PR rtl-optimization/82913
[official-gcc.git] / gcc / expr.c
blob76684c11cc3ee2c98f4ae73d11565c0a899bd6cf
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
60 #include "builtins.h"
61 #include "tree-chkp.h"
62 #include "rtl-chkp.h"
63 #include "ccmp.h"
66 /* If this is nonzero, we do not bother generating VOLATILE
67 around volatile memory references, and we are willing to
68 output indirect addresses. If cse is to follow, we reject
69 indirect addresses so a useful potential cse is generated;
70 if it is used only once, instruction combination will produce
71 the same indirect address eventually. */
72 int cse_not_expected;
74 static bool block_move_libcall_safe_for_call_parm (void);
75 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
76 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT);
78 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
79 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
80 static rtx_insn *compress_float_constant (rtx, rtx);
81 static rtx get_subtarget (rtx);
82 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
83 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, machine_mode,
85 tree, int, alias_set_type, bool);
86 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
87 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
88 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
89 machine_mode, tree, alias_set_type, bool, bool);
91 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
93 static int is_aligning_offset (const_tree, const_tree);
94 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
95 static rtx do_store_flag (sepops, rtx, machine_mode);
96 #ifdef PUSH_ROUNDING
97 static void emit_single_push_insn (machine_mode, rtx, tree);
98 #endif
99 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
100 profile_probability);
101 static rtx const_vector_from_tree (tree);
102 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
103 static tree tree_expr_size (const_tree);
104 static HOST_WIDE_INT int_expr_size (tree);
105 static void convert_mode_scalar (rtx, rtx, int);
108 /* This is run to set up which modes can be used
109 directly in memory and to initialize the block move optab. It is run
110 at the beginning of compilation and when the target is reinitialized. */
112 void
113 init_expr_target (void)
115 rtx pat;
116 int num_clobbers;
117 rtx mem, mem1;
118 rtx reg;
120 /* Try indexing by frame ptr and try by stack ptr.
121 It is known that on the Convex the stack ptr isn't a valid index.
122 With luck, one or the other is valid on any machine. */
123 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
124 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
126 /* A scratch register we can modify in-place below to avoid
127 useless RTL allocations. */
128 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
130 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
131 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
132 PATTERN (insn) = pat;
134 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
135 mode = (machine_mode) ((int) mode + 1))
137 int regno;
139 direct_load[(int) mode] = direct_store[(int) mode] = 0;
140 PUT_MODE (mem, mode);
141 PUT_MODE (mem1, mode);
143 /* See if there is some register that can be used in this mode and
144 directly loaded or stored from memory. */
146 if (mode != VOIDmode && mode != BLKmode)
147 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
148 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
149 regno++)
151 if (!targetm.hard_regno_mode_ok (regno, mode))
152 continue;
154 set_mode_and_regno (reg, mode, regno);
156 SET_SRC (pat) = mem;
157 SET_DEST (pat) = reg;
158 if (recog (pat, insn, &num_clobbers) >= 0)
159 direct_load[(int) mode] = 1;
161 SET_SRC (pat) = mem1;
162 SET_DEST (pat) = reg;
163 if (recog (pat, insn, &num_clobbers) >= 0)
164 direct_load[(int) mode] = 1;
166 SET_SRC (pat) = reg;
167 SET_DEST (pat) = mem;
168 if (recog (pat, insn, &num_clobbers) >= 0)
169 direct_store[(int) mode] = 1;
171 SET_SRC (pat) = reg;
172 SET_DEST (pat) = mem1;
173 if (recog (pat, insn, &num_clobbers) >= 0)
174 direct_store[(int) mode] = 1;
178 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
180 opt_scalar_float_mode mode_iter;
181 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
183 scalar_float_mode mode = mode_iter.require ();
184 scalar_float_mode srcmode;
185 FOR_EACH_MODE_UNTIL (srcmode, mode)
187 enum insn_code ic;
189 ic = can_extend_p (mode, srcmode, 0);
190 if (ic == CODE_FOR_nothing)
191 continue;
193 PUT_MODE (mem, srcmode);
195 if (insn_operand_matches (ic, 1, mem))
196 float_extend_from_mem[mode][srcmode] = true;
201 /* This is run at the start of compiling a function. */
203 void
204 init_expr (void)
206 memset (&crtl->expr, 0, sizeof (crtl->expr));
209 /* Copy data from FROM to TO, where the machine modes are not the same.
210 Both modes may be integer, or both may be floating, or both may be
211 fixed-point.
212 UNSIGNEDP should be nonzero if FROM is an unsigned type.
213 This causes zero-extension instead of sign-extension. */
215 void
216 convert_move (rtx to, rtx from, int unsignedp)
218 machine_mode to_mode = GET_MODE (to);
219 machine_mode from_mode = GET_MODE (from);
221 gcc_assert (to_mode != BLKmode);
222 gcc_assert (from_mode != BLKmode);
224 /* If the source and destination are already the same, then there's
225 nothing to do. */
226 if (to == from)
227 return;
229 /* If FROM is a SUBREG that indicates that we have already done at least
230 the required extension, strip it. We don't handle such SUBREGs as
231 TO here. */
233 scalar_int_mode to_int_mode;
234 if (GET_CODE (from) == SUBREG
235 && SUBREG_PROMOTED_VAR_P (from)
236 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
237 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
238 >= GET_MODE_PRECISION (to_int_mode))
239 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
240 from = gen_lowpart (to_int_mode, from), from_mode = to_int_mode;
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
247 emit_move_insn (to, from);
248 return;
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
253 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
260 emit_move_insn (to, from);
261 return;
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
271 convert_mode_scalar (to, from, unsignedp);
274 /* Like convert_move, but deals only with scalar modes. */
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
287 gcc_assert (to_real == from_real);
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
293 if (to_real)
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
312 /* Try converting directly if the insn is supported. */
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
343 convert_optab ctab;
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
388 if (to_mode == full_mode)
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
418 /* Now both modes are integers. */
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
499 gcc_assert (subword);
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
505 insns = get_insns ();
506 end_sequence ();
508 emit_insn (insns);
509 return;
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
528 /* Now follow all the conversions between integers
529 no more than a word long. */
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
560 else
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
637 return convert_modes (mode, VOIDmode, x, unsignedp);
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
653 rtx temp;
654 scalar_int_mode int_mode;
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
670 if (mode == oldmode)
671 return x;
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || (REG_P (x)
696 && (!HARD_REGISTER_P (x)
697 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
698 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
699 return gen_lowpart (int_mode, x);
701 /* Converting from integer constant into mode is always equivalent to an
702 subreg operation. */
703 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
705 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
706 return simplify_gen_subreg (mode, x, oldmode, 0);
709 temp = gen_reg_rtx (mode);
710 convert_move (temp, x, unsignedp);
711 return temp;
714 /* Return the largest alignment we can use for doing a move (or store)
715 of MAX_PIECES. ALIGN is the largest alignment we could use. */
717 static unsigned int
718 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
720 scalar_int_mode tmode
721 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
723 if (align >= GET_MODE_ALIGNMENT (tmode))
724 align = GET_MODE_ALIGNMENT (tmode);
725 else
727 scalar_int_mode xmode = NARROWEST_INT_MODE;
728 opt_scalar_int_mode mode_iter;
729 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
731 tmode = mode_iter.require ();
732 if (GET_MODE_SIZE (tmode) > max_pieces
733 || targetm.slow_unaligned_access (tmode, align))
734 break;
735 xmode = tmode;
738 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
741 return align;
744 /* Return the widest integer mode that is narrower than SIZE bytes. */
746 static scalar_int_mode
747 widest_int_mode_for_size (unsigned int size)
749 scalar_int_mode result = NARROWEST_INT_MODE;
751 gcc_checking_assert (size > 1);
753 opt_scalar_int_mode tmode;
754 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
755 if (GET_MODE_SIZE (tmode.require ()) < size)
756 result = tmode.require ();
758 return result;
761 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
762 and should be performed piecewise. */
764 static bool
765 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
766 enum by_pieces_operation op)
768 return targetm.use_by_pieces_infrastructure_p (len, align, op,
769 optimize_insn_for_speed_p ());
772 /* Determine whether the LEN bytes can be moved by using several move
773 instructions. Return nonzero if a call to move_by_pieces should
774 succeed. */
776 bool
777 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
779 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
782 /* Return number of insns required to perform operation OP by pieces
783 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
785 unsigned HOST_WIDE_INT
786 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
787 unsigned int max_size, by_pieces_operation op)
789 unsigned HOST_WIDE_INT n_insns = 0;
791 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
793 while (max_size > 1 && l > 0)
795 scalar_int_mode mode = widest_int_mode_for_size (max_size);
796 enum insn_code icode;
798 unsigned int modesize = GET_MODE_SIZE (mode);
800 icode = optab_handler (mov_optab, mode);
801 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
803 unsigned HOST_WIDE_INT n_pieces = l / modesize;
804 l %= modesize;
805 switch (op)
807 default:
808 n_insns += n_pieces;
809 break;
811 case COMPARE_BY_PIECES:
812 int batch = targetm.compare_by_pieces_branch_ratio (mode);
813 int batch_ops = 4 * batch - 1;
814 unsigned HOST_WIDE_INT full = n_pieces / batch;
815 n_insns += full * batch_ops;
816 if (n_pieces % batch != 0)
817 n_insns++;
818 break;
822 max_size = modesize;
825 gcc_assert (!l);
826 return n_insns;
829 /* Used when performing piecewise block operations, holds information
830 about one of the memory objects involved. The member functions
831 can be used to generate code for loading from the object and
832 updating the address when iterating. */
834 class pieces_addr
836 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
837 stack pushes. */
838 rtx m_obj;
839 /* The address of the object. Can differ from that seen in the
840 MEM rtx if we copied the address to a register. */
841 rtx m_addr;
842 /* Nonzero if the address on the object has an autoincrement already,
843 signifies whether that was an increment or decrement. */
844 signed char m_addr_inc;
845 /* Nonzero if we intend to use autoinc without the address already
846 having autoinc form. We will insert add insns around each memory
847 reference, expecting later passes to form autoinc addressing modes.
848 The only supported options are predecrement and postincrement. */
849 signed char m_explicit_inc;
850 /* True if we have either of the two possible cases of using
851 autoincrement. */
852 bool m_auto;
853 /* True if this is an address to be used for load operations rather
854 than stores. */
855 bool m_is_load;
857 /* Optionally, a function to obtain constants for any given offset into
858 the objects, and data associated with it. */
859 by_pieces_constfn m_constfn;
860 void *m_cfndata;
861 public:
862 pieces_addr (rtx, bool, by_pieces_constfn, void *);
863 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
864 void increment_address (HOST_WIDE_INT);
865 void maybe_predec (HOST_WIDE_INT);
866 void maybe_postinc (HOST_WIDE_INT);
867 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
868 int get_addr_inc ()
870 return m_addr_inc;
874 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
875 true if the operation to be performed on this object is a load
876 rather than a store. For stores, OBJ can be NULL, in which case we
877 assume the operation is a stack push. For loads, the optional
878 CONSTFN and its associated CFNDATA can be used in place of the
879 memory load. */
881 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
882 void *cfndata)
883 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
885 m_addr_inc = 0;
886 m_auto = false;
887 if (obj)
889 rtx addr = XEXP (obj, 0);
890 rtx_code code = GET_CODE (addr);
891 m_addr = addr;
892 bool dec = code == PRE_DEC || code == POST_DEC;
893 bool inc = code == PRE_INC || code == POST_INC;
894 m_auto = inc || dec;
895 if (m_auto)
896 m_addr_inc = dec ? -1 : 1;
898 /* While we have always looked for these codes here, the code
899 implementing the memory operation has never handled them.
900 Support could be added later if necessary or beneficial. */
901 gcc_assert (code != PRE_INC && code != POST_DEC);
903 else
905 m_addr = NULL_RTX;
906 if (!is_load)
908 m_auto = true;
909 if (STACK_GROWS_DOWNWARD)
910 m_addr_inc = -1;
911 else
912 m_addr_inc = 1;
914 else
915 gcc_assert (constfn != NULL);
917 m_explicit_inc = 0;
918 if (constfn)
919 gcc_assert (is_load);
922 /* Decide whether to use autoinc for an address involved in a memory op.
923 MODE is the mode of the accesses, REVERSE is true if we've decided to
924 perform the operation starting from the end, and LEN is the length of
925 the operation. Don't override an earlier decision to set m_auto. */
927 void
928 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
929 HOST_WIDE_INT len)
931 if (m_auto || m_obj == NULL_RTX)
932 return;
934 bool use_predec = (m_is_load
935 ? USE_LOAD_PRE_DECREMENT (mode)
936 : USE_STORE_PRE_DECREMENT (mode));
937 bool use_postinc = (m_is_load
938 ? USE_LOAD_POST_INCREMENT (mode)
939 : USE_STORE_POST_INCREMENT (mode));
940 machine_mode addr_mode = get_address_mode (m_obj);
942 if (use_predec && reverse)
944 m_addr = copy_to_mode_reg (addr_mode,
945 plus_constant (addr_mode,
946 m_addr, len));
947 m_auto = true;
948 m_explicit_inc = -1;
950 else if (use_postinc && !reverse)
952 m_addr = copy_to_mode_reg (addr_mode, m_addr);
953 m_auto = true;
954 m_explicit_inc = 1;
956 else if (CONSTANT_P (m_addr))
957 m_addr = copy_to_mode_reg (addr_mode, m_addr);
960 /* Adjust the address to refer to the data at OFFSET in MODE. If we
961 are using autoincrement for this address, we don't add the offset,
962 but we still modify the MEM's properties. */
965 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
967 if (m_constfn)
968 return m_constfn (m_cfndata, offset, mode);
969 if (m_obj == NULL_RTX)
970 return NULL_RTX;
971 if (m_auto)
972 return adjust_automodify_address (m_obj, mode, m_addr, offset);
973 else
974 return adjust_address (m_obj, mode, offset);
977 /* Emit an add instruction to increment the address by SIZE. */
979 void
980 pieces_addr::increment_address (HOST_WIDE_INT size)
982 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
983 emit_insn (gen_add2_insn (m_addr, amount));
986 /* If we are supposed to decrement the address after each access, emit code
987 to do so now. Increment by SIZE (which has should have the correct sign
988 already). */
990 void
991 pieces_addr::maybe_predec (HOST_WIDE_INT size)
993 if (m_explicit_inc >= 0)
994 return;
995 gcc_assert (HAVE_PRE_DECREMENT);
996 increment_address (size);
999 /* If we are supposed to decrement the address after each access, emit code
1000 to do so now. Increment by SIZE. */
1002 void
1003 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1005 if (m_explicit_inc <= 0)
1006 return;
1007 gcc_assert (HAVE_POST_INCREMENT);
1008 increment_address (size);
1011 /* This structure is used by do_op_by_pieces to describe the operation
1012 to be performed. */
1014 class op_by_pieces_d
1016 protected:
1017 pieces_addr m_to, m_from;
1018 unsigned HOST_WIDE_INT m_len;
1019 HOST_WIDE_INT m_offset;
1020 unsigned int m_align;
1021 unsigned int m_max_size;
1022 bool m_reverse;
1024 /* Virtual functions, overriden by derived classes for the specific
1025 operation. */
1026 virtual void generate (rtx, rtx, machine_mode) = 0;
1027 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1028 virtual void finish_mode (machine_mode)
1032 public:
1033 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1034 unsigned HOST_WIDE_INT, unsigned int);
1035 void run ();
1038 /* The constructor for an op_by_pieces_d structure. We require two
1039 objects named TO and FROM, which are identified as loads or stores
1040 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1041 and its associated FROM_CFN_DATA can be used to replace loads with
1042 constant values. LEN describes the length of the operation. */
1044 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1045 rtx from, bool from_load,
1046 by_pieces_constfn from_cfn,
1047 void *from_cfn_data,
1048 unsigned HOST_WIDE_INT len,
1049 unsigned int align)
1050 : m_to (to, to_load, NULL, NULL),
1051 m_from (from, from_load, from_cfn, from_cfn_data),
1052 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1054 int toi = m_to.get_addr_inc ();
1055 int fromi = m_from.get_addr_inc ();
1056 if (toi >= 0 && fromi >= 0)
1057 m_reverse = false;
1058 else if (toi <= 0 && fromi <= 0)
1059 m_reverse = true;
1060 else
1061 gcc_unreachable ();
1063 m_offset = m_reverse ? len : 0;
1064 align = MIN (to ? MEM_ALIGN (to) : align,
1065 from ? MEM_ALIGN (from) : align);
1067 /* If copying requires more than two move insns,
1068 copy addresses to registers (to make displacements shorter)
1069 and use post-increment if available. */
1070 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1072 /* Find the mode of the largest comparison. */
1073 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1075 m_from.decide_autoinc (mode, m_reverse, len);
1076 m_to.decide_autoinc (mode, m_reverse, len);
1079 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1080 m_align = align;
1083 /* This function contains the main loop used for expanding a block
1084 operation. First move what we can in the largest integer mode,
1085 then go to successively smaller modes. For every access, call
1086 GENFUN with the two operands and the EXTRA_DATA. */
1088 void
1089 op_by_pieces_d::run ()
1091 while (m_max_size > 1 && m_len > 0)
1093 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1095 if (prepare_mode (mode, m_align))
1097 unsigned int size = GET_MODE_SIZE (mode);
1098 rtx to1 = NULL_RTX, from1;
1100 while (m_len >= size)
1102 if (m_reverse)
1103 m_offset -= size;
1105 to1 = m_to.adjust (mode, m_offset);
1106 from1 = m_from.adjust (mode, m_offset);
1108 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1109 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1111 generate (to1, from1, mode);
1113 m_to.maybe_postinc (size);
1114 m_from.maybe_postinc (size);
1116 if (!m_reverse)
1117 m_offset += size;
1119 m_len -= size;
1122 finish_mode (mode);
1125 m_max_size = GET_MODE_SIZE (mode);
1128 /* The code above should have handled everything. */
1129 gcc_assert (!m_len);
1132 /* Derived class from op_by_pieces_d, providing support for block move
1133 operations. */
1135 class move_by_pieces_d : public op_by_pieces_d
1137 insn_gen_fn m_gen_fun;
1138 void generate (rtx, rtx, machine_mode);
1139 bool prepare_mode (machine_mode, unsigned int);
1141 public:
1142 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1143 unsigned int align)
1144 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1147 rtx finish_endp (int);
1150 /* Return true if MODE can be used for a set of copies, given an
1151 alignment ALIGN. Prepare whatever data is necessary for later
1152 calls to generate. */
1154 bool
1155 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1157 insn_code icode = optab_handler (mov_optab, mode);
1158 m_gen_fun = GEN_FCN (icode);
1159 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1162 /* A callback used when iterating for a compare_by_pieces_operation.
1163 OP0 and OP1 are the values that have been loaded and should be
1164 compared in MODE. If OP0 is NULL, this means we should generate a
1165 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1166 gen function that should be used to generate the mode. */
1168 void
1169 move_by_pieces_d::generate (rtx op0, rtx op1,
1170 machine_mode mode ATTRIBUTE_UNUSED)
1172 #ifdef PUSH_ROUNDING
1173 if (op0 == NULL_RTX)
1175 emit_single_push_insn (mode, op1, NULL);
1176 return;
1178 #endif
1179 emit_insn (m_gen_fun (op0, op1));
1182 /* Perform the final adjustment at the end of a string to obtain the
1183 correct return value for the block operation. If ENDP is 1 return
1184 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1185 end minus one byte ala stpcpy. */
1188 move_by_pieces_d::finish_endp (int endp)
1190 gcc_assert (!m_reverse);
1191 if (endp == 2)
1193 m_to.maybe_postinc (-1);
1194 --m_offset;
1196 return m_to.adjust (QImode, m_offset);
1199 /* Generate several move instructions to copy LEN bytes from block FROM to
1200 block TO. (These are MEM rtx's with BLKmode).
1202 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1203 used to push FROM to the stack.
1205 ALIGN is maximum stack alignment we can assume.
1207 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1208 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1209 stpcpy. */
1212 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1213 unsigned int align, int endp)
1215 #ifndef PUSH_ROUNDING
1216 if (to == NULL)
1217 gcc_unreachable ();
1218 #endif
1220 move_by_pieces_d data (to, from, len, align);
1222 data.run ();
1224 if (endp)
1225 return data.finish_endp (endp);
1226 else
1227 return to;
1230 /* Derived class from op_by_pieces_d, providing support for block move
1231 operations. */
1233 class store_by_pieces_d : public op_by_pieces_d
1235 insn_gen_fn m_gen_fun;
1236 void generate (rtx, rtx, machine_mode);
1237 bool prepare_mode (machine_mode, unsigned int);
1239 public:
1240 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1241 unsigned HOST_WIDE_INT len, unsigned int align)
1242 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1245 rtx finish_endp (int);
1248 /* Return true if MODE can be used for a set of stores, given an
1249 alignment ALIGN. Prepare whatever data is necessary for later
1250 calls to generate. */
1252 bool
1253 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1255 insn_code icode = optab_handler (mov_optab, mode);
1256 m_gen_fun = GEN_FCN (icode);
1257 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1260 /* A callback used when iterating for a store_by_pieces_operation.
1261 OP0 and OP1 are the values that have been loaded and should be
1262 compared in MODE. If OP0 is NULL, this means we should generate a
1263 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1264 gen function that should be used to generate the mode. */
1266 void
1267 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1269 emit_insn (m_gen_fun (op0, op1));
1272 /* Perform the final adjustment at the end of a string to obtain the
1273 correct return value for the block operation. If ENDP is 1 return
1274 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1275 end minus one byte ala stpcpy. */
1278 store_by_pieces_d::finish_endp (int endp)
1280 gcc_assert (!m_reverse);
1281 if (endp == 2)
1283 m_to.maybe_postinc (-1);
1284 --m_offset;
1286 return m_to.adjust (QImode, m_offset);
1289 /* Determine whether the LEN bytes generated by CONSTFUN can be
1290 stored to memory using several move instructions. CONSTFUNDATA is
1291 a pointer which will be passed as argument in every CONSTFUN call.
1292 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1293 a memset operation and false if it's a copy of a constant string.
1294 Return nonzero if a call to store_by_pieces should succeed. */
1297 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1298 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1299 void *constfundata, unsigned int align, bool memsetp)
1301 unsigned HOST_WIDE_INT l;
1302 unsigned int max_size;
1303 HOST_WIDE_INT offset = 0;
1304 enum insn_code icode;
1305 int reverse;
1306 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1307 rtx cst ATTRIBUTE_UNUSED;
1309 if (len == 0)
1310 return 1;
1312 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1313 memsetp
1314 ? SET_BY_PIECES
1315 : STORE_BY_PIECES,
1316 optimize_insn_for_speed_p ()))
1317 return 0;
1319 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1321 /* We would first store what we can in the largest integer mode, then go to
1322 successively smaller modes. */
1324 for (reverse = 0;
1325 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1326 reverse++)
1328 l = len;
1329 max_size = STORE_MAX_PIECES + 1;
1330 while (max_size > 1 && l > 0)
1332 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1334 icode = optab_handler (mov_optab, mode);
1335 if (icode != CODE_FOR_nothing
1336 && align >= GET_MODE_ALIGNMENT (mode))
1338 unsigned int size = GET_MODE_SIZE (mode);
1340 while (l >= size)
1342 if (reverse)
1343 offset -= size;
1345 cst = (*constfun) (constfundata, offset, mode);
1346 if (!targetm.legitimate_constant_p (mode, cst))
1347 return 0;
1349 if (!reverse)
1350 offset += size;
1352 l -= size;
1356 max_size = GET_MODE_SIZE (mode);
1359 /* The code above should have handled everything. */
1360 gcc_assert (!l);
1363 return 1;
1366 /* Generate several move instructions to store LEN bytes generated by
1367 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1368 pointer which will be passed as argument in every CONSTFUN call.
1369 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1370 a memset operation and false if it's a copy of a constant string.
1371 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1372 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1373 stpcpy. */
1376 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1377 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1378 void *constfundata, unsigned int align, bool memsetp, int endp)
1380 if (len == 0)
1382 gcc_assert (endp != 2);
1383 return to;
1386 gcc_assert (targetm.use_by_pieces_infrastructure_p
1387 (len, align,
1388 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1389 optimize_insn_for_speed_p ()));
1391 store_by_pieces_d data (to, constfun, constfundata, len, align);
1392 data.run ();
1394 if (endp)
1395 return data.finish_endp (endp);
1396 else
1397 return to;
1400 /* Callback routine for clear_by_pieces.
1401 Return const0_rtx unconditionally. */
1403 static rtx
1404 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1406 return const0_rtx;
1409 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1410 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1412 static void
1413 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1415 if (len == 0)
1416 return;
1418 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1419 data.run ();
1422 /* Context used by compare_by_pieces_genfn. It stores the fail label
1423 to jump to in case of miscomparison, and for branch ratios greater than 1,
1424 it stores an accumulator and the current and maximum counts before
1425 emitting another branch. */
1427 class compare_by_pieces_d : public op_by_pieces_d
1429 rtx_code_label *m_fail_label;
1430 rtx m_accumulator;
1431 int m_count, m_batch;
1433 void generate (rtx, rtx, machine_mode);
1434 bool prepare_mode (machine_mode, unsigned int);
1435 void finish_mode (machine_mode);
1436 public:
1437 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1438 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1439 rtx_code_label *fail_label)
1440 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1442 m_fail_label = fail_label;
1446 /* A callback used when iterating for a compare_by_pieces_operation.
1447 OP0 and OP1 are the values that have been loaded and should be
1448 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1449 context structure. */
1451 void
1452 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1454 if (m_batch > 1)
1456 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1457 true, OPTAB_LIB_WIDEN);
1458 if (m_count != 0)
1459 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1460 true, OPTAB_LIB_WIDEN);
1461 m_accumulator = temp;
1463 if (++m_count < m_batch)
1464 return;
1466 m_count = 0;
1467 op0 = m_accumulator;
1468 op1 = const0_rtx;
1469 m_accumulator = NULL_RTX;
1471 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1472 m_fail_label, profile_probability::uninitialized ());
1475 /* Return true if MODE can be used for a set of moves and comparisons,
1476 given an alignment ALIGN. Prepare whatever data is necessary for
1477 later calls to generate. */
1479 bool
1480 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1482 insn_code icode = optab_handler (mov_optab, mode);
1483 if (icode == CODE_FOR_nothing
1484 || align < GET_MODE_ALIGNMENT (mode)
1485 || !can_compare_p (EQ, mode, ccp_jump))
1486 return false;
1487 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1488 if (m_batch < 0)
1489 return false;
1490 m_accumulator = NULL_RTX;
1491 m_count = 0;
1492 return true;
1495 /* Called after expanding a series of comparisons in MODE. If we have
1496 accumulated results for which we haven't emitted a branch yet, do
1497 so now. */
1499 void
1500 compare_by_pieces_d::finish_mode (machine_mode mode)
1502 if (m_accumulator != NULL_RTX)
1503 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1504 NULL_RTX, NULL, m_fail_label,
1505 profile_probability::uninitialized ());
1508 /* Generate several move instructions to compare LEN bytes from blocks
1509 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1511 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1512 used to push FROM to the stack.
1514 ALIGN is maximum stack alignment we can assume.
1516 Optionally, the caller can pass a constfn and associated data in A1_CFN
1517 and A1_CFN_DATA. describing that the second operand being compared is a
1518 known constant and how to obtain its data. */
1520 static rtx
1521 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1522 rtx target, unsigned int align,
1523 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1525 rtx_code_label *fail_label = gen_label_rtx ();
1526 rtx_code_label *end_label = gen_label_rtx ();
1528 if (target == NULL_RTX
1529 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1530 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1532 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1533 fail_label);
1535 data.run ();
1537 emit_move_insn (target, const0_rtx);
1538 emit_jump (end_label);
1539 emit_barrier ();
1540 emit_label (fail_label);
1541 emit_move_insn (target, const1_rtx);
1542 emit_label (end_label);
1544 return target;
1547 /* Emit code to move a block Y to a block X. This may be done with
1548 string-move instructions, with multiple scalar move instructions,
1549 or with a library call.
1551 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1552 SIZE is an rtx that says how long they are.
1553 ALIGN is the maximum alignment we can assume they have.
1554 METHOD describes what kind of copy this is, and what mechanisms may be used.
1555 MIN_SIZE is the minimal size of block to move
1556 MAX_SIZE is the maximal size of block to move, if it can not be represented
1557 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1559 Return the address of the new block, if memcpy is called and returns it,
1560 0 otherwise. */
1563 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1564 unsigned int expected_align, HOST_WIDE_INT expected_size,
1565 unsigned HOST_WIDE_INT min_size,
1566 unsigned HOST_WIDE_INT max_size,
1567 unsigned HOST_WIDE_INT probable_max_size)
1569 bool may_use_call;
1570 rtx retval = 0;
1571 unsigned int align;
1573 gcc_assert (size);
1574 if (CONST_INT_P (size) && INTVAL (size) == 0)
1575 return 0;
1577 switch (method)
1579 case BLOCK_OP_NORMAL:
1580 case BLOCK_OP_TAILCALL:
1581 may_use_call = true;
1582 break;
1584 case BLOCK_OP_CALL_PARM:
1585 may_use_call = block_move_libcall_safe_for_call_parm ();
1587 /* Make inhibit_defer_pop nonzero around the library call
1588 to force it to pop the arguments right away. */
1589 NO_DEFER_POP;
1590 break;
1592 case BLOCK_OP_NO_LIBCALL:
1593 may_use_call = false;
1594 break;
1596 default:
1597 gcc_unreachable ();
1600 gcc_assert (MEM_P (x) && MEM_P (y));
1601 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1602 gcc_assert (align >= BITS_PER_UNIT);
1604 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1605 block copy is more efficient for other large modes, e.g. DCmode. */
1606 x = adjust_address (x, BLKmode, 0);
1607 y = adjust_address (y, BLKmode, 0);
1609 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1610 can be incorrect is coming from __builtin_memcpy. */
1611 if (CONST_INT_P (size))
1613 x = shallow_copy_rtx (x);
1614 y = shallow_copy_rtx (y);
1615 set_mem_size (x, INTVAL (size));
1616 set_mem_size (y, INTVAL (size));
1619 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1620 move_by_pieces (x, y, INTVAL (size), align, 0);
1621 else if (emit_block_move_via_movmem (x, y, size, align,
1622 expected_align, expected_size,
1623 min_size, max_size, probable_max_size))
1625 else if (may_use_call
1626 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1627 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1629 /* Since x and y are passed to a libcall, mark the corresponding
1630 tree EXPR as addressable. */
1631 tree y_expr = MEM_EXPR (y);
1632 tree x_expr = MEM_EXPR (x);
1633 if (y_expr)
1634 mark_addressable (y_expr);
1635 if (x_expr)
1636 mark_addressable (x_expr);
1637 retval = emit_block_copy_via_libcall (x, y, size,
1638 method == BLOCK_OP_TAILCALL);
1641 else
1642 emit_block_move_via_loop (x, y, size, align);
1644 if (method == BLOCK_OP_CALL_PARM)
1645 OK_DEFER_POP;
1647 return retval;
1651 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1653 unsigned HOST_WIDE_INT max, min = 0;
1654 if (GET_CODE (size) == CONST_INT)
1655 min = max = UINTVAL (size);
1656 else
1657 max = GET_MODE_MASK (GET_MODE (size));
1658 return emit_block_move_hints (x, y, size, method, 0, -1,
1659 min, max, max);
1662 /* A subroutine of emit_block_move. Returns true if calling the
1663 block move libcall will not clobber any parameters which may have
1664 already been placed on the stack. */
1666 static bool
1667 block_move_libcall_safe_for_call_parm (void)
1669 #if defined (REG_PARM_STACK_SPACE)
1670 tree fn;
1671 #endif
1673 /* If arguments are pushed on the stack, then they're safe. */
1674 if (PUSH_ARGS)
1675 return true;
1677 /* If registers go on the stack anyway, any argument is sure to clobber
1678 an outgoing argument. */
1679 #if defined (REG_PARM_STACK_SPACE)
1680 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1681 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1682 depend on its argument. */
1683 (void) fn;
1684 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1685 && REG_PARM_STACK_SPACE (fn) != 0)
1686 return false;
1687 #endif
1689 /* If any argument goes in memory, then it might clobber an outgoing
1690 argument. */
1692 CUMULATIVE_ARGS args_so_far_v;
1693 cumulative_args_t args_so_far;
1694 tree fn, arg;
1696 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1697 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1698 args_so_far = pack_cumulative_args (&args_so_far_v);
1700 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1701 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1703 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1704 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1705 NULL_TREE, true);
1706 if (!tmp || !REG_P (tmp))
1707 return false;
1708 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1709 return false;
1710 targetm.calls.function_arg_advance (args_so_far, mode,
1711 NULL_TREE, true);
1714 return true;
1717 /* A subroutine of emit_block_move. Expand a movmem pattern;
1718 return true if successful. */
1720 static bool
1721 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1722 unsigned int expected_align, HOST_WIDE_INT expected_size,
1723 unsigned HOST_WIDE_INT min_size,
1724 unsigned HOST_WIDE_INT max_size,
1725 unsigned HOST_WIDE_INT probable_max_size)
1727 int save_volatile_ok = volatile_ok;
1729 if (expected_align < align)
1730 expected_align = align;
1731 if (expected_size != -1)
1733 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1734 expected_size = probable_max_size;
1735 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1736 expected_size = min_size;
1739 /* Since this is a move insn, we don't care about volatility. */
1740 volatile_ok = 1;
1742 /* Try the most limited insn first, because there's no point
1743 including more than one in the machine description unless
1744 the more limited one has some advantage. */
1746 opt_scalar_int_mode mode_iter;
1747 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1749 scalar_int_mode mode = mode_iter.require ();
1750 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1752 if (code != CODE_FOR_nothing
1753 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1754 here because if SIZE is less than the mode mask, as it is
1755 returned by the macro, it will definitely be less than the
1756 actual mode mask. Since SIZE is within the Pmode address
1757 space, we limit MODE to Pmode. */
1758 && ((CONST_INT_P (size)
1759 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1760 <= (GET_MODE_MASK (mode) >> 1)))
1761 || max_size <= (GET_MODE_MASK (mode) >> 1)
1762 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1764 struct expand_operand ops[9];
1765 unsigned int nops;
1767 /* ??? When called via emit_block_move_for_call, it'd be
1768 nice if there were some way to inform the backend, so
1769 that it doesn't fail the expansion because it thinks
1770 emitting the libcall would be more efficient. */
1771 nops = insn_data[(int) code].n_generator_args;
1772 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1774 create_fixed_operand (&ops[0], x);
1775 create_fixed_operand (&ops[1], y);
1776 /* The check above guarantees that this size conversion is valid. */
1777 create_convert_operand_to (&ops[2], size, mode, true);
1778 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1779 if (nops >= 6)
1781 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1782 create_integer_operand (&ops[5], expected_size);
1784 if (nops >= 8)
1786 create_integer_operand (&ops[6], min_size);
1787 /* If we can not represent the maximal size,
1788 make parameter NULL. */
1789 if ((HOST_WIDE_INT) max_size != -1)
1790 create_integer_operand (&ops[7], max_size);
1791 else
1792 create_fixed_operand (&ops[7], NULL);
1794 if (nops == 9)
1796 /* If we can not represent the maximal size,
1797 make parameter NULL. */
1798 if ((HOST_WIDE_INT) probable_max_size != -1)
1799 create_integer_operand (&ops[8], probable_max_size);
1800 else
1801 create_fixed_operand (&ops[8], NULL);
1803 if (maybe_expand_insn (code, nops, ops))
1805 volatile_ok = save_volatile_ok;
1806 return true;
1811 volatile_ok = save_volatile_ok;
1812 return false;
1815 /* A subroutine of emit_block_move. Copy the data via an explicit
1816 loop. This is used only when libcalls are forbidden. */
1817 /* ??? It'd be nice to copy in hunks larger than QImode. */
1819 static void
1820 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1821 unsigned int align ATTRIBUTE_UNUSED)
1823 rtx_code_label *cmp_label, *top_label;
1824 rtx iter, x_addr, y_addr, tmp;
1825 machine_mode x_addr_mode = get_address_mode (x);
1826 machine_mode y_addr_mode = get_address_mode (y);
1827 machine_mode iter_mode;
1829 iter_mode = GET_MODE (size);
1830 if (iter_mode == VOIDmode)
1831 iter_mode = word_mode;
1833 top_label = gen_label_rtx ();
1834 cmp_label = gen_label_rtx ();
1835 iter = gen_reg_rtx (iter_mode);
1837 emit_move_insn (iter, const0_rtx);
1839 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1840 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1841 do_pending_stack_adjust ();
1843 emit_jump (cmp_label);
1844 emit_label (top_label);
1846 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1847 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1849 if (x_addr_mode != y_addr_mode)
1850 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1851 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1853 x = change_address (x, QImode, x_addr);
1854 y = change_address (y, QImode, y_addr);
1856 emit_move_insn (x, y);
1858 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1859 true, OPTAB_LIB_WIDEN);
1860 if (tmp != iter)
1861 emit_move_insn (iter, tmp);
1863 emit_label (cmp_label);
1865 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1866 true, top_label,
1867 profile_probability::guessed_always ()
1868 .apply_scale (9, 10));
1871 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1872 TAILCALL is true if this is a tail call. */
1875 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1876 rtx size, bool tailcall)
1878 rtx dst_addr, src_addr;
1879 tree call_expr, dst_tree, src_tree, size_tree;
1880 machine_mode size_mode;
1882 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1883 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1884 dst_tree = make_tree (ptr_type_node, dst_addr);
1886 src_addr = copy_addr_to_reg (XEXP (src, 0));
1887 src_addr = convert_memory_address (ptr_mode, src_addr);
1888 src_tree = make_tree (ptr_type_node, src_addr);
1890 size_mode = TYPE_MODE (sizetype);
1891 size = convert_to_mode (size_mode, size, 1);
1892 size = copy_to_mode_reg (size_mode, size);
1893 size_tree = make_tree (sizetype, size);
1895 /* It is incorrect to use the libcall calling conventions for calls to
1896 memcpy/memmove/memcmp because they can be provided by the user. */
1897 tree fn = builtin_decl_implicit (fncode);
1898 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1899 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1901 return expand_call (call_expr, NULL_RTX, false);
1904 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1905 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1906 otherwise return null. */
1909 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1910 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1911 HOST_WIDE_INT align)
1913 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1915 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1916 target = NULL_RTX;
1918 struct expand_operand ops[5];
1919 create_output_operand (&ops[0], target, insn_mode);
1920 create_fixed_operand (&ops[1], arg1_rtx);
1921 create_fixed_operand (&ops[2], arg2_rtx);
1922 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1923 TYPE_UNSIGNED (arg3_type));
1924 create_integer_operand (&ops[4], align);
1925 if (maybe_expand_insn (icode, 5, ops))
1926 return ops[0].value;
1927 return NULL_RTX;
1930 /* Expand a block compare between X and Y with length LEN using the
1931 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1932 of the expression that was used to calculate the length. ALIGN
1933 gives the known minimum common alignment. */
1935 static rtx
1936 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1937 unsigned align)
1939 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1940 implementing memcmp because it will stop if it encounters two
1941 zero bytes. */
1942 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1944 if (icode == CODE_FOR_nothing)
1945 return NULL_RTX;
1947 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1950 /* Emit code to compare a block Y to a block X. This may be done with
1951 string-compare instructions, with multiple scalar instructions,
1952 or with a library call.
1954 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1955 they are. LEN_TYPE is the type of the expression that was used to
1956 calculate it.
1958 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1959 value of a normal memcmp call, instead we can just compare for equality.
1960 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1961 returning NULL_RTX.
1963 Optionally, the caller can pass a constfn and associated data in Y_CFN
1964 and Y_CFN_DATA. describing that the second operand being compared is a
1965 known constant and how to obtain its data.
1966 Return the result of the comparison, or NULL_RTX if we failed to
1967 perform the operation. */
1970 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1971 bool equality_only, by_pieces_constfn y_cfn,
1972 void *y_cfndata)
1974 rtx result = 0;
1976 if (CONST_INT_P (len) && INTVAL (len) == 0)
1977 return const0_rtx;
1979 gcc_assert (MEM_P (x) && MEM_P (y));
1980 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1981 gcc_assert (align >= BITS_PER_UNIT);
1983 x = adjust_address (x, BLKmode, 0);
1984 y = adjust_address (y, BLKmode, 0);
1986 if (equality_only
1987 && CONST_INT_P (len)
1988 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1989 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1990 y_cfn, y_cfndata);
1991 else
1992 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1994 return result;
1997 /* Copy all or part of a value X into registers starting at REGNO.
1998 The number of registers to be filled is NREGS. */
2000 void
2001 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2003 if (nregs == 0)
2004 return;
2006 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2007 x = validize_mem (force_const_mem (mode, x));
2009 /* See if the machine can do this with a load multiple insn. */
2010 if (targetm.have_load_multiple ())
2012 rtx_insn *last = get_last_insn ();
2013 rtx first = gen_rtx_REG (word_mode, regno);
2014 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2015 GEN_INT (nregs)))
2017 emit_insn (pat);
2018 return;
2020 else
2021 delete_insns_since (last);
2024 for (int i = 0; i < nregs; i++)
2025 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2026 operand_subword_force (x, i, mode));
2029 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2030 The number of registers to be filled is NREGS. */
2032 void
2033 move_block_from_reg (int regno, rtx x, int nregs)
2035 if (nregs == 0)
2036 return;
2038 /* See if the machine can do this with a store multiple insn. */
2039 if (targetm.have_store_multiple ())
2041 rtx_insn *last = get_last_insn ();
2042 rtx first = gen_rtx_REG (word_mode, regno);
2043 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2044 GEN_INT (nregs)))
2046 emit_insn (pat);
2047 return;
2049 else
2050 delete_insns_since (last);
2053 for (int i = 0; i < nregs; i++)
2055 rtx tem = operand_subword (x, i, 1, BLKmode);
2057 gcc_assert (tem);
2059 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2063 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2064 ORIG, where ORIG is a non-consecutive group of registers represented by
2065 a PARALLEL. The clone is identical to the original except in that the
2066 original set of registers is replaced by a new set of pseudo registers.
2067 The new set has the same modes as the original set. */
2070 gen_group_rtx (rtx orig)
2072 int i, length;
2073 rtx *tmps;
2075 gcc_assert (GET_CODE (orig) == PARALLEL);
2077 length = XVECLEN (orig, 0);
2078 tmps = XALLOCAVEC (rtx, length);
2080 /* Skip a NULL entry in first slot. */
2081 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2083 if (i)
2084 tmps[0] = 0;
2086 for (; i < length; i++)
2088 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2089 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2091 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2094 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2097 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2098 except that values are placed in TMPS[i], and must later be moved
2099 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2101 static void
2102 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
2104 rtx src;
2105 int start, i;
2106 machine_mode m = GET_MODE (orig_src);
2108 gcc_assert (GET_CODE (dst) == PARALLEL);
2110 if (m != VOIDmode
2111 && !SCALAR_INT_MODE_P (m)
2112 && !MEM_P (orig_src)
2113 && GET_CODE (orig_src) != CONCAT)
2115 scalar_int_mode imode;
2116 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2118 src = gen_reg_rtx (imode);
2119 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2121 else
2123 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2124 emit_move_insn (src, orig_src);
2126 emit_group_load_1 (tmps, dst, src, type, ssize);
2127 return;
2130 /* Check for a NULL entry, used to indicate that the parameter goes
2131 both on the stack and in registers. */
2132 if (XEXP (XVECEXP (dst, 0, 0), 0))
2133 start = 0;
2134 else
2135 start = 1;
2137 /* Process the pieces. */
2138 for (i = start; i < XVECLEN (dst, 0); i++)
2140 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2141 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2142 unsigned int bytelen = GET_MODE_SIZE (mode);
2143 int shift = 0;
2145 /* Handle trailing fragments that run over the size of the struct. */
2146 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2148 /* Arrange to shift the fragment to where it belongs.
2149 extract_bit_field loads to the lsb of the reg. */
2150 if (
2151 #ifdef BLOCK_REG_PADDING
2152 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2153 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2154 #else
2155 BYTES_BIG_ENDIAN
2156 #endif
2158 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2159 bytelen = ssize - bytepos;
2160 gcc_assert (bytelen > 0);
2163 /* If we won't be loading directly from memory, protect the real source
2164 from strange tricks we might play; but make sure that the source can
2165 be loaded directly into the destination. */
2166 src = orig_src;
2167 if (!MEM_P (orig_src)
2168 && (!CONSTANT_P (orig_src)
2169 || (GET_MODE (orig_src) != mode
2170 && GET_MODE (orig_src) != VOIDmode)))
2172 if (GET_MODE (orig_src) == VOIDmode)
2173 src = gen_reg_rtx (mode);
2174 else
2175 src = gen_reg_rtx (GET_MODE (orig_src));
2177 emit_move_insn (src, orig_src);
2180 /* Optimize the access just a bit. */
2181 if (MEM_P (src)
2182 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2183 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2184 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2185 && bytelen == GET_MODE_SIZE (mode))
2187 tmps[i] = gen_reg_rtx (mode);
2188 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2190 else if (COMPLEX_MODE_P (mode)
2191 && GET_MODE (src) == mode
2192 && bytelen == GET_MODE_SIZE (mode))
2193 /* Let emit_move_complex do the bulk of the work. */
2194 tmps[i] = src;
2195 else if (GET_CODE (src) == CONCAT)
2197 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
2198 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2199 unsigned int elt = bytepos / slen0;
2200 unsigned int subpos = bytepos % slen0;
2202 if (subpos + bytelen <= slen0)
2204 /* The following assumes that the concatenated objects all
2205 have the same size. In this case, a simple calculation
2206 can be used to determine the object and the bit field
2207 to be extracted. */
2208 tmps[i] = XEXP (src, elt);
2209 if (subpos != 0
2210 || subpos + bytelen != slen0
2211 || (!CONSTANT_P (tmps[i])
2212 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2213 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2214 subpos * BITS_PER_UNIT,
2215 1, NULL_RTX, mode, mode, false,
2216 NULL);
2218 else
2220 rtx mem;
2222 gcc_assert (!bytepos);
2223 mem = assign_stack_temp (GET_MODE (src), slen);
2224 emit_move_insn (mem, src);
2225 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2226 0, 1, NULL_RTX, mode, mode, false,
2227 NULL);
2230 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2231 SIMD register, which is currently broken. While we get GCC
2232 to emit proper RTL for these cases, let's dump to memory. */
2233 else if (VECTOR_MODE_P (GET_MODE (dst))
2234 && REG_P (src))
2236 int slen = GET_MODE_SIZE (GET_MODE (src));
2237 rtx mem;
2239 mem = assign_stack_temp (GET_MODE (src), slen);
2240 emit_move_insn (mem, src);
2241 tmps[i] = adjust_address (mem, mode, (int) bytepos);
2243 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2244 && XVECLEN (dst, 0) > 1)
2245 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2246 else if (CONSTANT_P (src))
2248 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
2250 if (len == ssize)
2251 tmps[i] = src;
2252 else
2254 rtx first, second;
2256 /* TODO: const_wide_int can have sizes other than this... */
2257 gcc_assert (2 * len == ssize);
2258 split_double (src, &first, &second);
2259 if (i)
2260 tmps[i] = second;
2261 else
2262 tmps[i] = first;
2265 else if (REG_P (src) && GET_MODE (src) == mode)
2266 tmps[i] = src;
2267 else
2268 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2269 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2270 mode, mode, false, NULL);
2272 if (shift)
2273 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2274 shift, tmps[i], 0);
2278 /* Emit code to move a block SRC of type TYPE to a block DST,
2279 where DST is non-consecutive registers represented by a PARALLEL.
2280 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2281 if not known. */
2283 void
2284 emit_group_load (rtx dst, rtx src, tree type, int ssize)
2286 rtx *tmps;
2287 int i;
2289 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2290 emit_group_load_1 (tmps, dst, src, type, ssize);
2292 /* Copy the extracted pieces into the proper (probable) hard regs. */
2293 for (i = 0; i < XVECLEN (dst, 0); i++)
2295 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2296 if (d == NULL)
2297 continue;
2298 emit_move_insn (d, tmps[i]);
2302 /* Similar, but load SRC into new pseudos in a format that looks like
2303 PARALLEL. This can later be fed to emit_group_move to get things
2304 in the right place. */
2307 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
2309 rtvec vec;
2310 int i;
2312 vec = rtvec_alloc (XVECLEN (parallel, 0));
2313 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2315 /* Convert the vector to look just like the original PARALLEL, except
2316 with the computed values. */
2317 for (i = 0; i < XVECLEN (parallel, 0); i++)
2319 rtx e = XVECEXP (parallel, 0, i);
2320 rtx d = XEXP (e, 0);
2322 if (d)
2324 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2325 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2327 RTVEC_ELT (vec, i) = e;
2330 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2333 /* Emit code to move a block SRC to block DST, where SRC and DST are
2334 non-consecutive groups of registers, each represented by a PARALLEL. */
2336 void
2337 emit_group_move (rtx dst, rtx src)
2339 int i;
2341 gcc_assert (GET_CODE (src) == PARALLEL
2342 && GET_CODE (dst) == PARALLEL
2343 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2345 /* Skip first entry if NULL. */
2346 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2347 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2348 XEXP (XVECEXP (src, 0, i), 0));
2351 /* Move a group of registers represented by a PARALLEL into pseudos. */
2354 emit_group_move_into_temps (rtx src)
2356 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2357 int i;
2359 for (i = 0; i < XVECLEN (src, 0); i++)
2361 rtx e = XVECEXP (src, 0, i);
2362 rtx d = XEXP (e, 0);
2364 if (d)
2365 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2366 RTVEC_ELT (vec, i) = e;
2369 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2372 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2373 where SRC is non-consecutive registers represented by a PARALLEL.
2374 SSIZE represents the total size of block ORIG_DST, or -1 if not
2375 known. */
2377 void
2378 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
2380 rtx *tmps, dst;
2381 int start, finish, i;
2382 machine_mode m = GET_MODE (orig_dst);
2384 gcc_assert (GET_CODE (src) == PARALLEL);
2386 if (!SCALAR_INT_MODE_P (m)
2387 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2389 scalar_int_mode imode;
2390 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2392 dst = gen_reg_rtx (imode);
2393 emit_group_store (dst, src, type, ssize);
2394 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2396 else
2398 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2399 emit_group_store (dst, src, type, ssize);
2401 emit_move_insn (orig_dst, dst);
2402 return;
2405 /* Check for a NULL entry, used to indicate that the parameter goes
2406 both on the stack and in registers. */
2407 if (XEXP (XVECEXP (src, 0, 0), 0))
2408 start = 0;
2409 else
2410 start = 1;
2411 finish = XVECLEN (src, 0);
2413 tmps = XALLOCAVEC (rtx, finish);
2415 /* Copy the (probable) hard regs into pseudos. */
2416 for (i = start; i < finish; i++)
2418 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2419 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2421 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2422 emit_move_insn (tmps[i], reg);
2424 else
2425 tmps[i] = reg;
2428 /* If we won't be storing directly into memory, protect the real destination
2429 from strange tricks we might play. */
2430 dst = orig_dst;
2431 if (GET_CODE (dst) == PARALLEL)
2433 rtx temp;
2435 /* We can get a PARALLEL dst if there is a conditional expression in
2436 a return statement. In that case, the dst and src are the same,
2437 so no action is necessary. */
2438 if (rtx_equal_p (dst, src))
2439 return;
2441 /* It is unclear if we can ever reach here, but we may as well handle
2442 it. Allocate a temporary, and split this into a store/load to/from
2443 the temporary. */
2444 temp = assign_stack_temp (GET_MODE (dst), ssize);
2445 emit_group_store (temp, src, type, ssize);
2446 emit_group_load (dst, temp, type, ssize);
2447 return;
2449 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2451 machine_mode outer = GET_MODE (dst);
2452 machine_mode inner;
2453 HOST_WIDE_INT bytepos;
2454 bool done = false;
2455 rtx temp;
2457 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2458 dst = gen_reg_rtx (outer);
2460 /* Make life a bit easier for combine. */
2461 /* If the first element of the vector is the low part
2462 of the destination mode, use a paradoxical subreg to
2463 initialize the destination. */
2464 if (start < finish)
2466 inner = GET_MODE (tmps[start]);
2467 bytepos = subreg_lowpart_offset (inner, outer);
2468 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2470 temp = simplify_gen_subreg (outer, tmps[start],
2471 inner, 0);
2472 if (temp)
2474 emit_move_insn (dst, temp);
2475 done = true;
2476 start++;
2481 /* If the first element wasn't the low part, try the last. */
2482 if (!done
2483 && start < finish - 1)
2485 inner = GET_MODE (tmps[finish - 1]);
2486 bytepos = subreg_lowpart_offset (inner, outer);
2487 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2489 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2490 inner, 0);
2491 if (temp)
2493 emit_move_insn (dst, temp);
2494 done = true;
2495 finish--;
2500 /* Otherwise, simply initialize the result to zero. */
2501 if (!done)
2502 emit_move_insn (dst, CONST0_RTX (outer));
2505 /* Process the pieces. */
2506 for (i = start; i < finish; i++)
2508 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2509 machine_mode mode = GET_MODE (tmps[i]);
2510 unsigned int bytelen = GET_MODE_SIZE (mode);
2511 unsigned int adj_bytelen;
2512 rtx dest = dst;
2514 /* Handle trailing fragments that run over the size of the struct. */
2515 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2516 adj_bytelen = ssize - bytepos;
2517 else
2518 adj_bytelen = bytelen;
2520 if (GET_CODE (dst) == CONCAT)
2522 if (bytepos + adj_bytelen
2523 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2524 dest = XEXP (dst, 0);
2525 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2527 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2528 dest = XEXP (dst, 1);
2530 else
2532 machine_mode dest_mode = GET_MODE (dest);
2533 machine_mode tmp_mode = GET_MODE (tmps[i]);
2535 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2537 if (GET_MODE_ALIGNMENT (dest_mode)
2538 >= GET_MODE_ALIGNMENT (tmp_mode))
2540 dest = assign_stack_temp (dest_mode,
2541 GET_MODE_SIZE (dest_mode));
2542 emit_move_insn (adjust_address (dest,
2543 tmp_mode,
2544 bytepos),
2545 tmps[i]);
2546 dst = dest;
2548 else
2550 dest = assign_stack_temp (tmp_mode,
2551 GET_MODE_SIZE (tmp_mode));
2552 emit_move_insn (dest, tmps[i]);
2553 dst = adjust_address (dest, dest_mode, bytepos);
2555 break;
2559 /* Handle trailing fragments that run over the size of the struct. */
2560 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2562 /* store_bit_field always takes its value from the lsb.
2563 Move the fragment to the lsb if it's not already there. */
2564 if (
2565 #ifdef BLOCK_REG_PADDING
2566 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2567 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2568 #else
2569 BYTES_BIG_ENDIAN
2570 #endif
2573 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2574 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2575 shift, tmps[i], 0);
2578 /* Make sure not to write past the end of the struct. */
2579 store_bit_field (dest,
2580 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2581 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2582 VOIDmode, tmps[i], false);
2585 /* Optimize the access just a bit. */
2586 else if (MEM_P (dest)
2587 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2588 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2589 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2590 && bytelen == GET_MODE_SIZE (mode))
2591 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2593 else
2594 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2595 0, 0, mode, tmps[i], false);
2598 /* Copy from the pseudo into the (probable) hard reg. */
2599 if (orig_dst != dst)
2600 emit_move_insn (orig_dst, dst);
2603 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2604 of the value stored in X. */
2607 maybe_emit_group_store (rtx x, tree type)
2609 machine_mode mode = TYPE_MODE (type);
2610 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2611 if (GET_CODE (x) == PARALLEL)
2613 rtx result = gen_reg_rtx (mode);
2614 emit_group_store (result, x, type, int_size_in_bytes (type));
2615 return result;
2617 return x;
2620 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2622 This is used on targets that return BLKmode values in registers. */
2624 static void
2625 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2627 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2628 rtx src = NULL, dst = NULL;
2629 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2630 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2631 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2632 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2633 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2634 fixed_size_mode copy_mode;
2636 /* BLKmode registers created in the back-end shouldn't have survived. */
2637 gcc_assert (mode != BLKmode);
2639 /* If the structure doesn't take up a whole number of words, see whether
2640 SRCREG is padded on the left or on the right. If it's on the left,
2641 set PADDING_CORRECTION to the number of bits to skip.
2643 In most ABIs, the structure will be returned at the least end of
2644 the register, which translates to right padding on little-endian
2645 targets and left padding on big-endian targets. The opposite
2646 holds if the structure is returned at the most significant
2647 end of the register. */
2648 if (bytes % UNITS_PER_WORD != 0
2649 && (targetm.calls.return_in_msb (type)
2650 ? !BYTES_BIG_ENDIAN
2651 : BYTES_BIG_ENDIAN))
2652 padding_correction
2653 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2655 /* We can use a single move if we have an exact mode for the size. */
2656 else if (MEM_P (target)
2657 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2658 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2659 && bytes == GET_MODE_SIZE (mode))
2661 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2662 return;
2665 /* And if we additionally have the same mode for a register. */
2666 else if (REG_P (target)
2667 && GET_MODE (target) == mode
2668 && bytes == GET_MODE_SIZE (mode))
2670 emit_move_insn (target, srcreg);
2671 return;
2674 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2675 into a new pseudo which is a full word. */
2676 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2678 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2679 mode = word_mode;
2682 /* Copy the structure BITSIZE bits at a time. If the target lives in
2683 memory, take care of not reading/writing past its end by selecting
2684 a copy mode suited to BITSIZE. This should always be possible given
2685 how it is computed.
2687 If the target lives in register, make sure not to select a copy mode
2688 larger than the mode of the register.
2690 We could probably emit more efficient code for machines which do not use
2691 strict alignment, but it doesn't seem worth the effort at the current
2692 time. */
2694 copy_mode = word_mode;
2695 if (MEM_P (target))
2697 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2698 if (mem_mode.exists ())
2699 copy_mode = mem_mode.require ();
2701 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2702 copy_mode = tmode;
2704 for (bitpos = 0, xbitpos = padding_correction;
2705 bitpos < bytes * BITS_PER_UNIT;
2706 bitpos += bitsize, xbitpos += bitsize)
2708 /* We need a new source operand each time xbitpos is on a
2709 word boundary and when xbitpos == padding_correction
2710 (the first time through). */
2711 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2712 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2714 /* We need a new destination operand each time bitpos is on
2715 a word boundary. */
2716 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2717 dst = target;
2718 else if (bitpos % BITS_PER_WORD == 0)
2719 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2721 /* Use xbitpos for the source extraction (right justified) and
2722 bitpos for the destination store (left justified). */
2723 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2724 extract_bit_field (src, bitsize,
2725 xbitpos % BITS_PER_WORD, 1,
2726 NULL_RTX, copy_mode, copy_mode,
2727 false, NULL),
2728 false);
2732 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2733 register if it contains any data, otherwise return null.
2735 This is used on targets that return BLKmode values in registers. */
2738 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2740 int i, n_regs;
2741 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2742 unsigned int bitsize;
2743 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2744 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2745 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2746 fixed_size_mode dst_mode;
2748 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2750 x = expand_normal (src);
2752 bytes = int_size_in_bytes (TREE_TYPE (src));
2753 if (bytes == 0)
2754 return NULL_RTX;
2756 /* If the structure doesn't take up a whole number of words, see
2757 whether the register value should be padded on the left or on
2758 the right. Set PADDING_CORRECTION to the number of padding
2759 bits needed on the left side.
2761 In most ABIs, the structure will be returned at the least end of
2762 the register, which translates to right padding on little-endian
2763 targets and left padding on big-endian targets. The opposite
2764 holds if the structure is returned at the most significant
2765 end of the register. */
2766 if (bytes % UNITS_PER_WORD != 0
2767 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2768 ? !BYTES_BIG_ENDIAN
2769 : BYTES_BIG_ENDIAN))
2770 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2771 * BITS_PER_UNIT));
2773 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2774 dst_words = XALLOCAVEC (rtx, n_regs);
2775 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2777 /* Copy the structure BITSIZE bits at a time. */
2778 for (bitpos = 0, xbitpos = padding_correction;
2779 bitpos < bytes * BITS_PER_UNIT;
2780 bitpos += bitsize, xbitpos += bitsize)
2782 /* We need a new destination pseudo each time xbitpos is
2783 on a word boundary and when xbitpos == padding_correction
2784 (the first time through). */
2785 if (xbitpos % BITS_PER_WORD == 0
2786 || xbitpos == padding_correction)
2788 /* Generate an appropriate register. */
2789 dst_word = gen_reg_rtx (word_mode);
2790 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2792 /* Clear the destination before we move anything into it. */
2793 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2796 /* We need a new source operand each time bitpos is on a word
2797 boundary. */
2798 if (bitpos % BITS_PER_WORD == 0)
2799 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2801 /* Use bitpos for the source extraction (left justified) and
2802 xbitpos for the destination store (right justified). */
2803 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2804 0, 0, word_mode,
2805 extract_bit_field (src_word, bitsize,
2806 bitpos % BITS_PER_WORD, 1,
2807 NULL_RTX, word_mode, word_mode,
2808 false, NULL),
2809 false);
2812 if (mode == BLKmode)
2814 /* Find the smallest integer mode large enough to hold the
2815 entire structure. */
2816 opt_scalar_int_mode mode_iter;
2817 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2818 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2819 break;
2821 /* A suitable mode should have been found. */
2822 mode = mode_iter.require ();
2825 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2826 dst_mode = word_mode;
2827 else
2828 dst_mode = mode;
2829 dst = gen_reg_rtx (dst_mode);
2831 for (i = 0; i < n_regs; i++)
2832 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2834 if (mode != dst_mode)
2835 dst = gen_lowpart (mode, dst);
2837 return dst;
2840 /* Add a USE expression for REG to the (possibly empty) list pointed
2841 to by CALL_FUSAGE. REG must denote a hard register. */
2843 void
2844 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2846 gcc_assert (REG_P (reg));
2848 if (!HARD_REGISTER_P (reg))
2849 return;
2851 *call_fusage
2852 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2855 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2856 to by CALL_FUSAGE. REG must denote a hard register. */
2858 void
2859 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2861 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2863 *call_fusage
2864 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2867 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2868 starting at REGNO. All of these registers must be hard registers. */
2870 void
2871 use_regs (rtx *call_fusage, int regno, int nregs)
2873 int i;
2875 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2877 for (i = 0; i < nregs; i++)
2878 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2881 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2882 PARALLEL REGS. This is for calls that pass values in multiple
2883 non-contiguous locations. The Irix 6 ABI has examples of this. */
2885 void
2886 use_group_regs (rtx *call_fusage, rtx regs)
2888 int i;
2890 for (i = 0; i < XVECLEN (regs, 0); i++)
2892 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2894 /* A NULL entry means the parameter goes both on the stack and in
2895 registers. This can also be a MEM for targets that pass values
2896 partially on the stack and partially in registers. */
2897 if (reg != 0 && REG_P (reg))
2898 use_reg (call_fusage, reg);
2902 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2903 assigment and the code of the expresion on the RHS is CODE. Return
2904 NULL otherwise. */
2906 static gimple *
2907 get_def_for_expr (tree name, enum tree_code code)
2909 gimple *def_stmt;
2911 if (TREE_CODE (name) != SSA_NAME)
2912 return NULL;
2914 def_stmt = get_gimple_for_ssa_name (name);
2915 if (!def_stmt
2916 || gimple_assign_rhs_code (def_stmt) != code)
2917 return NULL;
2919 return def_stmt;
2922 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2923 assigment and the class of the expresion on the RHS is CLASS. Return
2924 NULL otherwise. */
2926 static gimple *
2927 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2929 gimple *def_stmt;
2931 if (TREE_CODE (name) != SSA_NAME)
2932 return NULL;
2934 def_stmt = get_gimple_for_ssa_name (name);
2935 if (!def_stmt
2936 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2937 return NULL;
2939 return def_stmt;
2942 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2943 its length in bytes. */
2946 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2947 unsigned int expected_align, HOST_WIDE_INT expected_size,
2948 unsigned HOST_WIDE_INT min_size,
2949 unsigned HOST_WIDE_INT max_size,
2950 unsigned HOST_WIDE_INT probable_max_size)
2952 machine_mode mode = GET_MODE (object);
2953 unsigned int align;
2955 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2957 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2958 just move a zero. Otherwise, do this a piece at a time. */
2959 if (mode != BLKmode
2960 && CONST_INT_P (size)
2961 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2963 rtx zero = CONST0_RTX (mode);
2964 if (zero != NULL)
2966 emit_move_insn (object, zero);
2967 return NULL;
2970 if (COMPLEX_MODE_P (mode))
2972 zero = CONST0_RTX (GET_MODE_INNER (mode));
2973 if (zero != NULL)
2975 write_complex_part (object, zero, 0);
2976 write_complex_part (object, zero, 1);
2977 return NULL;
2982 if (size == const0_rtx)
2983 return NULL;
2985 align = MEM_ALIGN (object);
2987 if (CONST_INT_P (size)
2988 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2989 CLEAR_BY_PIECES,
2990 optimize_insn_for_speed_p ()))
2991 clear_by_pieces (object, INTVAL (size), align);
2992 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2993 expected_align, expected_size,
2994 min_size, max_size, probable_max_size))
2996 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2997 return set_storage_via_libcall (object, size, const0_rtx,
2998 method == BLOCK_OP_TAILCALL);
2999 else
3000 gcc_unreachable ();
3002 return NULL;
3006 clear_storage (rtx object, rtx size, enum block_op_methods method)
3008 unsigned HOST_WIDE_INT max, min = 0;
3009 if (GET_CODE (size) == CONST_INT)
3010 min = max = UINTVAL (size);
3011 else
3012 max = GET_MODE_MASK (GET_MODE (size));
3013 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3017 /* A subroutine of clear_storage. Expand a call to memset.
3018 Return the return value of memset, 0 otherwise. */
3021 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3023 tree call_expr, fn, object_tree, size_tree, val_tree;
3024 machine_mode size_mode;
3026 object = copy_addr_to_reg (XEXP (object, 0));
3027 object_tree = make_tree (ptr_type_node, object);
3029 if (!CONST_INT_P (val))
3030 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3031 val_tree = make_tree (integer_type_node, val);
3033 size_mode = TYPE_MODE (sizetype);
3034 size = convert_to_mode (size_mode, size, 1);
3035 size = copy_to_mode_reg (size_mode, size);
3036 size_tree = make_tree (sizetype, size);
3038 /* It is incorrect to use the libcall calling conventions for calls to
3039 memset because it can be provided by the user. */
3040 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3041 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3042 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3044 return expand_call (call_expr, NULL_RTX, false);
3047 /* Expand a setmem pattern; return true if successful. */
3049 bool
3050 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3051 unsigned int expected_align, HOST_WIDE_INT expected_size,
3052 unsigned HOST_WIDE_INT min_size,
3053 unsigned HOST_WIDE_INT max_size,
3054 unsigned HOST_WIDE_INT probable_max_size)
3056 /* Try the most limited insn first, because there's no point
3057 including more than one in the machine description unless
3058 the more limited one has some advantage. */
3060 if (expected_align < align)
3061 expected_align = align;
3062 if (expected_size != -1)
3064 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3065 expected_size = max_size;
3066 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3067 expected_size = min_size;
3070 opt_scalar_int_mode mode_iter;
3071 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3073 scalar_int_mode mode = mode_iter.require ();
3074 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3076 if (code != CODE_FOR_nothing
3077 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3078 here because if SIZE is less than the mode mask, as it is
3079 returned by the macro, it will definitely be less than the
3080 actual mode mask. Since SIZE is within the Pmode address
3081 space, we limit MODE to Pmode. */
3082 && ((CONST_INT_P (size)
3083 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3084 <= (GET_MODE_MASK (mode) >> 1)))
3085 || max_size <= (GET_MODE_MASK (mode) >> 1)
3086 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3088 struct expand_operand ops[9];
3089 unsigned int nops;
3091 nops = insn_data[(int) code].n_generator_args;
3092 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3094 create_fixed_operand (&ops[0], object);
3095 /* The check above guarantees that this size conversion is valid. */
3096 create_convert_operand_to (&ops[1], size, mode, true);
3097 create_convert_operand_from (&ops[2], val, byte_mode, true);
3098 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3099 if (nops >= 6)
3101 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3102 create_integer_operand (&ops[5], expected_size);
3104 if (nops >= 8)
3106 create_integer_operand (&ops[6], min_size);
3107 /* If we can not represent the maximal size,
3108 make parameter NULL. */
3109 if ((HOST_WIDE_INT) max_size != -1)
3110 create_integer_operand (&ops[7], max_size);
3111 else
3112 create_fixed_operand (&ops[7], NULL);
3114 if (nops == 9)
3116 /* If we can not represent the maximal size,
3117 make parameter NULL. */
3118 if ((HOST_WIDE_INT) probable_max_size != -1)
3119 create_integer_operand (&ops[8], probable_max_size);
3120 else
3121 create_fixed_operand (&ops[8], NULL);
3123 if (maybe_expand_insn (code, nops, ops))
3124 return true;
3128 return false;
3132 /* Write to one of the components of the complex value CPLX. Write VAL to
3133 the real part if IMAG_P is false, and the imaginary part if its true. */
3135 void
3136 write_complex_part (rtx cplx, rtx val, bool imag_p)
3138 machine_mode cmode;
3139 scalar_mode imode;
3140 unsigned ibitsize;
3142 if (GET_CODE (cplx) == CONCAT)
3144 emit_move_insn (XEXP (cplx, imag_p), val);
3145 return;
3148 cmode = GET_MODE (cplx);
3149 imode = GET_MODE_INNER (cmode);
3150 ibitsize = GET_MODE_BITSIZE (imode);
3152 /* For MEMs simplify_gen_subreg may generate an invalid new address
3153 because, e.g., the original address is considered mode-dependent
3154 by the target, which restricts simplify_subreg from invoking
3155 adjust_address_nv. Instead of preparing fallback support for an
3156 invalid address, we call adjust_address_nv directly. */
3157 if (MEM_P (cplx))
3159 emit_move_insn (adjust_address_nv (cplx, imode,
3160 imag_p ? GET_MODE_SIZE (imode) : 0),
3161 val);
3162 return;
3165 /* If the sub-object is at least word sized, then we know that subregging
3166 will work. This special case is important, since store_bit_field
3167 wants to operate on integer modes, and there's rarely an OImode to
3168 correspond to TCmode. */
3169 if (ibitsize >= BITS_PER_WORD
3170 /* For hard regs we have exact predicates. Assume we can split
3171 the original object if it spans an even number of hard regs.
3172 This special case is important for SCmode on 64-bit platforms
3173 where the natural size of floating-point regs is 32-bit. */
3174 || (REG_P (cplx)
3175 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3176 && REG_NREGS (cplx) % 2 == 0))
3178 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3179 imag_p ? GET_MODE_SIZE (imode) : 0);
3180 if (part)
3182 emit_move_insn (part, val);
3183 return;
3185 else
3186 /* simplify_gen_subreg may fail for sub-word MEMs. */
3187 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3190 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3191 false);
3194 /* Extract one of the components of the complex value CPLX. Extract the
3195 real part if IMAG_P is false, and the imaginary part if it's true. */
3198 read_complex_part (rtx cplx, bool imag_p)
3200 machine_mode cmode;
3201 scalar_mode imode;
3202 unsigned ibitsize;
3204 if (GET_CODE (cplx) == CONCAT)
3205 return XEXP (cplx, imag_p);
3207 cmode = GET_MODE (cplx);
3208 imode = GET_MODE_INNER (cmode);
3209 ibitsize = GET_MODE_BITSIZE (imode);
3211 /* Special case reads from complex constants that got spilled to memory. */
3212 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3214 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3215 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3217 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3218 if (CONSTANT_CLASS_P (part))
3219 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3223 /* For MEMs simplify_gen_subreg may generate an invalid new address
3224 because, e.g., the original address is considered mode-dependent
3225 by the target, which restricts simplify_subreg from invoking
3226 adjust_address_nv. Instead of preparing fallback support for an
3227 invalid address, we call adjust_address_nv directly. */
3228 if (MEM_P (cplx))
3229 return adjust_address_nv (cplx, imode,
3230 imag_p ? GET_MODE_SIZE (imode) : 0);
3232 /* If the sub-object is at least word sized, then we know that subregging
3233 will work. This special case is important, since extract_bit_field
3234 wants to operate on integer modes, and there's rarely an OImode to
3235 correspond to TCmode. */
3236 if (ibitsize >= BITS_PER_WORD
3237 /* For hard regs we have exact predicates. Assume we can split
3238 the original object if it spans an even number of hard regs.
3239 This special case is important for SCmode on 64-bit platforms
3240 where the natural size of floating-point regs is 32-bit. */
3241 || (REG_P (cplx)
3242 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3243 && REG_NREGS (cplx) % 2 == 0))
3245 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3246 imag_p ? GET_MODE_SIZE (imode) : 0);
3247 if (ret)
3248 return ret;
3249 else
3250 /* simplify_gen_subreg may fail for sub-word MEMs. */
3251 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3254 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3255 true, NULL_RTX, imode, imode, false, NULL);
3258 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3259 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3260 represented in NEW_MODE. If FORCE is true, this will never happen, as
3261 we'll force-create a SUBREG if needed. */
3263 static rtx
3264 emit_move_change_mode (machine_mode new_mode,
3265 machine_mode old_mode, rtx x, bool force)
3267 rtx ret;
3269 if (push_operand (x, GET_MODE (x)))
3271 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3272 MEM_COPY_ATTRIBUTES (ret, x);
3274 else if (MEM_P (x))
3276 /* We don't have to worry about changing the address since the
3277 size in bytes is supposed to be the same. */
3278 if (reload_in_progress)
3280 /* Copy the MEM to change the mode and move any
3281 substitutions from the old MEM to the new one. */
3282 ret = adjust_address_nv (x, new_mode, 0);
3283 copy_replacements (x, ret);
3285 else
3286 ret = adjust_address (x, new_mode, 0);
3288 else
3290 /* Note that we do want simplify_subreg's behavior of validating
3291 that the new mode is ok for a hard register. If we were to use
3292 simplify_gen_subreg, we would create the subreg, but would
3293 probably run into the target not being able to implement it. */
3294 /* Except, of course, when FORCE is true, when this is exactly what
3295 we want. Which is needed for CCmodes on some targets. */
3296 if (force)
3297 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3298 else
3299 ret = simplify_subreg (new_mode, x, old_mode, 0);
3302 return ret;
3305 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3306 an integer mode of the same size as MODE. Returns the instruction
3307 emitted, or NULL if such a move could not be generated. */
3309 static rtx_insn *
3310 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3312 scalar_int_mode imode;
3313 enum insn_code code;
3315 /* There must exist a mode of the exact size we require. */
3316 if (!int_mode_for_mode (mode).exists (&imode))
3317 return NULL;
3319 /* The target must support moves in this mode. */
3320 code = optab_handler (mov_optab, imode);
3321 if (code == CODE_FOR_nothing)
3322 return NULL;
3324 x = emit_move_change_mode (imode, mode, x, force);
3325 if (x == NULL_RTX)
3326 return NULL;
3327 y = emit_move_change_mode (imode, mode, y, force);
3328 if (y == NULL_RTX)
3329 return NULL;
3330 return emit_insn (GEN_FCN (code) (x, y));
3333 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3334 Return an equivalent MEM that does not use an auto-increment. */
3337 emit_move_resolve_push (machine_mode mode, rtx x)
3339 enum rtx_code code = GET_CODE (XEXP (x, 0));
3340 HOST_WIDE_INT adjust;
3341 rtx temp;
3343 adjust = GET_MODE_SIZE (mode);
3344 #ifdef PUSH_ROUNDING
3345 adjust = PUSH_ROUNDING (adjust);
3346 #endif
3347 if (code == PRE_DEC || code == POST_DEC)
3348 adjust = -adjust;
3349 else if (code == PRE_MODIFY || code == POST_MODIFY)
3351 rtx expr = XEXP (XEXP (x, 0), 1);
3352 HOST_WIDE_INT val;
3354 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3355 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3356 val = INTVAL (XEXP (expr, 1));
3357 if (GET_CODE (expr) == MINUS)
3358 val = -val;
3359 gcc_assert (adjust == val || adjust == -val);
3360 adjust = val;
3363 /* Do not use anti_adjust_stack, since we don't want to update
3364 stack_pointer_delta. */
3365 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3366 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3367 0, OPTAB_LIB_WIDEN);
3368 if (temp != stack_pointer_rtx)
3369 emit_move_insn (stack_pointer_rtx, temp);
3371 switch (code)
3373 case PRE_INC:
3374 case PRE_DEC:
3375 case PRE_MODIFY:
3376 temp = stack_pointer_rtx;
3377 break;
3378 case POST_INC:
3379 case POST_DEC:
3380 case POST_MODIFY:
3381 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3382 break;
3383 default:
3384 gcc_unreachable ();
3387 return replace_equiv_address (x, temp);
3390 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3391 X is known to satisfy push_operand, and MODE is known to be complex.
3392 Returns the last instruction emitted. */
3394 rtx_insn *
3395 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3397 scalar_mode submode = GET_MODE_INNER (mode);
3398 bool imag_first;
3400 #ifdef PUSH_ROUNDING
3401 unsigned int submodesize = GET_MODE_SIZE (submode);
3403 /* In case we output to the stack, but the size is smaller than the
3404 machine can push exactly, we need to use move instructions. */
3405 if (PUSH_ROUNDING (submodesize) != submodesize)
3407 x = emit_move_resolve_push (mode, x);
3408 return emit_move_insn (x, y);
3410 #endif
3412 /* Note that the real part always precedes the imag part in memory
3413 regardless of machine's endianness. */
3414 switch (GET_CODE (XEXP (x, 0)))
3416 case PRE_DEC:
3417 case POST_DEC:
3418 imag_first = true;
3419 break;
3420 case PRE_INC:
3421 case POST_INC:
3422 imag_first = false;
3423 break;
3424 default:
3425 gcc_unreachable ();
3428 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3429 read_complex_part (y, imag_first));
3430 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3431 read_complex_part (y, !imag_first));
3434 /* A subroutine of emit_move_complex. Perform the move from Y to X
3435 via two moves of the parts. Returns the last instruction emitted. */
3437 rtx_insn *
3438 emit_move_complex_parts (rtx x, rtx y)
3440 /* Show the output dies here. This is necessary for SUBREGs
3441 of pseudos since we cannot track their lifetimes correctly;
3442 hard regs shouldn't appear here except as return values. */
3443 if (!reload_completed && !reload_in_progress
3444 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3445 emit_clobber (x);
3447 write_complex_part (x, read_complex_part (y, false), false);
3448 write_complex_part (x, read_complex_part (y, true), true);
3450 return get_last_insn ();
3453 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3454 MODE is known to be complex. Returns the last instruction emitted. */
3456 static rtx_insn *
3457 emit_move_complex (machine_mode mode, rtx x, rtx y)
3459 bool try_int;
3461 /* Need to take special care for pushes, to maintain proper ordering
3462 of the data, and possibly extra padding. */
3463 if (push_operand (x, mode))
3464 return emit_move_complex_push (mode, x, y);
3466 /* See if we can coerce the target into moving both values at once, except
3467 for floating point where we favor moving as parts if this is easy. */
3468 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3469 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3470 && !(REG_P (x)
3471 && HARD_REGISTER_P (x)
3472 && REG_NREGS (x) == 1)
3473 && !(REG_P (y)
3474 && HARD_REGISTER_P (y)
3475 && REG_NREGS (y) == 1))
3476 try_int = false;
3477 /* Not possible if the values are inherently not adjacent. */
3478 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3479 try_int = false;
3480 /* Is possible if both are registers (or subregs of registers). */
3481 else if (register_operand (x, mode) && register_operand (y, mode))
3482 try_int = true;
3483 /* If one of the operands is a memory, and alignment constraints
3484 are friendly enough, we may be able to do combined memory operations.
3485 We do not attempt this if Y is a constant because that combination is
3486 usually better with the by-parts thing below. */
3487 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3488 && (!STRICT_ALIGNMENT
3489 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3490 try_int = true;
3491 else
3492 try_int = false;
3494 if (try_int)
3496 rtx_insn *ret;
3498 /* For memory to memory moves, optimal behavior can be had with the
3499 existing block move logic. */
3500 if (MEM_P (x) && MEM_P (y))
3502 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3503 BLOCK_OP_NO_LIBCALL);
3504 return get_last_insn ();
3507 ret = emit_move_via_integer (mode, x, y, true);
3508 if (ret)
3509 return ret;
3512 return emit_move_complex_parts (x, y);
3515 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3516 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3518 static rtx_insn *
3519 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3521 rtx_insn *ret;
3523 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3524 if (mode != CCmode)
3526 enum insn_code code = optab_handler (mov_optab, CCmode);
3527 if (code != CODE_FOR_nothing)
3529 x = emit_move_change_mode (CCmode, mode, x, true);
3530 y = emit_move_change_mode (CCmode, mode, y, true);
3531 return emit_insn (GEN_FCN (code) (x, y));
3535 /* Otherwise, find the MODE_INT mode of the same width. */
3536 ret = emit_move_via_integer (mode, x, y, false);
3537 gcc_assert (ret != NULL);
3538 return ret;
3541 /* Return true if word I of OP lies entirely in the
3542 undefined bits of a paradoxical subreg. */
3544 static bool
3545 undefined_operand_subword_p (const_rtx op, int i)
3547 if (GET_CODE (op) != SUBREG)
3548 return false;
3549 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3550 HOST_WIDE_INT offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3551 return (offset >= GET_MODE_SIZE (innermostmode)
3552 || offset <= -UNITS_PER_WORD);
3555 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3556 MODE is any multi-word or full-word mode that lacks a move_insn
3557 pattern. Note that you will get better code if you define such
3558 patterns, even if they must turn into multiple assembler instructions. */
3560 static rtx_insn *
3561 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3563 rtx_insn *last_insn = 0;
3564 rtx_insn *seq;
3565 rtx inner;
3566 bool need_clobber;
3567 int i;
3569 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3571 /* If X is a push on the stack, do the push now and replace
3572 X with a reference to the stack pointer. */
3573 if (push_operand (x, mode))
3574 x = emit_move_resolve_push (mode, x);
3576 /* If we are in reload, see if either operand is a MEM whose address
3577 is scheduled for replacement. */
3578 if (reload_in_progress && MEM_P (x)
3579 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3580 x = replace_equiv_address_nv (x, inner);
3581 if (reload_in_progress && MEM_P (y)
3582 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3583 y = replace_equiv_address_nv (y, inner);
3585 start_sequence ();
3587 need_clobber = false;
3588 for (i = 0;
3589 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3590 i++)
3592 rtx xpart = operand_subword (x, i, 1, mode);
3593 rtx ypart;
3595 /* Do not generate code for a move if it would come entirely
3596 from the undefined bits of a paradoxical subreg. */
3597 if (undefined_operand_subword_p (y, i))
3598 continue;
3600 ypart = operand_subword (y, i, 1, mode);
3602 /* If we can't get a part of Y, put Y into memory if it is a
3603 constant. Otherwise, force it into a register. Then we must
3604 be able to get a part of Y. */
3605 if (ypart == 0 && CONSTANT_P (y))
3607 y = use_anchored_address (force_const_mem (mode, y));
3608 ypart = operand_subword (y, i, 1, mode);
3610 else if (ypart == 0)
3611 ypart = operand_subword_force (y, i, mode);
3613 gcc_assert (xpart && ypart);
3615 need_clobber |= (GET_CODE (xpart) == SUBREG);
3617 last_insn = emit_move_insn (xpart, ypart);
3620 seq = get_insns ();
3621 end_sequence ();
3623 /* Show the output dies here. This is necessary for SUBREGs
3624 of pseudos since we cannot track their lifetimes correctly;
3625 hard regs shouldn't appear here except as return values.
3626 We never want to emit such a clobber after reload. */
3627 if (x != y
3628 && ! (reload_in_progress || reload_completed)
3629 && need_clobber != 0)
3630 emit_clobber (x);
3632 emit_insn (seq);
3634 return last_insn;
3637 /* Low level part of emit_move_insn.
3638 Called just like emit_move_insn, but assumes X and Y
3639 are basically valid. */
3641 rtx_insn *
3642 emit_move_insn_1 (rtx x, rtx y)
3644 machine_mode mode = GET_MODE (x);
3645 enum insn_code code;
3647 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3649 code = optab_handler (mov_optab, mode);
3650 if (code != CODE_FOR_nothing)
3651 return emit_insn (GEN_FCN (code) (x, y));
3653 /* Expand complex moves by moving real part and imag part. */
3654 if (COMPLEX_MODE_P (mode))
3655 return emit_move_complex (mode, x, y);
3657 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3658 || ALL_FIXED_POINT_MODE_P (mode))
3660 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3662 /* If we can't find an integer mode, use multi words. */
3663 if (result)
3664 return result;
3665 else
3666 return emit_move_multi_word (mode, x, y);
3669 if (GET_MODE_CLASS (mode) == MODE_CC)
3670 return emit_move_ccmode (mode, x, y);
3672 /* Try using a move pattern for the corresponding integer mode. This is
3673 only safe when simplify_subreg can convert MODE constants into integer
3674 constants. At present, it can only do this reliably if the value
3675 fits within a HOST_WIDE_INT. */
3676 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3678 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3680 if (ret)
3682 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3683 return ret;
3687 return emit_move_multi_word (mode, x, y);
3690 /* Generate code to copy Y into X.
3691 Both Y and X must have the same mode, except that
3692 Y can be a constant with VOIDmode.
3693 This mode cannot be BLKmode; use emit_block_move for that.
3695 Return the last instruction emitted. */
3697 rtx_insn *
3698 emit_move_insn (rtx x, rtx y)
3700 machine_mode mode = GET_MODE (x);
3701 rtx y_cst = NULL_RTX;
3702 rtx_insn *last_insn;
3703 rtx set;
3705 gcc_assert (mode != BLKmode
3706 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3708 if (CONSTANT_P (y))
3710 if (optimize
3711 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3712 && (last_insn = compress_float_constant (x, y)))
3713 return last_insn;
3715 y_cst = y;
3717 if (!targetm.legitimate_constant_p (mode, y))
3719 y = force_const_mem (mode, y);
3721 /* If the target's cannot_force_const_mem prevented the spill,
3722 assume that the target's move expanders will also take care
3723 of the non-legitimate constant. */
3724 if (!y)
3725 y = y_cst;
3726 else
3727 y = use_anchored_address (y);
3731 /* If X or Y are memory references, verify that their addresses are valid
3732 for the machine. */
3733 if (MEM_P (x)
3734 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3735 MEM_ADDR_SPACE (x))
3736 && ! push_operand (x, GET_MODE (x))))
3737 x = validize_mem (x);
3739 if (MEM_P (y)
3740 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3741 MEM_ADDR_SPACE (y)))
3742 y = validize_mem (y);
3744 gcc_assert (mode != BLKmode);
3746 last_insn = emit_move_insn_1 (x, y);
3748 if (y_cst && REG_P (x)
3749 && (set = single_set (last_insn)) != NULL_RTX
3750 && SET_DEST (set) == x
3751 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3752 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3754 return last_insn;
3757 /* Generate the body of an instruction to copy Y into X.
3758 It may be a list of insns, if one insn isn't enough. */
3760 rtx_insn *
3761 gen_move_insn (rtx x, rtx y)
3763 rtx_insn *seq;
3765 start_sequence ();
3766 emit_move_insn_1 (x, y);
3767 seq = get_insns ();
3768 end_sequence ();
3769 return seq;
3772 /* If Y is representable exactly in a narrower mode, and the target can
3773 perform the extension directly from constant or memory, then emit the
3774 move as an extension. */
3776 static rtx_insn *
3777 compress_float_constant (rtx x, rtx y)
3779 machine_mode dstmode = GET_MODE (x);
3780 machine_mode orig_srcmode = GET_MODE (y);
3781 machine_mode srcmode;
3782 const REAL_VALUE_TYPE *r;
3783 int oldcost, newcost;
3784 bool speed = optimize_insn_for_speed_p ();
3786 r = CONST_DOUBLE_REAL_VALUE (y);
3788 if (targetm.legitimate_constant_p (dstmode, y))
3789 oldcost = set_src_cost (y, orig_srcmode, speed);
3790 else
3791 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3793 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3795 enum insn_code ic;
3796 rtx trunc_y;
3797 rtx_insn *last_insn;
3799 /* Skip if the target can't extend this way. */
3800 ic = can_extend_p (dstmode, srcmode, 0);
3801 if (ic == CODE_FOR_nothing)
3802 continue;
3804 /* Skip if the narrowed value isn't exact. */
3805 if (! exact_real_truncate (srcmode, r))
3806 continue;
3808 trunc_y = const_double_from_real_value (*r, srcmode);
3810 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3812 /* Skip if the target needs extra instructions to perform
3813 the extension. */
3814 if (!insn_operand_matches (ic, 1, trunc_y))
3815 continue;
3816 /* This is valid, but may not be cheaper than the original. */
3817 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3818 dstmode, speed);
3819 if (oldcost < newcost)
3820 continue;
3822 else if (float_extend_from_mem[dstmode][srcmode])
3824 trunc_y = force_const_mem (srcmode, trunc_y);
3825 /* This is valid, but may not be cheaper than the original. */
3826 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3827 dstmode, speed);
3828 if (oldcost < newcost)
3829 continue;
3830 trunc_y = validize_mem (trunc_y);
3832 else
3833 continue;
3835 /* For CSE's benefit, force the compressed constant pool entry
3836 into a new pseudo. This constant may be used in different modes,
3837 and if not, combine will put things back together for us. */
3838 trunc_y = force_reg (srcmode, trunc_y);
3840 /* If x is a hard register, perform the extension into a pseudo,
3841 so that e.g. stack realignment code is aware of it. */
3842 rtx target = x;
3843 if (REG_P (x) && HARD_REGISTER_P (x))
3844 target = gen_reg_rtx (dstmode);
3846 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3847 last_insn = get_last_insn ();
3849 if (REG_P (target))
3850 set_unique_reg_note (last_insn, REG_EQUAL, y);
3852 if (target != x)
3853 return emit_move_insn (x, target);
3854 return last_insn;
3857 return NULL;
3860 /* Pushing data onto the stack. */
3862 /* Push a block of length SIZE (perhaps variable)
3863 and return an rtx to address the beginning of the block.
3864 The value may be virtual_outgoing_args_rtx.
3866 EXTRA is the number of bytes of padding to push in addition to SIZE.
3867 BELOW nonzero means this padding comes at low addresses;
3868 otherwise, the padding comes at high addresses. */
3871 push_block (rtx size, int extra, int below)
3873 rtx temp;
3875 size = convert_modes (Pmode, ptr_mode, size, 1);
3876 if (CONSTANT_P (size))
3877 anti_adjust_stack (plus_constant (Pmode, size, extra));
3878 else if (REG_P (size) && extra == 0)
3879 anti_adjust_stack (size);
3880 else
3882 temp = copy_to_mode_reg (Pmode, size);
3883 if (extra != 0)
3884 temp = expand_binop (Pmode, add_optab, temp,
3885 gen_int_mode (extra, Pmode),
3886 temp, 0, OPTAB_LIB_WIDEN);
3887 anti_adjust_stack (temp);
3890 if (STACK_GROWS_DOWNWARD)
3892 temp = virtual_outgoing_args_rtx;
3893 if (extra != 0 && below)
3894 temp = plus_constant (Pmode, temp, extra);
3896 else
3898 if (CONST_INT_P (size))
3899 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3900 -INTVAL (size) - (below ? 0 : extra));
3901 else if (extra != 0 && !below)
3902 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3903 negate_rtx (Pmode, plus_constant (Pmode, size,
3904 extra)));
3905 else
3906 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3907 negate_rtx (Pmode, size));
3910 return memory_address (NARROWEST_INT_MODE, temp);
3913 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3915 static rtx
3916 mem_autoinc_base (rtx mem)
3918 if (MEM_P (mem))
3920 rtx addr = XEXP (mem, 0);
3921 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3922 return XEXP (addr, 0);
3924 return NULL;
3927 /* A utility routine used here, in reload, and in try_split. The insns
3928 after PREV up to and including LAST are known to adjust the stack,
3929 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3930 placing notes as appropriate. PREV may be NULL, indicating the
3931 entire insn sequence prior to LAST should be scanned.
3933 The set of allowed stack pointer modifications is small:
3934 (1) One or more auto-inc style memory references (aka pushes),
3935 (2) One or more addition/subtraction with the SP as destination,
3936 (3) A single move insn with the SP as destination,
3937 (4) A call_pop insn,
3938 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3940 Insns in the sequence that do not modify the SP are ignored,
3941 except for noreturn calls.
3943 The return value is the amount of adjustment that can be trivially
3944 verified, via immediate operand or auto-inc. If the adjustment
3945 cannot be trivially extracted, the return value is INT_MIN. */
3947 HOST_WIDE_INT
3948 find_args_size_adjust (rtx_insn *insn)
3950 rtx dest, set, pat;
3951 int i;
3953 pat = PATTERN (insn);
3954 set = NULL;
3956 /* Look for a call_pop pattern. */
3957 if (CALL_P (insn))
3959 /* We have to allow non-call_pop patterns for the case
3960 of emit_single_push_insn of a TLS address. */
3961 if (GET_CODE (pat) != PARALLEL)
3962 return 0;
3964 /* All call_pop have a stack pointer adjust in the parallel.
3965 The call itself is always first, and the stack adjust is
3966 usually last, so search from the end. */
3967 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3969 set = XVECEXP (pat, 0, i);
3970 if (GET_CODE (set) != SET)
3971 continue;
3972 dest = SET_DEST (set);
3973 if (dest == stack_pointer_rtx)
3974 break;
3976 /* We'd better have found the stack pointer adjust. */
3977 if (i == 0)
3978 return 0;
3979 /* Fall through to process the extracted SET and DEST
3980 as if it was a standalone insn. */
3982 else if (GET_CODE (pat) == SET)
3983 set = pat;
3984 else if ((set = single_set (insn)) != NULL)
3986 else if (GET_CODE (pat) == PARALLEL)
3988 /* ??? Some older ports use a parallel with a stack adjust
3989 and a store for a PUSH_ROUNDING pattern, rather than a
3990 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3991 /* ??? See h8300 and m68k, pushqi1. */
3992 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3994 set = XVECEXP (pat, 0, i);
3995 if (GET_CODE (set) != SET)
3996 continue;
3997 dest = SET_DEST (set);
3998 if (dest == stack_pointer_rtx)
3999 break;
4001 /* We do not expect an auto-inc of the sp in the parallel. */
4002 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4003 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4004 != stack_pointer_rtx);
4006 if (i < 0)
4007 return 0;
4009 else
4010 return 0;
4012 dest = SET_DEST (set);
4014 /* Look for direct modifications of the stack pointer. */
4015 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4017 /* Look for a trivial adjustment, otherwise assume nothing. */
4018 /* Note that the SPU restore_stack_block pattern refers to
4019 the stack pointer in V4SImode. Consider that non-trivial. */
4020 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4021 && GET_CODE (SET_SRC (set)) == PLUS
4022 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4023 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4024 return INTVAL (XEXP (SET_SRC (set), 1));
4025 /* ??? Reload can generate no-op moves, which will be cleaned
4026 up later. Recognize it and continue searching. */
4027 else if (rtx_equal_p (dest, SET_SRC (set)))
4028 return 0;
4029 else
4030 return HOST_WIDE_INT_MIN;
4032 else
4034 rtx mem, addr;
4036 /* Otherwise only think about autoinc patterns. */
4037 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4039 mem = dest;
4040 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4041 != stack_pointer_rtx);
4043 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4044 mem = SET_SRC (set);
4045 else
4046 return 0;
4048 addr = XEXP (mem, 0);
4049 switch (GET_CODE (addr))
4051 case PRE_INC:
4052 case POST_INC:
4053 return GET_MODE_SIZE (GET_MODE (mem));
4054 case PRE_DEC:
4055 case POST_DEC:
4056 return -GET_MODE_SIZE (GET_MODE (mem));
4057 case PRE_MODIFY:
4058 case POST_MODIFY:
4059 addr = XEXP (addr, 1);
4060 gcc_assert (GET_CODE (addr) == PLUS);
4061 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4062 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4063 return INTVAL (XEXP (addr, 1));
4064 default:
4065 gcc_unreachable ();
4071 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
4073 int args_size = end_args_size;
4074 bool saw_unknown = false;
4075 rtx_insn *insn;
4077 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4079 HOST_WIDE_INT this_delta;
4081 if (!NONDEBUG_INSN_P (insn))
4082 continue;
4084 this_delta = find_args_size_adjust (insn);
4085 if (this_delta == 0)
4087 if (!CALL_P (insn)
4088 || ACCUMULATE_OUTGOING_ARGS
4089 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4090 continue;
4093 gcc_assert (!saw_unknown);
4094 if (this_delta == HOST_WIDE_INT_MIN)
4095 saw_unknown = true;
4097 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4098 if (STACK_GROWS_DOWNWARD)
4099 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4101 args_size -= this_delta;
4104 return saw_unknown ? INT_MIN : args_size;
4107 #ifdef PUSH_ROUNDING
4108 /* Emit single push insn. */
4110 static void
4111 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4113 rtx dest_addr;
4114 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4115 rtx dest;
4116 enum insn_code icode;
4118 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4119 /* If there is push pattern, use it. Otherwise try old way of throwing
4120 MEM representing push operation to move expander. */
4121 icode = optab_handler (push_optab, mode);
4122 if (icode != CODE_FOR_nothing)
4124 struct expand_operand ops[1];
4126 create_input_operand (&ops[0], x, mode);
4127 if (maybe_expand_insn (icode, 1, ops))
4128 return;
4130 if (GET_MODE_SIZE (mode) == rounded_size)
4131 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4132 /* If we are to pad downward, adjust the stack pointer first and
4133 then store X into the stack location using an offset. This is
4134 because emit_move_insn does not know how to pad; it does not have
4135 access to type. */
4136 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4138 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4139 HOST_WIDE_INT offset;
4141 emit_move_insn (stack_pointer_rtx,
4142 expand_binop (Pmode,
4143 STACK_GROWS_DOWNWARD ? sub_optab
4144 : add_optab,
4145 stack_pointer_rtx,
4146 gen_int_mode (rounded_size, Pmode),
4147 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4149 offset = (HOST_WIDE_INT) padding_size;
4150 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4151 /* We have already decremented the stack pointer, so get the
4152 previous value. */
4153 offset += (HOST_WIDE_INT) rounded_size;
4155 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4156 /* We have already incremented the stack pointer, so get the
4157 previous value. */
4158 offset -= (HOST_WIDE_INT) rounded_size;
4160 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4161 gen_int_mode (offset, Pmode));
4163 else
4165 if (STACK_GROWS_DOWNWARD)
4166 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4167 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4168 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4169 Pmode));
4170 else
4171 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4172 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4173 gen_int_mode (rounded_size, Pmode));
4175 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4178 dest = gen_rtx_MEM (mode, dest_addr);
4180 if (type != 0)
4182 set_mem_attributes (dest, type, 1);
4184 if (cfun->tail_call_marked)
4185 /* Function incoming arguments may overlap with sibling call
4186 outgoing arguments and we cannot allow reordering of reads
4187 from function arguments with stores to outgoing arguments
4188 of sibling calls. */
4189 set_mem_alias_set (dest, 0);
4191 emit_move_insn (dest, x);
4194 /* Emit and annotate a single push insn. */
4196 static void
4197 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4199 int delta, old_delta = stack_pointer_delta;
4200 rtx_insn *prev = get_last_insn ();
4201 rtx_insn *last;
4203 emit_single_push_insn_1 (mode, x, type);
4205 last = get_last_insn ();
4207 /* Notice the common case where we emitted exactly one insn. */
4208 if (PREV_INSN (last) == prev)
4210 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4211 return;
4214 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4215 gcc_assert (delta == INT_MIN || delta == old_delta);
4217 #endif
4219 /* If reading SIZE bytes from X will end up reading from
4220 Y return the number of bytes that overlap. Return -1
4221 if there is no overlap or -2 if we can't determine
4222 (for example when X and Y have different base registers). */
4224 static int
4225 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4227 rtx tmp = plus_constant (Pmode, x, size);
4228 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4230 if (!CONST_INT_P (sub))
4231 return -2;
4233 HOST_WIDE_INT val = INTVAL (sub);
4235 return IN_RANGE (val, 1, size) ? val : -1;
4238 /* Generate code to push X onto the stack, assuming it has mode MODE and
4239 type TYPE.
4240 MODE is redundant except when X is a CONST_INT (since they don't
4241 carry mode info).
4242 SIZE is an rtx for the size of data to be copied (in bytes),
4243 needed only if X is BLKmode.
4244 Return true if successful. May return false if asked to push a
4245 partial argument during a sibcall optimization (as specified by
4246 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4247 to not overlap.
4249 ALIGN (in bits) is maximum alignment we can assume.
4251 If PARTIAL and REG are both nonzero, then copy that many of the first
4252 bytes of X into registers starting with REG, and push the rest of X.
4253 The amount of space pushed is decreased by PARTIAL bytes.
4254 REG must be a hard register in this case.
4255 If REG is zero but PARTIAL is not, take any all others actions for an
4256 argument partially in registers, but do not actually load any
4257 registers.
4259 EXTRA is the amount in bytes of extra space to leave next to this arg.
4260 This is ignored if an argument block has already been allocated.
4262 On a machine that lacks real push insns, ARGS_ADDR is the address of
4263 the bottom of the argument block for this call. We use indexing off there
4264 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4265 argument block has not been preallocated.
4267 ARGS_SO_FAR is the size of args previously pushed for this call.
4269 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4270 for arguments passed in registers. If nonzero, it will be the number
4271 of bytes required. */
4273 bool
4274 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4275 unsigned int align, int partial, rtx reg, int extra,
4276 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4277 rtx alignment_pad, bool sibcall_p)
4279 rtx xinner;
4280 pad_direction stack_direction
4281 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4283 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4284 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4285 Default is below for small data on big-endian machines; else above. */
4286 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4288 /* Invert direction if stack is post-decrement.
4289 FIXME: why? */
4290 if (STACK_PUSH_CODE == POST_DEC)
4291 if (where_pad != PAD_NONE)
4292 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4294 xinner = x;
4296 int nregs = partial / UNITS_PER_WORD;
4297 rtx *tmp_regs = NULL;
4298 int overlapping = 0;
4300 if (mode == BLKmode
4301 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4303 /* Copy a block into the stack, entirely or partially. */
4305 rtx temp;
4306 int used;
4307 int offset;
4308 int skip;
4310 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4311 used = partial - offset;
4313 if (mode != BLKmode)
4315 /* A value is to be stored in an insufficiently aligned
4316 stack slot; copy via a suitably aligned slot if
4317 necessary. */
4318 size = GEN_INT (GET_MODE_SIZE (mode));
4319 if (!MEM_P (xinner))
4321 temp = assign_temp (type, 1, 1);
4322 emit_move_insn (temp, xinner);
4323 xinner = temp;
4327 gcc_assert (size);
4329 /* USED is now the # of bytes we need not copy to the stack
4330 because registers will take care of them. */
4332 if (partial != 0)
4333 xinner = adjust_address (xinner, BLKmode, used);
4335 /* If the partial register-part of the arg counts in its stack size,
4336 skip the part of stack space corresponding to the registers.
4337 Otherwise, start copying to the beginning of the stack space,
4338 by setting SKIP to 0. */
4339 skip = (reg_parm_stack_space == 0) ? 0 : used;
4341 #ifdef PUSH_ROUNDING
4342 /* Do it with several push insns if that doesn't take lots of insns
4343 and if there is no difficulty with push insns that skip bytes
4344 on the stack for alignment purposes. */
4345 if (args_addr == 0
4346 && PUSH_ARGS
4347 && CONST_INT_P (size)
4348 && skip == 0
4349 && MEM_ALIGN (xinner) >= align
4350 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4351 /* Here we avoid the case of a structure whose weak alignment
4352 forces many pushes of a small amount of data,
4353 and such small pushes do rounding that causes trouble. */
4354 && ((!targetm.slow_unaligned_access (word_mode, align))
4355 || align >= BIGGEST_ALIGNMENT
4356 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4357 == (align / BITS_PER_UNIT)))
4358 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4360 /* Push padding now if padding above and stack grows down,
4361 or if padding below and stack grows up.
4362 But if space already allocated, this has already been done. */
4363 if (extra && args_addr == 0
4364 && where_pad != PAD_NONE && where_pad != stack_direction)
4365 anti_adjust_stack (GEN_INT (extra));
4367 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4369 else
4370 #endif /* PUSH_ROUNDING */
4372 rtx target;
4374 /* Otherwise make space on the stack and copy the data
4375 to the address of that space. */
4377 /* Deduct words put into registers from the size we must copy. */
4378 if (partial != 0)
4380 if (CONST_INT_P (size))
4381 size = GEN_INT (INTVAL (size) - used);
4382 else
4383 size = expand_binop (GET_MODE (size), sub_optab, size,
4384 gen_int_mode (used, GET_MODE (size)),
4385 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4388 /* Get the address of the stack space.
4389 In this case, we do not deal with EXTRA separately.
4390 A single stack adjust will do. */
4391 if (! args_addr)
4393 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4394 extra = 0;
4396 else if (CONST_INT_P (args_so_far))
4397 temp = memory_address (BLKmode,
4398 plus_constant (Pmode, args_addr,
4399 skip + INTVAL (args_so_far)));
4400 else
4401 temp = memory_address (BLKmode,
4402 plus_constant (Pmode,
4403 gen_rtx_PLUS (Pmode,
4404 args_addr,
4405 args_so_far),
4406 skip));
4408 if (!ACCUMULATE_OUTGOING_ARGS)
4410 /* If the source is referenced relative to the stack pointer,
4411 copy it to another register to stabilize it. We do not need
4412 to do this if we know that we won't be changing sp. */
4414 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4415 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4416 temp = copy_to_reg (temp);
4419 target = gen_rtx_MEM (BLKmode, temp);
4421 /* We do *not* set_mem_attributes here, because incoming arguments
4422 may overlap with sibling call outgoing arguments and we cannot
4423 allow reordering of reads from function arguments with stores
4424 to outgoing arguments of sibling calls. We do, however, want
4425 to record the alignment of the stack slot. */
4426 /* ALIGN may well be better aligned than TYPE, e.g. due to
4427 PARM_BOUNDARY. Assume the caller isn't lying. */
4428 set_mem_align (target, align);
4430 /* If part should go in registers and pushing to that part would
4431 overwrite some of the values that need to go into regs, load the
4432 overlapping values into temporary pseudos to be moved into the hard
4433 regs at the end after the stack pushing has completed.
4434 We cannot load them directly into the hard regs here because
4435 they can be clobbered by the block move expansions.
4436 See PR 65358. */
4438 if (partial > 0 && reg != 0 && mode == BLKmode
4439 && GET_CODE (reg) != PARALLEL)
4441 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4442 if (overlapping > 0)
4444 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4445 overlapping /= UNITS_PER_WORD;
4447 tmp_regs = XALLOCAVEC (rtx, overlapping);
4449 for (int i = 0; i < overlapping; i++)
4450 tmp_regs[i] = gen_reg_rtx (word_mode);
4452 for (int i = 0; i < overlapping; i++)
4453 emit_move_insn (tmp_regs[i],
4454 operand_subword_force (target, i, mode));
4456 else if (overlapping == -1)
4457 overlapping = 0;
4458 /* Could not determine whether there is overlap.
4459 Fail the sibcall. */
4460 else
4462 overlapping = 0;
4463 if (sibcall_p)
4464 return false;
4467 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4470 else if (partial > 0)
4472 /* Scalar partly in registers. */
4474 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4475 int i;
4476 int not_stack;
4477 /* # bytes of start of argument
4478 that we must make space for but need not store. */
4479 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4480 int args_offset = INTVAL (args_so_far);
4481 int skip;
4483 /* Push padding now if padding above and stack grows down,
4484 or if padding below and stack grows up.
4485 But if space already allocated, this has already been done. */
4486 if (extra && args_addr == 0
4487 && where_pad != PAD_NONE && where_pad != stack_direction)
4488 anti_adjust_stack (GEN_INT (extra));
4490 /* If we make space by pushing it, we might as well push
4491 the real data. Otherwise, we can leave OFFSET nonzero
4492 and leave the space uninitialized. */
4493 if (args_addr == 0)
4494 offset = 0;
4496 /* Now NOT_STACK gets the number of words that we don't need to
4497 allocate on the stack. Convert OFFSET to words too. */
4498 not_stack = (partial - offset) / UNITS_PER_WORD;
4499 offset /= UNITS_PER_WORD;
4501 /* If the partial register-part of the arg counts in its stack size,
4502 skip the part of stack space corresponding to the registers.
4503 Otherwise, start copying to the beginning of the stack space,
4504 by setting SKIP to 0. */
4505 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4507 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4508 x = validize_mem (force_const_mem (mode, x));
4510 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4511 SUBREGs of such registers are not allowed. */
4512 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4513 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4514 x = copy_to_reg (x);
4516 /* Loop over all the words allocated on the stack for this arg. */
4517 /* We can do it by words, because any scalar bigger than a word
4518 has a size a multiple of a word. */
4519 for (i = size - 1; i >= not_stack; i--)
4520 if (i >= not_stack + offset)
4521 if (!emit_push_insn (operand_subword_force (x, i, mode),
4522 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4523 0, args_addr,
4524 GEN_INT (args_offset + ((i - not_stack + skip)
4525 * UNITS_PER_WORD)),
4526 reg_parm_stack_space, alignment_pad, sibcall_p))
4527 return false;
4529 else
4531 rtx addr;
4532 rtx dest;
4534 /* Push padding now if padding above and stack grows down,
4535 or if padding below and stack grows up.
4536 But if space already allocated, this has already been done. */
4537 if (extra && args_addr == 0
4538 && where_pad != PAD_NONE && where_pad != stack_direction)
4539 anti_adjust_stack (GEN_INT (extra));
4541 #ifdef PUSH_ROUNDING
4542 if (args_addr == 0 && PUSH_ARGS)
4543 emit_single_push_insn (mode, x, type);
4544 else
4545 #endif
4547 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4548 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4550 /* We do *not* set_mem_attributes here, because incoming arguments
4551 may overlap with sibling call outgoing arguments and we cannot
4552 allow reordering of reads from function arguments with stores
4553 to outgoing arguments of sibling calls. We do, however, want
4554 to record the alignment of the stack slot. */
4555 /* ALIGN may well be better aligned than TYPE, e.g. due to
4556 PARM_BOUNDARY. Assume the caller isn't lying. */
4557 set_mem_align (dest, align);
4559 emit_move_insn (dest, x);
4563 /* Move the partial arguments into the registers and any overlapping
4564 values that we moved into the pseudos in tmp_regs. */
4565 if (partial > 0 && reg != 0)
4567 /* Handle calls that pass values in multiple non-contiguous locations.
4568 The Irix 6 ABI has examples of this. */
4569 if (GET_CODE (reg) == PARALLEL)
4570 emit_group_load (reg, x, type, -1);
4571 else
4573 gcc_assert (partial % UNITS_PER_WORD == 0);
4574 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4576 for (int i = 0; i < overlapping; i++)
4577 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4578 + nregs - overlapping + i),
4579 tmp_regs[i]);
4584 if (extra && args_addr == 0 && where_pad == stack_direction)
4585 anti_adjust_stack (GEN_INT (extra));
4587 if (alignment_pad && args_addr == 0)
4588 anti_adjust_stack (alignment_pad);
4590 return true;
4593 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4594 operations. */
4596 static rtx
4597 get_subtarget (rtx x)
4599 return (optimize
4600 || x == 0
4601 /* Only registers can be subtargets. */
4602 || !REG_P (x)
4603 /* Don't use hard regs to avoid extending their life. */
4604 || REGNO (x) < FIRST_PSEUDO_REGISTER
4605 ? 0 : x);
4608 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4609 FIELD is a bitfield. Returns true if the optimization was successful,
4610 and there's nothing else to do. */
4612 static bool
4613 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4614 unsigned HOST_WIDE_INT bitpos,
4615 unsigned HOST_WIDE_INT bitregion_start,
4616 unsigned HOST_WIDE_INT bitregion_end,
4617 machine_mode mode1, rtx str_rtx,
4618 tree to, tree src, bool reverse)
4620 machine_mode str_mode = GET_MODE (str_rtx);
4621 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4622 tree op0, op1;
4623 rtx value, result;
4624 optab binop;
4625 gimple *srcstmt;
4626 enum tree_code code;
4628 if (mode1 != VOIDmode
4629 || bitsize >= BITS_PER_WORD
4630 || str_bitsize > BITS_PER_WORD
4631 || TREE_SIDE_EFFECTS (to)
4632 || TREE_THIS_VOLATILE (to))
4633 return false;
4635 STRIP_NOPS (src);
4636 if (TREE_CODE (src) != SSA_NAME)
4637 return false;
4638 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4639 return false;
4641 srcstmt = get_gimple_for_ssa_name (src);
4642 if (!srcstmt
4643 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4644 return false;
4646 code = gimple_assign_rhs_code (srcstmt);
4648 op0 = gimple_assign_rhs1 (srcstmt);
4650 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4651 to find its initialization. Hopefully the initialization will
4652 be from a bitfield load. */
4653 if (TREE_CODE (op0) == SSA_NAME)
4655 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4657 /* We want to eventually have OP0 be the same as TO, which
4658 should be a bitfield. */
4659 if (!op0stmt
4660 || !is_gimple_assign (op0stmt)
4661 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4662 return false;
4663 op0 = gimple_assign_rhs1 (op0stmt);
4666 op1 = gimple_assign_rhs2 (srcstmt);
4668 if (!operand_equal_p (to, op0, 0))
4669 return false;
4671 if (MEM_P (str_rtx))
4673 unsigned HOST_WIDE_INT offset1;
4675 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4676 str_bitsize = BITS_PER_WORD;
4678 scalar_int_mode best_mode;
4679 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4680 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4681 return false;
4682 str_mode = best_mode;
4683 str_bitsize = GET_MODE_BITSIZE (best_mode);
4685 offset1 = bitpos;
4686 bitpos %= str_bitsize;
4687 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4688 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4690 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4691 return false;
4692 else
4693 gcc_assert (!reverse);
4695 /* If the bit field covers the whole REG/MEM, store_field
4696 will likely generate better code. */
4697 if (bitsize >= str_bitsize)
4698 return false;
4700 /* We can't handle fields split across multiple entities. */
4701 if (bitpos + bitsize > str_bitsize)
4702 return false;
4704 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4705 bitpos = str_bitsize - bitpos - bitsize;
4707 switch (code)
4709 case PLUS_EXPR:
4710 case MINUS_EXPR:
4711 /* For now, just optimize the case of the topmost bitfield
4712 where we don't need to do any masking and also
4713 1 bit bitfields where xor can be used.
4714 We might win by one instruction for the other bitfields
4715 too if insv/extv instructions aren't used, so that
4716 can be added later. */
4717 if ((reverse || bitpos + bitsize != str_bitsize)
4718 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4719 break;
4721 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4722 value = convert_modes (str_mode,
4723 TYPE_MODE (TREE_TYPE (op1)), value,
4724 TYPE_UNSIGNED (TREE_TYPE (op1)));
4726 /* We may be accessing data outside the field, which means
4727 we can alias adjacent data. */
4728 if (MEM_P (str_rtx))
4730 str_rtx = shallow_copy_rtx (str_rtx);
4731 set_mem_alias_set (str_rtx, 0);
4732 set_mem_expr (str_rtx, 0);
4735 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4737 value = expand_and (str_mode, value, const1_rtx, NULL);
4738 binop = xor_optab;
4740 else
4741 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4743 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4744 if (reverse)
4745 value = flip_storage_order (str_mode, value);
4746 result = expand_binop (str_mode, binop, str_rtx,
4747 value, str_rtx, 1, OPTAB_WIDEN);
4748 if (result != str_rtx)
4749 emit_move_insn (str_rtx, result);
4750 return true;
4752 case BIT_IOR_EXPR:
4753 case BIT_XOR_EXPR:
4754 if (TREE_CODE (op1) != INTEGER_CST)
4755 break;
4756 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4757 value = convert_modes (str_mode,
4758 TYPE_MODE (TREE_TYPE (op1)), value,
4759 TYPE_UNSIGNED (TREE_TYPE (op1)));
4761 /* We may be accessing data outside the field, which means
4762 we can alias adjacent data. */
4763 if (MEM_P (str_rtx))
4765 str_rtx = shallow_copy_rtx (str_rtx);
4766 set_mem_alias_set (str_rtx, 0);
4767 set_mem_expr (str_rtx, 0);
4770 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4771 if (bitpos + bitsize != str_bitsize)
4773 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4774 str_mode);
4775 value = expand_and (str_mode, value, mask, NULL_RTX);
4777 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4778 if (reverse)
4779 value = flip_storage_order (str_mode, value);
4780 result = expand_binop (str_mode, binop, str_rtx,
4781 value, str_rtx, 1, OPTAB_WIDEN);
4782 if (result != str_rtx)
4783 emit_move_insn (str_rtx, result);
4784 return true;
4786 default:
4787 break;
4790 return false;
4793 /* In the C++ memory model, consecutive bit fields in a structure are
4794 considered one memory location.
4796 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4797 returns the bit range of consecutive bits in which this COMPONENT_REF
4798 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4799 and *OFFSET may be adjusted in the process.
4801 If the access does not need to be restricted, 0 is returned in both
4802 *BITSTART and *BITEND. */
4804 void
4805 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4806 unsigned HOST_WIDE_INT *bitend,
4807 tree exp,
4808 HOST_WIDE_INT *bitpos,
4809 tree *offset)
4811 HOST_WIDE_INT bitoffset;
4812 tree field, repr;
4814 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4816 field = TREE_OPERAND (exp, 1);
4817 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4818 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4819 need to limit the range we can access. */
4820 if (!repr)
4822 *bitstart = *bitend = 0;
4823 return;
4826 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4827 part of a larger bit field, then the representative does not serve any
4828 useful purpose. This can occur in Ada. */
4829 if (handled_component_p (TREE_OPERAND (exp, 0)))
4831 machine_mode rmode;
4832 HOST_WIDE_INT rbitsize, rbitpos;
4833 tree roffset;
4834 int unsignedp, reversep, volatilep = 0;
4835 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4836 &roffset, &rmode, &unsignedp, &reversep,
4837 &volatilep);
4838 if ((rbitpos % BITS_PER_UNIT) != 0)
4840 *bitstart = *bitend = 0;
4841 return;
4845 /* Compute the adjustment to bitpos from the offset of the field
4846 relative to the representative. DECL_FIELD_OFFSET of field and
4847 repr are the same by construction if they are not constants,
4848 see finish_bitfield_layout. */
4849 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4850 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4851 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4852 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4853 else
4854 bitoffset = 0;
4855 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4856 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4858 /* If the adjustment is larger than bitpos, we would have a negative bit
4859 position for the lower bound and this may wreak havoc later. Adjust
4860 offset and bitpos to make the lower bound non-negative in that case. */
4861 if (bitoffset > *bitpos)
4863 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4864 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4866 *bitpos += adjust;
4867 if (*offset == NULL_TREE)
4868 *offset = size_int (-adjust / BITS_PER_UNIT);
4869 else
4870 *offset
4871 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4872 *bitstart = 0;
4874 else
4875 *bitstart = *bitpos - bitoffset;
4877 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4880 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4881 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4882 DECL_RTL was not set yet, return NORTL. */
4884 static inline bool
4885 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4887 if (TREE_CODE (addr) != ADDR_EXPR)
4888 return false;
4890 tree base = TREE_OPERAND (addr, 0);
4892 if (!DECL_P (base)
4893 || TREE_ADDRESSABLE (base)
4894 || DECL_MODE (base) == BLKmode)
4895 return false;
4897 if (!DECL_RTL_SET_P (base))
4898 return nortl;
4900 return (!MEM_P (DECL_RTL (base)));
4903 /* Returns true if the MEM_REF REF refers to an object that does not
4904 reside in memory and has non-BLKmode. */
4906 static inline bool
4907 mem_ref_refers_to_non_mem_p (tree ref)
4909 tree base = TREE_OPERAND (ref, 0);
4910 return addr_expr_of_non_mem_decl_p_1 (base, false);
4913 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4914 is true, try generating a nontemporal store. */
4916 void
4917 expand_assignment (tree to, tree from, bool nontemporal)
4919 rtx to_rtx = 0;
4920 rtx result;
4921 machine_mode mode;
4922 unsigned int align;
4923 enum insn_code icode;
4925 /* Don't crash if the lhs of the assignment was erroneous. */
4926 if (TREE_CODE (to) == ERROR_MARK)
4928 expand_normal (from);
4929 return;
4932 /* Optimize away no-op moves without side-effects. */
4933 if (operand_equal_p (to, from, 0))
4934 return;
4936 /* Handle misaligned stores. */
4937 mode = TYPE_MODE (TREE_TYPE (to));
4938 if ((TREE_CODE (to) == MEM_REF
4939 || TREE_CODE (to) == TARGET_MEM_REF)
4940 && mode != BLKmode
4941 && !mem_ref_refers_to_non_mem_p (to)
4942 && ((align = get_object_alignment (to))
4943 < GET_MODE_ALIGNMENT (mode))
4944 && (((icode = optab_handler (movmisalign_optab, mode))
4945 != CODE_FOR_nothing)
4946 || targetm.slow_unaligned_access (mode, align)))
4948 rtx reg, mem;
4950 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4951 reg = force_not_mem (reg);
4952 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4953 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4954 reg = flip_storage_order (mode, reg);
4956 if (icode != CODE_FOR_nothing)
4958 struct expand_operand ops[2];
4960 create_fixed_operand (&ops[0], mem);
4961 create_input_operand (&ops[1], reg, mode);
4962 /* The movmisalign<mode> pattern cannot fail, else the assignment
4963 would silently be omitted. */
4964 expand_insn (icode, 2, ops);
4966 else
4967 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
4968 false);
4969 return;
4972 /* Assignment of a structure component needs special treatment
4973 if the structure component's rtx is not simply a MEM.
4974 Assignment of an array element at a constant index, and assignment of
4975 an array element in an unaligned packed structure field, has the same
4976 problem. Same for (partially) storing into a non-memory object. */
4977 if (handled_component_p (to)
4978 || (TREE_CODE (to) == MEM_REF
4979 && (REF_REVERSE_STORAGE_ORDER (to)
4980 || mem_ref_refers_to_non_mem_p (to)))
4981 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4983 machine_mode mode1;
4984 HOST_WIDE_INT bitsize, bitpos;
4985 unsigned HOST_WIDE_INT bitregion_start = 0;
4986 unsigned HOST_WIDE_INT bitregion_end = 0;
4987 tree offset;
4988 int unsignedp, reversep, volatilep = 0;
4989 tree tem;
4991 push_temp_slots ();
4992 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4993 &unsignedp, &reversep, &volatilep);
4995 /* Make sure bitpos is not negative, it can wreak havoc later. */
4996 if (bitpos < 0)
4998 gcc_assert (offset == NULL_TREE);
4999 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
5000 bitpos &= BITS_PER_UNIT - 1;
5003 if (TREE_CODE (to) == COMPONENT_REF
5004 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5005 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5006 /* The C++ memory model naturally applies to byte-aligned fields.
5007 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5008 BITSIZE are not byte-aligned, there is no need to limit the range
5009 we can access. This can occur with packed structures in Ada. */
5010 else if (bitsize > 0
5011 && bitsize % BITS_PER_UNIT == 0
5012 && bitpos % BITS_PER_UNIT == 0)
5014 bitregion_start = bitpos;
5015 bitregion_end = bitpos + bitsize - 1;
5018 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5020 /* If the field has a mode, we want to access it in the
5021 field's mode, not the computed mode.
5022 If a MEM has VOIDmode (external with incomplete type),
5023 use BLKmode for it instead. */
5024 if (MEM_P (to_rtx))
5026 if (mode1 != VOIDmode)
5027 to_rtx = adjust_address (to_rtx, mode1, 0);
5028 else if (GET_MODE (to_rtx) == VOIDmode)
5029 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5032 if (offset != 0)
5034 machine_mode address_mode;
5035 rtx offset_rtx;
5037 if (!MEM_P (to_rtx))
5039 /* We can get constant negative offsets into arrays with broken
5040 user code. Translate this to a trap instead of ICEing. */
5041 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5042 expand_builtin_trap ();
5043 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5046 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5047 address_mode = get_address_mode (to_rtx);
5048 if (GET_MODE (offset_rtx) != address_mode)
5050 /* We cannot be sure that the RTL in offset_rtx is valid outside
5051 of a memory address context, so force it into a register
5052 before attempting to convert it to the desired mode. */
5053 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5054 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5057 /* If we have an expression in OFFSET_RTX and a non-zero
5058 byte offset in BITPOS, adding the byte offset before the
5059 OFFSET_RTX results in better intermediate code, which makes
5060 later rtl optimization passes perform better.
5062 We prefer intermediate code like this:
5064 r124:DI=r123:DI+0x18
5065 [r124:DI]=r121:DI
5067 ... instead of ...
5069 r124:DI=r123:DI+0x10
5070 [r124:DI+0x8]=r121:DI
5072 This is only done for aligned data values, as these can
5073 be expected to result in single move instructions. */
5074 if (mode1 != VOIDmode
5075 && bitpos != 0
5076 && bitsize > 0
5077 && (bitpos % bitsize) == 0
5078 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
5079 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5081 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
5082 bitregion_start = 0;
5083 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
5084 bitregion_end -= bitpos;
5085 bitpos = 0;
5088 to_rtx = offset_address (to_rtx, offset_rtx,
5089 highest_pow2_factor_for_target (to,
5090 offset));
5093 /* No action is needed if the target is not a memory and the field
5094 lies completely outside that target. This can occur if the source
5095 code contains an out-of-bounds access to a small array. */
5096 if (!MEM_P (to_rtx)
5097 && GET_MODE (to_rtx) != BLKmode
5098 && (unsigned HOST_WIDE_INT) bitpos
5099 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
5101 expand_normal (from);
5102 result = NULL;
5104 /* Handle expand_expr of a complex value returning a CONCAT. */
5105 else if (GET_CODE (to_rtx) == CONCAT)
5107 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
5108 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
5109 && bitpos == 0
5110 && bitsize == mode_bitsize)
5111 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5112 else if (bitsize == mode_bitsize / 2
5113 && (bitpos == 0 || bitpos == mode_bitsize / 2))
5114 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
5115 nontemporal, reversep);
5116 else if (bitpos + bitsize <= mode_bitsize / 2)
5117 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5118 bitregion_start, bitregion_end,
5119 mode1, from, get_alias_set (to),
5120 nontemporal, reversep);
5121 else if (bitpos >= mode_bitsize / 2)
5122 result = store_field (XEXP (to_rtx, 1), bitsize,
5123 bitpos - mode_bitsize / 2,
5124 bitregion_start, bitregion_end,
5125 mode1, from, get_alias_set (to),
5126 nontemporal, reversep);
5127 else if (bitpos == 0 && bitsize == mode_bitsize)
5129 rtx from_rtx;
5130 result = expand_normal (from);
5131 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
5132 TYPE_MODE (TREE_TYPE (from)), 0);
5133 emit_move_insn (XEXP (to_rtx, 0),
5134 read_complex_part (from_rtx, false));
5135 emit_move_insn (XEXP (to_rtx, 1),
5136 read_complex_part (from_rtx, true));
5138 else
5140 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5141 GET_MODE_SIZE (GET_MODE (to_rtx)));
5142 write_complex_part (temp, XEXP (to_rtx, 0), false);
5143 write_complex_part (temp, XEXP (to_rtx, 1), true);
5144 result = store_field (temp, bitsize, bitpos,
5145 bitregion_start, bitregion_end,
5146 mode1, from, get_alias_set (to),
5147 nontemporal, reversep);
5148 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5149 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5152 else
5154 if (MEM_P (to_rtx))
5156 /* If the field is at offset zero, we could have been given the
5157 DECL_RTX of the parent struct. Don't munge it. */
5158 to_rtx = shallow_copy_rtx (to_rtx);
5159 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5160 if (volatilep)
5161 MEM_VOLATILE_P (to_rtx) = 1;
5164 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5165 bitregion_start, bitregion_end,
5166 mode1, to_rtx, to, from,
5167 reversep))
5168 result = NULL;
5169 else
5170 result = store_field (to_rtx, bitsize, bitpos,
5171 bitregion_start, bitregion_end,
5172 mode1, from, get_alias_set (to),
5173 nontemporal, reversep);
5176 if (result)
5177 preserve_temp_slots (result);
5178 pop_temp_slots ();
5179 return;
5182 /* If the rhs is a function call and its value is not an aggregate,
5183 call the function before we start to compute the lhs.
5184 This is needed for correct code for cases such as
5185 val = setjmp (buf) on machines where reference to val
5186 requires loading up part of an address in a separate insn.
5188 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5189 since it might be a promoted variable where the zero- or sign- extension
5190 needs to be done. Handling this in the normal way is safe because no
5191 computation is done before the call. The same is true for SSA names. */
5192 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5193 && COMPLETE_TYPE_P (TREE_TYPE (from))
5194 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5195 && ! (((VAR_P (to)
5196 || TREE_CODE (to) == PARM_DECL
5197 || TREE_CODE (to) == RESULT_DECL)
5198 && REG_P (DECL_RTL (to)))
5199 || TREE_CODE (to) == SSA_NAME))
5201 rtx value;
5202 rtx bounds;
5204 push_temp_slots ();
5205 value = expand_normal (from);
5207 /* Split value and bounds to store them separately. */
5208 chkp_split_slot (value, &value, &bounds);
5210 if (to_rtx == 0)
5211 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5213 /* Handle calls that return values in multiple non-contiguous locations.
5214 The Irix 6 ABI has examples of this. */
5215 if (GET_CODE (to_rtx) == PARALLEL)
5217 if (GET_CODE (value) == PARALLEL)
5218 emit_group_move (to_rtx, value);
5219 else
5220 emit_group_load (to_rtx, value, TREE_TYPE (from),
5221 int_size_in_bytes (TREE_TYPE (from)));
5223 else if (GET_CODE (value) == PARALLEL)
5224 emit_group_store (to_rtx, value, TREE_TYPE (from),
5225 int_size_in_bytes (TREE_TYPE (from)));
5226 else if (GET_MODE (to_rtx) == BLKmode)
5228 /* Handle calls that return BLKmode values in registers. */
5229 if (REG_P (value))
5230 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5231 else
5232 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5234 else
5236 if (POINTER_TYPE_P (TREE_TYPE (to)))
5237 value = convert_memory_address_addr_space
5238 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5239 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5241 emit_move_insn (to_rtx, value);
5244 /* Store bounds if required. */
5245 if (bounds
5246 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5248 gcc_assert (MEM_P (to_rtx));
5249 chkp_emit_bounds_store (bounds, value, to_rtx);
5252 preserve_temp_slots (to_rtx);
5253 pop_temp_slots ();
5254 return;
5257 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5258 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5260 /* Don't move directly into a return register. */
5261 if (TREE_CODE (to) == RESULT_DECL
5262 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5264 rtx temp;
5266 push_temp_slots ();
5268 /* If the source is itself a return value, it still is in a pseudo at
5269 this point so we can move it back to the return register directly. */
5270 if (REG_P (to_rtx)
5271 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5272 && TREE_CODE (from) != CALL_EXPR)
5273 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5274 else
5275 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5277 /* Handle calls that return values in multiple non-contiguous locations.
5278 The Irix 6 ABI has examples of this. */
5279 if (GET_CODE (to_rtx) == PARALLEL)
5281 if (GET_CODE (temp) == PARALLEL)
5282 emit_group_move (to_rtx, temp);
5283 else
5284 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5285 int_size_in_bytes (TREE_TYPE (from)));
5287 else if (temp)
5288 emit_move_insn (to_rtx, temp);
5290 preserve_temp_slots (to_rtx);
5291 pop_temp_slots ();
5292 return;
5295 /* In case we are returning the contents of an object which overlaps
5296 the place the value is being stored, use a safe function when copying
5297 a value through a pointer into a structure value return block. */
5298 if (TREE_CODE (to) == RESULT_DECL
5299 && TREE_CODE (from) == INDIRECT_REF
5300 && ADDR_SPACE_GENERIC_P
5301 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5302 && refs_may_alias_p (to, from)
5303 && cfun->returns_struct
5304 && !cfun->returns_pcc_struct)
5306 rtx from_rtx, size;
5308 push_temp_slots ();
5309 size = expr_size (from);
5310 from_rtx = expand_normal (from);
5312 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5314 preserve_temp_slots (to_rtx);
5315 pop_temp_slots ();
5316 return;
5319 /* Compute FROM and store the value in the rtx we got. */
5321 push_temp_slots ();
5322 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5323 preserve_temp_slots (result);
5324 pop_temp_slots ();
5325 return;
5328 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5329 succeeded, false otherwise. */
5331 bool
5332 emit_storent_insn (rtx to, rtx from)
5334 struct expand_operand ops[2];
5335 machine_mode mode = GET_MODE (to);
5336 enum insn_code code = optab_handler (storent_optab, mode);
5338 if (code == CODE_FOR_nothing)
5339 return false;
5341 create_fixed_operand (&ops[0], to);
5342 create_input_operand (&ops[1], from, mode);
5343 return maybe_expand_insn (code, 2, ops);
5346 /* Generate code for computing expression EXP,
5347 and storing the value into TARGET.
5349 If the mode is BLKmode then we may return TARGET itself.
5350 It turns out that in BLKmode it doesn't cause a problem.
5351 because C has no operators that could combine two different
5352 assignments into the same BLKmode object with different values
5353 with no sequence point. Will other languages need this to
5354 be more thorough?
5356 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5357 stack, and block moves may need to be treated specially.
5359 If NONTEMPORAL is true, try using a nontemporal store instruction.
5361 If REVERSE is true, the store is to be done in reverse order.
5363 If BTARGET is not NULL then computed bounds of EXP are
5364 associated with BTARGET. */
5367 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5368 bool nontemporal, bool reverse, tree btarget)
5370 rtx temp;
5371 rtx alt_rtl = NULL_RTX;
5372 location_t loc = curr_insn_location ();
5374 if (VOID_TYPE_P (TREE_TYPE (exp)))
5376 /* C++ can generate ?: expressions with a throw expression in one
5377 branch and an rvalue in the other. Here, we resolve attempts to
5378 store the throw expression's nonexistent result. */
5379 gcc_assert (!call_param_p);
5380 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5381 return NULL_RTX;
5383 if (TREE_CODE (exp) == COMPOUND_EXPR)
5385 /* Perform first part of compound expression, then assign from second
5386 part. */
5387 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5388 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5389 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5390 call_param_p, nontemporal, reverse,
5391 btarget);
5393 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5395 /* For conditional expression, get safe form of the target. Then
5396 test the condition, doing the appropriate assignment on either
5397 side. This avoids the creation of unnecessary temporaries.
5398 For non-BLKmode, it is more efficient not to do this. */
5400 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5402 do_pending_stack_adjust ();
5403 NO_DEFER_POP;
5404 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5405 profile_probability::uninitialized ());
5406 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5407 nontemporal, reverse, btarget);
5408 emit_jump_insn (targetm.gen_jump (lab2));
5409 emit_barrier ();
5410 emit_label (lab1);
5411 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5412 nontemporal, reverse, btarget);
5413 emit_label (lab2);
5414 OK_DEFER_POP;
5416 return NULL_RTX;
5418 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5419 /* If this is a scalar in a register that is stored in a wider mode
5420 than the declared mode, compute the result into its declared mode
5421 and then convert to the wider mode. Our value is the computed
5422 expression. */
5424 rtx inner_target = 0;
5425 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5426 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5428 /* We can do the conversion inside EXP, which will often result
5429 in some optimizations. Do the conversion in two steps: first
5430 change the signedness, if needed, then the extend. But don't
5431 do this if the type of EXP is a subtype of something else
5432 since then the conversion might involve more than just
5433 converting modes. */
5434 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5435 && TREE_TYPE (TREE_TYPE (exp)) == 0
5436 && GET_MODE_PRECISION (outer_mode)
5437 == TYPE_PRECISION (TREE_TYPE (exp)))
5439 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5440 TYPE_UNSIGNED (TREE_TYPE (exp))))
5442 /* Some types, e.g. Fortran's logical*4, won't have a signed
5443 version, so use the mode instead. */
5444 tree ntype
5445 = (signed_or_unsigned_type_for
5446 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5447 if (ntype == NULL)
5448 ntype = lang_hooks.types.type_for_mode
5449 (TYPE_MODE (TREE_TYPE (exp)),
5450 SUBREG_PROMOTED_SIGN (target));
5452 exp = fold_convert_loc (loc, ntype, exp);
5455 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5456 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5457 exp);
5459 inner_target = SUBREG_REG (target);
5462 temp = expand_expr (exp, inner_target, VOIDmode,
5463 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5465 /* Handle bounds returned by call. */
5466 if (TREE_CODE (exp) == CALL_EXPR)
5468 rtx bounds;
5469 chkp_split_slot (temp, &temp, &bounds);
5470 if (bounds && btarget)
5472 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5473 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5474 chkp_set_rtl_bounds (btarget, tmp);
5478 /* If TEMP is a VOIDmode constant, use convert_modes to make
5479 sure that we properly convert it. */
5480 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5482 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5483 temp, SUBREG_PROMOTED_SIGN (target));
5484 temp = convert_modes (inner_mode, outer_mode, temp,
5485 SUBREG_PROMOTED_SIGN (target));
5488 convert_move (SUBREG_REG (target), temp,
5489 SUBREG_PROMOTED_SIGN (target));
5491 return NULL_RTX;
5493 else if ((TREE_CODE (exp) == STRING_CST
5494 || (TREE_CODE (exp) == MEM_REF
5495 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5496 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5497 == STRING_CST
5498 && integer_zerop (TREE_OPERAND (exp, 1))))
5499 && !nontemporal && !call_param_p
5500 && MEM_P (target))
5502 /* Optimize initialization of an array with a STRING_CST. */
5503 HOST_WIDE_INT exp_len, str_copy_len;
5504 rtx dest_mem;
5505 tree str = TREE_CODE (exp) == STRING_CST
5506 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5508 exp_len = int_expr_size (exp);
5509 if (exp_len <= 0)
5510 goto normal_expr;
5512 if (TREE_STRING_LENGTH (str) <= 0)
5513 goto normal_expr;
5515 str_copy_len = strlen (TREE_STRING_POINTER (str));
5516 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5517 goto normal_expr;
5519 str_copy_len = TREE_STRING_LENGTH (str);
5520 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5521 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5523 str_copy_len += STORE_MAX_PIECES - 1;
5524 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5526 str_copy_len = MIN (str_copy_len, exp_len);
5527 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5528 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5529 MEM_ALIGN (target), false))
5530 goto normal_expr;
5532 dest_mem = target;
5534 dest_mem = store_by_pieces (dest_mem,
5535 str_copy_len, builtin_strncpy_read_str,
5536 CONST_CAST (char *,
5537 TREE_STRING_POINTER (str)),
5538 MEM_ALIGN (target), false,
5539 exp_len > str_copy_len ? 1 : 0);
5540 if (exp_len > str_copy_len)
5541 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5542 GEN_INT (exp_len - str_copy_len),
5543 BLOCK_OP_NORMAL);
5544 return NULL_RTX;
5546 else
5548 rtx tmp_target;
5550 normal_expr:
5551 /* If we want to use a nontemporal or a reverse order store, force the
5552 value into a register first. */
5553 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5554 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5555 (call_param_p
5556 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5557 &alt_rtl, false);
5559 /* Handle bounds returned by call. */
5560 if (TREE_CODE (exp) == CALL_EXPR)
5562 rtx bounds;
5563 chkp_split_slot (temp, &temp, &bounds);
5564 if (bounds && btarget)
5566 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5567 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5568 chkp_set_rtl_bounds (btarget, tmp);
5573 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5574 the same as that of TARGET, adjust the constant. This is needed, for
5575 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5576 only a word-sized value. */
5577 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5578 && TREE_CODE (exp) != ERROR_MARK
5579 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5580 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5581 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5583 /* If value was not generated in the target, store it there.
5584 Convert the value to TARGET's type first if necessary and emit the
5585 pending incrementations that have been queued when expanding EXP.
5586 Note that we cannot emit the whole queue blindly because this will
5587 effectively disable the POST_INC optimization later.
5589 If TEMP and TARGET compare equal according to rtx_equal_p, but
5590 one or both of them are volatile memory refs, we have to distinguish
5591 two cases:
5592 - expand_expr has used TARGET. In this case, we must not generate
5593 another copy. This can be detected by TARGET being equal according
5594 to == .
5595 - expand_expr has not used TARGET - that means that the source just
5596 happens to have the same RTX form. Since temp will have been created
5597 by expand_expr, it will compare unequal according to == .
5598 We must generate a copy in this case, to reach the correct number
5599 of volatile memory references. */
5601 if ((! rtx_equal_p (temp, target)
5602 || (temp != target && (side_effects_p (temp)
5603 || side_effects_p (target))))
5604 && TREE_CODE (exp) != ERROR_MARK
5605 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5606 but TARGET is not valid memory reference, TEMP will differ
5607 from TARGET although it is really the same location. */
5608 && !(alt_rtl
5609 && rtx_equal_p (alt_rtl, target)
5610 && !side_effects_p (alt_rtl)
5611 && !side_effects_p (target))
5612 /* If there's nothing to copy, don't bother. Don't call
5613 expr_size unless necessary, because some front-ends (C++)
5614 expr_size-hook must not be given objects that are not
5615 supposed to be bit-copied or bit-initialized. */
5616 && expr_size (exp) != const0_rtx)
5618 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5620 if (GET_MODE (target) == BLKmode)
5622 /* Handle calls that return BLKmode values in registers. */
5623 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5624 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5625 else
5626 store_bit_field (target,
5627 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5628 0, 0, 0, GET_MODE (temp), temp, reverse);
5630 else
5631 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5634 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5636 /* Handle copying a string constant into an array. The string
5637 constant may be shorter than the array. So copy just the string's
5638 actual length, and clear the rest. First get the size of the data
5639 type of the string, which is actually the size of the target. */
5640 rtx size = expr_size (exp);
5642 if (CONST_INT_P (size)
5643 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5644 emit_block_move (target, temp, size,
5645 (call_param_p
5646 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5647 else
5649 machine_mode pointer_mode
5650 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5651 machine_mode address_mode = get_address_mode (target);
5653 /* Compute the size of the data to copy from the string. */
5654 tree copy_size
5655 = size_binop_loc (loc, MIN_EXPR,
5656 make_tree (sizetype, size),
5657 size_int (TREE_STRING_LENGTH (exp)));
5658 rtx copy_size_rtx
5659 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5660 (call_param_p
5661 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5662 rtx_code_label *label = 0;
5664 /* Copy that much. */
5665 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5666 TYPE_UNSIGNED (sizetype));
5667 emit_block_move (target, temp, copy_size_rtx,
5668 (call_param_p
5669 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5671 /* Figure out how much is left in TARGET that we have to clear.
5672 Do all calculations in pointer_mode. */
5673 if (CONST_INT_P (copy_size_rtx))
5675 size = plus_constant (address_mode, size,
5676 -INTVAL (copy_size_rtx));
5677 target = adjust_address (target, BLKmode,
5678 INTVAL (copy_size_rtx));
5680 else
5682 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5683 copy_size_rtx, NULL_RTX, 0,
5684 OPTAB_LIB_WIDEN);
5686 if (GET_MODE (copy_size_rtx) != address_mode)
5687 copy_size_rtx = convert_to_mode (address_mode,
5688 copy_size_rtx,
5689 TYPE_UNSIGNED (sizetype));
5691 target = offset_address (target, copy_size_rtx,
5692 highest_pow2_factor (copy_size));
5693 label = gen_label_rtx ();
5694 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5695 GET_MODE (size), 0, label);
5698 if (size != const0_rtx)
5699 clear_storage (target, size, BLOCK_OP_NORMAL);
5701 if (label)
5702 emit_label (label);
5705 /* Handle calls that return values in multiple non-contiguous locations.
5706 The Irix 6 ABI has examples of this. */
5707 else if (GET_CODE (target) == PARALLEL)
5709 if (GET_CODE (temp) == PARALLEL)
5710 emit_group_move (target, temp);
5711 else
5712 emit_group_load (target, temp, TREE_TYPE (exp),
5713 int_size_in_bytes (TREE_TYPE (exp)));
5715 else if (GET_CODE (temp) == PARALLEL)
5716 emit_group_store (target, temp, TREE_TYPE (exp),
5717 int_size_in_bytes (TREE_TYPE (exp)));
5718 else if (GET_MODE (temp) == BLKmode)
5719 emit_block_move (target, temp, expr_size (exp),
5720 (call_param_p
5721 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5722 /* If we emit a nontemporal store, there is nothing else to do. */
5723 else if (nontemporal && emit_storent_insn (target, temp))
5725 else
5727 if (reverse)
5728 temp = flip_storage_order (GET_MODE (target), temp);
5729 temp = force_operand (temp, target);
5730 if (temp != target)
5731 emit_move_insn (target, temp);
5735 return NULL_RTX;
5738 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5740 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5741 bool reverse)
5743 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5744 reverse, NULL);
5747 /* Return true if field F of structure TYPE is a flexible array. */
5749 static bool
5750 flexible_array_member_p (const_tree f, const_tree type)
5752 const_tree tf;
5754 tf = TREE_TYPE (f);
5755 return (DECL_CHAIN (f) == NULL
5756 && TREE_CODE (tf) == ARRAY_TYPE
5757 && TYPE_DOMAIN (tf)
5758 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5759 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5760 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5761 && int_size_in_bytes (type) >= 0);
5764 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5765 must have in order for it to completely initialize a value of type TYPE.
5766 Return -1 if the number isn't known.
5768 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5770 static HOST_WIDE_INT
5771 count_type_elements (const_tree type, bool for_ctor_p)
5773 switch (TREE_CODE (type))
5775 case ARRAY_TYPE:
5777 tree nelts;
5779 nelts = array_type_nelts (type);
5780 if (nelts && tree_fits_uhwi_p (nelts))
5782 unsigned HOST_WIDE_INT n;
5784 n = tree_to_uhwi (nelts) + 1;
5785 if (n == 0 || for_ctor_p)
5786 return n;
5787 else
5788 return n * count_type_elements (TREE_TYPE (type), false);
5790 return for_ctor_p ? -1 : 1;
5793 case RECORD_TYPE:
5795 unsigned HOST_WIDE_INT n;
5796 tree f;
5798 n = 0;
5799 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5800 if (TREE_CODE (f) == FIELD_DECL)
5802 if (!for_ctor_p)
5803 n += count_type_elements (TREE_TYPE (f), false);
5804 else if (!flexible_array_member_p (f, type))
5805 /* Don't count flexible arrays, which are not supposed
5806 to be initialized. */
5807 n += 1;
5810 return n;
5813 case UNION_TYPE:
5814 case QUAL_UNION_TYPE:
5816 tree f;
5817 HOST_WIDE_INT n, m;
5819 gcc_assert (!for_ctor_p);
5820 /* Estimate the number of scalars in each field and pick the
5821 maximum. Other estimates would do instead; the idea is simply
5822 to make sure that the estimate is not sensitive to the ordering
5823 of the fields. */
5824 n = 1;
5825 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5826 if (TREE_CODE (f) == FIELD_DECL)
5828 m = count_type_elements (TREE_TYPE (f), false);
5829 /* If the field doesn't span the whole union, add an extra
5830 scalar for the rest. */
5831 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5832 TYPE_SIZE (type)) != 1)
5833 m++;
5834 if (n < m)
5835 n = m;
5837 return n;
5840 case COMPLEX_TYPE:
5841 return 2;
5843 case VECTOR_TYPE:
5844 return TYPE_VECTOR_SUBPARTS (type);
5846 case INTEGER_TYPE:
5847 case REAL_TYPE:
5848 case FIXED_POINT_TYPE:
5849 case ENUMERAL_TYPE:
5850 case BOOLEAN_TYPE:
5851 case POINTER_TYPE:
5852 case OFFSET_TYPE:
5853 case REFERENCE_TYPE:
5854 case NULLPTR_TYPE:
5855 return 1;
5857 case ERROR_MARK:
5858 return 0;
5860 case VOID_TYPE:
5861 case METHOD_TYPE:
5862 case FUNCTION_TYPE:
5863 case LANG_TYPE:
5864 default:
5865 gcc_unreachable ();
5869 /* Helper for categorize_ctor_elements. Identical interface. */
5871 static bool
5872 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5873 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5875 unsigned HOST_WIDE_INT idx;
5876 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5877 tree value, purpose, elt_type;
5879 /* Whether CTOR is a valid constant initializer, in accordance with what
5880 initializer_constant_valid_p does. If inferred from the constructor
5881 elements, true until proven otherwise. */
5882 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5883 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5885 nz_elts = 0;
5886 init_elts = 0;
5887 num_fields = 0;
5888 elt_type = NULL_TREE;
5890 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5892 HOST_WIDE_INT mult = 1;
5894 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5896 tree lo_index = TREE_OPERAND (purpose, 0);
5897 tree hi_index = TREE_OPERAND (purpose, 1);
5899 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5900 mult = (tree_to_uhwi (hi_index)
5901 - tree_to_uhwi (lo_index) + 1);
5903 num_fields += mult;
5904 elt_type = TREE_TYPE (value);
5906 switch (TREE_CODE (value))
5908 case CONSTRUCTOR:
5910 HOST_WIDE_INT nz = 0, ic = 0;
5912 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5913 p_complete);
5915 nz_elts += mult * nz;
5916 init_elts += mult * ic;
5918 if (const_from_elts_p && const_p)
5919 const_p = const_elt_p;
5921 break;
5923 case INTEGER_CST:
5924 case REAL_CST:
5925 case FIXED_CST:
5926 if (!initializer_zerop (value))
5927 nz_elts += mult;
5928 init_elts += mult;
5929 break;
5931 case STRING_CST:
5932 nz_elts += mult * TREE_STRING_LENGTH (value);
5933 init_elts += mult * TREE_STRING_LENGTH (value);
5934 break;
5936 case COMPLEX_CST:
5937 if (!initializer_zerop (TREE_REALPART (value)))
5938 nz_elts += mult;
5939 if (!initializer_zerop (TREE_IMAGPART (value)))
5940 nz_elts += mult;
5941 init_elts += mult;
5942 break;
5944 case VECTOR_CST:
5946 unsigned i;
5947 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5949 tree v = VECTOR_CST_ELT (value, i);
5950 if (!initializer_zerop (v))
5951 nz_elts += mult;
5952 init_elts += mult;
5955 break;
5957 default:
5959 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5960 nz_elts += mult * tc;
5961 init_elts += mult * tc;
5963 if (const_from_elts_p && const_p)
5964 const_p
5965 = initializer_constant_valid_p (value,
5966 elt_type,
5967 TYPE_REVERSE_STORAGE_ORDER
5968 (TREE_TYPE (ctor)))
5969 != NULL_TREE;
5971 break;
5975 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5976 num_fields, elt_type))
5977 *p_complete = false;
5979 *p_nz_elts += nz_elts;
5980 *p_init_elts += init_elts;
5982 return const_p;
5985 /* Examine CTOR to discover:
5986 * how many scalar fields are set to nonzero values,
5987 and place it in *P_NZ_ELTS;
5988 * how many scalar fields in total are in CTOR,
5989 and place it in *P_ELT_COUNT.
5990 * whether the constructor is complete -- in the sense that every
5991 meaningful byte is explicitly given a value --
5992 and place it in *P_COMPLETE.
5994 Return whether or not CTOR is a valid static constant initializer, the same
5995 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5997 bool
5998 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5999 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6001 *p_nz_elts = 0;
6002 *p_init_elts = 0;
6003 *p_complete = true;
6005 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6008 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6009 of which had type LAST_TYPE. Each element was itself a complete
6010 initializer, in the sense that every meaningful byte was explicitly
6011 given a value. Return true if the same is true for the constructor
6012 as a whole. */
6014 bool
6015 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6016 const_tree last_type)
6018 if (TREE_CODE (type) == UNION_TYPE
6019 || TREE_CODE (type) == QUAL_UNION_TYPE)
6021 if (num_elts == 0)
6022 return false;
6024 gcc_assert (num_elts == 1 && last_type);
6026 /* ??? We could look at each element of the union, and find the
6027 largest element. Which would avoid comparing the size of the
6028 initialized element against any tail padding in the union.
6029 Doesn't seem worth the effort... */
6030 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6033 return count_type_elements (type, true) == num_elts;
6036 /* Return 1 if EXP contains mostly (3/4) zeros. */
6038 static int
6039 mostly_zeros_p (const_tree exp)
6041 if (TREE_CODE (exp) == CONSTRUCTOR)
6043 HOST_WIDE_INT nz_elts, init_elts;
6044 bool complete_p;
6046 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6047 return !complete_p || nz_elts < init_elts / 4;
6050 return initializer_zerop (exp);
6053 /* Return 1 if EXP contains all zeros. */
6055 static int
6056 all_zeros_p (const_tree exp)
6058 if (TREE_CODE (exp) == CONSTRUCTOR)
6060 HOST_WIDE_INT nz_elts, init_elts;
6061 bool complete_p;
6063 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6064 return nz_elts == 0;
6067 return initializer_zerop (exp);
6070 /* Helper function for store_constructor.
6071 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6072 CLEARED is as for store_constructor.
6073 ALIAS_SET is the alias set to use for any stores.
6074 If REVERSE is true, the store is to be done in reverse order.
6076 This provides a recursive shortcut back to store_constructor when it isn't
6077 necessary to go through store_field. This is so that we can pass through
6078 the cleared field to let store_constructor know that we may not have to
6079 clear a substructure if the outer structure has already been cleared. */
6081 static void
6082 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
6083 HOST_WIDE_INT bitpos,
6084 unsigned HOST_WIDE_INT bitregion_start,
6085 unsigned HOST_WIDE_INT bitregion_end,
6086 machine_mode mode,
6087 tree exp, int cleared,
6088 alias_set_type alias_set, bool reverse)
6090 if (TREE_CODE (exp) == CONSTRUCTOR
6091 /* We can only call store_constructor recursively if the size and
6092 bit position are on a byte boundary. */
6093 && bitpos % BITS_PER_UNIT == 0
6094 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
6095 /* If we have a nonzero bitpos for a register target, then we just
6096 let store_field do the bitfield handling. This is unlikely to
6097 generate unnecessary clear instructions anyways. */
6098 && (bitpos == 0 || MEM_P (target)))
6100 if (MEM_P (target))
6101 target
6102 = adjust_address (target,
6103 GET_MODE (target) == BLKmode
6104 || 0 != (bitpos
6105 % GET_MODE_ALIGNMENT (GET_MODE (target)))
6106 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
6109 /* Update the alias set, if required. */
6110 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6111 && MEM_ALIAS_SET (target) != 0)
6113 target = copy_rtx (target);
6114 set_mem_alias_set (target, alias_set);
6117 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
6118 reverse);
6120 else
6121 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6122 exp, alias_set, false, reverse);
6126 /* Returns the number of FIELD_DECLs in TYPE. */
6128 static int
6129 fields_length (const_tree type)
6131 tree t = TYPE_FIELDS (type);
6132 int count = 0;
6134 for (; t; t = DECL_CHAIN (t))
6135 if (TREE_CODE (t) == FIELD_DECL)
6136 ++count;
6138 return count;
6142 /* Store the value of constructor EXP into the rtx TARGET.
6143 TARGET is either a REG or a MEM; we know it cannot conflict, since
6144 safe_from_p has been called.
6145 CLEARED is true if TARGET is known to have been zero'd.
6146 SIZE is the number of bytes of TARGET we are allowed to modify: this
6147 may not be the same as the size of EXP if we are assigning to a field
6148 which has been packed to exclude padding bits.
6149 If REVERSE is true, the store is to be done in reverse order. */
6151 static void
6152 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
6153 bool reverse)
6155 tree type = TREE_TYPE (exp);
6156 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6157 HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;
6159 switch (TREE_CODE (type))
6161 case RECORD_TYPE:
6162 case UNION_TYPE:
6163 case QUAL_UNION_TYPE:
6165 unsigned HOST_WIDE_INT idx;
6166 tree field, value;
6168 /* The storage order is specified for every aggregate type. */
6169 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6171 /* If size is zero or the target is already cleared, do nothing. */
6172 if (size == 0 || cleared)
6173 cleared = 1;
6174 /* We either clear the aggregate or indicate the value is dead. */
6175 else if ((TREE_CODE (type) == UNION_TYPE
6176 || TREE_CODE (type) == QUAL_UNION_TYPE)
6177 && ! CONSTRUCTOR_ELTS (exp))
6178 /* If the constructor is empty, clear the union. */
6180 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6181 cleared = 1;
6184 /* If we are building a static constructor into a register,
6185 set the initial value as zero so we can fold the value into
6186 a constant. But if more than one register is involved,
6187 this probably loses. */
6188 else if (REG_P (target) && TREE_STATIC (exp)
6189 && (GET_MODE_SIZE (GET_MODE (target))
6190 <= REGMODE_NATURAL_SIZE (GET_MODE (target))))
6192 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6193 cleared = 1;
6196 /* If the constructor has fewer fields than the structure or
6197 if we are initializing the structure to mostly zeros, clear
6198 the whole structure first. Don't do this if TARGET is a
6199 register whose mode size isn't equal to SIZE since
6200 clear_storage can't handle this case. */
6201 else if (size > 0
6202 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6203 || mostly_zeros_p (exp))
6204 && (!REG_P (target)
6205 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6206 == size)))
6208 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6209 cleared = 1;
6212 if (REG_P (target) && !cleared)
6213 emit_clobber (target);
6215 /* Store each element of the constructor into the
6216 corresponding field of TARGET. */
6217 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6219 machine_mode mode;
6220 HOST_WIDE_INT bitsize;
6221 HOST_WIDE_INT bitpos = 0;
6222 tree offset;
6223 rtx to_rtx = target;
6225 /* Just ignore missing fields. We cleared the whole
6226 structure, above, if any fields are missing. */
6227 if (field == 0)
6228 continue;
6230 if (cleared && initializer_zerop (value))
6231 continue;
6233 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6234 bitsize = tree_to_uhwi (DECL_SIZE (field));
6235 else
6236 gcc_unreachable ();
6238 mode = DECL_MODE (field);
6239 if (DECL_BIT_FIELD (field))
6240 mode = VOIDmode;
6242 offset = DECL_FIELD_OFFSET (field);
6243 if (tree_fits_shwi_p (offset)
6244 && tree_fits_shwi_p (bit_position (field)))
6246 bitpos = int_bit_position (field);
6247 offset = NULL_TREE;
6249 else
6250 gcc_unreachable ();
6252 /* If this initializes a field that is smaller than a
6253 word, at the start of a word, try to widen it to a full
6254 word. This special case allows us to output C++ member
6255 function initializations in a form that the optimizers
6256 can understand. */
6257 if (WORD_REGISTER_OPERATIONS
6258 && REG_P (target)
6259 && bitsize < BITS_PER_WORD
6260 && bitpos % BITS_PER_WORD == 0
6261 && GET_MODE_CLASS (mode) == MODE_INT
6262 && TREE_CODE (value) == INTEGER_CST
6263 && exp_size >= 0
6264 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6266 tree type = TREE_TYPE (value);
6268 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6270 type = lang_hooks.types.type_for_mode
6271 (word_mode, TYPE_UNSIGNED (type));
6272 value = fold_convert (type, value);
6273 /* Make sure the bits beyond the original bitsize are zero
6274 so that we can correctly avoid extra zeroing stores in
6275 later constructor elements. */
6276 tree bitsize_mask
6277 = wide_int_to_tree (type, wi::mask (bitsize, false,
6278 BITS_PER_WORD));
6279 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6282 if (BYTES_BIG_ENDIAN)
6283 value
6284 = fold_build2 (LSHIFT_EXPR, type, value,
6285 build_int_cst (type,
6286 BITS_PER_WORD - bitsize));
6287 bitsize = BITS_PER_WORD;
6288 mode = word_mode;
6291 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6292 && DECL_NONADDRESSABLE_P (field))
6294 to_rtx = copy_rtx (to_rtx);
6295 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6298 store_constructor_field (to_rtx, bitsize, bitpos,
6299 0, bitregion_end, mode,
6300 value, cleared,
6301 get_alias_set (TREE_TYPE (field)),
6302 reverse);
6304 break;
6306 case ARRAY_TYPE:
6308 tree value, index;
6309 unsigned HOST_WIDE_INT i;
6310 int need_to_clear;
6311 tree domain;
6312 tree elttype = TREE_TYPE (type);
6313 int const_bounds_p;
6314 HOST_WIDE_INT minelt = 0;
6315 HOST_WIDE_INT maxelt = 0;
6317 /* The storage order is specified for every aggregate type. */
6318 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6320 domain = TYPE_DOMAIN (type);
6321 const_bounds_p = (TYPE_MIN_VALUE (domain)
6322 && TYPE_MAX_VALUE (domain)
6323 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6324 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6326 /* If we have constant bounds for the range of the type, get them. */
6327 if (const_bounds_p)
6329 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6330 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6333 /* If the constructor has fewer elements than the array, clear
6334 the whole array first. Similarly if this is static
6335 constructor of a non-BLKmode object. */
6336 if (cleared)
6337 need_to_clear = 0;
6338 else if (REG_P (target) && TREE_STATIC (exp))
6339 need_to_clear = 1;
6340 else
6342 unsigned HOST_WIDE_INT idx;
6343 tree index, value;
6344 HOST_WIDE_INT count = 0, zero_count = 0;
6345 need_to_clear = ! const_bounds_p;
6347 /* This loop is a more accurate version of the loop in
6348 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6349 is also needed to check for missing elements. */
6350 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6352 HOST_WIDE_INT this_node_count;
6354 if (need_to_clear)
6355 break;
6357 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6359 tree lo_index = TREE_OPERAND (index, 0);
6360 tree hi_index = TREE_OPERAND (index, 1);
6362 if (! tree_fits_uhwi_p (lo_index)
6363 || ! tree_fits_uhwi_p (hi_index))
6365 need_to_clear = 1;
6366 break;
6369 this_node_count = (tree_to_uhwi (hi_index)
6370 - tree_to_uhwi (lo_index) + 1);
6372 else
6373 this_node_count = 1;
6375 count += this_node_count;
6376 if (mostly_zeros_p (value))
6377 zero_count += this_node_count;
6380 /* Clear the entire array first if there are any missing
6381 elements, or if the incidence of zero elements is >=
6382 75%. */
6383 if (! need_to_clear
6384 && (count < maxelt - minelt + 1
6385 || 4 * zero_count >= 3 * count))
6386 need_to_clear = 1;
6389 if (need_to_clear && size > 0)
6391 if (REG_P (target))
6392 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6393 else
6394 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6395 cleared = 1;
6398 if (!cleared && REG_P (target))
6399 /* Inform later passes that the old value is dead. */
6400 emit_clobber (target);
6402 /* Store each element of the constructor into the
6403 corresponding element of TARGET, determined by counting the
6404 elements. */
6405 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6407 machine_mode mode;
6408 HOST_WIDE_INT bitsize;
6409 HOST_WIDE_INT bitpos;
6410 rtx xtarget = target;
6412 if (cleared && initializer_zerop (value))
6413 continue;
6415 mode = TYPE_MODE (elttype);
6416 if (mode == BLKmode)
6417 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6418 ? tree_to_uhwi (TYPE_SIZE (elttype))
6419 : -1);
6420 else
6421 bitsize = GET_MODE_BITSIZE (mode);
6423 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6425 tree lo_index = TREE_OPERAND (index, 0);
6426 tree hi_index = TREE_OPERAND (index, 1);
6427 rtx index_r, pos_rtx;
6428 HOST_WIDE_INT lo, hi, count;
6429 tree position;
6431 /* If the range is constant and "small", unroll the loop. */
6432 if (const_bounds_p
6433 && tree_fits_shwi_p (lo_index)
6434 && tree_fits_shwi_p (hi_index)
6435 && (lo = tree_to_shwi (lo_index),
6436 hi = tree_to_shwi (hi_index),
6437 count = hi - lo + 1,
6438 (!MEM_P (target)
6439 || count <= 2
6440 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6441 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6442 <= 40 * 8)))))
6444 lo -= minelt; hi -= minelt;
6445 for (; lo <= hi; lo++)
6447 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6449 if (MEM_P (target)
6450 && !MEM_KEEP_ALIAS_SET_P (target)
6451 && TREE_CODE (type) == ARRAY_TYPE
6452 && TYPE_NONALIASED_COMPONENT (type))
6454 target = copy_rtx (target);
6455 MEM_KEEP_ALIAS_SET_P (target) = 1;
6458 store_constructor_field
6459 (target, bitsize, bitpos, 0, bitregion_end,
6460 mode, value, cleared,
6461 get_alias_set (elttype), reverse);
6464 else
6466 rtx_code_label *loop_start = gen_label_rtx ();
6467 rtx_code_label *loop_end = gen_label_rtx ();
6468 tree exit_cond;
6470 expand_normal (hi_index);
6472 index = build_decl (EXPR_LOCATION (exp),
6473 VAR_DECL, NULL_TREE, domain);
6474 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6475 SET_DECL_RTL (index, index_r);
6476 store_expr (lo_index, index_r, 0, false, reverse);
6478 /* Build the head of the loop. */
6479 do_pending_stack_adjust ();
6480 emit_label (loop_start);
6482 /* Assign value to element index. */
6483 position =
6484 fold_convert (ssizetype,
6485 fold_build2 (MINUS_EXPR,
6486 TREE_TYPE (index),
6487 index,
6488 TYPE_MIN_VALUE (domain)));
6490 position =
6491 size_binop (MULT_EXPR, position,
6492 fold_convert (ssizetype,
6493 TYPE_SIZE_UNIT (elttype)));
6495 pos_rtx = expand_normal (position);
6496 xtarget = offset_address (target, pos_rtx,
6497 highest_pow2_factor (position));
6498 xtarget = adjust_address (xtarget, mode, 0);
6499 if (TREE_CODE (value) == CONSTRUCTOR)
6500 store_constructor (value, xtarget, cleared,
6501 bitsize / BITS_PER_UNIT, reverse);
6502 else
6503 store_expr (value, xtarget, 0, false, reverse);
6505 /* Generate a conditional jump to exit the loop. */
6506 exit_cond = build2 (LT_EXPR, integer_type_node,
6507 index, hi_index);
6508 jumpif (exit_cond, loop_end,
6509 profile_probability::uninitialized ());
6511 /* Update the loop counter, and jump to the head of
6512 the loop. */
6513 expand_assignment (index,
6514 build2 (PLUS_EXPR, TREE_TYPE (index),
6515 index, integer_one_node),
6516 false);
6518 emit_jump (loop_start);
6520 /* Build the end of the loop. */
6521 emit_label (loop_end);
6524 else if ((index != 0 && ! tree_fits_shwi_p (index))
6525 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6527 tree position;
6529 if (index == 0)
6530 index = ssize_int (1);
6532 if (minelt)
6533 index = fold_convert (ssizetype,
6534 fold_build2 (MINUS_EXPR,
6535 TREE_TYPE (index),
6536 index,
6537 TYPE_MIN_VALUE (domain)));
6539 position =
6540 size_binop (MULT_EXPR, index,
6541 fold_convert (ssizetype,
6542 TYPE_SIZE_UNIT (elttype)));
6543 xtarget = offset_address (target,
6544 expand_normal (position),
6545 highest_pow2_factor (position));
6546 xtarget = adjust_address (xtarget, mode, 0);
6547 store_expr (value, xtarget, 0, false, reverse);
6549 else
6551 if (index != 0)
6552 bitpos = ((tree_to_shwi (index) - minelt)
6553 * tree_to_uhwi (TYPE_SIZE (elttype)));
6554 else
6555 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6557 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6558 && TREE_CODE (type) == ARRAY_TYPE
6559 && TYPE_NONALIASED_COMPONENT (type))
6561 target = copy_rtx (target);
6562 MEM_KEEP_ALIAS_SET_P (target) = 1;
6564 store_constructor_field (target, bitsize, bitpos, 0,
6565 bitregion_end, mode, value,
6566 cleared, get_alias_set (elttype),
6567 reverse);
6570 break;
6573 case VECTOR_TYPE:
6575 unsigned HOST_WIDE_INT idx;
6576 constructor_elt *ce;
6577 int i;
6578 int need_to_clear;
6579 int icode = CODE_FOR_nothing;
6580 tree elttype = TREE_TYPE (type);
6581 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6582 machine_mode eltmode = TYPE_MODE (elttype);
6583 HOST_WIDE_INT bitsize;
6584 HOST_WIDE_INT bitpos;
6585 rtvec vector = NULL;
6586 unsigned n_elts;
6587 alias_set_type alias;
6588 bool vec_vec_init_p = false;
6590 gcc_assert (eltmode != BLKmode);
6592 n_elts = TYPE_VECTOR_SUBPARTS (type);
6593 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6595 machine_mode mode = GET_MODE (target);
6596 machine_mode emode = eltmode;
6598 if (CONSTRUCTOR_NELTS (exp)
6599 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6600 == VECTOR_TYPE))
6602 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6603 gcc_assert (CONSTRUCTOR_NELTS (exp) * TYPE_VECTOR_SUBPARTS (etype)
6604 == n_elts);
6605 emode = TYPE_MODE (etype);
6607 icode = (int) convert_optab_handler (vec_init_optab, mode, emode);
6608 if (icode != CODE_FOR_nothing)
6610 unsigned int i, n = n_elts;
6612 if (emode != eltmode)
6614 n = CONSTRUCTOR_NELTS (exp);
6615 vec_vec_init_p = true;
6617 vector = rtvec_alloc (n);
6618 for (i = 0; i < n; i++)
6619 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6623 /* If the constructor has fewer elements than the vector,
6624 clear the whole array first. Similarly if this is static
6625 constructor of a non-BLKmode object. */
6626 if (cleared)
6627 need_to_clear = 0;
6628 else if (REG_P (target) && TREE_STATIC (exp))
6629 need_to_clear = 1;
6630 else
6632 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6633 tree value;
6635 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6637 tree sz = TYPE_SIZE (TREE_TYPE (value));
6638 int n_elts_here
6639 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6640 TYPE_SIZE (elttype)));
6642 count += n_elts_here;
6643 if (mostly_zeros_p (value))
6644 zero_count += n_elts_here;
6647 /* Clear the entire vector first if there are any missing elements,
6648 or if the incidence of zero elements is >= 75%. */
6649 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6652 if (need_to_clear && size > 0 && !vector)
6654 if (REG_P (target))
6655 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6656 else
6657 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6658 cleared = 1;
6661 /* Inform later passes that the old value is dead. */
6662 if (!cleared && !vector && REG_P (target))
6663 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6665 if (MEM_P (target))
6666 alias = MEM_ALIAS_SET (target);
6667 else
6668 alias = get_alias_set (elttype);
6670 /* Store each element of the constructor into the corresponding
6671 element of TARGET, determined by counting the elements. */
6672 for (idx = 0, i = 0;
6673 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6674 idx++, i += bitsize / elt_size)
6676 HOST_WIDE_INT eltpos;
6677 tree value = ce->value;
6679 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6680 if (cleared && initializer_zerop (value))
6681 continue;
6683 if (ce->index)
6684 eltpos = tree_to_uhwi (ce->index);
6685 else
6686 eltpos = i;
6688 if (vector)
6690 if (vec_vec_init_p)
6692 gcc_assert (ce->index == NULL_TREE);
6693 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6694 eltpos = idx;
6696 else
6697 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6698 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6700 else
6702 machine_mode value_mode
6703 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6704 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6705 bitpos = eltpos * elt_size;
6706 store_constructor_field (target, bitsize, bitpos, 0,
6707 bitregion_end, value_mode,
6708 value, cleared, alias, reverse);
6712 if (vector)
6713 emit_insn (GEN_FCN (icode) (target,
6714 gen_rtx_PARALLEL (GET_MODE (target),
6715 vector)));
6716 break;
6719 default:
6720 gcc_unreachable ();
6724 /* Store the value of EXP (an expression tree)
6725 into a subfield of TARGET which has mode MODE and occupies
6726 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6727 If MODE is VOIDmode, it means that we are storing into a bit-field.
6729 BITREGION_START is bitpos of the first bitfield in this region.
6730 BITREGION_END is the bitpos of the ending bitfield in this region.
6731 These two fields are 0, if the C++ memory model does not apply,
6732 or we are not interested in keeping track of bitfield regions.
6734 Always return const0_rtx unless we have something particular to
6735 return.
6737 ALIAS_SET is the alias set for the destination. This value will
6738 (in general) be different from that for TARGET, since TARGET is a
6739 reference to the containing structure.
6741 If NONTEMPORAL is true, try generating a nontemporal store.
6743 If REVERSE is true, the store is to be done in reverse order. */
6745 static rtx
6746 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6747 unsigned HOST_WIDE_INT bitregion_start,
6748 unsigned HOST_WIDE_INT bitregion_end,
6749 machine_mode mode, tree exp,
6750 alias_set_type alias_set, bool nontemporal, bool reverse)
6752 if (TREE_CODE (exp) == ERROR_MARK)
6753 return const0_rtx;
6755 /* If we have nothing to store, do nothing unless the expression has
6756 side-effects. Don't do that for zero sized addressable lhs of
6757 calls. */
6758 if (bitsize == 0
6759 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6760 || TREE_CODE (exp) != CALL_EXPR))
6761 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6763 if (GET_CODE (target) == CONCAT)
6765 /* We're storing into a struct containing a single __complex. */
6767 gcc_assert (!bitpos);
6768 return store_expr (exp, target, 0, nontemporal, reverse);
6771 /* If the structure is in a register or if the component
6772 is a bit field, we cannot use addressing to access it.
6773 Use bit-field techniques or SUBREG to store in it. */
6775 if (mode == VOIDmode
6776 || (mode != BLKmode && ! direct_store[(int) mode]
6777 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6778 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6779 || REG_P (target)
6780 || GET_CODE (target) == SUBREG
6781 /* If the field isn't aligned enough to store as an ordinary memref,
6782 store it as a bit field. */
6783 || (mode != BLKmode
6784 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6785 || bitpos % GET_MODE_ALIGNMENT (mode))
6786 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6787 || (bitpos % BITS_PER_UNIT != 0)))
6788 || (bitsize >= 0 && mode != BLKmode
6789 && GET_MODE_BITSIZE (mode) > bitsize)
6790 /* If the RHS and field are a constant size and the size of the
6791 RHS isn't the same size as the bitfield, we must use bitfield
6792 operations. */
6793 || (bitsize >= 0
6794 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6795 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
6796 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6797 we will handle specially below. */
6798 && !(TREE_CODE (exp) == CONSTRUCTOR
6799 && bitsize % BITS_PER_UNIT == 0)
6800 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6801 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6802 includes some extra padding. store_expr / expand_expr will in
6803 that case call get_inner_reference that will have the bitsize
6804 we check here and thus the block move will not clobber the
6805 padding that shouldn't be clobbered. In the future we could
6806 replace the TREE_ADDRESSABLE check with a check that
6807 get_base_address needs to live in memory. */
6808 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6809 || TREE_CODE (exp) != COMPONENT_REF
6810 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
6811 || (bitsize % BITS_PER_UNIT != 0)
6812 || (bitpos % BITS_PER_UNIT != 0)
6813 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
6814 != 0)))
6815 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6816 decl we must use bitfield operations. */
6817 || (bitsize >= 0
6818 && TREE_CODE (exp) == MEM_REF
6819 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6820 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6821 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6822 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6824 rtx temp;
6825 gimple *nop_def;
6827 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6828 implies a mask operation. If the precision is the same size as
6829 the field we're storing into, that mask is redundant. This is
6830 particularly common with bit field assignments generated by the
6831 C front end. */
6832 nop_def = get_def_for_expr (exp, NOP_EXPR);
6833 if (nop_def)
6835 tree type = TREE_TYPE (exp);
6836 if (INTEGRAL_TYPE_P (type)
6837 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6838 && bitsize == TYPE_PRECISION (type))
6840 tree op = gimple_assign_rhs1 (nop_def);
6841 type = TREE_TYPE (op);
6842 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6843 exp = op;
6847 temp = expand_normal (exp);
6849 /* Handle calls that return values in multiple non-contiguous locations.
6850 The Irix 6 ABI has examples of this. */
6851 if (GET_CODE (temp) == PARALLEL)
6853 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6854 scalar_int_mode temp_mode
6855 = smallest_int_mode_for_size (size * BITS_PER_UNIT);
6856 rtx temp_target = gen_reg_rtx (temp_mode);
6857 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6858 temp = temp_target;
6861 /* Handle calls that return BLKmode values in registers. */
6862 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6864 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6865 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6866 temp = temp_target;
6869 /* If the value has aggregate type and an integral mode then, if BITSIZE
6870 is narrower than this mode and this is for big-endian data, we first
6871 need to put the value into the low-order bits for store_bit_field,
6872 except when MODE is BLKmode and BITSIZE larger than the word size
6873 (see the handling of fields larger than a word in store_bit_field).
6874 Moreover, the field may be not aligned on a byte boundary; in this
6875 case, if it has reverse storage order, it needs to be accessed as a
6876 scalar field with reverse storage order and we must first put the
6877 value into target order. */
6878 scalar_int_mode temp_mode;
6879 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
6880 && is_int_mode (GET_MODE (temp), &temp_mode))
6882 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
6884 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6886 if (reverse)
6887 temp = flip_storage_order (temp_mode, temp);
6889 if (bitsize < size
6890 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
6891 && !(mode == BLKmode && bitsize > BITS_PER_WORD))
6892 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
6893 size - bitsize, NULL_RTX, 1);
6896 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6897 if (mode != VOIDmode && mode != BLKmode
6898 && mode != TYPE_MODE (TREE_TYPE (exp)))
6899 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6901 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
6902 and BITPOS must be aligned on a byte boundary. If so, we simply do
6903 a block copy. Likewise for a BLKmode-like TARGET. */
6904 if (GET_MODE (temp) == BLKmode
6905 && (GET_MODE (target) == BLKmode
6906 || (MEM_P (target)
6907 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6908 && (bitpos % BITS_PER_UNIT) == 0
6909 && (bitsize % BITS_PER_UNIT) == 0)))
6911 gcc_assert (MEM_P (target) && MEM_P (temp)
6912 && (bitpos % BITS_PER_UNIT) == 0);
6914 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6915 emit_block_move (target, temp,
6916 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6917 / BITS_PER_UNIT),
6918 BLOCK_OP_NORMAL);
6920 return const0_rtx;
6923 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
6924 word size, we need to load the value (see again store_bit_field). */
6925 if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
6927 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
6928 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
6929 temp_mode, false, NULL);
6932 /* Store the value in the bitfield. */
6933 store_bit_field (target, bitsize, bitpos,
6934 bitregion_start, bitregion_end,
6935 mode, temp, reverse);
6937 return const0_rtx;
6939 else
6941 /* Now build a reference to just the desired component. */
6942 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6944 if (to_rtx == target)
6945 to_rtx = copy_rtx (to_rtx);
6947 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6948 set_mem_alias_set (to_rtx, alias_set);
6950 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
6951 into a target smaller than its type; handle that case now. */
6952 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
6954 gcc_assert (bitsize % BITS_PER_UNIT == 0);
6955 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
6956 return to_rtx;
6959 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
6963 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6964 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6965 codes and find the ultimate containing object, which we return.
6967 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6968 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
6969 storage order of the field.
6970 If the position of the field is variable, we store a tree
6971 giving the variable offset (in units) in *POFFSET.
6972 This offset is in addition to the bit position.
6973 If the position is not variable, we store 0 in *POFFSET.
6975 If any of the extraction expressions is volatile,
6976 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6978 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6979 Otherwise, it is a mode that can be used to access the field.
6981 If the field describes a variable-sized object, *PMODE is set to
6982 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6983 this case, but the address of the object can be found. */
6985 tree
6986 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6987 HOST_WIDE_INT *pbitpos, tree *poffset,
6988 machine_mode *pmode, int *punsignedp,
6989 int *preversep, int *pvolatilep)
6991 tree size_tree = 0;
6992 machine_mode mode = VOIDmode;
6993 bool blkmode_bitfield = false;
6994 tree offset = size_zero_node;
6995 offset_int bit_offset = 0;
6997 /* First get the mode, signedness, storage order and size. We do this from
6998 just the outermost expression. */
6999 *pbitsize = -1;
7000 if (TREE_CODE (exp) == COMPONENT_REF)
7002 tree field = TREE_OPERAND (exp, 1);
7003 size_tree = DECL_SIZE (field);
7004 if (flag_strict_volatile_bitfields > 0
7005 && TREE_THIS_VOLATILE (exp)
7006 && DECL_BIT_FIELD_TYPE (field)
7007 && DECL_MODE (field) != BLKmode)
7008 /* Volatile bitfields should be accessed in the mode of the
7009 field's type, not the mode computed based on the bit
7010 size. */
7011 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7012 else if (!DECL_BIT_FIELD (field))
7013 mode = DECL_MODE (field);
7014 else if (DECL_MODE (field) == BLKmode)
7015 blkmode_bitfield = true;
7017 *punsignedp = DECL_UNSIGNED (field);
7019 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7021 size_tree = TREE_OPERAND (exp, 1);
7022 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7023 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7025 /* For vector types, with the correct size of access, use the mode of
7026 inner type. */
7027 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7028 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7029 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7030 mode = TYPE_MODE (TREE_TYPE (exp));
7032 else
7034 mode = TYPE_MODE (TREE_TYPE (exp));
7035 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7037 if (mode == BLKmode)
7038 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7039 else
7040 *pbitsize = GET_MODE_BITSIZE (mode);
7043 if (size_tree != 0)
7045 if (! tree_fits_uhwi_p (size_tree))
7046 mode = BLKmode, *pbitsize = -1;
7047 else
7048 *pbitsize = tree_to_uhwi (size_tree);
7051 *preversep = reverse_storage_order_for_component_p (exp);
7053 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7054 and find the ultimate containing object. */
7055 while (1)
7057 switch (TREE_CODE (exp))
7059 case BIT_FIELD_REF:
7060 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
7061 break;
7063 case COMPONENT_REF:
7065 tree field = TREE_OPERAND (exp, 1);
7066 tree this_offset = component_ref_field_offset (exp);
7068 /* If this field hasn't been filled in yet, don't go past it.
7069 This should only happen when folding expressions made during
7070 type construction. */
7071 if (this_offset == 0)
7072 break;
7074 offset = size_binop (PLUS_EXPR, offset, this_offset);
7075 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
7077 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7079 break;
7081 case ARRAY_REF:
7082 case ARRAY_RANGE_REF:
7084 tree index = TREE_OPERAND (exp, 1);
7085 tree low_bound = array_ref_low_bound (exp);
7086 tree unit_size = array_ref_element_size (exp);
7088 /* We assume all arrays have sizes that are a multiple of a byte.
7089 First subtract the lower bound, if any, in the type of the
7090 index, then convert to sizetype and multiply by the size of
7091 the array element. */
7092 if (! integer_zerop (low_bound))
7093 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7094 index, low_bound);
7096 offset = size_binop (PLUS_EXPR, offset,
7097 size_binop (MULT_EXPR,
7098 fold_convert (sizetype, index),
7099 unit_size));
7101 break;
7103 case REALPART_EXPR:
7104 break;
7106 case IMAGPART_EXPR:
7107 bit_offset += *pbitsize;
7108 break;
7110 case VIEW_CONVERT_EXPR:
7111 break;
7113 case MEM_REF:
7114 /* Hand back the decl for MEM[&decl, off]. */
7115 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7117 tree off = TREE_OPERAND (exp, 1);
7118 if (!integer_zerop (off))
7120 offset_int boff, coff = mem_ref_offset (exp);
7121 boff = coff << LOG2_BITS_PER_UNIT;
7122 bit_offset += boff;
7124 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7126 goto done;
7128 default:
7129 goto done;
7132 /* If any reference in the chain is volatile, the effect is volatile. */
7133 if (TREE_THIS_VOLATILE (exp))
7134 *pvolatilep = 1;
7136 exp = TREE_OPERAND (exp, 0);
7138 done:
7140 /* If OFFSET is constant, see if we can return the whole thing as a
7141 constant bit position. Make sure to handle overflow during
7142 this conversion. */
7143 if (TREE_CODE (offset) == INTEGER_CST)
7145 offset_int tem = wi::sext (wi::to_offset (offset),
7146 TYPE_PRECISION (sizetype));
7147 tem <<= LOG2_BITS_PER_UNIT;
7148 tem += bit_offset;
7149 if (wi::fits_shwi_p (tem))
7151 *pbitpos = tem.to_shwi ();
7152 *poffset = offset = NULL_TREE;
7156 /* Otherwise, split it up. */
7157 if (offset)
7159 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7160 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
7162 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
7163 offset_int tem = wi::bit_and_not (bit_offset, mask);
7164 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
7165 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
7166 bit_offset -= tem;
7167 tem >>= LOG2_BITS_PER_UNIT;
7168 offset = size_binop (PLUS_EXPR, offset,
7169 wide_int_to_tree (sizetype, tem));
7172 *pbitpos = bit_offset.to_shwi ();
7173 *poffset = offset;
7176 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7177 if (mode == VOIDmode
7178 && blkmode_bitfield
7179 && (*pbitpos % BITS_PER_UNIT) == 0
7180 && (*pbitsize % BITS_PER_UNIT) == 0)
7181 *pmode = BLKmode;
7182 else
7183 *pmode = mode;
7185 return exp;
7188 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7190 static unsigned HOST_WIDE_INT
7191 target_align (const_tree target)
7193 /* We might have a chain of nested references with intermediate misaligning
7194 bitfields components, so need to recurse to find out. */
7196 unsigned HOST_WIDE_INT this_align, outer_align;
7198 switch (TREE_CODE (target))
7200 case BIT_FIELD_REF:
7201 return 1;
7203 case COMPONENT_REF:
7204 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7205 outer_align = target_align (TREE_OPERAND (target, 0));
7206 return MIN (this_align, outer_align);
7208 case ARRAY_REF:
7209 case ARRAY_RANGE_REF:
7210 this_align = TYPE_ALIGN (TREE_TYPE (target));
7211 outer_align = target_align (TREE_OPERAND (target, 0));
7212 return MIN (this_align, outer_align);
7214 CASE_CONVERT:
7215 case NON_LVALUE_EXPR:
7216 case VIEW_CONVERT_EXPR:
7217 this_align = TYPE_ALIGN (TREE_TYPE (target));
7218 outer_align = target_align (TREE_OPERAND (target, 0));
7219 return MAX (this_align, outer_align);
7221 default:
7222 return TYPE_ALIGN (TREE_TYPE (target));
7227 /* Given an rtx VALUE that may contain additions and multiplications, return
7228 an equivalent value that just refers to a register, memory, or constant.
7229 This is done by generating instructions to perform the arithmetic and
7230 returning a pseudo-register containing the value.
7232 The returned value may be a REG, SUBREG, MEM or constant. */
7235 force_operand (rtx value, rtx target)
7237 rtx op1, op2;
7238 /* Use subtarget as the target for operand 0 of a binary operation. */
7239 rtx subtarget = get_subtarget (target);
7240 enum rtx_code code = GET_CODE (value);
7242 /* Check for subreg applied to an expression produced by loop optimizer. */
7243 if (code == SUBREG
7244 && !REG_P (SUBREG_REG (value))
7245 && !MEM_P (SUBREG_REG (value)))
7247 value
7248 = simplify_gen_subreg (GET_MODE (value),
7249 force_reg (GET_MODE (SUBREG_REG (value)),
7250 force_operand (SUBREG_REG (value),
7251 NULL_RTX)),
7252 GET_MODE (SUBREG_REG (value)),
7253 SUBREG_BYTE (value));
7254 code = GET_CODE (value);
7257 /* Check for a PIC address load. */
7258 if ((code == PLUS || code == MINUS)
7259 && XEXP (value, 0) == pic_offset_table_rtx
7260 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7261 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7262 || GET_CODE (XEXP (value, 1)) == CONST))
7264 if (!subtarget)
7265 subtarget = gen_reg_rtx (GET_MODE (value));
7266 emit_move_insn (subtarget, value);
7267 return subtarget;
7270 if (ARITHMETIC_P (value))
7272 op2 = XEXP (value, 1);
7273 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7274 subtarget = 0;
7275 if (code == MINUS && CONST_INT_P (op2))
7277 code = PLUS;
7278 op2 = negate_rtx (GET_MODE (value), op2);
7281 /* Check for an addition with OP2 a constant integer and our first
7282 operand a PLUS of a virtual register and something else. In that
7283 case, we want to emit the sum of the virtual register and the
7284 constant first and then add the other value. This allows virtual
7285 register instantiation to simply modify the constant rather than
7286 creating another one around this addition. */
7287 if (code == PLUS && CONST_INT_P (op2)
7288 && GET_CODE (XEXP (value, 0)) == PLUS
7289 && REG_P (XEXP (XEXP (value, 0), 0))
7290 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7291 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7293 rtx temp = expand_simple_binop (GET_MODE (value), code,
7294 XEXP (XEXP (value, 0), 0), op2,
7295 subtarget, 0, OPTAB_LIB_WIDEN);
7296 return expand_simple_binop (GET_MODE (value), code, temp,
7297 force_operand (XEXP (XEXP (value,
7298 0), 1), 0),
7299 target, 0, OPTAB_LIB_WIDEN);
7302 op1 = force_operand (XEXP (value, 0), subtarget);
7303 op2 = force_operand (op2, NULL_RTX);
7304 switch (code)
7306 case MULT:
7307 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7308 case DIV:
7309 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7310 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7311 target, 1, OPTAB_LIB_WIDEN);
7312 else
7313 return expand_divmod (0,
7314 FLOAT_MODE_P (GET_MODE (value))
7315 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7316 GET_MODE (value), op1, op2, target, 0);
7317 case MOD:
7318 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7319 target, 0);
7320 case UDIV:
7321 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7322 target, 1);
7323 case UMOD:
7324 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7325 target, 1);
7326 case ASHIFTRT:
7327 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7328 target, 0, OPTAB_LIB_WIDEN);
7329 default:
7330 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7331 target, 1, OPTAB_LIB_WIDEN);
7334 if (UNARY_P (value))
7336 if (!target)
7337 target = gen_reg_rtx (GET_MODE (value));
7338 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7339 switch (code)
7341 case ZERO_EXTEND:
7342 case SIGN_EXTEND:
7343 case TRUNCATE:
7344 case FLOAT_EXTEND:
7345 case FLOAT_TRUNCATE:
7346 convert_move (target, op1, code == ZERO_EXTEND);
7347 return target;
7349 case FIX:
7350 case UNSIGNED_FIX:
7351 expand_fix (target, op1, code == UNSIGNED_FIX);
7352 return target;
7354 case FLOAT:
7355 case UNSIGNED_FLOAT:
7356 expand_float (target, op1, code == UNSIGNED_FLOAT);
7357 return target;
7359 default:
7360 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7364 #ifdef INSN_SCHEDULING
7365 /* On machines that have insn scheduling, we want all memory reference to be
7366 explicit, so we need to deal with such paradoxical SUBREGs. */
7367 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7368 value
7369 = simplify_gen_subreg (GET_MODE (value),
7370 force_reg (GET_MODE (SUBREG_REG (value)),
7371 force_operand (SUBREG_REG (value),
7372 NULL_RTX)),
7373 GET_MODE (SUBREG_REG (value)),
7374 SUBREG_BYTE (value));
7375 #endif
7377 return value;
7380 /* Subroutine of expand_expr: return nonzero iff there is no way that
7381 EXP can reference X, which is being modified. TOP_P is nonzero if this
7382 call is going to be used to determine whether we need a temporary
7383 for EXP, as opposed to a recursive call to this function.
7385 It is always safe for this routine to return zero since it merely
7386 searches for optimization opportunities. */
7389 safe_from_p (const_rtx x, tree exp, int top_p)
7391 rtx exp_rtl = 0;
7392 int i, nops;
7394 if (x == 0
7395 /* If EXP has varying size, we MUST use a target since we currently
7396 have no way of allocating temporaries of variable size
7397 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7398 So we assume here that something at a higher level has prevented a
7399 clash. This is somewhat bogus, but the best we can do. Only
7400 do this when X is BLKmode and when we are at the top level. */
7401 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7402 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7403 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7404 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7405 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7406 != INTEGER_CST)
7407 && GET_MODE (x) == BLKmode)
7408 /* If X is in the outgoing argument area, it is always safe. */
7409 || (MEM_P (x)
7410 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7411 || (GET_CODE (XEXP (x, 0)) == PLUS
7412 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7413 return 1;
7415 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7416 find the underlying pseudo. */
7417 if (GET_CODE (x) == SUBREG)
7419 x = SUBREG_REG (x);
7420 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7421 return 0;
7424 /* Now look at our tree code and possibly recurse. */
7425 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7427 case tcc_declaration:
7428 exp_rtl = DECL_RTL_IF_SET (exp);
7429 break;
7431 case tcc_constant:
7432 return 1;
7434 case tcc_exceptional:
7435 if (TREE_CODE (exp) == TREE_LIST)
7437 while (1)
7439 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7440 return 0;
7441 exp = TREE_CHAIN (exp);
7442 if (!exp)
7443 return 1;
7444 if (TREE_CODE (exp) != TREE_LIST)
7445 return safe_from_p (x, exp, 0);
7448 else if (TREE_CODE (exp) == CONSTRUCTOR)
7450 constructor_elt *ce;
7451 unsigned HOST_WIDE_INT idx;
7453 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7454 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7455 || !safe_from_p (x, ce->value, 0))
7456 return 0;
7457 return 1;
7459 else if (TREE_CODE (exp) == ERROR_MARK)
7460 return 1; /* An already-visited SAVE_EXPR? */
7461 else
7462 return 0;
7464 case tcc_statement:
7465 /* The only case we look at here is the DECL_INITIAL inside a
7466 DECL_EXPR. */
7467 return (TREE_CODE (exp) != DECL_EXPR
7468 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7469 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7470 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7472 case tcc_binary:
7473 case tcc_comparison:
7474 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7475 return 0;
7476 /* Fall through. */
7478 case tcc_unary:
7479 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7481 case tcc_expression:
7482 case tcc_reference:
7483 case tcc_vl_exp:
7484 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7485 the expression. If it is set, we conflict iff we are that rtx or
7486 both are in memory. Otherwise, we check all operands of the
7487 expression recursively. */
7489 switch (TREE_CODE (exp))
7491 case ADDR_EXPR:
7492 /* If the operand is static or we are static, we can't conflict.
7493 Likewise if we don't conflict with the operand at all. */
7494 if (staticp (TREE_OPERAND (exp, 0))
7495 || TREE_STATIC (exp)
7496 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7497 return 1;
7499 /* Otherwise, the only way this can conflict is if we are taking
7500 the address of a DECL a that address if part of X, which is
7501 very rare. */
7502 exp = TREE_OPERAND (exp, 0);
7503 if (DECL_P (exp))
7505 if (!DECL_RTL_SET_P (exp)
7506 || !MEM_P (DECL_RTL (exp)))
7507 return 0;
7508 else
7509 exp_rtl = XEXP (DECL_RTL (exp), 0);
7511 break;
7513 case MEM_REF:
7514 if (MEM_P (x)
7515 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7516 get_alias_set (exp)))
7517 return 0;
7518 break;
7520 case CALL_EXPR:
7521 /* Assume that the call will clobber all hard registers and
7522 all of memory. */
7523 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7524 || MEM_P (x))
7525 return 0;
7526 break;
7528 case WITH_CLEANUP_EXPR:
7529 case CLEANUP_POINT_EXPR:
7530 /* Lowered by gimplify.c. */
7531 gcc_unreachable ();
7533 case SAVE_EXPR:
7534 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7536 default:
7537 break;
7540 /* If we have an rtx, we do not need to scan our operands. */
7541 if (exp_rtl)
7542 break;
7544 nops = TREE_OPERAND_LENGTH (exp);
7545 for (i = 0; i < nops; i++)
7546 if (TREE_OPERAND (exp, i) != 0
7547 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7548 return 0;
7550 break;
7552 case tcc_type:
7553 /* Should never get a type here. */
7554 gcc_unreachable ();
7557 /* If we have an rtl, find any enclosed object. Then see if we conflict
7558 with it. */
7559 if (exp_rtl)
7561 if (GET_CODE (exp_rtl) == SUBREG)
7563 exp_rtl = SUBREG_REG (exp_rtl);
7564 if (REG_P (exp_rtl)
7565 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7566 return 0;
7569 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7570 are memory and they conflict. */
7571 return ! (rtx_equal_p (x, exp_rtl)
7572 || (MEM_P (x) && MEM_P (exp_rtl)
7573 && true_dependence (exp_rtl, VOIDmode, x)));
7576 /* If we reach here, it is safe. */
7577 return 1;
7581 /* Return the highest power of two that EXP is known to be a multiple of.
7582 This is used in updating alignment of MEMs in array references. */
7584 unsigned HOST_WIDE_INT
7585 highest_pow2_factor (const_tree exp)
7587 unsigned HOST_WIDE_INT ret;
7588 int trailing_zeros = tree_ctz (exp);
7589 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7590 return BIGGEST_ALIGNMENT;
7591 ret = HOST_WIDE_INT_1U << trailing_zeros;
7592 if (ret > BIGGEST_ALIGNMENT)
7593 return BIGGEST_ALIGNMENT;
7594 return ret;
7597 /* Similar, except that the alignment requirements of TARGET are
7598 taken into account. Assume it is at least as aligned as its
7599 type, unless it is a COMPONENT_REF in which case the layout of
7600 the structure gives the alignment. */
7602 static unsigned HOST_WIDE_INT
7603 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7605 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7606 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7608 return MAX (factor, talign);
7611 /* Convert the tree comparison code TCODE to the rtl one where the
7612 signedness is UNSIGNEDP. */
7614 static enum rtx_code
7615 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7617 enum rtx_code code;
7618 switch (tcode)
7620 case EQ_EXPR:
7621 code = EQ;
7622 break;
7623 case NE_EXPR:
7624 code = NE;
7625 break;
7626 case LT_EXPR:
7627 code = unsignedp ? LTU : LT;
7628 break;
7629 case LE_EXPR:
7630 code = unsignedp ? LEU : LE;
7631 break;
7632 case GT_EXPR:
7633 code = unsignedp ? GTU : GT;
7634 break;
7635 case GE_EXPR:
7636 code = unsignedp ? GEU : GE;
7637 break;
7638 case UNORDERED_EXPR:
7639 code = UNORDERED;
7640 break;
7641 case ORDERED_EXPR:
7642 code = ORDERED;
7643 break;
7644 case UNLT_EXPR:
7645 code = UNLT;
7646 break;
7647 case UNLE_EXPR:
7648 code = UNLE;
7649 break;
7650 case UNGT_EXPR:
7651 code = UNGT;
7652 break;
7653 case UNGE_EXPR:
7654 code = UNGE;
7655 break;
7656 case UNEQ_EXPR:
7657 code = UNEQ;
7658 break;
7659 case LTGT_EXPR:
7660 code = LTGT;
7661 break;
7663 default:
7664 gcc_unreachable ();
7666 return code;
7669 /* Subroutine of expand_expr. Expand the two operands of a binary
7670 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7671 The value may be stored in TARGET if TARGET is nonzero. The
7672 MODIFIER argument is as documented by expand_expr. */
7674 void
7675 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7676 enum expand_modifier modifier)
7678 if (! safe_from_p (target, exp1, 1))
7679 target = 0;
7680 if (operand_equal_p (exp0, exp1, 0))
7682 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7683 *op1 = copy_rtx (*op0);
7685 else
7687 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7688 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7693 /* Return a MEM that contains constant EXP. DEFER is as for
7694 output_constant_def and MODIFIER is as for expand_expr. */
7696 static rtx
7697 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7699 rtx mem;
7701 mem = output_constant_def (exp, defer);
7702 if (modifier != EXPAND_INITIALIZER)
7703 mem = use_anchored_address (mem);
7704 return mem;
7707 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7708 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7710 static rtx
7711 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7712 enum expand_modifier modifier, addr_space_t as)
7714 rtx result, subtarget;
7715 tree inner, offset;
7716 HOST_WIDE_INT bitsize, bitpos;
7717 int unsignedp, reversep, volatilep = 0;
7718 machine_mode mode1;
7720 /* If we are taking the address of a constant and are at the top level,
7721 we have to use output_constant_def since we can't call force_const_mem
7722 at top level. */
7723 /* ??? This should be considered a front-end bug. We should not be
7724 generating ADDR_EXPR of something that isn't an LVALUE. The only
7725 exception here is STRING_CST. */
7726 if (CONSTANT_CLASS_P (exp))
7728 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7729 if (modifier < EXPAND_SUM)
7730 result = force_operand (result, target);
7731 return result;
7734 /* Everything must be something allowed by is_gimple_addressable. */
7735 switch (TREE_CODE (exp))
7737 case INDIRECT_REF:
7738 /* This case will happen via recursion for &a->b. */
7739 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7741 case MEM_REF:
7743 tree tem = TREE_OPERAND (exp, 0);
7744 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7745 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7746 return expand_expr (tem, target, tmode, modifier);
7749 case CONST_DECL:
7750 /* Expand the initializer like constants above. */
7751 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7752 0, modifier), 0);
7753 if (modifier < EXPAND_SUM)
7754 result = force_operand (result, target);
7755 return result;
7757 case REALPART_EXPR:
7758 /* The real part of the complex number is always first, therefore
7759 the address is the same as the address of the parent object. */
7760 offset = 0;
7761 bitpos = 0;
7762 inner = TREE_OPERAND (exp, 0);
7763 break;
7765 case IMAGPART_EXPR:
7766 /* The imaginary part of the complex number is always second.
7767 The expression is therefore always offset by the size of the
7768 scalar type. */
7769 offset = 0;
7770 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7771 inner = TREE_OPERAND (exp, 0);
7772 break;
7774 case COMPOUND_LITERAL_EXPR:
7775 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7776 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7777 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7778 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7779 the initializers aren't gimplified. */
7780 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7781 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7782 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7783 target, tmode, modifier, as);
7784 /* FALLTHRU */
7785 default:
7786 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7787 expand_expr, as that can have various side effects; LABEL_DECLs for
7788 example, may not have their DECL_RTL set yet. Expand the rtl of
7789 CONSTRUCTORs too, which should yield a memory reference for the
7790 constructor's contents. Assume language specific tree nodes can
7791 be expanded in some interesting way. */
7792 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7793 if (DECL_P (exp)
7794 || TREE_CODE (exp) == CONSTRUCTOR
7795 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7797 result = expand_expr (exp, target, tmode,
7798 modifier == EXPAND_INITIALIZER
7799 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7801 /* If the DECL isn't in memory, then the DECL wasn't properly
7802 marked TREE_ADDRESSABLE, which will be either a front-end
7803 or a tree optimizer bug. */
7805 gcc_assert (MEM_P (result));
7806 result = XEXP (result, 0);
7808 /* ??? Is this needed anymore? */
7809 if (DECL_P (exp))
7810 TREE_USED (exp) = 1;
7812 if (modifier != EXPAND_INITIALIZER
7813 && modifier != EXPAND_CONST_ADDRESS
7814 && modifier != EXPAND_SUM)
7815 result = force_operand (result, target);
7816 return result;
7819 /* Pass FALSE as the last argument to get_inner_reference although
7820 we are expanding to RTL. The rationale is that we know how to
7821 handle "aligning nodes" here: we can just bypass them because
7822 they won't change the final object whose address will be returned
7823 (they actually exist only for that purpose). */
7824 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7825 &unsignedp, &reversep, &volatilep);
7826 break;
7829 /* We must have made progress. */
7830 gcc_assert (inner != exp);
7832 subtarget = offset || bitpos ? NULL_RTX : target;
7833 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7834 inner alignment, force the inner to be sufficiently aligned. */
7835 if (CONSTANT_CLASS_P (inner)
7836 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7838 inner = copy_node (inner);
7839 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7840 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7841 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7843 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7845 if (offset)
7847 rtx tmp;
7849 if (modifier != EXPAND_NORMAL)
7850 result = force_operand (result, NULL);
7851 tmp = expand_expr (offset, NULL_RTX, tmode,
7852 modifier == EXPAND_INITIALIZER
7853 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7855 /* expand_expr is allowed to return an object in a mode other
7856 than TMODE. If it did, we need to convert. */
7857 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7858 tmp = convert_modes (tmode, GET_MODE (tmp),
7859 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7860 result = convert_memory_address_addr_space (tmode, result, as);
7861 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7863 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7864 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7865 else
7867 subtarget = bitpos ? NULL_RTX : target;
7868 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7869 1, OPTAB_LIB_WIDEN);
7873 if (bitpos)
7875 /* Someone beforehand should have rejected taking the address
7876 of such an object. */
7877 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7879 result = convert_memory_address_addr_space (tmode, result, as);
7880 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7881 if (modifier < EXPAND_SUM)
7882 result = force_operand (result, target);
7885 return result;
7888 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7889 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7891 static rtx
7892 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7893 enum expand_modifier modifier)
7895 addr_space_t as = ADDR_SPACE_GENERIC;
7896 scalar_int_mode address_mode = Pmode;
7897 scalar_int_mode pointer_mode = ptr_mode;
7898 machine_mode rmode;
7899 rtx result;
7901 /* Target mode of VOIDmode says "whatever's natural". */
7902 if (tmode == VOIDmode)
7903 tmode = TYPE_MODE (TREE_TYPE (exp));
7905 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7907 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7908 address_mode = targetm.addr_space.address_mode (as);
7909 pointer_mode = targetm.addr_space.pointer_mode (as);
7912 /* We can get called with some Weird Things if the user does silliness
7913 like "(short) &a". In that case, convert_memory_address won't do
7914 the right thing, so ignore the given target mode. */
7915 scalar_int_mode new_tmode = (tmode == pointer_mode
7916 ? pointer_mode
7917 : address_mode);
7919 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7920 new_tmode, modifier, as);
7922 /* Despite expand_expr claims concerning ignoring TMODE when not
7923 strictly convenient, stuff breaks if we don't honor it. Note
7924 that combined with the above, we only do this for pointer modes. */
7925 rmode = GET_MODE (result);
7926 if (rmode == VOIDmode)
7927 rmode = new_tmode;
7928 if (rmode != new_tmode)
7929 result = convert_memory_address_addr_space (new_tmode, result, as);
7931 return result;
7934 /* Generate code for computing CONSTRUCTOR EXP.
7935 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7936 is TRUE, instead of creating a temporary variable in memory
7937 NULL is returned and the caller needs to handle it differently. */
7939 static rtx
7940 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7941 bool avoid_temp_mem)
7943 tree type = TREE_TYPE (exp);
7944 machine_mode mode = TYPE_MODE (type);
7946 /* Try to avoid creating a temporary at all. This is possible
7947 if all of the initializer is zero.
7948 FIXME: try to handle all [0..255] initializers we can handle
7949 with memset. */
7950 if (TREE_STATIC (exp)
7951 && !TREE_ADDRESSABLE (exp)
7952 && target != 0 && mode == BLKmode
7953 && all_zeros_p (exp))
7955 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7956 return target;
7959 /* All elts simple constants => refer to a constant in memory. But
7960 if this is a non-BLKmode mode, let it store a field at a time
7961 since that should make a CONST_INT, CONST_WIDE_INT or
7962 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7963 use, it is best to store directly into the target unless the type
7964 is large enough that memcpy will be used. If we are making an
7965 initializer and all operands are constant, put it in memory as
7966 well.
7968 FIXME: Avoid trying to fill vector constructors piece-meal.
7969 Output them with output_constant_def below unless we're sure
7970 they're zeros. This should go away when vector initializers
7971 are treated like VECTOR_CST instead of arrays. */
7972 if ((TREE_STATIC (exp)
7973 && ((mode == BLKmode
7974 && ! (target != 0 && safe_from_p (target, exp, 1)))
7975 || TREE_ADDRESSABLE (exp)
7976 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7977 && (! can_move_by_pieces
7978 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7979 TYPE_ALIGN (type)))
7980 && ! mostly_zeros_p (exp))))
7981 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7982 && TREE_CONSTANT (exp)))
7984 rtx constructor;
7986 if (avoid_temp_mem)
7987 return NULL_RTX;
7989 constructor = expand_expr_constant (exp, 1, modifier);
7991 if (modifier != EXPAND_CONST_ADDRESS
7992 && modifier != EXPAND_INITIALIZER
7993 && modifier != EXPAND_SUM)
7994 constructor = validize_mem (constructor);
7996 return constructor;
7999 /* Handle calls that pass values in multiple non-contiguous
8000 locations. The Irix 6 ABI has examples of this. */
8001 if (target == 0 || ! safe_from_p (target, exp, 1)
8002 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8004 if (avoid_temp_mem)
8005 return NULL_RTX;
8007 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8010 store_constructor (exp, target, 0, int_expr_size (exp), false);
8011 return target;
8015 /* expand_expr: generate code for computing expression EXP.
8016 An rtx for the computed value is returned. The value is never null.
8017 In the case of a void EXP, const0_rtx is returned.
8019 The value may be stored in TARGET if TARGET is nonzero.
8020 TARGET is just a suggestion; callers must assume that
8021 the rtx returned may not be the same as TARGET.
8023 If TARGET is CONST0_RTX, it means that the value will be ignored.
8025 If TMODE is not VOIDmode, it suggests generating the
8026 result in mode TMODE. But this is done only when convenient.
8027 Otherwise, TMODE is ignored and the value generated in its natural mode.
8028 TMODE is just a suggestion; callers must assume that
8029 the rtx returned may not have mode TMODE.
8031 Note that TARGET may have neither TMODE nor MODE. In that case, it
8032 probably will not be used.
8034 If MODIFIER is EXPAND_SUM then when EXP is an addition
8035 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8036 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8037 products as above, or REG or MEM, or constant.
8038 Ordinarily in such cases we would output mul or add instructions
8039 and then return a pseudo reg containing the sum.
8041 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8042 it also marks a label as absolutely required (it can't be dead).
8043 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8044 This is used for outputting expressions used in initializers.
8046 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8047 with a constant address even if that address is not normally legitimate.
8048 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8050 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8051 a call parameter. Such targets require special care as we haven't yet
8052 marked TARGET so that it's safe from being trashed by libcalls. We
8053 don't want to use TARGET for anything but the final result;
8054 Intermediate values must go elsewhere. Additionally, calls to
8055 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8057 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8058 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8059 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8060 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8061 recursively.
8063 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8064 In this case, we don't adjust a returned MEM rtx that wouldn't be
8065 sufficiently aligned for its mode; instead, it's up to the caller
8066 to deal with it afterwards. This is used to make sure that unaligned
8067 base objects for which out-of-bounds accesses are supported, for
8068 example record types with trailing arrays, aren't realigned behind
8069 the back of the caller.
8070 The normal operating mode is to pass FALSE for this parameter. */
8073 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8074 enum expand_modifier modifier, rtx *alt_rtl,
8075 bool inner_reference_p)
8077 rtx ret;
8079 /* Handle ERROR_MARK before anybody tries to access its type. */
8080 if (TREE_CODE (exp) == ERROR_MARK
8081 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8083 ret = CONST0_RTX (tmode);
8084 return ret ? ret : const0_rtx;
8087 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8088 inner_reference_p);
8089 return ret;
8092 /* Try to expand the conditional expression which is represented by
8093 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8094 return the rtl reg which represents the result. Otherwise return
8095 NULL_RTX. */
8097 static rtx
8098 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8099 tree treeop1 ATTRIBUTE_UNUSED,
8100 tree treeop2 ATTRIBUTE_UNUSED)
8102 rtx insn;
8103 rtx op00, op01, op1, op2;
8104 enum rtx_code comparison_code;
8105 machine_mode comparison_mode;
8106 gimple *srcstmt;
8107 rtx temp;
8108 tree type = TREE_TYPE (treeop1);
8109 int unsignedp = TYPE_UNSIGNED (type);
8110 machine_mode mode = TYPE_MODE (type);
8111 machine_mode orig_mode = mode;
8112 static bool expanding_cond_expr_using_cmove = false;
8114 /* Conditional move expansion can end up TERing two operands which,
8115 when recursively hitting conditional expressions can result in
8116 exponential behavior if the cmove expansion ultimatively fails.
8117 It's hardly profitable to TER a cmove into a cmove so avoid doing
8118 that by failing early if we end up recursing. */
8119 if (expanding_cond_expr_using_cmove)
8120 return NULL_RTX;
8122 /* If we cannot do a conditional move on the mode, try doing it
8123 with the promoted mode. */
8124 if (!can_conditionally_move_p (mode))
8126 mode = promote_mode (type, mode, &unsignedp);
8127 if (!can_conditionally_move_p (mode))
8128 return NULL_RTX;
8129 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8131 else
8132 temp = assign_temp (type, 0, 1);
8134 expanding_cond_expr_using_cmove = true;
8135 start_sequence ();
8136 expand_operands (treeop1, treeop2,
8137 temp, &op1, &op2, EXPAND_NORMAL);
8139 if (TREE_CODE (treeop0) == SSA_NAME
8140 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8142 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8143 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8144 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8145 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8146 comparison_mode = TYPE_MODE (type);
8147 unsignedp = TYPE_UNSIGNED (type);
8148 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8150 else if (COMPARISON_CLASS_P (treeop0))
8152 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8153 enum tree_code cmpcode = TREE_CODE (treeop0);
8154 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8155 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8156 unsignedp = TYPE_UNSIGNED (type);
8157 comparison_mode = TYPE_MODE (type);
8158 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8160 else
8162 op00 = expand_normal (treeop0);
8163 op01 = const0_rtx;
8164 comparison_code = NE;
8165 comparison_mode = GET_MODE (op00);
8166 if (comparison_mode == VOIDmode)
8167 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8169 expanding_cond_expr_using_cmove = false;
8171 if (GET_MODE (op1) != mode)
8172 op1 = gen_lowpart (mode, op1);
8174 if (GET_MODE (op2) != mode)
8175 op2 = gen_lowpart (mode, op2);
8177 /* Try to emit the conditional move. */
8178 insn = emit_conditional_move (temp, comparison_code,
8179 op00, op01, comparison_mode,
8180 op1, op2, mode,
8181 unsignedp);
8183 /* If we could do the conditional move, emit the sequence,
8184 and return. */
8185 if (insn)
8187 rtx_insn *seq = get_insns ();
8188 end_sequence ();
8189 emit_insn (seq);
8190 return convert_modes (orig_mode, mode, temp, 0);
8193 /* Otherwise discard the sequence and fall back to code with
8194 branches. */
8195 end_sequence ();
8196 return NULL_RTX;
8200 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8201 enum expand_modifier modifier)
8203 rtx op0, op1, op2, temp;
8204 rtx_code_label *lab;
8205 tree type;
8206 int unsignedp;
8207 machine_mode mode;
8208 scalar_int_mode int_mode;
8209 enum tree_code code = ops->code;
8210 optab this_optab;
8211 rtx subtarget, original_target;
8212 int ignore;
8213 bool reduce_bit_field;
8214 location_t loc = ops->location;
8215 tree treeop0, treeop1, treeop2;
8216 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8217 ? reduce_to_bit_field_precision ((expr), \
8218 target, \
8219 type) \
8220 : (expr))
8222 type = ops->type;
8223 mode = TYPE_MODE (type);
8224 unsignedp = TYPE_UNSIGNED (type);
8226 treeop0 = ops->op0;
8227 treeop1 = ops->op1;
8228 treeop2 = ops->op2;
8230 /* We should be called only on simple (binary or unary) expressions,
8231 exactly those that are valid in gimple expressions that aren't
8232 GIMPLE_SINGLE_RHS (or invalid). */
8233 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8234 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8235 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8237 ignore = (target == const0_rtx
8238 || ((CONVERT_EXPR_CODE_P (code)
8239 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8240 && TREE_CODE (type) == VOID_TYPE));
8242 /* We should be called only if we need the result. */
8243 gcc_assert (!ignore);
8245 /* An operation in what may be a bit-field type needs the
8246 result to be reduced to the precision of the bit-field type,
8247 which is narrower than that of the type's mode. */
8248 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8249 && !type_has_mode_precision_p (type));
8251 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8252 target = 0;
8254 /* Use subtarget as the target for operand 0 of a binary operation. */
8255 subtarget = get_subtarget (target);
8256 original_target = target;
8258 switch (code)
8260 case NON_LVALUE_EXPR:
8261 case PAREN_EXPR:
8262 CASE_CONVERT:
8263 if (treeop0 == error_mark_node)
8264 return const0_rtx;
8266 if (TREE_CODE (type) == UNION_TYPE)
8268 tree valtype = TREE_TYPE (treeop0);
8270 /* If both input and output are BLKmode, this conversion isn't doing
8271 anything except possibly changing memory attribute. */
8272 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8274 rtx result = expand_expr (treeop0, target, tmode,
8275 modifier);
8277 result = copy_rtx (result);
8278 set_mem_attributes (result, type, 0);
8279 return result;
8282 if (target == 0)
8284 if (TYPE_MODE (type) != BLKmode)
8285 target = gen_reg_rtx (TYPE_MODE (type));
8286 else
8287 target = assign_temp (type, 1, 1);
8290 if (MEM_P (target))
8291 /* Store data into beginning of memory target. */
8292 store_expr (treeop0,
8293 adjust_address (target, TYPE_MODE (valtype), 0),
8294 modifier == EXPAND_STACK_PARM,
8295 false, TYPE_REVERSE_STORAGE_ORDER (type));
8297 else
8299 gcc_assert (REG_P (target)
8300 && !TYPE_REVERSE_STORAGE_ORDER (type));
8302 /* Store this field into a union of the proper type. */
8303 store_field (target,
8304 MIN ((int_size_in_bytes (TREE_TYPE
8305 (treeop0))
8306 * BITS_PER_UNIT),
8307 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8308 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8309 false, false);
8312 /* Return the entire union. */
8313 return target;
8316 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8318 op0 = expand_expr (treeop0, target, VOIDmode,
8319 modifier);
8321 /* If the signedness of the conversion differs and OP0 is
8322 a promoted SUBREG, clear that indication since we now
8323 have to do the proper extension. */
8324 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8325 && GET_CODE (op0) == SUBREG)
8326 SUBREG_PROMOTED_VAR_P (op0) = 0;
8328 return REDUCE_BIT_FIELD (op0);
8331 op0 = expand_expr (treeop0, NULL_RTX, mode,
8332 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8333 if (GET_MODE (op0) == mode)
8336 /* If OP0 is a constant, just convert it into the proper mode. */
8337 else if (CONSTANT_P (op0))
8339 tree inner_type = TREE_TYPE (treeop0);
8340 machine_mode inner_mode = GET_MODE (op0);
8342 if (inner_mode == VOIDmode)
8343 inner_mode = TYPE_MODE (inner_type);
8345 if (modifier == EXPAND_INITIALIZER)
8346 op0 = lowpart_subreg (mode, op0, inner_mode);
8347 else
8348 op0= convert_modes (mode, inner_mode, op0,
8349 TYPE_UNSIGNED (inner_type));
8352 else if (modifier == EXPAND_INITIALIZER)
8353 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8354 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8356 else if (target == 0)
8357 op0 = convert_to_mode (mode, op0,
8358 TYPE_UNSIGNED (TREE_TYPE
8359 (treeop0)));
8360 else
8362 convert_move (target, op0,
8363 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8364 op0 = target;
8367 return REDUCE_BIT_FIELD (op0);
8369 case ADDR_SPACE_CONVERT_EXPR:
8371 tree treeop0_type = TREE_TYPE (treeop0);
8373 gcc_assert (POINTER_TYPE_P (type));
8374 gcc_assert (POINTER_TYPE_P (treeop0_type));
8376 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8377 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8379 /* Conversions between pointers to the same address space should
8380 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8381 gcc_assert (as_to != as_from);
8383 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8385 /* Ask target code to handle conversion between pointers
8386 to overlapping address spaces. */
8387 if (targetm.addr_space.subset_p (as_to, as_from)
8388 || targetm.addr_space.subset_p (as_from, as_to))
8390 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8392 else
8394 /* For disjoint address spaces, converting anything but a null
8395 pointer invokes undefined behavior. We truncate or extend the
8396 value as if we'd converted via integers, which handles 0 as
8397 required, and all others as the programmer likely expects. */
8398 #ifndef POINTERS_EXTEND_UNSIGNED
8399 const int POINTERS_EXTEND_UNSIGNED = 1;
8400 #endif
8401 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8402 op0, POINTERS_EXTEND_UNSIGNED);
8404 gcc_assert (op0);
8405 return op0;
8408 case POINTER_PLUS_EXPR:
8409 /* Even though the sizetype mode and the pointer's mode can be different
8410 expand is able to handle this correctly and get the correct result out
8411 of the PLUS_EXPR code. */
8412 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8413 if sizetype precision is smaller than pointer precision. */
8414 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8415 treeop1 = fold_convert_loc (loc, type,
8416 fold_convert_loc (loc, ssizetype,
8417 treeop1));
8418 /* If sizetype precision is larger than pointer precision, truncate the
8419 offset to have matching modes. */
8420 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8421 treeop1 = fold_convert_loc (loc, type, treeop1);
8422 /* FALLTHRU */
8424 case PLUS_EXPR:
8425 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8426 something else, make sure we add the register to the constant and
8427 then to the other thing. This case can occur during strength
8428 reduction and doing it this way will produce better code if the
8429 frame pointer or argument pointer is eliminated.
8431 fold-const.c will ensure that the constant is always in the inner
8432 PLUS_EXPR, so the only case we need to do anything about is if
8433 sp, ap, or fp is our second argument, in which case we must swap
8434 the innermost first argument and our second argument. */
8436 if (TREE_CODE (treeop0) == PLUS_EXPR
8437 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8438 && VAR_P (treeop1)
8439 && (DECL_RTL (treeop1) == frame_pointer_rtx
8440 || DECL_RTL (treeop1) == stack_pointer_rtx
8441 || DECL_RTL (treeop1) == arg_pointer_rtx))
8443 gcc_unreachable ();
8446 /* If the result is to be ptr_mode and we are adding an integer to
8447 something, we might be forming a constant. So try to use
8448 plus_constant. If it produces a sum and we can't accept it,
8449 use force_operand. This allows P = &ARR[const] to generate
8450 efficient code on machines where a SYMBOL_REF is not a valid
8451 address.
8453 If this is an EXPAND_SUM call, always return the sum. */
8454 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8455 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8457 if (modifier == EXPAND_STACK_PARM)
8458 target = 0;
8459 if (TREE_CODE (treeop0) == INTEGER_CST
8460 && HWI_COMPUTABLE_MODE_P (mode)
8461 && TREE_CONSTANT (treeop1))
8463 rtx constant_part;
8464 HOST_WIDE_INT wc;
8465 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8467 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8468 EXPAND_SUM);
8469 /* Use wi::shwi to ensure that the constant is
8470 truncated according to the mode of OP1, then sign extended
8471 to a HOST_WIDE_INT. Using the constant directly can result
8472 in non-canonical RTL in a 64x32 cross compile. */
8473 wc = TREE_INT_CST_LOW (treeop0);
8474 constant_part =
8475 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8476 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8477 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8478 op1 = force_operand (op1, target);
8479 return REDUCE_BIT_FIELD (op1);
8482 else if (TREE_CODE (treeop1) == INTEGER_CST
8483 && HWI_COMPUTABLE_MODE_P (mode)
8484 && TREE_CONSTANT (treeop0))
8486 rtx constant_part;
8487 HOST_WIDE_INT wc;
8488 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8490 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8491 (modifier == EXPAND_INITIALIZER
8492 ? EXPAND_INITIALIZER : EXPAND_SUM));
8493 if (! CONSTANT_P (op0))
8495 op1 = expand_expr (treeop1, NULL_RTX,
8496 VOIDmode, modifier);
8497 /* Return a PLUS if modifier says it's OK. */
8498 if (modifier == EXPAND_SUM
8499 || modifier == EXPAND_INITIALIZER)
8500 return simplify_gen_binary (PLUS, mode, op0, op1);
8501 goto binop2;
8503 /* Use wi::shwi to ensure that the constant is
8504 truncated according to the mode of OP1, then sign extended
8505 to a HOST_WIDE_INT. Using the constant directly can result
8506 in non-canonical RTL in a 64x32 cross compile. */
8507 wc = TREE_INT_CST_LOW (treeop1);
8508 constant_part
8509 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8510 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8511 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8512 op0 = force_operand (op0, target);
8513 return REDUCE_BIT_FIELD (op0);
8517 /* Use TER to expand pointer addition of a negated value
8518 as pointer subtraction. */
8519 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8520 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8521 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8522 && TREE_CODE (treeop1) == SSA_NAME
8523 && TYPE_MODE (TREE_TYPE (treeop0))
8524 == TYPE_MODE (TREE_TYPE (treeop1)))
8526 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8527 if (def)
8529 treeop1 = gimple_assign_rhs1 (def);
8530 code = MINUS_EXPR;
8531 goto do_minus;
8535 /* No sense saving up arithmetic to be done
8536 if it's all in the wrong mode to form part of an address.
8537 And force_operand won't know whether to sign-extend or
8538 zero-extend. */
8539 if (modifier != EXPAND_INITIALIZER
8540 && (modifier != EXPAND_SUM || mode != ptr_mode))
8542 expand_operands (treeop0, treeop1,
8543 subtarget, &op0, &op1, modifier);
8544 if (op0 == const0_rtx)
8545 return op1;
8546 if (op1 == const0_rtx)
8547 return op0;
8548 goto binop2;
8551 expand_operands (treeop0, treeop1,
8552 subtarget, &op0, &op1, modifier);
8553 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8555 case MINUS_EXPR:
8556 do_minus:
8557 /* For initializers, we are allowed to return a MINUS of two
8558 symbolic constants. Here we handle all cases when both operands
8559 are constant. */
8560 /* Handle difference of two symbolic constants,
8561 for the sake of an initializer. */
8562 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8563 && really_constant_p (treeop0)
8564 && really_constant_p (treeop1))
8566 expand_operands (treeop0, treeop1,
8567 NULL_RTX, &op0, &op1, modifier);
8568 return simplify_gen_binary (MINUS, mode, op0, op1);
8571 /* No sense saving up arithmetic to be done
8572 if it's all in the wrong mode to form part of an address.
8573 And force_operand won't know whether to sign-extend or
8574 zero-extend. */
8575 if (modifier != EXPAND_INITIALIZER
8576 && (modifier != EXPAND_SUM || mode != ptr_mode))
8577 goto binop;
8579 expand_operands (treeop0, treeop1,
8580 subtarget, &op0, &op1, modifier);
8582 /* Convert A - const to A + (-const). */
8583 if (CONST_INT_P (op1))
8585 op1 = negate_rtx (mode, op1);
8586 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8589 goto binop2;
8591 case WIDEN_MULT_PLUS_EXPR:
8592 case WIDEN_MULT_MINUS_EXPR:
8593 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8594 op2 = expand_normal (treeop2);
8595 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8596 target, unsignedp);
8597 return target;
8599 case WIDEN_MULT_EXPR:
8600 /* If first operand is constant, swap them.
8601 Thus the following special case checks need only
8602 check the second operand. */
8603 if (TREE_CODE (treeop0) == INTEGER_CST)
8604 std::swap (treeop0, treeop1);
8606 /* First, check if we have a multiplication of one signed and one
8607 unsigned operand. */
8608 if (TREE_CODE (treeop1) != INTEGER_CST
8609 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8610 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8612 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8613 this_optab = usmul_widen_optab;
8614 if (find_widening_optab_handler (this_optab, mode, innermode)
8615 != CODE_FOR_nothing)
8617 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8618 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8619 EXPAND_NORMAL);
8620 else
8621 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8622 EXPAND_NORMAL);
8623 /* op0 and op1 might still be constant, despite the above
8624 != INTEGER_CST check. Handle it. */
8625 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8627 op0 = convert_modes (innermode, mode, op0, true);
8628 op1 = convert_modes (innermode, mode, op1, false);
8629 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8630 target, unsignedp));
8632 goto binop3;
8635 /* Check for a multiplication with matching signedness. */
8636 else if ((TREE_CODE (treeop1) == INTEGER_CST
8637 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8638 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8639 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8641 tree op0type = TREE_TYPE (treeop0);
8642 machine_mode innermode = TYPE_MODE (op0type);
8643 bool zextend_p = TYPE_UNSIGNED (op0type);
8644 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8645 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8647 if (TREE_CODE (treeop0) != INTEGER_CST)
8649 if (find_widening_optab_handler (this_optab, mode, innermode)
8650 != CODE_FOR_nothing)
8652 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8653 EXPAND_NORMAL);
8654 /* op0 and op1 might still be constant, despite the above
8655 != INTEGER_CST check. Handle it. */
8656 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8658 widen_mult_const:
8659 op0 = convert_modes (innermode, mode, op0, zextend_p);
8661 = convert_modes (innermode, mode, op1,
8662 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8663 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8664 target,
8665 unsignedp));
8667 temp = expand_widening_mult (mode, op0, op1, target,
8668 unsignedp, this_optab);
8669 return REDUCE_BIT_FIELD (temp);
8671 if (find_widening_optab_handler (other_optab, mode, innermode)
8672 != CODE_FOR_nothing
8673 && innermode == word_mode)
8675 rtx htem, hipart;
8676 op0 = expand_normal (treeop0);
8677 if (TREE_CODE (treeop1) == INTEGER_CST)
8678 op1 = convert_modes (word_mode, mode,
8679 expand_normal (treeop1),
8680 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8681 else
8682 op1 = expand_normal (treeop1);
8683 /* op0 and op1 might still be constant, despite the above
8684 != INTEGER_CST check. Handle it. */
8685 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8686 goto widen_mult_const;
8687 temp = expand_binop (mode, other_optab, op0, op1, target,
8688 unsignedp, OPTAB_LIB_WIDEN);
8689 hipart = gen_highpart (word_mode, temp);
8690 htem = expand_mult_highpart_adjust (word_mode, hipart,
8691 op0, op1, hipart,
8692 zextend_p);
8693 if (htem != hipart)
8694 emit_move_insn (hipart, htem);
8695 return REDUCE_BIT_FIELD (temp);
8699 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8700 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8701 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8702 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8704 case FMA_EXPR:
8706 optab opt = fma_optab;
8707 gimple *def0, *def2;
8709 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8710 call. */
8711 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8713 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8714 tree call_expr;
8716 gcc_assert (fn != NULL_TREE);
8717 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8718 return expand_builtin (call_expr, target, subtarget, mode, false);
8721 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8722 /* The multiplication is commutative - look at its 2nd operand
8723 if the first isn't fed by a negate. */
8724 if (!def0)
8726 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8727 /* Swap operands if the 2nd operand is fed by a negate. */
8728 if (def0)
8729 std::swap (treeop0, treeop1);
8731 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8733 op0 = op2 = NULL;
8735 if (def0 && def2
8736 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8738 opt = fnms_optab;
8739 op0 = expand_normal (gimple_assign_rhs1 (def0));
8740 op2 = expand_normal (gimple_assign_rhs1 (def2));
8742 else if (def0
8743 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8745 opt = fnma_optab;
8746 op0 = expand_normal (gimple_assign_rhs1 (def0));
8748 else if (def2
8749 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8751 opt = fms_optab;
8752 op2 = expand_normal (gimple_assign_rhs1 (def2));
8755 if (op0 == NULL)
8756 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8757 if (op2 == NULL)
8758 op2 = expand_normal (treeop2);
8759 op1 = expand_normal (treeop1);
8761 return expand_ternary_op (TYPE_MODE (type), opt,
8762 op0, op1, op2, target, 0);
8765 case MULT_EXPR:
8766 /* If this is a fixed-point operation, then we cannot use the code
8767 below because "expand_mult" doesn't support sat/no-sat fixed-point
8768 multiplications. */
8769 if (ALL_FIXED_POINT_MODE_P (mode))
8770 goto binop;
8772 /* If first operand is constant, swap them.
8773 Thus the following special case checks need only
8774 check the second operand. */
8775 if (TREE_CODE (treeop0) == INTEGER_CST)
8776 std::swap (treeop0, treeop1);
8778 /* Attempt to return something suitable for generating an
8779 indexed address, for machines that support that. */
8781 if (modifier == EXPAND_SUM && mode == ptr_mode
8782 && tree_fits_shwi_p (treeop1))
8784 tree exp1 = treeop1;
8786 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8787 EXPAND_SUM);
8789 if (!REG_P (op0))
8790 op0 = force_operand (op0, NULL_RTX);
8791 if (!REG_P (op0))
8792 op0 = copy_to_mode_reg (mode, op0);
8794 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8795 gen_int_mode (tree_to_shwi (exp1),
8796 TYPE_MODE (TREE_TYPE (exp1)))));
8799 if (modifier == EXPAND_STACK_PARM)
8800 target = 0;
8802 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8803 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8805 case TRUNC_MOD_EXPR:
8806 case FLOOR_MOD_EXPR:
8807 case CEIL_MOD_EXPR:
8808 case ROUND_MOD_EXPR:
8810 case TRUNC_DIV_EXPR:
8811 case FLOOR_DIV_EXPR:
8812 case CEIL_DIV_EXPR:
8813 case ROUND_DIV_EXPR:
8814 case EXACT_DIV_EXPR:
8816 /* If this is a fixed-point operation, then we cannot use the code
8817 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8818 divisions. */
8819 if (ALL_FIXED_POINT_MODE_P (mode))
8820 goto binop;
8822 if (modifier == EXPAND_STACK_PARM)
8823 target = 0;
8824 /* Possible optimization: compute the dividend with EXPAND_SUM
8825 then if the divisor is constant can optimize the case
8826 where some terms of the dividend have coeffs divisible by it. */
8827 expand_operands (treeop0, treeop1,
8828 subtarget, &op0, &op1, EXPAND_NORMAL);
8829 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8830 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8831 if (SCALAR_INT_MODE_P (mode)
8832 && optimize >= 2
8833 && get_range_pos_neg (treeop0) == 1
8834 && get_range_pos_neg (treeop1) == 1)
8836 /* If both arguments are known to be positive when interpreted
8837 as signed, we can expand it as both signed and unsigned
8838 division or modulo. Choose the cheaper sequence in that case. */
8839 bool speed_p = optimize_insn_for_speed_p ();
8840 do_pending_stack_adjust ();
8841 start_sequence ();
8842 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8843 rtx_insn *uns_insns = get_insns ();
8844 end_sequence ();
8845 start_sequence ();
8846 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8847 rtx_insn *sgn_insns = get_insns ();
8848 end_sequence ();
8849 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8850 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8852 /* If costs are the same then use as tie breaker the other
8853 other factor. */
8854 if (uns_cost == sgn_cost)
8856 uns_cost = seq_cost (uns_insns, !speed_p);
8857 sgn_cost = seq_cost (sgn_insns, !speed_p);
8860 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8862 emit_insn (uns_insns);
8863 return uns_ret;
8865 emit_insn (sgn_insns);
8866 return sgn_ret;
8868 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8870 case RDIV_EXPR:
8871 goto binop;
8873 case MULT_HIGHPART_EXPR:
8874 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8875 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8876 gcc_assert (temp);
8877 return temp;
8879 case FIXED_CONVERT_EXPR:
8880 op0 = expand_normal (treeop0);
8881 if (target == 0 || modifier == EXPAND_STACK_PARM)
8882 target = gen_reg_rtx (mode);
8884 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8885 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8886 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8887 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8888 else
8889 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8890 return target;
8892 case FIX_TRUNC_EXPR:
8893 op0 = expand_normal (treeop0);
8894 if (target == 0 || modifier == EXPAND_STACK_PARM)
8895 target = gen_reg_rtx (mode);
8896 expand_fix (target, op0, unsignedp);
8897 return target;
8899 case FLOAT_EXPR:
8900 op0 = expand_normal (treeop0);
8901 if (target == 0 || modifier == EXPAND_STACK_PARM)
8902 target = gen_reg_rtx (mode);
8903 /* expand_float can't figure out what to do if FROM has VOIDmode.
8904 So give it the correct mode. With -O, cse will optimize this. */
8905 if (GET_MODE (op0) == VOIDmode)
8906 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8907 op0);
8908 expand_float (target, op0,
8909 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8910 return target;
8912 case NEGATE_EXPR:
8913 op0 = expand_expr (treeop0, subtarget,
8914 VOIDmode, EXPAND_NORMAL);
8915 if (modifier == EXPAND_STACK_PARM)
8916 target = 0;
8917 temp = expand_unop (mode,
8918 optab_for_tree_code (NEGATE_EXPR, type,
8919 optab_default),
8920 op0, target, 0);
8921 gcc_assert (temp);
8922 return REDUCE_BIT_FIELD (temp);
8924 case ABS_EXPR:
8925 op0 = expand_expr (treeop0, subtarget,
8926 VOIDmode, EXPAND_NORMAL);
8927 if (modifier == EXPAND_STACK_PARM)
8928 target = 0;
8930 /* ABS_EXPR is not valid for complex arguments. */
8931 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8932 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8934 /* Unsigned abs is simply the operand. Testing here means we don't
8935 risk generating incorrect code below. */
8936 if (TYPE_UNSIGNED (type))
8937 return op0;
8939 return expand_abs (mode, op0, target, unsignedp,
8940 safe_from_p (target, treeop0, 1));
8942 case MAX_EXPR:
8943 case MIN_EXPR:
8944 target = original_target;
8945 if (target == 0
8946 || modifier == EXPAND_STACK_PARM
8947 || (MEM_P (target) && MEM_VOLATILE_P (target))
8948 || GET_MODE (target) != mode
8949 || (REG_P (target)
8950 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8951 target = gen_reg_rtx (mode);
8952 expand_operands (treeop0, treeop1,
8953 target, &op0, &op1, EXPAND_NORMAL);
8955 /* First try to do it with a special MIN or MAX instruction.
8956 If that does not win, use a conditional jump to select the proper
8957 value. */
8958 this_optab = optab_for_tree_code (code, type, optab_default);
8959 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8960 OPTAB_WIDEN);
8961 if (temp != 0)
8962 return temp;
8964 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
8965 and similarly for MAX <x, y>. */
8966 if (VECTOR_TYPE_P (type))
8968 tree t0 = make_tree (type, op0);
8969 tree t1 = make_tree (type, op1);
8970 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
8971 type, t0, t1);
8972 return expand_vec_cond_expr (type, comparison, t0, t1,
8973 original_target);
8976 /* At this point, a MEM target is no longer useful; we will get better
8977 code without it. */
8979 if (! REG_P (target))
8980 target = gen_reg_rtx (mode);
8982 /* If op1 was placed in target, swap op0 and op1. */
8983 if (target != op0 && target == op1)
8984 std::swap (op0, op1);
8986 /* We generate better code and avoid problems with op1 mentioning
8987 target by forcing op1 into a pseudo if it isn't a constant. */
8988 if (! CONSTANT_P (op1))
8989 op1 = force_reg (mode, op1);
8992 enum rtx_code comparison_code;
8993 rtx cmpop1 = op1;
8995 if (code == MAX_EXPR)
8996 comparison_code = unsignedp ? GEU : GE;
8997 else
8998 comparison_code = unsignedp ? LEU : LE;
9000 /* Canonicalize to comparisons against 0. */
9001 if (op1 == const1_rtx)
9003 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9004 or (a != 0 ? a : 1) for unsigned.
9005 For MIN we are safe converting (a <= 1 ? a : 1)
9006 into (a <= 0 ? a : 1) */
9007 cmpop1 = const0_rtx;
9008 if (code == MAX_EXPR)
9009 comparison_code = unsignedp ? NE : GT;
9011 if (op1 == constm1_rtx && !unsignedp)
9013 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9014 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9015 cmpop1 = const0_rtx;
9016 if (code == MIN_EXPR)
9017 comparison_code = LT;
9020 /* Use a conditional move if possible. */
9021 if (can_conditionally_move_p (mode))
9023 rtx insn;
9025 start_sequence ();
9027 /* Try to emit the conditional move. */
9028 insn = emit_conditional_move (target, comparison_code,
9029 op0, cmpop1, mode,
9030 op0, op1, mode,
9031 unsignedp);
9033 /* If we could do the conditional move, emit the sequence,
9034 and return. */
9035 if (insn)
9037 rtx_insn *seq = get_insns ();
9038 end_sequence ();
9039 emit_insn (seq);
9040 return target;
9043 /* Otherwise discard the sequence and fall back to code with
9044 branches. */
9045 end_sequence ();
9048 if (target != op0)
9049 emit_move_insn (target, op0);
9051 lab = gen_label_rtx ();
9052 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9053 unsignedp, mode, NULL_RTX, NULL, lab,
9054 profile_probability::uninitialized ());
9056 emit_move_insn (target, op1);
9057 emit_label (lab);
9058 return target;
9060 case BIT_NOT_EXPR:
9061 op0 = expand_expr (treeop0, subtarget,
9062 VOIDmode, EXPAND_NORMAL);
9063 if (modifier == EXPAND_STACK_PARM)
9064 target = 0;
9065 /* In case we have to reduce the result to bitfield precision
9066 for unsigned bitfield expand this as XOR with a proper constant
9067 instead. */
9068 if (reduce_bit_field && TYPE_UNSIGNED (type))
9070 int_mode = SCALAR_INT_TYPE_MODE (type);
9071 wide_int mask = wi::mask (TYPE_PRECISION (type),
9072 false, GET_MODE_PRECISION (int_mode));
9074 temp = expand_binop (int_mode, xor_optab, op0,
9075 immed_wide_int_const (mask, int_mode),
9076 target, 1, OPTAB_LIB_WIDEN);
9078 else
9079 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9080 gcc_assert (temp);
9081 return temp;
9083 /* ??? Can optimize bitwise operations with one arg constant.
9084 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9085 and (a bitwise1 b) bitwise2 b (etc)
9086 but that is probably not worth while. */
9088 case BIT_AND_EXPR:
9089 case BIT_IOR_EXPR:
9090 case BIT_XOR_EXPR:
9091 goto binop;
9093 case LROTATE_EXPR:
9094 case RROTATE_EXPR:
9095 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9096 || type_has_mode_precision_p (type));
9097 /* fall through */
9099 case LSHIFT_EXPR:
9100 case RSHIFT_EXPR:
9102 /* If this is a fixed-point operation, then we cannot use the code
9103 below because "expand_shift" doesn't support sat/no-sat fixed-point
9104 shifts. */
9105 if (ALL_FIXED_POINT_MODE_P (mode))
9106 goto binop;
9108 if (! safe_from_p (subtarget, treeop1, 1))
9109 subtarget = 0;
9110 if (modifier == EXPAND_STACK_PARM)
9111 target = 0;
9112 op0 = expand_expr (treeop0, subtarget,
9113 VOIDmode, EXPAND_NORMAL);
9115 /* Left shift optimization when shifting across word_size boundary.
9117 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9118 there isn't native instruction to support this wide mode
9119 left shift. Given below scenario:
9121 Type A = (Type) B << C
9123 |< T >|
9124 | dest_high | dest_low |
9126 | word_size |
9128 If the shift amount C caused we shift B to across the word
9129 size boundary, i.e part of B shifted into high half of
9130 destination register, and part of B remains in the low
9131 half, then GCC will use the following left shift expand
9132 logic:
9134 1. Initialize dest_low to B.
9135 2. Initialize every bit of dest_high to the sign bit of B.
9136 3. Logic left shift dest_low by C bit to finalize dest_low.
9137 The value of dest_low before this shift is kept in a temp D.
9138 4. Logic left shift dest_high by C.
9139 5. Logic right shift D by (word_size - C).
9140 6. Or the result of 4 and 5 to finalize dest_high.
9142 While, by checking gimple statements, if operand B is
9143 coming from signed extension, then we can simplify above
9144 expand logic into:
9146 1. dest_high = src_low >> (word_size - C).
9147 2. dest_low = src_low << C.
9149 We can use one arithmetic right shift to finish all the
9150 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9151 needed from 6 into 2.
9153 The case is similar for zero extension, except that we
9154 initialize dest_high to zero rather than copies of the sign
9155 bit from B. Furthermore, we need to use a logical right shift
9156 in this case.
9158 The choice of sign-extension versus zero-extension is
9159 determined entirely by whether or not B is signed and is
9160 independent of the current setting of unsignedp. */
9162 temp = NULL_RTX;
9163 if (code == LSHIFT_EXPR
9164 && target
9165 && REG_P (target)
9166 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9167 && mode == int_mode
9168 && TREE_CONSTANT (treeop1)
9169 && TREE_CODE (treeop0) == SSA_NAME)
9171 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9172 if (is_gimple_assign (def)
9173 && gimple_assign_rhs_code (def) == NOP_EXPR)
9175 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9176 (TREE_TYPE (gimple_assign_rhs1 (def)));
9178 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9179 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9180 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9181 >= GET_MODE_BITSIZE (word_mode)))
9183 rtx_insn *seq, *seq_old;
9184 unsigned int high_off = subreg_highpart_offset (word_mode,
9185 int_mode);
9186 bool extend_unsigned
9187 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9188 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9189 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9190 rtx dest_high = simplify_gen_subreg (word_mode, target,
9191 int_mode, high_off);
9192 HOST_WIDE_INT ramount = (BITS_PER_WORD
9193 - TREE_INT_CST_LOW (treeop1));
9194 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9196 start_sequence ();
9197 /* dest_high = src_low >> (word_size - C). */
9198 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9199 rshift, dest_high,
9200 extend_unsigned);
9201 if (temp != dest_high)
9202 emit_move_insn (dest_high, temp);
9204 /* dest_low = src_low << C. */
9205 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9206 treeop1, dest_low, unsignedp);
9207 if (temp != dest_low)
9208 emit_move_insn (dest_low, temp);
9210 seq = get_insns ();
9211 end_sequence ();
9212 temp = target ;
9214 if (have_insn_for (ASHIFT, int_mode))
9216 bool speed_p = optimize_insn_for_speed_p ();
9217 start_sequence ();
9218 rtx ret_old = expand_variable_shift (code, int_mode,
9219 op0, treeop1,
9220 target,
9221 unsignedp);
9223 seq_old = get_insns ();
9224 end_sequence ();
9225 if (seq_cost (seq, speed_p)
9226 >= seq_cost (seq_old, speed_p))
9228 seq = seq_old;
9229 temp = ret_old;
9232 emit_insn (seq);
9237 if (temp == NULL_RTX)
9238 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9239 unsignedp);
9240 if (code == LSHIFT_EXPR)
9241 temp = REDUCE_BIT_FIELD (temp);
9242 return temp;
9245 /* Could determine the answer when only additive constants differ. Also,
9246 the addition of one can be handled by changing the condition. */
9247 case LT_EXPR:
9248 case LE_EXPR:
9249 case GT_EXPR:
9250 case GE_EXPR:
9251 case EQ_EXPR:
9252 case NE_EXPR:
9253 case UNORDERED_EXPR:
9254 case ORDERED_EXPR:
9255 case UNLT_EXPR:
9256 case UNLE_EXPR:
9257 case UNGT_EXPR:
9258 case UNGE_EXPR:
9259 case UNEQ_EXPR:
9260 case LTGT_EXPR:
9262 temp = do_store_flag (ops,
9263 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9264 tmode != VOIDmode ? tmode : mode);
9265 if (temp)
9266 return temp;
9268 /* Use a compare and a jump for BLKmode comparisons, or for function
9269 type comparisons is have_canonicalize_funcptr_for_compare. */
9271 if ((target == 0
9272 || modifier == EXPAND_STACK_PARM
9273 || ! safe_from_p (target, treeop0, 1)
9274 || ! safe_from_p (target, treeop1, 1)
9275 /* Make sure we don't have a hard reg (such as function's return
9276 value) live across basic blocks, if not optimizing. */
9277 || (!optimize && REG_P (target)
9278 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9279 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9281 emit_move_insn (target, const0_rtx);
9283 rtx_code_label *lab1 = gen_label_rtx ();
9284 jumpifnot_1 (code, treeop0, treeop1, lab1,
9285 profile_probability::uninitialized ());
9287 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9288 emit_move_insn (target, constm1_rtx);
9289 else
9290 emit_move_insn (target, const1_rtx);
9292 emit_label (lab1);
9293 return target;
9295 case COMPLEX_EXPR:
9296 /* Get the rtx code of the operands. */
9297 op0 = expand_normal (treeop0);
9298 op1 = expand_normal (treeop1);
9300 if (!target)
9301 target = gen_reg_rtx (TYPE_MODE (type));
9302 else
9303 /* If target overlaps with op1, then either we need to force
9304 op1 into a pseudo (if target also overlaps with op0),
9305 or write the complex parts in reverse order. */
9306 switch (GET_CODE (target))
9308 case CONCAT:
9309 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9311 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9313 complex_expr_force_op1:
9314 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9315 emit_move_insn (temp, op1);
9316 op1 = temp;
9317 break;
9319 complex_expr_swap_order:
9320 /* Move the imaginary (op1) and real (op0) parts to their
9321 location. */
9322 write_complex_part (target, op1, true);
9323 write_complex_part (target, op0, false);
9325 return target;
9327 break;
9328 case MEM:
9329 temp = adjust_address_nv (target,
9330 GET_MODE_INNER (GET_MODE (target)), 0);
9331 if (reg_overlap_mentioned_p (temp, op1))
9333 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9334 temp = adjust_address_nv (target, imode,
9335 GET_MODE_SIZE (imode));
9336 if (reg_overlap_mentioned_p (temp, op0))
9337 goto complex_expr_force_op1;
9338 goto complex_expr_swap_order;
9340 break;
9341 default:
9342 if (reg_overlap_mentioned_p (target, op1))
9344 if (reg_overlap_mentioned_p (target, op0))
9345 goto complex_expr_force_op1;
9346 goto complex_expr_swap_order;
9348 break;
9351 /* Move the real (op0) and imaginary (op1) parts to their location. */
9352 write_complex_part (target, op0, false);
9353 write_complex_part (target, op1, true);
9355 return target;
9357 case WIDEN_SUM_EXPR:
9359 tree oprnd0 = treeop0;
9360 tree oprnd1 = treeop1;
9362 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9363 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9364 target, unsignedp);
9365 return target;
9368 case REDUC_MAX_EXPR:
9369 case REDUC_MIN_EXPR:
9370 case REDUC_PLUS_EXPR:
9372 op0 = expand_normal (treeop0);
9373 this_optab = optab_for_tree_code (code, type, optab_default);
9374 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9376 struct expand_operand ops[2];
9377 enum insn_code icode = optab_handler (this_optab, vec_mode);
9379 create_output_operand (&ops[0], target, mode);
9380 create_input_operand (&ops[1], op0, vec_mode);
9381 expand_insn (icode, 2, ops);
9382 target = ops[0].value;
9383 if (GET_MODE (target) != mode)
9384 return gen_lowpart (tmode, target);
9385 return target;
9388 case VEC_UNPACK_HI_EXPR:
9389 case VEC_UNPACK_LO_EXPR:
9391 op0 = expand_normal (treeop0);
9392 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9393 target, unsignedp);
9394 gcc_assert (temp);
9395 return temp;
9398 case VEC_UNPACK_FLOAT_HI_EXPR:
9399 case VEC_UNPACK_FLOAT_LO_EXPR:
9401 op0 = expand_normal (treeop0);
9402 /* The signedness is determined from input operand. */
9403 temp = expand_widen_pattern_expr
9404 (ops, op0, NULL_RTX, NULL_RTX,
9405 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9407 gcc_assert (temp);
9408 return temp;
9411 case VEC_WIDEN_MULT_HI_EXPR:
9412 case VEC_WIDEN_MULT_LO_EXPR:
9413 case VEC_WIDEN_MULT_EVEN_EXPR:
9414 case VEC_WIDEN_MULT_ODD_EXPR:
9415 case VEC_WIDEN_LSHIFT_HI_EXPR:
9416 case VEC_WIDEN_LSHIFT_LO_EXPR:
9417 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9418 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9419 target, unsignedp);
9420 gcc_assert (target);
9421 return target;
9423 case VEC_PACK_TRUNC_EXPR:
9424 case VEC_PACK_SAT_EXPR:
9425 case VEC_PACK_FIX_TRUNC_EXPR:
9426 mode = TYPE_MODE (TREE_TYPE (treeop0));
9427 goto binop;
9429 case VEC_PERM_EXPR:
9430 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9431 op2 = expand_normal (treeop2);
9433 /* Careful here: if the target doesn't support integral vector modes,
9434 a constant selection vector could wind up smooshed into a normal
9435 integral constant. */
9436 if (CONSTANT_P (op2) && !VECTOR_MODE_P (GET_MODE (op2)))
9438 tree sel_type = TREE_TYPE (treeop2);
9439 machine_mode vmode
9440 = mode_for_vector (SCALAR_TYPE_MODE (TREE_TYPE (sel_type)),
9441 TYPE_VECTOR_SUBPARTS (sel_type)).require ();
9442 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9443 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9444 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9446 else
9447 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9449 temp = expand_vec_perm (mode, op0, op1, op2, target);
9450 gcc_assert (temp);
9451 return temp;
9453 case DOT_PROD_EXPR:
9455 tree oprnd0 = treeop0;
9456 tree oprnd1 = treeop1;
9457 tree oprnd2 = treeop2;
9458 rtx op2;
9460 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9461 op2 = expand_normal (oprnd2);
9462 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9463 target, unsignedp);
9464 return target;
9467 case SAD_EXPR:
9469 tree oprnd0 = treeop0;
9470 tree oprnd1 = treeop1;
9471 tree oprnd2 = treeop2;
9472 rtx op2;
9474 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9475 op2 = expand_normal (oprnd2);
9476 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9477 target, unsignedp);
9478 return target;
9481 case REALIGN_LOAD_EXPR:
9483 tree oprnd0 = treeop0;
9484 tree oprnd1 = treeop1;
9485 tree oprnd2 = treeop2;
9486 rtx op2;
9488 this_optab = optab_for_tree_code (code, type, optab_default);
9489 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9490 op2 = expand_normal (oprnd2);
9491 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9492 target, unsignedp);
9493 gcc_assert (temp);
9494 return temp;
9497 case COND_EXPR:
9499 /* A COND_EXPR with its type being VOID_TYPE represents a
9500 conditional jump and is handled in
9501 expand_gimple_cond_expr. */
9502 gcc_assert (!VOID_TYPE_P (type));
9504 /* Note that COND_EXPRs whose type is a structure or union
9505 are required to be constructed to contain assignments of
9506 a temporary variable, so that we can evaluate them here
9507 for side effect only. If type is void, we must do likewise. */
9509 gcc_assert (!TREE_ADDRESSABLE (type)
9510 && !ignore
9511 && TREE_TYPE (treeop1) != void_type_node
9512 && TREE_TYPE (treeop2) != void_type_node);
9514 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9515 if (temp)
9516 return temp;
9518 /* If we are not to produce a result, we have no target. Otherwise,
9519 if a target was specified use it; it will not be used as an
9520 intermediate target unless it is safe. If no target, use a
9521 temporary. */
9523 if (modifier != EXPAND_STACK_PARM
9524 && original_target
9525 && safe_from_p (original_target, treeop0, 1)
9526 && GET_MODE (original_target) == mode
9527 && !MEM_P (original_target))
9528 temp = original_target;
9529 else
9530 temp = assign_temp (type, 0, 1);
9532 do_pending_stack_adjust ();
9533 NO_DEFER_POP;
9534 rtx_code_label *lab0 = gen_label_rtx ();
9535 rtx_code_label *lab1 = gen_label_rtx ();
9536 jumpifnot (treeop0, lab0,
9537 profile_probability::uninitialized ());
9538 store_expr (treeop1, temp,
9539 modifier == EXPAND_STACK_PARM,
9540 false, false);
9542 emit_jump_insn (targetm.gen_jump (lab1));
9543 emit_barrier ();
9544 emit_label (lab0);
9545 store_expr (treeop2, temp,
9546 modifier == EXPAND_STACK_PARM,
9547 false, false);
9549 emit_label (lab1);
9550 OK_DEFER_POP;
9551 return temp;
9554 case VEC_COND_EXPR:
9555 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9556 return target;
9558 case BIT_INSERT_EXPR:
9560 unsigned bitpos = tree_to_uhwi (treeop2);
9561 unsigned bitsize;
9562 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9563 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9564 else
9565 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9566 rtx op0 = expand_normal (treeop0);
9567 rtx op1 = expand_normal (treeop1);
9568 rtx dst = gen_reg_rtx (mode);
9569 emit_move_insn (dst, op0);
9570 store_bit_field (dst, bitsize, bitpos, 0, 0,
9571 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9572 return dst;
9575 default:
9576 gcc_unreachable ();
9579 /* Here to do an ordinary binary operator. */
9580 binop:
9581 expand_operands (treeop0, treeop1,
9582 subtarget, &op0, &op1, EXPAND_NORMAL);
9583 binop2:
9584 this_optab = optab_for_tree_code (code, type, optab_default);
9585 binop3:
9586 if (modifier == EXPAND_STACK_PARM)
9587 target = 0;
9588 temp = expand_binop (mode, this_optab, op0, op1, target,
9589 unsignedp, OPTAB_LIB_WIDEN);
9590 gcc_assert (temp);
9591 /* Bitwise operations do not need bitfield reduction as we expect their
9592 operands being properly truncated. */
9593 if (code == BIT_XOR_EXPR
9594 || code == BIT_AND_EXPR
9595 || code == BIT_IOR_EXPR)
9596 return temp;
9597 return REDUCE_BIT_FIELD (temp);
9599 #undef REDUCE_BIT_FIELD
9602 /* Return TRUE if expression STMT is suitable for replacement.
9603 Never consider memory loads as replaceable, because those don't ever lead
9604 into constant expressions. */
9606 static bool
9607 stmt_is_replaceable_p (gimple *stmt)
9609 if (ssa_is_replaceable_p (stmt))
9611 /* Don't move around loads. */
9612 if (!gimple_assign_single_p (stmt)
9613 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9614 return true;
9616 return false;
9620 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9621 enum expand_modifier modifier, rtx *alt_rtl,
9622 bool inner_reference_p)
9624 rtx op0, op1, temp, decl_rtl;
9625 tree type;
9626 int unsignedp;
9627 machine_mode mode, dmode;
9628 enum tree_code code = TREE_CODE (exp);
9629 rtx subtarget, original_target;
9630 int ignore;
9631 tree context;
9632 bool reduce_bit_field;
9633 location_t loc = EXPR_LOCATION (exp);
9634 struct separate_ops ops;
9635 tree treeop0, treeop1, treeop2;
9636 tree ssa_name = NULL_TREE;
9637 gimple *g;
9639 type = TREE_TYPE (exp);
9640 mode = TYPE_MODE (type);
9641 unsignedp = TYPE_UNSIGNED (type);
9643 treeop0 = treeop1 = treeop2 = NULL_TREE;
9644 if (!VL_EXP_CLASS_P (exp))
9645 switch (TREE_CODE_LENGTH (code))
9647 default:
9648 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9649 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9650 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9651 case 0: break;
9653 ops.code = code;
9654 ops.type = type;
9655 ops.op0 = treeop0;
9656 ops.op1 = treeop1;
9657 ops.op2 = treeop2;
9658 ops.location = loc;
9660 ignore = (target == const0_rtx
9661 || ((CONVERT_EXPR_CODE_P (code)
9662 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9663 && TREE_CODE (type) == VOID_TYPE));
9665 /* An operation in what may be a bit-field type needs the
9666 result to be reduced to the precision of the bit-field type,
9667 which is narrower than that of the type's mode. */
9668 reduce_bit_field = (!ignore
9669 && INTEGRAL_TYPE_P (type)
9670 && !type_has_mode_precision_p (type));
9672 /* If we are going to ignore this result, we need only do something
9673 if there is a side-effect somewhere in the expression. If there
9674 is, short-circuit the most common cases here. Note that we must
9675 not call expand_expr with anything but const0_rtx in case this
9676 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9678 if (ignore)
9680 if (! TREE_SIDE_EFFECTS (exp))
9681 return const0_rtx;
9683 /* Ensure we reference a volatile object even if value is ignored, but
9684 don't do this if all we are doing is taking its address. */
9685 if (TREE_THIS_VOLATILE (exp)
9686 && TREE_CODE (exp) != FUNCTION_DECL
9687 && mode != VOIDmode && mode != BLKmode
9688 && modifier != EXPAND_CONST_ADDRESS)
9690 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9691 if (MEM_P (temp))
9692 copy_to_reg (temp);
9693 return const0_rtx;
9696 if (TREE_CODE_CLASS (code) == tcc_unary
9697 || code == BIT_FIELD_REF
9698 || code == COMPONENT_REF
9699 || code == INDIRECT_REF)
9700 return expand_expr (treeop0, const0_rtx, VOIDmode,
9701 modifier);
9703 else if (TREE_CODE_CLASS (code) == tcc_binary
9704 || TREE_CODE_CLASS (code) == tcc_comparison
9705 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9707 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9708 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9709 return const0_rtx;
9712 target = 0;
9715 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9716 target = 0;
9718 /* Use subtarget as the target for operand 0 of a binary operation. */
9719 subtarget = get_subtarget (target);
9720 original_target = target;
9722 switch (code)
9724 case LABEL_DECL:
9726 tree function = decl_function_context (exp);
9728 temp = label_rtx (exp);
9729 temp = gen_rtx_LABEL_REF (Pmode, temp);
9731 if (function != current_function_decl
9732 && function != 0)
9733 LABEL_REF_NONLOCAL_P (temp) = 1;
9735 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9736 return temp;
9739 case SSA_NAME:
9740 /* ??? ivopts calls expander, without any preparation from
9741 out-of-ssa. So fake instructions as if this was an access to the
9742 base variable. This unnecessarily allocates a pseudo, see how we can
9743 reuse it, if partition base vars have it set already. */
9744 if (!currently_expanding_to_rtl)
9746 tree var = SSA_NAME_VAR (exp);
9747 if (var && DECL_RTL_SET_P (var))
9748 return DECL_RTL (var);
9749 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9750 LAST_VIRTUAL_REGISTER + 1);
9753 g = get_gimple_for_ssa_name (exp);
9754 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9755 if (g == NULL
9756 && modifier == EXPAND_INITIALIZER
9757 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9758 && (optimize || !SSA_NAME_VAR (exp)
9759 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9760 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9761 g = SSA_NAME_DEF_STMT (exp);
9762 if (g)
9764 rtx r;
9765 location_t saved_loc = curr_insn_location ();
9766 location_t loc = gimple_location (g);
9767 if (loc != UNKNOWN_LOCATION)
9768 set_curr_insn_location (loc);
9769 ops.code = gimple_assign_rhs_code (g);
9770 switch (get_gimple_rhs_class (ops.code))
9772 case GIMPLE_TERNARY_RHS:
9773 ops.op2 = gimple_assign_rhs3 (g);
9774 /* Fallthru */
9775 case GIMPLE_BINARY_RHS:
9776 ops.op1 = gimple_assign_rhs2 (g);
9778 /* Try to expand conditonal compare. */
9779 if (targetm.gen_ccmp_first)
9781 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9782 r = expand_ccmp_expr (g, mode);
9783 if (r)
9784 break;
9786 /* Fallthru */
9787 case GIMPLE_UNARY_RHS:
9788 ops.op0 = gimple_assign_rhs1 (g);
9789 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9790 ops.location = loc;
9791 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9792 break;
9793 case GIMPLE_SINGLE_RHS:
9795 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9796 tmode, modifier, alt_rtl,
9797 inner_reference_p);
9798 break;
9800 default:
9801 gcc_unreachable ();
9803 set_curr_insn_location (saved_loc);
9804 if (REG_P (r) && !REG_EXPR (r))
9805 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9806 return r;
9809 ssa_name = exp;
9810 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9811 exp = SSA_NAME_VAR (ssa_name);
9812 goto expand_decl_rtl;
9814 case PARM_DECL:
9815 case VAR_DECL:
9816 /* If a static var's type was incomplete when the decl was written,
9817 but the type is complete now, lay out the decl now. */
9818 if (DECL_SIZE (exp) == 0
9819 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9820 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9821 layout_decl (exp, 0);
9823 /* fall through */
9825 case FUNCTION_DECL:
9826 case RESULT_DECL:
9827 decl_rtl = DECL_RTL (exp);
9828 expand_decl_rtl:
9829 gcc_assert (decl_rtl);
9831 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9832 settings for VECTOR_TYPE_P that might switch for the function. */
9833 if (currently_expanding_to_rtl
9834 && code == VAR_DECL && MEM_P (decl_rtl)
9835 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9836 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9837 else
9838 decl_rtl = copy_rtx (decl_rtl);
9840 /* Record writes to register variables. */
9841 if (modifier == EXPAND_WRITE
9842 && REG_P (decl_rtl)
9843 && HARD_REGISTER_P (decl_rtl))
9844 add_to_hard_reg_set (&crtl->asm_clobbers,
9845 GET_MODE (decl_rtl), REGNO (decl_rtl));
9847 /* Ensure variable marked as used even if it doesn't go through
9848 a parser. If it hasn't be used yet, write out an external
9849 definition. */
9850 if (exp)
9851 TREE_USED (exp) = 1;
9853 /* Show we haven't gotten RTL for this yet. */
9854 temp = 0;
9856 /* Variables inherited from containing functions should have
9857 been lowered by this point. */
9858 if (exp)
9859 context = decl_function_context (exp);
9860 gcc_assert (!exp
9861 || SCOPE_FILE_SCOPE_P (context)
9862 || context == current_function_decl
9863 || TREE_STATIC (exp)
9864 || DECL_EXTERNAL (exp)
9865 /* ??? C++ creates functions that are not TREE_STATIC. */
9866 || TREE_CODE (exp) == FUNCTION_DECL);
9868 /* This is the case of an array whose size is to be determined
9869 from its initializer, while the initializer is still being parsed.
9870 ??? We aren't parsing while expanding anymore. */
9872 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9873 temp = validize_mem (decl_rtl);
9875 /* If DECL_RTL is memory, we are in the normal case and the
9876 address is not valid, get the address into a register. */
9878 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9880 if (alt_rtl)
9881 *alt_rtl = decl_rtl;
9882 decl_rtl = use_anchored_address (decl_rtl);
9883 if (modifier != EXPAND_CONST_ADDRESS
9884 && modifier != EXPAND_SUM
9885 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9886 : GET_MODE (decl_rtl),
9887 XEXP (decl_rtl, 0),
9888 MEM_ADDR_SPACE (decl_rtl)))
9889 temp = replace_equiv_address (decl_rtl,
9890 copy_rtx (XEXP (decl_rtl, 0)));
9893 /* If we got something, return it. But first, set the alignment
9894 if the address is a register. */
9895 if (temp != 0)
9897 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9898 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9900 return temp;
9903 if (exp)
9904 dmode = DECL_MODE (exp);
9905 else
9906 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9908 /* If the mode of DECL_RTL does not match that of the decl,
9909 there are two cases: we are dealing with a BLKmode value
9910 that is returned in a register, or we are dealing with
9911 a promoted value. In the latter case, return a SUBREG
9912 of the wanted mode, but mark it so that we know that it
9913 was already extended. */
9914 if (REG_P (decl_rtl)
9915 && dmode != BLKmode
9916 && GET_MODE (decl_rtl) != dmode)
9918 machine_mode pmode;
9920 /* Get the signedness to be used for this variable. Ensure we get
9921 the same mode we got when the variable was declared. */
9922 if (code != SSA_NAME)
9923 pmode = promote_decl_mode (exp, &unsignedp);
9924 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9925 && gimple_code (g) == GIMPLE_CALL
9926 && !gimple_call_internal_p (g))
9927 pmode = promote_function_mode (type, mode, &unsignedp,
9928 gimple_call_fntype (g),
9930 else
9931 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9932 gcc_assert (GET_MODE (decl_rtl) == pmode);
9934 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9935 SUBREG_PROMOTED_VAR_P (temp) = 1;
9936 SUBREG_PROMOTED_SET (temp, unsignedp);
9937 return temp;
9940 return decl_rtl;
9942 case INTEGER_CST:
9944 /* Given that TYPE_PRECISION (type) is not always equal to
9945 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9946 the former to the latter according to the signedness of the
9947 type. */
9948 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
9949 temp = immed_wide_int_const
9950 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
9951 return temp;
9954 case VECTOR_CST:
9956 tree tmp = NULL_TREE;
9957 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9958 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9959 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9960 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9961 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9962 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9963 return const_vector_from_tree (exp);
9964 scalar_int_mode int_mode;
9965 if (is_int_mode (mode, &int_mode))
9967 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
9968 return const_scalar_mask_from_tree (int_mode, exp);
9969 else
9971 tree type_for_mode
9972 = lang_hooks.types.type_for_mode (int_mode, 1);
9973 if (type_for_mode)
9974 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
9975 type_for_mode, exp);
9978 if (!tmp)
9980 vec<constructor_elt, va_gc> *v;
9981 unsigned i;
9982 vec_alloc (v, VECTOR_CST_NELTS (exp));
9983 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9984 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9985 tmp = build_constructor (type, v);
9987 return expand_expr (tmp, ignore ? const0_rtx : target,
9988 tmode, modifier);
9991 case CONST_DECL:
9992 if (modifier == EXPAND_WRITE)
9994 /* Writing into CONST_DECL is always invalid, but handle it
9995 gracefully. */
9996 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
9997 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
9998 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
9999 EXPAND_NORMAL, as);
10000 op0 = memory_address_addr_space (mode, op0, as);
10001 temp = gen_rtx_MEM (mode, op0);
10002 set_mem_addr_space (temp, as);
10003 return temp;
10005 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10007 case REAL_CST:
10008 /* If optimized, generate immediate CONST_DOUBLE
10009 which will be turned into memory by reload if necessary.
10011 We used to force a register so that loop.c could see it. But
10012 this does not allow gen_* patterns to perform optimizations with
10013 the constants. It also produces two insns in cases like "x = 1.0;".
10014 On most machines, floating-point constants are not permitted in
10015 many insns, so we'd end up copying it to a register in any case.
10017 Now, we do the copying in expand_binop, if appropriate. */
10018 return const_double_from_real_value (TREE_REAL_CST (exp),
10019 TYPE_MODE (TREE_TYPE (exp)));
10021 case FIXED_CST:
10022 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10023 TYPE_MODE (TREE_TYPE (exp)));
10025 case COMPLEX_CST:
10026 /* Handle evaluating a complex constant in a CONCAT target. */
10027 if (original_target && GET_CODE (original_target) == CONCAT)
10029 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10030 rtx rtarg, itarg;
10032 rtarg = XEXP (original_target, 0);
10033 itarg = XEXP (original_target, 1);
10035 /* Move the real and imaginary parts separately. */
10036 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10037 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10039 if (op0 != rtarg)
10040 emit_move_insn (rtarg, op0);
10041 if (op1 != itarg)
10042 emit_move_insn (itarg, op1);
10044 return original_target;
10047 /* fall through */
10049 case STRING_CST:
10050 temp = expand_expr_constant (exp, 1, modifier);
10052 /* temp contains a constant address.
10053 On RISC machines where a constant address isn't valid,
10054 make some insns to get that address into a register. */
10055 if (modifier != EXPAND_CONST_ADDRESS
10056 && modifier != EXPAND_INITIALIZER
10057 && modifier != EXPAND_SUM
10058 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10059 MEM_ADDR_SPACE (temp)))
10060 return replace_equiv_address (temp,
10061 copy_rtx (XEXP (temp, 0)));
10062 return temp;
10064 case SAVE_EXPR:
10066 tree val = treeop0;
10067 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10068 inner_reference_p);
10070 if (!SAVE_EXPR_RESOLVED_P (exp))
10072 /* We can indeed still hit this case, typically via builtin
10073 expanders calling save_expr immediately before expanding
10074 something. Assume this means that we only have to deal
10075 with non-BLKmode values. */
10076 gcc_assert (GET_MODE (ret) != BLKmode);
10078 val = build_decl (curr_insn_location (),
10079 VAR_DECL, NULL, TREE_TYPE (exp));
10080 DECL_ARTIFICIAL (val) = 1;
10081 DECL_IGNORED_P (val) = 1;
10082 treeop0 = val;
10083 TREE_OPERAND (exp, 0) = treeop0;
10084 SAVE_EXPR_RESOLVED_P (exp) = 1;
10086 if (!CONSTANT_P (ret))
10087 ret = copy_to_reg (ret);
10088 SET_DECL_RTL (val, ret);
10091 return ret;
10095 case CONSTRUCTOR:
10096 /* If we don't need the result, just ensure we evaluate any
10097 subexpressions. */
10098 if (ignore)
10100 unsigned HOST_WIDE_INT idx;
10101 tree value;
10103 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10104 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10106 return const0_rtx;
10109 return expand_constructor (exp, target, modifier, false);
10111 case TARGET_MEM_REF:
10113 addr_space_t as
10114 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10115 enum insn_code icode;
10116 unsigned int align;
10118 op0 = addr_for_mem_ref (exp, as, true);
10119 op0 = memory_address_addr_space (mode, op0, as);
10120 temp = gen_rtx_MEM (mode, op0);
10121 set_mem_attributes (temp, exp, 0);
10122 set_mem_addr_space (temp, as);
10123 align = get_object_alignment (exp);
10124 if (modifier != EXPAND_WRITE
10125 && modifier != EXPAND_MEMORY
10126 && mode != BLKmode
10127 && align < GET_MODE_ALIGNMENT (mode)
10128 /* If the target does not have special handling for unaligned
10129 loads of mode then it can use regular moves for them. */
10130 && ((icode = optab_handler (movmisalign_optab, mode))
10131 != CODE_FOR_nothing))
10133 struct expand_operand ops[2];
10135 /* We've already validated the memory, and we're creating a
10136 new pseudo destination. The predicates really can't fail,
10137 nor can the generator. */
10138 create_output_operand (&ops[0], NULL_RTX, mode);
10139 create_fixed_operand (&ops[1], temp);
10140 expand_insn (icode, 2, ops);
10141 temp = ops[0].value;
10143 return temp;
10146 case MEM_REF:
10148 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10149 addr_space_t as
10150 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10151 machine_mode address_mode;
10152 tree base = TREE_OPERAND (exp, 0);
10153 gimple *def_stmt;
10154 enum insn_code icode;
10155 unsigned align;
10156 /* Handle expansion of non-aliased memory with non-BLKmode. That
10157 might end up in a register. */
10158 if (mem_ref_refers_to_non_mem_p (exp))
10160 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
10161 base = TREE_OPERAND (base, 0);
10162 if (offset == 0
10163 && !reverse
10164 && tree_fits_uhwi_p (TYPE_SIZE (type))
10165 && (GET_MODE_BITSIZE (DECL_MODE (base))
10166 == tree_to_uhwi (TYPE_SIZE (type))))
10167 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10168 target, tmode, modifier);
10169 if (TYPE_MODE (type) == BLKmode)
10171 temp = assign_stack_temp (DECL_MODE (base),
10172 GET_MODE_SIZE (DECL_MODE (base)));
10173 store_expr (base, temp, 0, false, false);
10174 temp = adjust_address (temp, BLKmode, offset);
10175 set_mem_size (temp, int_size_in_bytes (type));
10176 return temp;
10178 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10179 bitsize_int (offset * BITS_PER_UNIT));
10180 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10181 return expand_expr (exp, target, tmode, modifier);
10183 address_mode = targetm.addr_space.address_mode (as);
10184 base = TREE_OPERAND (exp, 0);
10185 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10187 tree mask = gimple_assign_rhs2 (def_stmt);
10188 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10189 gimple_assign_rhs1 (def_stmt), mask);
10190 TREE_OPERAND (exp, 0) = base;
10192 align = get_object_alignment (exp);
10193 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10194 op0 = memory_address_addr_space (mode, op0, as);
10195 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10197 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10198 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10199 op0 = memory_address_addr_space (mode, op0, as);
10201 temp = gen_rtx_MEM (mode, op0);
10202 set_mem_attributes (temp, exp, 0);
10203 set_mem_addr_space (temp, as);
10204 if (TREE_THIS_VOLATILE (exp))
10205 MEM_VOLATILE_P (temp) = 1;
10206 if (modifier != EXPAND_WRITE
10207 && modifier != EXPAND_MEMORY
10208 && !inner_reference_p
10209 && mode != BLKmode
10210 && align < GET_MODE_ALIGNMENT (mode))
10212 if ((icode = optab_handler (movmisalign_optab, mode))
10213 != CODE_FOR_nothing)
10215 struct expand_operand ops[2];
10217 /* We've already validated the memory, and we're creating a
10218 new pseudo destination. The predicates really can't fail,
10219 nor can the generator. */
10220 create_output_operand (&ops[0], NULL_RTX, mode);
10221 create_fixed_operand (&ops[1], temp);
10222 expand_insn (icode, 2, ops);
10223 temp = ops[0].value;
10225 else if (targetm.slow_unaligned_access (mode, align))
10226 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10227 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10228 (modifier == EXPAND_STACK_PARM
10229 ? NULL_RTX : target),
10230 mode, mode, false, alt_rtl);
10232 if (reverse
10233 && modifier != EXPAND_MEMORY
10234 && modifier != EXPAND_WRITE)
10235 temp = flip_storage_order (mode, temp);
10236 return temp;
10239 case ARRAY_REF:
10242 tree array = treeop0;
10243 tree index = treeop1;
10244 tree init;
10246 /* Fold an expression like: "foo"[2].
10247 This is not done in fold so it won't happen inside &.
10248 Don't fold if this is for wide characters since it's too
10249 difficult to do correctly and this is a very rare case. */
10251 if (modifier != EXPAND_CONST_ADDRESS
10252 && modifier != EXPAND_INITIALIZER
10253 && modifier != EXPAND_MEMORY)
10255 tree t = fold_read_from_constant_string (exp);
10257 if (t)
10258 return expand_expr (t, target, tmode, modifier);
10261 /* If this is a constant index into a constant array,
10262 just get the value from the array. Handle both the cases when
10263 we have an explicit constructor and when our operand is a variable
10264 that was declared const. */
10266 if (modifier != EXPAND_CONST_ADDRESS
10267 && modifier != EXPAND_INITIALIZER
10268 && modifier != EXPAND_MEMORY
10269 && TREE_CODE (array) == CONSTRUCTOR
10270 && ! TREE_SIDE_EFFECTS (array)
10271 && TREE_CODE (index) == INTEGER_CST)
10273 unsigned HOST_WIDE_INT ix;
10274 tree field, value;
10276 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10277 field, value)
10278 if (tree_int_cst_equal (field, index))
10280 if (!TREE_SIDE_EFFECTS (value))
10281 return expand_expr (fold (value), target, tmode, modifier);
10282 break;
10286 else if (optimize >= 1
10287 && modifier != EXPAND_CONST_ADDRESS
10288 && modifier != EXPAND_INITIALIZER
10289 && modifier != EXPAND_MEMORY
10290 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10291 && TREE_CODE (index) == INTEGER_CST
10292 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10293 && (init = ctor_for_folding (array)) != error_mark_node)
10295 if (init == NULL_TREE)
10297 tree value = build_zero_cst (type);
10298 if (TREE_CODE (value) == CONSTRUCTOR)
10300 /* If VALUE is a CONSTRUCTOR, this optimization is only
10301 useful if this doesn't store the CONSTRUCTOR into
10302 memory. If it does, it is more efficient to just
10303 load the data from the array directly. */
10304 rtx ret = expand_constructor (value, target,
10305 modifier, true);
10306 if (ret == NULL_RTX)
10307 value = NULL_TREE;
10310 if (value)
10311 return expand_expr (value, target, tmode, modifier);
10313 else if (TREE_CODE (init) == CONSTRUCTOR)
10315 unsigned HOST_WIDE_INT ix;
10316 tree field, value;
10318 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10319 field, value)
10320 if (tree_int_cst_equal (field, index))
10322 if (TREE_SIDE_EFFECTS (value))
10323 break;
10325 if (TREE_CODE (value) == CONSTRUCTOR)
10327 /* If VALUE is a CONSTRUCTOR, this
10328 optimization is only useful if
10329 this doesn't store the CONSTRUCTOR
10330 into memory. If it does, it is more
10331 efficient to just load the data from
10332 the array directly. */
10333 rtx ret = expand_constructor (value, target,
10334 modifier, true);
10335 if (ret == NULL_RTX)
10336 break;
10339 return
10340 expand_expr (fold (value), target, tmode, modifier);
10343 else if (TREE_CODE (init) == STRING_CST)
10345 tree low_bound = array_ref_low_bound (exp);
10346 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10348 /* Optimize the special case of a zero lower bound.
10350 We convert the lower bound to sizetype to avoid problems
10351 with constant folding. E.g. suppose the lower bound is
10352 1 and its mode is QI. Without the conversion
10353 (ARRAY + (INDEX - (unsigned char)1))
10354 becomes
10355 (ARRAY + (-(unsigned char)1) + INDEX)
10356 which becomes
10357 (ARRAY + 255 + INDEX). Oops! */
10358 if (!integer_zerop (low_bound))
10359 index1 = size_diffop_loc (loc, index1,
10360 fold_convert_loc (loc, sizetype,
10361 low_bound));
10363 if (tree_fits_uhwi_p (index1)
10364 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10366 tree type = TREE_TYPE (TREE_TYPE (init));
10367 scalar_int_mode mode;
10369 if (is_int_mode (TYPE_MODE (type), &mode)
10370 && GET_MODE_SIZE (mode) == 1)
10371 return gen_int_mode (TREE_STRING_POINTER (init)
10372 [TREE_INT_CST_LOW (index1)],
10373 mode);
10378 goto normal_inner_ref;
10380 case COMPONENT_REF:
10381 /* If the operand is a CONSTRUCTOR, we can just extract the
10382 appropriate field if it is present. */
10383 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10385 unsigned HOST_WIDE_INT idx;
10386 tree field, value;
10387 scalar_int_mode field_mode;
10389 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10390 idx, field, value)
10391 if (field == treeop1
10392 /* We can normally use the value of the field in the
10393 CONSTRUCTOR. However, if this is a bitfield in
10394 an integral mode that we can fit in a HOST_WIDE_INT,
10395 we must mask only the number of bits in the bitfield,
10396 since this is done implicitly by the constructor. If
10397 the bitfield does not meet either of those conditions,
10398 we can't do this optimization. */
10399 && (! DECL_BIT_FIELD (field)
10400 || (is_int_mode (DECL_MODE (field), &field_mode)
10401 && (GET_MODE_PRECISION (field_mode)
10402 <= HOST_BITS_PER_WIDE_INT))))
10404 if (DECL_BIT_FIELD (field)
10405 && modifier == EXPAND_STACK_PARM)
10406 target = 0;
10407 op0 = expand_expr (value, target, tmode, modifier);
10408 if (DECL_BIT_FIELD (field))
10410 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10411 scalar_int_mode imode
10412 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10414 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10416 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10417 imode);
10418 op0 = expand_and (imode, op0, op1, target);
10420 else
10422 int count = GET_MODE_PRECISION (imode) - bitsize;
10424 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10425 target, 0);
10426 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10427 target, 0);
10431 return op0;
10434 goto normal_inner_ref;
10436 case BIT_FIELD_REF:
10437 case ARRAY_RANGE_REF:
10438 normal_inner_ref:
10440 machine_mode mode1, mode2;
10441 HOST_WIDE_INT bitsize, bitpos;
10442 tree offset;
10443 int reversep, volatilep = 0, must_force_mem;
10444 tree tem
10445 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10446 &unsignedp, &reversep, &volatilep);
10447 rtx orig_op0, memloc;
10448 bool clear_mem_expr = false;
10450 /* If we got back the original object, something is wrong. Perhaps
10451 we are evaluating an expression too early. In any event, don't
10452 infinitely recurse. */
10453 gcc_assert (tem != exp);
10455 /* If TEM's type is a union of variable size, pass TARGET to the inner
10456 computation, since it will need a temporary and TARGET is known
10457 to have to do. This occurs in unchecked conversion in Ada. */
10458 orig_op0 = op0
10459 = expand_expr_real (tem,
10460 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10461 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10462 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10463 != INTEGER_CST)
10464 && modifier != EXPAND_STACK_PARM
10465 ? target : NULL_RTX),
10466 VOIDmode,
10467 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10468 NULL, true);
10470 /* If the field has a mode, we want to access it in the
10471 field's mode, not the computed mode.
10472 If a MEM has VOIDmode (external with incomplete type),
10473 use BLKmode for it instead. */
10474 if (MEM_P (op0))
10476 if (mode1 != VOIDmode)
10477 op0 = adjust_address (op0, mode1, 0);
10478 else if (GET_MODE (op0) == VOIDmode)
10479 op0 = adjust_address (op0, BLKmode, 0);
10482 mode2
10483 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10485 /* If we have either an offset, a BLKmode result, or a reference
10486 outside the underlying object, we must force it to memory.
10487 Such a case can occur in Ada if we have unchecked conversion
10488 of an expression from a scalar type to an aggregate type or
10489 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10490 passed a partially uninitialized object or a view-conversion
10491 to a larger size. */
10492 must_force_mem = (offset
10493 || mode1 == BLKmode
10494 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10496 /* Handle CONCAT first. */
10497 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10499 if (bitpos == 0
10500 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
10501 && COMPLEX_MODE_P (mode1)
10502 && COMPLEX_MODE_P (GET_MODE (op0))
10503 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10504 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10506 if (reversep)
10507 op0 = flip_storage_order (GET_MODE (op0), op0);
10508 if (mode1 != GET_MODE (op0))
10510 rtx parts[2];
10511 for (int i = 0; i < 2; i++)
10513 rtx op = read_complex_part (op0, i != 0);
10514 if (GET_CODE (op) == SUBREG)
10515 op = force_reg (GET_MODE (op), op);
10516 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10517 op);
10518 if (temp)
10519 op = temp;
10520 else
10522 if (!REG_P (op) && !MEM_P (op))
10523 op = force_reg (GET_MODE (op), op);
10524 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10526 parts[i] = op;
10528 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10530 return op0;
10532 if (bitpos == 0
10533 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10534 && bitsize)
10536 op0 = XEXP (op0, 0);
10537 mode2 = GET_MODE (op0);
10539 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10540 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10541 && bitpos
10542 && bitsize)
10544 op0 = XEXP (op0, 1);
10545 bitpos = 0;
10546 mode2 = GET_MODE (op0);
10548 else
10549 /* Otherwise force into memory. */
10550 must_force_mem = 1;
10553 /* If this is a constant, put it in a register if it is a legitimate
10554 constant and we don't need a memory reference. */
10555 if (CONSTANT_P (op0)
10556 && mode2 != BLKmode
10557 && targetm.legitimate_constant_p (mode2, op0)
10558 && !must_force_mem)
10559 op0 = force_reg (mode2, op0);
10561 /* Otherwise, if this is a constant, try to force it to the constant
10562 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10563 is a legitimate constant. */
10564 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10565 op0 = validize_mem (memloc);
10567 /* Otherwise, if this is a constant or the object is not in memory
10568 and need be, put it there. */
10569 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10571 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10572 emit_move_insn (memloc, op0);
10573 op0 = memloc;
10574 clear_mem_expr = true;
10577 if (offset)
10579 machine_mode address_mode;
10580 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10581 EXPAND_SUM);
10583 gcc_assert (MEM_P (op0));
10585 address_mode = get_address_mode (op0);
10586 if (GET_MODE (offset_rtx) != address_mode)
10588 /* We cannot be sure that the RTL in offset_rtx is valid outside
10589 of a memory address context, so force it into a register
10590 before attempting to convert it to the desired mode. */
10591 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10592 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10595 /* See the comment in expand_assignment for the rationale. */
10596 if (mode1 != VOIDmode
10597 && bitpos != 0
10598 && bitsize > 0
10599 && (bitpos % bitsize) == 0
10600 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10601 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10603 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10604 bitpos = 0;
10607 op0 = offset_address (op0, offset_rtx,
10608 highest_pow2_factor (offset));
10611 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10612 record its alignment as BIGGEST_ALIGNMENT. */
10613 if (MEM_P (op0) && bitpos == 0 && offset != 0
10614 && is_aligning_offset (offset, tem))
10615 set_mem_align (op0, BIGGEST_ALIGNMENT);
10617 /* Don't forget about volatility even if this is a bitfield. */
10618 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10620 if (op0 == orig_op0)
10621 op0 = copy_rtx (op0);
10623 MEM_VOLATILE_P (op0) = 1;
10626 /* In cases where an aligned union has an unaligned object
10627 as a field, we might be extracting a BLKmode value from
10628 an integer-mode (e.g., SImode) object. Handle this case
10629 by doing the extract into an object as wide as the field
10630 (which we know to be the width of a basic mode), then
10631 storing into memory, and changing the mode to BLKmode. */
10632 if (mode1 == VOIDmode
10633 || REG_P (op0) || GET_CODE (op0) == SUBREG
10634 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10635 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10636 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10637 && modifier != EXPAND_CONST_ADDRESS
10638 && modifier != EXPAND_INITIALIZER
10639 && modifier != EXPAND_MEMORY)
10640 /* If the bitfield is volatile and the bitsize
10641 is narrower than the access size of the bitfield,
10642 we need to extract bitfields from the access. */
10643 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10644 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10645 && mode1 != BLKmode
10646 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10647 /* If the field isn't aligned enough to fetch as a memref,
10648 fetch it as a bit field. */
10649 || (mode1 != BLKmode
10650 && (((MEM_P (op0)
10651 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10652 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)
10653 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10654 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
10655 && modifier != EXPAND_MEMORY
10656 && ((modifier == EXPAND_CONST_ADDRESS
10657 || modifier == EXPAND_INITIALIZER)
10658 ? STRICT_ALIGNMENT
10659 : targetm.slow_unaligned_access (mode1,
10660 MEM_ALIGN (op0))))
10661 || (bitpos % BITS_PER_UNIT != 0)))
10662 /* If the type and the field are a constant size and the
10663 size of the type isn't the same size as the bitfield,
10664 we must use bitfield operations. */
10665 || (bitsize >= 0
10666 && TYPE_SIZE (TREE_TYPE (exp))
10667 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10668 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10669 bitsize)))
10671 machine_mode ext_mode = mode;
10673 if (ext_mode == BLKmode
10674 && ! (target != 0 && MEM_P (op0)
10675 && MEM_P (target)
10676 && bitpos % BITS_PER_UNIT == 0))
10677 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10679 if (ext_mode == BLKmode)
10681 if (target == 0)
10682 target = assign_temp (type, 1, 1);
10684 /* ??? Unlike the similar test a few lines below, this one is
10685 very likely obsolete. */
10686 if (bitsize == 0)
10687 return target;
10689 /* In this case, BITPOS must start at a byte boundary and
10690 TARGET, if specified, must be a MEM. */
10691 gcc_assert (MEM_P (op0)
10692 && (!target || MEM_P (target))
10693 && !(bitpos % BITS_PER_UNIT));
10695 emit_block_move (target,
10696 adjust_address (op0, VOIDmode,
10697 bitpos / BITS_PER_UNIT),
10698 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10699 / BITS_PER_UNIT),
10700 (modifier == EXPAND_STACK_PARM
10701 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10703 return target;
10706 /* If we have nothing to extract, the result will be 0 for targets
10707 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10708 return 0 for the sake of consistency, as reading a zero-sized
10709 bitfield is valid in Ada and the value is fully specified. */
10710 if (bitsize == 0)
10711 return const0_rtx;
10713 op0 = validize_mem (op0);
10715 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10716 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10718 /* If the result has a record type and the extraction is done in
10719 an integral mode, then the field may be not aligned on a byte
10720 boundary; in this case, if it has reverse storage order, it
10721 needs to be extracted as a scalar field with reverse storage
10722 order and put back into memory order afterwards. */
10723 if (TREE_CODE (type) == RECORD_TYPE
10724 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10725 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10727 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10728 (modifier == EXPAND_STACK_PARM
10729 ? NULL_RTX : target),
10730 ext_mode, ext_mode, reversep, alt_rtl);
10732 /* If the result has a record type and the mode of OP0 is an
10733 integral mode then, if BITSIZE is narrower than this mode
10734 and this is for big-endian data, we must put the field
10735 into the high-order bits. And we must also put it back
10736 into memory order if it has been previously reversed. */
10737 scalar_int_mode op0_mode;
10738 if (TREE_CODE (type) == RECORD_TYPE
10739 && is_int_mode (GET_MODE (op0), &op0_mode))
10741 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10743 if (bitsize < size
10744 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10745 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10746 size - bitsize, op0, 1);
10748 if (reversep)
10749 op0 = flip_storage_order (op0_mode, op0);
10752 /* If the result type is BLKmode, store the data into a temporary
10753 of the appropriate type, but with the mode corresponding to the
10754 mode for the data we have (op0's mode). */
10755 if (mode == BLKmode)
10757 rtx new_rtx
10758 = assign_stack_temp_for_type (ext_mode,
10759 GET_MODE_BITSIZE (ext_mode),
10760 type);
10761 emit_move_insn (new_rtx, op0);
10762 op0 = copy_rtx (new_rtx);
10763 PUT_MODE (op0, BLKmode);
10766 return op0;
10769 /* If the result is BLKmode, use that to access the object
10770 now as well. */
10771 if (mode == BLKmode)
10772 mode1 = BLKmode;
10774 /* Get a reference to just this component. */
10775 if (modifier == EXPAND_CONST_ADDRESS
10776 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10777 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10778 else
10779 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10781 if (op0 == orig_op0)
10782 op0 = copy_rtx (op0);
10784 /* Don't set memory attributes if the base expression is
10785 SSA_NAME that got expanded as a MEM. In that case, we should
10786 just honor its original memory attributes. */
10787 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10788 set_mem_attributes (op0, exp, 0);
10790 if (REG_P (XEXP (op0, 0)))
10791 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10793 /* If op0 is a temporary because the original expressions was forced
10794 to memory, clear MEM_EXPR so that the original expression cannot
10795 be marked as addressable through MEM_EXPR of the temporary. */
10796 if (clear_mem_expr)
10797 set_mem_expr (op0, NULL_TREE);
10799 MEM_VOLATILE_P (op0) |= volatilep;
10801 if (reversep
10802 && modifier != EXPAND_MEMORY
10803 && modifier != EXPAND_WRITE)
10804 op0 = flip_storage_order (mode1, op0);
10806 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10807 || modifier == EXPAND_CONST_ADDRESS
10808 || modifier == EXPAND_INITIALIZER)
10809 return op0;
10811 if (target == 0)
10812 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10814 convert_move (target, op0, unsignedp);
10815 return target;
10818 case OBJ_TYPE_REF:
10819 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10821 case CALL_EXPR:
10822 /* All valid uses of __builtin_va_arg_pack () are removed during
10823 inlining. */
10824 if (CALL_EXPR_VA_ARG_PACK (exp))
10825 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10827 tree fndecl = get_callee_fndecl (exp), attr;
10829 if (fndecl
10830 && (attr = lookup_attribute ("error",
10831 DECL_ATTRIBUTES (fndecl))) != NULL)
10832 error ("%Kcall to %qs declared with attribute error: %s",
10833 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10834 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10835 if (fndecl
10836 && (attr = lookup_attribute ("warning",
10837 DECL_ATTRIBUTES (fndecl))) != NULL)
10838 warning_at (tree_nonartificial_location (exp),
10839 0, "%Kcall to %qs declared with attribute warning: %s",
10840 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10841 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10843 /* Check for a built-in function. */
10844 if (fndecl && DECL_BUILT_IN (fndecl))
10846 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10847 if (CALL_WITH_BOUNDS_P (exp))
10848 return expand_builtin_with_bounds (exp, target, subtarget,
10849 tmode, ignore);
10850 else
10851 return expand_builtin (exp, target, subtarget, tmode, ignore);
10854 return expand_call (exp, target, ignore);
10856 case VIEW_CONVERT_EXPR:
10857 op0 = NULL_RTX;
10859 /* If we are converting to BLKmode, try to avoid an intermediate
10860 temporary by fetching an inner memory reference. */
10861 if (mode == BLKmode
10862 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10863 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10864 && handled_component_p (treeop0))
10866 machine_mode mode1;
10867 HOST_WIDE_INT bitsize, bitpos;
10868 tree offset;
10869 int unsignedp, reversep, volatilep = 0;
10870 tree tem
10871 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10872 &unsignedp, &reversep, &volatilep);
10873 rtx orig_op0;
10875 /* ??? We should work harder and deal with non-zero offsets. */
10876 if (!offset
10877 && (bitpos % BITS_PER_UNIT) == 0
10878 && !reversep
10879 && bitsize >= 0
10880 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10882 /* See the normal_inner_ref case for the rationale. */
10883 orig_op0
10884 = expand_expr_real (tem,
10885 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10886 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10887 != INTEGER_CST)
10888 && modifier != EXPAND_STACK_PARM
10889 ? target : NULL_RTX),
10890 VOIDmode,
10891 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10892 NULL, true);
10894 if (MEM_P (orig_op0))
10896 op0 = orig_op0;
10898 /* Get a reference to just this component. */
10899 if (modifier == EXPAND_CONST_ADDRESS
10900 || modifier == EXPAND_SUM
10901 || modifier == EXPAND_INITIALIZER)
10902 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10903 else
10904 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10906 if (op0 == orig_op0)
10907 op0 = copy_rtx (op0);
10909 set_mem_attributes (op0, treeop0, 0);
10910 if (REG_P (XEXP (op0, 0)))
10911 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10913 MEM_VOLATILE_P (op0) |= volatilep;
10918 if (!op0)
10919 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10920 NULL, inner_reference_p);
10922 /* If the input and output modes are both the same, we are done. */
10923 if (mode == GET_MODE (op0))
10925 /* If neither mode is BLKmode, and both modes are the same size
10926 then we can use gen_lowpart. */
10927 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10928 && (GET_MODE_PRECISION (mode)
10929 == GET_MODE_PRECISION (GET_MODE (op0)))
10930 && !COMPLEX_MODE_P (GET_MODE (op0)))
10932 if (GET_CODE (op0) == SUBREG)
10933 op0 = force_reg (GET_MODE (op0), op0);
10934 temp = gen_lowpart_common (mode, op0);
10935 if (temp)
10936 op0 = temp;
10937 else
10939 if (!REG_P (op0) && !MEM_P (op0))
10940 op0 = force_reg (GET_MODE (op0), op0);
10941 op0 = gen_lowpart (mode, op0);
10944 /* If both types are integral, convert from one mode to the other. */
10945 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10946 op0 = convert_modes (mode, GET_MODE (op0), op0,
10947 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10948 /* If the output type is a bit-field type, do an extraction. */
10949 else if (reduce_bit_field)
10950 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10951 TYPE_UNSIGNED (type), NULL_RTX,
10952 mode, mode, false, NULL);
10953 /* As a last resort, spill op0 to memory, and reload it in a
10954 different mode. */
10955 else if (!MEM_P (op0))
10957 /* If the operand is not a MEM, force it into memory. Since we
10958 are going to be changing the mode of the MEM, don't call
10959 force_const_mem for constants because we don't allow pool
10960 constants to change mode. */
10961 tree inner_type = TREE_TYPE (treeop0);
10963 gcc_assert (!TREE_ADDRESSABLE (exp));
10965 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10966 target
10967 = assign_stack_temp_for_type
10968 (TYPE_MODE (inner_type),
10969 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10971 emit_move_insn (target, op0);
10972 op0 = target;
10975 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10976 output type is such that the operand is known to be aligned, indicate
10977 that it is. Otherwise, we need only be concerned about alignment for
10978 non-BLKmode results. */
10979 if (MEM_P (op0))
10981 enum insn_code icode;
10983 if (modifier != EXPAND_WRITE
10984 && modifier != EXPAND_MEMORY
10985 && !inner_reference_p
10986 && mode != BLKmode
10987 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10989 /* If the target does have special handling for unaligned
10990 loads of mode then use them. */
10991 if ((icode = optab_handler (movmisalign_optab, mode))
10992 != CODE_FOR_nothing)
10994 rtx reg;
10996 op0 = adjust_address (op0, mode, 0);
10997 /* We've already validated the memory, and we're creating a
10998 new pseudo destination. The predicates really can't
10999 fail. */
11000 reg = gen_reg_rtx (mode);
11002 /* Nor can the insn generator. */
11003 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11004 emit_insn (insn);
11005 return reg;
11007 else if (STRICT_ALIGNMENT)
11009 tree inner_type = TREE_TYPE (treeop0);
11010 HOST_WIDE_INT temp_size
11011 = MAX (int_size_in_bytes (inner_type),
11012 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
11013 rtx new_rtx
11014 = assign_stack_temp_for_type (mode, temp_size, type);
11015 rtx new_with_op0_mode
11016 = adjust_address (new_rtx, GET_MODE (op0), 0);
11018 gcc_assert (!TREE_ADDRESSABLE (exp));
11020 if (GET_MODE (op0) == BLKmode)
11021 emit_block_move (new_with_op0_mode, op0,
11022 GEN_INT (GET_MODE_SIZE (mode)),
11023 (modifier == EXPAND_STACK_PARM
11024 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11025 else
11026 emit_move_insn (new_with_op0_mode, op0);
11028 op0 = new_rtx;
11032 op0 = adjust_address (op0, mode, 0);
11035 return op0;
11037 case MODIFY_EXPR:
11039 tree lhs = treeop0;
11040 tree rhs = treeop1;
11041 gcc_assert (ignore);
11043 /* Check for |= or &= of a bitfield of size one into another bitfield
11044 of size 1. In this case, (unless we need the result of the
11045 assignment) we can do this more efficiently with a
11046 test followed by an assignment, if necessary.
11048 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11049 things change so we do, this code should be enhanced to
11050 support it. */
11051 if (TREE_CODE (lhs) == COMPONENT_REF
11052 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11053 || TREE_CODE (rhs) == BIT_AND_EXPR)
11054 && TREE_OPERAND (rhs, 0) == lhs
11055 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11056 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11057 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11059 rtx_code_label *label = gen_label_rtx ();
11060 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11061 do_jump (TREE_OPERAND (rhs, 1),
11062 value ? label : 0,
11063 value ? 0 : label,
11064 profile_probability::uninitialized ());
11065 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11066 false);
11067 do_pending_stack_adjust ();
11068 emit_label (label);
11069 return const0_rtx;
11072 expand_assignment (lhs, rhs, false);
11073 return const0_rtx;
11076 case ADDR_EXPR:
11077 return expand_expr_addr_expr (exp, target, tmode, modifier);
11079 case REALPART_EXPR:
11080 op0 = expand_normal (treeop0);
11081 return read_complex_part (op0, false);
11083 case IMAGPART_EXPR:
11084 op0 = expand_normal (treeop0);
11085 return read_complex_part (op0, true);
11087 case RETURN_EXPR:
11088 case LABEL_EXPR:
11089 case GOTO_EXPR:
11090 case SWITCH_EXPR:
11091 case ASM_EXPR:
11092 /* Expanded in cfgexpand.c. */
11093 gcc_unreachable ();
11095 case TRY_CATCH_EXPR:
11096 case CATCH_EXPR:
11097 case EH_FILTER_EXPR:
11098 case TRY_FINALLY_EXPR:
11099 /* Lowered by tree-eh.c. */
11100 gcc_unreachable ();
11102 case WITH_CLEANUP_EXPR:
11103 case CLEANUP_POINT_EXPR:
11104 case TARGET_EXPR:
11105 case CASE_LABEL_EXPR:
11106 case VA_ARG_EXPR:
11107 case BIND_EXPR:
11108 case INIT_EXPR:
11109 case CONJ_EXPR:
11110 case COMPOUND_EXPR:
11111 case PREINCREMENT_EXPR:
11112 case PREDECREMENT_EXPR:
11113 case POSTINCREMENT_EXPR:
11114 case POSTDECREMENT_EXPR:
11115 case LOOP_EXPR:
11116 case EXIT_EXPR:
11117 case COMPOUND_LITERAL_EXPR:
11118 /* Lowered by gimplify.c. */
11119 gcc_unreachable ();
11121 case FDESC_EXPR:
11122 /* Function descriptors are not valid except for as
11123 initialization constants, and should not be expanded. */
11124 gcc_unreachable ();
11126 case WITH_SIZE_EXPR:
11127 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11128 have pulled out the size to use in whatever context it needed. */
11129 return expand_expr_real (treeop0, original_target, tmode,
11130 modifier, alt_rtl, inner_reference_p);
11132 default:
11133 return expand_expr_real_2 (&ops, target, tmode, modifier);
11137 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11138 signedness of TYPE), possibly returning the result in TARGET.
11139 TYPE is known to be a partial integer type. */
11140 static rtx
11141 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11143 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11144 if (target && GET_MODE (target) != GET_MODE (exp))
11145 target = 0;
11146 /* For constant values, reduce using build_int_cst_type. */
11147 if (CONST_INT_P (exp))
11149 HOST_WIDE_INT value = INTVAL (exp);
11150 tree t = build_int_cst_type (type, value);
11151 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11153 else if (TYPE_UNSIGNED (type))
11155 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11156 rtx mask = immed_wide_int_const
11157 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11158 return expand_and (mode, exp, mask, target);
11160 else
11162 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11163 int count = GET_MODE_PRECISION (mode) - prec;
11164 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11165 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11169 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11170 when applied to the address of EXP produces an address known to be
11171 aligned more than BIGGEST_ALIGNMENT. */
11173 static int
11174 is_aligning_offset (const_tree offset, const_tree exp)
11176 /* Strip off any conversions. */
11177 while (CONVERT_EXPR_P (offset))
11178 offset = TREE_OPERAND (offset, 0);
11180 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11181 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11182 if (TREE_CODE (offset) != BIT_AND_EXPR
11183 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11184 || compare_tree_int (TREE_OPERAND (offset, 1),
11185 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11186 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11187 return 0;
11189 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11190 It must be NEGATE_EXPR. Then strip any more conversions. */
11191 offset = TREE_OPERAND (offset, 0);
11192 while (CONVERT_EXPR_P (offset))
11193 offset = TREE_OPERAND (offset, 0);
11195 if (TREE_CODE (offset) != NEGATE_EXPR)
11196 return 0;
11198 offset = TREE_OPERAND (offset, 0);
11199 while (CONVERT_EXPR_P (offset))
11200 offset = TREE_OPERAND (offset, 0);
11202 /* This must now be the address of EXP. */
11203 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11206 /* Return the tree node if an ARG corresponds to a string constant or zero
11207 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11208 in bytes within the string that ARG is accessing. The type of the
11209 offset will be `sizetype'. */
11211 tree
11212 string_constant (tree arg, tree *ptr_offset)
11214 tree array, offset, lower_bound;
11215 STRIP_NOPS (arg);
11217 if (TREE_CODE (arg) == ADDR_EXPR)
11219 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11221 *ptr_offset = size_zero_node;
11222 return TREE_OPERAND (arg, 0);
11224 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11226 array = TREE_OPERAND (arg, 0);
11227 offset = size_zero_node;
11229 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11231 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11232 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11233 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11234 return 0;
11236 /* Check if the array has a nonzero lower bound. */
11237 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11238 if (!integer_zerop (lower_bound))
11240 /* If the offset and base aren't both constants, return 0. */
11241 if (TREE_CODE (lower_bound) != INTEGER_CST)
11242 return 0;
11243 if (TREE_CODE (offset) != INTEGER_CST)
11244 return 0;
11245 /* Adjust offset by the lower bound. */
11246 offset = size_diffop (fold_convert (sizetype, offset),
11247 fold_convert (sizetype, lower_bound));
11250 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11252 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11253 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11254 if (TREE_CODE (array) != ADDR_EXPR)
11255 return 0;
11256 array = TREE_OPERAND (array, 0);
11257 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11258 return 0;
11260 else
11261 return 0;
11263 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11265 tree arg0 = TREE_OPERAND (arg, 0);
11266 tree arg1 = TREE_OPERAND (arg, 1);
11268 STRIP_NOPS (arg0);
11269 STRIP_NOPS (arg1);
11271 if (TREE_CODE (arg0) == ADDR_EXPR
11272 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11273 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11275 array = TREE_OPERAND (arg0, 0);
11276 offset = arg1;
11278 else if (TREE_CODE (arg1) == ADDR_EXPR
11279 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11280 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11282 array = TREE_OPERAND (arg1, 0);
11283 offset = arg0;
11285 else
11286 return 0;
11288 else
11289 return 0;
11291 if (TREE_CODE (array) == STRING_CST)
11293 *ptr_offset = fold_convert (sizetype, offset);
11294 return array;
11296 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11298 int length;
11299 tree init = ctor_for_folding (array);
11301 /* Variables initialized to string literals can be handled too. */
11302 if (init == error_mark_node
11303 || !init
11304 || TREE_CODE (init) != STRING_CST)
11305 return 0;
11307 /* Avoid const char foo[4] = "abcde"; */
11308 if (DECL_SIZE_UNIT (array) == NULL_TREE
11309 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11310 || (length = TREE_STRING_LENGTH (init)) <= 0
11311 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11312 return 0;
11314 /* If variable is bigger than the string literal, OFFSET must be constant
11315 and inside of the bounds of the string literal. */
11316 offset = fold_convert (sizetype, offset);
11317 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11318 && (! tree_fits_uhwi_p (offset)
11319 || compare_tree_int (offset, length) >= 0))
11320 return 0;
11322 *ptr_offset = offset;
11323 return init;
11326 return 0;
11329 /* Generate code to calculate OPS, and exploded expression
11330 using a store-flag instruction and return an rtx for the result.
11331 OPS reflects a comparison.
11333 If TARGET is nonzero, store the result there if convenient.
11335 Return zero if there is no suitable set-flag instruction
11336 available on this machine.
11338 Once expand_expr has been called on the arguments of the comparison,
11339 we are committed to doing the store flag, since it is not safe to
11340 re-evaluate the expression. We emit the store-flag insn by calling
11341 emit_store_flag, but only expand the arguments if we have a reason
11342 to believe that emit_store_flag will be successful. If we think that
11343 it will, but it isn't, we have to simulate the store-flag with a
11344 set/jump/set sequence. */
11346 static rtx
11347 do_store_flag (sepops ops, rtx target, machine_mode mode)
11349 enum rtx_code code;
11350 tree arg0, arg1, type;
11351 machine_mode operand_mode;
11352 int unsignedp;
11353 rtx op0, op1;
11354 rtx subtarget = target;
11355 location_t loc = ops->location;
11357 arg0 = ops->op0;
11358 arg1 = ops->op1;
11360 /* Don't crash if the comparison was erroneous. */
11361 if (arg0 == error_mark_node || arg1 == error_mark_node)
11362 return const0_rtx;
11364 type = TREE_TYPE (arg0);
11365 operand_mode = TYPE_MODE (type);
11366 unsignedp = TYPE_UNSIGNED (type);
11368 /* We won't bother with BLKmode store-flag operations because it would mean
11369 passing a lot of information to emit_store_flag. */
11370 if (operand_mode == BLKmode)
11371 return 0;
11373 /* We won't bother with store-flag operations involving function pointers
11374 when function pointers must be canonicalized before comparisons. */
11375 if (targetm.have_canonicalize_funcptr_for_compare ()
11376 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11377 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11378 == FUNCTION_TYPE))
11379 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11380 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11381 == FUNCTION_TYPE))))
11382 return 0;
11384 STRIP_NOPS (arg0);
11385 STRIP_NOPS (arg1);
11387 /* For vector typed comparisons emit code to generate the desired
11388 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11389 expander for this. */
11390 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11392 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11393 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11394 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11395 return expand_vec_cmp_expr (ops->type, ifexp, target);
11396 else
11398 tree if_true = constant_boolean_node (true, ops->type);
11399 tree if_false = constant_boolean_node (false, ops->type);
11400 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11401 if_false, target);
11405 /* Get the rtx comparison code to use. We know that EXP is a comparison
11406 operation of some type. Some comparisons against 1 and -1 can be
11407 converted to comparisons with zero. Do so here so that the tests
11408 below will be aware that we have a comparison with zero. These
11409 tests will not catch constants in the first operand, but constants
11410 are rarely passed as the first operand. */
11412 switch (ops->code)
11414 case EQ_EXPR:
11415 code = EQ;
11416 break;
11417 case NE_EXPR:
11418 code = NE;
11419 break;
11420 case LT_EXPR:
11421 if (integer_onep (arg1))
11422 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11423 else
11424 code = unsignedp ? LTU : LT;
11425 break;
11426 case LE_EXPR:
11427 if (! unsignedp && integer_all_onesp (arg1))
11428 arg1 = integer_zero_node, code = LT;
11429 else
11430 code = unsignedp ? LEU : LE;
11431 break;
11432 case GT_EXPR:
11433 if (! unsignedp && integer_all_onesp (arg1))
11434 arg1 = integer_zero_node, code = GE;
11435 else
11436 code = unsignedp ? GTU : GT;
11437 break;
11438 case GE_EXPR:
11439 if (integer_onep (arg1))
11440 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11441 else
11442 code = unsignedp ? GEU : GE;
11443 break;
11445 case UNORDERED_EXPR:
11446 code = UNORDERED;
11447 break;
11448 case ORDERED_EXPR:
11449 code = ORDERED;
11450 break;
11451 case UNLT_EXPR:
11452 code = UNLT;
11453 break;
11454 case UNLE_EXPR:
11455 code = UNLE;
11456 break;
11457 case UNGT_EXPR:
11458 code = UNGT;
11459 break;
11460 case UNGE_EXPR:
11461 code = UNGE;
11462 break;
11463 case UNEQ_EXPR:
11464 code = UNEQ;
11465 break;
11466 case LTGT_EXPR:
11467 code = LTGT;
11468 break;
11470 default:
11471 gcc_unreachable ();
11474 /* Put a constant second. */
11475 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11476 || TREE_CODE (arg0) == FIXED_CST)
11478 std::swap (arg0, arg1);
11479 code = swap_condition (code);
11482 /* If this is an equality or inequality test of a single bit, we can
11483 do this by shifting the bit being tested to the low-order bit and
11484 masking the result with the constant 1. If the condition was EQ,
11485 we xor it with 1. This does not require an scc insn and is faster
11486 than an scc insn even if we have it.
11488 The code to make this transformation was moved into fold_single_bit_test,
11489 so we just call into the folder and expand its result. */
11491 if ((code == NE || code == EQ)
11492 && integer_zerop (arg1)
11493 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11495 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11496 if (srcstmt
11497 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11499 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11500 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11501 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11502 gimple_assign_rhs1 (srcstmt),
11503 gimple_assign_rhs2 (srcstmt));
11504 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11505 if (temp)
11506 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11510 if (! get_subtarget (target)
11511 || GET_MODE (subtarget) != operand_mode)
11512 subtarget = 0;
11514 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11516 if (target == 0)
11517 target = gen_reg_rtx (mode);
11519 /* Try a cstore if possible. */
11520 return emit_store_flag_force (target, code, op0, op1,
11521 operand_mode, unsignedp,
11522 (TYPE_PRECISION (ops->type) == 1
11523 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11526 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11527 0 otherwise (i.e. if there is no casesi instruction).
11529 DEFAULT_PROBABILITY is the probability of jumping to the default
11530 label. */
11532 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11533 rtx table_label, rtx default_label, rtx fallback_label,
11534 profile_probability default_probability)
11536 struct expand_operand ops[5];
11537 scalar_int_mode index_mode = SImode;
11538 rtx op1, op2, index;
11540 if (! targetm.have_casesi ())
11541 return 0;
11543 /* The index must be some form of integer. Convert it to SImode. */
11544 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
11545 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
11547 rtx rangertx = expand_normal (range);
11549 /* We must handle the endpoints in the original mode. */
11550 index_expr = build2 (MINUS_EXPR, index_type,
11551 index_expr, minval);
11552 minval = integer_zero_node;
11553 index = expand_normal (index_expr);
11554 if (default_label)
11555 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11556 omode, 1, default_label,
11557 default_probability);
11558 /* Now we can safely truncate. */
11559 index = convert_to_mode (index_mode, index, 0);
11561 else
11563 if (omode != index_mode)
11565 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11566 index_expr = fold_convert (index_type, index_expr);
11569 index = expand_normal (index_expr);
11572 do_pending_stack_adjust ();
11574 op1 = expand_normal (minval);
11575 op2 = expand_normal (range);
11577 create_input_operand (&ops[0], index, index_mode);
11578 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11579 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11580 create_fixed_operand (&ops[3], table_label);
11581 create_fixed_operand (&ops[4], (default_label
11582 ? default_label
11583 : fallback_label));
11584 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11585 return 1;
11588 /* Attempt to generate a tablejump instruction; same concept. */
11589 /* Subroutine of the next function.
11591 INDEX is the value being switched on, with the lowest value
11592 in the table already subtracted.
11593 MODE is its expected mode (needed if INDEX is constant).
11594 RANGE is the length of the jump table.
11595 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11597 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11598 index value is out of range.
11599 DEFAULT_PROBABILITY is the probability of jumping to
11600 the default label. */
11602 static void
11603 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11604 rtx default_label, profile_probability default_probability)
11606 rtx temp, vector;
11608 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11609 cfun->cfg->max_jumptable_ents = INTVAL (range);
11611 /* Do an unsigned comparison (in the proper mode) between the index
11612 expression and the value which represents the length of the range.
11613 Since we just finished subtracting the lower bound of the range
11614 from the index expression, this comparison allows us to simultaneously
11615 check that the original index expression value is both greater than
11616 or equal to the minimum value of the range and less than or equal to
11617 the maximum value of the range. */
11619 if (default_label)
11620 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11621 default_label, default_probability);
11624 /* If index is in range, it must fit in Pmode.
11625 Convert to Pmode so we can index with it. */
11626 if (mode != Pmode)
11627 index = convert_to_mode (Pmode, index, 1);
11629 /* Don't let a MEM slip through, because then INDEX that comes
11630 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11631 and break_out_memory_refs will go to work on it and mess it up. */
11632 #ifdef PIC_CASE_VECTOR_ADDRESS
11633 if (flag_pic && !REG_P (index))
11634 index = copy_to_mode_reg (Pmode, index);
11635 #endif
11637 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11638 GET_MODE_SIZE, because this indicates how large insns are. The other
11639 uses should all be Pmode, because they are addresses. This code
11640 could fail if addresses and insns are not the same size. */
11641 index = simplify_gen_binary (MULT, Pmode, index,
11642 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11643 Pmode));
11644 index = simplify_gen_binary (PLUS, Pmode, index,
11645 gen_rtx_LABEL_REF (Pmode, table_label));
11647 #ifdef PIC_CASE_VECTOR_ADDRESS
11648 if (flag_pic)
11649 index = PIC_CASE_VECTOR_ADDRESS (index);
11650 else
11651 #endif
11652 index = memory_address (CASE_VECTOR_MODE, index);
11653 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11654 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11655 convert_move (temp, vector, 0);
11657 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11659 /* If we are generating PIC code or if the table is PC-relative, the
11660 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11661 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11662 emit_barrier ();
11666 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11667 rtx table_label, rtx default_label,
11668 profile_probability default_probability)
11670 rtx index;
11672 if (! targetm.have_tablejump ())
11673 return 0;
11675 index_expr = fold_build2 (MINUS_EXPR, index_type,
11676 fold_convert (index_type, index_expr),
11677 fold_convert (index_type, minval));
11678 index = expand_normal (index_expr);
11679 do_pending_stack_adjust ();
11681 do_tablejump (index, TYPE_MODE (index_type),
11682 convert_modes (TYPE_MODE (index_type),
11683 TYPE_MODE (TREE_TYPE (range)),
11684 expand_normal (range),
11685 TYPE_UNSIGNED (TREE_TYPE (range))),
11686 table_label, default_label, default_probability);
11687 return 1;
11690 /* Return a CONST_VECTOR rtx representing vector mask for
11691 a VECTOR_CST of booleans. */
11692 static rtx
11693 const_vector_mask_from_tree (tree exp)
11695 rtvec v;
11696 unsigned i, units;
11697 tree elt;
11698 machine_mode inner, mode;
11700 mode = TYPE_MODE (TREE_TYPE (exp));
11701 units = VECTOR_CST_NELTS (exp);
11702 inner = GET_MODE_INNER (mode);
11704 v = rtvec_alloc (units);
11706 for (i = 0; i < units; ++i)
11708 elt = VECTOR_CST_ELT (exp, i);
11710 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11711 if (integer_zerop (elt))
11712 RTVEC_ELT (v, i) = CONST0_RTX (inner);
11713 else if (integer_onep (elt)
11714 || integer_minus_onep (elt))
11715 RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
11716 else
11717 gcc_unreachable ();
11720 return gen_rtx_CONST_VECTOR (mode, v);
11723 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
11724 Return a constant scalar rtx of mode MODE in which bit X is set if element
11725 X of EXP is nonzero. */
11726 static rtx
11727 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
11729 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11730 tree elt;
11731 unsigned i;
11733 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11735 elt = VECTOR_CST_ELT (exp, i);
11736 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11737 if (integer_all_onesp (elt))
11738 res = wi::set_bit (res, i);
11739 else
11740 gcc_assert (integer_zerop (elt));
11743 return immed_wide_int_const (res, mode);
11746 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11747 static rtx
11748 const_vector_from_tree (tree exp)
11750 rtvec v;
11751 unsigned i, units;
11752 tree elt;
11753 machine_mode inner, mode;
11755 mode = TYPE_MODE (TREE_TYPE (exp));
11757 if (initializer_zerop (exp))
11758 return CONST0_RTX (mode);
11760 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11761 return const_vector_mask_from_tree (exp);
11763 units = VECTOR_CST_NELTS (exp);
11764 inner = GET_MODE_INNER (mode);
11766 v = rtvec_alloc (units);
11768 for (i = 0; i < units; ++i)
11770 elt = VECTOR_CST_ELT (exp, i);
11772 if (TREE_CODE (elt) == REAL_CST)
11773 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11774 inner);
11775 else if (TREE_CODE (elt) == FIXED_CST)
11776 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11777 inner);
11778 else
11779 RTVEC_ELT (v, i) = immed_wide_int_const (wi::to_wide (elt), inner);
11782 return gen_rtx_CONST_VECTOR (mode, v);
11785 /* Build a decl for a personality function given a language prefix. */
11787 tree
11788 build_personality_function (const char *lang)
11790 const char *unwind_and_version;
11791 tree decl, type;
11792 char *name;
11794 switch (targetm_common.except_unwind_info (&global_options))
11796 case UI_NONE:
11797 return NULL;
11798 case UI_SJLJ:
11799 unwind_and_version = "_sj0";
11800 break;
11801 case UI_DWARF2:
11802 case UI_TARGET:
11803 unwind_and_version = "_v0";
11804 break;
11805 case UI_SEH:
11806 unwind_and_version = "_seh0";
11807 break;
11808 default:
11809 gcc_unreachable ();
11812 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11814 type = build_function_type_list (integer_type_node, integer_type_node,
11815 long_long_unsigned_type_node,
11816 ptr_type_node, ptr_type_node, NULL_TREE);
11817 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11818 get_identifier (name), type);
11819 DECL_ARTIFICIAL (decl) = 1;
11820 DECL_EXTERNAL (decl) = 1;
11821 TREE_PUBLIC (decl) = 1;
11823 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11824 are the flags assigned by targetm.encode_section_info. */
11825 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11827 return decl;
11830 /* Extracts the personality function of DECL and returns the corresponding
11831 libfunc. */
11834 get_personality_function (tree decl)
11836 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11837 enum eh_personality_kind pk;
11839 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11840 if (pk == eh_personality_none)
11841 return NULL;
11843 if (!personality
11844 && pk == eh_personality_any)
11845 personality = lang_hooks.eh_personality ();
11847 if (pk == eh_personality_lang)
11848 gcc_assert (personality != NULL_TREE);
11850 return XEXP (DECL_RTL (personality), 0);
11853 /* Returns a tree for the size of EXP in bytes. */
11855 static tree
11856 tree_expr_size (const_tree exp)
11858 if (DECL_P (exp)
11859 && DECL_SIZE_UNIT (exp) != 0)
11860 return DECL_SIZE_UNIT (exp);
11861 else
11862 return size_in_bytes (TREE_TYPE (exp));
11865 /* Return an rtx for the size in bytes of the value of EXP. */
11868 expr_size (tree exp)
11870 tree size;
11872 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11873 size = TREE_OPERAND (exp, 1);
11874 else
11876 size = tree_expr_size (exp);
11877 gcc_assert (size);
11878 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11881 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11884 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11885 if the size can vary or is larger than an integer. */
11887 static HOST_WIDE_INT
11888 int_expr_size (tree exp)
11890 tree size;
11892 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11893 size = TREE_OPERAND (exp, 1);
11894 else
11896 size = tree_expr_size (exp);
11897 gcc_assert (size);
11900 if (size == 0 || !tree_fits_shwi_p (size))
11901 return -1;
11903 return tree_to_shwi (size);