Merge from mainline
[official-gcc.git] / gcc / flow.c
blob2e78674cf3e709e6a2214d3b62453b696318727b
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains the data flow analysis pass of the compiler. It
24 computes data flow information which tells combine_instructions
25 which insns to consider combining and controls register allocation.
27 Additional data flow information that is too bulky to record is
28 generated during the analysis, and is used at that time to create
29 autoincrement and autodecrement addressing.
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
35 ** find_basic_blocks **
37 find_basic_blocks divides the current function's rtl into basic
38 blocks and constructs the CFG. The blocks are recorded in the
39 basic_block_info array; the CFG exists in the edge structures
40 referenced by the blocks.
42 find_basic_blocks also finds any unreachable loops and deletes them.
44 ** life_analysis **
46 life_analysis is called immediately after find_basic_blocks.
47 It uses the basic block information to determine where each
48 hard or pseudo register is live.
50 ** live-register info **
52 The information about where each register is live is in two parts:
53 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
55 basic_block->global_live_at_start has an element for each basic
56 block, and the element is a bit-vector with a bit for each hard or
57 pseudo register. The bit is 1 if the register is live at the
58 beginning of the basic block.
60 Two types of elements can be added to an insn's REG_NOTES.
61 A REG_DEAD note is added to an insn's REG_NOTES for any register
62 that meets both of two conditions: The value in the register is not
63 needed in subsequent insns and the insn does not replace the value in
64 the register (in the case of multi-word hard registers, the value in
65 each register must be replaced by the insn to avoid a REG_DEAD note).
67 In the vast majority of cases, an object in a REG_DEAD note will be
68 used somewhere in the insn. The (rare) exception to this is if an
69 insn uses a multi-word hard register and only some of the registers are
70 needed in subsequent insns. In that case, REG_DEAD notes will be
71 provided for those hard registers that are not subsequently needed.
72 Partial REG_DEAD notes of this type do not occur when an insn sets
73 only some of the hard registers used in such a multi-word operand;
74 omitting REG_DEAD notes for objects stored in an insn is optional and
75 the desire to do so does not justify the complexity of the partial
76 REG_DEAD notes.
78 REG_UNUSED notes are added for each register that is set by the insn
79 but is unused subsequently (if every register set by the insn is unused
80 and the insn does not reference memory or have some other side-effect,
81 the insn is deleted instead). If only part of a multi-word hard
82 register is used in a subsequent insn, REG_UNUSED notes are made for
83 the parts that will not be used.
85 To determine which registers are live after any insn, one can
86 start from the beginning of the basic block and scan insns, noting
87 which registers are set by each insn and which die there.
89 ** Other actions of life_analysis **
91 life_analysis sets up the LOG_LINKS fields of insns because the
92 information needed to do so is readily available.
94 life_analysis deletes insns whose only effect is to store a value
95 that is never used.
97 life_analysis notices cases where a reference to a register as
98 a memory address can be combined with a preceding or following
99 incrementation or decrementation of the register. The separate
100 instruction to increment or decrement is deleted and the address
101 is changed to a POST_INC or similar rtx.
103 Each time an incrementing or decrementing address is created,
104 a REG_INC element is added to the insn's REG_NOTES list.
106 life_analysis fills in certain vectors containing information about
107 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
108 REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
110 life_analysis sets current_function_sp_is_unchanging if the function
111 doesn't modify the stack pointer. */
113 /* TODO:
115 Split out from life_analysis:
116 - local property discovery
117 - global property computation
118 - log links creation
119 - pre/post modify transformation
122 #include "config.h"
123 #include "system.h"
124 #include "coretypes.h"
125 #include "tm.h"
126 #include "tree.h"
127 #include "rtl.h"
128 #include "tm_p.h"
129 #include "hard-reg-set.h"
130 #include "basic-block.h"
131 #include "insn-config.h"
132 #include "regs.h"
133 #include "flags.h"
134 #include "output.h"
135 #include "function.h"
136 #include "except.h"
137 #include "toplev.h"
138 #include "recog.h"
139 #include "expr.h"
140 #include "timevar.h"
142 #include "obstack.h"
143 #include "splay-tree.h"
144 #include "tree-pass.h"
145 #include "params.h"
147 #ifndef HAVE_epilogue
148 #define HAVE_epilogue 0
149 #endif
150 #ifndef HAVE_prologue
151 #define HAVE_prologue 0
152 #endif
153 #ifndef HAVE_sibcall_epilogue
154 #define HAVE_sibcall_epilogue 0
155 #endif
157 #ifndef EPILOGUE_USES
158 #define EPILOGUE_USES(REGNO) 0
159 #endif
160 #ifndef EH_USES
161 #define EH_USES(REGNO) 0
162 #endif
164 #ifdef HAVE_conditional_execution
165 #ifndef REVERSE_CONDEXEC_PREDICATES_P
166 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
167 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
168 #endif
169 #endif
171 /* This is the maximum number of times we process any given block if the
172 latest loop depth count is smaller than this number. Only used for the
173 failure strategy to avoid infinite loops in calculate_global_regs_live. */
174 #define MAX_LIVENESS_ROUNDS 20
176 /* Nonzero if the second flow pass has completed. */
177 int flow2_completed;
179 /* Maximum register number used in this function, plus one. */
181 int max_regno;
183 /* Indexed by n, giving various register information */
185 varray_type reg_n_info;
187 /* Regset of regs live when calls to `setjmp'-like functions happen. */
188 /* ??? Does this exist only for the setjmp-clobbered warning message? */
190 static regset regs_live_at_setjmp;
192 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
193 that have to go in the same hard reg.
194 The first two regs in the list are a pair, and the next two
195 are another pair, etc. */
196 rtx regs_may_share;
198 /* Set of registers that may be eliminable. These are handled specially
199 in updating regs_ever_live. */
201 static HARD_REG_SET elim_reg_set;
203 /* Holds information for tracking conditional register life information. */
204 struct reg_cond_life_info
206 /* A boolean expression of conditions under which a register is dead. */
207 rtx condition;
208 /* Conditions under which a register is dead at the basic block end. */
209 rtx orig_condition;
211 /* A boolean expression of conditions under which a register has been
212 stored into. */
213 rtx stores;
215 /* ??? Could store mask of bytes that are dead, so that we could finally
216 track lifetimes of multi-word registers accessed via subregs. */
219 /* For use in communicating between propagate_block and its subroutines.
220 Holds all information needed to compute life and def-use information. */
222 struct propagate_block_info
224 /* The basic block we're considering. */
225 basic_block bb;
227 /* Bit N is set if register N is conditionally or unconditionally live. */
228 regset reg_live;
230 /* Bit N is set if register N is set this insn. */
231 regset new_set;
233 /* Element N is the next insn that uses (hard or pseudo) register N
234 within the current basic block; or zero, if there is no such insn. */
235 rtx *reg_next_use;
237 /* Contains a list of all the MEMs we are tracking for dead store
238 elimination. */
239 rtx mem_set_list;
241 /* If non-null, record the set of registers set unconditionally in the
242 basic block. */
243 regset local_set;
245 /* If non-null, record the set of registers set conditionally in the
246 basic block. */
247 regset cond_local_set;
249 #ifdef HAVE_conditional_execution
250 /* Indexed by register number, holds a reg_cond_life_info for each
251 register that is not unconditionally live or dead. */
252 splay_tree reg_cond_dead;
254 /* Bit N is set if register N is in an expression in reg_cond_dead. */
255 regset reg_cond_reg;
256 #endif
258 /* The length of mem_set_list. */
259 int mem_set_list_len;
261 /* Nonzero if the value of CC0 is live. */
262 int cc0_live;
264 /* Flags controlling the set of information propagate_block collects. */
265 int flags;
266 /* Index of instruction being processed. */
267 int insn_num;
270 /* Number of dead insns removed. */
271 static int ndead;
273 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
274 where given register died. When the register is marked alive, we use the
275 information to compute amount of instructions life range cross.
276 (remember, we are walking backward). This can be computed as current
277 pbi->insn_num - reg_deaths[regno].
278 At the end of processing each basic block, the remaining live registers
279 are inspected and live ranges are increased same way so liverange of global
280 registers are computed correctly.
282 The array is maintained clear for dead registers, so it can be safely reused
283 for next basic block without expensive memset of the whole array after
284 reseting pbi->insn_num to 0. */
286 static int *reg_deaths;
288 /* Forward declarations */
289 static int verify_wide_reg_1 (rtx *, void *);
290 static void verify_wide_reg (int, basic_block);
291 static void verify_local_live_at_start (regset, basic_block);
292 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
293 static void notice_stack_pointer_modification (void);
294 static void mark_reg (rtx, void *);
295 static void mark_regs_live_at_end (regset);
296 static void calculate_global_regs_live (sbitmap, sbitmap, int);
297 static void propagate_block_delete_insn (rtx);
298 static rtx propagate_block_delete_libcall (rtx, rtx);
299 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
300 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
301 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
303 rtx, rtx, int);
304 static int find_regno_partial (rtx *, void *);
306 #ifdef HAVE_conditional_execution
307 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
308 static void free_reg_cond_life_info (splay_tree_value);
309 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
310 static void flush_reg_cond_reg (struct propagate_block_info *, int);
311 static rtx elim_reg_cond (rtx, unsigned int);
312 static rtx ior_reg_cond (rtx, rtx, int);
313 static rtx not_reg_cond (rtx);
314 static rtx and_reg_cond (rtx, rtx, int);
315 #endif
316 #ifdef AUTO_INC_DEC
317 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
318 rtx, rtx);
319 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
320 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
321 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
322 #endif
323 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
324 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
325 void debug_flow_info (void);
326 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
327 static int invalidate_mems_from_autoinc (rtx *, void *);
328 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
329 static void clear_log_links (sbitmap);
330 static int count_or_remove_death_notes_bb (basic_block, int);
331 static void allocate_bb_life_data (void);
333 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
334 note associated with the BLOCK. */
337 first_insn_after_basic_block_note (basic_block block)
339 rtx insn;
341 /* Get the first instruction in the block. */
342 insn = BB_HEAD (block);
344 if (insn == NULL_RTX)
345 return NULL_RTX;
346 if (LABEL_P (insn))
347 insn = NEXT_INSN (insn);
348 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
350 return NEXT_INSN (insn);
353 /* Perform data flow analysis for the whole control flow graph.
354 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
356 void
357 life_analysis (int flags)
359 #ifdef ELIMINABLE_REGS
360 int i;
361 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
362 #endif
364 /* Record which registers will be eliminated. We use this in
365 mark_used_regs. */
367 CLEAR_HARD_REG_SET (elim_reg_set);
369 #ifdef ELIMINABLE_REGS
370 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
371 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
372 #else
373 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
374 #endif
377 #ifdef CANNOT_CHANGE_MODE_CLASS
378 if (flags & PROP_REG_INFO)
379 init_subregs_of_mode ();
380 #endif
382 if (! optimize)
383 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
385 /* The post-reload life analysis have (on a global basis) the same
386 registers live as was computed by reload itself. elimination
387 Otherwise offsets and such may be incorrect.
389 Reload will make some registers as live even though they do not
390 appear in the rtl.
392 We don't want to create new auto-incs after reload, since they
393 are unlikely to be useful and can cause problems with shared
394 stack slots. */
395 if (reload_completed)
396 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
398 /* We want alias analysis information for local dead store elimination. */
399 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
400 init_alias_analysis ();
402 /* Always remove no-op moves. Do this before other processing so
403 that we don't have to keep re-scanning them. */
404 delete_noop_moves ();
406 /* Some targets can emit simpler epilogues if they know that sp was
407 not ever modified during the function. After reload, of course,
408 we've already emitted the epilogue so there's no sense searching. */
409 if (! reload_completed)
410 notice_stack_pointer_modification ();
412 /* Allocate and zero out data structures that will record the
413 data from lifetime analysis. */
414 allocate_reg_life_data ();
415 allocate_bb_life_data ();
417 /* Find the set of registers live on function exit. */
418 mark_regs_live_at_end (EXIT_BLOCK_PTR->il.rtl->global_live_at_start);
420 /* "Update" life info from zero. It'd be nice to begin the
421 relaxation with just the exit and noreturn blocks, but that set
422 is not immediately handy. */
424 if (flags & PROP_REG_INFO)
426 memset (regs_ever_live, 0, sizeof (regs_ever_live));
427 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
429 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
430 if (reg_deaths)
432 free (reg_deaths);
433 reg_deaths = NULL;
436 /* Clean up. */
437 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
438 end_alias_analysis ();
440 if (dump_file)
441 dump_flow_info (dump_file, dump_flags);
443 /* Removing dead insns should have made jumptables really dead. */
444 delete_dead_jumptables ();
447 /* A subroutine of verify_wide_reg, called through for_each_rtx.
448 Search for REGNO. If found, return 2 if it is not wider than
449 word_mode. */
451 static int
452 verify_wide_reg_1 (rtx *px, void *pregno)
454 rtx x = *px;
455 unsigned int regno = *(int *) pregno;
457 if (REG_P (x) && REGNO (x) == regno)
459 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
460 return 2;
461 return 1;
463 return 0;
466 /* A subroutine of verify_local_live_at_start. Search through insns
467 of BB looking for register REGNO. */
469 static void
470 verify_wide_reg (int regno, basic_block bb)
472 rtx head = BB_HEAD (bb), end = BB_END (bb);
474 while (1)
476 if (INSN_P (head))
478 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
479 if (r == 1)
480 return;
481 if (r == 2)
482 break;
484 if (head == end)
485 break;
486 head = NEXT_INSN (head);
488 if (dump_file)
490 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
491 dump_bb (bb, dump_file, 0);
493 fatal_error ("internal consistency failure");
496 /* A subroutine of update_life_info. Verify that there are no untoward
497 changes in live_at_start during a local update. */
499 static void
500 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
502 if (reload_completed)
504 /* After reload, there are no pseudos, nor subregs of multi-word
505 registers. The regsets should exactly match. */
506 if (! REG_SET_EQUAL_P (new_live_at_start,
507 bb->il.rtl->global_live_at_start))
509 if (dump_file)
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
518 fatal_error ("internal consistency failure");
521 else
523 unsigned i;
524 reg_set_iterator rsi;
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->il.rtl->global_live_at_start);
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, i))
534 if (dump_file)
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
540 fatal_error ("internal consistency failure");
542 /* Verify that the now-live register is wider than word_mode. */
543 verify_wide_reg (i, bb);
548 /* Updates life information starting with the basic blocks set in BLOCKS.
549 If BLOCKS is null, consider it to be the universal set.
551 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
552 we are only expecting local modifications to basic blocks. If we find
553 extra registers live at the beginning of a block, then we either killed
554 useful data, or we have a broken split that wants data not provided.
555 If we find registers removed from live_at_start, that means we have
556 a broken peephole that is killing a register it shouldn't.
558 ??? This is not true in one situation -- when a pre-reload splitter
559 generates subregs of a multi-word pseudo, current life analysis will
560 lose the kill. So we _can_ have a pseudo go live. How irritating.
562 It is also not true when a peephole decides that it doesn't need one
563 or more of the inputs.
565 Including PROP_REG_INFO does not properly refresh regs_ever_live
566 unless the caller resets it to zero. */
569 update_life_info (sbitmap blocks, enum update_life_extent extent,
570 int prop_flags)
572 regset tmp;
573 unsigned i = 0;
574 int stabilized_prop_flags = prop_flags;
575 basic_block bb;
577 tmp = ALLOC_REG_SET (&reg_obstack);
578 ndead = 0;
580 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
581 reg_deaths = XCNEWVEC (int, max_regno);
583 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
584 ? TV_LIFE_UPDATE : TV_LIFE);
586 /* Changes to the CFG are only allowed when
587 doing a global update for the entire CFG. */
588 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
589 || (extent != UPDATE_LIFE_LOCAL && !blocks));
591 /* For a global update, we go through the relaxation process again. */
592 if (extent != UPDATE_LIFE_LOCAL)
594 for ( ; ; )
596 int changed = 0;
598 calculate_global_regs_live (blocks, blocks,
599 prop_flags & (PROP_SCAN_DEAD_CODE
600 | PROP_SCAN_DEAD_STORES
601 | PROP_ALLOW_CFG_CHANGES));
603 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 break;
607 /* Removing dead code may allow the CFG to be simplified which
608 in turn may allow for further dead code detection / removal. */
609 FOR_EACH_BB_REVERSE (bb)
611 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
612 changed |= propagate_block (bb, tmp, NULL, NULL,
613 prop_flags & (PROP_SCAN_DEAD_CODE
614 | PROP_SCAN_DEAD_STORES
615 | PROP_KILL_DEAD_CODE));
618 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
619 subsequent propagate_block calls, since removing or acting as
620 removing dead code can affect global register liveness, which
621 is supposed to be finalized for this call after this loop. */
622 stabilized_prop_flags
623 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
624 | PROP_KILL_DEAD_CODE);
626 if (! changed)
627 break;
629 /* We repeat regardless of what cleanup_cfg says. If there were
630 instructions deleted above, that might have been only a
631 partial improvement (see PARAM_MAX_FLOW_MEMORY_LOCATIONS usage).
632 Further improvement may be possible. */
633 cleanup_cfg (CLEANUP_EXPENSIVE);
635 /* Zap the life information from the last round. If we don't
636 do this, we can wind up with registers that no longer appear
637 in the code being marked live at entry. */
638 FOR_EACH_BB (bb)
640 CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
641 CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
645 /* If asked, remove notes from the blocks we'll update. */
646 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
647 count_or_remove_death_notes (blocks,
648 prop_flags & PROP_POST_REGSTACK ? -1 : 1);
651 /* Clear log links in case we are asked to (re)compute them. */
652 if (prop_flags & PROP_LOG_LINKS)
653 clear_log_links (blocks);
655 if (blocks)
657 sbitmap_iterator sbi;
659 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
661 bb = BASIC_BLOCK (i);
662 if (bb)
664 /* The bitmap may be flawed in that one of the basic
665 blocks may have been deleted before you get here. */
666 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
667 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
669 if (extent == UPDATE_LIFE_LOCAL)
670 verify_local_live_at_start (tmp, bb);
674 else
676 FOR_EACH_BB_REVERSE (bb)
678 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
680 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
682 if (extent == UPDATE_LIFE_LOCAL)
683 verify_local_live_at_start (tmp, bb);
687 FREE_REG_SET (tmp);
689 if (prop_flags & PROP_REG_INFO)
691 reg_set_iterator rsi;
693 /* The only pseudos that are live at the beginning of the function
694 are those that were not set anywhere in the function. local-alloc
695 doesn't know how to handle these correctly, so mark them as not
696 local to any one basic block. */
697 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
698 FIRST_PSEUDO_REGISTER, i, rsi)
699 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
701 /* We have a problem with any pseudoreg that lives across the setjmp.
702 ANSI says that if a user variable does not change in value between
703 the setjmp and the longjmp, then the longjmp preserves it. This
704 includes longjmp from a place where the pseudo appears dead.
705 (In principle, the value still exists if it is in scope.)
706 If the pseudo goes in a hard reg, some other value may occupy
707 that hard reg where this pseudo is dead, thus clobbering the pseudo.
708 Conclusion: such a pseudo must not go in a hard reg. */
709 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
710 FIRST_PSEUDO_REGISTER, i, rsi)
712 if (regno_reg_rtx[i] != 0)
714 REG_LIVE_LENGTH (i) = -1;
715 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
719 if (reg_deaths)
721 free (reg_deaths);
722 reg_deaths = NULL;
724 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
725 ? TV_LIFE_UPDATE : TV_LIFE);
726 if (ndead && dump_file)
727 fprintf (dump_file, "deleted %i dead insns\n", ndead);
728 return ndead;
731 /* Update life information in all blocks where BB_DIRTY is set. */
734 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
736 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
737 int n = 0;
738 basic_block bb;
739 int retval = 0;
741 sbitmap_zero (update_life_blocks);
742 FOR_EACH_BB (bb)
744 if (bb->flags & BB_DIRTY)
746 SET_BIT (update_life_blocks, bb->index);
747 n++;
751 if (n)
752 retval = update_life_info (update_life_blocks, extent, prop_flags);
754 sbitmap_free (update_life_blocks);
755 return retval;
758 /* Free the variables allocated by find_basic_blocks. */
760 void
761 free_basic_block_vars (void)
763 if (basic_block_info)
765 clear_edges ();
766 basic_block_info = NULL;
768 n_basic_blocks = 0;
769 last_basic_block = 0;
770 n_edges = 0;
772 label_to_block_map = NULL;
774 ENTRY_BLOCK_PTR->aux = NULL;
775 ENTRY_BLOCK_PTR->il.rtl->global_live_at_end = NULL;
776 EXIT_BLOCK_PTR->aux = NULL;
777 EXIT_BLOCK_PTR->il.rtl->global_live_at_start = NULL;
780 /* Delete any insns that copy a register to itself. */
783 delete_noop_moves (void)
785 rtx insn, next;
786 basic_block bb;
787 int nnoops = 0;
789 FOR_EACH_BB (bb)
791 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
793 next = NEXT_INSN (insn);
794 if (INSN_P (insn) && noop_move_p (insn))
796 rtx note;
798 /* If we're about to remove the first insn of a libcall
799 then move the libcall note to the next real insn and
800 update the retval note. */
801 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
802 && XEXP (note, 0) != insn)
804 rtx new_libcall_insn = next_real_insn (insn);
805 rtx retval_note = find_reg_note (XEXP (note, 0),
806 REG_RETVAL, NULL_RTX);
807 REG_NOTES (new_libcall_insn)
808 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
809 REG_NOTES (new_libcall_insn));
810 XEXP (retval_note, 0) = new_libcall_insn;
813 delete_insn_and_edges (insn);
814 nnoops++;
819 if (nnoops && dump_file)
820 fprintf (dump_file, "deleted %i noop moves\n", nnoops);
822 return nnoops;
825 /* Delete any jump tables never referenced. We can't delete them at the
826 time of removing tablejump insn as they are referenced by the preceding
827 insns computing the destination, so we delay deleting and garbagecollect
828 them once life information is computed. */
829 void
830 delete_dead_jumptables (void)
832 basic_block bb;
834 /* A dead jump table does not belong to any basic block. Scan insns
835 between two adjacent basic blocks. */
836 FOR_EACH_BB (bb)
838 rtx insn, next;
840 for (insn = NEXT_INSN (BB_END (bb));
841 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
842 insn = next)
844 next = NEXT_INSN (insn);
845 if (LABEL_P (insn)
846 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
847 && JUMP_P (next)
848 && (GET_CODE (PATTERN (next)) == ADDR_VEC
849 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
851 rtx label = insn, jump = next;
853 if (dump_file)
854 fprintf (dump_file, "Dead jumptable %i removed\n",
855 INSN_UID (insn));
857 next = NEXT_INSN (next);
858 delete_insn (jump);
859 delete_insn (label);
865 /* Determine if the stack pointer is constant over the life of the function.
866 Only useful before prologues have been emitted. */
868 static void
869 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
870 void *data ATTRIBUTE_UNUSED)
872 if (x == stack_pointer_rtx
873 /* The stack pointer is only modified indirectly as the result
874 of a push until later in flow. See the comments in rtl.texi
875 regarding Embedded Side-Effects on Addresses. */
876 || (MEM_P (x)
877 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
878 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
879 current_function_sp_is_unchanging = 0;
882 static void
883 notice_stack_pointer_modification (void)
885 basic_block bb;
886 rtx insn;
888 /* Assume that the stack pointer is unchanging if alloca hasn't
889 been used. */
890 current_function_sp_is_unchanging = !current_function_calls_alloca;
891 if (! current_function_sp_is_unchanging)
892 return;
894 FOR_EACH_BB (bb)
895 FOR_BB_INSNS (bb, insn)
897 if (INSN_P (insn))
899 /* Check if insn modifies the stack pointer. */
900 note_stores (PATTERN (insn),
901 notice_stack_pointer_modification_1,
902 NULL);
903 if (! current_function_sp_is_unchanging)
904 return;
909 /* Mark a register in SET. Hard registers in large modes get all
910 of their component registers set as well. */
912 static void
913 mark_reg (rtx reg, void *xset)
915 regset set = (regset) xset;
916 int regno = REGNO (reg);
918 gcc_assert (GET_MODE (reg) != BLKmode);
920 SET_REGNO_REG_SET (set, regno);
921 if (regno < FIRST_PSEUDO_REGISTER)
923 int n = hard_regno_nregs[regno][GET_MODE (reg)];
924 while (--n > 0)
925 SET_REGNO_REG_SET (set, regno + n);
929 /* Mark those regs which are needed at the end of the function as live
930 at the end of the last basic block. */
932 static void
933 mark_regs_live_at_end (regset set)
935 unsigned int i;
937 /* If exiting needs the right stack value, consider the stack pointer
938 live at the end of the function. */
939 if ((HAVE_epilogue && epilogue_completed)
940 || ! EXIT_IGNORE_STACK
941 || (! FRAME_POINTER_REQUIRED
942 && ! current_function_calls_alloca
943 && flag_omit_frame_pointer)
944 || current_function_sp_is_unchanging)
946 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
949 /* Mark the frame pointer if needed at the end of the function. If
950 we end up eliminating it, it will be removed from the live list
951 of each basic block by reload. */
953 if (! reload_completed || frame_pointer_needed)
955 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
956 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
957 /* If they are different, also mark the hard frame pointer as live. */
958 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
959 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
960 #endif
963 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
964 /* Many architectures have a GP register even without flag_pic.
965 Assume the pic register is not in use, or will be handled by
966 other means, if it is not fixed. */
967 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
968 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
969 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
970 #endif
972 /* Mark all global registers, and all registers used by the epilogue
973 as being live at the end of the function since they may be
974 referenced by our caller. */
975 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
976 if (global_regs[i] || EPILOGUE_USES (i))
977 SET_REGNO_REG_SET (set, i);
979 if (HAVE_epilogue && epilogue_completed)
981 /* Mark all call-saved registers that we actually used. */
982 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
983 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
984 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
985 SET_REGNO_REG_SET (set, i);
988 #ifdef EH_RETURN_DATA_REGNO
989 /* Mark the registers that will contain data for the handler. */
990 if (reload_completed && current_function_calls_eh_return)
991 for (i = 0; ; ++i)
993 unsigned regno = EH_RETURN_DATA_REGNO(i);
994 if (regno == INVALID_REGNUM)
995 break;
996 SET_REGNO_REG_SET (set, regno);
998 #endif
999 #ifdef EH_RETURN_STACKADJ_RTX
1000 if ((! HAVE_epilogue || ! epilogue_completed)
1001 && current_function_calls_eh_return)
1003 rtx tmp = EH_RETURN_STACKADJ_RTX;
1004 if (tmp && REG_P (tmp))
1005 mark_reg (tmp, set);
1007 #endif
1008 #ifdef EH_RETURN_HANDLER_RTX
1009 if ((! HAVE_epilogue || ! epilogue_completed)
1010 && current_function_calls_eh_return)
1012 rtx tmp = EH_RETURN_HANDLER_RTX;
1013 if (tmp && REG_P (tmp))
1014 mark_reg (tmp, set);
1016 #endif
1018 /* Mark function return value. */
1019 diddle_return_value (mark_reg, set);
1022 /* Propagate global life info around the graph of basic blocks. Begin
1023 considering blocks with their corresponding bit set in BLOCKS_IN.
1024 If BLOCKS_IN is null, consider it the universal set.
1026 BLOCKS_OUT is set for every block that was changed. */
1028 static void
1029 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1031 basic_block *queue, *qhead, *qtail, *qend, bb;
1032 regset tmp, new_live_at_end, invalidated_by_call;
1033 regset registers_made_dead;
1034 bool failure_strategy_required = false;
1035 int *block_accesses;
1037 /* The registers that are modified within this in block. */
1038 regset *local_sets;
1040 /* The registers that are conditionally modified within this block.
1041 In other words, regs that are set only as part of a COND_EXEC. */
1042 regset *cond_local_sets;
1044 unsigned int i;
1046 /* Some passes used to forget clear aux field of basic block causing
1047 sick behavior here. */
1048 #ifdef ENABLE_CHECKING
1049 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1050 gcc_assert (!bb->aux);
1051 #endif
1053 tmp = ALLOC_REG_SET (&reg_obstack);
1054 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1055 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1056 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1058 /* Inconveniently, this is only readily available in hard reg set form. */
1059 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1060 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1061 SET_REGNO_REG_SET (invalidated_by_call, i);
1063 /* Allocate space for the sets of local properties. */
1064 local_sets = XCNEWVEC (bitmap, last_basic_block);
1065 cond_local_sets = XCNEWVEC (bitmap, last_basic_block);
1067 /* Create a worklist. Allocate an extra slot for the `head == tail'
1068 style test for an empty queue doesn't work with a full queue. */
1069 queue = XNEWVEC (basic_block, n_basic_blocks + 1);
1070 qtail = queue;
1071 qhead = qend = queue + n_basic_blocks;
1073 /* Queue the blocks set in the initial mask. Do this in reverse block
1074 number order so that we are more likely for the first round to do
1075 useful work. We use AUX non-null to flag that the block is queued. */
1076 if (blocks_in)
1078 FOR_EACH_BB (bb)
1079 if (TEST_BIT (blocks_in, bb->index))
1081 *--qhead = bb;
1082 bb->aux = bb;
1085 else
1087 FOR_EACH_BB (bb)
1089 *--qhead = bb;
1090 bb->aux = bb;
1094 block_accesses = XCNEWVEC (int, last_basic_block);
1096 /* We clean aux when we remove the initially-enqueued bbs, but we
1097 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1098 unconditionally. */
1099 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1101 if (blocks_out)
1102 sbitmap_zero (blocks_out);
1104 /* We work through the queue until there are no more blocks. What
1105 is live at the end of this block is precisely the union of what
1106 is live at the beginning of all its successors. So, we set its
1107 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1108 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1109 this block by walking through the instructions in this block in
1110 reverse order and updating as we go. If that changed
1111 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1112 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1114 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1115 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1116 must either be live at the end of the block, or used within the
1117 block. In the latter case, it will certainly never disappear
1118 from GLOBAL_LIVE_AT_START. In the former case, the register
1119 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1120 for one of the successor blocks. By induction, that cannot
1121 occur.
1123 ??? This reasoning doesn't work if we start from non-empty initial
1124 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1125 1) Updating may not terminate (endless oscillation).
1126 2) Even if it does (and it usually does), the resulting information
1127 may be inaccurate. Consider for example the following case:
1129 a = ...;
1130 while (...) {...} -- 'a' not mentioned at all
1131 ... = a;
1133 If the use of 'a' is deleted between two calculations of liveness
1134 information and the initial sets are not cleared, the information
1135 about a's liveness will get stuck inside the loop and the set will
1136 appear not to be dead.
1138 We do not attempt to solve 2) -- the information is conservatively
1139 correct (i.e. we never claim that something live is dead) and the
1140 amount of optimization opportunities missed due to this problem is
1141 not significant.
1143 1) is more serious. In order to fix it, we monitor the number of times
1144 each block is processed. Once one of the blocks has been processed more
1145 times than the maximum number of rounds, we use the following strategy:
1146 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1147 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1148 add the blocks with changed sets into the queue. Thus we are guaranteed
1149 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1150 in which case the original reasoning above is valid), but in general we
1151 only fix up a few offending registers.
1153 The maximum number of rounds for computing liveness is the largest of
1154 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1156 while (qhead != qtail)
1158 int rescan, changed;
1159 basic_block bb;
1160 edge e;
1161 edge_iterator ei;
1163 bb = *qhead++;
1164 if (qhead == qend)
1165 qhead = queue;
1166 bb->aux = NULL;
1168 /* Should we start using the failure strategy? */
1169 if (bb != ENTRY_BLOCK_PTR)
1171 int max_liveness_rounds =
1172 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1174 block_accesses[bb->index]++;
1175 if (block_accesses[bb->index] > max_liveness_rounds)
1176 failure_strategy_required = true;
1179 /* Begin by propagating live_at_start from the successor blocks. */
1180 CLEAR_REG_SET (new_live_at_end);
1182 if (EDGE_COUNT (bb->succs) > 0)
1183 FOR_EACH_EDGE (e, ei, bb->succs)
1185 basic_block sb = e->dest;
1187 /* Call-clobbered registers die across exception and
1188 call edges. */
1189 /* ??? Abnormal call edges ignored for the moment, as this gets
1190 confused by sibling call edges, which crashes reg-stack. */
1191 if (e->flags & EDGE_EH)
1192 bitmap_ior_and_compl_into (new_live_at_end,
1193 sb->il.rtl->global_live_at_start,
1194 invalidated_by_call);
1195 else
1196 IOR_REG_SET (new_live_at_end, sb->il.rtl->global_live_at_start);
1198 /* If a target saves one register in another (instead of on
1199 the stack) the save register will need to be live for EH. */
1200 if (e->flags & EDGE_EH)
1201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1202 if (EH_USES (i))
1203 SET_REGNO_REG_SET (new_live_at_end, i);
1205 else
1207 /* This might be a noreturn function that throws. And
1208 even if it isn't, getting the unwind info right helps
1209 debugging. */
1210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1211 if (EH_USES (i))
1212 SET_REGNO_REG_SET (new_live_at_end, i);
1215 /* The all-important stack pointer must always be live. */
1216 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1218 /* Before reload, there are a few registers that must be forced
1219 live everywhere -- which might not already be the case for
1220 blocks within infinite loops. */
1221 if (! reload_completed)
1223 /* Any reference to any pseudo before reload is a potential
1224 reference of the frame pointer. */
1225 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1227 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1228 /* Pseudos with argument area equivalences may require
1229 reloading via the argument pointer. */
1230 if (fixed_regs[ARG_POINTER_REGNUM])
1231 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1232 #endif
1234 /* Any constant, or pseudo with constant equivalences, may
1235 require reloading from memory using the pic register. */
1236 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1237 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1238 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1241 if (bb == ENTRY_BLOCK_PTR)
1243 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1244 continue;
1247 /* On our first pass through this block, we'll go ahead and continue.
1248 Recognize first pass by checking if local_set is NULL for this
1249 basic block. On subsequent passes, we get to skip out early if
1250 live_at_end wouldn't have changed. */
1252 if (local_sets[bb->index] == NULL)
1254 local_sets[bb->index] = ALLOC_REG_SET (&reg_obstack);
1255 cond_local_sets[bb->index] = ALLOC_REG_SET (&reg_obstack);
1256 rescan = 1;
1258 else
1260 /* If any bits were removed from live_at_end, we'll have to
1261 rescan the block. This wouldn't be necessary if we had
1262 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1263 local_live is really dependent on live_at_end. */
1264 rescan = bitmap_intersect_compl_p (bb->il.rtl->global_live_at_end,
1265 new_live_at_end);
1267 if (!rescan)
1269 regset cond_local_set;
1271 /* If any of the registers in the new live_at_end set are
1272 conditionally set in this basic block, we must rescan.
1273 This is because conditional lifetimes at the end of the
1274 block do not just take the live_at_end set into
1275 account, but also the liveness at the start of each
1276 successor block. We can miss changes in those sets if
1277 we only compare the new live_at_end against the
1278 previous one. */
1279 cond_local_set = cond_local_sets[bb->index];
1280 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1283 if (!rescan)
1285 regset local_set;
1287 /* Find the set of changed bits. Take this opportunity
1288 to notice that this set is empty and early out. */
1289 bitmap_xor (tmp, bb->il.rtl->global_live_at_end, new_live_at_end);
1290 if (bitmap_empty_p (tmp))
1291 continue;
1293 /* If any of the changed bits overlap with local_sets[bb],
1294 we'll have to rescan the block. */
1295 local_set = local_sets[bb->index];
1296 rescan = bitmap_intersect_p (tmp, local_set);
1300 /* Let our caller know that BB changed enough to require its
1301 death notes updated. */
1302 if (blocks_out)
1303 SET_BIT (blocks_out, bb->index);
1305 if (! rescan)
1307 /* Add to live_at_start the set of all registers in
1308 new_live_at_end that aren't in the old live_at_end. */
1310 changed = bitmap_ior_and_compl_into (bb->il.rtl->global_live_at_start,
1311 new_live_at_end,
1312 bb->il.rtl->global_live_at_end);
1313 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1314 if (! changed)
1315 continue;
1317 else
1319 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1321 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1322 into live_at_start. */
1323 propagate_block (bb, new_live_at_end,
1324 local_sets[bb->index],
1325 cond_local_sets[bb->index],
1326 flags);
1328 /* If live_at start didn't change, no need to go farther. */
1329 if (REG_SET_EQUAL_P (bb->il.rtl->global_live_at_start,
1330 new_live_at_end))
1331 continue;
1333 if (failure_strategy_required)
1335 /* Get the list of registers that were removed from the
1336 bb->global_live_at_start set. */
1337 bitmap_and_compl (tmp, bb->il.rtl->global_live_at_start,
1338 new_live_at_end);
1339 if (!bitmap_empty_p (tmp))
1341 bool pbb_changed;
1342 basic_block pbb;
1344 /* It should not happen that one of registers we have
1345 removed last time is disappears again before any other
1346 register does. */
1347 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1348 gcc_assert (pbb_changed);
1350 /* Now remove the registers from all sets. */
1351 FOR_EACH_BB (pbb)
1353 pbb_changed = false;
1355 pbb_changed
1356 |= bitmap_and_compl_into
1357 (pbb->il.rtl->global_live_at_start,
1358 registers_made_dead);
1359 pbb_changed
1360 |= bitmap_and_compl_into
1361 (pbb->il.rtl->global_live_at_end,
1362 registers_made_dead);
1363 if (!pbb_changed)
1364 continue;
1366 /* Note the (possible) change. */
1367 if (blocks_out)
1368 SET_BIT (blocks_out, pbb->index);
1370 /* Makes sure to really rescan the block. */
1371 if (local_sets[pbb->index])
1373 FREE_REG_SET (local_sets[pbb->index]);
1374 FREE_REG_SET (cond_local_sets[pbb->index]);
1375 local_sets[pbb->index] = 0;
1378 /* Add it to the queue. */
1379 if (pbb->aux == NULL)
1381 *qtail++ = pbb;
1382 if (qtail == qend)
1383 qtail = queue;
1384 pbb->aux = pbb;
1387 continue;
1389 } /* end of failure_strategy_required */
1391 COPY_REG_SET (bb->il.rtl->global_live_at_start, new_live_at_end);
1394 /* Queue all predecessors of BB so that we may re-examine
1395 their live_at_end. */
1396 FOR_EACH_EDGE (e, ei, bb->preds)
1398 basic_block pb = e->src;
1400 gcc_assert ((e->flags & EDGE_FAKE) == 0);
1402 if (pb->aux == NULL)
1404 *qtail++ = pb;
1405 if (qtail == qend)
1406 qtail = queue;
1407 pb->aux = pb;
1412 FREE_REG_SET (tmp);
1413 FREE_REG_SET (new_live_at_end);
1414 FREE_REG_SET (invalidated_by_call);
1415 FREE_REG_SET (registers_made_dead);
1417 if (blocks_out)
1419 sbitmap_iterator sbi;
1421 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, sbi)
1423 basic_block bb = BASIC_BLOCK (i);
1424 FREE_REG_SET (local_sets[bb->index]);
1425 FREE_REG_SET (cond_local_sets[bb->index]);
1428 else
1430 FOR_EACH_BB (bb)
1432 FREE_REG_SET (local_sets[bb->index]);
1433 FREE_REG_SET (cond_local_sets[bb->index]);
1437 free (block_accesses);
1438 free (queue);
1439 free (cond_local_sets);
1440 free (local_sets);
1444 /* This structure is used to pass parameters to and from the
1445 the function find_regno_partial(). It is used to pass in the
1446 register number we are looking, as well as to return any rtx
1447 we find. */
1449 typedef struct {
1450 unsigned regno_to_find;
1451 rtx retval;
1452 } find_regno_partial_param;
1455 /* Find the rtx for the reg numbers specified in 'data' if it is
1456 part of an expression which only uses part of the register. Return
1457 it in the structure passed in. */
1458 static int
1459 find_regno_partial (rtx *ptr, void *data)
1461 find_regno_partial_param *param = (find_regno_partial_param *)data;
1462 unsigned reg = param->regno_to_find;
1463 param->retval = NULL_RTX;
1465 if (*ptr == NULL_RTX)
1466 return 0;
1468 switch (GET_CODE (*ptr))
1470 case ZERO_EXTRACT:
1471 case SIGN_EXTRACT:
1472 case STRICT_LOW_PART:
1473 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1475 param->retval = XEXP (*ptr, 0);
1476 return 1;
1478 break;
1480 case SUBREG:
1481 if (REG_P (SUBREG_REG (*ptr))
1482 && REGNO (SUBREG_REG (*ptr)) == reg)
1484 param->retval = SUBREG_REG (*ptr);
1485 return 1;
1487 break;
1489 default:
1490 break;
1493 return 0;
1496 /* Process all immediate successors of the entry block looking for pseudo
1497 registers which are live on entry. Find all of those whose first
1498 instance is a partial register reference of some kind, and initialize
1499 them to 0 after the entry block. This will prevent bit sets within
1500 registers whose value is unknown, and may contain some kind of sticky
1501 bits we don't want. */
1503 static int
1504 initialize_uninitialized_subregs (void)
1506 rtx insn;
1507 edge e;
1508 unsigned reg, did_something = 0;
1509 find_regno_partial_param param;
1510 edge_iterator ei;
1512 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1514 basic_block bb = e->dest;
1515 regset map = bb->il.rtl->global_live_at_start;
1516 reg_set_iterator rsi;
1518 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1520 int uid = REGNO_FIRST_UID (reg);
1521 rtx i;
1523 /* Find an insn which mentions the register we are looking for.
1524 Its preferable to have an instance of the register's rtl since
1525 there may be various flags set which we need to duplicate.
1526 If we can't find it, its probably an automatic whose initial
1527 value doesn't matter, or hopefully something we don't care about. */
1528 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1530 if (i != NULL_RTX)
1532 /* Found the insn, now get the REG rtx, if we can. */
1533 param.regno_to_find = reg;
1534 for_each_rtx (&i, find_regno_partial, &param);
1535 if (param.retval != NULL_RTX)
1537 start_sequence ();
1538 emit_move_insn (param.retval,
1539 CONST0_RTX (GET_MODE (param.retval)));
1540 insn = get_insns ();
1541 end_sequence ();
1542 insert_insn_on_edge (insn, e);
1543 did_something = 1;
1549 if (did_something)
1550 commit_edge_insertions ();
1551 return did_something;
1555 /* Subroutines of life analysis. */
1557 /* Allocate the permanent data structures that represent the results
1558 of life analysis. */
1560 static void
1561 allocate_bb_life_data (void)
1563 basic_block bb;
1565 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1567 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1568 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1571 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1574 void
1575 allocate_reg_life_data (void)
1577 int i;
1579 max_regno = max_reg_num ();
1580 gcc_assert (!reg_deaths);
1581 reg_deaths = XCNEWVEC (int, max_regno);
1583 /* Recalculate the register space, in case it has grown. Old style
1584 vector oriented regsets would set regset_{size,bytes} here also. */
1585 allocate_reg_info (max_regno, FALSE, FALSE);
1587 /* Reset all the data we'll collect in propagate_block and its
1588 subroutines. */
1589 for (i = 0; i < max_regno; i++)
1591 REG_N_SETS (i) = 0;
1592 REG_N_REFS (i) = 0;
1593 REG_N_DEATHS (i) = 0;
1594 REG_N_CALLS_CROSSED (i) = 0;
1595 REG_N_THROWING_CALLS_CROSSED (i) = 0;
1596 REG_LIVE_LENGTH (i) = 0;
1597 REG_FREQ (i) = 0;
1598 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1602 /* Delete dead instructions for propagate_block. */
1604 static void
1605 propagate_block_delete_insn (rtx insn)
1607 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1609 /* If the insn referred to a label, and that label was attached to
1610 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1611 pretty much mandatory to delete it, because the ADDR_VEC may be
1612 referencing labels that no longer exist.
1614 INSN may reference a deleted label, particularly when a jump
1615 table has been optimized into a direct jump. There's no
1616 real good way to fix up the reference to the deleted label
1617 when the label is deleted, so we just allow it here. */
1619 if (inote && LABEL_P (inote))
1621 rtx label = XEXP (inote, 0);
1622 rtx next;
1624 /* The label may be forced if it has been put in the constant
1625 pool. If that is the only use we must discard the table
1626 jump following it, but not the label itself. */
1627 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1628 && (next = next_nonnote_insn (label)) != NULL
1629 && JUMP_P (next)
1630 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1631 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1633 rtx pat = PATTERN (next);
1634 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1635 int len = XVECLEN (pat, diff_vec_p);
1636 int i;
1638 for (i = 0; i < len; i++)
1639 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1641 delete_insn_and_edges (next);
1642 ndead++;
1646 delete_insn_and_edges (insn);
1647 ndead++;
1650 /* Delete dead libcalls for propagate_block. Return the insn
1651 before the libcall. */
1653 static rtx
1654 propagate_block_delete_libcall (rtx insn, rtx note)
1656 rtx first = XEXP (note, 0);
1657 rtx before = PREV_INSN (first);
1659 delete_insn_chain_and_edges (first, insn);
1660 ndead++;
1661 return before;
1664 /* Update the life-status of regs for one insn. Return the previous insn. */
1667 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1669 rtx prev = PREV_INSN (insn);
1670 int flags = pbi->flags;
1671 int insn_is_dead = 0;
1672 int libcall_is_dead = 0;
1673 rtx note;
1674 unsigned i;
1676 if (! INSN_P (insn))
1677 return prev;
1679 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1680 if (flags & PROP_SCAN_DEAD_CODE)
1682 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1683 libcall_is_dead = (insn_is_dead && note != 0
1684 && libcall_dead_p (pbi, note, insn));
1687 /* If an instruction consists of just dead store(s) on final pass,
1688 delete it. */
1689 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1691 /* If we're trying to delete a prologue or epilogue instruction
1692 that isn't flagged as possibly being dead, something is wrong.
1693 But if we are keeping the stack pointer depressed, we might well
1694 be deleting insns that are used to compute the amount to update
1695 it by, so they are fine. */
1696 if (reload_completed
1697 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1698 && (TYPE_RETURNS_STACK_DEPRESSED
1699 (TREE_TYPE (current_function_decl))))
1700 && (((HAVE_epilogue || HAVE_prologue)
1701 && prologue_epilogue_contains (insn))
1702 || (HAVE_sibcall_epilogue
1703 && sibcall_epilogue_contains (insn)))
1704 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1705 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1707 /* Record sets. Do this even for dead instructions, since they
1708 would have killed the values if they hadn't been deleted. To
1709 be consistent, we also have to emit a clobber when we delete
1710 an insn that clobbers a live register. */
1711 pbi->flags |= PROP_DEAD_INSN;
1712 mark_set_regs (pbi, PATTERN (insn), insn);
1713 pbi->flags &= ~PROP_DEAD_INSN;
1715 /* CC0 is now known to be dead. Either this insn used it,
1716 in which case it doesn't anymore, or clobbered it,
1717 so the next insn can't use it. */
1718 pbi->cc0_live = 0;
1720 if (libcall_is_dead)
1721 prev = propagate_block_delete_libcall (insn, note);
1722 else
1725 /* If INSN contains a RETVAL note and is dead, but the libcall
1726 as a whole is not dead, then we want to remove INSN, but
1727 not the whole libcall sequence.
1729 However, we need to also remove the dangling REG_LIBCALL
1730 note so that we do not have mis-matched LIBCALL/RETVAL
1731 notes. In theory we could find a new location for the
1732 REG_RETVAL note, but it hardly seems worth the effort.
1734 NOTE at this point will be the RETVAL note if it exists. */
1735 if (note)
1737 rtx libcall_note;
1739 libcall_note
1740 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1741 remove_note (XEXP (note, 0), libcall_note);
1744 /* Similarly if INSN contains a LIBCALL note, remove the
1745 dangling REG_RETVAL note. */
1746 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1747 if (note)
1749 rtx retval_note;
1751 retval_note
1752 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1753 remove_note (XEXP (note, 0), retval_note);
1756 /* Now delete INSN. */
1757 propagate_block_delete_insn (insn);
1760 return prev;
1763 /* See if this is an increment or decrement that can be merged into
1764 a following memory address. */
1765 #ifdef AUTO_INC_DEC
1767 rtx x = single_set (insn);
1769 /* Does this instruction increment or decrement a register? */
1770 if ((flags & PROP_AUTOINC)
1771 && x != 0
1772 && REG_P (SET_DEST (x))
1773 && (GET_CODE (SET_SRC (x)) == PLUS
1774 || GET_CODE (SET_SRC (x)) == MINUS)
1775 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1776 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1777 /* Ok, look for a following memory ref we can combine with.
1778 If one is found, change the memory ref to a PRE_INC
1779 or PRE_DEC, cancel this insn, and return 1.
1780 Return 0 if nothing has been done. */
1781 && try_pre_increment_1 (pbi, insn))
1782 return prev;
1784 #endif /* AUTO_INC_DEC */
1786 CLEAR_REG_SET (pbi->new_set);
1788 /* If this is not the final pass, and this insn is copying the value of
1789 a library call and it's dead, don't scan the insns that perform the
1790 library call, so that the call's arguments are not marked live. */
1791 if (libcall_is_dead)
1793 /* Record the death of the dest reg. */
1794 mark_set_regs (pbi, PATTERN (insn), insn);
1796 insn = XEXP (note, 0);
1797 return PREV_INSN (insn);
1799 else if (GET_CODE (PATTERN (insn)) == SET
1800 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1801 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1802 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1803 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1805 /* We have an insn to pop a constant amount off the stack.
1806 (Such insns use PLUS regardless of the direction of the stack,
1807 and any insn to adjust the stack by a constant is always a pop
1808 or part of a push.)
1809 These insns, if not dead stores, have no effect on life, though
1810 they do have an effect on the memory stores we are tracking. */
1811 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1812 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1813 concludes that the stack pointer is not modified. */
1814 mark_set_regs (pbi, PATTERN (insn), insn);
1816 else
1818 /* Any regs live at the time of a call instruction must not go
1819 in a register clobbered by calls. Find all regs now live and
1820 record this for them. */
1822 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1824 reg_set_iterator rsi;
1825 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1826 REG_N_CALLS_CROSSED (i)++;
1827 if (can_throw_internal (insn))
1828 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1829 REG_N_THROWING_CALLS_CROSSED (i)++;
1832 /* Record sets. Do this even for dead instructions, since they
1833 would have killed the values if they hadn't been deleted. */
1834 mark_set_regs (pbi, PATTERN (insn), insn);
1836 if (CALL_P (insn))
1838 regset live_at_end;
1839 bool sibcall_p;
1840 rtx note, cond;
1841 int i;
1843 cond = NULL_RTX;
1844 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1845 cond = COND_EXEC_TEST (PATTERN (insn));
1847 /* Non-constant calls clobber memory, constant calls do not
1848 clobber memory, though they may clobber outgoing arguments
1849 on the stack. */
1850 if (! CONST_OR_PURE_CALL_P (insn))
1852 free_EXPR_LIST_list (&pbi->mem_set_list);
1853 pbi->mem_set_list_len = 0;
1855 else
1856 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1858 /* There may be extra registers to be clobbered. */
1859 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1860 note;
1861 note = XEXP (note, 1))
1862 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1863 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1864 cond, insn, pbi->flags);
1866 /* Calls change all call-used and global registers; sibcalls do not
1867 clobber anything that must be preserved at end-of-function,
1868 except for return values. */
1870 sibcall_p = SIBLING_CALL_P (insn);
1871 live_at_end = EXIT_BLOCK_PTR->il.rtl->global_live_at_start;
1872 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1873 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1874 && ! (sibcall_p
1875 && REGNO_REG_SET_P (live_at_end, i)
1876 && ! refers_to_regno_p (i, i+1,
1877 current_function_return_rtx,
1878 (rtx *) 0)))
1880 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1881 /* We do not want REG_UNUSED notes for these registers. */
1882 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1883 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1887 /* If an insn doesn't use CC0, it becomes dead since we assume
1888 that every insn clobbers it. So show it dead here;
1889 mark_used_regs will set it live if it is referenced. */
1890 pbi->cc0_live = 0;
1892 /* Record uses. */
1893 if (! insn_is_dead)
1894 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1896 /* Sometimes we may have inserted something before INSN (such as a move)
1897 when we make an auto-inc. So ensure we will scan those insns. */
1898 #ifdef AUTO_INC_DEC
1899 prev = PREV_INSN (insn);
1900 #endif
1902 if (! insn_is_dead && CALL_P (insn))
1904 int i;
1905 rtx note, cond;
1907 cond = NULL_RTX;
1908 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1909 cond = COND_EXEC_TEST (PATTERN (insn));
1911 /* Calls use their arguments, and may clobber memory which
1912 address involves some register. */
1913 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1914 note;
1915 note = XEXP (note, 1))
1916 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1917 of which mark_used_regs knows how to handle. */
1918 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1920 /* The stack ptr is used (honorarily) by a CALL insn. */
1921 if ((flags & PROP_REG_INFO)
1922 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1923 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1924 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1926 /* Calls may also reference any of the global registers,
1927 so they are made live. */
1928 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1929 if (global_regs[i])
1930 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1934 pbi->insn_num++;
1936 return prev;
1939 /* Initialize a propagate_block_info struct for public consumption.
1940 Note that the structure itself is opaque to this file, but that
1941 the user can use the regsets provided here. */
1943 struct propagate_block_info *
1944 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1945 regset cond_local_set, int flags)
1947 struct propagate_block_info *pbi = XNEW (struct propagate_block_info);
1949 pbi->bb = bb;
1950 pbi->reg_live = live;
1951 pbi->mem_set_list = NULL_RTX;
1952 pbi->mem_set_list_len = 0;
1953 pbi->local_set = local_set;
1954 pbi->cond_local_set = cond_local_set;
1955 pbi->cc0_live = 0;
1956 pbi->flags = flags;
1957 pbi->insn_num = 0;
1959 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1960 pbi->reg_next_use = XCNEWVEC (rtx, max_reg_num ());
1961 else
1962 pbi->reg_next_use = NULL;
1964 pbi->new_set = BITMAP_ALLOC (NULL);
1966 #ifdef HAVE_conditional_execution
1967 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1968 free_reg_cond_life_info);
1969 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1971 /* If this block ends in a conditional branch, for each register
1972 live from one side of the branch and not the other, record the
1973 register as conditionally dead. */
1974 if (JUMP_P (BB_END (bb))
1975 && any_condjump_p (BB_END (bb)))
1977 regset diff = ALLOC_REG_SET (&reg_obstack);
1978 basic_block bb_true, bb_false;
1979 unsigned i;
1981 /* Identify the successor blocks. */
1982 bb_true = EDGE_SUCC (bb, 0)->dest;
1983 if (!single_succ_p (bb))
1985 bb_false = EDGE_SUCC (bb, 1)->dest;
1987 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1989 basic_block t = bb_false;
1990 bb_false = bb_true;
1991 bb_true = t;
1993 else
1994 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1996 else
1998 /* This can happen with a conditional jump to the next insn. */
1999 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
2001 /* Simplest way to do nothing. */
2002 bb_false = bb_true;
2005 /* Compute which register lead different lives in the successors. */
2006 bitmap_xor (diff, bb_true->il.rtl->global_live_at_start,
2007 bb_false->il.rtl->global_live_at_start);
2009 if (!bitmap_empty_p (diff))
2011 /* Extract the condition from the branch. */
2012 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
2013 rtx cond_true = XEXP (set_src, 0);
2014 rtx reg = XEXP (cond_true, 0);
2015 enum rtx_code inv_cond;
2017 if (GET_CODE (reg) == SUBREG)
2018 reg = SUBREG_REG (reg);
2020 /* We can only track conditional lifetimes if the condition is
2021 in the form of a reversible comparison of a register against
2022 zero. If the condition is more complex than that, then it is
2023 safe not to record any information. */
2024 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2025 if (inv_cond != UNKNOWN
2026 && REG_P (reg)
2027 && XEXP (cond_true, 1) == const0_rtx)
2029 rtx cond_false
2030 = gen_rtx_fmt_ee (inv_cond,
2031 GET_MODE (cond_true), XEXP (cond_true, 0),
2032 XEXP (cond_true, 1));
2033 reg_set_iterator rsi;
2035 if (GET_CODE (XEXP (set_src, 1)) == PC)
2037 rtx t = cond_false;
2038 cond_false = cond_true;
2039 cond_true = t;
2042 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2044 /* For each such register, mark it conditionally dead. */
2045 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2047 struct reg_cond_life_info *rcli;
2048 rtx cond;
2050 rcli = XNEW (struct reg_cond_life_info);
2052 if (REGNO_REG_SET_P (bb_true->il.rtl->global_live_at_start,
2054 cond = cond_false;
2055 else
2056 cond = cond_true;
2057 rcli->condition = cond;
2058 rcli->stores = const0_rtx;
2059 rcli->orig_condition = cond;
2061 splay_tree_insert (pbi->reg_cond_dead, i,
2062 (splay_tree_value) rcli);
2067 FREE_REG_SET (diff);
2069 #endif
2071 /* If this block has no successors, any stores to the frame that aren't
2072 used later in the block are dead. So make a pass over the block
2073 recording any such that are made and show them dead at the end. We do
2074 a very conservative and simple job here. */
2075 if (optimize
2076 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2077 && (TYPE_RETURNS_STACK_DEPRESSED
2078 (TREE_TYPE (current_function_decl))))
2079 && (flags & PROP_SCAN_DEAD_STORES)
2080 && (EDGE_COUNT (bb->succs) == 0
2081 || (single_succ_p (bb)
2082 && single_succ (bb) == EXIT_BLOCK_PTR
2083 && ! current_function_calls_eh_return)))
2085 rtx insn, set;
2086 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2087 if (NONJUMP_INSN_P (insn)
2088 && (set = single_set (insn))
2089 && MEM_P (SET_DEST (set)))
2091 rtx mem = SET_DEST (set);
2092 rtx canon_mem = canon_rtx (mem);
2094 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2095 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2096 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2097 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2098 add_to_mem_set_list (pbi, canon_mem);
2102 return pbi;
2105 /* Release a propagate_block_info struct. */
2107 void
2108 free_propagate_block_info (struct propagate_block_info *pbi)
2110 free_EXPR_LIST_list (&pbi->mem_set_list);
2112 BITMAP_FREE (pbi->new_set);
2114 #ifdef HAVE_conditional_execution
2115 splay_tree_delete (pbi->reg_cond_dead);
2116 BITMAP_FREE (pbi->reg_cond_reg);
2117 #endif
2119 if (pbi->flags & PROP_REG_INFO)
2121 int num = pbi->insn_num;
2122 unsigned i;
2123 reg_set_iterator rsi;
2125 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2127 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2128 reg_deaths[i] = 0;
2131 if (pbi->reg_next_use)
2132 free (pbi->reg_next_use);
2134 free (pbi);
2137 /* Compute the registers live at the beginning of a basic block BB from
2138 those live at the end.
2140 When called, REG_LIVE contains those live at the end. On return, it
2141 contains those live at the beginning.
2143 LOCAL_SET, if non-null, will be set with all registers killed
2144 unconditionally by this basic block.
2145 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2146 killed conditionally by this basic block. If there is any unconditional
2147 set of a register, then the corresponding bit will be set in LOCAL_SET
2148 and cleared in COND_LOCAL_SET.
2149 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2150 case, the resulting set will be equal to the union of the two sets that
2151 would otherwise be computed.
2153 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2156 propagate_block (basic_block bb, regset live, regset local_set,
2157 regset cond_local_set, int flags)
2159 struct propagate_block_info *pbi;
2160 rtx insn, prev;
2161 int changed;
2163 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2165 if (flags & PROP_REG_INFO)
2167 unsigned i;
2168 reg_set_iterator rsi;
2170 /* Process the regs live at the end of the block.
2171 Mark them as not local to any one basic block. */
2172 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2173 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2176 /* Scan the block an insn at a time from end to beginning. */
2178 changed = 0;
2179 for (insn = BB_END (bb); ; insn = prev)
2181 /* If this is a call to `setjmp' et al, warn if any
2182 non-volatile datum is live. */
2183 if ((flags & PROP_REG_INFO)
2184 && CALL_P (insn)
2185 && find_reg_note (insn, REG_SETJMP, NULL))
2186 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2188 prev = propagate_one_insn (pbi, insn);
2189 if (!prev)
2190 changed |= insn != get_insns ();
2191 else
2192 changed |= NEXT_INSN (prev) != insn;
2194 if (insn == BB_HEAD (bb))
2195 break;
2198 free_propagate_block_info (pbi);
2200 return changed;
2203 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2204 (SET expressions whose destinations are registers dead after the insn).
2205 NEEDED is the regset that says which regs are alive after the insn.
2207 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2209 If X is the entire body of an insn, NOTES contains the reg notes
2210 pertaining to the insn. */
2212 static int
2213 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2214 rtx notes ATTRIBUTE_UNUSED)
2216 enum rtx_code code = GET_CODE (x);
2218 /* Don't eliminate insns that may trap. */
2219 if (flag_non_call_exceptions && may_trap_p (x))
2220 return 0;
2222 #ifdef AUTO_INC_DEC
2223 /* As flow is invoked after combine, we must take existing AUTO_INC
2224 expressions into account. */
2225 for (; notes; notes = XEXP (notes, 1))
2227 if (REG_NOTE_KIND (notes) == REG_INC)
2229 int regno = REGNO (XEXP (notes, 0));
2231 /* Don't delete insns to set global regs. */
2232 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2233 || REGNO_REG_SET_P (pbi->reg_live, regno))
2234 return 0;
2237 #endif
2239 /* If setting something that's a reg or part of one,
2240 see if that register's altered value will be live. */
2242 if (code == SET)
2244 rtx r = SET_DEST (x);
2246 #ifdef HAVE_cc0
2247 if (GET_CODE (r) == CC0)
2248 return ! pbi->cc0_live;
2249 #endif
2251 /* A SET that is a subroutine call cannot be dead. */
2252 if (GET_CODE (SET_SRC (x)) == CALL)
2254 if (! call_ok)
2255 return 0;
2258 /* Don't eliminate loads from volatile memory or volatile asms. */
2259 else if (volatile_refs_p (SET_SRC (x)))
2260 return 0;
2262 if (MEM_P (r))
2264 rtx temp, canon_r;
2266 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2267 return 0;
2269 canon_r = canon_rtx (r);
2271 /* Walk the set of memory locations we are currently tracking
2272 and see if one is an identical match to this memory location.
2273 If so, this memory write is dead (remember, we're walking
2274 backwards from the end of the block to the start). Since
2275 rtx_equal_p does not check the alias set or flags, we also
2276 must have the potential for them to conflict (anti_dependence). */
2277 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2278 if (anti_dependence (r, XEXP (temp, 0)))
2280 rtx mem = XEXP (temp, 0);
2282 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2283 && (GET_MODE_SIZE (GET_MODE (canon_r))
2284 <= GET_MODE_SIZE (GET_MODE (mem))))
2285 return 1;
2287 #ifdef AUTO_INC_DEC
2288 /* Check if memory reference matches an auto increment. Only
2289 post increment/decrement or modify are valid. */
2290 if (GET_MODE (mem) == GET_MODE (r)
2291 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2292 || GET_CODE (XEXP (mem, 0)) == POST_INC
2293 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2294 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2295 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2296 return 1;
2297 #endif
2300 else
2302 while (GET_CODE (r) == SUBREG
2303 || GET_CODE (r) == STRICT_LOW_PART
2304 || GET_CODE (r) == ZERO_EXTRACT)
2305 r = XEXP (r, 0);
2307 if (REG_P (r))
2309 int regno = REGNO (r);
2311 /* Obvious. */
2312 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2313 return 0;
2315 /* If this is a hard register, verify that subsequent
2316 words are not needed. */
2317 if (regno < FIRST_PSEUDO_REGISTER)
2319 int n = hard_regno_nregs[regno][GET_MODE (r)];
2321 while (--n > 0)
2322 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2323 return 0;
2326 /* Don't delete insns to set global regs. */
2327 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2328 return 0;
2330 /* Make sure insns to set the stack pointer aren't deleted. */
2331 if (regno == STACK_POINTER_REGNUM)
2332 return 0;
2334 /* ??? These bits might be redundant with the force live bits
2335 in calculate_global_regs_live. We would delete from
2336 sequential sets; whether this actually affects real code
2337 for anything but the stack pointer I don't know. */
2338 /* Make sure insns to set the frame pointer aren't deleted. */
2339 if (regno == FRAME_POINTER_REGNUM
2340 && (! reload_completed || frame_pointer_needed))
2341 return 0;
2342 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2343 if (regno == HARD_FRAME_POINTER_REGNUM
2344 && (! reload_completed || frame_pointer_needed))
2345 return 0;
2346 #endif
2348 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2349 /* Make sure insns to set arg pointer are never deleted
2350 (if the arg pointer isn't fixed, there will be a USE
2351 for it, so we can treat it normally). */
2352 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2353 return 0;
2354 #endif
2356 /* Otherwise, the set is dead. */
2357 return 1;
2362 /* If performing several activities, insn is dead if each activity
2363 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2364 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2365 worth keeping. */
2366 else if (code == PARALLEL)
2368 int i = XVECLEN (x, 0);
2370 for (i--; i >= 0; i--)
2371 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2372 && GET_CODE (XVECEXP (x, 0, i)) != USE
2373 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2374 return 0;
2376 return 1;
2379 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2380 is not necessarily true for hard registers until after reload. */
2381 else if (code == CLOBBER)
2383 if (REG_P (XEXP (x, 0))
2384 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2385 || reload_completed)
2386 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2387 return 1;
2390 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2391 Instances where it is still used are either (1) temporary and the USE
2392 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2393 or (3) hiding bugs elsewhere that are not properly representing data
2394 flow. */
2396 return 0;
2399 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2400 return 1 if the entire library call is dead.
2401 This is true if INSN copies a register (hard or pseudo)
2402 and if the hard return reg of the call insn is dead.
2403 (The caller should have tested the destination of the SET inside
2404 INSN already for death.)
2406 If this insn doesn't just copy a register, then we don't
2407 have an ordinary libcall. In that case, cse could not have
2408 managed to substitute the source for the dest later on,
2409 so we can assume the libcall is dead.
2411 PBI is the block info giving pseudoregs live before this insn.
2412 NOTE is the REG_RETVAL note of the insn. */
2414 static int
2415 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2417 rtx x = single_set (insn);
2419 if (x)
2421 rtx r = SET_SRC (x);
2423 if (REG_P (r) || GET_CODE (r) == SUBREG)
2425 rtx call = XEXP (note, 0);
2426 rtx call_pat;
2427 int i;
2429 /* Find the call insn. */
2430 while (call != insn && !CALL_P (call))
2431 call = NEXT_INSN (call);
2433 /* If there is none, do nothing special,
2434 since ordinary death handling can understand these insns. */
2435 if (call == insn)
2436 return 0;
2438 /* See if the hard reg holding the value is dead.
2439 If this is a PARALLEL, find the call within it. */
2440 call_pat = PATTERN (call);
2441 if (GET_CODE (call_pat) == PARALLEL)
2443 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2444 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2445 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2446 break;
2448 /* This may be a library call that is returning a value
2449 via invisible pointer. Do nothing special, since
2450 ordinary death handling can understand these insns. */
2451 if (i < 0)
2452 return 0;
2454 call_pat = XVECEXP (call_pat, 0, i);
2457 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2458 return 0;
2460 while ((insn = PREV_INSN (insn)) != call)
2462 if (! INSN_P (insn))
2463 continue;
2464 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2465 return 0;
2467 return 1;
2470 return 0;
2473 /* 1 if register REGNO was alive at a place where `setjmp' was called
2474 and was set more than once or is an argument.
2475 Such regs may be clobbered by `longjmp'. */
2478 regno_clobbered_at_setjmp (int regno)
2480 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2481 return 0;
2483 return ((REG_N_SETS (regno) > 1
2484 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2485 regno))
2486 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2489 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2490 maximal list size; look for overlaps in mode and select the largest. */
2491 static void
2492 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2494 rtx i;
2496 /* We don't know how large a BLKmode store is, so we must not
2497 take them into consideration. */
2498 if (GET_MODE (mem) == BLKmode)
2499 return;
2501 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2503 rtx e = XEXP (i, 0);
2504 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2506 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2508 #ifdef AUTO_INC_DEC
2509 /* If we must store a copy of the mem, we can just modify
2510 the mode of the stored copy. */
2511 if (pbi->flags & PROP_AUTOINC)
2512 PUT_MODE (e, GET_MODE (mem));
2513 else
2514 #endif
2515 XEXP (i, 0) = mem;
2517 return;
2521 if (pbi->mem_set_list_len < PARAM_VALUE (PARAM_MAX_FLOW_MEMORY_LOCATIONS))
2523 #ifdef AUTO_INC_DEC
2524 /* Store a copy of mem, otherwise the address may be
2525 scrogged by find_auto_inc. */
2526 if (pbi->flags & PROP_AUTOINC)
2527 mem = shallow_copy_rtx (mem);
2528 #endif
2529 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2530 pbi->mem_set_list_len++;
2534 /* INSN references memory, possibly using autoincrement addressing modes.
2535 Find any entries on the mem_set_list that need to be invalidated due
2536 to an address change. */
2538 static int
2539 invalidate_mems_from_autoinc (rtx *px, void *data)
2541 rtx x = *px;
2542 struct propagate_block_info *pbi = data;
2544 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2546 invalidate_mems_from_set (pbi, XEXP (x, 0));
2547 return -1;
2550 return 0;
2553 /* EXP is a REG or MEM. Remove any dependent entries from
2554 pbi->mem_set_list. */
2556 static void
2557 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2559 rtx temp = pbi->mem_set_list;
2560 rtx prev = NULL_RTX;
2561 rtx next;
2563 while (temp)
2565 next = XEXP (temp, 1);
2566 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2567 /* When we get an EXP that is a mem here, we want to check if EXP
2568 overlaps the *address* of any of the mems in the list (i.e. not
2569 whether the mems actually overlap; that's done elsewhere). */
2570 || (MEM_P (exp)
2571 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2573 /* Splice this entry out of the list. */
2574 if (prev)
2575 XEXP (prev, 1) = next;
2576 else
2577 pbi->mem_set_list = next;
2578 free_EXPR_LIST_node (temp);
2579 pbi->mem_set_list_len--;
2581 else
2582 prev = temp;
2583 temp = next;
2587 /* Process the registers that are set within X. Their bits are set to
2588 1 in the regset DEAD, because they are dead prior to this insn.
2590 If INSN is nonzero, it is the insn being processed.
2592 FLAGS is the set of operations to perform. */
2594 static void
2595 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2597 rtx cond = NULL_RTX;
2598 rtx link;
2599 enum rtx_code code;
2600 int flags = pbi->flags;
2602 if (insn)
2603 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2605 if (REG_NOTE_KIND (link) == REG_INC)
2606 mark_set_1 (pbi, SET, XEXP (link, 0),
2607 (GET_CODE (x) == COND_EXEC
2608 ? COND_EXEC_TEST (x) : NULL_RTX),
2609 insn, flags);
2611 retry:
2612 switch (code = GET_CODE (x))
2614 case SET:
2615 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2616 flags |= PROP_ASM_SCAN;
2617 /* Fall through */
2618 case CLOBBER:
2619 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2620 return;
2622 case COND_EXEC:
2623 cond = COND_EXEC_TEST (x);
2624 x = COND_EXEC_CODE (x);
2625 goto retry;
2627 case PARALLEL:
2629 int i;
2631 /* We must scan forwards. If we have an asm, we need to set
2632 the PROP_ASM_SCAN flag before scanning the clobbers. */
2633 for (i = 0; i < XVECLEN (x, 0); i++)
2635 rtx sub = XVECEXP (x, 0, i);
2636 switch (code = GET_CODE (sub))
2638 case COND_EXEC:
2639 gcc_assert (!cond);
2641 cond = COND_EXEC_TEST (sub);
2642 sub = COND_EXEC_CODE (sub);
2643 if (GET_CODE (sub) == SET)
2644 goto mark_set;
2645 if (GET_CODE (sub) == CLOBBER)
2646 goto mark_clob;
2647 break;
2649 case SET:
2650 mark_set:
2651 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2652 flags |= PROP_ASM_SCAN;
2653 /* Fall through */
2654 case CLOBBER:
2655 mark_clob:
2656 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2657 break;
2659 case ASM_OPERANDS:
2660 flags |= PROP_ASM_SCAN;
2661 break;
2663 default:
2664 break;
2667 break;
2670 default:
2671 break;
2675 /* Process a single set, which appears in INSN. REG (which may not
2676 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2677 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2678 If the set is conditional (because it appear in a COND_EXEC), COND
2679 will be the condition. */
2681 static void
2682 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2684 int regno_first = -1, regno_last = -1;
2685 unsigned long not_dead = 0;
2686 int i;
2688 /* Modifying just one hardware register of a multi-reg value or just a
2689 byte field of a register does not mean the value from before this insn
2690 is now dead. Of course, if it was dead after it's unused now. */
2692 switch (GET_CODE (reg))
2694 case PARALLEL:
2695 /* Some targets place small structures in registers for return values of
2696 functions. We have to detect this case specially here to get correct
2697 flow information. */
2698 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2699 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2700 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2701 flags);
2702 return;
2704 case SIGN_EXTRACT:
2705 /* SIGN_EXTRACT cannot be an lvalue. */
2706 gcc_unreachable ();
2708 case ZERO_EXTRACT:
2709 case STRICT_LOW_PART:
2710 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2712 reg = XEXP (reg, 0);
2713 while (GET_CODE (reg) == SUBREG
2714 || GET_CODE (reg) == ZERO_EXTRACT
2715 || GET_CODE (reg) == STRICT_LOW_PART);
2716 if (MEM_P (reg))
2717 break;
2718 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2719 /* Fall through. */
2721 case REG:
2722 regno_last = regno_first = REGNO (reg);
2723 if (regno_first < FIRST_PSEUDO_REGISTER)
2724 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2725 break;
2727 case SUBREG:
2728 if (REG_P (SUBREG_REG (reg)))
2730 enum machine_mode outer_mode = GET_MODE (reg);
2731 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2733 /* Identify the range of registers affected. This is moderately
2734 tricky for hard registers. See alter_subreg. */
2736 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2737 if (regno_first < FIRST_PSEUDO_REGISTER)
2739 regno_first += subreg_regno_offset (regno_first, inner_mode,
2740 SUBREG_BYTE (reg),
2741 outer_mode);
2742 regno_last = (regno_first
2743 + hard_regno_nregs[regno_first][outer_mode] - 1);
2745 /* Since we've just adjusted the register number ranges, make
2746 sure REG matches. Otherwise some_was_live will be clear
2747 when it shouldn't have been, and we'll create incorrect
2748 REG_UNUSED notes. */
2749 reg = gen_rtx_REG (outer_mode, regno_first);
2751 else
2753 /* If the number of words in the subreg is less than the number
2754 of words in the full register, we have a well-defined partial
2755 set. Otherwise the high bits are undefined.
2757 This is only really applicable to pseudos, since we just took
2758 care of multi-word hard registers. */
2759 if (((GET_MODE_SIZE (outer_mode)
2760 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2761 < ((GET_MODE_SIZE (inner_mode)
2762 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2763 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2764 regno_first);
2766 reg = SUBREG_REG (reg);
2769 else
2770 reg = SUBREG_REG (reg);
2771 break;
2773 default:
2774 break;
2777 /* If this set is a MEM, then it kills any aliased writes and any
2778 other MEMs which use it.
2779 If this set is a REG, then it kills any MEMs which use the reg. */
2780 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2782 if (REG_P (reg) || MEM_P (reg))
2783 invalidate_mems_from_set (pbi, reg);
2785 /* If the memory reference had embedded side effects (autoincrement
2786 address modes) then we may need to kill some entries on the
2787 memory set list. */
2788 if (insn && MEM_P (reg))
2789 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2791 if (MEM_P (reg) && ! side_effects_p (reg)
2792 /* ??? With more effort we could track conditional memory life. */
2793 && ! cond)
2794 add_to_mem_set_list (pbi, canon_rtx (reg));
2797 if (REG_P (reg)
2798 && ! (regno_first == FRAME_POINTER_REGNUM
2799 && (! reload_completed || frame_pointer_needed))
2800 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2801 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2802 && (! reload_completed || frame_pointer_needed))
2803 #endif
2804 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2805 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2806 #endif
2809 int some_was_live = 0, some_was_dead = 0;
2811 for (i = regno_first; i <= regno_last; ++i)
2813 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2814 if (pbi->local_set)
2816 /* Order of the set operation matters here since both
2817 sets may be the same. */
2818 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2819 if (cond != NULL_RTX
2820 && ! REGNO_REG_SET_P (pbi->local_set, i))
2821 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2822 else
2823 SET_REGNO_REG_SET (pbi->local_set, i);
2825 if (code != CLOBBER || needed_regno)
2826 SET_REGNO_REG_SET (pbi->new_set, i);
2828 some_was_live |= needed_regno;
2829 some_was_dead |= ! needed_regno;
2832 #ifdef HAVE_conditional_execution
2833 /* Consider conditional death in deciding that the register needs
2834 a death note. */
2835 if (some_was_live && ! not_dead
2836 /* The stack pointer is never dead. Well, not strictly true,
2837 but it's very difficult to tell from here. Hopefully
2838 combine_stack_adjustments will fix up the most egregious
2839 errors. */
2840 && regno_first != STACK_POINTER_REGNUM)
2842 for (i = regno_first; i <= regno_last; ++i)
2843 if (! mark_regno_cond_dead (pbi, i, cond))
2844 not_dead |= ((unsigned long) 1) << (i - regno_first);
2846 #endif
2848 /* Additional data to record if this is the final pass. */
2849 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2850 | PROP_DEATH_NOTES | PROP_AUTOINC))
2852 rtx y;
2853 int blocknum = pbi->bb->index;
2855 y = NULL_RTX;
2856 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2858 y = pbi->reg_next_use[regno_first];
2860 /* The next use is no longer next, since a store intervenes. */
2861 for (i = regno_first; i <= regno_last; ++i)
2862 pbi->reg_next_use[i] = 0;
2865 if (flags & PROP_REG_INFO)
2867 for (i = regno_first; i <= regno_last; ++i)
2869 /* Count (weighted) references, stores, etc. This counts a
2870 register twice if it is modified, but that is correct. */
2871 REG_N_SETS (i) += 1;
2872 REG_N_REFS (i) += 1;
2873 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2875 /* The insns where a reg is live are normally counted
2876 elsewhere, but we want the count to include the insn
2877 where the reg is set, and the normal counting mechanism
2878 would not count it. */
2879 REG_LIVE_LENGTH (i) += 1;
2882 /* If this is a hard reg, record this function uses the reg. */
2883 if (regno_first < FIRST_PSEUDO_REGISTER)
2885 for (i = regno_first; i <= regno_last; i++)
2886 regs_ever_live[i] = 1;
2887 if (flags & PROP_ASM_SCAN)
2888 for (i = regno_first; i <= regno_last; i++)
2889 regs_asm_clobbered[i] = 1;
2891 else
2893 /* Keep track of which basic blocks each reg appears in. */
2894 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2895 REG_BASIC_BLOCK (regno_first) = blocknum;
2896 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2897 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2901 if (! some_was_dead)
2903 if (flags & PROP_LOG_LINKS)
2905 /* Make a logical link from the next following insn
2906 that uses this register, back to this insn.
2907 The following insns have already been processed.
2909 We don't build a LOG_LINK for hard registers containing
2910 in ASM_OPERANDs. If these registers get replaced,
2911 we might wind up changing the semantics of the insn,
2912 even if reload can make what appear to be valid
2913 assignments later.
2915 We don't build a LOG_LINK for global registers to
2916 or from a function call. We don't want to let
2917 combine think that it knows what is going on with
2918 global registers. */
2919 if (y && (BLOCK_NUM (y) == blocknum)
2920 && (regno_first >= FIRST_PSEUDO_REGISTER
2921 || (asm_noperands (PATTERN (y)) < 0
2922 && ! ((CALL_P (insn)
2923 || CALL_P (y))
2924 && global_regs[regno_first]))))
2925 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2928 else if (not_dead)
2930 else if (! some_was_live)
2932 if (flags & PROP_REG_INFO)
2933 REG_N_DEATHS (regno_first) += 1;
2935 if (flags & PROP_DEATH_NOTES
2936 #ifdef STACK_REGS
2937 && (!(flags & PROP_POST_REGSTACK)
2938 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG,
2939 LAST_STACK_REG))
2940 #endif
2943 /* Note that dead stores have already been deleted
2944 when possible. If we get here, we have found a
2945 dead store that cannot be eliminated (because the
2946 same insn does something useful). Indicate this
2947 by marking the reg being set as dying here. */
2948 REG_NOTES (insn)
2949 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2952 else
2954 if (flags & PROP_DEATH_NOTES
2955 #ifdef STACK_REGS
2956 && (!(flags & PROP_POST_REGSTACK)
2957 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG,
2958 LAST_STACK_REG))
2959 #endif
2962 /* This is a case where we have a multi-word hard register
2963 and some, but not all, of the words of the register are
2964 needed in subsequent insns. Write REG_UNUSED notes
2965 for those parts that were not needed. This case should
2966 be rare. */
2968 for (i = regno_first; i <= regno_last; ++i)
2969 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2970 REG_NOTES (insn)
2971 = alloc_EXPR_LIST (REG_UNUSED,
2972 regno_reg_rtx[i],
2973 REG_NOTES (insn));
2978 /* Mark the register as being dead. */
2979 if (some_was_live
2980 /* The stack pointer is never dead. Well, not strictly true,
2981 but it's very difficult to tell from here. Hopefully
2982 combine_stack_adjustments will fix up the most egregious
2983 errors. */
2984 && regno_first != STACK_POINTER_REGNUM)
2986 for (i = regno_first; i <= regno_last; ++i)
2987 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2989 if ((pbi->flags & PROP_REG_INFO)
2990 && REGNO_REG_SET_P (pbi->reg_live, i))
2992 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2993 reg_deaths[i] = 0;
2995 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2997 if (flags & PROP_DEAD_INSN)
2998 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
3001 else if (REG_P (reg))
3003 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3004 pbi->reg_next_use[regno_first] = 0;
3006 if ((flags & PROP_REG_INFO) != 0
3007 && (flags & PROP_ASM_SCAN) != 0
3008 && regno_first < FIRST_PSEUDO_REGISTER)
3010 for (i = regno_first; i <= regno_last; i++)
3011 regs_asm_clobbered[i] = 1;
3015 /* If this is the last pass and this is a SCRATCH, show it will be dying
3016 here and count it. */
3017 else if (GET_CODE (reg) == SCRATCH)
3019 if (flags & PROP_DEATH_NOTES
3020 #ifdef STACK_REGS
3021 && (!(flags & PROP_POST_REGSTACK)
3022 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG, LAST_STACK_REG))
3023 #endif
3025 REG_NOTES (insn)
3026 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
3030 #ifdef HAVE_conditional_execution
3031 /* Mark REGNO conditionally dead.
3032 Return true if the register is now unconditionally dead. */
3034 static int
3035 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3037 /* If this is a store to a predicate register, the value of the
3038 predicate is changing, we don't know that the predicate as seen
3039 before is the same as that seen after. Flush all dependent
3040 conditions from reg_cond_dead. This will make all such
3041 conditionally live registers unconditionally live. */
3042 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3043 flush_reg_cond_reg (pbi, regno);
3045 /* If this is an unconditional store, remove any conditional
3046 life that may have existed. */
3047 if (cond == NULL_RTX)
3048 splay_tree_remove (pbi->reg_cond_dead, regno);
3049 else
3051 splay_tree_node node;
3052 struct reg_cond_life_info *rcli;
3053 rtx ncond;
3055 /* Otherwise this is a conditional set. Record that fact.
3056 It may have been conditionally used, or there may be a
3057 subsequent set with a complementary condition. */
3059 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3060 if (node == NULL)
3062 /* The register was unconditionally live previously.
3063 Record the current condition as the condition under
3064 which it is dead. */
3065 rcli = XNEW (struct reg_cond_life_info);
3066 rcli->condition = cond;
3067 rcli->stores = cond;
3068 rcli->orig_condition = const0_rtx;
3069 splay_tree_insert (pbi->reg_cond_dead, regno,
3070 (splay_tree_value) rcli);
3072 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3074 /* Not unconditionally dead. */
3075 return 0;
3077 else
3079 /* The register was conditionally live previously.
3080 Add the new condition to the old. */
3081 rcli = (struct reg_cond_life_info *) node->value;
3082 ncond = rcli->condition;
3083 ncond = ior_reg_cond (ncond, cond, 1);
3084 if (rcli->stores == const0_rtx)
3085 rcli->stores = cond;
3086 else if (rcli->stores != const1_rtx)
3087 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3089 /* If the register is now unconditionally dead, remove the entry
3090 in the splay_tree. A register is unconditionally dead if the
3091 dead condition ncond is true. A register is also unconditionally
3092 dead if the sum of all conditional stores is an unconditional
3093 store (stores is true), and the dead condition is identically the
3094 same as the original dead condition initialized at the end of
3095 the block. This is a pointer compare, not an rtx_equal_p
3096 compare. */
3097 if (ncond == const1_rtx
3098 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3099 splay_tree_remove (pbi->reg_cond_dead, regno);
3100 else
3102 rcli->condition = ncond;
3104 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3106 /* Not unconditionally dead. */
3107 return 0;
3112 return 1;
3115 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3117 static void
3118 free_reg_cond_life_info (splay_tree_value value)
3120 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3121 free (rcli);
3124 /* Helper function for flush_reg_cond_reg. */
3126 static int
3127 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3129 struct reg_cond_life_info *rcli;
3130 int *xdata = (int *) data;
3131 unsigned int regno = xdata[0];
3133 /* Don't need to search if last flushed value was farther on in
3134 the in-order traversal. */
3135 if (xdata[1] >= (int) node->key)
3136 return 0;
3138 /* Splice out portions of the expression that refer to regno. */
3139 rcli = (struct reg_cond_life_info *) node->value;
3140 rcli->condition = elim_reg_cond (rcli->condition, regno);
3141 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3142 rcli->stores = elim_reg_cond (rcli->stores, regno);
3144 /* If the entire condition is now false, signal the node to be removed. */
3145 if (rcli->condition == const0_rtx)
3147 xdata[1] = node->key;
3148 return -1;
3150 else
3151 gcc_assert (rcli->condition != const1_rtx);
3153 return 0;
3156 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3158 static void
3159 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3161 int pair[2];
3163 pair[0] = regno;
3164 pair[1] = -1;
3165 while (splay_tree_foreach (pbi->reg_cond_dead,
3166 flush_reg_cond_reg_1, pair) == -1)
3167 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3169 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3172 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3173 For ior/and, the ADD flag determines whether we want to add the new
3174 condition X to the old one unconditionally. If it is zero, we will
3175 only return a new expression if X allows us to simplify part of
3176 OLD, otherwise we return NULL to the caller.
3177 If ADD is nonzero, we will return a new condition in all cases. The
3178 toplevel caller of one of these functions should always pass 1 for
3179 ADD. */
3181 static rtx
3182 ior_reg_cond (rtx old, rtx x, int add)
3184 rtx op0, op1;
3186 if (COMPARISON_P (old))
3188 if (COMPARISON_P (x)
3189 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3190 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3191 return const1_rtx;
3192 if (GET_CODE (x) == GET_CODE (old)
3193 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3194 return old;
3195 if (! add)
3196 return NULL;
3197 return gen_rtx_IOR (0, old, x);
3200 switch (GET_CODE (old))
3202 case IOR:
3203 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3204 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3205 if (op0 != NULL || op1 != NULL)
3207 if (op0 == const0_rtx)
3208 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3209 if (op1 == const0_rtx)
3210 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3211 if (op0 == const1_rtx || op1 == const1_rtx)
3212 return const1_rtx;
3213 if (op0 == NULL)
3214 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3215 else if (rtx_equal_p (x, op0))
3216 /* (x | A) | x ~ (x | A). */
3217 return old;
3218 if (op1 == NULL)
3219 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3220 else if (rtx_equal_p (x, op1))
3221 /* (A | x) | x ~ (A | x). */
3222 return old;
3223 return gen_rtx_IOR (0, op0, op1);
3225 if (! add)
3226 return NULL;
3227 return gen_rtx_IOR (0, old, x);
3229 case AND:
3230 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3231 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3232 if (op0 != NULL || op1 != NULL)
3234 if (op0 == const1_rtx)
3235 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3236 if (op1 == const1_rtx)
3237 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3238 if (op0 == const0_rtx || op1 == const0_rtx)
3239 return const0_rtx;
3240 if (op0 == NULL)
3241 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3242 else if (rtx_equal_p (x, op0))
3243 /* (x & A) | x ~ x. */
3244 return op0;
3245 if (op1 == NULL)
3246 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3247 else if (rtx_equal_p (x, op1))
3248 /* (A & x) | x ~ x. */
3249 return op1;
3250 return gen_rtx_AND (0, op0, op1);
3252 if (! add)
3253 return NULL;
3254 return gen_rtx_IOR (0, old, x);
3256 case NOT:
3257 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3258 if (op0 != NULL)
3259 return not_reg_cond (op0);
3260 if (! add)
3261 return NULL;
3262 return gen_rtx_IOR (0, old, x);
3264 default:
3265 gcc_unreachable ();
3269 static rtx
3270 not_reg_cond (rtx x)
3272 if (x == const0_rtx)
3273 return const1_rtx;
3274 else if (x == const1_rtx)
3275 return const0_rtx;
3276 if (GET_CODE (x) == NOT)
3277 return XEXP (x, 0);
3278 if (COMPARISON_P (x)
3279 && REG_P (XEXP (x, 0)))
3281 gcc_assert (XEXP (x, 1) == const0_rtx);
3283 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3284 VOIDmode, XEXP (x, 0), const0_rtx);
3286 return gen_rtx_NOT (0, x);
3289 static rtx
3290 and_reg_cond (rtx old, rtx x, int add)
3292 rtx op0, op1;
3294 if (COMPARISON_P (old))
3296 if (COMPARISON_P (x)
3297 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3298 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3299 return const0_rtx;
3300 if (GET_CODE (x) == GET_CODE (old)
3301 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3302 return old;
3303 if (! add)
3304 return NULL;
3305 return gen_rtx_AND (0, old, x);
3308 switch (GET_CODE (old))
3310 case IOR:
3311 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3312 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3313 if (op0 != NULL || op1 != NULL)
3315 if (op0 == const0_rtx)
3316 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3317 if (op1 == const0_rtx)
3318 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3319 if (op0 == const1_rtx || op1 == const1_rtx)
3320 return const1_rtx;
3321 if (op0 == NULL)
3322 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3323 else if (rtx_equal_p (x, op0))
3324 /* (x | A) & x ~ x. */
3325 return op0;
3326 if (op1 == NULL)
3327 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3328 else if (rtx_equal_p (x, op1))
3329 /* (A | x) & x ~ x. */
3330 return op1;
3331 return gen_rtx_IOR (0, op0, op1);
3333 if (! add)
3334 return NULL;
3335 return gen_rtx_AND (0, old, x);
3337 case AND:
3338 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3339 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3340 if (op0 != NULL || op1 != NULL)
3342 if (op0 == const1_rtx)
3343 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3344 if (op1 == const1_rtx)
3345 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3346 if (op0 == const0_rtx || op1 == const0_rtx)
3347 return const0_rtx;
3348 if (op0 == NULL)
3349 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3350 else if (rtx_equal_p (x, op0))
3351 /* (x & A) & x ~ (x & A). */
3352 return old;
3353 if (op1 == NULL)
3354 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3355 else if (rtx_equal_p (x, op1))
3356 /* (A & x) & x ~ (A & x). */
3357 return old;
3358 return gen_rtx_AND (0, op0, op1);
3360 if (! add)
3361 return NULL;
3362 return gen_rtx_AND (0, old, x);
3364 case NOT:
3365 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3366 if (op0 != NULL)
3367 return not_reg_cond (op0);
3368 if (! add)
3369 return NULL;
3370 return gen_rtx_AND (0, old, x);
3372 default:
3373 gcc_unreachable ();
3377 /* Given a condition X, remove references to reg REGNO and return the
3378 new condition. The removal will be done so that all conditions
3379 involving REGNO are considered to evaluate to false. This function
3380 is used when the value of REGNO changes. */
3382 static rtx
3383 elim_reg_cond (rtx x, unsigned int regno)
3385 rtx op0, op1;
3387 if (COMPARISON_P (x))
3389 if (REGNO (XEXP (x, 0)) == regno)
3390 return const0_rtx;
3391 return x;
3394 switch (GET_CODE (x))
3396 case AND:
3397 op0 = elim_reg_cond (XEXP (x, 0), regno);
3398 op1 = elim_reg_cond (XEXP (x, 1), regno);
3399 if (op0 == const0_rtx || op1 == const0_rtx)
3400 return const0_rtx;
3401 if (op0 == const1_rtx)
3402 return op1;
3403 if (op1 == const1_rtx)
3404 return op0;
3405 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3406 return x;
3407 return gen_rtx_AND (0, op0, op1);
3409 case IOR:
3410 op0 = elim_reg_cond (XEXP (x, 0), regno);
3411 op1 = elim_reg_cond (XEXP (x, 1), regno);
3412 if (op0 == const1_rtx || op1 == const1_rtx)
3413 return const1_rtx;
3414 if (op0 == const0_rtx)
3415 return op1;
3416 if (op1 == const0_rtx)
3417 return op0;
3418 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3419 return x;
3420 return gen_rtx_IOR (0, op0, op1);
3422 case NOT:
3423 op0 = elim_reg_cond (XEXP (x, 0), regno);
3424 if (op0 == const0_rtx)
3425 return const1_rtx;
3426 if (op0 == const1_rtx)
3427 return const0_rtx;
3428 if (op0 != XEXP (x, 0))
3429 return not_reg_cond (op0);
3430 return x;
3432 default:
3433 gcc_unreachable ();
3436 #endif /* HAVE_conditional_execution */
3438 #ifdef AUTO_INC_DEC
3440 /* Try to substitute the auto-inc expression INC as the address inside
3441 MEM which occurs in INSN. Currently, the address of MEM is an expression
3442 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3443 that has a single set whose source is a PLUS of INCR_REG and something
3444 else. */
3446 static void
3447 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3448 rtx mem, rtx incr, rtx incr_reg)
3450 int regno = REGNO (incr_reg);
3451 rtx set = single_set (incr);
3452 rtx q = SET_DEST (set);
3453 rtx y = SET_SRC (set);
3454 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3455 int changed;
3457 /* Make sure this reg appears only once in this insn. */
3458 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3459 return;
3461 if (dead_or_set_p (incr, incr_reg)
3462 /* Mustn't autoinc an eliminable register. */
3463 && (regno >= FIRST_PSEUDO_REGISTER
3464 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3466 /* This is the simple case. Try to make the auto-inc. If
3467 we can't, we are done. Otherwise, we will do any
3468 needed updates below. */
3469 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3470 return;
3472 else if (REG_P (q)
3473 /* PREV_INSN used here to check the semi-open interval
3474 [insn,incr). */
3475 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3476 /* We must also check for sets of q as q may be
3477 a call clobbered hard register and there may
3478 be a call between PREV_INSN (insn) and incr. */
3479 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3481 /* We have *p followed sometime later by q = p+size.
3482 Both p and q must be live afterward,
3483 and q is not used between INSN and its assignment.
3484 Change it to q = p, ...*q..., q = q+size.
3485 Then fall into the usual case. */
3486 rtx insns, temp;
3488 start_sequence ();
3489 emit_move_insn (q, incr_reg);
3490 insns = get_insns ();
3491 end_sequence ();
3493 /* If we can't make the auto-inc, or can't make the
3494 replacement into Y, exit. There's no point in making
3495 the change below if we can't do the auto-inc and doing
3496 so is not correct in the pre-inc case. */
3498 XEXP (inc, 0) = q;
3499 validate_change (insn, &XEXP (mem, 0), inc, 1);
3500 validate_change (incr, &XEXP (y, opnum), q, 1);
3501 if (! apply_change_group ())
3502 return;
3504 /* We now know we'll be doing this change, so emit the
3505 new insn(s) and do the updates. */
3506 emit_insn_before (insns, insn);
3508 if (BB_HEAD (pbi->bb) == insn)
3509 BB_HEAD (pbi->bb) = insns;
3511 /* INCR will become a NOTE and INSN won't contain a
3512 use of INCR_REG. If a use of INCR_REG was just placed in
3513 the insn before INSN, make that the next use.
3514 Otherwise, invalidate it. */
3515 if (NONJUMP_INSN_P (PREV_INSN (insn))
3516 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3517 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3518 pbi->reg_next_use[regno] = PREV_INSN (insn);
3519 else
3520 pbi->reg_next_use[regno] = 0;
3522 incr_reg = q;
3523 regno = REGNO (q);
3525 if ((pbi->flags & PROP_REG_INFO)
3526 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3527 reg_deaths[regno] = pbi->insn_num;
3529 /* REGNO is now used in INCR which is below INSN, but
3530 it previously wasn't live here. If we don't mark
3531 it as live, we'll put a REG_DEAD note for it
3532 on this insn, which is incorrect. */
3533 SET_REGNO_REG_SET (pbi->reg_live, regno);
3535 /* If there are any calls between INSN and INCR, show
3536 that REGNO now crosses them. */
3537 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3538 if (CALL_P (temp))
3540 REG_N_CALLS_CROSSED (regno)++;
3541 if (can_throw_internal (temp))
3542 REG_N_THROWING_CALLS_CROSSED (regno)++;
3545 /* Invalidate alias info for Q since we just changed its value. */
3546 clear_reg_alias_info (q);
3548 else
3549 return;
3551 /* If we haven't returned, it means we were able to make the
3552 auto-inc, so update the status. First, record that this insn
3553 has an implicit side effect. */
3555 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3557 /* Modify the old increment-insn to simply copy
3558 the already-incremented value of our register. */
3559 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3560 gcc_assert (changed);
3562 /* If that makes it a no-op (copying the register into itself) delete
3563 it so it won't appear to be a "use" and a "set" of this
3564 register. */
3565 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3567 /* If the original source was dead, it's dead now. */
3568 rtx note;
3570 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3572 remove_note (incr, note);
3573 if (XEXP (note, 0) != incr_reg)
3575 unsigned int regno = REGNO (XEXP (note, 0));
3577 if ((pbi->flags & PROP_REG_INFO)
3578 && REGNO_REG_SET_P (pbi->reg_live, regno))
3580 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3581 reg_deaths[regno] = 0;
3583 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3587 SET_INSN_DELETED (incr);
3590 if (regno >= FIRST_PSEUDO_REGISTER)
3592 /* Count an extra reference to the reg. When a reg is
3593 incremented, spilling it is worse, so we want to make
3594 that less likely. */
3595 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3597 /* Count the increment as a setting of the register,
3598 even though it isn't a SET in rtl. */
3599 REG_N_SETS (regno)++;
3603 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3604 reference. */
3606 static void
3607 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3609 rtx addr = XEXP (x, 0);
3610 HOST_WIDE_INT offset = 0;
3611 rtx set, y, incr, inc_val;
3612 int regno;
3613 int size = GET_MODE_SIZE (GET_MODE (x));
3615 if (JUMP_P (insn))
3616 return;
3618 /* Here we detect use of an index register which might be good for
3619 postincrement, postdecrement, preincrement, or predecrement. */
3621 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3622 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3624 if (!REG_P (addr))
3625 return;
3627 regno = REGNO (addr);
3629 /* Is the next use an increment that might make auto-increment? */
3630 incr = pbi->reg_next_use[regno];
3631 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3632 return;
3633 set = single_set (incr);
3634 if (set == 0 || GET_CODE (set) != SET)
3635 return;
3636 y = SET_SRC (set);
3638 if (GET_CODE (y) != PLUS)
3639 return;
3641 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3642 inc_val = XEXP (y, 1);
3643 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3644 inc_val = XEXP (y, 0);
3645 else
3646 return;
3648 if (GET_CODE (inc_val) == CONST_INT)
3650 if (HAVE_POST_INCREMENT
3651 && (INTVAL (inc_val) == size && offset == 0))
3652 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3653 incr, addr);
3654 else if (HAVE_POST_DECREMENT
3655 && (INTVAL (inc_val) == -size && offset == 0))
3656 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3657 incr, addr);
3658 else if (HAVE_PRE_INCREMENT
3659 && (INTVAL (inc_val) == size && offset == size))
3660 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3661 incr, addr);
3662 else if (HAVE_PRE_DECREMENT
3663 && (INTVAL (inc_val) == -size && offset == -size))
3664 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3665 incr, addr);
3666 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3667 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3668 gen_rtx_PLUS (Pmode,
3669 addr,
3670 inc_val)),
3671 insn, x, incr, addr);
3672 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3673 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3674 gen_rtx_PLUS (Pmode,
3675 addr,
3676 inc_val)),
3677 insn, x, incr, addr);
3679 else if (REG_P (inc_val)
3680 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3681 NEXT_INSN (incr)))
3684 if (HAVE_POST_MODIFY_REG && offset == 0)
3685 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3686 gen_rtx_PLUS (Pmode,
3687 addr,
3688 inc_val)),
3689 insn, x, incr, addr);
3693 #endif /* AUTO_INC_DEC */
3695 static void
3696 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3697 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3699 unsigned int regno_first, regno_last, i;
3700 int some_was_live, some_was_dead, some_not_set;
3702 regno_last = regno_first = REGNO (reg);
3703 if (regno_first < FIRST_PSEUDO_REGISTER)
3704 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3706 /* Find out if any of this register is live after this instruction. */
3707 some_was_live = some_was_dead = 0;
3708 for (i = regno_first; i <= regno_last; ++i)
3710 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3711 some_was_live |= needed_regno;
3712 some_was_dead |= ! needed_regno;
3715 /* Find out if any of the register was set this insn. */
3716 some_not_set = 0;
3717 for (i = regno_first; i <= regno_last; ++i)
3718 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3720 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3722 /* Record where each reg is used, so when the reg is set we know
3723 the next insn that uses it. */
3724 pbi->reg_next_use[regno_first] = insn;
3727 if (pbi->flags & PROP_REG_INFO)
3729 if (regno_first < FIRST_PSEUDO_REGISTER)
3731 /* If this is a register we are going to try to eliminate,
3732 don't mark it live here. If we are successful in
3733 eliminating it, it need not be live unless it is used for
3734 pseudos, in which case it will have been set live when it
3735 was allocated to the pseudos. If the register will not
3736 be eliminated, reload will set it live at that point.
3738 Otherwise, record that this function uses this register. */
3739 /* ??? The PPC backend tries to "eliminate" on the pic
3740 register to itself. This should be fixed. In the mean
3741 time, hack around it. */
3743 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3744 && (regno_first == FRAME_POINTER_REGNUM
3745 || regno_first == ARG_POINTER_REGNUM)))
3746 for (i = regno_first; i <= regno_last; ++i)
3747 regs_ever_live[i] = 1;
3749 else
3751 /* Keep track of which basic block each reg appears in. */
3753 int blocknum = pbi->bb->index;
3754 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3755 REG_BASIC_BLOCK (regno_first) = blocknum;
3756 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3757 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3759 /* Count (weighted) number of uses of each reg. */
3760 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3761 REG_N_REFS (regno_first)++;
3763 for (i = regno_first; i <= regno_last; ++i)
3764 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3766 gcc_assert (!reg_deaths[i]);
3767 reg_deaths[i] = pbi->insn_num;
3771 /* Record and count the insns in which a reg dies. If it is used in
3772 this insn and was dead below the insn then it dies in this insn.
3773 If it was set in this insn, we do not make a REG_DEAD note;
3774 likewise if we already made such a note. */
3775 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3776 && some_was_dead
3777 && some_not_set)
3779 /* Check for the case where the register dying partially
3780 overlaps the register set by this insn. */
3781 if (regno_first != regno_last)
3782 for (i = regno_first; i <= regno_last; ++i)
3783 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3785 /* If none of the words in X is needed, make a REG_DEAD note.
3786 Otherwise, we must make partial REG_DEAD notes. */
3787 if (! some_was_live)
3789 if ((pbi->flags & PROP_DEATH_NOTES)
3790 #ifdef STACK_REGS
3791 && (!(pbi->flags & PROP_POST_REGSTACK)
3792 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG, LAST_STACK_REG))
3793 #endif
3794 && ! find_regno_note (insn, REG_DEAD, regno_first))
3795 REG_NOTES (insn)
3796 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3798 if (pbi->flags & PROP_REG_INFO)
3799 REG_N_DEATHS (regno_first)++;
3801 else
3803 /* Don't make a REG_DEAD note for a part of a register
3804 that is set in the insn. */
3805 for (i = regno_first; i <= regno_last; ++i)
3806 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3807 && ! dead_or_set_regno_p (insn, i))
3808 REG_NOTES (insn)
3809 = alloc_EXPR_LIST (REG_DEAD,
3810 regno_reg_rtx[i],
3811 REG_NOTES (insn));
3815 /* Mark the register as being live. */
3816 for (i = regno_first; i <= regno_last; ++i)
3818 #ifdef HAVE_conditional_execution
3819 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3820 #endif
3822 SET_REGNO_REG_SET (pbi->reg_live, i);
3824 #ifdef HAVE_conditional_execution
3825 /* If this is a conditional use, record that fact. If it is later
3826 conditionally set, we'll know to kill the register. */
3827 if (cond != NULL_RTX)
3829 splay_tree_node node;
3830 struct reg_cond_life_info *rcli;
3831 rtx ncond;
3833 if (this_was_live)
3835 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3836 if (node == NULL)
3838 /* The register was unconditionally live previously.
3839 No need to do anything. */
3841 else
3843 /* The register was conditionally live previously.
3844 Subtract the new life cond from the old death cond. */
3845 rcli = (struct reg_cond_life_info *) node->value;
3846 ncond = rcli->condition;
3847 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3849 /* If the register is now unconditionally live,
3850 remove the entry in the splay_tree. */
3851 if (ncond == const0_rtx)
3852 splay_tree_remove (pbi->reg_cond_dead, i);
3853 else
3855 rcli->condition = ncond;
3856 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3857 REGNO (XEXP (cond, 0)));
3861 else
3863 /* The register was not previously live at all. Record
3864 the condition under which it is still dead. */
3865 rcli = XNEW (struct reg_cond_life_info);
3866 rcli->condition = not_reg_cond (cond);
3867 rcli->stores = const0_rtx;
3868 rcli->orig_condition = const0_rtx;
3869 splay_tree_insert (pbi->reg_cond_dead, i,
3870 (splay_tree_value) rcli);
3872 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3875 else if (this_was_live)
3877 /* The register may have been conditionally live previously, but
3878 is now unconditionally live. Remove it from the conditionally
3879 dead list, so that a conditional set won't cause us to think
3880 it dead. */
3881 splay_tree_remove (pbi->reg_cond_dead, i);
3883 #endif
3887 /* Scan expression X for registers which have to be marked used in PBI.
3888 X is considered to be the SET_DEST rtx of SET. TRUE is returned if
3889 X could be handled by this function. */
3891 static bool
3892 mark_used_dest_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3894 int regno;
3895 bool mark_dest = false;
3896 rtx dest = x;
3898 /* On some platforms calls return values spread over several
3899 locations. These locations are wrapped in a EXPR_LIST rtx
3900 together with a CONST_INT offset. */
3901 if (GET_CODE (x) == EXPR_LIST
3902 && GET_CODE (XEXP (x, 1)) == CONST_INT)
3903 x = XEXP (x, 0);
3905 if (x == NULL_RTX)
3906 return false;
3908 /* If storing into MEM, don't show it as being used. But do
3909 show the address as being used. */
3910 if (MEM_P (x))
3912 #ifdef AUTO_INC_DEC
3913 if (pbi->flags & PROP_AUTOINC)
3914 find_auto_inc (pbi, x, insn);
3915 #endif
3916 mark_used_regs (pbi, XEXP (x, 0), cond, insn);
3917 return true;
3920 /* Storing in STRICT_LOW_PART is like storing in a reg
3921 in that this SET might be dead, so ignore it in TESTREG.
3922 but in some other ways it is like using the reg.
3924 Storing in a SUBREG or a bit field is like storing the entire
3925 register in that if the register's value is not used
3926 then this SET is not needed. */
3927 while (GET_CODE (x) == STRICT_LOW_PART
3928 || GET_CODE (x) == ZERO_EXTRACT
3929 || GET_CODE (x) == SUBREG)
3931 #ifdef CANNOT_CHANGE_MODE_CLASS
3932 if ((pbi->flags & PROP_REG_INFO) && GET_CODE (x) == SUBREG)
3933 record_subregs_of_mode (x);
3934 #endif
3936 /* Modifying a single register in an alternate mode
3937 does not use any of the old value. But these other
3938 ways of storing in a register do use the old value. */
3939 if (GET_CODE (x) == SUBREG
3940 && !((REG_BYTES (SUBREG_REG (x))
3941 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3942 > (REG_BYTES (x)
3943 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3945 else
3946 mark_dest = true;
3948 x = XEXP (x, 0);
3951 /* If this is a store into a register or group of registers,
3952 recursively scan the value being stored. */
3953 if (REG_P (x)
3954 && (regno = REGNO (x),
3955 !(regno == FRAME_POINTER_REGNUM
3956 && (!reload_completed || frame_pointer_needed)))
3957 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3958 && !(regno == HARD_FRAME_POINTER_REGNUM
3959 && (!reload_completed || frame_pointer_needed))
3960 #endif
3961 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3962 && !(regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3963 #endif
3966 if (mark_dest)
3967 mark_used_regs (pbi, dest, cond, insn);
3968 return true;
3970 return false;
3973 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3974 This is done assuming the registers needed from X are those that
3975 have 1-bits in PBI->REG_LIVE.
3977 INSN is the containing instruction. If INSN is dead, this function
3978 is not called. */
3980 static void
3981 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3983 RTX_CODE code;
3984 int flags = pbi->flags;
3986 retry:
3987 if (!x)
3988 return;
3989 code = GET_CODE (x);
3990 switch (code)
3992 case LABEL_REF:
3993 case SYMBOL_REF:
3994 case CONST_INT:
3995 case CONST:
3996 case CONST_DOUBLE:
3997 case CONST_VECTOR:
3998 case PC:
3999 case ADDR_VEC:
4000 case ADDR_DIFF_VEC:
4001 return;
4003 #ifdef HAVE_cc0
4004 case CC0:
4005 pbi->cc0_live = 1;
4006 return;
4007 #endif
4009 case CLOBBER:
4010 /* If we are clobbering a MEM, mark any registers inside the address
4011 as being used. */
4012 if (MEM_P (XEXP (x, 0)))
4013 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
4014 return;
4016 case MEM:
4017 /* Don't bother watching stores to mems if this is not the
4018 final pass. We'll not be deleting dead stores this round. */
4019 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
4021 /* Invalidate the data for the last MEM stored, but only if MEM is
4022 something that can be stored into. */
4023 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
4024 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
4025 /* Needn't clear the memory set list. */
4027 else
4029 rtx temp = pbi->mem_set_list;
4030 rtx prev = NULL_RTX;
4031 rtx next;
4033 while (temp)
4035 next = XEXP (temp, 1);
4036 if (anti_dependence (XEXP (temp, 0), x))
4038 /* Splice temp out of the list. */
4039 if (prev)
4040 XEXP (prev, 1) = next;
4041 else
4042 pbi->mem_set_list = next;
4043 free_EXPR_LIST_node (temp);
4044 pbi->mem_set_list_len--;
4046 else
4047 prev = temp;
4048 temp = next;
4052 /* If the memory reference had embedded side effects (autoincrement
4053 address modes. Then we may need to kill some entries on the
4054 memory set list. */
4055 if (insn)
4056 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
4059 #ifdef AUTO_INC_DEC
4060 if (flags & PROP_AUTOINC)
4061 find_auto_inc (pbi, x, insn);
4062 #endif
4063 break;
4065 case SUBREG:
4066 #ifdef CANNOT_CHANGE_MODE_CLASS
4067 if (flags & PROP_REG_INFO)
4068 record_subregs_of_mode (x);
4069 #endif
4071 /* While we're here, optimize this case. */
4072 x = SUBREG_REG (x);
4073 if (!REG_P (x))
4074 goto retry;
4075 /* Fall through. */
4077 case REG:
4078 /* See a register other than being set => mark it as needed. */
4079 mark_used_reg (pbi, x, cond, insn);
4080 return;
4082 case SET:
4084 rtx dest = SET_DEST (x);
4085 int i;
4086 bool ret = false;
4088 if (GET_CODE (dest) == PARALLEL)
4089 for (i = 0; i < XVECLEN (dest, 0); i++)
4090 ret |= mark_used_dest_regs (pbi, XVECEXP (dest, 0, i), cond, insn);
4091 else
4092 ret = mark_used_dest_regs (pbi, dest, cond, insn);
4094 if (ret)
4096 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4097 return;
4100 break;
4102 case ASM_OPERANDS:
4103 case UNSPEC_VOLATILE:
4104 case TRAP_IF:
4105 case ASM_INPUT:
4107 /* Traditional and volatile asm instructions must be considered to use
4108 and clobber all hard registers, all pseudo-registers and all of
4109 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4111 Consider for instance a volatile asm that changes the fpu rounding
4112 mode. An insn should not be moved across this even if it only uses
4113 pseudo-regs because it might give an incorrectly rounded result.
4115 ?!? Unfortunately, marking all hard registers as live causes massive
4116 problems for the register allocator and marking all pseudos as live
4117 creates mountains of uninitialized variable warnings.
4119 So for now, just clear the memory set list and mark any regs
4120 we can find in ASM_OPERANDS as used. */
4121 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4123 free_EXPR_LIST_list (&pbi->mem_set_list);
4124 pbi->mem_set_list_len = 0;
4127 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4128 We can not just fall through here since then we would be confused
4129 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4130 traditional asms unlike their normal usage. */
4131 if (code == ASM_OPERANDS)
4133 int j;
4135 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4136 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4138 break;
4141 case COND_EXEC:
4142 gcc_assert (!cond);
4144 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4146 cond = COND_EXEC_TEST (x);
4147 x = COND_EXEC_CODE (x);
4148 goto retry;
4150 default:
4151 break;
4154 /* Recursively scan the operands of this expression. */
4157 const char * const fmt = GET_RTX_FORMAT (code);
4158 int i;
4160 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4162 if (fmt[i] == 'e')
4164 /* Tail recursive case: save a function call level. */
4165 if (i == 0)
4167 x = XEXP (x, 0);
4168 goto retry;
4170 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4172 else if (fmt[i] == 'E')
4174 int j;
4175 for (j = 0; j < XVECLEN (x, i); j++)
4176 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4182 #ifdef AUTO_INC_DEC
4184 static int
4185 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4187 /* Find the next use of this reg. If in same basic block,
4188 make it do pre-increment or pre-decrement if appropriate. */
4189 rtx x = single_set (insn);
4190 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4191 * INTVAL (XEXP (SET_SRC (x), 1)));
4192 int regno = REGNO (SET_DEST (x));
4193 rtx y = pbi->reg_next_use[regno];
4194 if (y != 0
4195 && SET_DEST (x) != stack_pointer_rtx
4196 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4197 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4198 mode would be better. */
4199 && ! dead_or_set_p (y, SET_DEST (x))
4200 && try_pre_increment (y, SET_DEST (x), amount))
4202 /* We have found a suitable auto-increment and already changed
4203 insn Y to do it. So flush this increment instruction. */
4204 propagate_block_delete_insn (insn);
4206 /* Count a reference to this reg for the increment insn we are
4207 deleting. When a reg is incremented, spilling it is worse,
4208 so we want to make that less likely. */
4209 if (regno >= FIRST_PSEUDO_REGISTER)
4211 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4212 REG_N_SETS (regno)++;
4215 /* Flush any remembered memories depending on the value of
4216 the incremented register. */
4217 invalidate_mems_from_set (pbi, SET_DEST (x));
4219 return 1;
4221 return 0;
4224 /* Try to change INSN so that it does pre-increment or pre-decrement
4225 addressing on register REG in order to add AMOUNT to REG.
4226 AMOUNT is negative for pre-decrement.
4227 Returns 1 if the change could be made.
4228 This checks all about the validity of the result of modifying INSN. */
4230 static int
4231 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4233 rtx use;
4235 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4236 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4237 int pre_ok = 0;
4238 /* Nonzero if we can try to make a post-increment or post-decrement.
4239 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4240 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4241 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4242 int post_ok = 0;
4244 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4245 int do_post = 0;
4247 /* From the sign of increment, see which possibilities are conceivable
4248 on this target machine. */
4249 if (HAVE_PRE_INCREMENT && amount > 0)
4250 pre_ok = 1;
4251 if (HAVE_POST_INCREMENT && amount > 0)
4252 post_ok = 1;
4254 if (HAVE_PRE_DECREMENT && amount < 0)
4255 pre_ok = 1;
4256 if (HAVE_POST_DECREMENT && amount < 0)
4257 post_ok = 1;
4259 if (! (pre_ok || post_ok))
4260 return 0;
4262 /* It is not safe to add a side effect to a jump insn
4263 because if the incremented register is spilled and must be reloaded
4264 there would be no way to store the incremented value back in memory. */
4266 if (JUMP_P (insn))
4267 return 0;
4269 use = 0;
4270 if (pre_ok)
4271 use = find_use_as_address (PATTERN (insn), reg, 0);
4272 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4274 use = find_use_as_address (PATTERN (insn), reg, -amount);
4275 do_post = 1;
4278 if (use == 0 || use == (rtx) (size_t) 1)
4279 return 0;
4281 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4282 return 0;
4284 /* See if this combination of instruction and addressing mode exists. */
4285 if (! validate_change (insn, &XEXP (use, 0),
4286 gen_rtx_fmt_e (amount > 0
4287 ? (do_post ? POST_INC : PRE_INC)
4288 : (do_post ? POST_DEC : PRE_DEC),
4289 Pmode, reg), 0))
4290 return 0;
4292 /* Record that this insn now has an implicit side effect on X. */
4293 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4294 return 1;
4297 #endif /* AUTO_INC_DEC */
4299 /* Find the place in the rtx X where REG is used as a memory address.
4300 Return the MEM rtx that so uses it.
4301 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4302 (plus REG (const_int PLUSCONST)).
4304 If such an address does not appear, return 0.
4305 If REG appears more than once, or is used other than in such an address,
4306 return (rtx) 1. */
4309 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4311 enum rtx_code code = GET_CODE (x);
4312 const char * const fmt = GET_RTX_FORMAT (code);
4313 int i;
4314 rtx value = 0;
4315 rtx tem;
4317 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4318 return x;
4320 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4321 && XEXP (XEXP (x, 0), 0) == reg
4322 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4323 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4324 return x;
4326 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4328 /* If REG occurs inside a MEM used in a bit-field reference,
4329 that is unacceptable. */
4330 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4331 return (rtx) (size_t) 1;
4334 if (x == reg)
4335 return (rtx) (size_t) 1;
4337 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4339 if (fmt[i] == 'e')
4341 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4342 if (value == 0)
4343 value = tem;
4344 else if (tem != 0)
4345 return (rtx) (size_t) 1;
4347 else if (fmt[i] == 'E')
4349 int j;
4350 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4352 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4353 if (value == 0)
4354 value = tem;
4355 else if (tem != 0)
4356 return (rtx) (size_t) 1;
4361 return value;
4364 /* Write information about registers and basic blocks into FILE.
4365 This is part of making a debugging dump. */
4367 void
4368 dump_regset (regset r, FILE *outf)
4370 unsigned i;
4371 reg_set_iterator rsi;
4373 if (r == NULL)
4375 fputs (" (nil)", outf);
4376 return;
4379 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4381 fprintf (outf, " %d", i);
4382 if (i < FIRST_PSEUDO_REGISTER)
4383 fprintf (outf, " [%s]",
4384 reg_names[i]);
4388 /* Print a human-readable representation of R on the standard error
4389 stream. This function is designed to be used from within the
4390 debugger. */
4392 void
4393 debug_regset (regset r)
4395 dump_regset (r, stderr);
4396 putc ('\n', stderr);
4399 /* Recompute register set/reference counts immediately prior to register
4400 allocation.
4402 This avoids problems with set/reference counts changing to/from values
4403 which have special meanings to the register allocators.
4405 Additionally, the reference counts are the primary component used by the
4406 register allocators to prioritize pseudos for allocation to hard regs.
4407 More accurate reference counts generally lead to better register allocation.
4409 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4410 possibly other information which is used by the register allocators. */
4412 void
4413 recompute_reg_usage (void)
4415 allocate_reg_life_data ();
4416 /* distribute_notes in combiner fails to convert some of the
4417 REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
4418 in sched1 to die. To solve this update the DEATH_NOTES
4419 here. */
4420 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4422 if (dump_file)
4423 dump_flow_info (dump_file, dump_flags);
4426 struct tree_opt_pass pass_recompute_reg_usage =
4428 "life2", /* name */
4429 NULL, /* gate */
4430 recompute_reg_usage, /* execute */
4431 NULL, /* sub */
4432 NULL, /* next */
4433 0, /* static_pass_number */
4434 0, /* tv_id */
4435 0, /* properties_required */
4436 0, /* properties_provided */
4437 0, /* properties_destroyed */
4438 0, /* todo_flags_start */
4439 TODO_dump_func, /* todo_flags_finish */
4440 'f' /* letter */
4443 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4444 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4445 of the number of registers that died.
4446 If KILL is 1, remove old REG_DEAD / REG_UNUSED notes. If it is 0, don't.
4447 if it is -1, remove them unless they pertain to a stack reg. */
4450 count_or_remove_death_notes (sbitmap blocks, int kill)
4452 int count = 0;
4453 unsigned int i = 0;
4454 basic_block bb;
4456 /* This used to be a loop over all the blocks with a membership test
4457 inside the loop. That can be amazingly expensive on a large CFG
4458 when only a small number of bits are set in BLOCKs (for example,
4459 the calls from the scheduler typically have very few bits set).
4461 For extra credit, someone should convert BLOCKS to a bitmap rather
4462 than an sbitmap. */
4463 if (blocks)
4465 sbitmap_iterator sbi;
4467 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4469 basic_block bb = BASIC_BLOCK (i);
4470 /* The bitmap may be flawed in that one of the basic blocks
4471 may have been deleted before you get here. */
4472 if (bb)
4473 count += count_or_remove_death_notes_bb (bb, kill);
4476 else
4478 FOR_EACH_BB (bb)
4480 count += count_or_remove_death_notes_bb (bb, kill);
4484 return count;
4487 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4488 block BB. Returns a count of the number of registers that died. */
4490 static int
4491 count_or_remove_death_notes_bb (basic_block bb, int kill)
4493 int count = 0;
4494 rtx insn;
4496 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4498 if (INSN_P (insn))
4500 rtx *pprev = &REG_NOTES (insn);
4501 rtx link = *pprev;
4503 while (link)
4505 switch (REG_NOTE_KIND (link))
4507 case REG_DEAD:
4508 if (REG_P (XEXP (link, 0)))
4510 rtx reg = XEXP (link, 0);
4511 int n;
4513 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4514 n = 1;
4515 else
4516 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4517 count += n;
4520 /* Fall through. */
4522 case REG_UNUSED:
4523 if (kill > 0
4524 || (kill
4525 #ifdef STACK_REGS
4526 && (!REG_P (XEXP (link, 0))
4527 || !IN_RANGE (REGNO (XEXP (link, 0)),
4528 FIRST_STACK_REG, LAST_STACK_REG))
4529 #endif
4532 rtx next = XEXP (link, 1);
4533 free_EXPR_LIST_node (link);
4534 *pprev = link = next;
4535 break;
4537 /* Fall through. */
4539 default:
4540 pprev = &XEXP (link, 1);
4541 link = *pprev;
4542 break;
4547 if (insn == BB_END (bb))
4548 break;
4551 return count;
4554 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4555 if blocks is NULL. */
4557 static void
4558 clear_log_links (sbitmap blocks)
4560 rtx insn;
4562 if (!blocks)
4564 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4565 if (INSN_P (insn))
4566 free_INSN_LIST_list (&LOG_LINKS (insn));
4568 else
4570 unsigned int i = 0;
4571 sbitmap_iterator sbi;
4573 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4575 basic_block bb = BASIC_BLOCK (i);
4577 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4578 insn = NEXT_INSN (insn))
4579 if (INSN_P (insn))
4580 free_INSN_LIST_list (&LOG_LINKS (insn));
4585 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4586 correspond to the hard registers, if any, set in that map. This
4587 could be done far more efficiently by having all sorts of special-cases
4588 with moving single words, but probably isn't worth the trouble. */
4590 void
4591 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4593 unsigned i;
4594 bitmap_iterator bi;
4596 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4598 if (i >= FIRST_PSEUDO_REGISTER)
4599 return;
4600 SET_HARD_REG_BIT (*to, i);
4605 static bool
4606 gate_remove_death_notes (void)
4608 return flag_profile_values;
4611 static void
4612 rest_of_handle_remove_death_notes (void)
4614 count_or_remove_death_notes (NULL, 1);
4617 struct tree_opt_pass pass_remove_death_notes =
4619 "ednotes", /* name */
4620 gate_remove_death_notes, /* gate */
4621 rest_of_handle_remove_death_notes, /* execute */
4622 NULL, /* sub */
4623 NULL, /* next */
4624 0, /* static_pass_number */
4625 0, /* tv_id */
4626 0, /* properties_required */
4627 0, /* properties_provided */
4628 0, /* properties_destroyed */
4629 0, /* todo_flags_start */
4630 0, /* todo_flags_finish */
4631 0 /* letter */
4634 /* Perform life analysis. */
4635 static void
4636 rest_of_handle_life (void)
4638 regclass_init ();
4640 life_analysis (PROP_FINAL);
4641 if (optimize)
4642 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE | CLEANUP_LOG_LINKS
4643 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
4645 if (extra_warnings)
4647 setjmp_vars_warning (DECL_INITIAL (current_function_decl));
4648 setjmp_args_warning ();
4651 if (optimize)
4653 if (initialize_uninitialized_subregs ())
4655 /* Insns were inserted, and possibly pseudos created, so
4656 things might look a bit different. */
4657 allocate_reg_life_data ();
4658 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
4659 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
4663 no_new_pseudos = 1;
4666 struct tree_opt_pass pass_life =
4668 "life1", /* name */
4669 NULL, /* gate */
4670 rest_of_handle_life, /* execute */
4671 NULL, /* sub */
4672 NULL, /* next */
4673 0, /* static_pass_number */
4674 TV_FLOW, /* tv_id */
4675 0, /* properties_required */
4676 0, /* properties_provided */
4677 0, /* properties_destroyed */
4678 TODO_verify_flow, /* todo_flags_start */
4679 TODO_dump_func |
4680 TODO_ggc_collect, /* todo_flags_finish */
4681 'f' /* letter */
4684 static void
4685 rest_of_handle_flow2 (void)
4687 /* If optimizing, then go ahead and split insns now. */
4688 #ifndef STACK_REGS
4689 if (optimize > 0)
4690 #endif
4691 split_all_insns (0);
4693 if (flag_branch_target_load_optimize)
4694 branch_target_load_optimize (epilogue_completed);
4696 if (optimize)
4697 cleanup_cfg (CLEANUP_EXPENSIVE);
4699 /* On some machines, the prologue and epilogue code, or parts thereof,
4700 can be represented as RTL. Doing so lets us schedule insns between
4701 it and the rest of the code and also allows delayed branch
4702 scheduling to operate in the epilogue. */
4703 thread_prologue_and_epilogue_insns (get_insns ());
4704 epilogue_completed = 1;
4705 flow2_completed = 1;
4708 struct tree_opt_pass pass_flow2 =
4710 "flow2", /* name */
4711 NULL, /* gate */
4712 rest_of_handle_flow2, /* execute */
4713 NULL, /* sub */
4714 NULL, /* next */
4715 0, /* static_pass_number */
4716 TV_FLOW2, /* tv_id */
4717 0, /* properties_required */
4718 0, /* properties_provided */
4719 0, /* properties_destroyed */
4720 TODO_verify_flow, /* todo_flags_start */
4721 TODO_dump_func |
4722 TODO_ggc_collect, /* todo_flags_finish */
4723 'w' /* letter */