This commit was manufactured by cvs2svn to create branch
[official-gcc.git] / gcc / config / c4x / c4x.h
blobfd44e215a97c04243c387a076b09f39d718fde47
1 /* Definitions of target machine for GNU compiler. TMS320C[34]x
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
6 and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* RUN-TIME TARGET SPECIFICATION. */
27 #define C4x 1
29 #define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
32 /* ??? HACK. We shouldn't have flag_inline_trees at all. */ \
33 extern int flag_inline_trees; \
34 if (!TARGET_SMALL) \
35 builtin_define ("_BIGMODEL"); \
36 if (!TARGET_MEMPARM) \
37 builtin_define ("_REGPARM"); \
38 if (flag_inline_functions \
39 || flag_inline_trees) \
40 builtin_define ("_INLINE"); \
41 if (TARGET_C3X) \
42 { \
43 builtin_define ("_TMS320C3x"); \
44 builtin_define ("_C3x"); \
45 if (TARGET_C30) \
46 { \
47 builtin_define ("_TMS320C30"); \
48 builtin_define ("_C30"); \
49 } \
50 else if (TARGET_C31) \
51 { \
52 builtin_define ("_TMS320C31"); \
53 builtin_define ("_C31"); \
54 } \
55 else if (TARGET_C32) \
56 { \
57 builtin_define ("_TMS320C32"); \
58 builtin_define ("_C32"); \
59 } \
60 else if (TARGET_C33) \
61 { \
62 builtin_define ("_TMS320C33"); \
63 builtin_define ("_C33"); \
64 } \
65 } \
66 else \
67 { \
68 builtin_define ("_TMS320C4x"); \
69 builtin_define ("_C4x"); \
70 if (TARGET_C40) \
71 { \
72 builtin_define ("_TMS320C40"); \
73 builtin_define ("_C40"); \
74 } \
75 else if (TARGET_C44) \
76 { \
77 builtin_define ("_TMS320C44"); \
78 builtin_define ("_C44"); \
79 } \
80 } \
81 } \
82 while (0)
84 /* Name of the c4x assembler. */
86 #define ASM_PROG "c4x-as"
88 /* Name of the c4x linker. */
90 #define LD_PROG "c4x-ld"
92 /* Define assembler options. */
94 #define ASM_SPEC "\
95 %{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
96 %{!m30:%{!m31:%{!m32:%{!m33:%{!m40:%{!m44:-m40}}}}}}}}}}}} \
97 %{mcpu=30} \
98 %{mcpu=31} \
99 %{mcpu=32} \
100 %{mcpu=33} \
101 %{mcpu=40} \
102 %{mcpu=44} \
103 %{m30} \
104 %{m31} \
105 %{m32} \
106 %{m33} \
107 %{m40} \
108 %{m44} \
109 %{mmemparm} %{mregparm} %{!mmemparm:%{!mregparm:-mregparm}} \
110 %{mbig} %{msmall} %{!msmall:%{!mbig:-mbig}}"
112 /* Define linker options. */
114 #define LINK_SPEC "\
115 %{m30:--architecture c3x} \
116 %{m31:--architecture c3x} \
117 %{m32:--architecture c3x} \
118 %{m33:--architecture c3x} \
119 %{mcpu=30:--architecture c3x} \
120 %{mcpu=31:--architecture c3x} \
121 %{mcpu=32:--architecture c3x} \
122 %{mcpu=33:--architecture c3x}"
124 /* Specify the end file to link with. */
126 #define ENDFILE_SPEC ""
128 /* Target compilation option flags. */
130 #define SMALL_MEMORY_FLAG 0x0000001 /* Small memory model. */
131 #define MPYI_FLAG 0x0000002 /* Use 24-bit MPYI for C3x. */
132 #define FAST_FIX_FLAG 0x0000004 /* Fast fixing of floats. */
133 #define RPTS_FLAG 0x0000008 /* Allow use of RPTS. */
134 #define C3X_FLAG 0x0000010 /* Emit C3x code. */
135 #define TI_FLAG 0x0000020 /* Be compatible with TI assembler. */
136 #define PARANOID_FLAG 0x0000040 /* Be paranoid about DP reg. in ISRs. */
137 #define MEMPARM_FLAG 0x0000080 /* Pass arguments on stack. */
138 #define DEVEL_FLAG 0x0000100 /* Enable features under development. */
139 #define RPTB_FLAG 0x0000200 /* Enable repeat block. */
140 #define BK_FLAG 0x0000400 /* Use BK as general register. */
141 #define DB_FLAG 0x0000800 /* Use decrement and branch for C3x. */
142 #define DEBUG_FLAG 0x0001000 /* Enable debugging of GCC. */
143 #define HOIST_FLAG 0x0002000 /* Force constants into registers. */
144 #define LOOP_UNSIGNED_FLAG 0x0004000 /* Allow unsigned loop counters. */
145 #define FORCE_FLAG 0x0008000 /* Force op0 and op1 to be same. */
146 #define PRESERVE_FLOAT_FLAG 0x0010000 /* Save all 40 bits for floats. */
147 #define PARALLEL_INSN_FLAG 0x0020000 /* Allow parallel insns. */
148 #define PARALLEL_MPY_FLAG 0x0040000 /* Allow MPY||ADD, MPY||SUB insns. */
149 #define ALIASES_FLAG 0x0080000 /* Assume mem refs possibly aliased. */
151 #define C30_FLAG 0x0100000 /* Emit C30 code. */
152 #define C31_FLAG 0x0200000 /* Emit C31 code. */
153 #define C32_FLAG 0x0400000 /* Emit C32 code. */
154 #define C33_FLAG 0x0800000 /* Emit C33 code. */
155 #define C40_FLAG 0x1000000 /* Emit C40 code. */
156 #define C44_FLAG 0x2000000 /* Emit C44 code. */
158 /* Run-time compilation parameters selecting different hardware subsets.
160 Macro to define tables used to set the flags.
161 This is a list in braces of triplets in braces,
162 each pair being { "NAME", VALUE, "DESCRIPTION" }
163 where VALUE is the bits to set or minus the bits to clear.
164 An empty string NAME is used to identify the default VALUE. */
166 #define TARGET_SWITCHES \
167 { { "small", SMALL_MEMORY_FLAG, \
168 N_("Small memory model") }, \
169 { "big", -SMALL_MEMORY_FLAG, \
170 N_("Big memory model") }, \
171 { "mpyi", MPYI_FLAG, \
172 N_("Use MPYI instruction for C3x") }, \
173 { "no-mpyi", -MPYI_FLAG, \
174 N_("Do not use MPYI instruction for C3x") }, \
175 { "fast-fix", FAST_FIX_FLAG, \
176 N_("Use fast but approximate float to integer conversion") }, \
177 { "no-fast-fix", -FAST_FIX_FLAG, \
178 N_("Use slow but accurate float to integer conversion") }, \
179 { "rpts", RPTS_FLAG, \
180 N_("Enable use of RTPS instruction") }, \
181 { "no-rpts", -RPTS_FLAG, \
182 N_("Disable use of RTPS instruction") }, \
183 { "rptb", RPTB_FLAG, \
184 N_("Enable use of RTPB instruction") }, \
185 { "no-rptb", -RPTB_FLAG, \
186 N_("Disable use of RTPB instruction") }, \
187 { "30", C30_FLAG, \
188 N_("Generate code for C30 CPU")}, \
189 { "31", C31_FLAG, \
190 N_("Generate code for C31 CPU")}, \
191 { "32", C32_FLAG, \
192 N_("Generate code for C32 CPU")}, \
193 { "33", C33_FLAG, \
194 N_("Generate code for C33 CPU")}, \
195 { "40", C40_FLAG, \
196 N_("Generate code for C40 CPU")}, \
197 { "44", C44_FLAG, \
198 N_("Generate code for C44 CPU")}, \
199 { "ti", TI_FLAG, \
200 N_("Emit code compatible with TI tools")}, \
201 { "no-ti", -TI_FLAG, \
202 N_("Emit code to use GAS extensions")}, \
203 { "paranoid", PARANOID_FLAG, \
204 N_("Save DP across ISR in small memory model") }, \
205 { "no-paranoid", -PARANOID_FLAG, \
206 N_("Don't save DP across ISR in small memory model") }, \
207 { "isr-dp-reload", PARANOID_FLAG, \
208 N_("Save DP across ISR in small memory model") }, \
209 { "no-isr-dp-reload", -PARANOID_FLAG, \
210 N_("Don't save DP across ISR in small memory model") }, \
211 { "memparm", MEMPARM_FLAG, \
212 N_("Pass arguments on the stack") }, \
213 { "regparm", -MEMPARM_FLAG, \
214 N_("Pass arguments in registers") }, \
215 { "devel", DEVEL_FLAG, \
216 N_("Enable new features under development") }, \
217 { "no-devel", -DEVEL_FLAG, \
218 N_("Disable new features under development") }, \
219 { "bk", BK_FLAG, \
220 N_("Use the BK register as a general purpose register") }, \
221 { "no-bk", -BK_FLAG, \
222 N_("Do not allocate BK register") }, \
223 { "db", DB_FLAG, \
224 N_("Enable use of DB instruction") }, \
225 { "no-db", -DB_FLAG, \
226 N_("Disable use of DB instruction") }, \
227 { "debug", DEBUG_FLAG, \
228 N_("Enable debugging") }, \
229 { "no-debug", -DEBUG_FLAG, \
230 N_("Disable debugging") }, \
231 { "hoist", HOIST_FLAG, \
232 N_("Force constants into registers to improve hoisting") }, \
233 { "no-hoist", -HOIST_FLAG, \
234 N_("Don't force constants into registers") }, \
235 { "force", FORCE_FLAG, \
236 N_("Force RTL generation to emit valid 3 operand insns") }, \
237 { "no-force", -FORCE_FLAG, \
238 N_("Allow RTL generation to emit invalid 3 operand insns") }, \
239 { "loop-unsigned", LOOP_UNSIGNED_FLAG, \
240 N_("Allow unsigned iteration counts for RPTB/DB") }, \
241 { "no-loop-unsigned", -LOOP_UNSIGNED_FLAG, \
242 N_("Disallow unsigned iteration counts for RPTB/DB") }, \
243 { "preserve-float", PRESERVE_FLOAT_FLAG, \
244 N_("Preserve all 40 bits of FP reg across call") }, \
245 { "no-preserve-float", -PRESERVE_FLOAT_FLAG, \
246 N_("Only preserve 32 bits of FP reg across call") }, \
247 { "parallel-insns", PARALLEL_INSN_FLAG, \
248 N_("Enable parallel instructions") }, \
249 { "no-parallel-insns", -PARALLEL_INSN_FLAG, \
250 N_("Disable parallel instructions") }, \
251 { "parallel-mpy", PARALLEL_MPY_FLAG, \
252 N_("Enable MPY||ADD and MPY||SUB instructions") }, \
253 { "no-parallel-mpy", -PARALLEL_MPY_FLAG, \
254 N_("Disable MPY||ADD and MPY||SUB instructions") }, \
255 { "aliases", ALIASES_FLAG, \
256 N_("Assume that pointers may be aliased") }, \
257 { "no-aliases", -ALIASES_FLAG, \
258 N_("Assume that pointers not aliased") }, \
259 { "", TARGET_DEFAULT, ""} }
261 /* Default target switches. */
263 /* Play safe, not the fastest code. */
264 #define TARGET_DEFAULT ALIASES_FLAG | PARALLEL_INSN_FLAG \
265 | PARALLEL_MPY_FLAG | RPTB_FLAG
267 /* Caveats:
268 Max iteration count for RPTB/RPTS is 2^31 + 1.
269 Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
270 RPTS blocks interrupts. */
273 extern int target_flags;
275 #define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
276 #define TARGET_SMALL_REG_CLASS 0
278 #define TARGET_SMALL (target_flags & SMALL_MEMORY_FLAG)
279 #define TARGET_MPYI (!TARGET_C3X || (target_flags & MPYI_FLAG))
280 #define TARGET_FAST_FIX (target_flags & FAST_FIX_FLAG)
281 #define TARGET_RPTS (target_flags & RPTS_FLAG)
282 #define TARGET_TI (target_flags & TI_FLAG)
283 #define TARGET_PARANOID (target_flags & PARANOID_FLAG)
284 #define TARGET_MEMPARM (target_flags & MEMPARM_FLAG)
285 #define TARGET_DEVEL (target_flags & DEVEL_FLAG)
286 #define TARGET_RPTB (target_flags & RPTB_FLAG \
287 && optimize >= 2)
288 #define TARGET_BK (target_flags & BK_FLAG)
289 #define TARGET_DB (! TARGET_C3X || (target_flags & DB_FLAG))
290 #define TARGET_DEBUG (target_flags & DEBUG_FLAG)
291 #define TARGET_HOIST (target_flags & HOIST_FLAG)
292 #define TARGET_LOOP_UNSIGNED (target_flags & LOOP_UNSIGNED_FLAG)
293 #define TARGET_FORCE (target_flags & FORCE_FLAG)
294 #define TARGET_PRESERVE_FLOAT (target_flags & PRESERVE_FLOAT_FLAG)
295 #define TARGET_PARALLEL ((target_flags & PARALLEL_INSN_FLAG) \
296 && optimize >= 2)
297 #define TARGET_PARALLEL_MPY (TARGET_PARALLEL \
298 && (target_flags & PARALLEL_MPY_FLAG))
299 #define TARGET_ALIASES (target_flags & ALIASES_FLAG)
301 #define TARGET_C3X (target_flags & C3X_FLAG)
302 #define TARGET_C30 (target_flags & C30_FLAG)
303 #define TARGET_C31 (target_flags & C31_FLAG)
304 #define TARGET_C32 (target_flags & C32_FLAG)
305 #define TARGET_C33 (target_flags & C33_FLAG)
306 #define TARGET_C40 (target_flags & C40_FLAG)
307 #define TARGET_C44 (target_flags & C44_FLAG)
309 /* Define some options to control code generation. */
310 #define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
311 /* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
312 during RTL generation. */
313 #define TARGET_EXPOSE_LDP 0
314 /* Nonzero to force loading of direct memory references into a register. */
315 #define TARGET_LOAD_DIRECT_MEMS 0
317 /* -mrpts allows the use of the RPTS instruction irregardless.
318 -mrpts=max-cycles will use RPTS if the number of cycles is constant
319 and less than max-cycles. */
321 #define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
323 #define BCT_CHECK_LOOP_ITERATIONS !(TARGET_LOOP_UNSIGNED)
325 /* -mcpu=XX with XX = target DSP version number. */
327 extern const char *c4x_rpts_cycles_string, *c4x_cpu_version_string;
329 #define TARGET_OPTIONS \
330 { {"rpts=", &c4x_rpts_cycles_string, \
331 N_("Specify maximum number of iterations for RPTS"), 0}, \
332 {"cpu=", &c4x_cpu_version_string, \
333 N_("Select CPU to generate code for"), 0} }
335 /* Sometimes certain combinations of command options do not make sense
336 on a particular target machine. You can define a macro
337 `OVERRIDE_OPTIONS' to take account of this. This macro, if
338 defined, is executed once just after all the command options have
339 been parsed. */
341 #define OVERRIDE_OPTIONS c4x_override_options ()
343 /* Define this to change the optimizations performed by default. */
345 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
347 /* Run Time Target Specification. */
349 #define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
351 /* Storage Layout. */
353 #define BITS_BIG_ENDIAN 0
354 #define BYTES_BIG_ENDIAN 0
355 #define WORDS_BIG_ENDIAN 0
357 /* Technically, we are little endian, but we put the floats out as
358 whole longs and this makes GCC put them out in the right order. */
360 #define FLOAT_WORDS_BIG_ENDIAN 1
362 /* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
363 all integral and floating point data types are stored in memory as
364 32-bits (floating point types can be stored as 40-bits in the
365 extended precision registers), so sizeof(char) = sizeof(short) =
366 sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
368 #define BITS_PER_UNIT 32
369 #define UNITS_PER_WORD 1
370 #define PARM_BOUNDARY 32
371 #define STACK_BOUNDARY 32
372 #define FUNCTION_BOUNDARY 32
373 #define BIGGEST_ALIGNMENT 32
374 #define EMPTY_FIELD_BOUNDARY 32
375 #define STRICT_ALIGNMENT 0
376 #define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
377 #define MAX_FIXED_MODE_SIZE 64 /* HImode. */
379 /* If a structure has a floating point field then force structure
380 to have BLKMODE, unless it is the only field. */
381 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
382 (TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE && (MODE) == VOIDmode)
384 /* Number of bits in the high and low parts of a two stage
385 load of an immediate constant. */
386 #define BITS_PER_HIGH 16
387 #define BITS_PER_LO_SUM 16
389 /* Define register numbers. */
391 /* Extended-precision registers. */
393 #define R0_REGNO 0
394 #define R1_REGNO 1
395 #define R2_REGNO 2
396 #define R3_REGNO 3
397 #define R4_REGNO 4
398 #define R5_REGNO 5
399 #define R6_REGNO 6
400 #define R7_REGNO 7
402 /* Auxiliary (address) registers. */
404 #define AR0_REGNO 8
405 #define AR1_REGNO 9
406 #define AR2_REGNO 10
407 #define AR3_REGNO 11
408 #define AR4_REGNO 12
409 #define AR5_REGNO 13
410 #define AR6_REGNO 14
411 #define AR7_REGNO 15
413 /* Data page register. */
415 #define DP_REGNO 16
417 /* Index registers. */
419 #define IR0_REGNO 17
420 #define IR1_REGNO 18
422 /* Block size register. */
424 #define BK_REGNO 19
426 /* Stack pointer. */
428 #define SP_REGNO 20
430 /* Status register. */
432 #define ST_REGNO 21
434 /* Misc. interrupt registers. */
436 #define DIE_REGNO 22 /* C4x only. */
437 #define IE_REGNO 22 /* C3x only. */
438 #define IIE_REGNO 23 /* C4x only. */
439 #define IF_REGNO 23 /* C3x only. */
440 #define IIF_REGNO 24 /* C4x only. */
441 #define IOF_REGNO 24 /* C3x only. */
443 /* Repeat block registers. */
445 #define RS_REGNO 25
446 #define RE_REGNO 26
447 #define RC_REGNO 27
449 /* Additional extended-precision registers. */
451 #define R8_REGNO 28 /* C4x only. */
452 #define R9_REGNO 29 /* C4x only. */
453 #define R10_REGNO 30 /* C4x only. */
454 #define R11_REGNO 31 /* C4x only. */
456 #define FIRST_PSEUDO_REGISTER 32
458 /* Extended precision registers (low set). */
460 #define IS_R0R1_REGNO(r) \
461 ((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
462 #define IS_R2R3_REGNO(r) \
463 ((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
464 #define IS_EXT_LOW_REGNO(r) \
465 ((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
467 /* Extended precision registers (high set). */
469 #define IS_EXT_HIGH_REGNO(r) \
470 (! TARGET_C3X \
471 && ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
473 /* Address registers. */
475 #define IS_AUX_REGNO(r) \
476 ((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
477 #define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
478 #define IS_DP_REGNO(r) ((r) == DP_REGNO)
479 #define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
480 #define IS_SP_REGNO(r) ((r) == SP_REGNO)
481 #define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
483 /* Misc registers. */
485 #define IS_ST_REGNO(r) ((r) == ST_REGNO)
486 #define IS_RC_REGNO(r) ((r) == RC_REGNO)
487 #define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
489 /* Composite register sets. */
491 #define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
492 #define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
493 #define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
494 || IS_REPEAT_REGNO(r) \
495 || IS_SP_REGNO(r) \
496 || IS_BK_REGNO(r))
497 #define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
498 #define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
499 #define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
500 || ((r) == R8_REGNO))
501 #define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
503 #define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
504 #define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
505 #define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
506 #define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
507 #define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
508 #define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
509 #define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
510 #define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
511 #define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
512 || IS_PSEUDO_REGNO(r))
513 #define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
514 #define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
515 #define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
516 #define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
518 #define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
519 #define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
520 #define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
521 #define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
522 #define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
523 #define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
524 #define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
526 #define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
527 #define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
528 #define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
529 #define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
530 #define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
531 #define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
533 #define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
534 #define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
535 #define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
536 #define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
537 #define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
538 #define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
540 /* 1 for registers that have pervasive standard uses
541 and are not available for the register allocator. */
543 #define FIXED_REGISTERS \
545 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
546 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
547 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
548 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
551 /* 1 for registers not available across function calls.
552 These must include the FIXED_REGISTERS and also any
553 registers that can be used without being saved.
554 The latter must include the registers where values are returned
555 and the register where structure-value addresses are passed.
556 Aside from that, you can include as many other registers as you like.
558 Note that the extended precision registers are only saved in some
559 modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
560 get clobbered for a given regno. */
562 #define CALL_USED_REGISTERS \
564 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
565 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
566 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
570 /* Macro to conditionally modify fixed_regs/call_used_regs. */
572 #define CONDITIONAL_REGISTER_USAGE \
574 if (! TARGET_BK) \
576 fixed_regs[BK_REGNO] = 1; \
577 call_used_regs[BK_REGNO] = 1; \
578 c4x_regclass_map[BK_REGNO] = NO_REGS; \
580 if (TARGET_C3X) \
582 int i; \
584 reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
585 reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
586 reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
588 for (i = R8_REGNO; i <= R11_REGNO; i++) \
590 fixed_regs[i] = call_used_regs[i] = 1; \
591 c4x_regclass_map[i] = NO_REGS; \
594 if (TARGET_PRESERVE_FLOAT) \
596 c4x_caller_save_map[R6_REGNO] = HFmode; \
597 c4x_caller_save_map[R7_REGNO] = HFmode; \
601 /* Order of Allocation of Registers. */
603 /* List the order in which to allocate registers. Each register must be
604 listed once, even those in FIXED_REGISTERS.
606 First allocate registers that don't need preservation across calls,
607 except index and address registers. Then allocate data registers
608 that require preservation across calls (even though this invokes an
609 extra overhead of having to save/restore these registers). Next
610 allocate the address and index registers, since using these
611 registers for arithmetic can cause pipeline stalls. Finally
612 allocated the fixed registers which won't be allocated anyhow. */
614 #define REG_ALLOC_ORDER \
615 {R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
616 R9_REGNO, R10_REGNO, R11_REGNO, \
617 RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
618 R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
619 AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
620 AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
621 IR0_REGNO, IR1_REGNO, \
622 SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
624 /* A C expression that is nonzero if hard register number REGNO2 can be
625 considered for use as a rename register for REGNO1 */
627 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
628 c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
630 /* Determine which register classes are very likely used by spill registers.
631 local-alloc.c won't allocate pseudos that have these classes as their
632 preferred class unless they are "preferred or nothing". */
634 #define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
636 /* CCmode is wrongly defined in machmode.def. It should have a size
637 of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
638 extended precision register. Similarly, HCmode fits within two
639 extended precision registers. */
641 #define HARD_REGNO_NREGS(REGNO, MODE) \
642 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
643 ((MODE) == HFmode) ? 1 : \
644 ((MODE) == HCmode) ? 2 : \
645 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
648 /* A C expression that is nonzero if the hard register REGNO is preserved
649 across a call in mode MODE. This does not have to include the call used
650 registers. */
652 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
653 ((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
654 || (IS_INT_CALL_SAVED_REGNO (REGNO) \
655 && ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
657 /* Specify the modes required to caller save a given hard regno. */
659 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
661 #define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
663 /* A C expression that is nonzero if it is desirable to choose
664 register allocation so as to avoid move instructions between a
665 value of mode MODE1 and a value of mode MODE2.
667 Value is 1 if it is a good idea to tie two pseudo registers
668 when one has mode MODE1 and one has mode MODE2.
669 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
670 for any hard reg, then this must be 0 for correct output. */
672 #define MODES_TIEABLE_P(MODE1, MODE2) 0
675 /* Define the classes of registers for register constraints in the
676 machine description. Also define ranges of constants.
678 One of the classes must always be named ALL_REGS and include all hard regs.
679 If there is more than one class, another class must be named NO_REGS
680 and contain no registers.
682 The name GENERAL_REGS must be the name of a class (or an alias for
683 another name such as ALL_REGS). This is the class of registers
684 that is allowed by "g" or "r" in a register constraint.
685 Also, registers outside this class are allocated only when
686 instructions express preferences for them.
688 The classes must be numbered in nondecreasing order; that is,
689 a larger-numbered class must never be contained completely
690 in a smaller-numbered class.
692 For any two classes, it is very desirable that there be another
693 class that represents their union. */
695 enum reg_class
697 NO_REGS,
698 R0R1_REGS, /* 't'. */
699 R2R3_REGS, /* 'u'. */
700 EXT_LOW_REGS, /* 'q'. */
701 EXT_REGS, /* 'f'. */
702 ADDR_REGS, /* 'a'. */
703 INDEX_REGS, /* 'x'. */
704 BK_REG, /* 'k'. */
705 SP_REG, /* 'b'. */
706 RC_REG, /* 'v'. */
707 COUNTER_REGS, /* */
708 INT_REGS, /* 'c'. */
709 GENERAL_REGS, /* 'r'. */
710 DP_REG, /* 'z'. */
711 ST_REG, /* 'y'. */
712 ALL_REGS,
713 LIM_REG_CLASSES
716 #define N_REG_CLASSES (int) LIM_REG_CLASSES
718 #define REG_CLASS_NAMES \
720 "NO_REGS", \
721 "R0R1_REGS", \
722 "R2R3_REGS", \
723 "EXT_LOW_REGS", \
724 "EXT_REGS", \
725 "ADDR_REGS", \
726 "INDEX_REGS", \
727 "BK_REG", \
728 "SP_REG", \
729 "RC_REG", \
730 "COUNTER_REGS", \
731 "INT_REGS", \
732 "GENERAL_REGS", \
733 "DP_REG", \
734 "ST_REG", \
735 "ALL_REGS" \
738 /* Define which registers fit in which classes.
739 This is an initializer for a vector of HARD_REG_SET
740 of length N_REG_CLASSES. RC is not included in GENERAL_REGS
741 since the register allocator will often choose a general register
742 in preference to RC for the decrement_and_branch_on_count pattern. */
744 #define REG_CLASS_CONTENTS \
746 {0x00000000}, /* No registers. */ \
747 {0x00000003}, /* 't' R0-R1 . */ \
748 {0x0000000c}, /* 'u' R2-R3 . */ \
749 {0x000000ff}, /* 'q' R0-R7 . */ \
750 {0xf00000ff}, /* 'f' R0-R11 */ \
751 {0x0000ff00}, /* 'a' AR0-AR7. */ \
752 {0x00060000}, /* 'x' IR0-IR1. */ \
753 {0x00080000}, /* 'k' BK. */ \
754 {0x00100000}, /* 'b' SP. */ \
755 {0x08000000}, /* 'v' RC. */ \
756 {0x0800ff00}, /* RC,AR0-AR7. */ \
757 {0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
758 {0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
759 {0x00010000}, /* 'z' DP. */ \
760 {0x00200000}, /* 'y' ST. */ \
761 {0xffffffff}, /* All registers. */ \
764 /* The same information, inverted:
765 Return the class number of the smallest class containing
766 reg number REGNO. This could be a conditional expression
767 or could index an array. */
769 #define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
771 /* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
772 explicitly used in the rtl is kept as short as possible.
774 We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
775 is defined since the MPY|ADD insns require the classes R0R1_REGS and
776 R2R3_REGS which are used by the function return registers (R0,R1) and
777 the register arguments (R2,R3), respectively. I'm reluctant to define
778 this macro since it stomps on many potential optimizations. Ideally
779 it should have a register class argument so that not all the register
780 classes gets penalized for the sake of a naughty few... For long
781 double arithmetic we need two additional registers that we can use as
782 spill registers. */
784 #define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
786 #define BASE_REG_CLASS ADDR_REGS
787 #define INDEX_REG_CLASS INDEX_REGS
790 Register constraints for the C4x
792 a - address reg (ar0-ar7)
793 b - stack reg (sp)
794 c - other gp int-only reg
795 d - data/int reg (equiv. to f)
796 f - data/float reg
797 h - data/long double reg (equiv. to f)
798 k - block count (bk)
799 q - r0-r7
800 t - r0-r1
801 u - r2-r3
802 v - repeat count (rc)
803 x - index register (ir0-ir1)
804 y - status register (st)
805 z - dp reg (dp)
807 Memory/constant constraints for the C4x
809 G - short float 16-bit
810 I - signed 16-bit constant (sign extended)
811 J - signed 8-bit constant (sign extended) (C4x only)
812 K - signed 5-bit constant (sign extended) (C4x only for stik)
813 L - unsigned 16-bit constant
814 M - unsigned 8-bit constant (C4x only)
815 N - ones complement of unsigned 16-bit constant
816 Q - indirect arx + 9-bit signed displacement
817 (a *-arx(n) or *+arx(n) is used to account for the sign bit)
818 R - indirect arx + 5-bit unsigned displacement (C4x only)
819 S - indirect arx + 0, 1, or irn displacement
820 T - direct symbol ref
821 > - indirect with autoincrement
822 < - indirect with autodecrement
823 } - indirect with post-modify
824 { - indirect with pre-modify
827 #define REG_CLASS_FROM_LETTER(CC) \
828 ( ((CC) == 'a') ? ADDR_REGS \
829 : ((CC) == 'b') ? SP_REG \
830 : ((CC) == 'c') ? INT_REGS \
831 : ((CC) == 'd') ? EXT_REGS \
832 : ((CC) == 'f') ? EXT_REGS \
833 : ((CC) == 'h') ? EXT_REGS \
834 : ((CC) == 'k') ? BK_REG \
835 : ((CC) == 'q') ? EXT_LOW_REGS \
836 : ((CC) == 't') ? R0R1_REGS \
837 : ((CC) == 'u') ? R2R3_REGS \
838 : ((CC) == 'v') ? RC_REG \
839 : ((CC) == 'x') ? INDEX_REGS \
840 : ((CC) == 'y') ? ST_REG \
841 : ((CC) == 'z') ? DP_REG \
842 : NO_REGS )
844 /* These assume that REGNO is a hard or pseudo reg number.
845 They give nonzero only if REGNO is a hard reg of the suitable class
846 or a pseudo reg currently allocated to a suitable hard reg.
847 Since they use reg_renumber, they are safe only once reg_renumber
848 has been allocated, which happens in local-alloc.c. */
850 #define REGNO_OK_FOR_BASE_P(REGNO) \
851 (IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
853 #define REGNO_OK_FOR_INDEX_P(REGNO) \
854 (IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
856 /* If we have to generate framepointer + constant prefer an ADDR_REGS
857 register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
859 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
860 (GET_CODE (X) == PLUS \
861 && GET_MODE (X) == Pmode \
862 && GET_CODE (XEXP ((X), 0)) == REG \
863 && GET_MODE (XEXP ((X), 0)) == Pmode \
864 && REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
865 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
866 ? ADDR_REGS : (CLASS))
868 #define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
870 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
872 #define CLASS_MAX_NREGS(CLASS, MODE) \
873 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
874 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
876 #define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
878 #define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
880 #define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
882 #define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
884 #define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
886 #define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
888 #define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
890 #define IS_HIGH_CONST(VAL) \
891 (! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
894 #define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
896 #define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
898 #define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
899 && IS_DISP1_CONST (VAL + 1))
901 #define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
902 && IS_DISP8_CONST (VAL + 1))
904 #define CONST_OK_FOR_LETTER_P(VAL, C) \
905 ( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
906 : ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
907 : ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
908 : ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
909 : ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
910 : ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
911 : ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
912 : 0 )
914 #define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
915 ( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
916 : ((C) == 'H') ? (c4x_H_constant (OP)) \
917 : 0 )
919 #define EXTRA_CONSTRAINT(OP, C) \
920 ( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
921 : ((C) == 'R') ? (c4x_R_constraint (OP)) \
922 : ((C) == 'S') ? (c4x_S_constraint (OP)) \
923 : ((C) == 'T') ? (c4x_T_constraint (OP)) \
924 : ((C) == 'U') ? (c4x_U_constraint (OP)) \
925 : 0 )
927 #define SMALL_CONST(VAL, insn) \
928 ( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
929 ? IS_INT16_CONST (VAL) \
930 : ( (get_attr_data (insn) == DATA_NOT_UINT16) \
931 ? IS_NOT_UINT16_CONST (VAL) \
932 : ( (get_attr_data (insn) == DATA_HIGH_16) \
933 ? IS_HIGH_CONST (VAL) \
934 : IS_UINT16_CONST (VAL) \
940 I. Routine calling with arguments in registers
941 ----------------------------------------------
943 The TI C3x compiler has a rather unusual register passing algorithm.
944 Data is passed in the following registers (in order):
946 AR2, R2, R3, RC, RS, RE
948 However, the first and second floating point values are always in R2
949 and R3 (and all other floats are on the stack). Structs are always
950 passed on the stack. If the last argument is an ellipsis, the
951 previous argument is passed on the stack so that its address can be
952 taken for the stdargs macros.
954 Because of this, we have to pre-scan the list of arguments to figure
955 out what goes where in the list.
957 II. Routine calling with arguments on stack
958 -------------------------------------------
960 Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
961 variables loc0, loc1, and loc2. After the function prologue has
962 been executed, the stack frame will look like:
964 [stack grows towards increasing addresses]
965 I-------------I
966 5 I saved reg1 I <= SP points here
967 I-------------I
968 4 I saved reg0 I
969 I-------------I
970 3 I loc2 I
971 I-------------I
972 2 I loc1 I
973 I-------------I
974 1 I loc0 I
975 I-------------I
976 0 I old FP I <= FP (AR3) points here
977 I-------------I
978 -1 I return PC I
979 I-------------I
980 -2 I arg0 I
981 I-------------I
982 -3 I arg1 I
983 I-------------I
984 -4 I arg2 I
985 I-------------I
987 All local variables (locn) are accessible by means of +FP(n+1)
988 addressing, where n is the local variable number.
990 All stack arguments (argn) are accessible by means of -FP(n-2).
992 The stack pointer (SP) points to the last register saved in the
993 prologue (regn).
995 Note that a push instruction performs a preincrement of the stack
996 pointer. (STACK_PUSH_CODE == PRE_INC)
998 III. Registers used in function calling convention
999 --------------------------------------------------
1001 Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
1002 R6...R7 (only by PUSHF, i.e. upper 32 bits)
1003 AR3...AR7
1005 (Because of this model, we only assign FP values in R6, R7 and
1006 only assign integer values in R4, R5.)
1008 These registers are saved at each function entry and restored at
1009 the exit. Also it is expected any of these not affected by any
1010 call to user-defined (not service) functions.
1012 Not preserved across calls: R0...R3
1013 R4...R5 (upper 8 bits)
1014 R6...R7 (lower 8 bits)
1015 AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
1017 These registers are used arbitrary in a function without being preserved.
1018 It is also expected that any of these can be clobbered by any call.
1020 Not used by GCC (except for in user "asm" statements):
1021 IE (DIE), IF (IIE), IOF (IIF)
1023 These registers are never used by GCC for any data, but can be used
1024 with "asm" statements. */
1026 #define C4X_ARG0 -2
1027 #define C4X_LOC0 1
1029 /* Basic Stack Layout. */
1031 /* The stack grows upward, stack frame grows upward, and args grow
1032 downward. */
1034 #define STARTING_FRAME_OFFSET C4X_LOC0
1035 #define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
1036 #define ARGS_GROW_DOWNWARD
1037 #define STACK_POINTER_OFFSET 1
1039 /* Define this if pushing a word on the stack
1040 makes the stack pointer a smaller address. */
1042 /* #define STACK_GROWS_DOWNWARD. */
1043 /* Like the dsp16xx, i370, i960, and we32k ports. */
1045 /* Define this if the nominal address of the stack frame
1046 is at the high-address end of the local variables;
1047 that is, each additional local variable allocated
1048 goes at a more negative offset in the frame. */
1050 /* #define FRAME_GROWS_DOWNWARD. */
1053 /* Registers That Address the Stack Frame. */
1055 #define STACK_POINTER_REGNUM SP_REGNO /* SP. */
1056 #define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
1057 #define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
1058 #define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
1060 /* Eliminating Frame Pointer and Arg Pointer. */
1062 #define FRAME_POINTER_REQUIRED 0
1064 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1066 int regno; \
1067 int offset = 0; \
1068 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1069 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1070 offset += TARGET_PRESERVE_FLOAT \
1071 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
1072 (DEPTH) = -(offset + get_frame_size ()); \
1075 /* This is a hack... We need to specify a register. */
1076 #define ELIMINABLE_REGS \
1077 {{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
1079 #define CAN_ELIMINATE(FROM, TO) \
1080 (! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1081 || ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
1083 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1085 int regno; \
1086 int offset = 0; \
1087 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1088 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1089 offset += TARGET_PRESERVE_FLOAT \
1090 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
1091 (OFFSET) = -(offset + get_frame_size ()); \
1095 /* Passing Function Arguments on the Stack. */
1097 #define PUSH_ARGS 1
1098 #define PUSH_ROUNDING(BYTES) (BYTES)
1099 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1101 /* The following structure is used by calls.c, function.c, c4x.c. */
1103 typedef struct c4x_args
1105 int floats;
1106 int ints;
1107 int maxfloats;
1108 int maxints;
1109 int init;
1110 int var;
1111 int prototype;
1112 int args;
1114 CUMULATIVE_ARGS;
1116 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1117 (c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1119 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1120 (c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
1122 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1123 (c4x_function_arg(&CUM, MODE, TYPE, NAMED))
1125 /* Define the profitability of saving registers around calls.
1126 We disable caller save to avoid a bug in flow.c (this also affects
1127 other targets such as m68k). Since we must use stf/sti,
1128 the profitability is marginal anyway. */
1130 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1132 /* Never pass data by reference. */
1134 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1136 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1138 /* 1 if N is a possible register number for function argument passing. */
1140 #define FUNCTION_ARG_REGNO_P(REGNO) \
1141 ( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
1142 || ((REGNO) == R2_REGNO) /* R2. */ \
1143 || ((REGNO) == R3_REGNO) /* R3. */ \
1144 || ((REGNO) == RC_REGNO) /* RC. */ \
1145 || ((REGNO) == RS_REGNO) /* RS. */ \
1146 || ((REGNO) == RE_REGNO)) /* RE. */ \
1147 ? 1 \
1148 : 0)
1150 /* How Scalar Function Values Are Returned. */
1152 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1153 gen_rtx(REG, TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
1155 #define LIBCALL_VALUE(MODE) \
1156 gen_rtx(REG, MODE, R0_REGNO) /* Return in R0. */
1158 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
1160 /* How Large Values Are Returned. */
1162 #define DEFAULT_PCC_STRUCT_RETURN 0
1163 #define STRUCT_VALUE_REGNUM AR0_REGNO /* AR0. */
1165 /* Varargs handling. */
1167 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1168 c4x_va_arg (valist, type)
1170 /* Generating Code for Profiling. */
1172 /* Note that the generated assembly uses the ^ operator to load the 16
1173 MSBs of the address. This is not supported by the TI assembler.
1174 The FUNCTION profiler needs a function mcount which gets passed
1175 a pointer to the LABELNO. */
1177 #define FUNCTION_PROFILER(FILE, LABELNO) \
1178 if (! TARGET_C3X) \
1180 fprintf (FILE, "\tpush\tar2\n"); \
1181 fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
1182 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1183 fprintf (FILE, "\tcall\tmcount\n"); \
1184 fprintf (FILE, "\tpop\tar2\n"); \
1186 else \
1188 fprintf (FILE, "\tpush\tar2\n"); \
1189 fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
1190 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1191 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1192 fprintf (FILE, "\tcall\tmcount\n"); \
1193 fprintf (FILE, "\tpop\tar2\n"); \
1196 /* Implicit Calls to Library Routines. */
1198 #define TARGET_MEM_FUNCTIONS
1200 /* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
1201 or MULT.
1202 CCmode should be used when no special processing is needed. */
1203 #define SELECT_CC_MODE(OP,X,Y) \
1204 ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1205 || GET_CODE (X) == NEG || GET_CODE (X) == MULT \
1206 || GET_MODE (X) == ABS \
1207 || GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
1208 || GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
1209 || GET_MODE (Y) == ABS) \
1210 ? CC_NOOVmode : CCmode)
1212 /* Addressing Modes. */
1214 #define HAVE_POST_INCREMENT 1
1215 #define HAVE_PRE_INCREMENT 1
1216 #define HAVE_POST_DECREMENT 1
1217 #define HAVE_PRE_DECREMENT 1
1218 #define HAVE_PRE_MODIFY_REG 1
1219 #define HAVE_POST_MODIFY_REG 1
1220 #define HAVE_PRE_MODIFY_DISP 1
1221 #define HAVE_POST_MODIFY_DISP 1
1223 /* The number of insns that can be packed into a single opcode. */
1224 #define PACK_INSNS 2
1226 /* Recognize any constant value that is a valid address.
1227 We could allow arbitrary constant addresses in the large memory
1228 model but for the small memory model we can only accept addresses
1229 within the data page. I suppose we could also allow
1230 CONST PLUS SYMBOL_REF. */
1231 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
1233 /* Maximum number of registers that can appear in a valid memory
1234 address. */
1235 #define MAX_REGS_PER_ADDRESS 2
1237 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1238 and check its validity for a certain class.
1239 We have two alternate definitions for each of them.
1240 The usual definition accepts all pseudo regs; the other rejects
1241 them unless they have been allocated suitable hard regs.
1242 The symbol REG_OK_STRICT causes the latter definition to be used.
1244 Most source files want to accept pseudo regs in the hope that
1245 they will get allocated to the class that the insn wants them to be in.
1246 Source files for reload pass need to be strict.
1247 After reload, it makes no difference, since pseudo regs have
1248 been eliminated by then. */
1250 #ifndef REG_OK_STRICT
1252 /* Nonzero if X is a hard or pseudo reg that can be used as a base. */
1254 #define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
1256 /* Nonzero if X is a hard or pseudo reg that can be used as an index. */
1258 #define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
1260 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1262 if (c4x_check_legit_addr (MODE, X, 0)) \
1263 goto ADDR; \
1266 #else
1268 /* Nonzero if X is a hard reg that can be used as an index. */
1270 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1272 /* Nonzero if X is a hard reg that can be used as a base reg. */
1274 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1276 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1278 if (c4x_check_legit_addr (MODE, X, 1)) \
1279 goto ADDR; \
1282 #endif
1284 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1286 rtx new; \
1287 new = c4x_legitimize_address (X, MODE); \
1288 if (new != NULL_RTX) \
1290 (X) = new; \
1291 goto WIN; \
1295 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1297 if (MODE != HImode \
1298 && MODE != HFmode \
1299 && GET_MODE (X) != HImode \
1300 && GET_MODE (X) != HFmode \
1301 && (GET_CODE (X) == CONST \
1302 || GET_CODE (X) == SYMBOL_REF \
1303 || GET_CODE (X) == LABEL_REF)) \
1305 if (! TARGET_SMALL) \
1307 int i; \
1308 X = gen_rtx_LO_SUM (GET_MODE (X), \
1309 gen_rtx_HIGH (GET_MODE (X), X), X); \
1310 i = push_reload (XEXP (X, 0), NULL_RTX, \
1311 &XEXP (X, 0), NULL, \
1312 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1313 OPNUM, TYPE); \
1314 /* The only valid reg is DP. This is a fixed reg and will \
1315 normally not be used so force it. */ \
1316 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1317 rld[i].nocombine = 1; \
1319 goto WIN; \
1321 else if (MODE != HImode \
1322 && MODE != HFmode \
1323 && GET_MODE (X) != HImode \
1324 && GET_MODE (X) != HFmode \
1325 && GET_CODE (X) == LO_SUM \
1326 && GET_CODE (XEXP (X,0)) == HIGH \
1327 && (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
1328 || GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
1329 || GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
1331 if (! TARGET_SMALL) \
1333 int i = push_reload (XEXP (X, 0), NULL_RTX, \
1334 &XEXP (X, 0), NULL, \
1335 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1336 OPNUM, TYPE); \
1337 /* The only valid reg is DP. This is a fixed reg and will \
1338 normally not be used so force it. */ \
1339 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1340 rld[i].nocombine = 1; \
1342 goto WIN; \
1346 /* No mode-dependent addresses on the C4x are autoincrements. */
1348 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1349 if (GET_CODE (ADDR) == PRE_DEC \
1350 || GET_CODE (ADDR) == POST_DEC \
1351 || GET_CODE (ADDR) == PRE_INC \
1352 || GET_CODE (ADDR) == POST_INC \
1353 || GET_CODE (ADDR) == POST_MODIFY \
1354 || GET_CODE (ADDR) == PRE_MODIFY) \
1355 goto LABEL
1358 /* Nonzero if the constant value X is a legitimate general operand.
1359 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1361 The C4x can only load 16-bit immediate values, so we only allow a
1362 restricted subset of CONST_INT and CONST_DOUBLE. Disallow
1363 LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
1364 model) so that the symbols will be forced into the constant pool.
1365 On second thoughts, let's do this with the move expanders since
1366 the alias analysis has trouble if we force constant addresses
1367 into memory.
1370 #define LEGITIMATE_CONSTANT_P(X) \
1371 ((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
1372 || (GET_CODE (X) == CONST_INT) \
1373 || (GET_CODE (X) == SYMBOL_REF) \
1374 || (GET_CODE (X) == LABEL_REF) \
1375 || (GET_CODE (X) == CONST) \
1376 || (GET_CODE (X) == HIGH && ! TARGET_C3X) \
1377 || (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
1379 #define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
1381 /* Descripting Relative Cost of Operations. */
1383 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
1384 if (REG_P (OP1) && ! REG_P (OP0)) \
1386 rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
1387 CODE = swap_condition (CODE); \
1390 #define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
1391 #define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
1392 #define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
1393 #define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
1394 || INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
1396 /* Compute extra cost of moving data between one register class
1397 and another. */
1399 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
1401 /* Memory move cost is same as fast register move. Maybe this should
1402 be bumped up?. */
1404 #define MEMORY_MOVE_COST(M,C,I) 4
1406 /* Branches are kind of expensive (even with delayed branching) so
1407 make their cost higher. */
1409 #define BRANCH_COST 8
1411 #define WORD_REGISTER_OPERATIONS
1413 /* Dividing the Output into Sections. */
1415 #define TEXT_SECTION_ASM_OP "\t.text"
1417 #define DATA_SECTION_ASM_OP "\t.data"
1419 #define READONLY_DATA_SECTION_ASM_OP "\t.sect\t\".const\""
1421 /* Do not use .init section so __main will be called on startup. This will
1422 call __do_global_ctors and prepare for __do_global_dtors on exit. */
1424 #if 0
1425 #define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
1426 #endif
1428 #define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
1430 #undef EXTRA_SECTIONS
1431 #define EXTRA_SECTIONS in_init, in_fini
1433 #undef EXTRA_SECTION_FUNCTIONS
1434 #define EXTRA_SECTION_FUNCTIONS \
1435 INIT_SECTION_FUNCTION \
1436 FINI_SECTION_FUNCTION
1438 #define INIT_SECTION_FUNCTION \
1439 extern void init_section (void); \
1440 void \
1441 init_section (void) \
1443 if (in_section != in_init) \
1445 fprintf (asm_out_file, ";\t.init\n"); \
1446 in_section = in_init; \
1450 #define FINI_SECTION_FUNCTION \
1451 void \
1452 fini_section () \
1454 if (in_section != in_fini) \
1456 fprintf (asm_out_file, "%s\n", FINI_SECTION_ASM_OP); \
1457 in_section = in_fini; \
1461 #define ASM_STABS_OP "\t.stabs\t"
1463 /* Switch into a generic section. */
1464 #define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
1467 /* Overall Framework of an Assembler File. */
1469 #define ASM_COMMENT_START ";"
1471 #define ASM_APP_ON ""
1472 #define ASM_APP_OFF ""
1474 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
1476 /* Output and Generation of Labels. */
1478 #define NO_DOT_IN_LABEL /* Only required for TI format. */
1480 /* Globalizing directive for a label. */
1481 #define GLOBAL_ASM_OP "\t.global\t"
1483 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1484 c4x_external_ref (NAME)
1486 /* A C statement to output on FILE an assembler pseudo-op to
1487 declare a library function named external.
1488 (Only needed to keep asm30 happy for ___divqf3 etc.) */
1490 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1491 c4x_external_ref (XSTR (FUN, 0))
1493 /* The prefix to add to user-visible assembler symbols. */
1495 #define USER_LABEL_PREFIX "_"
1497 /* This is how to store into the string LABEL
1498 the symbol_ref name of an internal numbered label where
1499 PREFIX is the class of label and NUM is the number within the class.
1500 This is suitable for output with `assemble_name'. */
1502 #define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
1503 sprintf (BUFFER, "*%s%lu", PREFIX, (unsigned long)(NUM))
1505 /* A C statement to output to the stdio stream STREAM assembler code which
1506 defines (equates) the symbol NAME to have the value VALUE. */
1508 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1509 do { \
1510 assemble_name (STREAM, NAME); \
1511 fprintf (STREAM, "\t.set\t%s\n", VALUE); \
1512 } while (0)
1514 /* Output of Dispatch Tables. */
1516 /* This is how to output an element of a case-vector that is absolute. */
1518 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1519 fprintf (FILE, "\t.long\tL%d\n", VALUE);
1521 /* This is how to output an element of a case-vector that is relative. */
1523 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1524 fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
1526 #undef SIZE_TYPE
1527 #define SIZE_TYPE "unsigned int"
1529 #undef PTRDIFF_TYPE
1530 #define PTRDIFF_TYPE "int"
1532 #undef WCHAR_TYPE
1533 #define WCHAR_TYPE "long int"
1535 #undef WCHAR_TYPE_SIZE
1536 #define WCHAR_TYPE_SIZE 32
1538 #define INT_TYPE_SIZE 32
1539 #define LONG_LONG_TYPE_SIZE 64
1540 #define FLOAT_TYPE_SIZE 32
1541 #define DOUBLE_TYPE_SIZE 32
1542 #define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
1544 /* Output #ident as a .ident. */
1546 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1547 fprintf (FILE, "\t.ident \"%s\"\n", NAME);
1549 /* Output of Uninitialized Variables. */
1551 /* This says how to output an assembler line to define a local
1552 uninitialized variable. */
1554 #undef ASM_OUTPUT_LOCAL
1555 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1556 ( fputs ("\t.bss\t", FILE), \
1557 assemble_name (FILE, (NAME)), \
1558 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1560 /* This says how to output an assembler line to define a global
1561 uninitialized variable. */
1563 #undef ASM_OUTPUT_COMMON
1564 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1565 ( fputs ("\t.globl\t", FILE), \
1566 assemble_name (FILE, (NAME)), \
1567 fputs ("\n\t.bss\t", FILE), \
1568 assemble_name (FILE, (NAME)), \
1569 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1571 #undef ASM_OUTPUT_BSS
1572 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1573 ( fputs ("\t.globl\t", FILE), \
1574 assemble_name (FILE, (NAME)), \
1575 fputs ("\n\t.bss\t", FILE), \
1576 assemble_name (FILE, (NAME)), \
1577 fprintf (FILE, ",%u\n", (int)(SIZE)))
1579 /* Macros Controlling Initialization Routines. */
1581 #define OBJECT_FORMAT_COFF
1582 #define REAL_NM_FILE_NAME "c4x-nm"
1584 /* Output of Assembler Instructions. */
1586 /* Register names when used for integer modes. */
1588 #define REGISTER_NAMES \
1590 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1591 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1592 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1593 "iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
1596 /* Alternate register names when used for floating point modes. */
1598 #define FLOAT_REGISTER_NAMES \
1600 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1601 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1602 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1603 "iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
1606 #define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
1608 /* Determine which codes are valid without a following integer. These must
1609 not be alphabetic. */
1611 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
1613 #define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
1615 /* C4x specific pragmas. */
1616 #define REGISTER_TARGET_PRAGMAS() do { \
1617 c_register_pragma (0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
1618 c_register_pragma (0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
1619 c_register_pragma (0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
1620 c_register_pragma (0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
1621 c_register_pragma (0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
1622 c_register_pragma (0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
1623 c_register_pragma (0, "FUNC_NEVER_RETURNS", c4x_pr_FUNC_NEVER_RETURNS); \
1624 c_register_pragma (0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
1625 c_register_pragma (0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
1626 c_register_pragma (0, "INTERRUPT", c4x_pr_INTERRUPT); \
1627 } while (0)
1629 /* Assembler Commands for Alignment. */
1631 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1632 { int c = SIZE; \
1633 for (; c > 0; --c) \
1634 fprintf (FILE,"\t.word\t0\n"); \
1637 #define ASM_NO_SKIP_IN_TEXT 1
1639 /* I'm not sure about this one. FIXME. */
1641 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1642 if ((LOG) != 0) \
1643 fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
1646 /* Macros for SDB and DWARF Output (use .sdef instead of .def
1647 to avoid conflict with TI's use of .def). */
1649 #define SDB_DELIM "\n"
1650 #define SDB_DEBUGGING_INFO 1
1652 /* Don't use octal since this can confuse gas for the c4x. */
1653 #define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
1655 #define PUT_SDB_DEF(A) \
1656 do { fprintf (asm_out_file, "\t.sdef\t"); \
1657 ASM_OUTPUT_LABELREF (asm_out_file, A); \
1658 fprintf (asm_out_file, SDB_DELIM); } while (0)
1660 #define PUT_SDB_PLAIN_DEF(A) \
1661 fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
1663 #define PUT_SDB_BLOCK_START(LINE) \
1664 fprintf (asm_out_file, \
1665 "\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1666 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1668 #define PUT_SDB_BLOCK_END(LINE) \
1669 fprintf (asm_out_file, \
1670 "\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1671 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1673 #define PUT_SDB_FUNCTION_START(LINE) \
1674 fprintf (asm_out_file, \
1675 "\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1676 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1678 /* Note we output relative line numbers for .ef which gas converts
1679 to absolute line numbers. The TI compiler outputs absolute line numbers
1680 in the .sym directive which gas does not support. */
1681 #define PUT_SDB_FUNCTION_END(LINE) \
1682 fprintf (asm_out_file, \
1683 "\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1684 SDB_DELIM, SDB_DELIM, SDB_DELIM, \
1685 (LINE), SDB_DELIM)
1687 #define PUT_SDB_EPILOGUE_END(NAME) \
1688 do { fprintf (asm_out_file, "\t.sdef\t"); \
1689 ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
1690 fprintf (asm_out_file, \
1691 "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
1692 SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
1694 /* Define this as 1 if `char' should by default be signed; else as 0. */
1696 #define DEFAULT_SIGNED_CHAR 1
1698 /* A function address in a call instruction is a byte address (for
1699 indexing purposes) so give the MEM rtx a byte's mode. */
1701 #define FUNCTION_MODE QImode
1703 #define SLOW_BYTE_ACCESS 0
1705 /* Specify the machine mode that pointers have. After generation of
1706 RTL, the compiler makes no further distinction between pointers and
1707 any other objects of this machine mode. */
1709 #define Pmode QImode
1711 /* On the C4x we can write the following code. We have to clear the cache
1712 every time we execute it because the data in the stack could change.
1714 laj $+4
1715 addi3 4,r11,ar0
1716 lda *ar0,ar1
1717 lda *+ar0(1),ar0
1718 bud ar1
1721 or 1000h,st
1722 .word FNADDR
1723 .word CXT
1725 On the c3x this is a bit more difficult. We have to write self
1726 modifying code here. So we have to clear the cache every time
1727 we execute it because the data in the stack could change.
1729 ldiu TOP_OF_FUNCTION,ar1
1730 lsh 16,ar1
1731 or BOTTOM_OF_FUNCTION,ar1
1732 ldiu TOP_OF_STATIC,ar0
1733 bud ar1
1734 lsh 16,ar0
1735 or BOTTOM_OF_STATIC,ar0
1736 or 1000h,st
1740 #define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
1742 #define TRAMPOLINE_TEMPLATE(FILE) \
1744 if (TARGET_C3X) \
1746 fprintf (FILE, "\tldiu\t0,ar1\n"); \
1747 fprintf (FILE, "\tlsh\t16,ar1\n"); \
1748 fprintf (FILE, "\tor\t0,ar1\n"); \
1749 fprintf (FILE, "\tldiu\t0,ar0\n"); \
1750 fprintf (FILE, "\tbud\tar1\n"); \
1751 fprintf (FILE, "\tlsh\t16,ar0\n"); \
1752 fprintf (FILE, "\tor\t0,ar0\n"); \
1753 fprintf (FILE, "\tor\t1000h,st\n"); \
1755 else \
1757 fprintf (FILE, "\tlaj\t$+4\n"); \
1758 fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
1759 fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
1760 fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
1761 fprintf (FILE, "\tbud\tar1\n"); \
1762 fprintf (FILE, "\tnop\n"); \
1763 fprintf (FILE, "\tnop\n"); \
1764 fprintf (FILE, "\tor\t1000h,st\n"); \
1765 fprintf (FILE, "\t.word\t0\n"); \
1766 fprintf (FILE, "\t.word\t0\n"); \
1770 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1772 if (TARGET_C3X) \
1774 rtx tmp1, tmp2; \
1775 tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
1776 size_int (16), 0, 1); \
1777 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1778 GEN_INT (0x5069), size_int (16), 0, 1); \
1779 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1780 emit_move_insn (gen_rtx (MEM, QImode, \
1781 plus_constant (tramp, 0)), tmp1); \
1782 tmp1 = expand_and (QImode, FNADDR, GEN_INT (0xffff), 0); \
1783 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1784 GEN_INT (0x1069), size_int (16), 0, 1); \
1785 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1786 emit_move_insn (gen_rtx (MEM, QImode, \
1787 plus_constant (tramp, 2)), tmp1); \
1788 tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
1789 size_int (16), 0, 1); \
1790 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1791 GEN_INT (0x5068), size_int (16), 0, 1); \
1792 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1793 emit_move_insn (gen_rtx (MEM, QImode, \
1794 plus_constant (tramp, 3)), tmp1); \
1795 tmp1 = expand_and (QImode, CXT, GEN_INT (0xffff), 0); \
1796 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1797 GEN_INT (0x1068), size_int (16), 0, 1); \
1798 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1799 emit_move_insn (gen_rtx (MEM, QImode, \
1800 plus_constant (tramp, 6)), tmp1); \
1802 else \
1804 emit_move_insn (gen_rtx (MEM, QImode, \
1805 plus_constant (TRAMP, 8)), FNADDR); \
1806 emit_move_insn (gen_rtx (MEM, QImode, \
1807 plus_constant (TRAMP, 9)), CXT); \
1811 /* Specify the machine mode that this machine uses for the index in
1812 the tablejump instruction. */
1814 #define CASE_VECTOR_MODE Pmode
1816 /* Max number of (32-bit) bytes we can move from memory to memory
1817 in one reasonably fast instruction. */
1819 #define MOVE_MAX 1
1821 /* MOVE_RATIO is the number of move instructions that is better than a
1822 block move. */
1824 #define MOVE_RATIO 3
1826 #define BSS_SECTION_ASM_OP "\t.bss"
1828 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1829 fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
1831 /* This is how to output an insn to pop a register from the stack.
1832 It need not be very fast code. */
1834 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1835 fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
1837 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1838 is done just by pretending it is already truncated. */
1840 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1842 #define DBR_OUTPUT_SEQEND(FILE) \
1843 if (final_sequence != NULL_RTX) \
1845 int count; \
1846 rtx insn = XVECEXP (final_sequence, 0, 0); \
1847 int laj = GET_CODE (insn) == CALL_INSN \
1848 || (GET_CODE (insn) == INSN \
1849 && GET_CODE (PATTERN (insn)) == TRAP_IF);\
1851 count = dbr_sequence_length(); \
1852 while (count < (laj ? 2 : 3)) \
1854 fputs("\tnop\n", FILE); \
1855 count++; \
1857 if (laj) \
1858 fputs("\tpush\tr11\n", FILE); \
1861 #define NO_FUNCTION_CSE
1863 /* We don't want a leading tab. */
1865 #define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
1867 /* Define the codes that are matched by predicates in c4x.c. */
1869 #define PREDICATE_CODES \
1870 {"fp_zero_operand", {CONST_DOUBLE}}, \
1871 {"const_operand", {CONST_INT, CONST_DOUBLE}}, \
1872 {"stik_const_operand", {CONST_INT}}, \
1873 {"not_const_operand", {CONST_INT}}, \
1874 {"reg_operand", {REG, SUBREG}}, \
1875 {"reg_or_const_operand", {REG, SUBREG, CONST_INT, CONST_DOUBLE}},\
1876 {"r0r1_reg_operand", {REG, SUBREG}}, \
1877 {"r2r3_reg_operand", {REG, SUBREG}}, \
1878 {"ext_low_reg_operand", {REG, SUBREG}}, \
1879 {"ext_reg_operand", {REG, SUBREG}}, \
1880 {"std_reg_operand", {REG, SUBREG}}, \
1881 {"std_or_reg_operand", {REG, SUBREG}}, \
1882 {"addr_reg_operand", {REG, SUBREG}}, \
1883 {"index_reg_operand", {REG, SUBREG}}, \
1884 {"dp_reg_operand", {REG}}, \
1885 {"sp_reg_operand", {REG}}, \
1886 {"st_reg_operand", {REG}}, \
1887 {"rc_reg_operand", {REG}}, \
1888 {"call_address_operand", {REG, SYMBOL_REF, LABEL_REF, CONST}}, \
1889 {"dst_operand", {SUBREG, REG, MEM}}, \
1890 {"src_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1891 {"src_hi_operand", {SUBREG, REG, MEM, CONST_DOUBLE}}, \
1892 {"lsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1893 {"tsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1894 {"nonimmediate_src_operand", {SUBREG, REG, MEM}}, \
1895 {"nonimmediate_lsrc_operand", {SUBREG, REG, MEM}}, \
1896 {"any_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1897 {"par_ind_operand", {MEM}}, \
1898 {"parallel_operand", {SUBREG, REG, MEM}}, \
1899 {"symbolic_address_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1900 {"mem_operand", {MEM}},
1903 /* Define the intrinsic functions for the c3x/c4x. */
1905 enum c4x_builtins
1907 /* intrinsic name */
1908 C4X_BUILTIN_FIX, /* fast_ftoi */
1909 C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
1910 C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
1911 C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
1912 C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
1913 C4X_BUILTIN_RCPF /* fast_invf (only C4x) */