_uses (store_immediate_info *info)
1383 gimple *stmt = info->stmt;
1384 unsigned ret = 0;
1385 switch (info->rhs_code)
1387 case INTEGER_CST:
1388 return 0;
1389 case BIT_AND_EXPR:
1390 case BIT_IOR_EXPR:
1391 case BIT_XOR_EXPR:
1392 if (info->bit_not_p)
1394 if (!has_single_use (gimple_assign_rhs1 (stmt)))
1395 ret = 1; /* Fall through below to return
1396 the BIT_NOT_EXPR stmt and then
1397 BIT_{AND,IOR,XOR}_EXPR and anything it
1398 uses. */
1399 else
1400 /* stmt is after this the BIT_NOT_EXPR. */
1401 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1403 if (!has_single_use (gimple_assign_rhs1 (stmt)))
1405 ret += 1 + info->ops[0].bit_not_p;
1406 if (info->ops[1].base_addr)
1407 ret += 1 + info->ops[1].bit_not_p;
1408 return ret + 1;
1410 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1411 /* stmt is now the BIT_*_EXPR. */
1412 if (!has_single_use (gimple_assign_rhs1 (stmt)))
1413 ret += 1 + info->ops[0].bit_not_p;
1414 else if (info->ops[0].bit_not_p)
1416 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1417 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
1418 ++ret;
1420 if (info->ops[1].base_addr == NULL_TREE)
1421 return ret;
1422 if (!has_single_use (gimple_assign_rhs2 (stmt)))
1423 ret += 1 + info->ops[1].bit_not_p;
1424 else if (info->ops[1].bit_not_p)
1426 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1427 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
1428 ++ret;
1430 return ret;
1431 case MEM_REF:
1432 if (!has_single_use (gimple_assign_rhs1 (stmt)))
1433 return 1 + info->ops[0].bit_not_p;
1434 else if (info->ops[0].bit_not_p)
1436 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1437 if (!has_single_use (gimple_assign_rhs1 (stmt)))
1438 return 1;
1440 return 0;
1441 default:
1442 gcc_unreachable ();
1446 /* Split a merged store described by GROUP by populating the SPLIT_STORES
1447 vector (if non-NULL) with split_store structs describing the byte offset
1448 (from the base), the bit size and alignment of each store as well as the
1449 original statements involved in each such split group.
1450 This is to separate the splitting strategy from the statement
1451 building/emission/linking done in output_merged_store.
1452 Return number of new stores.
1453 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
1454 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
1455 If SPLIT_STORES is NULL, it is just a dry run to count number of
1456 new stores. */
1458 static unsigned int
1459 split_group (merged_store_group *group, bool allow_unaligned_store,
1460 bool allow_unaligned_load,
1461 vec<struct split_store *> *split_stores,
1462 unsigned *total_orig,
1463 unsigned *total_new)
1465 unsigned HOST_WIDE_INT pos = group->bitregion_start;
1466 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
1467 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
1468 unsigned HOST_WIDE_INT group_align = group->align;
1469 unsigned HOST_WIDE_INT align_base = group->align_base;
1470 unsigned HOST_WIDE_INT group_load_align = group_align;
1471 bool any_orig = false;
1473 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
1475 unsigned int ret = 0, first = 0;
1476 unsigned HOST_WIDE_INT try_pos = bytepos;
1477 group->stores.qsort (sort_by_bitpos);
1479 if (total_orig)
1481 unsigned int i;
1482 store_immediate_info *info = group->stores[0];
1484 total_new[0] = 0;
1485 total_orig[0] = 1; /* The orig store. */
1486 info = group->stores[0];
1487 if (info->ops[0].base_addr)
1488 total_orig[0] += 1 + info->ops[0].bit_not_p;
1489 if (info->ops[1].base_addr)
1490 total_orig[0] += 1 + info->ops[1].bit_not_p;
1491 switch (info->rhs_code)
1493 case BIT_AND_EXPR:
1494 case BIT_IOR_EXPR:
1495 case BIT_XOR_EXPR:
1496 if (info->bit_not_p)
1497 total_orig[0]++; /* The orig BIT_NOT_EXPR stmt. */
1498 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
1499 break;
1500 default:
1501 break;
1503 total_orig[0] *= group->stores.length ();
1505 FOR_EACH_VEC_ELT (group->stores, i, info)
1506 total_new[0] += count_multiple_uses (info);
1509 if (!allow_unaligned_load)
1510 for (int i = 0; i < 2; ++i)
1511 if (group->load_align[i])
1512 group_load_align = MIN (group_load_align, group->load_align[i]);
1514 while (size > 0)
1516 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
1517 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
1519 /* Skip padding bytes. */
1520 ++try_pos;
1521 size -= BITS_PER_UNIT;
1522 continue;
1525 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
1526 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
1527 unsigned HOST_WIDE_INT align_bitpos
1528 = (try_bitpos - align_base) & (group_align - 1);
1529 unsigned HOST_WIDE_INT align = group_align;
1530 if (align_bitpos)
1531 align = least_bit_hwi (align_bitpos);
1532 if (!allow_unaligned_store)
1533 try_size = MIN (try_size, align);
1534 if (!allow_unaligned_load)
1536 /* If we can't do or don't want to do unaligned stores
1537 as well as loads, we need to take the loads into account
1538 as well. */
1539 unsigned HOST_WIDE_INT load_align = group_load_align;
1540 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
1541 if (align_bitpos)
1542 load_align = least_bit_hwi (align_bitpos);
1543 for (int i = 0; i < 2; ++i)
1544 if (group->load_align[i])
1546 align_bitpos = try_bitpos - group->stores[0]->bitpos;
1547 align_bitpos += group->stores[0]->ops[i].bitpos;
1548 align_bitpos -= group->load_align_base[i];
1549 align_bitpos &= (group_load_align - 1);
1550 if (align_bitpos)
1552 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
1553 load_align = MIN (load_align, a);
1556 try_size = MIN (try_size, load_align);
1558 store_immediate_info *info
1559 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
1560 if (info)
1562 /* If there is just one original statement for the range, see if
1563 we can just reuse the original store which could be even larger
1564 than try_size. */
1565 unsigned HOST_WIDE_INT stmt_end
1566 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
1567 info = find_constituent_stores (group, NULL, &first, try_bitpos,
1568 stmt_end - try_bitpos);
1569 if (info && info->bitpos >= try_bitpos)
1571 try_size = stmt_end - try_bitpos;
1572 goto found;
1576 /* Approximate store bitsize for the case when there are no padding
1577 bits. */
1578 while (try_size > size)
1579 try_size /= 2;
1580 /* Now look for whole padding bytes at the end of that bitsize. */
1581 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
1582 if (group->mask[try_pos - bytepos + nonmasked - 1]
1583 != (unsigned char) ~0U)
1584 break;
1585 if (nonmasked == 0)
1587 /* If entire try_size range is padding, skip it. */
1588 try_pos += try_size / BITS_PER_UNIT;
1589 size -= try_size;
1590 continue;
1592 /* Otherwise try to decrease try_size if second half, last 3 quarters
1593 etc. are padding. */
1594 nonmasked *= BITS_PER_UNIT;
1595 while (nonmasked <= try_size / 2)
1596 try_size /= 2;
1597 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
1599 /* Now look for whole padding bytes at the start of that bitsize. */
1600 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
1601 for (masked = 0; masked < try_bytesize; ++masked)
1602 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
1603 break;
1604 masked *= BITS_PER_UNIT;
1605 gcc_assert (masked < try_size);
1606 if (masked >= try_size / 2)
1608 while (masked >= try_size / 2)
1610 try_size /= 2;
1611 try_pos += try_size / BITS_PER_UNIT;
1612 size -= try_size;
1613 masked -= try_size;
1615 /* Need to recompute the alignment, so just retry at the new
1616 position. */
1617 continue;
1621 found:
1622 ++ret;
1624 if (split_stores)
1626 struct split_store *store
1627 = new split_store (try_pos, try_size, align);
1628 info = find_constituent_stores (group, &store->orig_stores,
1629 &first, try_bitpos, try_size);
1630 if (info
1631 && info->bitpos >= try_bitpos
1632 && info->bitpos + info->bitsize <= try_bitpos + try_size)
1634 store->orig = true;
1635 any_orig = true;
1637 split_stores->safe_push (store);
1640 try_pos += try_size / BITS_PER_UNIT;
1641 size -= try_size;
1644 if (total_orig)
1646 /* If we are reusing some original stores and any of the
1647 original SSA_NAMEs had multiple uses, we need to subtract
1648 those now before we add the new ones. */
1649 if (total_new[0] && any_orig)
1651 unsigned int i;
1652 struct split_store *store;
1653 FOR_EACH_VEC_ELT (*split_stores, i, store)
1654 if (store->orig)
1655 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
1657 total_new[0] += ret; /* The new store. */
1658 store_immediate_info *info = group->stores[0];
1659 if (info->ops[0].base_addr)
1660 total_new[0] += ret * (1 + info->ops[0].bit_not_p);
1661 if (info->ops[1].base_addr)
1662 total_new[0] += ret * (1 + info->ops[1].bit_not_p);
1663 switch (info->rhs_code)
1665 case BIT_AND_EXPR:
1666 case BIT_IOR_EXPR:
1667 case BIT_XOR_EXPR:
1668 if (info->bit_not_p)
1669 total_new[0] += ret; /* The new BIT_NOT_EXPR stmt. */
1670 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
1671 break;
1672 default:
1673 break;
1677 return ret;
1680 /* Given a merged store group GROUP output the widened version of it.
1681 The store chain is against the base object BASE.
1682 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
1683 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
1684 Make sure that the number of statements output is less than the number of
1685 original statements. If a better sequence is possible emit it and
1686 return true. */
1688 bool
1689 imm_store_chain_info::output_merged_store (merged_store_group *group)
1691 unsigned HOST_WIDE_INT start_byte_pos
1692 = group->bitregion_start / BITS_PER_UNIT;
1694 unsigned int orig_num_stmts = group->stores.length ();
1695 if (orig_num_stmts < 2)
1696 return false;
1698 auto_vec<struct split_store *, 32> split_stores;
1699 split_stores.create (0);
1700 bool allow_unaligned_store
1701 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
1702 bool allow_unaligned_load = allow_unaligned_store;
1703 if (allow_unaligned_store)
1705 /* If unaligned stores are allowed, see how many stores we'd emit
1706 for unaligned and how many stores we'd emit for aligned stores.
1707 Only use unaligned stores if it allows fewer stores than aligned. */
1708 unsigned aligned_cnt
1709 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
1710 unsigned unaligned_cnt
1711 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
1712 if (aligned_cnt <= unaligned_cnt)
1713 allow_unaligned_store = false;
1715 unsigned total_orig, total_new;
1716 split_group (group, allow_unaligned_store, allow_unaligned_load,
1717 &split_stores, &total_orig, &total_new);
1719 if (split_stores.length () >= orig_num_stmts)
1721 /* We didn't manage to reduce the number of statements. Bail out. */
1722 if (dump_file && (dump_flags & TDF_DETAILS))
1723 fprintf (dump_file, "Exceeded original number of stmts (%u)."
1724 " Not profitable to emit new sequence.\n",
1725 orig_num_stmts);
1726 return false;
1728 if (total_orig <= total_new)
1730 /* If number of estimated new statements is above estimated original
1731 statements, bail out too. */
1732 if (dump_file && (dump_flags & TDF_DETAILS))
1733 fprintf (dump_file, "Estimated number of original stmts (%u)"
1734 " not larger than estimated number of new"
1735 " stmts (%u).\n",
1736 total_orig, total_new);
1739 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
1740 gimple_seq seq = NULL;
1741 tree last_vdef, new_vuse;
1742 last_vdef = gimple_vdef (group->last_stmt);
1743 new_vuse = gimple_vuse (group->last_stmt);
1745 gimple *stmt = NULL;
1746 split_store *split_store;
1747 unsigned int i;
1748 auto_vec<gimple *, 32> orig_stmts;
1749 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &seq,
1750 is_gimple_mem_ref_addr, NULL_TREE);
1752 tree load_addr[2] = { NULL_TREE, NULL_TREE };
1753 gimple_seq load_seq[2] = { NULL, NULL };
1754 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
1755 for (int j = 0; j < 2; ++j)
1757 store_operand_info &op = group->stores[0]->ops[j];
1758 if (op.base_addr == NULL_TREE)
1759 continue;
1761 store_immediate_info *infol = group->stores.last ();
1762 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
1764 load_gsi[j] = gsi_for_stmt (op.stmt);
1765 load_addr[j]
1766 = force_gimple_operand_1 (unshare_expr (op.base_addr),
1767 &load_seq[j], is_gimple_mem_ref_addr,
1768 NULL_TREE);
1770 else if (operand_equal_p (base_addr, op.base_addr, 0))
1771 load_addr[j] = addr;
1772 else
1774 gimple_seq this_seq;
1775 load_addr[j]
1776 = force_gimple_operand_1 (unshare_expr (op.base_addr),
1777 &this_seq, is_gimple_mem_ref_addr,
1778 NULL_TREE);
1779 gimple_seq_add_seq_without_update (&seq, this_seq);
1783 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1785 unsigned HOST_WIDE_INT try_size = split_store->size;
1786 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
1787 unsigned HOST_WIDE_INT align = split_store->align;
1788 tree dest, src;
1789 location_t loc;
1790 if (split_store->orig)
1792 /* If there is just a single constituent store which covers
1793 the whole area, just reuse the lhs and rhs. */
1794 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
1795 dest = gimple_assign_lhs (orig_stmt);
1796 src = gimple_assign_rhs1 (orig_stmt);
1797 loc = gimple_location (orig_stmt);
1799 else
1801 store_immediate_info *info;
1802 unsigned short clique, base;
1803 unsigned int k;
1804 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
1805 orig_stmts.safe_push (info->stmt);
1806 tree offset_type
1807 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
1808 loc = get_location_for_stmts (orig_stmts);
1809 orig_stmts.truncate (0);
1811 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
1812 int_type = build_aligned_type (int_type, align);
1813 dest = fold_build2 (MEM_REF, int_type, addr,
1814 build_int_cst (offset_type, try_pos));
1815 if (TREE_CODE (dest) == MEM_REF)
1817 MR_DEPENDENCE_CLIQUE (dest) = clique;
1818 MR_DEPENDENCE_BASE (dest) = base;
1821 tree mask
1822 = native_interpret_expr (int_type,
1823 group->mask + try_pos - start_byte_pos,
1824 group->buf_size);
1826 tree ops[2];
1827 for (int j = 0;
1828 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
1829 ++j)
1831 store_operand_info &op = split_store->orig_stores[0]->ops[j];
1832 if (op.base_addr)
1834 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
1835 orig_stmts.safe_push (info->ops[j].stmt);
1837 offset_type = get_alias_type_for_stmts (orig_stmts, true,
1838 &clique, &base);
1839 location_t load_loc = get_location_for_stmts (orig_stmts);
1840 orig_stmts.truncate (0);
1842 unsigned HOST_WIDE_INT load_align = group->load_align[j];
1843 unsigned HOST_WIDE_INT align_bitpos
1844 = (try_pos * BITS_PER_UNIT
1845 - split_store->orig_stores[0]->bitpos
1846 + op.bitpos) & (load_align - 1);
1847 if (align_bitpos)
1848 load_align = least_bit_hwi (align_bitpos);
1850 tree load_int_type
1851 = build_nonstandard_integer_type (try_size, UNSIGNED);
1852 load_int_type
1853 = build_aligned_type (load_int_type, load_align);
1855 unsigned HOST_WIDE_INT load_pos
1856 = (try_pos * BITS_PER_UNIT
1857 - split_store->orig_stores[0]->bitpos
1858 + op.bitpos) / BITS_PER_UNIT;
1859 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
1860 build_int_cst (offset_type, load_pos));
1861 if (TREE_CODE (ops[j]) == MEM_REF)
1863 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
1864 MR_DEPENDENCE_BASE (ops[j]) = base;
1866 if (!integer_zerop (mask))
1867 /* The load might load some bits (that will be masked off
1868 later on) uninitialized, avoid -W*uninitialized
1869 warnings in that case. */
1870 TREE_NO_WARNING (ops[j]) = 1;
1872 stmt = gimple_build_assign (make_ssa_name (int_type),
1873 ops[j]);
1874 gimple_set_location (stmt, load_loc);
1875 if (gsi_bb (load_gsi[j]))
1877 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
1878 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
1880 else
1882 gimple_set_vuse (stmt, new_vuse);
1883 gimple_seq_add_stmt_without_update (&seq, stmt);
1885 ops[j] = gimple_assign_lhs (stmt);
1886 if (op.bit_not_p)
1888 stmt = gimple_build_assign (make_ssa_name (int_type),
1889 BIT_NOT_EXPR, ops[j]);
1890 gimple_set_location (stmt, load_loc);
1891 ops[j] = gimple_assign_lhs (stmt);
1893 if (gsi_bb (load_gsi[j]))
1894 gimple_seq_add_stmt_without_update (&load_seq[j],
1895 stmt);
1896 else
1897 gimple_seq_add_stmt_without_update (&seq, stmt);
1900 else
1901 ops[j] = native_interpret_expr (int_type,
1902 group->val + try_pos
1903 - start_byte_pos,
1904 group->buf_size);
1907 switch (split_store->orig_stores[0]->rhs_code)
1909 case BIT_AND_EXPR:
1910 case BIT_IOR_EXPR:
1911 case BIT_XOR_EXPR:
1912 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
1914 tree rhs1 = gimple_assign_rhs1 (info->stmt);
1915 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
1917 location_t bit_loc;
1918 bit_loc = get_location_for_stmts (orig_stmts);
1919 orig_stmts.truncate (0);
1921 stmt
1922 = gimple_build_assign (make_ssa_name (int_type),
1923 split_store->orig_stores[0]->rhs_code,
1924 ops[0], ops[1]);
1925 gimple_set_location (stmt, bit_loc);
1926 /* If there is just one load and there is a separate
1927 load_seq[0], emit the bitwise op right after it. */
1928 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
1929 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
1930 /* Otherwise, if at least one load is in seq, we need to
1931 emit the bitwise op right before the store. If there
1932 are two loads and are emitted somewhere else, it would
1933 be better to emit the bitwise op as early as possible;
1934 we don't track where that would be possible right now
1935 though. */
1936 else
1937 gimple_seq_add_stmt_without_update (&seq, stmt);
1938 src = gimple_assign_lhs (stmt);
1939 if (split_store->orig_stores[0]->bit_not_p)
1941 stmt = gimple_build_assign (make_ssa_name (int_type),
1942 BIT_NOT_EXPR, src);
1943 gimple_set_location (stmt, bit_loc);
1944 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
1945 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
1946 else
1947 gimple_seq_add_stmt_without_update (&seq, stmt);
1948 src = gimple_assign_lhs (stmt);
1950 break;
1951 default:
1952 src = ops[0];
1953 break;
1956 if (!integer_zerop (mask))
1958 tree tem = make_ssa_name (int_type);
1959 tree load_src = unshare_expr (dest);
1960 /* The load might load some or all bits uninitialized,
1961 avoid -W*uninitialized warnings in that case.
1962 As optimization, it would be nice if all the bits are
1963 provably uninitialized (no stores at all yet or previous
1964 store a CLOBBER) we'd optimize away the load and replace
1965 it e.g. with 0. */
1966 TREE_NO_WARNING (load_src) = 1;
1967 stmt = gimple_build_assign (tem, load_src);
1968 gimple_set_location (stmt, loc);
1969 gimple_set_vuse (stmt, new_vuse);
1970 gimple_seq_add_stmt_without_update (&seq, stmt);
1972 /* FIXME: If there is a single chunk of zero bits in mask,
1973 perhaps use BIT_INSERT_EXPR instead? */
1974 stmt = gimple_build_assign (make_ssa_name (int_type),
1975 BIT_AND_EXPR, tem, mask);
1976 gimple_set_location (stmt, loc);
1977 gimple_seq_add_stmt_without_update (&seq, stmt);
1978 tem = gimple_assign_lhs (stmt);
1980 if (TREE_CODE (src) == INTEGER_CST)
1981 src = wide_int_to_tree (int_type,
1982 wi::bit_and_not (wi::to_wide (src),
1983 wi::to_wide (mask)));
1984 else
1986 tree nmask
1987 = wide_int_to_tree (int_type,
1988 wi::bit_not (wi::to_wide (mask)));
1989 stmt = gimple_build_assign (make_ssa_name (int_type),
1990 BIT_AND_EXPR, src, nmask);
1991 gimple_set_location (stmt, loc);
1992 gimple_seq_add_stmt_without_update (&seq, stmt);
1993 src = gimple_assign_lhs (stmt);
1995 stmt = gimple_build_assign (make_ssa_name (int_type),
1996 BIT_IOR_EXPR, tem, src);
1997 gimple_set_location (stmt, loc);
1998 gimple_seq_add_stmt_without_update (&seq, stmt);
1999 src = gimple_assign_lhs (stmt);
2003 stmt = gimple_build_assign (dest, src);
2004 gimple_set_location (stmt, loc);
2005 gimple_set_vuse (stmt, new_vuse);
2006 gimple_seq_add_stmt_without_update (&seq, stmt);
2008 tree new_vdef;
2009 if (i < split_stores.length () - 1)
2010 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
2011 else
2012 new_vdef = last_vdef;
2014 gimple_set_vdef (stmt, new_vdef);
2015 SSA_NAME_DEF_STMT (new_vdef) = stmt;
2016 new_vuse = new_vdef;
2019 FOR_EACH_VEC_ELT (split_stores, i, split_store)
2020 delete split_store;
2022 gcc_assert (seq);
2023 if (dump_file)
2025 fprintf (dump_file,
2026 "New sequence of %u stmts to replace old one of %u stmts\n",
2027 split_stores.length (), orig_num_stmts);
2028 if (dump_flags & TDF_DETAILS)
2029 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
2031 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
2032 for (int j = 0; j < 2; ++j)
2033 if (load_seq[j])
2034 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
2036 return true;
2039 /* Process the merged_store_group objects created in the coalescing phase.
2040 The stores are all against the base object BASE.
2041 Try to output the widened stores and delete the original statements if
2042 successful. Return true iff any changes were made. */
2044 bool
2045 imm_store_chain_info::output_merged_stores ()
2047 unsigned int i;
2048 merged_store_group *merged_store;
2049 bool ret = false;
2050 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
2052 if (output_merged_store (merged_store))
2054 unsigned int j;
2055 store_immediate_info *store;
2056 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
2058 gimple *stmt = store->stmt;
2059 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2060 gsi_remove (&gsi, true);
2061 if (stmt != merged_store->last_stmt)
2063 unlink_stmt_vdef (stmt);
2064 release_defs (stmt);
2067 ret = true;
2070 if (ret && dump_file)
2071 fprintf (dump_file, "Merging successful!\n");
2073 return ret;
2076 /* Coalesce the store_immediate_info objects recorded against the base object
2077 BASE in the first phase and output them.
2078 Delete the allocated structures.
2079 Return true if any changes were made. */
2081 bool
2082 imm_store_chain_info::terminate_and_process_chain ()
2084 /* Process store chain. */
2085 bool ret = false;
2086 if (m_store_info.length () > 1)
2088 ret = coalesce_immediate_stores ();
2089 if (ret)
2090 ret = output_merged_stores ();
2093 /* Delete all the entries we allocated ourselves. */
2094 store_immediate_info *info;
2095 unsigned int i;
2096 FOR_EACH_VEC_ELT (m_store_info, i, info)
2097 delete info;
2099 merged_store_group *merged_info;
2100 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
2101 delete merged_info;
2103 return ret;
2106 /* Return true iff LHS is a destination potentially interesting for
2107 store merging. In practice these are the codes that get_inner_reference
2108 can process. */
2110 static bool
2111 lhs_valid_for_store_merging_p (tree lhs)
2113 tree_code code = TREE_CODE (lhs);
2115 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
2116 || code == COMPONENT_REF || code == BIT_FIELD_REF)
2117 return true;
2119 return false;
2122 /* Return true if the tree RHS is a constant we want to consider
2123 during store merging. In practice accept all codes that
2124 native_encode_expr accepts. */
2126 static bool
2127 rhs_valid_for_store_merging_p (tree rhs)
2129 return native_encode_expr (rhs, NULL,
2130 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs)))) != 0;
2133 /* If MEM is a memory reference usable for store merging (either as
2134 store destination or for loads), return the non-NULL base_addr
2135 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
2136 Otherwise return NULL, *PBITPOS should be still valid even for that
2137 case. */
2139 static tree
2140 mem_valid_for_store_merging (tree mem, unsigned HOST_WIDE_INT *pbitsize,
2141 unsigned HOST_WIDE_INT *pbitpos,
2142 unsigned HOST_WIDE_INT *pbitregion_start,
2143 unsigned HOST_WIDE_INT *pbitregion_end)
2145 HOST_WIDE_INT bitsize;
2146 HOST_WIDE_INT bitpos;
2147 unsigned HOST_WIDE_INT bitregion_start = 0;
2148 unsigned HOST_WIDE_INT bitregion_end = 0;
2149 machine_mode mode;
2150 int unsignedp = 0, reversep = 0, volatilep = 0;
2151 tree offset;
2152 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
2153 &unsignedp, &reversep, &volatilep);
2154 *pbitsize = bitsize;
2155 if (bitsize == 0)
2156 return NULL_TREE;
2158 if (TREE_CODE (mem) == COMPONENT_REF
2159 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
2161 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
2162 if (bitregion_end)
2163 ++bitregion_end;
2166 if (reversep)
2167 return NULL_TREE;
2169 /* We do not want to rewrite TARGET_MEM_REFs. */
2170 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
2171 return NULL_TREE;
2172 /* In some cases get_inner_reference may return a
2173 MEM_REF [ptr + byteoffset]. For the purposes of this pass
2174 canonicalize the base_addr to MEM_REF [ptr] and take
2175 byteoffset into account in the bitpos. This occurs in
2176 PR 23684 and this way we can catch more chains. */
2177 else if (TREE_CODE (base_addr) == MEM_REF)
2179 offset_int bit_off, byte_off = mem_ref_offset (base_addr);
2180 bit_off = byte_off << LOG2_BITS_PER_UNIT;
2181 bit_off += bitpos;
2182 if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
2184 bitpos = bit_off.to_shwi ();
2185 if (bitregion_end)
2187 bit_off = byte_off << LOG2_BITS_PER_UNIT;
2188 bit_off += bitregion_start;
2189 if (wi::fits_uhwi_p (bit_off))
2191 bitregion_start = bit_off.to_uhwi ();
2192 bit_off = byte_off << LOG2_BITS_PER_UNIT;
2193 bit_off += bitregion_end;
2194 if (wi::fits_uhwi_p (bit_off))
2195 bitregion_end = bit_off.to_uhwi ();
2196 else
2197 bitregion_end = 0;
2199 else
2200 bitregion_end = 0;
2203 else
2204 return NULL_TREE;
2205 base_addr = TREE_OPERAND (base_addr, 0);
2207 /* get_inner_reference returns the base object, get at its
2208 address now. */
2209 else
2211 if (bitpos < 0)
2212 return NULL_TREE;
2213 base_addr = build_fold_addr_expr (base_addr);
2216 if (!bitregion_end)
2218 bitregion_start = ROUND_DOWN (bitpos, BITS_PER_UNIT);
2219 bitregion_end = ROUND_UP (bitpos + bitsize, BITS_PER_UNIT);
2222 if (offset != NULL_TREE)
2224 /* If the access is variable offset then a base decl has to be
2225 address-taken to be able to emit pointer-based stores to it.
2226 ??? We might be able to get away with re-using the original
2227 base up to the first variable part and then wrapping that inside
2228 a BIT_FIELD_REF. */
2229 tree base = get_base_address (base_addr);
2230 if (! base
2231 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
2232 return NULL_TREE;
2234 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
2235 base_addr, offset);
2238 *pbitsize = bitsize;
2239 *pbitpos = bitpos;
2240 *pbitregion_start = bitregion_start;
2241 *pbitregion_end = bitregion_end;
2242 return base_addr;
2245 /* Return true if STMT is a load that can be used for store merging.
2246 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
2247 BITREGION_END are properties of the corresponding store. */
2249 static bool
2250 handled_load (gimple *stmt, store_operand_info *op,
2251 unsigned HOST_WIDE_INT bitsize, unsigned HOST_WIDE_INT bitpos,
2252 unsigned HOST_WIDE_INT bitregion_start,
2253 unsigned HOST_WIDE_INT bitregion_end)
2255 if (!is_gimple_assign (stmt))
2256 return false;
2257 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
2259 tree rhs1 = gimple_assign_rhs1 (stmt);
2260 if (TREE_CODE (rhs1) == SSA_NAME
2261 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
2262 bitregion_start, bitregion_end))
2264 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
2265 been optimized earlier, but if allowed here, would confuse the
2266 multiple uses counting. */
2267 if (op->bit_not_p)
2268 return false;
2269 op->bit_not_p = !op->bit_not_p;
2270 return true;
2272 return false;
2274 if (gimple_vuse (stmt)
2275 && gimple_assign_load_p (stmt)
2276 && !stmt_can_throw_internal (stmt)
2277 && !gimple_has_volatile_ops (stmt))
2279 tree mem = gimple_assign_rhs1 (stmt);
2280 op->base_addr
2281 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
2282 &op->bitregion_start,
2283 &op->bitregion_end);
2284 if (op->base_addr != NULL_TREE
2285 && op->bitsize == bitsize
2286 && ((op->bitpos - bitpos) % BITS_PER_UNIT) == 0
2287 && op->bitpos - op->bitregion_start >= bitpos - bitregion_start
2288 && op->bitregion_end - op->bitpos >= bitregion_end - bitpos)
2290 op->stmt = stmt;
2291 op->val = mem;
2292 op->bit_not_p = false;
2293 return true;
2296 return false;
2299 /* Record the store STMT for store merging optimization if it can be
2300 optimized. */
2302 void
2303 pass_store_merging::process_store (gimple *stmt)
2305 tree lhs = gimple_assign_lhs (stmt);
2306 tree rhs = gimple_assign_rhs1 (stmt);
2307 unsigned HOST_WIDE_INT bitsize, bitpos;
2308 unsigned HOST_WIDE_INT bitregion_start;
2309 unsigned HOST_WIDE_INT bitregion_end;
2310 tree base_addr
2311 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
2312 &bitregion_start, &bitregion_end);
2313 if (bitsize == 0)
2314 return;
2316 bool invalid = (base_addr == NULL_TREE
2317 || ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
2318 && (TREE_CODE (rhs) != INTEGER_CST)));
2319 enum tree_code rhs_code = ERROR_MARK;
2320 bool bit_not_p = false;
2321 store_operand_info ops[2];
2322 if (invalid)
2324 else if (rhs_valid_for_store_merging_p (rhs))
2326 rhs_code = INTEGER_CST;
2327 ops[0].val = rhs;
2329 else if (TREE_CODE (rhs) != SSA_NAME)
2330 invalid = true;
2331 else
2333 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
2334 if (!is_gimple_assign (def_stmt))
2335 invalid = true;
2336 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
2337 bitregion_start, bitregion_end))
2338 rhs_code = MEM_REF;
2339 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
2341 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2342 if (TREE_CODE (rhs1) == SSA_NAME
2343 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
2345 bit_not_p = true;
2346 def_stmt = SSA_NAME_DEF_STMT (rhs1);
2349 if (rhs_code == ERROR_MARK && !invalid)
2350 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
2352 case BIT_AND_EXPR:
2353 case BIT_IOR_EXPR:
2354 case BIT_XOR_EXPR:
2355 tree rhs1, rhs2;
2356 rhs1 = gimple_assign_rhs1 (def_stmt);
2357 rhs2 = gimple_assign_rhs2 (def_stmt);
2358 invalid = true;
2359 if (TREE_CODE (rhs1) != SSA_NAME)
2360 break;
2361 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
2362 if (!is_gimple_assign (def_stmt1)
2363 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
2364 bitregion_start, bitregion_end))
2365 break;
2366 if (rhs_valid_for_store_merging_p (rhs2))
2367 ops[1].val = rhs2;
2368 else if (TREE_CODE (rhs2) != SSA_NAME)
2369 break;
2370 else
2372 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
2373 if (!is_gimple_assign (def_stmt2))
2374 break;
2375 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
2376 bitregion_start, bitregion_end))
2377 break;
2379 invalid = false;
2380 break;
2381 default:
2382 invalid = true;
2383 break;
2387 if (invalid)
2389 terminate_all_aliasing_chains (NULL, stmt);
2390 return;
2393 struct imm_store_chain_info **chain_info = NULL;
2394 if (base_addr)
2395 chain_info = m_stores.get (base_addr);
2397 store_immediate_info *info;
2398 if (chain_info)
2400 unsigned int ord = (*chain_info)->m_store_info.length ();
2401 info = new store_immediate_info (bitsize, bitpos, bitregion_start,
2402 bitregion_end, stmt, ord, rhs_code,
2403 bit_not_p, ops[0], ops[1]);
2404 if (dump_file && (dump_flags & TDF_DETAILS))
2406 fprintf (dump_file, "Recording immediate store from stmt:\n");
2407 print_gimple_stmt (dump_file, stmt, 0);
2409 (*chain_info)->m_store_info.safe_push (info);
2410 terminate_all_aliasing_chains (chain_info, stmt);
2411 /* If we reach the limit of stores to merge in a chain terminate and
2412 process the chain now. */
2413 if ((*chain_info)->m_store_info.length ()
2414 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
2416 if (dump_file && (dump_flags & TDF_DETAILS))
2417 fprintf (dump_file,
2418 "Reached maximum number of statements to merge:\n");
2419 terminate_and_release_chain (*chain_info);
2421 return;
2424 /* Store aliases any existing chain? */
2425 terminate_all_aliasing_chains (NULL, stmt);
2426 /* Start a new chain. */
2427 struct imm_store_chain_info *new_chain
2428 = new imm_store_chain_info (m_stores_head, base_addr);
2429 info = new store_immediate_info (bitsize, bitpos, bitregion_start,
2430 bitregion_end, stmt, 0, rhs_code,
2431 bit_not_p, ops[0], ops[1]);
2432 new_chain->m_store_info.safe_push (info);
2433 m_stores.put (base_addr, new_chain);
2434 if (dump_file && (dump_flags & TDF_DETAILS))
2436 fprintf (dump_file, "Starting new chain with statement:\n");
2437 print_gimple_stmt (dump_file, stmt, 0);
2438 fprintf (dump_file, "The base object is:\n");
2439 print_generic_expr (dump_file, base_addr);
2440 fprintf (dump_file, "\n");
2444 /* Entry point for the pass. Go over each basic block recording chains of
2445 immediate stores. Upon encountering a terminating statement (as defined
2446 by stmt_terminates_chain_p) process the recorded stores and emit the widened
2447 variants. */
2449 unsigned int
2450 pass_store_merging::execute (function *fun)
2452 basic_block bb;
2453 hash_set<gimple *> orig_stmts;
2455 FOR_EACH_BB_FN (bb, fun)
2457 gimple_stmt_iterator gsi;
2458 unsigned HOST_WIDE_INT num_statements = 0;
2459 /* Record the original statements so that we can keep track of
2460 statements emitted in this pass and not re-process new
2461 statements. */
2462 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2464 if (is_gimple_debug (gsi_stmt (gsi)))
2465 continue;
2467 if (++num_statements >= 2)
2468 break;
2471 if (num_statements < 2)
2472 continue;
2474 if (dump_file && (dump_flags & TDF_DETAILS))
2475 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
2477 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2479 gimple *stmt = gsi_stmt (gsi);
2481 if (is_gimple_debug (stmt))
2482 continue;
2484 if (gimple_has_volatile_ops (stmt))
2486 /* Terminate all chains. */
2487 if (dump_file && (dump_flags & TDF_DETAILS))
2488 fprintf (dump_file, "Volatile access terminates "
2489 "all chains\n");
2490 terminate_and_process_all_chains ();
2491 continue;
2494 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
2495 && !stmt_can_throw_internal (stmt)
2496 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
2497 process_store (stmt);
2498 else
2499 terminate_all_aliasing_chains (NULL, stmt);
2501 terminate_and_process_all_chains ();
2503 return 0;
2506 } // anon namespace
2508 /* Construct and return a store merging pass object. */
2510 gimple_opt_pass *
2511 make_pass_store_merging (gcc::context *ctxt)
2513 return new pass_store_merging (ctxt);
2516 #if CHECKING_P
2518 namespace selftest {
2520 /* Selftests for store merging helpers. */
2522 /* Assert that all elements of the byte arrays X and Y, both of length N
2523 are equal. */
2525 static void
2526 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
2528 for (unsigned int i = 0; i < n; i++)
2530 if (x[i] != y[i])
2532 fprintf (stderr, "Arrays do not match. X:\n");
2533 dump_char_array (stderr, x, n);
2534 fprintf (stderr, "Y:\n");
2535 dump_char_array (stderr, y, n);
2537 ASSERT_EQ (x[i], y[i]);
2541 /* Test shift_bytes_in_array and that it carries bits across between
2542 bytes correctly. */
2544 static void
2545 verify_shift_bytes_in_array (void)
2547 /* byte 1 | byte 0
2548 00011111 | 11100000. */
2549 unsigned char orig[2] = { 0xe0, 0x1f };
2550 unsigned char in[2];
2551 memcpy (in, orig, sizeof orig);
2553 unsigned char expected[2] = { 0x80, 0x7f };
2554 shift_bytes_in_array (in, sizeof (in), 2);
2555 verify_array_eq (in, expected, sizeof (in));
2557 memcpy (in, orig, sizeof orig);
2558 memcpy (expected, orig, sizeof orig);
2559 /* Check that shifting by zero doesn't change anything. */
2560 shift_bytes_in_array (in, sizeof (in), 0);
2561 verify_array_eq (in, expected, sizeof (in));
2565 /* Test shift_bytes_in_array_right and that it carries bits across between
2566 bytes correctly. */
2568 static void
2569 verify_shift_bytes_in_array_right (void)
2571 /* byte 1 | byte 0
2572 00011111 | 11100000. */
2573 unsigned char orig[2] = { 0x1f, 0xe0};
2574 unsigned char in[2];
2575 memcpy (in, orig, sizeof orig);
2576 unsigned char expected[2] = { 0x07, 0xf8};
2577 shift_bytes_in_array_right (in, sizeof (in), 2);
2578 verify_array_eq (in, expected, sizeof (in));
2580 memcpy (in, orig, sizeof orig);
2581 memcpy (expected, orig, sizeof orig);
2582 /* Check that shifting by zero doesn't change anything. */
2583 shift_bytes_in_array_right (in, sizeof (in), 0);
2584 verify_array_eq (in, expected, sizeof (in));
2587 /* Test clear_bit_region that it clears exactly the bits asked and
2588 nothing more. */
2590 static void
2591 verify_clear_bit_region (void)
2593 /* Start with all bits set and test clearing various patterns in them. */
2594 unsigned char orig[3] = { 0xff, 0xff, 0xff};
2595 unsigned char in[3];
2596 unsigned char expected[3];
2597 memcpy (in, orig, sizeof in);
2599 /* Check zeroing out all the bits. */
2600 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
2601 expected[0] = expected[1] = expected[2] = 0;
2602 verify_array_eq (in, expected, sizeof in);
2604 memcpy (in, orig, sizeof in);
2605 /* Leave the first and last bits intact. */
2606 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
2607 expected[0] = 0x1;
2608 expected[1] = 0;
2609 expected[2] = 0x80;
2610 verify_array_eq (in, expected, sizeof in);
2613 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
2614 nothing more. */
2616 static void
2617 verify_clear_bit_region_be (void)
2619 /* Start with all bits set and test clearing various patterns in them. */
2620 unsigned char orig[3] = { 0xff, 0xff, 0xff};
2621 unsigned char in[3];
2622 unsigned char expected[3];
2623 memcpy (in, orig, sizeof in);
2625 /* Check zeroing out all the bits. */
2626 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
2627 expected[0] = expected[1] = expected[2] = 0;
2628 verify_array_eq (in, expected, sizeof in);
2630 memcpy (in, orig, sizeof in);
2631 /* Leave the first and last bits intact. */
2632 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
2633 expected[0] = 0x80;
2634 expected[1] = 0;
2635 expected[2] = 0x1;
2636 verify_array_eq (in, expected, sizeof in);
2640 /* Run all of the selftests within this file. */
2642 void
2643 store_merging_c_tests (void)
2645 verify_shift_bytes_in_array ();
2646 verify_shift_bytes_in_array_right ();
2647 verify_clear_bit_region ();
2648 verify_clear_bit_region_be ();
2651 } // namespace selftest
2652 #endif /* CHECKING_P. */