Merge from mainline
[official-gcc.git] / gcc / cp / init.c
blob0ef0c1ada73fe27b2f6bf4860c4f7e80b21835e8
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_new_1 (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
72 bool is_global = !building_stmt_tree ();
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
77 return is_global;
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
86 finish_compound_stmt (compound_stmt);
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
90 gcc_assert (!building_stmt_tree () == is_global);
92 return stmt_expr;
95 /* Constructors */
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
104 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
105 return dfs_skip_bases;
107 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
109 tree base_ptr = TREE_VALUE ((tree) data);
111 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
113 expand_virtual_init (binfo, base_ptr);
116 return NULL_TREE;
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
122 void
123 initialize_vtbl_ptrs (tree addr)
125 tree list;
126 tree type;
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
138 /* Return an expression for the zero-initialization of an object with
139 type T. This expression will either be a constant (in the case
140 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
141 aggregate). In either case, the value can be used as DECL_INITIAL
142 for a decl of the indicated TYPE; it is a valid static initializer.
143 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
144 number of elements in the array. If STATIC_STORAGE_P is TRUE,
145 initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
152 tree init = NULL_TREE;
154 /* [dcl.init]
156 To zero-initialization storage for an object of type T means:
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
170 -- if T is a reference type, no initialization is performed. */
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
174 if (type == error_mark_node)
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
232 constructor_elt *ce;
234 v = VEC_alloc (constructor_elt, gc, 1);
235 ce = VEC_quick_push (constructor_elt, v, NULL);
237 /* If this is a one element array, we just use a regular init. */
238 if (tree_int_cst_equal (size_zero_node, max_index))
239 ce->index = size_zero_node;
240 else
241 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
242 max_index);
244 ce->value = build_zero_init (TREE_TYPE (type),
245 /*nelts=*/NULL_TREE,
246 static_storage_p);
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
252 else
253 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
255 /* In all cases, the initializer is a constant. */
256 if (init)
258 TREE_CONSTANT (init) = 1;
259 TREE_INVARIANT (init) = 1;
262 return init;
265 /* Build an expression for the default-initialization of an object of
266 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
267 ARRAY_TYPE, NELTS is the number of elements in the array. If
268 initialization of TYPE requires calling constructors, this function
269 returns NULL_TREE; the caller is responsible for arranging for the
270 constructors to be called. */
272 static tree
273 build_default_init (tree type, tree nelts)
275 /* [dcl.init]:
277 To default-initialize an object of type T means:
279 --if T is a non-POD class type (clause _class_), the default construc-
280 tor for T is called (and the initialization is ill-formed if T has
281 no accessible default constructor);
283 --if T is an array type, each element is default-initialized;
285 --otherwise, the storage for the object is zero-initialized.
287 A program that calls for default-initialization of an entity of refer-
288 ence type is ill-formed. */
290 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
291 performing the initialization. This is confusing in that some
292 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
293 a class with a pointer-to-data member as a non-static data member
294 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
295 passing non-PODs to build_zero_init below, which is contrary to
296 the semantics quoted above from [dcl.init].
298 It happens, however, that the behavior of the constructor the
299 standard says we should have generated would be precisely the
300 same as that obtained by calling build_zero_init below, so things
301 work out OK. */
302 if (TYPE_NEEDS_CONSTRUCTING (type)
303 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
304 return NULL_TREE;
306 /* At this point, TYPE is either a POD class type, an array of POD
307 classes, or something even more innocuous. */
308 return build_zero_init (type, nelts, /*static_storage_p=*/false);
311 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
312 arguments. If TREE_LIST is void_type_node, an empty initializer
313 list was given; if NULL_TREE no initializer was given. */
315 static void
316 perform_member_init (tree member, tree init)
318 tree decl;
319 tree type = TREE_TYPE (member);
320 bool explicit;
322 explicit = (init != NULL_TREE);
324 /* Effective C++ rule 12 requires that all data members be
325 initialized. */
326 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
327 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
328 "list", current_function_decl, member);
330 if (init == void_type_node)
331 init = NULL_TREE;
333 /* Get an lvalue for the data member. */
334 decl = build_class_member_access_expr (current_class_ref, member,
335 /*access_path=*/NULL_TREE,
336 /*preserve_reference=*/true);
337 if (decl == error_mark_node)
338 return;
340 /* Deal with this here, as we will get confused if we try to call the
341 assignment op for an anonymous union. This can happen in a
342 synthesized copy constructor. */
343 if (ANON_AGGR_TYPE_P (type))
345 if (init)
347 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
348 finish_expr_stmt (init);
351 else if (TYPE_NEEDS_CONSTRUCTING (type))
353 if (explicit
354 && TREE_CODE (type) == ARRAY_TYPE
355 && init != NULL_TREE
356 && TREE_CHAIN (init) == NULL_TREE
357 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
359 /* Initialization of one array from another. */
360 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
361 /*explicit_default_init_p=*/false,
362 /* from_array=*/1));
364 else
365 finish_expr_stmt (build_aggr_init (decl, init, 0));
367 else
369 if (init == NULL_TREE)
371 if (explicit)
373 init = build_default_init (type, /*nelts=*/NULL_TREE);
374 if (TREE_CODE (type) == REFERENCE_TYPE)
375 warning (0, "%Jdefault-initialization of %q#D, "
376 "which has reference type",
377 current_function_decl, member);
379 /* member traversal: note it leaves init NULL */
380 else if (TREE_CODE (type) == REFERENCE_TYPE)
381 pedwarn ("%Juninitialized reference member %qD",
382 current_function_decl, member);
383 else if (CP_TYPE_CONST_P (type))
384 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
385 current_function_decl, member, type);
387 else if (TREE_CODE (init) == TREE_LIST)
388 /* There was an explicit member initialization. Do some work
389 in that case. */
390 init = build_x_compound_expr_from_list (init, "member initializer");
392 if (init)
393 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
396 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
398 tree expr;
400 expr = build_class_member_access_expr (current_class_ref, member,
401 /*access_path=*/NULL_TREE,
402 /*preserve_reference=*/false);
403 expr = build_delete (type, expr, sfk_complete_destructor,
404 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
406 if (expr != error_mark_node)
407 finish_eh_cleanup (expr);
411 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
412 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
414 static tree
415 build_field_list (tree t, tree list, int *uses_unions_p)
417 tree fields;
419 *uses_unions_p = 0;
421 /* Note whether or not T is a union. */
422 if (TREE_CODE (t) == UNION_TYPE)
423 *uses_unions_p = 1;
425 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
427 /* Skip CONST_DECLs for enumeration constants and so forth. */
428 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
429 continue;
431 /* Keep track of whether or not any fields are unions. */
432 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
433 *uses_unions_p = 1;
435 /* For an anonymous struct or union, we must recursively
436 consider the fields of the anonymous type. They can be
437 directly initialized from the constructor. */
438 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
440 /* Add this field itself. Synthesized copy constructors
441 initialize the entire aggregate. */
442 list = tree_cons (fields, NULL_TREE, list);
443 /* And now add the fields in the anonymous aggregate. */
444 list = build_field_list (TREE_TYPE (fields), list,
445 uses_unions_p);
447 /* Add this field. */
448 else if (DECL_NAME (fields))
449 list = tree_cons (fields, NULL_TREE, list);
452 return list;
455 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
456 a FIELD_DECL or BINFO in T that needs initialization. The
457 TREE_VALUE gives the initializer, or list of initializer arguments.
459 Return a TREE_LIST containing all of the initializations required
460 for T, in the order in which they should be performed. The output
461 list has the same format as the input. */
463 static tree
464 sort_mem_initializers (tree t, tree mem_inits)
466 tree init;
467 tree base, binfo, base_binfo;
468 tree sorted_inits;
469 tree next_subobject;
470 VEC(tree,gc) *vbases;
471 int i;
472 int uses_unions_p;
474 /* Build up a list of initializations. The TREE_PURPOSE of entry
475 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
476 TREE_VALUE will be the constructor arguments, or NULL if no
477 explicit initialization was provided. */
478 sorted_inits = NULL_TREE;
480 /* Process the virtual bases. */
481 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
482 VEC_iterate (tree, vbases, i, base); i++)
483 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
485 /* Process the direct bases. */
486 for (binfo = TYPE_BINFO (t), i = 0;
487 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
488 if (!BINFO_VIRTUAL_P (base_binfo))
489 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
491 /* Process the non-static data members. */
492 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
493 /* Reverse the entire list of initializations, so that they are in
494 the order that they will actually be performed. */
495 sorted_inits = nreverse (sorted_inits);
497 /* If the user presented the initializers in an order different from
498 that in which they will actually occur, we issue a warning. Keep
499 track of the next subobject which can be explicitly initialized
500 without issuing a warning. */
501 next_subobject = sorted_inits;
503 /* Go through the explicit initializers, filling in TREE_PURPOSE in
504 the SORTED_INITS. */
505 for (init = mem_inits; init; init = TREE_CHAIN (init))
507 tree subobject;
508 tree subobject_init;
510 subobject = TREE_PURPOSE (init);
512 /* If the explicit initializers are in sorted order, then
513 SUBOBJECT will be NEXT_SUBOBJECT, or something following
514 it. */
515 for (subobject_init = next_subobject;
516 subobject_init;
517 subobject_init = TREE_CHAIN (subobject_init))
518 if (TREE_PURPOSE (subobject_init) == subobject)
519 break;
521 /* Issue a warning if the explicit initializer order does not
522 match that which will actually occur.
523 ??? Are all these on the correct lines? */
524 if (warn_reorder && !subobject_init)
526 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
527 warning (OPT_Wreorder, "%q+D will be initialized after",
528 TREE_PURPOSE (next_subobject));
529 else
530 warning (OPT_Wreorder, "base %qT will be initialized after",
531 TREE_PURPOSE (next_subobject));
532 if (TREE_CODE (subobject) == FIELD_DECL)
533 warning (OPT_Wreorder, " %q+#D", subobject);
534 else
535 warning (OPT_Wreorder, " base %qT", subobject);
536 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
539 /* Look again, from the beginning of the list. */
540 if (!subobject_init)
542 subobject_init = sorted_inits;
543 while (TREE_PURPOSE (subobject_init) != subobject)
544 subobject_init = TREE_CHAIN (subobject_init);
547 /* It is invalid to initialize the same subobject more than
548 once. */
549 if (TREE_VALUE (subobject_init))
551 if (TREE_CODE (subobject) == FIELD_DECL)
552 error ("%Jmultiple initializations given for %qD",
553 current_function_decl, subobject);
554 else
555 error ("%Jmultiple initializations given for base %qT",
556 current_function_decl, subobject);
559 /* Record the initialization. */
560 TREE_VALUE (subobject_init) = TREE_VALUE (init);
561 next_subobject = subobject_init;
564 /* [class.base.init]
566 If a ctor-initializer specifies more than one mem-initializer for
567 multiple members of the same union (including members of
568 anonymous unions), the ctor-initializer is ill-formed. */
569 if (uses_unions_p)
571 tree last_field = NULL_TREE;
572 for (init = sorted_inits; init; init = TREE_CHAIN (init))
574 tree field;
575 tree field_type;
576 int done;
578 /* Skip uninitialized members and base classes. */
579 if (!TREE_VALUE (init)
580 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
581 continue;
582 /* See if this field is a member of a union, or a member of a
583 structure contained in a union, etc. */
584 field = TREE_PURPOSE (init);
585 for (field_type = DECL_CONTEXT (field);
586 !same_type_p (field_type, t);
587 field_type = TYPE_CONTEXT (field_type))
588 if (TREE_CODE (field_type) == UNION_TYPE)
589 break;
590 /* If this field is not a member of a union, skip it. */
591 if (TREE_CODE (field_type) != UNION_TYPE)
592 continue;
594 /* It's only an error if we have two initializers for the same
595 union type. */
596 if (!last_field)
598 last_field = field;
599 continue;
602 /* See if LAST_FIELD and the field initialized by INIT are
603 members of the same union. If so, there's a problem,
604 unless they're actually members of the same structure
605 which is itself a member of a union. For example, given:
607 union { struct { int i; int j; }; };
609 initializing both `i' and `j' makes sense. */
610 field_type = DECL_CONTEXT (field);
611 done = 0;
614 tree last_field_type;
616 last_field_type = DECL_CONTEXT (last_field);
617 while (1)
619 if (same_type_p (last_field_type, field_type))
621 if (TREE_CODE (field_type) == UNION_TYPE)
622 error ("%Jinitializations for multiple members of %qT",
623 current_function_decl, last_field_type);
624 done = 1;
625 break;
628 if (same_type_p (last_field_type, t))
629 break;
631 last_field_type = TYPE_CONTEXT (last_field_type);
634 /* If we've reached the outermost class, then we're
635 done. */
636 if (same_type_p (field_type, t))
637 break;
639 field_type = TYPE_CONTEXT (field_type);
641 while (!done);
643 last_field = field;
647 return sorted_inits;
650 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
651 is a TREE_LIST giving the explicit mem-initializer-list for the
652 constructor. The TREE_PURPOSE of each entry is a subobject (a
653 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
654 is a TREE_LIST giving the arguments to the constructor or
655 void_type_node for an empty list of arguments. */
657 void
658 emit_mem_initializers (tree mem_inits)
660 /* We will already have issued an error message about the fact that
661 the type is incomplete. */
662 if (!COMPLETE_TYPE_P (current_class_type))
663 return;
665 /* Sort the mem-initializers into the order in which the
666 initializations should be performed. */
667 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
669 in_base_initializer = 1;
671 /* Initialize base classes. */
672 while (mem_inits
673 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
675 tree subobject = TREE_PURPOSE (mem_inits);
676 tree arguments = TREE_VALUE (mem_inits);
678 /* If these initializations are taking place in a copy
679 constructor, the base class should probably be explicitly
680 initialized. */
681 if (extra_warnings && !arguments
682 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
683 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
684 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
685 "copy constructor",
686 current_function_decl, BINFO_TYPE (subobject));
688 /* If an explicit -- but empty -- initializer list was present,
689 treat it just like default initialization at this point. */
690 if (arguments == void_type_node)
691 arguments = NULL_TREE;
693 /* Initialize the base. */
694 if (BINFO_VIRTUAL_P (subobject))
695 construct_virtual_base (subobject, arguments);
696 else
698 tree base_addr;
700 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
701 subobject, 1);
702 expand_aggr_init_1 (subobject, NULL_TREE,
703 build_indirect_ref (base_addr, NULL),
704 arguments,
705 LOOKUP_NORMAL);
706 expand_cleanup_for_base (subobject, NULL_TREE);
709 mem_inits = TREE_CHAIN (mem_inits);
711 in_base_initializer = 0;
713 /* Initialize the vptrs. */
714 initialize_vtbl_ptrs (current_class_ptr);
716 /* Initialize the data members. */
717 while (mem_inits)
719 perform_member_init (TREE_PURPOSE (mem_inits),
720 TREE_VALUE (mem_inits));
721 mem_inits = TREE_CHAIN (mem_inits);
725 /* Returns the address of the vtable (i.e., the value that should be
726 assigned to the vptr) for BINFO. */
728 static tree
729 build_vtbl_address (tree binfo)
731 tree binfo_for = binfo;
732 tree vtbl;
734 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
735 /* If this is a virtual primary base, then the vtable we want to store
736 is that for the base this is being used as the primary base of. We
737 can't simply skip the initialization, because we may be expanding the
738 inits of a subobject constructor where the virtual base layout
739 can be different. */
740 while (BINFO_PRIMARY_P (binfo_for))
741 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
743 /* Figure out what vtable BINFO's vtable is based on, and mark it as
744 used. */
745 vtbl = get_vtbl_decl_for_binfo (binfo_for);
746 assemble_external (vtbl);
747 TREE_USED (vtbl) = 1;
749 /* Now compute the address to use when initializing the vptr. */
750 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
751 if (TREE_CODE (vtbl) == VAR_DECL)
752 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
754 return vtbl;
757 /* This code sets up the virtual function tables appropriate for
758 the pointer DECL. It is a one-ply initialization.
760 BINFO is the exact type that DECL is supposed to be. In
761 multiple inheritance, this might mean "C's A" if C : A, B. */
763 static void
764 expand_virtual_init (tree binfo, tree decl)
766 tree vtbl, vtbl_ptr;
767 tree vtt_index;
769 /* Compute the initializer for vptr. */
770 vtbl = build_vtbl_address (binfo);
772 /* We may get this vptr from a VTT, if this is a subobject
773 constructor or subobject destructor. */
774 vtt_index = BINFO_VPTR_INDEX (binfo);
775 if (vtt_index)
777 tree vtbl2;
778 tree vtt_parm;
780 /* Compute the value to use, when there's a VTT. */
781 vtt_parm = current_vtt_parm;
782 vtbl2 = build2 (PLUS_EXPR,
783 TREE_TYPE (vtt_parm),
784 vtt_parm,
785 vtt_index);
786 vtbl2 = build_indirect_ref (vtbl2, NULL);
787 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
789 /* The actual initializer is the VTT value only in the subobject
790 constructor. In maybe_clone_body we'll substitute NULL for
791 the vtt_parm in the case of the non-subobject constructor. */
792 vtbl = build3 (COND_EXPR,
793 TREE_TYPE (vtbl),
794 build2 (EQ_EXPR, boolean_type_node,
795 current_in_charge_parm, integer_zero_node),
796 vtbl2,
797 vtbl);
800 /* Compute the location of the vtpr. */
801 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
802 TREE_TYPE (binfo));
803 gcc_assert (vtbl_ptr != error_mark_node);
805 /* Assign the vtable to the vptr. */
806 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
807 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
810 /* If an exception is thrown in a constructor, those base classes already
811 constructed must be destroyed. This function creates the cleanup
812 for BINFO, which has just been constructed. If FLAG is non-NULL,
813 it is a DECL which is nonzero when this base needs to be
814 destroyed. */
816 static void
817 expand_cleanup_for_base (tree binfo, tree flag)
819 tree expr;
821 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
822 return;
824 /* Call the destructor. */
825 expr = build_special_member_call (current_class_ref,
826 base_dtor_identifier,
827 NULL_TREE,
828 binfo,
829 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
830 if (flag)
831 expr = fold_build3 (COND_EXPR, void_type_node,
832 c_common_truthvalue_conversion (flag),
833 expr, integer_zero_node);
835 finish_eh_cleanup (expr);
838 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
839 constructor. */
841 static void
842 construct_virtual_base (tree vbase, tree arguments)
844 tree inner_if_stmt;
845 tree exp;
846 tree flag;
848 /* If there are virtual base classes with destructors, we need to
849 emit cleanups to destroy them if an exception is thrown during
850 the construction process. These exception regions (i.e., the
851 period during which the cleanups must occur) begin from the time
852 the construction is complete to the end of the function. If we
853 create a conditional block in which to initialize the
854 base-classes, then the cleanup region for the virtual base begins
855 inside a block, and ends outside of that block. This situation
856 confuses the sjlj exception-handling code. Therefore, we do not
857 create a single conditional block, but one for each
858 initialization. (That way the cleanup regions always begin
859 in the outer block.) We trust the back-end to figure out
860 that the FLAG will not change across initializations, and
861 avoid doing multiple tests. */
862 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
863 inner_if_stmt = begin_if_stmt ();
864 finish_if_stmt_cond (flag, inner_if_stmt);
866 /* Compute the location of the virtual base. If we're
867 constructing virtual bases, then we must be the most derived
868 class. Therefore, we don't have to look up the virtual base;
869 we already know where it is. */
870 exp = convert_to_base_statically (current_class_ref, vbase);
872 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
873 LOOKUP_COMPLAIN);
874 finish_then_clause (inner_if_stmt);
875 finish_if_stmt (inner_if_stmt);
877 expand_cleanup_for_base (vbase, flag);
880 /* Find the context in which this FIELD can be initialized. */
882 static tree
883 initializing_context (tree field)
885 tree t = DECL_CONTEXT (field);
887 /* Anonymous union members can be initialized in the first enclosing
888 non-anonymous union context. */
889 while (t && ANON_AGGR_TYPE_P (t))
890 t = TYPE_CONTEXT (t);
891 return t;
894 /* Function to give error message if member initialization specification
895 is erroneous. FIELD is the member we decided to initialize.
896 TYPE is the type for which the initialization is being performed.
897 FIELD must be a member of TYPE.
899 MEMBER_NAME is the name of the member. */
901 static int
902 member_init_ok_or_else (tree field, tree type, tree member_name)
904 if (field == error_mark_node)
905 return 0;
906 if (!field)
908 error ("class %qT does not have any field named %qD", type,
909 member_name);
910 return 0;
912 if (TREE_CODE (field) == VAR_DECL)
914 error ("%q#D is a static data member; it can only be "
915 "initialized at its definition",
916 field);
917 return 0;
919 if (TREE_CODE (field) != FIELD_DECL)
921 error ("%q#D is not a non-static data member of %qT",
922 field, type);
923 return 0;
925 if (initializing_context (field) != type)
927 error ("class %qT does not have any field named %qD", type,
928 member_name);
929 return 0;
932 return 1;
935 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
936 is a _TYPE node or TYPE_DECL which names a base for that type.
937 Check the validity of NAME, and return either the base _TYPE, base
938 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
939 NULL_TREE and issue a diagnostic.
941 An old style unnamed direct single base construction is permitted,
942 where NAME is NULL. */
944 tree
945 expand_member_init (tree name)
947 tree basetype;
948 tree field;
950 if (!current_class_ref)
951 return NULL_TREE;
953 if (!name)
955 /* This is an obsolete unnamed base class initializer. The
956 parser will already have warned about its use. */
957 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
959 case 0:
960 error ("unnamed initializer for %qT, which has no base classes",
961 current_class_type);
962 return NULL_TREE;
963 case 1:
964 basetype = BINFO_TYPE
965 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
966 break;
967 default:
968 error ("unnamed initializer for %qT, which uses multiple inheritance",
969 current_class_type);
970 return NULL_TREE;
973 else if (TYPE_P (name))
975 basetype = TYPE_MAIN_VARIANT (name);
976 name = TYPE_NAME (name);
978 else if (TREE_CODE (name) == TYPE_DECL)
979 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
980 else
981 basetype = NULL_TREE;
983 if (basetype)
985 tree class_binfo;
986 tree direct_binfo;
987 tree virtual_binfo;
988 int i;
990 if (current_template_parms)
991 return basetype;
993 class_binfo = TYPE_BINFO (current_class_type);
994 direct_binfo = NULL_TREE;
995 virtual_binfo = NULL_TREE;
997 /* Look for a direct base. */
998 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
999 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1000 break;
1002 /* Look for a virtual base -- unless the direct base is itself
1003 virtual. */
1004 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1005 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1007 /* [class.base.init]
1009 If a mem-initializer-id is ambiguous because it designates
1010 both a direct non-virtual base class and an inherited virtual
1011 base class, the mem-initializer is ill-formed. */
1012 if (direct_binfo && virtual_binfo)
1014 error ("%qD is both a direct base and an indirect virtual base",
1015 basetype);
1016 return NULL_TREE;
1019 if (!direct_binfo && !virtual_binfo)
1021 if (CLASSTYPE_VBASECLASSES (current_class_type))
1022 error ("type %qT is not a direct or virtual base of %qT",
1023 basetype, current_class_type);
1024 else
1025 error ("type %qT is not a direct base of %qT",
1026 basetype, current_class_type);
1027 return NULL_TREE;
1030 return direct_binfo ? direct_binfo : virtual_binfo;
1032 else
1034 if (TREE_CODE (name) == IDENTIFIER_NODE)
1035 field = lookup_field (current_class_type, name, 1, false);
1036 else
1037 field = name;
1039 if (member_init_ok_or_else (field, current_class_type, name))
1040 return field;
1043 return NULL_TREE;
1046 /* This is like `expand_member_init', only it stores one aggregate
1047 value into another.
1049 INIT comes in two flavors: it is either a value which
1050 is to be stored in EXP, or it is a parameter list
1051 to go to a constructor, which will operate on EXP.
1052 If INIT is not a parameter list for a constructor, then set
1053 LOOKUP_ONLYCONVERTING.
1054 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1055 the initializer, if FLAGS is 0, then it is the (init) form.
1056 If `init' is a CONSTRUCTOR, then we emit a warning message,
1057 explaining that such initializations are invalid.
1059 If INIT resolves to a CALL_EXPR which happens to return
1060 something of the type we are looking for, then we know
1061 that we can safely use that call to perform the
1062 initialization.
1064 The virtual function table pointer cannot be set up here, because
1065 we do not really know its type.
1067 This never calls operator=().
1069 When initializing, nothing is CONST.
1071 A default copy constructor may have to be used to perform the
1072 initialization.
1074 A constructor or a conversion operator may have to be used to
1075 perform the initialization, but not both, as it would be ambiguous. */
1077 tree
1078 build_aggr_init (tree exp, tree init, int flags)
1080 tree stmt_expr;
1081 tree compound_stmt;
1082 int destroy_temps;
1083 tree type = TREE_TYPE (exp);
1084 int was_const = TREE_READONLY (exp);
1085 int was_volatile = TREE_THIS_VOLATILE (exp);
1086 int is_global;
1088 if (init == error_mark_node)
1089 return error_mark_node;
1091 TREE_READONLY (exp) = 0;
1092 TREE_THIS_VOLATILE (exp) = 0;
1094 if (init && TREE_CODE (init) != TREE_LIST)
1095 flags |= LOOKUP_ONLYCONVERTING;
1097 if (TREE_CODE (type) == ARRAY_TYPE)
1099 tree itype;
1101 /* An array may not be initialized use the parenthesized
1102 initialization form -- unless the initializer is "()". */
1103 if (init && TREE_CODE (init) == TREE_LIST)
1105 error ("bad array initializer");
1106 return error_mark_node;
1108 /* Must arrange to initialize each element of EXP
1109 from elements of INIT. */
1110 itype = init ? TREE_TYPE (init) : NULL_TREE;
1111 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1112 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1113 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1114 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1115 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1116 /*explicit_default_init_p=*/false,
1117 itype && same_type_p (itype,
1118 TREE_TYPE (exp)));
1119 TREE_READONLY (exp) = was_const;
1120 TREE_THIS_VOLATILE (exp) = was_volatile;
1121 TREE_TYPE (exp) = type;
1122 if (init)
1123 TREE_TYPE (init) = itype;
1124 return stmt_expr;
1127 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1128 /* Just know that we've seen something for this node. */
1129 TREE_USED (exp) = 1;
1131 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1132 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1133 destroy_temps = stmts_are_full_exprs_p ();
1134 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1135 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1136 init, LOOKUP_NORMAL|flags);
1137 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1138 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1139 TREE_TYPE (exp) = type;
1140 TREE_READONLY (exp) = was_const;
1141 TREE_THIS_VOLATILE (exp) = was_volatile;
1143 return stmt_expr;
1146 /* Like build_aggr_init, but not just for aggregates. */
1148 tree
1149 build_init (tree decl, tree init, int flags)
1151 tree expr;
1153 if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1154 expr = build_aggr_init (decl, init, flags);
1155 else if (CLASS_TYPE_P (TREE_TYPE (decl)))
1156 expr = build_special_member_call (decl, complete_ctor_identifier,
1157 build_tree_list (NULL_TREE, init),
1158 TREE_TYPE (decl),
1159 LOOKUP_NORMAL|flags);
1160 else
1161 expr = build2 (INIT_EXPR, TREE_TYPE (decl), decl, init);
1163 return expr;
1166 static void
1167 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1169 tree type = TREE_TYPE (exp);
1170 tree ctor_name;
1172 /* It fails because there may not be a constructor which takes
1173 its own type as the first (or only parameter), but which does
1174 take other types via a conversion. So, if the thing initializing
1175 the expression is a unit element of type X, first try X(X&),
1176 followed by initialization by X. If neither of these work
1177 out, then look hard. */
1178 tree rval;
1179 tree parms;
1181 if (init && TREE_CODE (init) != TREE_LIST
1182 && (flags & LOOKUP_ONLYCONVERTING))
1184 /* Base subobjects should only get direct-initialization. */
1185 gcc_assert (true_exp == exp);
1187 if (flags & DIRECT_BIND)
1188 /* Do nothing. We hit this in two cases: Reference initialization,
1189 where we aren't initializing a real variable, so we don't want
1190 to run a new constructor; and catching an exception, where we
1191 have already built up the constructor call so we could wrap it
1192 in an exception region. */;
1193 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1195 /* A brace-enclosed initializer for an aggregate. */
1196 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1197 init = digest_init (type, init);
1199 else
1200 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1202 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1203 /* We need to protect the initialization of a catch parm with a
1204 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1205 around the TARGET_EXPR for the copy constructor. See
1206 initialize_handler_parm. */
1208 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1209 TREE_OPERAND (init, 0));
1210 TREE_TYPE (init) = void_type_node;
1212 else
1213 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1214 TREE_SIDE_EFFECTS (init) = 1;
1215 finish_expr_stmt (init);
1216 return;
1219 if (init == NULL_TREE
1220 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1222 parms = init;
1223 if (parms)
1224 init = TREE_VALUE (parms);
1226 else
1227 parms = build_tree_list (NULL_TREE, init);
1229 if (true_exp == exp)
1230 ctor_name = complete_ctor_identifier;
1231 else
1232 ctor_name = base_ctor_identifier;
1234 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1235 if (TREE_SIDE_EFFECTS (rval))
1236 finish_expr_stmt (convert_to_void (rval, NULL));
1239 /* This function is responsible for initializing EXP with INIT
1240 (if any).
1242 BINFO is the binfo of the type for who we are performing the
1243 initialization. For example, if W is a virtual base class of A and B,
1244 and C : A, B.
1245 If we are initializing B, then W must contain B's W vtable, whereas
1246 were we initializing C, W must contain C's W vtable.
1248 TRUE_EXP is nonzero if it is the true expression being initialized.
1249 In this case, it may be EXP, or may just contain EXP. The reason we
1250 need this is because if EXP is a base element of TRUE_EXP, we
1251 don't necessarily know by looking at EXP where its virtual
1252 baseclass fields should really be pointing. But we do know
1253 from TRUE_EXP. In constructors, we don't know anything about
1254 the value being initialized.
1256 FLAGS is just passed to `build_new_method_call'. See that function
1257 for its description. */
1259 static void
1260 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1262 tree type = TREE_TYPE (exp);
1264 gcc_assert (init != error_mark_node && type != error_mark_node);
1265 gcc_assert (building_stmt_tree ());
1267 /* Use a function returning the desired type to initialize EXP for us.
1268 If the function is a constructor, and its first argument is
1269 NULL_TREE, know that it was meant for us--just slide exp on
1270 in and expand the constructor. Constructors now come
1271 as TARGET_EXPRs. */
1273 if (init && TREE_CODE (exp) == VAR_DECL
1274 && COMPOUND_LITERAL_P (init))
1276 /* If store_init_value returns NULL_TREE, the INIT has been
1277 recorded as the DECL_INITIAL for EXP. That means there's
1278 nothing more we have to do. */
1279 init = store_init_value (exp, init);
1280 if (init)
1281 finish_expr_stmt (init);
1282 return;
1285 /* We know that expand_default_init can handle everything we want
1286 at this point. */
1287 expand_default_init (binfo, true_exp, exp, init, flags);
1290 /* Report an error if TYPE is not a user-defined, aggregate type. If
1291 OR_ELSE is nonzero, give an error message. */
1294 is_aggr_type (tree type, int or_else)
1296 if (type == error_mark_node)
1297 return 0;
1299 if (! IS_AGGR_TYPE (type)
1300 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1301 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1303 if (or_else)
1304 error ("%qT is not an aggregate type", type);
1305 return 0;
1307 return 1;
1310 tree
1311 get_type_value (tree name)
1313 if (name == error_mark_node)
1314 return NULL_TREE;
1316 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1317 return IDENTIFIER_TYPE_VALUE (name);
1318 else
1319 return NULL_TREE;
1322 /* Build a reference to a member of an aggregate. This is not a C++
1323 `&', but really something which can have its address taken, and
1324 then act as a pointer to member, for example TYPE :: FIELD can have
1325 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1326 this expression is the operand of "&".
1328 @@ Prints out lousy diagnostics for operator <typename>
1329 @@ fields.
1331 @@ This function should be rewritten and placed in search.c. */
1333 tree
1334 build_offset_ref (tree type, tree member, bool address_p)
1336 tree decl;
1337 tree basebinfo = NULL_TREE;
1339 /* class templates can come in as TEMPLATE_DECLs here. */
1340 if (TREE_CODE (member) == TEMPLATE_DECL)
1341 return member;
1343 if (dependent_type_p (type) || type_dependent_expression_p (member))
1344 return build_qualified_name (NULL_TREE, type, member,
1345 /*template_p=*/false);
1347 gcc_assert (TYPE_P (type));
1348 if (! is_aggr_type (type, 1))
1349 return error_mark_node;
1351 gcc_assert (DECL_P (member) || BASELINK_P (member));
1352 /* Callers should call mark_used before this point. */
1353 gcc_assert (!DECL_P (member) || TREE_USED (member));
1355 if (!COMPLETE_TYPE_P (complete_type (type))
1356 && !TYPE_BEING_DEFINED (type))
1358 error ("incomplete type %qT does not have member %qD", type, member);
1359 return error_mark_node;
1362 /* Entities other than non-static members need no further
1363 processing. */
1364 if (TREE_CODE (member) == TYPE_DECL)
1365 return member;
1366 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1367 return convert_from_reference (member);
1369 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1371 error ("invalid pointer to bit-field %qD", member);
1372 return error_mark_node;
1375 /* Set up BASEBINFO for member lookup. */
1376 decl = maybe_dummy_object (type, &basebinfo);
1378 /* A lot of this logic is now handled in lookup_member. */
1379 if (BASELINK_P (member))
1381 /* Go from the TREE_BASELINK to the member function info. */
1382 tree fnfields = member;
1383 tree t = BASELINK_FUNCTIONS (fnfields);
1385 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1387 /* Get rid of a potential OVERLOAD around it. */
1388 t = OVL_CURRENT (t);
1390 /* Unique functions are handled easily. */
1392 /* For non-static member of base class, we need a special rule
1393 for access checking [class.protected]:
1395 If the access is to form a pointer to member, the
1396 nested-name-specifier shall name the derived class
1397 (or any class derived from that class). */
1398 if (address_p && DECL_P (t)
1399 && DECL_NONSTATIC_MEMBER_P (t))
1400 perform_or_defer_access_check (TYPE_BINFO (type), t);
1401 else
1402 perform_or_defer_access_check (basebinfo, t);
1404 if (DECL_STATIC_FUNCTION_P (t))
1405 return t;
1406 member = t;
1408 else
1410 TREE_TYPE (fnfields) = unknown_type_node;
1411 member = fnfields;
1414 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1415 /* We need additional test besides the one in
1416 check_accessibility_of_qualified_id in case it is
1417 a pointer to non-static member. */
1418 perform_or_defer_access_check (TYPE_BINFO (type), member);
1420 if (!address_p)
1422 /* If MEMBER is non-static, then the program has fallen afoul of
1423 [expr.prim]:
1425 An id-expression that denotes a nonstatic data member or
1426 nonstatic member function of a class can only be used:
1428 -- as part of a class member access (_expr.ref_) in which the
1429 object-expression refers to the member's class or a class
1430 derived from that class, or
1432 -- to form a pointer to member (_expr.unary.op_), or
1434 -- in the body of a nonstatic member function of that class or
1435 of a class derived from that class (_class.mfct.nonstatic_), or
1437 -- in a mem-initializer for a constructor for that class or for
1438 a class derived from that class (_class.base.init_). */
1439 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1441 /* Build a representation of a the qualified name suitable
1442 for use as the operand to "&" -- even though the "&" is
1443 not actually present. */
1444 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1445 /* In Microsoft mode, treat a non-static member function as if
1446 it were a pointer-to-member. */
1447 if (flag_ms_extensions)
1449 PTRMEM_OK_P (member) = 1;
1450 return build_unary_op (ADDR_EXPR, member, 0);
1452 error ("invalid use of non-static member function %qD",
1453 TREE_OPERAND (member, 1));
1454 return member;
1456 else if (TREE_CODE (member) == FIELD_DECL)
1458 error ("invalid use of non-static data member %qD", member);
1459 return error_mark_node;
1461 return member;
1464 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1465 PTRMEM_OK_P (member) = 1;
1466 return member;
1469 /* If DECL is a scalar enumeration constant or variable with a
1470 constant initializer, return the initializer (or, its initializers,
1471 recursively); otherwise, return DECL. If INTEGRAL_P, the
1472 initializer is only returned if DECL is an integral
1473 constant-expression. */
1475 static tree
1476 constant_value_1 (tree decl, bool integral_p)
1478 while (TREE_CODE (decl) == CONST_DECL
1479 || (integral_p
1480 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1481 : (TREE_CODE (decl) == VAR_DECL
1482 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1484 tree init;
1485 /* Static data members in template classes may have
1486 non-dependent initializers. References to such non-static
1487 data members are no value-dependent, so we must retrieve the
1488 initializer here. The DECL_INITIAL will have the right type,
1489 but will not have been folded because that would prevent us
1490 from performing all appropriate semantic checks at
1491 instantiation time. */
1492 if (DECL_CLASS_SCOPE_P (decl)
1493 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1494 && uses_template_parms (CLASSTYPE_TI_ARGS
1495 (DECL_CONTEXT (decl))))
1496 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1497 else
1499 /* If DECL is a static data member in a template
1500 specialization, we must instantiate it here. The
1501 initializer for the static data member is not processed
1502 until needed; we need it now. */
1503 mark_used (decl);
1504 init = DECL_INITIAL (decl);
1506 if (!init || init == error_mark_node
1507 || !TREE_TYPE (init)
1508 || (integral_p
1509 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1510 : (!TREE_CONSTANT (init)
1511 /* Do not return an aggregate constant (of which
1512 string literals are a special case), as we do not
1513 want to make inadvertent copies of such entities,
1514 and we must be sure that their addresses are the
1515 same everywhere. */
1516 || TREE_CODE (init) == CONSTRUCTOR
1517 || TREE_CODE (init) == STRING_CST)))
1518 break;
1519 decl = unshare_expr (init);
1521 return decl;
1524 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1525 constant of integral or enumeration type, then return that value.
1526 These are those variables permitted in constant expressions by
1527 [5.19/1]. */
1529 tree
1530 integral_constant_value (tree decl)
1532 return constant_value_1 (decl, /*integral_p=*/true);
1535 /* A more relaxed version of integral_constant_value, used by the
1536 common C/C++ code and by the C++ front-end for optimization
1537 purposes. */
1539 tree
1540 decl_constant_value (tree decl)
1542 return constant_value_1 (decl,
1543 /*integral_p=*/processing_template_decl);
1546 /* Common subroutines of build_new and build_vec_delete. */
1548 /* Call the global __builtin_delete to delete ADDR. */
1550 static tree
1551 build_builtin_delete_call (tree addr)
1553 mark_used (global_delete_fndecl);
1554 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1557 /* Generate a representation for a C++ "new" expression. PLACEMENT is
1558 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
1559 NELTS is NULL, TYPE is the type of the storage to be allocated. If
1560 NELTS is not NULL, then this is an array-new allocation; TYPE is
1561 the type of the elements in the array and NELTS is the number of
1562 elements in the array. INIT, if non-NULL, is the initializer for
1563 the new object. If USE_GLOBAL_NEW is true, then the user
1564 explicitly wrote "::new" rather than just "new". */
1566 tree
1567 build_new (tree placement, tree type, tree nelts, tree init,
1568 int use_global_new)
1570 tree rval;
1572 if (type == error_mark_node)
1573 return error_mark_node;
1575 if (processing_template_decl)
1577 rval = build_min (NEW_EXPR, build_pointer_type (type),
1578 placement, type, nelts, init);
1579 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1580 TREE_SIDE_EFFECTS (rval) = 1;
1581 return rval;
1584 if (nelts)
1586 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
1587 pedwarn ("size in array new must have integral type");
1588 nelts = save_expr (cp_convert (sizetype, nelts));
1589 if (nelts == integer_zero_node)
1590 warning (0, "zero size array reserves no space");
1593 /* ``A reference cannot be created by the new operator. A reference
1594 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1595 returned by new.'' ARM 5.3.3 */
1596 if (TREE_CODE (type) == REFERENCE_TYPE)
1598 error ("new cannot be applied to a reference type");
1599 type = TREE_TYPE (type);
1602 if (TREE_CODE (type) == FUNCTION_TYPE)
1604 error ("new cannot be applied to a function type");
1605 return error_mark_node;
1608 rval = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1609 nelts, init);
1610 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1611 TREE_SIDE_EFFECTS (rval) = 1;
1612 rval = build_new_1 (rval);
1613 if (rval == error_mark_node)
1614 return error_mark_node;
1616 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1617 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1618 TREE_NO_WARNING (rval) = 1;
1620 return rval;
1623 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1625 tree
1626 build_java_class_ref (tree type)
1628 tree name = NULL_TREE, class_decl;
1629 static tree CL_suffix = NULL_TREE;
1630 if (CL_suffix == NULL_TREE)
1631 CL_suffix = get_identifier("class$");
1632 if (jclass_node == NULL_TREE)
1634 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1635 if (jclass_node == NULL_TREE)
1636 fatal_error ("call to Java constructor, while %<jclass%> undefined");
1638 jclass_node = TREE_TYPE (jclass_node);
1641 /* Mangle the class$ field. */
1643 tree field;
1644 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1645 if (DECL_NAME (field) == CL_suffix)
1647 mangle_decl (field);
1648 name = DECL_ASSEMBLER_NAME (field);
1649 break;
1651 if (!field)
1652 internal_error ("can't find class$");
1655 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1656 if (class_decl == NULL_TREE)
1658 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1659 TREE_STATIC (class_decl) = 1;
1660 DECL_EXTERNAL (class_decl) = 1;
1661 TREE_PUBLIC (class_decl) = 1;
1662 DECL_ARTIFICIAL (class_decl) = 1;
1663 DECL_IGNORED_P (class_decl) = 1;
1664 pushdecl_top_level (class_decl);
1665 make_decl_rtl (class_decl);
1667 return class_decl;
1671 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1672 value is immediately handed to expand_expr. */
1674 static tree
1675 build_new_1 (tree exp)
1677 tree placement, init;
1678 tree size, rval;
1679 /* True iff this is a call to "operator new[]" instead of just
1680 "operator new". */
1681 bool array_p = false;
1682 /* True iff ARRAY_P is true and the bound of the array type is
1683 not necessarily a compile time constant. For example, VLA_P is
1684 true for "new int[f()]". */
1685 bool vla_p = false;
1686 /* The type being allocated. If ARRAY_P is true, this will be an
1687 ARRAY_TYPE. */
1688 tree full_type;
1689 /* If ARRAY_P is true, the element type of the array. This is an
1690 never ARRAY_TYPE; for something like "new int[3][4]", the
1691 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1692 FULL_TYPE. */
1693 tree elt_type;
1694 /* The type of the new-expression. (This type is always a pointer
1695 type.) */
1696 tree pointer_type;
1697 /* The type pointed to by POINTER_TYPE. This type may be different
1698 from ELT_TYPE for a multi-dimensional array; ELT_TYPE is never an
1699 ARRAY_TYPE, but TYPE may be an ARRAY_TYPE. */
1700 tree type;
1701 /* A pointer type pointing to the FULL_TYPE. */
1702 tree full_pointer_type;
1703 tree outer_nelts = NULL_TREE;
1704 tree nelts = NULL_TREE;
1705 tree alloc_call, alloc_expr;
1706 /* The address returned by the call to "operator new". This node is
1707 a VAR_DECL and is therefore reusable. */
1708 tree alloc_node;
1709 tree alloc_fn;
1710 tree cookie_expr, init_expr;
1711 int nothrow, check_new;
1712 /* Nonzero if the user wrote `::new' rather than just `new'. */
1713 int globally_qualified_p;
1714 int use_java_new = 0;
1715 /* If non-NULL, the number of extra bytes to allocate at the
1716 beginning of the storage allocated for an array-new expression in
1717 order to store the number of elements. */
1718 tree cookie_size = NULL_TREE;
1719 /* True if the function we are calling is a placement allocation
1720 function. */
1721 bool placement_allocation_fn_p;
1722 tree args = NULL_TREE;
1723 /* True if the storage must be initialized, either by a constructor
1724 or due to an explicit new-initializer. */
1725 bool is_initialized;
1726 /* The address of the thing allocated, not including any cookie. In
1727 particular, if an array cookie is in use, DATA_ADDR is the
1728 address of the first array element. This node is a VAR_DECL, and
1729 is therefore reusable. */
1730 tree data_addr;
1731 tree init_preeval_expr = NULL_TREE;
1733 placement = TREE_OPERAND (exp, 0);
1734 type = TREE_OPERAND (exp, 1);
1735 nelts = TREE_OPERAND (exp, 2);
1736 init = TREE_OPERAND (exp, 3);
1737 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1739 if (nelts)
1741 tree index;
1743 outer_nelts = nelts;
1744 array_p = true;
1746 /* ??? The middle-end will error on us for building a VLA outside a
1747 function context. Methinks that's not it's purvey. So we'll do
1748 our own VLA layout later. */
1749 vla_p = true;
1750 full_type = build_cplus_array_type (type, NULL_TREE);
1751 index = convert (sizetype, nelts);
1752 index = size_binop (MINUS_EXPR, index, size_one_node);
1753 TYPE_DOMAIN (full_type) = build_index_type (index);
1755 else
1757 full_type = type;
1758 if (TREE_CODE (type) == ARRAY_TYPE)
1760 array_p = true;
1761 nelts = array_type_nelts_top (type);
1762 outer_nelts = nelts;
1763 type = TREE_TYPE (type);
1767 if (!complete_type_or_else (type, exp))
1768 return error_mark_node;
1770 /* If our base type is an array, then make sure we know how many elements
1771 it has. */
1772 for (elt_type = type;
1773 TREE_CODE (elt_type) == ARRAY_TYPE;
1774 elt_type = TREE_TYPE (elt_type))
1775 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1776 array_type_nelts_top (elt_type));
1778 if (TREE_CODE (elt_type) == VOID_TYPE)
1780 error ("invalid type %<void%> for new");
1781 return error_mark_node;
1784 if (abstract_virtuals_error (NULL_TREE, elt_type))
1785 return error_mark_node;
1787 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1788 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1790 error ("uninitialized const in %<new%> of %q#T", elt_type);
1791 return error_mark_node;
1794 size = size_in_bytes (elt_type);
1795 if (array_p)
1797 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1798 if (vla_p)
1800 tree n, bitsize;
1802 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1803 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1804 ...>> to be valid. */
1805 TYPE_SIZE_UNIT (full_type) = size;
1806 n = convert (bitsizetype, nelts);
1807 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1808 TYPE_SIZE (full_type) = bitsize;
1812 /* Allocate the object. */
1813 if (! placement && TYPE_FOR_JAVA (elt_type))
1815 tree class_addr, alloc_decl;
1816 tree class_decl = build_java_class_ref (elt_type);
1817 static const char alloc_name[] = "_Jv_AllocObject";
1819 use_java_new = 1;
1820 alloc_decl = NULL;
1821 if (!get_global_value_if_present (get_identifier (alloc_name),
1822 &alloc_decl))
1824 error ("call to Java constructor with %qs undefined", alloc_name);
1825 return error_mark_node;
1827 else if (really_overloaded_fn (alloc_decl))
1829 error ("%qD should never be overloaded", alloc_decl);
1830 return error_mark_node;
1832 alloc_decl = OVL_CURRENT (alloc_decl);
1833 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1834 alloc_call = (build_function_call
1835 (alloc_decl,
1836 build_tree_list (NULL_TREE, class_addr)));
1838 else
1840 tree fnname;
1841 tree fns;
1843 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1845 if (!globally_qualified_p
1846 && CLASS_TYPE_P (elt_type)
1847 && (array_p
1848 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1849 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1851 /* Use a class-specific operator new. */
1852 /* If a cookie is required, add some extra space. */
1853 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1855 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1856 size = size_binop (PLUS_EXPR, size, cookie_size);
1858 /* Create the argument list. */
1859 args = tree_cons (NULL_TREE, size, placement);
1860 /* Do name-lookup to find the appropriate operator. */
1861 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1862 if (fns == NULL_TREE)
1864 error ("no suitable %qD found in class %qT", fnname, elt_type);
1865 return error_mark_node;
1867 if (TREE_CODE (fns) == TREE_LIST)
1869 error ("request for member %qD is ambiguous", fnname);
1870 print_candidates (fns);
1871 return error_mark_node;
1873 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1874 fns, args,
1875 /*conversion_path=*/NULL_TREE,
1876 LOOKUP_NORMAL);
1878 else
1880 /* Use a global operator new. */
1881 /* See if a cookie might be required. */
1882 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1883 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1884 else
1885 cookie_size = NULL_TREE;
1887 alloc_call = build_operator_new_call (fnname, placement,
1888 &size, &cookie_size);
1892 if (alloc_call == error_mark_node)
1893 return error_mark_node;
1895 /* In the simple case, we can stop now. */
1896 pointer_type = build_pointer_type (type);
1897 if (!cookie_size && !is_initialized)
1898 return build_nop (pointer_type, alloc_call);
1900 /* While we're working, use a pointer to the type we've actually
1901 allocated. Store the result of the call in a variable so that we
1902 can use it more than once. */
1903 full_pointer_type = build_pointer_type (full_type);
1904 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1905 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1907 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1908 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1909 alloc_call = TREE_OPERAND (alloc_call, 1);
1910 alloc_fn = get_callee_fndecl (alloc_call);
1911 gcc_assert (alloc_fn != NULL_TREE);
1913 /* Now, check to see if this function is actually a placement
1914 allocation function. This can happen even when PLACEMENT is NULL
1915 because we might have something like:
1917 struct S { void* operator new (size_t, int i = 0); };
1919 A call to `new S' will get this allocation function, even though
1920 there is no explicit placement argument. If there is more than
1921 one argument, or there are variable arguments, then this is a
1922 placement allocation function. */
1923 placement_allocation_fn_p
1924 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1925 || varargs_function_p (alloc_fn));
1927 /* Preevaluate the placement args so that we don't reevaluate them for a
1928 placement delete. */
1929 if (placement_allocation_fn_p)
1931 tree inits;
1932 stabilize_call (alloc_call, &inits);
1933 if (inits)
1934 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1935 alloc_expr);
1938 /* unless an allocation function is declared with an empty excep-
1939 tion-specification (_except.spec_), throw(), it indicates failure to
1940 allocate storage by throwing a bad_alloc exception (clause _except_,
1941 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1942 cation function is declared with an empty exception-specification,
1943 throw(), it returns null to indicate failure to allocate storage and a
1944 non-null pointer otherwise.
1946 So check for a null exception spec on the op new we just called. */
1948 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1949 check_new = (flag_check_new || nothrow) && ! use_java_new;
1951 if (cookie_size)
1953 tree cookie;
1954 tree cookie_ptr;
1956 /* Adjust so we're pointing to the start of the object. */
1957 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1958 alloc_node, cookie_size));
1960 /* Store the number of bytes allocated so that we can know how
1961 many elements to destroy later. We use the last sizeof
1962 (size_t) bytes to store the number of elements. */
1963 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1964 data_addr, size_in_bytes (sizetype));
1965 cookie = build_indirect_ref (cookie_ptr, NULL);
1967 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1969 if (targetm.cxx.cookie_has_size ())
1971 /* Also store the element size. */
1972 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1973 cookie_ptr, size_in_bytes (sizetype));
1974 cookie = build_indirect_ref (cookie_ptr, NULL);
1975 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1976 size_in_bytes(elt_type));
1977 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1978 cookie, cookie_expr);
1980 data_addr = TARGET_EXPR_SLOT (data_addr);
1982 else
1984 cookie_expr = NULL_TREE;
1985 data_addr = alloc_node;
1988 /* Now initialize the allocated object. Note that we preevaluate the
1989 initialization expression, apart from the actual constructor call or
1990 assignment--we do this because we want to delay the allocation as long
1991 as possible in order to minimize the size of the exception region for
1992 placement delete. */
1993 if (is_initialized)
1995 bool stable;
1997 init_expr = build_indirect_ref (data_addr, NULL);
1999 if (array_p)
2001 bool explicit_default_init_p = false;
2003 if (init == void_zero_node)
2005 init = NULL_TREE;
2006 explicit_default_init_p = true;
2008 else if (init)
2009 pedwarn ("ISO C++ forbids initialization in array new");
2011 init_expr
2012 = build_vec_init (init_expr,
2013 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2014 integer_one_node),
2015 init,
2016 explicit_default_init_p,
2017 /*from_array=*/0);
2019 /* An array initialization is stable because the initialization
2020 of each element is a full-expression, so the temporaries don't
2021 leak out. */
2022 stable = true;
2024 else
2026 if (init == void_zero_node)
2027 init = build_default_init (full_type, nelts);
2029 if (TYPE_NEEDS_CONSTRUCTING (type))
2031 init_expr = build_special_member_call (init_expr,
2032 complete_ctor_identifier,
2033 init, elt_type,
2034 LOOKUP_NORMAL);
2035 stable = stabilize_init (init_expr, &init_preeval_expr);
2037 else
2039 /* We are processing something like `new int (10)', which
2040 means allocate an int, and initialize it with 10. */
2042 if (TREE_CODE (init) == TREE_LIST)
2043 init = build_x_compound_expr_from_list (init,
2044 "new initializer");
2045 else
2046 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2047 || TREE_TYPE (init) != NULL_TREE);
2049 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2050 stable = stabilize_init (init_expr, &init_preeval_expr);
2054 if (init_expr == error_mark_node)
2055 return error_mark_node;
2057 /* If any part of the object initialization terminates by throwing an
2058 exception and a suitable deallocation function can be found, the
2059 deallocation function is called to free the memory in which the
2060 object was being constructed, after which the exception continues
2061 to propagate in the context of the new-expression. If no
2062 unambiguous matching deallocation function can be found,
2063 propagating the exception does not cause the object's memory to be
2064 freed. */
2065 if (flag_exceptions && ! use_java_new)
2067 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2068 tree cleanup;
2070 /* The Standard is unclear here, but the right thing to do
2071 is to use the same method for finding deallocation
2072 functions that we use for finding allocation functions. */
2073 cleanup = build_op_delete_call (dcode, alloc_node, size,
2074 globally_qualified_p,
2075 (placement_allocation_fn_p
2076 ? alloc_call : NULL_TREE));
2078 if (!cleanup)
2079 /* We're done. */;
2080 else if (stable)
2081 /* This is much simpler if we were able to preevaluate all of
2082 the arguments to the constructor call. */
2083 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2084 init_expr, cleanup);
2085 else
2086 /* Ack! First we allocate the memory. Then we set our sentry
2087 variable to true, and expand a cleanup that deletes the
2088 memory if sentry is true. Then we run the constructor, and
2089 finally clear the sentry.
2091 We need to do this because we allocate the space first, so
2092 if there are any temporaries with cleanups in the
2093 constructor args and we weren't able to preevaluate them, we
2094 need this EH region to extend until end of full-expression
2095 to preserve nesting. */
2097 tree end, sentry, begin;
2099 begin = get_target_expr (boolean_true_node);
2100 CLEANUP_EH_ONLY (begin) = 1;
2102 sentry = TARGET_EXPR_SLOT (begin);
2104 TARGET_EXPR_CLEANUP (begin)
2105 = build3 (COND_EXPR, void_type_node, sentry,
2106 cleanup, void_zero_node);
2108 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2109 sentry, boolean_false_node);
2111 init_expr
2112 = build2 (COMPOUND_EXPR, void_type_node, begin,
2113 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2114 end));
2119 else
2120 init_expr = NULL_TREE;
2122 /* Now build up the return value in reverse order. */
2124 rval = data_addr;
2126 if (init_expr)
2127 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2128 if (cookie_expr)
2129 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2131 if (rval == alloc_node)
2132 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2133 and return the call (which doesn't need to be adjusted). */
2134 rval = TARGET_EXPR_INITIAL (alloc_expr);
2135 else
2137 if (check_new)
2139 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2140 integer_zero_node);
2141 rval = build_conditional_expr (ifexp, rval, alloc_node);
2144 /* Perform the allocation before anything else, so that ALLOC_NODE
2145 has been initialized before we start using it. */
2146 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2149 if (init_preeval_expr)
2150 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2152 /* Convert to the final type. */
2153 rval = build_nop (pointer_type, rval);
2155 /* A new-expression is never an lvalue. */
2156 rval = rvalue (rval);
2158 return rval;
2161 static tree
2162 build_vec_delete_1 (tree base, tree maxindex, tree type,
2163 special_function_kind auto_delete_vec, int use_global_delete)
2165 tree virtual_size;
2166 tree ptype = build_pointer_type (type = complete_type (type));
2167 tree size_exp = size_in_bytes (type);
2169 /* Temporary variables used by the loop. */
2170 tree tbase, tbase_init;
2172 /* This is the body of the loop that implements the deletion of a
2173 single element, and moves temp variables to next elements. */
2174 tree body;
2176 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2177 tree loop = 0;
2179 /* This is the thing that governs what to do after the loop has run. */
2180 tree deallocate_expr = 0;
2182 /* This is the BIND_EXPR which holds the outermost iterator of the
2183 loop. It is convenient to set this variable up and test it before
2184 executing any other code in the loop.
2185 This is also the containing expression returned by this function. */
2186 tree controller = NULL_TREE;
2188 /* We should only have 1-D arrays here. */
2189 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2191 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2192 goto no_destructor;
2194 /* The below is short by the cookie size. */
2195 virtual_size = size_binop (MULT_EXPR, size_exp,
2196 convert (sizetype, maxindex));
2198 tbase = create_temporary_var (ptype);
2199 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2200 fold_build2 (PLUS_EXPR, ptype,
2201 base,
2202 virtual_size));
2203 DECL_REGISTER (tbase) = 1;
2204 controller = build3 (BIND_EXPR, void_type_node, tbase,
2205 NULL_TREE, NULL_TREE);
2206 TREE_SIDE_EFFECTS (controller) = 1;
2208 body = build1 (EXIT_EXPR, void_type_node,
2209 build2 (EQ_EXPR, boolean_type_node, base, tbase));
2210 body = build_compound_expr
2211 (body, build_modify_expr (tbase, NOP_EXPR,
2212 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2213 body = build_compound_expr
2214 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2215 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2217 loop = build1 (LOOP_EXPR, void_type_node, body);
2218 loop = build_compound_expr (tbase_init, loop);
2220 no_destructor:
2221 /* If the delete flag is one, or anything else with the low bit set,
2222 delete the storage. */
2223 if (auto_delete_vec != sfk_base_destructor)
2225 tree base_tbd;
2227 /* The below is short by the cookie size. */
2228 virtual_size = size_binop (MULT_EXPR, size_exp,
2229 convert (sizetype, maxindex));
2231 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2232 /* no header */
2233 base_tbd = base;
2234 else
2236 tree cookie_size;
2238 cookie_size = targetm.cxx.get_cookie_size (type);
2239 base_tbd
2240 = cp_convert (ptype,
2241 cp_build_binary_op (MINUS_EXPR,
2242 cp_convert (string_type_node,
2243 base),
2244 cookie_size));
2245 /* True size with header. */
2246 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2249 if (auto_delete_vec == sfk_deleting_destructor)
2250 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2251 base_tbd, virtual_size,
2252 use_global_delete & 1,
2253 NULL_TREE);
2256 body = loop;
2257 if (!deallocate_expr)
2259 else if (!body)
2260 body = deallocate_expr;
2261 else
2262 body = build_compound_expr (body, deallocate_expr);
2264 if (!body)
2265 body = integer_zero_node;
2267 /* Outermost wrapper: If pointer is null, punt. */
2268 body = fold_build3 (COND_EXPR, void_type_node,
2269 fold_build2 (NE_EXPR, boolean_type_node, base,
2270 convert (TREE_TYPE (base),
2271 integer_zero_node)),
2272 body, integer_zero_node);
2273 body = build1 (NOP_EXPR, void_type_node, body);
2275 if (controller)
2277 TREE_OPERAND (controller, 1) = body;
2278 body = controller;
2281 if (TREE_CODE (base) == SAVE_EXPR)
2282 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2283 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2285 return convert_to_void (body, /*implicit=*/NULL);
2288 /* Create an unnamed variable of the indicated TYPE. */
2290 tree
2291 create_temporary_var (tree type)
2293 tree decl;
2295 decl = build_decl (VAR_DECL, NULL_TREE, type);
2296 TREE_USED (decl) = 1;
2297 DECL_ARTIFICIAL (decl) = 1;
2298 DECL_IGNORED_P (decl) = 1;
2299 DECL_SOURCE_LOCATION (decl) = input_location;
2300 DECL_CONTEXT (decl) = current_function_decl;
2302 return decl;
2305 /* Create a new temporary variable of the indicated TYPE, initialized
2306 to INIT.
2308 It is not entered into current_binding_level, because that breaks
2309 things when it comes time to do final cleanups (which take place
2310 "outside" the binding contour of the function). */
2312 static tree
2313 get_temp_regvar (tree type, tree init)
2315 tree decl;
2317 decl = create_temporary_var (type);
2318 add_decl_expr (decl);
2320 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2322 return decl;
2325 /* `build_vec_init' returns tree structure that performs
2326 initialization of a vector of aggregate types.
2328 BASE is a reference to the vector, of ARRAY_TYPE.
2329 MAXINDEX is the maximum index of the array (one less than the
2330 number of elements). It is only used if
2331 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2333 INIT is the (possibly NULL) initializer.
2335 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2336 elements in the array are default-initialized.
2338 FROM_ARRAY is 0 if we should init everything with INIT
2339 (i.e., every element initialized from INIT).
2340 FROM_ARRAY is 1 if we should index into INIT in parallel
2341 with initialization of DECL.
2342 FROM_ARRAY is 2 if we should index into INIT in parallel,
2343 but use assignment instead of initialization. */
2345 tree
2346 build_vec_init (tree base, tree maxindex, tree init,
2347 bool explicit_default_init_p,
2348 int from_array)
2350 tree rval;
2351 tree base2 = NULL_TREE;
2352 tree size;
2353 tree itype = NULL_TREE;
2354 tree iterator;
2355 /* The type of the array. */
2356 tree atype = TREE_TYPE (base);
2357 /* The type of an element in the array. */
2358 tree type = TREE_TYPE (atype);
2359 /* The element type reached after removing all outer array
2360 types. */
2361 tree inner_elt_type;
2362 /* The type of a pointer to an element in the array. */
2363 tree ptype;
2364 tree stmt_expr;
2365 tree compound_stmt;
2366 int destroy_temps;
2367 tree try_block = NULL_TREE;
2368 int num_initialized_elts = 0;
2369 bool is_global;
2371 if (TYPE_DOMAIN (atype))
2372 maxindex = array_type_nelts (atype);
2374 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2375 return error_mark_node;
2377 if (explicit_default_init_p)
2378 gcc_assert (!init);
2380 inner_elt_type = strip_array_types (atype);
2381 if (init
2382 && (from_array == 2
2383 ? (!CLASS_TYPE_P (inner_elt_type)
2384 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2385 : !TYPE_NEEDS_CONSTRUCTING (type))
2386 && ((TREE_CODE (init) == CONSTRUCTOR
2387 /* Don't do this if the CONSTRUCTOR might contain something
2388 that might throw and require us to clean up. */
2389 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2390 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2391 || from_array))
2393 /* Do non-default initialization of POD arrays resulting from
2394 brace-enclosed initializers. In this case, digest_init and
2395 store_constructor will handle the semantics for us. */
2397 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2398 return stmt_expr;
2401 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2402 ptype = build_pointer_type (type);
2403 size = size_in_bytes (type);
2404 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2405 base = cp_convert (ptype, decay_conversion (base));
2407 /* The code we are generating looks like:
2409 T* t1 = (T*) base;
2410 T* rval = t1;
2411 ptrdiff_t iterator = maxindex;
2412 try {
2413 for (; iterator != -1; --iterator) {
2414 ... initialize *t1 ...
2415 ++t1;
2417 } catch (...) {
2418 ... destroy elements that were constructed ...
2420 rval;
2423 We can omit the try and catch blocks if we know that the
2424 initialization will never throw an exception, or if the array
2425 elements do not have destructors. We can omit the loop completely if
2426 the elements of the array do not have constructors.
2428 We actually wrap the entire body of the above in a STMT_EXPR, for
2429 tidiness.
2431 When copying from array to another, when the array elements have
2432 only trivial copy constructors, we should use __builtin_memcpy
2433 rather than generating a loop. That way, we could take advantage
2434 of whatever cleverness the back-end has for dealing with copies
2435 of blocks of memory. */
2437 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2438 destroy_temps = stmts_are_full_exprs_p ();
2439 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2440 rval = get_temp_regvar (ptype, base);
2441 base = get_temp_regvar (ptype, rval);
2442 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2444 /* Protect the entire array initialization so that we can destroy
2445 the partially constructed array if an exception is thrown.
2446 But don't do this if we're assigning. */
2447 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2448 && from_array != 2)
2450 try_block = begin_try_block ();
2453 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2455 /* Do non-default initialization of non-POD arrays resulting from
2456 brace-enclosed initializers. */
2457 unsigned HOST_WIDE_INT idx;
2458 tree elt;
2459 from_array = 0;
2461 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2463 tree baseref = build1 (INDIRECT_REF, type, base);
2465 num_initialized_elts++;
2467 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2468 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2469 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2470 else
2471 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2472 elt));
2473 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2475 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2476 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2479 /* Clear out INIT so that we don't get confused below. */
2480 init = NULL_TREE;
2482 else if (from_array)
2484 /* If initializing one array from another, initialize element by
2485 element. We rely upon the below calls the do argument
2486 checking. */
2487 if (init)
2489 base2 = decay_conversion (init);
2490 itype = TREE_TYPE (base2);
2491 base2 = get_temp_regvar (itype, base2);
2492 itype = TREE_TYPE (itype);
2494 else if (TYPE_LANG_SPECIFIC (type)
2495 && TYPE_NEEDS_CONSTRUCTING (type)
2496 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2498 error ("initializer ends prematurely");
2499 return error_mark_node;
2503 /* Now, default-initialize any remaining elements. We don't need to
2504 do that if a) the type does not need constructing, or b) we've
2505 already initialized all the elements.
2507 We do need to keep going if we're copying an array. */
2509 if (from_array
2510 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2511 && ! (host_integerp (maxindex, 0)
2512 && (num_initialized_elts
2513 == tree_low_cst (maxindex, 0) + 1))))
2515 /* If the ITERATOR is equal to -1, then we don't have to loop;
2516 we've already initialized all the elements. */
2517 tree for_stmt;
2518 tree elt_init;
2519 tree to;
2521 for_stmt = begin_for_stmt ();
2522 finish_for_init_stmt (for_stmt);
2523 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2524 build_int_cst (TREE_TYPE (iterator), -1)),
2525 for_stmt);
2526 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2527 for_stmt);
2529 to = build1 (INDIRECT_REF, type, base);
2531 if (from_array)
2533 tree from;
2535 if (base2)
2536 from = build1 (INDIRECT_REF, itype, base2);
2537 else
2538 from = NULL_TREE;
2540 if (from_array == 2)
2541 elt_init = build_modify_expr (to, NOP_EXPR, from);
2542 else if (TYPE_NEEDS_CONSTRUCTING (type))
2543 elt_init = build_aggr_init (to, from, 0);
2544 else if (from)
2545 elt_init = build_modify_expr (to, NOP_EXPR, from);
2546 else
2547 gcc_unreachable ();
2549 else if (TREE_CODE (type) == ARRAY_TYPE)
2551 if (init != 0)
2552 sorry
2553 ("cannot initialize multi-dimensional array with initializer");
2554 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2555 0, 0,
2556 /*explicit_default_init_p=*/false,
2559 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2560 elt_init = (build_modify_expr
2561 (to, INIT_EXPR,
2562 build_zero_init (type, size_one_node,
2563 /*static_storage_p=*/false)));
2564 else
2565 elt_init = build_aggr_init (to, init, 0);
2567 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2568 finish_expr_stmt (elt_init);
2569 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2571 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2572 if (base2)
2573 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2575 finish_for_stmt (for_stmt);
2578 /* Make sure to cleanup any partially constructed elements. */
2579 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2580 && from_array != 2)
2582 tree e;
2583 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2585 /* Flatten multi-dimensional array since build_vec_delete only
2586 expects one-dimensional array. */
2587 if (TREE_CODE (type) == ARRAY_TYPE)
2588 m = cp_build_binary_op (MULT_EXPR, m,
2589 array_type_nelts_total (type));
2591 finish_cleanup_try_block (try_block);
2592 e = build_vec_delete_1 (rval, m,
2593 inner_elt_type, sfk_base_destructor,
2594 /*use_global_delete=*/0);
2595 finish_cleanup (e, try_block);
2598 /* The value of the array initialization is the array itself, RVAL
2599 is a pointer to the first element. */
2600 finish_stmt_expr_expr (rval, stmt_expr);
2602 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2604 /* Now convert make the result have the correct type. */
2605 atype = build_pointer_type (atype);
2606 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2607 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2609 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2610 return stmt_expr;
2613 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2614 build_delete. */
2616 static tree
2617 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2619 tree name;
2620 tree fn;
2621 switch (dtor_kind)
2623 case sfk_complete_destructor:
2624 name = complete_dtor_identifier;
2625 break;
2627 case sfk_base_destructor:
2628 name = base_dtor_identifier;
2629 break;
2631 case sfk_deleting_destructor:
2632 name = deleting_dtor_identifier;
2633 break;
2635 default:
2636 gcc_unreachable ();
2638 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2639 return build_new_method_call (exp, fn,
2640 /*args=*/NULL_TREE,
2641 /*conversion_path=*/NULL_TREE,
2642 flags);
2645 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2646 ADDR is an expression which yields the store to be destroyed.
2647 AUTO_DELETE is the name of the destructor to call, i.e., either
2648 sfk_complete_destructor, sfk_base_destructor, or
2649 sfk_deleting_destructor.
2651 FLAGS is the logical disjunction of zero or more LOOKUP_
2652 flags. See cp-tree.h for more info. */
2654 tree
2655 build_delete (tree type, tree addr, special_function_kind auto_delete,
2656 int flags, int use_global_delete)
2658 tree expr;
2660 if (addr == error_mark_node)
2661 return error_mark_node;
2663 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2664 set to `error_mark_node' before it gets properly cleaned up. */
2665 if (type == error_mark_node)
2666 return error_mark_node;
2668 type = TYPE_MAIN_VARIANT (type);
2670 if (TREE_CODE (type) == POINTER_TYPE)
2672 bool complete_p = true;
2674 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2675 if (TREE_CODE (type) == ARRAY_TYPE)
2676 goto handle_array;
2678 /* We don't want to warn about delete of void*, only other
2679 incomplete types. Deleting other incomplete types
2680 invokes undefined behavior, but it is not ill-formed, so
2681 compile to something that would even do The Right Thing
2682 (TM) should the type have a trivial dtor and no delete
2683 operator. */
2684 if (!VOID_TYPE_P (type))
2686 complete_type (type);
2687 if (!COMPLETE_TYPE_P (type))
2689 warning (0, "possible problem detected in invocation of "
2690 "delete operator:");
2691 cxx_incomplete_type_diagnostic (addr, type, 1);
2692 inform ("neither the destructor nor the class-specific "
2693 "operator delete will be called, even if they are "
2694 "declared when the class is defined.");
2695 complete_p = false;
2698 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2699 /* Call the builtin operator delete. */
2700 return build_builtin_delete_call (addr);
2701 if (TREE_SIDE_EFFECTS (addr))
2702 addr = save_expr (addr);
2704 /* Throw away const and volatile on target type of addr. */
2705 addr = convert_force (build_pointer_type (type), addr, 0);
2707 else if (TREE_CODE (type) == ARRAY_TYPE)
2709 handle_array:
2711 if (TYPE_DOMAIN (type) == NULL_TREE)
2713 error ("unknown array size in delete");
2714 return error_mark_node;
2716 return build_vec_delete (addr, array_type_nelts (type),
2717 auto_delete, use_global_delete);
2719 else
2721 /* Don't check PROTECT here; leave that decision to the
2722 destructor. If the destructor is accessible, call it,
2723 else report error. */
2724 addr = build_unary_op (ADDR_EXPR, addr, 0);
2725 if (TREE_SIDE_EFFECTS (addr))
2726 addr = save_expr (addr);
2728 addr = convert_force (build_pointer_type (type), addr, 0);
2731 gcc_assert (IS_AGGR_TYPE (type));
2733 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2735 if (auto_delete != sfk_deleting_destructor)
2736 return void_zero_node;
2738 return build_op_delete_call
2739 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2740 NULL_TREE);
2742 else
2744 tree do_delete = NULL_TREE;
2745 tree ifexp;
2747 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2748 lazily_declare_fn (sfk_destructor, type);
2750 /* For `::delete x', we must not use the deleting destructor
2751 since then we would not be sure to get the global `operator
2752 delete'. */
2753 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2755 /* We will use ADDR multiple times so we must save it. */
2756 addr = save_expr (addr);
2757 /* Delete the object. */
2758 do_delete = build_builtin_delete_call (addr);
2759 /* Otherwise, treat this like a complete object destructor
2760 call. */
2761 auto_delete = sfk_complete_destructor;
2763 /* If the destructor is non-virtual, there is no deleting
2764 variant. Instead, we must explicitly call the appropriate
2765 `operator delete' here. */
2766 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2767 && auto_delete == sfk_deleting_destructor)
2769 /* We will use ADDR multiple times so we must save it. */
2770 addr = save_expr (addr);
2771 /* Build the call. */
2772 do_delete = build_op_delete_call (DELETE_EXPR,
2773 addr,
2774 cxx_sizeof_nowarn (type),
2775 /*global_p=*/false,
2776 NULL_TREE);
2777 /* Call the complete object destructor. */
2778 auto_delete = sfk_complete_destructor;
2780 else if (auto_delete == sfk_deleting_destructor
2781 && TYPE_GETS_REG_DELETE (type))
2783 /* Make sure we have access to the member op delete, even though
2784 we'll actually be calling it from the destructor. */
2785 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2786 /*global_p=*/false, NULL_TREE);
2789 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2790 auto_delete, flags);
2791 if (do_delete)
2792 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2794 if (flags & LOOKUP_DESTRUCTOR)
2795 /* Explicit destructor call; don't check for null pointer. */
2796 ifexp = integer_one_node;
2797 else
2798 /* Handle deleting a null pointer. */
2799 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2801 if (ifexp != integer_one_node)
2802 expr = build3 (COND_EXPR, void_type_node,
2803 ifexp, expr, void_zero_node);
2805 return expr;
2809 /* At the beginning of a destructor, push cleanups that will call the
2810 destructors for our base classes and members.
2812 Called from begin_destructor_body. */
2814 void
2815 push_base_cleanups (void)
2817 tree binfo, base_binfo;
2818 int i;
2819 tree member;
2820 tree expr;
2821 VEC(tree,gc) *vbases;
2823 /* Run destructors for all virtual baseclasses. */
2824 if (CLASSTYPE_VBASECLASSES (current_class_type))
2826 tree cond = (condition_conversion
2827 (build2 (BIT_AND_EXPR, integer_type_node,
2828 current_in_charge_parm,
2829 integer_two_node)));
2831 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2832 order, which is also the right order for pushing cleanups. */
2833 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2834 VEC_iterate (tree, vbases, i, base_binfo); i++)
2836 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2838 expr = build_special_member_call (current_class_ref,
2839 base_dtor_identifier,
2840 NULL_TREE,
2841 base_binfo,
2842 (LOOKUP_NORMAL
2843 | LOOKUP_NONVIRTUAL));
2844 expr = build3 (COND_EXPR, void_type_node, cond,
2845 expr, void_zero_node);
2846 finish_decl_cleanup (NULL_TREE, expr);
2851 /* Take care of the remaining baseclasses. */
2852 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2853 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2855 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2856 || BINFO_VIRTUAL_P (base_binfo))
2857 continue;
2859 expr = build_special_member_call (current_class_ref,
2860 base_dtor_identifier,
2861 NULL_TREE, base_binfo,
2862 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2863 finish_decl_cleanup (NULL_TREE, expr);
2866 for (member = TYPE_FIELDS (current_class_type); member;
2867 member = TREE_CHAIN (member))
2869 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2870 continue;
2871 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2873 tree this_member = (build_class_member_access_expr
2874 (current_class_ref, member,
2875 /*access_path=*/NULL_TREE,
2876 /*preserve_reference=*/false));
2877 tree this_type = TREE_TYPE (member);
2878 expr = build_delete (this_type, this_member,
2879 sfk_complete_destructor,
2880 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2882 finish_decl_cleanup (NULL_TREE, expr);
2887 /* Build a C++ vector delete expression.
2888 MAXINDEX is the number of elements to be deleted.
2889 ELT_SIZE is the nominal size of each element in the vector.
2890 BASE is the expression that should yield the store to be deleted.
2891 This function expands (or synthesizes) these calls itself.
2892 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2894 This also calls delete for virtual baseclasses of elements of the vector.
2896 Update: MAXINDEX is no longer needed. The size can be extracted from the
2897 start of the vector for pointers, and from the type for arrays. We still
2898 use MAXINDEX for arrays because it happens to already have one of the
2899 values we'd have to extract. (We could use MAXINDEX with pointers to
2900 confirm the size, and trap if the numbers differ; not clear that it'd
2901 be worth bothering.) */
2903 tree
2904 build_vec_delete (tree base, tree maxindex,
2905 special_function_kind auto_delete_vec, int use_global_delete)
2907 tree type;
2908 tree rval;
2909 tree base_init = NULL_TREE;
2911 type = TREE_TYPE (base);
2913 if (TREE_CODE (type) == POINTER_TYPE)
2915 /* Step back one from start of vector, and read dimension. */
2916 tree cookie_addr;
2918 if (TREE_SIDE_EFFECTS (base))
2920 base_init = get_target_expr (base);
2921 base = TARGET_EXPR_SLOT (base_init);
2923 type = strip_array_types (TREE_TYPE (type));
2924 cookie_addr = build2 (MINUS_EXPR,
2925 build_pointer_type (sizetype),
2926 base,
2927 TYPE_SIZE_UNIT (sizetype));
2928 maxindex = build_indirect_ref (cookie_addr, NULL);
2930 else if (TREE_CODE (type) == ARRAY_TYPE)
2932 /* Get the total number of things in the array, maxindex is a
2933 bad name. */
2934 maxindex = array_type_nelts_total (type);
2935 type = strip_array_types (type);
2936 base = build_unary_op (ADDR_EXPR, base, 1);
2937 if (TREE_SIDE_EFFECTS (base))
2939 base_init = get_target_expr (base);
2940 base = TARGET_EXPR_SLOT (base_init);
2943 else
2945 if (base != error_mark_node)
2946 error ("type to vector delete is neither pointer or array type");
2947 return error_mark_node;
2950 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
2951 use_global_delete);
2952 if (base_init)
2953 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
2955 return rval;