PR rtl-optimization/82913
[official-gcc.git] / gcc / ada / sem_disp.adb
blob4cc41e3acaad703b81456aa6a895860022df2799
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Snames; use Snames;
52 with Sinfo; use Sinfo;
53 with Tbuild; use Tbuild;
54 with Uintp; use Uintp;
55 with Warnsw; use Warnsw;
57 package body Sem_Disp is
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
63 procedure Add_Dispatching_Operation
64 (Tagged_Type : Entity_Id;
65 New_Op : Entity_Id);
66 -- Add New_Op in the list of primitive operations of Tagged_Type
68 function Check_Controlling_Type
69 (T : Entity_Id;
70 Subp : Entity_Id) return Entity_Id;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
77 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
89 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean;
90 -- Check whether a primitive operation is inherited from an operation
91 -- declared in the visible part of its package.
93 -------------------------------
94 -- Add_Dispatching_Operation --
95 -------------------------------
97 procedure Add_Dispatching_Operation
98 (Tagged_Type : Entity_Id;
99 New_Op : Entity_Id)
101 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
103 begin
104 -- The dispatching operation may already be on the list, if it is the
105 -- wrapper for an inherited function of a null extension (see Exp_Ch3
106 -- for the construction of function wrappers). The list of primitive
107 -- operations must not contain duplicates.
109 Append_Unique_Elmt (New_Op, List);
110 end Add_Dispatching_Operation;
112 --------------------------
113 -- Covered_Interface_Op --
114 --------------------------
116 function Covered_Interface_Op (Prim : Entity_Id) return Entity_Id is
117 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
118 Elmt : Elmt_Id;
119 E : Entity_Id;
121 begin
122 pragma Assert (Is_Dispatching_Operation (Prim));
124 -- Although this is a dispatching primitive we must check if its
125 -- dispatching type is available because it may be the primitive
126 -- of a private type not defined as tagged in its partial view.
128 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
130 -- If the tagged type is frozen then the internal entities associated
131 -- with interfaces are available in the list of primitives of the
132 -- tagged type and can be used to speed up this search.
134 if Is_Frozen (Tagged_Type) then
135 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
136 while Present (Elmt) loop
137 E := Node (Elmt);
139 if Present (Interface_Alias (E))
140 and then Alias (E) = Prim
141 then
142 return Interface_Alias (E);
143 end if;
145 Next_Elmt (Elmt);
146 end loop;
148 -- Otherwise we must collect all the interface primitives and check
149 -- if the Prim overrides (implements) some interface primitive.
151 else
152 declare
153 Ifaces_List : Elist_Id;
154 Iface_Elmt : Elmt_Id;
155 Iface : Entity_Id;
156 Iface_Prim : Entity_Id;
158 begin
159 Collect_Interfaces (Tagged_Type, Ifaces_List);
160 Iface_Elmt := First_Elmt (Ifaces_List);
161 while Present (Iface_Elmt) loop
162 Iface := Node (Iface_Elmt);
164 Elmt := First_Elmt (Primitive_Operations (Iface));
165 while Present (Elmt) loop
166 Iface_Prim := Node (Elmt);
168 if Chars (Iface_Prim) = Chars (Prim)
169 and then Is_Interface_Conformant
170 (Tagged_Type, Iface_Prim, Prim)
171 then
172 return Iface_Prim;
173 end if;
175 Next_Elmt (Elmt);
176 end loop;
178 Next_Elmt (Iface_Elmt);
179 end loop;
180 end;
181 end if;
182 end if;
184 return Empty;
185 end Covered_Interface_Op;
187 -------------------------------
188 -- Check_Controlling_Formals --
189 -------------------------------
191 procedure Check_Controlling_Formals
192 (Typ : Entity_Id;
193 Subp : Entity_Id)
195 Formal : Entity_Id;
196 Ctrl_Type : Entity_Id;
198 begin
199 Formal := First_Formal (Subp);
200 while Present (Formal) loop
201 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
203 if Present (Ctrl_Type) then
205 -- When controlling type is concurrent and declared within a
206 -- generic or inside an instance use corresponding record type.
208 if Is_Concurrent_Type (Ctrl_Type)
209 and then Present (Corresponding_Record_Type (Ctrl_Type))
210 then
211 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
212 end if;
214 if Ctrl_Type = Typ then
215 Set_Is_Controlling_Formal (Formal);
217 -- Ada 2005 (AI-231): Anonymous access types that are used in
218 -- controlling parameters exclude null because it is necessary
219 -- to read the tag to dispatch, and null has no tag.
221 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
222 Set_Can_Never_Be_Null (Etype (Formal));
223 Set_Is_Known_Non_Null (Etype (Formal));
224 end if;
226 -- Check that the parameter's nominal subtype statically
227 -- matches the first subtype.
229 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
230 if not Subtypes_Statically_Match
231 (Typ, Designated_Type (Etype (Formal)))
232 then
233 Error_Msg_N
234 ("parameter subtype does not match controlling type",
235 Formal);
236 end if;
238 -- Within a predicate function, the formal may be a subtype
239 -- of a tagged type, given that the predicate is expressed
240 -- in terms of the subtype.
242 elsif not Subtypes_Statically_Match (Typ, Etype (Formal))
243 and then not Is_Predicate_Function (Subp)
244 then
245 Error_Msg_N
246 ("parameter subtype does not match controlling type",
247 Formal);
248 end if;
250 if Present (Default_Value (Formal)) then
252 -- In Ada 2005, access parameters can have defaults
254 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
255 and then Ada_Version < Ada_2005
256 then
257 Error_Msg_N
258 ("default not allowed for controlling access parameter",
259 Default_Value (Formal));
261 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
262 Error_Msg_N
263 ("default expression must be a tag indeterminate" &
264 " function call", Default_Value (Formal));
265 end if;
266 end if;
268 elsif Comes_From_Source (Subp) then
269 Error_Msg_N
270 ("operation can be dispatching in only one type", Subp);
271 end if;
272 end if;
274 Next_Formal (Formal);
275 end loop;
277 if Ekind_In (Subp, E_Function, E_Generic_Function) then
278 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
280 if Present (Ctrl_Type) then
281 if Ctrl_Type = Typ then
282 Set_Has_Controlling_Result (Subp);
284 -- Check that result subtype statically matches first subtype
285 -- (Ada 2005): Subp may have a controlling access result.
287 if Subtypes_Statically_Match (Typ, Etype (Subp))
288 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
289 and then
290 Subtypes_Statically_Match
291 (Typ, Designated_Type (Etype (Subp))))
292 then
293 null;
295 else
296 Error_Msg_N
297 ("result subtype does not match controlling type", Subp);
298 end if;
300 elsif Comes_From_Source (Subp) then
301 Error_Msg_N
302 ("operation can be dispatching in only one type", Subp);
303 end if;
304 end if;
305 end if;
306 end Check_Controlling_Formals;
308 ----------------------------
309 -- Check_Controlling_Type --
310 ----------------------------
312 function Check_Controlling_Type
313 (T : Entity_Id;
314 Subp : Entity_Id) return Entity_Id
316 Tagged_Type : Entity_Id := Empty;
318 begin
319 if Is_Tagged_Type (T) then
320 if Is_First_Subtype (T) then
321 Tagged_Type := T;
322 else
323 Tagged_Type := Base_Type (T);
324 end if;
326 -- If the type is incomplete, it may have been declared without a
327 -- Tagged indication, but the full view may be tagged, in which case
328 -- that is the controlling type of the subprogram. This is one of the
329 -- approx. 579 places in the language where a lookahead would help.
331 elsif Ekind (T) = E_Incomplete_Type
332 and then Present (Full_View (T))
333 and then Is_Tagged_Type (Full_View (T))
334 then
335 Set_Is_Tagged_Type (T);
336 Tagged_Type := Full_View (T);
338 elsif Ekind (T) = E_Anonymous_Access_Type
339 and then Is_Tagged_Type (Designated_Type (T))
340 then
341 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
342 if Is_First_Subtype (Designated_Type (T)) then
343 Tagged_Type := Designated_Type (T);
344 else
345 Tagged_Type := Base_Type (Designated_Type (T));
346 end if;
348 -- Ada 2005: an incomplete type can be tagged. An operation with an
349 -- access parameter of the type is dispatching.
351 elsif Scope (Designated_Type (T)) = Current_Scope then
352 Tagged_Type := Designated_Type (T);
354 -- Ada 2005 (AI-50217)
356 elsif From_Limited_With (Designated_Type (T))
357 and then Has_Non_Limited_View (Designated_Type (T))
358 and then Scope (Designated_Type (T)) = Scope (Subp)
359 then
360 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
361 Tagged_Type := Non_Limited_View (Designated_Type (T));
362 else
363 Tagged_Type := Base_Type (Non_Limited_View
364 (Designated_Type (T)));
365 end if;
366 end if;
367 end if;
369 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
370 return Empty;
372 -- The dispatching type and the primitive operation must be defined in
373 -- the same scope, except in the case of internal operations and formal
374 -- abstract subprograms.
376 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
377 and then (not Is_Generic_Type (Tagged_Type)
378 or else not Comes_From_Source (Subp)))
379 or else
380 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
381 or else
382 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
383 and then
384 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
385 and then
386 Is_Abstract_Subprogram (Subp))
387 then
388 return Tagged_Type;
390 else
391 return Empty;
392 end if;
393 end Check_Controlling_Type;
395 ----------------------------
396 -- Check_Dispatching_Call --
397 ----------------------------
399 procedure Check_Dispatching_Call (N : Node_Id) is
400 Loc : constant Source_Ptr := Sloc (N);
401 Actual : Node_Id;
402 Formal : Entity_Id;
403 Control : Node_Id := Empty;
404 Func : Entity_Id;
405 Subp_Entity : Entity_Id;
406 Indeterm_Ancestor_Call : Boolean := False;
407 Indeterm_Ctrl_Type : Entity_Id := Empty; -- init to avoid warning
409 Static_Tag : Node_Id := Empty;
410 -- If a controlling formal has a statically tagged actual, the tag of
411 -- this actual is to be used for any tag-indeterminate actual.
413 procedure Check_Direct_Call;
414 -- In the case when the controlling actual is a class-wide type whose
415 -- root type's completion is a task or protected type, the call is in
416 -- fact direct. This routine detects the above case and modifies the
417 -- call accordingly.
419 procedure Check_Dispatching_Context (Call : Node_Id);
420 -- If the call is tag-indeterminate and the entity being called is
421 -- abstract, verify that the context is a call that will eventually
422 -- provide a tag for dispatching, or has provided one already.
424 -----------------------
425 -- Check_Direct_Call --
426 -----------------------
428 procedure Check_Direct_Call is
429 Typ : Entity_Id := Etype (Control);
430 begin
431 -- Predefined primitives do not receive wrappers since they are built
432 -- from scratch for the corresponding record of synchronized types.
433 -- Equality is in general predefined, but is excluded from the check
434 -- when it is user-defined.
436 if Is_Predefined_Dispatching_Operation (Subp_Entity)
437 and then not Is_User_Defined_Equality (Subp_Entity)
438 then
439 return;
440 end if;
442 if Is_Class_Wide_Type (Typ) then
443 Typ := Root_Type (Typ);
444 end if;
446 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
447 Typ := Full_View (Typ);
448 end if;
450 if Is_Concurrent_Type (Typ)
451 and then
452 Present (Corresponding_Record_Type (Typ))
453 then
454 Typ := Corresponding_Record_Type (Typ);
456 -- The concurrent record's list of primitives should contain a
457 -- wrapper for the entity of the call, retrieve it.
459 declare
460 Prim : Entity_Id;
461 Prim_Elmt : Elmt_Id;
462 Wrapper_Found : Boolean := False;
464 begin
465 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
466 while Present (Prim_Elmt) loop
467 Prim := Node (Prim_Elmt);
469 if Is_Primitive_Wrapper (Prim)
470 and then Wrapped_Entity (Prim) = Subp_Entity
471 then
472 Wrapper_Found := True;
473 exit;
474 end if;
476 Next_Elmt (Prim_Elmt);
477 end loop;
479 -- A primitive declared between two views should have a
480 -- corresponding wrapper.
482 pragma Assert (Wrapper_Found);
484 -- Modify the call by setting the proper entity
486 Set_Entity (Name (N), Prim);
487 end;
488 end if;
489 end Check_Direct_Call;
491 -------------------------------
492 -- Check_Dispatching_Context --
493 -------------------------------
495 procedure Check_Dispatching_Context (Call : Node_Id) is
496 Subp : constant Entity_Id := Entity (Name (Call));
498 procedure Abstract_Context_Error;
499 -- Error for abstract call dispatching on result is not dispatching
501 ----------------------------
502 -- Abstract_Context_Error --
503 ----------------------------
505 procedure Abstract_Context_Error is
506 begin
507 if Ekind (Subp) = E_Function then
508 Error_Msg_N
509 ("call to abstract function must be dispatching", N);
511 -- This error can occur for a procedure in the case of a call to
512 -- an abstract formal procedure with a statically tagged operand.
514 else
515 Error_Msg_N
516 ("call to abstract procedure must be dispatching", N);
517 end if;
518 end Abstract_Context_Error;
520 -- Local variables
522 Scop : constant Entity_Id := Current_Scope_No_Loops;
523 Typ : constant Entity_Id := Etype (Subp);
524 Par : Node_Id;
526 -- Start of processing for Check_Dispatching_Context
528 begin
529 -- If the called subprogram is a private overriding, replace it
530 -- with its alias, which has the correct body. Verify that the
531 -- two subprograms have the same controlling type (this is not the
532 -- case for an inherited subprogram that has become abstract).
534 if Is_Abstract_Subprogram (Subp)
535 and then No (Controlling_Argument (Call))
536 then
537 if Present (Alias (Subp))
538 and then not Is_Abstract_Subprogram (Alias (Subp))
539 and then No (DTC_Entity (Subp))
540 and then Find_Dispatching_Type (Subp) =
541 Find_Dispatching_Type (Alias (Subp))
542 then
543 -- Private overriding of inherited abstract operation, call is
544 -- legal.
546 Set_Entity (Name (N), Alias (Subp));
547 return;
549 -- An obscure special case: a null procedure may have a class-
550 -- wide pre/postcondition that includes a call to an abstract
551 -- subp. Calls within the expression may not have been rewritten
552 -- as dispatching calls yet, because the null body appears in
553 -- the current declarative part. The expression will be properly
554 -- rewritten/reanalyzed when the postcondition procedure is built.
556 -- Similarly, if this is a pre/postcondition for an abstract
557 -- subprogram, it may call another abstract function which is
558 -- a primitive of an abstract type. The call is non-dispatching
559 -- but will be legal in overridings of the operation.
561 elsif (Is_Subprogram (Scop)
562 or else Chars (Scop) = Name_Postcondition)
563 and then
564 (Is_Abstract_Subprogram (Scop)
565 or else
566 (Nkind (Parent (Scop)) = N_Procedure_Specification
567 and then Null_Present (Parent (Scop))))
568 then
569 null;
571 elsif Ekind (Current_Scope) = E_Function
572 and then Nkind (Unit_Declaration_Node (Scop)) =
573 N_Generic_Subprogram_Declaration
574 then
575 null;
577 else
578 -- We need to determine whether the context of the call
579 -- provides a tag to make the call dispatching. This requires
580 -- the call to be the actual in an enclosing call, and that
581 -- actual must be controlling. If the call is an operand of
582 -- equality, the other operand must not ve abstract.
584 if not Is_Tagged_Type (Typ)
585 and then not
586 (Ekind (Typ) = E_Anonymous_Access_Type
587 and then Is_Tagged_Type (Designated_Type (Typ)))
588 then
589 Abstract_Context_Error;
590 return;
591 end if;
593 Par := Parent (Call);
595 if Nkind (Par) = N_Parameter_Association then
596 Par := Parent (Par);
597 end if;
599 if Nkind (Par) = N_Qualified_Expression
600 or else Nkind (Par) = N_Unchecked_Type_Conversion
601 then
602 Par := Parent (Par);
603 end if;
605 if Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
606 and then Is_Entity_Name (Name (Par))
607 then
608 declare
609 Enc_Subp : constant Entity_Id := Entity (Name (Par));
610 A : Node_Id;
611 F : Entity_Id;
612 Control : Entity_Id;
613 Ret_Type : Entity_Id;
615 begin
616 -- Find controlling formal that can provide tag for the
617 -- tag-indeterminate actual. The corresponding actual
618 -- must be the corresponding class-wide type.
620 F := First_Formal (Enc_Subp);
621 A := First_Actual (Par);
623 -- Find controlling type of call. Dereference if function
624 -- returns an access type.
626 Ret_Type := Etype (Call);
627 if Is_Access_Type (Etype (Call)) then
628 Ret_Type := Designated_Type (Ret_Type);
629 end if;
631 while Present (F) loop
632 Control := Etype (A);
634 if Is_Access_Type (Control) then
635 Control := Designated_Type (Control);
636 end if;
638 if Is_Controlling_Formal (F)
639 and then not (Call = A or else Parent (Call) = A)
640 and then Control = Class_Wide_Type (Ret_Type)
641 then
642 return;
643 end if;
645 Next_Formal (F);
646 Next_Actual (A);
647 end loop;
649 if Nkind (Par) = N_Function_Call
650 and then Is_Tag_Indeterminate (Par)
651 then
652 -- The parent may be an actual of an enclosing call
654 Check_Dispatching_Context (Par);
655 return;
657 else
658 Error_Msg_N
659 ("call to abstract function must be dispatching",
660 Call);
661 return;
662 end if;
663 end;
665 -- For equality operators, one of the operands must be
666 -- statically or dynamically tagged.
668 elsif Nkind_In (Par, N_Op_Eq, N_Op_Ne) then
669 if N = Right_Opnd (Par)
670 and then Is_Tag_Indeterminate (Left_Opnd (Par))
671 then
672 Abstract_Context_Error;
674 elsif N = Left_Opnd (Par)
675 and then Is_Tag_Indeterminate (Right_Opnd (Par))
676 then
677 Abstract_Context_Error;
678 end if;
680 return;
682 -- The left-hand side of an assignment provides the tag
684 elsif Nkind (Par) = N_Assignment_Statement then
685 return;
687 else
688 Abstract_Context_Error;
689 end if;
690 end if;
691 end if;
692 end Check_Dispatching_Context;
694 -- Start of processing for Check_Dispatching_Call
696 begin
697 -- Find a controlling argument, if any
699 if Present (Parameter_Associations (N)) then
700 Subp_Entity := Entity (Name (N));
702 Actual := First_Actual (N);
703 Formal := First_Formal (Subp_Entity);
704 while Present (Actual) loop
705 Control := Find_Controlling_Arg (Actual);
706 exit when Present (Control);
708 -- Check for the case where the actual is a tag-indeterminate call
709 -- whose result type is different than the tagged type associated
710 -- with the containing call, but is an ancestor of the type.
712 if Is_Controlling_Formal (Formal)
713 and then Is_Tag_Indeterminate (Actual)
714 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
715 and then Is_Ancestor (Etype (Actual), Etype (Formal))
716 then
717 Indeterm_Ancestor_Call := True;
718 Indeterm_Ctrl_Type := Etype (Formal);
720 -- If the formal is controlling but the actual is not, the type
721 -- of the actual is statically known, and may be used as the
722 -- controlling tag for some other tag-indeterminate actual.
724 elsif Is_Controlling_Formal (Formal)
725 and then Is_Entity_Name (Actual)
726 and then Is_Tagged_Type (Etype (Actual))
727 then
728 Static_Tag := Actual;
729 end if;
731 Next_Actual (Actual);
732 Next_Formal (Formal);
733 end loop;
735 -- If the call doesn't have a controlling actual but does have an
736 -- indeterminate actual that requires dispatching treatment, then an
737 -- object is needed that will serve as the controlling argument for
738 -- a dispatching call on the indeterminate actual. This can occur
739 -- in the unusual situation of a default actual given by a tag-
740 -- indeterminate call and where the type of the call is an ancestor
741 -- of the type associated with a containing call to an inherited
742 -- operation (see AI-239).
744 -- Rather than create an object of the tagged type, which would
745 -- be problematic for various reasons (default initialization,
746 -- discriminants), the tag of the containing call's associated
747 -- tagged type is directly used to control the dispatching.
749 if No (Control)
750 and then Indeterm_Ancestor_Call
751 and then No (Static_Tag)
752 then
753 Control :=
754 Make_Attribute_Reference (Loc,
755 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
756 Attribute_Name => Name_Tag);
758 Analyze (Control);
759 end if;
761 if Present (Control) then
763 -- Verify that no controlling arguments are statically tagged
765 if Debug_Flag_E then
766 Write_Str ("Found Dispatching call");
767 Write_Int (Int (N));
768 Write_Eol;
769 end if;
771 Actual := First_Actual (N);
772 while Present (Actual) loop
773 if Actual /= Control then
775 if not Is_Controlling_Actual (Actual) then
776 null; -- Can be anything
778 elsif Is_Dynamically_Tagged (Actual) then
779 null; -- Valid parameter
781 elsif Is_Tag_Indeterminate (Actual) then
783 -- The tag is inherited from the enclosing call (the node
784 -- we are currently analyzing). Explicitly expand the
785 -- actual, since the previous call to Expand (from
786 -- Resolve_Call) had no way of knowing about the
787 -- required dispatching.
789 Propagate_Tag (Control, Actual);
791 else
792 Error_Msg_N
793 ("controlling argument is not dynamically tagged",
794 Actual);
795 return;
796 end if;
797 end if;
799 Next_Actual (Actual);
800 end loop;
802 -- Mark call as a dispatching call
804 Set_Controlling_Argument (N, Control);
805 Check_Restriction (No_Dispatching_Calls, N);
807 -- The dispatching call may need to be converted into a direct
808 -- call in certain cases.
810 Check_Direct_Call;
812 -- If there is a statically tagged actual and a tag-indeterminate
813 -- call to a function of the ancestor (such as that provided by a
814 -- default), then treat this as a dispatching call and propagate
815 -- the tag to the tag-indeterminate call(s).
817 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
818 Control :=
819 Make_Attribute_Reference (Loc,
820 Prefix =>
821 New_Occurrence_Of (Etype (Static_Tag), Loc),
822 Attribute_Name => Name_Tag);
824 Analyze (Control);
826 Actual := First_Actual (N);
827 Formal := First_Formal (Subp_Entity);
828 while Present (Actual) loop
829 if Is_Tag_Indeterminate (Actual)
830 and then Is_Controlling_Formal (Formal)
831 then
832 Propagate_Tag (Control, Actual);
833 end if;
835 Next_Actual (Actual);
836 Next_Formal (Formal);
837 end loop;
839 Check_Dispatching_Context (N);
841 elsif Nkind (N) /= N_Function_Call then
843 -- The call is not dispatching, so check that there aren't any
844 -- tag-indeterminate abstract calls left among its actuals.
846 Actual := First_Actual (N);
847 while Present (Actual) loop
848 if Is_Tag_Indeterminate (Actual) then
850 -- Function call case
852 if Nkind (Original_Node (Actual)) = N_Function_Call then
853 Func := Entity (Name (Original_Node (Actual)));
855 -- If the actual is an attribute then it can't be abstract
856 -- (the only current case of a tag-indeterminate attribute
857 -- is the stream Input attribute).
859 elsif Nkind (Original_Node (Actual)) = N_Attribute_Reference
860 then
861 Func := Empty;
863 -- Ditto if it is an explicit dereference
865 elsif Nkind (Original_Node (Actual)) = N_Explicit_Dereference
866 then
867 Func := Empty;
869 -- Only other possibility is a qualified expression whose
870 -- constituent expression is itself a call.
872 else
873 Func :=
874 Entity (Name (Original_Node
875 (Expression (Original_Node (Actual)))));
876 end if;
878 if Present (Func) and then Is_Abstract_Subprogram (Func) then
879 Error_Msg_N
880 ("call to abstract function must be dispatching",
881 Actual);
882 end if;
883 end if;
885 Next_Actual (Actual);
886 end loop;
888 Check_Dispatching_Context (N);
889 return;
891 elsif Nkind (Parent (N)) in N_Subexpr then
892 Check_Dispatching_Context (N);
894 elsif Nkind (Parent (N)) = N_Assignment_Statement
895 and then Is_Class_Wide_Type (Etype (Name (Parent (N))))
896 then
897 return;
899 elsif Is_Abstract_Subprogram (Subp_Entity) then
900 Check_Dispatching_Context (N);
901 return;
902 end if;
904 else
905 -- If dispatching on result, the enclosing call, if any, will
906 -- determine the controlling argument. Otherwise this is the
907 -- primitive operation of the root type.
909 Check_Dispatching_Context (N);
910 end if;
911 end Check_Dispatching_Call;
913 ---------------------------------
914 -- Check_Dispatching_Operation --
915 ---------------------------------
917 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
918 procedure Warn_On_Late_Primitive_After_Private_Extension
919 (Typ : Entity_Id;
920 Prim : Entity_Id);
921 -- Prim is a dispatching primitive of the tagged type Typ. Warn on Prim
922 -- if it is a public primitive defined after some private extension of
923 -- the tagged type.
925 ----------------------------------------------------
926 -- Warn_On_Late_Primitive_After_Private_Extension --
927 ----------------------------------------------------
929 procedure Warn_On_Late_Primitive_After_Private_Extension
930 (Typ : Entity_Id;
931 Prim : Entity_Id)
933 E : Entity_Id;
935 begin
936 if Warn_On_Late_Primitives
937 and then Comes_From_Source (Prim)
938 and then Has_Private_Extension (Typ)
939 and then Is_Package_Or_Generic_Package (Current_Scope)
940 and then not In_Private_Part (Current_Scope)
941 then
942 E := Next_Entity (Typ);
944 while E /= Prim loop
945 if Ekind (E) = E_Record_Type_With_Private
946 and then Etype (E) = Typ
947 then
948 Error_Msg_Name_1 := Chars (Typ);
949 Error_Msg_Name_2 := Chars (E);
950 Error_Msg_Sloc := Sloc (E);
951 Error_Msg_N
952 ("?j?primitive of type % defined after private extension "
953 & "% #?", Prim);
954 Error_Msg_Name_1 := Chars (Prim);
955 Error_Msg_Name_2 := Chars (E);
956 Error_Msg_N
957 ("\spec of % should appear before declaration of type %!",
958 Prim);
959 exit;
960 end if;
962 Next_Entity (E);
963 end loop;
964 end if;
965 end Warn_On_Late_Primitive_After_Private_Extension;
967 -- Local variables
969 Body_Is_Last_Primitive : Boolean := False;
970 Has_Dispatching_Parent : Boolean := False;
971 Ovr_Subp : Entity_Id := Empty;
972 Tagged_Type : Entity_Id;
974 -- Start of processing for Check_Dispatching_Operation
976 begin
977 if not Ekind_In (Subp, E_Function, E_Procedure) then
978 return;
980 -- The Default_Initial_Condition procedure is not a primitive subprogram
981 -- even if it relates to a tagged type. This routine is not meant to be
982 -- inherited or overridden.
984 elsif Is_DIC_Procedure (Subp) then
985 return;
987 -- The "partial" and "full" type invariant procedures are not primitive
988 -- subprograms even if they relate to a tagged type. These routines are
989 -- not meant to be inherited or overridden.
991 elsif Is_Invariant_Procedure (Subp)
992 or else Is_Partial_Invariant_Procedure (Subp)
993 then
994 return;
995 end if;
997 Set_Is_Dispatching_Operation (Subp, False);
998 Tagged_Type := Find_Dispatching_Type (Subp);
1000 -- Ada 2005 (AI-345): Use the corresponding record (if available).
1001 -- Required because primitives of concurrent types are attached
1002 -- to the corresponding record (not to the concurrent type).
1004 if Ada_Version >= Ada_2005
1005 and then Present (Tagged_Type)
1006 and then Is_Concurrent_Type (Tagged_Type)
1007 and then Present (Corresponding_Record_Type (Tagged_Type))
1008 then
1009 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
1010 end if;
1012 -- (AI-345): The task body procedure is not a primitive of the tagged
1013 -- type
1015 if Present (Tagged_Type)
1016 and then Is_Concurrent_Record_Type (Tagged_Type)
1017 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
1018 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
1019 and then Subp = Get_Task_Body_Procedure
1020 (Corresponding_Concurrent_Type (Tagged_Type))
1021 then
1022 return;
1023 end if;
1025 -- If Subp is derived from a dispatching operation then it should
1026 -- always be treated as dispatching. In this case various checks
1027 -- below will be bypassed. Makes sure that late declarations for
1028 -- inherited private subprograms are treated as dispatching, even
1029 -- if the associated tagged type is already frozen.
1031 Has_Dispatching_Parent :=
1032 Present (Alias (Subp))
1033 and then Is_Dispatching_Operation (Alias (Subp));
1035 if No (Tagged_Type) then
1037 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
1038 -- with an abstract interface type unless the interface acts as a
1039 -- parent type in a derivation. If the interface type is a formal
1040 -- type then the operation is not primitive and therefore legal.
1042 declare
1043 E : Entity_Id;
1044 Typ : Entity_Id;
1046 begin
1047 E := First_Entity (Subp);
1048 while Present (E) loop
1050 -- For an access parameter, check designated type
1052 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
1053 Typ := Designated_Type (Etype (E));
1054 else
1055 Typ := Etype (E);
1056 end if;
1058 if Comes_From_Source (Subp)
1059 and then Is_Interface (Typ)
1060 and then not Is_Class_Wide_Type (Typ)
1061 and then not Is_Derived_Type (Typ)
1062 and then not Is_Generic_Type (Typ)
1063 and then not In_Instance
1064 then
1065 Error_Msg_N ("??declaration of& is too late!", Subp);
1066 Error_Msg_NE -- CODEFIX??
1067 ("\??spec should appear immediately after declaration of "
1068 & "& !", Subp, Typ);
1069 exit;
1070 end if;
1072 Next_Entity (E);
1073 end loop;
1075 -- In case of functions check also the result type
1077 if Ekind (Subp) = E_Function then
1078 if Is_Access_Type (Etype (Subp)) then
1079 Typ := Designated_Type (Etype (Subp));
1080 else
1081 Typ := Etype (Subp);
1082 end if;
1084 -- The following should be better commented, especially since
1085 -- we just added several new conditions here ???
1087 if Comes_From_Source (Subp)
1088 and then Is_Interface (Typ)
1089 and then not Is_Class_Wide_Type (Typ)
1090 and then not Is_Derived_Type (Typ)
1091 and then not Is_Generic_Type (Typ)
1092 and then not In_Instance
1093 then
1094 Error_Msg_N ("??declaration of& is too late!", Subp);
1095 Error_Msg_NE
1096 ("\??spec should appear immediately after declaration of "
1097 & "& !", Subp, Typ);
1098 end if;
1099 end if;
1100 end;
1102 return;
1104 -- The subprograms build internally after the freezing point (such as
1105 -- init procs, interface thunks, type support subprograms, and Offset
1106 -- to top functions for accessing interface components in variable
1107 -- size tagged types) are not primitives.
1109 elsif Is_Frozen (Tagged_Type)
1110 and then not Comes_From_Source (Subp)
1111 and then not Has_Dispatching_Parent
1112 then
1113 -- Complete decoration of internally built subprograms that override
1114 -- a dispatching primitive. These entities correspond with the
1115 -- following cases:
1117 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
1118 -- to override functions of nonabstract null extensions. These
1119 -- primitives were added to the list of primitives of the tagged
1120 -- type by Make_Controlling_Function_Wrappers. However, attribute
1121 -- Is_Dispatching_Operation must be set to true.
1123 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
1124 -- primitives.
1126 -- 3. Subprograms associated with stream attributes (built by
1127 -- New_Stream_Subprogram)
1129 -- 4. Wrapper built for inherited operations with inherited class-
1130 -- wide conditions, where the conditions include calls to other
1131 -- overridden primitives. The wrappers include checks on these
1132 -- modified conditions. (AI12-113).
1134 if Present (Old_Subp)
1135 and then Present (Overridden_Operation (Subp))
1136 and then Is_Dispatching_Operation (Old_Subp)
1137 then
1138 pragma Assert
1139 ((Ekind (Subp) = E_Function
1140 and then Is_Dispatching_Operation (Old_Subp)
1141 and then Is_Null_Extension (Base_Type (Etype (Subp))))
1143 or else
1144 (Ekind (Subp) = E_Procedure
1145 and then Is_Dispatching_Operation (Old_Subp)
1146 and then Present (Alias (Old_Subp))
1147 and then Is_Null_Interface_Primitive
1148 (Ultimate_Alias (Old_Subp)))
1150 or else Get_TSS_Name (Subp) = TSS_Stream_Read
1151 or else Get_TSS_Name (Subp) = TSS_Stream_Write
1153 or else Present (Contract (Overridden_Operation (Subp))));
1155 Check_Controlling_Formals (Tagged_Type, Subp);
1156 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
1157 Set_Is_Dispatching_Operation (Subp);
1158 end if;
1160 return;
1162 -- The operation may be a child unit, whose scope is the defining
1163 -- package, but which is not a primitive operation of the type.
1165 elsif Is_Child_Unit (Subp) then
1166 return;
1168 -- If the subprogram is not defined in a package spec, the only case
1169 -- where it can be a dispatching op is when it overrides an operation
1170 -- before the freezing point of the type.
1172 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
1173 or else In_Package_Body (Scope (Subp)))
1174 and then not Has_Dispatching_Parent
1175 then
1176 if not Comes_From_Source (Subp)
1177 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
1178 then
1179 null;
1181 -- If the type is already frozen, the overriding is not allowed
1182 -- except when Old_Subp is not a dispatching operation (which can
1183 -- occur when Old_Subp was inherited by an untagged type). However,
1184 -- a body with no previous spec freezes the type *after* its
1185 -- declaration, and therefore is a legal overriding (unless the type
1186 -- has already been frozen). Only the first such body is legal.
1188 elsif Present (Old_Subp)
1189 and then Is_Dispatching_Operation (Old_Subp)
1190 then
1191 if Comes_From_Source (Subp)
1192 and then
1193 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
1194 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
1195 then
1196 declare
1197 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1198 Decl_Item : Node_Id;
1200 begin
1201 -- ??? The checks here for whether the type has been frozen
1202 -- prior to the new body are not complete. It's not simple
1203 -- to check frozenness at this point since the body has
1204 -- already caused the type to be prematurely frozen in
1205 -- Analyze_Declarations, but we're forced to recheck this
1206 -- here because of the odd rule interpretation that allows
1207 -- the overriding if the type wasn't frozen prior to the
1208 -- body. The freezing action should probably be delayed
1209 -- until after the spec is seen, but that's a tricky
1210 -- change to the delicate freezing code.
1212 -- Look at each declaration following the type up until the
1213 -- new subprogram body. If any of the declarations is a body
1214 -- then the type has been frozen already so the overriding
1215 -- primitive is illegal.
1217 Decl_Item := Next (Parent (Tagged_Type));
1218 while Present (Decl_Item)
1219 and then (Decl_Item /= Subp_Body)
1220 loop
1221 if Comes_From_Source (Decl_Item)
1222 and then (Nkind (Decl_Item) in N_Proper_Body
1223 or else Nkind (Decl_Item) in N_Body_Stub)
1224 then
1225 Error_Msg_N ("overriding of& is too late!", Subp);
1226 Error_Msg_N
1227 ("\spec should appear immediately after the type!",
1228 Subp);
1229 exit;
1230 end if;
1232 Next (Decl_Item);
1233 end loop;
1235 -- If the subprogram doesn't follow in the list of
1236 -- declarations including the type then the type has
1237 -- definitely been frozen already and the body is illegal.
1239 if No (Decl_Item) then
1240 Error_Msg_N ("overriding of& is too late!", Subp);
1241 Error_Msg_N
1242 ("\spec should appear immediately after the type!",
1243 Subp);
1245 elsif Is_Frozen (Subp) then
1247 -- The subprogram body declares a primitive operation.
1248 -- If the subprogram is already frozen, we must update
1249 -- its dispatching information explicitly here. The
1250 -- information is taken from the overridden subprogram.
1251 -- We must also generate a cross-reference entry because
1252 -- references to other primitives were already created
1253 -- when type was frozen.
1255 Body_Is_Last_Primitive := True;
1257 if Present (DTC_Entity (Old_Subp)) then
1258 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1259 Set_DT_Position_Value (Subp, DT_Position (Old_Subp));
1261 if not Restriction_Active (No_Dispatching_Calls) then
1262 if Building_Static_DT (Tagged_Type) then
1264 -- If the static dispatch table has not been
1265 -- built then there is nothing else to do now;
1266 -- otherwise we notify that we cannot build the
1267 -- static dispatch table.
1269 if Has_Dispatch_Table (Tagged_Type) then
1270 Error_Msg_N
1271 ("overriding of& is too late for building "
1272 & " static dispatch tables!", Subp);
1273 Error_Msg_N
1274 ("\spec should appear immediately after "
1275 & "the type!", Subp);
1276 end if;
1278 -- No code required to register primitives in VM
1279 -- targets
1281 elsif not Tagged_Type_Expansion then
1282 null;
1284 else
1285 Insert_Actions_After (Subp_Body,
1286 Register_Primitive (Sloc (Subp_Body),
1287 Prim => Subp));
1288 end if;
1290 -- Indicate that this is an overriding operation,
1291 -- and replace the overridden entry in the list of
1292 -- primitive operations, which is used for xref
1293 -- generation subsequently.
1295 Generate_Reference (Tagged_Type, Subp, 'P', False);
1296 Override_Dispatching_Operation
1297 (Tagged_Type, Old_Subp, Subp);
1298 end if;
1299 end if;
1300 end if;
1301 end;
1303 else
1304 Error_Msg_N ("overriding of& is too late!", Subp);
1305 Error_Msg_N
1306 ("\subprogram spec should appear immediately after the type!",
1307 Subp);
1308 end if;
1310 -- If the type is not frozen yet and we are not in the overriding
1311 -- case it looks suspiciously like an attempt to define a primitive
1312 -- operation, which requires the declaration to be in a package spec
1313 -- (3.2.3(6)). Only report cases where the type and subprogram are
1314 -- in the same declaration list (by checking the enclosing parent
1315 -- declarations), to avoid spurious warnings on subprograms in
1316 -- instance bodies when the type is declared in the instance spec
1317 -- but hasn't been frozen by the instance body.
1319 elsif not Is_Frozen (Tagged_Type)
1320 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1321 then
1322 Error_Msg_N
1323 ("??not dispatching (must be defined in a package spec)", Subp);
1324 return;
1326 -- When the type is frozen, it is legitimate to define a new
1327 -- non-primitive operation.
1329 else
1330 return;
1331 end if;
1333 -- Now, we are sure that the scope is a package spec. If the subprogram
1334 -- is declared after the freezing point of the type that's an error
1336 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1337 Error_Msg_N ("this primitive operation is declared too late", Subp);
1338 Error_Msg_NE
1339 ("??no primitive operations for& after this line",
1340 Freeze_Node (Tagged_Type),
1341 Tagged_Type);
1342 return;
1343 end if;
1345 Check_Controlling_Formals (Tagged_Type, Subp);
1347 Ovr_Subp := Old_Subp;
1349 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1350 -- overridden by Subp. This only applies to source subprograms, and
1351 -- their declaration must carry an explicit overriding indicator.
1353 if No (Ovr_Subp)
1354 and then Ada_Version >= Ada_2012
1355 and then Comes_From_Source (Subp)
1356 and then
1357 Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
1358 then
1359 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1361 -- Verify that the proper overriding indicator has been supplied.
1363 if Present (Ovr_Subp)
1364 and then
1365 not Must_Override (Specification (Unit_Declaration_Node (Subp)))
1366 then
1367 Error_Msg_NE ("missing overriding indicator for&", Subp, Subp);
1368 end if;
1369 end if;
1371 -- Now it should be a correct primitive operation, put it in the list
1373 if Present (Ovr_Subp) then
1375 -- If the type has interfaces we complete this check after we set
1376 -- attribute Is_Dispatching_Operation.
1378 Check_Subtype_Conformant (Subp, Ovr_Subp);
1380 -- A primitive operation with the name of a primitive controlled
1381 -- operation does not override a non-visible overriding controlled
1382 -- operation, i.e. one declared in a private part when the full
1383 -- view of a type is controlled. Conversely, it will override a
1384 -- visible operation that may be declared in a partial view when
1385 -- the full view is controlled.
1387 if Nam_In (Chars (Subp), Name_Initialize, Name_Adjust, Name_Finalize)
1388 and then Is_Controlled (Tagged_Type)
1389 and then not Is_Visibly_Controlled (Tagged_Type)
1390 and then not Is_Inherited_Public_Operation (Ovr_Subp)
1391 then
1392 Set_Overridden_Operation (Subp, Empty);
1394 -- If the subprogram specification carries an overriding
1395 -- indicator, no need for the warning: it is either redundant,
1396 -- or else an error will be reported.
1398 if Nkind (Parent (Subp)) = N_Procedure_Specification
1399 and then
1400 (Must_Override (Parent (Subp))
1401 or else Must_Not_Override (Parent (Subp)))
1402 then
1403 null;
1405 -- Here we need the warning
1407 else
1408 Error_Msg_NE
1409 ("operation does not override inherited&??", Subp, Subp);
1410 end if;
1412 else
1413 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1415 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1416 -- that covers abstract interface subprograms we must register it
1417 -- in all the secondary dispatch tables associated with abstract
1418 -- interfaces. We do this now only if not building static tables,
1419 -- nor when the expander is inactive (we avoid trying to register
1420 -- primitives in semantics-only mode, since the type may not have
1421 -- an associated dispatch table). Otherwise the patch code is
1422 -- emitted after those tables are built, to prevent access before
1423 -- elaboration in gigi.
1425 if Body_Is_Last_Primitive and then Expander_Active then
1426 declare
1427 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1428 Elmt : Elmt_Id;
1429 Prim : Node_Id;
1431 begin
1432 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1433 while Present (Elmt) loop
1434 Prim := Node (Elmt);
1436 -- No code required to register primitives in VM targets
1438 if Present (Alias (Prim))
1439 and then Present (Interface_Alias (Prim))
1440 and then Alias (Prim) = Subp
1441 and then not Building_Static_DT (Tagged_Type)
1442 and then Tagged_Type_Expansion
1443 then
1444 Insert_Actions_After (Subp_Body,
1445 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1446 end if;
1448 Next_Elmt (Elmt);
1449 end loop;
1451 -- Redisplay the contents of the updated dispatch table
1453 if Debug_Flag_ZZ then
1454 Write_Str ("Late overriding: ");
1455 Write_DT (Tagged_Type);
1456 end if;
1457 end;
1458 end if;
1459 end if;
1461 -- If the tagged type is a concurrent type then we must be compiling
1462 -- with no code generation (we are either compiling a generic unit or
1463 -- compiling under -gnatc mode) because we have previously tested that
1464 -- no serious errors has been reported. In this case we do not add the
1465 -- primitive to the list of primitives of Tagged_Type but we leave the
1466 -- primitive decorated as a dispatching operation to be able to analyze
1467 -- and report errors associated with the Object.Operation notation.
1469 elsif Is_Concurrent_Type (Tagged_Type) then
1470 pragma Assert (not Expander_Active);
1472 -- Attach operation to list of primitives of the synchronized type
1473 -- itself, for ASIS use.
1475 Append_Elmt (Subp, Direct_Primitive_Operations (Tagged_Type));
1477 -- If no old subprogram, then we add this as a dispatching operation,
1478 -- but we avoid doing this if an error was posted, to prevent annoying
1479 -- cascaded errors.
1481 elsif not Error_Posted (Subp) then
1482 Add_Dispatching_Operation (Tagged_Type, Subp);
1483 end if;
1485 Set_Is_Dispatching_Operation (Subp, True);
1487 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1488 -- subtype conformance against all the interfaces covered by this
1489 -- primitive.
1491 if Present (Ovr_Subp)
1492 and then Has_Interfaces (Tagged_Type)
1493 then
1494 declare
1495 Ifaces_List : Elist_Id;
1496 Iface_Elmt : Elmt_Id;
1497 Iface_Prim_Elmt : Elmt_Id;
1498 Iface_Prim : Entity_Id;
1499 Ret_Typ : Entity_Id;
1501 begin
1502 Collect_Interfaces (Tagged_Type, Ifaces_List);
1504 Iface_Elmt := First_Elmt (Ifaces_List);
1505 while Present (Iface_Elmt) loop
1506 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1507 Iface_Prim_Elmt :=
1508 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1509 while Present (Iface_Prim_Elmt) loop
1510 Iface_Prim := Node (Iface_Prim_Elmt);
1512 if Is_Interface_Conformant
1513 (Tagged_Type, Iface_Prim, Subp)
1514 then
1515 -- Handle procedures, functions whose return type
1516 -- matches, or functions not returning interfaces
1518 if Ekind (Subp) = E_Procedure
1519 or else Etype (Iface_Prim) = Etype (Subp)
1520 or else not Is_Interface (Etype (Iface_Prim))
1521 then
1522 Check_Subtype_Conformant
1523 (New_Id => Subp,
1524 Old_Id => Iface_Prim,
1525 Err_Loc => Subp,
1526 Skip_Controlling_Formals => True);
1528 -- Handle functions returning interfaces
1530 elsif Implements_Interface
1531 (Etype (Subp), Etype (Iface_Prim))
1532 then
1533 -- Temporarily force both entities to return the
1534 -- same type. Required because Subtype_Conformant
1535 -- does not handle this case.
1537 Ret_Typ := Etype (Iface_Prim);
1538 Set_Etype (Iface_Prim, Etype (Subp));
1540 Check_Subtype_Conformant
1541 (New_Id => Subp,
1542 Old_Id => Iface_Prim,
1543 Err_Loc => Subp,
1544 Skip_Controlling_Formals => True);
1546 Set_Etype (Iface_Prim, Ret_Typ);
1547 end if;
1548 end if;
1550 Next_Elmt (Iface_Prim_Elmt);
1551 end loop;
1552 end if;
1554 Next_Elmt (Iface_Elmt);
1555 end loop;
1556 end;
1557 end if;
1559 if not Body_Is_Last_Primitive then
1560 Set_DT_Position_Value (Subp, No_Uint);
1562 elsif Has_Controlled_Component (Tagged_Type)
1563 and then Nam_In (Chars (Subp), Name_Initialize,
1564 Name_Adjust,
1565 Name_Finalize,
1566 Name_Finalize_Address)
1567 then
1568 declare
1569 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1570 Decl : Node_Id;
1571 Old_P : Entity_Id;
1572 Old_Bod : Node_Id;
1573 Old_Spec : Entity_Id;
1575 C_Names : constant array (1 .. 4) of Name_Id :=
1576 (Name_Initialize,
1577 Name_Adjust,
1578 Name_Finalize,
1579 Name_Finalize_Address);
1581 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1582 (TSS_Deep_Initialize,
1583 TSS_Deep_Adjust,
1584 TSS_Deep_Finalize,
1585 TSS_Finalize_Address);
1587 begin
1588 -- Remove previous controlled function which was constructed and
1589 -- analyzed when the type was frozen. This requires removing the
1590 -- body of the redefined primitive, as well as its specification
1591 -- if needed (there is no spec created for Deep_Initialize, see
1592 -- exp_ch3.adb). We must also dismantle the exception information
1593 -- that may have been generated for it when front end zero-cost
1594 -- tables are enabled.
1596 for J in D_Names'Range loop
1597 Old_P := TSS (Tagged_Type, D_Names (J));
1599 if Present (Old_P)
1600 and then Chars (Subp) = C_Names (J)
1601 then
1602 Old_Bod := Unit_Declaration_Node (Old_P);
1603 Remove (Old_Bod);
1604 Set_Is_Eliminated (Old_P);
1605 Set_Scope (Old_P, Scope (Current_Scope));
1607 if Nkind (Old_Bod) = N_Subprogram_Body
1608 and then Present (Corresponding_Spec (Old_Bod))
1609 then
1610 Old_Spec := Corresponding_Spec (Old_Bod);
1611 Set_Has_Completion (Old_Spec, False);
1612 end if;
1613 end if;
1614 end loop;
1616 Build_Late_Proc (Tagged_Type, Chars (Subp));
1618 -- The new operation is added to the actions of the freeze node
1619 -- for the type, but this node has already been analyzed, so we
1620 -- must retrieve and analyze explicitly the new body.
1622 if Present (F_Node)
1623 and then Present (Actions (F_Node))
1624 then
1625 Decl := Last (Actions (F_Node));
1626 Analyze (Decl);
1627 end if;
1628 end;
1629 end if;
1631 -- For similarity with record extensions, in Ada 9X the language should
1632 -- have disallowed adding visible operations to a tagged type after
1633 -- deriving a private extension from it. Report a warning if this
1634 -- primitive is defined after a private extension of Tagged_Type.
1636 Warn_On_Late_Primitive_After_Private_Extension (Tagged_Type, Subp);
1637 end Check_Dispatching_Operation;
1639 ------------------------------------------
1640 -- Check_Operation_From_Incomplete_Type --
1641 ------------------------------------------
1643 procedure Check_Operation_From_Incomplete_Type
1644 (Subp : Entity_Id;
1645 Typ : Entity_Id)
1647 Full : constant Entity_Id := Full_View (Typ);
1648 Parent_Typ : constant Entity_Id := Etype (Full);
1649 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1650 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1651 Op1, Op2 : Elmt_Id;
1652 Prev : Elmt_Id := No_Elmt;
1654 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1655 -- Check that Subp has profile of an operation derived from Parent_Subp.
1656 -- Subp must have a parameter or result type that is Typ or an access
1657 -- parameter or access result type that designates Typ.
1659 ------------------
1660 -- Derives_From --
1661 ------------------
1663 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1664 F1, F2 : Entity_Id;
1666 begin
1667 if Chars (Parent_Subp) /= Chars (Subp) then
1668 return False;
1669 end if;
1671 -- Check that the type of controlling formals is derived from the
1672 -- parent subprogram's controlling formal type (or designated type
1673 -- if the formal type is an anonymous access type).
1675 F1 := First_Formal (Parent_Subp);
1676 F2 := First_Formal (Subp);
1677 while Present (F1) and then Present (F2) loop
1678 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1679 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1680 return False;
1681 elsif Designated_Type (Etype (F1)) = Parent_Typ
1682 and then Designated_Type (Etype (F2)) /= Full
1683 then
1684 return False;
1685 end if;
1687 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1688 return False;
1690 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1691 return False;
1692 end if;
1694 Next_Formal (F1);
1695 Next_Formal (F2);
1696 end loop;
1698 -- Check that a controlling result type is derived from the parent
1699 -- subprogram's result type (or designated type if the result type
1700 -- is an anonymous access type).
1702 if Ekind (Parent_Subp) = E_Function then
1703 if Ekind (Subp) /= E_Function then
1704 return False;
1706 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1707 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1708 return False;
1710 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1711 and then Designated_Type (Etype (Subp)) /= Full
1712 then
1713 return False;
1714 end if;
1716 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1717 return False;
1719 elsif Etype (Parent_Subp) = Parent_Typ
1720 and then Etype (Subp) /= Full
1721 then
1722 return False;
1723 end if;
1725 elsif Ekind (Subp) = E_Function then
1726 return False;
1727 end if;
1729 return No (F1) and then No (F2);
1730 end Derives_From;
1732 -- Start of processing for Check_Operation_From_Incomplete_Type
1734 begin
1735 -- The operation may override an inherited one, or may be a new one
1736 -- altogether. The inherited operation will have been hidden by the
1737 -- current one at the point of the type derivation, so it does not
1738 -- appear in the list of primitive operations of the type. We have to
1739 -- find the proper place of insertion in the list of primitive opera-
1740 -- tions by iterating over the list for the parent type.
1742 Op1 := First_Elmt (Old_Prim);
1743 Op2 := First_Elmt (New_Prim);
1744 while Present (Op1) and then Present (Op2) loop
1745 if Derives_From (Node (Op1)) then
1746 if No (Prev) then
1748 -- Avoid adding it to the list of primitives if already there
1750 if Node (Op2) /= Subp then
1751 Prepend_Elmt (Subp, New_Prim);
1752 end if;
1754 else
1755 Insert_Elmt_After (Subp, Prev);
1756 end if;
1758 return;
1759 end if;
1761 Prev := Op2;
1762 Next_Elmt (Op1);
1763 Next_Elmt (Op2);
1764 end loop;
1766 -- Operation is a new primitive
1768 Append_Elmt (Subp, New_Prim);
1769 end Check_Operation_From_Incomplete_Type;
1771 ---------------------------------------
1772 -- Check_Operation_From_Private_View --
1773 ---------------------------------------
1775 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1776 Tagged_Type : Entity_Id;
1778 begin
1779 if Is_Dispatching_Operation (Alias (Subp)) then
1780 Set_Scope (Subp, Current_Scope);
1781 Tagged_Type := Find_Dispatching_Type (Subp);
1783 -- Add Old_Subp to primitive operations if not already present
1785 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1786 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1788 -- If Old_Subp isn't already marked as dispatching then this is
1789 -- the case of an operation of an untagged private type fulfilled
1790 -- by a tagged type that overrides an inherited dispatching
1791 -- operation, so we set the necessary dispatching attributes here.
1793 if not Is_Dispatching_Operation (Old_Subp) then
1795 -- If the untagged type has no discriminants, and the full
1796 -- view is constrained, there will be a spurious mismatch of
1797 -- subtypes on the controlling arguments, because the tagged
1798 -- type is the internal base type introduced in the derivation.
1799 -- Use the original type to verify conformance, rather than the
1800 -- base type.
1802 if not Comes_From_Source (Tagged_Type)
1803 and then Has_Discriminants (Tagged_Type)
1804 then
1805 declare
1806 Formal : Entity_Id;
1808 begin
1809 Formal := First_Formal (Old_Subp);
1810 while Present (Formal) loop
1811 if Tagged_Type = Base_Type (Etype (Formal)) then
1812 Tagged_Type := Etype (Formal);
1813 end if;
1815 Next_Formal (Formal);
1816 end loop;
1817 end;
1819 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1820 Tagged_Type := Etype (Old_Subp);
1821 end if;
1822 end if;
1824 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1825 Set_Is_Dispatching_Operation (Old_Subp, True);
1826 Set_DT_Position_Value (Old_Subp, No_Uint);
1827 end if;
1829 -- If the old subprogram is an explicit renaming of some other
1830 -- entity, it is not overridden by the inherited subprogram.
1831 -- Otherwise, update its alias and other attributes.
1833 if Present (Alias (Old_Subp))
1834 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1835 N_Subprogram_Renaming_Declaration
1836 then
1837 Set_Alias (Old_Subp, Alias (Subp));
1839 -- The derived subprogram should inherit the abstractness of
1840 -- the parent subprogram (except in the case of a function
1841 -- returning the type). This sets the abstractness properly
1842 -- for cases where a private extension may have inherited an
1843 -- abstract operation, but the full type is derived from a
1844 -- descendant type and inherits a nonabstract version.
1846 if Etype (Subp) /= Tagged_Type then
1847 Set_Is_Abstract_Subprogram
1848 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1849 end if;
1850 end if;
1851 end if;
1852 end if;
1853 end Check_Operation_From_Private_View;
1855 --------------------------
1856 -- Find_Controlling_Arg --
1857 --------------------------
1859 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1860 Orig_Node : constant Node_Id := Original_Node (N);
1861 Typ : Entity_Id;
1863 begin
1864 if Nkind (Orig_Node) = N_Qualified_Expression then
1865 return Find_Controlling_Arg (Expression (Orig_Node));
1866 end if;
1868 -- Dispatching on result case. If expansion is disabled, the node still
1869 -- has the structure of a function call. However, if the function name
1870 -- is an operator and the call was given in infix form, the original
1871 -- node has no controlling result and we must examine the current node.
1873 if Nkind (N) = N_Function_Call
1874 and then Present (Controlling_Argument (N))
1875 and then Has_Controlling_Result (Entity (Name (N)))
1876 then
1877 return Controlling_Argument (N);
1879 -- If expansion is enabled, the call may have been transformed into
1880 -- an indirect call, and we need to recover the original node.
1882 elsif Nkind (Orig_Node) = N_Function_Call
1883 and then Present (Controlling_Argument (Orig_Node))
1884 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1885 then
1886 return Controlling_Argument (Orig_Node);
1888 -- Type conversions are dynamically tagged if the target type, or its
1889 -- designated type, are classwide. An interface conversion expands into
1890 -- a dereference, so test must be performed on the original node.
1892 elsif Nkind (Orig_Node) = N_Type_Conversion
1893 and then Nkind (N) = N_Explicit_Dereference
1894 and then Is_Controlling_Actual (N)
1895 then
1896 declare
1897 Target_Type : constant Entity_Id :=
1898 Entity (Subtype_Mark (Orig_Node));
1900 begin
1901 if Is_Class_Wide_Type (Target_Type) then
1902 return N;
1904 elsif Is_Access_Type (Target_Type)
1905 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
1906 then
1907 return N;
1909 else
1910 return Empty;
1911 end if;
1912 end;
1914 -- Normal case
1916 elsif Is_Controlling_Actual (N)
1917 or else
1918 (Nkind (Parent (N)) = N_Qualified_Expression
1919 and then Is_Controlling_Actual (Parent (N)))
1920 then
1921 Typ := Etype (N);
1923 if Is_Access_Type (Typ) then
1925 -- In the case of an Access attribute, use the type of the prefix,
1926 -- since in the case of an actual for an access parameter, the
1927 -- attribute's type may be of a specific designated type, even
1928 -- though the prefix type is class-wide.
1930 if Nkind (N) = N_Attribute_Reference then
1931 Typ := Etype (Prefix (N));
1933 -- An allocator is dispatching if the type of qualified expression
1934 -- is class_wide, in which case this is the controlling type.
1936 elsif Nkind (Orig_Node) = N_Allocator
1937 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1938 then
1939 Typ := Etype (Expression (Orig_Node));
1940 else
1941 Typ := Designated_Type (Typ);
1942 end if;
1943 end if;
1945 if Is_Class_Wide_Type (Typ)
1946 or else
1947 (Nkind (Parent (N)) = N_Qualified_Expression
1948 and then Is_Access_Type (Etype (N))
1949 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1950 then
1951 return N;
1952 end if;
1953 end if;
1955 return Empty;
1956 end Find_Controlling_Arg;
1958 ---------------------------
1959 -- Find_Dispatching_Type --
1960 ---------------------------
1962 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1963 A_Formal : Entity_Id;
1964 Formal : Entity_Id;
1965 Ctrl_Type : Entity_Id;
1967 begin
1968 if Ekind_In (Subp, E_Function, E_Procedure)
1969 and then Present (DTC_Entity (Subp))
1970 then
1971 return Scope (DTC_Entity (Subp));
1973 -- For subprograms internally generated by derivations of tagged types
1974 -- use the alias subprogram as a reference to locate the dispatching
1975 -- type of Subp.
1977 elsif not Comes_From_Source (Subp)
1978 and then Present (Alias (Subp))
1979 and then Is_Dispatching_Operation (Alias (Subp))
1980 then
1981 if Ekind (Alias (Subp)) = E_Function
1982 and then Has_Controlling_Result (Alias (Subp))
1983 then
1984 return Check_Controlling_Type (Etype (Subp), Subp);
1986 else
1987 Formal := First_Formal (Subp);
1988 A_Formal := First_Formal (Alias (Subp));
1989 while Present (A_Formal) loop
1990 if Is_Controlling_Formal (A_Formal) then
1991 return Check_Controlling_Type (Etype (Formal), Subp);
1992 end if;
1994 Next_Formal (Formal);
1995 Next_Formal (A_Formal);
1996 end loop;
1998 pragma Assert (False);
1999 return Empty;
2000 end if;
2002 -- General case
2004 else
2005 Formal := First_Formal (Subp);
2006 while Present (Formal) loop
2007 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
2009 if Present (Ctrl_Type) then
2010 return Ctrl_Type;
2011 end if;
2013 Next_Formal (Formal);
2014 end loop;
2016 -- The subprogram may also be dispatching on result
2018 if Present (Etype (Subp)) then
2019 return Check_Controlling_Type (Etype (Subp), Subp);
2020 end if;
2021 end if;
2023 pragma Assert (not Is_Dispatching_Operation (Subp));
2024 return Empty;
2025 end Find_Dispatching_Type;
2027 --------------------------------------
2028 -- Find_Hidden_Overridden_Primitive --
2029 --------------------------------------
2031 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
2033 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
2034 Elmt : Elmt_Id;
2035 Orig_Prim : Entity_Id;
2036 Prim : Entity_Id;
2037 Vis_List : Elist_Id;
2039 begin
2040 -- This Ada 2012 rule applies only for type extensions or private
2041 -- extensions, where the parent type is not in a parent unit, and
2042 -- where an operation is never declared but still inherited.
2044 if No (Tag_Typ)
2045 or else not Is_Record_Type (Tag_Typ)
2046 or else Etype (Tag_Typ) = Tag_Typ
2047 or else In_Open_Scopes (Scope (Etype (Tag_Typ)))
2048 then
2049 return Empty;
2050 end if;
2052 -- Collect the list of visible ancestor of the tagged type
2054 Vis_List := Visible_Ancestors (Tag_Typ);
2056 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2057 while Present (Elmt) loop
2058 Prim := Node (Elmt);
2060 -- Find an inherited hidden dispatching primitive with the name of S
2061 -- and a type-conformant profile.
2063 if Present (Alias (Prim))
2064 and then Is_Hidden (Alias (Prim))
2065 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
2066 and then Primitive_Names_Match (S, Prim)
2067 and then Type_Conformant (S, Prim)
2068 then
2069 declare
2070 Vis_Ancestor : Elmt_Id;
2071 Elmt : Elmt_Id;
2073 begin
2074 -- The original corresponding operation of Prim must be an
2075 -- operation of a visible ancestor of the dispatching type S,
2076 -- and the original corresponding operation of S2 must be
2077 -- visible.
2079 Orig_Prim := Original_Corresponding_Operation (Prim);
2081 if Orig_Prim /= Prim
2082 and then Is_Immediately_Visible (Orig_Prim)
2083 then
2084 Vis_Ancestor := First_Elmt (Vis_List);
2085 while Present (Vis_Ancestor) loop
2086 Elmt :=
2087 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
2088 while Present (Elmt) loop
2089 if Node (Elmt) = Orig_Prim then
2090 Set_Overridden_Operation (S, Prim);
2091 Set_Alias (Prim, Orig_Prim);
2092 return Prim;
2093 end if;
2095 Next_Elmt (Elmt);
2096 end loop;
2098 Next_Elmt (Vis_Ancestor);
2099 end loop;
2100 end if;
2101 end;
2102 end if;
2104 Next_Elmt (Elmt);
2105 end loop;
2107 return Empty;
2108 end Find_Hidden_Overridden_Primitive;
2110 ---------------------------------------
2111 -- Find_Primitive_Covering_Interface --
2112 ---------------------------------------
2114 function Find_Primitive_Covering_Interface
2115 (Tagged_Type : Entity_Id;
2116 Iface_Prim : Entity_Id) return Entity_Id
2118 E : Entity_Id;
2119 El : Elmt_Id;
2121 begin
2122 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
2123 or else (Present (Alias (Iface_Prim))
2124 and then
2125 Is_Interface
2126 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
2128 -- Search in the homonym chain. Done to speed up locating visible
2129 -- entities and required to catch primitives associated with the partial
2130 -- view of private types when processing the corresponding full view.
2132 E := Current_Entity (Iface_Prim);
2133 while Present (E) loop
2134 if Is_Subprogram (E)
2135 and then Is_Dispatching_Operation (E)
2136 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
2137 then
2138 return E;
2139 end if;
2141 E := Homonym (E);
2142 end loop;
2144 -- Search in the list of primitives of the type. Required to locate
2145 -- the covering primitive if the covering primitive is not visible
2146 -- (for example, non-visible inherited primitive of private type).
2148 El := First_Elmt (Primitive_Operations (Tagged_Type));
2149 while Present (El) loop
2150 E := Node (El);
2152 -- Keep separate the management of internal entities that link
2153 -- primitives with interface primitives from tagged type primitives.
2155 if No (Interface_Alias (E)) then
2156 if Present (Alias (E)) then
2158 -- This interface primitive has not been covered yet
2160 if Alias (E) = Iface_Prim then
2161 return E;
2163 -- The covering primitive was inherited
2165 elsif Overridden_Operation (Ultimate_Alias (E))
2166 = Iface_Prim
2167 then
2168 return E;
2169 end if;
2170 end if;
2172 -- Check if E covers the interface primitive (includes case in
2173 -- which E is an inherited private primitive).
2175 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
2176 return E;
2177 end if;
2179 -- Use the internal entity that links the interface primitive with
2180 -- the covering primitive to locate the entity.
2182 elsif Interface_Alias (E) = Iface_Prim then
2183 return Alias (E);
2184 end if;
2186 Next_Elmt (El);
2187 end loop;
2189 -- Not found
2191 return Empty;
2192 end Find_Primitive_Covering_Interface;
2194 ---------------------------
2195 -- Inherited_Subprograms --
2196 ---------------------------
2198 function Inherited_Subprograms
2199 (S : Entity_Id;
2200 No_Interfaces : Boolean := False;
2201 Interfaces_Only : Boolean := False;
2202 One_Only : Boolean := False) return Subprogram_List
2204 Result : Subprogram_List (1 .. 6000);
2205 -- 6000 here is intended to be infinity. We could use an expandable
2206 -- table, but it would be awfully heavy, and there is no way that we
2207 -- could reasonably exceed this value.
2209 N : Nat := 0;
2210 -- Number of entries in Result
2212 Parent_Op : Entity_Id;
2213 -- Traverses the Overridden_Operation chain
2215 procedure Store_IS (E : Entity_Id);
2216 -- Stores E in Result if not already stored
2218 --------------
2219 -- Store_IS --
2220 --------------
2222 procedure Store_IS (E : Entity_Id) is
2223 begin
2224 for J in 1 .. N loop
2225 if E = Result (J) then
2226 return;
2227 end if;
2228 end loop;
2230 N := N + 1;
2231 Result (N) := E;
2232 end Store_IS;
2234 -- Start of processing for Inherited_Subprograms
2236 begin
2237 pragma Assert (not (No_Interfaces and Interfaces_Only));
2239 if Present (S) and then Is_Dispatching_Operation (S) then
2241 -- Deal with direct inheritance
2243 if not Interfaces_Only then
2244 Parent_Op := S;
2245 loop
2246 Parent_Op := Overridden_Operation (Parent_Op);
2247 exit when No (Parent_Op)
2248 or else
2249 (No_Interfaces
2250 and then
2251 Is_Interface (Find_Dispatching_Type (Parent_Op)));
2253 if Is_Subprogram_Or_Generic_Subprogram (Parent_Op) then
2254 Store_IS (Parent_Op);
2256 if One_Only then
2257 goto Done;
2258 end if;
2259 end if;
2260 end loop;
2261 end if;
2263 -- Now deal with interfaces
2265 if not No_Interfaces then
2266 declare
2267 Tag_Typ : Entity_Id;
2268 Prim : Entity_Id;
2269 Elmt : Elmt_Id;
2271 begin
2272 Tag_Typ := Find_Dispatching_Type (S);
2274 -- In the presence of limited views there may be no visible
2275 -- dispatching type. Primitives will be inherited when non-
2276 -- limited view is frozen.
2278 if No (Tag_Typ) then
2279 return Result (1 .. 0);
2280 end if;
2282 if Is_Concurrent_Type (Tag_Typ) then
2283 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
2284 end if;
2286 -- Search primitive operations of dispatching type
2288 if Present (Tag_Typ)
2289 and then Present (Primitive_Operations (Tag_Typ))
2290 then
2291 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2292 while Present (Elmt) loop
2293 Prim := Node (Elmt);
2295 -- The following test eliminates some odd cases in which
2296 -- Ekind (Prim) is Void, to be investigated further ???
2298 if not Is_Subprogram_Or_Generic_Subprogram (Prim) then
2299 null;
2301 -- For [generic] subprogram, look at interface alias
2303 elsif Present (Interface_Alias (Prim))
2304 and then Alias (Prim) = S
2305 then
2306 -- We have found a primitive covered by S
2308 Store_IS (Interface_Alias (Prim));
2310 if One_Only then
2311 goto Done;
2312 end if;
2313 end if;
2315 Next_Elmt (Elmt);
2316 end loop;
2317 end if;
2318 end;
2319 end if;
2320 end if;
2322 <<Done>>
2324 return Result (1 .. N);
2325 end Inherited_Subprograms;
2327 ---------------------------
2328 -- Is_Dynamically_Tagged --
2329 ---------------------------
2331 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2332 begin
2333 if Nkind (N) = N_Error then
2334 return False;
2336 elsif Present (Find_Controlling_Arg (N)) then
2337 return True;
2339 -- Special cases: entities, and calls that dispatch on result
2341 elsif Is_Entity_Name (N) then
2342 return Is_Class_Wide_Type (Etype (N));
2344 elsif Nkind (N) = N_Function_Call
2345 and then Is_Class_Wide_Type (Etype (N))
2346 then
2347 return True;
2349 -- Otherwise check whether call has controlling argument
2351 else
2352 return False;
2353 end if;
2354 end Is_Dynamically_Tagged;
2356 ---------------------------------
2357 -- Is_Null_Interface_Primitive --
2358 ---------------------------------
2360 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2361 begin
2362 return Comes_From_Source (E)
2363 and then Is_Dispatching_Operation (E)
2364 and then Ekind (E) = E_Procedure
2365 and then Null_Present (Parent (E))
2366 and then Is_Interface (Find_Dispatching_Type (E));
2367 end Is_Null_Interface_Primitive;
2369 -----------------------------------
2370 -- Is_Inherited_Public_Operation --
2371 -----------------------------------
2373 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean is
2374 Pack_Decl : Node_Id;
2375 Prim : Entity_Id := Op;
2376 Scop : Entity_Id := Prim;
2378 begin
2379 -- Locate the ultimate non-hidden alias entity
2381 while Present (Alias (Prim)) and then not Is_Hidden (Alias (Prim)) loop
2382 pragma Assert (Alias (Prim) /= Prim);
2383 Prim := Alias (Prim);
2384 Scop := Scope (Prim);
2385 end loop;
2387 if Comes_From_Source (Prim) and then Ekind (Scop) = E_Package then
2388 Pack_Decl := Unit_Declaration_Node (Scop);
2390 return
2391 Nkind (Pack_Decl) = N_Package_Declaration
2392 and then List_Containing (Unit_Declaration_Node (Prim)) =
2393 Visible_Declarations (Specification (Pack_Decl));
2395 else
2396 return False;
2397 end if;
2398 end Is_Inherited_Public_Operation;
2400 ------------------------------
2401 -- Is_Overriding_Subprogram --
2402 ------------------------------
2404 function Is_Overriding_Subprogram (E : Entity_Id) return Boolean is
2405 Inherited : constant Subprogram_List :=
2406 Inherited_Subprograms (E, One_Only => True);
2407 begin
2408 return Inherited'Length > 0;
2409 end Is_Overriding_Subprogram;
2411 --------------------------
2412 -- Is_Tag_Indeterminate --
2413 --------------------------
2415 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2416 Nam : Entity_Id;
2417 Actual : Node_Id;
2418 Orig_Node : constant Node_Id := Original_Node (N);
2420 begin
2421 if Nkind (Orig_Node) = N_Function_Call
2422 and then Is_Entity_Name (Name (Orig_Node))
2423 then
2424 Nam := Entity (Name (Orig_Node));
2426 if not Has_Controlling_Result (Nam) then
2427 return False;
2429 -- The function may have a controlling result, but if the return type
2430 -- is not visibly tagged, then this is not tag-indeterminate.
2432 elsif Is_Access_Type (Etype (Nam))
2433 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2434 then
2435 return False;
2437 -- An explicit dereference means that the call has already been
2438 -- expanded and there is no tag to propagate.
2440 elsif Nkind (N) = N_Explicit_Dereference then
2441 return False;
2443 -- If there are no actuals, the call is tag-indeterminate
2445 elsif No (Parameter_Associations (Orig_Node)) then
2446 return True;
2448 else
2449 Actual := First_Actual (Orig_Node);
2450 while Present (Actual) loop
2451 if Is_Controlling_Actual (Actual)
2452 and then not Is_Tag_Indeterminate (Actual)
2453 then
2454 -- One operand is dispatching
2456 return False;
2457 end if;
2459 Next_Actual (Actual);
2460 end loop;
2462 return True;
2463 end if;
2465 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2466 return Is_Tag_Indeterminate (Expression (Orig_Node));
2468 -- Case of a call to the Input attribute (possibly rewritten), which is
2469 -- always tag-indeterminate except when its prefix is a Class attribute.
2471 elsif Nkind (Orig_Node) = N_Attribute_Reference
2472 and then
2473 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2474 and then Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2475 then
2476 return True;
2478 -- In Ada 2005, a function that returns an anonymous access type can be
2479 -- dispatching, and the dereference of a call to such a function can
2480 -- also be tag-indeterminate if the call itself is.
2482 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2483 and then Ada_Version >= Ada_2005
2484 then
2485 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2487 else
2488 return False;
2489 end if;
2490 end Is_Tag_Indeterminate;
2492 ------------------------------------
2493 -- Override_Dispatching_Operation --
2494 ------------------------------------
2496 procedure Override_Dispatching_Operation
2497 (Tagged_Type : Entity_Id;
2498 Prev_Op : Entity_Id;
2499 New_Op : Entity_Id;
2500 Is_Wrapper : Boolean := False)
2502 Elmt : Elmt_Id;
2503 Prim : Node_Id;
2505 begin
2506 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2507 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2509 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2510 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2511 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2512 end if;
2514 -- If there is no previous operation to override, the type declaration
2515 -- was malformed, and an error must have been emitted already.
2517 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2518 while Present (Elmt) and then Node (Elmt) /= Prev_Op loop
2519 Next_Elmt (Elmt);
2520 end loop;
2522 if No (Elmt) then
2523 return;
2524 end if;
2526 -- The location of entities that come from source in the list of
2527 -- primitives of the tagged type must follow their order of occurrence
2528 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2529 -- primitive of an interface that is not implemented by the parents of
2530 -- this tagged type (that is, it is an alias of an interface primitive
2531 -- generated by Derive_Interface_Progenitors), then we must append the
2532 -- new entity at the end of the list of primitives.
2534 if Present (Alias (Prev_Op))
2535 and then Etype (Tagged_Type) /= Tagged_Type
2536 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2537 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2538 Tagged_Type, Use_Full_View => True)
2539 and then not Implements_Interface
2540 (Etype (Tagged_Type),
2541 Find_Dispatching_Type (Alias (Prev_Op)))
2542 then
2543 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2544 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2546 -- The new primitive replaces the overridden entity. Required to ensure
2547 -- that overriding primitive is assigned the same dispatch table slot.
2549 else
2550 Replace_Elmt (Elmt, New_Op);
2551 end if;
2553 if Ada_Version >= Ada_2005 and then Has_Interfaces (Tagged_Type) then
2555 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2556 -- entities of the overridden primitive to reference New_Op, and
2557 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2558 -- that the new operation is subtype conformant with the interface
2559 -- operations that it implements (for operations inherited from the
2560 -- parent itself, this check is made when building the derived type).
2562 -- Note: This code is executed with internally generated wrappers of
2563 -- functions with controlling result and late overridings.
2565 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2566 while Present (Elmt) loop
2567 Prim := Node (Elmt);
2569 if Prim = New_Op then
2570 null;
2572 -- Note: The check on Is_Subprogram protects the frontend against
2573 -- reading attributes in entities that are not yet fully decorated
2575 elsif Is_Subprogram (Prim)
2576 and then Present (Interface_Alias (Prim))
2577 and then Alias (Prim) = Prev_Op
2578 then
2579 Set_Alias (Prim, New_Op);
2581 -- No further decoration needed yet for internally generated
2582 -- wrappers of controlling functions since (at this stage)
2583 -- they are not yet decorated.
2585 if not Is_Wrapper then
2586 Check_Subtype_Conformant (New_Op, Prim);
2588 Set_Is_Abstract_Subprogram (Prim,
2589 Is_Abstract_Subprogram (New_Op));
2591 -- Ensure that this entity will be expanded to fill the
2592 -- corresponding entry in its dispatch table.
2594 if not Is_Abstract_Subprogram (Prim) then
2595 Set_Has_Delayed_Freeze (Prim);
2596 end if;
2597 end if;
2598 end if;
2600 Next_Elmt (Elmt);
2601 end loop;
2602 end if;
2604 if (not Is_Package_Or_Generic_Package (Current_Scope))
2605 or else not In_Private_Part (Current_Scope)
2606 then
2607 -- Not a private primitive
2609 null;
2611 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2613 -- Make the overriding operation into an alias of the implicit one.
2614 -- In this fashion a call from outside ends up calling the new body
2615 -- even if non-dispatching, and a call from inside calls the over-
2616 -- riding operation because it hides the implicit one. To indicate
2617 -- that the body of Prev_Op is never called, set its dispatch table
2618 -- entity to Empty. If the overridden operation has a dispatching
2619 -- result, so does the overriding one.
2621 Set_Alias (Prev_Op, New_Op);
2622 Set_DTC_Entity (Prev_Op, Empty);
2623 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2624 return;
2625 end if;
2626 end Override_Dispatching_Operation;
2628 -------------------
2629 -- Propagate_Tag --
2630 -------------------
2632 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2633 Call_Node : Node_Id;
2634 Arg : Node_Id;
2636 begin
2637 if Nkind (Actual) = N_Function_Call then
2638 Call_Node := Actual;
2640 elsif Nkind (Actual) = N_Identifier
2641 and then Nkind (Original_Node (Actual)) = N_Function_Call
2642 then
2643 -- Call rewritten as object declaration when stack-checking is
2644 -- enabled. Propagate tag to expression in declaration, which is
2645 -- original call.
2647 Call_Node := Expression (Parent (Entity (Actual)));
2649 -- Ada 2005: If this is a dereference of a call to a function with a
2650 -- dispatching access-result, the tag is propagated when the dereference
2651 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2653 elsif Nkind (Actual) = N_Explicit_Dereference
2654 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2655 then
2656 return;
2658 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2659 -- and in that case we can simply return.
2661 elsif Nkind (Actual) = N_Attribute_Reference then
2662 pragma Assert (Attribute_Name (Actual) = Name_Input);
2664 return;
2666 -- Only other possibilities are parenthesized or qualified expression,
2667 -- or an expander-generated unchecked conversion of a function call to
2668 -- a stream Input attribute.
2670 else
2671 Call_Node := Expression (Actual);
2672 end if;
2674 -- No action needed if the call has been already expanded
2676 if Is_Expanded_Dispatching_Call (Call_Node) then
2677 return;
2678 end if;
2680 -- Do not set the Controlling_Argument if already set. This happens in
2681 -- the special case of _Input (see Exp_Attr, case Input).
2683 if No (Controlling_Argument (Call_Node)) then
2684 Set_Controlling_Argument (Call_Node, Control);
2685 end if;
2687 Arg := First_Actual (Call_Node);
2688 while Present (Arg) loop
2689 if Is_Tag_Indeterminate (Arg) then
2690 Propagate_Tag (Control, Arg);
2691 end if;
2693 Next_Actual (Arg);
2694 end loop;
2696 -- Expansion of dispatching calls is suppressed on VM targets, because
2697 -- the VM back-ends directly handle the generation of dispatching calls
2698 -- and would have to undo any expansion to an indirect call.
2700 if Tagged_Type_Expansion then
2701 declare
2702 Call_Typ : constant Entity_Id := Etype (Call_Node);
2704 begin
2705 Expand_Dispatching_Call (Call_Node);
2707 -- If the controlling argument is an interface type and the type
2708 -- of Call_Node differs then we must add an implicit conversion to
2709 -- force displacement of the pointer to the object to reference
2710 -- the secondary dispatch table of the interface.
2712 if Is_Interface (Etype (Control))
2713 and then Etype (Control) /= Call_Typ
2714 then
2715 -- Cannot use Convert_To because the previous call to
2716 -- Expand_Dispatching_Call leaves decorated the Call_Node
2717 -- with the type of Control.
2719 Rewrite (Call_Node,
2720 Make_Type_Conversion (Sloc (Call_Node),
2721 Subtype_Mark =>
2722 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2723 Expression => Relocate_Node (Call_Node)));
2724 Set_Etype (Call_Node, Etype (Control));
2725 Set_Analyzed (Call_Node);
2727 Expand_Interface_Conversion (Call_Node);
2728 end if;
2729 end;
2731 -- Expansion of a dispatching call results in an indirect call, which in
2732 -- turn causes current values to be killed (see Resolve_Call), so on VM
2733 -- targets we do the call here to ensure consistent warnings between VM
2734 -- and non-VM targets.
2736 else
2737 Kill_Current_Values;
2738 end if;
2739 end Propagate_Tag;
2741 end Sem_Disp;