Merge from mainline
[official-gcc.git] / gcc / ada / g-pehage.adb
blobcf8b62a90f16e5ab412ea027df72b70e62cc1af9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2002-2006, AdaCore --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with Ada.Exceptions; use Ada.Exceptions;
35 with Ada.IO_Exceptions; use Ada.IO_Exceptions;
37 with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
38 with GNAT.OS_Lib; use GNAT.OS_Lib;
39 with GNAT.Table;
41 package body GNAT.Perfect_Hash_Generators is
43 -- We are using the algorithm of J. Czech as described in Zbigniew J.
44 -- Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
45 -- Generating Minimal Perfect Hash Functions'', Information Processing
46 -- Letters, 43(1992) pp.257-264, Oct.1992
48 -- This minimal perfect hash function generator is based on random graphs
49 -- and produces a hash function of the form:
51 -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
53 -- where f1 and f2 are functions that map strings into integers, and g is a
54 -- function that maps integers into [0, m-1]. h can be order preserving.
55 -- For instance, let W = {w_0, ..., w_i, ...,
56 -- w_m-1}, h can be defined such that h (w_i) = i.
58 -- This algorithm defines two possible constructions of f1 and f2. Method
59 -- b) stores the hash function in less memory space at the expense of
60 -- greater CPU time.
62 -- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
64 -- size (Tk) = max (for w in W) (length (w)) * size (used char set)
66 -- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
68 -- size (Tk) = max (for w in W) (length (w)) but the table lookups are
69 -- replaced by multiplications.
71 -- where Tk values are randomly generated. n is defined later on but the
72 -- algorithm recommends to use a value a little bit greater than 2m. Note
73 -- that for large values of m, the main memory space requirements comes
74 -- from the memory space for storing function g (>= 2m entries).
76 -- Random graphs are frequently used to solve difficult problems that do
77 -- not have polynomial solutions. This algorithm is based on a weighted
78 -- undirected graph. It comprises two steps: mapping and assigment.
80 -- In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
81 -- ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
82 -- assignment step to be successful, G has to be acyclic. To have a high
83 -- probability of generating an acyclic graph, n >= 2m. If it is not
84 -- acyclic, Tk have to be regenerated.
86 -- In the assignment step, the algorithm builds function g. As is acyclic,
87 -- there is a vertex v1 with only one neighbor v2. Let w_i be the word such
88 -- that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by construction and
89 -- g (v2) = (i - g (v1)) mod n (or to be general, (h (i) - g (v1) mod n).
90 -- If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
91 -- g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
92 -- neighbor, then another vertex is selected. The algorithm traverses G to
93 -- assign values to all the vertices. It cannot assign a value to an
94 -- already assigned vertex as G is acyclic.
96 subtype Word_Id is Integer;
97 subtype Key_Id is Integer;
98 subtype Vertex_Id is Integer;
99 subtype Edge_Id is Integer;
100 subtype Table_Id is Integer;
102 No_Vertex : constant Vertex_Id := -1;
103 No_Edge : constant Edge_Id := -1;
104 No_Table : constant Table_Id := -1;
106 Max_Word_Length : constant := 32;
107 subtype Word_Type is String (1 .. Max_Word_Length);
108 Null_Word : constant Word_Type := (others => ASCII.NUL);
109 -- Store keyword in a word. Note that the length of word is limited to 32
110 -- characters.
112 type Key_Type is record
113 Edge : Edge_Id;
114 end record;
115 -- A key corresponds to an edge in the algorithm graph
117 type Vertex_Type is record
118 First : Edge_Id;
119 Last : Edge_Id;
120 end record;
121 -- A vertex can be involved in several edges. First and Last are the bounds
122 -- of an array of edges stored in a global edge table.
124 type Edge_Type is record
125 X : Vertex_Id;
126 Y : Vertex_Id;
127 Key : Key_Id;
128 end record;
129 -- An edge is a peer of vertices. In the algorithm, a key is associated to
130 -- an edge.
132 package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
133 package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
134 -- The two main tables. IT is used to store several tables of components
135 -- containing only integers.
137 function Image (Int : Integer; W : Natural := 0) return String;
138 function Image (Str : String; W : Natural := 0) return String;
139 -- Return a string which includes string Str or integer Int preceded by
140 -- leading spaces if required by width W.
142 Output : File_Descriptor renames GNAT.OS_Lib.Standout;
143 -- Shortcuts
145 EOL : constant Character := ASCII.LF;
147 Max : constant := 78;
148 Last : Natural := 0;
149 Line : String (1 .. Max);
150 -- Use this line to provide buffered IO
152 procedure Add (C : Character);
153 procedure Add (S : String);
154 -- Add a character or a string in Line and update Last
156 procedure Put
157 (F : File_Descriptor;
158 S : String;
159 F1 : Natural;
160 L1 : Natural;
161 C1 : Natural;
162 F2 : Natural;
163 L2 : Natural;
164 C2 : Natural);
165 -- Write string S into file F as a element of an array of one or two
166 -- dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
167 -- current) index in the k-th dimension. If F1 = L1 the array is considered
168 -- as a one dimension array. This dimension is described by F2 and L2. This
169 -- routine takes care of all the parenthesis, spaces and commas needed to
170 -- format correctly the array. Moreover, the array is well indented and is
171 -- wrapped to fit in a 80 col line. When the line is full, the routine
172 -- writes it into file F. When the array is completed, the routine adds
173 -- semi-colon and writes the line into file F.
175 procedure New_Line
176 (File : File_Descriptor);
177 -- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
179 procedure Put
180 (File : File_Descriptor;
181 Str : String);
182 -- Simulate Ada.Text_IO.Put with GNAT.OS_Lib
184 procedure Put_Used_Char_Set
185 (File : File_Descriptor;
186 Title : String);
187 -- Output a title and a used character set
189 procedure Put_Int_Vector
190 (File : File_Descriptor;
191 Title : String;
192 Vector : Integer;
193 Length : Natural);
194 -- Output a title and a vector
196 procedure Put_Int_Matrix
197 (File : File_Descriptor;
198 Title : String;
199 Table : Table_Id;
200 Len_1 : Natural;
201 Len_2 : Natural);
202 -- Output a title and a matrix. When the matrix has only one non-empty
203 -- dimension (Len_2 = 0), output a vector.
205 procedure Put_Edges
206 (File : File_Descriptor;
207 Title : String);
208 -- Output a title and an edge table
210 procedure Put_Initial_Keys
211 (File : File_Descriptor;
212 Title : String);
213 -- Output a title and a key table
215 procedure Put_Reduced_Keys
216 (File : File_Descriptor;
217 Title : String);
218 -- Output a title and a key table
220 procedure Put_Vertex_Table
221 (File : File_Descriptor;
222 Title : String);
223 -- Output a title and a vertex table
225 ----------------------------------
226 -- Character Position Selection --
227 ----------------------------------
229 -- We reduce the maximum key size by selecting representative positions
230 -- in these keys. We build a matrix with one word per line. We fill the
231 -- remaining space of a line with ASCII.NUL. The heuristic selects the
232 -- position that induces the minimum number of collisions. If there are
233 -- collisions, select another position on the reduced key set responsible
234 -- of the collisions. Apply the heuristic until there is no more collision.
236 procedure Apply_Position_Selection;
237 -- Apply Position selection and build the reduced key table
239 procedure Parse_Position_Selection (Argument : String);
240 -- Parse Argument and compute the position set. Argument is list of
241 -- substrings separated by commas. Each substring represents a position
242 -- or a range of positions (like x-y).
244 procedure Select_Character_Set;
245 -- Define an optimized used character set like Character'Pos in order not
246 -- to allocate tables of 256 entries.
248 procedure Select_Char_Position;
249 -- Find a min char position set in order to reduce the max key length. The
250 -- heuristic selects the position that induces the minimum number of
251 -- collisions. If there are collisions, select another position on the
252 -- reduced key set responsible of the collisions. Apply the heuristic until
253 -- there is no collision.
255 -----------------------------
256 -- Random Graph Generation --
257 -----------------------------
259 procedure Random (Seed : in out Natural);
260 -- Simulate Ada.Discrete_Numerics.Random
262 procedure Generate_Mapping_Table
263 (Tab : Table_Id;
264 L1 : Natural;
265 L2 : Natural;
266 Seed : in out Natural);
267 -- Random generation of the tables below. T is already allocated
269 procedure Generate_Mapping_Tables
270 (Opt : Optimization;
271 Seed : in out Natural);
272 -- Generate the mapping tables T1 and T2. They are used to define fk (w) =
273 -- sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
274 -- are used to compute the matrix size.
276 ---------------------------
277 -- Algorithm Computation --
278 ---------------------------
280 procedure Compute_Edges_And_Vertices (Opt : Optimization);
281 -- Compute the edge and vertex tables. These are empty when a self loop is
282 -- detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
283 -- Y value. Keys is the key table and NK the number of keys. Chars is the
284 -- set of characters really used in Keys. NV is the number of vertices
285 -- recommended by the algorithm. T1 and T2 are the mapping tables needed to
286 -- compute f1 (w) and f2 (w).
288 function Acyclic return Boolean;
289 -- Return True when the graph is acyclic. Vertices is the current vertex
290 -- table and Edges the current edge table.
292 procedure Assign_Values_To_Vertices;
293 -- Execute the assignment step of the algorithm. Keys is the current key
294 -- table. Vertices and Edges represent the random graph. G is the result of
295 -- the assignment step such that:
296 -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
298 function Sum
299 (Word : Word_Type;
300 Table : Table_Id;
301 Opt : Optimization) return Natural;
302 -- For an optimization of CPU_Time return
303 -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
304 -- For an optimization of Memory_Space return
305 -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
306 -- Here NV = n
308 -------------------------------
309 -- Internal Table Management --
310 -------------------------------
312 function Allocate (N : Natural; S : Natural := 1) return Table_Id;
313 -- Allocate N * S ints from IT table
315 procedure Free_Tmp_Tables;
316 -- Deallocate the tables used by the algorithm (but not the keys table)
318 ----------
319 -- Keys --
320 ----------
322 Keys : Table_Id := No_Table;
323 NK : Natural := 0;
324 -- NK : Number of Keys
326 function Initial (K : Key_Id) return Word_Id;
327 pragma Inline (Initial);
329 function Reduced (K : Key_Id) return Word_Id;
330 pragma Inline (Reduced);
332 function Get_Key (N : Key_Id) return Key_Type;
333 procedure Set_Key (N : Key_Id; Item : Key_Type);
334 -- Get or Set Nth element of Keys table
336 ------------------
337 -- Char_Pos_Set --
338 ------------------
340 Char_Pos_Set : Table_Id := No_Table;
341 Char_Pos_Set_Len : Natural;
342 -- Character Selected Position Set
344 function Get_Char_Pos (P : Natural) return Natural;
345 procedure Set_Char_Pos (P : Natural; Item : Natural);
346 -- Get or Set the string position of the Pth selected character
348 -------------------
349 -- Used_Char_Set --
350 -------------------
352 Used_Char_Set : Table_Id := No_Table;
353 Used_Char_Set_Len : Natural;
354 -- Used Character Set : Define a new character mapping. When all the
355 -- characters are not present in the keys, in order to reduce the size
356 -- of some tables, we redefine the character mapping.
358 function Get_Used_Char (C : Character) return Natural;
359 procedure Set_Used_Char (C : Character; Item : Natural);
361 ------------
362 -- Tables --
363 ------------
365 T1 : Table_Id := No_Table;
366 T2 : Table_Id := No_Table;
367 T1_Len : Natural;
368 T2_Len : Natural;
369 -- T1 : Values table to compute F1
370 -- T2 : Values table to compute F2
372 function Get_Table (T : Integer; X, Y : Natural) return Natural;
373 procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
375 -----------
376 -- Graph --
377 -----------
379 G : Table_Id := No_Table;
380 G_Len : Natural;
381 -- Values table to compute G
383 NT : Natural := Default_Tries;
384 -- Number of tries running the algorithm before raising an error
386 function Get_Graph (N : Natural) return Integer;
387 procedure Set_Graph (N : Natural; Item : Integer);
388 -- Get or Set Nth element of graph
390 -----------
391 -- Edges --
392 -----------
394 Edge_Size : constant := 3;
395 Edges : Table_Id := No_Table;
396 Edges_Len : Natural;
397 -- Edges : Edge table of the random graph G
399 function Get_Edges (F : Natural) return Edge_Type;
400 procedure Set_Edges (F : Natural; Item : Edge_Type);
402 --------------
403 -- Vertices --
404 --------------
406 Vertex_Size : constant := 2;
408 Vertices : Table_Id := No_Table;
409 -- Vertex table of the random graph G
411 NV : Natural;
412 -- Number of Vertices
414 function Get_Vertices (F : Natural) return Vertex_Type;
415 procedure Set_Vertices (F : Natural; Item : Vertex_Type);
416 -- Comments needed ???
418 K2V : Float;
419 -- Ratio between Keys and Vertices (parameter of Czech's algorithm)
421 Opt : Optimization;
422 -- Optimization mode (memory vs CPU)
424 Max_Key_Len : Natural := 0;
425 Min_Key_Len : Natural := Max_Word_Length;
426 -- Maximum and minimum of all the word length
428 S : Natural;
429 -- Seed
431 function Type_Size (L : Natural) return Natural;
432 -- Given the last L of an unsigned integer type T, return its size
434 -------------
435 -- Acyclic --
436 -------------
438 function Acyclic return Boolean is
439 Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
441 function Traverse
442 (Edge : Edge_Id;
443 Mark : Vertex_Id) return Boolean;
444 -- Propagate Mark from X to Y. X is already marked. Mark Y and propagate
445 -- it to the edges of Y except the one representing the same key. Return
446 -- False when Y is marked with Mark.
448 --------------
449 -- Traverse --
450 --------------
452 function Traverse
453 (Edge : Edge_Id;
454 Mark : Vertex_Id) return Boolean
456 E : constant Edge_Type := Get_Edges (Edge);
457 K : constant Key_Id := E.Key;
458 Y : constant Vertex_Id := E.Y;
459 M : constant Vertex_Id := Marks (E.Y);
460 V : Vertex_Type;
462 begin
463 if M = Mark then
464 return False;
466 elsif M = No_Vertex then
467 Marks (Y) := Mark;
468 V := Get_Vertices (Y);
470 for J in V.First .. V.Last loop
472 -- Do not propagate to the edge representing the same key
474 if Get_Edges (J).Key /= K
475 and then not Traverse (J, Mark)
476 then
477 return False;
478 end if;
479 end loop;
480 end if;
482 return True;
483 end Traverse;
485 Edge : Edge_Type;
487 -- Start of processing for Acyclic
489 begin
490 -- Edges valid range is
492 for J in 1 .. Edges_Len - 1 loop
494 Edge := Get_Edges (J);
496 -- Mark X of E when it has not been already done
498 if Marks (Edge.X) = No_Vertex then
499 Marks (Edge.X) := Edge.X;
500 end if;
502 -- Traverse E when this has not already been done
504 if Marks (Edge.Y) = No_Vertex
505 and then not Traverse (J, Edge.X)
506 then
507 return False;
508 end if;
509 end loop;
511 return True;
512 end Acyclic;
514 ---------
515 -- Add --
516 ---------
518 procedure Add (C : Character) is
519 begin
520 Line (Last + 1) := C;
521 Last := Last + 1;
522 end Add;
524 ---------
525 -- Add --
526 ---------
528 procedure Add (S : String) is
529 Len : constant Natural := S'Length;
530 begin
531 Line (Last + 1 .. Last + Len) := S;
532 Last := Last + Len;
533 end Add;
535 --------------
536 -- Allocate --
537 --------------
539 function Allocate (N : Natural; S : Natural := 1) return Table_Id is
540 L : constant Integer := IT.Last;
541 begin
542 IT.Set_Last (L + N * S);
543 return L + 1;
544 end Allocate;
546 ------------------------------
547 -- Apply_Position_Selection --
548 ------------------------------
550 procedure Apply_Position_Selection is
551 begin
552 WT.Set_Last (2 * NK);
553 for J in 0 .. NK - 1 loop
554 declare
555 I_Word : constant Word_Type := WT.Table (Initial (J));
556 R_Word : Word_Type := Null_Word;
557 Index : Natural := I_Word'First - 1;
559 begin
560 -- Select the characters of Word included in the position
561 -- selection.
563 for C in 0 .. Char_Pos_Set_Len - 1 loop
564 exit when I_Word (Get_Char_Pos (C)) = ASCII.NUL;
565 Index := Index + 1;
566 R_Word (Index) := I_Word (Get_Char_Pos (C));
567 end loop;
569 -- Build the new table with the reduced word
571 WT.Table (Reduced (J)) := R_Word;
572 Set_Key (J, (Edge => No_Edge));
573 end;
574 end loop;
575 end Apply_Position_Selection;
577 -------------------------------
578 -- Assign_Values_To_Vertices --
579 -------------------------------
581 procedure Assign_Values_To_Vertices is
582 X : Vertex_Id;
584 procedure Assign (X : Vertex_Id);
585 -- Execute assignment on X's neighbors except the vertex that we are
586 -- coming from which is already assigned.
588 ------------
589 -- Assign --
590 ------------
592 procedure Assign (X : Vertex_Id)
594 E : Edge_Type;
595 V : constant Vertex_Type := Get_Vertices (X);
596 begin
597 for J in V.First .. V.Last loop
598 E := Get_Edges (J);
599 if Get_Graph (E.Y) = -1 then
600 Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
601 Assign (E.Y);
602 end if;
603 end loop;
604 end Assign;
606 -- Start of processing for Assign_Values_To_Vertices
608 begin
609 -- Value -1 denotes an unitialized value as it is supposed to
610 -- be in the range 0 .. NK.
612 if G = No_Table then
613 G_Len := NV;
614 G := Allocate (G_Len, 1);
615 end if;
617 for J in 0 .. G_Len - 1 loop
618 Set_Graph (J, -1);
619 end loop;
621 for K in 0 .. NK - 1 loop
622 X := Get_Edges (Get_Key (K).Edge).X;
624 if Get_Graph (X) = -1 then
625 Set_Graph (X, 0);
626 Assign (X);
627 end if;
628 end loop;
630 for J in 0 .. G_Len - 1 loop
631 if Get_Graph (J) = -1 then
632 Set_Graph (J, 0);
633 end if;
634 end loop;
636 if Verbose then
637 Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
638 end if;
639 end Assign_Values_To_Vertices;
641 -------------
642 -- Compute --
643 -------------
645 procedure Compute
646 (Position : String := Default_Position)
648 Success : Boolean := False;
650 begin
651 NV := Natural (K2V * Float (NK));
653 Keys := Allocate (NK);
655 if Verbose then
656 Put_Initial_Keys (Output, "Initial Key Table");
657 end if;
659 if Position'Length /= 0 then
660 Parse_Position_Selection (Position);
661 else
662 Select_Char_Position;
663 end if;
665 if Verbose then
666 Put_Int_Vector
667 (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
668 end if;
670 Apply_Position_Selection;
672 if Verbose then
673 Put_Reduced_Keys (Output, "Reduced Keys Table");
674 end if;
676 Select_Character_Set;
678 if Verbose then
679 Put_Used_Char_Set (Output, "Character Position Table");
680 end if;
682 -- Perform Czech's algorithm
684 for J in 1 .. NT loop
685 Generate_Mapping_Tables (Opt, S);
686 Compute_Edges_And_Vertices (Opt);
688 -- When graph is not empty (no self-loop from previous operation) and
689 -- not acyclic.
691 if 0 < Edges_Len and then Acyclic then
692 Success := True;
693 exit;
694 end if;
695 end loop;
697 if not Success then
698 raise Too_Many_Tries;
699 end if;
701 Assign_Values_To_Vertices;
702 end Compute;
704 --------------------------------
705 -- Compute_Edges_And_Vertices --
706 --------------------------------
708 procedure Compute_Edges_And_Vertices (Opt : Optimization) is
709 X : Natural;
710 Y : Natural;
711 Key : Key_Type;
712 Edge : Edge_Type;
713 Vertex : Vertex_Type;
714 Not_Acyclic : Boolean := False;
716 procedure Move (From : Natural; To : Natural);
717 function Lt (L, R : Natural) return Boolean;
718 -- Subprograms needed for GNAT.Heap_Sort_A
720 --------
721 -- Lt --
722 --------
724 function Lt (L, R : Natural) return Boolean is
725 EL : constant Edge_Type := Get_Edges (L);
726 ER : constant Edge_Type := Get_Edges (R);
727 begin
728 return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
729 end Lt;
731 ----------
732 -- Move --
733 ----------
735 procedure Move (From : Natural; To : Natural) is
736 begin
737 Set_Edges (To, Get_Edges (From));
738 end Move;
740 -- Start of processing for Compute_Edges_And_Vertices
742 begin
743 -- We store edges from 1 to 2 * NK and leave zero alone in order to use
744 -- GNAT.Heap_Sort_A.
746 Edges_Len := 2 * NK + 1;
748 if Edges = No_Table then
749 Edges := Allocate (Edges_Len, Edge_Size);
750 end if;
752 if Vertices = No_Table then
753 Vertices := Allocate (NV, Vertex_Size);
754 end if;
756 for J in 0 .. NV - 1 loop
757 Set_Vertices (J, (No_Vertex, No_Vertex - 1));
758 end loop;
760 -- For each w, X = f1 (w) and Y = f2 (w)
762 for J in 0 .. NK - 1 loop
763 Key := Get_Key (J);
764 Key.Edge := No_Edge;
765 Set_Key (J, Key);
767 X := Sum (WT.Table (Reduced (J)), T1, Opt);
768 Y := Sum (WT.Table (Reduced (J)), T2, Opt);
770 -- Discard T1 and T2 as soon as we discover a self loop
772 if X = Y then
773 Not_Acyclic := True;
774 exit;
775 end if;
777 -- We store (X, Y) and (Y, X) to ease assignment step
779 Set_Edges (2 * J + 1, (X, Y, J));
780 Set_Edges (2 * J + 2, (Y, X, J));
781 end loop;
783 -- Return an empty graph when self loop detected
785 if Not_Acyclic then
786 Edges_Len := 0;
788 else
789 if Verbose then
790 Put_Edges (Output, "Unsorted Edge Table");
791 Put_Int_Matrix (Output, "Function Table 1", T1,
792 T1_Len, T2_Len);
793 Put_Int_Matrix (Output, "Function Table 2", T2,
794 T1_Len, T2_Len);
795 end if;
797 -- Enforce consistency between edges and keys. Construct Vertices and
798 -- compute the list of neighbors of a vertex First .. Last as Edges
799 -- is sorted by X and then Y. To compute the neighbor list, sort the
800 -- edges.
802 Sort
803 (Edges_Len - 1,
804 Move'Unrestricted_Access,
805 Lt'Unrestricted_Access);
807 if Verbose then
808 Put_Edges (Output, "Sorted Edge Table");
809 Put_Int_Matrix (Output, "Function Table 1", T1,
810 T1_Len, T2_Len);
811 Put_Int_Matrix (Output, "Function Table 2", T2,
812 T1_Len, T2_Len);
813 end if;
815 -- Edges valid range is 1 .. 2 * NK
817 for E in 1 .. Edges_Len - 1 loop
818 Edge := Get_Edges (E);
819 Key := Get_Key (Edge.Key);
821 if Key.Edge = No_Edge then
822 Key.Edge := E;
823 Set_Key (Edge.Key, Key);
824 end if;
826 Vertex := Get_Vertices (Edge.X);
828 if Vertex.First = No_Edge then
829 Vertex.First := E;
830 end if;
832 Vertex.Last := E;
833 Set_Vertices (Edge.X, Vertex);
834 end loop;
836 if Verbose then
837 Put_Reduced_Keys (Output, "Key Table");
838 Put_Edges (Output, "Edge Table");
839 Put_Vertex_Table (Output, "Vertex Table");
840 end if;
841 end if;
842 end Compute_Edges_And_Vertices;
844 ------------
845 -- Define --
846 ------------
848 procedure Define
849 (Name : Table_Name;
850 Item_Size : out Natural;
851 Length_1 : out Natural;
852 Length_2 : out Natural)
854 begin
855 case Name is
856 when Character_Position =>
857 Item_Size := 8;
858 Length_1 := Char_Pos_Set_Len;
859 Length_2 := 0;
861 when Used_Character_Set =>
862 Item_Size := 8;
863 Length_1 := 256;
864 Length_2 := 0;
866 when Function_Table_1
867 | Function_Table_2 =>
868 Item_Size := Type_Size (NV);
869 Length_1 := T1_Len;
870 Length_2 := T2_Len;
872 when Graph_Table =>
873 Item_Size := Type_Size (NK);
874 Length_1 := NV;
875 Length_2 := 0;
876 end case;
877 end Define;
879 --------------
880 -- Finalize --
881 --------------
883 procedure Finalize is
884 begin
885 Free_Tmp_Tables;
887 WT.Release;
888 IT.Release;
890 NK := 0;
891 Max_Key_Len := 0;
892 Min_Key_Len := Max_Word_Length;
893 end Finalize;
895 ---------------------
896 -- Free_Tmp_Tables --
897 ---------------------
899 procedure Free_Tmp_Tables is
900 begin
901 IT.Init;
903 Keys := No_Table;
905 Char_Pos_Set := No_Table;
906 Char_Pos_Set_Len := 0;
908 Used_Char_Set := No_Table;
909 Used_Char_Set_Len := 0;
911 T1 := No_Table;
912 T2 := No_Table;
914 T1_Len := 0;
915 T2_Len := 0;
917 G := No_Table;
918 G_Len := 0;
920 Edges := No_Table;
921 Edges_Len := 0;
923 Vertices := No_Table;
924 NV := 0;
925 end Free_Tmp_Tables;
927 ----------------------------
928 -- Generate_Mapping_Table --
929 ----------------------------
931 procedure Generate_Mapping_Table
932 (Tab : Integer;
933 L1 : Natural;
934 L2 : Natural;
935 Seed : in out Natural)
937 begin
938 for J in 0 .. L1 - 1 loop
939 for K in 0 .. L2 - 1 loop
940 Random (Seed);
941 Set_Table (Tab, J, K, Seed mod NV);
942 end loop;
943 end loop;
944 end Generate_Mapping_Table;
946 -----------------------------
947 -- Generate_Mapping_Tables --
948 -----------------------------
950 procedure Generate_Mapping_Tables
951 (Opt : Optimization;
952 Seed : in out Natural)
954 begin
955 -- If T1 and T2 are already allocated no need to do it twice. Reuse them
956 -- as their size has not changed.
958 if T1 = No_Table and then T2 = No_Table then
959 declare
960 Used_Char_Last : Natural := 0;
961 Used_Char : Natural;
963 begin
964 if Opt = CPU_Time then
965 for P in reverse Character'Range loop
966 Used_Char := Get_Used_Char (P);
967 if Used_Char /= 0 then
968 Used_Char_Last := Used_Char;
969 exit;
970 end if;
971 end loop;
972 end if;
974 T1_Len := Char_Pos_Set_Len;
975 T2_Len := Used_Char_Last + 1;
976 T1 := Allocate (T1_Len * T2_Len);
977 T2 := Allocate (T1_Len * T2_Len);
978 end;
979 end if;
981 Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
982 Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
984 if Verbose then
985 Put_Used_Char_Set (Output, "Used Character Set");
986 Put_Int_Matrix (Output, "Function Table 1", T1,
987 T1_Len, T2_Len);
988 Put_Int_Matrix (Output, "Function Table 2", T2,
989 T1_Len, T2_Len);
990 end if;
991 end Generate_Mapping_Tables;
993 ------------------
994 -- Get_Char_Pos --
995 ------------------
997 function Get_Char_Pos (P : Natural) return Natural is
998 N : constant Natural := Char_Pos_Set + P;
999 begin
1000 return IT.Table (N);
1001 end Get_Char_Pos;
1003 ---------------
1004 -- Get_Edges --
1005 ---------------
1007 function Get_Edges (F : Natural) return Edge_Type is
1008 N : constant Natural := Edges + (F * Edge_Size);
1009 E : Edge_Type;
1010 begin
1011 E.X := IT.Table (N);
1012 E.Y := IT.Table (N + 1);
1013 E.Key := IT.Table (N + 2);
1014 return E;
1015 end Get_Edges;
1017 ---------------
1018 -- Get_Graph --
1019 ---------------
1021 function Get_Graph (N : Natural) return Integer is
1022 begin
1023 return IT.Table (G + N);
1024 end Get_Graph;
1026 -------------
1027 -- Get_Key --
1028 -------------
1030 function Get_Key (N : Key_Id) return Key_Type is
1031 K : Key_Type;
1032 begin
1033 K.Edge := IT.Table (Keys + N);
1034 return K;
1035 end Get_Key;
1037 ---------------
1038 -- Get_Table --
1039 ---------------
1041 function Get_Table (T : Integer; X, Y : Natural) return Natural is
1042 N : constant Natural := T + (Y * T1_Len) + X;
1043 begin
1044 return IT.Table (N);
1045 end Get_Table;
1047 -------------------
1048 -- Get_Used_Char --
1049 -------------------
1051 function Get_Used_Char (C : Character) return Natural is
1052 N : constant Natural := Used_Char_Set + Character'Pos (C);
1053 begin
1054 return IT.Table (N);
1055 end Get_Used_Char;
1057 ------------------
1058 -- Get_Vertices --
1059 ------------------
1061 function Get_Vertices (F : Natural) return Vertex_Type is
1062 N : constant Natural := Vertices + (F * Vertex_Size);
1063 V : Vertex_Type;
1064 begin
1065 V.First := IT.Table (N);
1066 V.Last := IT.Table (N + 1);
1067 return V;
1068 end Get_Vertices;
1070 -----------
1071 -- Image --
1072 -----------
1074 function Image (Int : Integer; W : Natural := 0) return String is
1075 B : String (1 .. 32);
1076 L : Natural := 0;
1078 procedure Img (V : Natural);
1079 -- Compute image of V into B, starting at B (L), incrementing L
1081 ---------
1082 -- Img --
1083 ---------
1085 procedure Img (V : Natural) is
1086 begin
1087 if V > 9 then
1088 Img (V / 10);
1089 end if;
1091 L := L + 1;
1092 B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
1093 end Img;
1095 -- Start of processing for Image
1097 begin
1098 if Int < 0 then
1099 L := L + 1;
1100 B (L) := '-';
1101 Img (-Int);
1102 else
1103 Img (Int);
1104 end if;
1106 return Image (B (1 .. L), W);
1107 end Image;
1109 -----------
1110 -- Image --
1111 -----------
1113 function Image (Str : String; W : Natural := 0) return String is
1114 Len : constant Natural := Str'Length;
1115 Max : Natural := Len;
1117 begin
1118 if Max < W then
1119 Max := W;
1120 end if;
1122 declare
1123 Buf : String (1 .. Max) := (1 .. Max => ' ');
1125 begin
1126 for J in 0 .. Len - 1 loop
1127 Buf (Max - Len + 1 + J) := Str (Str'First + J);
1128 end loop;
1130 return Buf;
1131 end;
1132 end Image;
1134 -------------
1135 -- Initial --
1136 -------------
1138 function Initial (K : Key_Id) return Word_Id is
1139 begin
1140 return K;
1141 end Initial;
1143 ----------------
1144 -- Initialize --
1145 ----------------
1147 procedure Initialize
1148 (Seed : Natural;
1149 K_To_V : Float := Default_K_To_V;
1150 Optim : Optimization := CPU_Time;
1151 Tries : Positive := Default_Tries)
1153 begin
1154 -- Free previous tables (the settings may have changed between two runs)
1156 Free_Tmp_Tables;
1158 if K_To_V <= 2.0 then
1159 Put (Output, "K to V ratio cannot be lower than 2.0");
1160 New_Line (Output);
1161 raise Program_Error;
1162 end if;
1164 S := Seed;
1165 K2V := K_To_V;
1166 Opt := Optim;
1167 NT := Tries;
1168 end Initialize;
1170 ------------
1171 -- Insert --
1172 ------------
1174 procedure Insert
1175 (Value : String)
1177 Word : Word_Type := Null_Word;
1178 Len : constant Natural := Value'Length;
1180 begin
1181 Word (1 .. Len) := Value (Value'First .. Value'First + Len - 1);
1182 WT.Set_Last (NK);
1183 WT.Table (NK) := Word;
1184 NK := NK + 1;
1185 NV := Natural (Float (NK) * K2V);
1187 -- Do not accept a value of K2V too close to 2.0 such that once rounded
1188 -- up, NV = 2 * NK because the algorithm would not converge.
1190 if NV <= 2 * NK then
1191 NV := 2 * NK + 1;
1192 end if;
1194 if Max_Key_Len < Len then
1195 Max_Key_Len := Len;
1196 end if;
1198 if Len < Min_Key_Len then
1199 Min_Key_Len := Len;
1200 end if;
1201 end Insert;
1203 --------------
1204 -- New_Line --
1205 --------------
1207 procedure New_Line (File : File_Descriptor) is
1208 begin
1209 if Write (File, EOL'Address, 1) /= 1 then
1210 raise Program_Error;
1211 end if;
1212 end New_Line;
1214 ------------------------------
1215 -- Parse_Position_Selection --
1216 ------------------------------
1218 procedure Parse_Position_Selection (Argument : String) is
1219 N : Natural := Argument'First;
1220 L : constant Natural := Argument'Last;
1221 M : constant Natural := Max_Key_Len;
1223 T : array (1 .. M) of Boolean := (others => False);
1225 function Parse_Index return Natural;
1226 -- Parse argument starting at index N to find an index
1228 -----------------
1229 -- Parse_Index --
1230 -----------------
1232 function Parse_Index return Natural is
1233 C : Character := Argument (N);
1234 V : Natural := 0;
1236 begin
1237 if C = '$' then
1238 N := N + 1;
1239 return M;
1240 end if;
1242 if C not in '0' .. '9' then
1243 Raise_Exception
1244 (Program_Error'Identity, "cannot read position argument");
1245 end if;
1247 while C in '0' .. '9' loop
1248 V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
1249 N := N + 1;
1250 exit when L < N;
1251 C := Argument (N);
1252 end loop;
1254 return V;
1255 end Parse_Index;
1257 -- Start of processing for Parse_Position_Selection
1259 begin
1261 -- Empty specification means all the positions
1263 if L < N then
1264 Char_Pos_Set_Len := M;
1265 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1267 for C in 0 .. Char_Pos_Set_Len - 1 loop
1268 Set_Char_Pos (C, C + 1);
1269 end loop;
1271 else
1272 loop
1273 declare
1274 First, Last : Natural;
1276 begin
1277 First := Parse_Index;
1278 Last := First;
1280 -- Detect a range
1282 if N <= L and then Argument (N) = '-' then
1283 N := N + 1;
1284 Last := Parse_Index;
1285 end if;
1287 -- Include the positions in the selection
1289 for J in First .. Last loop
1290 T (J) := True;
1291 end loop;
1292 end;
1294 exit when L < N;
1296 if Argument (N) /= ',' then
1297 Raise_Exception
1298 (Program_Error'Identity, "cannot read position argument");
1299 end if;
1301 N := N + 1;
1302 end loop;
1304 -- Compute position selection length
1306 N := 0;
1307 for J in T'Range loop
1308 if T (J) then
1309 N := N + 1;
1310 end if;
1311 end loop;
1313 -- Fill position selection
1315 Char_Pos_Set_Len := N;
1316 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1318 N := 0;
1319 for J in T'Range loop
1320 if T (J) then
1321 Set_Char_Pos (N, J);
1322 N := N + 1;
1323 end if;
1324 end loop;
1325 end if;
1326 end Parse_Position_Selection;
1328 -------------
1329 -- Produce --
1330 -------------
1332 procedure Produce (Pkg_Name : String := Default_Pkg_Name) is
1333 File : File_Descriptor;
1335 Status : Boolean;
1336 -- For call to Close
1338 function Array_Img (N, T, R1 : String; R2 : String := "") return String;
1339 -- Return string "N : constant array (R1[, R2]) of T;"
1341 function Range_Img (F, L : Natural; T : String := "") return String;
1342 -- Return string "[T range ]F .. L"
1344 function Type_Img (L : Natural) return String;
1345 -- Return the larger unsigned type T such that T'Last < L
1347 ---------------
1348 -- Array_Img --
1349 ---------------
1351 function Array_Img
1352 (N, T, R1 : String;
1353 R2 : String := "") return String
1355 begin
1356 Last := 0;
1357 Add (" ");
1358 Add (N);
1359 Add (" : constant array (");
1360 Add (R1);
1362 if R2 /= "" then
1363 Add (", ");
1364 Add (R2);
1365 end if;
1367 Add (") of ");
1368 Add (T);
1369 Add (" :=");
1370 return Line (1 .. Last);
1371 end Array_Img;
1373 ---------------
1374 -- Range_Img --
1375 ---------------
1377 function Range_Img (F, L : Natural; T : String := "") return String is
1378 FI : constant String := Image (F);
1379 FL : constant Natural := FI'Length;
1380 LI : constant String := Image (L);
1381 LL : constant Natural := LI'Length;
1382 TL : constant Natural := T'Length;
1383 RI : String (1 .. TL + 7 + FL + 4 + LL);
1384 Len : Natural := 0;
1386 begin
1387 if TL /= 0 then
1388 RI (Len + 1 .. Len + TL) := T;
1389 Len := Len + TL;
1390 RI (Len + 1 .. Len + 7) := " range ";
1391 Len := Len + 7;
1392 end if;
1394 RI (Len + 1 .. Len + FL) := FI;
1395 Len := Len + FL;
1396 RI (Len + 1 .. Len + 4) := " .. ";
1397 Len := Len + 4;
1398 RI (Len + 1 .. Len + LL) := LI;
1399 Len := Len + LL;
1400 return RI (1 .. Len);
1401 end Range_Img;
1403 --------------
1404 -- Type_Img --
1405 --------------
1407 function Type_Img (L : Natural) return String is
1408 S : constant String := Image (Type_Size (L));
1409 U : String := "Unsigned_ ";
1410 N : Natural := 9;
1412 begin
1413 for J in S'Range loop
1414 N := N + 1;
1415 U (N) := S (J);
1416 end loop;
1418 return U (1 .. N);
1419 end Type_Img;
1421 F : Natural;
1422 L : Natural;
1423 P : Natural;
1425 PLen : constant Natural := Pkg_Name'Length;
1426 FName : String (1 .. PLen + 4);
1428 -- Start of processing for Produce
1430 begin
1431 FName (1 .. PLen) := Pkg_Name;
1432 for J in 1 .. PLen loop
1433 if FName (J) in 'A' .. 'Z' then
1434 FName (J) := Character'Val (Character'Pos (FName (J))
1435 - Character'Pos ('A')
1436 + Character'Pos ('a'));
1438 elsif FName (J) = '.' then
1439 FName (J) := '-';
1440 end if;
1441 end loop;
1443 FName (PLen + 1 .. PLen + 4) := ".ads";
1445 File := Create_File (FName, Text);
1446 Put (File, "package ");
1447 Put (File, Pkg_Name);
1448 Put (File, " is");
1449 New_Line (File);
1450 Put (File, " function Hash (S : String) return Natural;");
1451 New_Line (File);
1452 Put (File, "end ");
1453 Put (File, Pkg_Name);
1454 Put (File, ";");
1455 New_Line (File);
1456 Close (File, Status);
1458 if not Status then
1459 raise Device_Error;
1460 end if;
1462 FName (PLen + 4) := 'b';
1464 File := Create_File (FName, Text);
1465 Put (File, "with Interfaces; use Interfaces;");
1466 New_Line (File);
1467 New_Line (File);
1468 Put (File, "package body ");
1469 Put (File, Pkg_Name);
1470 Put (File, " is");
1471 New_Line (File);
1472 New_Line (File);
1474 if Opt = CPU_Time then
1475 Put (File, Array_Img ("C", Type_Img (256), "Character"));
1476 New_Line (File);
1478 F := Character'Pos (Character'First);
1479 L := Character'Pos (Character'Last);
1481 for J in Character'Range loop
1482 P := Get_Used_Char (J);
1483 Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
1484 end loop;
1486 New_Line (File);
1487 end if;
1489 F := 0;
1490 L := Char_Pos_Set_Len - 1;
1492 Put (File, Array_Img ("P", "Natural", Range_Img (F, L)));
1493 New_Line (File);
1495 for J in F .. L loop
1496 Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
1497 end loop;
1499 New_Line (File);
1501 if Opt = CPU_Time then
1502 Put_Int_Matrix
1503 (File,
1504 Array_Img ("T1", Type_Img (NV),
1505 Range_Img (0, T1_Len - 1),
1506 Range_Img (0, T2_Len - 1, Type_Img (256))),
1507 T1, T1_Len, T2_Len);
1509 else
1510 Put_Int_Matrix
1511 (File,
1512 Array_Img ("T1", Type_Img (NV),
1513 Range_Img (0, T1_Len - 1)),
1514 T1, T1_Len, 0);
1515 end if;
1517 New_Line (File);
1519 if Opt = CPU_Time then
1520 Put_Int_Matrix
1521 (File,
1522 Array_Img ("T2", Type_Img (NV),
1523 Range_Img (0, T1_Len - 1),
1524 Range_Img (0, T2_Len - 1, Type_Img (256))),
1525 T2, T1_Len, T2_Len);
1527 else
1528 Put_Int_Matrix
1529 (File,
1530 Array_Img ("T2", Type_Img (NV),
1531 Range_Img (0, T1_Len - 1)),
1532 T2, T1_Len, 0);
1533 end if;
1535 New_Line (File);
1537 Put_Int_Vector
1538 (File,
1539 Array_Img ("G", Type_Img (NK),
1540 Range_Img (0, G_Len - 1)),
1541 G, G_Len);
1542 New_Line (File);
1544 Put (File, " function Hash (S : String) return Natural is");
1545 New_Line (File);
1546 Put (File, " F : constant Natural := S'First - 1;");
1547 New_Line (File);
1548 Put (File, " L : constant Natural := S'Length;");
1549 New_Line (File);
1550 Put (File, " F1, F2 : Natural := 0;");
1551 New_Line (File);
1553 Put (File, " J : ");
1555 if Opt = CPU_Time then
1556 Put (File, Type_Img (256));
1557 else
1558 Put (File, "Natural");
1559 end if;
1561 Put (File, ";");
1562 New_Line (File);
1564 Put (File, " begin");
1565 New_Line (File);
1566 Put (File, " for K in P'Range loop");
1567 New_Line (File);
1568 Put (File, " exit when L < P (K);");
1569 New_Line (File);
1570 Put (File, " J := ");
1572 if Opt = CPU_Time then
1573 Put (File, "C");
1574 else
1575 Put (File, "Character'Pos");
1576 end if;
1578 Put (File, " (S (P (K) + F));");
1579 New_Line (File);
1581 Put (File, " F1 := (F1 + Natural (T1 (K");
1583 if Opt = CPU_Time then
1584 Put (File, ", J");
1585 end if;
1587 Put (File, "))");
1589 if Opt = Memory_Space then
1590 Put (File, " * J");
1591 end if;
1593 Put (File, ") mod ");
1594 Put (File, Image (NV));
1595 Put (File, ";");
1596 New_Line (File);
1598 Put (File, " F2 := (F2 + Natural (T2 (K");
1600 if Opt = CPU_Time then
1601 Put (File, ", J");
1602 end if;
1604 Put (File, "))");
1606 if Opt = Memory_Space then
1607 Put (File, " * J");
1608 end if;
1610 Put (File, ") mod ");
1611 Put (File, Image (NV));
1612 Put (File, ";");
1613 New_Line (File);
1615 Put (File, " end loop;");
1616 New_Line (File);
1618 Put (File,
1619 " return (Natural (G (F1)) + Natural (G (F2))) mod ");
1621 Put (File, Image (NK));
1622 Put (File, ";");
1623 New_Line (File);
1624 Put (File, " end Hash;");
1625 New_Line (File);
1626 New_Line (File);
1627 Put (File, "end ");
1628 Put (File, Pkg_Name);
1629 Put (File, ";");
1630 New_Line (File);
1631 Close (File, Status);
1633 if not Status then
1634 raise Device_Error;
1635 end if;
1636 end Produce;
1638 ---------
1639 -- Put --
1640 ---------
1642 procedure Put (File : File_Descriptor; Str : String) is
1643 Len : constant Natural := Str'Length;
1645 begin
1646 if Write (File, Str'Address, Len) /= Len then
1647 raise Program_Error;
1648 end if;
1649 end Put;
1651 ---------
1652 -- Put --
1653 ---------
1655 procedure Put
1656 (F : File_Descriptor;
1657 S : String;
1658 F1 : Natural;
1659 L1 : Natural;
1660 C1 : Natural;
1661 F2 : Natural;
1662 L2 : Natural;
1663 C2 : Natural)
1665 Len : constant Natural := S'Length;
1667 procedure Flush;
1668 -- Write current line, followed by LF
1670 -----------
1671 -- Flush --
1672 -----------
1674 procedure Flush is
1675 begin
1676 Put (F, Line (1 .. Last));
1677 New_Line (F);
1678 Last := 0;
1679 end Flush;
1681 -- Start of processing for Put
1683 begin
1684 if C1 = F1 and then C2 = F2 then
1685 Last := 0;
1686 end if;
1688 if Last + Len + 3 > Max then
1689 Flush;
1690 end if;
1692 if Last = 0 then
1693 Line (Last + 1 .. Last + 5) := " ";
1694 Last := Last + 5;
1696 if F1 <= L1 then
1697 if C1 = F1 and then C2 = F2 then
1698 Add ('(');
1699 if F1 = L1 then
1700 Add ("0 .. 0 => ");
1701 end if;
1702 else
1703 Add (' ');
1704 end if;
1705 end if;
1706 end if;
1708 if C2 = F2 then
1709 Add ('(');
1710 if F2 = L2 then
1711 Add ("0 .. 0 => ");
1712 end if;
1713 else
1714 Add (' ');
1715 end if;
1717 Line (Last + 1 .. Last + Len) := S;
1718 Last := Last + Len;
1720 if C2 = L2 then
1721 Add (')');
1723 if F1 > L1 then
1724 Add (';');
1725 Flush;
1726 elsif C1 /= L1 then
1727 Add (',');
1728 Flush;
1729 else
1730 Add (')');
1731 Add (';');
1732 Flush;
1733 end if;
1735 else
1736 Add (',');
1737 end if;
1738 end Put;
1740 ---------------
1741 -- Put_Edges --
1742 ---------------
1744 procedure Put_Edges
1745 (File : File_Descriptor;
1746 Title : String)
1748 E : Edge_Type;
1749 F1 : constant Natural := 1;
1750 L1 : constant Natural := Edges_Len - 1;
1751 M : constant Natural := Max / 5;
1753 begin
1754 Put (File, Title);
1755 New_Line (File);
1757 -- Edges valid range is 1 .. Edge_Len - 1
1759 for J in F1 .. L1 loop
1760 E := Get_Edges (J);
1761 Put (File, Image (J, M), F1, L1, J, 1, 4, 1);
1762 Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2);
1763 Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3);
1764 Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
1765 end loop;
1766 end Put_Edges;
1768 ----------------------
1769 -- Put_Initial_Keys --
1770 ----------------------
1772 procedure Put_Initial_Keys
1773 (File : File_Descriptor;
1774 Title : String)
1776 F1 : constant Natural := 0;
1777 L1 : constant Natural := NK - 1;
1778 M : constant Natural := Max / 5;
1779 K : Key_Type;
1781 begin
1782 Put (File, Title);
1783 New_Line (File);
1785 for J in F1 .. L1 loop
1786 K := Get_Key (J);
1787 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
1788 Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
1789 Put (File, WT.Table (Initial (J)), F1, L1, J, 1, 3, 3);
1790 end loop;
1791 end Put_Initial_Keys;
1793 --------------------
1794 -- Put_Int_Matrix --
1795 --------------------
1797 procedure Put_Int_Matrix
1798 (File : File_Descriptor;
1799 Title : String;
1800 Table : Integer;
1801 Len_1 : Natural;
1802 Len_2 : Natural)
1804 F1 : constant Integer := 0;
1805 L1 : constant Integer := Len_1 - 1;
1806 F2 : constant Integer := 0;
1807 L2 : constant Integer := Len_2 - 1;
1808 I : Natural;
1810 begin
1811 Put (File, Title);
1812 New_Line (File);
1814 if Len_2 = 0 then
1815 for J in F1 .. L1 loop
1816 I := IT.Table (Table + J);
1817 Put (File, Image (I), 1, 0, 1, F1, L1, J);
1818 end loop;
1820 else
1821 for J in F1 .. L1 loop
1822 for K in F2 .. L2 loop
1823 I := IT.Table (Table + J + K * Len_1);
1824 Put (File, Image (I), F1, L1, J, F2, L2, K);
1825 end loop;
1826 end loop;
1827 end if;
1828 end Put_Int_Matrix;
1830 --------------------
1831 -- Put_Int_Vector --
1832 --------------------
1834 procedure Put_Int_Vector
1835 (File : File_Descriptor;
1836 Title : String;
1837 Vector : Integer;
1838 Length : Natural)
1840 F2 : constant Natural := 0;
1841 L2 : constant Natural := Length - 1;
1843 begin
1844 Put (File, Title);
1845 New_Line (File);
1847 for J in F2 .. L2 loop
1848 Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
1849 end loop;
1850 end Put_Int_Vector;
1852 ----------------------
1853 -- Put_Reduced_Keys --
1854 ----------------------
1856 procedure Put_Reduced_Keys
1857 (File : File_Descriptor;
1858 Title : String)
1860 F1 : constant Natural := 0;
1861 L1 : constant Natural := NK - 1;
1862 M : constant Natural := Max / 5;
1863 K : Key_Type;
1865 begin
1866 Put (File, Title);
1867 New_Line (File);
1869 for J in F1 .. L1 loop
1870 K := Get_Key (J);
1871 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
1872 Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
1873 Put (File, WT.Table (Reduced (J)), F1, L1, J, 1, 3, 3);
1874 end loop;
1875 end Put_Reduced_Keys;
1877 -----------------------
1878 -- Put_Used_Char_Set --
1879 -----------------------
1881 procedure Put_Used_Char_Set
1882 (File : File_Descriptor;
1883 Title : String)
1885 F : constant Natural := Character'Pos (Character'First);
1886 L : constant Natural := Character'Pos (Character'Last);
1888 begin
1889 Put (File, Title);
1890 New_Line (File);
1892 for J in Character'Range loop
1894 (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
1895 end loop;
1896 end Put_Used_Char_Set;
1898 ----------------------
1899 -- Put_Vertex_Table --
1900 ----------------------
1902 procedure Put_Vertex_Table
1903 (File : File_Descriptor;
1904 Title : String)
1906 F1 : constant Natural := 0;
1907 L1 : constant Natural := NV - 1;
1908 M : constant Natural := Max / 4;
1909 V : Vertex_Type;
1911 begin
1912 Put (File, Title);
1913 New_Line (File);
1915 for J in F1 .. L1 loop
1916 V := Get_Vertices (J);
1917 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
1918 Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
1919 Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3);
1920 end loop;
1921 end Put_Vertex_Table;
1923 ------------
1924 -- Random --
1925 ------------
1927 procedure Random (Seed : in out Natural)
1929 -- Park & Miller Standard Minimal using Schrage's algorithm to avoid
1930 -- overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
1932 R : Natural;
1933 Q : Natural;
1934 X : Integer;
1936 begin
1937 R := Seed mod 127773;
1938 Q := Seed / 127773;
1939 X := 16807 * R - 2836 * Q;
1941 if X < 0 then
1942 Seed := X + 2147483647;
1943 else
1944 Seed := X;
1945 end if;
1946 end Random;
1948 -------------
1949 -- Reduced --
1950 -------------
1952 function Reduced (K : Key_Id) return Word_Id is
1953 begin
1954 return K + NK + 1;
1955 end Reduced;
1957 --------------------------
1958 -- Select_Char_Position --
1959 --------------------------
1961 procedure Select_Char_Position is
1963 type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
1965 procedure Build_Identical_Keys_Sets
1966 (Table : in out Vertex_Table_Type;
1967 Last : in out Natural;
1968 Pos : Natural);
1969 -- Build a list of keys subsets that are identical with the current
1970 -- position selection plus Pos. Once this routine is called, reduced
1971 -- words are sorted by subsets and each item (First, Last) in Sets
1972 -- defines the range of identical keys.
1974 function Count_Different_Keys
1975 (Table : Vertex_Table_Type;
1976 Last : Natural;
1977 Pos : Natural) return Natural;
1978 -- For each subset in Sets, count the number of different keys if we add
1979 -- Pos to the current position selection.
1981 Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
1982 Last_Sel_Pos : Natural := 0;
1983 Max_Sel_Pos : Natural := 0;
1985 -------------------------------
1986 -- Build_Identical_Keys_Sets --
1987 -------------------------------
1989 procedure Build_Identical_Keys_Sets
1990 (Table : in out Vertex_Table_Type;
1991 Last : in out Natural;
1992 Pos : Natural)
1994 S : constant Vertex_Table_Type := Table (1 .. Last);
1995 C : constant Natural := Pos;
1996 -- Shortcuts
1998 F : Integer;
1999 L : Integer;
2000 -- First and last words of a subset
2002 Offset : Natural;
2003 -- GNAT.Heap_Sort assumes that the first array index is 1. Offset
2004 -- defines the translation to operate.
2006 function Lt (L, R : Natural) return Boolean;
2007 procedure Move (From : Natural; To : Natural);
2008 -- Subprograms needed by GNAT.Heap_Sort_A
2010 --------
2011 -- Lt --
2012 --------
2014 function Lt (L, R : Natural) return Boolean is
2015 C : constant Natural := Pos;
2016 Left : Natural;
2017 Right : Natural;
2019 begin
2020 if L = 0 then
2021 Left := Reduced (0) - 1;
2022 Right := Offset + R;
2023 elsif R = 0 then
2024 Left := Offset + L;
2025 Right := Reduced (0) - 1;
2026 else
2027 Left := Offset + L;
2028 Right := Offset + R;
2029 end if;
2031 return WT.Table (Left)(C) < WT.Table (Right)(C);
2032 end Lt;
2034 ----------
2035 -- Move --
2036 ----------
2038 procedure Move (From : Natural; To : Natural) is
2039 Target, Source : Natural;
2041 begin
2042 if From = 0 then
2043 Source := Reduced (0) - 1;
2044 Target := Offset + To;
2045 elsif To = 0 then
2046 Source := Offset + From;
2047 Target := Reduced (0) - 1;
2048 else
2049 Source := Offset + From;
2050 Target := Offset + To;
2051 end if;
2053 WT.Table (Target) := WT.Table (Source);
2054 end Move;
2056 -- Start of processing for Build_Identical_Key_Sets
2058 begin
2059 Last := 0;
2061 -- For each subset in S, extract the new subsets we have by adding C
2062 -- in the position selection.
2064 for J in S'Range loop
2065 if S (J).First = S (J).Last then
2066 F := S (J).First;
2067 L := S (J).Last;
2068 Last := Last + 1;
2069 Table (Last) := (F, L);
2071 else
2072 Offset := Reduced (S (J).First) - 1;
2073 Sort
2074 (S (J).Last - S (J).First + 1,
2075 Move'Unrestricted_Access,
2076 Lt'Unrestricted_Access);
2078 F := S (J).First;
2079 L := F;
2080 for N in S (J).First .. S (J).Last loop
2082 -- For the last item, close the last subset
2084 if N = S (J).Last then
2085 Last := Last + 1;
2086 Table (Last) := (F, N);
2088 -- Two contiguous words are identical when they have the
2089 -- same Cth character.
2091 elsif WT.Table (Reduced (N))(C) =
2092 WT.Table (Reduced (N + 1))(C)
2093 then
2094 L := N + 1;
2096 -- Find a new subset of identical keys. Store the current
2097 -- one and create a new subset.
2099 else
2100 Last := Last + 1;
2101 Table (Last) := (F, L);
2102 F := N + 1;
2103 L := F;
2104 end if;
2105 end loop;
2106 end if;
2107 end loop;
2108 end Build_Identical_Keys_Sets;
2110 --------------------------
2111 -- Count_Different_Keys --
2112 --------------------------
2114 function Count_Different_Keys
2115 (Table : Vertex_Table_Type;
2116 Last : Natural;
2117 Pos : Natural) return Natural
2119 N : array (Character) of Natural;
2120 C : Character;
2121 T : Natural := 0;
2123 begin
2124 -- For each subset, count the number of words that are still
2125 -- different when we include Pos in the position selection. Only
2126 -- focus on this position as the other positions already produce
2127 -- identical keys.
2129 for S in 1 .. Last loop
2131 -- Count the occurrences of the different characters
2133 N := (others => 0);
2134 for K in Table (S).First .. Table (S).Last loop
2135 C := WT.Table (Reduced (K))(Pos);
2136 N (C) := N (C) + 1;
2137 end loop;
2139 -- Update the number of different keys. Each character used
2140 -- denotes a different key.
2142 for J in N'Range loop
2143 if N (J) > 0 then
2144 T := T + 1;
2145 end if;
2146 end loop;
2147 end loop;
2149 return T;
2150 end Count_Different_Keys;
2152 -- Start of processing for Select_Char_Position
2154 begin
2155 -- Initialize the reduced words set
2157 WT.Set_Last (2 * NK);
2158 for K in 0 .. NK - 1 loop
2159 WT.Table (Reduced (K)) := WT.Table (Initial (K));
2160 end loop;
2162 declare
2163 Differences : Natural;
2164 Max_Differences : Natural := 0;
2165 Old_Differences : Natural;
2166 Max_Diff_Sel_Pos : Natural := 0; -- init to kill warning
2167 Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
2168 Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
2169 Same_Keys_Sets_Last : Natural := 1;
2171 begin
2172 for C in Sel_Position'Range loop
2173 Sel_Position (C) := C;
2174 end loop;
2176 Same_Keys_Sets_Table (1) := (0, NK - 1);
2178 loop
2179 -- Preserve maximum number of different keys and check later on
2180 -- that this value is strictly incrementing. Otherwise, it means
2181 -- that two keys are stricly identical.
2183 Old_Differences := Max_Differences;
2185 -- The first position should not exceed the minimum key length.
2186 -- Otherwise, we may end up with an empty word once reduced.
2188 if Last_Sel_Pos = 0 then
2189 Max_Sel_Pos := Min_Key_Len;
2190 else
2191 Max_Sel_Pos := Max_Key_Len;
2192 end if;
2194 -- Find which position increases more the number of differences
2196 for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
2197 Differences := Count_Different_Keys
2198 (Same_Keys_Sets_Table,
2199 Same_Keys_Sets_Last,
2200 Sel_Position (J));
2202 if Verbose then
2203 Put (Output,
2204 "Selecting position" & Sel_Position (J)'Img &
2205 " results in" & Differences'Img &
2206 " differences");
2207 New_Line (Output);
2208 end if;
2210 if Differences > Max_Differences then
2211 Max_Differences := Differences;
2212 Max_Diff_Sel_Pos := Sel_Position (J);
2213 Max_Diff_Sel_Pos_Idx := J;
2214 end if;
2215 end loop;
2217 if Old_Differences = Max_Differences then
2218 Raise_Exception
2219 (Program_Error'Identity, "some keys are identical");
2220 end if;
2222 -- Insert selected position and sort Sel_Position table
2224 Last_Sel_Pos := Last_Sel_Pos + 1;
2225 Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
2226 Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
2227 Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
2229 for P in 1 .. Last_Sel_Pos - 1 loop
2230 if Max_Diff_Sel_Pos < Sel_Position (P) then
2231 Sel_Position (P + 1 .. Last_Sel_Pos) :=
2232 Sel_Position (P .. Last_Sel_Pos - 1);
2233 Sel_Position (P) := Max_Diff_Sel_Pos;
2234 exit;
2235 end if;
2236 end loop;
2238 exit when Max_Differences = NK;
2240 Build_Identical_Keys_Sets
2241 (Same_Keys_Sets_Table,
2242 Same_Keys_Sets_Last,
2243 Max_Diff_Sel_Pos);
2245 if Verbose then
2246 Put (Output,
2247 "Selecting position" & Max_Diff_Sel_Pos'Img &
2248 " results in" & Max_Differences'Img &
2249 " differences");
2250 New_Line (Output);
2251 Put (Output, "--");
2252 New_Line (Output);
2253 for J in 1 .. Same_Keys_Sets_Last loop
2254 for K in
2255 Same_Keys_Sets_Table (J).First ..
2256 Same_Keys_Sets_Table (J).Last
2257 loop
2258 Put (Output, WT.Table (Reduced (K)));
2259 New_Line (Output);
2260 end loop;
2261 Put (Output, "--");
2262 New_Line (Output);
2263 end loop;
2264 end if;
2265 end loop;
2266 end;
2268 Char_Pos_Set_Len := Last_Sel_Pos;
2269 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
2271 for C in 1 .. Last_Sel_Pos loop
2272 Set_Char_Pos (C - 1, Sel_Position (C));
2273 end loop;
2274 end Select_Char_Position;
2276 --------------------------
2277 -- Select_Character_Set --
2278 --------------------------
2280 procedure Select_Character_Set
2282 Last : Natural := 0;
2283 Used : array (Character) of Boolean := (others => False);
2284 Char : Character;
2286 begin
2287 for J in 0 .. NK - 1 loop
2288 for K in 0 .. Char_Pos_Set_Len - 1 loop
2289 Char := WT.Table (Initial (J))(Get_Char_Pos (K));
2290 exit when Char = ASCII.NUL;
2291 Used (Char) := True;
2292 end loop;
2293 end loop;
2295 Used_Char_Set_Len := 256;
2296 Used_Char_Set := Allocate (Used_Char_Set_Len);
2298 for J in Used'Range loop
2299 if Used (J) then
2300 Set_Used_Char (J, Last);
2301 Last := Last + 1;
2302 else
2303 Set_Used_Char (J, 0);
2304 end if;
2305 end loop;
2306 end Select_Character_Set;
2308 ------------------
2309 -- Set_Char_Pos --
2310 ------------------
2312 procedure Set_Char_Pos (P : Natural; Item : Natural) is
2313 N : constant Natural := Char_Pos_Set + P;
2314 begin
2315 IT.Table (N) := Item;
2316 end Set_Char_Pos;
2318 ---------------
2319 -- Set_Edges --
2320 ---------------
2322 procedure Set_Edges (F : Natural; Item : Edge_Type) is
2323 N : constant Natural := Edges + (F * Edge_Size);
2324 begin
2325 IT.Table (N) := Item.X;
2326 IT.Table (N + 1) := Item.Y;
2327 IT.Table (N + 2) := Item.Key;
2328 end Set_Edges;
2330 ---------------
2331 -- Set_Graph --
2332 ---------------
2334 procedure Set_Graph (N : Natural; Item : Integer) is
2335 begin
2336 IT.Table (G + N) := Item;
2337 end Set_Graph;
2339 -------------
2340 -- Set_Key --
2341 -------------
2343 procedure Set_Key (N : Key_Id; Item : Key_Type) is
2344 begin
2345 IT.Table (Keys + N) := Item.Edge;
2346 end Set_Key;
2348 ---------------
2349 -- Set_Table --
2350 ---------------
2352 procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
2353 N : constant Natural := T + ((Y * T1_Len) + X);
2354 begin
2355 IT.Table (N) := Item;
2356 end Set_Table;
2358 -------------------
2359 -- Set_Used_Char --
2360 -------------------
2362 procedure Set_Used_Char (C : Character; Item : Natural) is
2363 N : constant Natural := Used_Char_Set + Character'Pos (C);
2364 begin
2365 IT.Table (N) := Item;
2366 end Set_Used_Char;
2368 ------------------
2369 -- Set_Vertices --
2370 ------------------
2372 procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
2373 N : constant Natural := Vertices + (F * Vertex_Size);
2374 begin
2375 IT.Table (N) := Item.First;
2376 IT.Table (N + 1) := Item.Last;
2377 end Set_Vertices;
2379 ---------
2380 -- Sum --
2381 ---------
2383 function Sum
2384 (Word : Word_Type;
2385 Table : Table_Id;
2386 Opt : Optimization) return Natural
2388 S : Natural := 0;
2389 R : Natural;
2391 begin
2392 if Opt = CPU_Time then
2393 for J in 0 .. T1_Len - 1 loop
2394 exit when Word (J + 1) = ASCII.NUL;
2395 R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
2396 S := (S + R) mod NV;
2397 end loop;
2399 else
2400 for J in 0 .. T1_Len - 1 loop
2401 exit when Word (J + 1) = ASCII.NUL;
2402 R := Get_Table (Table, J, 0);
2403 S := (S + R * Character'Pos (Word (J + 1))) mod NV;
2404 end loop;
2405 end if;
2407 return S;
2408 end Sum;
2410 ---------------
2411 -- Type_Size --
2412 ---------------
2414 function Type_Size (L : Natural) return Natural is
2415 begin
2416 if L <= 2 ** 8 then
2417 return 8;
2418 elsif L <= 2 ** 16 then
2419 return 16;
2420 else
2421 return 32;
2422 end if;
2423 end Type_Size;
2425 -----------
2426 -- Value --
2427 -----------
2429 function Value
2430 (Name : Table_Name;
2431 J : Natural;
2432 K : Natural := 0) return Natural
2434 begin
2435 case Name is
2436 when Character_Position =>
2437 return Get_Char_Pos (J);
2439 when Used_Character_Set =>
2440 return Get_Used_Char (Character'Val (J));
2442 when Function_Table_1 =>
2443 return Get_Table (T1, J, K);
2445 when Function_Table_2 =>
2446 return Get_Table (T2, J, K);
2448 when Graph_Table =>
2449 return Get_Graph (J);
2451 end case;
2452 end Value;
2454 end GNAT.Perfect_Hash_Generators;