2016-01-26 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vrp.c
blob9644ba1acfa2234c7f80f82e85df7bef01afb457
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-low.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
62 /* Range of values that can be associated with an SSA_NAME after VRP
63 has executed. */
64 struct value_range
66 /* Lattice value represented by this range. */
67 enum value_range_type type;
69 /* Minimum and maximum values represented by this range. These
70 values should be interpreted as follows:
72 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
73 be NULL.
75 - If TYPE == VR_RANGE then MIN holds the minimum value and
76 MAX holds the maximum value of the range [MIN, MAX].
78 - If TYPE == ANTI_RANGE the variable is known to NOT
79 take any values in the range [MIN, MAX]. */
80 tree min;
81 tree max;
83 /* Set of SSA names whose value ranges are equivalent to this one.
84 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
85 bitmap equiv;
88 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
90 /* Set of SSA names found live during the RPO traversal of the function
91 for still active basic-blocks. */
92 static sbitmap *live;
94 /* Return true if the SSA name NAME is live on the edge E. */
96 static bool
97 live_on_edge (edge e, tree name)
99 return (live[e->dest->index]
100 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
103 /* Local functions. */
104 static int compare_values (tree val1, tree val2);
105 static int compare_values_warnv (tree val1, tree val2, bool *);
106 static void vrp_meet (value_range *, value_range *);
107 static void vrp_intersect_ranges (value_range *, value_range *);
108 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
109 tree, tree, bool, bool *,
110 bool *);
112 /* Location information for ASSERT_EXPRs. Each instance of this
113 structure describes an ASSERT_EXPR for an SSA name. Since a single
114 SSA name may have more than one assertion associated with it, these
115 locations are kept in a linked list attached to the corresponding
116 SSA name. */
117 struct assert_locus
119 /* Basic block where the assertion would be inserted. */
120 basic_block bb;
122 /* Some assertions need to be inserted on an edge (e.g., assertions
123 generated by COND_EXPRs). In those cases, BB will be NULL. */
124 edge e;
126 /* Pointer to the statement that generated this assertion. */
127 gimple_stmt_iterator si;
129 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
130 enum tree_code comp_code;
132 /* Value being compared against. */
133 tree val;
135 /* Expression to compare. */
136 tree expr;
138 /* Next node in the linked list. */
139 assert_locus *next;
142 /* If bit I is present, it means that SSA name N_i has a list of
143 assertions that should be inserted in the IL. */
144 static bitmap need_assert_for;
146 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
147 holds a list of ASSERT_LOCUS_T nodes that describe where
148 ASSERT_EXPRs for SSA name N_I should be inserted. */
149 static assert_locus **asserts_for;
151 /* Value range array. After propagation, VR_VALUE[I] holds the range
152 of values that SSA name N_I may take. */
153 static unsigned num_vr_values;
154 static value_range **vr_value;
155 static bool values_propagated;
157 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
158 number of executable edges we saw the last time we visited the
159 node. */
160 static int *vr_phi_edge_counts;
162 struct switch_update {
163 gswitch *stmt;
164 tree vec;
167 static vec<edge> to_remove_edges;
168 static vec<switch_update> to_update_switch_stmts;
171 /* Return the maximum value for TYPE. */
173 static inline tree
174 vrp_val_max (const_tree type)
176 if (!INTEGRAL_TYPE_P (type))
177 return NULL_TREE;
179 return TYPE_MAX_VALUE (type);
182 /* Return the minimum value for TYPE. */
184 static inline tree
185 vrp_val_min (const_tree type)
187 if (!INTEGRAL_TYPE_P (type))
188 return NULL_TREE;
190 return TYPE_MIN_VALUE (type);
193 /* Return whether VAL is equal to the maximum value of its type. This
194 will be true for a positive overflow infinity. We can't do a
195 simple equality comparison with TYPE_MAX_VALUE because C typedefs
196 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
197 to the integer constant with the same value in the type. */
199 static inline bool
200 vrp_val_is_max (const_tree val)
202 tree type_max = vrp_val_max (TREE_TYPE (val));
203 return (val == type_max
204 || (type_max != NULL_TREE
205 && operand_equal_p (val, type_max, 0)));
208 /* Return whether VAL is equal to the minimum value of its type. This
209 will be true for a negative overflow infinity. */
211 static inline bool
212 vrp_val_is_min (const_tree val)
214 tree type_min = vrp_val_min (TREE_TYPE (val));
215 return (val == type_min
216 || (type_min != NULL_TREE
217 && operand_equal_p (val, type_min, 0)));
221 /* Return whether TYPE should use an overflow infinity distinct from
222 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
223 represent a signed overflow during VRP computations. An infinity
224 is distinct from a half-range, which will go from some number to
225 TYPE_{MIN,MAX}_VALUE. */
227 static inline bool
228 needs_overflow_infinity (const_tree type)
230 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
233 /* Return whether TYPE can support our overflow infinity
234 representation: we use the TREE_OVERFLOW flag, which only exists
235 for constants. If TYPE doesn't support this, we don't optimize
236 cases which would require signed overflow--we drop them to
237 VARYING. */
239 static inline bool
240 supports_overflow_infinity (const_tree type)
242 tree min = vrp_val_min (type), max = vrp_val_max (type);
243 gcc_checking_assert (needs_overflow_infinity (type));
244 return (min != NULL_TREE
245 && CONSTANT_CLASS_P (min)
246 && max != NULL_TREE
247 && CONSTANT_CLASS_P (max));
250 /* VAL is the maximum or minimum value of a type. Return a
251 corresponding overflow infinity. */
253 static inline tree
254 make_overflow_infinity (tree val)
256 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
257 val = copy_node (val);
258 TREE_OVERFLOW (val) = 1;
259 return val;
262 /* Return a negative overflow infinity for TYPE. */
264 static inline tree
265 negative_overflow_infinity (tree type)
267 gcc_checking_assert (supports_overflow_infinity (type));
268 return make_overflow_infinity (vrp_val_min (type));
271 /* Return a positive overflow infinity for TYPE. */
273 static inline tree
274 positive_overflow_infinity (tree type)
276 gcc_checking_assert (supports_overflow_infinity (type));
277 return make_overflow_infinity (vrp_val_max (type));
280 /* Return whether VAL is a negative overflow infinity. */
282 static inline bool
283 is_negative_overflow_infinity (const_tree val)
285 return (TREE_OVERFLOW_P (val)
286 && needs_overflow_infinity (TREE_TYPE (val))
287 && vrp_val_is_min (val));
290 /* Return whether VAL is a positive overflow infinity. */
292 static inline bool
293 is_positive_overflow_infinity (const_tree val)
295 return (TREE_OVERFLOW_P (val)
296 && needs_overflow_infinity (TREE_TYPE (val))
297 && vrp_val_is_max (val));
300 /* Return whether VAL is a positive or negative overflow infinity. */
302 static inline bool
303 is_overflow_infinity (const_tree val)
305 return (TREE_OVERFLOW_P (val)
306 && needs_overflow_infinity (TREE_TYPE (val))
307 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
310 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
312 static inline bool
313 stmt_overflow_infinity (gimple *stmt)
315 if (is_gimple_assign (stmt)
316 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
317 GIMPLE_SINGLE_RHS)
318 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
319 return false;
322 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
323 the same value with TREE_OVERFLOW clear. This can be used to avoid
324 confusing a regular value with an overflow value. */
326 static inline tree
327 avoid_overflow_infinity (tree val)
329 if (!is_overflow_infinity (val))
330 return val;
332 if (vrp_val_is_max (val))
333 return vrp_val_max (TREE_TYPE (val));
334 else
336 gcc_checking_assert (vrp_val_is_min (val));
337 return vrp_val_min (TREE_TYPE (val));
342 /* Set value range VR to VR_UNDEFINED. */
344 static inline void
345 set_value_range_to_undefined (value_range *vr)
347 vr->type = VR_UNDEFINED;
348 vr->min = vr->max = NULL_TREE;
349 if (vr->equiv)
350 bitmap_clear (vr->equiv);
354 /* Set value range VR to VR_VARYING. */
356 static inline void
357 set_value_range_to_varying (value_range *vr)
359 vr->type = VR_VARYING;
360 vr->min = vr->max = NULL_TREE;
361 if (vr->equiv)
362 bitmap_clear (vr->equiv);
366 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
368 static void
369 set_value_range (value_range *vr, enum value_range_type t, tree min,
370 tree max, bitmap equiv)
372 /* Check the validity of the range. */
373 if (flag_checking
374 && (t == VR_RANGE || t == VR_ANTI_RANGE))
376 int cmp;
378 gcc_assert (min && max);
380 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
381 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
383 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
384 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
386 cmp = compare_values (min, max);
387 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
389 if (needs_overflow_infinity (TREE_TYPE (min)))
390 gcc_assert (!is_overflow_infinity (min)
391 || !is_overflow_infinity (max));
394 if (flag_checking
395 && (t == VR_UNDEFINED || t == VR_VARYING))
397 gcc_assert (min == NULL_TREE && max == NULL_TREE);
398 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
401 vr->type = t;
402 vr->min = min;
403 vr->max = max;
405 /* Since updating the equivalence set involves deep copying the
406 bitmaps, only do it if absolutely necessary. */
407 if (vr->equiv == NULL
408 && equiv != NULL)
409 vr->equiv = BITMAP_ALLOC (NULL);
411 if (equiv != vr->equiv)
413 if (equiv && !bitmap_empty_p (equiv))
414 bitmap_copy (vr->equiv, equiv);
415 else
416 bitmap_clear (vr->equiv);
421 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
422 This means adjusting T, MIN and MAX representing the case of a
423 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
424 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
425 In corner cases where MAX+1 or MIN-1 wraps this will fall back
426 to varying.
427 This routine exists to ease canonicalization in the case where we
428 extract ranges from var + CST op limit. */
430 static void
431 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
432 tree min, tree max, bitmap equiv)
434 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
435 if (t == VR_UNDEFINED)
437 set_value_range_to_undefined (vr);
438 return;
440 else if (t == VR_VARYING)
442 set_value_range_to_varying (vr);
443 return;
446 /* Nothing to canonicalize for symbolic ranges. */
447 if (TREE_CODE (min) != INTEGER_CST
448 || TREE_CODE (max) != INTEGER_CST)
450 set_value_range (vr, t, min, max, equiv);
451 return;
454 /* Wrong order for min and max, to swap them and the VR type we need
455 to adjust them. */
456 if (tree_int_cst_lt (max, min))
458 tree one, tmp;
460 /* For one bit precision if max < min, then the swapped
461 range covers all values, so for VR_RANGE it is varying and
462 for VR_ANTI_RANGE empty range, so drop to varying as well. */
463 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
465 set_value_range_to_varying (vr);
466 return;
469 one = build_int_cst (TREE_TYPE (min), 1);
470 tmp = int_const_binop (PLUS_EXPR, max, one);
471 max = int_const_binop (MINUS_EXPR, min, one);
472 min = tmp;
474 /* There's one corner case, if we had [C+1, C] before we now have
475 that again. But this represents an empty value range, so drop
476 to varying in this case. */
477 if (tree_int_cst_lt (max, min))
479 set_value_range_to_varying (vr);
480 return;
483 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
486 /* Anti-ranges that can be represented as ranges should be so. */
487 if (t == VR_ANTI_RANGE)
489 bool is_min = vrp_val_is_min (min);
490 bool is_max = vrp_val_is_max (max);
492 if (is_min && is_max)
494 /* We cannot deal with empty ranges, drop to varying.
495 ??? This could be VR_UNDEFINED instead. */
496 set_value_range_to_varying (vr);
497 return;
499 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
500 && (is_min || is_max))
502 /* Non-empty boolean ranges can always be represented
503 as a singleton range. */
504 if (is_min)
505 min = max = vrp_val_max (TREE_TYPE (min));
506 else
507 min = max = vrp_val_min (TREE_TYPE (min));
508 t = VR_RANGE;
510 else if (is_min
511 /* As a special exception preserve non-null ranges. */
512 && !(TYPE_UNSIGNED (TREE_TYPE (min))
513 && integer_zerop (max)))
515 tree one = build_int_cst (TREE_TYPE (max), 1);
516 min = int_const_binop (PLUS_EXPR, max, one);
517 max = vrp_val_max (TREE_TYPE (max));
518 t = VR_RANGE;
520 else if (is_max)
522 tree one = build_int_cst (TREE_TYPE (min), 1);
523 max = int_const_binop (MINUS_EXPR, min, one);
524 min = vrp_val_min (TREE_TYPE (min));
525 t = VR_RANGE;
529 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
530 if (needs_overflow_infinity (TREE_TYPE (min))
531 && is_overflow_infinity (min)
532 && is_overflow_infinity (max))
534 set_value_range_to_varying (vr);
535 return;
538 set_value_range (vr, t, min, max, equiv);
541 /* Copy value range FROM into value range TO. */
543 static inline void
544 copy_value_range (value_range *to, value_range *from)
546 set_value_range (to, from->type, from->min, from->max, from->equiv);
549 /* Set value range VR to a single value. This function is only called
550 with values we get from statements, and exists to clear the
551 TREE_OVERFLOW flag so that we don't think we have an overflow
552 infinity when we shouldn't. */
554 static inline void
555 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
557 gcc_assert (is_gimple_min_invariant (val));
558 if (TREE_OVERFLOW_P (val))
559 val = drop_tree_overflow (val);
560 set_value_range (vr, VR_RANGE, val, val, equiv);
563 /* Set value range VR to a non-negative range of type TYPE.
564 OVERFLOW_INFINITY indicates whether to use an overflow infinity
565 rather than TYPE_MAX_VALUE; this should be true if we determine
566 that the range is nonnegative based on the assumption that signed
567 overflow does not occur. */
569 static inline void
570 set_value_range_to_nonnegative (value_range *vr, tree type,
571 bool overflow_infinity)
573 tree zero;
575 if (overflow_infinity && !supports_overflow_infinity (type))
577 set_value_range_to_varying (vr);
578 return;
581 zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_RANGE, zero,
583 (overflow_infinity
584 ? positive_overflow_infinity (type)
585 : TYPE_MAX_VALUE (type)),
586 vr->equiv);
589 /* Set value range VR to a non-NULL range of type TYPE. */
591 static inline void
592 set_value_range_to_nonnull (value_range *vr, tree type)
594 tree zero = build_int_cst (type, 0);
595 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
599 /* Set value range VR to a NULL range of type TYPE. */
601 static inline void
602 set_value_range_to_null (value_range *vr, tree type)
604 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
608 /* Set value range VR to a range of a truthvalue of type TYPE. */
610 static inline void
611 set_value_range_to_truthvalue (value_range *vr, tree type)
613 if (TYPE_PRECISION (type) == 1)
614 set_value_range_to_varying (vr);
615 else
616 set_value_range (vr, VR_RANGE,
617 build_int_cst (type, 0), build_int_cst (type, 1),
618 vr->equiv);
622 /* If abs (min) < abs (max), set VR to [-max, max], if
623 abs (min) >= abs (max), set VR to [-min, min]. */
625 static void
626 abs_extent_range (value_range *vr, tree min, tree max)
628 int cmp;
630 gcc_assert (TREE_CODE (min) == INTEGER_CST);
631 gcc_assert (TREE_CODE (max) == INTEGER_CST);
632 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
633 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
634 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
635 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
636 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
638 set_value_range_to_varying (vr);
639 return;
641 cmp = compare_values (min, max);
642 if (cmp == -1)
643 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
644 else if (cmp == 0 || cmp == 1)
646 max = min;
647 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
649 else
651 set_value_range_to_varying (vr);
652 return;
654 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
658 /* Return value range information for VAR.
660 If we have no values ranges recorded (ie, VRP is not running), then
661 return NULL. Otherwise create an empty range if none existed for VAR. */
663 static value_range *
664 get_value_range (const_tree var)
666 static const value_range vr_const_varying
667 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
668 value_range *vr;
669 tree sym;
670 unsigned ver = SSA_NAME_VERSION (var);
672 /* If we have no recorded ranges, then return NULL. */
673 if (! vr_value)
674 return NULL;
676 /* If we query the range for a new SSA name return an unmodifiable VARYING.
677 We should get here at most from the substitute-and-fold stage which
678 will never try to change values. */
679 if (ver >= num_vr_values)
680 return CONST_CAST (value_range *, &vr_const_varying);
682 vr = vr_value[ver];
683 if (vr)
684 return vr;
686 /* After propagation finished do not allocate new value-ranges. */
687 if (values_propagated)
688 return CONST_CAST (value_range *, &vr_const_varying);
690 /* Create a default value range. */
691 vr_value[ver] = vr = XCNEW (value_range);
693 /* Defer allocating the equivalence set. */
694 vr->equiv = NULL;
696 /* If VAR is a default definition of a parameter, the variable can
697 take any value in VAR's type. */
698 if (SSA_NAME_IS_DEFAULT_DEF (var))
700 sym = SSA_NAME_VAR (var);
701 if (TREE_CODE (sym) == PARM_DECL)
703 /* Try to use the "nonnull" attribute to create ~[0, 0]
704 anti-ranges for pointers. Note that this is only valid with
705 default definitions of PARM_DECLs. */
706 if (POINTER_TYPE_P (TREE_TYPE (sym))
707 && nonnull_arg_p (sym))
708 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
709 else
710 set_value_range_to_varying (vr);
712 else if (TREE_CODE (sym) == RESULT_DECL
713 && DECL_BY_REFERENCE (sym))
714 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
717 return vr;
720 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
722 static inline bool
723 vrp_operand_equal_p (const_tree val1, const_tree val2)
725 if (val1 == val2)
726 return true;
727 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
728 return false;
729 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
732 /* Return true, if the bitmaps B1 and B2 are equal. */
734 static inline bool
735 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
737 return (b1 == b2
738 || ((!b1 || bitmap_empty_p (b1))
739 && (!b2 || bitmap_empty_p (b2)))
740 || (b1 && b2
741 && bitmap_equal_p (b1, b2)));
744 /* Update the value range and equivalence set for variable VAR to
745 NEW_VR. Return true if NEW_VR is different from VAR's previous
746 value.
748 NOTE: This function assumes that NEW_VR is a temporary value range
749 object created for the sole purpose of updating VAR's range. The
750 storage used by the equivalence set from NEW_VR will be freed by
751 this function. Do not call update_value_range when NEW_VR
752 is the range object associated with another SSA name. */
754 static inline bool
755 update_value_range (const_tree var, value_range *new_vr)
757 value_range *old_vr;
758 bool is_new;
760 /* If there is a value-range on the SSA name from earlier analysis
761 factor that in. */
762 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
764 wide_int min, max;
765 value_range_type rtype = get_range_info (var, &min, &max);
766 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
768 value_range nr;
769 nr.type = rtype;
770 nr.min = wide_int_to_tree (TREE_TYPE (var), min);
771 nr.max = wide_int_to_tree (TREE_TYPE (var), max);
772 nr.equiv = NULL;
773 vrp_intersect_ranges (new_vr, &nr);
777 /* Update the value range, if necessary. */
778 old_vr = get_value_range (var);
779 is_new = old_vr->type != new_vr->type
780 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
781 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
782 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
784 if (is_new)
786 /* Do not allow transitions up the lattice. The following
787 is slightly more awkward than just new_vr->type < old_vr->type
788 because VR_RANGE and VR_ANTI_RANGE need to be considered
789 the same. We may not have is_new when transitioning to
790 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
791 called. */
792 if (new_vr->type == VR_UNDEFINED)
794 BITMAP_FREE (new_vr->equiv);
795 set_value_range_to_varying (old_vr);
796 set_value_range_to_varying (new_vr);
797 return true;
799 else
800 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
801 new_vr->equiv);
804 BITMAP_FREE (new_vr->equiv);
806 return is_new;
810 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
811 point where equivalence processing can be turned on/off. */
813 static void
814 add_equivalence (bitmap *equiv, const_tree var)
816 unsigned ver = SSA_NAME_VERSION (var);
817 value_range *vr = vr_value[ver];
819 if (*equiv == NULL)
820 *equiv = BITMAP_ALLOC (NULL);
821 bitmap_set_bit (*equiv, ver);
822 if (vr && vr->equiv)
823 bitmap_ior_into (*equiv, vr->equiv);
827 /* Return true if VR is ~[0, 0]. */
829 static inline bool
830 range_is_nonnull (value_range *vr)
832 return vr->type == VR_ANTI_RANGE
833 && integer_zerop (vr->min)
834 && integer_zerop (vr->max);
838 /* Return true if VR is [0, 0]. */
840 static inline bool
841 range_is_null (value_range *vr)
843 return vr->type == VR_RANGE
844 && integer_zerop (vr->min)
845 && integer_zerop (vr->max);
848 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
849 a singleton. */
851 static inline bool
852 range_int_cst_p (value_range *vr)
854 return (vr->type == VR_RANGE
855 && TREE_CODE (vr->max) == INTEGER_CST
856 && TREE_CODE (vr->min) == INTEGER_CST);
859 /* Return true if VR is a INTEGER_CST singleton. */
861 static inline bool
862 range_int_cst_singleton_p (value_range *vr)
864 return (range_int_cst_p (vr)
865 && !is_overflow_infinity (vr->min)
866 && !is_overflow_infinity (vr->max)
867 && tree_int_cst_equal (vr->min, vr->max));
870 /* Return true if value range VR involves at least one symbol. */
872 static inline bool
873 symbolic_range_p (value_range *vr)
875 return (!is_gimple_min_invariant (vr->min)
876 || !is_gimple_min_invariant (vr->max));
879 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
880 otherwise. We only handle additive operations and set NEG to true if the
881 symbol is negated and INV to the invariant part, if any. */
883 static tree
884 get_single_symbol (tree t, bool *neg, tree *inv)
886 bool neg_;
887 tree inv_;
889 if (TREE_CODE (t) == PLUS_EXPR
890 || TREE_CODE (t) == POINTER_PLUS_EXPR
891 || TREE_CODE (t) == MINUS_EXPR)
893 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
895 neg_ = (TREE_CODE (t) == MINUS_EXPR);
896 inv_ = TREE_OPERAND (t, 0);
897 t = TREE_OPERAND (t, 1);
899 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
901 neg_ = false;
902 inv_ = TREE_OPERAND (t, 1);
903 t = TREE_OPERAND (t, 0);
905 else
906 return NULL_TREE;
908 else
910 neg_ = false;
911 inv_ = NULL_TREE;
914 if (TREE_CODE (t) == NEGATE_EXPR)
916 t = TREE_OPERAND (t, 0);
917 neg_ = !neg_;
920 if (TREE_CODE (t) != SSA_NAME)
921 return NULL_TREE;
923 *neg = neg_;
924 *inv = inv_;
925 return t;
928 /* The reverse operation: build a symbolic expression with TYPE
929 from symbol SYM, negated according to NEG, and invariant INV. */
931 static tree
932 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
934 const bool pointer_p = POINTER_TYPE_P (type);
935 tree t = sym;
937 if (neg)
938 t = build1 (NEGATE_EXPR, type, t);
940 if (integer_zerop (inv))
941 return t;
943 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
946 /* Return true if value range VR involves exactly one symbol SYM. */
948 static bool
949 symbolic_range_based_on_p (value_range *vr, const_tree sym)
951 bool neg, min_has_symbol, max_has_symbol;
952 tree inv;
954 if (is_gimple_min_invariant (vr->min))
955 min_has_symbol = false;
956 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
957 min_has_symbol = true;
958 else
959 return false;
961 if (is_gimple_min_invariant (vr->max))
962 max_has_symbol = false;
963 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
964 max_has_symbol = true;
965 else
966 return false;
968 return (min_has_symbol || max_has_symbol);
971 /* Return true if value range VR uses an overflow infinity. */
973 static inline bool
974 overflow_infinity_range_p (value_range *vr)
976 return (vr->type == VR_RANGE
977 && (is_overflow_infinity (vr->min)
978 || is_overflow_infinity (vr->max)));
981 /* Return false if we can not make a valid comparison based on VR;
982 this will be the case if it uses an overflow infinity and overflow
983 is not undefined (i.e., -fno-strict-overflow is in effect).
984 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
985 uses an overflow infinity. */
987 static bool
988 usable_range_p (value_range *vr, bool *strict_overflow_p)
990 gcc_assert (vr->type == VR_RANGE);
991 if (is_overflow_infinity (vr->min))
993 *strict_overflow_p = true;
994 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
995 return false;
997 if (is_overflow_infinity (vr->max))
999 *strict_overflow_p = true;
1000 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1001 return false;
1003 return true;
1006 /* Return true if the result of assignment STMT is know to be non-zero.
1007 If the return value is based on the assumption that signed overflow is
1008 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1009 *STRICT_OVERFLOW_P.*/
1011 static bool
1012 gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1014 enum tree_code code = gimple_assign_rhs_code (stmt);
1015 switch (get_gimple_rhs_class (code))
1017 case GIMPLE_UNARY_RHS:
1018 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1019 gimple_expr_type (stmt),
1020 gimple_assign_rhs1 (stmt),
1021 strict_overflow_p);
1022 case GIMPLE_BINARY_RHS:
1023 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1024 gimple_expr_type (stmt),
1025 gimple_assign_rhs1 (stmt),
1026 gimple_assign_rhs2 (stmt),
1027 strict_overflow_p);
1028 case GIMPLE_TERNARY_RHS:
1029 return false;
1030 case GIMPLE_SINGLE_RHS:
1031 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1032 strict_overflow_p);
1033 case GIMPLE_INVALID_RHS:
1034 gcc_unreachable ();
1035 default:
1036 gcc_unreachable ();
1040 /* Return true if STMT is known to compute a non-zero value.
1041 If the return value is based on the assumption that signed overflow is
1042 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1043 *STRICT_OVERFLOW_P.*/
1045 static bool
1046 gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1048 switch (gimple_code (stmt))
1050 case GIMPLE_ASSIGN:
1051 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1052 case GIMPLE_CALL:
1054 tree fndecl = gimple_call_fndecl (stmt);
1055 if (!fndecl) return false;
1056 if (flag_delete_null_pointer_checks && !flag_check_new
1057 && DECL_IS_OPERATOR_NEW (fndecl)
1058 && !TREE_NOTHROW (fndecl))
1059 return true;
1060 /* References are always non-NULL. */
1061 if (flag_delete_null_pointer_checks
1062 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1063 return true;
1064 if (flag_delete_null_pointer_checks &&
1065 lookup_attribute ("returns_nonnull",
1066 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1067 return true;
1068 return gimple_alloca_call_p (stmt);
1070 default:
1071 gcc_unreachable ();
1075 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1076 obtained so far. */
1078 static bool
1079 vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
1081 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1082 return true;
1084 /* If we have an expression of the form &X->a, then the expression
1085 is nonnull if X is nonnull. */
1086 if (is_gimple_assign (stmt)
1087 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1089 tree expr = gimple_assign_rhs1 (stmt);
1090 tree base = get_base_address (TREE_OPERAND (expr, 0));
1092 if (base != NULL_TREE
1093 && TREE_CODE (base) == MEM_REF
1094 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1096 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
1097 if (range_is_nonnull (vr))
1098 return true;
1102 return false;
1105 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1106 a gimple invariant, or SSA_NAME +- CST. */
1108 static bool
1109 valid_value_p (tree expr)
1111 if (TREE_CODE (expr) == SSA_NAME)
1112 return true;
1114 if (TREE_CODE (expr) == PLUS_EXPR
1115 || TREE_CODE (expr) == MINUS_EXPR)
1116 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1117 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1119 return is_gimple_min_invariant (expr);
1122 /* Return
1123 1 if VAL < VAL2
1124 0 if !(VAL < VAL2)
1125 -2 if those are incomparable. */
1126 static inline int
1127 operand_less_p (tree val, tree val2)
1129 /* LT is folded faster than GE and others. Inline the common case. */
1130 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1131 return tree_int_cst_lt (val, val2);
1132 else
1134 tree tcmp;
1136 fold_defer_overflow_warnings ();
1138 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1140 fold_undefer_and_ignore_overflow_warnings ();
1142 if (!tcmp
1143 || TREE_CODE (tcmp) != INTEGER_CST)
1144 return -2;
1146 if (!integer_zerop (tcmp))
1147 return 1;
1150 /* val >= val2, not considering overflow infinity. */
1151 if (is_negative_overflow_infinity (val))
1152 return is_negative_overflow_infinity (val2) ? 0 : 1;
1153 else if (is_positive_overflow_infinity (val2))
1154 return is_positive_overflow_infinity (val) ? 0 : 1;
1156 return 0;
1159 /* Compare two values VAL1 and VAL2. Return
1161 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1162 -1 if VAL1 < VAL2,
1163 0 if VAL1 == VAL2,
1164 +1 if VAL1 > VAL2, and
1165 +2 if VAL1 != VAL2
1167 This is similar to tree_int_cst_compare but supports pointer values
1168 and values that cannot be compared at compile time.
1170 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1171 true if the return value is only valid if we assume that signed
1172 overflow is undefined. */
1174 static int
1175 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1177 if (val1 == val2)
1178 return 0;
1180 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1181 both integers. */
1182 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1183 == POINTER_TYPE_P (TREE_TYPE (val2)));
1185 /* Convert the two values into the same type. This is needed because
1186 sizetype causes sign extension even for unsigned types. */
1187 val2 = fold_convert (TREE_TYPE (val1), val2);
1188 STRIP_USELESS_TYPE_CONVERSION (val2);
1190 if ((TREE_CODE (val1) == SSA_NAME
1191 || (TREE_CODE (val1) == NEGATE_EXPR
1192 && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
1193 || TREE_CODE (val1) == PLUS_EXPR
1194 || TREE_CODE (val1) == MINUS_EXPR)
1195 && (TREE_CODE (val2) == SSA_NAME
1196 || (TREE_CODE (val2) == NEGATE_EXPR
1197 && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
1198 || TREE_CODE (val2) == PLUS_EXPR
1199 || TREE_CODE (val2) == MINUS_EXPR))
1201 tree n1, c1, n2, c2;
1202 enum tree_code code1, code2;
1204 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1205 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1206 same name, return -2. */
1207 if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
1209 code1 = SSA_NAME;
1210 n1 = val1;
1211 c1 = NULL_TREE;
1213 else
1215 code1 = TREE_CODE (val1);
1216 n1 = TREE_OPERAND (val1, 0);
1217 c1 = TREE_OPERAND (val1, 1);
1218 if (tree_int_cst_sgn (c1) == -1)
1220 if (is_negative_overflow_infinity (c1))
1221 return -2;
1222 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1223 if (!c1)
1224 return -2;
1225 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1229 if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
1231 code2 = SSA_NAME;
1232 n2 = val2;
1233 c2 = NULL_TREE;
1235 else
1237 code2 = TREE_CODE (val2);
1238 n2 = TREE_OPERAND (val2, 0);
1239 c2 = TREE_OPERAND (val2, 1);
1240 if (tree_int_cst_sgn (c2) == -1)
1242 if (is_negative_overflow_infinity (c2))
1243 return -2;
1244 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1245 if (!c2)
1246 return -2;
1247 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1251 /* Both values must use the same name. */
1252 if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
1254 n1 = TREE_OPERAND (n1, 0);
1255 n2 = TREE_OPERAND (n2, 0);
1257 if (n1 != n2)
1258 return -2;
1260 if (code1 == SSA_NAME && code2 == SSA_NAME)
1261 /* NAME == NAME */
1262 return 0;
1264 /* If overflow is defined we cannot simplify more. */
1265 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1266 return -2;
1268 if (strict_overflow_p != NULL
1269 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1270 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1271 *strict_overflow_p = true;
1273 if (code1 == SSA_NAME)
1275 if (code2 == PLUS_EXPR)
1276 /* NAME < NAME + CST */
1277 return -1;
1278 else if (code2 == MINUS_EXPR)
1279 /* NAME > NAME - CST */
1280 return 1;
1282 else if (code1 == PLUS_EXPR)
1284 if (code2 == SSA_NAME)
1285 /* NAME + CST > NAME */
1286 return 1;
1287 else if (code2 == PLUS_EXPR)
1288 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1289 return compare_values_warnv (c1, c2, strict_overflow_p);
1290 else if (code2 == MINUS_EXPR)
1291 /* NAME + CST1 > NAME - CST2 */
1292 return 1;
1294 else if (code1 == MINUS_EXPR)
1296 if (code2 == SSA_NAME)
1297 /* NAME - CST < NAME */
1298 return -1;
1299 else if (code2 == PLUS_EXPR)
1300 /* NAME - CST1 < NAME + CST2 */
1301 return -1;
1302 else if (code2 == MINUS_EXPR)
1303 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1304 C1 and C2 are swapped in the call to compare_values. */
1305 return compare_values_warnv (c2, c1, strict_overflow_p);
1308 gcc_unreachable ();
1311 /* We cannot compare non-constants. */
1312 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1313 return -2;
1315 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1317 /* We cannot compare overflowed values, except for overflow
1318 infinities. */
1319 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1321 if (strict_overflow_p != NULL)
1322 *strict_overflow_p = true;
1323 if (is_negative_overflow_infinity (val1))
1324 return is_negative_overflow_infinity (val2) ? 0 : -1;
1325 else if (is_negative_overflow_infinity (val2))
1326 return 1;
1327 else if (is_positive_overflow_infinity (val1))
1328 return is_positive_overflow_infinity (val2) ? 0 : 1;
1329 else if (is_positive_overflow_infinity (val2))
1330 return -1;
1331 return -2;
1334 return tree_int_cst_compare (val1, val2);
1336 else
1338 tree t;
1340 /* First see if VAL1 and VAL2 are not the same. */
1341 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1342 return 0;
1344 /* If VAL1 is a lower address than VAL2, return -1. */
1345 if (operand_less_p (val1, val2) == 1)
1346 return -1;
1348 /* If VAL1 is a higher address than VAL2, return +1. */
1349 if (operand_less_p (val2, val1) == 1)
1350 return 1;
1352 /* If VAL1 is different than VAL2, return +2.
1353 For integer constants we either have already returned -1 or 1
1354 or they are equivalent. We still might succeed in proving
1355 something about non-trivial operands. */
1356 if (TREE_CODE (val1) != INTEGER_CST
1357 || TREE_CODE (val2) != INTEGER_CST)
1359 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1360 if (t && integer_onep (t))
1361 return 2;
1364 return -2;
1368 /* Compare values like compare_values_warnv, but treat comparisons of
1369 nonconstants which rely on undefined overflow as incomparable. */
1371 static int
1372 compare_values (tree val1, tree val2)
1374 bool sop;
1375 int ret;
1377 sop = false;
1378 ret = compare_values_warnv (val1, val2, &sop);
1379 if (sop
1380 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1381 ret = -2;
1382 return ret;
1386 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1387 0 if VAL is not inside [MIN, MAX],
1388 -2 if we cannot tell either way.
1390 Benchmark compile/20001226-1.c compilation time after changing this
1391 function. */
1393 static inline int
1394 value_inside_range (tree val, tree min, tree max)
1396 int cmp1, cmp2;
1398 cmp1 = operand_less_p (val, min);
1399 if (cmp1 == -2)
1400 return -2;
1401 if (cmp1 == 1)
1402 return 0;
1404 cmp2 = operand_less_p (max, val);
1405 if (cmp2 == -2)
1406 return -2;
1408 return !cmp2;
1412 /* Return true if value ranges VR0 and VR1 have a non-empty
1413 intersection.
1415 Benchmark compile/20001226-1.c compilation time after changing this
1416 function.
1419 static inline bool
1420 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1422 /* The value ranges do not intersect if the maximum of the first range is
1423 less than the minimum of the second range or vice versa.
1424 When those relations are unknown, we can't do any better. */
1425 if (operand_less_p (vr0->max, vr1->min) != 0)
1426 return false;
1427 if (operand_less_p (vr1->max, vr0->min) != 0)
1428 return false;
1429 return true;
1433 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1434 include the value zero, -2 if we cannot tell. */
1436 static inline int
1437 range_includes_zero_p (tree min, tree max)
1439 tree zero = build_int_cst (TREE_TYPE (min), 0);
1440 return value_inside_range (zero, min, max);
1443 /* Return true if *VR is know to only contain nonnegative values. */
1445 static inline bool
1446 value_range_nonnegative_p (value_range *vr)
1448 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1449 which would return a useful value should be encoded as a
1450 VR_RANGE. */
1451 if (vr->type == VR_RANGE)
1453 int result = compare_values (vr->min, integer_zero_node);
1454 return (result == 0 || result == 1);
1457 return false;
1460 /* If *VR has a value rante that is a single constant value return that,
1461 otherwise return NULL_TREE. */
1463 static tree
1464 value_range_constant_singleton (value_range *vr)
1466 if (vr->type == VR_RANGE
1467 && operand_equal_p (vr->min, vr->max, 0)
1468 && is_gimple_min_invariant (vr->min))
1469 return vr->min;
1471 return NULL_TREE;
1474 /* If OP has a value range with a single constant value return that,
1475 otherwise return NULL_TREE. This returns OP itself if OP is a
1476 constant. */
1478 static tree
1479 op_with_constant_singleton_value_range (tree op)
1481 if (is_gimple_min_invariant (op))
1482 return op;
1484 if (TREE_CODE (op) != SSA_NAME)
1485 return NULL_TREE;
1487 return value_range_constant_singleton (get_value_range (op));
1490 /* Return true if op is in a boolean [0, 1] value-range. */
1492 static bool
1493 op_with_boolean_value_range_p (tree op)
1495 value_range *vr;
1497 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1498 return true;
1500 if (integer_zerop (op)
1501 || integer_onep (op))
1502 return true;
1504 if (TREE_CODE (op) != SSA_NAME)
1505 return false;
1507 vr = get_value_range (op);
1508 return (vr->type == VR_RANGE
1509 && integer_zerop (vr->min)
1510 && integer_onep (vr->max));
1513 /* Extract value range information from an ASSERT_EXPR EXPR and store
1514 it in *VR_P. */
1516 static void
1517 extract_range_from_assert (value_range *vr_p, tree expr)
1519 tree var, cond, limit, min, max, type;
1520 value_range *limit_vr;
1521 enum tree_code cond_code;
1523 var = ASSERT_EXPR_VAR (expr);
1524 cond = ASSERT_EXPR_COND (expr);
1526 gcc_assert (COMPARISON_CLASS_P (cond));
1528 /* Find VAR in the ASSERT_EXPR conditional. */
1529 if (var == TREE_OPERAND (cond, 0)
1530 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1531 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1533 /* If the predicate is of the form VAR COMP LIMIT, then we just
1534 take LIMIT from the RHS and use the same comparison code. */
1535 cond_code = TREE_CODE (cond);
1536 limit = TREE_OPERAND (cond, 1);
1537 cond = TREE_OPERAND (cond, 0);
1539 else
1541 /* If the predicate is of the form LIMIT COMP VAR, then we need
1542 to flip around the comparison code to create the proper range
1543 for VAR. */
1544 cond_code = swap_tree_comparison (TREE_CODE (cond));
1545 limit = TREE_OPERAND (cond, 0);
1546 cond = TREE_OPERAND (cond, 1);
1549 limit = avoid_overflow_infinity (limit);
1551 type = TREE_TYPE (var);
1552 gcc_assert (limit != var);
1554 /* For pointer arithmetic, we only keep track of pointer equality
1555 and inequality. */
1556 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1558 set_value_range_to_varying (vr_p);
1559 return;
1562 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1563 try to use LIMIT's range to avoid creating symbolic ranges
1564 unnecessarily. */
1565 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1567 /* LIMIT's range is only interesting if it has any useful information. */
1568 if (limit_vr
1569 && (limit_vr->type == VR_UNDEFINED
1570 || limit_vr->type == VR_VARYING
1571 || symbolic_range_p (limit_vr)))
1572 limit_vr = NULL;
1574 /* Initially, the new range has the same set of equivalences of
1575 VAR's range. This will be revised before returning the final
1576 value. Since assertions may be chained via mutually exclusive
1577 predicates, we will need to trim the set of equivalences before
1578 we are done. */
1579 gcc_assert (vr_p->equiv == NULL);
1580 add_equivalence (&vr_p->equiv, var);
1582 /* Extract a new range based on the asserted comparison for VAR and
1583 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1584 will only use it for equality comparisons (EQ_EXPR). For any
1585 other kind of assertion, we cannot derive a range from LIMIT's
1586 anti-range that can be used to describe the new range. For
1587 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1588 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1589 no single range for x_2 that could describe LE_EXPR, so we might
1590 as well build the range [b_4, +INF] for it.
1591 One special case we handle is extracting a range from a
1592 range test encoded as (unsigned)var + CST <= limit. */
1593 if (TREE_CODE (cond) == NOP_EXPR
1594 || TREE_CODE (cond) == PLUS_EXPR)
1596 if (TREE_CODE (cond) == PLUS_EXPR)
1598 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1599 TREE_OPERAND (cond, 1));
1600 max = int_const_binop (PLUS_EXPR, limit, min);
1601 cond = TREE_OPERAND (cond, 0);
1603 else
1605 min = build_int_cst (TREE_TYPE (var), 0);
1606 max = limit;
1609 /* Make sure to not set TREE_OVERFLOW on the final type
1610 conversion. We are willingly interpreting large positive
1611 unsigned values as negative signed values here. */
1612 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1613 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1615 /* We can transform a max, min range to an anti-range or
1616 vice-versa. Use set_and_canonicalize_value_range which does
1617 this for us. */
1618 if (cond_code == LE_EXPR)
1619 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1620 min, max, vr_p->equiv);
1621 else if (cond_code == GT_EXPR)
1622 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1623 min, max, vr_p->equiv);
1624 else
1625 gcc_unreachable ();
1627 else if (cond_code == EQ_EXPR)
1629 enum value_range_type range_type;
1631 if (limit_vr)
1633 range_type = limit_vr->type;
1634 min = limit_vr->min;
1635 max = limit_vr->max;
1637 else
1639 range_type = VR_RANGE;
1640 min = limit;
1641 max = limit;
1644 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1646 /* When asserting the equality VAR == LIMIT and LIMIT is another
1647 SSA name, the new range will also inherit the equivalence set
1648 from LIMIT. */
1649 if (TREE_CODE (limit) == SSA_NAME)
1650 add_equivalence (&vr_p->equiv, limit);
1652 else if (cond_code == NE_EXPR)
1654 /* As described above, when LIMIT's range is an anti-range and
1655 this assertion is an inequality (NE_EXPR), then we cannot
1656 derive anything from the anti-range. For instance, if
1657 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1658 not imply that VAR's range is [0, 0]. So, in the case of
1659 anti-ranges, we just assert the inequality using LIMIT and
1660 not its anti-range.
1662 If LIMIT_VR is a range, we can only use it to build a new
1663 anti-range if LIMIT_VR is a single-valued range. For
1664 instance, if LIMIT_VR is [0, 1], the predicate
1665 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1666 Rather, it means that for value 0 VAR should be ~[0, 0]
1667 and for value 1, VAR should be ~[1, 1]. We cannot
1668 represent these ranges.
1670 The only situation in which we can build a valid
1671 anti-range is when LIMIT_VR is a single-valued range
1672 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1673 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1674 if (limit_vr
1675 && limit_vr->type == VR_RANGE
1676 && compare_values (limit_vr->min, limit_vr->max) == 0)
1678 min = limit_vr->min;
1679 max = limit_vr->max;
1681 else
1683 /* In any other case, we cannot use LIMIT's range to build a
1684 valid anti-range. */
1685 min = max = limit;
1688 /* If MIN and MAX cover the whole range for their type, then
1689 just use the original LIMIT. */
1690 if (INTEGRAL_TYPE_P (type)
1691 && vrp_val_is_min (min)
1692 && vrp_val_is_max (max))
1693 min = max = limit;
1695 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1696 min, max, vr_p->equiv);
1698 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1700 min = TYPE_MIN_VALUE (type);
1702 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1703 max = limit;
1704 else
1706 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1707 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1708 LT_EXPR. */
1709 max = limit_vr->max;
1712 /* If the maximum value forces us to be out of bounds, simply punt.
1713 It would be pointless to try and do anything more since this
1714 all should be optimized away above us. */
1715 if ((cond_code == LT_EXPR
1716 && compare_values (max, min) == 0)
1717 || is_overflow_infinity (max))
1718 set_value_range_to_varying (vr_p);
1719 else
1721 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1722 if (cond_code == LT_EXPR)
1724 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1725 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1726 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1727 build_int_cst (TREE_TYPE (max), -1));
1728 else
1729 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1730 build_int_cst (TREE_TYPE (max), 1));
1731 if (EXPR_P (max))
1732 TREE_NO_WARNING (max) = 1;
1735 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1738 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1740 max = TYPE_MAX_VALUE (type);
1742 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1743 min = limit;
1744 else
1746 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1747 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1748 GT_EXPR. */
1749 min = limit_vr->min;
1752 /* If the minimum value forces us to be out of bounds, simply punt.
1753 It would be pointless to try and do anything more since this
1754 all should be optimized away above us. */
1755 if ((cond_code == GT_EXPR
1756 && compare_values (min, max) == 0)
1757 || is_overflow_infinity (min))
1758 set_value_range_to_varying (vr_p);
1759 else
1761 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1762 if (cond_code == GT_EXPR)
1764 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1765 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1766 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1767 build_int_cst (TREE_TYPE (min), -1));
1768 else
1769 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1770 build_int_cst (TREE_TYPE (min), 1));
1771 if (EXPR_P (min))
1772 TREE_NO_WARNING (min) = 1;
1775 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1778 else
1779 gcc_unreachable ();
1781 /* Finally intersect the new range with what we already know about var. */
1782 vrp_intersect_ranges (vr_p, get_value_range (var));
1786 /* Extract range information from SSA name VAR and store it in VR. If
1787 VAR has an interesting range, use it. Otherwise, create the
1788 range [VAR, VAR] and return it. This is useful in situations where
1789 we may have conditionals testing values of VARYING names. For
1790 instance,
1792 x_3 = y_5;
1793 if (x_3 > y_5)
1796 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1797 always false. */
1799 static void
1800 extract_range_from_ssa_name (value_range *vr, tree var)
1802 value_range *var_vr = get_value_range (var);
1804 if (var_vr->type != VR_VARYING)
1805 copy_value_range (vr, var_vr);
1806 else
1807 set_value_range (vr, VR_RANGE, var, var, NULL);
1809 add_equivalence (&vr->equiv, var);
1813 /* Wrapper around int_const_binop. If the operation overflows and we
1814 are not using wrapping arithmetic, then adjust the result to be
1815 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1816 NULL_TREE if we need to use an overflow infinity representation but
1817 the type does not support it. */
1819 static tree
1820 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1822 tree res;
1824 res = int_const_binop (code, val1, val2);
1826 /* If we are using unsigned arithmetic, operate symbolically
1827 on -INF and +INF as int_const_binop only handles signed overflow. */
1828 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1830 int checkz = compare_values (res, val1);
1831 bool overflow = false;
1833 /* Ensure that res = val1 [+*] val2 >= val1
1834 or that res = val1 - val2 <= val1. */
1835 if ((code == PLUS_EXPR
1836 && !(checkz == 1 || checkz == 0))
1837 || (code == MINUS_EXPR
1838 && !(checkz == 0 || checkz == -1)))
1840 overflow = true;
1842 /* Checking for multiplication overflow is done by dividing the
1843 output of the multiplication by the first input of the
1844 multiplication. If the result of that division operation is
1845 not equal to the second input of the multiplication, then the
1846 multiplication overflowed. */
1847 else if (code == MULT_EXPR && !integer_zerop (val1))
1849 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1850 res,
1851 val1);
1852 int check = compare_values (tmp, val2);
1854 if (check != 0)
1855 overflow = true;
1858 if (overflow)
1860 res = copy_node (res);
1861 TREE_OVERFLOW (res) = 1;
1865 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1866 /* If the singed operation wraps then int_const_binop has done
1867 everything we want. */
1869 /* Signed division of -1/0 overflows and by the time it gets here
1870 returns NULL_TREE. */
1871 else if (!res)
1872 return NULL_TREE;
1873 else if ((TREE_OVERFLOW (res)
1874 && !TREE_OVERFLOW (val1)
1875 && !TREE_OVERFLOW (val2))
1876 || is_overflow_infinity (val1)
1877 || is_overflow_infinity (val2))
1879 /* If the operation overflowed but neither VAL1 nor VAL2 are
1880 overflown, return -INF or +INF depending on the operation
1881 and the combination of signs of the operands. */
1882 int sgn1 = tree_int_cst_sgn (val1);
1883 int sgn2 = tree_int_cst_sgn (val2);
1885 if (needs_overflow_infinity (TREE_TYPE (res))
1886 && !supports_overflow_infinity (TREE_TYPE (res)))
1887 return NULL_TREE;
1889 /* We have to punt on adding infinities of different signs,
1890 since we can't tell what the sign of the result should be.
1891 Likewise for subtracting infinities of the same sign. */
1892 if (((code == PLUS_EXPR && sgn1 != sgn2)
1893 || (code == MINUS_EXPR && sgn1 == sgn2))
1894 && is_overflow_infinity (val1)
1895 && is_overflow_infinity (val2))
1896 return NULL_TREE;
1898 /* Don't try to handle division or shifting of infinities. */
1899 if ((code == TRUNC_DIV_EXPR
1900 || code == FLOOR_DIV_EXPR
1901 || code == CEIL_DIV_EXPR
1902 || code == EXACT_DIV_EXPR
1903 || code == ROUND_DIV_EXPR
1904 || code == RSHIFT_EXPR)
1905 && (is_overflow_infinity (val1)
1906 || is_overflow_infinity (val2)))
1907 return NULL_TREE;
1909 /* Notice that we only need to handle the restricted set of
1910 operations handled by extract_range_from_binary_expr.
1911 Among them, only multiplication, addition and subtraction
1912 can yield overflow without overflown operands because we
1913 are working with integral types only... except in the
1914 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1915 for division too. */
1917 /* For multiplication, the sign of the overflow is given
1918 by the comparison of the signs of the operands. */
1919 if ((code == MULT_EXPR && sgn1 == sgn2)
1920 /* For addition, the operands must be of the same sign
1921 to yield an overflow. Its sign is therefore that
1922 of one of the operands, for example the first. For
1923 infinite operands X + -INF is negative, not positive. */
1924 || (code == PLUS_EXPR
1925 && (sgn1 >= 0
1926 ? !is_negative_overflow_infinity (val2)
1927 : is_positive_overflow_infinity (val2)))
1928 /* For subtraction, non-infinite operands must be of
1929 different signs to yield an overflow. Its sign is
1930 therefore that of the first operand or the opposite of
1931 that of the second operand. A first operand of 0 counts
1932 as positive here, for the corner case 0 - (-INF), which
1933 overflows, but must yield +INF. For infinite operands 0
1934 - INF is negative, not positive. */
1935 || (code == MINUS_EXPR
1936 && (sgn1 >= 0
1937 ? !is_positive_overflow_infinity (val2)
1938 : is_negative_overflow_infinity (val2)))
1939 /* We only get in here with positive shift count, so the
1940 overflow direction is the same as the sign of val1.
1941 Actually rshift does not overflow at all, but we only
1942 handle the case of shifting overflowed -INF and +INF. */
1943 || (code == RSHIFT_EXPR
1944 && sgn1 >= 0)
1945 /* For division, the only case is -INF / -1 = +INF. */
1946 || code == TRUNC_DIV_EXPR
1947 || code == FLOOR_DIV_EXPR
1948 || code == CEIL_DIV_EXPR
1949 || code == EXACT_DIV_EXPR
1950 || code == ROUND_DIV_EXPR)
1951 return (needs_overflow_infinity (TREE_TYPE (res))
1952 ? positive_overflow_infinity (TREE_TYPE (res))
1953 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1954 else
1955 return (needs_overflow_infinity (TREE_TYPE (res))
1956 ? negative_overflow_infinity (TREE_TYPE (res))
1957 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1960 return res;
1964 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1965 bitmask if some bit is unset, it means for all numbers in the range
1966 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1967 bitmask if some bit is set, it means for all numbers in the range
1968 the bit is 1, otherwise it might be 0 or 1. */
1970 static bool
1971 zero_nonzero_bits_from_vr (const tree expr_type,
1972 value_range *vr,
1973 wide_int *may_be_nonzero,
1974 wide_int *must_be_nonzero)
1976 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1977 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1978 if (!range_int_cst_p (vr)
1979 || is_overflow_infinity (vr->min)
1980 || is_overflow_infinity (vr->max))
1981 return false;
1983 if (range_int_cst_singleton_p (vr))
1985 *may_be_nonzero = vr->min;
1986 *must_be_nonzero = *may_be_nonzero;
1988 else if (tree_int_cst_sgn (vr->min) >= 0
1989 || tree_int_cst_sgn (vr->max) < 0)
1991 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1992 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1993 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1994 if (xor_mask != 0)
1996 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1997 may_be_nonzero->get_precision ());
1998 *may_be_nonzero = *may_be_nonzero | mask;
1999 *must_be_nonzero = must_be_nonzero->and_not (mask);
2003 return true;
2006 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2007 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2008 false otherwise. If *AR can be represented with a single range
2009 *VR1 will be VR_UNDEFINED. */
2011 static bool
2012 ranges_from_anti_range (value_range *ar,
2013 value_range *vr0, value_range *vr1)
2015 tree type = TREE_TYPE (ar->min);
2017 vr0->type = VR_UNDEFINED;
2018 vr1->type = VR_UNDEFINED;
2020 if (ar->type != VR_ANTI_RANGE
2021 || TREE_CODE (ar->min) != INTEGER_CST
2022 || TREE_CODE (ar->max) != INTEGER_CST
2023 || !vrp_val_min (type)
2024 || !vrp_val_max (type))
2025 return false;
2027 if (!vrp_val_is_min (ar->min))
2029 vr0->type = VR_RANGE;
2030 vr0->min = vrp_val_min (type);
2031 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2033 if (!vrp_val_is_max (ar->max))
2035 vr1->type = VR_RANGE;
2036 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2037 vr1->max = vrp_val_max (type);
2039 if (vr0->type == VR_UNDEFINED)
2041 *vr0 = *vr1;
2042 vr1->type = VR_UNDEFINED;
2045 return vr0->type != VR_UNDEFINED;
2048 /* Helper to extract a value-range *VR for a multiplicative operation
2049 *VR0 CODE *VR1. */
2051 static void
2052 extract_range_from_multiplicative_op_1 (value_range *vr,
2053 enum tree_code code,
2054 value_range *vr0, value_range *vr1)
2056 enum value_range_type type;
2057 tree val[4];
2058 size_t i;
2059 tree min, max;
2060 bool sop;
2061 int cmp;
2063 /* Multiplications, divisions and shifts are a bit tricky to handle,
2064 depending on the mix of signs we have in the two ranges, we
2065 need to operate on different values to get the minimum and
2066 maximum values for the new range. One approach is to figure
2067 out all the variations of range combinations and do the
2068 operations.
2070 However, this involves several calls to compare_values and it
2071 is pretty convoluted. It's simpler to do the 4 operations
2072 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2073 MAX1) and then figure the smallest and largest values to form
2074 the new range. */
2075 gcc_assert (code == MULT_EXPR
2076 || code == TRUNC_DIV_EXPR
2077 || code == FLOOR_DIV_EXPR
2078 || code == CEIL_DIV_EXPR
2079 || code == EXACT_DIV_EXPR
2080 || code == ROUND_DIV_EXPR
2081 || code == RSHIFT_EXPR
2082 || code == LSHIFT_EXPR);
2083 gcc_assert ((vr0->type == VR_RANGE
2084 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2085 && vr0->type == vr1->type);
2087 type = vr0->type;
2089 /* Compute the 4 cross operations. */
2090 sop = false;
2091 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2092 if (val[0] == NULL_TREE)
2093 sop = true;
2095 if (vr1->max == vr1->min)
2096 val[1] = NULL_TREE;
2097 else
2099 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2100 if (val[1] == NULL_TREE)
2101 sop = true;
2104 if (vr0->max == vr0->min)
2105 val[2] = NULL_TREE;
2106 else
2108 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2109 if (val[2] == NULL_TREE)
2110 sop = true;
2113 if (vr0->min == vr0->max || vr1->min == vr1->max)
2114 val[3] = NULL_TREE;
2115 else
2117 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2118 if (val[3] == NULL_TREE)
2119 sop = true;
2122 if (sop)
2124 set_value_range_to_varying (vr);
2125 return;
2128 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2129 of VAL[i]. */
2130 min = val[0];
2131 max = val[0];
2132 for (i = 1; i < 4; i++)
2134 if (!is_gimple_min_invariant (min)
2135 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2136 || !is_gimple_min_invariant (max)
2137 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2138 break;
2140 if (val[i])
2142 if (!is_gimple_min_invariant (val[i])
2143 || (TREE_OVERFLOW (val[i])
2144 && !is_overflow_infinity (val[i])))
2146 /* If we found an overflowed value, set MIN and MAX
2147 to it so that we set the resulting range to
2148 VARYING. */
2149 min = max = val[i];
2150 break;
2153 if (compare_values (val[i], min) == -1)
2154 min = val[i];
2156 if (compare_values (val[i], max) == 1)
2157 max = val[i];
2161 /* If either MIN or MAX overflowed, then set the resulting range to
2162 VARYING. But we do accept an overflow infinity
2163 representation. */
2164 if (min == NULL_TREE
2165 || !is_gimple_min_invariant (min)
2166 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2167 || max == NULL_TREE
2168 || !is_gimple_min_invariant (max)
2169 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2171 set_value_range_to_varying (vr);
2172 return;
2175 /* We punt if:
2176 1) [-INF, +INF]
2177 2) [-INF, +-INF(OVF)]
2178 3) [+-INF(OVF), +INF]
2179 4) [+-INF(OVF), +-INF(OVF)]
2180 We learn nothing when we have INF and INF(OVF) on both sides.
2181 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2182 overflow. */
2183 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2184 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2186 set_value_range_to_varying (vr);
2187 return;
2190 cmp = compare_values (min, max);
2191 if (cmp == -2 || cmp == 1)
2193 /* If the new range has its limits swapped around (MIN > MAX),
2194 then the operation caused one of them to wrap around, mark
2195 the new range VARYING. */
2196 set_value_range_to_varying (vr);
2198 else
2199 set_value_range (vr, type, min, max, NULL);
2202 /* Extract range information from a binary operation CODE based on
2203 the ranges of each of its operands *VR0 and *VR1 with resulting
2204 type EXPR_TYPE. The resulting range is stored in *VR. */
2206 static void
2207 extract_range_from_binary_expr_1 (value_range *vr,
2208 enum tree_code code, tree expr_type,
2209 value_range *vr0_, value_range *vr1_)
2211 value_range vr0 = *vr0_, vr1 = *vr1_;
2212 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2213 enum value_range_type type;
2214 tree min = NULL_TREE, max = NULL_TREE;
2215 int cmp;
2217 if (!INTEGRAL_TYPE_P (expr_type)
2218 && !POINTER_TYPE_P (expr_type))
2220 set_value_range_to_varying (vr);
2221 return;
2224 /* Not all binary expressions can be applied to ranges in a
2225 meaningful way. Handle only arithmetic operations. */
2226 if (code != PLUS_EXPR
2227 && code != MINUS_EXPR
2228 && code != POINTER_PLUS_EXPR
2229 && code != MULT_EXPR
2230 && code != TRUNC_DIV_EXPR
2231 && code != FLOOR_DIV_EXPR
2232 && code != CEIL_DIV_EXPR
2233 && code != EXACT_DIV_EXPR
2234 && code != ROUND_DIV_EXPR
2235 && code != TRUNC_MOD_EXPR
2236 && code != RSHIFT_EXPR
2237 && code != LSHIFT_EXPR
2238 && code != MIN_EXPR
2239 && code != MAX_EXPR
2240 && code != BIT_AND_EXPR
2241 && code != BIT_IOR_EXPR
2242 && code != BIT_XOR_EXPR)
2244 set_value_range_to_varying (vr);
2245 return;
2248 /* If both ranges are UNDEFINED, so is the result. */
2249 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2251 set_value_range_to_undefined (vr);
2252 return;
2254 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2255 code. At some point we may want to special-case operations that
2256 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2257 operand. */
2258 else if (vr0.type == VR_UNDEFINED)
2259 set_value_range_to_varying (&vr0);
2260 else if (vr1.type == VR_UNDEFINED)
2261 set_value_range_to_varying (&vr1);
2263 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2264 and express ~[] op X as ([]' op X) U ([]'' op X). */
2265 if (vr0.type == VR_ANTI_RANGE
2266 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2268 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2269 if (vrtem1.type != VR_UNDEFINED)
2271 value_range vrres = VR_INITIALIZER;
2272 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2273 &vrtem1, vr1_);
2274 vrp_meet (vr, &vrres);
2276 return;
2278 /* Likewise for X op ~[]. */
2279 if (vr1.type == VR_ANTI_RANGE
2280 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2282 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2283 if (vrtem1.type != VR_UNDEFINED)
2285 value_range vrres = VR_INITIALIZER;
2286 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2287 vr0_, &vrtem1);
2288 vrp_meet (vr, &vrres);
2290 return;
2293 /* The type of the resulting value range defaults to VR0.TYPE. */
2294 type = vr0.type;
2296 /* Refuse to operate on VARYING ranges, ranges of different kinds
2297 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2298 because we may be able to derive a useful range even if one of
2299 the operands is VR_VARYING or symbolic range. Similarly for
2300 divisions, MIN/MAX and PLUS/MINUS.
2302 TODO, we may be able to derive anti-ranges in some cases. */
2303 if (code != BIT_AND_EXPR
2304 && code != BIT_IOR_EXPR
2305 && code != TRUNC_DIV_EXPR
2306 && code != FLOOR_DIV_EXPR
2307 && code != CEIL_DIV_EXPR
2308 && code != EXACT_DIV_EXPR
2309 && code != ROUND_DIV_EXPR
2310 && code != TRUNC_MOD_EXPR
2311 && code != MIN_EXPR
2312 && code != MAX_EXPR
2313 && code != PLUS_EXPR
2314 && code != MINUS_EXPR
2315 && code != RSHIFT_EXPR
2316 && (vr0.type == VR_VARYING
2317 || vr1.type == VR_VARYING
2318 || vr0.type != vr1.type
2319 || symbolic_range_p (&vr0)
2320 || symbolic_range_p (&vr1)))
2322 set_value_range_to_varying (vr);
2323 return;
2326 /* Now evaluate the expression to determine the new range. */
2327 if (POINTER_TYPE_P (expr_type))
2329 if (code == MIN_EXPR || code == MAX_EXPR)
2331 /* For MIN/MAX expressions with pointers, we only care about
2332 nullness, if both are non null, then the result is nonnull.
2333 If both are null, then the result is null. Otherwise they
2334 are varying. */
2335 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2336 set_value_range_to_nonnull (vr, expr_type);
2337 else if (range_is_null (&vr0) && range_is_null (&vr1))
2338 set_value_range_to_null (vr, expr_type);
2339 else
2340 set_value_range_to_varying (vr);
2342 else if (code == POINTER_PLUS_EXPR)
2344 /* For pointer types, we are really only interested in asserting
2345 whether the expression evaluates to non-NULL. */
2346 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2347 set_value_range_to_nonnull (vr, expr_type);
2348 else if (range_is_null (&vr0) && range_is_null (&vr1))
2349 set_value_range_to_null (vr, expr_type);
2350 else
2351 set_value_range_to_varying (vr);
2353 else if (code == BIT_AND_EXPR)
2355 /* For pointer types, we are really only interested in asserting
2356 whether the expression evaluates to non-NULL. */
2357 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2358 set_value_range_to_nonnull (vr, expr_type);
2359 else if (range_is_null (&vr0) || range_is_null (&vr1))
2360 set_value_range_to_null (vr, expr_type);
2361 else
2362 set_value_range_to_varying (vr);
2364 else
2365 set_value_range_to_varying (vr);
2367 return;
2370 /* For integer ranges, apply the operation to each end of the
2371 range and see what we end up with. */
2372 if (code == PLUS_EXPR || code == MINUS_EXPR)
2374 const bool minus_p = (code == MINUS_EXPR);
2375 tree min_op0 = vr0.min;
2376 tree min_op1 = minus_p ? vr1.max : vr1.min;
2377 tree max_op0 = vr0.max;
2378 tree max_op1 = minus_p ? vr1.min : vr1.max;
2379 tree sym_min_op0 = NULL_TREE;
2380 tree sym_min_op1 = NULL_TREE;
2381 tree sym_max_op0 = NULL_TREE;
2382 tree sym_max_op1 = NULL_TREE;
2383 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2385 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2386 single-symbolic ranges, try to compute the precise resulting range,
2387 but only if we know that this resulting range will also be constant
2388 or single-symbolic. */
2389 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2390 && (TREE_CODE (min_op0) == INTEGER_CST
2391 || (sym_min_op0
2392 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2393 && (TREE_CODE (min_op1) == INTEGER_CST
2394 || (sym_min_op1
2395 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2396 && (!(sym_min_op0 && sym_min_op1)
2397 || (sym_min_op0 == sym_min_op1
2398 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2399 && (TREE_CODE (max_op0) == INTEGER_CST
2400 || (sym_max_op0
2401 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2402 && (TREE_CODE (max_op1) == INTEGER_CST
2403 || (sym_max_op1
2404 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2405 && (!(sym_max_op0 && sym_max_op1)
2406 || (sym_max_op0 == sym_max_op1
2407 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2409 const signop sgn = TYPE_SIGN (expr_type);
2410 const unsigned int prec = TYPE_PRECISION (expr_type);
2411 wide_int type_min, type_max, wmin, wmax;
2412 int min_ovf = 0;
2413 int max_ovf = 0;
2415 /* Get the lower and upper bounds of the type. */
2416 if (TYPE_OVERFLOW_WRAPS (expr_type))
2418 type_min = wi::min_value (prec, sgn);
2419 type_max = wi::max_value (prec, sgn);
2421 else
2423 type_min = vrp_val_min (expr_type);
2424 type_max = vrp_val_max (expr_type);
2427 /* Combine the lower bounds, if any. */
2428 if (min_op0 && min_op1)
2430 if (minus_p)
2432 wmin = wi::sub (min_op0, min_op1);
2434 /* Check for overflow. */
2435 if (wi::cmp (0, min_op1, sgn)
2436 != wi::cmp (wmin, min_op0, sgn))
2437 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2439 else
2441 wmin = wi::add (min_op0, min_op1);
2443 /* Check for overflow. */
2444 if (wi::cmp (min_op1, 0, sgn)
2445 != wi::cmp (wmin, min_op0, sgn))
2446 min_ovf = wi::cmp (min_op0, wmin, sgn);
2449 else if (min_op0)
2450 wmin = min_op0;
2451 else if (min_op1)
2452 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2453 else
2454 wmin = wi::shwi (0, prec);
2456 /* Combine the upper bounds, if any. */
2457 if (max_op0 && max_op1)
2459 if (minus_p)
2461 wmax = wi::sub (max_op0, max_op1);
2463 /* Check for overflow. */
2464 if (wi::cmp (0, max_op1, sgn)
2465 != wi::cmp (wmax, max_op0, sgn))
2466 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2468 else
2470 wmax = wi::add (max_op0, max_op1);
2472 if (wi::cmp (max_op1, 0, sgn)
2473 != wi::cmp (wmax, max_op0, sgn))
2474 max_ovf = wi::cmp (max_op0, wmax, sgn);
2477 else if (max_op0)
2478 wmax = max_op0;
2479 else if (max_op1)
2480 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2481 else
2482 wmax = wi::shwi (0, prec);
2484 /* Check for type overflow. */
2485 if (min_ovf == 0)
2487 if (wi::cmp (wmin, type_min, sgn) == -1)
2488 min_ovf = -1;
2489 else if (wi::cmp (wmin, type_max, sgn) == 1)
2490 min_ovf = 1;
2492 if (max_ovf == 0)
2494 if (wi::cmp (wmax, type_min, sgn) == -1)
2495 max_ovf = -1;
2496 else if (wi::cmp (wmax, type_max, sgn) == 1)
2497 max_ovf = 1;
2500 /* If we have overflow for the constant part and the resulting
2501 range will be symbolic, drop to VR_VARYING. */
2502 if ((min_ovf && sym_min_op0 != sym_min_op1)
2503 || (max_ovf && sym_max_op0 != sym_max_op1))
2505 set_value_range_to_varying (vr);
2506 return;
2509 if (TYPE_OVERFLOW_WRAPS (expr_type))
2511 /* If overflow wraps, truncate the values and adjust the
2512 range kind and bounds appropriately. */
2513 wide_int tmin = wide_int::from (wmin, prec, sgn);
2514 wide_int tmax = wide_int::from (wmax, prec, sgn);
2515 if (min_ovf == max_ovf)
2517 /* No overflow or both overflow or underflow. The
2518 range kind stays VR_RANGE. */
2519 min = wide_int_to_tree (expr_type, tmin);
2520 max = wide_int_to_tree (expr_type, tmax);
2522 else if (min_ovf == -1 && max_ovf == 1)
2524 /* Underflow and overflow, drop to VR_VARYING. */
2525 set_value_range_to_varying (vr);
2526 return;
2528 else
2530 /* Min underflow or max overflow. The range kind
2531 changes to VR_ANTI_RANGE. */
2532 bool covers = false;
2533 wide_int tem = tmin;
2534 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2535 || (max_ovf == 1 && min_ovf == 0));
2536 type = VR_ANTI_RANGE;
2537 tmin = tmax + 1;
2538 if (wi::cmp (tmin, tmax, sgn) < 0)
2539 covers = true;
2540 tmax = tem - 1;
2541 if (wi::cmp (tmax, tem, sgn) > 0)
2542 covers = true;
2543 /* If the anti-range would cover nothing, drop to varying.
2544 Likewise if the anti-range bounds are outside of the
2545 types values. */
2546 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2548 set_value_range_to_varying (vr);
2549 return;
2551 min = wide_int_to_tree (expr_type, tmin);
2552 max = wide_int_to_tree (expr_type, tmax);
2555 else
2557 /* If overflow does not wrap, saturate to the types min/max
2558 value. */
2559 if (min_ovf == -1)
2561 if (needs_overflow_infinity (expr_type)
2562 && supports_overflow_infinity (expr_type))
2563 min = negative_overflow_infinity (expr_type);
2564 else
2565 min = wide_int_to_tree (expr_type, type_min);
2567 else if (min_ovf == 1)
2569 if (needs_overflow_infinity (expr_type)
2570 && supports_overflow_infinity (expr_type))
2571 min = positive_overflow_infinity (expr_type);
2572 else
2573 min = wide_int_to_tree (expr_type, type_max);
2575 else
2576 min = wide_int_to_tree (expr_type, wmin);
2578 if (max_ovf == -1)
2580 if (needs_overflow_infinity (expr_type)
2581 && supports_overflow_infinity (expr_type))
2582 max = negative_overflow_infinity (expr_type);
2583 else
2584 max = wide_int_to_tree (expr_type, type_min);
2586 else if (max_ovf == 1)
2588 if (needs_overflow_infinity (expr_type)
2589 && supports_overflow_infinity (expr_type))
2590 max = positive_overflow_infinity (expr_type);
2591 else
2592 max = wide_int_to_tree (expr_type, type_max);
2594 else
2595 max = wide_int_to_tree (expr_type, wmax);
2598 if (needs_overflow_infinity (expr_type)
2599 && supports_overflow_infinity (expr_type))
2601 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2602 || (min_op1
2603 && (minus_p
2604 ? is_positive_overflow_infinity (min_op1)
2605 : is_negative_overflow_infinity (min_op1))))
2606 min = negative_overflow_infinity (expr_type);
2607 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2608 || (max_op1
2609 && (minus_p
2610 ? is_negative_overflow_infinity (max_op1)
2611 : is_positive_overflow_infinity (max_op1))))
2612 max = positive_overflow_infinity (expr_type);
2615 /* If the result lower bound is constant, we're done;
2616 otherwise, build the symbolic lower bound. */
2617 if (sym_min_op0 == sym_min_op1)
2619 else if (sym_min_op0)
2620 min = build_symbolic_expr (expr_type, sym_min_op0,
2621 neg_min_op0, min);
2622 else if (sym_min_op1)
2623 min = build_symbolic_expr (expr_type, sym_min_op1,
2624 neg_min_op1 ^ minus_p, min);
2626 /* Likewise for the upper bound. */
2627 if (sym_max_op0 == sym_max_op1)
2629 else if (sym_max_op0)
2630 max = build_symbolic_expr (expr_type, sym_max_op0,
2631 neg_max_op0, max);
2632 else if (sym_max_op1)
2633 max = build_symbolic_expr (expr_type, sym_max_op1,
2634 neg_max_op1 ^ minus_p, max);
2636 else
2638 /* For other cases, for example if we have a PLUS_EXPR with two
2639 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2640 to compute a precise range for such a case.
2641 ??? General even mixed range kind operations can be expressed
2642 by for example transforming ~[3, 5] + [1, 2] to range-only
2643 operations and a union primitive:
2644 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2645 [-INF+1, 4] U [6, +INF(OVF)]
2646 though usually the union is not exactly representable with
2647 a single range or anti-range as the above is
2648 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2649 but one could use a scheme similar to equivalences for this. */
2650 set_value_range_to_varying (vr);
2651 return;
2654 else if (code == MIN_EXPR
2655 || code == MAX_EXPR)
2657 if (vr0.type == VR_RANGE
2658 && !symbolic_range_p (&vr0))
2660 type = VR_RANGE;
2661 if (vr1.type == VR_RANGE
2662 && !symbolic_range_p (&vr1))
2664 /* For operations that make the resulting range directly
2665 proportional to the original ranges, apply the operation to
2666 the same end of each range. */
2667 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2668 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2670 else if (code == MIN_EXPR)
2672 min = vrp_val_min (expr_type);
2673 max = vr0.max;
2675 else if (code == MAX_EXPR)
2677 min = vr0.min;
2678 max = vrp_val_max (expr_type);
2681 else if (vr1.type == VR_RANGE
2682 && !symbolic_range_p (&vr1))
2684 type = VR_RANGE;
2685 if (code == MIN_EXPR)
2687 min = vrp_val_min (expr_type);
2688 max = vr1.max;
2690 else if (code == MAX_EXPR)
2692 min = vr1.min;
2693 max = vrp_val_max (expr_type);
2696 else
2698 set_value_range_to_varying (vr);
2699 return;
2702 else if (code == MULT_EXPR)
2704 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2705 drop to varying. This test requires 2*prec bits if both
2706 operands are signed and 2*prec + 2 bits if either is not. */
2708 signop sign = TYPE_SIGN (expr_type);
2709 unsigned int prec = TYPE_PRECISION (expr_type);
2711 if (range_int_cst_p (&vr0)
2712 && range_int_cst_p (&vr1)
2713 && TYPE_OVERFLOW_WRAPS (expr_type))
2715 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2716 typedef generic_wide_int
2717 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2718 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2719 vrp_int size = sizem1 + 1;
2721 /* Extend the values using the sign of the result to PREC2.
2722 From here on out, everthing is just signed math no matter
2723 what the input types were. */
2724 vrp_int min0 = vrp_int_cst (vr0.min);
2725 vrp_int max0 = vrp_int_cst (vr0.max);
2726 vrp_int min1 = vrp_int_cst (vr1.min);
2727 vrp_int max1 = vrp_int_cst (vr1.max);
2728 /* Canonicalize the intervals. */
2729 if (sign == UNSIGNED)
2731 if (wi::ltu_p (size, min0 + max0))
2733 min0 -= size;
2734 max0 -= size;
2737 if (wi::ltu_p (size, min1 + max1))
2739 min1 -= size;
2740 max1 -= size;
2744 vrp_int prod0 = min0 * min1;
2745 vrp_int prod1 = min0 * max1;
2746 vrp_int prod2 = max0 * min1;
2747 vrp_int prod3 = max0 * max1;
2749 /* Sort the 4 products so that min is in prod0 and max is in
2750 prod3. */
2751 /* min0min1 > max0max1 */
2752 if (wi::gts_p (prod0, prod3))
2753 std::swap (prod0, prod3);
2755 /* min0max1 > max0min1 */
2756 if (wi::gts_p (prod1, prod2))
2757 std::swap (prod1, prod2);
2759 if (wi::gts_p (prod0, prod1))
2760 std::swap (prod0, prod1);
2762 if (wi::gts_p (prod2, prod3))
2763 std::swap (prod2, prod3);
2765 /* diff = max - min. */
2766 prod2 = prod3 - prod0;
2767 if (wi::geu_p (prod2, sizem1))
2769 /* the range covers all values. */
2770 set_value_range_to_varying (vr);
2771 return;
2774 /* The following should handle the wrapping and selecting
2775 VR_ANTI_RANGE for us. */
2776 min = wide_int_to_tree (expr_type, prod0);
2777 max = wide_int_to_tree (expr_type, prod3);
2778 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2779 return;
2782 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2783 drop to VR_VARYING. It would take more effort to compute a
2784 precise range for such a case. For example, if we have
2785 op0 == 65536 and op1 == 65536 with their ranges both being
2786 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2787 we cannot claim that the product is in ~[0,0]. Note that we
2788 are guaranteed to have vr0.type == vr1.type at this
2789 point. */
2790 if (vr0.type == VR_ANTI_RANGE
2791 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2793 set_value_range_to_varying (vr);
2794 return;
2797 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2798 return;
2800 else if (code == RSHIFT_EXPR
2801 || code == LSHIFT_EXPR)
2803 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2804 then drop to VR_VARYING. Outside of this range we get undefined
2805 behavior from the shift operation. We cannot even trust
2806 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2807 shifts, and the operation at the tree level may be widened. */
2808 if (range_int_cst_p (&vr1)
2809 && compare_tree_int (vr1.min, 0) >= 0
2810 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2812 if (code == RSHIFT_EXPR)
2814 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2815 useful ranges just from the shift count. E.g.
2816 x >> 63 for signed 64-bit x is always [-1, 0]. */
2817 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2819 vr0.type = type = VR_RANGE;
2820 vr0.min = vrp_val_min (expr_type);
2821 vr0.max = vrp_val_max (expr_type);
2823 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2824 return;
2826 /* We can map lshifts by constants to MULT_EXPR handling. */
2827 else if (code == LSHIFT_EXPR
2828 && range_int_cst_singleton_p (&vr1))
2830 bool saved_flag_wrapv;
2831 value_range vr1p = VR_INITIALIZER;
2832 vr1p.type = VR_RANGE;
2833 vr1p.min = (wide_int_to_tree
2834 (expr_type,
2835 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2836 TYPE_PRECISION (expr_type))));
2837 vr1p.max = vr1p.min;
2838 /* We have to use a wrapping multiply though as signed overflow
2839 on lshifts is implementation defined in C89. */
2840 saved_flag_wrapv = flag_wrapv;
2841 flag_wrapv = 1;
2842 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2843 &vr0, &vr1p);
2844 flag_wrapv = saved_flag_wrapv;
2845 return;
2847 else if (code == LSHIFT_EXPR
2848 && range_int_cst_p (&vr0))
2850 int prec = TYPE_PRECISION (expr_type);
2851 int overflow_pos = prec;
2852 int bound_shift;
2853 wide_int low_bound, high_bound;
2854 bool uns = TYPE_UNSIGNED (expr_type);
2855 bool in_bounds = false;
2857 if (!uns)
2858 overflow_pos -= 1;
2860 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2861 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2862 overflow. However, for that to happen, vr1.max needs to be
2863 zero, which means vr1 is a singleton range of zero, which
2864 means it should be handled by the previous LSHIFT_EXPR
2865 if-clause. */
2866 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2867 wide_int complement = ~(bound - 1);
2869 if (uns)
2871 low_bound = bound;
2872 high_bound = complement;
2873 if (wi::ltu_p (vr0.max, low_bound))
2875 /* [5, 6] << [1, 2] == [10, 24]. */
2876 /* We're shifting out only zeroes, the value increases
2877 monotonically. */
2878 in_bounds = true;
2880 else if (wi::ltu_p (high_bound, vr0.min))
2882 /* [0xffffff00, 0xffffffff] << [1, 2]
2883 == [0xfffffc00, 0xfffffffe]. */
2884 /* We're shifting out only ones, the value decreases
2885 monotonically. */
2886 in_bounds = true;
2889 else
2891 /* [-1, 1] << [1, 2] == [-4, 4]. */
2892 low_bound = complement;
2893 high_bound = bound;
2894 if (wi::lts_p (vr0.max, high_bound)
2895 && wi::lts_p (low_bound, vr0.min))
2897 /* For non-negative numbers, we're shifting out only
2898 zeroes, the value increases monotonically.
2899 For negative numbers, we're shifting out only ones, the
2900 value decreases monotomically. */
2901 in_bounds = true;
2905 if (in_bounds)
2907 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2908 return;
2912 set_value_range_to_varying (vr);
2913 return;
2915 else if (code == TRUNC_DIV_EXPR
2916 || code == FLOOR_DIV_EXPR
2917 || code == CEIL_DIV_EXPR
2918 || code == EXACT_DIV_EXPR
2919 || code == ROUND_DIV_EXPR)
2921 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2923 /* For division, if op1 has VR_RANGE but op0 does not, something
2924 can be deduced just from that range. Say [min, max] / [4, max]
2925 gives [min / 4, max / 4] range. */
2926 if (vr1.type == VR_RANGE
2927 && !symbolic_range_p (&vr1)
2928 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2930 vr0.type = type = VR_RANGE;
2931 vr0.min = vrp_val_min (expr_type);
2932 vr0.max = vrp_val_max (expr_type);
2934 else
2936 set_value_range_to_varying (vr);
2937 return;
2941 /* For divisions, if flag_non_call_exceptions is true, we must
2942 not eliminate a division by zero. */
2943 if (cfun->can_throw_non_call_exceptions
2944 && (vr1.type != VR_RANGE
2945 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2947 set_value_range_to_varying (vr);
2948 return;
2951 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2952 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2953 include 0. */
2954 if (vr0.type == VR_RANGE
2955 && (vr1.type != VR_RANGE
2956 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2958 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2959 int cmp;
2961 min = NULL_TREE;
2962 max = NULL_TREE;
2963 if (TYPE_UNSIGNED (expr_type)
2964 || value_range_nonnegative_p (&vr1))
2966 /* For unsigned division or when divisor is known
2967 to be non-negative, the range has to cover
2968 all numbers from 0 to max for positive max
2969 and all numbers from min to 0 for negative min. */
2970 cmp = compare_values (vr0.max, zero);
2971 if (cmp == -1)
2973 /* When vr0.max < 0, vr1.min != 0 and value
2974 ranges for dividend and divisor are available. */
2975 if (vr1.type == VR_RANGE
2976 && !symbolic_range_p (&vr0)
2977 && !symbolic_range_p (&vr1)
2978 && compare_values (vr1.min, zero) != 0)
2979 max = int_const_binop (code, vr0.max, vr1.min);
2980 else
2981 max = zero;
2983 else if (cmp == 0 || cmp == 1)
2984 max = vr0.max;
2985 else
2986 type = VR_VARYING;
2987 cmp = compare_values (vr0.min, zero);
2988 if (cmp == 1)
2990 /* For unsigned division when value ranges for dividend
2991 and divisor are available. */
2992 if (vr1.type == VR_RANGE
2993 && !symbolic_range_p (&vr0)
2994 && !symbolic_range_p (&vr1))
2995 min = int_const_binop (code, vr0.min, vr1.max);
2996 else
2997 min = zero;
2999 else if (cmp == 0 || cmp == -1)
3000 min = vr0.min;
3001 else
3002 type = VR_VARYING;
3004 else
3006 /* Otherwise the range is -max .. max or min .. -min
3007 depending on which bound is bigger in absolute value,
3008 as the division can change the sign. */
3009 abs_extent_range (vr, vr0.min, vr0.max);
3010 return;
3012 if (type == VR_VARYING)
3014 set_value_range_to_varying (vr);
3015 return;
3018 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
3020 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3021 return;
3024 else if (code == TRUNC_MOD_EXPR)
3026 if (range_is_null (&vr1))
3028 set_value_range_to_undefined (vr);
3029 return;
3031 /* ABS (A % B) < ABS (B) and either
3032 0 <= A % B <= A or A <= A % B <= 0. */
3033 type = VR_RANGE;
3034 signop sgn = TYPE_SIGN (expr_type);
3035 unsigned int prec = TYPE_PRECISION (expr_type);
3036 wide_int wmin, wmax, tmp;
3037 wide_int zero = wi::zero (prec);
3038 wide_int one = wi::one (prec);
3039 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3041 wmax = wi::sub (vr1.max, one);
3042 if (sgn == SIGNED)
3044 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3045 wmax = wi::smax (wmax, tmp);
3048 else
3050 wmax = wi::max_value (prec, sgn);
3051 /* X % INT_MIN may be INT_MAX. */
3052 if (sgn == UNSIGNED)
3053 wmax = wmax - one;
3056 if (sgn == UNSIGNED)
3057 wmin = zero;
3058 else
3060 wmin = -wmax;
3061 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3063 tmp = vr0.min;
3064 if (wi::gts_p (tmp, zero))
3065 tmp = zero;
3066 wmin = wi::smax (wmin, tmp);
3070 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3072 tmp = vr0.max;
3073 if (sgn == SIGNED && wi::neg_p (tmp))
3074 tmp = zero;
3075 wmax = wi::min (wmax, tmp, sgn);
3078 min = wide_int_to_tree (expr_type, wmin);
3079 max = wide_int_to_tree (expr_type, wmax);
3081 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3083 bool int_cst_range0, int_cst_range1;
3084 wide_int may_be_nonzero0, may_be_nonzero1;
3085 wide_int must_be_nonzero0, must_be_nonzero1;
3087 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3088 &may_be_nonzero0,
3089 &must_be_nonzero0);
3090 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3091 &may_be_nonzero1,
3092 &must_be_nonzero1);
3094 type = VR_RANGE;
3095 if (code == BIT_AND_EXPR)
3097 min = wide_int_to_tree (expr_type,
3098 must_be_nonzero0 & must_be_nonzero1);
3099 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3100 /* If both input ranges contain only negative values we can
3101 truncate the result range maximum to the minimum of the
3102 input range maxima. */
3103 if (int_cst_range0 && int_cst_range1
3104 && tree_int_cst_sgn (vr0.max) < 0
3105 && tree_int_cst_sgn (vr1.max) < 0)
3107 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3108 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3110 /* If either input range contains only non-negative values
3111 we can truncate the result range maximum to the respective
3112 maximum of the input range. */
3113 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3114 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3115 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3116 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3117 max = wide_int_to_tree (expr_type, wmax);
3119 else if (code == BIT_IOR_EXPR)
3121 max = wide_int_to_tree (expr_type,
3122 may_be_nonzero0 | may_be_nonzero1);
3123 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3124 /* If the input ranges contain only positive values we can
3125 truncate the minimum of the result range to the maximum
3126 of the input range minima. */
3127 if (int_cst_range0 && int_cst_range1
3128 && tree_int_cst_sgn (vr0.min) >= 0
3129 && tree_int_cst_sgn (vr1.min) >= 0)
3131 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3132 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3134 /* If either input range contains only negative values
3135 we can truncate the minimum of the result range to the
3136 respective minimum range. */
3137 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3138 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3139 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3140 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3141 min = wide_int_to_tree (expr_type, wmin);
3143 else if (code == BIT_XOR_EXPR)
3145 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3146 | ~(may_be_nonzero0 | may_be_nonzero1));
3147 wide_int result_one_bits
3148 = (must_be_nonzero0.and_not (may_be_nonzero1)
3149 | must_be_nonzero1.and_not (may_be_nonzero0));
3150 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3151 min = wide_int_to_tree (expr_type, result_one_bits);
3152 /* If the range has all positive or all negative values the
3153 result is better than VARYING. */
3154 if (tree_int_cst_sgn (min) < 0
3155 || tree_int_cst_sgn (max) >= 0)
3157 else
3158 max = min = NULL_TREE;
3161 else
3162 gcc_unreachable ();
3164 /* If either MIN or MAX overflowed, then set the resulting range to
3165 VARYING. But we do accept an overflow infinity representation. */
3166 if (min == NULL_TREE
3167 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3168 || max == NULL_TREE
3169 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3171 set_value_range_to_varying (vr);
3172 return;
3175 /* We punt if:
3176 1) [-INF, +INF]
3177 2) [-INF, +-INF(OVF)]
3178 3) [+-INF(OVF), +INF]
3179 4) [+-INF(OVF), +-INF(OVF)]
3180 We learn nothing when we have INF and INF(OVF) on both sides.
3181 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3182 overflow. */
3183 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3184 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3186 set_value_range_to_varying (vr);
3187 return;
3190 cmp = compare_values (min, max);
3191 if (cmp == -2 || cmp == 1)
3193 /* If the new range has its limits swapped around (MIN > MAX),
3194 then the operation caused one of them to wrap around, mark
3195 the new range VARYING. */
3196 set_value_range_to_varying (vr);
3198 else
3199 set_value_range (vr, type, min, max, NULL);
3202 /* Extract range information from a binary expression OP0 CODE OP1 based on
3203 the ranges of each of its operands with resulting type EXPR_TYPE.
3204 The resulting range is stored in *VR. */
3206 static void
3207 extract_range_from_binary_expr (value_range *vr,
3208 enum tree_code code,
3209 tree expr_type, tree op0, tree op1)
3211 value_range vr0 = VR_INITIALIZER;
3212 value_range vr1 = VR_INITIALIZER;
3214 /* Get value ranges for each operand. For constant operands, create
3215 a new value range with the operand to simplify processing. */
3216 if (TREE_CODE (op0) == SSA_NAME)
3217 vr0 = *(get_value_range (op0));
3218 else if (is_gimple_min_invariant (op0))
3219 set_value_range_to_value (&vr0, op0, NULL);
3220 else
3221 set_value_range_to_varying (&vr0);
3223 if (TREE_CODE (op1) == SSA_NAME)
3224 vr1 = *(get_value_range (op1));
3225 else if (is_gimple_min_invariant (op1))
3226 set_value_range_to_value (&vr1, op1, NULL);
3227 else
3228 set_value_range_to_varying (&vr1);
3230 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3232 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3233 and based on the other operand, for example if it was deduced from a
3234 symbolic comparison. When a bound of the range of the first operand
3235 is invariant, we set the corresponding bound of the new range to INF
3236 in order to avoid recursing on the range of the second operand. */
3237 if (vr->type == VR_VARYING
3238 && (code == PLUS_EXPR || code == MINUS_EXPR)
3239 && TREE_CODE (op1) == SSA_NAME
3240 && vr0.type == VR_RANGE
3241 && symbolic_range_based_on_p (&vr0, op1))
3243 const bool minus_p = (code == MINUS_EXPR);
3244 value_range n_vr1 = VR_INITIALIZER;
3246 /* Try with VR0 and [-INF, OP1]. */
3247 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3248 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3250 /* Try with VR0 and [OP1, +INF]. */
3251 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3252 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3254 /* Try with VR0 and [OP1, OP1]. */
3255 else
3256 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3258 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3261 if (vr->type == VR_VARYING
3262 && (code == PLUS_EXPR || code == MINUS_EXPR)
3263 && TREE_CODE (op0) == SSA_NAME
3264 && vr1.type == VR_RANGE
3265 && symbolic_range_based_on_p (&vr1, op0))
3267 const bool minus_p = (code == MINUS_EXPR);
3268 value_range n_vr0 = VR_INITIALIZER;
3270 /* Try with [-INF, OP0] and VR1. */
3271 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3272 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3274 /* Try with [OP0, +INF] and VR1. */
3275 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3276 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3278 /* Try with [OP0, OP0] and VR1. */
3279 else
3280 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3282 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3286 /* Extract range information from a unary operation CODE based on
3287 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3288 The resulting range is stored in *VR. */
3290 static void
3291 extract_range_from_unary_expr_1 (value_range *vr,
3292 enum tree_code code, tree type,
3293 value_range *vr0_, tree op0_type)
3295 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3297 /* VRP only operates on integral and pointer types. */
3298 if (!(INTEGRAL_TYPE_P (op0_type)
3299 || POINTER_TYPE_P (op0_type))
3300 || !(INTEGRAL_TYPE_P (type)
3301 || POINTER_TYPE_P (type)))
3303 set_value_range_to_varying (vr);
3304 return;
3307 /* If VR0 is UNDEFINED, so is the result. */
3308 if (vr0.type == VR_UNDEFINED)
3310 set_value_range_to_undefined (vr);
3311 return;
3314 /* Handle operations that we express in terms of others. */
3315 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3317 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3318 copy_value_range (vr, &vr0);
3319 return;
3321 else if (code == NEGATE_EXPR)
3323 /* -X is simply 0 - X, so re-use existing code that also handles
3324 anti-ranges fine. */
3325 value_range zero = VR_INITIALIZER;
3326 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3327 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3328 return;
3330 else if (code == BIT_NOT_EXPR)
3332 /* ~X is simply -1 - X, so re-use existing code that also handles
3333 anti-ranges fine. */
3334 value_range minusone = VR_INITIALIZER;
3335 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3336 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3337 type, &minusone, &vr0);
3338 return;
3341 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3342 and express op ~[] as (op []') U (op []''). */
3343 if (vr0.type == VR_ANTI_RANGE
3344 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3346 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3347 if (vrtem1.type != VR_UNDEFINED)
3349 value_range vrres = VR_INITIALIZER;
3350 extract_range_from_unary_expr_1 (&vrres, code, type,
3351 &vrtem1, op0_type);
3352 vrp_meet (vr, &vrres);
3354 return;
3357 if (CONVERT_EXPR_CODE_P (code))
3359 tree inner_type = op0_type;
3360 tree outer_type = type;
3362 /* If the expression evaluates to a pointer, we are only interested in
3363 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3364 if (POINTER_TYPE_P (type))
3366 if (range_is_nonnull (&vr0))
3367 set_value_range_to_nonnull (vr, type);
3368 else if (range_is_null (&vr0))
3369 set_value_range_to_null (vr, type);
3370 else
3371 set_value_range_to_varying (vr);
3372 return;
3375 /* If VR0 is varying and we increase the type precision, assume
3376 a full range for the following transformation. */
3377 if (vr0.type == VR_VARYING
3378 && INTEGRAL_TYPE_P (inner_type)
3379 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3381 vr0.type = VR_RANGE;
3382 vr0.min = TYPE_MIN_VALUE (inner_type);
3383 vr0.max = TYPE_MAX_VALUE (inner_type);
3386 /* If VR0 is a constant range or anti-range and the conversion is
3387 not truncating we can convert the min and max values and
3388 canonicalize the resulting range. Otherwise we can do the
3389 conversion if the size of the range is less than what the
3390 precision of the target type can represent and the range is
3391 not an anti-range. */
3392 if ((vr0.type == VR_RANGE
3393 || vr0.type == VR_ANTI_RANGE)
3394 && TREE_CODE (vr0.min) == INTEGER_CST
3395 && TREE_CODE (vr0.max) == INTEGER_CST
3396 && (!is_overflow_infinity (vr0.min)
3397 || (vr0.type == VR_RANGE
3398 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3399 && needs_overflow_infinity (outer_type)
3400 && supports_overflow_infinity (outer_type)))
3401 && (!is_overflow_infinity (vr0.max)
3402 || (vr0.type == VR_RANGE
3403 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3404 && needs_overflow_infinity (outer_type)
3405 && supports_overflow_infinity (outer_type)))
3406 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3407 || (vr0.type == VR_RANGE
3408 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3409 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3410 size_int (TYPE_PRECISION (outer_type)))))))
3412 tree new_min, new_max;
3413 if (is_overflow_infinity (vr0.min))
3414 new_min = negative_overflow_infinity (outer_type);
3415 else
3416 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3417 0, false);
3418 if (is_overflow_infinity (vr0.max))
3419 new_max = positive_overflow_infinity (outer_type);
3420 else
3421 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3422 0, false);
3423 set_and_canonicalize_value_range (vr, vr0.type,
3424 new_min, new_max, NULL);
3425 return;
3428 set_value_range_to_varying (vr);
3429 return;
3431 else if (code == ABS_EXPR)
3433 tree min, max;
3434 int cmp;
3436 /* Pass through vr0 in the easy cases. */
3437 if (TYPE_UNSIGNED (type)
3438 || value_range_nonnegative_p (&vr0))
3440 copy_value_range (vr, &vr0);
3441 return;
3444 /* For the remaining varying or symbolic ranges we can't do anything
3445 useful. */
3446 if (vr0.type == VR_VARYING
3447 || symbolic_range_p (&vr0))
3449 set_value_range_to_varying (vr);
3450 return;
3453 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3454 useful range. */
3455 if (!TYPE_OVERFLOW_UNDEFINED (type)
3456 && ((vr0.type == VR_RANGE
3457 && vrp_val_is_min (vr0.min))
3458 || (vr0.type == VR_ANTI_RANGE
3459 && !vrp_val_is_min (vr0.min))))
3461 set_value_range_to_varying (vr);
3462 return;
3465 /* ABS_EXPR may flip the range around, if the original range
3466 included negative values. */
3467 if (is_overflow_infinity (vr0.min))
3468 min = positive_overflow_infinity (type);
3469 else if (!vrp_val_is_min (vr0.min))
3470 min = fold_unary_to_constant (code, type, vr0.min);
3471 else if (!needs_overflow_infinity (type))
3472 min = TYPE_MAX_VALUE (type);
3473 else if (supports_overflow_infinity (type))
3474 min = positive_overflow_infinity (type);
3475 else
3477 set_value_range_to_varying (vr);
3478 return;
3481 if (is_overflow_infinity (vr0.max))
3482 max = positive_overflow_infinity (type);
3483 else if (!vrp_val_is_min (vr0.max))
3484 max = fold_unary_to_constant (code, type, vr0.max);
3485 else if (!needs_overflow_infinity (type))
3486 max = TYPE_MAX_VALUE (type);
3487 else if (supports_overflow_infinity (type)
3488 /* We shouldn't generate [+INF, +INF] as set_value_range
3489 doesn't like this and ICEs. */
3490 && !is_positive_overflow_infinity (min))
3491 max = positive_overflow_infinity (type);
3492 else
3494 set_value_range_to_varying (vr);
3495 return;
3498 cmp = compare_values (min, max);
3500 /* If a VR_ANTI_RANGEs contains zero, then we have
3501 ~[-INF, min(MIN, MAX)]. */
3502 if (vr0.type == VR_ANTI_RANGE)
3504 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3506 /* Take the lower of the two values. */
3507 if (cmp != 1)
3508 max = min;
3510 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3511 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3512 flag_wrapv is set and the original anti-range doesn't include
3513 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3514 if (TYPE_OVERFLOW_WRAPS (type))
3516 tree type_min_value = TYPE_MIN_VALUE (type);
3518 min = (vr0.min != type_min_value
3519 ? int_const_binop (PLUS_EXPR, type_min_value,
3520 build_int_cst (TREE_TYPE (type_min_value), 1))
3521 : type_min_value);
3523 else
3525 if (overflow_infinity_range_p (&vr0))
3526 min = negative_overflow_infinity (type);
3527 else
3528 min = TYPE_MIN_VALUE (type);
3531 else
3533 /* All else has failed, so create the range [0, INF], even for
3534 flag_wrapv since TYPE_MIN_VALUE is in the original
3535 anti-range. */
3536 vr0.type = VR_RANGE;
3537 min = build_int_cst (type, 0);
3538 if (needs_overflow_infinity (type))
3540 if (supports_overflow_infinity (type))
3541 max = positive_overflow_infinity (type);
3542 else
3544 set_value_range_to_varying (vr);
3545 return;
3548 else
3549 max = TYPE_MAX_VALUE (type);
3553 /* If the range contains zero then we know that the minimum value in the
3554 range will be zero. */
3555 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3557 if (cmp == 1)
3558 max = min;
3559 min = build_int_cst (type, 0);
3561 else
3563 /* If the range was reversed, swap MIN and MAX. */
3564 if (cmp == 1)
3565 std::swap (min, max);
3568 cmp = compare_values (min, max);
3569 if (cmp == -2 || cmp == 1)
3571 /* If the new range has its limits swapped around (MIN > MAX),
3572 then the operation caused one of them to wrap around, mark
3573 the new range VARYING. */
3574 set_value_range_to_varying (vr);
3576 else
3577 set_value_range (vr, vr0.type, min, max, NULL);
3578 return;
3581 /* For unhandled operations fall back to varying. */
3582 set_value_range_to_varying (vr);
3583 return;
3587 /* Extract range information from a unary expression CODE OP0 based on
3588 the range of its operand with resulting type TYPE.
3589 The resulting range is stored in *VR. */
3591 static void
3592 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3593 tree type, tree op0)
3595 value_range vr0 = VR_INITIALIZER;
3597 /* Get value ranges for the operand. For constant operands, create
3598 a new value range with the operand to simplify processing. */
3599 if (TREE_CODE (op0) == SSA_NAME)
3600 vr0 = *(get_value_range (op0));
3601 else if (is_gimple_min_invariant (op0))
3602 set_value_range_to_value (&vr0, op0, NULL);
3603 else
3604 set_value_range_to_varying (&vr0);
3606 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3610 /* Extract range information from a conditional expression STMT based on
3611 the ranges of each of its operands and the expression code. */
3613 static void
3614 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3616 tree op0, op1;
3617 value_range vr0 = VR_INITIALIZER;
3618 value_range vr1 = VR_INITIALIZER;
3620 /* Get value ranges for each operand. For constant operands, create
3621 a new value range with the operand to simplify processing. */
3622 op0 = gimple_assign_rhs2 (stmt);
3623 if (TREE_CODE (op0) == SSA_NAME)
3624 vr0 = *(get_value_range (op0));
3625 else if (is_gimple_min_invariant (op0))
3626 set_value_range_to_value (&vr0, op0, NULL);
3627 else
3628 set_value_range_to_varying (&vr0);
3630 op1 = gimple_assign_rhs3 (stmt);
3631 if (TREE_CODE (op1) == SSA_NAME)
3632 vr1 = *(get_value_range (op1));
3633 else if (is_gimple_min_invariant (op1))
3634 set_value_range_to_value (&vr1, op1, NULL);
3635 else
3636 set_value_range_to_varying (&vr1);
3638 /* The resulting value range is the union of the operand ranges */
3639 copy_value_range (vr, &vr0);
3640 vrp_meet (vr, &vr1);
3644 /* Extract range information from a comparison expression EXPR based
3645 on the range of its operand and the expression code. */
3647 static void
3648 extract_range_from_comparison (value_range *vr, enum tree_code code,
3649 tree type, tree op0, tree op1)
3651 bool sop = false;
3652 tree val;
3654 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3655 NULL);
3657 /* A disadvantage of using a special infinity as an overflow
3658 representation is that we lose the ability to record overflow
3659 when we don't have an infinity. So we have to ignore a result
3660 which relies on overflow. */
3662 if (val && !is_overflow_infinity (val) && !sop)
3664 /* Since this expression was found on the RHS of an assignment,
3665 its type may be different from _Bool. Convert VAL to EXPR's
3666 type. */
3667 val = fold_convert (type, val);
3668 if (is_gimple_min_invariant (val))
3669 set_value_range_to_value (vr, val, vr->equiv);
3670 else
3671 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3673 else
3674 /* The result of a comparison is always true or false. */
3675 set_value_range_to_truthvalue (vr, type);
3678 /* Helper function for simplify_internal_call_using_ranges and
3679 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3680 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3681 always overflow. Set *OVF to true if it is known to always
3682 overflow. */
3684 static bool
3685 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3686 tree op0, tree op1, bool *ovf)
3688 value_range vr0 = VR_INITIALIZER;
3689 value_range vr1 = VR_INITIALIZER;
3690 if (TREE_CODE (op0) == SSA_NAME)
3691 vr0 = *get_value_range (op0);
3692 else if (TREE_CODE (op0) == INTEGER_CST)
3693 set_value_range_to_value (&vr0, op0, NULL);
3694 else
3695 set_value_range_to_varying (&vr0);
3697 if (TREE_CODE (op1) == SSA_NAME)
3698 vr1 = *get_value_range (op1);
3699 else if (TREE_CODE (op1) == INTEGER_CST)
3700 set_value_range_to_value (&vr1, op1, NULL);
3701 else
3702 set_value_range_to_varying (&vr1);
3704 if (!range_int_cst_p (&vr0)
3705 || TREE_OVERFLOW (vr0.min)
3706 || TREE_OVERFLOW (vr0.max))
3708 vr0.min = vrp_val_min (TREE_TYPE (op0));
3709 vr0.max = vrp_val_max (TREE_TYPE (op0));
3711 if (!range_int_cst_p (&vr1)
3712 || TREE_OVERFLOW (vr1.min)
3713 || TREE_OVERFLOW (vr1.max))
3715 vr1.min = vrp_val_min (TREE_TYPE (op1));
3716 vr1.max = vrp_val_max (TREE_TYPE (op1));
3718 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3719 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3720 if (arith_overflowed_p (subcode, type, vr0.max,
3721 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3722 return false;
3723 if (subcode == MULT_EXPR)
3725 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3726 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3727 return false;
3729 if (*ovf)
3731 /* So far we found that there is an overflow on the boundaries.
3732 That doesn't prove that there is an overflow even for all values
3733 in between the boundaries. For that compute widest_int range
3734 of the result and see if it doesn't overlap the range of
3735 type. */
3736 widest_int wmin, wmax;
3737 widest_int w[4];
3738 int i;
3739 w[0] = wi::to_widest (vr0.min);
3740 w[1] = wi::to_widest (vr0.max);
3741 w[2] = wi::to_widest (vr1.min);
3742 w[3] = wi::to_widest (vr1.max);
3743 for (i = 0; i < 4; i++)
3745 widest_int wt;
3746 switch (subcode)
3748 case PLUS_EXPR:
3749 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3750 break;
3751 case MINUS_EXPR:
3752 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3753 break;
3754 case MULT_EXPR:
3755 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3756 break;
3757 default:
3758 gcc_unreachable ();
3760 if (i == 0)
3762 wmin = wt;
3763 wmax = wt;
3765 else
3767 wmin = wi::smin (wmin, wt);
3768 wmax = wi::smax (wmax, wt);
3771 /* The result of op0 CODE op1 is known to be in range
3772 [wmin, wmax]. */
3773 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3774 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3775 /* If all values in [wmin, wmax] are smaller than
3776 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3777 the arithmetic operation will always overflow. */
3778 if (wi::lts_p (wmax, wtmin) || wi::gts_p (wmin, wtmax))
3779 return true;
3780 return false;
3782 return true;
3785 /* Try to derive a nonnegative or nonzero range out of STMT relying
3786 primarily on generic routines in fold in conjunction with range data.
3787 Store the result in *VR */
3789 static void
3790 extract_range_basic (value_range *vr, gimple *stmt)
3792 bool sop = false;
3793 tree type = gimple_expr_type (stmt);
3795 if (is_gimple_call (stmt))
3797 tree arg;
3798 int mini, maxi, zerov = 0, prec;
3799 enum tree_code subcode = ERROR_MARK;
3800 combined_fn cfn = gimple_call_combined_fn (stmt);
3802 switch (cfn)
3804 case CFN_BUILT_IN_CONSTANT_P:
3805 /* If the call is __builtin_constant_p and the argument is a
3806 function parameter resolve it to false. This avoids bogus
3807 array bound warnings.
3808 ??? We could do this as early as inlining is finished. */
3809 arg = gimple_call_arg (stmt, 0);
3810 if (TREE_CODE (arg) == SSA_NAME
3811 && SSA_NAME_IS_DEFAULT_DEF (arg)
3812 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3814 set_value_range_to_null (vr, type);
3815 return;
3817 break;
3818 /* Both __builtin_ffs* and __builtin_popcount return
3819 [0, prec]. */
3820 CASE_CFN_FFS:
3821 CASE_CFN_POPCOUNT:
3822 arg = gimple_call_arg (stmt, 0);
3823 prec = TYPE_PRECISION (TREE_TYPE (arg));
3824 mini = 0;
3825 maxi = prec;
3826 if (TREE_CODE (arg) == SSA_NAME)
3828 value_range *vr0 = get_value_range (arg);
3829 /* If arg is non-zero, then ffs or popcount
3830 are non-zero. */
3831 if (((vr0->type == VR_RANGE
3832 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3833 || (vr0->type == VR_ANTI_RANGE
3834 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3835 && !is_overflow_infinity (vr0->min)
3836 && !is_overflow_infinity (vr0->max))
3837 mini = 1;
3838 /* If some high bits are known to be zero,
3839 we can decrease the maximum. */
3840 if (vr0->type == VR_RANGE
3841 && TREE_CODE (vr0->max) == INTEGER_CST
3842 && !operand_less_p (vr0->min,
3843 build_zero_cst (TREE_TYPE (vr0->min)))
3844 && !is_overflow_infinity (vr0->max))
3845 maxi = tree_floor_log2 (vr0->max) + 1;
3847 goto bitop_builtin;
3848 /* __builtin_parity* returns [0, 1]. */
3849 CASE_CFN_PARITY:
3850 mini = 0;
3851 maxi = 1;
3852 goto bitop_builtin;
3853 /* __builtin_c[lt]z* return [0, prec-1], except for
3854 when the argument is 0, but that is undefined behavior.
3855 On many targets where the CLZ RTL or optab value is defined
3856 for 0 the value is prec, so include that in the range
3857 by default. */
3858 CASE_CFN_CLZ:
3859 arg = gimple_call_arg (stmt, 0);
3860 prec = TYPE_PRECISION (TREE_TYPE (arg));
3861 mini = 0;
3862 maxi = prec;
3863 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3864 != CODE_FOR_nothing
3865 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3866 zerov)
3867 /* Handle only the single common value. */
3868 && zerov != prec)
3869 /* Magic value to give up, unless vr0 proves
3870 arg is non-zero. */
3871 mini = -2;
3872 if (TREE_CODE (arg) == SSA_NAME)
3874 value_range *vr0 = get_value_range (arg);
3875 /* From clz of VR_RANGE minimum we can compute
3876 result maximum. */
3877 if (vr0->type == VR_RANGE
3878 && TREE_CODE (vr0->min) == INTEGER_CST
3879 && !is_overflow_infinity (vr0->min))
3881 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3882 if (maxi != prec)
3883 mini = 0;
3885 else if (vr0->type == VR_ANTI_RANGE
3886 && integer_zerop (vr0->min)
3887 && !is_overflow_infinity (vr0->min))
3889 maxi = prec - 1;
3890 mini = 0;
3892 if (mini == -2)
3893 break;
3894 /* From clz of VR_RANGE maximum we can compute
3895 result minimum. */
3896 if (vr0->type == VR_RANGE
3897 && TREE_CODE (vr0->max) == INTEGER_CST
3898 && !is_overflow_infinity (vr0->max))
3900 mini = prec - 1 - tree_floor_log2 (vr0->max);
3901 if (mini == prec)
3902 break;
3905 if (mini == -2)
3906 break;
3907 goto bitop_builtin;
3908 /* __builtin_ctz* return [0, prec-1], except for
3909 when the argument is 0, but that is undefined behavior.
3910 If there is a ctz optab for this mode and
3911 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3912 otherwise just assume 0 won't be seen. */
3913 CASE_CFN_CTZ:
3914 arg = gimple_call_arg (stmt, 0);
3915 prec = TYPE_PRECISION (TREE_TYPE (arg));
3916 mini = 0;
3917 maxi = prec - 1;
3918 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3919 != CODE_FOR_nothing
3920 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3921 zerov))
3923 /* Handle only the two common values. */
3924 if (zerov == -1)
3925 mini = -1;
3926 else if (zerov == prec)
3927 maxi = prec;
3928 else
3929 /* Magic value to give up, unless vr0 proves
3930 arg is non-zero. */
3931 mini = -2;
3933 if (TREE_CODE (arg) == SSA_NAME)
3935 value_range *vr0 = get_value_range (arg);
3936 /* If arg is non-zero, then use [0, prec - 1]. */
3937 if (((vr0->type == VR_RANGE
3938 && integer_nonzerop (vr0->min))
3939 || (vr0->type == VR_ANTI_RANGE
3940 && integer_zerop (vr0->min)))
3941 && !is_overflow_infinity (vr0->min))
3943 mini = 0;
3944 maxi = prec - 1;
3946 /* If some high bits are known to be zero,
3947 we can decrease the result maximum. */
3948 if (vr0->type == VR_RANGE
3949 && TREE_CODE (vr0->max) == INTEGER_CST
3950 && !is_overflow_infinity (vr0->max))
3952 maxi = tree_floor_log2 (vr0->max);
3953 /* For vr0 [0, 0] give up. */
3954 if (maxi == -1)
3955 break;
3958 if (mini == -2)
3959 break;
3960 goto bitop_builtin;
3961 /* __builtin_clrsb* returns [0, prec-1]. */
3962 CASE_CFN_CLRSB:
3963 arg = gimple_call_arg (stmt, 0);
3964 prec = TYPE_PRECISION (TREE_TYPE (arg));
3965 mini = 0;
3966 maxi = prec - 1;
3967 goto bitop_builtin;
3968 bitop_builtin:
3969 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3970 build_int_cst (type, maxi), NULL);
3971 return;
3972 case CFN_UBSAN_CHECK_ADD:
3973 subcode = PLUS_EXPR;
3974 break;
3975 case CFN_UBSAN_CHECK_SUB:
3976 subcode = MINUS_EXPR;
3977 break;
3978 case CFN_UBSAN_CHECK_MUL:
3979 subcode = MULT_EXPR;
3980 break;
3981 case CFN_GOACC_DIM_SIZE:
3982 case CFN_GOACC_DIM_POS:
3983 /* Optimizing these two internal functions helps the loop
3984 optimizer eliminate outer comparisons. Size is [1,N]
3985 and pos is [0,N-1]. */
3987 bool is_pos = cfn == CFN_GOACC_DIM_POS;
3988 int axis = get_oacc_ifn_dim_arg (stmt);
3989 int size = get_oacc_fn_dim_size (current_function_decl, axis);
3991 if (!size)
3992 /* If it's dynamic, the backend might know a hardware
3993 limitation. */
3994 size = targetm.goacc.dim_limit (axis);
3996 tree type = TREE_TYPE (gimple_call_lhs (stmt));
3997 set_value_range (vr, VR_RANGE,
3998 build_int_cst (type, is_pos ? 0 : 1),
3999 size ? build_int_cst (type, size - is_pos)
4000 : vrp_val_max (type), NULL);
4002 return;
4003 default:
4004 break;
4006 if (subcode != ERROR_MARK)
4008 bool saved_flag_wrapv = flag_wrapv;
4009 /* Pretend the arithmetics is wrapping. If there is
4010 any overflow, we'll complain, but will actually do
4011 wrapping operation. */
4012 flag_wrapv = 1;
4013 extract_range_from_binary_expr (vr, subcode, type,
4014 gimple_call_arg (stmt, 0),
4015 gimple_call_arg (stmt, 1));
4016 flag_wrapv = saved_flag_wrapv;
4018 /* If for both arguments vrp_valueize returned non-NULL,
4019 this should have been already folded and if not, it
4020 wasn't folded because of overflow. Avoid removing the
4021 UBSAN_CHECK_* calls in that case. */
4022 if (vr->type == VR_RANGE
4023 && (vr->min == vr->max
4024 || operand_equal_p (vr->min, vr->max, 0)))
4025 set_value_range_to_varying (vr);
4026 return;
4029 /* Handle extraction of the two results (result of arithmetics and
4030 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4031 internal function. */
4032 else if (is_gimple_assign (stmt)
4033 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4034 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4035 && INTEGRAL_TYPE_P (type))
4037 enum tree_code code = gimple_assign_rhs_code (stmt);
4038 tree op = gimple_assign_rhs1 (stmt);
4039 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4041 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4042 if (is_gimple_call (g) && gimple_call_internal_p (g))
4044 enum tree_code subcode = ERROR_MARK;
4045 switch (gimple_call_internal_fn (g))
4047 case IFN_ADD_OVERFLOW:
4048 subcode = PLUS_EXPR;
4049 break;
4050 case IFN_SUB_OVERFLOW:
4051 subcode = MINUS_EXPR;
4052 break;
4053 case IFN_MUL_OVERFLOW:
4054 subcode = MULT_EXPR;
4055 break;
4056 default:
4057 break;
4059 if (subcode != ERROR_MARK)
4061 tree op0 = gimple_call_arg (g, 0);
4062 tree op1 = gimple_call_arg (g, 1);
4063 if (code == IMAGPART_EXPR)
4065 bool ovf = false;
4066 if (check_for_binary_op_overflow (subcode, type,
4067 op0, op1, &ovf))
4068 set_value_range_to_value (vr,
4069 build_int_cst (type, ovf),
4070 NULL);
4071 else
4072 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4073 build_int_cst (type, 1), NULL);
4075 else if (types_compatible_p (type, TREE_TYPE (op0))
4076 && types_compatible_p (type, TREE_TYPE (op1)))
4078 bool saved_flag_wrapv = flag_wrapv;
4079 /* Pretend the arithmetics is wrapping. If there is
4080 any overflow, IMAGPART_EXPR will be set. */
4081 flag_wrapv = 1;
4082 extract_range_from_binary_expr (vr, subcode, type,
4083 op0, op1);
4084 flag_wrapv = saved_flag_wrapv;
4086 else
4088 value_range vr0 = VR_INITIALIZER;
4089 value_range vr1 = VR_INITIALIZER;
4090 bool saved_flag_wrapv = flag_wrapv;
4091 /* Pretend the arithmetics is wrapping. If there is
4092 any overflow, IMAGPART_EXPR will be set. */
4093 flag_wrapv = 1;
4094 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4095 type, op0);
4096 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4097 type, op1);
4098 extract_range_from_binary_expr_1 (vr, subcode, type,
4099 &vr0, &vr1);
4100 flag_wrapv = saved_flag_wrapv;
4102 return;
4107 if (INTEGRAL_TYPE_P (type)
4108 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4109 set_value_range_to_nonnegative (vr, type,
4110 sop || stmt_overflow_infinity (stmt));
4111 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4112 && !sop)
4113 set_value_range_to_nonnull (vr, type);
4114 else
4115 set_value_range_to_varying (vr);
4119 /* Try to compute a useful range out of assignment STMT and store it
4120 in *VR. */
4122 static void
4123 extract_range_from_assignment (value_range *vr, gassign *stmt)
4125 enum tree_code code = gimple_assign_rhs_code (stmt);
4127 if (code == ASSERT_EXPR)
4128 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4129 else if (code == SSA_NAME)
4130 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4131 else if (TREE_CODE_CLASS (code) == tcc_binary)
4132 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4133 gimple_expr_type (stmt),
4134 gimple_assign_rhs1 (stmt),
4135 gimple_assign_rhs2 (stmt));
4136 else if (TREE_CODE_CLASS (code) == tcc_unary)
4137 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4138 gimple_expr_type (stmt),
4139 gimple_assign_rhs1 (stmt));
4140 else if (code == COND_EXPR)
4141 extract_range_from_cond_expr (vr, stmt);
4142 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4143 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4144 gimple_expr_type (stmt),
4145 gimple_assign_rhs1 (stmt),
4146 gimple_assign_rhs2 (stmt));
4147 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4148 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4149 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4150 else
4151 set_value_range_to_varying (vr);
4153 if (vr->type == VR_VARYING)
4154 extract_range_basic (vr, stmt);
4157 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4158 would be profitable to adjust VR using scalar evolution information
4159 for VAR. If so, update VR with the new limits. */
4161 static void
4162 adjust_range_with_scev (value_range *vr, struct loop *loop,
4163 gimple *stmt, tree var)
4165 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4166 enum ev_direction dir;
4168 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4169 better opportunities than a regular range, but I'm not sure. */
4170 if (vr->type == VR_ANTI_RANGE)
4171 return;
4173 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4175 /* Like in PR19590, scev can return a constant function. */
4176 if (is_gimple_min_invariant (chrec))
4178 set_value_range_to_value (vr, chrec, vr->equiv);
4179 return;
4182 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4183 return;
4185 init = initial_condition_in_loop_num (chrec, loop->num);
4186 tem = op_with_constant_singleton_value_range (init);
4187 if (tem)
4188 init = tem;
4189 step = evolution_part_in_loop_num (chrec, loop->num);
4190 tem = op_with_constant_singleton_value_range (step);
4191 if (tem)
4192 step = tem;
4194 /* If STEP is symbolic, we can't know whether INIT will be the
4195 minimum or maximum value in the range. Also, unless INIT is
4196 a simple expression, compare_values and possibly other functions
4197 in tree-vrp won't be able to handle it. */
4198 if (step == NULL_TREE
4199 || !is_gimple_min_invariant (step)
4200 || !valid_value_p (init))
4201 return;
4203 dir = scev_direction (chrec);
4204 if (/* Do not adjust ranges if we do not know whether the iv increases
4205 or decreases, ... */
4206 dir == EV_DIR_UNKNOWN
4207 /* ... or if it may wrap. */
4208 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4209 true))
4210 return;
4212 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4213 negative_overflow_infinity and positive_overflow_infinity,
4214 because we have concluded that the loop probably does not
4215 wrap. */
4217 type = TREE_TYPE (var);
4218 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4219 tmin = lower_bound_in_type (type, type);
4220 else
4221 tmin = TYPE_MIN_VALUE (type);
4222 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4223 tmax = upper_bound_in_type (type, type);
4224 else
4225 tmax = TYPE_MAX_VALUE (type);
4227 /* Try to use estimated number of iterations for the loop to constrain the
4228 final value in the evolution. */
4229 if (TREE_CODE (step) == INTEGER_CST
4230 && is_gimple_val (init)
4231 && (TREE_CODE (init) != SSA_NAME
4232 || get_value_range (init)->type == VR_RANGE))
4234 widest_int nit;
4236 /* We are only entering here for loop header PHI nodes, so using
4237 the number of latch executions is the correct thing to use. */
4238 if (max_loop_iterations (loop, &nit))
4240 value_range maxvr = VR_INITIALIZER;
4241 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4242 bool overflow;
4244 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4245 &overflow);
4246 /* If the multiplication overflowed we can't do a meaningful
4247 adjustment. Likewise if the result doesn't fit in the type
4248 of the induction variable. For a signed type we have to
4249 check whether the result has the expected signedness which
4250 is that of the step as number of iterations is unsigned. */
4251 if (!overflow
4252 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4253 && (sgn == UNSIGNED
4254 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4256 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4257 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4258 TREE_TYPE (init), init, tem);
4259 /* Likewise if the addition did. */
4260 if (maxvr.type == VR_RANGE)
4262 value_range initvr = VR_INITIALIZER;
4264 if (TREE_CODE (init) == SSA_NAME)
4265 initvr = *(get_value_range (init));
4266 else if (is_gimple_min_invariant (init))
4267 set_value_range_to_value (&initvr, init, NULL);
4268 else
4269 return;
4271 /* Check if init + nit * step overflows. Though we checked
4272 scev {init, step}_loop doesn't wrap, it is not enough
4273 because the loop may exit immediately. Overflow could
4274 happen in the plus expression in this case. */
4275 if ((dir == EV_DIR_DECREASES
4276 && (is_negative_overflow_infinity (maxvr.min)
4277 || compare_values (maxvr.min, initvr.min) != -1))
4278 || (dir == EV_DIR_GROWS
4279 && (is_positive_overflow_infinity (maxvr.max)
4280 || compare_values (maxvr.max, initvr.max) != 1)))
4281 return;
4283 tmin = maxvr.min;
4284 tmax = maxvr.max;
4290 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4292 min = tmin;
4293 max = tmax;
4295 /* For VARYING or UNDEFINED ranges, just about anything we get
4296 from scalar evolutions should be better. */
4298 if (dir == EV_DIR_DECREASES)
4299 max = init;
4300 else
4301 min = init;
4303 else if (vr->type == VR_RANGE)
4305 min = vr->min;
4306 max = vr->max;
4308 if (dir == EV_DIR_DECREASES)
4310 /* INIT is the maximum value. If INIT is lower than VR->MAX
4311 but no smaller than VR->MIN, set VR->MAX to INIT. */
4312 if (compare_values (init, max) == -1)
4313 max = init;
4315 /* According to the loop information, the variable does not
4316 overflow. If we think it does, probably because of an
4317 overflow due to arithmetic on a different INF value,
4318 reset now. */
4319 if (is_negative_overflow_infinity (min)
4320 || compare_values (min, tmin) == -1)
4321 min = tmin;
4324 else
4326 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4327 if (compare_values (init, min) == 1)
4328 min = init;
4330 if (is_positive_overflow_infinity (max)
4331 || compare_values (tmax, max) == -1)
4332 max = tmax;
4335 else
4336 return;
4338 /* If we just created an invalid range with the minimum
4339 greater than the maximum, we fail conservatively.
4340 This should happen only in unreachable
4341 parts of code, or for invalid programs. */
4342 if (compare_values (min, max) == 1
4343 || (is_negative_overflow_infinity (min)
4344 && is_positive_overflow_infinity (max)))
4345 return;
4347 /* Even for valid range info, sometimes overflow flag will leak in.
4348 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4349 drop them except for +-overflow_infinity which still need special
4350 handling in vrp pass. */
4351 if (TREE_OVERFLOW_P (min)
4352 && ! is_negative_overflow_infinity (min))
4353 min = drop_tree_overflow (min);
4354 if (TREE_OVERFLOW_P (max)
4355 && ! is_positive_overflow_infinity (max))
4356 max = drop_tree_overflow (max);
4358 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4362 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4364 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4365 all the values in the ranges.
4367 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4369 - Return NULL_TREE if it is not always possible to determine the
4370 value of the comparison.
4372 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4373 overflow infinity was used in the test. */
4376 static tree
4377 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4378 bool *strict_overflow_p)
4380 /* VARYING or UNDEFINED ranges cannot be compared. */
4381 if (vr0->type == VR_VARYING
4382 || vr0->type == VR_UNDEFINED
4383 || vr1->type == VR_VARYING
4384 || vr1->type == VR_UNDEFINED)
4385 return NULL_TREE;
4387 /* Anti-ranges need to be handled separately. */
4388 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4390 /* If both are anti-ranges, then we cannot compute any
4391 comparison. */
4392 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4393 return NULL_TREE;
4395 /* These comparisons are never statically computable. */
4396 if (comp == GT_EXPR
4397 || comp == GE_EXPR
4398 || comp == LT_EXPR
4399 || comp == LE_EXPR)
4400 return NULL_TREE;
4402 /* Equality can be computed only between a range and an
4403 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4404 if (vr0->type == VR_RANGE)
4406 /* To simplify processing, make VR0 the anti-range. */
4407 value_range *tmp = vr0;
4408 vr0 = vr1;
4409 vr1 = tmp;
4412 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4414 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4415 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4416 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4418 return NULL_TREE;
4421 if (!usable_range_p (vr0, strict_overflow_p)
4422 || !usable_range_p (vr1, strict_overflow_p))
4423 return NULL_TREE;
4425 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4426 operands around and change the comparison code. */
4427 if (comp == GT_EXPR || comp == GE_EXPR)
4429 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4430 std::swap (vr0, vr1);
4433 if (comp == EQ_EXPR)
4435 /* Equality may only be computed if both ranges represent
4436 exactly one value. */
4437 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4438 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4440 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4441 strict_overflow_p);
4442 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4443 strict_overflow_p);
4444 if (cmp_min == 0 && cmp_max == 0)
4445 return boolean_true_node;
4446 else if (cmp_min != -2 && cmp_max != -2)
4447 return boolean_false_node;
4449 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4450 else if (compare_values_warnv (vr0->min, vr1->max,
4451 strict_overflow_p) == 1
4452 || compare_values_warnv (vr1->min, vr0->max,
4453 strict_overflow_p) == 1)
4454 return boolean_false_node;
4456 return NULL_TREE;
4458 else if (comp == NE_EXPR)
4460 int cmp1, cmp2;
4462 /* If VR0 is completely to the left or completely to the right
4463 of VR1, they are always different. Notice that we need to
4464 make sure that both comparisons yield similar results to
4465 avoid comparing values that cannot be compared at
4466 compile-time. */
4467 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4468 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4469 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4470 return boolean_true_node;
4472 /* If VR0 and VR1 represent a single value and are identical,
4473 return false. */
4474 else if (compare_values_warnv (vr0->min, vr0->max,
4475 strict_overflow_p) == 0
4476 && compare_values_warnv (vr1->min, vr1->max,
4477 strict_overflow_p) == 0
4478 && compare_values_warnv (vr0->min, vr1->min,
4479 strict_overflow_p) == 0
4480 && compare_values_warnv (vr0->max, vr1->max,
4481 strict_overflow_p) == 0)
4482 return boolean_false_node;
4484 /* Otherwise, they may or may not be different. */
4485 else
4486 return NULL_TREE;
4488 else if (comp == LT_EXPR || comp == LE_EXPR)
4490 int tst;
4492 /* If VR0 is to the left of VR1, return true. */
4493 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4494 if ((comp == LT_EXPR && tst == -1)
4495 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4497 if (overflow_infinity_range_p (vr0)
4498 || overflow_infinity_range_p (vr1))
4499 *strict_overflow_p = true;
4500 return boolean_true_node;
4503 /* If VR0 is to the right of VR1, return false. */
4504 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4505 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4506 || (comp == LE_EXPR && tst == 1))
4508 if (overflow_infinity_range_p (vr0)
4509 || overflow_infinity_range_p (vr1))
4510 *strict_overflow_p = true;
4511 return boolean_false_node;
4514 /* Otherwise, we don't know. */
4515 return NULL_TREE;
4518 gcc_unreachable ();
4522 /* Given a value range VR, a value VAL and a comparison code COMP, return
4523 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4524 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4525 always returns false. Return NULL_TREE if it is not always
4526 possible to determine the value of the comparison. Also set
4527 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4528 infinity was used in the test. */
4530 static tree
4531 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4532 bool *strict_overflow_p)
4534 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4535 return NULL_TREE;
4537 /* Anti-ranges need to be handled separately. */
4538 if (vr->type == VR_ANTI_RANGE)
4540 /* For anti-ranges, the only predicates that we can compute at
4541 compile time are equality and inequality. */
4542 if (comp == GT_EXPR
4543 || comp == GE_EXPR
4544 || comp == LT_EXPR
4545 || comp == LE_EXPR)
4546 return NULL_TREE;
4548 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4549 if (value_inside_range (val, vr->min, vr->max) == 1)
4550 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4552 return NULL_TREE;
4555 if (!usable_range_p (vr, strict_overflow_p))
4556 return NULL_TREE;
4558 if (comp == EQ_EXPR)
4560 /* EQ_EXPR may only be computed if VR represents exactly
4561 one value. */
4562 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4564 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4565 if (cmp == 0)
4566 return boolean_true_node;
4567 else if (cmp == -1 || cmp == 1 || cmp == 2)
4568 return boolean_false_node;
4570 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4571 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4572 return boolean_false_node;
4574 return NULL_TREE;
4576 else if (comp == NE_EXPR)
4578 /* If VAL is not inside VR, then they are always different. */
4579 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4580 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4581 return boolean_true_node;
4583 /* If VR represents exactly one value equal to VAL, then return
4584 false. */
4585 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4586 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4587 return boolean_false_node;
4589 /* Otherwise, they may or may not be different. */
4590 return NULL_TREE;
4592 else if (comp == LT_EXPR || comp == LE_EXPR)
4594 int tst;
4596 /* If VR is to the left of VAL, return true. */
4597 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4598 if ((comp == LT_EXPR && tst == -1)
4599 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4601 if (overflow_infinity_range_p (vr))
4602 *strict_overflow_p = true;
4603 return boolean_true_node;
4606 /* If VR is to the right of VAL, return false. */
4607 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4608 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4609 || (comp == LE_EXPR && tst == 1))
4611 if (overflow_infinity_range_p (vr))
4612 *strict_overflow_p = true;
4613 return boolean_false_node;
4616 /* Otherwise, we don't know. */
4617 return NULL_TREE;
4619 else if (comp == GT_EXPR || comp == GE_EXPR)
4621 int tst;
4623 /* If VR is to the right of VAL, return true. */
4624 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4625 if ((comp == GT_EXPR && tst == 1)
4626 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4628 if (overflow_infinity_range_p (vr))
4629 *strict_overflow_p = true;
4630 return boolean_true_node;
4633 /* If VR is to the left of VAL, return false. */
4634 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4635 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4636 || (comp == GE_EXPR && tst == -1))
4638 if (overflow_infinity_range_p (vr))
4639 *strict_overflow_p = true;
4640 return boolean_false_node;
4643 /* Otherwise, we don't know. */
4644 return NULL_TREE;
4647 gcc_unreachable ();
4651 /* Debugging dumps. */
4653 void dump_value_range (FILE *, value_range *);
4654 void debug_value_range (value_range *);
4655 void dump_all_value_ranges (FILE *);
4656 void debug_all_value_ranges (void);
4657 void dump_vr_equiv (FILE *, bitmap);
4658 void debug_vr_equiv (bitmap);
4661 /* Dump value range VR to FILE. */
4663 void
4664 dump_value_range (FILE *file, value_range *vr)
4666 if (vr == NULL)
4667 fprintf (file, "[]");
4668 else if (vr->type == VR_UNDEFINED)
4669 fprintf (file, "UNDEFINED");
4670 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4672 tree type = TREE_TYPE (vr->min);
4674 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4676 if (is_negative_overflow_infinity (vr->min))
4677 fprintf (file, "-INF(OVF)");
4678 else if (INTEGRAL_TYPE_P (type)
4679 && !TYPE_UNSIGNED (type)
4680 && vrp_val_is_min (vr->min))
4681 fprintf (file, "-INF");
4682 else
4683 print_generic_expr (file, vr->min, 0);
4685 fprintf (file, ", ");
4687 if (is_positive_overflow_infinity (vr->max))
4688 fprintf (file, "+INF(OVF)");
4689 else if (INTEGRAL_TYPE_P (type)
4690 && vrp_val_is_max (vr->max))
4691 fprintf (file, "+INF");
4692 else
4693 print_generic_expr (file, vr->max, 0);
4695 fprintf (file, "]");
4697 if (vr->equiv)
4699 bitmap_iterator bi;
4700 unsigned i, c = 0;
4702 fprintf (file, " EQUIVALENCES: { ");
4704 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4706 print_generic_expr (file, ssa_name (i), 0);
4707 fprintf (file, " ");
4708 c++;
4711 fprintf (file, "} (%u elements)", c);
4714 else if (vr->type == VR_VARYING)
4715 fprintf (file, "VARYING");
4716 else
4717 fprintf (file, "INVALID RANGE");
4721 /* Dump value range VR to stderr. */
4723 DEBUG_FUNCTION void
4724 debug_value_range (value_range *vr)
4726 dump_value_range (stderr, vr);
4727 fprintf (stderr, "\n");
4731 /* Dump value ranges of all SSA_NAMEs to FILE. */
4733 void
4734 dump_all_value_ranges (FILE *file)
4736 size_t i;
4738 for (i = 0; i < num_vr_values; i++)
4740 if (vr_value[i])
4742 print_generic_expr (file, ssa_name (i), 0);
4743 fprintf (file, ": ");
4744 dump_value_range (file, vr_value[i]);
4745 fprintf (file, "\n");
4749 fprintf (file, "\n");
4753 /* Dump all value ranges to stderr. */
4755 DEBUG_FUNCTION void
4756 debug_all_value_ranges (void)
4758 dump_all_value_ranges (stderr);
4762 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4763 create a new SSA name N and return the assertion assignment
4764 'N = ASSERT_EXPR <V, V OP W>'. */
4766 static gimple *
4767 build_assert_expr_for (tree cond, tree v)
4769 tree a;
4770 gassign *assertion;
4772 gcc_assert (TREE_CODE (v) == SSA_NAME
4773 && COMPARISON_CLASS_P (cond));
4775 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4776 assertion = gimple_build_assign (NULL_TREE, a);
4778 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4779 operand of the ASSERT_EXPR. Create it so the new name and the old one
4780 are registered in the replacement table so that we can fix the SSA web
4781 after adding all the ASSERT_EXPRs. */
4782 create_new_def_for (v, assertion, NULL);
4784 return assertion;
4788 /* Return false if EXPR is a predicate expression involving floating
4789 point values. */
4791 static inline bool
4792 fp_predicate (gimple *stmt)
4794 GIMPLE_CHECK (stmt, GIMPLE_COND);
4796 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4799 /* If the range of values taken by OP can be inferred after STMT executes,
4800 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4801 describes the inferred range. Return true if a range could be
4802 inferred. */
4804 static bool
4805 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4807 *val_p = NULL_TREE;
4808 *comp_code_p = ERROR_MARK;
4810 /* Do not attempt to infer anything in names that flow through
4811 abnormal edges. */
4812 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4813 return false;
4815 /* Similarly, don't infer anything from statements that may throw
4816 exceptions. ??? Relax this requirement? */
4817 if (stmt_could_throw_p (stmt))
4818 return false;
4820 /* If STMT is the last statement of a basic block with no normal
4821 successors, there is no point inferring anything about any of its
4822 operands. We would not be able to find a proper insertion point
4823 for the assertion, anyway. */
4824 if (stmt_ends_bb_p (stmt))
4826 edge_iterator ei;
4827 edge e;
4829 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4830 if (!(e->flags & EDGE_ABNORMAL))
4831 break;
4832 if (e == NULL)
4833 return false;
4836 if (infer_nonnull_range (stmt, op))
4838 *val_p = build_int_cst (TREE_TYPE (op), 0);
4839 *comp_code_p = NE_EXPR;
4840 return true;
4843 return false;
4847 void dump_asserts_for (FILE *, tree);
4848 void debug_asserts_for (tree);
4849 void dump_all_asserts (FILE *);
4850 void debug_all_asserts (void);
4852 /* Dump all the registered assertions for NAME to FILE. */
4854 void
4855 dump_asserts_for (FILE *file, tree name)
4857 assert_locus *loc;
4859 fprintf (file, "Assertions to be inserted for ");
4860 print_generic_expr (file, name, 0);
4861 fprintf (file, "\n");
4863 loc = asserts_for[SSA_NAME_VERSION (name)];
4864 while (loc)
4866 fprintf (file, "\t");
4867 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4868 fprintf (file, "\n\tBB #%d", loc->bb->index);
4869 if (loc->e)
4871 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4872 loc->e->dest->index);
4873 dump_edge_info (file, loc->e, dump_flags, 0);
4875 fprintf (file, "\n\tPREDICATE: ");
4876 print_generic_expr (file, name, 0);
4877 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4878 print_generic_expr (file, loc->val, 0);
4879 fprintf (file, "\n\n");
4880 loc = loc->next;
4883 fprintf (file, "\n");
4887 /* Dump all the registered assertions for NAME to stderr. */
4889 DEBUG_FUNCTION void
4890 debug_asserts_for (tree name)
4892 dump_asserts_for (stderr, name);
4896 /* Dump all the registered assertions for all the names to FILE. */
4898 void
4899 dump_all_asserts (FILE *file)
4901 unsigned i;
4902 bitmap_iterator bi;
4904 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4905 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4906 dump_asserts_for (file, ssa_name (i));
4907 fprintf (file, "\n");
4911 /* Dump all the registered assertions for all the names to stderr. */
4913 DEBUG_FUNCTION void
4914 debug_all_asserts (void)
4916 dump_all_asserts (stderr);
4920 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4921 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4922 E->DEST, then register this location as a possible insertion point
4923 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4925 BB, E and SI provide the exact insertion point for the new
4926 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4927 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4928 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4929 must not be NULL. */
4931 static void
4932 register_new_assert_for (tree name, tree expr,
4933 enum tree_code comp_code,
4934 tree val,
4935 basic_block bb,
4936 edge e,
4937 gimple_stmt_iterator si)
4939 assert_locus *n, *loc, *last_loc;
4940 basic_block dest_bb;
4942 gcc_checking_assert (bb == NULL || e == NULL);
4944 if (e == NULL)
4945 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4946 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4948 /* Never build an assert comparing against an integer constant with
4949 TREE_OVERFLOW set. This confuses our undefined overflow warning
4950 machinery. */
4951 if (TREE_OVERFLOW_P (val))
4952 val = drop_tree_overflow (val);
4954 /* The new assertion A will be inserted at BB or E. We need to
4955 determine if the new location is dominated by a previously
4956 registered location for A. If we are doing an edge insertion,
4957 assume that A will be inserted at E->DEST. Note that this is not
4958 necessarily true.
4960 If E is a critical edge, it will be split. But even if E is
4961 split, the new block will dominate the same set of blocks that
4962 E->DEST dominates.
4964 The reverse, however, is not true, blocks dominated by E->DEST
4965 will not be dominated by the new block created to split E. So,
4966 if the insertion location is on a critical edge, we will not use
4967 the new location to move another assertion previously registered
4968 at a block dominated by E->DEST. */
4969 dest_bb = (bb) ? bb : e->dest;
4971 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4972 VAL at a block dominating DEST_BB, then we don't need to insert a new
4973 one. Similarly, if the same assertion already exists at a block
4974 dominated by DEST_BB and the new location is not on a critical
4975 edge, then update the existing location for the assertion (i.e.,
4976 move the assertion up in the dominance tree).
4978 Note, this is implemented as a simple linked list because there
4979 should not be more than a handful of assertions registered per
4980 name. If this becomes a performance problem, a table hashed by
4981 COMP_CODE and VAL could be implemented. */
4982 loc = asserts_for[SSA_NAME_VERSION (name)];
4983 last_loc = loc;
4984 while (loc)
4986 if (loc->comp_code == comp_code
4987 && (loc->val == val
4988 || operand_equal_p (loc->val, val, 0))
4989 && (loc->expr == expr
4990 || operand_equal_p (loc->expr, expr, 0)))
4992 /* If E is not a critical edge and DEST_BB
4993 dominates the existing location for the assertion, move
4994 the assertion up in the dominance tree by updating its
4995 location information. */
4996 if ((e == NULL || !EDGE_CRITICAL_P (e))
4997 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4999 loc->bb = dest_bb;
5000 loc->e = e;
5001 loc->si = si;
5002 return;
5006 /* Update the last node of the list and move to the next one. */
5007 last_loc = loc;
5008 loc = loc->next;
5011 /* If we didn't find an assertion already registered for
5012 NAME COMP_CODE VAL, add a new one at the end of the list of
5013 assertions associated with NAME. */
5014 n = XNEW (struct assert_locus);
5015 n->bb = dest_bb;
5016 n->e = e;
5017 n->si = si;
5018 n->comp_code = comp_code;
5019 n->val = val;
5020 n->expr = expr;
5021 n->next = NULL;
5023 if (last_loc)
5024 last_loc->next = n;
5025 else
5026 asserts_for[SSA_NAME_VERSION (name)] = n;
5028 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5031 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5032 Extract a suitable test code and value and store them into *CODE_P and
5033 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5035 If no extraction was possible, return FALSE, otherwise return TRUE.
5037 If INVERT is true, then we invert the result stored into *CODE_P. */
5039 static bool
5040 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5041 tree cond_op0, tree cond_op1,
5042 bool invert, enum tree_code *code_p,
5043 tree *val_p)
5045 enum tree_code comp_code;
5046 tree val;
5048 /* Otherwise, we have a comparison of the form NAME COMP VAL
5049 or VAL COMP NAME. */
5050 if (name == cond_op1)
5052 /* If the predicate is of the form VAL COMP NAME, flip
5053 COMP around because we need to register NAME as the
5054 first operand in the predicate. */
5055 comp_code = swap_tree_comparison (cond_code);
5056 val = cond_op0;
5058 else
5060 /* The comparison is of the form NAME COMP VAL, so the
5061 comparison code remains unchanged. */
5062 comp_code = cond_code;
5063 val = cond_op1;
5066 /* Invert the comparison code as necessary. */
5067 if (invert)
5068 comp_code = invert_tree_comparison (comp_code, 0);
5070 /* VRP only handles integral and pointer types. */
5071 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
5072 && ! POINTER_TYPE_P (TREE_TYPE (val)))
5073 return false;
5075 /* Do not register always-false predicates.
5076 FIXME: this works around a limitation in fold() when dealing with
5077 enumerations. Given 'enum { N1, N2 } x;', fold will not
5078 fold 'if (x > N2)' to 'if (0)'. */
5079 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5080 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5082 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5083 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5085 if (comp_code == GT_EXPR
5086 && (!max
5087 || compare_values (val, max) == 0))
5088 return false;
5090 if (comp_code == LT_EXPR
5091 && (!min
5092 || compare_values (val, min) == 0))
5093 return false;
5095 *code_p = comp_code;
5096 *val_p = val;
5097 return true;
5100 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5101 (otherwise return VAL). VAL and MASK must be zero-extended for
5102 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5103 (to transform signed values into unsigned) and at the end xor
5104 SGNBIT back. */
5106 static wide_int
5107 masked_increment (const wide_int &val_in, const wide_int &mask,
5108 const wide_int &sgnbit, unsigned int prec)
5110 wide_int bit = wi::one (prec), res;
5111 unsigned int i;
5113 wide_int val = val_in ^ sgnbit;
5114 for (i = 0; i < prec; i++, bit += bit)
5116 res = mask;
5117 if ((res & bit) == 0)
5118 continue;
5119 res = bit - 1;
5120 res = (val + bit).and_not (res);
5121 res &= mask;
5122 if (wi::gtu_p (res, val))
5123 return res ^ sgnbit;
5125 return val ^ sgnbit;
5128 /* Try to register an edge assertion for SSA name NAME on edge E for
5129 the condition COND contributing to the conditional jump pointed to by BSI.
5130 Invert the condition COND if INVERT is true. */
5132 static void
5133 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5134 enum tree_code cond_code,
5135 tree cond_op0, tree cond_op1, bool invert)
5137 tree val;
5138 enum tree_code comp_code;
5140 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5141 cond_op0,
5142 cond_op1,
5143 invert, &comp_code, &val))
5144 return;
5146 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5147 reachable from E. */
5148 if (live_on_edge (e, name)
5149 && !has_single_use (name))
5150 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5152 /* In the case of NAME <= CST and NAME being defined as
5153 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5154 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5155 This catches range and anti-range tests. */
5156 if ((comp_code == LE_EXPR
5157 || comp_code == GT_EXPR)
5158 && TREE_CODE (val) == INTEGER_CST
5159 && TYPE_UNSIGNED (TREE_TYPE (val)))
5161 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5162 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5164 /* Extract CST2 from the (optional) addition. */
5165 if (is_gimple_assign (def_stmt)
5166 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5168 name2 = gimple_assign_rhs1 (def_stmt);
5169 cst2 = gimple_assign_rhs2 (def_stmt);
5170 if (TREE_CODE (name2) == SSA_NAME
5171 && TREE_CODE (cst2) == INTEGER_CST)
5172 def_stmt = SSA_NAME_DEF_STMT (name2);
5175 /* Extract NAME2 from the (optional) sign-changing cast. */
5176 if (gimple_assign_cast_p (def_stmt))
5178 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5179 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5180 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5181 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5182 name3 = gimple_assign_rhs1 (def_stmt);
5185 /* If name3 is used later, create an ASSERT_EXPR for it. */
5186 if (name3 != NULL_TREE
5187 && TREE_CODE (name3) == SSA_NAME
5188 && (cst2 == NULL_TREE
5189 || TREE_CODE (cst2) == INTEGER_CST)
5190 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5191 && live_on_edge (e, name3)
5192 && !has_single_use (name3))
5194 tree tmp;
5196 /* Build an expression for the range test. */
5197 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5198 if (cst2 != NULL_TREE)
5199 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5201 if (dump_file)
5203 fprintf (dump_file, "Adding assert for ");
5204 print_generic_expr (dump_file, name3, 0);
5205 fprintf (dump_file, " from ");
5206 print_generic_expr (dump_file, tmp, 0);
5207 fprintf (dump_file, "\n");
5210 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5213 /* If name2 is used later, create an ASSERT_EXPR for it. */
5214 if (name2 != NULL_TREE
5215 && TREE_CODE (name2) == SSA_NAME
5216 && TREE_CODE (cst2) == INTEGER_CST
5217 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5218 && live_on_edge (e, name2)
5219 && !has_single_use (name2))
5221 tree tmp;
5223 /* Build an expression for the range test. */
5224 tmp = name2;
5225 if (TREE_TYPE (name) != TREE_TYPE (name2))
5226 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5227 if (cst2 != NULL_TREE)
5228 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5230 if (dump_file)
5232 fprintf (dump_file, "Adding assert for ");
5233 print_generic_expr (dump_file, name2, 0);
5234 fprintf (dump_file, " from ");
5235 print_generic_expr (dump_file, tmp, 0);
5236 fprintf (dump_file, "\n");
5239 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5243 /* In the case of post-in/decrement tests like if (i++) ... and uses
5244 of the in/decremented value on the edge the extra name we want to
5245 assert for is not on the def chain of the name compared. Instead
5246 it is in the set of use stmts.
5247 Similar cases happen for conversions that were simplified through
5248 fold_{sign_changed,widened}_comparison. */
5249 if ((comp_code == NE_EXPR
5250 || comp_code == EQ_EXPR)
5251 && TREE_CODE (val) == INTEGER_CST)
5253 imm_use_iterator ui;
5254 gimple *use_stmt;
5255 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5257 if (!is_gimple_assign (use_stmt))
5258 continue;
5260 /* Cut off to use-stmts that are dominating the predecessor. */
5261 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5262 continue;
5264 tree name2 = gimple_assign_lhs (use_stmt);
5265 if (TREE_CODE (name2) != SSA_NAME
5266 || !live_on_edge (e, name2))
5267 continue;
5269 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5270 tree cst;
5271 if (code == PLUS_EXPR
5272 || code == MINUS_EXPR)
5274 cst = gimple_assign_rhs2 (use_stmt);
5275 if (TREE_CODE (cst) != INTEGER_CST)
5276 continue;
5277 cst = int_const_binop (code, val, cst);
5279 else if (CONVERT_EXPR_CODE_P (code))
5281 /* For truncating conversions we cannot record
5282 an inequality. */
5283 if (comp_code == NE_EXPR
5284 && (TYPE_PRECISION (TREE_TYPE (name2))
5285 < TYPE_PRECISION (TREE_TYPE (name))))
5286 continue;
5287 cst = fold_convert (TREE_TYPE (name2), val);
5289 else
5290 continue;
5292 if (TREE_OVERFLOW_P (cst))
5293 cst = drop_tree_overflow (cst);
5294 register_new_assert_for (name2, name2, comp_code, cst,
5295 NULL, e, bsi);
5299 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5300 && TREE_CODE (val) == INTEGER_CST)
5302 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5303 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5304 tree val2 = NULL_TREE;
5305 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5306 wide_int mask = wi::zero (prec);
5307 unsigned int nprec = prec;
5308 enum tree_code rhs_code = ERROR_MARK;
5310 if (is_gimple_assign (def_stmt))
5311 rhs_code = gimple_assign_rhs_code (def_stmt);
5313 /* Add asserts for NAME cmp CST and NAME being defined
5314 as NAME = (int) NAME2. */
5315 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5316 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5317 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5318 && gimple_assign_cast_p (def_stmt))
5320 name2 = gimple_assign_rhs1 (def_stmt);
5321 if (CONVERT_EXPR_CODE_P (rhs_code)
5322 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5323 && TYPE_UNSIGNED (TREE_TYPE (name2))
5324 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5325 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5326 || !tree_int_cst_equal (val,
5327 TYPE_MIN_VALUE (TREE_TYPE (val))))
5328 && live_on_edge (e, name2)
5329 && !has_single_use (name2))
5331 tree tmp, cst;
5332 enum tree_code new_comp_code = comp_code;
5334 cst = fold_convert (TREE_TYPE (name2),
5335 TYPE_MIN_VALUE (TREE_TYPE (val)));
5336 /* Build an expression for the range test. */
5337 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5338 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5339 fold_convert (TREE_TYPE (name2), val));
5340 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5342 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5343 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5344 build_int_cst (TREE_TYPE (name2), 1));
5347 if (dump_file)
5349 fprintf (dump_file, "Adding assert for ");
5350 print_generic_expr (dump_file, name2, 0);
5351 fprintf (dump_file, " from ");
5352 print_generic_expr (dump_file, tmp, 0);
5353 fprintf (dump_file, "\n");
5356 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5357 e, bsi);
5361 /* Add asserts for NAME cmp CST and NAME being defined as
5362 NAME = NAME2 >> CST2.
5364 Extract CST2 from the right shift. */
5365 if (rhs_code == RSHIFT_EXPR)
5367 name2 = gimple_assign_rhs1 (def_stmt);
5368 cst2 = gimple_assign_rhs2 (def_stmt);
5369 if (TREE_CODE (name2) == SSA_NAME
5370 && tree_fits_uhwi_p (cst2)
5371 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5372 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5373 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5374 && live_on_edge (e, name2)
5375 && !has_single_use (name2))
5377 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5378 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5381 if (val2 != NULL_TREE
5382 && TREE_CODE (val2) == INTEGER_CST
5383 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5384 TREE_TYPE (val),
5385 val2, cst2), val))
5387 enum tree_code new_comp_code = comp_code;
5388 tree tmp, new_val;
5390 tmp = name2;
5391 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5393 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5395 tree type = build_nonstandard_integer_type (prec, 1);
5396 tmp = build1 (NOP_EXPR, type, name2);
5397 val2 = fold_convert (type, val2);
5399 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5400 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5401 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5403 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5405 wide_int minval
5406 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5407 new_val = val2;
5408 if (minval == new_val)
5409 new_val = NULL_TREE;
5411 else
5413 wide_int maxval
5414 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5415 mask |= val2;
5416 if (mask == maxval)
5417 new_val = NULL_TREE;
5418 else
5419 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5422 if (new_val)
5424 if (dump_file)
5426 fprintf (dump_file, "Adding assert for ");
5427 print_generic_expr (dump_file, name2, 0);
5428 fprintf (dump_file, " from ");
5429 print_generic_expr (dump_file, tmp, 0);
5430 fprintf (dump_file, "\n");
5433 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5434 NULL, e, bsi);
5438 /* Add asserts for NAME cmp CST and NAME being defined as
5439 NAME = NAME2 & CST2.
5441 Extract CST2 from the and.
5443 Also handle
5444 NAME = (unsigned) NAME2;
5445 casts where NAME's type is unsigned and has smaller precision
5446 than NAME2's type as if it was NAME = NAME2 & MASK. */
5447 names[0] = NULL_TREE;
5448 names[1] = NULL_TREE;
5449 cst2 = NULL_TREE;
5450 if (rhs_code == BIT_AND_EXPR
5451 || (CONVERT_EXPR_CODE_P (rhs_code)
5452 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5453 && TYPE_UNSIGNED (TREE_TYPE (val))
5454 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5455 > prec))
5457 name2 = gimple_assign_rhs1 (def_stmt);
5458 if (rhs_code == BIT_AND_EXPR)
5459 cst2 = gimple_assign_rhs2 (def_stmt);
5460 else
5462 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5463 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5465 if (TREE_CODE (name2) == SSA_NAME
5466 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5467 && TREE_CODE (cst2) == INTEGER_CST
5468 && !integer_zerop (cst2)
5469 && (nprec > 1
5470 || TYPE_UNSIGNED (TREE_TYPE (val))))
5472 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5473 if (gimple_assign_cast_p (def_stmt2))
5475 names[1] = gimple_assign_rhs1 (def_stmt2);
5476 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5477 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5478 || (TYPE_PRECISION (TREE_TYPE (name2))
5479 != TYPE_PRECISION (TREE_TYPE (names[1])))
5480 || !live_on_edge (e, names[1])
5481 || has_single_use (names[1]))
5482 names[1] = NULL_TREE;
5484 if (live_on_edge (e, name2)
5485 && !has_single_use (name2))
5486 names[0] = name2;
5489 if (names[0] || names[1])
5491 wide_int minv, maxv, valv, cst2v;
5492 wide_int tem, sgnbit;
5493 bool valid_p = false, valn, cst2n;
5494 enum tree_code ccode = comp_code;
5496 valv = wide_int::from (val, nprec, UNSIGNED);
5497 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5498 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5499 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5500 /* If CST2 doesn't have most significant bit set,
5501 but VAL is negative, we have comparison like
5502 if ((x & 0x123) > -4) (always true). Just give up. */
5503 if (!cst2n && valn)
5504 ccode = ERROR_MARK;
5505 if (cst2n)
5506 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5507 else
5508 sgnbit = wi::zero (nprec);
5509 minv = valv & cst2v;
5510 switch (ccode)
5512 case EQ_EXPR:
5513 /* Minimum unsigned value for equality is VAL & CST2
5514 (should be equal to VAL, otherwise we probably should
5515 have folded the comparison into false) and
5516 maximum unsigned value is VAL | ~CST2. */
5517 maxv = valv | ~cst2v;
5518 valid_p = true;
5519 break;
5521 case NE_EXPR:
5522 tem = valv | ~cst2v;
5523 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5524 if (valv == 0)
5526 cst2n = false;
5527 sgnbit = wi::zero (nprec);
5528 goto gt_expr;
5530 /* If (VAL | ~CST2) is all ones, handle it as
5531 (X & CST2) < VAL. */
5532 if (tem == -1)
5534 cst2n = false;
5535 valn = false;
5536 sgnbit = wi::zero (nprec);
5537 goto lt_expr;
5539 if (!cst2n && wi::neg_p (cst2v))
5540 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5541 if (sgnbit != 0)
5543 if (valv == sgnbit)
5545 cst2n = true;
5546 valn = true;
5547 goto gt_expr;
5549 if (tem == wi::mask (nprec - 1, false, nprec))
5551 cst2n = true;
5552 goto lt_expr;
5554 if (!cst2n)
5555 sgnbit = wi::zero (nprec);
5557 break;
5559 case GE_EXPR:
5560 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5561 is VAL and maximum unsigned value is ~0. For signed
5562 comparison, if CST2 doesn't have most significant bit
5563 set, handle it similarly. If CST2 has MSB set,
5564 the minimum is the same, and maximum is ~0U/2. */
5565 if (minv != valv)
5567 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5568 VAL. */
5569 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5570 if (minv == valv)
5571 break;
5573 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5574 valid_p = true;
5575 break;
5577 case GT_EXPR:
5578 gt_expr:
5579 /* Find out smallest MINV where MINV > VAL
5580 && (MINV & CST2) == MINV, if any. If VAL is signed and
5581 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5582 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5583 if (minv == valv)
5584 break;
5585 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5586 valid_p = true;
5587 break;
5589 case LE_EXPR:
5590 /* Minimum unsigned value for <= is 0 and maximum
5591 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5592 Otherwise, find smallest VAL2 where VAL2 > VAL
5593 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5594 as maximum.
5595 For signed comparison, if CST2 doesn't have most
5596 significant bit set, handle it similarly. If CST2 has
5597 MSB set, the maximum is the same and minimum is INT_MIN. */
5598 if (minv == valv)
5599 maxv = valv;
5600 else
5602 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5603 if (maxv == valv)
5604 break;
5605 maxv -= 1;
5607 maxv |= ~cst2v;
5608 minv = sgnbit;
5609 valid_p = true;
5610 break;
5612 case LT_EXPR:
5613 lt_expr:
5614 /* Minimum unsigned value for < is 0 and maximum
5615 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5616 Otherwise, find smallest VAL2 where VAL2 > VAL
5617 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5618 as maximum.
5619 For signed comparison, if CST2 doesn't have most
5620 significant bit set, handle it similarly. If CST2 has
5621 MSB set, the maximum is the same and minimum is INT_MIN. */
5622 if (minv == valv)
5624 if (valv == sgnbit)
5625 break;
5626 maxv = valv;
5628 else
5630 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5631 if (maxv == valv)
5632 break;
5634 maxv -= 1;
5635 maxv |= ~cst2v;
5636 minv = sgnbit;
5637 valid_p = true;
5638 break;
5640 default:
5641 break;
5643 if (valid_p
5644 && (maxv - minv) != -1)
5646 tree tmp, new_val, type;
5647 int i;
5649 for (i = 0; i < 2; i++)
5650 if (names[i])
5652 wide_int maxv2 = maxv;
5653 tmp = names[i];
5654 type = TREE_TYPE (names[i]);
5655 if (!TYPE_UNSIGNED (type))
5657 type = build_nonstandard_integer_type (nprec, 1);
5658 tmp = build1 (NOP_EXPR, type, names[i]);
5660 if (minv != 0)
5662 tmp = build2 (PLUS_EXPR, type, tmp,
5663 wide_int_to_tree (type, -minv));
5664 maxv2 = maxv - minv;
5666 new_val = wide_int_to_tree (type, maxv2);
5668 if (dump_file)
5670 fprintf (dump_file, "Adding assert for ");
5671 print_generic_expr (dump_file, names[i], 0);
5672 fprintf (dump_file, " from ");
5673 print_generic_expr (dump_file, tmp, 0);
5674 fprintf (dump_file, "\n");
5677 register_new_assert_for (names[i], tmp, LE_EXPR,
5678 new_val, NULL, e, bsi);
5685 /* OP is an operand of a truth value expression which is known to have
5686 a particular value. Register any asserts for OP and for any
5687 operands in OP's defining statement.
5689 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5690 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5692 static void
5693 register_edge_assert_for_1 (tree op, enum tree_code code,
5694 edge e, gimple_stmt_iterator bsi)
5696 gimple *op_def;
5697 tree val;
5698 enum tree_code rhs_code;
5700 /* We only care about SSA_NAMEs. */
5701 if (TREE_CODE (op) != SSA_NAME)
5702 return;
5704 /* We know that OP will have a zero or nonzero value. If OP is used
5705 more than once go ahead and register an assert for OP. */
5706 if (live_on_edge (e, op)
5707 && !has_single_use (op))
5709 val = build_int_cst (TREE_TYPE (op), 0);
5710 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5713 /* Now look at how OP is set. If it's set from a comparison,
5714 a truth operation or some bit operations, then we may be able
5715 to register information about the operands of that assignment. */
5716 op_def = SSA_NAME_DEF_STMT (op);
5717 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5718 return;
5720 rhs_code = gimple_assign_rhs_code (op_def);
5722 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5724 bool invert = (code == EQ_EXPR ? true : false);
5725 tree op0 = gimple_assign_rhs1 (op_def);
5726 tree op1 = gimple_assign_rhs2 (op_def);
5728 if (TREE_CODE (op0) == SSA_NAME)
5729 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5730 if (TREE_CODE (op1) == SSA_NAME)
5731 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5733 else if ((code == NE_EXPR
5734 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5735 || (code == EQ_EXPR
5736 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5738 /* Recurse on each operand. */
5739 tree op0 = gimple_assign_rhs1 (op_def);
5740 tree op1 = gimple_assign_rhs2 (op_def);
5741 if (TREE_CODE (op0) == SSA_NAME
5742 && has_single_use (op0))
5743 register_edge_assert_for_1 (op0, code, e, bsi);
5744 if (TREE_CODE (op1) == SSA_NAME
5745 && has_single_use (op1))
5746 register_edge_assert_for_1 (op1, code, e, bsi);
5748 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5749 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5751 /* Recurse, flipping CODE. */
5752 code = invert_tree_comparison (code, false);
5753 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5755 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5757 /* Recurse through the copy. */
5758 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5760 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5762 /* Recurse through the type conversion, unless it is a narrowing
5763 conversion or conversion from non-integral type. */
5764 tree rhs = gimple_assign_rhs1 (op_def);
5765 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5766 && (TYPE_PRECISION (TREE_TYPE (rhs))
5767 <= TYPE_PRECISION (TREE_TYPE (op))))
5768 register_edge_assert_for_1 (rhs, code, e, bsi);
5772 /* Try to register an edge assertion for SSA name NAME on edge E for
5773 the condition COND contributing to the conditional jump pointed to by
5774 SI. */
5776 static void
5777 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5778 enum tree_code cond_code, tree cond_op0,
5779 tree cond_op1)
5781 tree val;
5782 enum tree_code comp_code;
5783 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5785 /* Do not attempt to infer anything in names that flow through
5786 abnormal edges. */
5787 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5788 return;
5790 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5791 cond_op0, cond_op1,
5792 is_else_edge,
5793 &comp_code, &val))
5794 return;
5796 /* Register ASSERT_EXPRs for name. */
5797 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5798 cond_op1, is_else_edge);
5801 /* If COND is effectively an equality test of an SSA_NAME against
5802 the value zero or one, then we may be able to assert values
5803 for SSA_NAMEs which flow into COND. */
5805 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5806 statement of NAME we can assert both operands of the BIT_AND_EXPR
5807 have nonzero value. */
5808 if (((comp_code == EQ_EXPR && integer_onep (val))
5809 || (comp_code == NE_EXPR && integer_zerop (val))))
5811 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5813 if (is_gimple_assign (def_stmt)
5814 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5816 tree op0 = gimple_assign_rhs1 (def_stmt);
5817 tree op1 = gimple_assign_rhs2 (def_stmt);
5818 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5819 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5823 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5824 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5825 have zero value. */
5826 if (((comp_code == EQ_EXPR && integer_zerop (val))
5827 || (comp_code == NE_EXPR && integer_onep (val))))
5829 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5831 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5832 necessarily zero value, or if type-precision is one. */
5833 if (is_gimple_assign (def_stmt)
5834 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5835 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5836 || comp_code == EQ_EXPR)))
5838 tree op0 = gimple_assign_rhs1 (def_stmt);
5839 tree op1 = gimple_assign_rhs2 (def_stmt);
5840 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5841 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5847 /* Determine whether the outgoing edges of BB should receive an
5848 ASSERT_EXPR for each of the operands of BB's LAST statement.
5849 The last statement of BB must be a COND_EXPR.
5851 If any of the sub-graphs rooted at BB have an interesting use of
5852 the predicate operands, an assert location node is added to the
5853 list of assertions for the corresponding operands. */
5855 static void
5856 find_conditional_asserts (basic_block bb, gcond *last)
5858 gimple_stmt_iterator bsi;
5859 tree op;
5860 edge_iterator ei;
5861 edge e;
5862 ssa_op_iter iter;
5864 bsi = gsi_for_stmt (last);
5866 /* Look for uses of the operands in each of the sub-graphs
5867 rooted at BB. We need to check each of the outgoing edges
5868 separately, so that we know what kind of ASSERT_EXPR to
5869 insert. */
5870 FOR_EACH_EDGE (e, ei, bb->succs)
5872 if (e->dest == bb)
5873 continue;
5875 /* Register the necessary assertions for each operand in the
5876 conditional predicate. */
5877 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5878 register_edge_assert_for (op, e, bsi,
5879 gimple_cond_code (last),
5880 gimple_cond_lhs (last),
5881 gimple_cond_rhs (last));
5885 struct case_info
5887 tree expr;
5888 basic_block bb;
5891 /* Compare two case labels sorting first by the destination bb index
5892 and then by the case value. */
5894 static int
5895 compare_case_labels (const void *p1, const void *p2)
5897 const struct case_info *ci1 = (const struct case_info *) p1;
5898 const struct case_info *ci2 = (const struct case_info *) p2;
5899 int idx1 = ci1->bb->index;
5900 int idx2 = ci2->bb->index;
5902 if (idx1 < idx2)
5903 return -1;
5904 else if (idx1 == idx2)
5906 /* Make sure the default label is first in a group. */
5907 if (!CASE_LOW (ci1->expr))
5908 return -1;
5909 else if (!CASE_LOW (ci2->expr))
5910 return 1;
5911 else
5912 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5913 CASE_LOW (ci2->expr));
5915 else
5916 return 1;
5919 /* Determine whether the outgoing edges of BB should receive an
5920 ASSERT_EXPR for each of the operands of BB's LAST statement.
5921 The last statement of BB must be a SWITCH_EXPR.
5923 If any of the sub-graphs rooted at BB have an interesting use of
5924 the predicate operands, an assert location node is added to the
5925 list of assertions for the corresponding operands. */
5927 static void
5928 find_switch_asserts (basic_block bb, gswitch *last)
5930 gimple_stmt_iterator bsi;
5931 tree op;
5932 edge e;
5933 struct case_info *ci;
5934 size_t n = gimple_switch_num_labels (last);
5935 #if GCC_VERSION >= 4000
5936 unsigned int idx;
5937 #else
5938 /* Work around GCC 3.4 bug (PR 37086). */
5939 volatile unsigned int idx;
5940 #endif
5942 bsi = gsi_for_stmt (last);
5943 op = gimple_switch_index (last);
5944 if (TREE_CODE (op) != SSA_NAME)
5945 return;
5947 /* Build a vector of case labels sorted by destination label. */
5948 ci = XNEWVEC (struct case_info, n);
5949 for (idx = 0; idx < n; ++idx)
5951 ci[idx].expr = gimple_switch_label (last, idx);
5952 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5954 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5956 for (idx = 0; idx < n; ++idx)
5958 tree min, max;
5959 tree cl = ci[idx].expr;
5960 basic_block cbb = ci[idx].bb;
5962 min = CASE_LOW (cl);
5963 max = CASE_HIGH (cl);
5965 /* If there are multiple case labels with the same destination
5966 we need to combine them to a single value range for the edge. */
5967 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5969 /* Skip labels until the last of the group. */
5970 do {
5971 ++idx;
5972 } while (idx < n && cbb == ci[idx].bb);
5973 --idx;
5975 /* Pick up the maximum of the case label range. */
5976 if (CASE_HIGH (ci[idx].expr))
5977 max = CASE_HIGH (ci[idx].expr);
5978 else
5979 max = CASE_LOW (ci[idx].expr);
5982 /* Nothing to do if the range includes the default label until we
5983 can register anti-ranges. */
5984 if (min == NULL_TREE)
5985 continue;
5987 /* Find the edge to register the assert expr on. */
5988 e = find_edge (bb, cbb);
5990 /* Register the necessary assertions for the operand in the
5991 SWITCH_EXPR. */
5992 register_edge_assert_for (op, e, bsi,
5993 max ? GE_EXPR : EQ_EXPR,
5994 op, fold_convert (TREE_TYPE (op), min));
5995 if (max)
5996 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
5997 fold_convert (TREE_TYPE (op), max));
6000 XDELETEVEC (ci);
6004 /* Traverse all the statements in block BB looking for statements that
6005 may generate useful assertions for the SSA names in their operand.
6006 If a statement produces a useful assertion A for name N_i, then the
6007 list of assertions already generated for N_i is scanned to
6008 determine if A is actually needed.
6010 If N_i already had the assertion A at a location dominating the
6011 current location, then nothing needs to be done. Otherwise, the
6012 new location for A is recorded instead.
6014 1- For every statement S in BB, all the variables used by S are
6015 added to bitmap FOUND_IN_SUBGRAPH.
6017 2- If statement S uses an operand N in a way that exposes a known
6018 value range for N, then if N was not already generated by an
6019 ASSERT_EXPR, create a new assert location for N. For instance,
6020 if N is a pointer and the statement dereferences it, we can
6021 assume that N is not NULL.
6023 3- COND_EXPRs are a special case of #2. We can derive range
6024 information from the predicate but need to insert different
6025 ASSERT_EXPRs for each of the sub-graphs rooted at the
6026 conditional block. If the last statement of BB is a conditional
6027 expression of the form 'X op Y', then
6029 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6031 b) If the conditional is the only entry point to the sub-graph
6032 corresponding to the THEN_CLAUSE, recurse into it. On
6033 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6034 an ASSERT_EXPR is added for the corresponding variable.
6036 c) Repeat step (b) on the ELSE_CLAUSE.
6038 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6040 For instance,
6042 if (a == 9)
6043 b = a;
6044 else
6045 b = c + 1;
6047 In this case, an assertion on the THEN clause is useful to
6048 determine that 'a' is always 9 on that edge. However, an assertion
6049 on the ELSE clause would be unnecessary.
6051 4- If BB does not end in a conditional expression, then we recurse
6052 into BB's dominator children.
6054 At the end of the recursive traversal, every SSA name will have a
6055 list of locations where ASSERT_EXPRs should be added. When a new
6056 location for name N is found, it is registered by calling
6057 register_new_assert_for. That function keeps track of all the
6058 registered assertions to prevent adding unnecessary assertions.
6059 For instance, if a pointer P_4 is dereferenced more than once in a
6060 dominator tree, only the location dominating all the dereference of
6061 P_4 will receive an ASSERT_EXPR. */
6063 static void
6064 find_assert_locations_1 (basic_block bb, sbitmap live)
6066 gimple *last;
6068 last = last_stmt (bb);
6070 /* If BB's last statement is a conditional statement involving integer
6071 operands, determine if we need to add ASSERT_EXPRs. */
6072 if (last
6073 && gimple_code (last) == GIMPLE_COND
6074 && !fp_predicate (last)
6075 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6076 find_conditional_asserts (bb, as_a <gcond *> (last));
6078 /* If BB's last statement is a switch statement involving integer
6079 operands, determine if we need to add ASSERT_EXPRs. */
6080 if (last
6081 && gimple_code (last) == GIMPLE_SWITCH
6082 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6083 find_switch_asserts (bb, as_a <gswitch *> (last));
6085 /* Traverse all the statements in BB marking used names and looking
6086 for statements that may infer assertions for their used operands. */
6087 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6088 gsi_prev (&si))
6090 gimple *stmt;
6091 tree op;
6092 ssa_op_iter i;
6094 stmt = gsi_stmt (si);
6096 if (is_gimple_debug (stmt))
6097 continue;
6099 /* See if we can derive an assertion for any of STMT's operands. */
6100 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6102 tree value;
6103 enum tree_code comp_code;
6105 /* If op is not live beyond this stmt, do not bother to insert
6106 asserts for it. */
6107 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6108 continue;
6110 /* If OP is used in such a way that we can infer a value
6111 range for it, and we don't find a previous assertion for
6112 it, create a new assertion location node for OP. */
6113 if (infer_value_range (stmt, op, &comp_code, &value))
6115 /* If we are able to infer a nonzero value range for OP,
6116 then walk backwards through the use-def chain to see if OP
6117 was set via a typecast.
6119 If so, then we can also infer a nonzero value range
6120 for the operand of the NOP_EXPR. */
6121 if (comp_code == NE_EXPR && integer_zerop (value))
6123 tree t = op;
6124 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6126 while (is_gimple_assign (def_stmt)
6127 && CONVERT_EXPR_CODE_P
6128 (gimple_assign_rhs_code (def_stmt))
6129 && TREE_CODE
6130 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6131 && POINTER_TYPE_P
6132 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6134 t = gimple_assign_rhs1 (def_stmt);
6135 def_stmt = SSA_NAME_DEF_STMT (t);
6137 /* Note we want to register the assert for the
6138 operand of the NOP_EXPR after SI, not after the
6139 conversion. */
6140 if (! has_single_use (t))
6141 register_new_assert_for (t, t, comp_code, value,
6142 bb, NULL, si);
6146 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6150 /* Update live. */
6151 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6152 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6153 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6154 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6157 /* Traverse all PHI nodes in BB, updating live. */
6158 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6159 gsi_next (&si))
6161 use_operand_p arg_p;
6162 ssa_op_iter i;
6163 gphi *phi = si.phi ();
6164 tree res = gimple_phi_result (phi);
6166 if (virtual_operand_p (res))
6167 continue;
6169 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6171 tree arg = USE_FROM_PTR (arg_p);
6172 if (TREE_CODE (arg) == SSA_NAME)
6173 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6176 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6180 /* Do an RPO walk over the function computing SSA name liveness
6181 on-the-fly and deciding on assert expressions to insert. */
6183 static void
6184 find_assert_locations (void)
6186 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6187 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6188 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6189 int rpo_cnt, i;
6191 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6192 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6193 for (i = 0; i < rpo_cnt; ++i)
6194 bb_rpo[rpo[i]] = i;
6196 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6197 the order we compute liveness and insert asserts we otherwise
6198 fail to insert asserts into the loop latch. */
6199 loop_p loop;
6200 FOR_EACH_LOOP (loop, 0)
6202 i = loop->latch->index;
6203 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6204 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6205 !gsi_end_p (gsi); gsi_next (&gsi))
6207 gphi *phi = gsi.phi ();
6208 if (virtual_operand_p (gimple_phi_result (phi)))
6209 continue;
6210 tree arg = gimple_phi_arg_def (phi, j);
6211 if (TREE_CODE (arg) == SSA_NAME)
6213 if (live[i] == NULL)
6215 live[i] = sbitmap_alloc (num_ssa_names);
6216 bitmap_clear (live[i]);
6218 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6223 for (i = rpo_cnt - 1; i >= 0; --i)
6225 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6226 edge e;
6227 edge_iterator ei;
6229 if (!live[rpo[i]])
6231 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6232 bitmap_clear (live[rpo[i]]);
6235 /* Process BB and update the live information with uses in
6236 this block. */
6237 find_assert_locations_1 (bb, live[rpo[i]]);
6239 /* Merge liveness into the predecessor blocks and free it. */
6240 if (!bitmap_empty_p (live[rpo[i]]))
6242 int pred_rpo = i;
6243 FOR_EACH_EDGE (e, ei, bb->preds)
6245 int pred = e->src->index;
6246 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6247 continue;
6249 if (!live[pred])
6251 live[pred] = sbitmap_alloc (num_ssa_names);
6252 bitmap_clear (live[pred]);
6254 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6256 if (bb_rpo[pred] < pred_rpo)
6257 pred_rpo = bb_rpo[pred];
6260 /* Record the RPO number of the last visited block that needs
6261 live information from this block. */
6262 last_rpo[rpo[i]] = pred_rpo;
6264 else
6266 sbitmap_free (live[rpo[i]]);
6267 live[rpo[i]] = NULL;
6270 /* We can free all successors live bitmaps if all their
6271 predecessors have been visited already. */
6272 FOR_EACH_EDGE (e, ei, bb->succs)
6273 if (last_rpo[e->dest->index] == i
6274 && live[e->dest->index])
6276 sbitmap_free (live[e->dest->index]);
6277 live[e->dest->index] = NULL;
6281 XDELETEVEC (rpo);
6282 XDELETEVEC (bb_rpo);
6283 XDELETEVEC (last_rpo);
6284 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6285 if (live[i])
6286 sbitmap_free (live[i]);
6287 XDELETEVEC (live);
6290 /* Create an ASSERT_EXPR for NAME and insert it in the location
6291 indicated by LOC. Return true if we made any edge insertions. */
6293 static bool
6294 process_assert_insertions_for (tree name, assert_locus *loc)
6296 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6297 gimple *stmt;
6298 tree cond;
6299 gimple *assert_stmt;
6300 edge_iterator ei;
6301 edge e;
6303 /* If we have X <=> X do not insert an assert expr for that. */
6304 if (loc->expr == loc->val)
6305 return false;
6307 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6308 assert_stmt = build_assert_expr_for (cond, name);
6309 if (loc->e)
6311 /* We have been asked to insert the assertion on an edge. This
6312 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6313 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6314 || (gimple_code (gsi_stmt (loc->si))
6315 == GIMPLE_SWITCH));
6317 gsi_insert_on_edge (loc->e, assert_stmt);
6318 return true;
6321 /* Otherwise, we can insert right after LOC->SI iff the
6322 statement must not be the last statement in the block. */
6323 stmt = gsi_stmt (loc->si);
6324 if (!stmt_ends_bb_p (stmt))
6326 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6327 return false;
6330 /* If STMT must be the last statement in BB, we can only insert new
6331 assertions on the non-abnormal edge out of BB. Note that since
6332 STMT is not control flow, there may only be one non-abnormal edge
6333 out of BB. */
6334 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6335 if (!(e->flags & EDGE_ABNORMAL))
6337 gsi_insert_on_edge (e, assert_stmt);
6338 return true;
6341 gcc_unreachable ();
6345 /* Process all the insertions registered for every name N_i registered
6346 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6347 found in ASSERTS_FOR[i]. */
6349 static void
6350 process_assert_insertions (void)
6352 unsigned i;
6353 bitmap_iterator bi;
6354 bool update_edges_p = false;
6355 int num_asserts = 0;
6357 if (dump_file && (dump_flags & TDF_DETAILS))
6358 dump_all_asserts (dump_file);
6360 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6362 assert_locus *loc = asserts_for[i];
6363 gcc_assert (loc);
6365 while (loc)
6367 assert_locus *next = loc->next;
6368 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6369 free (loc);
6370 loc = next;
6371 num_asserts++;
6375 if (update_edges_p)
6376 gsi_commit_edge_inserts ();
6378 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6379 num_asserts);
6383 /* Traverse the flowgraph looking for conditional jumps to insert range
6384 expressions. These range expressions are meant to provide information
6385 to optimizations that need to reason in terms of value ranges. They
6386 will not be expanded into RTL. For instance, given:
6388 x = ...
6389 y = ...
6390 if (x < y)
6391 y = x - 2;
6392 else
6393 x = y + 3;
6395 this pass will transform the code into:
6397 x = ...
6398 y = ...
6399 if (x < y)
6401 x = ASSERT_EXPR <x, x < y>
6402 y = x - 2
6404 else
6406 y = ASSERT_EXPR <y, x >= y>
6407 x = y + 3
6410 The idea is that once copy and constant propagation have run, other
6411 optimizations will be able to determine what ranges of values can 'x'
6412 take in different paths of the code, simply by checking the reaching
6413 definition of 'x'. */
6415 static void
6416 insert_range_assertions (void)
6418 need_assert_for = BITMAP_ALLOC (NULL);
6419 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6421 calculate_dominance_info (CDI_DOMINATORS);
6423 find_assert_locations ();
6424 if (!bitmap_empty_p (need_assert_for))
6426 process_assert_insertions ();
6427 update_ssa (TODO_update_ssa_no_phi);
6430 if (dump_file && (dump_flags & TDF_DETAILS))
6432 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6433 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6436 free (asserts_for);
6437 BITMAP_FREE (need_assert_for);
6440 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6441 and "struct" hacks. If VRP can determine that the
6442 array subscript is a constant, check if it is outside valid
6443 range. If the array subscript is a RANGE, warn if it is
6444 non-overlapping with valid range.
6445 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6447 static void
6448 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6450 value_range *vr = NULL;
6451 tree low_sub, up_sub;
6452 tree low_bound, up_bound, up_bound_p1;
6453 tree base;
6455 if (TREE_NO_WARNING (ref))
6456 return;
6458 low_sub = up_sub = TREE_OPERAND (ref, 1);
6459 up_bound = array_ref_up_bound (ref);
6461 /* Can not check flexible arrays. */
6462 if (!up_bound
6463 || TREE_CODE (up_bound) != INTEGER_CST)
6464 return;
6466 /* Accesses to trailing arrays via pointers may access storage
6467 beyond the types array bounds. */
6468 base = get_base_address (ref);
6469 if ((warn_array_bounds < 2)
6470 && base && TREE_CODE (base) == MEM_REF)
6472 tree cref, next = NULL_TREE;
6474 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6475 return;
6477 cref = TREE_OPERAND (ref, 0);
6478 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6479 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6480 next && TREE_CODE (next) != FIELD_DECL;
6481 next = DECL_CHAIN (next))
6484 /* If this is the last field in a struct type or a field in a
6485 union type do not warn. */
6486 if (!next)
6487 return;
6490 low_bound = array_ref_low_bound (ref);
6491 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6492 build_int_cst (TREE_TYPE (up_bound), 1));
6494 /* Empty array. */
6495 if (tree_int_cst_equal (low_bound, up_bound_p1))
6497 warning_at (location, OPT_Warray_bounds,
6498 "array subscript is above array bounds");
6499 TREE_NO_WARNING (ref) = 1;
6502 if (TREE_CODE (low_sub) == SSA_NAME)
6504 vr = get_value_range (low_sub);
6505 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6507 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6508 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6512 if (vr && vr->type == VR_ANTI_RANGE)
6514 if (TREE_CODE (up_sub) == INTEGER_CST
6515 && (ignore_off_by_one
6516 ? tree_int_cst_lt (up_bound, up_sub)
6517 : tree_int_cst_le (up_bound, up_sub))
6518 && TREE_CODE (low_sub) == INTEGER_CST
6519 && tree_int_cst_le (low_sub, low_bound))
6521 warning_at (location, OPT_Warray_bounds,
6522 "array subscript is outside array bounds");
6523 TREE_NO_WARNING (ref) = 1;
6526 else if (TREE_CODE (up_sub) == INTEGER_CST
6527 && (ignore_off_by_one
6528 ? !tree_int_cst_le (up_sub, up_bound_p1)
6529 : !tree_int_cst_le (up_sub, up_bound)))
6531 if (dump_file && (dump_flags & TDF_DETAILS))
6533 fprintf (dump_file, "Array bound warning for ");
6534 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6535 fprintf (dump_file, "\n");
6537 warning_at (location, OPT_Warray_bounds,
6538 "array subscript is above array bounds");
6539 TREE_NO_WARNING (ref) = 1;
6541 else if (TREE_CODE (low_sub) == INTEGER_CST
6542 && tree_int_cst_lt (low_sub, low_bound))
6544 if (dump_file && (dump_flags & TDF_DETAILS))
6546 fprintf (dump_file, "Array bound warning for ");
6547 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6548 fprintf (dump_file, "\n");
6550 warning_at (location, OPT_Warray_bounds,
6551 "array subscript is below array bounds");
6552 TREE_NO_WARNING (ref) = 1;
6556 /* Searches if the expr T, located at LOCATION computes
6557 address of an ARRAY_REF, and call check_array_ref on it. */
6559 static void
6560 search_for_addr_array (tree t, location_t location)
6562 /* Check each ARRAY_REFs in the reference chain. */
6565 if (TREE_CODE (t) == ARRAY_REF)
6566 check_array_ref (location, t, true /*ignore_off_by_one*/);
6568 t = TREE_OPERAND (t, 0);
6570 while (handled_component_p (t));
6572 if (TREE_CODE (t) == MEM_REF
6573 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6574 && !TREE_NO_WARNING (t))
6576 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6577 tree low_bound, up_bound, el_sz;
6578 offset_int idx;
6579 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6580 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6581 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6582 return;
6584 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6585 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6586 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6587 if (!low_bound
6588 || TREE_CODE (low_bound) != INTEGER_CST
6589 || !up_bound
6590 || TREE_CODE (up_bound) != INTEGER_CST
6591 || !el_sz
6592 || TREE_CODE (el_sz) != INTEGER_CST)
6593 return;
6595 idx = mem_ref_offset (t);
6596 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6597 if (wi::lts_p (idx, 0))
6599 if (dump_file && (dump_flags & TDF_DETAILS))
6601 fprintf (dump_file, "Array bound warning for ");
6602 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6603 fprintf (dump_file, "\n");
6605 warning_at (location, OPT_Warray_bounds,
6606 "array subscript is below array bounds");
6607 TREE_NO_WARNING (t) = 1;
6609 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6610 - wi::to_offset (low_bound) + 1)))
6612 if (dump_file && (dump_flags & TDF_DETAILS))
6614 fprintf (dump_file, "Array bound warning for ");
6615 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6616 fprintf (dump_file, "\n");
6618 warning_at (location, OPT_Warray_bounds,
6619 "array subscript is above array bounds");
6620 TREE_NO_WARNING (t) = 1;
6625 /* walk_tree() callback that checks if *TP is
6626 an ARRAY_REF inside an ADDR_EXPR (in which an array
6627 subscript one outside the valid range is allowed). Call
6628 check_array_ref for each ARRAY_REF found. The location is
6629 passed in DATA. */
6631 static tree
6632 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6634 tree t = *tp;
6635 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6636 location_t location;
6638 if (EXPR_HAS_LOCATION (t))
6639 location = EXPR_LOCATION (t);
6640 else
6642 location_t *locp = (location_t *) wi->info;
6643 location = *locp;
6646 *walk_subtree = TRUE;
6648 if (TREE_CODE (t) == ARRAY_REF)
6649 check_array_ref (location, t, false /*ignore_off_by_one*/);
6651 else if (TREE_CODE (t) == ADDR_EXPR)
6653 search_for_addr_array (t, location);
6654 *walk_subtree = FALSE;
6657 return NULL_TREE;
6660 /* Walk over all statements of all reachable BBs and call check_array_bounds
6661 on them. */
6663 static void
6664 check_all_array_refs (void)
6666 basic_block bb;
6667 gimple_stmt_iterator si;
6669 FOR_EACH_BB_FN (bb, cfun)
6671 edge_iterator ei;
6672 edge e;
6673 bool executable = false;
6675 /* Skip blocks that were found to be unreachable. */
6676 FOR_EACH_EDGE (e, ei, bb->preds)
6677 executable |= !!(e->flags & EDGE_EXECUTABLE);
6678 if (!executable)
6679 continue;
6681 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6683 gimple *stmt = gsi_stmt (si);
6684 struct walk_stmt_info wi;
6685 if (!gimple_has_location (stmt)
6686 || is_gimple_debug (stmt))
6687 continue;
6689 memset (&wi, 0, sizeof (wi));
6691 location_t loc = gimple_location (stmt);
6692 wi.info = &loc;
6694 walk_gimple_op (gsi_stmt (si),
6695 check_array_bounds,
6696 &wi);
6701 /* Return true if all imm uses of VAR are either in STMT, or
6702 feed (optionally through a chain of single imm uses) GIMPLE_COND
6703 in basic block COND_BB. */
6705 static bool
6706 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6708 use_operand_p use_p, use2_p;
6709 imm_use_iterator iter;
6711 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6712 if (USE_STMT (use_p) != stmt)
6714 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6715 if (is_gimple_debug (use_stmt))
6716 continue;
6717 while (is_gimple_assign (use_stmt)
6718 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6719 && single_imm_use (gimple_assign_lhs (use_stmt),
6720 &use2_p, &use_stmt2))
6721 use_stmt = use_stmt2;
6722 if (gimple_code (use_stmt) != GIMPLE_COND
6723 || gimple_bb (use_stmt) != cond_bb)
6724 return false;
6726 return true;
6729 /* Handle
6730 _4 = x_3 & 31;
6731 if (_4 != 0)
6732 goto <bb 6>;
6733 else
6734 goto <bb 7>;
6735 <bb 6>:
6736 __builtin_unreachable ();
6737 <bb 7>:
6738 x_5 = ASSERT_EXPR <x_3, ...>;
6739 If x_3 has no other immediate uses (checked by caller),
6740 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6741 from the non-zero bitmask. */
6743 static void
6744 maybe_set_nonzero_bits (basic_block bb, tree var)
6746 edge e = single_pred_edge (bb);
6747 basic_block cond_bb = e->src;
6748 gimple *stmt = last_stmt (cond_bb);
6749 tree cst;
6751 if (stmt == NULL
6752 || gimple_code (stmt) != GIMPLE_COND
6753 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6754 ? EQ_EXPR : NE_EXPR)
6755 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6756 || !integer_zerop (gimple_cond_rhs (stmt)))
6757 return;
6759 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6760 if (!is_gimple_assign (stmt)
6761 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6762 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6763 return;
6764 if (gimple_assign_rhs1 (stmt) != var)
6766 gimple *stmt2;
6768 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6769 return;
6770 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6771 if (!gimple_assign_cast_p (stmt2)
6772 || gimple_assign_rhs1 (stmt2) != var
6773 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6774 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6775 != TYPE_PRECISION (TREE_TYPE (var))))
6776 return;
6778 cst = gimple_assign_rhs2 (stmt);
6779 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6782 /* Convert range assertion expressions into the implied copies and
6783 copy propagate away the copies. Doing the trivial copy propagation
6784 here avoids the need to run the full copy propagation pass after
6785 VRP.
6787 FIXME, this will eventually lead to copy propagation removing the
6788 names that had useful range information attached to them. For
6789 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6790 then N_i will have the range [3, +INF].
6792 However, by converting the assertion into the implied copy
6793 operation N_i = N_j, we will then copy-propagate N_j into the uses
6794 of N_i and lose the range information. We may want to hold on to
6795 ASSERT_EXPRs a little while longer as the ranges could be used in
6796 things like jump threading.
6798 The problem with keeping ASSERT_EXPRs around is that passes after
6799 VRP need to handle them appropriately.
6801 Another approach would be to make the range information a first
6802 class property of the SSA_NAME so that it can be queried from
6803 any pass. This is made somewhat more complex by the need for
6804 multiple ranges to be associated with one SSA_NAME. */
6806 static void
6807 remove_range_assertions (void)
6809 basic_block bb;
6810 gimple_stmt_iterator si;
6811 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6812 a basic block preceeded by GIMPLE_COND branching to it and
6813 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6814 int is_unreachable;
6816 /* Note that the BSI iterator bump happens at the bottom of the
6817 loop and no bump is necessary if we're removing the statement
6818 referenced by the current BSI. */
6819 FOR_EACH_BB_FN (bb, cfun)
6820 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6822 gimple *stmt = gsi_stmt (si);
6823 gimple *use_stmt;
6825 if (is_gimple_assign (stmt)
6826 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6828 tree lhs = gimple_assign_lhs (stmt);
6829 tree rhs = gimple_assign_rhs1 (stmt);
6830 tree var;
6831 use_operand_p use_p;
6832 imm_use_iterator iter;
6834 var = ASSERT_EXPR_VAR (rhs);
6835 gcc_assert (TREE_CODE (var) == SSA_NAME);
6837 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6838 && SSA_NAME_RANGE_INFO (lhs))
6840 if (is_unreachable == -1)
6842 is_unreachable = 0;
6843 if (single_pred_p (bb)
6844 && assert_unreachable_fallthru_edge_p
6845 (single_pred_edge (bb)))
6846 is_unreachable = 1;
6848 /* Handle
6849 if (x_7 >= 10 && x_7 < 20)
6850 __builtin_unreachable ();
6851 x_8 = ASSERT_EXPR <x_7, ...>;
6852 if the only uses of x_7 are in the ASSERT_EXPR and
6853 in the condition. In that case, we can copy the
6854 range info from x_8 computed in this pass also
6855 for x_7. */
6856 if (is_unreachable
6857 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6858 single_pred (bb)))
6860 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6861 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6862 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6863 maybe_set_nonzero_bits (bb, var);
6867 /* Propagate the RHS into every use of the LHS. */
6868 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6869 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6870 SET_USE (use_p, var);
6872 /* And finally, remove the copy, it is not needed. */
6873 gsi_remove (&si, true);
6874 release_defs (stmt);
6876 else
6878 if (!is_gimple_debug (gsi_stmt (si)))
6879 is_unreachable = 0;
6880 gsi_next (&si);
6886 /* Return true if STMT is interesting for VRP. */
6888 static bool
6889 stmt_interesting_for_vrp (gimple *stmt)
6891 if (gimple_code (stmt) == GIMPLE_PHI)
6893 tree res = gimple_phi_result (stmt);
6894 return (!virtual_operand_p (res)
6895 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6896 || POINTER_TYPE_P (TREE_TYPE (res))));
6898 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6900 tree lhs = gimple_get_lhs (stmt);
6902 /* In general, assignments with virtual operands are not useful
6903 for deriving ranges, with the obvious exception of calls to
6904 builtin functions. */
6905 if (lhs && TREE_CODE (lhs) == SSA_NAME
6906 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6907 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6908 && (is_gimple_call (stmt)
6909 || !gimple_vuse (stmt)))
6910 return true;
6911 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
6912 switch (gimple_call_internal_fn (stmt))
6914 case IFN_ADD_OVERFLOW:
6915 case IFN_SUB_OVERFLOW:
6916 case IFN_MUL_OVERFLOW:
6917 /* These internal calls return _Complex integer type,
6918 but are interesting to VRP nevertheless. */
6919 if (lhs && TREE_CODE (lhs) == SSA_NAME)
6920 return true;
6921 break;
6922 default:
6923 break;
6926 else if (gimple_code (stmt) == GIMPLE_COND
6927 || gimple_code (stmt) == GIMPLE_SWITCH)
6928 return true;
6930 return false;
6934 /* Initialize local data structures for VRP. */
6936 static void
6937 vrp_initialize (void)
6939 basic_block bb;
6941 values_propagated = false;
6942 num_vr_values = num_ssa_names;
6943 vr_value = XCNEWVEC (value_range *, num_vr_values);
6944 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6946 FOR_EACH_BB_FN (bb, cfun)
6948 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6949 gsi_next (&si))
6951 gphi *phi = si.phi ();
6952 if (!stmt_interesting_for_vrp (phi))
6954 tree lhs = PHI_RESULT (phi);
6955 set_value_range_to_varying (get_value_range (lhs));
6956 prop_set_simulate_again (phi, false);
6958 else
6959 prop_set_simulate_again (phi, true);
6962 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
6963 gsi_next (&si))
6965 gimple *stmt = gsi_stmt (si);
6967 /* If the statement is a control insn, then we do not
6968 want to avoid simulating the statement once. Failure
6969 to do so means that those edges will never get added. */
6970 if (stmt_ends_bb_p (stmt))
6971 prop_set_simulate_again (stmt, true);
6972 else if (!stmt_interesting_for_vrp (stmt))
6974 ssa_op_iter i;
6975 tree def;
6976 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6977 set_value_range_to_varying (get_value_range (def));
6978 prop_set_simulate_again (stmt, false);
6980 else
6981 prop_set_simulate_again (stmt, true);
6986 /* Return the singleton value-range for NAME or NAME. */
6988 static inline tree
6989 vrp_valueize (tree name)
6991 if (TREE_CODE (name) == SSA_NAME)
6993 value_range *vr = get_value_range (name);
6994 if (vr->type == VR_RANGE
6995 && (vr->min == vr->max
6996 || operand_equal_p (vr->min, vr->max, 0)))
6997 return vr->min;
6999 return name;
7002 /* Return the singleton value-range for NAME if that is a constant
7003 but signal to not follow SSA edges. */
7005 static inline tree
7006 vrp_valueize_1 (tree name)
7008 if (TREE_CODE (name) == SSA_NAME)
7010 /* If the definition may be simulated again we cannot follow
7011 this SSA edge as the SSA propagator does not necessarily
7012 re-visit the use. */
7013 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7014 if (!gimple_nop_p (def_stmt)
7015 && prop_simulate_again_p (def_stmt))
7016 return NULL_TREE;
7017 value_range *vr = get_value_range (name);
7018 if (range_int_cst_singleton_p (vr))
7019 return vr->min;
7021 return name;
7024 /* Visit assignment STMT. If it produces an interesting range, record
7025 the SSA name in *OUTPUT_P. */
7027 static enum ssa_prop_result
7028 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p)
7030 tree def, lhs;
7031 ssa_op_iter iter;
7032 enum gimple_code code = gimple_code (stmt);
7033 lhs = gimple_get_lhs (stmt);
7035 /* We only keep track of ranges in integral and pointer types. */
7036 if (TREE_CODE (lhs) == SSA_NAME
7037 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7038 /* It is valid to have NULL MIN/MAX values on a type. See
7039 build_range_type. */
7040 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7041 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7042 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7044 value_range new_vr = VR_INITIALIZER;
7046 /* Try folding the statement to a constant first. */
7047 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7048 vrp_valueize_1);
7049 if (tem && is_gimple_min_invariant (tem))
7050 set_value_range_to_value (&new_vr, tem, NULL);
7051 /* Then dispatch to value-range extracting functions. */
7052 else if (code == GIMPLE_CALL)
7053 extract_range_basic (&new_vr, stmt);
7054 else
7055 extract_range_from_assignment (&new_vr, as_a <gassign *> (stmt));
7057 if (update_value_range (lhs, &new_vr))
7059 *output_p = lhs;
7061 if (dump_file && (dump_flags & TDF_DETAILS))
7063 fprintf (dump_file, "Found new range for ");
7064 print_generic_expr (dump_file, lhs, 0);
7065 fprintf (dump_file, ": ");
7066 dump_value_range (dump_file, &new_vr);
7067 fprintf (dump_file, "\n");
7070 if (new_vr.type == VR_VARYING)
7071 return SSA_PROP_VARYING;
7073 return SSA_PROP_INTERESTING;
7076 return SSA_PROP_NOT_INTERESTING;
7078 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7079 switch (gimple_call_internal_fn (stmt))
7081 case IFN_ADD_OVERFLOW:
7082 case IFN_SUB_OVERFLOW:
7083 case IFN_MUL_OVERFLOW:
7084 /* These internal calls return _Complex integer type,
7085 which VRP does not track, but the immediate uses
7086 thereof might be interesting. */
7087 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7089 imm_use_iterator iter;
7090 use_operand_p use_p;
7091 enum ssa_prop_result res = SSA_PROP_VARYING;
7093 set_value_range_to_varying (get_value_range (lhs));
7095 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
7097 gimple *use_stmt = USE_STMT (use_p);
7098 if (!is_gimple_assign (use_stmt))
7099 continue;
7100 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
7101 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
7102 continue;
7103 tree rhs1 = gimple_assign_rhs1 (use_stmt);
7104 tree use_lhs = gimple_assign_lhs (use_stmt);
7105 if (TREE_CODE (rhs1) != rhs_code
7106 || TREE_OPERAND (rhs1, 0) != lhs
7107 || TREE_CODE (use_lhs) != SSA_NAME
7108 || !stmt_interesting_for_vrp (use_stmt)
7109 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
7110 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
7111 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
7112 continue;
7114 /* If there is a change in the value range for any of the
7115 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7116 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7117 or IMAGPART_EXPR immediate uses, but none of them have
7118 a change in their value ranges, return
7119 SSA_PROP_NOT_INTERESTING. If there are no
7120 {REAL,IMAG}PART_EXPR uses at all,
7121 return SSA_PROP_VARYING. */
7122 value_range new_vr = VR_INITIALIZER;
7123 extract_range_basic (&new_vr, use_stmt);
7124 value_range *old_vr = get_value_range (use_lhs);
7125 if (old_vr->type != new_vr.type
7126 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
7127 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
7128 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
7129 res = SSA_PROP_INTERESTING;
7130 else
7131 res = SSA_PROP_NOT_INTERESTING;
7132 BITMAP_FREE (new_vr.equiv);
7133 if (res == SSA_PROP_INTERESTING)
7135 *output_p = lhs;
7136 return res;
7140 return res;
7142 break;
7143 default:
7144 break;
7147 /* Every other statement produces no useful ranges. */
7148 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7149 set_value_range_to_varying (get_value_range (def));
7151 return SSA_PROP_VARYING;
7154 /* Helper that gets the value range of the SSA_NAME with version I
7155 or a symbolic range containing the SSA_NAME only if the value range
7156 is varying or undefined. */
7158 static inline value_range
7159 get_vr_for_comparison (int i)
7161 value_range vr = *get_value_range (ssa_name (i));
7163 /* If name N_i does not have a valid range, use N_i as its own
7164 range. This allows us to compare against names that may
7165 have N_i in their ranges. */
7166 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7168 vr.type = VR_RANGE;
7169 vr.min = ssa_name (i);
7170 vr.max = ssa_name (i);
7173 return vr;
7176 /* Compare all the value ranges for names equivalent to VAR with VAL
7177 using comparison code COMP. Return the same value returned by
7178 compare_range_with_value, including the setting of
7179 *STRICT_OVERFLOW_P. */
7181 static tree
7182 compare_name_with_value (enum tree_code comp, tree var, tree val,
7183 bool *strict_overflow_p)
7185 bitmap_iterator bi;
7186 unsigned i;
7187 bitmap e;
7188 tree retval, t;
7189 int used_strict_overflow;
7190 bool sop;
7191 value_range equiv_vr;
7193 /* Get the set of equivalences for VAR. */
7194 e = get_value_range (var)->equiv;
7196 /* Start at -1. Set it to 0 if we do a comparison without relying
7197 on overflow, or 1 if all comparisons rely on overflow. */
7198 used_strict_overflow = -1;
7200 /* Compare vars' value range with val. */
7201 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7202 sop = false;
7203 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7204 if (retval)
7205 used_strict_overflow = sop ? 1 : 0;
7207 /* If the equiv set is empty we have done all work we need to do. */
7208 if (e == NULL)
7210 if (retval
7211 && used_strict_overflow > 0)
7212 *strict_overflow_p = true;
7213 return retval;
7216 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7218 equiv_vr = get_vr_for_comparison (i);
7219 sop = false;
7220 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7221 if (t)
7223 /* If we get different answers from different members
7224 of the equivalence set this check must be in a dead
7225 code region. Folding it to a trap representation
7226 would be correct here. For now just return don't-know. */
7227 if (retval != NULL
7228 && t != retval)
7230 retval = NULL_TREE;
7231 break;
7233 retval = t;
7235 if (!sop)
7236 used_strict_overflow = 0;
7237 else if (used_strict_overflow < 0)
7238 used_strict_overflow = 1;
7242 if (retval
7243 && used_strict_overflow > 0)
7244 *strict_overflow_p = true;
7246 return retval;
7250 /* Given a comparison code COMP and names N1 and N2, compare all the
7251 ranges equivalent to N1 against all the ranges equivalent to N2
7252 to determine the value of N1 COMP N2. Return the same value
7253 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7254 whether we relied on an overflow infinity in the comparison. */
7257 static tree
7258 compare_names (enum tree_code comp, tree n1, tree n2,
7259 bool *strict_overflow_p)
7261 tree t, retval;
7262 bitmap e1, e2;
7263 bitmap_iterator bi1, bi2;
7264 unsigned i1, i2;
7265 int used_strict_overflow;
7266 static bitmap_obstack *s_obstack = NULL;
7267 static bitmap s_e1 = NULL, s_e2 = NULL;
7269 /* Compare the ranges of every name equivalent to N1 against the
7270 ranges of every name equivalent to N2. */
7271 e1 = get_value_range (n1)->equiv;
7272 e2 = get_value_range (n2)->equiv;
7274 /* Use the fake bitmaps if e1 or e2 are not available. */
7275 if (s_obstack == NULL)
7277 s_obstack = XNEW (bitmap_obstack);
7278 bitmap_obstack_initialize (s_obstack);
7279 s_e1 = BITMAP_ALLOC (s_obstack);
7280 s_e2 = BITMAP_ALLOC (s_obstack);
7282 if (e1 == NULL)
7283 e1 = s_e1;
7284 if (e2 == NULL)
7285 e2 = s_e2;
7287 /* Add N1 and N2 to their own set of equivalences to avoid
7288 duplicating the body of the loop just to check N1 and N2
7289 ranges. */
7290 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7291 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7293 /* If the equivalence sets have a common intersection, then the two
7294 names can be compared without checking their ranges. */
7295 if (bitmap_intersect_p (e1, e2))
7297 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7298 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7300 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7301 ? boolean_true_node
7302 : boolean_false_node;
7305 /* Start at -1. Set it to 0 if we do a comparison without relying
7306 on overflow, or 1 if all comparisons rely on overflow. */
7307 used_strict_overflow = -1;
7309 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7310 N2 to their own set of equivalences to avoid duplicating the body
7311 of the loop just to check N1 and N2 ranges. */
7312 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7314 value_range vr1 = get_vr_for_comparison (i1);
7316 t = retval = NULL_TREE;
7317 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7319 bool sop = false;
7321 value_range vr2 = get_vr_for_comparison (i2);
7323 t = compare_ranges (comp, &vr1, &vr2, &sop);
7324 if (t)
7326 /* If we get different answers from different members
7327 of the equivalence set this check must be in a dead
7328 code region. Folding it to a trap representation
7329 would be correct here. For now just return don't-know. */
7330 if (retval != NULL
7331 && t != retval)
7333 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7334 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7335 return NULL_TREE;
7337 retval = t;
7339 if (!sop)
7340 used_strict_overflow = 0;
7341 else if (used_strict_overflow < 0)
7342 used_strict_overflow = 1;
7346 if (retval)
7348 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7349 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7350 if (used_strict_overflow > 0)
7351 *strict_overflow_p = true;
7352 return retval;
7356 /* None of the equivalent ranges are useful in computing this
7357 comparison. */
7358 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7359 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7360 return NULL_TREE;
7363 /* Helper function for vrp_evaluate_conditional_warnv & other
7364 optimizers. */
7366 static tree
7367 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7368 tree op0, tree op1,
7369 bool * strict_overflow_p)
7371 value_range *vr0, *vr1;
7373 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7374 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7376 tree res = NULL_TREE;
7377 if (vr0 && vr1)
7378 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7379 if (!res && vr0)
7380 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7381 if (!res && vr1)
7382 res = (compare_range_with_value
7383 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7384 return res;
7387 /* Helper function for vrp_evaluate_conditional_warnv. */
7389 static tree
7390 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7391 tree op1, bool use_equiv_p,
7392 bool *strict_overflow_p, bool *only_ranges)
7394 tree ret;
7395 if (only_ranges)
7396 *only_ranges = true;
7398 /* We only deal with integral and pointer types. */
7399 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7400 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7401 return NULL_TREE;
7403 if (use_equiv_p)
7405 if (only_ranges
7406 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7407 (code, op0, op1, strict_overflow_p)))
7408 return ret;
7409 *only_ranges = false;
7410 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7411 return compare_names (code, op0, op1, strict_overflow_p);
7412 else if (TREE_CODE (op0) == SSA_NAME)
7413 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7414 else if (TREE_CODE (op1) == SSA_NAME)
7415 return (compare_name_with_value
7416 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7418 else
7419 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7420 strict_overflow_p);
7421 return NULL_TREE;
7424 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7425 information. Return NULL if the conditional can not be evaluated.
7426 The ranges of all the names equivalent with the operands in COND
7427 will be used when trying to compute the value. If the result is
7428 based on undefined signed overflow, issue a warning if
7429 appropriate. */
7431 static tree
7432 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7434 bool sop;
7435 tree ret;
7436 bool only_ranges;
7438 /* Some passes and foldings leak constants with overflow flag set
7439 into the IL. Avoid doing wrong things with these and bail out. */
7440 if ((TREE_CODE (op0) == INTEGER_CST
7441 && TREE_OVERFLOW (op0))
7442 || (TREE_CODE (op1) == INTEGER_CST
7443 && TREE_OVERFLOW (op1)))
7444 return NULL_TREE;
7446 sop = false;
7447 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7448 &only_ranges);
7450 if (ret && sop)
7452 enum warn_strict_overflow_code wc;
7453 const char* warnmsg;
7455 if (is_gimple_min_invariant (ret))
7457 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7458 warnmsg = G_("assuming signed overflow does not occur when "
7459 "simplifying conditional to constant");
7461 else
7463 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7464 warnmsg = G_("assuming signed overflow does not occur when "
7465 "simplifying conditional");
7468 if (issue_strict_overflow_warning (wc))
7470 location_t location;
7472 if (!gimple_has_location (stmt))
7473 location = input_location;
7474 else
7475 location = gimple_location (stmt);
7476 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7480 if (warn_type_limits
7481 && ret && only_ranges
7482 && TREE_CODE_CLASS (code) == tcc_comparison
7483 && TREE_CODE (op0) == SSA_NAME)
7485 /* If the comparison is being folded and the operand on the LHS
7486 is being compared against a constant value that is outside of
7487 the natural range of OP0's type, then the predicate will
7488 always fold regardless of the value of OP0. If -Wtype-limits
7489 was specified, emit a warning. */
7490 tree type = TREE_TYPE (op0);
7491 value_range *vr0 = get_value_range (op0);
7493 if (vr0->type == VR_RANGE
7494 && INTEGRAL_TYPE_P (type)
7495 && vrp_val_is_min (vr0->min)
7496 && vrp_val_is_max (vr0->max)
7497 && is_gimple_min_invariant (op1))
7499 location_t location;
7501 if (!gimple_has_location (stmt))
7502 location = input_location;
7503 else
7504 location = gimple_location (stmt);
7506 warning_at (location, OPT_Wtype_limits,
7507 integer_zerop (ret)
7508 ? G_("comparison always false "
7509 "due to limited range of data type")
7510 : G_("comparison always true "
7511 "due to limited range of data type"));
7515 return ret;
7519 /* Visit conditional statement STMT. If we can determine which edge
7520 will be taken out of STMT's basic block, record it in
7521 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7522 SSA_PROP_VARYING. */
7524 static enum ssa_prop_result
7525 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7527 tree val;
7528 bool sop;
7530 *taken_edge_p = NULL;
7532 if (dump_file && (dump_flags & TDF_DETAILS))
7534 tree use;
7535 ssa_op_iter i;
7537 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7538 print_gimple_stmt (dump_file, stmt, 0, 0);
7539 fprintf (dump_file, "\nWith known ranges\n");
7541 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7543 fprintf (dump_file, "\t");
7544 print_generic_expr (dump_file, use, 0);
7545 fprintf (dump_file, ": ");
7546 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7549 fprintf (dump_file, "\n");
7552 /* Compute the value of the predicate COND by checking the known
7553 ranges of each of its operands.
7555 Note that we cannot evaluate all the equivalent ranges here
7556 because those ranges may not yet be final and with the current
7557 propagation strategy, we cannot determine when the value ranges
7558 of the names in the equivalence set have changed.
7560 For instance, given the following code fragment
7562 i_5 = PHI <8, i_13>
7564 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7565 if (i_14 == 1)
7568 Assume that on the first visit to i_14, i_5 has the temporary
7569 range [8, 8] because the second argument to the PHI function is
7570 not yet executable. We derive the range ~[0, 0] for i_14 and the
7571 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7572 the first time, since i_14 is equivalent to the range [8, 8], we
7573 determine that the predicate is always false.
7575 On the next round of propagation, i_13 is determined to be
7576 VARYING, which causes i_5 to drop down to VARYING. So, another
7577 visit to i_14 is scheduled. In this second visit, we compute the
7578 exact same range and equivalence set for i_14, namely ~[0, 0] and
7579 { i_5 }. But we did not have the previous range for i_5
7580 registered, so vrp_visit_assignment thinks that the range for
7581 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7582 is not visited again, which stops propagation from visiting
7583 statements in the THEN clause of that if().
7585 To properly fix this we would need to keep the previous range
7586 value for the names in the equivalence set. This way we would've
7587 discovered that from one visit to the other i_5 changed from
7588 range [8, 8] to VR_VARYING.
7590 However, fixing this apparent limitation may not be worth the
7591 additional checking. Testing on several code bases (GCC, DLV,
7592 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7593 4 more predicates folded in SPEC. */
7594 sop = false;
7596 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7597 gimple_cond_lhs (stmt),
7598 gimple_cond_rhs (stmt),
7599 false, &sop, NULL);
7600 if (val)
7602 if (!sop)
7603 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7604 else
7606 if (dump_file && (dump_flags & TDF_DETAILS))
7607 fprintf (dump_file,
7608 "\nIgnoring predicate evaluation because "
7609 "it assumes that signed overflow is undefined");
7610 val = NULL_TREE;
7614 if (dump_file && (dump_flags & TDF_DETAILS))
7616 fprintf (dump_file, "\nPredicate evaluates to: ");
7617 if (val == NULL_TREE)
7618 fprintf (dump_file, "DON'T KNOW\n");
7619 else
7620 print_generic_stmt (dump_file, val, 0);
7623 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7626 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7627 that includes the value VAL. The search is restricted to the range
7628 [START_IDX, n - 1] where n is the size of VEC.
7630 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7631 returned.
7633 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7634 it is placed in IDX and false is returned.
7636 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7637 returned. */
7639 static bool
7640 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7642 size_t n = gimple_switch_num_labels (stmt);
7643 size_t low, high;
7645 /* Find case label for minimum of the value range or the next one.
7646 At each iteration we are searching in [low, high - 1]. */
7648 for (low = start_idx, high = n; high != low; )
7650 tree t;
7651 int cmp;
7652 /* Note that i != high, so we never ask for n. */
7653 size_t i = (high + low) / 2;
7654 t = gimple_switch_label (stmt, i);
7656 /* Cache the result of comparing CASE_LOW and val. */
7657 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7659 if (cmp == 0)
7661 /* Ranges cannot be empty. */
7662 *idx = i;
7663 return true;
7665 else if (cmp > 0)
7666 high = i;
7667 else
7669 low = i + 1;
7670 if (CASE_HIGH (t) != NULL
7671 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7673 *idx = i;
7674 return true;
7679 *idx = high;
7680 return false;
7683 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7684 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7685 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7686 then MAX_IDX < MIN_IDX.
7687 Returns true if the default label is not needed. */
7689 static bool
7690 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7691 size_t *max_idx)
7693 size_t i, j;
7694 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7695 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7697 if (i == j
7698 && min_take_default
7699 && max_take_default)
7701 /* Only the default case label reached.
7702 Return an empty range. */
7703 *min_idx = 1;
7704 *max_idx = 0;
7705 return false;
7707 else
7709 bool take_default = min_take_default || max_take_default;
7710 tree low, high;
7711 size_t k;
7713 if (max_take_default)
7714 j--;
7716 /* If the case label range is continuous, we do not need
7717 the default case label. Verify that. */
7718 high = CASE_LOW (gimple_switch_label (stmt, i));
7719 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7720 high = CASE_HIGH (gimple_switch_label (stmt, i));
7721 for (k = i + 1; k <= j; ++k)
7723 low = CASE_LOW (gimple_switch_label (stmt, k));
7724 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7726 take_default = true;
7727 break;
7729 high = low;
7730 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7731 high = CASE_HIGH (gimple_switch_label (stmt, k));
7734 *min_idx = i;
7735 *max_idx = j;
7736 return !take_default;
7740 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7741 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7742 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7743 Returns true if the default label is not needed. */
7745 static bool
7746 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7747 size_t *max_idx1, size_t *min_idx2,
7748 size_t *max_idx2)
7750 size_t i, j, k, l;
7751 unsigned int n = gimple_switch_num_labels (stmt);
7752 bool take_default;
7753 tree case_low, case_high;
7754 tree min = vr->min, max = vr->max;
7756 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7758 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7760 /* Set second range to emtpy. */
7761 *min_idx2 = 1;
7762 *max_idx2 = 0;
7764 if (vr->type == VR_RANGE)
7766 *min_idx1 = i;
7767 *max_idx1 = j;
7768 return !take_default;
7771 /* Set first range to all case labels. */
7772 *min_idx1 = 1;
7773 *max_idx1 = n - 1;
7775 if (i > j)
7776 return false;
7778 /* Make sure all the values of case labels [i , j] are contained in
7779 range [MIN, MAX]. */
7780 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7781 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7782 if (tree_int_cst_compare (case_low, min) < 0)
7783 i += 1;
7784 if (case_high != NULL_TREE
7785 && tree_int_cst_compare (max, case_high) < 0)
7786 j -= 1;
7788 if (i > j)
7789 return false;
7791 /* If the range spans case labels [i, j], the corresponding anti-range spans
7792 the labels [1, i - 1] and [j + 1, n - 1]. */
7793 k = j + 1;
7794 l = n - 1;
7795 if (k > l)
7797 k = 1;
7798 l = 0;
7801 j = i - 1;
7802 i = 1;
7803 if (i > j)
7805 i = k;
7806 j = l;
7807 k = 1;
7808 l = 0;
7811 *min_idx1 = i;
7812 *max_idx1 = j;
7813 *min_idx2 = k;
7814 *max_idx2 = l;
7815 return false;
7818 /* Visit switch statement STMT. If we can determine which edge
7819 will be taken out of STMT's basic block, record it in
7820 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7821 SSA_PROP_VARYING. */
7823 static enum ssa_prop_result
7824 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7826 tree op, val;
7827 value_range *vr;
7828 size_t i = 0, j = 0, k, l;
7829 bool take_default;
7831 *taken_edge_p = NULL;
7832 op = gimple_switch_index (stmt);
7833 if (TREE_CODE (op) != SSA_NAME)
7834 return SSA_PROP_VARYING;
7836 vr = get_value_range (op);
7837 if (dump_file && (dump_flags & TDF_DETAILS))
7839 fprintf (dump_file, "\nVisiting switch expression with operand ");
7840 print_generic_expr (dump_file, op, 0);
7841 fprintf (dump_file, " with known range ");
7842 dump_value_range (dump_file, vr);
7843 fprintf (dump_file, "\n");
7846 if ((vr->type != VR_RANGE
7847 && vr->type != VR_ANTI_RANGE)
7848 || symbolic_range_p (vr))
7849 return SSA_PROP_VARYING;
7851 /* Find the single edge that is taken from the switch expression. */
7852 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7854 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7855 label */
7856 if (j < i)
7858 gcc_assert (take_default);
7859 val = gimple_switch_default_label (stmt);
7861 else
7863 /* Check if labels with index i to j and maybe the default label
7864 are all reaching the same label. */
7866 val = gimple_switch_label (stmt, i);
7867 if (take_default
7868 && CASE_LABEL (gimple_switch_default_label (stmt))
7869 != CASE_LABEL (val))
7871 if (dump_file && (dump_flags & TDF_DETAILS))
7872 fprintf (dump_file, " not a single destination for this "
7873 "range\n");
7874 return SSA_PROP_VARYING;
7876 for (++i; i <= j; ++i)
7878 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7880 if (dump_file && (dump_flags & TDF_DETAILS))
7881 fprintf (dump_file, " not a single destination for this "
7882 "range\n");
7883 return SSA_PROP_VARYING;
7886 for (; k <= l; ++k)
7888 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7890 if (dump_file && (dump_flags & TDF_DETAILS))
7891 fprintf (dump_file, " not a single destination for this "
7892 "range\n");
7893 return SSA_PROP_VARYING;
7898 *taken_edge_p = find_edge (gimple_bb (stmt),
7899 label_to_block (CASE_LABEL (val)));
7901 if (dump_file && (dump_flags & TDF_DETAILS))
7903 fprintf (dump_file, " will take edge to ");
7904 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7907 return SSA_PROP_INTERESTING;
7911 /* Evaluate statement STMT. If the statement produces a useful range,
7912 return SSA_PROP_INTERESTING and record the SSA name with the
7913 interesting range into *OUTPUT_P.
7915 If STMT is a conditional branch and we can determine its truth
7916 value, the taken edge is recorded in *TAKEN_EDGE_P.
7918 If STMT produces a varying value, return SSA_PROP_VARYING. */
7920 static enum ssa_prop_result
7921 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
7923 tree def;
7924 ssa_op_iter iter;
7926 if (dump_file && (dump_flags & TDF_DETAILS))
7928 fprintf (dump_file, "\nVisiting statement:\n");
7929 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7932 if (!stmt_interesting_for_vrp (stmt))
7933 gcc_assert (stmt_ends_bb_p (stmt));
7934 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7935 return vrp_visit_assignment_or_call (stmt, output_p);
7936 else if (gimple_code (stmt) == GIMPLE_COND)
7937 return vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
7938 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7939 return vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
7941 /* All other statements produce nothing of interest for VRP, so mark
7942 their outputs varying and prevent further simulation. */
7943 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7944 set_value_range_to_varying (get_value_range (def));
7946 return SSA_PROP_VARYING;
7949 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7950 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7951 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7952 possible such range. The resulting range is not canonicalized. */
7954 static void
7955 union_ranges (enum value_range_type *vr0type,
7956 tree *vr0min, tree *vr0max,
7957 enum value_range_type vr1type,
7958 tree vr1min, tree vr1max)
7960 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7961 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7963 /* [] is vr0, () is vr1 in the following classification comments. */
7964 if (mineq && maxeq)
7966 /* [( )] */
7967 if (*vr0type == vr1type)
7968 /* Nothing to do for equal ranges. */
7970 else if ((*vr0type == VR_RANGE
7971 && vr1type == VR_ANTI_RANGE)
7972 || (*vr0type == VR_ANTI_RANGE
7973 && vr1type == VR_RANGE))
7975 /* For anti-range with range union the result is varying. */
7976 goto give_up;
7978 else
7979 gcc_unreachable ();
7981 else if (operand_less_p (*vr0max, vr1min) == 1
7982 || operand_less_p (vr1max, *vr0min) == 1)
7984 /* [ ] ( ) or ( ) [ ]
7985 If the ranges have an empty intersection, result of the union
7986 operation is the anti-range or if both are anti-ranges
7987 it covers all. */
7988 if (*vr0type == VR_ANTI_RANGE
7989 && vr1type == VR_ANTI_RANGE)
7990 goto give_up;
7991 else if (*vr0type == VR_ANTI_RANGE
7992 && vr1type == VR_RANGE)
7994 else if (*vr0type == VR_RANGE
7995 && vr1type == VR_ANTI_RANGE)
7997 *vr0type = vr1type;
7998 *vr0min = vr1min;
7999 *vr0max = vr1max;
8001 else if (*vr0type == VR_RANGE
8002 && vr1type == VR_RANGE)
8004 /* The result is the convex hull of both ranges. */
8005 if (operand_less_p (*vr0max, vr1min) == 1)
8007 /* If the result can be an anti-range, create one. */
8008 if (TREE_CODE (*vr0max) == INTEGER_CST
8009 && TREE_CODE (vr1min) == INTEGER_CST
8010 && vrp_val_is_min (*vr0min)
8011 && vrp_val_is_max (vr1max))
8013 tree min = int_const_binop (PLUS_EXPR,
8014 *vr0max,
8015 build_int_cst (TREE_TYPE (*vr0max), 1));
8016 tree max = int_const_binop (MINUS_EXPR,
8017 vr1min,
8018 build_int_cst (TREE_TYPE (vr1min), 1));
8019 if (!operand_less_p (max, min))
8021 *vr0type = VR_ANTI_RANGE;
8022 *vr0min = min;
8023 *vr0max = max;
8025 else
8026 *vr0max = vr1max;
8028 else
8029 *vr0max = vr1max;
8031 else
8033 /* If the result can be an anti-range, create one. */
8034 if (TREE_CODE (vr1max) == INTEGER_CST
8035 && TREE_CODE (*vr0min) == INTEGER_CST
8036 && vrp_val_is_min (vr1min)
8037 && vrp_val_is_max (*vr0max))
8039 tree min = int_const_binop (PLUS_EXPR,
8040 vr1max,
8041 build_int_cst (TREE_TYPE (vr1max), 1));
8042 tree max = int_const_binop (MINUS_EXPR,
8043 *vr0min,
8044 build_int_cst (TREE_TYPE (*vr0min), 1));
8045 if (!operand_less_p (max, min))
8047 *vr0type = VR_ANTI_RANGE;
8048 *vr0min = min;
8049 *vr0max = max;
8051 else
8052 *vr0min = vr1min;
8054 else
8055 *vr0min = vr1min;
8058 else
8059 gcc_unreachable ();
8061 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8062 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8064 /* [ ( ) ] or [( ) ] or [ ( )] */
8065 if (*vr0type == VR_RANGE
8066 && vr1type == VR_RANGE)
8068 else if (*vr0type == VR_ANTI_RANGE
8069 && vr1type == VR_ANTI_RANGE)
8071 *vr0type = vr1type;
8072 *vr0min = vr1min;
8073 *vr0max = vr1max;
8075 else if (*vr0type == VR_ANTI_RANGE
8076 && vr1type == VR_RANGE)
8078 /* Arbitrarily choose the right or left gap. */
8079 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8080 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8081 build_int_cst (TREE_TYPE (vr1min), 1));
8082 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8083 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8084 build_int_cst (TREE_TYPE (vr1max), 1));
8085 else
8086 goto give_up;
8088 else if (*vr0type == VR_RANGE
8089 && vr1type == VR_ANTI_RANGE)
8090 /* The result covers everything. */
8091 goto give_up;
8092 else
8093 gcc_unreachable ();
8095 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8096 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8098 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8099 if (*vr0type == VR_RANGE
8100 && vr1type == VR_RANGE)
8102 *vr0type = vr1type;
8103 *vr0min = vr1min;
8104 *vr0max = vr1max;
8106 else if (*vr0type == VR_ANTI_RANGE
8107 && vr1type == VR_ANTI_RANGE)
8109 else if (*vr0type == VR_RANGE
8110 && vr1type == VR_ANTI_RANGE)
8112 *vr0type = VR_ANTI_RANGE;
8113 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8115 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8116 build_int_cst (TREE_TYPE (*vr0min), 1));
8117 *vr0min = vr1min;
8119 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8121 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8122 build_int_cst (TREE_TYPE (*vr0max), 1));
8123 *vr0max = vr1max;
8125 else
8126 goto give_up;
8128 else if (*vr0type == VR_ANTI_RANGE
8129 && vr1type == VR_RANGE)
8130 /* The result covers everything. */
8131 goto give_up;
8132 else
8133 gcc_unreachable ();
8135 else if ((operand_less_p (vr1min, *vr0max) == 1
8136 || operand_equal_p (vr1min, *vr0max, 0))
8137 && operand_less_p (*vr0min, vr1min) == 1
8138 && operand_less_p (*vr0max, vr1max) == 1)
8140 /* [ ( ] ) or [ ]( ) */
8141 if (*vr0type == VR_RANGE
8142 && vr1type == VR_RANGE)
8143 *vr0max = vr1max;
8144 else if (*vr0type == VR_ANTI_RANGE
8145 && vr1type == VR_ANTI_RANGE)
8146 *vr0min = vr1min;
8147 else if (*vr0type == VR_ANTI_RANGE
8148 && vr1type == VR_RANGE)
8150 if (TREE_CODE (vr1min) == INTEGER_CST)
8151 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8152 build_int_cst (TREE_TYPE (vr1min), 1));
8153 else
8154 goto give_up;
8156 else if (*vr0type == VR_RANGE
8157 && vr1type == VR_ANTI_RANGE)
8159 if (TREE_CODE (*vr0max) == INTEGER_CST)
8161 *vr0type = vr1type;
8162 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8163 build_int_cst (TREE_TYPE (*vr0max), 1));
8164 *vr0max = vr1max;
8166 else
8167 goto give_up;
8169 else
8170 gcc_unreachable ();
8172 else if ((operand_less_p (*vr0min, vr1max) == 1
8173 || operand_equal_p (*vr0min, vr1max, 0))
8174 && operand_less_p (vr1min, *vr0min) == 1
8175 && operand_less_p (vr1max, *vr0max) == 1)
8177 /* ( [ ) ] or ( )[ ] */
8178 if (*vr0type == VR_RANGE
8179 && vr1type == VR_RANGE)
8180 *vr0min = vr1min;
8181 else if (*vr0type == VR_ANTI_RANGE
8182 && vr1type == VR_ANTI_RANGE)
8183 *vr0max = vr1max;
8184 else if (*vr0type == VR_ANTI_RANGE
8185 && vr1type == VR_RANGE)
8187 if (TREE_CODE (vr1max) == INTEGER_CST)
8188 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8189 build_int_cst (TREE_TYPE (vr1max), 1));
8190 else
8191 goto give_up;
8193 else if (*vr0type == VR_RANGE
8194 && vr1type == VR_ANTI_RANGE)
8196 if (TREE_CODE (*vr0min) == INTEGER_CST)
8198 *vr0type = vr1type;
8199 *vr0min = vr1min;
8200 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8201 build_int_cst (TREE_TYPE (*vr0min), 1));
8203 else
8204 goto give_up;
8206 else
8207 gcc_unreachable ();
8209 else
8210 goto give_up;
8212 return;
8214 give_up:
8215 *vr0type = VR_VARYING;
8216 *vr0min = NULL_TREE;
8217 *vr0max = NULL_TREE;
8220 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8221 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8222 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8223 possible such range. The resulting range is not canonicalized. */
8225 static void
8226 intersect_ranges (enum value_range_type *vr0type,
8227 tree *vr0min, tree *vr0max,
8228 enum value_range_type vr1type,
8229 tree vr1min, tree vr1max)
8231 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8232 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8234 /* [] is vr0, () is vr1 in the following classification comments. */
8235 if (mineq && maxeq)
8237 /* [( )] */
8238 if (*vr0type == vr1type)
8239 /* Nothing to do for equal ranges. */
8241 else if ((*vr0type == VR_RANGE
8242 && vr1type == VR_ANTI_RANGE)
8243 || (*vr0type == VR_ANTI_RANGE
8244 && vr1type == VR_RANGE))
8246 /* For anti-range with range intersection the result is empty. */
8247 *vr0type = VR_UNDEFINED;
8248 *vr0min = NULL_TREE;
8249 *vr0max = NULL_TREE;
8251 else
8252 gcc_unreachable ();
8254 else if (operand_less_p (*vr0max, vr1min) == 1
8255 || operand_less_p (vr1max, *vr0min) == 1)
8257 /* [ ] ( ) or ( ) [ ]
8258 If the ranges have an empty intersection, the result of the
8259 intersect operation is the range for intersecting an
8260 anti-range with a range or empty when intersecting two ranges. */
8261 if (*vr0type == VR_RANGE
8262 && vr1type == VR_ANTI_RANGE)
8264 else if (*vr0type == VR_ANTI_RANGE
8265 && vr1type == VR_RANGE)
8267 *vr0type = vr1type;
8268 *vr0min = vr1min;
8269 *vr0max = vr1max;
8271 else if (*vr0type == VR_RANGE
8272 && vr1type == VR_RANGE)
8274 *vr0type = VR_UNDEFINED;
8275 *vr0min = NULL_TREE;
8276 *vr0max = NULL_TREE;
8278 else if (*vr0type == VR_ANTI_RANGE
8279 && vr1type == VR_ANTI_RANGE)
8281 /* If the anti-ranges are adjacent to each other merge them. */
8282 if (TREE_CODE (*vr0max) == INTEGER_CST
8283 && TREE_CODE (vr1min) == INTEGER_CST
8284 && operand_less_p (*vr0max, vr1min) == 1
8285 && integer_onep (int_const_binop (MINUS_EXPR,
8286 vr1min, *vr0max)))
8287 *vr0max = vr1max;
8288 else if (TREE_CODE (vr1max) == INTEGER_CST
8289 && TREE_CODE (*vr0min) == INTEGER_CST
8290 && operand_less_p (vr1max, *vr0min) == 1
8291 && integer_onep (int_const_binop (MINUS_EXPR,
8292 *vr0min, vr1max)))
8293 *vr0min = vr1min;
8294 /* Else arbitrarily take VR0. */
8297 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8298 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8300 /* [ ( ) ] or [( ) ] or [ ( )] */
8301 if (*vr0type == VR_RANGE
8302 && vr1type == VR_RANGE)
8304 /* If both are ranges the result is the inner one. */
8305 *vr0type = vr1type;
8306 *vr0min = vr1min;
8307 *vr0max = vr1max;
8309 else if (*vr0type == VR_RANGE
8310 && vr1type == VR_ANTI_RANGE)
8312 /* Choose the right gap if the left one is empty. */
8313 if (mineq)
8315 if (TREE_CODE (vr1max) == INTEGER_CST)
8316 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8317 build_int_cst (TREE_TYPE (vr1max), 1));
8318 else
8319 *vr0min = vr1max;
8321 /* Choose the left gap if the right one is empty. */
8322 else if (maxeq)
8324 if (TREE_CODE (vr1min) == INTEGER_CST)
8325 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8326 build_int_cst (TREE_TYPE (vr1min), 1));
8327 else
8328 *vr0max = vr1min;
8330 /* Choose the anti-range if the range is effectively varying. */
8331 else if (vrp_val_is_min (*vr0min)
8332 && vrp_val_is_max (*vr0max))
8334 *vr0type = vr1type;
8335 *vr0min = vr1min;
8336 *vr0max = vr1max;
8338 /* Else choose the range. */
8340 else if (*vr0type == VR_ANTI_RANGE
8341 && vr1type == VR_ANTI_RANGE)
8342 /* If both are anti-ranges the result is the outer one. */
8344 else if (*vr0type == VR_ANTI_RANGE
8345 && vr1type == VR_RANGE)
8347 /* The intersection is empty. */
8348 *vr0type = VR_UNDEFINED;
8349 *vr0min = NULL_TREE;
8350 *vr0max = NULL_TREE;
8352 else
8353 gcc_unreachable ();
8355 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8356 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8358 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8359 if (*vr0type == VR_RANGE
8360 && vr1type == VR_RANGE)
8361 /* Choose the inner range. */
8363 else if (*vr0type == VR_ANTI_RANGE
8364 && vr1type == VR_RANGE)
8366 /* Choose the right gap if the left is empty. */
8367 if (mineq)
8369 *vr0type = VR_RANGE;
8370 if (TREE_CODE (*vr0max) == INTEGER_CST)
8371 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8372 build_int_cst (TREE_TYPE (*vr0max), 1));
8373 else
8374 *vr0min = *vr0max;
8375 *vr0max = vr1max;
8377 /* Choose the left gap if the right is empty. */
8378 else if (maxeq)
8380 *vr0type = VR_RANGE;
8381 if (TREE_CODE (*vr0min) == INTEGER_CST)
8382 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8383 build_int_cst (TREE_TYPE (*vr0min), 1));
8384 else
8385 *vr0max = *vr0min;
8386 *vr0min = vr1min;
8388 /* Choose the anti-range if the range is effectively varying. */
8389 else if (vrp_val_is_min (vr1min)
8390 && vrp_val_is_max (vr1max))
8392 /* Else choose the range. */
8393 else
8395 *vr0type = vr1type;
8396 *vr0min = vr1min;
8397 *vr0max = vr1max;
8400 else if (*vr0type == VR_ANTI_RANGE
8401 && vr1type == VR_ANTI_RANGE)
8403 /* If both are anti-ranges the result is the outer one. */
8404 *vr0type = vr1type;
8405 *vr0min = vr1min;
8406 *vr0max = vr1max;
8408 else if (vr1type == VR_ANTI_RANGE
8409 && *vr0type == VR_RANGE)
8411 /* The intersection is empty. */
8412 *vr0type = VR_UNDEFINED;
8413 *vr0min = NULL_TREE;
8414 *vr0max = NULL_TREE;
8416 else
8417 gcc_unreachable ();
8419 else if ((operand_less_p (vr1min, *vr0max) == 1
8420 || operand_equal_p (vr1min, *vr0max, 0))
8421 && operand_less_p (*vr0min, vr1min) == 1)
8423 /* [ ( ] ) or [ ]( ) */
8424 if (*vr0type == VR_ANTI_RANGE
8425 && vr1type == VR_ANTI_RANGE)
8426 *vr0max = vr1max;
8427 else if (*vr0type == VR_RANGE
8428 && vr1type == VR_RANGE)
8429 *vr0min = vr1min;
8430 else if (*vr0type == VR_RANGE
8431 && vr1type == VR_ANTI_RANGE)
8433 if (TREE_CODE (vr1min) == INTEGER_CST)
8434 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8435 build_int_cst (TREE_TYPE (vr1min), 1));
8436 else
8437 *vr0max = vr1min;
8439 else if (*vr0type == VR_ANTI_RANGE
8440 && vr1type == VR_RANGE)
8442 *vr0type = VR_RANGE;
8443 if (TREE_CODE (*vr0max) == INTEGER_CST)
8444 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8445 build_int_cst (TREE_TYPE (*vr0max), 1));
8446 else
8447 *vr0min = *vr0max;
8448 *vr0max = vr1max;
8450 else
8451 gcc_unreachable ();
8453 else if ((operand_less_p (*vr0min, vr1max) == 1
8454 || operand_equal_p (*vr0min, vr1max, 0))
8455 && operand_less_p (vr1min, *vr0min) == 1)
8457 /* ( [ ) ] or ( )[ ] */
8458 if (*vr0type == VR_ANTI_RANGE
8459 && vr1type == VR_ANTI_RANGE)
8460 *vr0min = vr1min;
8461 else if (*vr0type == VR_RANGE
8462 && vr1type == VR_RANGE)
8463 *vr0max = vr1max;
8464 else if (*vr0type == VR_RANGE
8465 && vr1type == VR_ANTI_RANGE)
8467 if (TREE_CODE (vr1max) == INTEGER_CST)
8468 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8469 build_int_cst (TREE_TYPE (vr1max), 1));
8470 else
8471 *vr0min = vr1max;
8473 else if (*vr0type == VR_ANTI_RANGE
8474 && vr1type == VR_RANGE)
8476 *vr0type = VR_RANGE;
8477 if (TREE_CODE (*vr0min) == INTEGER_CST)
8478 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8479 build_int_cst (TREE_TYPE (*vr0min), 1));
8480 else
8481 *vr0max = *vr0min;
8482 *vr0min = vr1min;
8484 else
8485 gcc_unreachable ();
8488 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8489 result for the intersection. That's always a conservative
8490 correct estimate. */
8492 return;
8496 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8497 in *VR0. This may not be the smallest possible such range. */
8499 static void
8500 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8502 value_range saved;
8504 /* If either range is VR_VARYING the other one wins. */
8505 if (vr1->type == VR_VARYING)
8506 return;
8507 if (vr0->type == VR_VARYING)
8509 copy_value_range (vr0, vr1);
8510 return;
8513 /* When either range is VR_UNDEFINED the resulting range is
8514 VR_UNDEFINED, too. */
8515 if (vr0->type == VR_UNDEFINED)
8516 return;
8517 if (vr1->type == VR_UNDEFINED)
8519 set_value_range_to_undefined (vr0);
8520 return;
8523 /* Save the original vr0 so we can return it as conservative intersection
8524 result when our worker turns things to varying. */
8525 saved = *vr0;
8526 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8527 vr1->type, vr1->min, vr1->max);
8528 /* Make sure to canonicalize the result though as the inversion of a
8529 VR_RANGE can still be a VR_RANGE. */
8530 set_and_canonicalize_value_range (vr0, vr0->type,
8531 vr0->min, vr0->max, vr0->equiv);
8532 /* If that failed, use the saved original VR0. */
8533 if (vr0->type == VR_VARYING)
8535 *vr0 = saved;
8536 return;
8538 /* If the result is VR_UNDEFINED there is no need to mess with
8539 the equivalencies. */
8540 if (vr0->type == VR_UNDEFINED)
8541 return;
8543 /* The resulting set of equivalences for range intersection is the union of
8544 the two sets. */
8545 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8546 bitmap_ior_into (vr0->equiv, vr1->equiv);
8547 else if (vr1->equiv && !vr0->equiv)
8548 bitmap_copy (vr0->equiv, vr1->equiv);
8551 static void
8552 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8554 if (dump_file && (dump_flags & TDF_DETAILS))
8556 fprintf (dump_file, "Intersecting\n ");
8557 dump_value_range (dump_file, vr0);
8558 fprintf (dump_file, "\nand\n ");
8559 dump_value_range (dump_file, vr1);
8560 fprintf (dump_file, "\n");
8562 vrp_intersect_ranges_1 (vr0, vr1);
8563 if (dump_file && (dump_flags & TDF_DETAILS))
8565 fprintf (dump_file, "to\n ");
8566 dump_value_range (dump_file, vr0);
8567 fprintf (dump_file, "\n");
8571 /* Meet operation for value ranges. Given two value ranges VR0 and
8572 VR1, store in VR0 a range that contains both VR0 and VR1. This
8573 may not be the smallest possible such range. */
8575 static void
8576 vrp_meet_1 (value_range *vr0, value_range *vr1)
8578 value_range saved;
8580 if (vr0->type == VR_UNDEFINED)
8582 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8583 return;
8586 if (vr1->type == VR_UNDEFINED)
8588 /* VR0 already has the resulting range. */
8589 return;
8592 if (vr0->type == VR_VARYING)
8594 /* Nothing to do. VR0 already has the resulting range. */
8595 return;
8598 if (vr1->type == VR_VARYING)
8600 set_value_range_to_varying (vr0);
8601 return;
8604 saved = *vr0;
8605 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8606 vr1->type, vr1->min, vr1->max);
8607 if (vr0->type == VR_VARYING)
8609 /* Failed to find an efficient meet. Before giving up and setting
8610 the result to VARYING, see if we can at least derive a useful
8611 anti-range. FIXME, all this nonsense about distinguishing
8612 anti-ranges from ranges is necessary because of the odd
8613 semantics of range_includes_zero_p and friends. */
8614 if (((saved.type == VR_RANGE
8615 && range_includes_zero_p (saved.min, saved.max) == 0)
8616 || (saved.type == VR_ANTI_RANGE
8617 && range_includes_zero_p (saved.min, saved.max) == 1))
8618 && ((vr1->type == VR_RANGE
8619 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8620 || (vr1->type == VR_ANTI_RANGE
8621 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8623 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8625 /* Since this meet operation did not result from the meeting of
8626 two equivalent names, VR0 cannot have any equivalences. */
8627 if (vr0->equiv)
8628 bitmap_clear (vr0->equiv);
8629 return;
8632 set_value_range_to_varying (vr0);
8633 return;
8635 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8636 vr0->equiv);
8637 if (vr0->type == VR_VARYING)
8638 return;
8640 /* The resulting set of equivalences is always the intersection of
8641 the two sets. */
8642 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8643 bitmap_and_into (vr0->equiv, vr1->equiv);
8644 else if (vr0->equiv && !vr1->equiv)
8645 bitmap_clear (vr0->equiv);
8648 static void
8649 vrp_meet (value_range *vr0, value_range *vr1)
8651 if (dump_file && (dump_flags & TDF_DETAILS))
8653 fprintf (dump_file, "Meeting\n ");
8654 dump_value_range (dump_file, vr0);
8655 fprintf (dump_file, "\nand\n ");
8656 dump_value_range (dump_file, vr1);
8657 fprintf (dump_file, "\n");
8659 vrp_meet_1 (vr0, vr1);
8660 if (dump_file && (dump_flags & TDF_DETAILS))
8662 fprintf (dump_file, "to\n ");
8663 dump_value_range (dump_file, vr0);
8664 fprintf (dump_file, "\n");
8669 /* Visit all arguments for PHI node PHI that flow through executable
8670 edges. If a valid value range can be derived from all the incoming
8671 value ranges, set a new range for the LHS of PHI. */
8673 static enum ssa_prop_result
8674 vrp_visit_phi_node (gphi *phi)
8676 size_t i;
8677 tree lhs = PHI_RESULT (phi);
8678 value_range *lhs_vr = get_value_range (lhs);
8679 value_range vr_result = VR_INITIALIZER;
8680 bool first = true;
8681 int edges, old_edges;
8682 struct loop *l;
8684 if (dump_file && (dump_flags & TDF_DETAILS))
8686 fprintf (dump_file, "\nVisiting PHI node: ");
8687 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8690 edges = 0;
8691 for (i = 0; i < gimple_phi_num_args (phi); i++)
8693 edge e = gimple_phi_arg_edge (phi, i);
8695 if (dump_file && (dump_flags & TDF_DETAILS))
8697 fprintf (dump_file,
8698 " Argument #%d (%d -> %d %sexecutable)\n",
8699 (int) i, e->src->index, e->dest->index,
8700 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8703 if (e->flags & EDGE_EXECUTABLE)
8705 tree arg = PHI_ARG_DEF (phi, i);
8706 value_range vr_arg;
8708 ++edges;
8710 if (TREE_CODE (arg) == SSA_NAME)
8712 vr_arg = *(get_value_range (arg));
8713 /* Do not allow equivalences or symbolic ranges to leak in from
8714 backedges. That creates invalid equivalencies.
8715 See PR53465 and PR54767. */
8716 if (e->flags & EDGE_DFS_BACK)
8718 if (vr_arg.type == VR_RANGE
8719 || vr_arg.type == VR_ANTI_RANGE)
8721 vr_arg.equiv = NULL;
8722 if (symbolic_range_p (&vr_arg))
8724 vr_arg.type = VR_VARYING;
8725 vr_arg.min = NULL_TREE;
8726 vr_arg.max = NULL_TREE;
8730 else
8732 /* If the non-backedge arguments range is VR_VARYING then
8733 we can still try recording a simple equivalence. */
8734 if (vr_arg.type == VR_VARYING)
8736 vr_arg.type = VR_RANGE;
8737 vr_arg.min = arg;
8738 vr_arg.max = arg;
8739 vr_arg.equiv = NULL;
8743 else
8745 if (TREE_OVERFLOW_P (arg))
8746 arg = drop_tree_overflow (arg);
8748 vr_arg.type = VR_RANGE;
8749 vr_arg.min = arg;
8750 vr_arg.max = arg;
8751 vr_arg.equiv = NULL;
8754 if (dump_file && (dump_flags & TDF_DETAILS))
8756 fprintf (dump_file, "\t");
8757 print_generic_expr (dump_file, arg, dump_flags);
8758 fprintf (dump_file, ": ");
8759 dump_value_range (dump_file, &vr_arg);
8760 fprintf (dump_file, "\n");
8763 if (first)
8764 copy_value_range (&vr_result, &vr_arg);
8765 else
8766 vrp_meet (&vr_result, &vr_arg);
8767 first = false;
8769 if (vr_result.type == VR_VARYING)
8770 break;
8774 if (vr_result.type == VR_VARYING)
8775 goto varying;
8776 else if (vr_result.type == VR_UNDEFINED)
8777 goto update_range;
8779 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8780 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8782 /* To prevent infinite iterations in the algorithm, derive ranges
8783 when the new value is slightly bigger or smaller than the
8784 previous one. We don't do this if we have seen a new executable
8785 edge; this helps us avoid an overflow infinity for conditionals
8786 which are not in a loop. If the old value-range was VR_UNDEFINED
8787 use the updated range and iterate one more time. */
8788 if (edges > 0
8789 && gimple_phi_num_args (phi) > 1
8790 && edges == old_edges
8791 && lhs_vr->type != VR_UNDEFINED)
8793 /* Compare old and new ranges, fall back to varying if the
8794 values are not comparable. */
8795 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8796 if (cmp_min == -2)
8797 goto varying;
8798 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8799 if (cmp_max == -2)
8800 goto varying;
8802 /* For non VR_RANGE or for pointers fall back to varying if
8803 the range changed. */
8804 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8805 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8806 && (cmp_min != 0 || cmp_max != 0))
8807 goto varying;
8809 /* If the new minimum is larger than the previous one
8810 retain the old value. If the new minimum value is smaller
8811 than the previous one and not -INF go all the way to -INF + 1.
8812 In the first case, to avoid infinite bouncing between different
8813 minimums, and in the other case to avoid iterating millions of
8814 times to reach -INF. Going to -INF + 1 also lets the following
8815 iteration compute whether there will be any overflow, at the
8816 expense of one additional iteration. */
8817 if (cmp_min < 0)
8818 vr_result.min = lhs_vr->min;
8819 else if (cmp_min > 0
8820 && !vrp_val_is_min (vr_result.min))
8821 vr_result.min
8822 = int_const_binop (PLUS_EXPR,
8823 vrp_val_min (TREE_TYPE (vr_result.min)),
8824 build_int_cst (TREE_TYPE (vr_result.min), 1));
8826 /* Similarly for the maximum value. */
8827 if (cmp_max > 0)
8828 vr_result.max = lhs_vr->max;
8829 else if (cmp_max < 0
8830 && !vrp_val_is_max (vr_result.max))
8831 vr_result.max
8832 = int_const_binop (MINUS_EXPR,
8833 vrp_val_max (TREE_TYPE (vr_result.min)),
8834 build_int_cst (TREE_TYPE (vr_result.min), 1));
8836 /* If we dropped either bound to +-INF then if this is a loop
8837 PHI node SCEV may known more about its value-range. */
8838 if (cmp_min > 0 || cmp_min < 0
8839 || cmp_max < 0 || cmp_max > 0)
8840 goto scev_check;
8842 goto infinite_check;
8845 /* If the new range is different than the previous value, keep
8846 iterating. */
8847 update_range:
8848 if (update_value_range (lhs, &vr_result))
8850 if (dump_file && (dump_flags & TDF_DETAILS))
8852 fprintf (dump_file, "Found new range for ");
8853 print_generic_expr (dump_file, lhs, 0);
8854 fprintf (dump_file, ": ");
8855 dump_value_range (dump_file, &vr_result);
8856 fprintf (dump_file, "\n");
8859 if (vr_result.type == VR_VARYING)
8860 return SSA_PROP_VARYING;
8862 return SSA_PROP_INTERESTING;
8865 /* Nothing changed, don't add outgoing edges. */
8866 return SSA_PROP_NOT_INTERESTING;
8868 varying:
8869 set_value_range_to_varying (&vr_result);
8871 scev_check:
8872 /* If this is a loop PHI node SCEV may known more about its value-range.
8873 scev_check can be reached from two paths, one is a fall through from above
8874 "varying" label, the other is direct goto from code block which tries to
8875 avoid infinite simulation. */
8876 if ((l = loop_containing_stmt (phi))
8877 && l->header == gimple_bb (phi))
8878 adjust_range_with_scev (&vr_result, l, phi, lhs);
8880 infinite_check:
8881 /* If we will end up with a (-INF, +INF) range, set it to
8882 VARYING. Same if the previous max value was invalid for
8883 the type and we end up with vr_result.min > vr_result.max. */
8884 if ((vr_result.type == VR_RANGE || vr_result.type == VR_ANTI_RANGE)
8885 && !((vrp_val_is_max (vr_result.max) && vrp_val_is_min (vr_result.min))
8886 || compare_values (vr_result.min, vr_result.max) > 0))
8887 goto update_range;
8889 /* No match found. Set the LHS to VARYING. */
8890 set_value_range_to_varying (lhs_vr);
8891 return SSA_PROP_VARYING;
8894 /* Simplify boolean operations if the source is known
8895 to be already a boolean. */
8896 static bool
8897 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
8899 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8900 tree lhs, op0, op1;
8901 bool need_conversion;
8903 /* We handle only !=/== case here. */
8904 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8906 op0 = gimple_assign_rhs1 (stmt);
8907 if (!op_with_boolean_value_range_p (op0))
8908 return false;
8910 op1 = gimple_assign_rhs2 (stmt);
8911 if (!op_with_boolean_value_range_p (op1))
8912 return false;
8914 /* Reduce number of cases to handle to NE_EXPR. As there is no
8915 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8916 if (rhs_code == EQ_EXPR)
8918 if (TREE_CODE (op1) == INTEGER_CST)
8919 op1 = int_const_binop (BIT_XOR_EXPR, op1,
8920 build_int_cst (TREE_TYPE (op1), 1));
8921 else
8922 return false;
8925 lhs = gimple_assign_lhs (stmt);
8926 need_conversion
8927 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8929 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8930 if (need_conversion
8931 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8932 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8933 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8934 return false;
8936 /* For A != 0 we can substitute A itself. */
8937 if (integer_zerop (op1))
8938 gimple_assign_set_rhs_with_ops (gsi,
8939 need_conversion
8940 ? NOP_EXPR : TREE_CODE (op0), op0);
8941 /* For A != B we substitute A ^ B. Either with conversion. */
8942 else if (need_conversion)
8944 tree tem = make_ssa_name (TREE_TYPE (op0));
8945 gassign *newop
8946 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
8947 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8948 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
8950 /* Or without. */
8951 else
8952 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8953 update_stmt (gsi_stmt (*gsi));
8955 return true;
8958 /* Simplify a division or modulo operator to a right shift or
8959 bitwise and if the first operand is unsigned or is greater
8960 than zero and the second operand is an exact power of two.
8961 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
8962 into just op0 if op0's range is known to be a subset of
8963 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
8964 modulo. */
8966 static bool
8967 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
8969 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8970 tree val = NULL;
8971 tree op0 = gimple_assign_rhs1 (stmt);
8972 tree op1 = gimple_assign_rhs2 (stmt);
8973 value_range *vr = get_value_range (op0);
8975 if (rhs_code == TRUNC_MOD_EXPR
8976 && TREE_CODE (op1) == INTEGER_CST
8977 && tree_int_cst_sgn (op1) == 1
8978 && range_int_cst_p (vr)
8979 && tree_int_cst_lt (vr->max, op1))
8981 if (TYPE_UNSIGNED (TREE_TYPE (op0))
8982 || tree_int_cst_sgn (vr->min) >= 0
8983 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
8984 vr->min))
8986 /* If op0 already has the range op0 % op1 has,
8987 then TRUNC_MOD_EXPR won't change anything. */
8988 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
8989 gimple_assign_set_rhs_from_tree (&gsi, op0);
8990 update_stmt (stmt);
8991 return true;
8995 if (!integer_pow2p (op1))
8997 /* X % -Y can be only optimized into X % Y either if
8998 X is not INT_MIN, or Y is not -1. Fold it now, as after
8999 remove_range_assertions the range info might be not available
9000 anymore. */
9001 if (rhs_code == TRUNC_MOD_EXPR
9002 && fold_stmt (gsi, follow_single_use_edges))
9003 return true;
9004 return false;
9007 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9008 val = integer_one_node;
9009 else
9011 bool sop = false;
9013 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9015 if (val
9016 && sop
9017 && integer_onep (val)
9018 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9020 location_t location;
9022 if (!gimple_has_location (stmt))
9023 location = input_location;
9024 else
9025 location = gimple_location (stmt);
9026 warning_at (location, OPT_Wstrict_overflow,
9027 "assuming signed overflow does not occur when "
9028 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9032 if (val && integer_onep (val))
9034 tree t;
9036 if (rhs_code == TRUNC_DIV_EXPR)
9038 t = build_int_cst (integer_type_node, tree_log2 (op1));
9039 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9040 gimple_assign_set_rhs1 (stmt, op0);
9041 gimple_assign_set_rhs2 (stmt, t);
9043 else
9045 t = build_int_cst (TREE_TYPE (op1), 1);
9046 t = int_const_binop (MINUS_EXPR, op1, t);
9047 t = fold_convert (TREE_TYPE (op0), t);
9049 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9050 gimple_assign_set_rhs1 (stmt, op0);
9051 gimple_assign_set_rhs2 (stmt, t);
9054 update_stmt (stmt);
9055 return true;
9058 return false;
9061 /* Simplify a min or max if the ranges of the two operands are
9062 disjoint. Return true if we do simplify. */
9064 static bool
9065 simplify_min_or_max_using_ranges (gimple *stmt)
9067 tree op0 = gimple_assign_rhs1 (stmt);
9068 tree op1 = gimple_assign_rhs2 (stmt);
9069 bool sop = false;
9070 tree val;
9072 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9073 (LE_EXPR, op0, op1, &sop));
9074 if (!val)
9076 sop = false;
9077 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9078 (LT_EXPR, op0, op1, &sop));
9081 if (val)
9083 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9085 location_t location;
9087 if (!gimple_has_location (stmt))
9088 location = input_location;
9089 else
9090 location = gimple_location (stmt);
9091 warning_at (location, OPT_Wstrict_overflow,
9092 "assuming signed overflow does not occur when "
9093 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9096 /* VAL == TRUE -> OP0 < or <= op1
9097 VAL == FALSE -> OP0 > or >= op1. */
9098 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9099 == integer_zerop (val)) ? op0 : op1;
9100 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
9101 gimple_assign_set_rhs_from_tree (&gsi, res);
9102 update_stmt (stmt);
9103 return true;
9106 return false;
9109 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9110 ABS_EXPR. If the operand is <= 0, then simplify the
9111 ABS_EXPR into a NEGATE_EXPR. */
9113 static bool
9114 simplify_abs_using_ranges (gimple *stmt)
9116 tree op = gimple_assign_rhs1 (stmt);
9117 value_range *vr = get_value_range (op);
9119 if (vr)
9121 tree val = NULL;
9122 bool sop = false;
9124 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9125 if (!val)
9127 /* The range is neither <= 0 nor > 0. Now see if it is
9128 either < 0 or >= 0. */
9129 sop = false;
9130 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9131 &sop);
9134 if (val)
9136 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9138 location_t location;
9140 if (!gimple_has_location (stmt))
9141 location = input_location;
9142 else
9143 location = gimple_location (stmt);
9144 warning_at (location, OPT_Wstrict_overflow,
9145 "assuming signed overflow does not occur when "
9146 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9149 gimple_assign_set_rhs1 (stmt, op);
9150 if (integer_zerop (val))
9151 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9152 else
9153 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9154 update_stmt (stmt);
9155 return true;
9159 return false;
9162 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9163 If all the bits that are being cleared by & are already
9164 known to be zero from VR, or all the bits that are being
9165 set by | are already known to be one from VR, the bit
9166 operation is redundant. */
9168 static bool
9169 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9171 tree op0 = gimple_assign_rhs1 (stmt);
9172 tree op1 = gimple_assign_rhs2 (stmt);
9173 tree op = NULL_TREE;
9174 value_range vr0 = VR_INITIALIZER;
9175 value_range vr1 = VR_INITIALIZER;
9176 wide_int may_be_nonzero0, may_be_nonzero1;
9177 wide_int must_be_nonzero0, must_be_nonzero1;
9178 wide_int mask;
9180 if (TREE_CODE (op0) == SSA_NAME)
9181 vr0 = *(get_value_range (op0));
9182 else if (is_gimple_min_invariant (op0))
9183 set_value_range_to_value (&vr0, op0, NULL);
9184 else
9185 return false;
9187 if (TREE_CODE (op1) == SSA_NAME)
9188 vr1 = *(get_value_range (op1));
9189 else if (is_gimple_min_invariant (op1))
9190 set_value_range_to_value (&vr1, op1, NULL);
9191 else
9192 return false;
9194 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9195 &must_be_nonzero0))
9196 return false;
9197 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9198 &must_be_nonzero1))
9199 return false;
9201 switch (gimple_assign_rhs_code (stmt))
9203 case BIT_AND_EXPR:
9204 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9205 if (mask == 0)
9207 op = op0;
9208 break;
9210 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9211 if (mask == 0)
9213 op = op1;
9214 break;
9216 break;
9217 case BIT_IOR_EXPR:
9218 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9219 if (mask == 0)
9221 op = op1;
9222 break;
9224 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9225 if (mask == 0)
9227 op = op0;
9228 break;
9230 break;
9231 default:
9232 gcc_unreachable ();
9235 if (op == NULL_TREE)
9236 return false;
9238 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9239 update_stmt (gsi_stmt (*gsi));
9240 return true;
9243 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9244 a known value range VR.
9246 If there is one and only one value which will satisfy the
9247 conditional, then return that value. Else return NULL.
9249 If signed overflow must be undefined for the value to satisfy
9250 the conditional, then set *STRICT_OVERFLOW_P to true. */
9252 static tree
9253 test_for_singularity (enum tree_code cond_code, tree op0,
9254 tree op1, value_range *vr,
9255 bool *strict_overflow_p)
9257 tree min = NULL;
9258 tree max = NULL;
9260 /* Extract minimum/maximum values which satisfy the conditional as it was
9261 written. */
9262 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9264 /* This should not be negative infinity; there is no overflow
9265 here. */
9266 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9268 max = op1;
9269 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9271 tree one = build_int_cst (TREE_TYPE (op0), 1);
9272 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9273 if (EXPR_P (max))
9274 TREE_NO_WARNING (max) = 1;
9277 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9279 /* This should not be positive infinity; there is no overflow
9280 here. */
9281 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9283 min = op1;
9284 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9286 tree one = build_int_cst (TREE_TYPE (op0), 1);
9287 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9288 if (EXPR_P (min))
9289 TREE_NO_WARNING (min) = 1;
9293 /* Now refine the minimum and maximum values using any
9294 value range information we have for op0. */
9295 if (min && max)
9297 if (compare_values (vr->min, min) == 1)
9298 min = vr->min;
9299 if (compare_values (vr->max, max) == -1)
9300 max = vr->max;
9302 /* If the new min/max values have converged to a single value,
9303 then there is only one value which can satisfy the condition,
9304 return that value. */
9305 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9307 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9308 && is_overflow_infinity (vr->max))
9309 *strict_overflow_p = true;
9310 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9311 && is_overflow_infinity (vr->min))
9312 *strict_overflow_p = true;
9314 return min;
9317 return NULL;
9320 /* Return whether the value range *VR fits in an integer type specified
9321 by PRECISION and UNSIGNED_P. */
9323 static bool
9324 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9326 tree src_type;
9327 unsigned src_precision;
9328 widest_int tem;
9329 signop src_sgn;
9331 /* We can only handle integral and pointer types. */
9332 src_type = TREE_TYPE (vr->min);
9333 if (!INTEGRAL_TYPE_P (src_type)
9334 && !POINTER_TYPE_P (src_type))
9335 return false;
9337 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9338 and so is an identity transform. */
9339 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9340 src_sgn = TYPE_SIGN (src_type);
9341 if ((src_precision < dest_precision
9342 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9343 || (src_precision == dest_precision && src_sgn == dest_sgn))
9344 return true;
9346 /* Now we can only handle ranges with constant bounds. */
9347 if (vr->type != VR_RANGE
9348 || TREE_CODE (vr->min) != INTEGER_CST
9349 || TREE_CODE (vr->max) != INTEGER_CST)
9350 return false;
9352 /* For sign changes, the MSB of the wide_int has to be clear.
9353 An unsigned value with its MSB set cannot be represented by
9354 a signed wide_int, while a negative value cannot be represented
9355 by an unsigned wide_int. */
9356 if (src_sgn != dest_sgn
9357 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9358 return false;
9360 /* Then we can perform the conversion on both ends and compare
9361 the result for equality. */
9362 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9363 if (tem != wi::to_widest (vr->min))
9364 return false;
9365 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9366 if (tem != wi::to_widest (vr->max))
9367 return false;
9369 return true;
9372 /* Simplify a conditional using a relational operator to an equality
9373 test if the range information indicates only one value can satisfy
9374 the original conditional. */
9376 static bool
9377 simplify_cond_using_ranges (gcond *stmt)
9379 tree op0 = gimple_cond_lhs (stmt);
9380 tree op1 = gimple_cond_rhs (stmt);
9381 enum tree_code cond_code = gimple_cond_code (stmt);
9383 if (cond_code != NE_EXPR
9384 && cond_code != EQ_EXPR
9385 && TREE_CODE (op0) == SSA_NAME
9386 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9387 && is_gimple_min_invariant (op1))
9389 value_range *vr = get_value_range (op0);
9391 /* If we have range information for OP0, then we might be
9392 able to simplify this conditional. */
9393 if (vr->type == VR_RANGE)
9395 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9396 bool sop = false;
9397 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9399 if (new_tree
9400 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9402 if (dump_file)
9404 fprintf (dump_file, "Simplified relational ");
9405 print_gimple_stmt (dump_file, stmt, 0, 0);
9406 fprintf (dump_file, " into ");
9409 gimple_cond_set_code (stmt, EQ_EXPR);
9410 gimple_cond_set_lhs (stmt, op0);
9411 gimple_cond_set_rhs (stmt, new_tree);
9413 update_stmt (stmt);
9415 if (dump_file)
9417 print_gimple_stmt (dump_file, stmt, 0, 0);
9418 fprintf (dump_file, "\n");
9421 if (sop && issue_strict_overflow_warning (wc))
9423 location_t location = input_location;
9424 if (gimple_has_location (stmt))
9425 location = gimple_location (stmt);
9427 warning_at (location, OPT_Wstrict_overflow,
9428 "assuming signed overflow does not occur when "
9429 "simplifying conditional");
9432 return true;
9435 /* Try again after inverting the condition. We only deal
9436 with integral types here, so no need to worry about
9437 issues with inverting FP comparisons. */
9438 sop = false;
9439 new_tree = test_for_singularity
9440 (invert_tree_comparison (cond_code, false),
9441 op0, op1, vr, &sop);
9443 if (new_tree
9444 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9446 if (dump_file)
9448 fprintf (dump_file, "Simplified relational ");
9449 print_gimple_stmt (dump_file, stmt, 0, 0);
9450 fprintf (dump_file, " into ");
9453 gimple_cond_set_code (stmt, NE_EXPR);
9454 gimple_cond_set_lhs (stmt, op0);
9455 gimple_cond_set_rhs (stmt, new_tree);
9457 update_stmt (stmt);
9459 if (dump_file)
9461 print_gimple_stmt (dump_file, stmt, 0, 0);
9462 fprintf (dump_file, "\n");
9465 if (sop && issue_strict_overflow_warning (wc))
9467 location_t location = input_location;
9468 if (gimple_has_location (stmt))
9469 location = gimple_location (stmt);
9471 warning_at (location, OPT_Wstrict_overflow,
9472 "assuming signed overflow does not occur when "
9473 "simplifying conditional");
9476 return true;
9481 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9482 see if OP0 was set by a type conversion where the source of
9483 the conversion is another SSA_NAME with a range that fits
9484 into the range of OP0's type.
9486 If so, the conversion is redundant as the earlier SSA_NAME can be
9487 used for the comparison directly if we just massage the constant in the
9488 comparison. */
9489 if (TREE_CODE (op0) == SSA_NAME
9490 && TREE_CODE (op1) == INTEGER_CST)
9492 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9493 tree innerop;
9495 if (!is_gimple_assign (def_stmt)
9496 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9497 return false;
9499 innerop = gimple_assign_rhs1 (def_stmt);
9501 if (TREE_CODE (innerop) == SSA_NAME
9502 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9503 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
9504 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9506 value_range *vr = get_value_range (innerop);
9508 if (range_int_cst_p (vr)
9509 && range_fits_type_p (vr,
9510 TYPE_PRECISION (TREE_TYPE (op0)),
9511 TYPE_SIGN (TREE_TYPE (op0)))
9512 && int_fits_type_p (op1, TREE_TYPE (innerop))
9513 /* The range must not have overflowed, or if it did overflow
9514 we must not be wrapping/trapping overflow and optimizing
9515 with strict overflow semantics. */
9516 && ((!is_negative_overflow_infinity (vr->min)
9517 && !is_positive_overflow_infinity (vr->max))
9518 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9520 /* If the range overflowed and the user has asked for warnings
9521 when strict overflow semantics were used to optimize code,
9522 issue an appropriate warning. */
9523 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9524 && (is_negative_overflow_infinity (vr->min)
9525 || is_positive_overflow_infinity (vr->max))
9526 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9528 location_t location;
9530 if (!gimple_has_location (stmt))
9531 location = input_location;
9532 else
9533 location = gimple_location (stmt);
9534 warning_at (location, OPT_Wstrict_overflow,
9535 "assuming signed overflow does not occur when "
9536 "simplifying conditional");
9539 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9540 gimple_cond_set_lhs (stmt, innerop);
9541 gimple_cond_set_rhs (stmt, newconst);
9542 return true;
9547 return false;
9550 /* Simplify a switch statement using the value range of the switch
9551 argument. */
9553 static bool
9554 simplify_switch_using_ranges (gswitch *stmt)
9556 tree op = gimple_switch_index (stmt);
9557 value_range *vr;
9558 bool take_default;
9559 edge e;
9560 edge_iterator ei;
9561 size_t i = 0, j = 0, n, n2;
9562 tree vec2;
9563 switch_update su;
9564 size_t k = 1, l = 0;
9566 if (TREE_CODE (op) == SSA_NAME)
9568 vr = get_value_range (op);
9570 /* We can only handle integer ranges. */
9571 if ((vr->type != VR_RANGE
9572 && vr->type != VR_ANTI_RANGE)
9573 || symbolic_range_p (vr))
9574 return false;
9576 /* Find case label for min/max of the value range. */
9577 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9579 else if (TREE_CODE (op) == INTEGER_CST)
9581 take_default = !find_case_label_index (stmt, 1, op, &i);
9582 if (take_default)
9584 i = 1;
9585 j = 0;
9587 else
9589 j = i;
9592 else
9593 return false;
9595 n = gimple_switch_num_labels (stmt);
9597 /* Bail out if this is just all edges taken. */
9598 if (i == 1
9599 && j == n - 1
9600 && take_default)
9601 return false;
9603 /* Build a new vector of taken case labels. */
9604 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9605 n2 = 0;
9607 /* Add the default edge, if necessary. */
9608 if (take_default)
9609 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9611 for (; i <= j; ++i, ++n2)
9612 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9614 for (; k <= l; ++k, ++n2)
9615 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9617 /* Mark needed edges. */
9618 for (i = 0; i < n2; ++i)
9620 e = find_edge (gimple_bb (stmt),
9621 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9622 e->aux = (void *)-1;
9625 /* Queue not needed edges for later removal. */
9626 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9628 if (e->aux == (void *)-1)
9630 e->aux = NULL;
9631 continue;
9634 if (dump_file && (dump_flags & TDF_DETAILS))
9636 fprintf (dump_file, "removing unreachable case label\n");
9638 to_remove_edges.safe_push (e);
9639 e->flags &= ~EDGE_EXECUTABLE;
9642 /* And queue an update for the stmt. */
9643 su.stmt = stmt;
9644 su.vec = vec2;
9645 to_update_switch_stmts.safe_push (su);
9646 return false;
9649 /* Simplify an integral conversion from an SSA name in STMT. */
9651 static bool
9652 simplify_conversion_using_ranges (gimple *stmt)
9654 tree innerop, middleop, finaltype;
9655 gimple *def_stmt;
9656 value_range *innervr;
9657 signop inner_sgn, middle_sgn, final_sgn;
9658 unsigned inner_prec, middle_prec, final_prec;
9659 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9661 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9662 if (!INTEGRAL_TYPE_P (finaltype))
9663 return false;
9664 middleop = gimple_assign_rhs1 (stmt);
9665 def_stmt = SSA_NAME_DEF_STMT (middleop);
9666 if (!is_gimple_assign (def_stmt)
9667 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9668 return false;
9669 innerop = gimple_assign_rhs1 (def_stmt);
9670 if (TREE_CODE (innerop) != SSA_NAME
9671 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9672 return false;
9674 /* Get the value-range of the inner operand. */
9675 innervr = get_value_range (innerop);
9676 if (innervr->type != VR_RANGE
9677 || TREE_CODE (innervr->min) != INTEGER_CST
9678 || TREE_CODE (innervr->max) != INTEGER_CST)
9679 return false;
9681 /* Simulate the conversion chain to check if the result is equal if
9682 the middle conversion is removed. */
9683 innermin = wi::to_widest (innervr->min);
9684 innermax = wi::to_widest (innervr->max);
9686 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9687 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9688 final_prec = TYPE_PRECISION (finaltype);
9690 /* If the first conversion is not injective, the second must not
9691 be widening. */
9692 if (wi::gtu_p (innermax - innermin,
9693 wi::mask <widest_int> (middle_prec, false))
9694 && middle_prec < final_prec)
9695 return false;
9696 /* We also want a medium value so that we can track the effect that
9697 narrowing conversions with sign change have. */
9698 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9699 if (inner_sgn == UNSIGNED)
9700 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9701 else
9702 innermed = 0;
9703 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9704 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9705 innermed = innermin;
9707 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9708 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9709 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9710 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9712 /* Require that the final conversion applied to both the original
9713 and the intermediate range produces the same result. */
9714 final_sgn = TYPE_SIGN (finaltype);
9715 if (wi::ext (middlemin, final_prec, final_sgn)
9716 != wi::ext (innermin, final_prec, final_sgn)
9717 || wi::ext (middlemed, final_prec, final_sgn)
9718 != wi::ext (innermed, final_prec, final_sgn)
9719 || wi::ext (middlemax, final_prec, final_sgn)
9720 != wi::ext (innermax, final_prec, final_sgn))
9721 return false;
9723 gimple_assign_set_rhs1 (stmt, innerop);
9724 update_stmt (stmt);
9725 return true;
9728 /* Simplify a conversion from integral SSA name to float in STMT. */
9730 static bool
9731 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
9732 gimple *stmt)
9734 tree rhs1 = gimple_assign_rhs1 (stmt);
9735 value_range *vr = get_value_range (rhs1);
9736 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9737 machine_mode mode;
9738 tree tem;
9739 gassign *conv;
9741 /* We can only handle constant ranges. */
9742 if (vr->type != VR_RANGE
9743 || TREE_CODE (vr->min) != INTEGER_CST
9744 || TREE_CODE (vr->max) != INTEGER_CST)
9745 return false;
9747 /* First check if we can use a signed type in place of an unsigned. */
9748 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9749 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9750 != CODE_FOR_nothing)
9751 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
9752 mode = TYPE_MODE (TREE_TYPE (rhs1));
9753 /* If we can do the conversion in the current input mode do nothing. */
9754 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9755 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9756 return false;
9757 /* Otherwise search for a mode we can use, starting from the narrowest
9758 integer mode available. */
9759 else
9761 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9764 /* If we cannot do a signed conversion to float from mode
9765 or if the value-range does not fit in the signed type
9766 try with a wider mode. */
9767 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9768 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
9769 break;
9771 mode = GET_MODE_WIDER_MODE (mode);
9772 /* But do not widen the input. Instead leave that to the
9773 optabs expansion code. */
9774 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9775 return false;
9777 while (mode != VOIDmode);
9778 if (mode == VOIDmode)
9779 return false;
9782 /* It works, insert a truncation or sign-change before the
9783 float conversion. */
9784 tem = make_ssa_name (build_nonstandard_integer_type
9785 (GET_MODE_PRECISION (mode), 0));
9786 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
9787 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9788 gimple_assign_set_rhs1 (stmt, tem);
9789 update_stmt (stmt);
9791 return true;
9794 /* Simplify an internal fn call using ranges if possible. */
9796 static bool
9797 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9799 enum tree_code subcode;
9800 bool is_ubsan = false;
9801 bool ovf = false;
9802 switch (gimple_call_internal_fn (stmt))
9804 case IFN_UBSAN_CHECK_ADD:
9805 subcode = PLUS_EXPR;
9806 is_ubsan = true;
9807 break;
9808 case IFN_UBSAN_CHECK_SUB:
9809 subcode = MINUS_EXPR;
9810 is_ubsan = true;
9811 break;
9812 case IFN_UBSAN_CHECK_MUL:
9813 subcode = MULT_EXPR;
9814 is_ubsan = true;
9815 break;
9816 case IFN_ADD_OVERFLOW:
9817 subcode = PLUS_EXPR;
9818 break;
9819 case IFN_SUB_OVERFLOW:
9820 subcode = MINUS_EXPR;
9821 break;
9822 case IFN_MUL_OVERFLOW:
9823 subcode = MULT_EXPR;
9824 break;
9825 default:
9826 return false;
9829 tree op0 = gimple_call_arg (stmt, 0);
9830 tree op1 = gimple_call_arg (stmt, 1);
9831 tree type;
9832 if (is_ubsan)
9833 type = TREE_TYPE (op0);
9834 else if (gimple_call_lhs (stmt) == NULL_TREE)
9835 return false;
9836 else
9837 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
9838 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
9839 || (is_ubsan && ovf))
9840 return false;
9842 gimple *g;
9843 location_t loc = gimple_location (stmt);
9844 if (is_ubsan)
9845 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
9846 else
9848 int prec = TYPE_PRECISION (type);
9849 tree utype = type;
9850 if (ovf
9851 || !useless_type_conversion_p (type, TREE_TYPE (op0))
9852 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
9853 utype = build_nonstandard_integer_type (prec, 1);
9854 if (TREE_CODE (op0) == INTEGER_CST)
9855 op0 = fold_convert (utype, op0);
9856 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
9858 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
9859 gimple_set_location (g, loc);
9860 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9861 op0 = gimple_assign_lhs (g);
9863 if (TREE_CODE (op1) == INTEGER_CST)
9864 op1 = fold_convert (utype, op1);
9865 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
9867 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
9868 gimple_set_location (g, loc);
9869 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9870 op1 = gimple_assign_lhs (g);
9872 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
9873 gimple_set_location (g, loc);
9874 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9875 if (utype != type)
9877 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
9878 gimple_assign_lhs (g));
9879 gimple_set_location (g, loc);
9880 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9882 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
9883 gimple_assign_lhs (g),
9884 build_int_cst (type, ovf));
9886 gimple_set_location (g, loc);
9887 gsi_replace (gsi, g, false);
9888 return true;
9891 /* Simplify STMT using ranges if possible. */
9893 static bool
9894 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9896 gimple *stmt = gsi_stmt (*gsi);
9897 if (is_gimple_assign (stmt))
9899 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9900 tree rhs1 = gimple_assign_rhs1 (stmt);
9902 switch (rhs_code)
9904 case EQ_EXPR:
9905 case NE_EXPR:
9906 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9907 if the RHS is zero or one, and the LHS are known to be boolean
9908 values. */
9909 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9910 return simplify_truth_ops_using_ranges (gsi, stmt);
9911 break;
9913 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9914 and BIT_AND_EXPR respectively if the first operand is greater
9915 than zero and the second operand is an exact power of two.
9916 Also optimize TRUNC_MOD_EXPR away if the second operand is
9917 constant and the first operand already has the right value
9918 range. */
9919 case TRUNC_DIV_EXPR:
9920 case TRUNC_MOD_EXPR:
9921 if (TREE_CODE (rhs1) == SSA_NAME
9922 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9923 return simplify_div_or_mod_using_ranges (gsi, stmt);
9924 break;
9926 /* Transform ABS (X) into X or -X as appropriate. */
9927 case ABS_EXPR:
9928 if (TREE_CODE (rhs1) == SSA_NAME
9929 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9930 return simplify_abs_using_ranges (stmt);
9931 break;
9933 case BIT_AND_EXPR:
9934 case BIT_IOR_EXPR:
9935 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9936 if all the bits being cleared are already cleared or
9937 all the bits being set are already set. */
9938 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9939 return simplify_bit_ops_using_ranges (gsi, stmt);
9940 break;
9942 CASE_CONVERT:
9943 if (TREE_CODE (rhs1) == SSA_NAME
9944 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9945 return simplify_conversion_using_ranges (stmt);
9946 break;
9948 case FLOAT_EXPR:
9949 if (TREE_CODE (rhs1) == SSA_NAME
9950 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9951 return simplify_float_conversion_using_ranges (gsi, stmt);
9952 break;
9954 case MIN_EXPR:
9955 case MAX_EXPR:
9956 return simplify_min_or_max_using_ranges (stmt);
9957 break;
9959 default:
9960 break;
9963 else if (gimple_code (stmt) == GIMPLE_COND)
9964 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
9965 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9966 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
9967 else if (is_gimple_call (stmt)
9968 && gimple_call_internal_p (stmt))
9969 return simplify_internal_call_using_ranges (gsi, stmt);
9971 return false;
9974 /* If the statement pointed by SI has a predicate whose value can be
9975 computed using the value range information computed by VRP, compute
9976 its value and return true. Otherwise, return false. */
9978 static bool
9979 fold_predicate_in (gimple_stmt_iterator *si)
9981 bool assignment_p = false;
9982 tree val;
9983 gimple *stmt = gsi_stmt (*si);
9985 if (is_gimple_assign (stmt)
9986 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9988 assignment_p = true;
9989 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9990 gimple_assign_rhs1 (stmt),
9991 gimple_assign_rhs2 (stmt),
9992 stmt);
9994 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
9995 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
9996 gimple_cond_lhs (cond_stmt),
9997 gimple_cond_rhs (cond_stmt),
9998 stmt);
9999 else
10000 return false;
10002 if (val)
10004 if (assignment_p)
10005 val = fold_convert (gimple_expr_type (stmt), val);
10007 if (dump_file)
10009 fprintf (dump_file, "Folding predicate ");
10010 print_gimple_expr (dump_file, stmt, 0, 0);
10011 fprintf (dump_file, " to ");
10012 print_generic_expr (dump_file, val, 0);
10013 fprintf (dump_file, "\n");
10016 if (is_gimple_assign (stmt))
10017 gimple_assign_set_rhs_from_tree (si, val);
10018 else
10020 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10021 gcond *cond_stmt = as_a <gcond *> (stmt);
10022 if (integer_zerop (val))
10023 gimple_cond_make_false (cond_stmt);
10024 else if (integer_onep (val))
10025 gimple_cond_make_true (cond_stmt);
10026 else
10027 gcc_unreachable ();
10030 return true;
10033 return false;
10036 /* Callback for substitute_and_fold folding the stmt at *SI. */
10038 static bool
10039 vrp_fold_stmt (gimple_stmt_iterator *si)
10041 if (fold_predicate_in (si))
10042 return true;
10044 return simplify_stmt_using_ranges (si);
10047 /* Unwindable const/copy equivalences. */
10048 const_and_copies *equiv_stack;
10050 /* A trivial wrapper so that we can present the generic jump threading
10051 code with a simple API for simplifying statements. STMT is the
10052 statement we want to simplify, WITHIN_STMT provides the location
10053 for any overflow warnings. */
10055 static tree
10056 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10057 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED)
10059 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10060 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10061 gimple_cond_lhs (cond_stmt),
10062 gimple_cond_rhs (cond_stmt),
10063 within_stmt);
10065 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10067 value_range new_vr = VR_INITIALIZER;
10068 tree lhs = gimple_assign_lhs (assign_stmt);
10070 if (TREE_CODE (lhs) == SSA_NAME
10071 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10072 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10074 extract_range_from_assignment (&new_vr, assign_stmt);
10075 if (range_int_cst_singleton_p (&new_vr))
10076 return new_vr.min;
10080 return NULL_TREE;
10083 /* Blocks which have more than one predecessor and more than
10084 one successor present jump threading opportunities, i.e.,
10085 when the block is reached from a specific predecessor, we
10086 may be able to determine which of the outgoing edges will
10087 be traversed. When this optimization applies, we are able
10088 to avoid conditionals at runtime and we may expose secondary
10089 optimization opportunities.
10091 This routine is effectively a driver for the generic jump
10092 threading code. It basically just presents the generic code
10093 with edges that may be suitable for jump threading.
10095 Unlike DOM, we do not iterate VRP if jump threading was successful.
10096 While iterating may expose new opportunities for VRP, it is expected
10097 those opportunities would be very limited and the compile time cost
10098 to expose those opportunities would be significant.
10100 As jump threading opportunities are discovered, they are registered
10101 for later realization. */
10103 static void
10104 identify_jump_threads (void)
10106 basic_block bb;
10107 gcond *dummy;
10108 int i;
10109 edge e;
10111 /* Ugh. When substituting values earlier in this pass we can
10112 wipe the dominance information. So rebuild the dominator
10113 information as we need it within the jump threading code. */
10114 calculate_dominance_info (CDI_DOMINATORS);
10116 /* We do not allow VRP information to be used for jump threading
10117 across a back edge in the CFG. Otherwise it becomes too
10118 difficult to avoid eliminating loop exit tests. Of course
10119 EDGE_DFS_BACK is not accurate at this time so we have to
10120 recompute it. */
10121 mark_dfs_back_edges ();
10123 /* Do not thread across edges we are about to remove. Just marking
10124 them as EDGE_IGNORE will do. */
10125 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10126 e->flags |= EDGE_IGNORE;
10128 /* Allocate our unwinder stack to unwind any temporary equivalences
10129 that might be recorded. */
10130 equiv_stack = new const_and_copies ();
10132 /* To avoid lots of silly node creation, we create a single
10133 conditional and just modify it in-place when attempting to
10134 thread jumps. */
10135 dummy = gimple_build_cond (EQ_EXPR,
10136 integer_zero_node, integer_zero_node,
10137 NULL, NULL);
10139 /* Walk through all the blocks finding those which present a
10140 potential jump threading opportunity. We could set this up
10141 as a dominator walker and record data during the walk, but
10142 I doubt it's worth the effort for the classes of jump
10143 threading opportunities we are trying to identify at this
10144 point in compilation. */
10145 FOR_EACH_BB_FN (bb, cfun)
10147 gimple *last;
10149 /* If the generic jump threading code does not find this block
10150 interesting, then there is nothing to do. */
10151 if (! potentially_threadable_block (bb))
10152 continue;
10154 last = last_stmt (bb);
10156 /* We're basically looking for a switch or any kind of conditional with
10157 integral or pointer type arguments. Note the type of the second
10158 argument will be the same as the first argument, so no need to
10159 check it explicitly.
10161 We also handle the case where there are no statements in the
10162 block. This come up with forwarder blocks that are not
10163 optimized away because they lead to a loop header. But we do
10164 want to thread through them as we can sometimes thread to the
10165 loop exit which is obviously profitable. */
10166 if (!last
10167 || gimple_code (last) == GIMPLE_SWITCH
10168 || (gimple_code (last) == GIMPLE_COND
10169 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10170 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10171 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10172 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10173 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10175 edge_iterator ei;
10177 /* We've got a block with multiple predecessors and multiple
10178 successors which also ends in a suitable conditional or
10179 switch statement. For each predecessor, see if we can thread
10180 it to a specific successor. */
10181 FOR_EACH_EDGE (e, ei, bb->preds)
10183 /* Do not thread across edges marked to ignoreor abnormal
10184 edges in the CFG. */
10185 if (e->flags & (EDGE_IGNORE | EDGE_COMPLEX))
10186 continue;
10188 thread_across_edge (dummy, e, true, equiv_stack, NULL,
10189 simplify_stmt_for_jump_threading);
10194 /* Clear EDGE_IGNORE. */
10195 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10196 e->flags &= ~EDGE_IGNORE;
10198 /* We do not actually update the CFG or SSA graphs at this point as
10199 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10200 handle ASSERT_EXPRs gracefully. */
10203 /* We identified all the jump threading opportunities earlier, but could
10204 not transform the CFG at that time. This routine transforms the
10205 CFG and arranges for the dominator tree to be rebuilt if necessary.
10207 Note the SSA graph update will occur during the normal TODO
10208 processing by the pass manager. */
10209 static void
10210 finalize_jump_threads (void)
10212 thread_through_all_blocks (false);
10213 delete equiv_stack;
10217 /* Traverse all the blocks folding conditionals with known ranges. */
10219 static void
10220 vrp_finalize (bool warn_array_bounds_p)
10222 size_t i;
10224 values_propagated = true;
10226 if (dump_file)
10228 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10229 dump_all_value_ranges (dump_file);
10230 fprintf (dump_file, "\n");
10233 /* Set value range to non pointer SSA_NAMEs. */
10234 for (i = 0; i < num_vr_values; i++)
10235 if (vr_value[i])
10237 tree name = ssa_name (i);
10239 if (!name
10240 || POINTER_TYPE_P (TREE_TYPE (name))
10241 || (vr_value[i]->type == VR_VARYING)
10242 || (vr_value[i]->type == VR_UNDEFINED))
10243 continue;
10245 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
10246 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
10247 && (vr_value[i]->type == VR_RANGE
10248 || vr_value[i]->type == VR_ANTI_RANGE))
10249 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10250 vr_value[i]->max);
10253 substitute_and_fold (op_with_constant_singleton_value_range,
10254 vrp_fold_stmt, false);
10256 if (warn_array_bounds && warn_array_bounds_p)
10257 check_all_array_refs ();
10259 /* We must identify jump threading opportunities before we release
10260 the datastructures built by VRP. */
10261 identify_jump_threads ();
10263 /* Free allocated memory. */
10264 for (i = 0; i < num_vr_values; i++)
10265 if (vr_value[i])
10267 BITMAP_FREE (vr_value[i]->equiv);
10268 free (vr_value[i]);
10271 free (vr_value);
10272 free (vr_phi_edge_counts);
10274 /* So that we can distinguish between VRP data being available
10275 and not available. */
10276 vr_value = NULL;
10277 vr_phi_edge_counts = NULL;
10281 /* Main entry point to VRP (Value Range Propagation). This pass is
10282 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10283 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10284 Programming Language Design and Implementation, pp. 67-78, 1995.
10285 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10287 This is essentially an SSA-CCP pass modified to deal with ranges
10288 instead of constants.
10290 While propagating ranges, we may find that two or more SSA name
10291 have equivalent, though distinct ranges. For instance,
10293 1 x_9 = p_3->a;
10294 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10295 3 if (p_4 == q_2)
10296 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10297 5 endif
10298 6 if (q_2)
10300 In the code above, pointer p_5 has range [q_2, q_2], but from the
10301 code we can also determine that p_5 cannot be NULL and, if q_2 had
10302 a non-varying range, p_5's range should also be compatible with it.
10304 These equivalences are created by two expressions: ASSERT_EXPR and
10305 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10306 result of another assertion, then we can use the fact that p_5 and
10307 p_4 are equivalent when evaluating p_5's range.
10309 Together with value ranges, we also propagate these equivalences
10310 between names so that we can take advantage of information from
10311 multiple ranges when doing final replacement. Note that this
10312 equivalency relation is transitive but not symmetric.
10314 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10315 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10316 in contexts where that assertion does not hold (e.g., in line 6).
10318 TODO, the main difference between this pass and Patterson's is that
10319 we do not propagate edge probabilities. We only compute whether
10320 edges can be taken or not. That is, instead of having a spectrum
10321 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10322 DON'T KNOW. In the future, it may be worthwhile to propagate
10323 probabilities to aid branch prediction. */
10325 static unsigned int
10326 execute_vrp (bool warn_array_bounds_p)
10328 int i;
10329 edge e;
10330 switch_update *su;
10332 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
10333 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
10334 scev_initialize ();
10336 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10337 Inserting assertions may split edges which will invalidate
10338 EDGE_DFS_BACK. */
10339 insert_range_assertions ();
10341 to_remove_edges.create (10);
10342 to_update_switch_stmts.create (5);
10343 threadedge_initialize_values ();
10345 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10346 mark_dfs_back_edges ();
10348 vrp_initialize ();
10349 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
10350 vrp_finalize (warn_array_bounds_p);
10352 free_numbers_of_iterations_estimates (cfun);
10354 /* ASSERT_EXPRs must be removed before finalizing jump threads
10355 as finalizing jump threads calls the CFG cleanup code which
10356 does not properly handle ASSERT_EXPRs. */
10357 remove_range_assertions ();
10359 /* If we exposed any new variables, go ahead and put them into
10360 SSA form now, before we handle jump threading. This simplifies
10361 interactions between rewriting of _DECL nodes into SSA form
10362 and rewriting SSA_NAME nodes into SSA form after block
10363 duplication and CFG manipulation. */
10364 update_ssa (TODO_update_ssa);
10366 finalize_jump_threads ();
10368 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10369 CFG in a broken state and requires a cfg_cleanup run. */
10370 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10371 remove_edge (e);
10372 /* Update SWITCH_EXPR case label vector. */
10373 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
10375 size_t j;
10376 size_t n = TREE_VEC_LENGTH (su->vec);
10377 tree label;
10378 gimple_switch_set_num_labels (su->stmt, n);
10379 for (j = 0; j < n; j++)
10380 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
10381 /* As we may have replaced the default label with a regular one
10382 make sure to make it a real default label again. This ensures
10383 optimal expansion. */
10384 label = gimple_switch_label (su->stmt, 0);
10385 CASE_LOW (label) = NULL_TREE;
10386 CASE_HIGH (label) = NULL_TREE;
10389 if (to_remove_edges.length () > 0)
10391 free_dominance_info (CDI_DOMINATORS);
10392 loops_state_set (LOOPS_NEED_FIXUP);
10395 to_remove_edges.release ();
10396 to_update_switch_stmts.release ();
10397 threadedge_finalize_values ();
10399 scev_finalize ();
10400 loop_optimizer_finalize ();
10401 return 0;
10404 namespace {
10406 const pass_data pass_data_vrp =
10408 GIMPLE_PASS, /* type */
10409 "vrp", /* name */
10410 OPTGROUP_NONE, /* optinfo_flags */
10411 TV_TREE_VRP, /* tv_id */
10412 PROP_ssa, /* properties_required */
10413 0, /* properties_provided */
10414 0, /* properties_destroyed */
10415 0, /* todo_flags_start */
10416 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
10419 class pass_vrp : public gimple_opt_pass
10421 public:
10422 pass_vrp (gcc::context *ctxt)
10423 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
10426 /* opt_pass methods: */
10427 opt_pass * clone () { return new pass_vrp (m_ctxt); }
10428 void set_pass_param (unsigned int n, bool param)
10430 gcc_assert (n == 0);
10431 warn_array_bounds_p = param;
10433 virtual bool gate (function *) { return flag_tree_vrp != 0; }
10434 virtual unsigned int execute (function *)
10435 { return execute_vrp (warn_array_bounds_p); }
10437 private:
10438 bool warn_array_bounds_p;
10439 }; // class pass_vrp
10441 } // anon namespace
10443 gimple_opt_pass *
10444 make_pass_vrp (gcc::context *ctxt)
10446 return new pass_vrp (ctxt);