2016-01-26 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / postreload.c
blob69a18684fd00c2307e75e3fcc33dbb3d9af4be11
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "optabs.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfgbuild.h"
37 #include "cfgcleanup.h"
38 #include "reload.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "dbgcnt.h"
43 #ifndef LOAD_EXTEND_OP
44 #define LOAD_EXTEND_OP(M) UNKNOWN
45 #endif
47 static int reload_cse_noop_set_p (rtx);
48 static bool reload_cse_simplify (rtx_insn *, rtx);
49 static void reload_cse_regs_1 (void);
50 static int reload_cse_simplify_set (rtx, rtx_insn *);
51 static int reload_cse_simplify_operands (rtx_insn *, rtx);
53 static void reload_combine (void);
54 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
55 static void reload_combine_note_store (rtx, const_rtx, void *);
57 static bool reload_cse_move2add (rtx_insn *);
58 static void move2add_note_store (rtx, const_rtx, void *);
60 /* Call cse / combine like post-reload optimization phases.
61 FIRST is the first instruction. */
63 static void
64 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
66 bool moves_converted;
67 reload_cse_regs_1 ();
68 reload_combine ();
69 moves_converted = reload_cse_move2add (first);
70 if (flag_expensive_optimizations)
72 if (moves_converted)
73 reload_combine ();
74 reload_cse_regs_1 ();
78 /* See whether a single set SET is a noop. */
79 static int
80 reload_cse_noop_set_p (rtx set)
82 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
83 return 0;
85 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
88 /* Try to simplify INSN. Return true if the CFG may have changed. */
89 static bool
90 reload_cse_simplify (rtx_insn *insn, rtx testreg)
92 rtx body = PATTERN (insn);
93 basic_block insn_bb = BLOCK_FOR_INSN (insn);
94 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
96 if (GET_CODE (body) == SET)
98 int count = 0;
100 /* Simplify even if we may think it is a no-op.
101 We may think a memory load of a value smaller than WORD_SIZE
102 is redundant because we haven't taken into account possible
103 implicit extension. reload_cse_simplify_set() will bring
104 this out, so it's safer to simplify before we delete. */
105 count += reload_cse_simplify_set (body, insn);
107 if (!count && reload_cse_noop_set_p (body))
109 rtx value = SET_DEST (body);
110 if (REG_P (value)
111 && ! REG_FUNCTION_VALUE_P (value))
112 value = 0;
113 if (check_for_inc_dec (insn))
114 delete_insn_and_edges (insn);
115 /* We're done with this insn. */
116 goto done;
119 if (count > 0)
120 apply_change_group ();
121 else
122 reload_cse_simplify_operands (insn, testreg);
124 else if (GET_CODE (body) == PARALLEL)
126 int i;
127 int count = 0;
128 rtx value = NULL_RTX;
130 /* Registers mentioned in the clobber list for an asm cannot be reused
131 within the body of the asm. Invalidate those registers now so that
132 we don't try to substitute values for them. */
133 if (asm_noperands (body) >= 0)
135 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
137 rtx part = XVECEXP (body, 0, i);
138 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
139 cselib_invalidate_rtx (XEXP (part, 0));
143 /* If every action in a PARALLEL is a noop, we can delete
144 the entire PARALLEL. */
145 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
147 rtx part = XVECEXP (body, 0, i);
148 if (GET_CODE (part) == SET)
150 if (! reload_cse_noop_set_p (part))
151 break;
152 if (REG_P (SET_DEST (part))
153 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
155 if (value)
156 break;
157 value = SET_DEST (part);
160 else if (GET_CODE (part) != CLOBBER)
161 break;
164 if (i < 0)
166 if (check_for_inc_dec (insn))
167 delete_insn_and_edges (insn);
168 /* We're done with this insn. */
169 goto done;
172 /* It's not a no-op, but we can try to simplify it. */
173 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
175 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177 if (count > 0)
178 apply_change_group ();
179 else
180 reload_cse_simplify_operands (insn, testreg);
183 done:
184 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
187 /* Do a very simple CSE pass over the hard registers.
189 This function detects no-op moves where we happened to assign two
190 different pseudo-registers to the same hard register, and then
191 copied one to the other. Reload will generate a useless
192 instruction copying a register to itself.
194 This function also detects cases where we load a value from memory
195 into two different registers, and (if memory is more expensive than
196 registers) changes it to simply copy the first register into the
197 second register.
199 Another optimization is performed that scans the operands of each
200 instruction to see whether the value is already available in a
201 hard register. It then replaces the operand with the hard register
202 if possible, much like an optional reload would. */
204 static void
205 reload_cse_regs_1 (void)
207 bool cfg_changed = false;
208 basic_block bb;
209 rtx_insn *insn;
210 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
212 cselib_init (CSELIB_RECORD_MEMORY);
213 init_alias_analysis ();
215 FOR_EACH_BB_FN (bb, cfun)
216 FOR_BB_INSNS (bb, insn)
218 if (INSN_P (insn))
219 cfg_changed |= reload_cse_simplify (insn, testreg);
221 cselib_process_insn (insn);
224 /* Clean up. */
225 end_alias_analysis ();
226 cselib_finish ();
227 if (cfg_changed)
228 cleanup_cfg (0);
231 /* Try to simplify a single SET instruction. SET is the set pattern.
232 INSN is the instruction it came from.
233 This function only handles one case: if we set a register to a value
234 which is not a register, we try to find that value in some other register
235 and change the set into a register copy. */
237 static int
238 reload_cse_simplify_set (rtx set, rtx_insn *insn)
240 int did_change = 0;
241 int dreg;
242 rtx src;
243 reg_class_t dclass;
244 int old_cost;
245 cselib_val *val;
246 struct elt_loc_list *l;
247 enum rtx_code extend_op = UNKNOWN;
248 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
250 dreg = true_regnum (SET_DEST (set));
251 if (dreg < 0)
252 return 0;
254 src = SET_SRC (set);
255 if (side_effects_p (src) || true_regnum (src) >= 0)
256 return 0;
258 dclass = REGNO_REG_CLASS (dreg);
260 /* When replacing a memory with a register, we need to honor assumptions
261 that combine made wrt the contents of sign bits. We'll do this by
262 generating an extend instruction instead of a reg->reg copy. Thus
263 the destination must be a register that we can widen. */
264 if (MEM_P (src)
265 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
266 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
267 && !REG_P (SET_DEST (set)))
268 return 0;
270 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
271 if (! val)
272 return 0;
274 /* If memory loads are cheaper than register copies, don't change them. */
275 if (MEM_P (src))
276 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
277 else if (REG_P (src))
278 old_cost = register_move_cost (GET_MODE (src),
279 REGNO_REG_CLASS (REGNO (src)), dclass);
280 else
281 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
283 for (l = val->locs; l; l = l->next)
285 rtx this_rtx = l->loc;
286 int this_cost;
288 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
290 if (extend_op != UNKNOWN)
292 wide_int result;
294 if (!CONST_SCALAR_INT_P (this_rtx))
295 continue;
297 switch (extend_op)
299 case ZERO_EXTEND:
300 result = wide_int::from (std::make_pair (this_rtx,
301 GET_MODE (src)),
302 BITS_PER_WORD, UNSIGNED);
303 break;
304 case SIGN_EXTEND:
305 result = wide_int::from (std::make_pair (this_rtx,
306 GET_MODE (src)),
307 BITS_PER_WORD, SIGNED);
308 break;
309 default:
310 gcc_unreachable ();
312 this_rtx = immed_wide_int_const (result, word_mode);
315 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
317 else if (REG_P (this_rtx))
319 if (extend_op != UNKNOWN)
321 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
322 this_cost = set_src_cost (this_rtx, word_mode, speed);
324 else
325 this_cost = register_move_cost (GET_MODE (this_rtx),
326 REGNO_REG_CLASS (REGNO (this_rtx)),
327 dclass);
329 else
330 continue;
332 /* If equal costs, prefer registers over anything else. That
333 tends to lead to smaller instructions on some machines. */
334 if (this_cost < old_cost
335 || (this_cost == old_cost
336 && REG_P (this_rtx)
337 && !REG_P (SET_SRC (set))))
339 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
340 && extend_op != UNKNOWN
341 #ifdef CANNOT_CHANGE_MODE_CLASS
342 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
343 word_mode,
344 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
345 #endif
348 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
349 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
350 validate_change (insn, &SET_DEST (set), wide_dest, 1);
353 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
354 old_cost = this_cost, did_change = 1;
358 return did_change;
361 /* Try to replace operands in INSN with equivalent values that are already
362 in registers. This can be viewed as optional reloading.
364 For each non-register operand in the insn, see if any hard regs are
365 known to be equivalent to that operand. Record the alternatives which
366 can accept these hard registers. Among all alternatives, select the
367 ones which are better or equal to the one currently matching, where
368 "better" is in terms of '?' and '!' constraints. Among the remaining
369 alternatives, select the one which replaces most operands with
370 hard registers. */
372 static int
373 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
375 int i, j;
377 /* For each operand, all registers that are equivalent to it. */
378 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
380 const char *constraints[MAX_RECOG_OPERANDS];
382 /* Vector recording how bad an alternative is. */
383 int *alternative_reject;
384 /* Vector recording how many registers can be introduced by choosing
385 this alternative. */
386 int *alternative_nregs;
387 /* Array of vectors recording, for each operand and each alternative,
388 which hard register to substitute, or -1 if the operand should be
389 left as it is. */
390 int *op_alt_regno[MAX_RECOG_OPERANDS];
391 /* Array of alternatives, sorted in order of decreasing desirability. */
392 int *alternative_order;
394 extract_constrain_insn (insn);
396 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
397 return 0;
399 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
400 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
401 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
402 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
403 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
405 /* For each operand, find out which regs are equivalent. */
406 for (i = 0; i < recog_data.n_operands; i++)
408 cselib_val *v;
409 struct elt_loc_list *l;
410 rtx op;
412 CLEAR_HARD_REG_SET (equiv_regs[i]);
414 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
415 right, so avoid the problem here. Likewise if we have a constant
416 and the insn pattern doesn't tell us the mode we need. */
417 if (LABEL_P (recog_data.operand[i])
418 || (CONSTANT_P (recog_data.operand[i])
419 && recog_data.operand_mode[i] == VOIDmode))
420 continue;
422 op = recog_data.operand[i];
423 if (MEM_P (op)
424 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
425 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
427 rtx set = single_set (insn);
429 /* We might have multiple sets, some of which do implicit
430 extension. Punt on this for now. */
431 if (! set)
432 continue;
433 /* If the destination is also a MEM or a STRICT_LOW_PART, no
434 extension applies.
435 Also, if there is an explicit extension, we don't have to
436 worry about an implicit one. */
437 else if (MEM_P (SET_DEST (set))
438 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
439 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
440 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
441 ; /* Continue ordinary processing. */
442 #ifdef CANNOT_CHANGE_MODE_CLASS
443 /* If the register cannot change mode to word_mode, it follows that
444 it cannot have been used in word_mode. */
445 else if (REG_P (SET_DEST (set))
446 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
447 word_mode,
448 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
449 ; /* Continue ordinary processing. */
450 #endif
451 /* If this is a straight load, make the extension explicit. */
452 else if (REG_P (SET_DEST (set))
453 && recog_data.n_operands == 2
454 && SET_SRC (set) == op
455 && SET_DEST (set) == recog_data.operand[1-i])
457 validate_change (insn, recog_data.operand_loc[i],
458 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
459 word_mode, op),
461 validate_change (insn, recog_data.operand_loc[1-i],
462 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
464 if (! apply_change_group ())
465 return 0;
466 return reload_cse_simplify_operands (insn, testreg);
468 else
469 /* ??? There might be arithmetic operations with memory that are
470 safe to optimize, but is it worth the trouble? */
471 continue;
474 if (side_effects_p (op))
475 continue;
476 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
477 if (! v)
478 continue;
480 for (l = v->locs; l; l = l->next)
481 if (REG_P (l->loc))
482 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
485 alternative_mask preferred = get_preferred_alternatives (insn);
486 for (i = 0; i < recog_data.n_operands; i++)
488 machine_mode mode;
489 int regno;
490 const char *p;
492 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
493 for (j = 0; j < recog_data.n_alternatives; j++)
494 op_alt_regno[i][j] = -1;
496 p = constraints[i] = recog_data.constraints[i];
497 mode = recog_data.operand_mode[i];
499 /* Add the reject values for each alternative given by the constraints
500 for this operand. */
501 j = 0;
502 while (*p != '\0')
504 char c = *p++;
505 if (c == ',')
506 j++;
507 else if (c == '?')
508 alternative_reject[j] += 3;
509 else if (c == '!')
510 alternative_reject[j] += 300;
513 /* We won't change operands which are already registers. We
514 also don't want to modify output operands. */
515 regno = true_regnum (recog_data.operand[i]);
516 if (regno >= 0
517 || constraints[i][0] == '='
518 || constraints[i][0] == '+')
519 continue;
521 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
523 enum reg_class rclass = NO_REGS;
525 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
526 continue;
528 set_mode_and_regno (testreg, mode, regno);
530 /* We found a register equal to this operand. Now look for all
531 alternatives that can accept this register and have not been
532 assigned a register they can use yet. */
533 j = 0;
534 p = constraints[i];
535 for (;;)
537 char c = *p;
539 switch (c)
541 case 'g':
542 rclass = reg_class_subunion[rclass][GENERAL_REGS];
543 break;
545 default:
546 rclass
547 = (reg_class_subunion
548 [rclass]
549 [reg_class_for_constraint (lookup_constraint (p))]);
550 break;
552 case ',': case '\0':
553 /* See if REGNO fits this alternative, and set it up as the
554 replacement register if we don't have one for this
555 alternative yet and the operand being replaced is not
556 a cheap CONST_INT. */
557 if (op_alt_regno[i][j] == -1
558 && TEST_BIT (preferred, j)
559 && reg_fits_class_p (testreg, rclass, 0, mode)
560 && (!CONST_INT_P (recog_data.operand[i])
561 || (set_src_cost (recog_data.operand[i], mode,
562 optimize_bb_for_speed_p
563 (BLOCK_FOR_INSN (insn)))
564 > set_src_cost (testreg, mode,
565 optimize_bb_for_speed_p
566 (BLOCK_FOR_INSN (insn))))))
568 alternative_nregs[j]++;
569 op_alt_regno[i][j] = regno;
571 j++;
572 rclass = NO_REGS;
573 break;
575 p += CONSTRAINT_LEN (c, p);
577 if (c == '\0')
578 break;
583 /* Record all alternatives which are better or equal to the currently
584 matching one in the alternative_order array. */
585 for (i = j = 0; i < recog_data.n_alternatives; i++)
586 if (alternative_reject[i] <= alternative_reject[which_alternative])
587 alternative_order[j++] = i;
588 recog_data.n_alternatives = j;
590 /* Sort it. Given a small number of alternatives, a dumb algorithm
591 won't hurt too much. */
592 for (i = 0; i < recog_data.n_alternatives - 1; i++)
594 int best = i;
595 int best_reject = alternative_reject[alternative_order[i]];
596 int best_nregs = alternative_nregs[alternative_order[i]];
598 for (j = i + 1; j < recog_data.n_alternatives; j++)
600 int this_reject = alternative_reject[alternative_order[j]];
601 int this_nregs = alternative_nregs[alternative_order[j]];
603 if (this_reject < best_reject
604 || (this_reject == best_reject && this_nregs > best_nregs))
606 best = j;
607 best_reject = this_reject;
608 best_nregs = this_nregs;
612 std::swap (alternative_order[best], alternative_order[i]);
615 /* Substitute the operands as determined by op_alt_regno for the best
616 alternative. */
617 j = alternative_order[0];
619 for (i = 0; i < recog_data.n_operands; i++)
621 machine_mode mode = recog_data.operand_mode[i];
622 if (op_alt_regno[i][j] == -1)
623 continue;
625 validate_change (insn, recog_data.operand_loc[i],
626 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
629 for (i = recog_data.n_dups - 1; i >= 0; i--)
631 int op = recog_data.dup_num[i];
632 machine_mode mode = recog_data.operand_mode[op];
634 if (op_alt_regno[op][j] == -1)
635 continue;
637 validate_change (insn, recog_data.dup_loc[i],
638 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
641 return apply_change_group ();
644 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
645 addressing now.
646 This code might also be useful when reload gave up on reg+reg addressing
647 because of clashes between the return register and INDEX_REG_CLASS. */
649 /* The maximum number of uses of a register we can keep track of to
650 replace them with reg+reg addressing. */
651 #define RELOAD_COMBINE_MAX_USES 16
653 /* Describes a recorded use of a register. */
654 struct reg_use
656 /* The insn where a register has been used. */
657 rtx_insn *insn;
658 /* Points to the memory reference enclosing the use, if any, NULL_RTX
659 otherwise. */
660 rtx containing_mem;
661 /* Location of the register within INSN. */
662 rtx *usep;
663 /* The reverse uid of the insn. */
664 int ruid;
667 /* If the register is used in some unknown fashion, USE_INDEX is negative.
668 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
669 indicates where it is first set or clobbered.
670 Otherwise, USE_INDEX is the index of the last encountered use of the
671 register (which is first among these we have seen since we scan backwards).
672 USE_RUID indicates the first encountered, i.e. last, of these uses.
673 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
674 with a constant offset; OFFSET contains this constant in that case.
675 STORE_RUID is always meaningful if we only want to use a value in a
676 register in a different place: it denotes the next insn in the insn
677 stream (i.e. the last encountered) that sets or clobbers the register.
678 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
679 static struct
681 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
682 rtx offset;
683 int use_index;
684 int store_ruid;
685 int real_store_ruid;
686 int use_ruid;
687 bool all_offsets_match;
688 } reg_state[FIRST_PSEUDO_REGISTER];
690 /* Reverse linear uid. This is increased in reload_combine while scanning
691 the instructions from last to first. It is used to set last_label_ruid
692 and the store_ruid / use_ruid fields in reg_state. */
693 static int reload_combine_ruid;
695 /* The RUID of the last label we encountered in reload_combine. */
696 static int last_label_ruid;
698 /* The RUID of the last jump we encountered in reload_combine. */
699 static int last_jump_ruid;
701 /* The register numbers of the first and last index register. A value of
702 -1 in LAST_INDEX_REG indicates that we've previously computed these
703 values and found no suitable index registers. */
704 static int first_index_reg = -1;
705 static int last_index_reg;
707 #define LABEL_LIVE(LABEL) \
708 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
710 /* Subroutine of reload_combine_split_ruids, called to fix up a single
711 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
713 static inline void
714 reload_combine_split_one_ruid (int *pruid, int split_ruid)
716 if (*pruid > split_ruid)
717 (*pruid)++;
720 /* Called when we insert a new insn in a position we've already passed in
721 the scan. Examine all our state, increasing all ruids that are higher
722 than SPLIT_RUID by one in order to make room for a new insn. */
724 static void
725 reload_combine_split_ruids (int split_ruid)
727 unsigned i;
729 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
730 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
731 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
733 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
735 int j, idx = reg_state[i].use_index;
736 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
737 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
738 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
739 split_ruid);
740 if (idx < 0)
741 continue;
742 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
744 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
745 split_ruid);
750 /* Called when we are about to rescan a previously encountered insn with
751 reload_combine_note_use after modifying some part of it. This clears all
752 information about uses in that particular insn. */
754 static void
755 reload_combine_purge_insn_uses (rtx_insn *insn)
757 unsigned i;
759 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
761 int j, k, idx = reg_state[i].use_index;
762 if (idx < 0)
763 continue;
764 j = k = RELOAD_COMBINE_MAX_USES;
765 while (j-- > idx)
767 if (reg_state[i].reg_use[j].insn != insn)
769 k--;
770 if (k != j)
771 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
774 reg_state[i].use_index = k;
778 /* Called when we need to forget about all uses of REGNO after an insn
779 which is identified by RUID. */
781 static void
782 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
784 int j, k, idx = reg_state[regno].use_index;
785 if (idx < 0)
786 return;
787 j = k = RELOAD_COMBINE_MAX_USES;
788 while (j-- > idx)
790 if (reg_state[regno].reg_use[j].ruid >= ruid)
792 k--;
793 if (k != j)
794 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
797 reg_state[regno].use_index = k;
800 /* Find the use of REGNO with the ruid that is highest among those
801 lower than RUID_LIMIT, and return it if it is the only use of this
802 reg in the insn. Return NULL otherwise. */
804 static struct reg_use *
805 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
807 int i, best_ruid = 0;
808 int use_idx = reg_state[regno].use_index;
809 struct reg_use *retval;
811 if (use_idx < 0)
812 return NULL;
813 retval = NULL;
814 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
816 struct reg_use *use = reg_state[regno].reg_use + i;
817 int this_ruid = use->ruid;
818 if (this_ruid >= ruid_limit)
819 continue;
820 if (this_ruid > best_ruid)
822 best_ruid = this_ruid;
823 retval = use;
825 else if (this_ruid == best_ruid)
826 retval = NULL;
828 if (last_label_ruid >= best_ruid)
829 return NULL;
830 return retval;
833 /* After we've moved an add insn, fix up any debug insns that occur
834 between the old location of the add and the new location. REG is
835 the destination register of the add insn; REPLACEMENT is the
836 SET_SRC of the add. FROM and TO specify the range in which we
837 should make this change on debug insns. */
839 static void
840 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
842 rtx_insn *insn;
843 for (insn = from; insn != to; insn = NEXT_INSN (insn))
845 rtx t;
847 if (!DEBUG_INSN_P (insn))
848 continue;
850 t = INSN_VAR_LOCATION_LOC (insn);
851 t = simplify_replace_rtx (t, reg, replacement);
852 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
856 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
857 with SRC in the insn described by USE, taking costs into account. Return
858 true if we made the replacement. */
860 static bool
861 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
863 rtx_insn *use_insn = use->insn;
864 rtx mem = use->containing_mem;
865 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
867 if (mem != NULL_RTX)
869 addr_space_t as = MEM_ADDR_SPACE (mem);
870 rtx oldaddr = XEXP (mem, 0);
871 rtx newaddr = NULL_RTX;
872 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
873 int new_cost;
875 newaddr = simplify_replace_rtx (oldaddr, reg, src);
876 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
878 XEXP (mem, 0) = newaddr;
879 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
880 XEXP (mem, 0) = oldaddr;
881 if (new_cost <= old_cost
882 && validate_change (use_insn,
883 &XEXP (mem, 0), newaddr, 0))
884 return true;
887 else
889 rtx new_set = single_set (use_insn);
890 if (new_set
891 && REG_P (SET_DEST (new_set))
892 && GET_CODE (SET_SRC (new_set)) == PLUS
893 && REG_P (XEXP (SET_SRC (new_set), 0))
894 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
896 rtx new_src;
897 machine_mode mode = GET_MODE (SET_DEST (new_set));
898 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
900 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
901 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
903 if (set_src_cost (new_src, mode, speed) <= old_cost
904 && validate_change (use_insn, &SET_SRC (new_set),
905 new_src, 0))
906 return true;
909 return false;
912 /* Called by reload_combine when scanning INSN. This function tries to detect
913 patterns where a constant is added to a register, and the result is used
914 in an address.
915 Return true if no further processing is needed on INSN; false if it wasn't
916 recognized and should be handled normally. */
918 static bool
919 reload_combine_recognize_const_pattern (rtx_insn *insn)
921 int from_ruid = reload_combine_ruid;
922 rtx set, pat, reg, src, addreg;
923 unsigned int regno;
924 struct reg_use *use;
925 bool must_move_add;
926 rtx_insn *add_moved_after_insn = NULL;
927 int add_moved_after_ruid = 0;
928 int clobbered_regno = -1;
930 set = single_set (insn);
931 if (set == NULL_RTX)
932 return false;
934 reg = SET_DEST (set);
935 src = SET_SRC (set);
936 if (!REG_P (reg)
937 || REG_NREGS (reg) != 1
938 || GET_MODE (reg) != Pmode
939 || reg == stack_pointer_rtx)
940 return false;
942 regno = REGNO (reg);
944 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
945 uses of REG1 inside an address, or inside another add insn. If
946 possible and profitable, merge the addition into subsequent
947 uses. */
948 if (GET_CODE (src) != PLUS
949 || !REG_P (XEXP (src, 0))
950 || !CONSTANT_P (XEXP (src, 1)))
951 return false;
953 addreg = XEXP (src, 0);
954 must_move_add = rtx_equal_p (reg, addreg);
956 pat = PATTERN (insn);
957 if (must_move_add && set != pat)
959 /* We have to be careful when moving the add; apart from the
960 single_set there may also be clobbers. Recognize one special
961 case, that of one clobber alongside the set (likely a clobber
962 of the CC register). */
963 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
964 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
965 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
966 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
967 return false;
968 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
973 use = reload_combine_closest_single_use (regno, from_ruid);
975 if (use)
976 /* Start the search for the next use from here. */
977 from_ruid = use->ruid;
979 if (use && GET_MODE (*use->usep) == Pmode)
981 bool delete_add = false;
982 rtx_insn *use_insn = use->insn;
983 int use_ruid = use->ruid;
985 /* Avoid moving the add insn past a jump. */
986 if (must_move_add && use_ruid <= last_jump_ruid)
987 break;
989 /* If the add clobbers another hard reg in parallel, don't move
990 it past a real set of this hard reg. */
991 if (must_move_add && clobbered_regno >= 0
992 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
993 break;
995 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
996 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
997 break;
999 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1000 /* Avoid moving a use of ADDREG past a point where it is stored. */
1001 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1002 break;
1004 /* We also must not move the addition past an insn that sets
1005 the same register, unless we can combine two add insns. */
1006 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1008 if (use->containing_mem == NULL_RTX)
1009 delete_add = true;
1010 else
1011 break;
1014 if (try_replace_in_use (use, reg, src))
1016 reload_combine_purge_insn_uses (use_insn);
1017 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1018 use_ruid, NULL_RTX);
1020 if (delete_add)
1022 fixup_debug_insns (reg, src, insn, use_insn);
1023 delete_insn (insn);
1024 return true;
1026 if (must_move_add)
1028 add_moved_after_insn = use_insn;
1029 add_moved_after_ruid = use_ruid;
1031 continue;
1034 /* If we get here, we couldn't handle this use. */
1035 if (must_move_add)
1036 break;
1038 while (use);
1040 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1041 /* Process the add normally. */
1042 return false;
1044 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1046 reorder_insns (insn, insn, add_moved_after_insn);
1047 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1048 reload_combine_split_ruids (add_moved_after_ruid - 1);
1049 reload_combine_note_use (&PATTERN (insn), insn,
1050 add_moved_after_ruid, NULL_RTX);
1051 reg_state[regno].store_ruid = add_moved_after_ruid;
1053 return true;
1056 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1057 can handle and improve. Return true if no further processing is needed on
1058 INSN; false if it wasn't recognized and should be handled normally. */
1060 static bool
1061 reload_combine_recognize_pattern (rtx_insn *insn)
1063 rtx set, reg, src;
1064 unsigned int regno;
1066 set = single_set (insn);
1067 if (set == NULL_RTX)
1068 return false;
1070 reg = SET_DEST (set);
1071 src = SET_SRC (set);
1072 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1073 return false;
1075 regno = REGNO (reg);
1077 /* Look for (set (REGX) (CONST_INT))
1078 (set (REGX) (PLUS (REGX) (REGY)))
1080 ... (MEM (REGX)) ...
1081 and convert it to
1082 (set (REGZ) (CONST_INT))
1084 ... (MEM (PLUS (REGZ) (REGY)))... .
1086 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1087 and that we know all uses of REGX before it dies.
1088 Also, explicitly check that REGX != REGY; our life information
1089 does not yet show whether REGY changes in this insn. */
1091 if (GET_CODE (src) == PLUS
1092 && reg_state[regno].all_offsets_match
1093 && last_index_reg != -1
1094 && REG_P (XEXP (src, 1))
1095 && rtx_equal_p (XEXP (src, 0), reg)
1096 && !rtx_equal_p (XEXP (src, 1), reg)
1097 && reg_state[regno].use_index >= 0
1098 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1099 && last_label_ruid < reg_state[regno].use_ruid)
1101 rtx base = XEXP (src, 1);
1102 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1103 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1104 rtx index_reg = NULL_RTX;
1105 rtx reg_sum = NULL_RTX;
1106 int i;
1108 /* Now we need to set INDEX_REG to an index register (denoted as
1109 REGZ in the illustration above) and REG_SUM to the expression
1110 register+register that we want to use to substitute uses of REG
1111 (typically in MEMs) with. First check REG and BASE for being
1112 index registers; we can use them even if they are not dead. */
1113 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1114 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1115 REGNO (base)))
1117 index_reg = reg;
1118 reg_sum = src;
1120 else
1122 /* Otherwise, look for a free index register. Since we have
1123 checked above that neither REG nor BASE are index registers,
1124 if we find anything at all, it will be different from these
1125 two registers. */
1126 for (i = first_index_reg; i <= last_index_reg; i++)
1128 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1129 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1130 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1131 && (call_used_regs[i] || df_regs_ever_live_p (i))
1132 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1133 && !fixed_regs[i] && !global_regs[i]
1134 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1135 && targetm.hard_regno_scratch_ok (i))
1137 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1138 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1139 break;
1144 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1145 (REGY), i.e. BASE, is not clobbered before the last use we'll
1146 create. */
1147 if (reg_sum
1148 && prev_set
1149 && CONST_INT_P (SET_SRC (prev_set))
1150 && rtx_equal_p (SET_DEST (prev_set), reg)
1151 && (reg_state[REGNO (base)].store_ruid
1152 <= reg_state[regno].use_ruid))
1154 /* Change destination register and, if necessary, the constant
1155 value in PREV, the constant loading instruction. */
1156 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1157 if (reg_state[regno].offset != const0_rtx)
1158 validate_change (prev,
1159 &SET_SRC (prev_set),
1160 GEN_INT (INTVAL (SET_SRC (prev_set))
1161 + INTVAL (reg_state[regno].offset)),
1164 /* Now for every use of REG that we have recorded, replace REG
1165 with REG_SUM. */
1166 for (i = reg_state[regno].use_index;
1167 i < RELOAD_COMBINE_MAX_USES; i++)
1168 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1169 reg_state[regno].reg_use[i].usep,
1170 /* Each change must have its own
1171 replacement. */
1172 reg_sum, 1);
1174 if (apply_change_group ())
1176 struct reg_use *lowest_ruid = NULL;
1178 /* For every new use of REG_SUM, we have to record the use
1179 of BASE therein, i.e. operand 1. */
1180 for (i = reg_state[regno].use_index;
1181 i < RELOAD_COMBINE_MAX_USES; i++)
1183 struct reg_use *use = reg_state[regno].reg_use + i;
1184 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1185 use->ruid, use->containing_mem);
1186 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1187 lowest_ruid = use;
1190 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1192 /* Delete the reg-reg addition. */
1193 delete_insn (insn);
1195 if (reg_state[regno].offset != const0_rtx)
1196 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1197 are now invalid. */
1198 remove_reg_equal_equiv_notes (prev);
1200 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1201 return true;
1205 return false;
1208 static void
1209 reload_combine (void)
1211 rtx_insn *insn, *prev;
1212 basic_block bb;
1213 unsigned int r;
1214 int min_labelno, n_labels;
1215 HARD_REG_SET ever_live_at_start, *label_live;
1217 /* To avoid wasting too much time later searching for an index register,
1218 determine the minimum and maximum index register numbers. */
1219 if (INDEX_REG_CLASS == NO_REGS)
1220 last_index_reg = -1;
1221 else if (first_index_reg == -1 && last_index_reg == 0)
1223 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1224 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1226 if (first_index_reg == -1)
1227 first_index_reg = r;
1229 last_index_reg = r;
1232 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1233 to -1 so we'll know to quit early the next time we get here. */
1234 if (first_index_reg == -1)
1236 last_index_reg = -1;
1237 return;
1241 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1242 information is a bit fuzzy immediately after reload, but it's
1243 still good enough to determine which registers are live at a jump
1244 destination. */
1245 min_labelno = get_first_label_num ();
1246 n_labels = max_label_num () - min_labelno;
1247 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1248 CLEAR_HARD_REG_SET (ever_live_at_start);
1250 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1252 insn = BB_HEAD (bb);
1253 if (LABEL_P (insn))
1255 HARD_REG_SET live;
1256 bitmap live_in = df_get_live_in (bb);
1258 REG_SET_TO_HARD_REG_SET (live, live_in);
1259 compute_use_by_pseudos (&live, live_in);
1260 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1261 IOR_HARD_REG_SET (ever_live_at_start, live);
1265 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1266 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1267 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1269 reg_state[r].store_ruid = 0;
1270 reg_state[r].real_store_ruid = 0;
1271 if (fixed_regs[r])
1272 reg_state[r].use_index = -1;
1273 else
1274 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1277 for (insn = get_last_insn (); insn; insn = prev)
1279 bool control_flow_insn;
1280 rtx note;
1282 prev = PREV_INSN (insn);
1284 /* We cannot do our optimization across labels. Invalidating all the use
1285 information we have would be costly, so we just note where the label
1286 is and then later disable any optimization that would cross it. */
1287 if (LABEL_P (insn))
1288 last_label_ruid = reload_combine_ruid;
1289 else if (BARRIER_P (insn))
1291 /* Crossing a barrier resets all the use information. */
1292 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1293 if (! fixed_regs[r])
1294 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1296 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1297 /* Optimizations across insns being marked as volatile must be
1298 prevented. All the usage information is invalidated
1299 here. */
1300 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1301 if (! fixed_regs[r]
1302 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1303 reg_state[r].use_index = -1;
1305 if (! NONDEBUG_INSN_P (insn))
1306 continue;
1308 reload_combine_ruid++;
1310 control_flow_insn = control_flow_insn_p (insn);
1311 if (control_flow_insn)
1312 last_jump_ruid = reload_combine_ruid;
1314 if (reload_combine_recognize_const_pattern (insn)
1315 || reload_combine_recognize_pattern (insn))
1316 continue;
1318 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1320 if (CALL_P (insn))
1322 rtx link;
1323 HARD_REG_SET used_regs;
1325 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1327 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1328 if (TEST_HARD_REG_BIT (used_regs, r))
1330 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1331 reg_state[r].store_ruid = reload_combine_ruid;
1334 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1335 link = XEXP (link, 1))
1337 rtx setuse = XEXP (link, 0);
1338 rtx usage_rtx = XEXP (setuse, 0);
1339 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1340 && REG_P (usage_rtx))
1342 unsigned int end_regno = END_REGNO (usage_rtx);
1343 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1344 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1346 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1347 reg_state[i].store_ruid = reload_combine_ruid;
1349 else
1350 reg_state[i].use_index = -1;
1355 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1357 /* Non-spill registers might be used at the call destination in
1358 some unknown fashion, so we have to mark the unknown use. */
1359 HARD_REG_SET *live;
1361 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1362 && JUMP_LABEL (insn))
1364 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1365 live = NULL;
1366 else
1367 live = &LABEL_LIVE (JUMP_LABEL (insn));
1369 else
1370 live = &ever_live_at_start;
1372 if (live)
1373 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1374 if (TEST_HARD_REG_BIT (*live, r))
1375 reg_state[r].use_index = -1;
1378 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1379 NULL_RTX);
1381 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1383 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1385 int regno = REGNO (XEXP (note, 0));
1386 reg_state[regno].store_ruid = reload_combine_ruid;
1387 reg_state[regno].real_store_ruid = reload_combine_ruid;
1388 reg_state[regno].use_index = -1;
1393 free (label_live);
1396 /* Check if DST is a register or a subreg of a register; if it is,
1397 update store_ruid, real_store_ruid and use_index in the reg_state
1398 structure accordingly. Called via note_stores from reload_combine. */
1400 static void
1401 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1403 int regno = 0;
1404 int i;
1405 machine_mode mode = GET_MODE (dst);
1407 if (GET_CODE (dst) == SUBREG)
1409 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1410 GET_MODE (SUBREG_REG (dst)),
1411 SUBREG_BYTE (dst),
1412 GET_MODE (dst));
1413 dst = SUBREG_REG (dst);
1416 /* Some targets do argument pushes without adding REG_INC notes. */
1418 if (MEM_P (dst))
1420 dst = XEXP (dst, 0);
1421 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1422 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1423 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1425 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1426 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1428 /* We could probably do better, but for now mark the register
1429 as used in an unknown fashion and set/clobbered at this
1430 insn. */
1431 reg_state[i].use_index = -1;
1432 reg_state[i].store_ruid = reload_combine_ruid;
1433 reg_state[i].real_store_ruid = reload_combine_ruid;
1436 else
1437 return;
1440 if (!REG_P (dst))
1441 return;
1442 regno += REGNO (dst);
1444 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1445 careful with registers / register parts that are not full words.
1446 Similarly for ZERO_EXTRACT. */
1447 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1448 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1450 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1452 reg_state[i].use_index = -1;
1453 reg_state[i].store_ruid = reload_combine_ruid;
1454 reg_state[i].real_store_ruid = reload_combine_ruid;
1457 else
1459 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1461 reg_state[i].store_ruid = reload_combine_ruid;
1462 if (GET_CODE (set) == SET)
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
1464 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1469 /* XP points to a piece of rtl that has to be checked for any uses of
1470 registers.
1471 *XP is the pattern of INSN, or a part of it.
1472 Called from reload_combine, and recursively by itself. */
1473 static void
1474 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1476 rtx x = *xp;
1477 enum rtx_code code = x->code;
1478 const char *fmt;
1479 int i, j;
1480 rtx offset = const0_rtx; /* For the REG case below. */
1482 switch (code)
1484 case SET:
1485 if (REG_P (SET_DEST (x)))
1487 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1488 return;
1490 break;
1492 case USE:
1493 /* If this is the USE of a return value, we can't change it. */
1494 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1496 /* Mark the return register as used in an unknown fashion. */
1497 rtx reg = XEXP (x, 0);
1498 unsigned int end_regno = END_REGNO (reg);
1499 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1500 reg_state[regno].use_index = -1;
1501 return;
1503 break;
1505 case CLOBBER:
1506 if (REG_P (SET_DEST (x)))
1508 /* No spurious CLOBBERs of pseudo registers may remain. */
1509 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1510 return;
1512 break;
1514 case PLUS:
1515 /* We are interested in (plus (reg) (const_int)) . */
1516 if (!REG_P (XEXP (x, 0))
1517 || !CONST_INT_P (XEXP (x, 1)))
1518 break;
1519 offset = XEXP (x, 1);
1520 x = XEXP (x, 0);
1521 /* Fall through. */
1522 case REG:
1524 int regno = REGNO (x);
1525 int use_index;
1526 int nregs;
1528 /* No spurious USEs of pseudo registers may remain. */
1529 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1531 nregs = REG_NREGS (x);
1533 /* We can't substitute into multi-hard-reg uses. */
1534 if (nregs > 1)
1536 while (--nregs >= 0)
1537 reg_state[regno + nregs].use_index = -1;
1538 return;
1541 /* We may be called to update uses in previously seen insns.
1542 Don't add uses beyond the last store we saw. */
1543 if (ruid < reg_state[regno].store_ruid)
1544 return;
1546 /* If this register is already used in some unknown fashion, we
1547 can't do anything.
1548 If we decrement the index from zero to -1, we can't store more
1549 uses, so this register becomes used in an unknown fashion. */
1550 use_index = --reg_state[regno].use_index;
1551 if (use_index < 0)
1552 return;
1554 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1556 /* This is the first use of this register we have seen since we
1557 marked it as dead. */
1558 reg_state[regno].offset = offset;
1559 reg_state[regno].all_offsets_match = true;
1560 reg_state[regno].use_ruid = ruid;
1562 else
1564 if (reg_state[regno].use_ruid > ruid)
1565 reg_state[regno].use_ruid = ruid;
1567 if (! rtx_equal_p (offset, reg_state[regno].offset))
1568 reg_state[regno].all_offsets_match = false;
1571 reg_state[regno].reg_use[use_index].insn = insn;
1572 reg_state[regno].reg_use[use_index].ruid = ruid;
1573 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1574 reg_state[regno].reg_use[use_index].usep = xp;
1575 return;
1578 case MEM:
1579 containing_mem = x;
1580 break;
1582 default:
1583 break;
1586 /* Recursively process the components of X. */
1587 fmt = GET_RTX_FORMAT (code);
1588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1590 if (fmt[i] == 'e')
1591 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1592 else if (fmt[i] == 'E')
1594 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1595 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1596 containing_mem);
1601 /* See if we can reduce the cost of a constant by replacing a move
1602 with an add. We track situations in which a register is set to a
1603 constant or to a register plus a constant. */
1604 /* We cannot do our optimization across labels. Invalidating all the
1605 information about register contents we have would be costly, so we
1606 use move2add_last_label_luid to note where the label is and then
1607 later disable any optimization that would cross it.
1608 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1609 are only valid if reg_set_luid[n] is greater than
1610 move2add_last_label_luid.
1611 For a set that established a new (potential) base register with
1612 non-constant value, we use move2add_luid from the place where the
1613 setting insn is encountered; registers based off that base then
1614 get the same reg_set_luid. Constants all get
1615 move2add_last_label_luid + 1 as their reg_set_luid. */
1616 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1618 /* If reg_base_reg[n] is negative, register n has been set to
1619 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1620 If reg_base_reg[n] is non-negative, register n has been set to the
1621 sum of reg_offset[n] and the value of register reg_base_reg[n]
1622 before reg_set_luid[n], calculated in mode reg_mode[n] .
1623 For multi-hard-register registers, all but the first one are
1624 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1625 marks it as invalid. */
1626 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1627 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1628 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1629 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1631 /* move2add_luid is linearly increased while scanning the instructions
1632 from first to last. It is used to set reg_set_luid in
1633 reload_cse_move2add and move2add_note_store. */
1634 static int move2add_luid;
1636 /* move2add_last_label_luid is set whenever a label is found. Labels
1637 invalidate all previously collected reg_offset data. */
1638 static int move2add_last_label_luid;
1640 /* ??? We don't know how zero / sign extension is handled, hence we
1641 can't go from a narrower to a wider mode. */
1642 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1643 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1644 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1645 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1647 /* Record that REG is being set to a value with the mode of REG. */
1649 static void
1650 move2add_record_mode (rtx reg)
1652 int regno, nregs;
1653 machine_mode mode = GET_MODE (reg);
1655 if (GET_CODE (reg) == SUBREG)
1657 regno = subreg_regno (reg);
1658 nregs = subreg_nregs (reg);
1660 else if (REG_P (reg))
1662 regno = REGNO (reg);
1663 nregs = REG_NREGS (reg);
1665 else
1666 gcc_unreachable ();
1667 for (int i = nregs - 1; i > 0; i--)
1668 reg_mode[regno + i] = BLKmode;
1669 reg_mode[regno] = mode;
1672 /* Record that REG is being set to the sum of SYM and OFF. */
1674 static void
1675 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1677 int regno = REGNO (reg);
1679 move2add_record_mode (reg);
1680 reg_set_luid[regno] = move2add_luid;
1681 reg_base_reg[regno] = -1;
1682 reg_symbol_ref[regno] = sym;
1683 reg_offset[regno] = INTVAL (off);
1686 /* Check if REGNO contains a valid value in MODE. */
1688 static bool
1689 move2add_valid_value_p (int regno, machine_mode mode)
1691 if (reg_set_luid[regno] <= move2add_last_label_luid)
1692 return false;
1694 if (mode != reg_mode[regno])
1696 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1697 return false;
1698 /* The value loaded into regno in reg_mode[regno] is also valid in
1699 mode after truncation only if (REG:mode regno) is the lowpart of
1700 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1701 regno of the lowpart might be different. */
1702 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1703 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1704 if (s_off != 0)
1705 /* We could in principle adjust regno, check reg_mode[regno] to be
1706 BLKmode, and return s_off to the caller (vs. -1 for failure),
1707 but we currently have no callers that could make use of this
1708 information. */
1709 return false;
1712 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1713 if (reg_mode[regno + i] != BLKmode)
1714 return false;
1715 return true;
1718 /* This function is called with INSN that sets REG to (SYM + OFF),
1719 while REG is known to already have value (SYM + offset).
1720 This function tries to change INSN into an add instruction
1721 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1722 It also updates the information about REG's known value.
1723 Return true if we made a change. */
1725 static bool
1726 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1728 rtx pat = PATTERN (insn);
1729 rtx src = SET_SRC (pat);
1730 int regno = REGNO (reg);
1731 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1732 GET_MODE (reg));
1733 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1734 bool changed = false;
1736 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1737 use (set (reg) (reg)) instead.
1738 We don't delete this insn, nor do we convert it into a
1739 note, to avoid losing register notes or the return
1740 value flag. jump2 already knows how to get rid of
1741 no-op moves. */
1742 if (new_src == const0_rtx)
1744 /* If the constants are different, this is a
1745 truncation, that, if turned into (set (reg)
1746 (reg)), would be discarded. Maybe we should
1747 try a truncMN pattern? */
1748 if (INTVAL (off) == reg_offset [regno])
1749 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1751 else
1753 struct full_rtx_costs oldcst, newcst;
1754 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1756 get_full_set_rtx_cost (pat, &oldcst);
1757 SET_SRC (pat) = tem;
1758 get_full_set_rtx_cost (pat, &newcst);
1759 SET_SRC (pat) = src;
1761 if (costs_lt_p (&newcst, &oldcst, speed)
1762 && have_add2_insn (reg, new_src))
1763 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1764 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1766 machine_mode narrow_mode;
1767 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1768 narrow_mode != VOIDmode
1769 && narrow_mode != GET_MODE (reg);
1770 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1772 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1773 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1774 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1776 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1777 rtx narrow_src = gen_int_mode (INTVAL (off),
1778 narrow_mode);
1779 rtx new_set
1780 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1781 narrow_reg),
1782 narrow_src);
1783 get_full_set_rtx_cost (new_set, &newcst);
1784 if (costs_lt_p (&newcst, &oldcst, speed))
1786 changed = validate_change (insn, &PATTERN (insn),
1787 new_set, 0);
1788 if (changed)
1789 break;
1795 move2add_record_sym_value (reg, sym, off);
1796 return changed;
1800 /* This function is called with INSN that sets REG to (SYM + OFF),
1801 but REG doesn't have known value (SYM + offset). This function
1802 tries to find another register which is known to already have
1803 value (SYM + offset) and change INSN into an add instruction
1804 (set (REG) (plus (the found register) (OFF - offset))) if such
1805 a register is found. It also updates the information about
1806 REG's known value.
1807 Return true iff we made a change. */
1809 static bool
1810 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1812 rtx pat = PATTERN (insn);
1813 rtx src = SET_SRC (pat);
1814 int regno = REGNO (reg);
1815 int min_regno = 0;
1816 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1817 int i;
1818 bool changed = false;
1819 struct full_rtx_costs oldcst, newcst, mincst;
1820 rtx plus_expr;
1822 init_costs_to_max (&mincst);
1823 get_full_set_rtx_cost (pat, &oldcst);
1825 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1826 SET_SRC (pat) = plus_expr;
1828 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1829 if (move2add_valid_value_p (i, GET_MODE (reg))
1830 && reg_base_reg[i] < 0
1831 && reg_symbol_ref[i] != NULL_RTX
1832 && rtx_equal_p (sym, reg_symbol_ref[i]))
1834 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1835 GET_MODE (reg));
1836 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1837 use (set (reg) (reg)) instead.
1838 We don't delete this insn, nor do we convert it into a
1839 note, to avoid losing register notes or the return
1840 value flag. jump2 already knows how to get rid of
1841 no-op moves. */
1842 if (new_src == const0_rtx)
1844 init_costs_to_zero (&mincst);
1845 min_regno = i;
1846 break;
1848 else
1850 XEXP (plus_expr, 1) = new_src;
1851 get_full_set_rtx_cost (pat, &newcst);
1853 if (costs_lt_p (&newcst, &mincst, speed))
1855 mincst = newcst;
1856 min_regno = i;
1860 SET_SRC (pat) = src;
1862 if (costs_lt_p (&mincst, &oldcst, speed))
1864 rtx tem;
1866 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1867 if (i != min_regno)
1869 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1870 GET_MODE (reg));
1871 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1873 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1874 changed = true;
1876 reg_set_luid[regno] = move2add_luid;
1877 move2add_record_sym_value (reg, sym, off);
1878 return changed;
1881 /* Convert move insns with constant inputs to additions if they are cheaper.
1882 Return true if any changes were made. */
1883 static bool
1884 reload_cse_move2add (rtx_insn *first)
1886 int i;
1887 rtx_insn *insn;
1888 bool changed = false;
1890 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1892 reg_set_luid[i] = 0;
1893 reg_offset[i] = 0;
1894 reg_base_reg[i] = 0;
1895 reg_symbol_ref[i] = NULL_RTX;
1896 reg_mode[i] = VOIDmode;
1899 move2add_last_label_luid = 0;
1900 move2add_luid = 2;
1901 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1903 rtx pat, note;
1905 if (LABEL_P (insn))
1907 move2add_last_label_luid = move2add_luid;
1908 /* We're going to increment move2add_luid twice after a
1909 label, so that we can use move2add_last_label_luid + 1 as
1910 the luid for constants. */
1911 move2add_luid++;
1912 continue;
1914 if (! INSN_P (insn))
1915 continue;
1916 pat = PATTERN (insn);
1917 /* For simplicity, we only perform this optimization on
1918 straightforward SETs. */
1919 if (GET_CODE (pat) == SET
1920 && REG_P (SET_DEST (pat)))
1922 rtx reg = SET_DEST (pat);
1923 int regno = REGNO (reg);
1924 rtx src = SET_SRC (pat);
1926 /* Check if we have valid information on the contents of this
1927 register in the mode of REG. */
1928 if (move2add_valid_value_p (regno, GET_MODE (reg))
1929 && dbg_cnt (cse2_move2add))
1931 /* Try to transform (set (REGX) (CONST_INT A))
1933 (set (REGX) (CONST_INT B))
1935 (set (REGX) (CONST_INT A))
1937 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1939 (set (REGX) (CONST_INT A))
1941 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1944 if (CONST_INT_P (src)
1945 && reg_base_reg[regno] < 0
1946 && reg_symbol_ref[regno] == NULL_RTX)
1948 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1949 continue;
1952 /* Try to transform (set (REGX) (REGY))
1953 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1955 (set (REGX) (REGY))
1956 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1958 (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1961 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1962 else if (REG_P (src)
1963 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1964 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1965 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1967 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1968 rtx set = NULL_RTX;
1969 if (next)
1970 set = single_set (next);
1971 if (set
1972 && SET_DEST (set) == reg
1973 && GET_CODE (SET_SRC (set)) == PLUS
1974 && XEXP (SET_SRC (set), 0) == reg
1975 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1977 rtx src3 = XEXP (SET_SRC (set), 1);
1978 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1979 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1980 HOST_WIDE_INT regno_offset = reg_offset[regno];
1981 rtx new_src =
1982 gen_int_mode (added_offset
1983 + base_offset
1984 - regno_offset,
1985 GET_MODE (reg));
1986 bool success = false;
1987 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1989 if (new_src == const0_rtx)
1990 /* See above why we create (set (reg) (reg)) here. */
1991 success
1992 = validate_change (next, &SET_SRC (set), reg, 0);
1993 else
1995 rtx old_src = SET_SRC (set);
1996 struct full_rtx_costs oldcst, newcst;
1997 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1999 get_full_set_rtx_cost (set, &oldcst);
2000 SET_SRC (set) = tem;
2001 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
2002 SET_SRC (set) = old_src;
2003 costs_add_n_insns (&oldcst, 1);
2005 if (costs_lt_p (&newcst, &oldcst, speed)
2006 && have_add2_insn (reg, new_src))
2008 rtx newpat = gen_rtx_SET (reg, tem);
2009 success
2010 = validate_change (next, &PATTERN (next),
2011 newpat, 0);
2014 if (success)
2015 delete_insn (insn);
2016 changed |= success;
2017 insn = next;
2018 move2add_record_mode (reg);
2019 reg_offset[regno]
2020 = trunc_int_for_mode (added_offset + base_offset,
2021 GET_MODE (reg));
2022 continue;
2027 /* Try to transform
2028 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2030 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2032 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2034 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2035 if ((GET_CODE (src) == SYMBOL_REF
2036 || (GET_CODE (src) == CONST
2037 && GET_CODE (XEXP (src, 0)) == PLUS
2038 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2039 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2040 && dbg_cnt (cse2_move2add))
2042 rtx sym, off;
2044 if (GET_CODE (src) == SYMBOL_REF)
2046 sym = src;
2047 off = const0_rtx;
2049 else
2051 sym = XEXP (XEXP (src, 0), 0);
2052 off = XEXP (XEXP (src, 0), 1);
2055 /* If the reg already contains the value which is sum of
2056 sym and some constant value, we can use an add2 insn. */
2057 if (move2add_valid_value_p (regno, GET_MODE (reg))
2058 && reg_base_reg[regno] < 0
2059 && reg_symbol_ref[regno] != NULL_RTX
2060 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2061 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2063 /* Otherwise, we have to find a register whose value is sum
2064 of sym and some constant value. */
2065 else
2066 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2068 continue;
2072 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2074 if (REG_NOTE_KIND (note) == REG_INC
2075 && REG_P (XEXP (note, 0)))
2077 /* Reset the information about this register. */
2078 int regno = REGNO (XEXP (note, 0));
2079 if (regno < FIRST_PSEUDO_REGISTER)
2081 move2add_record_mode (XEXP (note, 0));
2082 reg_mode[regno] = VOIDmode;
2086 note_stores (PATTERN (insn), move2add_note_store, insn);
2088 /* If INSN is a conditional branch, we try to extract an
2089 implicit set out of it. */
2090 if (any_condjump_p (insn))
2092 rtx cnd = fis_get_condition (insn);
2094 if (cnd != NULL_RTX
2095 && GET_CODE (cnd) == NE
2096 && REG_P (XEXP (cnd, 0))
2097 && !reg_set_p (XEXP (cnd, 0), insn)
2098 /* The following two checks, which are also in
2099 move2add_note_store, are intended to reduce the
2100 number of calls to gen_rtx_SET to avoid memory
2101 allocation if possible. */
2102 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2103 && REG_NREGS (XEXP (cnd, 0)) == 1
2104 && CONST_INT_P (XEXP (cnd, 1)))
2106 rtx implicit_set =
2107 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2108 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2112 /* If this is a CALL_INSN, all call used registers are stored with
2113 unknown values. */
2114 if (CALL_P (insn))
2116 rtx link;
2118 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2120 if (call_used_regs[i])
2121 /* Reset the information about this register. */
2122 reg_mode[i] = VOIDmode;
2125 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2126 link = XEXP (link, 1))
2128 rtx setuse = XEXP (link, 0);
2129 rtx usage_rtx = XEXP (setuse, 0);
2130 if (GET_CODE (setuse) == CLOBBER
2131 && REG_P (usage_rtx))
2133 unsigned int end_regno = END_REGNO (usage_rtx);
2134 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2135 /* Reset the information about this register. */
2136 reg_mode[r] = VOIDmode;
2141 return changed;
2144 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2145 contains SET.
2146 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2147 Called from reload_cse_move2add via note_stores. */
2149 static void
2150 move2add_note_store (rtx dst, const_rtx set, void *data)
2152 rtx_insn *insn = (rtx_insn *) data;
2153 unsigned int regno = 0;
2154 machine_mode mode = GET_MODE (dst);
2156 /* Some targets do argument pushes without adding REG_INC notes. */
2158 if (MEM_P (dst))
2160 dst = XEXP (dst, 0);
2161 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2162 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2163 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2164 return;
2167 if (GET_CODE (dst) == SUBREG)
2168 regno = subreg_regno (dst);
2169 else if (REG_P (dst))
2170 regno = REGNO (dst);
2171 else
2172 return;
2174 if (SCALAR_INT_MODE_P (mode)
2175 && GET_CODE (set) == SET)
2177 rtx note, sym = NULL_RTX;
2178 rtx off;
2180 note = find_reg_equal_equiv_note (insn);
2181 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2183 sym = XEXP (note, 0);
2184 off = const0_rtx;
2186 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2187 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2188 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2189 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2191 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2192 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2195 if (sym != NULL_RTX)
2197 move2add_record_sym_value (dst, sym, off);
2198 return;
2202 if (SCALAR_INT_MODE_P (mode)
2203 && GET_CODE (set) == SET
2204 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2205 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2207 rtx src = SET_SRC (set);
2208 rtx base_reg;
2209 unsigned HOST_WIDE_INT offset;
2210 int base_regno;
2212 switch (GET_CODE (src))
2214 case PLUS:
2215 if (REG_P (XEXP (src, 0)))
2217 base_reg = XEXP (src, 0);
2219 if (CONST_INT_P (XEXP (src, 1)))
2220 offset = UINTVAL (XEXP (src, 1));
2221 else if (REG_P (XEXP (src, 1))
2222 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2224 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2225 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2226 offset = reg_offset[REGNO (XEXP (src, 1))];
2227 /* Maybe the first register is known to be a
2228 constant. */
2229 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2230 && reg_base_reg[REGNO (base_reg)] < 0
2231 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2233 offset = reg_offset[REGNO (base_reg)];
2234 base_reg = XEXP (src, 1);
2236 else
2237 goto invalidate;
2239 else
2240 goto invalidate;
2242 break;
2245 goto invalidate;
2247 case REG:
2248 base_reg = src;
2249 offset = 0;
2250 break;
2252 case CONST_INT:
2253 /* Start tracking the register as a constant. */
2254 reg_base_reg[regno] = -1;
2255 reg_symbol_ref[regno] = NULL_RTX;
2256 reg_offset[regno] = INTVAL (SET_SRC (set));
2257 /* We assign the same luid to all registers set to constants. */
2258 reg_set_luid[regno] = move2add_last_label_luid + 1;
2259 move2add_record_mode (dst);
2260 return;
2262 default:
2263 goto invalidate;
2266 base_regno = REGNO (base_reg);
2267 /* If information about the base register is not valid, set it
2268 up as a new base register, pretending its value is known
2269 starting from the current insn. */
2270 if (!move2add_valid_value_p (base_regno, mode))
2272 reg_base_reg[base_regno] = base_regno;
2273 reg_symbol_ref[base_regno] = NULL_RTX;
2274 reg_offset[base_regno] = 0;
2275 reg_set_luid[base_regno] = move2add_luid;
2276 gcc_assert (GET_MODE (base_reg) == mode);
2277 move2add_record_mode (base_reg);
2280 /* Copy base information from our base register. */
2281 reg_set_luid[regno] = reg_set_luid[base_regno];
2282 reg_base_reg[regno] = reg_base_reg[base_regno];
2283 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2285 /* Compute the sum of the offsets or constants. */
2286 reg_offset[regno]
2287 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2289 move2add_record_mode (dst);
2291 else
2293 invalidate:
2294 /* Invalidate the contents of the register. */
2295 move2add_record_mode (dst);
2296 reg_mode[regno] = VOIDmode;
2300 namespace {
2302 const pass_data pass_data_postreload_cse =
2304 RTL_PASS, /* type */
2305 "postreload", /* name */
2306 OPTGROUP_NONE, /* optinfo_flags */
2307 TV_RELOAD_CSE_REGS, /* tv_id */
2308 0, /* properties_required */
2309 0, /* properties_provided */
2310 0, /* properties_destroyed */
2311 0, /* todo_flags_start */
2312 TODO_df_finish, /* todo_flags_finish */
2315 class pass_postreload_cse : public rtl_opt_pass
2317 public:
2318 pass_postreload_cse (gcc::context *ctxt)
2319 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2322 /* opt_pass methods: */
2323 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2325 virtual unsigned int execute (function *);
2327 }; // class pass_postreload_cse
2329 unsigned int
2330 pass_postreload_cse::execute (function *fun)
2332 if (!dbg_cnt (postreload_cse))
2333 return 0;
2335 /* Do a very simple CSE pass over just the hard registers. */
2336 reload_cse_regs (get_insns ());
2337 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2338 Remove any EH edges associated with them. */
2339 if (fun->can_throw_non_call_exceptions
2340 && purge_all_dead_edges ())
2341 cleanup_cfg (0);
2343 return 0;
2346 } // anon namespace
2348 rtl_opt_pass *
2349 make_pass_postreload_cse (gcc::context *ctxt)
2351 return new pass_postreload_cse (ctxt);