Merge from mainline
[official-gcc.git] / gcc / fortran / gfortran.texi
blob908e05aec76daee0cf4a40a97666160a3fdf3165
1 \input texinfo  @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename gfortran.info
4 @set copyrights-gfortran 1999-2006
6 @include gcc-common.texi
8 @settitle The GNU Fortran 95 Compiler
10 @c Create a separate index for command line options
11 @defcodeindex op
12 @c Merge the standard indexes into a single one.
13 @syncodeindex fn cp
14 @syncodeindex vr cp
15 @syncodeindex ky cp
16 @syncodeindex pg cp
17 @syncodeindex tp cp
19 @c %**end of header
21 @c Use with @@smallbook.
23 @c %** start of document
25 @c Cause even numbered pages to be printed on the left hand side of
26 @c the page and odd numbered pages to be printed on the right hand
27 @c side of the page.  Using this, you can print on both sides of a
28 @c sheet of paper and have the text on the same part of the sheet.
30 @c The text on right hand pages is pushed towards the right hand
31 @c margin and the text on left hand pages is pushed toward the left
32 @c hand margin.
33 @c (To provide the reverse effect, set bindingoffset to -0.75in.)
35 @c @tex
36 @c \global\bindingoffset=0.75in
37 @c \global\normaloffset =0.75in
38 @c @end tex
40 @copying
41 Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.
43 Permission is granted to copy, distribute and/or modify this document
44 under the terms of the GNU Free Documentation License, Version 1.1 or
45 any later version published by the Free Software Foundation; with the
46 Invariant Sections being ``GNU General Public License'' and ``Funding
47 Free Software'', the Front-Cover
48 texts being (a) (see below), and with the Back-Cover Texts being (b)
49 (see below).  A copy of the license is included in the section entitled
50 ``GNU Free Documentation License''.
52 (a) The FSF's Front-Cover Text is:
54      A GNU Manual
56 (b) The FSF's Back-Cover Text is:
58      You have freedom to copy and modify this GNU Manual, like GNU
59      software.  Copies published by the Free Software Foundation raise
60      funds for GNU development.
61 @end copying
63 @ifinfo
64 @dircategory Programming
65 @direntry
66 * gfortran: (gfortran).                  The GNU Fortran 95 Compiler.
67 @end direntry
68 This file documents the use and the internals of
69 the GNU Fortran 95 compiler, (@command{gfortran}).
71 Published by the Free Software Foundation
72 51 Franklin Street, Fifth Floor
73 Boston, MA 02110-1301 USA
75 @insertcopying
76 @end ifinfo
79 @setchapternewpage odd
80 @titlepage
81 @title Using GNU Fortran 95
82 @sp 2
83 @center The gfortran team
84 @page
85 @vskip 0pt plus 1filll
86 For the @value{version-GCC} Version*
87 @sp 1
88 Published by the Free Software Foundation @*
89 51 Franklin Street, Fifth Floor@*
90 Boston, MA 02110-1301, USA@*
91 @c Last printed ??ber, 19??.@*
92 @c Printed copies are available for $? each.@*
93 @c ISBN ???
94 @sp 1
95 @insertcopying
96 @end titlepage
97 @summarycontents
98 @contents
99 @page
101 @node Top
102 @top Introduction
103 @cindex Introduction
105 This manual documents the use of @command{gfortran}, 
106 the GNU Fortran 95 compiler. You can find in this manual how to invoke
107 @command{gfortran}, as well as its features and incompatibilities.
109 @ifset DEVELOPMENT
110 @emph{Warning:} This document, and the compiler it describes, are still
111 under development.  While efforts are made to keep it up-to-date, it might
112 not accurately reflect the status of the most recent @command{gfortran}.
113 @end ifset
115 @comment
116 @comment  When you add a new menu item, please keep the right hand
117 @comment  aligned to the same column.  Do not use tabs.  This provides
118 @comment  better formatting.
119 @comment
120 @menu
121 * Getting Started::      What you should know about @command{gfortran}.
122 * GFORTRAN and GCC::     You can compile Fortran, C, or other programs.
123 * GFORTRAN and G77::     Why we chose to start from scratch.
124 * Invoking GFORTRAN::    Command options supported by @command{gfortran}.
125 * Project Status::       Status of @command{gfortran}, roadmap, proposed extensions.
126 * Contributing::         How you can help.
127 * Standards::            Standards supported by @command{gfortran}
128 * Runtime::              Influencing runtime behavior with environment variables.
129 * Extensions::           Language extensions implemented by @command{gfortran}
130 * Intrinsic Procedures:: Intrinsic procedures supported by @command{gfortran}
131 * Copying::              GNU General Public License says
132                          how you can copy and share GNU Fortran.
133 * GNU Free Documentation License::
134                          How you can copy and share this manual.
135 * Funding::              How to help assure continued work for free software.
136 * Index::                Index of this documentation.
137 @end menu
141 @c ---------------------------------------------------------------------
142 @c Getting Started
143 @c ---------------------------------------------------------------------
145 @node Getting Started
146 @chapter Getting Started
148 Gfortran is the GNU Fortran 95 compiler front end,
149 designed initially as a free replacement for,
150 or alternative to, the unix @command{f95} command;
151 @command{gfortran} is the command you'll use to invoke the compiler.
153 Gfortran is still in an early state of development.
154 @command{gfortran} can generate code for most constructs and expressions,
155 but much work remains to be done.
157 When @command{gfortran} is finished,
158 it will do everything you expect from any decent compiler: 
160 @itemize @bullet
161 @item
162 Read a user's program,
163 stored in a file and containing instructions written
164 in Fortran 77, Fortran 90 or Fortran 95.
165 This file contains @dfn{source code}.
167 @item
168 Translate the user's program into instructions a computer
169 can carry out more quickly than it takes to translate the
170 instructions in the first
171 place.  The result after compilation of a program is
172 @dfn{machine code},
173 code designed to be efficiently translated and processed
174 by a machine such as your computer.
175 Humans usually aren't as good writing machine code
176 as they are at writing Fortran (or C++, Ada, or Java),
177 because is easy to make tiny mistakes writing machine code.
179 @item
180 Provide the user with information about the reasons why
181 the compiler is unable to create a binary from the source code.
182 Usually this will be the case if the source code is flawed.
183 When writing Fortran, it is easy to make big mistakes.
184 The Fortran 90 requires that the compiler can point out
185 mistakes to the user.
186 An incorrect usage of the language causes an @dfn{error message}.
188 The compiler will also attempt to diagnose cases where the
189 user's program contains a correct usage of the language,
190 but instructs the computer to do something questionable.
191 This kind of diagnostics message is called a @dfn{warning message}.
193 @item
194 Provide optional information about the translation passes
195 from the source code to machine code.
196 This can help a user of the compiler to find the cause of
197 certain bugs which may not be obvious in the source code,
198 but may be more easily found at a lower level compiler output.
199 It also helps developers to find bugs in the compiler itself.
201 @item
202 Provide information in the generated machine code that can
203 make it easier to find bugs in the program (using a debugging tool,
204 called a @dfn{debugger}, such as the GNU Debugger @command{gdb}). 
206 @item
207 Locate and gather machine code already generated to
208 perform actions requested by statements in the user's program.
209 This machine code is organized into @dfn{modules} and is located
210 and @dfn{linked} to the user program. 
211 @end itemize
213 Gfortran consists of several components:
215 @itemize @bullet
216 @item
217 A version of the @command{gcc} command
218 (which also might be installed as the system's @command{cc} command)
219 that also understands and accepts Fortran source code.
220 The @command{gcc} command is the @dfn{driver} program for
221 all the languages in the GNU Compiler Collection (GCC);
222 With @command{gcc},
223 you can compile the source code of any language for
224 which a front end is available in GCC.
226 @item
227 The @command{gfortran} command itself,
228 which also might be installed as the
229 system's @command{f95} command.
230 @command{gfortran} is just another driver program,
231 but specifically for the Fortran 95 compiler only.
232 The difference with @command{gcc} is that @command{gfortran}
233 will automatically link the correct libraries to your program.
235 @item
236 A collection of run-time libraries.
237 These libraries contain the machine code needed to support
238 capabilities of the Fortran language that are not directly
239 provided by the machine code generated by the
240 @command{gfortran} compilation phase,
241 such as intrinsic functions and subroutines,
242 and routines for interaction with files and the operating system.
243 @c and mechanisms to spawn,
244 @c unleash and pause threads in parallelized code.
246 @item
247 The Fortran compiler itself, (@command{f951}).
248 This is the gfortran parser and code generator,
249 linked to and interfaced with the GCC backend library.
250 @command{f951} ``translates'' the source code to
251 assembler code.  You would typically not use this
252 program directly;
253 instead, the @command{gcc} or @command{gfortran} driver
254 programs will call it for you.
255 @end itemize
259 @c ---------------------------------------------------------------------
260 @c GFORTRAN and GCC
261 @c ---------------------------------------------------------------------
263 @node GFORTRAN and GCC
264 @chapter GFORTRAN and GCC
265 @cindex GNU Compiler Collection
267 GCC used to be the GNU ``C'' Compiler,
268 but is now known as the @dfn{GNU Compiler Collection}.
269 GCC provides the GNU system with a very versatile
270 compiler middle end (shared optimization passes),
271 and back ends (code generators) for many different
272 computer architectures and operating systems.
273 The code of the middle end and back end are shared by all
274 compiler front ends that are in the GNU Compiler Collection.
276 A GCC front end is essentially a source code parser
277 and an intermediate code generator.  The code generator translates the
278 semantics of the source code into a language independent form called
279 @dfn{GENERIC}.
281 The parser takes a source file written in a
282 particular computer language, reads and parses it,
283 and tries to make sure that the source code conforms to
284 the language rules.
285 Once the correctness of a program has been established,
286 the compiler will build a data structure known as the
287 @dfn{Abstract Syntax tree},
288 or just @dfn{AST} or ``tree'' for short.
289 This data structure represents the whole program
290 or a subroutine or a function.
291 The ``tree'' is passed to the GCC middle end,
292 which will perform optimization passes on it.  The optimized AST is then 
293 handed off too the back end which assembles the program unit.
295 Different phases in this translation process can be,
296 and in fact @emph{are} merged in many compiler front ends.
297 GNU Fortran 95 has a strict separation between the
298 parser and code generator.
300 The goal of the gfortran project is to build a new front end for GCC.
301 Specifically, a Fortran 95 front end.
302 In a non-gfortran installation,
303 @command{gcc} will not be able to compile Fortran 95 source code
304 (only the ``C'' front end has to be compiled if you want to build GCC,
305 all other languages are optional).
306 If you build GCC with gfortran, @command{gcc} will recognize
307 @file{.f/.f90/.f95} source files and accepts Fortran 95 specific
308 command line options.
312 @c ---------------------------------------------------------------------
313 @c GFORTRAN and G77
314 @c ---------------------------------------------------------------------
316 @node GFORTRAN and G77
317 @chapter GFORTRAN and G77
318 @cindex Fortran 77
319 @cindex G77
321 Why do we write a compiler front end from scratch? 
322 There's a fine Fortran 77 compiler in the
323 GNU Compiler Collection that accepts some features
324 of the Fortran 90 standard as extensions.
325 Why not start from there and revamp it?
327 One of the reasons is that Craig Burley, the author of G77,
328 has decided to stop working on the G77 front end.
329 On @uref{http://world.std.com/~burley/g77-why.html,
330 Craig explains the reasons for his decision to stop working on G77}
331 in one of the pages in his homepage.
332 Among the reasons is a lack of interest in improvements to
333 @command{g77}.
334 Users appear to be quite satisfied with @command{g77} as it is.
335 While @command{g77} is still being maintained (by Toon Moene),
336 it is unlikely that sufficient people will be willing
337 to completely rewrite the existing code. 
339 But there are other reasons to start from scratch.
340 Many people, including Craig Burley,
341 no longer agreed with certain design decisions in the G77 front end.
342 Also, the interface of @command{g77} to the back end is written in
343 a style which is confusing and not up to date on recommended practice.
344 In fact, a full rewrite had already been planned for GCC 3.0.
346 When Craig decided to stop,
347 it just seemed to be a better idea to start a new project from scratch,
348 because it was expected to be easier to maintain code we
349 develop ourselves than to do a major overhaul of @command{g77} first,
350 and then build a Fortran 95 compiler out of it.
352 @include invoke.texi
354 @c ---------------------------------------------------------------------
355 @c Project Status
356 @c ---------------------------------------------------------------------
358 @node Project Status
359 @chapter Project Status
361 @quotation
362 As soon as gfortran can parse all of the statements correctly,
363 it will be in the ``larva'' state.
364 When we generate code, the ``puppa'' state.
365 When gfortran is done,
366 we'll see if it will be a beautiful butterfly,
367 or just a big bug....
369 --Andy Vaught, April 2000
370 @end quotation
372 The start of the GNU Fortran 95 project was announced on
373 the GCC homepage in March 18, 2000
374 (even though Andy had already been working on it for a while,
375 of course).
377 Gfortran is currently reaching the stage where is is able to compile real
378 world programs.  However it is still under development and has many rough
379 edges.
381 @menu
382 * Compiler Status::
383 * Library Status::
384 * Proposed Extensions::
385 @end menu
387 @node Compiler Status
388 @section Compiler Status
390 @table @emph
391 @item Front end
392 This is the part of gfortran which parses a source file, verifies that it
393 is valid Fortran 95, performs compile time replacement of constants
394 (PARAMETER variables) and reads and generate module files. This is
395 almost complete. Every Fortran 95 source should be accepted, and most
396 none-Fortran 95 source should be rejected. If you find a source file where
397 this is not true, please tell us. You can use the -fsyntax-only switch to
398 make gfortran quit after running the front end, effectively reducing it to
399 a syntax checker.
401 @item Middle end interface
402 These are the parts of gfortran that take the parse tree generated by the
403 front end and translate it to the GENERIC form required by the GCC back
404 end. Work is ongoing in these parts of gfortran, but a large part has
405 already been completed.
406 @end table
408 @node Library Status
409 @section Library Status
411 Some intrinsic functions map directly to library functions, and in most
412 cases the name of the library function used depends on the type of the
413 arguments.  For some intrinsics we generate inline code, and for others,
414 such as sin, cos and sqrt, we rely on the backend to use special
415 instructions in the floating point unit of the CPU if available, or to
416 fall back to a call to libm if these are not available.
418 Implementation of some non-elemental intrinsic functions (eg. DOT_PRODUCT,
419 AVERAGE) is not yet optimal. This is hard because we have to make decisions
420 whether to use inline code (good for small arrays as no function call
421 overhead occurs) or generate function calls (good for large arrays as it
422 allows use of hand-optimized assembly routines, SIMD instructions, etc.)
424 The IO library is in a mostly usable state.  Unformatted I/O for
425 @code{REAL(KIND=10)} variables is currently not recommended.
427 Array intrinsics mostly work.
429 @node Proposed Extensions
430 @section Proposed Extensions
432 Here's a list of proposed extensions for @command{gfortran}, in no particular
433 order.  Most of these are necessary to be fully compatible with
434 existing Fortran compilers, but they are not part of the official
435 J3 Fortran 95 standard.
437 @subsection Compiler extensions: 
438 @itemize @bullet
439 @item
440 Flag for defining the kind number for default logicals.
442 @item
443 User-specified alignment rules for structures.
444 @item
445 Flag to generate @code{Makefile} info.
447 @item
448 Automatically extend single precision constants to double.
450 @item
451 Compile code that conserves memory by dynamically allocating common and
452 module storage either on stack or heap.
454 @item
455 Flag to cause the compiler to distinguish between upper and lower case
456 names.  The Fortran 95 standard does not distinguish them.
458 @item
459 Compile flag to generate code for array conformance checking (suggest -CC).
461 @item
462 User control of symbol names (underscores, etc).
464 @item
465 Compile setting for maximum size of stack frame size before spilling
466 parts to static or heap.
468 @item
469 Flag to force local variables into static space.
471 @item
472 Flag to force local variables onto stack.
474 @item
475 Flag to compile lines beginning with ``D''.
477 @item
478 Flag to ignore lines beginning with ``D''.
480 @item
481 Flag for maximum errors before ending compile.
483 @item
484 Generate code to check for null pointer dereferences -- prints locus of
485 dereference instead of segfaulting.  There was some discussion about this
486 option in the g95 development mailing list.
488 @item
489 Allow setting the default unit number.
491 @item
492 Option to initialize otherwise uninitialized integer and floating
493 point variables.
495 @item
496 Support for Fortran 200x. This includes several new features including
497 floating point exceptions, extended use of allocatable arrays, C
498 interoperability, Parameterizer data types and function pointers.
499 @end itemize
502 @subsection Environment Options
503 @itemize @bullet
504 @item
505 Pluggable library modules for random numbers, linear algebra.
506 LA should use BLAS calling conventions.
508 @item
509 Environment variables controlling actions on arithmetic exceptions like
510 overflow, underflow, precision loss -- Generate NaN, abort, default.
511 action.
513 @item
514 Set precision for fp units that support it (i387).
516 @item
517 Variable for setting fp rounding mode.
519 @item
520 Variable to fill uninitialized variables with a user-defined bit
521 pattern.
523 @item
524 Environment variable controlling filename that is opened for that unit
525 number.
527 @item
528 Environment variable to clear/trash memory being freed.
530 @item
531 Environment variable to control tracing of allocations and frees.
533 @item
534 Environment variable to display allocated memory at normal program end.
536 @item
537 Environment variable for filename for * IO-unit.
539 @item
540 Environment variable for temporary file directory.
542 @item
543 Environment variable forcing standard output to be line buffered (unix).
545 @end itemize
547 @node Runtime
548 @chapter Runtime:  Influencing runtime behavior with environment variables
549 @cindex Runtime
551 The behaviour of the @command{gfortran} can be influenced by
552 environment variables.
553 @menu
554 * GFORTRAN_CONVERT_UNIT::  Set endianness for unformatted I/O
555 @end menu
557 @node GFORTRAN_CONVERT_UNIT
558 @section GFORTRAN_CONVERT_UNIT --- Set endianness for unformatted I/O
560 By setting the @code{GFORTRAN_CONVERT_UNIT variable}, it is possible
561 to change the representation of data for unformatted files.
562 The syntax for the @code{GFORTRAN_CONVERT_UNIT} variable is:
563 @smallexample
564 GFORTRAN_CONVERT_UNIT: mode | mode ';' exception ;
565 mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
566 exception: mode ':' unit_list | unit_list ;
567 unit_list: unit_spec | unit_list unit_spec ;
568 unit_spec: INTEGER | INTEGER '-' INTEGER ;
569 @end smallexample
570 The variable consists of an optional default mode, followed by
571 a list of optional exceptions, which are separated by semicolons
572 from the preceding default and each other.  Each exception consists
573 of a format and a comma-separated list of units.  Valid values for
574 the modes are the same as for the @code{CONVERT} specifier:
576 @itemize @w{}
577 @item @code{NATIVE} Use the native format.  This is the default.
578 @item @code{SWAP} Swap between little- and big-endian.
579 @item @code{LITTLE_ENDIAN} Use the little-endian format
580         for unformatted files.
581 @item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
582 @end itemize
583 A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
584 Examples of values for @code{GFORTRAN_CONVERT_UNIT} are:
585 @itemize @w{}
586 @item @code{'big_endian'}  Do all unformatted I/O in big_endian mode.
587 @item @code{'little_endian;native:10-20,25'}  Do all unformatted I/O 
588 in little_endian mode, except for units 10 to 20 and 25, which are in
589 native format.
590 @item @code{'10-20'}  Units 10 to 20 are big-endian, the rest is native.
591 @end itemize
593 Setting the environment variables should be done on the command
594 line or via the @code{export}
595 command for @code{sh}-compatible shells and via @code{setenv}
596 for @code{csh}-compatible shells.
598 Example for @code{sh}:
599 @smallexample
600 $ gfortran foo.f90
601 $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
602 @end smallexample
604 Example code for @code{csh}:
605 @smallexample
606 % gfortran foo.f90
607 % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
608 % ./a.out
609 @end smallexample
611 Using anything but the native representation for unformatted data
612 carries a significant speed overhead.  If speed in this area matters
613 to you, it is best if you use this only for data that needs to be
614 portable.
616 @xref{CONVERT specifier}, for an alternative way to specify the
617 data representation for unformatted files.  @xref{Runtime Options}, for
618 setting a default data representation for the whole program.  The
619 @code{CONVERT} specifier overrides the @code{-fconvert} compile options.
621 @c ---------------------------------------------------------------------
622 @c Extensions
623 @c ---------------------------------------------------------------------
625 @c Maybe this chapter should be merged with the 'Standards' section,
626 @c whenever that is written :-)
628 @node Extensions
629 @chapter Extensions
630 @cindex Extension
632 @command{gfortran} implements a number of extensions over standard
633 Fortran. This chapter contains information on their syntax and
634 meaning.  There are currently two categories of @command{gfortran}
635 extensions, those that provide functionality beyond that provided
636 by any standard, and those that are supported by @command{gfortran}
637 purely for backward compatibility with legacy compilers.  By default,
638 @option{-std=gnu} allows the compiler to accept both types of
639 extensions, but to warn about the use of the latter.  Specifying
640 either @option{-std=f95} or @option{-std=f2003} disables both types
641 of extensions, and @option{-std=legacy} allows both without warning.
643 @menu
644 * Old-style kind specifications::
645 * Old-style variable initialization::
646 * Extensions to namelist::
647 * X format descriptor::
648 * Commas in FORMAT specifications::
649 * I/O item lists::
650 * Hexadecimal constants::
651 * Real array indices::
652 * Unary operators::
653 * Implicitly interconvert LOGICAL and INTEGER::
654 * Hollerith constants support::
655 * Cray pointers::
656 * CONVERT specifier::
657 * OpenMP::
658 @end menu
660 @node Old-style kind specifications
661 @section Old-style kind specifications
662 @cindex Kind specifications
664 @command{gfortran} allows old-style kind specifications in
665 declarations. These look like:
666 @smallexample
667       TYPESPEC*k x,y,z
668 @end smallexample
669 where @code{TYPESPEC} is a basic type, and where @code{k} is a valid kind
670 number for that type. The statement then declares @code{x}, @code{y}
671 and @code{z} to be of type @code{TYPESPEC} with kind @code{k}. In
672 other words, it is equivalent to the standard conforming declaration
673 @smallexample
674       TYPESPEC(k) x,y,z
675 @end smallexample
677 @node Old-style variable initialization
678 @section Old-style variable initialization
679 @cindex Initialization
681 @command{gfortran} allows old-style initialization of variables of the
682 form:
683 @smallexample
684       INTEGER*4 i/1/,j/2/
685       REAL*8 x(2,2) /3*0.,1./
686 @end smallexample
687 These are only allowed in declarations without double colons
688 (@code{::}), as these were introduced in Fortran 90 which also
689 introduced a new syntax for variable initializations. The syntax for
690 the individual initializers is as for the @code{DATA} statement, but
691 unlike in a @code{DATA} statement, an initializer only applies to the
692 variable immediately preceding. In other words, something like
693 @code{INTEGER I,J/2,3/} is not valid.
695 Examples of standard conforming code equivalent to the above example, are:
696 @smallexample
697 ! Fortran 90
698       INTEGER(4) :: i = 1, j = 2
699       REAL(8) :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
700 ! Fortran 77
701       INTEGER  i, j
702       DOUBLE PRECISION x(2,2)
703       DATA i,j,x /1,2,3*0.,1./
704 @end smallexample
706 @node Extensions to namelist
707 @section Extensions to namelist
708 @cindex Namelist
710 @command{gfortran} fully supports the Fortran 95 standard for namelist I/O
711 including array qualifiers, substrings and fully qualified derived types.
712 The output from a namelist write is compatible with namelist read.  The
713 output has all names in upper case and indentation to column 1 after the
714 namelist name.  Two extensions are permitted:
716 Old-style use of $ instead of &
717 @smallexample
718 $MYNML
719  X(:)%Y(2) = 1.0 2.0 3.0
720  CH(1:4) = "abcd"
721 $END
722 @end smallexample
724 It should be noticed that the default terminator is / rather than &END.
726 Querying of the namelist when inputting from stdin. After at least
727 one space, entering ? sends to stdout the namelist name and the names of
728 the variables in the namelist:
729 @smallexample
732 &mynml
734  x%y
735  ch
736 &end
737 @end smallexample
739 Entering =? outputs the namelist to stdout, as if WRITE (*,NML = mynml)
740 had been called:
741 @smallexample
744 &MYNML
745  X(1)%Y=  0.000000    ,  1.000000    ,  0.000000    ,
746  X(2)%Y=  0.000000    ,  2.000000    ,  0.000000    ,
747  X(3)%Y=  0.000000    ,  3.000000    ,  0.000000    ,
748  CH=abcd,  /
749 @end smallexample
751 To aid this dialog, when input is from stdin, errors send their
752 messages to stderr and execution continues, even if IOSTAT is set.
754 PRINT namelist is permitted.  This causes an error if -std=f95 is used.
755 @smallexample
756 PROGRAM test_print
757   REAL, dimension (4)  ::  x = (/1.0, 2.0, 3.0, 4.0/)
758   NAMELIST /mynml/ x
759   PRINT mynml
760 END PROGRAM test_print
761 @end smallexample
763 @node X format descriptor
764 @section X format descriptor
765 @cindex X format descriptor
767 To support legacy codes, @command{gfortran} permits the count field
768 of the X edit descriptor in FORMAT statements to be omitted.  When
769 omitted, the count is implicitly assumed to be one.
771 @smallexample
772        PRINT 10, 2, 3
773 10     FORMAT (I1, X, I1)
774 @end smallexample
776 @node Commas in FORMAT specifications
777 @section Commas in FORMAT specifications
778 @cindex Commas in FORMAT specifications
780 To support legacy codes, @command{gfortran} allows the comma separator
781 to be omitted immediately before and after character string edit
782 descriptors in FORMAT statements.
784 @smallexample
785        PRINT 10, 2, 3
786 10     FORMAT ('FOO='I1' BAR='I2)
787 @end smallexample
789 @node I/O item lists
790 @section I/O item lists
791 @cindex I/O item lists
793 To support legacy codes, @command{gfortran} allows the input item list
794 of the READ statement, and the output item lists of the WRITE and PRINT
795 statements to start with a comma.
797 @node Hexadecimal constants
798 @section Hexadecimal constants
799 @cindex Hexadecimal constants
801 As a GNU extension, @command{gfortran} allows hexadecimal constants to
802 be specified using the X prefix, in addition to the standard Z prefix.
804 @node Real array indices
805 @section Real array indices
806 @cindex Real array indices
808 As a GNU extension, @command{gfortran} allows arrays to be indexed using
809 real types, whose values are implicitly converted to integers.
811 @node Unary operators
812 @section Unary operators
813 @cindex Unary operators
815 As a GNU extension, @command{gfortran} allows unary plus and unary
816 minus operators to appear as the second operand of binary arithmetic
817 operators without the need for parenthesis.
819 @smallexample
820        X = Y * -Z
821 @end smallexample
823 @node Implicitly interconvert LOGICAL and INTEGER
824 @section Implicitly interconvert LOGICAL and INTEGER
825 @cindex Implicitly interconvert LOGICAL and INTEGER
827 As a GNU extension for backwards compatibility with other compilers,
828 @command{gfortran} allows the implicit conversion of LOGICALs to INTEGERs
829 and vice versa.  When converting from a LOGICAL to an INTEGER, the numeric
830 value of @code{.FALSE.} is zero, and that of @code{.TRUE.} is one.  When
831 converting from INTEGER to LOGICAL, the value zero is interpreted as
832 @code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.
834 @smallexample
835        INTEGER*4 i
836        i = .FALSE.
837 @end smallexample
839 @node Hollerith constants support
840 @section Hollerith constants support
841 @cindex Hollerith constants
843 A Hollerith constant is a string of characters preceded by the letter @samp{H}
844 or @samp{h}, and there must be an literal, unsigned, nonzero default integer
845 constant indicating the number of characters in the string. Hollerith constants
846 are stored as byte strings, one character per byte.
848 @command{gfortran} supports Hollerith constants. They can be used as the right
849 hands in the @code{DATA} statement and @code{ASSIGN} statement, also as the
850 arguments. The left hands can be of Integer, Real, Complex and Logical type.
851 The constant will be padded or truncated to fit the size of left hand.
853 Valid Hollerith constants examples:
854 @smallexample
855 complex*16 x(2)
856 data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
857 call foo (4H abc)
858 x(1) = 16Habcdefghijklmnop
859 @end smallexample
861 Invalid Hollerith constants examples:
862 @smallexample
863 integer*4 a
864 a = 8H12345678 ! The Hollerith constant is too long. It will be truncated.
865 a = 0H         ! At least one character needed.
866 @end smallexample
868 @node Cray pointers
869 @section Cray pointers
870 @cindex Cray pointers
872 Cray pointers are part of a non-standard extension that provides a
873 C-like pointer in Fortran.  This is accomplished through a pair of
874 variables: an integer "pointer" that holds a memory address, and a
875 "pointee" that is used to dereference the pointer.
877 Pointer/pointee pairs are declared in statements of the form:
878 @smallexample
879         pointer ( <pointer> , <pointee> )
880 @end smallexample
882 @smallexample
883         pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
884 @end smallexample
885 The pointer is an integer that is intended to hold a memory address.
886 The pointee may be an array or scalar.  A pointee can be an assumed
887 size array -- that is, the last dimension may be left unspecified by
888 using a '*' in place of a value -- but a pointee cannot be an assumed
889 shape array.  No space is allocated for the pointee.
891 The pointee may have its type declared before or after the pointer
892 statement, and its array specification (if any) may be declared
893 before, during, or after the pointer statement.  The pointer may be
894 declared as an integer prior to the pointer statement.  However, some
895 machines have default integer sizes that are different than the size
896 of a pointer, and so the following code is not portable:
897 @smallexample
898         integer ipt
899         pointer (ipt, iarr)
900 @end smallexample
901 If a pointer is declared with a kind that is too small, the compiler
902 will issue a warning; the resulting binary will probably not work
903 correctly, because the memory addresses stored in the pointers may be
904 truncated.  It is safer to omit the first line of the above example;
905 if explicit declaration of ipt's type is omitted, then the compiler
906 will ensure that ipt is an integer variable large enough to hold a
907 pointer.
909 Pointer arithmetic is valid with Cray pointers, but it is not the same
910 as C pointer arithmetic.  Cray pointers are just ordinary integers, so
911 the user is responsible for determining how many bytes to add to a
912 pointer in order to increment it.  Consider the following example:
913 @smallexample
914         real target(10)
915         real pointee(10)
916         pointer (ipt, pointee)
917         ipt = loc (target)
918         ipt = ipt + 1       
919 @end smallexample
920 The last statement does not set ipt to the address of
921 @code{target(1)}, as one familiar with C pointer arithmetic might
922 expect.  Adding 1 to ipt just adds one byte to the address stored in
923 ipt.
925 Any expression involving the pointee will be translated to use the
926 value stored in the pointer as the base address.
928 To get the address of elements, this extension provides an intrinsic
929 function loc(), loc() is essentially the C '&' operator, except the
930 address is cast to an integer type:
931 @smallexample
932         real ar(10)
933         pointer(ipt, arpte(10))
934         real arpte
935         ipt = loc(ar)  ! Makes arpte is an alias for ar
936         arpte(1) = 1.0 ! Sets ar(1) to 1.0
937 @end smallexample
938 The pointer can also be set by a call to a malloc-type
939 function.  There is no malloc intrinsic implemented as part of the
940 Cray pointer extension, but it might be a useful future addition to
941 @command{gfortran}.  Even without an intrinsic malloc function,
942 dynamic memory allocation can be combined with Cray pointers by
943 calling a short C function:
944 @smallexample
945 mymalloc.c:
947         void mymalloc_(void **ptr, int *nbytes)
948         @{
949             *ptr = malloc(*nbytes);
950             return;
951         @}
953 caller.f:
955         program caller
956         integer ipinfo;
957         real*4 data
958         pointer (ipdata, data(1024))
959         call mymalloc(ipdata,4*1024)
960         end
961 @end smallexample
962 Cray pointees often are used to alias an existing variable.  For
963 example:
964 @smallexample
965         integer target(10)
966         integer iarr(10)
967         pointer (ipt, iarr)
968         ipt = loc(target)
969 @end smallexample
970 As long as ipt remains unchanged, iarr is now an alias for target.
971 The optimizer, however, will not detect this aliasing, so it is unsafe
972 to use iarr and target simultaneously.  Using a pointee in any way
973 that violates the Fortran aliasing rules or assumptions is illegal.
974 It is the user's responsibility to avoid doing this; the compiler
975 works under the assumption that no such aliasing occurs.
977 Cray pointers will work correctly when there is no aliasing (i.e.,
978 when they're used to access a dynamically allocated block of memory),
979 and also in any routine where a pointee is used, but any variable with
980 which it shares storage is not used.  Code that violates these rules
981 may not run as the user intends.  This is not a bug in the optimizer;
982 any code that violates the aliasing rules is illegal.  (Note that this
983 is not unique to gfortran; any Fortran compiler that supports Cray
984 pointers will ``incorrectly'' optimize code with illegal aliasing.)
986 There are a number of restrictions on the attributes that can be
987 applied to Cray pointers and pointees.  Pointees may not have the
988 attributes ALLOCATABLE, INTENT, OPTIONAL, DUMMY, TARGET, EXTERNAL,
989 INTRINSIC, or POINTER.  Pointers may not have the attributes
990 DIMENSION, POINTER, TARGET, ALLOCATABLE, EXTERNAL, or INTRINSIC.
991 Pointees may not occur in more than one pointer statement.  A pointee
992 cannot be a pointer.  Pointees cannot occur in equivalence, common, or
993 data statements.
995 A pointer may be modified during the course of a program, and this
996 will change the location to which the pointee refers.  However, when
997 pointees are passed as arguments, they are treated as ordinary
998 variables in the invoked function.  Subsequent changes to the pointer
999 will not change the base address of the array that was passed.
1001 @node CONVERT specifier
1002 @section CONVERT specifier
1003 @cindex CONVERT specifier
1005 gfortran allows the conversion of unformatted data between little-
1006 and big-endian representation to facilitate moving of data
1007 between different systems.  The conversion can be indicated with
1008 the @code{CONVERT} specifier on the @code{OPEN} statement.
1009 @xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
1010 the data format via an environment variable.
1012 Valid values for @code{CONVERT} are:
1013 @itemize @w{}
1014 @item @code{CONVERT='NATIVE'} Use the native format.  This is the default.
1015 @item @code{CONVERT='SWAP'} Swap between little- and big-endian.
1016 @item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
1017         for unformatted files.
1018 @item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
1019         unformatted files.
1020 @end itemize
1022 Using the option could look like this:
1023 @smallexample
1024   open(file='big.dat',form='unformatted',access='sequential', &
1025        convert='big_endian')
1026 @end smallexample
1028 The value of the conversion can be queried by using
1029 @code{INQUIRE(CONVERT=ch)}.  The values returned are
1030 @code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.
1032 @code{CONVERT} works between big- and little-endian for
1033 @code{INTEGER} values of all supported kinds and for @code{REAL}
1034 on IEEE systems of kinds 4 and 8.  Conversion between different
1035 ``extended double'' types on different architectures such as
1036 m68k and x86_64, which gfortran
1037 supports as @code{REAL(KIND=10)} will probably not work.
1039 @emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
1040 environment variable will override the CONVERT specifier in the
1041 open statement}.  This is to give control over data formats to
1042 a user who does not have the source code of his program available.
1044 Using anything but the native representation for unformatted data
1045 carries a significant speed overhead.  If speed in this area matters
1046 to you, it is best if you use this only for data that needs to be
1047 portable.
1049 @node OpenMP
1050 @section OpenMP
1051 @cindex OpenMP
1053 gfortran attempts to be OpenMP Application Program Interface v2.5
1054 compatible when invoked with the @code{-fopenmp} option.  gfortran
1055 then generates parallellized code according to the OpenMP directives
1056 used in the source.  The OpenMP Fortran runtime library
1057 routines are provided both in a form of Fortran 90 module named
1058 @code{omp_lib} and in a form of a Fortran @code{include} file named
1059 @code{omp_lib.h}.
1061 For details refer to the actual
1062 @uref{http://www.openmp.org/drupal/mp-documents/spec25.pdf,
1063 OpenMP Application Program Interface v2.5} specification.
1065 @c ---------------------------------------------------------------------
1066 @include intrinsic.texi
1067 @c ---------------------------------------------------------------------
1069 @c ---------------------------------------------------------------------
1070 @c Contributing
1071 @c ---------------------------------------------------------------------
1073 @node Contributing
1074 @chapter Contributing
1075 @cindex Contributing
1077 Free software is only possible if people contribute to efforts
1078 to create it.
1079 We're always in need of more people helping out with ideas
1080 and comments, writing documentation and contributing code.
1082 If you want to contribute to GNU Fortran 95,
1083 have a look at the long lists of projects you can take on.
1084 Some of these projects are small,
1085 some of them are large;
1086 some are completely orthogonal to the rest of what is
1087 happening on @command{gfortran},
1088 but others are ``mainstream'' projects in need of enthusiastic hackers.
1089 All of these projects are important!
1090 We'll eventually get around to the things here,
1091 but they are also things doable by someone who is willing and able.
1093 @menu
1094 * Contributors::
1095 * Projects::
1096 @end menu
1099 @node Contributors
1100 @section Contributors to GNU Fortran 95
1101 @cindex Contributors
1102 @cindex Credits
1103 @cindex Authors
1105 Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
1106 also the initiator of the whole project.  Thanks Andy!
1107 Most of the interface with GCC was written by @emph{Paul Brook}.
1109 The following individuals have contributed code and/or
1110 ideas and significant help to the gfortran project
1111 (in no particular order): 
1113 @itemize @minus
1114 @item Andy Vaught
1115 @item Katherine Holcomb
1116 @item Tobias Schlüter
1117 @item Steven Bosscher
1118 @item Toon Moene
1119 @item Tim Prince
1120 @item Niels Kristian Bech Jensen
1121 @item Steven Johnson
1122 @item Paul Brook
1123 @item Feng Wang
1124 @item Bud Davis
1125 @item Paul Thomas
1126 @item François-Xavier Coudert
1127 @item Steve Kargl
1128 @item Jerry Delisle
1129 @item Janne Blomqvist
1130 @item Erik Edelmann
1131 @item Thomas Koenig
1132 @item Asher Langton
1133 @end itemize
1135 The following people have contributed bug reports,
1136 smaller or larger patches,
1137 and much needed feedback and encouragement for the
1138 @command{gfortran} project: 
1140 @itemize @minus
1141 @item Erik Schnetter
1142 @item Bill Clodius
1143 @item Kate Hedstrom
1144 @end itemize
1146 Many other individuals have helped debug,
1147 test and improve @command{gfortran} over the past few years,
1148 and we welcome you to do the same!
1149 If you already have done so,
1150 and you would like to see your name listed in the
1151 list above, please contact us.
1154 @node Projects
1155 @section Projects
1157 @table @emph
1159 @item Help build the test suite
1160 Solicit more code for donation to the test suite.
1161 We can keep code private on request.
1163 @item Bug hunting/squishing
1164 Find bugs and write more test cases!
1165 Test cases are especially very welcome,
1166 because it allows us to concentrate on fixing bugs
1167 instead of isolating them.
1169 @item Smaller projects (``bug'' fixes):
1170   @itemize @minus
1171   @item Allow init exprs to be numbers raised to integer powers.
1172   @item Implement correct rounding.
1173   @item Implement F restrictions on Fortran 95 syntax.
1174   @item See about making Emacs-parsable error messages.
1175   @end itemize
1176 @end table
1178 If you wish to work on the runtime libraries,
1179 please contact a project maintainer.
1180 @c TODO: email!
1183 @c ---------------------------------------------------------------------
1184 @c Standards
1185 @c ---------------------------------------------------------------------
1187 @node Standards
1188 @chapter Standards
1189 @cindex Standards
1191 The GNU Fortran 95 Compiler aims to be a conforming implementation of
1192 ISO/IEC 1539:1997 (Fortran 95).
1194 In the future it may also support other variants of and extensions to
1195 the Fortran language.  These include ANSI Fortran 77, ISO Fortran 90,
1196 ISO Fortran 2003 and OpenMP.
1198 @menu
1199 * Fortran 2003 status::
1200 @end menu
1202 @node Fortran 2003 status
1203 @section Fortran 2003 status
1205 Although @command{gfortran} focuses on implementing the Fortran 95
1206 standard for the time being, a few Fortran 2003 features are currently
1207 available.
1209 @itemize
1210 @item 
1211 Intrinsics @code{command_argument_count}, @code{get_command},
1212 @code{get_command_argument}, and @code{get_environment_variable}.
1214 @item 
1215 @cindex Array constructors
1216 @cindex @code{[...]}
1217 Array constructors using square brackets. That is, @code{[...]} rather
1218 than @code{(/.../)}.
1220 @item
1221 @cindex @code{FLUSH} statement
1222 @code{FLUSH} statement.
1224 @item
1225 @cindex @code{IOMSG=} specifier
1226 @code{IOMSG=} specifier for I/O statements.
1228 @item
1229 @cindex @code{ENUM} statement
1230 @cindex @code{ENUMERATOR} statement
1231 @cindex @command{-fshort-enums}
1232 Support for the declaration of enumeration constants via the
1233 @code{ENUM} and @code{ENUMERATOR} statements.  Interoperability with
1234 @command{gcc} is guaranteed also for the case where the
1235 @command{-fshort-enums} command line option is given.
1237 @end itemize
1240 @c ---------------------------------------------------------------------
1241 @c GNU General Public License
1242 @c ---------------------------------------------------------------------
1244 @include gpl.texi
1248 @c ---------------------------------------------------------------------
1249 @c GNU Free Documentation License
1250 @c ---------------------------------------------------------------------
1252 @include fdl.texi
1256 @c ---------------------------------------------------------------------
1257 @c Funding Free Software
1258 @c ---------------------------------------------------------------------
1260 @include funding.texi
1262 @c ---------------------------------------------------------------------
1263 @c Index
1264 @c ---------------------------------------------------------------------
1266 @node Index
1267 @unnumbered Index
1269 @printindex cp
1271 @bye