Merge from mainline
[official-gcc.git] / gcc / tree-ssa-dce.c
blobc8a30a4024fb1f0b17753424537def826702aa46
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
70 static struct stmt_stats
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
78 static VEC(tree,heap) *worklist;
80 /* Vector indicating an SSA name has already been processed and marked
81 as necessary. */
82 static sbitmap processed;
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary;
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
108 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
109 for which the block with index N is control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
112 bitmap_iterator bi; \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, bi) \
116 CODE; \
120 /* Local function prototypes. */
121 static inline void set_control_dependence_map_bit (basic_block, int);
122 static inline void clear_control_dependence_bitmap (basic_block);
123 static void find_all_control_dependences (struct edge_list *);
124 static void find_control_dependence (struct edge_list *, int);
125 static inline basic_block find_pdom (basic_block);
127 static inline void mark_stmt_necessary (tree, bool);
128 static inline void mark_operand_necessary (tree, bool);
130 static void mark_stmt_if_obviously_necessary (tree, bool);
131 static void find_obviously_necessary_stmts (struct edge_list *);
133 static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
134 static void propagate_necessity (struct edge_list *);
136 static void eliminate_unnecessary_stmts (void);
137 static void remove_dead_phis (basic_block);
138 static void remove_dead_stmt (block_stmt_iterator *, basic_block);
140 static void print_stats (void);
141 static void tree_dce_init (bool);
142 static void tree_dce_done (bool);
144 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
145 static inline void
146 set_control_dependence_map_bit (basic_block bb, int edge_index)
148 if (bb == ENTRY_BLOCK_PTR)
149 return;
150 gcc_assert (bb != EXIT_BLOCK_PTR);
151 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
154 /* Clear all control dependences for block BB. */
155 static inline
156 void clear_control_dependence_bitmap (basic_block bb)
158 bitmap_clear (control_dependence_map[bb->index]);
161 /* Record all blocks' control dependences on all edges in the edge
162 list EL, ala Morgan, Section 3.6. */
164 static void
165 find_all_control_dependences (struct edge_list *el)
167 int i;
169 for (i = 0; i < NUM_EDGES (el); ++i)
170 find_control_dependence (el, i);
173 /* Determine all blocks' control dependences on the given edge with edge_list
174 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
176 static void
177 find_control_dependence (struct edge_list *el, int edge_index)
179 basic_block current_block;
180 basic_block ending_block;
182 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
184 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
185 ending_block = single_succ (ENTRY_BLOCK_PTR);
186 else
187 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
189 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
190 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
191 current_block = find_pdom (current_block))
193 edge e = INDEX_EDGE (el, edge_index);
195 /* For abnormal edges, we don't make current_block control
196 dependent because instructions that throw are always necessary
197 anyway. */
198 if (e->flags & EDGE_ABNORMAL)
199 continue;
201 set_control_dependence_map_bit (current_block, edge_index);
205 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
206 This function is necessary because some blocks have negative numbers. */
208 static inline basic_block
209 find_pdom (basic_block block)
211 gcc_assert (block != ENTRY_BLOCK_PTR);
213 if (block == EXIT_BLOCK_PTR)
214 return EXIT_BLOCK_PTR;
215 else
217 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
218 if (! bb)
219 return EXIT_BLOCK_PTR;
220 return bb;
224 #define NECESSARY(stmt) stmt->common.asm_written_flag
226 /* If STMT is not already marked necessary, mark it, and add it to the
227 worklist if ADD_TO_WORKLIST is true. */
228 static inline void
229 mark_stmt_necessary (tree stmt, bool add_to_worklist)
231 gcc_assert (stmt);
232 gcc_assert (!DECL_P (stmt));
234 if (NECESSARY (stmt))
235 return;
237 if (dump_file && (dump_flags & TDF_DETAILS))
239 fprintf (dump_file, "Marking useful stmt: ");
240 print_generic_stmt (dump_file, stmt, TDF_SLIM);
241 fprintf (dump_file, "\n");
244 NECESSARY (stmt) = 1;
245 if (add_to_worklist)
246 VEC_safe_push (tree, heap, worklist, stmt);
249 /* Mark the statement defining operand OP as necessary. PHIONLY is true
250 if we should only mark it necessary if it is a phi node. */
252 static inline void
253 mark_operand_necessary (tree op, bool phionly)
255 tree stmt;
256 int ver;
258 gcc_assert (op);
260 ver = SSA_NAME_VERSION (op);
261 if (TEST_BIT (processed, ver))
262 return;
263 SET_BIT (processed, ver);
265 stmt = SSA_NAME_DEF_STMT (op);
266 gcc_assert (stmt);
268 if (NECESSARY (stmt)
269 || IS_EMPTY_STMT (stmt)
270 || (phionly && TREE_CODE (stmt) != PHI_NODE))
271 return;
273 NECESSARY (stmt) = 1;
274 VEC_safe_push (tree, heap, worklist, stmt);
278 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
279 it can make other statements necessary.
281 If AGGRESSIVE is false, control statements are conservatively marked as
282 necessary. */
284 static void
285 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
287 stmt_ann_t ann;
288 tree op;
290 /* With non-call exceptions, we have to assume that all statements could
291 throw. If a statement may throw, it is inherently necessary. */
292 if (flag_non_call_exceptions
293 && tree_could_throw_p (stmt))
295 mark_stmt_necessary (stmt, true);
296 return;
299 /* Statements that are implicitly live. Most function calls, asm and return
300 statements are required. Labels and BIND_EXPR nodes are kept because
301 they are control flow, and we have no way of knowing whether they can be
302 removed. DCE can eliminate all the other statements in a block, and CFG
303 can then remove the block and labels. */
304 switch (TREE_CODE (stmt))
306 case BIND_EXPR:
307 case LABEL_EXPR:
308 case CASE_LABEL_EXPR:
309 mark_stmt_necessary (stmt, false);
310 return;
312 case ASM_EXPR:
313 case RESX_EXPR:
314 case RETURN_EXPR:
315 mark_stmt_necessary (stmt, true);
316 return;
318 case CALL_EXPR:
319 /* Most, but not all function calls are required. Function calls that
320 produce no result and have no side effects (i.e. const pure
321 functions) are unnecessary. */
322 if (TREE_SIDE_EFFECTS (stmt))
323 mark_stmt_necessary (stmt, true);
324 return;
326 case MODIFY_EXPR:
327 op = get_call_expr_in (stmt);
328 if (op && TREE_SIDE_EFFECTS (op))
330 mark_stmt_necessary (stmt, true);
331 return;
334 /* These values are mildly magic bits of the EH runtime. We can't
335 see the entire lifetime of these values until landing pads are
336 generated. */
337 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
338 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
340 mark_stmt_necessary (stmt, true);
341 return;
343 break;
345 case GOTO_EXPR:
346 gcc_assert (!simple_goto_p (stmt));
347 mark_stmt_necessary (stmt, true);
348 return;
350 case COND_EXPR:
351 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
352 /* Fall through. */
354 case SWITCH_EXPR:
355 if (! aggressive)
356 mark_stmt_necessary (stmt, true);
357 break;
359 default:
360 break;
363 ann = stmt_ann (stmt);
365 /* If the statement has volatile operands, it needs to be preserved.
366 Same for statements that can alter control flow in unpredictable
367 ways. */
368 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
370 mark_stmt_necessary (stmt, true);
371 return;
374 if (is_hidden_global_store (stmt))
376 mark_stmt_necessary (stmt, true);
377 return;
380 return;
383 /* Find obviously necessary statements. These are things like most function
384 calls, and stores to file level variables.
386 If EL is NULL, control statements are conservatively marked as
387 necessary. Otherwise it contains the list of edges used by control
388 dependence analysis. */
390 static void
391 find_obviously_necessary_stmts (struct edge_list *el)
393 basic_block bb;
394 block_stmt_iterator i;
395 edge e;
397 FOR_EACH_BB (bb)
399 tree phi;
401 /* Check any PHI nodes in the block. */
402 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
404 NECESSARY (phi) = 0;
406 /* PHIs for virtual variables do not directly affect code
407 generation and need not be considered inherently necessary
408 regardless of the bits set in their decl.
410 Thus, we only need to mark PHIs for real variables which
411 need their result preserved as being inherently necessary. */
412 if (is_gimple_reg (PHI_RESULT (phi))
413 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
414 mark_stmt_necessary (phi, true);
417 /* Check all statements in the block. */
418 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
420 tree stmt = bsi_stmt (i);
421 NECESSARY (stmt) = 0;
422 mark_stmt_if_obviously_necessary (stmt, el != NULL);
426 if (el)
428 /* Prevent the loops from being removed. We must keep the infinite loops,
429 and we currently do not have a means to recognize the finite ones. */
430 FOR_EACH_BB (bb)
432 edge_iterator ei;
433 FOR_EACH_EDGE (e, ei, bb->succs)
434 if (e->flags & EDGE_DFS_BACK)
435 mark_control_dependent_edges_necessary (e->dest, el);
440 /* Make corresponding control dependent edges necessary. We only
441 have to do this once for each basic block, so we clear the bitmap
442 after we're done. */
443 static void
444 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
446 unsigned edge_number;
448 gcc_assert (bb != EXIT_BLOCK_PTR);
450 if (bb == ENTRY_BLOCK_PTR)
451 return;
453 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
455 tree t;
456 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
458 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
459 continue;
460 SET_BIT (last_stmt_necessary, cd_bb->index);
462 t = last_stmt (cd_bb);
463 if (t && is_ctrl_stmt (t))
464 mark_stmt_necessary (t, true);
468 /* Propagate necessity using the operands of necessary statements. Process
469 the uses on each statement in the worklist, and add all feeding statements
470 which contribute to the calculation of this value to the worklist.
472 In conservative mode, EL is NULL. */
474 static void
475 propagate_necessity (struct edge_list *el)
477 tree i;
478 bool aggressive = (el ? true : false);
480 if (dump_file && (dump_flags & TDF_DETAILS))
481 fprintf (dump_file, "\nProcessing worklist:\n");
483 while (VEC_length (tree, worklist) > 0)
485 /* Take `i' from worklist. */
486 i = VEC_pop (tree, worklist);
488 if (dump_file && (dump_flags & TDF_DETAILS))
490 fprintf (dump_file, "processing: ");
491 print_generic_stmt (dump_file, i, TDF_SLIM);
492 fprintf (dump_file, "\n");
495 if (aggressive)
497 /* Mark the last statements of the basic blocks that the block
498 containing `i' is control dependent on, but only if we haven't
499 already done so. */
500 basic_block bb = bb_for_stmt (i);
501 if (bb != ENTRY_BLOCK_PTR
502 && ! TEST_BIT (visited_control_parents, bb->index))
504 SET_BIT (visited_control_parents, bb->index);
505 mark_control_dependent_edges_necessary (bb, el);
509 if (TREE_CODE (i) == PHI_NODE)
511 /* PHI nodes are somewhat special in that each PHI alternative has
512 data and control dependencies. All the statements feeding the
513 PHI node's arguments are always necessary. In aggressive mode,
514 we also consider the control dependent edges leading to the
515 predecessor block associated with each PHI alternative as
516 necessary. */
517 int k;
518 for (k = 0; k < PHI_NUM_ARGS (i); k++)
520 tree arg = PHI_ARG_DEF (i, k);
521 if (TREE_CODE (arg) == SSA_NAME)
522 mark_operand_necessary (arg, false);
525 if (aggressive)
527 for (k = 0; k < PHI_NUM_ARGS (i); k++)
529 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
530 if (arg_bb != ENTRY_BLOCK_PTR
531 && ! TEST_BIT (visited_control_parents, arg_bb->index))
533 SET_BIT (visited_control_parents, arg_bb->index);
534 mark_control_dependent_edges_necessary (arg_bb, el);
539 else
541 /* Propagate through the operands. Examine all the USE, VUSE and
542 V_MAY_DEF operands in this statement. Mark all the statements
543 which feed this statement's uses as necessary. */
544 ssa_op_iter iter;
545 tree use;
547 /* The operands of V_MAY_DEF expressions are also needed as they
548 represent potential definitions that may reach this
549 statement (V_MAY_DEF operands allow us to follow def-def
550 links). */
552 FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
553 mark_operand_necessary (use, false);
559 /* Propagate necessity around virtual phi nodes used in kill operands.
560 The reason this isn't done during propagate_necessity is because we don't
561 want to keep phis around that are just there for must-defs, unless we
562 absolutely have to. After we've rewritten the reaching definitions to be
563 correct in the previous part of the fixup routine, we can simply propagate
564 around the information about which of these virtual phi nodes are really
565 used, and set the NECESSARY flag accordingly.
566 Note that we do the minimum here to ensure that we keep alive the phis that
567 are actually used in the corrected SSA form. In particular, some of these
568 phis may now have all of the same operand, and will be deleted by some
569 other pass. */
571 static void
572 mark_really_necessary_kill_operand_phis (void)
574 basic_block bb;
575 int i;
577 /* Seed the worklist with the new virtual phi arguments and virtual
578 uses */
579 FOR_EACH_BB (bb)
581 block_stmt_iterator bsi;
582 tree phi;
584 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
586 if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
588 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
589 mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
593 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
595 tree stmt = bsi_stmt (bsi);
597 if (NECESSARY (stmt))
599 use_operand_p use_p;
600 ssa_op_iter iter;
601 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
602 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
604 tree use = USE_FROM_PTR (use_p);
605 mark_operand_necessary (use, true);
611 /* Mark all virtual phis still in use as necessary, and all of their
612 arguments that are phis as necessary. */
613 while (VEC_length (tree, worklist) > 0)
615 tree use = VEC_pop (tree, worklist);
617 for (i = 0; i < PHI_NUM_ARGS (use); i++)
618 mark_operand_necessary (PHI_ARG_DEF (use, i), true);
625 /* Eliminate unnecessary statements. Any instruction not marked as necessary
626 contributes nothing to the program, and can be deleted. */
628 static void
629 eliminate_unnecessary_stmts (void)
631 basic_block bb;
632 block_stmt_iterator i;
634 if (dump_file && (dump_flags & TDF_DETAILS))
635 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
637 clear_special_calls ();
638 FOR_EACH_BB (bb)
640 /* Remove dead PHI nodes. */
641 remove_dead_phis (bb);
644 FOR_EACH_BB (bb)
646 /* Remove dead statements. */
647 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
649 tree t = bsi_stmt (i);
651 stats.total++;
653 /* If `i' is not necessary then remove it. */
654 if (! NECESSARY (t))
655 remove_dead_stmt (&i, bb);
656 else
658 tree call = get_call_expr_in (t);
659 if (call)
660 notice_special_calls (call);
661 bsi_next (&i);
667 /* Remove dead PHI nodes from block BB. */
669 static void
670 remove_dead_phis (basic_block bb)
672 tree prev, phi;
674 prev = NULL_TREE;
675 phi = phi_nodes (bb);
676 while (phi)
678 stats.total_phis++;
680 if (! NECESSARY (phi))
682 tree next = PHI_CHAIN (phi);
684 if (dump_file && (dump_flags & TDF_DETAILS))
686 fprintf (dump_file, "Deleting : ");
687 print_generic_stmt (dump_file, phi, TDF_SLIM);
688 fprintf (dump_file, "\n");
691 remove_phi_node (phi, prev);
692 stats.removed_phis++;
693 phi = next;
695 else
697 prev = phi;
698 phi = PHI_CHAIN (phi);
703 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
704 containing I so that we don't have to look it up. */
706 static void
707 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
709 tree t = bsi_stmt (*i);
710 def_operand_p def_p;
712 ssa_op_iter iter;
714 if (dump_file && (dump_flags & TDF_DETAILS))
716 fprintf (dump_file, "Deleting : ");
717 print_generic_stmt (dump_file, t, TDF_SLIM);
718 fprintf (dump_file, "\n");
721 stats.removed++;
723 /* If we have determined that a conditional branch statement contributes
724 nothing to the program, then we not only remove it, but we also change
725 the flow graph so that the current block will simply fall-thru to its
726 immediate post-dominator. The blocks we are circumventing will be
727 removed by cleaup_tree_cfg if this change in the flow graph makes them
728 unreachable. */
729 if (is_ctrl_stmt (t))
731 basic_block post_dom_bb;
733 /* The post dominance info has to be up-to-date. */
734 gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
735 /* Get the immediate post dominator of bb. */
736 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
738 /* There are three particularly problematical cases.
740 1. Blocks that do not have an immediate post dominator. This
741 can happen with infinite loops.
743 2. Blocks that are only post dominated by the exit block. These
744 can also happen for infinite loops as we create fake edges
745 in the dominator tree.
747 3. If the post dominator has PHI nodes we may be able to compute
748 the right PHI args for them.
751 In each of these cases we must remove the control statement
752 as it may reference SSA_NAMEs which are going to be removed and
753 we remove all but one outgoing edge from the block. */
754 if (! post_dom_bb
755 || post_dom_bb == EXIT_BLOCK_PTR
756 || phi_nodes (post_dom_bb))
758 else
760 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
761 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
762 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
764 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
765 EDGE_SUCC (bb, 0)->count = bb->count;
767 /* The edge is no longer associated with a conditional, so it does
768 not have TRUE/FALSE flags. */
769 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
771 /* The lone outgoing edge from BB will be a fallthru edge. */
772 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
774 /* Remove the remaining the outgoing edges. */
775 while (!single_succ_p (bb))
777 /* FIXME. When we remove the edge, we modify the CFG, which
778 in turn modifies the dominator and post-dominator tree.
779 Is it safe to postpone recomputing the dominator and
780 post-dominator tree until the end of this pass given that
781 the post-dominators are used above? */
782 cfg_altered = true;
783 remove_edge (EDGE_SUCC (bb, 1));
787 FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter, SSA_OP_VIRTUAL_DEFS)
789 tree def = DEF_FROM_PTR (def_p);
790 mark_sym_for_renaming (SSA_NAME_VAR (def));
792 bsi_remove (i, true);
793 release_defs (t);
796 /* Print out removed statement statistics. */
798 static void
799 print_stats (void)
801 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
803 float percg;
805 percg = ((float) stats.removed / (float) stats.total) * 100;
806 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
807 stats.removed, stats.total, (int) percg);
809 if (stats.total_phis == 0)
810 percg = 0;
811 else
812 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
814 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
815 stats.removed_phis, stats.total_phis, (int) percg);
819 /* Initialization for this pass. Set up the used data structures. */
821 static void
822 tree_dce_init (bool aggressive)
824 memset ((void *) &stats, 0, sizeof (stats));
826 if (aggressive)
828 int i;
830 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
831 for (i = 0; i < last_basic_block; ++i)
832 control_dependence_map[i] = BITMAP_ALLOC (NULL);
834 last_stmt_necessary = sbitmap_alloc (last_basic_block);
835 sbitmap_zero (last_stmt_necessary);
838 processed = sbitmap_alloc (num_ssa_names + 1);
839 sbitmap_zero (processed);
841 worklist = VEC_alloc (tree, heap, 64);
842 cfg_altered = false;
845 /* Cleanup after this pass. */
847 static void
848 tree_dce_done (bool aggressive)
850 if (aggressive)
852 int i;
854 for (i = 0; i < last_basic_block; ++i)
855 BITMAP_FREE (control_dependence_map[i]);
856 free (control_dependence_map);
858 sbitmap_free (visited_control_parents);
859 sbitmap_free (last_stmt_necessary);
862 sbitmap_free (processed);
864 VEC_free (tree, heap, worklist);
867 /* Main routine to eliminate dead code.
869 AGGRESSIVE controls the aggressiveness of the algorithm.
870 In conservative mode, we ignore control dependence and simply declare
871 all but the most trivially dead branches necessary. This mode is fast.
872 In aggressive mode, control dependences are taken into account, which
873 results in more dead code elimination, but at the cost of some time.
875 FIXME: Aggressive mode before PRE doesn't work currently because
876 the dominance info is not invalidated after DCE1. This is
877 not an issue right now because we only run aggressive DCE
878 as the last tree SSA pass, but keep this in mind when you
879 start experimenting with pass ordering. */
881 static void
882 perform_tree_ssa_dce (bool aggressive)
884 struct edge_list *el = NULL;
886 tree_dce_init (aggressive);
888 if (aggressive)
890 /* Compute control dependence. */
891 timevar_push (TV_CONTROL_DEPENDENCES);
892 calculate_dominance_info (CDI_POST_DOMINATORS);
893 el = create_edge_list ();
894 find_all_control_dependences (el);
895 timevar_pop (TV_CONTROL_DEPENDENCES);
897 visited_control_parents = sbitmap_alloc (last_basic_block);
898 sbitmap_zero (visited_control_parents);
900 mark_dfs_back_edges ();
903 find_obviously_necessary_stmts (el);
905 propagate_necessity (el);
907 mark_really_necessary_kill_operand_phis ();
908 eliminate_unnecessary_stmts ();
910 if (aggressive)
911 free_dominance_info (CDI_POST_DOMINATORS);
913 /* If we removed paths in the CFG, then we need to update
914 dominators as well. I haven't investigated the possibility
915 of incrementally updating dominators. */
916 if (cfg_altered)
917 free_dominance_info (CDI_DOMINATORS);
919 /* Debugging dumps. */
920 if (dump_file)
921 print_stats ();
923 tree_dce_done (aggressive);
925 free_edge_list (el);
928 /* Pass entry points. */
929 static void
930 tree_ssa_dce (void)
932 perform_tree_ssa_dce (/*aggressive=*/false);
935 static void
936 tree_ssa_dce_loop (void)
938 perform_tree_ssa_dce (/*aggressive=*/false);
939 free_numbers_of_iterations_estimates (current_loops);
940 scev_reset ();
943 static void
944 tree_ssa_cd_dce (void)
946 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
949 static bool
950 gate_dce (void)
952 return flag_tree_dce != 0;
955 struct tree_opt_pass pass_dce =
957 "dce", /* name */
958 gate_dce, /* gate */
959 tree_ssa_dce, /* execute */
960 NULL, /* sub */
961 NULL, /* next */
962 0, /* static_pass_number */
963 TV_TREE_DCE, /* tv_id */
964 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
965 0, /* properties_provided */
966 0, /* properties_destroyed */
967 0, /* todo_flags_start */
968 TODO_dump_func
969 | TODO_update_ssa
970 | TODO_cleanup_cfg
971 | TODO_ggc_collect
972 | TODO_verify_ssa
973 | TODO_remove_unused_locals, /* todo_flags_finish */
974 0 /* letter */
977 struct tree_opt_pass pass_dce_loop =
979 "dceloop", /* name */
980 gate_dce, /* gate */
981 tree_ssa_dce_loop, /* execute */
982 NULL, /* sub */
983 NULL, /* next */
984 0, /* static_pass_number */
985 TV_TREE_DCE, /* tv_id */
986 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
987 0, /* properties_provided */
988 0, /* properties_destroyed */
989 0, /* todo_flags_start */
990 TODO_dump_func
991 | TODO_update_ssa
992 | TODO_cleanup_cfg
993 | TODO_verify_ssa, /* todo_flags_finish */
994 0 /* letter */
997 struct tree_opt_pass pass_cd_dce =
999 "cddce", /* name */
1000 gate_dce, /* gate */
1001 tree_ssa_cd_dce, /* execute */
1002 NULL, /* sub */
1003 NULL, /* next */
1004 0, /* static_pass_number */
1005 TV_TREE_CD_DCE, /* tv_id */
1006 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1007 0, /* properties_provided */
1008 0, /* properties_destroyed */
1009 0, /* todo_flags_start */
1010 TODO_dump_func
1011 | TODO_update_ssa
1012 | TODO_cleanup_cfg
1013 | TODO_ggc_collect
1014 | TODO_verify_ssa
1015 | TODO_verify_flow, /* todo_flags_finish */
1016 0 /* letter */