Merge from mainline
[official-gcc.git] / gcc / rtlanal.c
blob1390ad985294dce8bbffcdf13faaec7aad153ffd
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Bit flags that specify the machine subtype we are compiling for.
66 Bits are tested using macros TARGET_... defined in the tm.h file
67 and set by `-m...' switches. Must be defined in rtlanal.c. */
69 int target_flags;
71 /* Return 1 if the value of X is unstable
72 (would be different at a different point in the program).
73 The frame pointer, arg pointer, etc. are considered stable
74 (within one function) and so is anything marked `unchanging'. */
76 int
77 rtx_unstable_p (rtx x)
79 RTX_CODE code = GET_CODE (x);
80 int i;
81 const char *fmt;
83 switch (code)
85 case MEM:
86 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
88 case CONST:
89 case CONST_INT:
90 case CONST_DOUBLE:
91 case CONST_VECTOR:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 return 0;
96 case REG:
97 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
98 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 /* The arg pointer varies if it is not a fixed register. */
100 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103 /* ??? When call-clobbered, the value is stable modulo the restore
104 that must happen after a call. This currently screws up local-alloc
105 into believing that the restore is not needed. */
106 if (x == pic_offset_table_rtx)
107 return 0;
108 #endif
109 return 1;
111 case ASM_OPERANDS:
112 if (MEM_VOLATILE_P (x))
113 return 1;
115 /* Fall through. */
117 default:
118 break;
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 if (fmt[i] == 'e')
125 if (rtx_unstable_p (XEXP (x, i)))
126 return 1;
128 else if (fmt[i] == 'E')
130 int j;
131 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_unstable_p (XVECEXP (x, i, j)))
133 return 1;
136 return 0;
139 /* Return 1 if X has a value that can vary even between two
140 executions of the program. 0 means X can be compared reliably
141 against certain constants or near-constants.
142 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143 zero, we are slightly more conservative.
144 The frame pointer and the arg pointer are considered constant. */
147 rtx_varies_p (rtx x, int for_alias)
149 RTX_CODE code;
150 int i;
151 const char *fmt;
153 if (!x)
154 return 0;
156 code = GET_CODE (x);
157 switch (code)
159 case MEM:
160 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
162 case CONST:
163 case CONST_INT:
164 case CONST_DOUBLE:
165 case CONST_VECTOR:
166 case SYMBOL_REF:
167 case LABEL_REF:
168 return 0;
170 case REG:
171 /* Note that we have to test for the actual rtx used for the frame
172 and arg pointers and not just the register number in case we have
173 eliminated the frame and/or arg pointer and are using it
174 for pseudos. */
175 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 /* The arg pointer varies if it is not a fixed register. */
177 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 return 0;
179 if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 /* ??? When call-clobbered, the value is stable modulo the restore
182 that must happen after a call. This currently screws up
183 local-alloc into believing that the restore is not needed, so we
184 must return 0 only if we are called from alias analysis. */
185 && for_alias
186 #endif
188 return 0;
189 return 1;
191 case LO_SUM:
192 /* The operand 0 of a LO_SUM is considered constant
193 (in fact it is related specifically to operand 1)
194 during alias analysis. */
195 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 || rtx_varies_p (XEXP (x, 1), for_alias);
198 case ASM_OPERANDS:
199 if (MEM_VOLATILE_P (x))
200 return 1;
202 /* Fall through. */
204 default:
205 break;
208 fmt = GET_RTX_FORMAT (code);
209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210 if (fmt[i] == 'e')
212 if (rtx_varies_p (XEXP (x, i), for_alias))
213 return 1;
215 else if (fmt[i] == 'E')
217 int j;
218 for (j = 0; j < XVECLEN (x, i); j++)
219 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 return 1;
223 return 0;
226 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
227 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
228 whether nonzero is returned for unaligned memory accesses on strict
229 alignment machines. */
231 static int
232 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
234 enum rtx_code code = GET_CODE (x);
236 switch (code)
238 case SYMBOL_REF:
239 return SYMBOL_REF_WEAK (x);
241 case LABEL_REF:
242 return 0;
244 case REG:
245 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
246 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
247 || x == stack_pointer_rtx
248 /* The arg pointer varies if it is not a fixed register. */
249 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
250 return 0;
251 /* All of the virtual frame registers are stack references. */
252 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
253 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
254 return 0;
255 return 1;
257 case CONST:
258 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
260 case PLUS:
261 /* An address is assumed not to trap if:
262 - it is an address that can't trap plus a constant integer,
263 with the proper remainder modulo the mode size if we are
264 considering unaligned memory references. */
265 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
266 && GET_CODE (XEXP (x, 1)) == CONST_INT)
268 HOST_WIDE_INT offset;
270 if (!STRICT_ALIGNMENT
271 || !unaligned_mems
272 || GET_MODE_SIZE (mode) == 0)
273 return 0;
275 offset = INTVAL (XEXP (x, 1));
277 #ifdef SPARC_STACK_BOUNDARY_HACK
278 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
279 the real alignment of %sp. However, when it does this, the
280 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
281 if (SPARC_STACK_BOUNDARY_HACK
282 && (XEXP (x, 0) == stack_pointer_rtx
283 || XEXP (x, 0) == hard_frame_pointer_rtx))
284 offset -= STACK_POINTER_OFFSET;
285 #endif
287 return offset % GET_MODE_SIZE (mode) != 0;
290 /* - or it is the pic register plus a constant. */
291 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
292 return 0;
294 return 1;
296 case LO_SUM:
297 case PRE_MODIFY:
298 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
300 case PRE_DEC:
301 case PRE_INC:
302 case POST_DEC:
303 case POST_INC:
304 case POST_MODIFY:
305 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
307 default:
308 break;
311 /* If it isn't one of the case above, it can cause a trap. */
312 return 1;
315 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
318 rtx_addr_can_trap_p (rtx x)
320 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
323 /* Return true if X is an address that is known to not be zero. */
325 bool
326 nonzero_address_p (rtx x)
328 enum rtx_code code = GET_CODE (x);
330 switch (code)
332 case SYMBOL_REF:
333 return !SYMBOL_REF_WEAK (x);
335 case LABEL_REF:
336 return true;
338 case REG:
339 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
340 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
341 || x == stack_pointer_rtx
342 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
343 return true;
344 /* All of the virtual frame registers are stack references. */
345 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
346 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
347 return true;
348 return false;
350 case CONST:
351 return nonzero_address_p (XEXP (x, 0));
353 case PLUS:
354 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
356 /* Pointers aren't allowed to wrap. If we've got a register
357 that is known to be a pointer, and a positive offset, then
358 the composite can't be zero. */
359 if (INTVAL (XEXP (x, 1)) > 0
360 && REG_P (XEXP (x, 0))
361 && REG_POINTER (XEXP (x, 0)))
362 return true;
364 return nonzero_address_p (XEXP (x, 0));
366 /* Handle PIC references. */
367 else if (XEXP (x, 0) == pic_offset_table_rtx
368 && CONSTANT_P (XEXP (x, 1)))
369 return true;
370 return false;
372 case PRE_MODIFY:
373 /* Similar to the above; allow positive offsets. Further, since
374 auto-inc is only allowed in memories, the register must be a
375 pointer. */
376 if (GET_CODE (XEXP (x, 1)) == CONST_INT
377 && INTVAL (XEXP (x, 1)) > 0)
378 return true;
379 return nonzero_address_p (XEXP (x, 0));
381 case PRE_INC:
382 /* Similarly. Further, the offset is always positive. */
383 return true;
385 case PRE_DEC:
386 case POST_DEC:
387 case POST_INC:
388 case POST_MODIFY:
389 return nonzero_address_p (XEXP (x, 0));
391 case LO_SUM:
392 return nonzero_address_p (XEXP (x, 1));
394 default:
395 break;
398 /* If it isn't one of the case above, might be zero. */
399 return false;
402 /* Return 1 if X refers to a memory location whose address
403 cannot be compared reliably with constant addresses,
404 or if X refers to a BLKmode memory object.
405 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
406 zero, we are slightly more conservative. */
409 rtx_addr_varies_p (rtx x, int for_alias)
411 enum rtx_code code;
412 int i;
413 const char *fmt;
415 if (x == 0)
416 return 0;
418 code = GET_CODE (x);
419 if (code == MEM)
420 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
422 fmt = GET_RTX_FORMAT (code);
423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
424 if (fmt[i] == 'e')
426 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
427 return 1;
429 else if (fmt[i] == 'E')
431 int j;
432 for (j = 0; j < XVECLEN (x, i); j++)
433 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
434 return 1;
436 return 0;
439 /* Return the value of the integer term in X, if one is apparent;
440 otherwise return 0.
441 Only obvious integer terms are detected.
442 This is used in cse.c with the `related_value' field. */
444 HOST_WIDE_INT
445 get_integer_term (rtx x)
447 if (GET_CODE (x) == CONST)
448 x = XEXP (x, 0);
450 if (GET_CODE (x) == MINUS
451 && GET_CODE (XEXP (x, 1)) == CONST_INT)
452 return - INTVAL (XEXP (x, 1));
453 if (GET_CODE (x) == PLUS
454 && GET_CODE (XEXP (x, 1)) == CONST_INT)
455 return INTVAL (XEXP (x, 1));
456 return 0;
459 /* If X is a constant, return the value sans apparent integer term;
460 otherwise return 0.
461 Only obvious integer terms are detected. */
464 get_related_value (rtx x)
466 if (GET_CODE (x) != CONST)
467 return 0;
468 x = XEXP (x, 0);
469 if (GET_CODE (x) == PLUS
470 && GET_CODE (XEXP (x, 1)) == CONST_INT)
471 return XEXP (x, 0);
472 else if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return XEXP (x, 0);
475 return 0;
478 /* Return the number of places FIND appears within X. If COUNT_DEST is
479 zero, we do not count occurrences inside the destination of a SET. */
482 count_occurrences (rtx x, rtx find, int count_dest)
484 int i, j;
485 enum rtx_code code;
486 const char *format_ptr;
487 int count;
489 if (x == find)
490 return 1;
492 code = GET_CODE (x);
494 switch (code)
496 case REG:
497 case CONST_INT:
498 case CONST_DOUBLE:
499 case CONST_VECTOR:
500 case SYMBOL_REF:
501 case CODE_LABEL:
502 case PC:
503 case CC0:
504 return 0;
506 case MEM:
507 if (MEM_P (find) && rtx_equal_p (x, find))
508 return 1;
509 break;
511 case SET:
512 if (SET_DEST (x) == find && ! count_dest)
513 return count_occurrences (SET_SRC (x), find, count_dest);
514 break;
516 default:
517 break;
520 format_ptr = GET_RTX_FORMAT (code);
521 count = 0;
523 for (i = 0; i < GET_RTX_LENGTH (code); i++)
525 switch (*format_ptr++)
527 case 'e':
528 count += count_occurrences (XEXP (x, i), find, count_dest);
529 break;
531 case 'E':
532 for (j = 0; j < XVECLEN (x, i); j++)
533 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
534 break;
537 return count;
540 /* Nonzero if register REG appears somewhere within IN.
541 Also works if REG is not a register; in this case it checks
542 for a subexpression of IN that is Lisp "equal" to REG. */
545 reg_mentioned_p (rtx reg, rtx in)
547 const char *fmt;
548 int i;
549 enum rtx_code code;
551 if (in == 0)
552 return 0;
554 if (reg == in)
555 return 1;
557 if (GET_CODE (in) == LABEL_REF)
558 return reg == XEXP (in, 0);
560 code = GET_CODE (in);
562 switch (code)
564 /* Compare registers by number. */
565 case REG:
566 return REG_P (reg) && REGNO (in) == REGNO (reg);
568 /* These codes have no constituent expressions
569 and are unique. */
570 case SCRATCH:
571 case CC0:
572 case PC:
573 return 0;
575 case CONST_INT:
576 case CONST_VECTOR:
577 case CONST_DOUBLE:
578 /* These are kept unique for a given value. */
579 return 0;
581 default:
582 break;
585 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
586 return 1;
588 fmt = GET_RTX_FORMAT (code);
590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
592 if (fmt[i] == 'E')
594 int j;
595 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
596 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
597 return 1;
599 else if (fmt[i] == 'e'
600 && reg_mentioned_p (reg, XEXP (in, i)))
601 return 1;
603 return 0;
606 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
607 no CODE_LABEL insn. */
610 no_labels_between_p (rtx beg, rtx end)
612 rtx p;
613 if (beg == end)
614 return 0;
615 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
616 if (LABEL_P (p))
617 return 0;
618 return 1;
621 /* Nonzero if register REG is used in an insn between
622 FROM_INSN and TO_INSN (exclusive of those two). */
625 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
627 rtx insn;
629 if (from_insn == to_insn)
630 return 0;
632 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
633 if (INSN_P (insn)
634 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
635 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
636 return 1;
637 return 0;
640 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
641 is entirely replaced by a new value and the only use is as a SET_DEST,
642 we do not consider it a reference. */
645 reg_referenced_p (rtx x, rtx body)
647 int i;
649 switch (GET_CODE (body))
651 case SET:
652 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
653 return 1;
655 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
656 of a REG that occupies all of the REG, the insn references X if
657 it is mentioned in the destination. */
658 if (GET_CODE (SET_DEST (body)) != CC0
659 && GET_CODE (SET_DEST (body)) != PC
660 && !REG_P (SET_DEST (body))
661 && ! (GET_CODE (SET_DEST (body)) == SUBREG
662 && REG_P (SUBREG_REG (SET_DEST (body)))
663 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
664 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
665 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
666 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
667 && reg_overlap_mentioned_p (x, SET_DEST (body)))
668 return 1;
669 return 0;
671 case ASM_OPERANDS:
672 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
673 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
674 return 1;
675 return 0;
677 case CALL:
678 case USE:
679 case IF_THEN_ELSE:
680 return reg_overlap_mentioned_p (x, body);
682 case TRAP_IF:
683 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
685 case PREFETCH:
686 return reg_overlap_mentioned_p (x, XEXP (body, 0));
688 case UNSPEC:
689 case UNSPEC_VOLATILE:
690 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
691 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
692 return 1;
693 return 0;
695 case PARALLEL:
696 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
697 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
698 return 1;
699 return 0;
701 case CLOBBER:
702 if (MEM_P (XEXP (body, 0)))
703 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
704 return 1;
705 return 0;
707 case COND_EXEC:
708 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
709 return 1;
710 return reg_referenced_p (x, COND_EXEC_CODE (body));
712 default:
713 return 0;
717 /* Nonzero if register REG is set or clobbered in an insn between
718 FROM_INSN and TO_INSN (exclusive of those two). */
721 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
723 rtx insn;
725 if (from_insn == to_insn)
726 return 0;
728 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
729 if (INSN_P (insn) && reg_set_p (reg, insn))
730 return 1;
731 return 0;
734 /* Internals of reg_set_between_p. */
736 reg_set_p (rtx reg, rtx insn)
738 /* We can be passed an insn or part of one. If we are passed an insn,
739 check if a side-effect of the insn clobbers REG. */
740 if (INSN_P (insn)
741 && (FIND_REG_INC_NOTE (insn, reg)
742 || (CALL_P (insn)
743 && ((REG_P (reg)
744 && REGNO (reg) < FIRST_PSEUDO_REGISTER
745 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
746 REGNO (reg)))
747 || MEM_P (reg)
748 || find_reg_fusage (insn, CLOBBER, reg)))))
749 return 1;
751 return set_of (reg, insn) != NULL_RTX;
754 /* Similar to reg_set_between_p, but check all registers in X. Return 0
755 only if none of them are modified between START and END. Return 1 if
756 X contains a MEM; this routine does usememory aliasing. */
759 modified_between_p (rtx x, rtx start, rtx end)
761 enum rtx_code code = GET_CODE (x);
762 const char *fmt;
763 int i, j;
764 rtx insn;
766 if (start == end)
767 return 0;
769 switch (code)
771 case CONST_INT:
772 case CONST_DOUBLE:
773 case CONST_VECTOR:
774 case CONST:
775 case SYMBOL_REF:
776 case LABEL_REF:
777 return 0;
779 case PC:
780 case CC0:
781 return 1;
783 case MEM:
784 if (modified_between_p (XEXP (x, 0), start, end))
785 return 1;
786 if (MEM_READONLY_P (x))
787 return 0;
788 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
789 if (memory_modified_in_insn_p (x, insn))
790 return 1;
791 return 0;
792 break;
794 case REG:
795 return reg_set_between_p (x, start, end);
797 default:
798 break;
801 fmt = GET_RTX_FORMAT (code);
802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
804 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
805 return 1;
807 else if (fmt[i] == 'E')
808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
809 if (modified_between_p (XVECEXP (x, i, j), start, end))
810 return 1;
813 return 0;
816 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
817 of them are modified in INSN. Return 1 if X contains a MEM; this routine
818 does use memory aliasing. */
821 modified_in_p (rtx x, rtx insn)
823 enum rtx_code code = GET_CODE (x);
824 const char *fmt;
825 int i, j;
827 switch (code)
829 case CONST_INT:
830 case CONST_DOUBLE:
831 case CONST_VECTOR:
832 case CONST:
833 case SYMBOL_REF:
834 case LABEL_REF:
835 return 0;
837 case PC:
838 case CC0:
839 return 1;
841 case MEM:
842 if (modified_in_p (XEXP (x, 0), insn))
843 return 1;
844 if (MEM_READONLY_P (x))
845 return 0;
846 if (memory_modified_in_insn_p (x, insn))
847 return 1;
848 return 0;
849 break;
851 case REG:
852 return reg_set_p (x, insn);
854 default:
855 break;
858 fmt = GET_RTX_FORMAT (code);
859 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
861 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
862 return 1;
864 else if (fmt[i] == 'E')
865 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
866 if (modified_in_p (XVECEXP (x, i, j), insn))
867 return 1;
870 return 0;
873 /* Helper function for set_of. */
874 struct set_of_data
876 rtx found;
877 rtx pat;
880 static void
881 set_of_1 (rtx x, rtx pat, void *data1)
883 struct set_of_data *data = (struct set_of_data *) (data1);
884 if (rtx_equal_p (x, data->pat)
885 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
886 data->found = pat;
889 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
890 (either directly or via STRICT_LOW_PART and similar modifiers). */
892 set_of (rtx pat, rtx insn)
894 struct set_of_data data;
895 data.found = NULL_RTX;
896 data.pat = pat;
897 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
898 return data.found;
901 /* Given an INSN, return a SET expression if this insn has only a single SET.
902 It may also have CLOBBERs, USEs, or SET whose output
903 will not be used, which we ignore. */
906 single_set_2 (rtx insn, rtx pat)
908 rtx set = NULL;
909 int set_verified = 1;
910 int i;
912 if (GET_CODE (pat) == PARALLEL)
914 for (i = 0; i < XVECLEN (pat, 0); i++)
916 rtx sub = XVECEXP (pat, 0, i);
917 switch (GET_CODE (sub))
919 case USE:
920 case CLOBBER:
921 break;
923 case SET:
924 /* We can consider insns having multiple sets, where all
925 but one are dead as single set insns. In common case
926 only single set is present in the pattern so we want
927 to avoid checking for REG_UNUSED notes unless necessary.
929 When we reach set first time, we just expect this is
930 the single set we are looking for and only when more
931 sets are found in the insn, we check them. */
932 if (!set_verified)
934 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
935 && !side_effects_p (set))
936 set = NULL;
937 else
938 set_verified = 1;
940 if (!set)
941 set = sub, set_verified = 0;
942 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
943 || side_effects_p (sub))
944 return NULL_RTX;
945 break;
947 default:
948 return NULL_RTX;
952 return set;
955 /* Given an INSN, return nonzero if it has more than one SET, else return
956 zero. */
959 multiple_sets (rtx insn)
961 int found;
962 int i;
964 /* INSN must be an insn. */
965 if (! INSN_P (insn))
966 return 0;
968 /* Only a PARALLEL can have multiple SETs. */
969 if (GET_CODE (PATTERN (insn)) == PARALLEL)
971 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
972 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
974 /* If we have already found a SET, then return now. */
975 if (found)
976 return 1;
977 else
978 found = 1;
982 /* Either zero or one SET. */
983 return 0;
986 /* Return nonzero if the destination of SET equals the source
987 and there are no side effects. */
990 set_noop_p (rtx set)
992 rtx src = SET_SRC (set);
993 rtx dst = SET_DEST (set);
995 if (dst == pc_rtx && src == pc_rtx)
996 return 1;
998 if (MEM_P (dst) && MEM_P (src))
999 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1001 if (GET_CODE (dst) == ZERO_EXTRACT)
1002 return rtx_equal_p (XEXP (dst, 0), src)
1003 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1004 && !side_effects_p (src);
1006 if (GET_CODE (dst) == STRICT_LOW_PART)
1007 dst = XEXP (dst, 0);
1009 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1011 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1012 return 0;
1013 src = SUBREG_REG (src);
1014 dst = SUBREG_REG (dst);
1017 return (REG_P (src) && REG_P (dst)
1018 && REGNO (src) == REGNO (dst));
1021 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1022 value to itself. */
1025 noop_move_p (rtx insn)
1027 rtx pat = PATTERN (insn);
1029 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1030 return 1;
1032 /* Insns carrying these notes are useful later on. */
1033 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1034 return 0;
1036 /* For now treat an insn with a REG_RETVAL note as a
1037 a special insn which should not be considered a no-op. */
1038 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1039 return 0;
1041 if (GET_CODE (pat) == SET && set_noop_p (pat))
1042 return 1;
1044 if (GET_CODE (pat) == PARALLEL)
1046 int i;
1047 /* If nothing but SETs of registers to themselves,
1048 this insn can also be deleted. */
1049 for (i = 0; i < XVECLEN (pat, 0); i++)
1051 rtx tem = XVECEXP (pat, 0, i);
1053 if (GET_CODE (tem) == USE
1054 || GET_CODE (tem) == CLOBBER)
1055 continue;
1057 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1058 return 0;
1061 return 1;
1063 return 0;
1067 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1068 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1069 If the object was modified, if we hit a partial assignment to X, or hit a
1070 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1071 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1072 be the src. */
1075 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1077 rtx p;
1079 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1080 p = PREV_INSN (p))
1081 if (INSN_P (p))
1083 rtx set = single_set (p);
1084 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1086 if (set && rtx_equal_p (x, SET_DEST (set)))
1088 rtx src = SET_SRC (set);
1090 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1091 src = XEXP (note, 0);
1093 if ((valid_to == NULL_RTX
1094 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1095 /* Reject hard registers because we don't usually want
1096 to use them; we'd rather use a pseudo. */
1097 && (! (REG_P (src)
1098 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1100 *pinsn = p;
1101 return src;
1105 /* If set in non-simple way, we don't have a value. */
1106 if (reg_set_p (x, p))
1107 break;
1110 return x;
1113 /* Return nonzero if register in range [REGNO, ENDREGNO)
1114 appears either explicitly or implicitly in X
1115 other than being stored into.
1117 References contained within the substructure at LOC do not count.
1118 LOC may be zero, meaning don't ignore anything. */
1121 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1122 rtx *loc)
1124 int i;
1125 unsigned int x_regno;
1126 RTX_CODE code;
1127 const char *fmt;
1129 repeat:
1130 /* The contents of a REG_NONNEG note is always zero, so we must come here
1131 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1132 if (x == 0)
1133 return 0;
1135 code = GET_CODE (x);
1137 switch (code)
1139 case REG:
1140 x_regno = REGNO (x);
1142 /* If we modifying the stack, frame, or argument pointer, it will
1143 clobber a virtual register. In fact, we could be more precise,
1144 but it isn't worth it. */
1145 if ((x_regno == STACK_POINTER_REGNUM
1146 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1147 || x_regno == ARG_POINTER_REGNUM
1148 #endif
1149 || x_regno == FRAME_POINTER_REGNUM)
1150 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1151 return 1;
1153 return (endregno > x_regno
1154 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1155 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1156 : 1));
1158 case SUBREG:
1159 /* If this is a SUBREG of a hard reg, we can see exactly which
1160 registers are being modified. Otherwise, handle normally. */
1161 if (REG_P (SUBREG_REG (x))
1162 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1164 unsigned int inner_regno = subreg_regno (x);
1165 unsigned int inner_endregno
1166 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1167 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1169 return endregno > inner_regno && regno < inner_endregno;
1171 break;
1173 case CLOBBER:
1174 case SET:
1175 if (&SET_DEST (x) != loc
1176 /* Note setting a SUBREG counts as referring to the REG it is in for
1177 a pseudo but not for hard registers since we can
1178 treat each word individually. */
1179 && ((GET_CODE (SET_DEST (x)) == SUBREG
1180 && loc != &SUBREG_REG (SET_DEST (x))
1181 && REG_P (SUBREG_REG (SET_DEST (x)))
1182 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1183 && refers_to_regno_p (regno, endregno,
1184 SUBREG_REG (SET_DEST (x)), loc))
1185 || (!REG_P (SET_DEST (x))
1186 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1187 return 1;
1189 if (code == CLOBBER || loc == &SET_SRC (x))
1190 return 0;
1191 x = SET_SRC (x);
1192 goto repeat;
1194 default:
1195 break;
1198 /* X does not match, so try its subexpressions. */
1200 fmt = GET_RTX_FORMAT (code);
1201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1203 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1205 if (i == 0)
1207 x = XEXP (x, 0);
1208 goto repeat;
1210 else
1211 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1212 return 1;
1214 else if (fmt[i] == 'E')
1216 int j;
1217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1218 if (loc != &XVECEXP (x, i, j)
1219 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1220 return 1;
1223 return 0;
1226 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1227 we check if any register number in X conflicts with the relevant register
1228 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1229 contains a MEM (we don't bother checking for memory addresses that can't
1230 conflict because we expect this to be a rare case. */
1233 reg_overlap_mentioned_p (rtx x, rtx in)
1235 unsigned int regno, endregno;
1237 /* If either argument is a constant, then modifying X can not
1238 affect IN. Here we look at IN, we can profitably combine
1239 CONSTANT_P (x) with the switch statement below. */
1240 if (CONSTANT_P (in))
1241 return 0;
1243 recurse:
1244 switch (GET_CODE (x))
1246 case STRICT_LOW_PART:
1247 case ZERO_EXTRACT:
1248 case SIGN_EXTRACT:
1249 /* Overly conservative. */
1250 x = XEXP (x, 0);
1251 goto recurse;
1253 case SUBREG:
1254 regno = REGNO (SUBREG_REG (x));
1255 if (regno < FIRST_PSEUDO_REGISTER)
1256 regno = subreg_regno (x);
1257 goto do_reg;
1259 case REG:
1260 regno = REGNO (x);
1261 do_reg:
1262 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1263 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1264 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1266 case MEM:
1268 const char *fmt;
1269 int i;
1271 if (MEM_P (in))
1272 return 1;
1274 fmt = GET_RTX_FORMAT (GET_CODE (in));
1275 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1276 if (fmt[i] == 'e')
1278 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1279 return 1;
1281 else if (fmt[i] == 'E')
1283 int j;
1284 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1285 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1286 return 1;
1289 return 0;
1292 case SCRATCH:
1293 case PC:
1294 case CC0:
1295 return reg_mentioned_p (x, in);
1297 case PARALLEL:
1299 int i;
1301 /* If any register in here refers to it we return true. */
1302 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1303 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1304 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1305 return 1;
1306 return 0;
1309 default:
1310 gcc_assert (CONSTANT_P (x));
1311 return 0;
1315 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1316 (X would be the pattern of an insn).
1317 FUN receives two arguments:
1318 the REG, MEM, CC0 or PC being stored in or clobbered,
1319 the SET or CLOBBER rtx that does the store.
1321 If the item being stored in or clobbered is a SUBREG of a hard register,
1322 the SUBREG will be passed. */
1324 void
1325 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1327 int i;
1329 if (GET_CODE (x) == COND_EXEC)
1330 x = COND_EXEC_CODE (x);
1332 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1334 rtx dest = SET_DEST (x);
1336 while ((GET_CODE (dest) == SUBREG
1337 && (!REG_P (SUBREG_REG (dest))
1338 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1339 || GET_CODE (dest) == ZERO_EXTRACT
1340 || GET_CODE (dest) == STRICT_LOW_PART)
1341 dest = XEXP (dest, 0);
1343 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1344 each of whose first operand is a register. */
1345 if (GET_CODE (dest) == PARALLEL)
1347 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1348 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1349 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1351 else
1352 (*fun) (dest, x, data);
1355 else if (GET_CODE (x) == PARALLEL)
1356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1357 note_stores (XVECEXP (x, 0, i), fun, data);
1360 /* Like notes_stores, but call FUN for each expression that is being
1361 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1362 FUN for each expression, not any interior subexpressions. FUN receives a
1363 pointer to the expression and the DATA passed to this function.
1365 Note that this is not quite the same test as that done in reg_referenced_p
1366 since that considers something as being referenced if it is being
1367 partially set, while we do not. */
1369 void
1370 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1372 rtx body = *pbody;
1373 int i;
1375 switch (GET_CODE (body))
1377 case COND_EXEC:
1378 (*fun) (&COND_EXEC_TEST (body), data);
1379 note_uses (&COND_EXEC_CODE (body), fun, data);
1380 return;
1382 case PARALLEL:
1383 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1384 note_uses (&XVECEXP (body, 0, i), fun, data);
1385 return;
1387 case USE:
1388 (*fun) (&XEXP (body, 0), data);
1389 return;
1391 case ASM_OPERANDS:
1392 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1393 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1394 return;
1396 case TRAP_IF:
1397 (*fun) (&TRAP_CONDITION (body), data);
1398 return;
1400 case PREFETCH:
1401 (*fun) (&XEXP (body, 0), data);
1402 return;
1404 case UNSPEC:
1405 case UNSPEC_VOLATILE:
1406 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1407 (*fun) (&XVECEXP (body, 0, i), data);
1408 return;
1410 case CLOBBER:
1411 if (MEM_P (XEXP (body, 0)))
1412 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1413 return;
1415 case SET:
1417 rtx dest = SET_DEST (body);
1419 /* For sets we replace everything in source plus registers in memory
1420 expression in store and operands of a ZERO_EXTRACT. */
1421 (*fun) (&SET_SRC (body), data);
1423 if (GET_CODE (dest) == ZERO_EXTRACT)
1425 (*fun) (&XEXP (dest, 1), data);
1426 (*fun) (&XEXP (dest, 2), data);
1429 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1430 dest = XEXP (dest, 0);
1432 if (MEM_P (dest))
1433 (*fun) (&XEXP (dest, 0), data);
1435 return;
1437 default:
1438 /* All the other possibilities never store. */
1439 (*fun) (pbody, data);
1440 return;
1444 /* Return nonzero if X's old contents don't survive after INSN.
1445 This will be true if X is (cc0) or if X is a register and
1446 X dies in INSN or because INSN entirely sets X.
1448 "Entirely set" means set directly and not through a SUBREG, or
1449 ZERO_EXTRACT, so no trace of the old contents remains.
1450 Likewise, REG_INC does not count.
1452 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1453 but for this use that makes no difference, since regs don't overlap
1454 during their lifetimes. Therefore, this function may be used
1455 at any time after deaths have been computed (in flow.c).
1457 If REG is a hard reg that occupies multiple machine registers, this
1458 function will only return 1 if each of those registers will be replaced
1459 by INSN. */
1462 dead_or_set_p (rtx insn, rtx x)
1464 unsigned int regno, last_regno;
1465 unsigned int i;
1467 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1468 if (GET_CODE (x) == CC0)
1469 return 1;
1471 gcc_assert (REG_P (x));
1473 regno = REGNO (x);
1474 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1475 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1477 for (i = regno; i <= last_regno; i++)
1478 if (! dead_or_set_regno_p (insn, i))
1479 return 0;
1481 return 1;
1484 /* Return TRUE iff DEST is a register or subreg of a register and
1485 doesn't change the number of words of the inner register, and any
1486 part of the register is TEST_REGNO. */
1488 static bool
1489 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1491 unsigned int regno, endregno;
1493 if (GET_CODE (dest) == SUBREG
1494 && (((GET_MODE_SIZE (GET_MODE (dest))
1495 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1496 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1497 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1498 dest = SUBREG_REG (dest);
1500 if (!REG_P (dest))
1501 return false;
1503 regno = REGNO (dest);
1504 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1505 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1506 return (test_regno >= regno && test_regno < endregno);
1509 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1510 any member matches the covers_regno_no_parallel_p criteria. */
1512 static bool
1513 covers_regno_p (rtx dest, unsigned int test_regno)
1515 if (GET_CODE (dest) == PARALLEL)
1517 /* Some targets place small structures in registers for return
1518 values of functions, and those registers are wrapped in
1519 PARALLELs that we may see as the destination of a SET. */
1520 int i;
1522 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1524 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1525 if (inner != NULL_RTX
1526 && covers_regno_no_parallel_p (inner, test_regno))
1527 return true;
1530 return false;
1532 else
1533 return covers_regno_no_parallel_p (dest, test_regno);
1536 /* Utility function for dead_or_set_p to check an individual register. Also
1537 called from flow.c. */
1540 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1542 rtx pattern;
1544 /* See if there is a death note for something that includes TEST_REGNO. */
1545 if (find_regno_note (insn, REG_DEAD, test_regno))
1546 return 1;
1548 if (CALL_P (insn)
1549 && find_regno_fusage (insn, CLOBBER, test_regno))
1550 return 1;
1552 pattern = PATTERN (insn);
1554 if (GET_CODE (pattern) == COND_EXEC)
1555 pattern = COND_EXEC_CODE (pattern);
1557 if (GET_CODE (pattern) == SET)
1558 return covers_regno_p (SET_DEST (pattern), test_regno);
1559 else if (GET_CODE (pattern) == PARALLEL)
1561 int i;
1563 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1565 rtx body = XVECEXP (pattern, 0, i);
1567 if (GET_CODE (body) == COND_EXEC)
1568 body = COND_EXEC_CODE (body);
1570 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1571 && covers_regno_p (SET_DEST (body), test_regno))
1572 return 1;
1576 return 0;
1579 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1580 If DATUM is nonzero, look for one whose datum is DATUM. */
1583 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1585 rtx link;
1587 gcc_assert (insn);
1589 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1590 if (! INSN_P (insn))
1591 return 0;
1592 if (datum == 0)
1594 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1595 if (REG_NOTE_KIND (link) == kind)
1596 return link;
1597 return 0;
1600 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1601 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1602 return link;
1603 return 0;
1606 /* Return the reg-note of kind KIND in insn INSN which applies to register
1607 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1608 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1609 it might be the case that the note overlaps REGNO. */
1612 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1614 rtx link;
1616 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1617 if (! INSN_P (insn))
1618 return 0;
1620 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1621 if (REG_NOTE_KIND (link) == kind
1622 /* Verify that it is a register, so that scratch and MEM won't cause a
1623 problem here. */
1624 && REG_P (XEXP (link, 0))
1625 && REGNO (XEXP (link, 0)) <= regno
1626 && ((REGNO (XEXP (link, 0))
1627 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1628 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1629 [GET_MODE (XEXP (link, 0))]))
1630 > regno))
1631 return link;
1632 return 0;
1635 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1636 has such a note. */
1639 find_reg_equal_equiv_note (rtx insn)
1641 rtx link;
1643 if (!INSN_P (insn))
1644 return 0;
1645 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1646 if (REG_NOTE_KIND (link) == REG_EQUAL
1647 || REG_NOTE_KIND (link) == REG_EQUIV)
1649 if (single_set (insn) == 0)
1650 return 0;
1651 return link;
1653 return NULL;
1656 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1657 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1660 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1662 /* If it's not a CALL_INSN, it can't possibly have a
1663 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1664 if (!CALL_P (insn))
1665 return 0;
1667 gcc_assert (datum);
1669 if (!REG_P (datum))
1671 rtx link;
1673 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1674 link;
1675 link = XEXP (link, 1))
1676 if (GET_CODE (XEXP (link, 0)) == code
1677 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1678 return 1;
1680 else
1682 unsigned int regno = REGNO (datum);
1684 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1685 to pseudo registers, so don't bother checking. */
1687 if (regno < FIRST_PSEUDO_REGISTER)
1689 unsigned int end_regno
1690 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1691 unsigned int i;
1693 for (i = regno; i < end_regno; i++)
1694 if (find_regno_fusage (insn, code, i))
1695 return 1;
1699 return 0;
1702 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1703 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1706 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1708 rtx link;
1710 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1711 to pseudo registers, so don't bother checking. */
1713 if (regno >= FIRST_PSEUDO_REGISTER
1714 || !CALL_P (insn) )
1715 return 0;
1717 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1719 unsigned int regnote;
1720 rtx op, reg;
1722 if (GET_CODE (op = XEXP (link, 0)) == code
1723 && REG_P (reg = XEXP (op, 0))
1724 && (regnote = REGNO (reg)) <= regno
1725 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1726 return 1;
1729 return 0;
1732 /* Return true if INSN is a call to a pure function. */
1735 pure_call_p (rtx insn)
1737 rtx link;
1739 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1740 return 0;
1742 /* Look for the note that differentiates const and pure functions. */
1743 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1745 rtx u, m;
1747 if (GET_CODE (u = XEXP (link, 0)) == USE
1748 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1749 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1750 return 1;
1753 return 0;
1756 /* Remove register note NOTE from the REG_NOTES of INSN. */
1758 void
1759 remove_note (rtx insn, rtx note)
1761 rtx link;
1763 if (note == NULL_RTX)
1764 return;
1766 if (REG_NOTES (insn) == note)
1768 REG_NOTES (insn) = XEXP (note, 1);
1769 return;
1772 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1773 if (XEXP (link, 1) == note)
1775 XEXP (link, 1) = XEXP (note, 1);
1776 return;
1779 gcc_unreachable ();
1782 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1783 return 1 if it is found. A simple equality test is used to determine if
1784 NODE matches. */
1787 in_expr_list_p (rtx listp, rtx node)
1789 rtx x;
1791 for (x = listp; x; x = XEXP (x, 1))
1792 if (node == XEXP (x, 0))
1793 return 1;
1795 return 0;
1798 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1799 remove that entry from the list if it is found.
1801 A simple equality test is used to determine if NODE matches. */
1803 void
1804 remove_node_from_expr_list (rtx node, rtx *listp)
1806 rtx temp = *listp;
1807 rtx prev = NULL_RTX;
1809 while (temp)
1811 if (node == XEXP (temp, 0))
1813 /* Splice the node out of the list. */
1814 if (prev)
1815 XEXP (prev, 1) = XEXP (temp, 1);
1816 else
1817 *listp = XEXP (temp, 1);
1819 return;
1822 prev = temp;
1823 temp = XEXP (temp, 1);
1827 /* Nonzero if X contains any volatile instructions. These are instructions
1828 which may cause unpredictable machine state instructions, and thus no
1829 instructions should be moved or combined across them. This includes
1830 only volatile asms and UNSPEC_VOLATILE instructions. */
1833 volatile_insn_p (rtx x)
1835 RTX_CODE code;
1837 code = GET_CODE (x);
1838 switch (code)
1840 case LABEL_REF:
1841 case SYMBOL_REF:
1842 case CONST_INT:
1843 case CONST:
1844 case CONST_DOUBLE:
1845 case CONST_VECTOR:
1846 case CC0:
1847 case PC:
1848 case REG:
1849 case SCRATCH:
1850 case CLOBBER:
1851 case ADDR_VEC:
1852 case ADDR_DIFF_VEC:
1853 case CALL:
1854 case MEM:
1855 return 0;
1857 case UNSPEC_VOLATILE:
1858 /* case TRAP_IF: This isn't clear yet. */
1859 return 1;
1861 case ASM_INPUT:
1862 case ASM_OPERANDS:
1863 if (MEM_VOLATILE_P (x))
1864 return 1;
1866 default:
1867 break;
1870 /* Recursively scan the operands of this expression. */
1873 const char *fmt = GET_RTX_FORMAT (code);
1874 int i;
1876 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1878 if (fmt[i] == 'e')
1880 if (volatile_insn_p (XEXP (x, i)))
1881 return 1;
1883 else if (fmt[i] == 'E')
1885 int j;
1886 for (j = 0; j < XVECLEN (x, i); j++)
1887 if (volatile_insn_p (XVECEXP (x, i, j)))
1888 return 1;
1892 return 0;
1895 /* Nonzero if X contains any volatile memory references
1896 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1899 volatile_refs_p (rtx x)
1901 RTX_CODE code;
1903 code = GET_CODE (x);
1904 switch (code)
1906 case LABEL_REF:
1907 case SYMBOL_REF:
1908 case CONST_INT:
1909 case CONST:
1910 case CONST_DOUBLE:
1911 case CONST_VECTOR:
1912 case CC0:
1913 case PC:
1914 case REG:
1915 case SCRATCH:
1916 case CLOBBER:
1917 case ADDR_VEC:
1918 case ADDR_DIFF_VEC:
1919 return 0;
1921 case UNSPEC_VOLATILE:
1922 return 1;
1924 case MEM:
1925 case ASM_INPUT:
1926 case ASM_OPERANDS:
1927 if (MEM_VOLATILE_P (x))
1928 return 1;
1930 default:
1931 break;
1934 /* Recursively scan the operands of this expression. */
1937 const char *fmt = GET_RTX_FORMAT (code);
1938 int i;
1940 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1942 if (fmt[i] == 'e')
1944 if (volatile_refs_p (XEXP (x, i)))
1945 return 1;
1947 else if (fmt[i] == 'E')
1949 int j;
1950 for (j = 0; j < XVECLEN (x, i); j++)
1951 if (volatile_refs_p (XVECEXP (x, i, j)))
1952 return 1;
1956 return 0;
1959 /* Similar to above, except that it also rejects register pre- and post-
1960 incrementing. */
1963 side_effects_p (rtx x)
1965 RTX_CODE code;
1967 code = GET_CODE (x);
1968 switch (code)
1970 case LABEL_REF:
1971 case SYMBOL_REF:
1972 case CONST_INT:
1973 case CONST:
1974 case CONST_DOUBLE:
1975 case CONST_VECTOR:
1976 case CC0:
1977 case PC:
1978 case REG:
1979 case SCRATCH:
1980 case ADDR_VEC:
1981 case ADDR_DIFF_VEC:
1982 return 0;
1984 case CLOBBER:
1985 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
1986 when some combination can't be done. If we see one, don't think
1987 that we can simplify the expression. */
1988 return (GET_MODE (x) != VOIDmode);
1990 case PRE_INC:
1991 case PRE_DEC:
1992 case POST_INC:
1993 case POST_DEC:
1994 case PRE_MODIFY:
1995 case POST_MODIFY:
1996 case CALL:
1997 case UNSPEC_VOLATILE:
1998 /* case TRAP_IF: This isn't clear yet. */
1999 return 1;
2001 case MEM:
2002 case ASM_INPUT:
2003 case ASM_OPERANDS:
2004 if (MEM_VOLATILE_P (x))
2005 return 1;
2007 default:
2008 break;
2011 /* Recursively scan the operands of this expression. */
2014 const char *fmt = GET_RTX_FORMAT (code);
2015 int i;
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2019 if (fmt[i] == 'e')
2021 if (side_effects_p (XEXP (x, i)))
2022 return 1;
2024 else if (fmt[i] == 'E')
2026 int j;
2027 for (j = 0; j < XVECLEN (x, i); j++)
2028 if (side_effects_p (XVECEXP (x, i, j)))
2029 return 1;
2033 return 0;
2036 /* Return nonzero if evaluating rtx X might cause a trap. UNALIGNED_MEMS
2037 controls whether nonzero is returned for unaligned memory accesses on
2038 strict alignment machines. */
2040 static int
2041 may_trap_p_1 (rtx x, bool unaligned_mems)
2043 int i;
2044 enum rtx_code code;
2045 const char *fmt;
2047 if (x == 0)
2048 return 0;
2049 code = GET_CODE (x);
2050 switch (code)
2052 /* Handle these cases quickly. */
2053 case CONST_INT:
2054 case CONST_DOUBLE:
2055 case CONST_VECTOR:
2056 case SYMBOL_REF:
2057 case LABEL_REF:
2058 case CONST:
2059 case PC:
2060 case CC0:
2061 case REG:
2062 case SCRATCH:
2063 return 0;
2065 case ASM_INPUT:
2066 case UNSPEC_VOLATILE:
2067 case TRAP_IF:
2068 return 1;
2070 case ASM_OPERANDS:
2071 return MEM_VOLATILE_P (x);
2073 /* Memory ref can trap unless it's a static var or a stack slot. */
2074 case MEM:
2075 if (MEM_NOTRAP_P (x)
2076 && (!STRICT_ALIGNMENT || !unaligned_mems))
2077 return 0;
2078 return
2079 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2081 /* Division by a non-constant might trap. */
2082 case DIV:
2083 case MOD:
2084 case UDIV:
2085 case UMOD:
2086 if (HONOR_SNANS (GET_MODE (x)))
2087 return 1;
2088 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2089 return flag_trapping_math;
2090 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2091 return 1;
2092 break;
2094 case EXPR_LIST:
2095 /* An EXPR_LIST is used to represent a function call. This
2096 certainly may trap. */
2097 return 1;
2099 case GE:
2100 case GT:
2101 case LE:
2102 case LT:
2103 case LTGT:
2104 case COMPARE:
2105 /* Some floating point comparisons may trap. */
2106 if (!flag_trapping_math)
2107 break;
2108 /* ??? There is no machine independent way to check for tests that trap
2109 when COMPARE is used, though many targets do make this distinction.
2110 For instance, sparc uses CCFPE for compares which generate exceptions
2111 and CCFP for compares which do not generate exceptions. */
2112 if (HONOR_NANS (GET_MODE (x)))
2113 return 1;
2114 /* But often the compare has some CC mode, so check operand
2115 modes as well. */
2116 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2117 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2118 return 1;
2119 break;
2121 case EQ:
2122 case NE:
2123 if (HONOR_SNANS (GET_MODE (x)))
2124 return 1;
2125 /* Often comparison is CC mode, so check operand modes. */
2126 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2127 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2128 return 1;
2129 break;
2131 case FIX:
2132 /* Conversion of floating point might trap. */
2133 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2134 return 1;
2135 break;
2137 case NEG:
2138 case ABS:
2139 case SUBREG:
2140 /* These operations don't trap even with floating point. */
2141 break;
2143 default:
2144 /* Any floating arithmetic may trap. */
2145 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2146 && flag_trapping_math)
2147 return 1;
2150 fmt = GET_RTX_FORMAT (code);
2151 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2153 if (fmt[i] == 'e')
2155 if (may_trap_p_1 (XEXP (x, i), unaligned_mems))
2156 return 1;
2158 else if (fmt[i] == 'E')
2160 int j;
2161 for (j = 0; j < XVECLEN (x, i); j++)
2162 if (may_trap_p_1 (XVECEXP (x, i, j), unaligned_mems))
2163 return 1;
2166 return 0;
2169 /* Return nonzero if evaluating rtx X might cause a trap. */
2172 may_trap_p (rtx x)
2174 return may_trap_p_1 (x, false);
2177 /* Same as above, but additionally return non-zero if evaluating rtx X might
2178 cause a fault. We define a fault for the purpose of this function as a
2179 erroneous execution condition that cannot be encountered during the normal
2180 execution of a valid program; the typical example is an unaligned memory
2181 access on a strict alignment machine. The compiler guarantees that it
2182 doesn't generate code that will fault from a valid program, but this
2183 guarantee doesn't mean anything for individual instructions. Consider
2184 the following example:
2186 struct S { int d; union { char *cp; int *ip; }; };
2188 int foo(struct S *s)
2190 if (s->d == 1)
2191 return *s->ip;
2192 else
2193 return *s->cp;
2196 on a strict alignment machine. In a valid program, foo will never be
2197 invoked on a structure for which d is equal to 1 and the underlying
2198 unique field of the union not aligned on a 4-byte boundary, but the
2199 expression *s->ip might cause a fault if considered individually.
2201 At the RTL level, potentially problematic expressions will almost always
2202 verify may_trap_p; for example, the above dereference can be emitted as
2203 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2204 However, suppose that foo is inlined in a caller that causes s->cp to
2205 point to a local character variable and guarantees that s->d is not set
2206 to 1; foo may have been effectively translated into pseudo-RTL as:
2208 if ((reg:SI) == 1)
2209 (set (reg:SI) (mem:SI (%fp - 7)))
2210 else
2211 (set (reg:QI) (mem:QI (%fp - 7)))
2213 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2214 memory reference to a stack slot, but it will certainly cause a fault
2215 on a strict alignment machine. */
2218 may_trap_or_fault_p (rtx x)
2220 return may_trap_p_1 (x, true);
2223 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2224 i.e., an inequality. */
2227 inequality_comparisons_p (rtx x)
2229 const char *fmt;
2230 int len, i;
2231 enum rtx_code code = GET_CODE (x);
2233 switch (code)
2235 case REG:
2236 case SCRATCH:
2237 case PC:
2238 case CC0:
2239 case CONST_INT:
2240 case CONST_DOUBLE:
2241 case CONST_VECTOR:
2242 case CONST:
2243 case LABEL_REF:
2244 case SYMBOL_REF:
2245 return 0;
2247 case LT:
2248 case LTU:
2249 case GT:
2250 case GTU:
2251 case LE:
2252 case LEU:
2253 case GE:
2254 case GEU:
2255 return 1;
2257 default:
2258 break;
2261 len = GET_RTX_LENGTH (code);
2262 fmt = GET_RTX_FORMAT (code);
2264 for (i = 0; i < len; i++)
2266 if (fmt[i] == 'e')
2268 if (inequality_comparisons_p (XEXP (x, i)))
2269 return 1;
2271 else if (fmt[i] == 'E')
2273 int j;
2274 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2275 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2276 return 1;
2280 return 0;
2283 /* Replace any occurrence of FROM in X with TO. The function does
2284 not enter into CONST_DOUBLE for the replace.
2286 Note that copying is not done so X must not be shared unless all copies
2287 are to be modified. */
2290 replace_rtx (rtx x, rtx from, rtx to)
2292 int i, j;
2293 const char *fmt;
2295 /* The following prevents loops occurrence when we change MEM in
2296 CONST_DOUBLE onto the same CONST_DOUBLE. */
2297 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2298 return x;
2300 if (x == from)
2301 return to;
2303 /* Allow this function to make replacements in EXPR_LISTs. */
2304 if (x == 0)
2305 return 0;
2307 if (GET_CODE (x) == SUBREG)
2309 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2311 if (GET_CODE (new) == CONST_INT)
2313 x = simplify_subreg (GET_MODE (x), new,
2314 GET_MODE (SUBREG_REG (x)),
2315 SUBREG_BYTE (x));
2316 gcc_assert (x);
2318 else
2319 SUBREG_REG (x) = new;
2321 return x;
2323 else if (GET_CODE (x) == ZERO_EXTEND)
2325 rtx new = replace_rtx (XEXP (x, 0), from, to);
2327 if (GET_CODE (new) == CONST_INT)
2329 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2330 new, GET_MODE (XEXP (x, 0)));
2331 gcc_assert (x);
2333 else
2334 XEXP (x, 0) = new;
2336 return x;
2339 fmt = GET_RTX_FORMAT (GET_CODE (x));
2340 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2342 if (fmt[i] == 'e')
2343 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2344 else if (fmt[i] == 'E')
2345 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2346 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2349 return x;
2352 /* Throughout the rtx X, replace many registers according to REG_MAP.
2353 Return the replacement for X (which may be X with altered contents).
2354 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2355 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2357 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2358 should not be mapped to pseudos or vice versa since validate_change
2359 is not called.
2361 If REPLACE_DEST is 1, replacements are also done in destinations;
2362 otherwise, only sources are replaced. */
2365 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2367 enum rtx_code code;
2368 int i;
2369 const char *fmt;
2371 if (x == 0)
2372 return x;
2374 code = GET_CODE (x);
2375 switch (code)
2377 case SCRATCH:
2378 case PC:
2379 case CC0:
2380 case CONST_INT:
2381 case CONST_DOUBLE:
2382 case CONST_VECTOR:
2383 case CONST:
2384 case SYMBOL_REF:
2385 case LABEL_REF:
2386 return x;
2388 case REG:
2389 /* Verify that the register has an entry before trying to access it. */
2390 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2392 /* SUBREGs can't be shared. Always return a copy to ensure that if
2393 this replacement occurs more than once then each instance will
2394 get distinct rtx. */
2395 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2396 return copy_rtx (reg_map[REGNO (x)]);
2397 return reg_map[REGNO (x)];
2399 return x;
2401 case SUBREG:
2402 /* Prevent making nested SUBREGs. */
2403 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2404 && reg_map[REGNO (SUBREG_REG (x))] != 0
2405 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2407 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2408 return simplify_gen_subreg (GET_MODE (x), map_val,
2409 GET_MODE (SUBREG_REG (x)),
2410 SUBREG_BYTE (x));
2412 break;
2414 case SET:
2415 if (replace_dest)
2416 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2418 else if (MEM_P (SET_DEST (x))
2419 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2420 /* Even if we are not to replace destinations, replace register if it
2421 is CONTAINED in destination (destination is memory or
2422 STRICT_LOW_PART). */
2423 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2424 reg_map, nregs, 0);
2425 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2426 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2427 break;
2429 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2430 return x;
2432 default:
2433 break;
2436 fmt = GET_RTX_FORMAT (code);
2437 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2439 if (fmt[i] == 'e')
2440 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2441 else if (fmt[i] == 'E')
2443 int j;
2444 for (j = 0; j < XVECLEN (x, i); j++)
2445 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2446 nregs, replace_dest);
2449 return x;
2452 /* Replace occurrences of the old label in *X with the new one.
2453 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2456 replace_label (rtx *x, void *data)
2458 rtx l = *x;
2459 rtx old_label = ((replace_label_data *) data)->r1;
2460 rtx new_label = ((replace_label_data *) data)->r2;
2461 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2463 if (l == NULL_RTX)
2464 return 0;
2466 if (GET_CODE (l) == SYMBOL_REF
2467 && CONSTANT_POOL_ADDRESS_P (l))
2469 rtx c = get_pool_constant (l);
2470 if (rtx_referenced_p (old_label, c))
2472 rtx new_c, new_l;
2473 replace_label_data *d = (replace_label_data *) data;
2475 /* Create a copy of constant C; replace the label inside
2476 but do not update LABEL_NUSES because uses in constant pool
2477 are not counted. */
2478 new_c = copy_rtx (c);
2479 d->update_label_nuses = false;
2480 for_each_rtx (&new_c, replace_label, data);
2481 d->update_label_nuses = update_label_nuses;
2483 /* Add the new constant NEW_C to constant pool and replace
2484 the old reference to constant by new reference. */
2485 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2486 *x = replace_rtx (l, l, new_l);
2488 return 0;
2491 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2492 field. This is not handled by for_each_rtx because it doesn't
2493 handle unprinted ('0') fields. */
2494 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2495 JUMP_LABEL (l) = new_label;
2497 if ((GET_CODE (l) == LABEL_REF
2498 || GET_CODE (l) == INSN_LIST)
2499 && XEXP (l, 0) == old_label)
2501 XEXP (l, 0) = new_label;
2502 if (update_label_nuses)
2504 ++LABEL_NUSES (new_label);
2505 --LABEL_NUSES (old_label);
2507 return 0;
2510 return 0;
2513 /* When *BODY is equal to X or X is directly referenced by *BODY
2514 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2515 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2517 static int
2518 rtx_referenced_p_1 (rtx *body, void *x)
2520 rtx y = (rtx) x;
2522 if (*body == NULL_RTX)
2523 return y == NULL_RTX;
2525 /* Return true if a label_ref *BODY refers to label Y. */
2526 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2527 return XEXP (*body, 0) == y;
2529 /* If *BODY is a reference to pool constant traverse the constant. */
2530 if (GET_CODE (*body) == SYMBOL_REF
2531 && CONSTANT_POOL_ADDRESS_P (*body))
2532 return rtx_referenced_p (y, get_pool_constant (*body));
2534 /* By default, compare the RTL expressions. */
2535 return rtx_equal_p (*body, y);
2538 /* Return true if X is referenced in BODY. */
2541 rtx_referenced_p (rtx x, rtx body)
2543 return for_each_rtx (&body, rtx_referenced_p_1, x);
2546 /* If INSN is a tablejump return true and store the label (before jump table) to
2547 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2549 bool
2550 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2552 rtx label, table;
2554 if (JUMP_P (insn)
2555 && (label = JUMP_LABEL (insn)) != NULL_RTX
2556 && (table = next_active_insn (label)) != NULL_RTX
2557 && JUMP_P (table)
2558 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2559 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2561 if (labelp)
2562 *labelp = label;
2563 if (tablep)
2564 *tablep = table;
2565 return true;
2567 return false;
2570 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2571 constant that is not in the constant pool and not in the condition
2572 of an IF_THEN_ELSE. */
2574 static int
2575 computed_jump_p_1 (rtx x)
2577 enum rtx_code code = GET_CODE (x);
2578 int i, j;
2579 const char *fmt;
2581 switch (code)
2583 case LABEL_REF:
2584 case PC:
2585 return 0;
2587 case CONST:
2588 case CONST_INT:
2589 case CONST_DOUBLE:
2590 case CONST_VECTOR:
2591 case SYMBOL_REF:
2592 case REG:
2593 return 1;
2595 case MEM:
2596 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2597 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2599 case IF_THEN_ELSE:
2600 return (computed_jump_p_1 (XEXP (x, 1))
2601 || computed_jump_p_1 (XEXP (x, 2)));
2603 default:
2604 break;
2607 fmt = GET_RTX_FORMAT (code);
2608 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2610 if (fmt[i] == 'e'
2611 && computed_jump_p_1 (XEXP (x, i)))
2612 return 1;
2614 else if (fmt[i] == 'E')
2615 for (j = 0; j < XVECLEN (x, i); j++)
2616 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2617 return 1;
2620 return 0;
2623 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2625 Tablejumps and casesi insns are not considered indirect jumps;
2626 we can recognize them by a (use (label_ref)). */
2629 computed_jump_p (rtx insn)
2631 int i;
2632 if (JUMP_P (insn))
2634 rtx pat = PATTERN (insn);
2636 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2637 return 0;
2638 else if (GET_CODE (pat) == PARALLEL)
2640 int len = XVECLEN (pat, 0);
2641 int has_use_labelref = 0;
2643 for (i = len - 1; i >= 0; i--)
2644 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2645 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2646 == LABEL_REF))
2647 has_use_labelref = 1;
2649 if (! has_use_labelref)
2650 for (i = len - 1; i >= 0; i--)
2651 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2652 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2653 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2654 return 1;
2656 else if (GET_CODE (pat) == SET
2657 && SET_DEST (pat) == pc_rtx
2658 && computed_jump_p_1 (SET_SRC (pat)))
2659 return 1;
2661 return 0;
2664 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2665 calls. Processes the subexpressions of EXP and passes them to F. */
2666 static int
2667 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2669 int result, i, j;
2670 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2671 rtx *x;
2673 for (; format[n] != '\0'; n++)
2675 switch (format[n])
2677 case 'e':
2678 /* Call F on X. */
2679 x = &XEXP (exp, n);
2680 result = (*f) (x, data);
2681 if (result == -1)
2682 /* Do not traverse sub-expressions. */
2683 continue;
2684 else if (result != 0)
2685 /* Stop the traversal. */
2686 return result;
2688 if (*x == NULL_RTX)
2689 /* There are no sub-expressions. */
2690 continue;
2692 i = non_rtx_starting_operands[GET_CODE (*x)];
2693 if (i >= 0)
2695 result = for_each_rtx_1 (*x, i, f, data);
2696 if (result != 0)
2697 return result;
2699 break;
2701 case 'V':
2702 case 'E':
2703 if (XVEC (exp, n) == 0)
2704 continue;
2705 for (j = 0; j < XVECLEN (exp, n); ++j)
2707 /* Call F on X. */
2708 x = &XVECEXP (exp, n, j);
2709 result = (*f) (x, data);
2710 if (result == -1)
2711 /* Do not traverse sub-expressions. */
2712 continue;
2713 else if (result != 0)
2714 /* Stop the traversal. */
2715 return result;
2717 if (*x == NULL_RTX)
2718 /* There are no sub-expressions. */
2719 continue;
2721 i = non_rtx_starting_operands[GET_CODE (*x)];
2722 if (i >= 0)
2724 result = for_each_rtx_1 (*x, i, f, data);
2725 if (result != 0)
2726 return result;
2729 break;
2731 default:
2732 /* Nothing to do. */
2733 break;
2737 return 0;
2740 /* Traverse X via depth-first search, calling F for each
2741 sub-expression (including X itself). F is also passed the DATA.
2742 If F returns -1, do not traverse sub-expressions, but continue
2743 traversing the rest of the tree. If F ever returns any other
2744 nonzero value, stop the traversal, and return the value returned
2745 by F. Otherwise, return 0. This function does not traverse inside
2746 tree structure that contains RTX_EXPRs, or into sub-expressions
2747 whose format code is `0' since it is not known whether or not those
2748 codes are actually RTL.
2750 This routine is very general, and could (should?) be used to
2751 implement many of the other routines in this file. */
2754 for_each_rtx (rtx *x, rtx_function f, void *data)
2756 int result;
2757 int i;
2759 /* Call F on X. */
2760 result = (*f) (x, data);
2761 if (result == -1)
2762 /* Do not traverse sub-expressions. */
2763 return 0;
2764 else if (result != 0)
2765 /* Stop the traversal. */
2766 return result;
2768 if (*x == NULL_RTX)
2769 /* There are no sub-expressions. */
2770 return 0;
2772 i = non_rtx_starting_operands[GET_CODE (*x)];
2773 if (i < 0)
2774 return 0;
2776 return for_each_rtx_1 (*x, i, f, data);
2780 /* Searches X for any reference to REGNO, returning the rtx of the
2781 reference found if any. Otherwise, returns NULL_RTX. */
2784 regno_use_in (unsigned int regno, rtx x)
2786 const char *fmt;
2787 int i, j;
2788 rtx tem;
2790 if (REG_P (x) && REGNO (x) == regno)
2791 return x;
2793 fmt = GET_RTX_FORMAT (GET_CODE (x));
2794 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2796 if (fmt[i] == 'e')
2798 if ((tem = regno_use_in (regno, XEXP (x, i))))
2799 return tem;
2801 else if (fmt[i] == 'E')
2802 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2803 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2804 return tem;
2807 return NULL_RTX;
2810 /* Return a value indicating whether OP, an operand of a commutative
2811 operation, is preferred as the first or second operand. The higher
2812 the value, the stronger the preference for being the first operand.
2813 We use negative values to indicate a preference for the first operand
2814 and positive values for the second operand. */
2817 commutative_operand_precedence (rtx op)
2819 enum rtx_code code = GET_CODE (op);
2821 /* Constants always come the second operand. Prefer "nice" constants. */
2822 if (code == CONST_INT)
2823 return -7;
2824 if (code == CONST_DOUBLE)
2825 return -6;
2826 op = avoid_constant_pool_reference (op);
2827 code = GET_CODE (op);
2829 switch (GET_RTX_CLASS (code))
2831 case RTX_CONST_OBJ:
2832 if (code == CONST_INT)
2833 return -5;
2834 if (code == CONST_DOUBLE)
2835 return -4;
2836 return -3;
2838 case RTX_EXTRA:
2839 /* SUBREGs of objects should come second. */
2840 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2841 return -2;
2843 if (!CONSTANT_P (op))
2844 return 0;
2845 else
2846 /* As for RTX_CONST_OBJ. */
2847 return -3;
2849 case RTX_OBJ:
2850 /* Complex expressions should be the first, so decrease priority
2851 of objects. */
2852 return -1;
2854 case RTX_COMM_ARITH:
2855 /* Prefer operands that are themselves commutative to be first.
2856 This helps to make things linear. In particular,
2857 (and (and (reg) (reg)) (not (reg))) is canonical. */
2858 return 4;
2860 case RTX_BIN_ARITH:
2861 /* If only one operand is a binary expression, it will be the first
2862 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2863 is canonical, although it will usually be further simplified. */
2864 return 2;
2866 case RTX_UNARY:
2867 /* Then prefer NEG and NOT. */
2868 if (code == NEG || code == NOT)
2869 return 1;
2871 default:
2872 return 0;
2876 /* Return 1 iff it is necessary to swap operands of commutative operation
2877 in order to canonicalize expression. */
2880 swap_commutative_operands_p (rtx x, rtx y)
2882 return (commutative_operand_precedence (x)
2883 < commutative_operand_precedence (y));
2886 /* Return 1 if X is an autoincrement side effect and the register is
2887 not the stack pointer. */
2889 auto_inc_p (rtx x)
2891 switch (GET_CODE (x))
2893 case PRE_INC:
2894 case POST_INC:
2895 case PRE_DEC:
2896 case POST_DEC:
2897 case PRE_MODIFY:
2898 case POST_MODIFY:
2899 /* There are no REG_INC notes for SP. */
2900 if (XEXP (x, 0) != stack_pointer_rtx)
2901 return 1;
2902 default:
2903 break;
2905 return 0;
2908 /* Return 1 if the sequence of instructions beginning with FROM and up
2909 to and including TO is safe to move. If NEW_TO is non-NULL, and
2910 the sequence is not already safe to move, but can be easily
2911 extended to a sequence which is safe, then NEW_TO will point to the
2912 end of the extended sequence.
2914 For now, this function only checks that the region contains whole
2915 exception regions, but it could be extended to check additional
2916 conditions as well. */
2919 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2921 int eh_region_count = 0;
2922 int past_to_p = 0;
2923 rtx r = from;
2925 /* By default, assume the end of the region will be what was
2926 suggested. */
2927 if (new_to)
2928 *new_to = to;
2930 while (r)
2932 if (NOTE_P (r))
2934 switch (NOTE_LINE_NUMBER (r))
2936 case NOTE_INSN_EH_REGION_BEG:
2937 ++eh_region_count;
2938 break;
2940 case NOTE_INSN_EH_REGION_END:
2941 if (eh_region_count == 0)
2942 /* This sequence of instructions contains the end of
2943 an exception region, but not he beginning. Moving
2944 it will cause chaos. */
2945 return 0;
2947 --eh_region_count;
2948 break;
2950 default:
2951 break;
2954 else if (past_to_p)
2955 /* If we've passed TO, and we see a non-note instruction, we
2956 can't extend the sequence to a movable sequence. */
2957 return 0;
2959 if (r == to)
2961 if (!new_to)
2962 /* It's OK to move the sequence if there were matched sets of
2963 exception region notes. */
2964 return eh_region_count == 0;
2966 past_to_p = 1;
2969 /* It's OK to move the sequence if there were matched sets of
2970 exception region notes. */
2971 if (past_to_p && eh_region_count == 0)
2973 *new_to = r;
2974 return 1;
2977 /* Go to the next instruction. */
2978 r = NEXT_INSN (r);
2981 return 0;
2984 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2986 loc_mentioned_in_p (rtx *loc, rtx in)
2988 enum rtx_code code = GET_CODE (in);
2989 const char *fmt = GET_RTX_FORMAT (code);
2990 int i, j;
2992 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2994 if (loc == &in->u.fld[i].rt_rtx)
2995 return 1;
2996 if (fmt[i] == 'e')
2998 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2999 return 1;
3001 else if (fmt[i] == 'E')
3002 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3003 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3004 return 1;
3006 return 0;
3009 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3010 and SUBREG_BYTE, return the bit offset where the subreg begins
3011 (counting from the least significant bit of the operand). */
3013 unsigned int
3014 subreg_lsb_1 (enum machine_mode outer_mode,
3015 enum machine_mode inner_mode,
3016 unsigned int subreg_byte)
3018 unsigned int bitpos;
3019 unsigned int byte;
3020 unsigned int word;
3022 /* A paradoxical subreg begins at bit position 0. */
3023 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3024 return 0;
3026 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3027 /* If the subreg crosses a word boundary ensure that
3028 it also begins and ends on a word boundary. */
3029 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3030 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3031 && (subreg_byte % UNITS_PER_WORD
3032 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3034 if (WORDS_BIG_ENDIAN)
3035 word = (GET_MODE_SIZE (inner_mode)
3036 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3037 else
3038 word = subreg_byte / UNITS_PER_WORD;
3039 bitpos = word * BITS_PER_WORD;
3041 if (BYTES_BIG_ENDIAN)
3042 byte = (GET_MODE_SIZE (inner_mode)
3043 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3044 else
3045 byte = subreg_byte % UNITS_PER_WORD;
3046 bitpos += byte * BITS_PER_UNIT;
3048 return bitpos;
3051 /* Given a subreg X, return the bit offset where the subreg begins
3052 (counting from the least significant bit of the reg). */
3054 unsigned int
3055 subreg_lsb (rtx x)
3057 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3058 SUBREG_BYTE (x));
3061 /* This function returns the regno offset of a subreg expression.
3062 xregno - A regno of an inner hard subreg_reg (or what will become one).
3063 xmode - The mode of xregno.
3064 offset - The byte offset.
3065 ymode - The mode of a top level SUBREG (or what may become one).
3066 RETURN - The regno offset which would be used. */
3067 unsigned int
3068 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3069 unsigned int offset, enum machine_mode ymode)
3071 int nregs_xmode, nregs_ymode, nregs_xmode_unit_int;
3072 int mode_multiple, nregs_multiple;
3073 int y_offset;
3074 enum machine_mode xmode_unit, xmode_unit_int;
3076 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3078 if (GET_MODE_INNER (xmode) == VOIDmode)
3079 xmode_unit = xmode;
3080 else
3081 xmode_unit = GET_MODE_INNER (xmode);
3083 if (FLOAT_MODE_P (xmode_unit))
3085 xmode_unit_int = int_mode_for_mode (xmode_unit);
3086 if (xmode_unit_int == BLKmode)
3087 /* It's probably bad to be here; a port should have an integer mode
3088 that's the same size as anything of which it takes a SUBREG. */
3089 xmode_unit_int = xmode_unit;
3091 else
3092 xmode_unit_int = xmode_unit;
3094 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3096 /* Adjust nregs_xmode to allow for 'holes'. */
3097 if (nregs_xmode_unit_int != hard_regno_nregs[xregno][xmode_unit])
3098 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3099 else
3100 nregs_xmode = hard_regno_nregs[xregno][xmode];
3102 nregs_ymode = hard_regno_nregs[xregno][ymode];
3104 /* If this is a big endian paradoxical subreg, which uses more actual
3105 hard registers than the original register, we must return a negative
3106 offset so that we find the proper highpart of the register. */
3107 if (offset == 0
3108 && nregs_ymode > nregs_xmode
3109 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3110 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3111 return nregs_xmode - nregs_ymode;
3113 if (offset == 0 || nregs_xmode == nregs_ymode)
3114 return 0;
3116 /* Size of ymode must not be greater than the size of xmode. */
3117 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3118 gcc_assert (mode_multiple != 0);
3120 y_offset = offset / GET_MODE_SIZE (ymode);
3121 nregs_multiple = nregs_xmode / nregs_ymode;
3122 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3125 /* This function returns true when the offset is representable via
3126 subreg_offset in the given regno.
3127 xregno - A regno of an inner hard subreg_reg (or what will become one).
3128 xmode - The mode of xregno.
3129 offset - The byte offset.
3130 ymode - The mode of a top level SUBREG (or what may become one).
3131 RETURN - Whether the offset is representable. */
3132 bool
3133 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3134 unsigned int offset, enum machine_mode ymode)
3136 int nregs_xmode, nregs_ymode, nregs_xmode_unit, nregs_xmode_unit_int;
3137 int mode_multiple, nregs_multiple;
3138 int y_offset;
3139 enum machine_mode xmode_unit, xmode_unit_int;
3141 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3143 if (GET_MODE_INNER (xmode) == VOIDmode)
3144 xmode_unit = xmode;
3145 else
3146 xmode_unit = GET_MODE_INNER (xmode);
3148 if (FLOAT_MODE_P (xmode_unit))
3150 xmode_unit_int = int_mode_for_mode (xmode_unit);
3151 if (xmode_unit_int == BLKmode)
3152 /* It's probably bad to be here; a port should have an integer mode
3153 that's the same size as anything of which it takes a SUBREG. */
3154 xmode_unit_int = xmode_unit;
3156 else
3157 xmode_unit_int = xmode_unit;
3159 nregs_xmode_unit = hard_regno_nregs[xregno][xmode_unit];
3160 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3162 /* If there are holes in a non-scalar mode in registers, we expect
3163 that it is made up of its units concatenated together. */
3164 if (nregs_xmode_unit != nregs_xmode_unit_int)
3166 gcc_assert (nregs_xmode_unit * GET_MODE_NUNITS (xmode)
3167 == hard_regno_nregs[xregno][xmode]);
3169 /* You can only ask for a SUBREG of a value with holes in the middle
3170 if you don't cross the holes. (Such a SUBREG should be done by
3171 picking a different register class, or doing it in memory if
3172 necessary.) An example of a value with holes is XCmode on 32-bit
3173 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3174 3 for each part, but in memory it's two 128-bit parts.
3175 Padding is assumed to be at the end (not necessarily the 'high part')
3176 of each unit. */
3177 if (nregs_xmode_unit != nregs_xmode_unit_int
3178 && (offset / GET_MODE_SIZE (xmode_unit_int) + 1
3179 < GET_MODE_NUNITS (xmode))
3180 && (offset / GET_MODE_SIZE (xmode_unit_int)
3181 != ((offset + GET_MODE_SIZE (ymode) - 1)
3182 / GET_MODE_SIZE (xmode_unit_int))))
3183 return false;
3185 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3187 else
3188 nregs_xmode = hard_regno_nregs[xregno][xmode];
3190 nregs_ymode = hard_regno_nregs[xregno][ymode];
3192 /* Paradoxical subregs are otherwise valid. */
3193 if (offset == 0
3194 && nregs_ymode > nregs_xmode
3195 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3196 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3197 return true;
3199 /* Lowpart subregs are otherwise valid. */
3200 if (offset == subreg_lowpart_offset (ymode, xmode))
3201 return true;
3203 /* This should always pass, otherwise we don't know how to verify
3204 the constraint. These conditions may be relaxed but
3205 subreg_regno_offset would need to be redesigned. */
3206 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3207 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3209 /* The XMODE value can be seen as a vector of NREGS_XMODE
3210 values. The subreg must represent a lowpart of given field.
3211 Compute what field it is. */
3212 offset -= subreg_lowpart_offset (ymode,
3213 mode_for_size (GET_MODE_BITSIZE (xmode)
3214 / nregs_xmode,
3215 MODE_INT, 0));
3217 /* Size of ymode must not be greater than the size of xmode. */
3218 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3219 gcc_assert (mode_multiple != 0);
3221 y_offset = offset / GET_MODE_SIZE (ymode);
3222 nregs_multiple = nregs_xmode / nregs_ymode;
3224 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3225 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3227 return (!(y_offset % (mode_multiple / nregs_multiple)));
3230 /* Return the final regno that a subreg expression refers to. */
3231 unsigned int
3232 subreg_regno (rtx x)
3234 unsigned int ret;
3235 rtx subreg = SUBREG_REG (x);
3236 int regno = REGNO (subreg);
3238 ret = regno + subreg_regno_offset (regno,
3239 GET_MODE (subreg),
3240 SUBREG_BYTE (x),
3241 GET_MODE (x));
3242 return ret;
3245 struct parms_set_data
3247 int nregs;
3248 HARD_REG_SET regs;
3251 /* Helper function for noticing stores to parameter registers. */
3252 static void
3253 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3255 struct parms_set_data *d = data;
3256 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3257 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3259 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3260 d->nregs--;
3264 /* Look backward for first parameter to be loaded.
3265 Note that loads of all parameters will not necessarily be
3266 found if CSE has eliminated some of them (e.g., an argument
3267 to the outer function is passed down as a parameter).
3268 Do not skip BOUNDARY. */
3270 find_first_parameter_load (rtx call_insn, rtx boundary)
3272 struct parms_set_data parm;
3273 rtx p, before, first_set;
3275 /* Since different machines initialize their parameter registers
3276 in different orders, assume nothing. Collect the set of all
3277 parameter registers. */
3278 CLEAR_HARD_REG_SET (parm.regs);
3279 parm.nregs = 0;
3280 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3281 if (GET_CODE (XEXP (p, 0)) == USE
3282 && REG_P (XEXP (XEXP (p, 0), 0)))
3284 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3286 /* We only care about registers which can hold function
3287 arguments. */
3288 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3289 continue;
3291 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3292 parm.nregs++;
3294 before = call_insn;
3295 first_set = call_insn;
3297 /* Search backward for the first set of a register in this set. */
3298 while (parm.nregs && before != boundary)
3300 before = PREV_INSN (before);
3302 /* It is possible that some loads got CSEed from one call to
3303 another. Stop in that case. */
3304 if (CALL_P (before))
3305 break;
3307 /* Our caller needs either ensure that we will find all sets
3308 (in case code has not been optimized yet), or take care
3309 for possible labels in a way by setting boundary to preceding
3310 CODE_LABEL. */
3311 if (LABEL_P (before))
3313 gcc_assert (before == boundary);
3314 break;
3317 if (INSN_P (before))
3319 int nregs_old = parm.nregs;
3320 note_stores (PATTERN (before), parms_set, &parm);
3321 /* If we found something that did not set a parameter reg,
3322 we're done. Do not keep going, as that might result
3323 in hoisting an insn before the setting of a pseudo
3324 that is used by the hoisted insn. */
3325 if (nregs_old != parm.nregs)
3326 first_set = before;
3327 else
3328 break;
3331 return first_set;
3334 /* Return true if we should avoid inserting code between INSN and preceding
3335 call instruction. */
3337 bool
3338 keep_with_call_p (rtx insn)
3340 rtx set;
3342 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3344 if (REG_P (SET_DEST (set))
3345 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3346 && fixed_regs[REGNO (SET_DEST (set))]
3347 && general_operand (SET_SRC (set), VOIDmode))
3348 return true;
3349 if (REG_P (SET_SRC (set))
3350 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3351 && REG_P (SET_DEST (set))
3352 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3353 return true;
3354 /* There may be a stack pop just after the call and before the store
3355 of the return register. Search for the actual store when deciding
3356 if we can break or not. */
3357 if (SET_DEST (set) == stack_pointer_rtx)
3359 rtx i2 = next_nonnote_insn (insn);
3360 if (i2 && keep_with_call_p (i2))
3361 return true;
3364 return false;
3367 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3368 to non-complex jumps. That is, direct unconditional, conditional,
3369 and tablejumps, but not computed jumps or returns. It also does
3370 not apply to the fallthru case of a conditional jump. */
3372 bool
3373 label_is_jump_target_p (rtx label, rtx jump_insn)
3375 rtx tmp = JUMP_LABEL (jump_insn);
3377 if (label == tmp)
3378 return true;
3380 if (tablejump_p (jump_insn, NULL, &tmp))
3382 rtvec vec = XVEC (PATTERN (tmp),
3383 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3384 int i, veclen = GET_NUM_ELEM (vec);
3386 for (i = 0; i < veclen; ++i)
3387 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3388 return true;
3391 return false;
3395 /* Return an estimate of the cost of computing rtx X.
3396 One use is in cse, to decide which expression to keep in the hash table.
3397 Another is in rtl generation, to pick the cheapest way to multiply.
3398 Other uses like the latter are expected in the future. */
3401 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3403 int i, j;
3404 enum rtx_code code;
3405 const char *fmt;
3406 int total;
3408 if (x == 0)
3409 return 0;
3411 /* Compute the default costs of certain things.
3412 Note that targetm.rtx_costs can override the defaults. */
3414 code = GET_CODE (x);
3415 switch (code)
3417 case MULT:
3418 total = COSTS_N_INSNS (5);
3419 break;
3420 case DIV:
3421 case UDIV:
3422 case MOD:
3423 case UMOD:
3424 total = COSTS_N_INSNS (7);
3425 break;
3426 case USE:
3427 /* Used in loop.c and combine.c as a marker. */
3428 total = 0;
3429 break;
3430 default:
3431 total = COSTS_N_INSNS (1);
3434 switch (code)
3436 case REG:
3437 return 0;
3439 case SUBREG:
3440 total = 0;
3441 /* If we can't tie these modes, make this expensive. The larger
3442 the mode, the more expensive it is. */
3443 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3444 return COSTS_N_INSNS (2
3445 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3446 break;
3448 default:
3449 if (targetm.rtx_costs (x, code, outer_code, &total))
3450 return total;
3451 break;
3454 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3455 which is already in total. */
3457 fmt = GET_RTX_FORMAT (code);
3458 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3459 if (fmt[i] == 'e')
3460 total += rtx_cost (XEXP (x, i), code);
3461 else if (fmt[i] == 'E')
3462 for (j = 0; j < XVECLEN (x, i); j++)
3463 total += rtx_cost (XVECEXP (x, i, j), code);
3465 return total;
3468 /* Return cost of address expression X.
3469 Expect that X is properly formed address reference. */
3472 address_cost (rtx x, enum machine_mode mode)
3474 /* We may be asked for cost of various unusual addresses, such as operands
3475 of push instruction. It is not worthwhile to complicate writing
3476 of the target hook by such cases. */
3478 if (!memory_address_p (mode, x))
3479 return 1000;
3481 return targetm.address_cost (x);
3484 /* If the target doesn't override, compute the cost as with arithmetic. */
3487 default_address_cost (rtx x)
3489 return rtx_cost (x, MEM);
3493 unsigned HOST_WIDE_INT
3494 nonzero_bits (rtx x, enum machine_mode mode)
3496 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3499 unsigned int
3500 num_sign_bit_copies (rtx x, enum machine_mode mode)
3502 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3505 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3506 It avoids exponential behavior in nonzero_bits1 when X has
3507 identical subexpressions on the first or the second level. */
3509 static unsigned HOST_WIDE_INT
3510 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3511 enum machine_mode known_mode,
3512 unsigned HOST_WIDE_INT known_ret)
3514 if (x == known_x && mode == known_mode)
3515 return known_ret;
3517 /* Try to find identical subexpressions. If found call
3518 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3519 precomputed value for the subexpression as KNOWN_RET. */
3521 if (ARITHMETIC_P (x))
3523 rtx x0 = XEXP (x, 0);
3524 rtx x1 = XEXP (x, 1);
3526 /* Check the first level. */
3527 if (x0 == x1)
3528 return nonzero_bits1 (x, mode, x0, mode,
3529 cached_nonzero_bits (x0, mode, known_x,
3530 known_mode, known_ret));
3532 /* Check the second level. */
3533 if (ARITHMETIC_P (x0)
3534 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3535 return nonzero_bits1 (x, mode, x1, mode,
3536 cached_nonzero_bits (x1, mode, known_x,
3537 known_mode, known_ret));
3539 if (ARITHMETIC_P (x1)
3540 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3541 return nonzero_bits1 (x, mode, x0, mode,
3542 cached_nonzero_bits (x0, mode, known_x,
3543 known_mode, known_ret));
3546 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3549 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3550 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3551 is less useful. We can't allow both, because that results in exponential
3552 run time recursion. There is a nullstone testcase that triggered
3553 this. This macro avoids accidental uses of num_sign_bit_copies. */
3554 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3556 /* Given an expression, X, compute which bits in X can be nonzero.
3557 We don't care about bits outside of those defined in MODE.
3559 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3560 an arithmetic operation, we can do better. */
3562 static unsigned HOST_WIDE_INT
3563 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3564 enum machine_mode known_mode,
3565 unsigned HOST_WIDE_INT known_ret)
3567 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3568 unsigned HOST_WIDE_INT inner_nz;
3569 enum rtx_code code;
3570 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3572 /* For floating-point values, assume all bits are needed. */
3573 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3574 return nonzero;
3576 /* If X is wider than MODE, use its mode instead. */
3577 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3579 mode = GET_MODE (x);
3580 nonzero = GET_MODE_MASK (mode);
3581 mode_width = GET_MODE_BITSIZE (mode);
3584 if (mode_width > HOST_BITS_PER_WIDE_INT)
3585 /* Our only callers in this case look for single bit values. So
3586 just return the mode mask. Those tests will then be false. */
3587 return nonzero;
3589 #ifndef WORD_REGISTER_OPERATIONS
3590 /* If MODE is wider than X, but both are a single word for both the host
3591 and target machines, we can compute this from which bits of the
3592 object might be nonzero in its own mode, taking into account the fact
3593 that on many CISC machines, accessing an object in a wider mode
3594 causes the high-order bits to become undefined. So they are
3595 not known to be zero. */
3597 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3598 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3599 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3600 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3602 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3603 known_x, known_mode, known_ret);
3604 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3605 return nonzero;
3607 #endif
3609 code = GET_CODE (x);
3610 switch (code)
3612 case REG:
3613 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3614 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3615 all the bits above ptr_mode are known to be zero. */
3616 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3617 && REG_POINTER (x))
3618 nonzero &= GET_MODE_MASK (ptr_mode);
3619 #endif
3621 /* Include declared information about alignment of pointers. */
3622 /* ??? We don't properly preserve REG_POINTER changes across
3623 pointer-to-integer casts, so we can't trust it except for
3624 things that we know must be pointers. See execute/960116-1.c. */
3625 if ((x == stack_pointer_rtx
3626 || x == frame_pointer_rtx
3627 || x == arg_pointer_rtx)
3628 && REGNO_POINTER_ALIGN (REGNO (x)))
3630 unsigned HOST_WIDE_INT alignment
3631 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3633 #ifdef PUSH_ROUNDING
3634 /* If PUSH_ROUNDING is defined, it is possible for the
3635 stack to be momentarily aligned only to that amount,
3636 so we pick the least alignment. */
3637 if (x == stack_pointer_rtx && PUSH_ARGS)
3638 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3639 alignment);
3640 #endif
3642 nonzero &= ~(alignment - 1);
3646 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3647 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3648 known_mode, known_ret,
3649 &nonzero_for_hook);
3651 if (new)
3652 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3653 known_mode, known_ret);
3655 return nonzero_for_hook;
3658 case CONST_INT:
3659 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3660 /* If X is negative in MODE, sign-extend the value. */
3661 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3662 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3663 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3664 #endif
3666 return INTVAL (x);
3668 case MEM:
3669 #ifdef LOAD_EXTEND_OP
3670 /* In many, if not most, RISC machines, reading a byte from memory
3671 zeros the rest of the register. Noticing that fact saves a lot
3672 of extra zero-extends. */
3673 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3674 nonzero &= GET_MODE_MASK (GET_MODE (x));
3675 #endif
3676 break;
3678 case EQ: case NE:
3679 case UNEQ: case LTGT:
3680 case GT: case GTU: case UNGT:
3681 case LT: case LTU: case UNLT:
3682 case GE: case GEU: case UNGE:
3683 case LE: case LEU: case UNLE:
3684 case UNORDERED: case ORDERED:
3685 /* If this produces an integer result, we know which bits are set.
3686 Code here used to clear bits outside the mode of X, but that is
3687 now done above. */
3688 /* Mind that MODE is the mode the caller wants to look at this
3689 operation in, and not the actual operation mode. We can wind
3690 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3691 that describes the results of a vector compare. */
3692 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3693 && mode_width <= HOST_BITS_PER_WIDE_INT)
3694 nonzero = STORE_FLAG_VALUE;
3695 break;
3697 case NEG:
3698 #if 0
3699 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3700 and num_sign_bit_copies. */
3701 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3702 == GET_MODE_BITSIZE (GET_MODE (x)))
3703 nonzero = 1;
3704 #endif
3706 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3707 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3708 break;
3710 case ABS:
3711 #if 0
3712 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3713 and num_sign_bit_copies. */
3714 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3715 == GET_MODE_BITSIZE (GET_MODE (x)))
3716 nonzero = 1;
3717 #endif
3718 break;
3720 case TRUNCATE:
3721 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3722 known_x, known_mode, known_ret)
3723 & GET_MODE_MASK (mode));
3724 break;
3726 case ZERO_EXTEND:
3727 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3728 known_x, known_mode, known_ret);
3729 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3730 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3731 break;
3733 case SIGN_EXTEND:
3734 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3735 Otherwise, show all the bits in the outer mode but not the inner
3736 may be nonzero. */
3737 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3738 known_x, known_mode, known_ret);
3739 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3741 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3742 if (inner_nz
3743 & (((HOST_WIDE_INT) 1
3744 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3745 inner_nz |= (GET_MODE_MASK (mode)
3746 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3749 nonzero &= inner_nz;
3750 break;
3752 case AND:
3753 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3754 known_x, known_mode, known_ret)
3755 & cached_nonzero_bits (XEXP (x, 1), mode,
3756 known_x, known_mode, known_ret);
3757 break;
3759 case XOR: case IOR:
3760 case UMIN: case UMAX: case SMIN: case SMAX:
3762 unsigned HOST_WIDE_INT nonzero0 =
3763 cached_nonzero_bits (XEXP (x, 0), mode,
3764 known_x, known_mode, known_ret);
3766 /* Don't call nonzero_bits for the second time if it cannot change
3767 anything. */
3768 if ((nonzero & nonzero0) != nonzero)
3769 nonzero &= nonzero0
3770 | cached_nonzero_bits (XEXP (x, 1), mode,
3771 known_x, known_mode, known_ret);
3773 break;
3775 case PLUS: case MINUS:
3776 case MULT:
3777 case DIV: case UDIV:
3778 case MOD: case UMOD:
3779 /* We can apply the rules of arithmetic to compute the number of
3780 high- and low-order zero bits of these operations. We start by
3781 computing the width (position of the highest-order nonzero bit)
3782 and the number of low-order zero bits for each value. */
3784 unsigned HOST_WIDE_INT nz0 =
3785 cached_nonzero_bits (XEXP (x, 0), mode,
3786 known_x, known_mode, known_ret);
3787 unsigned HOST_WIDE_INT nz1 =
3788 cached_nonzero_bits (XEXP (x, 1), mode,
3789 known_x, known_mode, known_ret);
3790 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3791 int width0 = floor_log2 (nz0) + 1;
3792 int width1 = floor_log2 (nz1) + 1;
3793 int low0 = floor_log2 (nz0 & -nz0);
3794 int low1 = floor_log2 (nz1 & -nz1);
3795 HOST_WIDE_INT op0_maybe_minusp
3796 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3797 HOST_WIDE_INT op1_maybe_minusp
3798 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3799 unsigned int result_width = mode_width;
3800 int result_low = 0;
3802 switch (code)
3804 case PLUS:
3805 result_width = MAX (width0, width1) + 1;
3806 result_low = MIN (low0, low1);
3807 break;
3808 case MINUS:
3809 result_low = MIN (low0, low1);
3810 break;
3811 case MULT:
3812 result_width = width0 + width1;
3813 result_low = low0 + low1;
3814 break;
3815 case DIV:
3816 if (width1 == 0)
3817 break;
3818 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3819 result_width = width0;
3820 break;
3821 case UDIV:
3822 if (width1 == 0)
3823 break;
3824 result_width = width0;
3825 break;
3826 case MOD:
3827 if (width1 == 0)
3828 break;
3829 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3830 result_width = MIN (width0, width1);
3831 result_low = MIN (low0, low1);
3832 break;
3833 case UMOD:
3834 if (width1 == 0)
3835 break;
3836 result_width = MIN (width0, width1);
3837 result_low = MIN (low0, low1);
3838 break;
3839 default:
3840 gcc_unreachable ();
3843 if (result_width < mode_width)
3844 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3846 if (result_low > 0)
3847 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3849 #ifdef POINTERS_EXTEND_UNSIGNED
3850 /* If pointers extend unsigned and this is an addition or subtraction
3851 to a pointer in Pmode, all the bits above ptr_mode are known to be
3852 zero. */
3853 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3854 && (code == PLUS || code == MINUS)
3855 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3856 nonzero &= GET_MODE_MASK (ptr_mode);
3857 #endif
3859 break;
3861 case ZERO_EXTRACT:
3862 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3863 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3864 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3865 break;
3867 case SUBREG:
3868 /* If this is a SUBREG formed for a promoted variable that has
3869 been zero-extended, we know that at least the high-order bits
3870 are zero, though others might be too. */
3872 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3873 nonzero = GET_MODE_MASK (GET_MODE (x))
3874 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3875 known_x, known_mode, known_ret);
3877 /* If the inner mode is a single word for both the host and target
3878 machines, we can compute this from which bits of the inner
3879 object might be nonzero. */
3880 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3881 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3882 <= HOST_BITS_PER_WIDE_INT))
3884 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3885 known_x, known_mode, known_ret);
3887 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3888 /* If this is a typical RISC machine, we only have to worry
3889 about the way loads are extended. */
3890 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3891 ? (((nonzero
3892 & (((unsigned HOST_WIDE_INT) 1
3893 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3894 != 0))
3895 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3896 || !MEM_P (SUBREG_REG (x)))
3897 #endif
3899 /* On many CISC machines, accessing an object in a wider mode
3900 causes the high-order bits to become undefined. So they are
3901 not known to be zero. */
3902 if (GET_MODE_SIZE (GET_MODE (x))
3903 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3904 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3905 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3908 break;
3910 case ASHIFTRT:
3911 case LSHIFTRT:
3912 case ASHIFT:
3913 case ROTATE:
3914 /* The nonzero bits are in two classes: any bits within MODE
3915 that aren't in GET_MODE (x) are always significant. The rest of the
3916 nonzero bits are those that are significant in the operand of
3917 the shift when shifted the appropriate number of bits. This
3918 shows that high-order bits are cleared by the right shift and
3919 low-order bits by left shifts. */
3920 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3921 && INTVAL (XEXP (x, 1)) >= 0
3922 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3924 enum machine_mode inner_mode = GET_MODE (x);
3925 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3926 int count = INTVAL (XEXP (x, 1));
3927 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3928 unsigned HOST_WIDE_INT op_nonzero =
3929 cached_nonzero_bits (XEXP (x, 0), mode,
3930 known_x, known_mode, known_ret);
3931 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3932 unsigned HOST_WIDE_INT outer = 0;
3934 if (mode_width > width)
3935 outer = (op_nonzero & nonzero & ~mode_mask);
3937 if (code == LSHIFTRT)
3938 inner >>= count;
3939 else if (code == ASHIFTRT)
3941 inner >>= count;
3943 /* If the sign bit may have been nonzero before the shift, we
3944 need to mark all the places it could have been copied to
3945 by the shift as possibly nonzero. */
3946 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3947 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3949 else if (code == ASHIFT)
3950 inner <<= count;
3951 else
3952 inner = ((inner << (count % width)
3953 | (inner >> (width - (count % width)))) & mode_mask);
3955 nonzero &= (outer | inner);
3957 break;
3959 case FFS:
3960 case POPCOUNT:
3961 /* This is at most the number of bits in the mode. */
3962 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3963 break;
3965 case CLZ:
3966 /* If CLZ has a known value at zero, then the nonzero bits are
3967 that value, plus the number of bits in the mode minus one. */
3968 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3969 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3970 else
3971 nonzero = -1;
3972 break;
3974 case CTZ:
3975 /* If CTZ has a known value at zero, then the nonzero bits are
3976 that value, plus the number of bits in the mode minus one. */
3977 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3978 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3979 else
3980 nonzero = -1;
3981 break;
3983 case PARITY:
3984 nonzero = 1;
3985 break;
3987 case IF_THEN_ELSE:
3989 unsigned HOST_WIDE_INT nonzero_true =
3990 cached_nonzero_bits (XEXP (x, 1), mode,
3991 known_x, known_mode, known_ret);
3993 /* Don't call nonzero_bits for the second time if it cannot change
3994 anything. */
3995 if ((nonzero & nonzero_true) != nonzero)
3996 nonzero &= nonzero_true
3997 | cached_nonzero_bits (XEXP (x, 2), mode,
3998 known_x, known_mode, known_ret);
4000 break;
4002 default:
4003 break;
4006 return nonzero;
4009 /* See the macro definition above. */
4010 #undef cached_num_sign_bit_copies
4013 /* The function cached_num_sign_bit_copies is a wrapper around
4014 num_sign_bit_copies1. It avoids exponential behavior in
4015 num_sign_bit_copies1 when X has identical subexpressions on the
4016 first or the second level. */
4018 static unsigned int
4019 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4020 enum machine_mode known_mode,
4021 unsigned int known_ret)
4023 if (x == known_x && mode == known_mode)
4024 return known_ret;
4026 /* Try to find identical subexpressions. If found call
4027 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4028 the precomputed value for the subexpression as KNOWN_RET. */
4030 if (ARITHMETIC_P (x))
4032 rtx x0 = XEXP (x, 0);
4033 rtx x1 = XEXP (x, 1);
4035 /* Check the first level. */
4036 if (x0 == x1)
4037 return
4038 num_sign_bit_copies1 (x, mode, x0, mode,
4039 cached_num_sign_bit_copies (x0, mode, known_x,
4040 known_mode,
4041 known_ret));
4043 /* Check the second level. */
4044 if (ARITHMETIC_P (x0)
4045 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4046 return
4047 num_sign_bit_copies1 (x, mode, x1, mode,
4048 cached_num_sign_bit_copies (x1, mode, known_x,
4049 known_mode,
4050 known_ret));
4052 if (ARITHMETIC_P (x1)
4053 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4054 return
4055 num_sign_bit_copies1 (x, mode, x0, mode,
4056 cached_num_sign_bit_copies (x0, mode, known_x,
4057 known_mode,
4058 known_ret));
4061 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4064 /* Return the number of bits at the high-order end of X that are known to
4065 be equal to the sign bit. X will be used in mode MODE; if MODE is
4066 VOIDmode, X will be used in its own mode. The returned value will always
4067 be between 1 and the number of bits in MODE. */
4069 static unsigned int
4070 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4071 enum machine_mode known_mode,
4072 unsigned int known_ret)
4074 enum rtx_code code = GET_CODE (x);
4075 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4076 int num0, num1, result;
4077 unsigned HOST_WIDE_INT nonzero;
4079 /* If we weren't given a mode, use the mode of X. If the mode is still
4080 VOIDmode, we don't know anything. Likewise if one of the modes is
4081 floating-point. */
4083 if (mode == VOIDmode)
4084 mode = GET_MODE (x);
4086 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4087 return 1;
4089 /* For a smaller object, just ignore the high bits. */
4090 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4092 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4093 known_x, known_mode, known_ret);
4094 return MAX (1,
4095 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4098 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4100 #ifndef WORD_REGISTER_OPERATIONS
4101 /* If this machine does not do all register operations on the entire
4102 register and MODE is wider than the mode of X, we can say nothing
4103 at all about the high-order bits. */
4104 return 1;
4105 #else
4106 /* Likewise on machines that do, if the mode of the object is smaller
4107 than a word and loads of that size don't sign extend, we can say
4108 nothing about the high order bits. */
4109 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4110 #ifdef LOAD_EXTEND_OP
4111 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4112 #endif
4114 return 1;
4115 #endif
4118 switch (code)
4120 case REG:
4122 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4123 /* If pointers extend signed and this is a pointer in Pmode, say that
4124 all the bits above ptr_mode are known to be sign bit copies. */
4125 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4126 && REG_POINTER (x))
4127 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4128 #endif
4131 unsigned int copies_for_hook = 1, copies = 1;
4132 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4133 known_mode, known_ret,
4134 &copies_for_hook);
4136 if (new)
4137 copies = cached_num_sign_bit_copies (new, mode, known_x,
4138 known_mode, known_ret);
4140 if (copies > 1 || copies_for_hook > 1)
4141 return MAX (copies, copies_for_hook);
4143 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4145 break;
4147 case MEM:
4148 #ifdef LOAD_EXTEND_OP
4149 /* Some RISC machines sign-extend all loads of smaller than a word. */
4150 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4151 return MAX (1, ((int) bitwidth
4152 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4153 #endif
4154 break;
4156 case CONST_INT:
4157 /* If the constant is negative, take its 1's complement and remask.
4158 Then see how many zero bits we have. */
4159 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4160 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4161 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4162 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4164 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4166 case SUBREG:
4167 /* If this is a SUBREG for a promoted object that is sign-extended
4168 and we are looking at it in a wider mode, we know that at least the
4169 high-order bits are known to be sign bit copies. */
4171 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4173 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4174 known_x, known_mode, known_ret);
4175 return MAX ((int) bitwidth
4176 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4177 num0);
4180 /* For a smaller object, just ignore the high bits. */
4181 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4183 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4184 known_x, known_mode, known_ret);
4185 return MAX (1, (num0
4186 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4187 - bitwidth)));
4190 #ifdef WORD_REGISTER_OPERATIONS
4191 #ifdef LOAD_EXTEND_OP
4192 /* For paradoxical SUBREGs on machines where all register operations
4193 affect the entire register, just look inside. Note that we are
4194 passing MODE to the recursive call, so the number of sign bit copies
4195 will remain relative to that mode, not the inner mode. */
4197 /* This works only if loads sign extend. Otherwise, if we get a
4198 reload for the inner part, it may be loaded from the stack, and
4199 then we lose all sign bit copies that existed before the store
4200 to the stack. */
4202 if ((GET_MODE_SIZE (GET_MODE (x))
4203 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4204 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4205 && MEM_P (SUBREG_REG (x)))
4206 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4207 known_x, known_mode, known_ret);
4208 #endif
4209 #endif
4210 break;
4212 case SIGN_EXTRACT:
4213 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4214 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4215 break;
4217 case SIGN_EXTEND:
4218 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4219 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4220 known_x, known_mode, known_ret));
4222 case TRUNCATE:
4223 /* For a smaller object, just ignore the high bits. */
4224 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4225 known_x, known_mode, known_ret);
4226 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4227 - bitwidth)));
4229 case NOT:
4230 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4231 known_x, known_mode, known_ret);
4233 case ROTATE: case ROTATERT:
4234 /* If we are rotating left by a number of bits less than the number
4235 of sign bit copies, we can just subtract that amount from the
4236 number. */
4237 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4238 && INTVAL (XEXP (x, 1)) >= 0
4239 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4241 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4242 known_x, known_mode, known_ret);
4243 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4244 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4246 break;
4248 case NEG:
4249 /* In general, this subtracts one sign bit copy. But if the value
4250 is known to be positive, the number of sign bit copies is the
4251 same as that of the input. Finally, if the input has just one bit
4252 that might be nonzero, all the bits are copies of the sign bit. */
4253 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4254 known_x, known_mode, known_ret);
4255 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4256 return num0 > 1 ? num0 - 1 : 1;
4258 nonzero = nonzero_bits (XEXP (x, 0), mode);
4259 if (nonzero == 1)
4260 return bitwidth;
4262 if (num0 > 1
4263 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4264 num0--;
4266 return num0;
4268 case IOR: case AND: case XOR:
4269 case SMIN: case SMAX: case UMIN: case UMAX:
4270 /* Logical operations will preserve the number of sign-bit copies.
4271 MIN and MAX operations always return one of the operands. */
4272 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4273 known_x, known_mode, known_ret);
4274 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4275 known_x, known_mode, known_ret);
4276 return MIN (num0, num1);
4278 case PLUS: case MINUS:
4279 /* For addition and subtraction, we can have a 1-bit carry. However,
4280 if we are subtracting 1 from a positive number, there will not
4281 be such a carry. Furthermore, if the positive number is known to
4282 be 0 or 1, we know the result is either -1 or 0. */
4284 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4285 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4287 nonzero = nonzero_bits (XEXP (x, 0), mode);
4288 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4289 return (nonzero == 1 || nonzero == 0 ? bitwidth
4290 : bitwidth - floor_log2 (nonzero) - 1);
4293 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4294 known_x, known_mode, known_ret);
4295 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4296 known_x, known_mode, known_ret);
4297 result = MAX (1, MIN (num0, num1) - 1);
4299 #ifdef POINTERS_EXTEND_UNSIGNED
4300 /* If pointers extend signed and this is an addition or subtraction
4301 to a pointer in Pmode, all the bits above ptr_mode are known to be
4302 sign bit copies. */
4303 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4304 && (code == PLUS || code == MINUS)
4305 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4306 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4307 - GET_MODE_BITSIZE (ptr_mode) + 1),
4308 result);
4309 #endif
4310 return result;
4312 case MULT:
4313 /* The number of bits of the product is the sum of the number of
4314 bits of both terms. However, unless one of the terms if known
4315 to be positive, we must allow for an additional bit since negating
4316 a negative number can remove one sign bit copy. */
4318 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4319 known_x, known_mode, known_ret);
4320 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4321 known_x, known_mode, known_ret);
4323 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4324 if (result > 0
4325 && (bitwidth > HOST_BITS_PER_WIDE_INT
4326 || (((nonzero_bits (XEXP (x, 0), mode)
4327 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4328 && ((nonzero_bits (XEXP (x, 1), mode)
4329 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4330 result--;
4332 return MAX (1, result);
4334 case UDIV:
4335 /* The result must be <= the first operand. If the first operand
4336 has the high bit set, we know nothing about the number of sign
4337 bit copies. */
4338 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4339 return 1;
4340 else if ((nonzero_bits (XEXP (x, 0), mode)
4341 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4342 return 1;
4343 else
4344 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4345 known_x, known_mode, known_ret);
4347 case UMOD:
4348 /* The result must be <= the second operand. */
4349 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4350 known_x, known_mode, known_ret);
4352 case DIV:
4353 /* Similar to unsigned division, except that we have to worry about
4354 the case where the divisor is negative, in which case we have
4355 to add 1. */
4356 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4357 known_x, known_mode, known_ret);
4358 if (result > 1
4359 && (bitwidth > HOST_BITS_PER_WIDE_INT
4360 || (nonzero_bits (XEXP (x, 1), mode)
4361 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4362 result--;
4364 return result;
4366 case MOD:
4367 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4368 known_x, known_mode, known_ret);
4369 if (result > 1
4370 && (bitwidth > HOST_BITS_PER_WIDE_INT
4371 || (nonzero_bits (XEXP (x, 1), mode)
4372 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4373 result--;
4375 return result;
4377 case ASHIFTRT:
4378 /* Shifts by a constant add to the number of bits equal to the
4379 sign bit. */
4380 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4381 known_x, known_mode, known_ret);
4382 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4383 && INTVAL (XEXP (x, 1)) > 0)
4384 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4386 return num0;
4388 case ASHIFT:
4389 /* Left shifts destroy copies. */
4390 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4391 || INTVAL (XEXP (x, 1)) < 0
4392 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4393 return 1;
4395 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4396 known_x, known_mode, known_ret);
4397 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4399 case IF_THEN_ELSE:
4400 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4401 known_x, known_mode, known_ret);
4402 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4403 known_x, known_mode, known_ret);
4404 return MIN (num0, num1);
4406 case EQ: case NE: case GE: case GT: case LE: case LT:
4407 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4408 case GEU: case GTU: case LEU: case LTU:
4409 case UNORDERED: case ORDERED:
4410 /* If the constant is negative, take its 1's complement and remask.
4411 Then see how many zero bits we have. */
4412 nonzero = STORE_FLAG_VALUE;
4413 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4414 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4415 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4417 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4419 default:
4420 break;
4423 /* If we haven't been able to figure it out by one of the above rules,
4424 see if some of the high-order bits are known to be zero. If so,
4425 count those bits and return one less than that amount. If we can't
4426 safely compute the mask for this mode, always return BITWIDTH. */
4428 bitwidth = GET_MODE_BITSIZE (mode);
4429 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4430 return 1;
4432 nonzero = nonzero_bits (x, mode);
4433 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4434 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4437 /* Calculate the rtx_cost of a single instruction. A return value of
4438 zero indicates an instruction pattern without a known cost. */
4441 insn_rtx_cost (rtx pat)
4443 int i, cost;
4444 rtx set;
4446 /* Extract the single set rtx from the instruction pattern.
4447 We can't use single_set since we only have the pattern. */
4448 if (GET_CODE (pat) == SET)
4449 set = pat;
4450 else if (GET_CODE (pat) == PARALLEL)
4452 set = NULL_RTX;
4453 for (i = 0; i < XVECLEN (pat, 0); i++)
4455 rtx x = XVECEXP (pat, 0, i);
4456 if (GET_CODE (x) == SET)
4458 if (set)
4459 return 0;
4460 set = x;
4463 if (!set)
4464 return 0;
4466 else
4467 return 0;
4469 cost = rtx_cost (SET_SRC (set), SET);
4470 return cost > 0 ? cost : COSTS_N_INSNS (1);
4473 /* Given an insn INSN and condition COND, return the condition in a
4474 canonical form to simplify testing by callers. Specifically:
4476 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4477 (2) Both operands will be machine operands; (cc0) will have been replaced.
4478 (3) If an operand is a constant, it will be the second operand.
4479 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4480 for GE, GEU, and LEU.
4482 If the condition cannot be understood, or is an inequality floating-point
4483 comparison which needs to be reversed, 0 will be returned.
4485 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4487 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4488 insn used in locating the condition was found. If a replacement test
4489 of the condition is desired, it should be placed in front of that
4490 insn and we will be sure that the inputs are still valid.
4492 If WANT_REG is nonzero, we wish the condition to be relative to that
4493 register, if possible. Therefore, do not canonicalize the condition
4494 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4495 to be a compare to a CC mode register.
4497 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4498 and at INSN. */
4501 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4502 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4504 enum rtx_code code;
4505 rtx prev = insn;
4506 rtx set;
4507 rtx tem;
4508 rtx op0, op1;
4509 int reverse_code = 0;
4510 enum machine_mode mode;
4511 basic_block bb = BLOCK_FOR_INSN (insn);
4513 code = GET_CODE (cond);
4514 mode = GET_MODE (cond);
4515 op0 = XEXP (cond, 0);
4516 op1 = XEXP (cond, 1);
4518 if (reverse)
4519 code = reversed_comparison_code (cond, insn);
4520 if (code == UNKNOWN)
4521 return 0;
4523 if (earliest)
4524 *earliest = insn;
4526 /* If we are comparing a register with zero, see if the register is set
4527 in the previous insn to a COMPARE or a comparison operation. Perform
4528 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4529 in cse.c */
4531 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4532 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4533 && op1 == CONST0_RTX (GET_MODE (op0))
4534 && op0 != want_reg)
4536 /* Set nonzero when we find something of interest. */
4537 rtx x = 0;
4539 #ifdef HAVE_cc0
4540 /* If comparison with cc0, import actual comparison from compare
4541 insn. */
4542 if (op0 == cc0_rtx)
4544 if ((prev = prev_nonnote_insn (prev)) == 0
4545 || !NONJUMP_INSN_P (prev)
4546 || (set = single_set (prev)) == 0
4547 || SET_DEST (set) != cc0_rtx)
4548 return 0;
4550 op0 = SET_SRC (set);
4551 op1 = CONST0_RTX (GET_MODE (op0));
4552 if (earliest)
4553 *earliest = prev;
4555 #endif
4557 /* If this is a COMPARE, pick up the two things being compared. */
4558 if (GET_CODE (op0) == COMPARE)
4560 op1 = XEXP (op0, 1);
4561 op0 = XEXP (op0, 0);
4562 continue;
4564 else if (!REG_P (op0))
4565 break;
4567 /* Go back to the previous insn. Stop if it is not an INSN. We also
4568 stop if it isn't a single set or if it has a REG_INC note because
4569 we don't want to bother dealing with it. */
4571 if ((prev = prev_nonnote_insn (prev)) == 0
4572 || !NONJUMP_INSN_P (prev)
4573 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4574 /* In cfglayout mode, there do not have to be labels at the
4575 beginning of a block, or jumps at the end, so the previous
4576 conditions would not stop us when we reach bb boundary. */
4577 || BLOCK_FOR_INSN (prev) != bb)
4578 break;
4580 set = set_of (op0, prev);
4582 if (set
4583 && (GET_CODE (set) != SET
4584 || !rtx_equal_p (SET_DEST (set), op0)))
4585 break;
4587 /* If this is setting OP0, get what it sets it to if it looks
4588 relevant. */
4589 if (set)
4591 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4592 #ifdef FLOAT_STORE_FLAG_VALUE
4593 REAL_VALUE_TYPE fsfv;
4594 #endif
4596 /* ??? We may not combine comparisons done in a CCmode with
4597 comparisons not done in a CCmode. This is to aid targets
4598 like Alpha that have an IEEE compliant EQ instruction, and
4599 a non-IEEE compliant BEQ instruction. The use of CCmode is
4600 actually artificial, simply to prevent the combination, but
4601 should not affect other platforms.
4603 However, we must allow VOIDmode comparisons to match either
4604 CCmode or non-CCmode comparison, because some ports have
4605 modeless comparisons inside branch patterns.
4607 ??? This mode check should perhaps look more like the mode check
4608 in simplify_comparison in combine. */
4610 if ((GET_CODE (SET_SRC (set)) == COMPARE
4611 || (((code == NE
4612 || (code == LT
4613 && GET_MODE_CLASS (inner_mode) == MODE_INT
4614 && (GET_MODE_BITSIZE (inner_mode)
4615 <= HOST_BITS_PER_WIDE_INT)
4616 && (STORE_FLAG_VALUE
4617 & ((HOST_WIDE_INT) 1
4618 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4619 #ifdef FLOAT_STORE_FLAG_VALUE
4620 || (code == LT
4621 && SCALAR_FLOAT_MODE_P (inner_mode)
4622 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4623 REAL_VALUE_NEGATIVE (fsfv)))
4624 #endif
4626 && COMPARISON_P (SET_SRC (set))))
4627 && (((GET_MODE_CLASS (mode) == MODE_CC)
4628 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4629 || mode == VOIDmode || inner_mode == VOIDmode))
4630 x = SET_SRC (set);
4631 else if (((code == EQ
4632 || (code == GE
4633 && (GET_MODE_BITSIZE (inner_mode)
4634 <= HOST_BITS_PER_WIDE_INT)
4635 && GET_MODE_CLASS (inner_mode) == MODE_INT
4636 && (STORE_FLAG_VALUE
4637 & ((HOST_WIDE_INT) 1
4638 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4639 #ifdef FLOAT_STORE_FLAG_VALUE
4640 || (code == GE
4641 && SCALAR_FLOAT_MODE_P (inner_mode)
4642 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4643 REAL_VALUE_NEGATIVE (fsfv)))
4644 #endif
4646 && COMPARISON_P (SET_SRC (set))
4647 && (((GET_MODE_CLASS (mode) == MODE_CC)
4648 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4649 || mode == VOIDmode || inner_mode == VOIDmode))
4652 reverse_code = 1;
4653 x = SET_SRC (set);
4655 else
4656 break;
4659 else if (reg_set_p (op0, prev))
4660 /* If this sets OP0, but not directly, we have to give up. */
4661 break;
4663 if (x)
4665 /* If the caller is expecting the condition to be valid at INSN,
4666 make sure X doesn't change before INSN. */
4667 if (valid_at_insn_p)
4668 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4669 break;
4670 if (COMPARISON_P (x))
4671 code = GET_CODE (x);
4672 if (reverse_code)
4674 code = reversed_comparison_code (x, prev);
4675 if (code == UNKNOWN)
4676 return 0;
4677 reverse_code = 0;
4680 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4681 if (earliest)
4682 *earliest = prev;
4686 /* If constant is first, put it last. */
4687 if (CONSTANT_P (op0))
4688 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4690 /* If OP0 is the result of a comparison, we weren't able to find what
4691 was really being compared, so fail. */
4692 if (!allow_cc_mode
4693 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4694 return 0;
4696 /* Canonicalize any ordered comparison with integers involving equality
4697 if we can do computations in the relevant mode and we do not
4698 overflow. */
4700 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4701 && GET_CODE (op1) == CONST_INT
4702 && GET_MODE (op0) != VOIDmode
4703 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4705 HOST_WIDE_INT const_val = INTVAL (op1);
4706 unsigned HOST_WIDE_INT uconst_val = const_val;
4707 unsigned HOST_WIDE_INT max_val
4708 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4710 switch (code)
4712 case LE:
4713 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4714 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4715 break;
4717 /* When cross-compiling, const_val might be sign-extended from
4718 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4719 case GE:
4720 if ((HOST_WIDE_INT) (const_val & max_val)
4721 != (((HOST_WIDE_INT) 1
4722 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4723 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4724 break;
4726 case LEU:
4727 if (uconst_val < max_val)
4728 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4729 break;
4731 case GEU:
4732 if (uconst_val != 0)
4733 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4734 break;
4736 default:
4737 break;
4741 /* Never return CC0; return zero instead. */
4742 if (CC0_P (op0))
4743 return 0;
4745 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4748 /* Given a jump insn JUMP, return the condition that will cause it to branch
4749 to its JUMP_LABEL. If the condition cannot be understood, or is an
4750 inequality floating-point comparison which needs to be reversed, 0 will
4751 be returned.
4753 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4754 insn used in locating the condition was found. If a replacement test
4755 of the condition is desired, it should be placed in front of that
4756 insn and we will be sure that the inputs are still valid. If EARLIEST
4757 is null, the returned condition will be valid at INSN.
4759 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4760 compare CC mode register.
4762 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4765 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4767 rtx cond;
4768 int reverse;
4769 rtx set;
4771 /* If this is not a standard conditional jump, we can't parse it. */
4772 if (!JUMP_P (jump)
4773 || ! any_condjump_p (jump))
4774 return 0;
4775 set = pc_set (jump);
4777 cond = XEXP (SET_SRC (set), 0);
4779 /* If this branches to JUMP_LABEL when the condition is false, reverse
4780 the condition. */
4781 reverse
4782 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4783 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4785 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4786 allow_cc_mode, valid_at_insn_p);
4790 /* Initialize non_rtx_starting_operands, which is used to speed up
4791 for_each_rtx. */
4792 void
4793 init_rtlanal (void)
4795 int i;
4796 for (i = 0; i < NUM_RTX_CODE; i++)
4798 const char *format = GET_RTX_FORMAT (i);
4799 const char *first = strpbrk (format, "eEV");
4800 non_rtx_starting_operands[i] = first ? first - format : -1;