PR libstdc++/87278 restore support for std::make_shared<volatile T>()
[official-gcc.git] / libstdc++-v3 / include / bits / hashtable_policy.h
blob66fbfbe5f21746566abd6f608976a1f9bfa8056e
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
3 // Copyright (C) 2010-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/hashtable_policy.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly.
28 * @headername{unordered_map,unordered_set}
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
34 #include <tuple> // for std::tuple, std::forward_as_tuple
35 #include <limits> // for std::numeric_limits
36 #include <bits/stl_algobase.h> // for std::min.
38 namespace std _GLIBCXX_VISIBILITY(default)
40 _GLIBCXX_BEGIN_NAMESPACE_VERSION
42 template<typename _Key, typename _Value, typename _Alloc,
43 typename _ExtractKey, typename _Equal,
44 typename _H1, typename _H2, typename _Hash,
45 typename _RehashPolicy, typename _Traits>
46 class _Hashtable;
48 namespace __detail
50 /**
51 * @defgroup hashtable-detail Base and Implementation Classes
52 * @ingroup unordered_associative_containers
53 * @{
55 template<typename _Key, typename _Value,
56 typename _ExtractKey, typename _Equal,
57 typename _H1, typename _H2, typename _Hash, typename _Traits>
58 struct _Hashtable_base;
60 // Helper function: return distance(first, last) for forward
61 // iterators, or 0/1 for input iterators.
62 template<class _Iterator>
63 inline typename std::iterator_traits<_Iterator>::difference_type
64 __distance_fw(_Iterator __first, _Iterator __last,
65 std::input_iterator_tag)
66 { return __first != __last ? 1 : 0; }
68 template<class _Iterator>
69 inline typename std::iterator_traits<_Iterator>::difference_type
70 __distance_fw(_Iterator __first, _Iterator __last,
71 std::forward_iterator_tag)
72 { return std::distance(__first, __last); }
74 template<class _Iterator>
75 inline typename std::iterator_traits<_Iterator>::difference_type
76 __distance_fw(_Iterator __first, _Iterator __last)
77 { return __distance_fw(__first, __last,
78 std::__iterator_category(__first)); }
80 struct _Identity
82 template<typename _Tp>
83 _Tp&&
84 operator()(_Tp&& __x) const
85 { return std::forward<_Tp>(__x); }
88 struct _Select1st
90 template<typename _Tp>
91 auto
92 operator()(_Tp&& __x) const
93 -> decltype(std::get<0>(std::forward<_Tp>(__x)))
94 { return std::get<0>(std::forward<_Tp>(__x)); }
97 template<typename _NodeAlloc>
98 struct _Hashtable_alloc;
100 // Functor recycling a pool of nodes and using allocation once the pool is
101 // empty.
102 template<typename _NodeAlloc>
103 struct _ReuseOrAllocNode
105 private:
106 using __node_alloc_type = _NodeAlloc;
107 using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
108 using __node_alloc_traits =
109 typename __hashtable_alloc::__node_alloc_traits;
110 using __node_type = typename __hashtable_alloc::__node_type;
112 public:
113 _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
114 : _M_nodes(__nodes), _M_h(__h) { }
115 _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
117 ~_ReuseOrAllocNode()
118 { _M_h._M_deallocate_nodes(_M_nodes); }
120 template<typename _Arg>
121 __node_type*
122 operator()(_Arg&& __arg) const
124 if (_M_nodes)
126 __node_type* __node = _M_nodes;
127 _M_nodes = _M_nodes->_M_next();
128 __node->_M_nxt = nullptr;
129 auto& __a = _M_h._M_node_allocator();
130 __node_alloc_traits::destroy(__a, __node->_M_valptr());
131 __try
133 __node_alloc_traits::construct(__a, __node->_M_valptr(),
134 std::forward<_Arg>(__arg));
136 __catch(...)
138 __node->~__node_type();
139 __node_alloc_traits::deallocate(__a, __node, 1);
140 __throw_exception_again;
142 return __node;
144 return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
147 private:
148 mutable __node_type* _M_nodes;
149 __hashtable_alloc& _M_h;
152 // Functor similar to the previous one but without any pool of nodes to
153 // recycle.
154 template<typename _NodeAlloc>
155 struct _AllocNode
157 private:
158 using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
159 using __node_type = typename __hashtable_alloc::__node_type;
161 public:
162 _AllocNode(__hashtable_alloc& __h)
163 : _M_h(__h) { }
165 template<typename _Arg>
166 __node_type*
167 operator()(_Arg&& __arg) const
168 { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
170 private:
171 __hashtable_alloc& _M_h;
174 // Auxiliary types used for all instantiations of _Hashtable nodes
175 // and iterators.
178 * struct _Hashtable_traits
180 * Important traits for hash tables.
182 * @tparam _Cache_hash_code Boolean value. True if the value of
183 * the hash function is stored along with the value. This is a
184 * time-space tradeoff. Storing it may improve lookup speed by
185 * reducing the number of times we need to call the _Equal
186 * function.
188 * @tparam _Constant_iterators Boolean value. True if iterator and
189 * const_iterator are both constant iterator types. This is true
190 * for unordered_set and unordered_multiset, false for
191 * unordered_map and unordered_multimap.
193 * @tparam _Unique_keys Boolean value. True if the return value
194 * of _Hashtable::count(k) is always at most one, false if it may
195 * be an arbitrary number. This is true for unordered_set and
196 * unordered_map, false for unordered_multiset and
197 * unordered_multimap.
199 template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
200 struct _Hashtable_traits
202 using __hash_cached = __bool_constant<_Cache_hash_code>;
203 using __constant_iterators = __bool_constant<_Constant_iterators>;
204 using __unique_keys = __bool_constant<_Unique_keys>;
208 * struct _Hash_node_base
210 * Nodes, used to wrap elements stored in the hash table. A policy
211 * template parameter of class template _Hashtable controls whether
212 * nodes also store a hash code. In some cases (e.g. strings) this
213 * may be a performance win.
215 struct _Hash_node_base
217 _Hash_node_base* _M_nxt;
219 _Hash_node_base() noexcept : _M_nxt() { }
221 _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
225 * struct _Hash_node_value_base
227 * Node type with the value to store.
229 template<typename _Value>
230 struct _Hash_node_value_base : _Hash_node_base
232 typedef _Value value_type;
234 __gnu_cxx::__aligned_buffer<_Value> _M_storage;
236 _Value*
237 _M_valptr() noexcept
238 { return _M_storage._M_ptr(); }
240 const _Value*
241 _M_valptr() const noexcept
242 { return _M_storage._M_ptr(); }
244 _Value&
245 _M_v() noexcept
246 { return *_M_valptr(); }
248 const _Value&
249 _M_v() const noexcept
250 { return *_M_valptr(); }
254 * Primary template struct _Hash_node.
256 template<typename _Value, bool _Cache_hash_code>
257 struct _Hash_node;
260 * Specialization for nodes with caches, struct _Hash_node.
262 * Base class is __detail::_Hash_node_value_base.
264 template<typename _Value>
265 struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
267 std::size_t _M_hash_code;
269 _Hash_node*
270 _M_next() const noexcept
271 { return static_cast<_Hash_node*>(this->_M_nxt); }
275 * Specialization for nodes without caches, struct _Hash_node.
277 * Base class is __detail::_Hash_node_value_base.
279 template<typename _Value>
280 struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
282 _Hash_node*
283 _M_next() const noexcept
284 { return static_cast<_Hash_node*>(this->_M_nxt); }
287 /// Base class for node iterators.
288 template<typename _Value, bool _Cache_hash_code>
289 struct _Node_iterator_base
291 using __node_type = _Hash_node<_Value, _Cache_hash_code>;
293 __node_type* _M_cur;
295 _Node_iterator_base(__node_type* __p) noexcept
296 : _M_cur(__p) { }
298 void
299 _M_incr() noexcept
300 { _M_cur = _M_cur->_M_next(); }
303 template<typename _Value, bool _Cache_hash_code>
304 inline bool
305 operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
306 const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
307 noexcept
308 { return __x._M_cur == __y._M_cur; }
310 template<typename _Value, bool _Cache_hash_code>
311 inline bool
312 operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
313 const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
314 noexcept
315 { return __x._M_cur != __y._M_cur; }
317 /// Node iterators, used to iterate through all the hashtable.
318 template<typename _Value, bool __constant_iterators, bool __cache>
319 struct _Node_iterator
320 : public _Node_iterator_base<_Value, __cache>
322 private:
323 using __base_type = _Node_iterator_base<_Value, __cache>;
324 using __node_type = typename __base_type::__node_type;
326 public:
327 typedef _Value value_type;
328 typedef std::ptrdiff_t difference_type;
329 typedef std::forward_iterator_tag iterator_category;
331 using pointer = typename std::conditional<__constant_iterators,
332 const _Value*, _Value*>::type;
334 using reference = typename std::conditional<__constant_iterators,
335 const _Value&, _Value&>::type;
337 _Node_iterator() noexcept
338 : __base_type(0) { }
340 explicit
341 _Node_iterator(__node_type* __p) noexcept
342 : __base_type(__p) { }
344 reference
345 operator*() const noexcept
346 { return this->_M_cur->_M_v(); }
348 pointer
349 operator->() const noexcept
350 { return this->_M_cur->_M_valptr(); }
352 _Node_iterator&
353 operator++() noexcept
355 this->_M_incr();
356 return *this;
359 _Node_iterator
360 operator++(int) noexcept
362 _Node_iterator __tmp(*this);
363 this->_M_incr();
364 return __tmp;
368 /// Node const_iterators, used to iterate through all the hashtable.
369 template<typename _Value, bool __constant_iterators, bool __cache>
370 struct _Node_const_iterator
371 : public _Node_iterator_base<_Value, __cache>
373 private:
374 using __base_type = _Node_iterator_base<_Value, __cache>;
375 using __node_type = typename __base_type::__node_type;
377 public:
378 typedef _Value value_type;
379 typedef std::ptrdiff_t difference_type;
380 typedef std::forward_iterator_tag iterator_category;
382 typedef const _Value* pointer;
383 typedef const _Value& reference;
385 _Node_const_iterator() noexcept
386 : __base_type(0) { }
388 explicit
389 _Node_const_iterator(__node_type* __p) noexcept
390 : __base_type(__p) { }
392 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
393 __cache>& __x) noexcept
394 : __base_type(__x._M_cur) { }
396 reference
397 operator*() const noexcept
398 { return this->_M_cur->_M_v(); }
400 pointer
401 operator->() const noexcept
402 { return this->_M_cur->_M_valptr(); }
404 _Node_const_iterator&
405 operator++() noexcept
407 this->_M_incr();
408 return *this;
411 _Node_const_iterator
412 operator++(int) noexcept
414 _Node_const_iterator __tmp(*this);
415 this->_M_incr();
416 return __tmp;
420 // Many of class template _Hashtable's template parameters are policy
421 // classes. These are defaults for the policies.
423 /// Default range hashing function: use division to fold a large number
424 /// into the range [0, N).
425 struct _Mod_range_hashing
427 typedef std::size_t first_argument_type;
428 typedef std::size_t second_argument_type;
429 typedef std::size_t result_type;
431 result_type
432 operator()(first_argument_type __num,
433 second_argument_type __den) const noexcept
434 { return __num % __den; }
437 /// Default ranged hash function H. In principle it should be a
438 /// function object composed from objects of type H1 and H2 such that
439 /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
440 /// h1 and h2. So instead we'll just use a tag to tell class template
441 /// hashtable to do that composition.
442 struct _Default_ranged_hash { };
444 /// Default value for rehash policy. Bucket size is (usually) the
445 /// smallest prime that keeps the load factor small enough.
446 struct _Prime_rehash_policy
448 using __has_load_factor = std::true_type;
450 _Prime_rehash_policy(float __z = 1.0) noexcept
451 : _M_max_load_factor(__z), _M_next_resize(0) { }
453 float
454 max_load_factor() const noexcept
455 { return _M_max_load_factor; }
457 // Return a bucket size no smaller than n.
458 std::size_t
459 _M_next_bkt(std::size_t __n) const;
461 // Return a bucket count appropriate for n elements
462 std::size_t
463 _M_bkt_for_elements(std::size_t __n) const
464 { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
466 // __n_bkt is current bucket count, __n_elt is current element count,
467 // and __n_ins is number of elements to be inserted. Do we need to
468 // increase bucket count? If so, return make_pair(true, n), where n
469 // is the new bucket count. If not, return make_pair(false, 0).
470 std::pair<bool, std::size_t>
471 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
472 std::size_t __n_ins) const;
474 typedef std::size_t _State;
476 _State
477 _M_state() const
478 { return _M_next_resize; }
480 void
481 _M_reset() noexcept
482 { _M_next_resize = 0; }
484 void
485 _M_reset(_State __state)
486 { _M_next_resize = __state; }
488 static const std::size_t _S_growth_factor = 2;
490 float _M_max_load_factor;
491 mutable std::size_t _M_next_resize;
494 /// Range hashing function assuming that second arg is a power of 2.
495 struct _Mask_range_hashing
497 typedef std::size_t first_argument_type;
498 typedef std::size_t second_argument_type;
499 typedef std::size_t result_type;
501 result_type
502 operator()(first_argument_type __num,
503 second_argument_type __den) const noexcept
504 { return __num & (__den - 1); }
507 /// Compute closest power of 2 not less than __n
508 inline std::size_t
509 __clp2(std::size_t __n) noexcept
511 // Equivalent to return __n ? std::ceil2(__n) : 0;
512 if (__n < 2)
513 return __n;
514 const unsigned __lz = sizeof(size_t) > sizeof(long)
515 ? __builtin_clzll(__n - 1ull)
516 : __builtin_clzl(__n - 1ul);
517 // Doing two shifts avoids undefined behaviour when __lz == 0.
518 return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1;
521 /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
522 /// operations.
523 struct _Power2_rehash_policy
525 using __has_load_factor = std::true_type;
527 _Power2_rehash_policy(float __z = 1.0) noexcept
528 : _M_max_load_factor(__z), _M_next_resize(0) { }
530 float
531 max_load_factor() const noexcept
532 { return _M_max_load_factor; }
534 // Return a bucket size no smaller than n (as long as n is not above the
535 // highest power of 2).
536 std::size_t
537 _M_next_bkt(std::size_t __n) noexcept
539 const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
540 const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
541 std::size_t __res = __clp2(__n);
543 if (__res == __n)
544 __res <<= 1;
546 if (__res == 0)
547 __res = __max_bkt;
549 if (__res == __max_bkt)
550 // Set next resize to the max value so that we never try to rehash again
551 // as we already reach the biggest possible bucket number.
552 // Note that it might result in max_load_factor not being respected.
553 _M_next_resize = std::size_t(-1);
554 else
555 _M_next_resize
556 = __builtin_ceil(__res * (long double)_M_max_load_factor);
558 return __res;
561 // Return a bucket count appropriate for n elements
562 std::size_t
563 _M_bkt_for_elements(std::size_t __n) const noexcept
564 { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
566 // __n_bkt is current bucket count, __n_elt is current element count,
567 // and __n_ins is number of elements to be inserted. Do we need to
568 // increase bucket count? If so, return make_pair(true, n), where n
569 // is the new bucket count. If not, return make_pair(false, 0).
570 std::pair<bool, std::size_t>
571 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
572 std::size_t __n_ins) noexcept
574 if (__n_elt + __n_ins >= _M_next_resize)
576 long double __min_bkts = (__n_elt + __n_ins)
577 / (long double)_M_max_load_factor;
578 if (__min_bkts >= __n_bkt)
579 return std::make_pair(true,
580 _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
581 __n_bkt * _S_growth_factor)));
583 _M_next_resize
584 = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
585 return std::make_pair(false, 0);
587 else
588 return std::make_pair(false, 0);
591 typedef std::size_t _State;
593 _State
594 _M_state() const noexcept
595 { return _M_next_resize; }
597 void
598 _M_reset() noexcept
599 { _M_next_resize = 0; }
601 void
602 _M_reset(_State __state) noexcept
603 { _M_next_resize = __state; }
605 static const std::size_t _S_growth_factor = 2;
607 float _M_max_load_factor;
608 std::size_t _M_next_resize;
611 // Base classes for std::_Hashtable. We define these base classes
612 // because in some cases we want to do different things depending on
613 // the value of a policy class. In some cases the policy class
614 // affects which member functions and nested typedefs are defined;
615 // we handle that by specializing base class templates. Several of
616 // the base class templates need to access other members of class
617 // template _Hashtable, so we use a variant of the "Curiously
618 // Recurring Template Pattern" (CRTP) technique.
621 * Primary class template _Map_base.
623 * If the hashtable has a value type of the form pair<T1, T2> and a
624 * key extraction policy (_ExtractKey) that returns the first part
625 * of the pair, the hashtable gets a mapped_type typedef. If it
626 * satisfies those criteria and also has unique keys, then it also
627 * gets an operator[].
629 template<typename _Key, typename _Value, typename _Alloc,
630 typename _ExtractKey, typename _Equal,
631 typename _H1, typename _H2, typename _Hash,
632 typename _RehashPolicy, typename _Traits,
633 bool _Unique_keys = _Traits::__unique_keys::value>
634 struct _Map_base { };
636 /// Partial specialization, __unique_keys set to false.
637 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
638 typename _H1, typename _H2, typename _Hash,
639 typename _RehashPolicy, typename _Traits>
640 struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
641 _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
643 using mapped_type = typename std::tuple_element<1, _Pair>::type;
646 /// Partial specialization, __unique_keys set to true.
647 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
648 typename _H1, typename _H2, typename _Hash,
649 typename _RehashPolicy, typename _Traits>
650 struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
651 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
653 private:
654 using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
655 _Select1st,
656 _Equal, _H1, _H2, _Hash,
657 _Traits>;
659 using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
660 _Select1st, _Equal,
661 _H1, _H2, _Hash, _RehashPolicy, _Traits>;
663 using __hash_code = typename __hashtable_base::__hash_code;
664 using __node_type = typename __hashtable_base::__node_type;
666 public:
667 using key_type = typename __hashtable_base::key_type;
668 using iterator = typename __hashtable_base::iterator;
669 using mapped_type = typename std::tuple_element<1, _Pair>::type;
671 mapped_type&
672 operator[](const key_type& __k);
674 mapped_type&
675 operator[](key_type&& __k);
677 // _GLIBCXX_RESOLVE_LIB_DEFECTS
678 // DR 761. unordered_map needs an at() member function.
679 mapped_type&
680 at(const key_type& __k);
682 const mapped_type&
683 at(const key_type& __k) const;
686 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
687 typename _H1, typename _H2, typename _Hash,
688 typename _RehashPolicy, typename _Traits>
689 auto
690 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
691 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
692 operator[](const key_type& __k)
693 -> mapped_type&
695 __hashtable* __h = static_cast<__hashtable*>(this);
696 __hash_code __code = __h->_M_hash_code(__k);
697 std::size_t __n = __h->_M_bucket_index(__k, __code);
698 __node_type* __p = __h->_M_find_node(__n, __k, __code);
700 if (!__p)
702 __p = __h->_M_allocate_node(std::piecewise_construct,
703 std::tuple<const key_type&>(__k),
704 std::tuple<>());
705 return __h->_M_insert_unique_node(__n, __code, __p)->second;
708 return __p->_M_v().second;
711 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
712 typename _H1, typename _H2, typename _Hash,
713 typename _RehashPolicy, typename _Traits>
714 auto
715 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
716 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
717 operator[](key_type&& __k)
718 -> mapped_type&
720 __hashtable* __h = static_cast<__hashtable*>(this);
721 __hash_code __code = __h->_M_hash_code(__k);
722 std::size_t __n = __h->_M_bucket_index(__k, __code);
723 __node_type* __p = __h->_M_find_node(__n, __k, __code);
725 if (!__p)
727 __p = __h->_M_allocate_node(std::piecewise_construct,
728 std::forward_as_tuple(std::move(__k)),
729 std::tuple<>());
730 return __h->_M_insert_unique_node(__n, __code, __p)->second;
733 return __p->_M_v().second;
736 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
737 typename _H1, typename _H2, typename _Hash,
738 typename _RehashPolicy, typename _Traits>
739 auto
740 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
741 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
742 at(const key_type& __k)
743 -> mapped_type&
745 __hashtable* __h = static_cast<__hashtable*>(this);
746 __hash_code __code = __h->_M_hash_code(__k);
747 std::size_t __n = __h->_M_bucket_index(__k, __code);
748 __node_type* __p = __h->_M_find_node(__n, __k, __code);
750 if (!__p)
751 __throw_out_of_range(__N("_Map_base::at"));
752 return __p->_M_v().second;
755 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
756 typename _H1, typename _H2, typename _Hash,
757 typename _RehashPolicy, typename _Traits>
758 auto
759 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
760 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
761 at(const key_type& __k) const
762 -> const mapped_type&
764 const __hashtable* __h = static_cast<const __hashtable*>(this);
765 __hash_code __code = __h->_M_hash_code(__k);
766 std::size_t __n = __h->_M_bucket_index(__k, __code);
767 __node_type* __p = __h->_M_find_node(__n, __k, __code);
769 if (!__p)
770 __throw_out_of_range(__N("_Map_base::at"));
771 return __p->_M_v().second;
775 * Primary class template _Insert_base.
777 * Defines @c insert member functions appropriate to all _Hashtables.
779 template<typename _Key, typename _Value, typename _Alloc,
780 typename _ExtractKey, typename _Equal,
781 typename _H1, typename _H2, typename _Hash,
782 typename _RehashPolicy, typename _Traits>
783 struct _Insert_base
785 protected:
786 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
787 _Equal, _H1, _H2, _Hash,
788 _RehashPolicy, _Traits>;
790 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
791 _Equal, _H1, _H2, _Hash,
792 _Traits>;
794 using value_type = typename __hashtable_base::value_type;
795 using iterator = typename __hashtable_base::iterator;
796 using const_iterator = typename __hashtable_base::const_iterator;
797 using size_type = typename __hashtable_base::size_type;
799 using __unique_keys = typename __hashtable_base::__unique_keys;
800 using __ireturn_type = typename __hashtable_base::__ireturn_type;
801 using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
802 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
803 using __node_gen_type = _AllocNode<__node_alloc_type>;
805 __hashtable&
806 _M_conjure_hashtable()
807 { return *(static_cast<__hashtable*>(this)); }
809 template<typename _InputIterator, typename _NodeGetter>
810 void
811 _M_insert_range(_InputIterator __first, _InputIterator __last,
812 const _NodeGetter&, true_type);
814 template<typename _InputIterator, typename _NodeGetter>
815 void
816 _M_insert_range(_InputIterator __first, _InputIterator __last,
817 const _NodeGetter&, false_type);
819 public:
820 __ireturn_type
821 insert(const value_type& __v)
823 __hashtable& __h = _M_conjure_hashtable();
824 __node_gen_type __node_gen(__h);
825 return __h._M_insert(__v, __node_gen, __unique_keys());
828 iterator
829 insert(const_iterator __hint, const value_type& __v)
831 __hashtable& __h = _M_conjure_hashtable();
832 __node_gen_type __node_gen(__h);
833 return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
836 void
837 insert(initializer_list<value_type> __l)
838 { this->insert(__l.begin(), __l.end()); }
840 template<typename _InputIterator>
841 void
842 insert(_InputIterator __first, _InputIterator __last)
844 __hashtable& __h = _M_conjure_hashtable();
845 __node_gen_type __node_gen(__h);
846 return _M_insert_range(__first, __last, __node_gen, __unique_keys());
850 template<typename _Key, typename _Value, typename _Alloc,
851 typename _ExtractKey, typename _Equal,
852 typename _H1, typename _H2, typename _Hash,
853 typename _RehashPolicy, typename _Traits>
854 template<typename _InputIterator, typename _NodeGetter>
855 void
856 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
857 _RehashPolicy, _Traits>::
858 _M_insert_range(_InputIterator __first, _InputIterator __last,
859 const _NodeGetter& __node_gen, true_type)
861 size_type __n_elt = __detail::__distance_fw(__first, __last);
862 if (__n_elt == 0)
863 return;
865 __hashtable& __h = _M_conjure_hashtable();
866 for (; __first != __last; ++__first)
868 if (__h._M_insert(*__first, __node_gen, __unique_keys(),
869 __n_elt).second)
870 __n_elt = 1;
871 else if (__n_elt != 1)
872 --__n_elt;
876 template<typename _Key, typename _Value, typename _Alloc,
877 typename _ExtractKey, typename _Equal,
878 typename _H1, typename _H2, typename _Hash,
879 typename _RehashPolicy, typename _Traits>
880 template<typename _InputIterator, typename _NodeGetter>
881 void
882 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
883 _RehashPolicy, _Traits>::
884 _M_insert_range(_InputIterator __first, _InputIterator __last,
885 const _NodeGetter& __node_gen, false_type)
887 using __rehash_type = typename __hashtable::__rehash_type;
888 using __rehash_state = typename __hashtable::__rehash_state;
889 using pair_type = std::pair<bool, std::size_t>;
891 size_type __n_elt = __detail::__distance_fw(__first, __last);
892 if (__n_elt == 0)
893 return;
895 __hashtable& __h = _M_conjure_hashtable();
896 __rehash_type& __rehash = __h._M_rehash_policy;
897 const __rehash_state& __saved_state = __rehash._M_state();
898 pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
899 __h._M_element_count,
900 __n_elt);
902 if (__do_rehash.first)
903 __h._M_rehash(__do_rehash.second, __saved_state);
905 for (; __first != __last; ++__first)
906 __h._M_insert(*__first, __node_gen, __unique_keys());
910 * Primary class template _Insert.
912 * Defines @c insert member functions that depend on _Hashtable policies,
913 * via partial specializations.
915 template<typename _Key, typename _Value, typename _Alloc,
916 typename _ExtractKey, typename _Equal,
917 typename _H1, typename _H2, typename _Hash,
918 typename _RehashPolicy, typename _Traits,
919 bool _Constant_iterators = _Traits::__constant_iterators::value>
920 struct _Insert;
922 /// Specialization.
923 template<typename _Key, typename _Value, typename _Alloc,
924 typename _ExtractKey, typename _Equal,
925 typename _H1, typename _H2, typename _Hash,
926 typename _RehashPolicy, typename _Traits>
927 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
928 _RehashPolicy, _Traits, true>
929 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
930 _H1, _H2, _Hash, _RehashPolicy, _Traits>
932 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
933 _Equal, _H1, _H2, _Hash,
934 _RehashPolicy, _Traits>;
936 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
937 _Equal, _H1, _H2, _Hash,
938 _Traits>;
940 using value_type = typename __base_type::value_type;
941 using iterator = typename __base_type::iterator;
942 using const_iterator = typename __base_type::const_iterator;
944 using __unique_keys = typename __base_type::__unique_keys;
945 using __ireturn_type = typename __hashtable_base::__ireturn_type;
946 using __hashtable = typename __base_type::__hashtable;
947 using __node_gen_type = typename __base_type::__node_gen_type;
949 using __base_type::insert;
951 __ireturn_type
952 insert(value_type&& __v)
954 __hashtable& __h = this->_M_conjure_hashtable();
955 __node_gen_type __node_gen(__h);
956 return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
959 iterator
960 insert(const_iterator __hint, value_type&& __v)
962 __hashtable& __h = this->_M_conjure_hashtable();
963 __node_gen_type __node_gen(__h);
964 return __h._M_insert(__hint, std::move(__v), __node_gen,
965 __unique_keys());
969 /// Specialization.
970 template<typename _Key, typename _Value, typename _Alloc,
971 typename _ExtractKey, typename _Equal,
972 typename _H1, typename _H2, typename _Hash,
973 typename _RehashPolicy, typename _Traits>
974 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
975 _RehashPolicy, _Traits, false>
976 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
977 _H1, _H2, _Hash, _RehashPolicy, _Traits>
979 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
980 _Equal, _H1, _H2, _Hash,
981 _RehashPolicy, _Traits>;
982 using value_type = typename __base_type::value_type;
983 using iterator = typename __base_type::iterator;
984 using const_iterator = typename __base_type::const_iterator;
986 using __unique_keys = typename __base_type::__unique_keys;
987 using __hashtable = typename __base_type::__hashtable;
988 using __ireturn_type = typename __base_type::__ireturn_type;
990 using __base_type::insert;
992 template<typename _Pair>
993 using __is_cons = std::is_constructible<value_type, _Pair&&>;
995 template<typename _Pair>
996 using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
998 template<typename _Pair>
999 using _IFconsp = typename _IFcons<_Pair>::type;
1001 template<typename _Pair, typename = _IFconsp<_Pair>>
1002 __ireturn_type
1003 insert(_Pair&& __v)
1005 __hashtable& __h = this->_M_conjure_hashtable();
1006 return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
1009 template<typename _Pair, typename = _IFconsp<_Pair>>
1010 iterator
1011 insert(const_iterator __hint, _Pair&& __v)
1013 __hashtable& __h = this->_M_conjure_hashtable();
1014 return __h._M_emplace(__hint, __unique_keys(),
1015 std::forward<_Pair>(__v));
1019 template<typename _Policy>
1020 using __has_load_factor = typename _Policy::__has_load_factor;
1023 * Primary class template _Rehash_base.
1025 * Give hashtable the max_load_factor functions and reserve iff the
1026 * rehash policy supports it.
1028 template<typename _Key, typename _Value, typename _Alloc,
1029 typename _ExtractKey, typename _Equal,
1030 typename _H1, typename _H2, typename _Hash,
1031 typename _RehashPolicy, typename _Traits,
1032 typename =
1033 __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1034 struct _Rehash_base;
1036 /// Specialization when rehash policy doesn't provide load factor management.
1037 template<typename _Key, typename _Value, typename _Alloc,
1038 typename _ExtractKey, typename _Equal,
1039 typename _H1, typename _H2, typename _Hash,
1040 typename _RehashPolicy, typename _Traits>
1041 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1042 _H1, _H2, _Hash, _RehashPolicy, _Traits,
1043 std::false_type>
1047 /// Specialization when rehash policy provide load factor management.
1048 template<typename _Key, typename _Value, typename _Alloc,
1049 typename _ExtractKey, typename _Equal,
1050 typename _H1, typename _H2, typename _Hash,
1051 typename _RehashPolicy, typename _Traits>
1052 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1053 _H1, _H2, _Hash, _RehashPolicy, _Traits,
1054 std::true_type>
1056 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1057 _Equal, _H1, _H2, _Hash,
1058 _RehashPolicy, _Traits>;
1060 float
1061 max_load_factor() const noexcept
1063 const __hashtable* __this = static_cast<const __hashtable*>(this);
1064 return __this->__rehash_policy().max_load_factor();
1067 void
1068 max_load_factor(float __z)
1070 __hashtable* __this = static_cast<__hashtable*>(this);
1071 __this->__rehash_policy(_RehashPolicy(__z));
1074 void
1075 reserve(std::size_t __n)
1077 __hashtable* __this = static_cast<__hashtable*>(this);
1078 __this->rehash(__builtin_ceil(__n / max_load_factor()));
1083 * Primary class template _Hashtable_ebo_helper.
1085 * Helper class using EBO when it is not forbidden (the type is not
1086 * final) and when it is worth it (the type is empty.)
1088 template<int _Nm, typename _Tp,
1089 bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1090 struct _Hashtable_ebo_helper;
1092 /// Specialization using EBO.
1093 template<int _Nm, typename _Tp>
1094 struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1095 : private _Tp
1097 _Hashtable_ebo_helper() = default;
1099 template<typename _OtherTp>
1100 _Hashtable_ebo_helper(_OtherTp&& __tp)
1101 : _Tp(std::forward<_OtherTp>(__tp))
1104 static const _Tp&
1105 _S_cget(const _Hashtable_ebo_helper& __eboh)
1106 { return static_cast<const _Tp&>(__eboh); }
1108 static _Tp&
1109 _S_get(_Hashtable_ebo_helper& __eboh)
1110 { return static_cast<_Tp&>(__eboh); }
1113 /// Specialization not using EBO.
1114 template<int _Nm, typename _Tp>
1115 struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1117 _Hashtable_ebo_helper() = default;
1119 template<typename _OtherTp>
1120 _Hashtable_ebo_helper(_OtherTp&& __tp)
1121 : _M_tp(std::forward<_OtherTp>(__tp))
1124 static const _Tp&
1125 _S_cget(const _Hashtable_ebo_helper& __eboh)
1126 { return __eboh._M_tp; }
1128 static _Tp&
1129 _S_get(_Hashtable_ebo_helper& __eboh)
1130 { return __eboh._M_tp; }
1132 private:
1133 _Tp _M_tp;
1137 * Primary class template _Local_iterator_base.
1139 * Base class for local iterators, used to iterate within a bucket
1140 * but not between buckets.
1142 template<typename _Key, typename _Value, typename _ExtractKey,
1143 typename _H1, typename _H2, typename _Hash,
1144 bool __cache_hash_code>
1145 struct _Local_iterator_base;
1148 * Primary class template _Hash_code_base.
1150 * Encapsulates two policy issues that aren't quite orthogonal.
1151 * (1) the difference between using a ranged hash function and using
1152 * the combination of a hash function and a range-hashing function.
1153 * In the former case we don't have such things as hash codes, so
1154 * we have a dummy type as placeholder.
1155 * (2) Whether or not we cache hash codes. Caching hash codes is
1156 * meaningless if we have a ranged hash function.
1158 * We also put the key extraction objects here, for convenience.
1159 * Each specialization derives from one or more of the template
1160 * parameters to benefit from Ebo. This is important as this type
1161 * is inherited in some cases by the _Local_iterator_base type used
1162 * to implement local_iterator and const_local_iterator. As with
1163 * any iterator type we prefer to make it as small as possible.
1165 * Primary template is unused except as a hook for specializations.
1167 template<typename _Key, typename _Value, typename _ExtractKey,
1168 typename _H1, typename _H2, typename _Hash,
1169 bool __cache_hash_code>
1170 struct _Hash_code_base;
1172 /// Specialization: ranged hash function, no caching hash codes. H1
1173 /// and H2 are provided but ignored. We define a dummy hash code type.
1174 template<typename _Key, typename _Value, typename _ExtractKey,
1175 typename _H1, typename _H2, typename _Hash>
1176 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1177 : private _Hashtable_ebo_helper<0, _ExtractKey>,
1178 private _Hashtable_ebo_helper<1, _Hash>
1180 private:
1181 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1182 using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1184 protected:
1185 typedef void* __hash_code;
1186 typedef _Hash_node<_Value, false> __node_type;
1188 // We need the default constructor for the local iterators and _Hashtable
1189 // default constructor.
1190 _Hash_code_base() = default;
1192 _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1193 const _Hash& __h)
1194 : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1196 __hash_code
1197 _M_hash_code(const _Key& __key) const
1198 { return 0; }
1200 std::size_t
1201 _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1202 { return _M_ranged_hash()(__k, __n); }
1204 std::size_t
1205 _M_bucket_index(const __node_type* __p, std::size_t __n) const
1206 noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1207 (std::size_t)0)) )
1208 { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1210 void
1211 _M_store_code(__node_type*, __hash_code) const
1214 void
1215 _M_copy_code(__node_type*, const __node_type*) const
1218 void
1219 _M_swap(_Hash_code_base& __x)
1221 std::swap(_M_extract(), __x._M_extract());
1222 std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1225 const _ExtractKey&
1226 _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1228 _ExtractKey&
1229 _M_extract() { return __ebo_extract_key::_S_get(*this); }
1231 const _Hash&
1232 _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1234 _Hash&
1235 _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1238 // No specialization for ranged hash function while caching hash codes.
1239 // That combination is meaningless, and trying to do it is an error.
1241 /// Specialization: ranged hash function, cache hash codes. This
1242 /// combination is meaningless, so we provide only a declaration
1243 /// and no definition.
1244 template<typename _Key, typename _Value, typename _ExtractKey,
1245 typename _H1, typename _H2, typename _Hash>
1246 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1248 /// Specialization: hash function and range-hashing function, no
1249 /// caching of hash codes.
1250 /// Provides typedef and accessor required by C++ 11.
1251 template<typename _Key, typename _Value, typename _ExtractKey,
1252 typename _H1, typename _H2>
1253 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1254 _Default_ranged_hash, false>
1255 : private _Hashtable_ebo_helper<0, _ExtractKey>,
1256 private _Hashtable_ebo_helper<1, _H1>,
1257 private _Hashtable_ebo_helper<2, _H2>
1259 private:
1260 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1261 using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1262 using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1264 // Gives the local iterator implementation access to _M_bucket_index().
1265 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1266 _Default_ranged_hash, false>;
1268 public:
1269 typedef _H1 hasher;
1271 hasher
1272 hash_function() const
1273 { return _M_h1(); }
1275 protected:
1276 typedef std::size_t __hash_code;
1277 typedef _Hash_node<_Value, false> __node_type;
1279 // We need the default constructor for the local iterators and _Hashtable
1280 // default constructor.
1281 _Hash_code_base() = default;
1283 _Hash_code_base(const _ExtractKey& __ex,
1284 const _H1& __h1, const _H2& __h2,
1285 const _Default_ranged_hash&)
1286 : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1288 __hash_code
1289 _M_hash_code(const _Key& __k) const
1290 { return _M_h1()(__k); }
1292 std::size_t
1293 _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1294 { return _M_h2()(__c, __n); }
1296 std::size_t
1297 _M_bucket_index(const __node_type* __p, std::size_t __n) const
1298 noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1299 && noexcept(declval<const _H2&>()((__hash_code)0,
1300 (std::size_t)0)) )
1301 { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1303 void
1304 _M_store_code(__node_type*, __hash_code) const
1307 void
1308 _M_copy_code(__node_type*, const __node_type*) const
1311 void
1312 _M_swap(_Hash_code_base& __x)
1314 std::swap(_M_extract(), __x._M_extract());
1315 std::swap(_M_h1(), __x._M_h1());
1316 std::swap(_M_h2(), __x._M_h2());
1319 const _ExtractKey&
1320 _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1322 _ExtractKey&
1323 _M_extract() { return __ebo_extract_key::_S_get(*this); }
1325 const _H1&
1326 _M_h1() const { return __ebo_h1::_S_cget(*this); }
1328 _H1&
1329 _M_h1() { return __ebo_h1::_S_get(*this); }
1331 const _H2&
1332 _M_h2() const { return __ebo_h2::_S_cget(*this); }
1334 _H2&
1335 _M_h2() { return __ebo_h2::_S_get(*this); }
1338 /// Specialization: hash function and range-hashing function,
1339 /// caching hash codes. H is provided but ignored. Provides
1340 /// typedef and accessor required by C++ 11.
1341 template<typename _Key, typename _Value, typename _ExtractKey,
1342 typename _H1, typename _H2>
1343 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1344 _Default_ranged_hash, true>
1345 : private _Hashtable_ebo_helper<0, _ExtractKey>,
1346 private _Hashtable_ebo_helper<1, _H1>,
1347 private _Hashtable_ebo_helper<2, _H2>
1349 private:
1350 // Gives the local iterator implementation access to _M_h2().
1351 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1352 _Default_ranged_hash, true>;
1354 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1355 using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1356 using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1358 public:
1359 typedef _H1 hasher;
1361 hasher
1362 hash_function() const
1363 { return _M_h1(); }
1365 protected:
1366 typedef std::size_t __hash_code;
1367 typedef _Hash_node<_Value, true> __node_type;
1369 // We need the default constructor for _Hashtable default constructor.
1370 _Hash_code_base() = default;
1371 _Hash_code_base(const _ExtractKey& __ex,
1372 const _H1& __h1, const _H2& __h2,
1373 const _Default_ranged_hash&)
1374 : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1376 __hash_code
1377 _M_hash_code(const _Key& __k) const
1378 { return _M_h1()(__k); }
1380 std::size_t
1381 _M_bucket_index(const _Key&, __hash_code __c,
1382 std::size_t __n) const
1383 { return _M_h2()(__c, __n); }
1385 std::size_t
1386 _M_bucket_index(const __node_type* __p, std::size_t __n) const
1387 noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1388 (std::size_t)0)) )
1389 { return _M_h2()(__p->_M_hash_code, __n); }
1391 void
1392 _M_store_code(__node_type* __n, __hash_code __c) const
1393 { __n->_M_hash_code = __c; }
1395 void
1396 _M_copy_code(__node_type* __to, const __node_type* __from) const
1397 { __to->_M_hash_code = __from->_M_hash_code; }
1399 void
1400 _M_swap(_Hash_code_base& __x)
1402 std::swap(_M_extract(), __x._M_extract());
1403 std::swap(_M_h1(), __x._M_h1());
1404 std::swap(_M_h2(), __x._M_h2());
1407 const _ExtractKey&
1408 _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1410 _ExtractKey&
1411 _M_extract() { return __ebo_extract_key::_S_get(*this); }
1413 const _H1&
1414 _M_h1() const { return __ebo_h1::_S_cget(*this); }
1416 _H1&
1417 _M_h1() { return __ebo_h1::_S_get(*this); }
1419 const _H2&
1420 _M_h2() const { return __ebo_h2::_S_cget(*this); }
1422 _H2&
1423 _M_h2() { return __ebo_h2::_S_get(*this); }
1427 * Primary class template _Equal_helper.
1430 template <typename _Key, typename _Value, typename _ExtractKey,
1431 typename _Equal, typename _HashCodeType,
1432 bool __cache_hash_code>
1433 struct _Equal_helper;
1435 /// Specialization.
1436 template<typename _Key, typename _Value, typename _ExtractKey,
1437 typename _Equal, typename _HashCodeType>
1438 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1440 static bool
1441 _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1442 const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1443 { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1446 /// Specialization.
1447 template<typename _Key, typename _Value, typename _ExtractKey,
1448 typename _Equal, typename _HashCodeType>
1449 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1451 static bool
1452 _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1453 const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1454 { return __eq(__k, __extract(__n->_M_v())); }
1458 /// Partial specialization used when nodes contain a cached hash code.
1459 template<typename _Key, typename _Value, typename _ExtractKey,
1460 typename _H1, typename _H2, typename _Hash>
1461 struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1462 _H1, _H2, _Hash, true>
1463 : private _Hashtable_ebo_helper<0, _H2>
1465 protected:
1466 using __base_type = _Hashtable_ebo_helper<0, _H2>;
1467 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1468 _H1, _H2, _Hash, true>;
1470 _Local_iterator_base() = default;
1471 _Local_iterator_base(const __hash_code_base& __base,
1472 _Hash_node<_Value, true>* __p,
1473 std::size_t __bkt, std::size_t __bkt_count)
1474 : __base_type(__base._M_h2()),
1475 _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1477 void
1478 _M_incr()
1480 _M_cur = _M_cur->_M_next();
1481 if (_M_cur)
1483 std::size_t __bkt
1484 = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1485 _M_bucket_count);
1486 if (__bkt != _M_bucket)
1487 _M_cur = nullptr;
1491 _Hash_node<_Value, true>* _M_cur;
1492 std::size_t _M_bucket;
1493 std::size_t _M_bucket_count;
1495 public:
1496 const void*
1497 _M_curr() const { return _M_cur; } // for equality ops
1499 std::size_t
1500 _M_get_bucket() const { return _M_bucket; } // for debug mode
1503 // Uninitialized storage for a _Hash_code_base.
1504 // This type is DefaultConstructible and Assignable even if the
1505 // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1506 // can be DefaultConstructible and Assignable.
1507 template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1508 struct _Hash_code_storage
1510 __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1512 _Tp*
1513 _M_h() { return _M_storage._M_ptr(); }
1515 const _Tp*
1516 _M_h() const { return _M_storage._M_ptr(); }
1519 // Empty partial specialization for empty _Hash_code_base types.
1520 template<typename _Tp>
1521 struct _Hash_code_storage<_Tp, true>
1523 static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1525 // As _Tp is an empty type there will be no bytes written/read through
1526 // the cast pointer, so no strict-aliasing violation.
1527 _Tp*
1528 _M_h() { return reinterpret_cast<_Tp*>(this); }
1530 const _Tp*
1531 _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1534 template<typename _Key, typename _Value, typename _ExtractKey,
1535 typename _H1, typename _H2, typename _Hash>
1536 using __hash_code_for_local_iter
1537 = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1538 _H1, _H2, _Hash, false>>;
1540 // Partial specialization used when hash codes are not cached
1541 template<typename _Key, typename _Value, typename _ExtractKey,
1542 typename _H1, typename _H2, typename _Hash>
1543 struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1544 _H1, _H2, _Hash, false>
1545 : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1547 protected:
1548 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1549 _H1, _H2, _Hash, false>;
1551 _Local_iterator_base() : _M_bucket_count(-1) { }
1553 _Local_iterator_base(const __hash_code_base& __base,
1554 _Hash_node<_Value, false>* __p,
1555 std::size_t __bkt, std::size_t __bkt_count)
1556 : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1557 { _M_init(__base); }
1559 ~_Local_iterator_base()
1561 if (_M_bucket_count != -1)
1562 _M_destroy();
1565 _Local_iterator_base(const _Local_iterator_base& __iter)
1566 : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1567 _M_bucket_count(__iter._M_bucket_count)
1569 if (_M_bucket_count != -1)
1570 _M_init(*__iter._M_h());
1573 _Local_iterator_base&
1574 operator=(const _Local_iterator_base& __iter)
1576 if (_M_bucket_count != -1)
1577 _M_destroy();
1578 _M_cur = __iter._M_cur;
1579 _M_bucket = __iter._M_bucket;
1580 _M_bucket_count = __iter._M_bucket_count;
1581 if (_M_bucket_count != -1)
1582 _M_init(*__iter._M_h());
1583 return *this;
1586 void
1587 _M_incr()
1589 _M_cur = _M_cur->_M_next();
1590 if (_M_cur)
1592 std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1593 _M_bucket_count);
1594 if (__bkt != _M_bucket)
1595 _M_cur = nullptr;
1599 _Hash_node<_Value, false>* _M_cur;
1600 std::size_t _M_bucket;
1601 std::size_t _M_bucket_count;
1603 void
1604 _M_init(const __hash_code_base& __base)
1605 { ::new(this->_M_h()) __hash_code_base(__base); }
1607 void
1608 _M_destroy() { this->_M_h()->~__hash_code_base(); }
1610 public:
1611 const void*
1612 _M_curr() const { return _M_cur; } // for equality ops and debug mode
1614 std::size_t
1615 _M_get_bucket() const { return _M_bucket; } // for debug mode
1618 template<typename _Key, typename _Value, typename _ExtractKey,
1619 typename _H1, typename _H2, typename _Hash, bool __cache>
1620 inline bool
1621 operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1622 _H1, _H2, _Hash, __cache>& __x,
1623 const _Local_iterator_base<_Key, _Value, _ExtractKey,
1624 _H1, _H2, _Hash, __cache>& __y)
1625 { return __x._M_curr() == __y._M_curr(); }
1627 template<typename _Key, typename _Value, typename _ExtractKey,
1628 typename _H1, typename _H2, typename _Hash, bool __cache>
1629 inline bool
1630 operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1631 _H1, _H2, _Hash, __cache>& __x,
1632 const _Local_iterator_base<_Key, _Value, _ExtractKey,
1633 _H1, _H2, _Hash, __cache>& __y)
1634 { return __x._M_curr() != __y._M_curr(); }
1636 /// local iterators
1637 template<typename _Key, typename _Value, typename _ExtractKey,
1638 typename _H1, typename _H2, typename _Hash,
1639 bool __constant_iterators, bool __cache>
1640 struct _Local_iterator
1641 : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1642 _H1, _H2, _Hash, __cache>
1644 private:
1645 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1646 _H1, _H2, _Hash, __cache>;
1647 using __hash_code_base = typename __base_type::__hash_code_base;
1648 public:
1649 typedef _Value value_type;
1650 typedef typename std::conditional<__constant_iterators,
1651 const _Value*, _Value*>::type
1652 pointer;
1653 typedef typename std::conditional<__constant_iterators,
1654 const _Value&, _Value&>::type
1655 reference;
1656 typedef std::ptrdiff_t difference_type;
1657 typedef std::forward_iterator_tag iterator_category;
1659 _Local_iterator() = default;
1661 _Local_iterator(const __hash_code_base& __base,
1662 _Hash_node<_Value, __cache>* __p,
1663 std::size_t __bkt, std::size_t __bkt_count)
1664 : __base_type(__base, __p, __bkt, __bkt_count)
1667 reference
1668 operator*() const
1669 { return this->_M_cur->_M_v(); }
1671 pointer
1672 operator->() const
1673 { return this->_M_cur->_M_valptr(); }
1675 _Local_iterator&
1676 operator++()
1678 this->_M_incr();
1679 return *this;
1682 _Local_iterator
1683 operator++(int)
1685 _Local_iterator __tmp(*this);
1686 this->_M_incr();
1687 return __tmp;
1691 /// local const_iterators
1692 template<typename _Key, typename _Value, typename _ExtractKey,
1693 typename _H1, typename _H2, typename _Hash,
1694 bool __constant_iterators, bool __cache>
1695 struct _Local_const_iterator
1696 : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1697 _H1, _H2, _Hash, __cache>
1699 private:
1700 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1701 _H1, _H2, _Hash, __cache>;
1702 using __hash_code_base = typename __base_type::__hash_code_base;
1704 public:
1705 typedef _Value value_type;
1706 typedef const _Value* pointer;
1707 typedef const _Value& reference;
1708 typedef std::ptrdiff_t difference_type;
1709 typedef std::forward_iterator_tag iterator_category;
1711 _Local_const_iterator() = default;
1713 _Local_const_iterator(const __hash_code_base& __base,
1714 _Hash_node<_Value, __cache>* __p,
1715 std::size_t __bkt, std::size_t __bkt_count)
1716 : __base_type(__base, __p, __bkt, __bkt_count)
1719 _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1720 _H1, _H2, _Hash,
1721 __constant_iterators,
1722 __cache>& __x)
1723 : __base_type(__x)
1726 reference
1727 operator*() const
1728 { return this->_M_cur->_M_v(); }
1730 pointer
1731 operator->() const
1732 { return this->_M_cur->_M_valptr(); }
1734 _Local_const_iterator&
1735 operator++()
1737 this->_M_incr();
1738 return *this;
1741 _Local_const_iterator
1742 operator++(int)
1744 _Local_const_iterator __tmp(*this);
1745 this->_M_incr();
1746 return __tmp;
1751 * Primary class template _Hashtable_base.
1753 * Helper class adding management of _Equal functor to
1754 * _Hash_code_base type.
1756 * Base class templates are:
1757 * - __detail::_Hash_code_base
1758 * - __detail::_Hashtable_ebo_helper
1760 template<typename _Key, typename _Value,
1761 typename _ExtractKey, typename _Equal,
1762 typename _H1, typename _H2, typename _Hash, typename _Traits>
1763 struct _Hashtable_base
1764 : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1765 _Traits::__hash_cached::value>,
1766 private _Hashtable_ebo_helper<0, _Equal>
1768 public:
1769 typedef _Key key_type;
1770 typedef _Value value_type;
1771 typedef _Equal key_equal;
1772 typedef std::size_t size_type;
1773 typedef std::ptrdiff_t difference_type;
1775 using __traits_type = _Traits;
1776 using __hash_cached = typename __traits_type::__hash_cached;
1777 using __constant_iterators = typename __traits_type::__constant_iterators;
1778 using __unique_keys = typename __traits_type::__unique_keys;
1780 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1781 _H1, _H2, _Hash,
1782 __hash_cached::value>;
1784 using __hash_code = typename __hash_code_base::__hash_code;
1785 using __node_type = typename __hash_code_base::__node_type;
1787 using iterator = __detail::_Node_iterator<value_type,
1788 __constant_iterators::value,
1789 __hash_cached::value>;
1791 using const_iterator = __detail::_Node_const_iterator<value_type,
1792 __constant_iterators::value,
1793 __hash_cached::value>;
1795 using local_iterator = __detail::_Local_iterator<key_type, value_type,
1796 _ExtractKey, _H1, _H2, _Hash,
1797 __constant_iterators::value,
1798 __hash_cached::value>;
1800 using const_local_iterator = __detail::_Local_const_iterator<key_type,
1801 value_type,
1802 _ExtractKey, _H1, _H2, _Hash,
1803 __constant_iterators::value,
1804 __hash_cached::value>;
1806 using __ireturn_type = typename std::conditional<__unique_keys::value,
1807 std::pair<iterator, bool>,
1808 iterator>::type;
1809 private:
1810 using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1811 using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1812 __hash_code, __hash_cached::value>;
1814 protected:
1815 _Hashtable_base() = default;
1816 _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1817 const _Hash& __hash, const _Equal& __eq)
1818 : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1821 bool
1822 _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1824 return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1825 __k, __c, __n);
1828 void
1829 _M_swap(_Hashtable_base& __x)
1831 __hash_code_base::_M_swap(__x);
1832 std::swap(_M_eq(), __x._M_eq());
1835 const _Equal&
1836 _M_eq() const { return _EqualEBO::_S_cget(*this); }
1838 _Equal&
1839 _M_eq() { return _EqualEBO::_S_get(*this); }
1843 * struct _Equality_base.
1845 * Common types and functions for class _Equality.
1847 struct _Equality_base
1849 protected:
1850 template<typename _Uiterator>
1851 static bool
1852 _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1855 // See std::is_permutation in N3068.
1856 template<typename _Uiterator>
1857 bool
1858 _Equality_base::
1859 _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1860 _Uiterator __first2)
1862 for (; __first1 != __last1; ++__first1, ++__first2)
1863 if (!(*__first1 == *__first2))
1864 break;
1866 if (__first1 == __last1)
1867 return true;
1869 _Uiterator __last2 = __first2;
1870 std::advance(__last2, std::distance(__first1, __last1));
1872 for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1874 _Uiterator __tmp = __first1;
1875 while (__tmp != __it1 && !bool(*__tmp == *__it1))
1876 ++__tmp;
1878 // We've seen this one before.
1879 if (__tmp != __it1)
1880 continue;
1882 std::ptrdiff_t __n2 = 0;
1883 for (__tmp = __first2; __tmp != __last2; ++__tmp)
1884 if (*__tmp == *__it1)
1885 ++__n2;
1887 if (!__n2)
1888 return false;
1890 std::ptrdiff_t __n1 = 0;
1891 for (__tmp = __it1; __tmp != __last1; ++__tmp)
1892 if (*__tmp == *__it1)
1893 ++__n1;
1895 if (__n1 != __n2)
1896 return false;
1898 return true;
1902 * Primary class template _Equality.
1904 * This is for implementing equality comparison for unordered
1905 * containers, per N3068, by John Lakos and Pablo Halpern.
1906 * Algorithmically, we follow closely the reference implementations
1907 * therein.
1909 template<typename _Key, typename _Value, typename _Alloc,
1910 typename _ExtractKey, typename _Equal,
1911 typename _H1, typename _H2, typename _Hash,
1912 typename _RehashPolicy, typename _Traits,
1913 bool _Unique_keys = _Traits::__unique_keys::value>
1914 struct _Equality;
1916 /// Specialization.
1917 template<typename _Key, typename _Value, typename _Alloc,
1918 typename _ExtractKey, typename _Equal,
1919 typename _H1, typename _H2, typename _Hash,
1920 typename _RehashPolicy, typename _Traits>
1921 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1922 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1924 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1925 _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1927 bool
1928 _M_equal(const __hashtable&) const;
1931 template<typename _Key, typename _Value, typename _Alloc,
1932 typename _ExtractKey, typename _Equal,
1933 typename _H1, typename _H2, typename _Hash,
1934 typename _RehashPolicy, typename _Traits>
1935 bool
1936 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1937 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1938 _M_equal(const __hashtable& __other) const
1940 const __hashtable* __this = static_cast<const __hashtable*>(this);
1942 if (__this->size() != __other.size())
1943 return false;
1945 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1947 const auto __ity = __other.find(_ExtractKey()(*__itx));
1948 if (__ity == __other.end() || !bool(*__ity == *__itx))
1949 return false;
1951 return true;
1954 /// Specialization.
1955 template<typename _Key, typename _Value, typename _Alloc,
1956 typename _ExtractKey, typename _Equal,
1957 typename _H1, typename _H2, typename _Hash,
1958 typename _RehashPolicy, typename _Traits>
1959 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1960 _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1961 : public _Equality_base
1963 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1964 _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1966 bool
1967 _M_equal(const __hashtable&) const;
1970 template<typename _Key, typename _Value, typename _Alloc,
1971 typename _ExtractKey, typename _Equal,
1972 typename _H1, typename _H2, typename _Hash,
1973 typename _RehashPolicy, typename _Traits>
1974 bool
1975 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1976 _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1977 _M_equal(const __hashtable& __other) const
1979 const __hashtable* __this = static_cast<const __hashtable*>(this);
1981 if (__this->size() != __other.size())
1982 return false;
1984 for (auto __itx = __this->begin(); __itx != __this->end();)
1986 const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1987 const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1989 if (std::distance(__xrange.first, __xrange.second)
1990 != std::distance(__yrange.first, __yrange.second))
1991 return false;
1993 if (!_S_is_permutation(__xrange.first, __xrange.second,
1994 __yrange.first))
1995 return false;
1997 __itx = __xrange.second;
1999 return true;
2003 * This type deals with all allocation and keeps an allocator instance through
2004 * inheritance to benefit from EBO when possible.
2006 template<typename _NodeAlloc>
2007 struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
2009 private:
2010 using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2011 public:
2012 using __node_type = typename _NodeAlloc::value_type;
2013 using __node_alloc_type = _NodeAlloc;
2014 // Use __gnu_cxx to benefit from _S_always_equal and al.
2015 using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2017 using __value_alloc_traits = typename __node_alloc_traits::template
2018 rebind_traits<typename __node_type::value_type>;
2020 using __node_base = __detail::_Hash_node_base;
2021 using __bucket_type = __node_base*;
2022 using __bucket_alloc_type =
2023 __alloc_rebind<__node_alloc_type, __bucket_type>;
2024 using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2026 _Hashtable_alloc() = default;
2027 _Hashtable_alloc(const _Hashtable_alloc&) = default;
2028 _Hashtable_alloc(_Hashtable_alloc&&) = default;
2030 template<typename _Alloc>
2031 _Hashtable_alloc(_Alloc&& __a)
2032 : __ebo_node_alloc(std::forward<_Alloc>(__a))
2035 __node_alloc_type&
2036 _M_node_allocator()
2037 { return __ebo_node_alloc::_S_get(*this); }
2039 const __node_alloc_type&
2040 _M_node_allocator() const
2041 { return __ebo_node_alloc::_S_cget(*this); }
2043 template<typename... _Args>
2044 __node_type*
2045 _M_allocate_node(_Args&&... __args);
2047 void
2048 _M_deallocate_node(__node_type* __n);
2050 // Deallocate the linked list of nodes pointed to by __n
2051 void
2052 _M_deallocate_nodes(__node_type* __n);
2054 __bucket_type*
2055 _M_allocate_buckets(std::size_t __n);
2057 void
2058 _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2061 // Definitions of class template _Hashtable_alloc's out-of-line member
2062 // functions.
2063 template<typename _NodeAlloc>
2064 template<typename... _Args>
2065 typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2066 _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2068 auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2069 __node_type* __n = std::__to_address(__nptr);
2070 __try
2072 ::new ((void*)__n) __node_type;
2073 __node_alloc_traits::construct(_M_node_allocator(),
2074 __n->_M_valptr(),
2075 std::forward<_Args>(__args)...);
2076 return __n;
2078 __catch(...)
2080 __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2081 __throw_exception_again;
2085 template<typename _NodeAlloc>
2086 void
2087 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2089 typedef typename __node_alloc_traits::pointer _Ptr;
2090 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2091 __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
2092 __n->~__node_type();
2093 __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2096 template<typename _NodeAlloc>
2097 void
2098 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2100 while (__n)
2102 __node_type* __tmp = __n;
2103 __n = __n->_M_next();
2104 _M_deallocate_node(__tmp);
2108 template<typename _NodeAlloc>
2109 typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2110 _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
2112 __bucket_alloc_type __alloc(_M_node_allocator());
2114 auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2115 __bucket_type* __p = std::__to_address(__ptr);
2116 __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2117 return __p;
2120 template<typename _NodeAlloc>
2121 void
2122 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2123 std::size_t __n)
2125 typedef typename __bucket_alloc_traits::pointer _Ptr;
2126 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2127 __bucket_alloc_type __alloc(_M_node_allocator());
2128 __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2131 //@} hashtable-detail
2132 } // namespace __detail
2133 _GLIBCXX_END_NAMESPACE_VERSION
2134 } // namespace std
2136 #endif // _HASHTABLE_POLICY_H