Merge from mainline
[official-gcc.git] / gcc / tree-flow-inline.h
blobe33665612a37a0547433461fcf11e96df211145f
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
30 static inline void *
31 first_htab_element (htab_iterator *hti, htab_t table)
33 hti->htab = table;
34 hti->slot = table->entries;
35 hti->limit = hti->slot + htab_size (table);
38 PTR x = *(hti->slot);
39 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
40 break;
41 } while (++(hti->slot) < hti->limit);
43 if (hti->slot < hti->limit)
44 return *(hti->slot);
45 return NULL;
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49 or NULL if we have reached the end. */
51 static inline bool
52 end_htab_p (htab_iterator *hti)
54 if (hti->slot >= hti->limit)
55 return true;
56 return false;
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
60 hashtable. */
62 static inline void *
63 next_htab_element (htab_iterator *hti)
65 while (++(hti->slot) < hti->limit)
67 PTR x = *(hti->slot);
68 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
69 return x;
71 return NULL;
74 /* Initialize ITER to point to the first referenced variable in the
75 referenced_vars hashtable, and return that variable. */
77 static inline tree
78 first_referenced_var (referenced_var_iterator *iter)
80 struct int_tree_map *itm;
81 itm = (struct int_tree_map *) first_htab_element (&iter->hti,
82 referenced_vars);
83 if (!itm)
84 return NULL;
85 return itm->to;
88 /* Return true if we have hit the end of the referenced variables ITER is
89 iterating through. */
91 static inline bool
92 end_referenced_vars_p (referenced_var_iterator *iter)
94 return end_htab_p (&iter->hti);
97 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
98 and return that variable. */
100 static inline tree
101 next_referenced_var (referenced_var_iterator *iter)
103 struct int_tree_map *itm;
104 itm = (struct int_tree_map *) next_htab_element (&iter->hti);
105 if (!itm)
106 return NULL;
107 return itm->to;
110 /* Fill up VEC with the variables in the referenced vars hashtable. */
112 static inline void
113 fill_referenced_var_vec (VEC (tree, heap) **vec)
115 referenced_var_iterator rvi;
116 tree var;
117 *vec = NULL;
118 FOR_EACH_REFERENCED_VAR (var, rvi)
119 VEC_safe_push (tree, heap, *vec, var);
122 /* Return the variable annotation for T, which must be a _DECL node.
123 Return NULL if the variable annotation doesn't already exist. */
124 static inline var_ann_t
125 var_ann (tree t)
127 gcc_assert (t);
128 gcc_assert (DECL_P (t));
129 gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
130 gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
132 return (var_ann_t) t->common.ann;
135 /* Return the variable annotation for T, which must be a _DECL node.
136 Create the variable annotation if it doesn't exist. */
137 static inline var_ann_t
138 get_var_ann (tree var)
140 var_ann_t ann = var_ann (var);
141 return (ann) ? ann : create_var_ann (var);
144 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
145 Return NULL if the function annotation doesn't already exist. */
146 static inline function_ann_t
147 function_ann (tree t)
149 gcc_assert (t);
150 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
151 gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
153 return (function_ann_t) t->common.ann;
156 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
157 Create the function annotation if it doesn't exist. */
158 static inline function_ann_t
159 get_function_ann (tree var)
161 function_ann_t ann = function_ann (var);
162 return (ann) ? ann : create_function_ann (var);
165 /* Return the statement annotation for T, which must be a statement
166 node. Return NULL if the statement annotation doesn't exist. */
167 static inline stmt_ann_t
168 stmt_ann (tree t)
170 #ifdef ENABLE_CHECKING
171 gcc_assert (is_gimple_stmt (t));
172 #endif
173 return (stmt_ann_t) t->common.ann;
176 /* Return the statement annotation for T, which must be a statement
177 node. Create the statement annotation if it doesn't exist. */
178 static inline stmt_ann_t
179 get_stmt_ann (tree stmt)
181 stmt_ann_t ann = stmt_ann (stmt);
182 return (ann) ? ann : create_stmt_ann (stmt);
185 /* Return the annotation type for annotation ANN. */
186 static inline enum tree_ann_type
187 ann_type (tree_ann_t ann)
189 return ann->common.type;
192 /* Return the basic block for statement T. */
193 static inline basic_block
194 bb_for_stmt (tree t)
196 stmt_ann_t ann;
198 if (TREE_CODE (t) == PHI_NODE)
199 return PHI_BB (t);
201 ann = stmt_ann (t);
202 return ann ? ann->bb : NULL;
205 /* Return the may_aliases varray for variable VAR, or NULL if it has
206 no may aliases. */
207 static inline VEC(tree, gc) *
208 may_aliases (tree var)
210 var_ann_t ann = var_ann (var);
211 return ann ? ann->may_aliases : NULL;
214 /* Return the line number for EXPR, or return -1 if we have no line
215 number information for it. */
216 static inline int
217 get_lineno (tree expr)
219 if (expr == NULL_TREE)
220 return -1;
222 if (TREE_CODE (expr) == COMPOUND_EXPR)
223 expr = TREE_OPERAND (expr, 0);
225 if (! EXPR_HAS_LOCATION (expr))
226 return -1;
228 return EXPR_LINENO (expr);
231 /* Return the file name for EXPR, or return "???" if we have no
232 filename information. */
233 static inline const char *
234 get_filename (tree expr)
236 const char *filename;
237 if (expr == NULL_TREE)
238 return "???";
240 if (TREE_CODE (expr) == COMPOUND_EXPR)
241 expr = TREE_OPERAND (expr, 0);
243 if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
244 return filename;
245 else
246 return "???";
249 /* Return true if T is a noreturn call. */
250 static inline bool
251 noreturn_call_p (tree t)
253 tree call = get_call_expr_in (t);
254 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
257 /* Mark statement T as modified. */
258 static inline void
259 mark_stmt_modified (tree t)
261 stmt_ann_t ann;
262 if (TREE_CODE (t) == PHI_NODE)
263 return;
265 ann = stmt_ann (t);
266 if (ann == NULL)
267 ann = create_stmt_ann (t);
268 else if (noreturn_call_p (t))
269 VEC_safe_push (tree, gc, modified_noreturn_calls, t);
270 ann->modified = 1;
273 /* Mark statement T as modified, and update it. */
274 static inline void
275 update_stmt (tree t)
277 if (TREE_CODE (t) == PHI_NODE)
278 return;
279 mark_stmt_modified (t);
280 update_stmt_operands (t);
283 static inline void
284 update_stmt_if_modified (tree t)
286 if (stmt_modified_p (t))
287 update_stmt_operands (t);
290 /* Return true if T is marked as modified, false otherwise. */
291 static inline bool
292 stmt_modified_p (tree t)
294 stmt_ann_t ann = stmt_ann (t);
296 /* Note that if the statement doesn't yet have an annotation, we consider it
297 modified. This will force the next call to update_stmt_operands to scan
298 the statement. */
299 return ann ? ann->modified : true;
302 /* Delink an immediate_uses node from its chain. */
303 static inline void
304 delink_imm_use (ssa_use_operand_t *linknode)
306 /* Return if this node is not in a list. */
307 if (linknode->prev == NULL)
308 return;
310 linknode->prev->next = linknode->next;
311 linknode->next->prev = linknode->prev;
312 linknode->prev = NULL;
313 linknode->next = NULL;
316 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
317 static inline void
318 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
320 /* Link the new node at the head of the list. If we are in the process of
321 traversing the list, we won't visit any new nodes added to it. */
322 linknode->prev = list;
323 linknode->next = list->next;
324 list->next->prev = linknode;
325 list->next = linknode;
328 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
329 static inline void
330 link_imm_use (ssa_use_operand_t *linknode, tree def)
332 ssa_use_operand_t *root;
334 if (!def || TREE_CODE (def) != SSA_NAME)
335 linknode->prev = NULL;
336 else
338 root = &(SSA_NAME_IMM_USE_NODE (def));
339 #ifdef ENABLE_CHECKING
340 if (linknode->use)
341 gcc_assert (*(linknode->use) == def);
342 #endif
343 link_imm_use_to_list (linknode, root);
347 /* Set the value of a use pointed to by USE to VAL. */
348 static inline void
349 set_ssa_use_from_ptr (use_operand_p use, tree val)
351 delink_imm_use (use);
352 *(use->use) = val;
353 link_imm_use (use, val);
356 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
357 in STMT. */
358 static inline void
359 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
361 if (stmt)
362 link_imm_use (linknode, def);
363 else
364 link_imm_use (linknode, NULL);
365 linknode->stmt = stmt;
368 /* Relink a new node in place of an old node in the list. */
369 static inline void
370 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
372 /* The node one had better be in the same list. */
373 gcc_assert (*(old->use) == *(node->use));
374 node->prev = old->prev;
375 node->next = old->next;
376 if (old->prev)
378 old->prev->next = node;
379 old->next->prev = node;
380 /* Remove the old node from the list. */
381 old->prev = NULL;
385 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
386 in STMT. */
387 static inline void
388 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
390 if (stmt)
391 relink_imm_use (linknode, old);
392 else
393 link_imm_use (linknode, NULL);
394 linknode->stmt = stmt;
397 /* Finished the traverse of an immediate use list IMM by removing it from
398 the list. */
399 static inline void
400 end_safe_imm_use_traverse (imm_use_iterator *imm)
402 delink_imm_use (&(imm->iter_node));
405 /* Return true if IMM is at the end of the list. */
406 static inline bool
407 end_safe_imm_use_p (imm_use_iterator *imm)
409 return (imm->imm_use == imm->end_p);
412 /* Initialize iterator IMM to process the list for VAR. */
413 static inline use_operand_p
414 first_safe_imm_use (imm_use_iterator *imm, tree var)
416 /* Set up and link the iterator node into the linked list for VAR. */
417 imm->iter_node.use = NULL;
418 imm->iter_node.stmt = NULL_TREE;
419 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
420 /* Check if there are 0 elements. */
421 if (imm->end_p->next == imm->end_p)
423 imm->imm_use = imm->end_p;
424 return NULL_USE_OPERAND_P;
427 link_imm_use (&(imm->iter_node), var);
428 imm->imm_use = imm->iter_node.next;
429 return imm->imm_use;
432 /* Bump IMM to the next use in the list. */
433 static inline use_operand_p
434 next_safe_imm_use (imm_use_iterator *imm)
436 ssa_use_operand_t *ptr;
437 use_operand_p old;
439 old = imm->imm_use;
440 /* If the next node following the iter_node is still the one referred to by
441 imm_use, then the list hasn't changed, go to the next node. */
442 if (imm->iter_node.next == imm->imm_use)
444 ptr = &(imm->iter_node);
445 /* Remove iternode from the list. */
446 delink_imm_use (ptr);
447 imm->imm_use = imm->imm_use->next;
448 if (! end_safe_imm_use_p (imm))
450 /* This isn't the end, link iternode before the next use. */
451 ptr->prev = imm->imm_use->prev;
452 ptr->next = imm->imm_use;
453 imm->imm_use->prev->next = ptr;
454 imm->imm_use->prev = ptr;
456 else
457 return old;
459 else
461 /* If the 'next' value after the iterator isn't the same as it was, then
462 a node has been deleted, so we simply proceed to the node following
463 where the iterator is in the list. */
464 imm->imm_use = imm->iter_node.next;
465 if (end_safe_imm_use_p (imm))
467 end_safe_imm_use_traverse (imm);
468 return old;
472 return imm->imm_use;
475 /* Return true is IMM has reached the end of the immediate use list. */
476 static inline bool
477 end_readonly_imm_use_p (imm_use_iterator *imm)
479 return (imm->imm_use == imm->end_p);
482 /* Initialize iterator IMM to process the list for VAR. */
483 static inline use_operand_p
484 first_readonly_imm_use (imm_use_iterator *imm, tree var)
486 gcc_assert (TREE_CODE (var) == SSA_NAME);
488 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
489 imm->imm_use = imm->end_p->next;
490 #ifdef ENABLE_CHECKING
491 imm->iter_node.next = imm->imm_use->next;
492 #endif
493 if (end_readonly_imm_use_p (imm))
494 return NULL_USE_OPERAND_P;
495 return imm->imm_use;
498 /* Bump IMM to the next use in the list. */
499 static inline use_operand_p
500 next_readonly_imm_use (imm_use_iterator *imm)
502 use_operand_p old = imm->imm_use;
504 #ifdef ENABLE_CHECKING
505 /* If this assertion fails, it indicates the 'next' pointer has changed
506 since we the last bump. This indicates that the list is being modified
507 via stmt changes, or SET_USE, or somesuch thing, and you need to be
508 using the SAFE version of the iterator. */
509 gcc_assert (imm->iter_node.next == old->next);
510 imm->iter_node.next = old->next->next;
511 #endif
513 imm->imm_use = old->next;
514 if (end_readonly_imm_use_p (imm))
515 return old;
516 return imm->imm_use;
519 /* Return true if VAR has no uses. */
520 static inline bool
521 has_zero_uses (tree var)
523 ssa_use_operand_t *ptr;
524 ptr = &(SSA_NAME_IMM_USE_NODE (var));
525 /* A single use means there is no items in the list. */
526 return (ptr == ptr->next);
529 /* Return true if VAR has a single use. */
530 static inline bool
531 has_single_use (tree var)
533 ssa_use_operand_t *ptr;
534 ptr = &(SSA_NAME_IMM_USE_NODE (var));
535 /* A single use means there is one item in the list. */
536 return (ptr != ptr->next && ptr == ptr->next->next);
539 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
540 to the use pointer and stmt of occurrence. */
541 static inline bool
542 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
544 ssa_use_operand_t *ptr;
546 ptr = &(SSA_NAME_IMM_USE_NODE (var));
547 if (ptr != ptr->next && ptr == ptr->next->next)
549 *use_p = ptr->next;
550 *stmt = ptr->next->stmt;
551 return true;
553 *use_p = NULL_USE_OPERAND_P;
554 *stmt = NULL_TREE;
555 return false;
558 /* Return the number of immediate uses of VAR. */
559 static inline unsigned int
560 num_imm_uses (tree var)
562 ssa_use_operand_t *ptr, *start;
563 unsigned int num;
565 start = &(SSA_NAME_IMM_USE_NODE (var));
566 num = 0;
567 for (ptr = start->next; ptr != start; ptr = ptr->next)
568 num++;
570 return num;
574 /* Return the tree pointer to by USE. */
575 static inline tree
576 get_use_from_ptr (use_operand_p use)
578 return *(use->use);
581 /* Return the tree pointer to by DEF. */
582 static inline tree
583 get_def_from_ptr (def_operand_p def)
585 return *def;
588 /* Return a def_operand_p pointer for the result of PHI. */
589 static inline def_operand_p
590 get_phi_result_ptr (tree phi)
592 return &(PHI_RESULT_TREE (phi));
595 /* Return a use_operand_p pointer for argument I of phinode PHI. */
596 static inline use_operand_p
597 get_phi_arg_def_ptr (tree phi, int i)
599 return &(PHI_ARG_IMM_USE_NODE (phi,i));
603 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
604 no addresses. */
605 static inline bitmap
606 addresses_taken (tree stmt)
608 stmt_ann_t ann = stmt_ann (stmt);
609 return ann ? ann->addresses_taken : NULL;
612 /* Return the PHI nodes for basic block BB, or NULL if there are no
613 PHI nodes. */
614 static inline tree
615 phi_nodes (basic_block bb)
617 return bb->phi_nodes;
620 /* Set list of phi nodes of a basic block BB to L. */
622 static inline void
623 set_phi_nodes (basic_block bb, tree l)
625 tree phi;
627 bb->phi_nodes = l;
628 for (phi = l; phi; phi = PHI_CHAIN (phi))
629 set_bb_for_stmt (phi, bb);
632 /* Return the phi argument which contains the specified use. */
634 static inline int
635 phi_arg_index_from_use (use_operand_p use)
637 struct phi_arg_d *element, *root;
638 int index;
639 tree phi;
641 /* Since the use is the first thing in a PHI argument element, we can
642 calculate its index based on casting it to an argument, and performing
643 pointer arithmetic. */
645 phi = USE_STMT (use);
646 gcc_assert (TREE_CODE (phi) == PHI_NODE);
648 element = (struct phi_arg_d *)use;
649 root = &(PHI_ARG_ELT (phi, 0));
650 index = element - root;
652 #ifdef ENABLE_CHECKING
653 /* Make sure the calculation doesn't have any leftover bytes. If it does,
654 then imm_use is likely not the first element in phi_arg_d. */
655 gcc_assert (
656 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
657 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
658 #endif
660 return index;
663 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
665 static inline void
666 set_is_used (tree var)
668 var_ann_t ann = get_var_ann (var);
669 ann->used = 1;
673 /* ----------------------------------------------------------------------- */
675 /* Return true if T is an executable statement. */
676 static inline bool
677 is_exec_stmt (tree t)
679 return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
683 /* Return true if this stmt can be the target of a control transfer stmt such
684 as a goto. */
685 static inline bool
686 is_label_stmt (tree t)
688 if (t)
689 switch (TREE_CODE (t))
691 case LABEL_DECL:
692 case LABEL_EXPR:
693 case CASE_LABEL_EXPR:
694 return true;
695 default:
696 return false;
698 return false;
701 /* PHI nodes should contain only ssa_names and invariants. A test
702 for ssa_name is definitely simpler; don't let invalid contents
703 slip in in the meantime. */
705 static inline bool
706 phi_ssa_name_p (tree t)
708 if (TREE_CODE (t) == SSA_NAME)
709 return true;
710 #ifdef ENABLE_CHECKING
711 gcc_assert (is_gimple_min_invariant (t));
712 #endif
713 return false;
716 /* ----------------------------------------------------------------------- */
718 /* Return a block_stmt_iterator that points to beginning of basic
719 block BB. */
720 static inline block_stmt_iterator
721 bsi_start (basic_block bb)
723 block_stmt_iterator bsi;
724 if (bb->stmt_list)
725 bsi.tsi = tsi_start (bb->stmt_list);
726 else
728 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
729 bsi.tsi.ptr = NULL;
730 bsi.tsi.container = NULL;
732 bsi.bb = bb;
733 return bsi;
736 /* Return a block statement iterator that points to the first non-label
737 statement in block BB. */
739 static inline block_stmt_iterator
740 bsi_after_labels (basic_block bb)
742 block_stmt_iterator bsi = bsi_start (bb);
744 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
745 bsi_next (&bsi);
747 return bsi;
750 /* Return a block statement iterator that points to the end of basic
751 block BB. */
752 static inline block_stmt_iterator
753 bsi_last (basic_block bb)
755 block_stmt_iterator bsi;
756 if (bb->stmt_list)
757 bsi.tsi = tsi_last (bb->stmt_list);
758 else
760 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
761 bsi.tsi.ptr = NULL;
762 bsi.tsi.container = NULL;
764 bsi.bb = bb;
765 return bsi;
768 /* Return true if block statement iterator I has reached the end of
769 the basic block. */
770 static inline bool
771 bsi_end_p (block_stmt_iterator i)
773 return tsi_end_p (i.tsi);
776 /* Modify block statement iterator I so that it is at the next
777 statement in the basic block. */
778 static inline void
779 bsi_next (block_stmt_iterator *i)
781 tsi_next (&i->tsi);
784 /* Modify block statement iterator I so that it is at the previous
785 statement in the basic block. */
786 static inline void
787 bsi_prev (block_stmt_iterator *i)
789 tsi_prev (&i->tsi);
792 /* Return the statement that block statement iterator I is currently
793 at. */
794 static inline tree
795 bsi_stmt (block_stmt_iterator i)
797 return tsi_stmt (i.tsi);
800 /* Return a pointer to the statement that block statement iterator I
801 is currently at. */
802 static inline tree *
803 bsi_stmt_ptr (block_stmt_iterator i)
805 return tsi_stmt_ptr (i.tsi);
808 /* Returns the loop of the statement STMT. */
810 static inline struct loop *
811 loop_containing_stmt (tree stmt)
813 basic_block bb = bb_for_stmt (stmt);
814 if (!bb)
815 return NULL;
817 return bb->loop_father;
820 /* Return true if VAR is a clobbered by function calls. */
821 static inline bool
822 is_call_clobbered (tree var)
824 return bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
827 /* Mark variable VAR as being clobbered by function calls. */
828 static inline void
829 mark_call_clobbered (tree var, unsigned int escape_type)
831 var_ann (var)->escape_mask |= escape_type;
832 bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
835 /* Clear the call-clobbered attribute from variable VAR. */
836 static inline void
837 clear_call_clobbered (tree var)
839 var_ann_t ann = var_ann (var);
840 ann->escape_mask = 0;
841 if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
842 MTAG_GLOBAL (var) = 0;
843 bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
846 /* Mark variable VAR as being non-addressable. */
847 static inline void
848 mark_non_addressable (tree var)
850 bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
851 TREE_ADDRESSABLE (var) = 0;
854 /* Return the common annotation for T. Return NULL if the annotation
855 doesn't already exist. */
856 static inline tree_ann_t
857 tree_ann (tree t)
859 return t->common.ann;
862 /* Return a common annotation for T. Create the constant annotation if it
863 doesn't exist. */
864 static inline tree_ann_t
865 get_tree_ann (tree t)
867 tree_ann_t ann = tree_ann (t);
868 return (ann) ? ann : create_tree_ann (t);
871 /* ----------------------------------------------------------------------- */
873 /* The following set of routines are used to iterator over various type of
874 SSA operands. */
876 /* Return true if PTR is finished iterating. */
877 static inline bool
878 op_iter_done (ssa_op_iter *ptr)
880 return ptr->done;
883 /* Get the next iterator use value for PTR. */
884 static inline use_operand_p
885 op_iter_next_use (ssa_op_iter *ptr)
887 use_operand_p use_p;
888 #ifdef ENABLE_CHECKING
889 gcc_assert (ptr->iter_type == ssa_op_iter_use);
890 #endif
891 if (ptr->uses)
893 use_p = USE_OP_PTR (ptr->uses);
894 ptr->uses = ptr->uses->next;
895 return use_p;
897 if (ptr->vuses)
899 use_p = VUSE_OP_PTR (ptr->vuses);
900 ptr->vuses = ptr->vuses->next;
901 return use_p;
903 if (ptr->mayuses)
905 use_p = MAYDEF_OP_PTR (ptr->mayuses);
906 ptr->mayuses = ptr->mayuses->next;
907 return use_p;
909 if (ptr->mustkills)
911 use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
912 ptr->mustkills = ptr->mustkills->next;
913 return use_p;
915 if (ptr->phi_i < ptr->num_phi)
917 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
919 ptr->done = true;
920 return NULL_USE_OPERAND_P;
923 /* Get the next iterator def value for PTR. */
924 static inline def_operand_p
925 op_iter_next_def (ssa_op_iter *ptr)
927 def_operand_p def_p;
928 #ifdef ENABLE_CHECKING
929 gcc_assert (ptr->iter_type == ssa_op_iter_def);
930 #endif
931 if (ptr->defs)
933 def_p = DEF_OP_PTR (ptr->defs);
934 ptr->defs = ptr->defs->next;
935 return def_p;
937 if (ptr->mustdefs)
939 def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
940 ptr->mustdefs = ptr->mustdefs->next;
941 return def_p;
943 if (ptr->maydefs)
945 def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
946 ptr->maydefs = ptr->maydefs->next;
947 return def_p;
949 ptr->done = true;
950 return NULL_DEF_OPERAND_P;
953 /* Get the next iterator tree value for PTR. */
954 static inline tree
955 op_iter_next_tree (ssa_op_iter *ptr)
957 tree val;
958 #ifdef ENABLE_CHECKING
959 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
960 #endif
961 if (ptr->uses)
963 val = USE_OP (ptr->uses);
964 ptr->uses = ptr->uses->next;
965 return val;
967 if (ptr->vuses)
969 val = VUSE_OP (ptr->vuses);
970 ptr->vuses = ptr->vuses->next;
971 return val;
973 if (ptr->mayuses)
975 val = MAYDEF_OP (ptr->mayuses);
976 ptr->mayuses = ptr->mayuses->next;
977 return val;
979 if (ptr->mustkills)
981 val = MUSTDEF_KILL (ptr->mustkills);
982 ptr->mustkills = ptr->mustkills->next;
983 return val;
985 if (ptr->defs)
987 val = DEF_OP (ptr->defs);
988 ptr->defs = ptr->defs->next;
989 return val;
991 if (ptr->mustdefs)
993 val = MUSTDEF_RESULT (ptr->mustdefs);
994 ptr->mustdefs = ptr->mustdefs->next;
995 return val;
997 if (ptr->maydefs)
999 val = MAYDEF_RESULT (ptr->maydefs);
1000 ptr->maydefs = ptr->maydefs->next;
1001 return val;
1004 ptr->done = true;
1005 return NULL_TREE;
1010 /* This functions clears the iterator PTR, and marks it done. This is normally
1011 used to prevent warnings in the compile about might be uninitialized
1012 components. */
1014 static inline void
1015 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1017 ptr->defs = NULL;
1018 ptr->uses = NULL;
1019 ptr->vuses = NULL;
1020 ptr->maydefs = NULL;
1021 ptr->mayuses = NULL;
1022 ptr->mustdefs = NULL;
1023 ptr->mustkills = NULL;
1024 ptr->iter_type = ssa_op_iter_none;
1025 ptr->phi_i = 0;
1026 ptr->num_phi = 0;
1027 ptr->phi_stmt = NULL_TREE;
1028 ptr->done = true;
1031 /* Initialize the iterator PTR to the virtual defs in STMT. */
1032 static inline void
1033 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1035 #ifdef ENABLE_CHECKING
1036 gcc_assert (stmt_ann (stmt));
1037 #endif
1039 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1040 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1041 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1042 ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
1043 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
1044 ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
1045 ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
1046 ptr->done = false;
1048 ptr->phi_i = 0;
1049 ptr->num_phi = 0;
1050 ptr->phi_stmt = NULL_TREE;
1053 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1054 the first use. */
1055 static inline use_operand_p
1056 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1058 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1059 op_iter_init (ptr, stmt, flags);
1060 ptr->iter_type = ssa_op_iter_use;
1061 return op_iter_next_use (ptr);
1064 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1065 the first def. */
1066 static inline def_operand_p
1067 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1069 gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
1070 op_iter_init (ptr, stmt, flags);
1071 ptr->iter_type = ssa_op_iter_def;
1072 return op_iter_next_def (ptr);
1075 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1076 the first operand as a tree. */
1077 static inline tree
1078 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1080 op_iter_init (ptr, stmt, flags);
1081 ptr->iter_type = ssa_op_iter_tree;
1082 return op_iter_next_tree (ptr);
1085 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1086 KILL and DEF. */
1087 static inline void
1088 op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
1089 ssa_op_iter *ptr)
1091 #ifdef ENABLE_CHECKING
1092 gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
1093 #endif
1094 if (ptr->mayuses)
1096 *def = MAYDEF_RESULT_PTR (ptr->mayuses);
1097 *use = MAYDEF_OP_PTR (ptr->mayuses);
1098 ptr->mayuses = ptr->mayuses->next;
1099 return;
1102 if (ptr->mustkills)
1104 *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
1105 *use = MUSTDEF_KILL_PTR (ptr->mustkills);
1106 ptr->mustkills = ptr->mustkills->next;
1107 return;
1110 *def = NULL_DEF_OPERAND_P;
1111 *use = NULL_USE_OPERAND_P;
1112 ptr->done = true;
1113 return;
1117 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1118 in USE and DEF. */
1119 static inline void
1120 op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
1121 def_operand_p *def)
1123 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1125 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1126 ptr->iter_type = ssa_op_iter_maymustdef;
1127 op_iter_next_maymustdef (use, def, ptr);
1131 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1132 in KILL and DEF. */
1133 static inline void
1134 op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
1135 def_operand_p *def)
1137 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1139 op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
1140 ptr->iter_type = ssa_op_iter_maymustdef;
1141 op_iter_next_maymustdef (kill, def, ptr);
1144 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1145 in KILL and DEF. */
1146 static inline void
1147 op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
1148 use_operand_p *kill, def_operand_p *def)
1150 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1152 op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
1153 ptr->iter_type = ssa_op_iter_maymustdef;
1154 op_iter_next_maymustdef (kill, def, ptr);
1158 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1159 return NULL. */
1160 static inline tree
1161 single_ssa_tree_operand (tree stmt, int flags)
1163 tree var;
1164 ssa_op_iter iter;
1166 var = op_iter_init_tree (&iter, stmt, flags);
1167 if (op_iter_done (&iter))
1168 return NULL_TREE;
1169 op_iter_next_tree (&iter);
1170 if (op_iter_done (&iter))
1171 return var;
1172 return NULL_TREE;
1176 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1177 return NULL. */
1178 static inline use_operand_p
1179 single_ssa_use_operand (tree stmt, int flags)
1181 use_operand_p var;
1182 ssa_op_iter iter;
1184 var = op_iter_init_use (&iter, stmt, flags);
1185 if (op_iter_done (&iter))
1186 return NULL_USE_OPERAND_P;
1187 op_iter_next_use (&iter);
1188 if (op_iter_done (&iter))
1189 return var;
1190 return NULL_USE_OPERAND_P;
1195 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1196 return NULL. */
1197 static inline def_operand_p
1198 single_ssa_def_operand (tree stmt, int flags)
1200 def_operand_p var;
1201 ssa_op_iter iter;
1203 var = op_iter_init_def (&iter, stmt, flags);
1204 if (op_iter_done (&iter))
1205 return NULL_DEF_OPERAND_P;
1206 op_iter_next_def (&iter);
1207 if (op_iter_done (&iter))
1208 return var;
1209 return NULL_DEF_OPERAND_P;
1213 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1214 return NULL. */
1215 static inline bool
1216 zero_ssa_operands (tree stmt, int flags)
1218 ssa_op_iter iter;
1220 op_iter_init_tree (&iter, stmt, flags);
1221 return op_iter_done (&iter);
1225 /* Return the number of operands matching FLAGS in STMT. */
1226 static inline int
1227 num_ssa_operands (tree stmt, int flags)
1229 ssa_op_iter iter;
1230 tree t;
1231 int num = 0;
1233 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1234 num++;
1235 return num;
1239 /* Delink all immediate_use information for STMT. */
1240 static inline void
1241 delink_stmt_imm_use (tree stmt)
1243 ssa_op_iter iter;
1244 use_operand_p use_p;
1246 if (ssa_operands_active ())
1247 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1248 (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
1249 delink_imm_use (use_p);
1253 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1254 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1255 static inline bool
1256 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1258 ssa_op_iter iter1, iter2;
1259 tree op1 = NULL_TREE;
1260 tree op2 = NULL_TREE;
1261 bool look1, look2;
1263 if (stmt1 == stmt2)
1264 return true;
1266 look1 = stmt1 && stmt_ann (stmt1);
1267 look2 = stmt2 && stmt_ann (stmt2);
1269 if (look1)
1271 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1272 if (!look2)
1273 return op_iter_done (&iter1);
1275 else
1276 clear_and_done_ssa_iter (&iter1);
1278 if (look2)
1280 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1281 if (!look1)
1282 return op_iter_done (&iter2);
1284 else
1285 clear_and_done_ssa_iter (&iter2);
1287 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1289 if (op1 != op2)
1290 return false;
1291 op1 = op_iter_next_tree (&iter1);
1292 op2 = op_iter_next_tree (&iter2);
1295 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1299 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1300 Otherwise return NULL_DEF_OPERAND_P. */
1301 static inline tree
1302 single_phi_def (tree stmt, int flags)
1304 tree def = PHI_RESULT (stmt);
1305 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1306 return def;
1307 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1308 return def;
1309 return NULL_TREE;
1312 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1313 be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */
1314 static inline use_operand_p
1315 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1317 tree phi_def = PHI_RESULT (phi);
1318 int comp;
1320 clear_and_done_ssa_iter (ptr);
1321 ptr->done = false;
1323 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1325 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1327 /* If the PHI node doesn't the operand type we care about, we're done. */
1328 if ((flags & comp) == 0)
1330 ptr->done = true;
1331 return NULL_USE_OPERAND_P;
1334 ptr->phi_stmt = phi;
1335 ptr->num_phi = PHI_NUM_ARGS (phi);
1336 ptr->iter_type = ssa_op_iter_use;
1337 return op_iter_next_use (ptr);
1341 /* Start an iterator for a PHI definition. */
1343 static inline def_operand_p
1344 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1346 tree phi_def = PHI_RESULT (phi);
1347 int comp;
1349 clear_and_done_ssa_iter (ptr);
1350 ptr->done = false;
1352 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1354 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1356 /* If the PHI node doesn't the operand type we care about, we're done. */
1357 if ((flags & comp) == 0)
1359 ptr->done = true;
1360 return NULL_USE_OPERAND_P;
1363 ptr->iter_type = ssa_op_iter_def;
1364 /* The first call to op_iter_next_def will terminate the iterator since
1365 all the fields are NULL. Simply return the result here as the first and
1366 therefore only result. */
1367 return PHI_RESULT_PTR (phi);
1372 /* Return true if VAR cannot be modified by the program. */
1374 static inline bool
1375 unmodifiable_var_p (tree var)
1377 if (TREE_CODE (var) == SSA_NAME)
1378 var = SSA_NAME_VAR (var);
1380 if (MTAG_P (var))
1381 return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1383 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1386 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1388 static inline bool
1389 array_ref_contains_indirect_ref (tree ref)
1391 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1393 do {
1394 ref = TREE_OPERAND (ref, 0);
1395 } while (handled_component_p (ref));
1397 return TREE_CODE (ref) == INDIRECT_REF;
1400 /* Return true if REF, a handled component reference, has an ARRAY_REF
1401 somewhere in it. */
1403 static inline bool
1404 ref_contains_array_ref (tree ref)
1406 gcc_assert (handled_component_p (ref));
1408 do {
1409 if (TREE_CODE (ref) == ARRAY_REF)
1410 return true;
1411 ref = TREE_OPERAND (ref, 0);
1412 } while (handled_component_p (ref));
1414 return false;
1417 /* Given a variable VAR, lookup and return a pointer to the list of
1418 subvariables for it. */
1420 static inline subvar_t *
1421 lookup_subvars_for_var (tree var)
1423 var_ann_t ann = var_ann (var);
1424 gcc_assert (ann);
1425 return &ann->subvars;
1428 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1429 NULL, if there are no subvariables. */
1431 static inline subvar_t
1432 get_subvars_for_var (tree var)
1434 subvar_t subvars;
1436 gcc_assert (SSA_VAR_P (var));
1438 if (TREE_CODE (var) == SSA_NAME)
1439 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1440 else
1441 subvars = *(lookup_subvars_for_var (var));
1442 return subvars;
1445 /* Return the subvariable of VAR at offset OFFSET. */
1447 static inline tree
1448 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1450 subvar_t sv;
1452 for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1453 if (SFT_OFFSET (sv->var) == offset)
1454 return sv->var;
1456 return NULL_TREE;
1459 /* Return true if V is a tree that we can have subvars for.
1460 Normally, this is any aggregate type. Also complex
1461 types which are not gimple registers can have subvars. */
1463 static inline bool
1464 var_can_have_subvars (tree v)
1466 /* Volatile variables should never have subvars. */
1467 if (TREE_THIS_VOLATILE (v))
1468 return false;
1470 /* Non decls or memory tags can never have subvars. */
1471 if (!DECL_P (v) || MTAG_P (v))
1472 return false;
1474 /* Aggregates can have subvars. */
1475 if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1476 return true;
1478 /* Complex types variables which are not also a gimple register can
1479 have subvars. */
1480 if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1481 && !DECL_COMPLEX_GIMPLE_REG_P (v))
1482 return true;
1484 return false;
1488 /* Return true if OFFSET and SIZE define a range that overlaps with some
1489 portion of the range of SV, a subvar. If there was an exact overlap,
1490 *EXACT will be set to true upon return. */
1492 static inline bool
1493 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1494 tree sv, bool *exact)
1496 /* There are three possible cases of overlap.
1497 1. We can have an exact overlap, like so:
1498 |offset, offset + size |
1499 |sv->offset, sv->offset + sv->size |
1501 2. We can have offset starting after sv->offset, like so:
1503 |offset, offset + size |
1504 |sv->offset, sv->offset + sv->size |
1506 3. We can have offset starting before sv->offset, like so:
1508 |offset, offset + size |
1509 |sv->offset, sv->offset + sv->size|
1512 if (exact)
1513 *exact = false;
1514 if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1516 if (exact)
1517 *exact = true;
1518 return true;
1520 else if (offset >= SFT_OFFSET (sv)
1521 && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1523 return true;
1525 else if (offset < SFT_OFFSET (sv)
1526 && (size > SFT_OFFSET (sv) - offset))
1528 return true;
1530 return false;
1534 #endif /* _TREE_FLOW_INLINE_H */