Merge from mainline
[official-gcc.git] / gcc / explow.c
blob677ef7a218a1ca03292a39de224f8c4465790bcb
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
43 static rtx break_out_memory_refs (rtx);
44 static void emit_stack_probe (rtx);
47 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49 HOST_WIDE_INT
50 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
52 int width = GET_MODE_BITSIZE (mode);
54 /* You want to truncate to a _what_? */
55 gcc_assert (SCALAR_INT_MODE_P (mode));
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 if (mode == BImode)
59 return c & 1 ? STORE_FLAG_VALUE : 0;
61 /* Sign-extend for the requested mode. */
63 if (width < HOST_BITS_PER_WIDE_INT)
65 HOST_WIDE_INT sign = 1;
66 sign <<= width - 1;
67 c &= (sign << 1) - 1;
68 c ^= sign;
69 c -= sign;
72 return c;
75 /* Return an rtx for the sum of X and the integer C. */
77 rtx
78 plus_constant (rtx x, HOST_WIDE_INT c)
80 RTX_CODE code;
81 rtx y;
82 enum machine_mode mode;
83 rtx tem;
84 int all_constant = 0;
86 if (c == 0)
87 return x;
89 restart:
91 code = GET_CODE (x);
92 mode = GET_MODE (x);
93 y = x;
95 switch (code)
97 case CONST_INT:
98 return GEN_INT (INTVAL (x) + c);
100 case CONST_DOUBLE:
102 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
103 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
104 unsigned HOST_WIDE_INT l2 = c;
105 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
106 unsigned HOST_WIDE_INT lv;
107 HOST_WIDE_INT hv;
109 add_double (l1, h1, l2, h2, &lv, &hv);
111 return immed_double_const (lv, hv, VOIDmode);
114 case MEM:
115 /* If this is a reference to the constant pool, try replacing it with
116 a reference to a new constant. If the resulting address isn't
117 valid, don't return it because we have no way to validize it. */
118 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
119 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 = force_const_mem (GET_MODE (x),
123 plus_constant (get_pool_constant (XEXP (x, 0)),
124 c));
125 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
126 return tem;
128 break;
130 case CONST:
131 /* If adding to something entirely constant, set a flag
132 so that we can add a CONST around the result. */
133 x = XEXP (x, 0);
134 all_constant = 1;
135 goto restart;
137 case SYMBOL_REF:
138 case LABEL_REF:
139 all_constant = 1;
140 break;
142 case PLUS:
143 /* The interesting case is adding the integer to a sum.
144 Look for constant term in the sum and combine
145 with C. For an integer constant term, we make a combined
146 integer. For a constant term that is not an explicit integer,
147 we cannot really combine, but group them together anyway.
149 Restart or use a recursive call in case the remaining operand is
150 something that we handle specially, such as a SYMBOL_REF.
152 We may not immediately return from the recursive call here, lest
153 all_constant gets lost. */
155 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 c += INTVAL (XEXP (x, 1));
159 if (GET_MODE (x) != VOIDmode)
160 c = trunc_int_for_mode (c, GET_MODE (x));
162 x = XEXP (x, 0);
163 goto restart;
165 else if (CONSTANT_P (XEXP (x, 1)))
167 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
168 c = 0;
170 else if (find_constant_term_loc (&y))
172 /* We need to be careful since X may be shared and we can't
173 modify it in place. */
174 rtx copy = copy_rtx (x);
175 rtx *const_loc = find_constant_term_loc (&copy);
177 *const_loc = plus_constant (*const_loc, c);
178 x = copy;
179 c = 0;
181 break;
183 default:
184 break;
187 if (c != 0)
188 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
191 return x;
192 else if (all_constant)
193 return gen_rtx_CONST (mode, x);
194 else
195 return x;
198 /* If X is a sum, return a new sum like X but lacking any constant terms.
199 Add all the removed constant terms into *CONSTPTR.
200 X itself is not altered. The result != X if and only if
201 it is not isomorphic to X. */
204 eliminate_constant_term (rtx x, rtx *constptr)
206 rtx x0, x1;
207 rtx tem;
209 if (GET_CODE (x) != PLUS)
210 return x;
212 /* First handle constants appearing at this level explicitly. */
213 if (GET_CODE (XEXP (x, 1)) == CONST_INT
214 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
215 XEXP (x, 1)))
216 && GET_CODE (tem) == CONST_INT)
218 *constptr = tem;
219 return eliminate_constant_term (XEXP (x, 0), constptr);
222 tem = const0_rtx;
223 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
224 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
225 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
226 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
227 *constptr, tem))
228 && GET_CODE (tem) == CONST_INT)
230 *constptr = tem;
231 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234 return x;
237 /* Return an rtx for the size in bytes of the value of EXP. */
240 expr_size (tree exp)
242 tree size;
244 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
245 size = TREE_OPERAND (exp, 1);
246 else
247 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
249 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
252 /* Return a wide integer for the size in bytes of the value of EXP, or -1
253 if the size can vary or is larger than an integer. */
255 HOST_WIDE_INT
256 int_expr_size (tree exp)
258 tree size;
260 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
261 size = TREE_OPERAND (exp, 1);
262 else
263 size = lang_hooks.expr_size (exp);
265 if (size == 0 || !host_integerp (size, 0))
266 return -1;
268 return tree_low_cst (size, 0);
271 /* Return a copy of X in which all memory references
272 and all constants that involve symbol refs
273 have been replaced with new temporary registers.
274 Also emit code to load the memory locations and constants
275 into those registers.
277 If X contains no such constants or memory references,
278 X itself (not a copy) is returned.
280 If a constant is found in the address that is not a legitimate constant
281 in an insn, it is left alone in the hope that it might be valid in the
282 address.
284 X may contain no arithmetic except addition, subtraction and multiplication.
285 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
287 static rtx
288 break_out_memory_refs (rtx x)
290 if (MEM_P (x)
291 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
292 && GET_MODE (x) != VOIDmode))
293 x = force_reg (GET_MODE (x), x);
294 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
295 || GET_CODE (x) == MULT)
297 rtx op0 = break_out_memory_refs (XEXP (x, 0));
298 rtx op1 = break_out_memory_refs (XEXP (x, 1));
300 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
301 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
304 return x;
307 /* Given X, a memory address in ptr_mode, convert it to an address
308 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
309 the fact that pointers are not allowed to overflow by commuting arithmetic
310 operations over conversions so that address arithmetic insns can be
311 used. */
314 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
315 rtx x)
317 #ifndef POINTERS_EXTEND_UNSIGNED
318 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
319 return x;
320 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
321 enum machine_mode from_mode;
322 rtx temp;
323 enum rtx_code code;
325 /* If X already has the right mode, just return it. */
326 if (GET_MODE (x) == to_mode)
327 return x;
329 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
331 /* Here we handle some special cases. If none of them apply, fall through
332 to the default case. */
333 switch (GET_CODE (x))
335 case CONST_INT:
336 case CONST_DOUBLE:
337 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
338 code = TRUNCATE;
339 else if (POINTERS_EXTEND_UNSIGNED < 0)
340 break;
341 else if (POINTERS_EXTEND_UNSIGNED > 0)
342 code = ZERO_EXTEND;
343 else
344 code = SIGN_EXTEND;
345 temp = simplify_unary_operation (code, to_mode, x, from_mode);
346 if (temp)
347 return temp;
348 break;
350 case SUBREG:
351 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
352 && GET_MODE (SUBREG_REG (x)) == to_mode)
353 return SUBREG_REG (x);
354 break;
356 case LABEL_REF:
357 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
358 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
359 return temp;
360 break;
362 case SYMBOL_REF:
363 temp = shallow_copy_rtx (x);
364 PUT_MODE (temp, to_mode);
365 return temp;
366 break;
368 case CONST:
369 return gen_rtx_CONST (to_mode,
370 convert_memory_address (to_mode, XEXP (x, 0)));
371 break;
373 case PLUS:
374 case MULT:
375 /* For addition we can safely permute the conversion and addition
376 operation if one operand is a constant and converting the constant
377 does not change it. We can always safely permute them if we are
378 making the address narrower. */
379 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
380 || (GET_CODE (x) == PLUS
381 && GET_CODE (XEXP (x, 1)) == CONST_INT
382 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
383 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
384 convert_memory_address (to_mode, XEXP (x, 0)),
385 XEXP (x, 1));
386 break;
388 default:
389 break;
392 return convert_modes (to_mode, from_mode,
393 x, POINTERS_EXTEND_UNSIGNED);
394 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
397 /* Return something equivalent to X but valid as a memory address
398 for something of mode MODE. When X is not itself valid, this
399 works by copying X or subexpressions of it into registers. */
402 memory_address (enum machine_mode mode, rtx x)
404 rtx oldx = x;
406 x = convert_memory_address (Pmode, x);
408 /* By passing constant addresses through registers
409 we get a chance to cse them. */
410 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
411 x = force_reg (Pmode, x);
413 /* We get better cse by rejecting indirect addressing at this stage.
414 Let the combiner create indirect addresses where appropriate.
415 For now, generate the code so that the subexpressions useful to share
416 are visible. But not if cse won't be done! */
417 else
419 if (! cse_not_expected && !REG_P (x))
420 x = break_out_memory_refs (x);
422 /* At this point, any valid address is accepted. */
423 if (memory_address_p (mode, x))
424 goto win;
426 /* If it was valid before but breaking out memory refs invalidated it,
427 use it the old way. */
428 if (memory_address_p (mode, oldx))
429 goto win2;
431 /* Perform machine-dependent transformations on X
432 in certain cases. This is not necessary since the code
433 below can handle all possible cases, but machine-dependent
434 transformations can make better code. */
435 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
437 /* PLUS and MULT can appear in special ways
438 as the result of attempts to make an address usable for indexing.
439 Usually they are dealt with by calling force_operand, below.
440 But a sum containing constant terms is special
441 if removing them makes the sum a valid address:
442 then we generate that address in a register
443 and index off of it. We do this because it often makes
444 shorter code, and because the addresses thus generated
445 in registers often become common subexpressions. */
446 if (GET_CODE (x) == PLUS)
448 rtx constant_term = const0_rtx;
449 rtx y = eliminate_constant_term (x, &constant_term);
450 if (constant_term == const0_rtx
451 || ! memory_address_p (mode, y))
452 x = force_operand (x, NULL_RTX);
453 else
455 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
456 if (! memory_address_p (mode, y))
457 x = force_operand (x, NULL_RTX);
458 else
459 x = y;
463 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
464 x = force_operand (x, NULL_RTX);
466 /* If we have a register that's an invalid address,
467 it must be a hard reg of the wrong class. Copy it to a pseudo. */
468 else if (REG_P (x))
469 x = copy_to_reg (x);
471 /* Last resort: copy the value to a register, since
472 the register is a valid address. */
473 else
474 x = force_reg (Pmode, x);
476 goto done;
478 win2:
479 x = oldx;
480 win:
481 if (flag_force_addr && ! cse_not_expected && !REG_P (x))
483 x = force_operand (x, NULL_RTX);
484 x = force_reg (Pmode, x);
488 done:
490 /* If we didn't change the address, we are done. Otherwise, mark
491 a reg as a pointer if we have REG or REG + CONST_INT. */
492 if (oldx == x)
493 return x;
494 else if (REG_P (x))
495 mark_reg_pointer (x, BITS_PER_UNIT);
496 else if (GET_CODE (x) == PLUS
497 && REG_P (XEXP (x, 0))
498 && GET_CODE (XEXP (x, 1)) == CONST_INT)
499 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
501 /* OLDX may have been the address on a temporary. Update the address
502 to indicate that X is now used. */
503 update_temp_slot_address (oldx, x);
505 return x;
508 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
511 memory_address_noforce (enum machine_mode mode, rtx x)
513 int ambient_force_addr = flag_force_addr;
514 rtx val;
516 flag_force_addr = 0;
517 val = memory_address (mode, x);
518 flag_force_addr = ambient_force_addr;
519 return val;
522 /* Convert a mem ref into one with a valid memory address.
523 Pass through anything else unchanged. */
526 validize_mem (rtx ref)
528 if (!MEM_P (ref))
529 return ref;
530 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
531 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
532 return ref;
534 /* Don't alter REF itself, since that is probably a stack slot. */
535 return replace_equiv_address (ref, XEXP (ref, 0));
538 /* Copy the value or contents of X to a new temp reg and return that reg. */
541 copy_to_reg (rtx x)
543 rtx temp = gen_reg_rtx (GET_MODE (x));
545 /* If not an operand, must be an address with PLUS and MULT so
546 do the computation. */
547 if (! general_operand (x, VOIDmode))
548 x = force_operand (x, temp);
550 if (x != temp)
551 emit_move_insn (temp, x);
553 return temp;
556 /* Like copy_to_reg but always give the new register mode Pmode
557 in case X is a constant. */
560 copy_addr_to_reg (rtx x)
562 return copy_to_mode_reg (Pmode, x);
565 /* Like copy_to_reg but always give the new register mode MODE
566 in case X is a constant. */
569 copy_to_mode_reg (enum machine_mode mode, rtx x)
571 rtx temp = gen_reg_rtx (mode);
573 /* If not an operand, must be an address with PLUS and MULT so
574 do the computation. */
575 if (! general_operand (x, VOIDmode))
576 x = force_operand (x, temp);
578 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
579 if (x != temp)
580 emit_move_insn (temp, x);
581 return temp;
584 /* Load X into a register if it is not already one.
585 Use mode MODE for the register.
586 X should be valid for mode MODE, but it may be a constant which
587 is valid for all integer modes; that's why caller must specify MODE.
589 The caller must not alter the value in the register we return,
590 since we mark it as a "constant" register. */
593 force_reg (enum machine_mode mode, rtx x)
595 rtx temp, insn, set;
597 if (REG_P (x))
598 return x;
600 if (general_operand (x, mode))
602 temp = gen_reg_rtx (mode);
603 insn = emit_move_insn (temp, x);
605 else
607 temp = force_operand (x, NULL_RTX);
608 if (REG_P (temp))
609 insn = get_last_insn ();
610 else
612 rtx temp2 = gen_reg_rtx (mode);
613 insn = emit_move_insn (temp2, temp);
614 temp = temp2;
618 /* Let optimizers know that TEMP's value never changes
619 and that X can be substituted for it. Don't get confused
620 if INSN set something else (such as a SUBREG of TEMP). */
621 if (CONSTANT_P (x)
622 && (set = single_set (insn)) != 0
623 && SET_DEST (set) == temp
624 && ! rtx_equal_p (x, SET_SRC (set)))
625 set_unique_reg_note (insn, REG_EQUAL, x);
627 /* Let optimizers know that TEMP is a pointer, and if so, the
628 known alignment of that pointer. */
630 unsigned align = 0;
631 if (GET_CODE (x) == SYMBOL_REF)
633 align = BITS_PER_UNIT;
634 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
635 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
637 else if (GET_CODE (x) == LABEL_REF)
638 align = BITS_PER_UNIT;
639 else if (GET_CODE (x) == CONST
640 && GET_CODE (XEXP (x, 0)) == PLUS
641 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
642 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
644 rtx s = XEXP (XEXP (x, 0), 0);
645 rtx c = XEXP (XEXP (x, 0), 1);
646 unsigned sa, ca;
648 sa = BITS_PER_UNIT;
649 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
650 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
652 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
654 align = MIN (sa, ca);
657 if (align)
658 mark_reg_pointer (temp, align);
661 return temp;
664 /* If X is a memory ref, copy its contents to a new temp reg and return
665 that reg. Otherwise, return X. */
668 force_not_mem (rtx x)
670 rtx temp;
672 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
673 return x;
675 temp = gen_reg_rtx (GET_MODE (x));
677 if (MEM_POINTER (x))
678 REG_POINTER (temp) = 1;
680 emit_move_insn (temp, x);
681 return temp;
684 /* Copy X to TARGET (if it's nonzero and a reg)
685 or to a new temp reg and return that reg.
686 MODE is the mode to use for X in case it is a constant. */
689 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
691 rtx temp;
693 if (target && REG_P (target))
694 temp = target;
695 else
696 temp = gen_reg_rtx (mode);
698 emit_move_insn (temp, x);
699 return temp;
702 /* Return the mode to use to store a scalar of TYPE and MODE.
703 PUNSIGNEDP points to the signedness of the type and may be adjusted
704 to show what signedness to use on extension operations.
706 FOR_CALL is nonzero if this call is promoting args for a call. */
708 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
709 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
710 #endif
712 enum machine_mode
713 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
714 int for_call ATTRIBUTE_UNUSED)
716 enum tree_code code = TREE_CODE (type);
717 int unsignedp = *punsignedp;
719 #ifndef PROMOTE_MODE
720 if (! for_call)
721 return mode;
722 #endif
724 switch (code)
726 #ifdef PROMOTE_FUNCTION_MODE
727 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
728 case REAL_TYPE: case OFFSET_TYPE:
729 #ifdef PROMOTE_MODE
730 if (for_call)
732 #endif
733 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
734 #ifdef PROMOTE_MODE
736 else
738 PROMOTE_MODE (mode, unsignedp, type);
740 #endif
741 break;
742 #endif
744 #ifdef POINTERS_EXTEND_UNSIGNED
745 case REFERENCE_TYPE:
746 case POINTER_TYPE:
747 mode = Pmode;
748 unsignedp = POINTERS_EXTEND_UNSIGNED;
749 break;
750 #endif
752 default:
753 break;
756 *punsignedp = unsignedp;
757 return mode;
760 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
761 This pops when ADJUST is positive. ADJUST need not be constant. */
763 void
764 adjust_stack (rtx adjust)
766 rtx temp;
768 if (adjust == const0_rtx)
769 return;
771 /* We expect all variable sized adjustments to be multiple of
772 PREFERRED_STACK_BOUNDARY. */
773 if (GET_CODE (adjust) == CONST_INT)
774 stack_pointer_delta -= INTVAL (adjust);
776 temp = expand_binop (Pmode,
777 #ifdef STACK_GROWS_DOWNWARD
778 add_optab,
779 #else
780 sub_optab,
781 #endif
782 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
783 OPTAB_LIB_WIDEN);
785 if (temp != stack_pointer_rtx)
786 emit_move_insn (stack_pointer_rtx, temp);
789 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
790 This pushes when ADJUST is positive. ADJUST need not be constant. */
792 void
793 anti_adjust_stack (rtx adjust)
795 rtx temp;
797 if (adjust == const0_rtx)
798 return;
800 /* We expect all variable sized adjustments to be multiple of
801 PREFERRED_STACK_BOUNDARY. */
802 if (GET_CODE (adjust) == CONST_INT)
803 stack_pointer_delta += INTVAL (adjust);
805 temp = expand_binop (Pmode,
806 #ifdef STACK_GROWS_DOWNWARD
807 sub_optab,
808 #else
809 add_optab,
810 #endif
811 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
812 OPTAB_LIB_WIDEN);
814 if (temp != stack_pointer_rtx)
815 emit_move_insn (stack_pointer_rtx, temp);
818 /* Round the size of a block to be pushed up to the boundary required
819 by this machine. SIZE is the desired size, which need not be constant. */
821 static rtx
822 round_push (rtx size)
824 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
826 if (align == 1)
827 return size;
829 if (GET_CODE (size) == CONST_INT)
831 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
833 if (INTVAL (size) != new)
834 size = GEN_INT (new);
836 else
838 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
839 but we know it can't. So add ourselves and then do
840 TRUNC_DIV_EXPR. */
841 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
842 NULL_RTX, 1, OPTAB_LIB_WIDEN);
843 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
844 NULL_RTX, 1);
845 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
848 return size;
851 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
852 to a previously-created save area. If no save area has been allocated,
853 this function will allocate one. If a save area is specified, it
854 must be of the proper mode.
856 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
857 are emitted at the current position. */
859 void
860 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
862 rtx sa = *psave;
863 /* The default is that we use a move insn and save in a Pmode object. */
864 rtx (*fcn) (rtx, rtx) = gen_move_insn;
865 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
867 /* See if this machine has anything special to do for this kind of save. */
868 switch (save_level)
870 #ifdef HAVE_save_stack_block
871 case SAVE_BLOCK:
872 if (HAVE_save_stack_block)
873 fcn = gen_save_stack_block;
874 break;
875 #endif
876 #ifdef HAVE_save_stack_function
877 case SAVE_FUNCTION:
878 if (HAVE_save_stack_function)
879 fcn = gen_save_stack_function;
880 break;
881 #endif
882 #ifdef HAVE_save_stack_nonlocal
883 case SAVE_NONLOCAL:
884 if (HAVE_save_stack_nonlocal)
885 fcn = gen_save_stack_nonlocal;
886 break;
887 #endif
888 default:
889 break;
892 /* If there is no save area and we have to allocate one, do so. Otherwise
893 verify the save area is the proper mode. */
895 if (sa == 0)
897 if (mode != VOIDmode)
899 if (save_level == SAVE_NONLOCAL)
900 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
901 else
902 *psave = sa = gen_reg_rtx (mode);
906 if (after)
908 rtx seq;
910 start_sequence ();
911 do_pending_stack_adjust ();
912 /* We must validize inside the sequence, to ensure that any instructions
913 created by the validize call also get moved to the right place. */
914 if (sa != 0)
915 sa = validize_mem (sa);
916 emit_insn (fcn (sa, stack_pointer_rtx));
917 seq = get_insns ();
918 end_sequence ();
919 emit_insn_after (seq, after);
921 else
923 do_pending_stack_adjust ();
924 if (sa != 0)
925 sa = validize_mem (sa);
926 emit_insn (fcn (sa, stack_pointer_rtx));
930 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
931 area made by emit_stack_save. If it is zero, we have nothing to do.
933 Put any emitted insns after insn AFTER, if nonzero, otherwise at
934 current position. */
936 void
937 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
939 /* The default is that we use a move insn. */
940 rtx (*fcn) (rtx, rtx) = gen_move_insn;
942 /* See if this machine has anything special to do for this kind of save. */
943 switch (save_level)
945 #ifdef HAVE_restore_stack_block
946 case SAVE_BLOCK:
947 if (HAVE_restore_stack_block)
948 fcn = gen_restore_stack_block;
949 break;
950 #endif
951 #ifdef HAVE_restore_stack_function
952 case SAVE_FUNCTION:
953 if (HAVE_restore_stack_function)
954 fcn = gen_restore_stack_function;
955 break;
956 #endif
957 #ifdef HAVE_restore_stack_nonlocal
958 case SAVE_NONLOCAL:
959 if (HAVE_restore_stack_nonlocal)
960 fcn = gen_restore_stack_nonlocal;
961 break;
962 #endif
963 default:
964 break;
967 if (sa != 0)
969 sa = validize_mem (sa);
970 /* These clobbers prevent the scheduler from moving
971 references to variable arrays below the code
972 that deletes (pops) the arrays. */
973 emit_insn (gen_rtx_CLOBBER (VOIDmode,
974 gen_rtx_MEM (BLKmode,
975 gen_rtx_SCRATCH (VOIDmode))));
976 emit_insn (gen_rtx_CLOBBER (VOIDmode,
977 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
980 discard_pending_stack_adjust ();
982 if (after)
984 rtx seq;
986 start_sequence ();
987 emit_insn (fcn (stack_pointer_rtx, sa));
988 seq = get_insns ();
989 end_sequence ();
990 emit_insn_after (seq, after);
992 else
993 emit_insn (fcn (stack_pointer_rtx, sa));
996 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
997 function. This function should be called whenever we allocate or
998 deallocate dynamic stack space. */
1000 void
1001 update_nonlocal_goto_save_area (void)
1003 tree t_save;
1004 rtx r_save;
1006 /* The nonlocal_goto_save_area object is an array of N pointers. The
1007 first one is used for the frame pointer save; the rest are sized by
1008 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1009 of the stack save area slots. */
1010 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1011 integer_one_node, NULL_TREE, NULL_TREE);
1012 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1014 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1017 /* Return an rtx representing the address of an area of memory dynamically
1018 pushed on the stack. This region of memory is always aligned to
1019 a multiple of BIGGEST_ALIGNMENT.
1021 Any required stack pointer alignment is preserved.
1023 SIZE is an rtx representing the size of the area.
1024 TARGET is a place in which the address can be placed.
1026 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1029 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1031 /* If we're asking for zero bytes, it doesn't matter what we point
1032 to since we can't dereference it. But return a reasonable
1033 address anyway. */
1034 if (size == const0_rtx)
1035 return virtual_stack_dynamic_rtx;
1037 /* Otherwise, show we're calling alloca or equivalent. */
1038 current_function_calls_alloca = 1;
1040 /* Ensure the size is in the proper mode. */
1041 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1042 size = convert_to_mode (Pmode, size, 1);
1044 /* We can't attempt to minimize alignment necessary, because we don't
1045 know the final value of preferred_stack_boundary yet while executing
1046 this code. */
1047 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1049 /* We will need to ensure that the address we return is aligned to
1050 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1051 always know its final value at this point in the compilation (it
1052 might depend on the size of the outgoing parameter lists, for
1053 example), so we must align the value to be returned in that case.
1054 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1055 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1056 We must also do an alignment operation on the returned value if
1057 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1059 If we have to align, we must leave space in SIZE for the hole
1060 that might result from the alignment operation. */
1062 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1063 #define MUST_ALIGN 1
1064 #else
1065 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1066 #endif
1068 if (MUST_ALIGN)
1069 size
1070 = force_operand (plus_constant (size,
1071 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1072 NULL_RTX);
1074 #ifdef SETJMP_VIA_SAVE_AREA
1075 /* If setjmp restores regs from a save area in the stack frame,
1076 avoid clobbering the reg save area. Note that the offset of
1077 virtual_incoming_args_rtx includes the preallocated stack args space.
1078 It would be no problem to clobber that, but it's on the wrong side
1079 of the old save area.
1081 What used to happen is that, since we did not know for sure
1082 whether setjmp() was invoked until after RTL generation, we
1083 would use reg notes to store the "optimized" size and fix things
1084 up later. These days we know this information before we ever
1085 start building RTL so the reg notes are unnecessary. */
1086 if (!current_function_calls_setjmp)
1088 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1090 /* ??? Code below assumes that the save area needs maximal
1091 alignment. This constraint may be too strong. */
1092 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1094 if (GET_CODE (size) == CONST_INT)
1096 HOST_WIDE_INT new = INTVAL (size) / align * align;
1098 if (INTVAL (size) != new)
1099 size = GEN_INT (new);
1101 else
1103 /* Since we know overflow is not possible, we avoid using
1104 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1105 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1106 GEN_INT (align), NULL_RTX, 1);
1107 size = expand_mult (Pmode, size,
1108 GEN_INT (align), NULL_RTX, 1);
1111 else
1113 rtx dynamic_offset
1114 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1115 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1117 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1118 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1120 #endif /* SETJMP_VIA_SAVE_AREA */
1122 /* Round the size to a multiple of the required stack alignment.
1123 Since the stack if presumed to be rounded before this allocation,
1124 this will maintain the required alignment.
1126 If the stack grows downward, we could save an insn by subtracting
1127 SIZE from the stack pointer and then aligning the stack pointer.
1128 The problem with this is that the stack pointer may be unaligned
1129 between the execution of the subtraction and alignment insns and
1130 some machines do not allow this. Even on those that do, some
1131 signal handlers malfunction if a signal should occur between those
1132 insns. Since this is an extremely rare event, we have no reliable
1133 way of knowing which systems have this problem. So we avoid even
1134 momentarily mis-aligning the stack. */
1136 /* If we added a variable amount to SIZE,
1137 we can no longer assume it is aligned. */
1138 #if !defined (SETJMP_VIA_SAVE_AREA)
1139 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1140 #endif
1141 size = round_push (size);
1143 do_pending_stack_adjust ();
1145 /* We ought to be called always on the toplevel and stack ought to be aligned
1146 properly. */
1147 gcc_assert (!(stack_pointer_delta
1148 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1150 /* If needed, check that we have the required amount of stack. Take into
1151 account what has already been checked. */
1152 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1153 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1155 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1156 if (target == 0 || !REG_P (target)
1157 || REGNO (target) < FIRST_PSEUDO_REGISTER
1158 || GET_MODE (target) != Pmode)
1159 target = gen_reg_rtx (Pmode);
1161 mark_reg_pointer (target, known_align);
1163 /* Perform the required allocation from the stack. Some systems do
1164 this differently than simply incrementing/decrementing from the
1165 stack pointer, such as acquiring the space by calling malloc(). */
1166 #ifdef HAVE_allocate_stack
1167 if (HAVE_allocate_stack)
1169 enum machine_mode mode = STACK_SIZE_MODE;
1170 insn_operand_predicate_fn pred;
1172 /* We don't have to check against the predicate for operand 0 since
1173 TARGET is known to be a pseudo of the proper mode, which must
1174 be valid for the operand. For operand 1, convert to the
1175 proper mode and validate. */
1176 if (mode == VOIDmode)
1177 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1179 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1180 if (pred && ! ((*pred) (size, mode)))
1181 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1183 emit_insn (gen_allocate_stack (target, size));
1185 else
1186 #endif
1188 #ifndef STACK_GROWS_DOWNWARD
1189 emit_move_insn (target, virtual_stack_dynamic_rtx);
1190 #endif
1192 /* Check stack bounds if necessary. */
1193 if (current_function_limit_stack)
1195 rtx available;
1196 rtx space_available = gen_label_rtx ();
1197 #ifdef STACK_GROWS_DOWNWARD
1198 available = expand_binop (Pmode, sub_optab,
1199 stack_pointer_rtx, stack_limit_rtx,
1200 NULL_RTX, 1, OPTAB_WIDEN);
1201 #else
1202 available = expand_binop (Pmode, sub_optab,
1203 stack_limit_rtx, stack_pointer_rtx,
1204 NULL_RTX, 1, OPTAB_WIDEN);
1205 #endif
1206 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1207 space_available);
1208 #ifdef HAVE_trap
1209 if (HAVE_trap)
1210 emit_insn (gen_trap ());
1211 else
1212 #endif
1213 error ("stack limits not supported on this target");
1214 emit_barrier ();
1215 emit_label (space_available);
1218 anti_adjust_stack (size);
1220 #ifdef STACK_GROWS_DOWNWARD
1221 emit_move_insn (target, virtual_stack_dynamic_rtx);
1222 #endif
1225 if (MUST_ALIGN)
1227 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1228 but we know it can't. So add ourselves and then do
1229 TRUNC_DIV_EXPR. */
1230 target = expand_binop (Pmode, add_optab, target,
1231 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1232 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1233 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1234 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1235 NULL_RTX, 1);
1236 target = expand_mult (Pmode, target,
1237 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1238 NULL_RTX, 1);
1241 /* Record the new stack level for nonlocal gotos. */
1242 if (cfun->nonlocal_goto_save_area != 0)
1243 update_nonlocal_goto_save_area ();
1245 return target;
1248 /* A front end may want to override GCC's stack checking by providing a
1249 run-time routine to call to check the stack, so provide a mechanism for
1250 calling that routine. */
1252 static GTY(()) rtx stack_check_libfunc;
1254 void
1255 set_stack_check_libfunc (rtx libfunc)
1257 stack_check_libfunc = libfunc;
1260 /* Emit one stack probe at ADDRESS, an address within the stack. */
1262 static void
1263 emit_stack_probe (rtx address)
1265 rtx memref = gen_rtx_MEM (word_mode, address);
1267 MEM_VOLATILE_P (memref) = 1;
1269 if (STACK_CHECK_PROBE_LOAD)
1270 emit_move_insn (gen_reg_rtx (word_mode), memref);
1271 else
1272 emit_move_insn (memref, const0_rtx);
1275 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1276 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1277 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1278 subtract from the stack. If SIZE is constant, this is done
1279 with a fixed number of probes. Otherwise, we must make a loop. */
1281 #ifdef STACK_GROWS_DOWNWARD
1282 #define STACK_GROW_OP MINUS
1283 #else
1284 #define STACK_GROW_OP PLUS
1285 #endif
1287 void
1288 probe_stack_range (HOST_WIDE_INT first, rtx size)
1290 /* First ensure SIZE is Pmode. */
1291 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1292 size = convert_to_mode (Pmode, size, 1);
1294 /* Next see if the front end has set up a function for us to call to
1295 check the stack. */
1296 if (stack_check_libfunc != 0)
1298 rtx addr = memory_address (QImode,
1299 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1300 stack_pointer_rtx,
1301 plus_constant (size, first)));
1303 addr = convert_memory_address (ptr_mode, addr);
1304 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1305 ptr_mode);
1308 /* Next see if we have an insn to check the stack. Use it if so. */
1309 #ifdef HAVE_check_stack
1310 else if (HAVE_check_stack)
1312 insn_operand_predicate_fn pred;
1313 rtx last_addr
1314 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1315 stack_pointer_rtx,
1316 plus_constant (size, first)),
1317 NULL_RTX);
1319 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1320 if (pred && ! ((*pred) (last_addr, Pmode)))
1321 last_addr = copy_to_mode_reg (Pmode, last_addr);
1323 emit_insn (gen_check_stack (last_addr));
1325 #endif
1327 /* If we have to generate explicit probes, see if we have a constant
1328 small number of them to generate. If so, that's the easy case. */
1329 else if (GET_CODE (size) == CONST_INT
1330 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1332 HOST_WIDE_INT offset;
1334 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1335 for values of N from 1 until it exceeds LAST. If only one
1336 probe is needed, this will not generate any code. Then probe
1337 at LAST. */
1338 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1339 offset < INTVAL (size);
1340 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1341 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1342 stack_pointer_rtx,
1343 GEN_INT (offset)));
1345 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1346 stack_pointer_rtx,
1347 plus_constant (size, first)));
1350 /* In the variable case, do the same as above, but in a loop. We emit loop
1351 notes so that loop optimization can be done. */
1352 else
1354 rtx test_addr
1355 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1356 stack_pointer_rtx,
1357 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1358 NULL_RTX);
1359 rtx last_addr
1360 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1361 stack_pointer_rtx,
1362 plus_constant (size, first)),
1363 NULL_RTX);
1364 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1365 rtx loop_lab = gen_label_rtx ();
1366 rtx test_lab = gen_label_rtx ();
1367 rtx end_lab = gen_label_rtx ();
1368 rtx temp;
1370 if (!REG_P (test_addr)
1371 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1372 test_addr = force_reg (Pmode, test_addr);
1374 emit_jump (test_lab);
1376 emit_label (loop_lab);
1377 emit_stack_probe (test_addr);
1379 #ifdef STACK_GROWS_DOWNWARD
1380 #define CMP_OPCODE GTU
1381 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1382 1, OPTAB_WIDEN);
1383 #else
1384 #define CMP_OPCODE LTU
1385 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1386 1, OPTAB_WIDEN);
1387 #endif
1389 gcc_assert (temp == test_addr);
1391 emit_label (test_lab);
1392 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1393 NULL_RTX, Pmode, 1, loop_lab);
1394 emit_jump (end_lab);
1395 emit_label (end_lab);
1397 emit_stack_probe (last_addr);
1401 /* Return an rtx representing the register or memory location
1402 in which a scalar value of data type VALTYPE
1403 was returned by a function call to function FUNC.
1404 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1405 function is known, otherwise 0.
1406 OUTGOING is 1 if on a machine with register windows this function
1407 should return the register in which the function will put its result
1408 and 0 otherwise. */
1411 hard_function_value (tree valtype, tree func, tree fntype,
1412 int outgoing ATTRIBUTE_UNUSED)
1414 rtx val;
1416 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1418 if (REG_P (val)
1419 && GET_MODE (val) == BLKmode)
1421 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1422 enum machine_mode tmpmode;
1424 /* int_size_in_bytes can return -1. We don't need a check here
1425 since the value of bytes will then be large enough that no
1426 mode will match anyway. */
1428 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1429 tmpmode != VOIDmode;
1430 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1432 /* Have we found a large enough mode? */
1433 if (GET_MODE_SIZE (tmpmode) >= bytes)
1434 break;
1437 /* No suitable mode found. */
1438 gcc_assert (tmpmode != VOIDmode);
1440 PUT_MODE (val, tmpmode);
1442 return val;
1445 /* Return an rtx representing the register or memory location
1446 in which a scalar value of mode MODE was returned by a library call. */
1449 hard_libcall_value (enum machine_mode mode)
1451 return LIBCALL_VALUE (mode);
1454 /* Look up the tree code for a given rtx code
1455 to provide the arithmetic operation for REAL_ARITHMETIC.
1456 The function returns an int because the caller may not know
1457 what `enum tree_code' means. */
1460 rtx_to_tree_code (enum rtx_code code)
1462 enum tree_code tcode;
1464 switch (code)
1466 case PLUS:
1467 tcode = PLUS_EXPR;
1468 break;
1469 case MINUS:
1470 tcode = MINUS_EXPR;
1471 break;
1472 case MULT:
1473 tcode = MULT_EXPR;
1474 break;
1475 case DIV:
1476 tcode = RDIV_EXPR;
1477 break;
1478 case SMIN:
1479 tcode = MIN_EXPR;
1480 break;
1481 case SMAX:
1482 tcode = MAX_EXPR;
1483 break;
1484 default:
1485 tcode = LAST_AND_UNUSED_TREE_CODE;
1486 break;
1488 return ((int) tcode);
1491 #include "gt-explow.h"