This commit was manufactured by cvs2svn to create branch
[official-gcc.git] / libstdc++-v3 / include / bits / stl_list.h
blobc94a0a9bf73b44c95d73b34a32309a0ac73a5442
1 // List implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_list.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _LIST_H
62 #define _LIST_H 1
64 #include <bits/concept_check.h>
66 namespace _GLIBCXX_STD
68 // Supporting structures are split into common and templated types; the
69 // latter publicly inherits from the former in an effort to reduce code
70 // duplication. This results in some "needless" static_cast'ing later on,
71 // but it's all safe downcasting.
73 /// @if maint Common part of a node in the %list. @endif
74 struct _List_node_base
76 _List_node_base* _M_next; ///< Self-explanatory
77 _List_node_base* _M_prev; ///< Self-explanatory
79 static void
80 swap(_List_node_base& __x, _List_node_base& __y);
82 void
83 transfer(_List_node_base * const __first,
84 _List_node_base * const __last);
86 void
87 reverse();
89 void
90 hook(_List_node_base * const __position);
92 void
93 unhook();
96 /// @if maint An actual node in the %list. @endif
97 template<typename _Tp>
98 struct _List_node : public _List_node_base
100 _Tp _M_data; ///< User's data.
104 * @brief A list::iterator.
106 * @if maint
107 * All the functions are op overloads.
108 * @endif
110 template<typename _Tp>
111 struct _List_iterator
113 typedef _List_iterator<_Tp> _Self;
114 typedef _List_node<_Tp> _Node;
116 typedef ptrdiff_t difference_type;
117 typedef bidirectional_iterator_tag iterator_category;
118 typedef _Tp value_type;
119 typedef _Tp* pointer;
120 typedef _Tp& reference;
122 _List_iterator() { }
124 _List_iterator(_List_node_base* __x)
125 : _M_node(__x) { }
127 // Must downcast from List_node_base to _List_node to get to _M_data.
128 reference
129 operator*() const
130 { return static_cast<_Node*>(_M_node)->_M_data; }
132 pointer
133 operator->() const
134 { return &static_cast<_Node*>(_M_node)->_M_data; }
136 _Self&
137 operator++()
139 _M_node = _M_node->_M_next;
140 return *this;
143 _Self
144 operator++(int)
146 _Self __tmp = *this;
147 _M_node = _M_node->_M_next;
148 return __tmp;
151 _Self&
152 operator--()
154 _M_node = _M_node->_M_prev;
155 return *this;
158 _Self
159 operator--(int)
161 _Self __tmp = *this;
162 _M_node = _M_node->_M_prev;
163 return __tmp;
166 bool
167 operator==(const _Self& __x) const
168 { return _M_node == __x._M_node; }
170 bool
171 operator!=(const _Self& __x) const
172 { return _M_node != __x._M_node; }
174 // The only member points to the %list element.
175 _List_node_base* _M_node;
179 * @brief A list::const_iterator.
181 * @if maint
182 * All the functions are op overloads.
183 * @endif
185 template<typename _Tp>
186 struct _List_const_iterator
188 typedef _List_const_iterator<_Tp> _Self;
189 typedef const _List_node<_Tp> _Node;
190 typedef _List_iterator<_Tp> iterator;
192 typedef ptrdiff_t difference_type;
193 typedef bidirectional_iterator_tag iterator_category;
194 typedef _Tp value_type;
195 typedef const _Tp* pointer;
196 typedef const _Tp& reference;
198 _List_const_iterator() { }
200 _List_const_iterator(const _List_node_base* __x)
201 : _M_node(__x) { }
203 _List_const_iterator(const iterator& __x)
204 : _M_node(__x._M_node) { }
206 // Must downcast from List_node_base to _List_node to get to
207 // _M_data.
208 reference
209 operator*() const
210 { return static_cast<_Node*>(_M_node)->_M_data; }
212 pointer
213 operator->() const
214 { return &static_cast<_Node*>(_M_node)->_M_data; }
216 _Self&
217 operator++()
219 _M_node = _M_node->_M_next;
220 return *this;
223 _Self
224 operator++(int)
226 _Self __tmp = *this;
227 _M_node = _M_node->_M_next;
228 return __tmp;
231 _Self&
232 operator--()
234 _M_node = _M_node->_M_prev;
235 return *this;
238 _Self
239 operator--(int)
241 _Self __tmp = *this;
242 _M_node = _M_node->_M_prev;
243 return __tmp;
246 bool
247 operator==(const _Self& __x) const
248 { return _M_node == __x._M_node; }
250 bool
251 operator!=(const _Self& __x) const
252 { return _M_node != __x._M_node; }
254 // The only member points to the %list element.
255 const _List_node_base* _M_node;
258 template<typename _Val>
259 inline bool
260 operator==(const _List_iterator<_Val>& __x,
261 const _List_const_iterator<_Val>& __y)
262 { return __x._M_node == __y._M_node; }
264 template<typename _Val>
265 inline bool
266 operator!=(const _List_iterator<_Val>& __x,
267 const _List_const_iterator<_Val>& __y)
268 { return __x._M_node != __y._M_node; }
272 * @if maint
273 * See bits/stl_deque.h's _Deque_base for an explanation.
274 * @endif
276 template<typename _Tp, typename _Alloc>
277 class _List_base
279 protected:
280 // NOTA BENE
281 // The stored instance is not actually of "allocator_type"'s
282 // type. Instead we rebind the type to
283 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
284 // should probably be the same. List_node<Tp> is not the same
285 // size as Tp (it's two pointers larger), and specializations on
286 // Tp may go unused because List_node<Tp> is being bound
287 // instead.
289 // We put this to the test in the constructors and in
290 // get_allocator, where we use conversions between
291 // allocator_type and _Node_Alloc_type. The conversion is
292 // required by table 32 in [20.1.5].
293 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
295 _Node_Alloc_type;
297 struct _List_impl
298 : public _Node_Alloc_type {
299 _List_node_base _M_node;
300 _List_impl (const _Node_Alloc_type& __a)
301 : _Node_Alloc_type(__a)
305 _List_impl _M_impl;
307 _List_node<_Tp>*
308 _M_get_node()
309 { return _M_impl._Node_Alloc_type::allocate(1); }
311 void
312 _M_put_node(_List_node<_Tp>* __p)
313 { _M_impl._Node_Alloc_type::deallocate(__p, 1); }
315 public:
316 typedef _Alloc allocator_type;
318 allocator_type
319 get_allocator() const
320 { return allocator_type(*static_cast<const _Node_Alloc_type*>(&this->_M_impl)); }
322 _List_base(const allocator_type& __a)
323 : _M_impl(__a)
324 { _M_init(); }
326 // This is what actually destroys the list.
327 ~_List_base()
328 { _M_clear(); }
330 void
331 _M_clear();
333 void
334 _M_init()
336 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
337 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
342 * @brief A standard container with linear time access to elements,
343 * and fixed time insertion/deletion at any point in the sequence.
345 * @ingroup Containers
346 * @ingroup Sequences
348 * Meets the requirements of a <a href="tables.html#65">container</a>, a
349 * <a href="tables.html#66">reversible container</a>, and a
350 * <a href="tables.html#67">sequence</a>, including the
351 * <a href="tables.html#68">optional sequence requirements</a> with the
352 * %exception of @c at and @c operator[].
354 * This is a @e doubly @e linked %list. Traversal up and down the
355 * %list requires linear time, but adding and removing elements (or
356 * @e nodes) is done in constant time, regardless of where the
357 * change takes place. Unlike std::vector and std::deque,
358 * random-access iterators are not provided, so subscripting ( @c
359 * [] ) access is not allowed. For algorithms which only need
360 * sequential access, this lack makes no difference.
362 * Also unlike the other standard containers, std::list provides
363 * specialized algorithms %unique to linked lists, such as
364 * splicing, sorting, and in-place reversal.
366 * @if maint
367 * A couple points on memory allocation for list<Tp>:
369 * First, we never actually allocate a Tp, we allocate
370 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
371 * that after elements from %list<X,Alloc1> are spliced into
372 * %list<X,Alloc2>, destroying the memory of the second %list is a
373 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
375 * Second, a %list conceptually represented as
376 * @code
377 * A <---> B <---> C <---> D
378 * @endcode
379 * is actually circular; a link exists between A and D. The %list
380 * class holds (as its only data member) a private list::iterator
381 * pointing to @e D, not to @e A! To get to the head of the %list,
382 * we start at the tail and move forward by one. When this member
383 * iterator's next/previous pointers refer to itself, the %list is
384 * %empty. @endif
386 template<typename _Tp, typename _Alloc = allocator<_Tp> >
387 class list : protected _List_base<_Tp, _Alloc>
389 // concept requirements
390 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
392 typedef _List_base<_Tp, _Alloc> _Base;
394 public:
395 typedef _Tp value_type;
396 typedef value_type* pointer;
397 typedef const value_type* const_pointer;
398 typedef _List_iterator<_Tp> iterator;
399 typedef _List_const_iterator<_Tp> const_iterator;
400 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
401 typedef std::reverse_iterator<iterator> reverse_iterator;
402 typedef value_type& reference;
403 typedef const value_type& const_reference;
404 typedef size_t size_type;
405 typedef ptrdiff_t difference_type;
406 typedef typename _Base::allocator_type allocator_type;
408 protected:
409 // Note that pointers-to-_Node's can be ctor-converted to
410 // iterator types.
411 typedef _List_node<_Tp> _Node;
413 /** @if maint
414 * One data member plus two memory-handling functions. If the
415 * _Alloc type requires separate instances, then one of those
416 * will also be included, accumulated from the topmost parent.
417 * @endif
419 using _Base::_M_impl;
420 using _Base::_M_put_node;
421 using _Base::_M_get_node;
424 * @if maint
425 * @param x An instance of user data.
427 * Allocates space for a new node and constructs a copy of @a x in it.
428 * @endif
430 _Node*
431 _M_create_node(const value_type& __x)
433 _Node* __p = this->_M_get_node();
436 std::_Construct(&__p->_M_data, __x);
438 catch(...)
440 _M_put_node(__p);
441 __throw_exception_again;
443 return __p;
447 * @if maint
448 * Allocates space for a new node and default-constructs a new
449 * instance of @c value_type in it.
450 * @endif
452 _Node*
453 _M_create_node()
455 _Node* __p = this->_M_get_node();
458 std::_Construct(&__p->_M_data);
460 catch(...)
462 _M_put_node(__p);
463 __throw_exception_again;
465 return __p;
468 public:
469 // [23.2.2.1] construct/copy/destroy
470 // (assign() and get_allocator() are also listed in this section)
472 * @brief Default constructor creates no elements.
474 explicit
475 list(const allocator_type& __a = allocator_type())
476 : _Base(__a) { }
479 * @brief Create a %list with copies of an exemplar element.
480 * @param n The number of elements to initially create.
481 * @param value An element to copy.
483 * This constructor fills the %list with @a n copies of @a value.
485 list(size_type __n, const value_type& __value,
486 const allocator_type& __a = allocator_type())
487 : _Base(__a)
488 { this->insert(begin(), __n, __value); }
491 * @brief Create a %list with default elements.
492 * @param n The number of elements to initially create.
494 * This constructor fills the %list with @a n copies of a
495 * default-constructed element.
497 explicit
498 list(size_type __n)
499 : _Base(allocator_type())
500 { this->insert(begin(), __n, value_type()); }
503 * @brief %List copy constructor.
504 * @param x A %list of identical element and allocator types.
506 * The newly-created %list uses a copy of the allocation object used
507 * by @a x.
509 list(const list& __x)
510 : _Base(__x.get_allocator())
511 { this->insert(begin(), __x.begin(), __x.end()); }
514 * @brief Builds a %list from a range.
515 * @param first An input iterator.
516 * @param last An input iterator.
518 * Create a %list consisting of copies of the elements from
519 * [@a first,@a last). This is linear in N (where N is
520 * distance(@a first,@a last)).
522 * @if maint
523 * We don't need any dispatching tricks here, because insert does all of
524 * that anyway.
525 * @endif
527 template<typename _InputIterator>
528 list(_InputIterator __first, _InputIterator __last,
529 const allocator_type& __a = allocator_type())
530 : _Base(__a)
531 { this->insert(begin(), __first, __last); }
534 * No explicit dtor needed as the _Base dtor takes care of
535 * things. The _Base dtor only erases the elements, and note
536 * that if the elements themselves are pointers, the pointed-to
537 * memory is not touched in any way. Managing the pointer is
538 * the user's responsibilty.
542 * @brief %List assignment operator.
543 * @param x A %list of identical element and allocator types.
545 * All the elements of @a x are copied, but unlike the copy
546 * constructor, the allocator object is not copied.
548 list&
549 operator=(const list& __x);
552 * @brief Assigns a given value to a %list.
553 * @param n Number of elements to be assigned.
554 * @param val Value to be assigned.
556 * This function fills a %list with @a n copies of the given
557 * value. Note that the assignment completely changes the %list
558 * and that the resulting %list's size is the same as the number
559 * of elements assigned. Old data may be lost.
561 void
562 assign(size_type __n, const value_type& __val)
563 { _M_fill_assign(__n, __val); }
566 * @brief Assigns a range to a %list.
567 * @param first An input iterator.
568 * @param last An input iterator.
570 * This function fills a %list with copies of the elements in the
571 * range [@a first,@a last).
573 * Note that the assignment completely changes the %list and
574 * that the resulting %list's size is the same as the number of
575 * elements assigned. Old data may be lost.
577 template<typename _InputIterator>
578 void
579 assign(_InputIterator __first, _InputIterator __last)
581 // Check whether it's an integral type. If so, it's not an iterator.
582 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
583 _M_assign_dispatch(__first, __last, _Integral());
586 /// Get a copy of the memory allocation object.
587 allocator_type
588 get_allocator() const
589 { return _Base::get_allocator(); }
591 // iterators
593 * Returns a read/write iterator that points to the first element in the
594 * %list. Iteration is done in ordinary element order.
596 iterator
597 begin()
598 { return this->_M_impl._M_node._M_next; }
601 * Returns a read-only (constant) iterator that points to the
602 * first element in the %list. Iteration is done in ordinary
603 * element order.
605 const_iterator
606 begin() const
607 { return this->_M_impl._M_node._M_next; }
610 * Returns a read/write iterator that points one past the last
611 * element in the %list. Iteration is done in ordinary element
612 * order.
614 iterator
615 end() { return &this->_M_impl._M_node; }
618 * Returns a read-only (constant) iterator that points one past
619 * the last element in the %list. Iteration is done in ordinary
620 * element order.
622 const_iterator
623 end() const
624 { return &this->_M_impl._M_node; }
627 * Returns a read/write reverse iterator that points to the last
628 * element in the %list. Iteration is done in reverse element
629 * order.
631 reverse_iterator
632 rbegin()
633 { return reverse_iterator(end()); }
636 * Returns a read-only (constant) reverse iterator that points to
637 * the last element in the %list. Iteration is done in reverse
638 * element order.
640 const_reverse_iterator
641 rbegin() const
642 { return const_reverse_iterator(end()); }
645 * Returns a read/write reverse iterator that points to one
646 * before the first element in the %list. Iteration is done in
647 * reverse element order.
649 reverse_iterator
650 rend()
651 { return reverse_iterator(begin()); }
654 * Returns a read-only (constant) reverse iterator that points to one
655 * before the first element in the %list. Iteration is done in reverse
656 * element order.
658 const_reverse_iterator
659 rend() const
660 { return const_reverse_iterator(begin()); }
662 // [23.2.2.2] capacity
664 * Returns true if the %list is empty. (Thus begin() would equal
665 * end().)
667 bool
668 empty() const
669 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
671 /** Returns the number of elements in the %list. */
672 size_type
673 size() const
674 { return std::distance(begin(), end()); }
676 /** Returns the size() of the largest possible %list. */
677 size_type
678 max_size() const
679 { return size_type(-1); }
682 * @brief Resizes the %list to the specified number of elements.
683 * @param new_size Number of elements the %list should contain.
684 * @param x Data with which new elements should be populated.
686 * This function will %resize the %list to the specified number
687 * of elements. If the number is smaller than the %list's
688 * current size the %list is truncated, otherwise the %list is
689 * extended and new elements are populated with given data.
691 void
692 resize(size_type __new_size, const value_type& __x);
695 * @brief Resizes the %list to the specified number of elements.
696 * @param new_size Number of elements the %list should contain.
698 * This function will resize the %list to the specified number of
699 * elements. If the number is smaller than the %list's current
700 * size the %list is truncated, otherwise the %list is extended
701 * and new elements are default-constructed.
703 void
704 resize(size_type __new_size)
705 { this->resize(__new_size, value_type()); }
707 // element access
709 * Returns a read/write reference to the data at the first
710 * element of the %list.
712 reference
713 front()
714 { return *begin(); }
717 * Returns a read-only (constant) reference to the data at the first
718 * element of the %list.
720 const_reference
721 front() const
722 { return *begin(); }
725 * Returns a read/write reference to the data at the last element
726 * of the %list.
728 reference
729 back()
730 { return *(--end()); }
733 * Returns a read-only (constant) reference to the data at the last
734 * element of the %list.
736 const_reference
737 back() const
738 { return *(--end()); }
740 // [23.2.2.3] modifiers
742 * @brief Add data to the front of the %list.
743 * @param x Data to be added.
745 * This is a typical stack operation. The function creates an
746 * element at the front of the %list and assigns the given data
747 * to it. Due to the nature of a %list this operation can be
748 * done in constant time, and does not invalidate iterators and
749 * references.
751 void
752 push_front(const value_type& __x)
753 { this->_M_insert(begin(), __x); }
756 * @brief Removes first element.
758 * This is a typical stack operation. It shrinks the %list by
759 * one. Due to the nature of a %list this operation can be done
760 * in constant time, and only invalidates iterators/references to
761 * the element being removed.
763 * Note that no data is returned, and if the first element's data
764 * is needed, it should be retrieved before pop_front() is
765 * called.
767 void
768 pop_front()
769 { this->_M_erase(begin()); }
772 * @brief Add data to the end of the %list.
773 * @param x Data to be added.
775 * This is a typical stack operation. The function creates an
776 * element at the end of the %list and assigns the given data to
777 * it. Due to the nature of a %list this operation can be done
778 * in constant time, and does not invalidate iterators and
779 * references.
781 void
782 push_back(const value_type& __x)
783 { this->_M_insert(end(), __x); }
786 * @brief Removes last element.
788 * This is a typical stack operation. It shrinks the %list by
789 * one. Due to the nature of a %list this operation can be done
790 * in constant time, and only invalidates iterators/references to
791 * the element being removed.
793 * Note that no data is returned, and if the last element's data
794 * is needed, it should be retrieved before pop_back() is called.
796 void
797 pop_back()
798 { this->_M_erase(this->_M_impl._M_node._M_prev); }
801 * @brief Inserts given value into %list before specified iterator.
802 * @param position An iterator into the %list.
803 * @param x Data to be inserted.
804 * @return An iterator that points to the inserted data.
806 * This function will insert a copy of the given value before
807 * the specified location. Due to the nature of a %list this
808 * operation can be done in constant time, and does not
809 * invalidate iterators and references.
811 iterator
812 insert(iterator __position, const value_type& __x);
815 * @brief Inserts a number of copies of given data into the %list.
816 * @param position An iterator into the %list.
817 * @param n Number of elements to be inserted.
818 * @param x Data to be inserted.
820 * This function will insert a specified number of copies of the
821 * given data before the location specified by @a position.
823 * Due to the nature of a %list this operation can be done in
824 * constant time, and does not invalidate iterators and
825 * references.
827 void
828 insert(iterator __position, size_type __n, const value_type& __x)
829 { _M_fill_insert(__position, __n, __x); }
832 * @brief Inserts a range into the %list.
833 * @param position An iterator into the %list.
834 * @param first An input iterator.
835 * @param last An input iterator.
837 * This function will insert copies of the data in the range [@a
838 * first,@a last) into the %list before the location specified by
839 * @a position.
841 * Due to the nature of a %list this operation can be done in
842 * constant time, and does not invalidate iterators and
843 * references.
845 template<typename _InputIterator>
846 void
847 insert(iterator __position, _InputIterator __first,
848 _InputIterator __last)
850 // Check whether it's an integral type. If so, it's not an iterator.
851 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
852 _M_insert_dispatch(__position, __first, __last, _Integral());
856 * @brief Remove element at given position.
857 * @param position Iterator pointing to element to be erased.
858 * @return An iterator pointing to the next element (or end()).
860 * This function will erase the element at the given position and thus
861 * shorten the %list by one.
863 * Due to the nature of a %list this operation can be done in
864 * constant time, and only invalidates iterators/references to
865 * the element being removed. The user is also cautioned that
866 * this function only erases the element, and that if the element
867 * is itself a pointer, the pointed-to memory is not touched in
868 * any way. Managing the pointer is the user's responsibilty.
870 iterator
871 erase(iterator __position);
874 * @brief Remove a range of elements.
875 * @param first Iterator pointing to the first element to be erased.
876 * @param last Iterator pointing to one past the last element to be
877 * erased.
878 * @return An iterator pointing to the element pointed to by @a last
879 * prior to erasing (or end()).
881 * This function will erase the elements in the range @a
882 * [first,last) and shorten the %list accordingly.
884 * Due to the nature of a %list this operation can be done in
885 * constant time, and only invalidates iterators/references to
886 * the element being removed. The user is also cautioned that
887 * this function only erases the elements, and that if the
888 * elements themselves are pointers, the pointed-to memory is not
889 * touched in any way. Managing the pointer is the user's
890 * responsibilty.
892 iterator
893 erase(iterator __first, iterator __last)
895 while (__first != __last)
896 __first = erase(__first);
897 return __last;
901 * @brief Swaps data with another %list.
902 * @param x A %list of the same element and allocator types.
904 * This exchanges the elements between two lists in constant
905 * time. Note that the global std::swap() function is
906 * specialized such that std::swap(l1,l2) will feed to this
907 * function.
909 void
910 swap(list& __x)
911 { _List_node_base::swap(this->_M_impl._M_node,__x._M_impl._M_node); }
914 * Erases all the elements. Note that this function only erases
915 * the elements, and that if the elements themselves are
916 * pointers, the pointed-to memory is not touched in any way.
917 * Managing the pointer is the user's responsibilty.
919 void
920 clear()
922 _Base::_M_clear();
923 _Base::_M_init();
926 // [23.2.2.4] list operations
928 * @brief Insert contents of another %list.
929 * @param position Iterator referencing the element to insert before.
930 * @param x Source list.
932 * The elements of @a x are inserted in constant time in front of
933 * the element referenced by @a position. @a x becomes an empty
934 * list.
936 void
937 splice(iterator __position, list& __x)
939 if (!__x.empty())
940 this->_M_transfer(__position, __x.begin(), __x.end());
944 * @brief Insert element from another %list.
945 * @param position Iterator referencing the element to insert before.
946 * @param x Source list.
947 * @param i Iterator referencing the element to move.
949 * Removes the element in list @a x referenced by @a i and
950 * inserts it into the current list before @a position.
952 void
953 splice(iterator __position, list&, iterator __i)
955 iterator __j = __i;
956 ++__j;
957 if (__position == __i || __position == __j)
958 return;
959 this->_M_transfer(__position, __i, __j);
963 * @brief Insert range from another %list.
964 * @param position Iterator referencing the element to insert before.
965 * @param x Source list.
966 * @param first Iterator referencing the start of range in x.
967 * @param last Iterator referencing the end of range in x.
969 * Removes elements in the range [first,last) and inserts them
970 * before @a position in constant time.
972 * Undefined if @a position is in [first,last).
974 void
975 splice(iterator __position, list&, iterator __first, iterator __last)
977 if (__first != __last)
978 this->_M_transfer(__position, __first, __last);
982 * @brief Remove all elements equal to value.
983 * @param value The value to remove.
985 * Removes every element in the list equal to @a value.
986 * Remaining elements stay in list order. Note that this
987 * function only erases the elements, and that if the elements
988 * themselves are pointers, the pointed-to memory is not
989 * touched in any way. Managing the pointer is the user's
990 * responsibilty.
992 void
993 remove(const _Tp& __value);
996 * @brief Remove all elements satisfying a predicate.
997 * @param Predicate Unary predicate function or object.
999 * Removes every element in the list for which the predicate
1000 * returns true. Remaining elements stay in list order. Note
1001 * that this function only erases the elements, and that if the
1002 * elements themselves are pointers, the pointed-to memory is
1003 * not touched in any way. Managing the pointer is the user's
1004 * responsibilty.
1006 template<typename _Predicate>
1007 void
1008 remove_if(_Predicate);
1011 * @brief Remove consecutive duplicate elements.
1013 * For each consecutive set of elements with the same value,
1014 * remove all but the first one. Remaining elements stay in
1015 * list order. Note that this function only erases the
1016 * elements, and that if the elements themselves are pointers,
1017 * the pointed-to memory is not touched in any way. Managing
1018 * the pointer is the user's responsibilty.
1020 void
1021 unique();
1024 * @brief Remove consecutive elements satisfying a predicate.
1025 * @param BinaryPredicate Binary predicate function or object.
1027 * For each consecutive set of elements [first,last) that
1028 * satisfy predicate(first,i) where i is an iterator in
1029 * [first,last), remove all but the first one. Remaining
1030 * elements stay in list order. Note that this function only
1031 * erases the elements, and that if the elements themselves are
1032 * pointers, the pointed-to memory is not touched in any way.
1033 * Managing the pointer is the user's responsibilty.
1035 template<typename _BinaryPredicate>
1036 void
1037 unique(_BinaryPredicate);
1040 * @brief Merge sorted lists.
1041 * @param x Sorted list to merge.
1043 * Assumes that both @a x and this list are sorted according to
1044 * operator<(). Merges elements of @a x into this list in
1045 * sorted order, leaving @a x empty when complete. Elements in
1046 * this list precede elements in @a x that are equal.
1048 void
1049 merge(list& __x);
1052 * @brief Merge sorted lists according to comparison function.
1053 * @param x Sorted list to merge.
1054 * @param StrictWeakOrdering Comparison function definining
1055 * sort order.
1057 * Assumes that both @a x and this list are sorted according to
1058 * StrictWeakOrdering. Merges elements of @a x into this list
1059 * in sorted order, leaving @a x empty when complete. Elements
1060 * in this list precede elements in @a x that are equivalent
1061 * according to StrictWeakOrdering().
1063 template<typename _StrictWeakOrdering>
1064 void
1065 merge(list&, _StrictWeakOrdering);
1068 * @brief Reverse the elements in list.
1070 * Reverse the order of elements in the list in linear time.
1072 void
1073 reverse()
1074 { this->_M_impl._M_node.reverse(); }
1077 * @brief Sort the elements.
1079 * Sorts the elements of this list in NlogN time. Equivalent
1080 * elements remain in list order.
1082 void
1083 sort();
1086 * @brief Sort the elements according to comparison function.
1088 * Sorts the elements of this list in NlogN time. Equivalent
1089 * elements remain in list order.
1091 template<typename _StrictWeakOrdering>
1092 void
1093 sort(_StrictWeakOrdering);
1095 protected:
1096 // Internal assign functions follow.
1098 // Called by the range assign to implement [23.1.1]/9
1099 template<typename _Integer>
1100 void
1101 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1103 _M_fill_assign(static_cast<size_type>(__n),
1104 static_cast<value_type>(__val));
1107 // Called by the range assign to implement [23.1.1]/9
1108 template<typename _InputIterator>
1109 void
1110 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1111 __false_type);
1113 // Called by assign(n,t), and the range assign when it turns out
1114 // to be the same thing.
1115 void
1116 _M_fill_assign(size_type __n, const value_type& __val);
1119 // Internal insert functions follow.
1121 // Called by the range insert to implement [23.1.1]/9
1122 template<typename _Integer>
1123 void
1124 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
1125 __true_type)
1127 _M_fill_insert(__pos, static_cast<size_type>(__n),
1128 static_cast<value_type>(__x));
1131 // Called by the range insert to implement [23.1.1]/9
1132 template<typename _InputIterator>
1133 void
1134 _M_insert_dispatch(iterator __pos,
1135 _InputIterator __first, _InputIterator __last,
1136 __false_type)
1138 for ( ; __first != __last; ++__first)
1139 _M_insert(__pos, *__first);
1142 // Called by insert(p,n,x), and the range insert when it turns out
1143 // to be the same thing.
1144 void
1145 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
1147 for ( ; __n > 0; --__n)
1148 _M_insert(__pos, __x);
1152 // Moves the elements from [first,last) before position.
1153 void
1154 _M_transfer(iterator __position, iterator __first, iterator __last)
1155 { __position._M_node->transfer(__first._M_node,__last._M_node); }
1157 // Inserts new element at position given and with value given.
1158 void
1159 _M_insert(iterator __position, const value_type& __x)
1161 _Node* __tmp = _M_create_node(__x);
1162 __tmp->hook(__position._M_node);
1165 // Erases element at position given.
1166 void
1167 _M_erase(iterator __position)
1169 __position._M_node->unhook();
1170 _Node* __n = static_cast<_Node*>(__position._M_node);
1171 std::_Destroy(&__n->_M_data);
1172 _M_put_node(__n);
1177 * @brief List equality comparison.
1178 * @param x A %list.
1179 * @param y A %list of the same type as @a x.
1180 * @return True iff the size and elements of the lists are equal.
1182 * This is an equivalence relation. It is linear in the size of
1183 * the lists. Lists are considered equivalent if their sizes are
1184 * equal, and if corresponding elements compare equal.
1186 template<typename _Tp, typename _Alloc>
1187 inline bool
1188 operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1190 typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
1191 const_iterator __end1 = __x.end();
1192 const_iterator __end2 = __y.end();
1194 const_iterator __i1 = __x.begin();
1195 const_iterator __i2 = __y.begin();
1196 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1198 ++__i1;
1199 ++__i2;
1201 return __i1 == __end1 && __i2 == __end2;
1205 * @brief List ordering relation.
1206 * @param x A %list.
1207 * @param y A %list of the same type as @a x.
1208 * @return True iff @a x is lexicographically less than @a y.
1210 * This is a total ordering relation. It is linear in the size of the
1211 * lists. The elements must be comparable with @c <.
1213 * See std::lexicographical_compare() for how the determination is made.
1215 template<typename _Tp, typename _Alloc>
1216 inline bool
1217 operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1218 { return std::lexicographical_compare(__x.begin(), __x.end(),
1219 __y.begin(), __y.end()); }
1221 /// Based on operator==
1222 template<typename _Tp, typename _Alloc>
1223 inline bool
1224 operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1225 { return !(__x == __y); }
1227 /// Based on operator<
1228 template<typename _Tp, typename _Alloc>
1229 inline bool
1230 operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1231 { return __y < __x; }
1233 /// Based on operator<
1234 template<typename _Tp, typename _Alloc>
1235 inline bool
1236 operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1237 { return !(__y < __x); }
1239 /// Based on operator<
1240 template<typename _Tp, typename _Alloc>
1241 inline bool
1242 operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1243 { return !(__x < __y); }
1245 /// See std::list::swap().
1246 template<typename _Tp, typename _Alloc>
1247 inline void
1248 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1249 { __x.swap(__y); }
1250 } // namespace std
1252 #endif /* _LIST_H */