Merge from mainline
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob62cfb4ed4d9a752912c83df5c7964427e724e1e2
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Aggr; use Exp_Aggr;
32 with Exp_Ch4; use Exp_Ch4;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Ch9; use Exp_Ch9;
35 with Exp_Ch11; use Exp_Ch11;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Smem; use Exp_Smem;
39 with Exp_Strm; use Exp_Strm;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Hostparm; use Hostparm;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Attr; use Sem_Attr;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Mech; use Sem_Mech;
57 with Sem_Res; use Sem_Res;
58 with Sem_Util; use Sem_Util;
59 with Sinfo; use Sinfo;
60 with Stand; use Stand;
61 with Snames; use Snames;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Validsw; use Validsw;
66 package body Exp_Ch3 is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Discriminants (Rtype : Entity_Id);
73 -- This is used when freezing a record type. It attempts to construct
74 -- more restrictive subtypes for discriminants so that the max size of
75 -- the record can be calculated more accurately. See the body of this
76 -- procedure for details.
78 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
79 -- Build initialization procedure for given array type. Nod is a node
80 -- used for attachment of any actions required in its construction.
81 -- It also supplies the source location used for the procedure.
83 function Build_Discriminant_Formals
84 (Rec_Id : Entity_Id;
85 Use_Dl : Boolean) return List_Id;
86 -- This function uses the discriminants of a type to build a list of
87 -- formal parameters, used in the following function. If the flag Use_Dl
88 -- is set, the list is built using the already defined discriminals
89 -- of the type. Otherwise new identifiers are created, with the source
90 -- names of the discriminants.
92 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
93 -- If the designated type of an access type is a task type or contains
94 -- tasks, we make sure that a _Master variable is declared in the current
95 -- scope, and then declare a renaming for it:
97 -- atypeM : Master_Id renames _Master;
99 -- where atyp is the name of the access type. This declaration is
100 -- used when an allocator for the access type is expanded. The node N
101 -- is the full declaration of the designated type that contains tasks.
102 -- The renaming declaration is inserted before N, and after the Master
103 -- declaration.
105 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
106 -- Build record initialization procedure. N is the type declaration
107 -- node, and Pe is the corresponding entity for the record type.
109 procedure Build_Slice_Assignment (Typ : Entity_Id);
110 -- Build assignment procedure for one-dimensional arrays of controlled
111 -- types. Other array and slice assignments are expanded in-line, but
112 -- the code expansion for controlled components (when control actions
113 -- are active) can lead to very large blocks that GCC3 handles poorly.
115 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
116 -- Create An Equality function for the non-tagged variant record 'Typ'
117 -- and attach it to the TSS list
119 procedure Check_Stream_Attributes (Typ : Entity_Id);
120 -- Check that if a limited extension has a parent with user-defined
121 -- stream attributes, and does not itself have user-definer
122 -- stream-attributes, then any limited component of the extension also
123 -- has the corresponding user-defined stream attributes.
125 procedure Expand_Tagged_Root (T : Entity_Id);
126 -- Add a field _Tag at the beginning of the record. This field carries
127 -- the value of the access to the Dispatch table. This procedure is only
128 -- called on root (non CPP_Class) types, the _Tag field being inherited
129 -- by the descendants.
131 procedure Expand_Record_Controller (T : Entity_Id);
132 -- T must be a record type that Has_Controlled_Component. Add a field
133 -- _controller of type Record_Controller or Limited_Record_Controller
134 -- in the record T.
136 procedure Freeze_Array_Type (N : Node_Id);
137 -- Freeze an array type. Deals with building the initialization procedure,
138 -- creating the packed array type for a packed array and also with the
139 -- creation of the controlling procedures for the controlled case. The
140 -- argument N is the N_Freeze_Entity node for the type.
142 procedure Freeze_Enumeration_Type (N : Node_Id);
143 -- Freeze enumeration type with non-standard representation. Builds the
144 -- array and function needed to convert between enumeration pos and
145 -- enumeration representation values. N is the N_Freeze_Entity node
146 -- for the type.
148 procedure Freeze_Record_Type (N : Node_Id);
149 -- Freeze record type. Builds all necessary discriminant checking
150 -- and other ancillary functions, and builds dispatch tables where
151 -- needed. The argument N is the N_Freeze_Entity node. This processing
152 -- applies only to E_Record_Type entities, not to class wide types,
153 -- record subtypes, or private types.
155 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
156 -- Treat user-defined stream operations as renaming_as_body if the
157 -- subprogram they rename is not frozen when the type is frozen.
159 function Init_Formals (Typ : Entity_Id) return List_Id;
160 -- This function builds the list of formals for an initialization routine.
161 -- The first formal is always _Init with the given type. For task value
162 -- record types and types containing tasks, three additional formals are
163 -- added:
165 -- _Master : Master_Id
166 -- _Chain : in out Activation_Chain
167 -- _Task_Name : String
169 -- The caller must append additional entries for discriminants if required.
171 function In_Runtime (E : Entity_Id) return Boolean;
172 -- Check if E is defined in the RTL (in a child of Ada or System). Used
173 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
175 function Make_Eq_Case
176 (E : Entity_Id;
177 CL : Node_Id;
178 Discr : Entity_Id := Empty) return List_Id;
179 -- Building block for variant record equality. Defined to share the
180 -- code between the tagged and non-tagged case. Given a Component_List
181 -- node CL, it generates an 'if' followed by a 'case' statement that
182 -- compares all components of local temporaries named X and Y (that
183 -- are declared as formals at some upper level). E provides the Sloc to be
184 -- used for the generated code. Discr is used as the case statement switch
185 -- in the case of Unchecked_Union equality.
187 function Make_Eq_If
188 (E : Entity_Id;
189 L : List_Id) return Node_Id;
190 -- Building block for variant record equality. Defined to share the
191 -- code between the tagged and non-tagged case. Given the list of
192 -- components (or discriminants) L, it generates a return statement
193 -- that compares all components of local temporaries named X and Y
194 -- (that are declared as formals at some upper level). E provides the Sloc
195 -- to be used for the generated code.
197 procedure Make_Predefined_Primitive_Specs
198 (Tag_Typ : Entity_Id;
199 Predef_List : out List_Id;
200 Renamed_Eq : out Node_Id);
201 -- Create a list with the specs of the predefined primitive operations.
202 -- The following entries are present for all tagged types, and provide
203 -- the results of the corresponding attribute applied to the object.
204 -- Dispatching is required in general, since the result of the attribute
205 -- will vary with the actual object subtype.
207 -- _alignment provides result of 'Alignment attribute
208 -- _size provides result of 'Size attribute
209 -- typSR provides result of 'Read attribute
210 -- typSW provides result of 'Write attribute
211 -- typSI provides result of 'Input attribute
212 -- typSO provides result of 'Output attribute
214 -- The following entries are additionally present for non-limited
215 -- tagged types, and implement additional dispatching operations
216 -- for predefined operations:
218 -- _equality implements "=" operator
219 -- _assign implements assignment operation
220 -- typDF implements deep finalization
221 -- typDA implements deep adust
223 -- The latter two are empty procedures unless the type contains some
224 -- controlled components that require finalization actions (the deep
225 -- in the name refers to the fact that the action applies to components).
227 -- The list is returned in Predef_List. The Parameter Renamed_Eq
228 -- either returns the value Empty, or else the defining unit name
229 -- for the predefined equality function in the case where the type
230 -- has a primitive operation that is a renaming of predefined equality
231 -- (but only if there is also an overriding user-defined equality
232 -- function). The returned Renamed_Eq will be passed to the
233 -- corresponding parameter of Predefined_Primitive_Bodies.
235 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
236 -- returns True if there are representation clauses for type T that
237 -- are not inherited. If the result is false, the init_proc and the
238 -- discriminant_checking functions of the parent can be reused by
239 -- a derived type.
241 procedure Make_Controlling_Function_Wrappers
242 (Tag_Typ : Entity_Id;
243 Decl_List : out List_Id;
244 Body_List : out List_Id);
245 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
246 -- associated with inherited functions with controlling results which
247 -- are not overridden. The body of each wrapper function consists solely
248 -- of a return statement whose expression is an extension aggregate
249 -- invoking the inherited subprogram's parent subprogram and extended
250 -- with a null association list.
252 function Predef_Spec_Or_Body
253 (Loc : Source_Ptr;
254 Tag_Typ : Entity_Id;
255 Name : Name_Id;
256 Profile : List_Id;
257 Ret_Type : Entity_Id := Empty;
258 For_Body : Boolean := False) return Node_Id;
259 -- This function generates the appropriate expansion for a predefined
260 -- primitive operation specified by its name, parameter profile and
261 -- return type (Empty means this is a procedure). If For_Body is false,
262 -- then the returned node is a subprogram declaration. If For_Body is
263 -- true, then the returned node is a empty subprogram body containing
264 -- no declarations and no statements.
266 function Predef_Stream_Attr_Spec
267 (Loc : Source_Ptr;
268 Tag_Typ : Entity_Id;
269 Name : TSS_Name_Type;
270 For_Body : Boolean := False) return Node_Id;
271 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
272 -- input and output attribute whose specs are constructed in Exp_Strm.
274 function Predef_Deep_Spec
275 (Loc : Source_Ptr;
276 Tag_Typ : Entity_Id;
277 Name : TSS_Name_Type;
278 For_Body : Boolean := False) return Node_Id;
279 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
280 -- and _deep_finalize
282 function Predefined_Primitive_Bodies
283 (Tag_Typ : Entity_Id;
284 Renamed_Eq : Node_Id) return List_Id;
285 -- Create the bodies of the predefined primitives that are described in
286 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
287 -- the defining unit name of the type's predefined equality as returned
288 -- by Make_Predefined_Primitive_Specs.
290 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
291 -- Freeze entities of all predefined primitive operations. This is needed
292 -- because the bodies of these operations do not normally do any freezeing.
294 function Stream_Operation_OK
295 (Typ : Entity_Id;
296 Operation : TSS_Name_Type) return Boolean;
297 -- Check whether the named stream operation must be emitted for a given
298 -- type. The rules for inheritance of stream attributes by type extensions
299 -- are enforced by this function. Furthermore, various restrictions prevent
300 -- the generation of these operations, as a useful optimization or for
301 -- certification purposes.
303 --------------------------
304 -- Adjust_Discriminants --
305 --------------------------
307 -- This procedure attempts to define subtypes for discriminants that
308 -- are more restrictive than those declared. Such a replacement is
309 -- possible if we can demonstrate that values outside the restricted
310 -- range would cause constraint errors in any case. The advantage of
311 -- restricting the discriminant types in this way is tha the maximum
312 -- size of the variant record can be calculated more conservatively.
314 -- An example of a situation in which we can perform this type of
315 -- restriction is the following:
317 -- subtype B is range 1 .. 10;
318 -- type Q is array (B range <>) of Integer;
320 -- type V (N : Natural) is record
321 -- C : Q (1 .. N);
322 -- end record;
324 -- In this situation, we can restrict the upper bound of N to 10, since
325 -- any larger value would cause a constraint error in any case.
327 -- There are many situations in which such restriction is possible, but
328 -- for now, we just look for cases like the above, where the component
329 -- in question is a one dimensional array whose upper bound is one of
330 -- the record discriminants. Also the component must not be part of
331 -- any variant part, since then the component does not always exist.
333 procedure Adjust_Discriminants (Rtype : Entity_Id) is
334 Loc : constant Source_Ptr := Sloc (Rtype);
335 Comp : Entity_Id;
336 Ctyp : Entity_Id;
337 Ityp : Entity_Id;
338 Lo : Node_Id;
339 Hi : Node_Id;
340 P : Node_Id;
341 Loval : Uint;
342 Discr : Entity_Id;
343 Dtyp : Entity_Id;
344 Dhi : Node_Id;
345 Dhiv : Uint;
346 Ahi : Node_Id;
347 Ahiv : Uint;
348 Tnn : Entity_Id;
350 begin
351 Comp := First_Component (Rtype);
352 while Present (Comp) loop
354 -- If our parent is a variant, quit, we do not look at components
355 -- that are in variant parts, because they may not always exist.
357 P := Parent (Comp); -- component declaration
358 P := Parent (P); -- component list
360 exit when Nkind (Parent (P)) = N_Variant;
362 -- We are looking for a one dimensional array type
364 Ctyp := Etype (Comp);
366 if not Is_Array_Type (Ctyp)
367 or else Number_Dimensions (Ctyp) > 1
368 then
369 goto Continue;
370 end if;
372 -- The lower bound must be constant, and the upper bound is a
373 -- discriminant (which is a discriminant of the current record).
375 Ityp := Etype (First_Index (Ctyp));
376 Lo := Type_Low_Bound (Ityp);
377 Hi := Type_High_Bound (Ityp);
379 if not Compile_Time_Known_Value (Lo)
380 or else Nkind (Hi) /= N_Identifier
381 or else No (Entity (Hi))
382 or else Ekind (Entity (Hi)) /= E_Discriminant
383 then
384 goto Continue;
385 end if;
387 -- We have an array with appropriate bounds
389 Loval := Expr_Value (Lo);
390 Discr := Entity (Hi);
391 Dtyp := Etype (Discr);
393 -- See if the discriminant has a known upper bound
395 Dhi := Type_High_Bound (Dtyp);
397 if not Compile_Time_Known_Value (Dhi) then
398 goto Continue;
399 end if;
401 Dhiv := Expr_Value (Dhi);
403 -- See if base type of component array has known upper bound
405 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
407 if not Compile_Time_Known_Value (Ahi) then
408 goto Continue;
409 end if;
411 Ahiv := Expr_Value (Ahi);
413 -- The condition for doing the restriction is that the high bound
414 -- of the discriminant is greater than the low bound of the array,
415 -- and is also greater than the high bound of the base type index.
417 if Dhiv > Loval and then Dhiv > Ahiv then
419 -- We can reset the upper bound of the discriminant type to
420 -- whichever is larger, the low bound of the component, or
421 -- the high bound of the base type array index.
423 -- We build a subtype that is declared as
425 -- subtype Tnn is discr_type range discr_type'First .. max;
427 -- And insert this declaration into the tree. The type of the
428 -- discriminant is then reset to this more restricted subtype.
430 Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
432 Insert_Action (Declaration_Node (Rtype),
433 Make_Subtype_Declaration (Loc,
434 Defining_Identifier => Tnn,
435 Subtype_Indication =>
436 Make_Subtype_Indication (Loc,
437 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
438 Constraint =>
439 Make_Range_Constraint (Loc,
440 Range_Expression =>
441 Make_Range (Loc,
442 Low_Bound =>
443 Make_Attribute_Reference (Loc,
444 Attribute_Name => Name_First,
445 Prefix => New_Occurrence_Of (Dtyp, Loc)),
446 High_Bound =>
447 Make_Integer_Literal (Loc,
448 Intval => UI_Max (Loval, Ahiv)))))));
450 Set_Etype (Discr, Tnn);
451 end if;
453 <<Continue>>
454 Next_Component (Comp);
455 end loop;
456 end Adjust_Discriminants;
458 ---------------------------
459 -- Build_Array_Init_Proc --
460 ---------------------------
462 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
463 Loc : constant Source_Ptr := Sloc (Nod);
464 Comp_Type : constant Entity_Id := Component_Type (A_Type);
465 Index_List : List_Id;
466 Proc_Id : Entity_Id;
467 Body_Stmts : List_Id;
469 function Init_Component return List_Id;
470 -- Create one statement to initialize one array component, designated
471 -- by a full set of indices.
473 function Init_One_Dimension (N : Int) return List_Id;
474 -- Create loop to initialize one dimension of the array. The single
475 -- statement in the loop body initializes the inner dimensions if any,
476 -- or else the single component. Note that this procedure is called
477 -- recursively, with N being the dimension to be initialized. A call
478 -- with N greater than the number of dimensions simply generates the
479 -- component initialization, terminating the recursion.
481 --------------------
482 -- Init_Component --
483 --------------------
485 function Init_Component return List_Id is
486 Comp : Node_Id;
488 begin
489 Comp :=
490 Make_Indexed_Component (Loc,
491 Prefix => Make_Identifier (Loc, Name_uInit),
492 Expressions => Index_List);
494 if Needs_Simple_Initialization (Comp_Type) then
495 Set_Assignment_OK (Comp);
496 return New_List (
497 Make_Assignment_Statement (Loc,
498 Name => Comp,
499 Expression =>
500 Get_Simple_Init_Val
501 (Comp_Type, Loc, Component_Size (A_Type))));
503 else
504 return
505 Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
506 end if;
507 end Init_Component;
509 ------------------------
510 -- Init_One_Dimension --
511 ------------------------
513 function Init_One_Dimension (N : Int) return List_Id is
514 Index : Entity_Id;
516 begin
517 -- If the component does not need initializing, then there is nothing
518 -- to do here, so we return a null body. This occurs when generating
519 -- the dummy Init_Proc needed for Initialize_Scalars processing.
521 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
522 and then not Needs_Simple_Initialization (Comp_Type)
523 and then not Has_Task (Comp_Type)
524 then
525 return New_List (Make_Null_Statement (Loc));
527 -- If all dimensions dealt with, we simply initialize the component
529 elsif N > Number_Dimensions (A_Type) then
530 return Init_Component;
532 -- Here we generate the required loop
534 else
535 Index :=
536 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
538 Append (New_Reference_To (Index, Loc), Index_List);
540 return New_List (
541 Make_Implicit_Loop_Statement (Nod,
542 Identifier => Empty,
543 Iteration_Scheme =>
544 Make_Iteration_Scheme (Loc,
545 Loop_Parameter_Specification =>
546 Make_Loop_Parameter_Specification (Loc,
547 Defining_Identifier => Index,
548 Discrete_Subtype_Definition =>
549 Make_Attribute_Reference (Loc,
550 Prefix => Make_Identifier (Loc, Name_uInit),
551 Attribute_Name => Name_Range,
552 Expressions => New_List (
553 Make_Integer_Literal (Loc, N))))),
554 Statements => Init_One_Dimension (N + 1)));
555 end if;
556 end Init_One_Dimension;
558 -- Start of processing for Build_Array_Init_Proc
560 begin
561 if Suppress_Init_Proc (A_Type) then
562 return;
563 end if;
565 Index_List := New_List;
567 -- We need an initialization procedure if any of the following is true:
569 -- 1. The component type has an initialization procedure
570 -- 2. The component type needs simple initialization
571 -- 3. Tasks are present
572 -- 4. The type is marked as a publc entity
574 -- The reason for the public entity test is to deal properly with the
575 -- Initialize_Scalars pragma. This pragma can be set in the client and
576 -- not in the declaring package, this means the client will make a call
577 -- to the initialization procedure (because one of conditions 1-3 must
578 -- apply in this case), and we must generate a procedure (even if it is
579 -- null) to satisfy the call in this case.
581 -- Exception: do not build an array init_proc for a type whose root
582 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
583 -- is no place to put the code, and in any case we handle initialization
584 -- of such types (in the Initialize_Scalars case, that's the only time
585 -- the issue arises) in a special manner anyway which does not need an
586 -- init_proc.
588 if Has_Non_Null_Base_Init_Proc (Comp_Type)
589 or else Needs_Simple_Initialization (Comp_Type)
590 or else Has_Task (Comp_Type)
591 or else (not Restriction_Active (No_Initialize_Scalars)
592 and then Is_Public (A_Type)
593 and then Root_Type (A_Type) /= Standard_String
594 and then Root_Type (A_Type) /= Standard_Wide_String
595 and then Root_Type (A_Type) /= Standard_Wide_Wide_String)
596 then
597 Proc_Id :=
598 Make_Defining_Identifier (Loc, Make_Init_Proc_Name (A_Type));
600 Body_Stmts := Init_One_Dimension (1);
602 Discard_Node (
603 Make_Subprogram_Body (Loc,
604 Specification =>
605 Make_Procedure_Specification (Loc,
606 Defining_Unit_Name => Proc_Id,
607 Parameter_Specifications => Init_Formals (A_Type)),
608 Declarations => New_List,
609 Handled_Statement_Sequence =>
610 Make_Handled_Sequence_Of_Statements (Loc,
611 Statements => Body_Stmts)));
613 Set_Ekind (Proc_Id, E_Procedure);
614 Set_Is_Public (Proc_Id, Is_Public (A_Type));
615 Set_Is_Internal (Proc_Id);
616 Set_Has_Completion (Proc_Id);
618 if not Debug_Generated_Code then
619 Set_Debug_Info_Off (Proc_Id);
620 end if;
622 -- Set inlined unless controlled stuff or tasks around, in which
623 -- case we do not want to inline, because nested stuff may cause
624 -- difficulties in interunit inlining, and furthermore there is
625 -- in any case no point in inlining such complex init procs.
627 if not Has_Task (Proc_Id)
628 and then not Controlled_Type (Proc_Id)
629 then
630 Set_Is_Inlined (Proc_Id);
631 end if;
633 -- Associate Init_Proc with type, and determine if the procedure
634 -- is null (happens because of the Initialize_Scalars pragma case,
635 -- where we have to generate a null procedure in case it is called
636 -- by a client with Initialize_Scalars set). Such procedures have
637 -- to be generated, but do not have to be called, so we mark them
638 -- as null to suppress the call.
640 Set_Init_Proc (A_Type, Proc_Id);
642 if List_Length (Body_Stmts) = 1
643 and then Nkind (First (Body_Stmts)) = N_Null_Statement
644 then
645 Set_Is_Null_Init_Proc (Proc_Id);
646 end if;
647 end if;
648 end Build_Array_Init_Proc;
650 -----------------------------
651 -- Build_Class_Wide_Master --
652 -----------------------------
654 procedure Build_Class_Wide_Master (T : Entity_Id) is
655 Loc : constant Source_Ptr := Sloc (T);
656 M_Id : Entity_Id;
657 Decl : Node_Id;
658 P : Node_Id;
659 Par : Node_Id;
661 begin
662 -- Nothing to do if there is no task hierarchy
664 if Restriction_Active (No_Task_Hierarchy) then
665 return;
666 end if;
668 -- Find declaration that created the access type: either a
669 -- type declaration, or an object declaration with an
670 -- access definition, in which case the type is anonymous.
672 if Is_Itype (T) then
673 P := Associated_Node_For_Itype (T);
674 else
675 P := Parent (T);
676 end if;
678 -- Nothing to do if we already built a master entity for this scope
680 if not Has_Master_Entity (Scope (T)) then
682 -- first build the master entity
683 -- _Master : constant Master_Id := Current_Master.all;
684 -- and insert it just before the current declaration
686 Decl :=
687 Make_Object_Declaration (Loc,
688 Defining_Identifier =>
689 Make_Defining_Identifier (Loc, Name_uMaster),
690 Constant_Present => True,
691 Object_Definition => New_Reference_To (Standard_Integer, Loc),
692 Expression =>
693 Make_Explicit_Dereference (Loc,
694 New_Reference_To (RTE (RE_Current_Master), Loc)));
696 Insert_Before (P, Decl);
697 Analyze (Decl);
698 Set_Has_Master_Entity (Scope (T));
700 -- Now mark the containing scope as a task master
702 Par := P;
703 while Nkind (Par) /= N_Compilation_Unit loop
704 Par := Parent (Par);
706 -- If we fall off the top, we are at the outer level, and the
707 -- environment task is our effective master, so nothing to mark.
709 if Nkind (Par) = N_Task_Body
710 or else Nkind (Par) = N_Block_Statement
711 or else Nkind (Par) = N_Subprogram_Body
712 then
713 Set_Is_Task_Master (Par, True);
714 exit;
715 end if;
716 end loop;
717 end if;
719 -- Now define the renaming of the master_id
721 M_Id :=
722 Make_Defining_Identifier (Loc,
723 New_External_Name (Chars (T), 'M'));
725 Decl :=
726 Make_Object_Renaming_Declaration (Loc,
727 Defining_Identifier => M_Id,
728 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
729 Name => Make_Identifier (Loc, Name_uMaster));
730 Insert_Before (P, Decl);
731 Analyze (Decl);
733 Set_Master_Id (T, M_Id);
735 exception
736 when RE_Not_Available =>
737 return;
738 end Build_Class_Wide_Master;
740 --------------------------------
741 -- Build_Discr_Checking_Funcs --
742 --------------------------------
744 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
745 Rec_Id : Entity_Id;
746 Loc : Source_Ptr;
747 Enclosing_Func_Id : Entity_Id;
748 Sequence : Nat := 1;
749 Type_Def : Node_Id;
750 V : Node_Id;
752 function Build_Case_Statement
753 (Case_Id : Entity_Id;
754 Variant : Node_Id) return Node_Id;
755 -- Build a case statement containing only two alternatives. The
756 -- first alternative corresponds exactly to the discrete choices
757 -- given on the variant with contains the components that we are
758 -- generating the checks for. If the discriminant is one of these
759 -- return False. The second alternative is an OTHERS choice that
760 -- will return True indicating the discriminant did not match.
762 function Build_Dcheck_Function
763 (Case_Id : Entity_Id;
764 Variant : Node_Id) return Entity_Id;
765 -- Build the discriminant checking function for a given variant
767 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
768 -- Builds the discriminant checking function for each variant of the
769 -- given variant part of the record type.
771 --------------------------
772 -- Build_Case_Statement --
773 --------------------------
775 function Build_Case_Statement
776 (Case_Id : Entity_Id;
777 Variant : Node_Id) return Node_Id
779 Alt_List : constant List_Id := New_List;
780 Actuals_List : List_Id;
781 Case_Node : Node_Id;
782 Case_Alt_Node : Node_Id;
783 Choice : Node_Id;
784 Choice_List : List_Id;
785 D : Entity_Id;
786 Return_Node : Node_Id;
788 begin
789 Case_Node := New_Node (N_Case_Statement, Loc);
791 -- Replace the discriminant which controls the variant, with the
792 -- name of the formal of the checking function.
794 Set_Expression (Case_Node,
795 Make_Identifier (Loc, Chars (Case_Id)));
797 Choice := First (Discrete_Choices (Variant));
799 if Nkind (Choice) = N_Others_Choice then
800 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
801 else
802 Choice_List := New_Copy_List (Discrete_Choices (Variant));
803 end if;
805 if not Is_Empty_List (Choice_List) then
806 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
807 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
809 -- In case this is a nested variant, we need to return the result
810 -- of the discriminant checking function for the immediately
811 -- enclosing variant.
813 if Present (Enclosing_Func_Id) then
814 Actuals_List := New_List;
816 D := First_Discriminant (Rec_Id);
817 while Present (D) loop
818 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
819 Next_Discriminant (D);
820 end loop;
822 Return_Node :=
823 Make_Return_Statement (Loc,
824 Expression =>
825 Make_Function_Call (Loc,
826 Name =>
827 New_Reference_To (Enclosing_Func_Id, Loc),
828 Parameter_Associations =>
829 Actuals_List));
831 else
832 Return_Node :=
833 Make_Return_Statement (Loc,
834 Expression =>
835 New_Reference_To (Standard_False, Loc));
836 end if;
838 Set_Statements (Case_Alt_Node, New_List (Return_Node));
839 Append (Case_Alt_Node, Alt_List);
840 end if;
842 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
843 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
844 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
846 Return_Node :=
847 Make_Return_Statement (Loc,
848 Expression =>
849 New_Reference_To (Standard_True, Loc));
851 Set_Statements (Case_Alt_Node, New_List (Return_Node));
852 Append (Case_Alt_Node, Alt_List);
854 Set_Alternatives (Case_Node, Alt_List);
855 return Case_Node;
856 end Build_Case_Statement;
858 ---------------------------
859 -- Build_Dcheck_Function --
860 ---------------------------
862 function Build_Dcheck_Function
863 (Case_Id : Entity_Id;
864 Variant : Node_Id) return Entity_Id
866 Body_Node : Node_Id;
867 Func_Id : Entity_Id;
868 Parameter_List : List_Id;
869 Spec_Node : Node_Id;
871 begin
872 Body_Node := New_Node (N_Subprogram_Body, Loc);
873 Sequence := Sequence + 1;
875 Func_Id :=
876 Make_Defining_Identifier (Loc,
877 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
879 Spec_Node := New_Node (N_Function_Specification, Loc);
880 Set_Defining_Unit_Name (Spec_Node, Func_Id);
882 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
884 Set_Parameter_Specifications (Spec_Node, Parameter_List);
885 Set_Result_Definition (Spec_Node,
886 New_Reference_To (Standard_Boolean, Loc));
887 Set_Specification (Body_Node, Spec_Node);
888 Set_Declarations (Body_Node, New_List);
890 Set_Handled_Statement_Sequence (Body_Node,
891 Make_Handled_Sequence_Of_Statements (Loc,
892 Statements => New_List (
893 Build_Case_Statement (Case_Id, Variant))));
895 Set_Ekind (Func_Id, E_Function);
896 Set_Mechanism (Func_Id, Default_Mechanism);
897 Set_Is_Inlined (Func_Id, True);
898 Set_Is_Pure (Func_Id, True);
899 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
900 Set_Is_Internal (Func_Id, True);
902 if not Debug_Generated_Code then
903 Set_Debug_Info_Off (Func_Id);
904 end if;
906 Analyze (Body_Node);
908 Append_Freeze_Action (Rec_Id, Body_Node);
909 Set_Dcheck_Function (Variant, Func_Id);
910 return Func_Id;
911 end Build_Dcheck_Function;
913 ----------------------------
914 -- Build_Dcheck_Functions --
915 ----------------------------
917 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
918 Component_List_Node : Node_Id;
919 Decl : Entity_Id;
920 Discr_Name : Entity_Id;
921 Func_Id : Entity_Id;
922 Variant : Node_Id;
923 Saved_Enclosing_Func_Id : Entity_Id;
925 begin
926 -- Build the discriminant checking function for each variant, label
927 -- all components of that variant with the function's name.
929 Discr_Name := Entity (Name (Variant_Part_Node));
930 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
932 while Present (Variant) loop
933 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
934 Component_List_Node := Component_List (Variant);
936 if not Null_Present (Component_List_Node) then
937 Decl :=
938 First_Non_Pragma (Component_Items (Component_List_Node));
940 while Present (Decl) loop
941 Set_Discriminant_Checking_Func
942 (Defining_Identifier (Decl), Func_Id);
944 Next_Non_Pragma (Decl);
945 end loop;
947 if Present (Variant_Part (Component_List_Node)) then
948 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
949 Enclosing_Func_Id := Func_Id;
950 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
951 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
952 end if;
953 end if;
955 Next_Non_Pragma (Variant);
956 end loop;
957 end Build_Dcheck_Functions;
959 -- Start of processing for Build_Discr_Checking_Funcs
961 begin
962 -- Only build if not done already
964 if not Discr_Check_Funcs_Built (N) then
965 Type_Def := Type_Definition (N);
967 if Nkind (Type_Def) = N_Record_Definition then
968 if No (Component_List (Type_Def)) then -- null record.
969 return;
970 else
971 V := Variant_Part (Component_List (Type_Def));
972 end if;
974 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
975 if No (Component_List (Record_Extension_Part (Type_Def))) then
976 return;
977 else
978 V := Variant_Part
979 (Component_List (Record_Extension_Part (Type_Def)));
980 end if;
981 end if;
983 Rec_Id := Defining_Identifier (N);
985 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
986 Loc := Sloc (N);
987 Enclosing_Func_Id := Empty;
988 Build_Dcheck_Functions (V);
989 end if;
991 Set_Discr_Check_Funcs_Built (N);
992 end if;
993 end Build_Discr_Checking_Funcs;
995 --------------------------------
996 -- Build_Discriminant_Formals --
997 --------------------------------
999 function Build_Discriminant_Formals
1000 (Rec_Id : Entity_Id;
1001 Use_Dl : Boolean) return List_Id
1003 Loc : Source_Ptr := Sloc (Rec_Id);
1004 Parameter_List : constant List_Id := New_List;
1005 D : Entity_Id;
1006 Formal : Entity_Id;
1007 Param_Spec_Node : Node_Id;
1009 begin
1010 if Has_Discriminants (Rec_Id) then
1011 D := First_Discriminant (Rec_Id);
1012 while Present (D) loop
1013 Loc := Sloc (D);
1015 if Use_Dl then
1016 Formal := Discriminal (D);
1017 else
1018 Formal := Make_Defining_Identifier (Loc, Chars (D));
1019 end if;
1021 Param_Spec_Node :=
1022 Make_Parameter_Specification (Loc,
1023 Defining_Identifier => Formal,
1024 Parameter_Type =>
1025 New_Reference_To (Etype (D), Loc));
1026 Append (Param_Spec_Node, Parameter_List);
1027 Next_Discriminant (D);
1028 end loop;
1029 end if;
1031 return Parameter_List;
1032 end Build_Discriminant_Formals;
1034 -------------------------------
1035 -- Build_Initialization_Call --
1036 -------------------------------
1038 -- References to a discriminant inside the record type declaration
1039 -- can appear either in the subtype_indication to constrain a
1040 -- record or an array, or as part of a larger expression given for
1041 -- the initial value of a component. In both of these cases N appears
1042 -- in the record initialization procedure and needs to be replaced by
1043 -- the formal parameter of the initialization procedure which
1044 -- corresponds to that discriminant.
1046 -- In the example below, references to discriminants D1 and D2 in proc_1
1047 -- are replaced by references to formals with the same name
1048 -- (discriminals)
1050 -- A similar replacement is done for calls to any record
1051 -- initialization procedure for any components that are themselves
1052 -- of a record type.
1054 -- type R (D1, D2 : Integer) is record
1055 -- X : Integer := F * D1;
1056 -- Y : Integer := F * D2;
1057 -- end record;
1059 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1060 -- begin
1061 -- Out_2.D1 := D1;
1062 -- Out_2.D2 := D2;
1063 -- Out_2.X := F * D1;
1064 -- Out_2.Y := F * D2;
1065 -- end;
1067 function Build_Initialization_Call
1068 (Loc : Source_Ptr;
1069 Id_Ref : Node_Id;
1070 Typ : Entity_Id;
1071 In_Init_Proc : Boolean := False;
1072 Enclos_Type : Entity_Id := Empty;
1073 Discr_Map : Elist_Id := New_Elmt_List;
1074 With_Default_Init : Boolean := False) return List_Id
1076 First_Arg : Node_Id;
1077 Args : List_Id;
1078 Decls : List_Id;
1079 Decl : Node_Id;
1080 Discr : Entity_Id;
1081 Arg : Node_Id;
1082 Proc : constant Entity_Id := Base_Init_Proc (Typ);
1083 Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
1084 Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
1085 Res : constant List_Id := New_List;
1086 Full_Type : Entity_Id := Typ;
1087 Controller_Typ : Entity_Id;
1089 begin
1090 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1091 -- is active (in which case we make the call anyway, since in the
1092 -- actual compiled client it may be non null).
1094 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1095 return Empty_List;
1096 end if;
1098 -- Go to full view if private type. In the case of successive
1099 -- private derivations, this can require more than one step.
1101 while Is_Private_Type (Full_Type)
1102 and then Present (Full_View (Full_Type))
1103 loop
1104 Full_Type := Full_View (Full_Type);
1105 end loop;
1107 -- If Typ is derived, the procedure is the initialization procedure for
1108 -- the root type. Wrap the argument in an conversion to make it type
1109 -- honest. Actually it isn't quite type honest, because there can be
1110 -- conflicts of views in the private type case. That is why we set
1111 -- Conversion_OK in the conversion node.
1113 if (Is_Record_Type (Typ)
1114 or else Is_Array_Type (Typ)
1115 or else Is_Private_Type (Typ))
1116 and then Init_Type /= Base_Type (Typ)
1117 then
1118 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1119 Set_Etype (First_Arg, Init_Type);
1121 else
1122 First_Arg := Id_Ref;
1123 end if;
1125 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1127 -- In the tasks case, add _Master as the value of the _Master parameter
1128 -- and _Chain as the value of the _Chain parameter. At the outer level,
1129 -- these will be variables holding the corresponding values obtained
1130 -- from GNARL. At inner levels, they will be the parameters passed down
1131 -- through the outer routines.
1133 if Has_Task (Full_Type) then
1134 if Restriction_Active (No_Task_Hierarchy) then
1136 -- See comments in System.Tasking.Initialization.Init_RTS
1137 -- for the value 3 (should be rtsfindable constant ???)
1139 Append_To (Args, Make_Integer_Literal (Loc, 3));
1140 else
1141 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1142 end if;
1144 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1146 -- Ada 2005 (AI-287): In case of default initialized components
1147 -- with tasks, we generate a null string actual parameter.
1148 -- This is just a workaround that must be improved later???
1150 if With_Default_Init then
1151 Append_To (Args,
1152 Make_String_Literal (Loc,
1153 Strval => ""));
1155 else
1156 Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
1157 Decl := Last (Decls);
1159 Append_To (Args,
1160 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1161 Append_List (Decls, Res);
1162 end if;
1164 else
1165 Decls := No_List;
1166 Decl := Empty;
1167 end if;
1169 -- Add discriminant values if discriminants are present
1171 if Has_Discriminants (Full_Init_Type) then
1172 Discr := First_Discriminant (Full_Init_Type);
1174 while Present (Discr) loop
1176 -- If this is a discriminated concurrent type, the init_proc
1177 -- for the corresponding record is being called. Use that
1178 -- type directly to find the discriminant value, to handle
1179 -- properly intervening renamed discriminants.
1181 declare
1182 T : Entity_Id := Full_Type;
1184 begin
1185 if Is_Protected_Type (T) then
1186 T := Corresponding_Record_Type (T);
1188 elsif Is_Private_Type (T)
1189 and then Present (Underlying_Full_View (T))
1190 and then Is_Protected_Type (Underlying_Full_View (T))
1191 then
1192 T := Corresponding_Record_Type (Underlying_Full_View (T));
1193 end if;
1195 Arg :=
1196 Get_Discriminant_Value (
1197 Discr,
1199 Discriminant_Constraint (Full_Type));
1200 end;
1202 if In_Init_Proc then
1204 -- Replace any possible references to the discriminant in the
1205 -- call to the record initialization procedure with references
1206 -- to the appropriate formal parameter.
1208 if Nkind (Arg) = N_Identifier
1209 and then Ekind (Entity (Arg)) = E_Discriminant
1210 then
1211 Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
1213 -- Case of access discriminants. We replace the reference
1214 -- to the type by a reference to the actual object
1216 elsif Nkind (Arg) = N_Attribute_Reference
1217 and then Is_Access_Type (Etype (Arg))
1218 and then Is_Entity_Name (Prefix (Arg))
1219 and then Is_Type (Entity (Prefix (Arg)))
1220 then
1221 Arg :=
1222 Make_Attribute_Reference (Loc,
1223 Prefix => New_Copy (Prefix (Id_Ref)),
1224 Attribute_Name => Name_Unrestricted_Access);
1226 -- Otherwise make a copy of the default expression. Note
1227 -- that we use the current Sloc for this, because we do not
1228 -- want the call to appear to be at the declaration point.
1229 -- Within the expression, replace discriminants with their
1230 -- discriminals.
1232 else
1233 Arg :=
1234 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1235 end if;
1237 else
1238 if Is_Constrained (Full_Type) then
1239 Arg := Duplicate_Subexpr_No_Checks (Arg);
1240 else
1241 -- The constraints come from the discriminant default
1242 -- exps, they must be reevaluated, so we use New_Copy_Tree
1243 -- but we ensure the proper Sloc (for any embedded calls).
1245 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1246 end if;
1247 end if;
1249 -- Ada 2005 (AI-287) In case of default initialized components,
1250 -- we need to generate the corresponding selected component node
1251 -- to access the discriminant value. In other cases this is not
1252 -- required because we are inside the init proc and we use the
1253 -- corresponding formal.
1255 if With_Default_Init
1256 and then Nkind (Id_Ref) = N_Selected_Component
1257 and then Nkind (Arg) = N_Identifier
1258 then
1259 Append_To (Args,
1260 Make_Selected_Component (Loc,
1261 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1262 Selector_Name => Arg));
1263 else
1264 Append_To (Args, Arg);
1265 end if;
1267 Next_Discriminant (Discr);
1268 end loop;
1269 end if;
1271 -- If this is a call to initialize the parent component of a derived
1272 -- tagged type, indicate that the tag should not be set in the parent.
1274 if Is_Tagged_Type (Full_Init_Type)
1275 and then not Is_CPP_Class (Full_Init_Type)
1276 and then Nkind (Id_Ref) = N_Selected_Component
1277 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1278 then
1279 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1280 end if;
1282 Append_To (Res,
1283 Make_Procedure_Call_Statement (Loc,
1284 Name => New_Occurrence_Of (Proc, Loc),
1285 Parameter_Associations => Args));
1287 if Controlled_Type (Typ)
1288 and then Nkind (Id_Ref) = N_Selected_Component
1289 then
1290 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1291 Append_List_To (Res,
1292 Make_Init_Call (
1293 Ref => New_Copy_Tree (First_Arg),
1294 Typ => Typ,
1295 Flist_Ref =>
1296 Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1297 With_Attach => Make_Integer_Literal (Loc, 1)));
1299 -- If the enclosing type is an extension with new controlled
1300 -- components, it has his own record controller. If the parent
1301 -- also had a record controller, attach it to the new one.
1302 -- Build_Init_Statements relies on the fact that in this specific
1303 -- case the last statement of the result is the attach call to
1304 -- the controller. If this is changed, it must be synchronized.
1306 elsif Present (Enclos_Type)
1307 and then Has_New_Controlled_Component (Enclos_Type)
1308 and then Has_Controlled_Component (Typ)
1309 then
1310 if Is_Return_By_Reference_Type (Typ) then
1311 Controller_Typ := RTE (RE_Limited_Record_Controller);
1312 else
1313 Controller_Typ := RTE (RE_Record_Controller);
1314 end if;
1316 Append_List_To (Res,
1317 Make_Init_Call (
1318 Ref =>
1319 Make_Selected_Component (Loc,
1320 Prefix => New_Copy_Tree (First_Arg),
1321 Selector_Name => Make_Identifier (Loc, Name_uController)),
1322 Typ => Controller_Typ,
1323 Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1324 With_Attach => Make_Integer_Literal (Loc, 1)));
1325 end if;
1326 end if;
1328 return Res;
1330 exception
1331 when RE_Not_Available =>
1332 return Empty_List;
1333 end Build_Initialization_Call;
1335 ---------------------------
1336 -- Build_Master_Renaming --
1337 ---------------------------
1339 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
1340 Loc : constant Source_Ptr := Sloc (N);
1341 M_Id : Entity_Id;
1342 Decl : Node_Id;
1344 begin
1345 -- Nothing to do if there is no task hierarchy
1347 if Restriction_Active (No_Task_Hierarchy) then
1348 return;
1349 end if;
1351 M_Id :=
1352 Make_Defining_Identifier (Loc,
1353 New_External_Name (Chars (T), 'M'));
1355 Decl :=
1356 Make_Object_Renaming_Declaration (Loc,
1357 Defining_Identifier => M_Id,
1358 Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
1359 Name => Make_Identifier (Loc, Name_uMaster));
1360 Insert_Before (N, Decl);
1361 Analyze (Decl);
1363 Set_Master_Id (T, M_Id);
1365 exception
1366 when RE_Not_Available =>
1367 return;
1368 end Build_Master_Renaming;
1370 ----------------------------
1371 -- Build_Record_Init_Proc --
1372 ----------------------------
1374 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
1375 Loc : Source_Ptr := Sloc (N);
1376 Discr_Map : constant Elist_Id := New_Elmt_List;
1377 Proc_Id : Entity_Id;
1378 Rec_Type : Entity_Id;
1379 Set_Tag : Entity_Id := Empty;
1381 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1382 -- Build a assignment statement node which assigns to record
1383 -- component its default expression if defined. The left hand side
1384 -- of the assignment is marked Assignment_OK so that initialization
1385 -- of limited private records works correctly, Return also the
1386 -- adjustment call for controlled objects
1388 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1389 -- If the record has discriminants, adds assignment statements to
1390 -- statement list to initialize the discriminant values from the
1391 -- arguments of the initialization procedure.
1393 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1394 -- Build a list representing a sequence of statements which initialize
1395 -- components of the given component list. This may involve building
1396 -- case statements for the variant parts.
1398 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
1399 -- Given a non-tagged type-derivation that declares discriminants,
1400 -- such as
1402 -- type R (R1, R2 : Integer) is record ... end record;
1404 -- type D (D1 : Integer) is new R (1, D1);
1406 -- we make the _init_proc of D be
1408 -- procedure _init_proc(X : D; D1 : Integer) is
1409 -- begin
1410 -- _init_proc( R(X), 1, D1);
1411 -- end _init_proc;
1413 -- This function builds the call statement in this _init_proc.
1415 procedure Build_Init_Procedure;
1416 -- Build the tree corresponding to the procedure specification and body
1417 -- of the initialization procedure (by calling all the preceding
1418 -- auxiliary routines), and install it as the _init TSS.
1420 procedure Build_Offset_To_Top_Functions;
1421 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1422 -- and body of the Offset_To_Top function that is generated when the
1423 -- parent of a type with discriminants has secondary dispatch tables.
1425 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1426 -- Add range checks to components of disciminated records. S is a
1427 -- subtype indication of a record component. Check_List is a list
1428 -- to which the check actions are appended.
1430 function Component_Needs_Simple_Initialization
1431 (T : Entity_Id) return Boolean;
1432 -- Determines if a component needs simple initialization, given its type
1433 -- T. This is the same as Needs_Simple_Initialization except for the
1434 -- following difference: the types Tag, Interface_Tag, and Vtable_Ptr
1435 -- which are access types which would normally require simple
1436 -- initialization to null, do not require initialization as components,
1437 -- since they are explicitly initialized by other means.
1439 procedure Constrain_Array
1440 (SI : Node_Id;
1441 Check_List : List_Id);
1442 -- Called from Build_Record_Checks.
1443 -- Apply a list of index constraints to an unconstrained array type.
1444 -- The first parameter is the entity for the resulting subtype.
1445 -- Check_List is a list to which the check actions are appended.
1447 procedure Constrain_Index
1448 (Index : Node_Id;
1449 S : Node_Id;
1450 Check_List : List_Id);
1451 -- Called from Build_Record_Checks.
1452 -- Process an index constraint in a constrained array declaration.
1453 -- The constraint can be a subtype name, or a range with or without
1454 -- an explicit subtype mark. The index is the corresponding index of the
1455 -- unconstrained array. S is the range expression. Check_List is a list
1456 -- to which the check actions are appended.
1458 function Parent_Subtype_Renaming_Discrims return Boolean;
1459 -- Returns True for base types N that rename discriminants, else False
1461 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1462 -- Determines whether a record initialization procedure needs to be
1463 -- generated for the given record type.
1465 ----------------------
1466 -- Build_Assignment --
1467 ----------------------
1469 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1470 Exp : Node_Id := N;
1471 Lhs : Node_Id;
1472 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1473 Kind : Node_Kind := Nkind (N);
1474 Res : List_Id;
1476 begin
1477 Loc := Sloc (N);
1478 Lhs :=
1479 Make_Selected_Component (Loc,
1480 Prefix => Make_Identifier (Loc, Name_uInit),
1481 Selector_Name => New_Occurrence_Of (Id, Loc));
1482 Set_Assignment_OK (Lhs);
1484 -- Case of an access attribute applied to the current instance.
1485 -- Replace the reference to the type by a reference to the actual
1486 -- object. (Note that this handles the case of the top level of
1487 -- the expression being given by such an attribute, but does not
1488 -- cover uses nested within an initial value expression. Nested
1489 -- uses are unlikely to occur in practice, but are theoretically
1490 -- possible. It is not clear how to handle them without fully
1491 -- traversing the expression. ???
1493 if Kind = N_Attribute_Reference
1494 and then (Attribute_Name (N) = Name_Unchecked_Access
1495 or else
1496 Attribute_Name (N) = Name_Unrestricted_Access)
1497 and then Is_Entity_Name (Prefix (N))
1498 and then Is_Type (Entity (Prefix (N)))
1499 and then Entity (Prefix (N)) = Rec_Type
1500 then
1501 Exp :=
1502 Make_Attribute_Reference (Loc,
1503 Prefix => Make_Identifier (Loc, Name_uInit),
1504 Attribute_Name => Name_Unrestricted_Access);
1505 end if;
1507 -- Ada 2005 (AI-231): Add the run-time check if required
1509 if Ada_Version >= Ada_05
1510 and then Can_Never_Be_Null (Etype (Id)) -- Lhs
1511 then
1512 if Nkind (Exp) = N_Null then
1513 return New_List (
1514 Make_Raise_Constraint_Error (Sloc (Exp),
1515 Reason => CE_Null_Not_Allowed));
1517 elsif Present (Etype (Exp))
1518 and then not Can_Never_Be_Null (Etype (Exp))
1519 then
1520 Install_Null_Excluding_Check (Exp);
1521 end if;
1522 end if;
1524 -- Take a copy of Exp to ensure that later copies of this
1525 -- component_declaration in derived types see the original tree,
1526 -- not a node rewritten during expansion of the init_proc.
1528 Exp := New_Copy_Tree (Exp);
1530 Res := New_List (
1531 Make_Assignment_Statement (Loc,
1532 Name => Lhs,
1533 Expression => Exp));
1535 Set_No_Ctrl_Actions (First (Res));
1537 -- Adjust the tag if tagged (because of possible view conversions).
1538 -- Suppress the tag adjustment when Java_VM because JVM tags are
1539 -- represented implicitly in objects.
1541 if Is_Tagged_Type (Typ) and then not Java_VM then
1542 Append_To (Res,
1543 Make_Assignment_Statement (Loc,
1544 Name =>
1545 Make_Selected_Component (Loc,
1546 Prefix => New_Copy_Tree (Lhs),
1547 Selector_Name =>
1548 New_Reference_To (First_Tag_Component (Typ), Loc)),
1550 Expression =>
1551 Unchecked_Convert_To (RTE (RE_Tag),
1552 New_Reference_To
1553 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc))));
1554 end if;
1556 -- Adjust the component if controlled except if it is an
1557 -- aggregate that will be expanded inline
1559 if Kind = N_Qualified_Expression then
1560 Kind := Nkind (Expression (N));
1561 end if;
1563 if Controlled_Type (Typ)
1564 and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
1565 then
1566 Append_List_To (Res,
1567 Make_Adjust_Call (
1568 Ref => New_Copy_Tree (Lhs),
1569 Typ => Etype (Id),
1570 Flist_Ref =>
1571 Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
1572 With_Attach => Make_Integer_Literal (Loc, 1)));
1573 end if;
1575 return Res;
1577 exception
1578 when RE_Not_Available =>
1579 return Empty_List;
1580 end Build_Assignment;
1582 ------------------------------------
1583 -- Build_Discriminant_Assignments --
1584 ------------------------------------
1586 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1587 D : Entity_Id;
1588 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1590 begin
1591 if Has_Discriminants (Rec_Type)
1592 and then not Is_Unchecked_Union (Rec_Type)
1593 then
1594 D := First_Discriminant (Rec_Type);
1596 while Present (D) loop
1597 -- Don't generate the assignment for discriminants in derived
1598 -- tagged types if the discriminant is a renaming of some
1599 -- ancestor discriminant. This initialization will be done
1600 -- when initializing the _parent field of the derived record.
1602 if Is_Tagged and then
1603 Present (Corresponding_Discriminant (D))
1604 then
1605 null;
1607 else
1608 Loc := Sloc (D);
1609 Append_List_To (Statement_List,
1610 Build_Assignment (D,
1611 New_Reference_To (Discriminal (D), Loc)));
1612 end if;
1614 Next_Discriminant (D);
1615 end loop;
1616 end if;
1617 end Build_Discriminant_Assignments;
1619 --------------------------
1620 -- Build_Init_Call_Thru --
1621 --------------------------
1623 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
1624 Parent_Proc : constant Entity_Id :=
1625 Base_Init_Proc (Etype (Rec_Type));
1627 Parent_Type : constant Entity_Id :=
1628 Etype (First_Formal (Parent_Proc));
1630 Uparent_Type : constant Entity_Id :=
1631 Underlying_Type (Parent_Type);
1633 First_Discr_Param : Node_Id;
1635 Parent_Discr : Entity_Id;
1636 First_Arg : Node_Id;
1637 Args : List_Id;
1638 Arg : Node_Id;
1639 Res : List_Id;
1641 begin
1642 -- First argument (_Init) is the object to be initialized.
1643 -- ??? not sure where to get a reasonable Loc for First_Arg
1645 First_Arg :=
1646 OK_Convert_To (Parent_Type,
1647 New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
1649 Set_Etype (First_Arg, Parent_Type);
1651 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1653 -- In the tasks case,
1654 -- add _Master as the value of the _Master parameter
1655 -- add _Chain as the value of the _Chain parameter.
1656 -- add _Task_Name as the value of the _Task_Name parameter.
1657 -- At the outer level, these will be variables holding the
1658 -- corresponding values obtained from GNARL or the expander.
1660 -- At inner levels, they will be the parameters passed down through
1661 -- the outer routines.
1663 First_Discr_Param := Next (First (Parameters));
1665 if Has_Task (Rec_Type) then
1666 if Restriction_Active (No_Task_Hierarchy) then
1668 -- See comments in System.Tasking.Initialization.Init_RTS
1669 -- for the value 3.
1671 Append_To (Args, Make_Integer_Literal (Loc, 3));
1672 else
1673 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1674 end if;
1676 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1677 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
1678 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
1679 end if;
1681 -- Append discriminant values
1683 if Has_Discriminants (Uparent_Type) then
1684 pragma Assert (not Is_Tagged_Type (Uparent_Type));
1686 Parent_Discr := First_Discriminant (Uparent_Type);
1687 while Present (Parent_Discr) loop
1689 -- Get the initial value for this discriminant
1690 -- ??? needs to be cleaned up to use parent_Discr_Constr
1691 -- directly.
1693 declare
1694 Discr_Value : Elmt_Id :=
1695 First_Elmt
1696 (Stored_Constraint (Rec_Type));
1698 Discr : Entity_Id :=
1699 First_Stored_Discriminant (Uparent_Type);
1700 begin
1701 while Original_Record_Component (Parent_Discr) /= Discr loop
1702 Next_Stored_Discriminant (Discr);
1703 Next_Elmt (Discr_Value);
1704 end loop;
1706 Arg := Node (Discr_Value);
1707 end;
1709 -- Append it to the list
1711 if Nkind (Arg) = N_Identifier
1712 and then Ekind (Entity (Arg)) = E_Discriminant
1713 then
1714 Append_To (Args,
1715 New_Reference_To (Discriminal (Entity (Arg)), Loc));
1717 -- Case of access discriminants. We replace the reference
1718 -- to the type by a reference to the actual object
1720 -- ??? why is this code deleted without comment
1722 -- elsif Nkind (Arg) = N_Attribute_Reference
1723 -- and then Is_Entity_Name (Prefix (Arg))
1724 -- and then Is_Type (Entity (Prefix (Arg)))
1725 -- then
1726 -- Append_To (Args,
1727 -- Make_Attribute_Reference (Loc,
1728 -- Prefix => New_Copy (Prefix (Id_Ref)),
1729 -- Attribute_Name => Name_Unrestricted_Access));
1731 else
1732 Append_To (Args, New_Copy (Arg));
1733 end if;
1735 Next_Discriminant (Parent_Discr);
1736 end loop;
1737 end if;
1739 Res :=
1740 New_List (
1741 Make_Procedure_Call_Statement (Loc,
1742 Name => New_Occurrence_Of (Parent_Proc, Loc),
1743 Parameter_Associations => Args));
1745 return Res;
1746 end Build_Init_Call_Thru;
1748 -----------------------------------
1749 -- Build_Offset_To_Top_Functions --
1750 -----------------------------------
1752 procedure Build_Offset_To_Top_Functions is
1753 ADT : Elmt_Id;
1754 Body_Node : Node_Id;
1755 Func_Id : Entity_Id;
1756 Spec_Node : Node_Id;
1757 E : Entity_Id;
1759 procedure Build_Offset_To_Top_Internal (Typ : Entity_Id);
1760 -- Internal subprogram used to recursively traverse all the ancestors
1762 ----------------------------------
1763 -- Build_Offset_To_Top_Internal --
1764 ----------------------------------
1766 procedure Build_Offset_To_Top_Internal (Typ : Entity_Id) is
1767 begin
1768 -- Climb to the ancestor (if any) handling private types
1770 if Present (Full_View (Etype (Typ))) then
1771 if Full_View (Etype (Typ)) /= Typ then
1772 Build_Offset_To_Top_Internal (Full_View (Etype (Typ)));
1773 end if;
1775 elsif Etype (Typ) /= Typ then
1776 Build_Offset_To_Top_Internal (Etype (Typ));
1777 end if;
1779 if Present (Abstract_Interfaces (Typ))
1780 and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
1781 then
1782 E := First_Entity (Typ);
1783 while Present (E) loop
1784 if Is_Tag (E)
1785 and then Chars (E) /= Name_uTag
1786 then
1787 if Typ = Rec_Type then
1788 Body_Node := New_Node (N_Subprogram_Body, Loc);
1790 Func_Id := Make_Defining_Identifier (Loc,
1791 New_Internal_Name ('F'));
1793 Set_DT_Offset_To_Top_Func (E, Func_Id);
1795 Spec_Node := New_Node (N_Function_Specification, Loc);
1796 Set_Defining_Unit_Name (Spec_Node, Func_Id);
1797 Set_Parameter_Specifications (Spec_Node, New_List (
1798 Make_Parameter_Specification (Loc,
1799 Defining_Identifier =>
1800 Make_Defining_Identifier (Loc, Name_uO),
1801 In_Present => True,
1802 Parameter_Type => New_Reference_To (Typ, Loc))));
1803 Set_Result_Definition (Spec_Node,
1804 New_Reference_To (RTE (RE_Storage_Offset), Loc));
1806 Set_Specification (Body_Node, Spec_Node);
1807 Set_Declarations (Body_Node, New_List);
1808 Set_Handled_Statement_Sequence (Body_Node,
1809 Make_Handled_Sequence_Of_Statements (Loc,
1810 Statements => New_List (
1811 Make_Return_Statement (Loc,
1812 Expression =>
1813 Make_Attribute_Reference (Loc,
1814 Prefix =>
1815 Make_Selected_Component (Loc,
1816 Prefix => Make_Identifier (Loc,
1817 Name_uO),
1818 Selector_Name => New_Reference_To
1819 (E, Loc)),
1820 Attribute_Name => Name_Position)))));
1822 Set_Ekind (Func_Id, E_Function);
1823 Set_Mechanism (Func_Id, Default_Mechanism);
1824 Set_Is_Internal (Func_Id, True);
1826 if not Debug_Generated_Code then
1827 Set_Debug_Info_Off (Func_Id);
1828 end if;
1830 Analyze (Body_Node);
1832 Append_Freeze_Action (Rec_Type, Body_Node);
1833 end if;
1835 Next_Elmt (ADT);
1836 end if;
1838 Next_Entity (E);
1839 end loop;
1840 end if;
1841 end Build_Offset_To_Top_Internal;
1843 -- Start of processing for Build_Offset_To_Top_Functions
1845 begin
1846 if Etype (Rec_Type) = Rec_Type
1847 or else not Has_Discriminants (Etype (Rec_Type))
1848 or else No (Abstract_Interfaces (Rec_Type))
1849 or else Is_Empty_Elmt_List (Abstract_Interfaces (Rec_Type))
1850 then
1851 return;
1852 end if;
1854 -- Skip the first _Tag, which is the main tag of the
1855 -- tagged type. Following tags correspond with abstract
1856 -- interfaces.
1858 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Rec_Type)));
1860 -- Handle private types
1862 if Present (Full_View (Rec_Type)) then
1863 Build_Offset_To_Top_Internal (Full_View (Rec_Type));
1864 else
1865 Build_Offset_To_Top_Internal (Rec_Type);
1866 end if;
1867 end Build_Offset_To_Top_Functions;
1869 --------------------------
1870 -- Build_Init_Procedure --
1871 --------------------------
1873 procedure Build_Init_Procedure is
1874 Body_Node : Node_Id;
1875 Handled_Stmt_Node : Node_Id;
1876 Parameters : List_Id;
1877 Proc_Spec_Node : Node_Id;
1878 Body_Stmts : List_Id;
1879 Record_Extension_Node : Node_Id;
1880 Init_Tag : Node_Id;
1882 procedure Init_Secondary_Tags (Typ : Entity_Id);
1883 -- Ada 2005 (AI-251): Initialize the tags of all the secondary
1884 -- tables associated with abstract interface types
1886 -------------------------
1887 -- Init_Secondary_Tags --
1888 -------------------------
1890 procedure Init_Secondary_Tags (Typ : Entity_Id) is
1891 ADT : Elmt_Id;
1893 procedure Init_Secondary_Tags_Internal (Typ : Entity_Id);
1894 -- Internal subprogram used to recursively climb to the root type
1896 ----------------------------------
1897 -- Init_Secondary_Tags_Internal --
1898 ----------------------------------
1900 procedure Init_Secondary_Tags_Internal (Typ : Entity_Id) is
1901 Aux_N : Node_Id;
1902 E : Entity_Id;
1903 Iface : Entity_Id;
1904 Prev_E : Entity_Id;
1906 begin
1907 -- Climb to the ancestor (if any) handling private types
1909 if Present (Full_View (Etype (Typ))) then
1910 if Full_View (Etype (Typ)) /= Typ then
1911 Init_Secondary_Tags_Internal (Full_View (Etype (Typ)));
1912 end if;
1914 elsif Etype (Typ) /= Typ then
1915 Init_Secondary_Tags_Internal (Etype (Typ));
1916 end if;
1918 if Present (Abstract_Interfaces (Typ))
1919 and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
1920 then
1921 E := First_Entity (Typ);
1922 while Present (E) loop
1923 if Is_Tag (E)
1924 and then Chars (E) /= Name_uTag
1925 then
1926 Aux_N := Node (ADT);
1927 pragma Assert (Present (Aux_N));
1929 Iface := Find_Interface (Typ, E);
1931 -- Initialize the pointer to the secondary DT
1932 -- associated with the interface
1934 Append_To (Body_Stmts,
1935 Make_Assignment_Statement (Loc,
1936 Name =>
1937 Make_Selected_Component (Loc,
1938 Prefix => Make_Identifier (Loc, Name_uInit),
1939 Selector_Name =>
1940 New_Reference_To (E, Loc)),
1941 Expression =>
1942 New_Reference_To (Aux_N, Loc)));
1944 -- Issue error if Set_Offset_To_Top is not available
1945 -- in a configurable run-time environment.
1947 if not RTE_Available (RE_Set_Offset_To_Top) then
1948 Error_Msg_CRT ("abstract interface types", Typ);
1949 return;
1950 end if;
1952 -- We generate a different call to Set_Offset_To_Top
1953 -- when the parent of the type has discriminants
1955 if Typ /= Etype (Typ)
1956 and then Has_Discriminants (Etype (Typ))
1957 then
1958 pragma Assert (Present (DT_Offset_To_Top_Func (E)));
1960 -- Generate:
1961 -- Set_Offset_To_Top
1962 -- (This => Init,
1963 -- Interface_T => Iface'Tag,
1964 -- Is_Constant => False,
1965 -- Offset_Value => n,
1966 -- Offset_Func => Fn'Address)
1968 Append_To (Body_Stmts,
1969 Make_Procedure_Call_Statement (Loc,
1970 Name => New_Reference_To
1971 (RTE (RE_Set_Offset_To_Top), Loc),
1972 Parameter_Associations => New_List (
1973 Make_Attribute_Reference (Loc,
1974 Prefix => Make_Identifier (Loc,
1975 Name_uInit),
1976 Attribute_Name => Name_Address),
1978 Unchecked_Convert_To (RTE (RE_Tag),
1979 New_Reference_To
1980 (Node (First_Elmt
1981 (Access_Disp_Table (Iface))),
1982 Loc)),
1984 New_Occurrence_Of (Standard_False, Loc),
1986 Unchecked_Convert_To (RTE (RE_Storage_Offset),
1987 Make_Attribute_Reference (Loc,
1988 Prefix =>
1989 Make_Selected_Component (Loc,
1990 Prefix => Make_Identifier (Loc,
1991 Name_uInit),
1992 Selector_Name => New_Reference_To
1993 (E, Loc)),
1994 Attribute_Name => Name_Position)),
1996 Unchecked_Convert_To (RTE (RE_Address),
1997 Make_Attribute_Reference (Loc,
1998 Prefix => New_Reference_To
1999 (DT_Offset_To_Top_Func (E),
2000 Loc),
2001 Attribute_Name =>
2002 Name_Address)))));
2004 -- In this case the next component stores the value
2005 -- of the offset to the top
2007 Prev_E := E;
2008 Next_Entity (E);
2009 pragma Assert (Present (E));
2011 Append_To (Body_Stmts,
2012 Make_Assignment_Statement (Loc,
2013 Name =>
2014 Make_Selected_Component (Loc,
2015 Prefix => Make_Identifier (Loc,
2016 Name_uInit),
2017 Selector_Name =>
2018 New_Reference_To (E, Loc)),
2019 Expression =>
2020 Make_Attribute_Reference (Loc,
2021 Prefix =>
2022 Make_Selected_Component (Loc,
2023 Prefix => Make_Identifier (Loc,
2024 Name_uInit),
2025 Selector_Name => New_Reference_To
2026 (Prev_E, Loc)),
2027 Attribute_Name => Name_Position)));
2029 -- Normal case: No discriminants in the parent type
2031 else
2032 -- Generate:
2033 -- Set_Offset_To_Top
2034 -- (This => Init,
2035 -- Interface_T => Iface'Tag,
2036 -- Is_Constant => True,
2037 -- Offset_Value => n,
2038 -- Offset_Func => null);
2040 Append_To (Body_Stmts,
2041 Make_Procedure_Call_Statement (Loc,
2042 Name => New_Reference_To
2043 (RTE (RE_Set_Offset_To_Top), Loc),
2044 Parameter_Associations => New_List (
2045 Make_Attribute_Reference (Loc,
2046 Prefix => Make_Identifier (Loc, Name_uInit),
2047 Attribute_Name => Name_Address),
2049 Unchecked_Convert_To (RTE (RE_Tag),
2050 New_Reference_To
2051 (Node (First_Elmt
2052 (Access_Disp_Table (Iface))),
2053 Loc)),
2055 New_Occurrence_Of (Standard_True, Loc),
2057 Unchecked_Convert_To (RTE (RE_Storage_Offset),
2058 Make_Attribute_Reference (Loc,
2059 Prefix =>
2060 Make_Selected_Component (Loc,
2061 Prefix => Make_Identifier (Loc,
2062 Name_uInit),
2063 Selector_Name => New_Reference_To
2064 (E, Loc)),
2065 Attribute_Name => Name_Position)),
2067 New_Reference_To
2068 (RTE (RE_Null_Address), Loc))));
2069 end if;
2071 Next_Elmt (ADT);
2072 end if;
2074 Next_Entity (E);
2075 end loop;
2076 end if;
2077 end Init_Secondary_Tags_Internal;
2079 -- Start of processing for Init_Secondary_Tags
2081 begin
2082 -- Skip the first _Tag, which is the main tag of the
2083 -- tagged type. Following tags correspond with abstract
2084 -- interfaces.
2086 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Typ)));
2088 -- Handle private types
2090 if Present (Full_View (Typ)) then
2091 Init_Secondary_Tags_Internal (Full_View (Typ));
2092 else
2093 Init_Secondary_Tags_Internal (Typ);
2094 end if;
2095 end Init_Secondary_Tags;
2097 -- Start of processing for Build_Init_Procedure
2099 begin
2100 Body_Stmts := New_List;
2101 Body_Node := New_Node (N_Subprogram_Body, Loc);
2103 Proc_Id :=
2104 Make_Defining_Identifier (Loc,
2105 Chars => Make_Init_Proc_Name (Rec_Type));
2106 Set_Ekind (Proc_Id, E_Procedure);
2108 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2109 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2111 Parameters := Init_Formals (Rec_Type);
2112 Append_List_To (Parameters,
2113 Build_Discriminant_Formals (Rec_Type, True));
2115 -- For tagged types, we add a flag to indicate whether the routine
2116 -- is called to initialize a parent component in the init_proc of
2117 -- a type extension. If the flag is false, we do not set the tag
2118 -- because it has been set already in the extension.
2120 if Is_Tagged_Type (Rec_Type)
2121 and then not Is_CPP_Class (Rec_Type)
2122 then
2123 Set_Tag :=
2124 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
2126 Append_To (Parameters,
2127 Make_Parameter_Specification (Loc,
2128 Defining_Identifier => Set_Tag,
2129 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
2130 Expression => New_Occurrence_Of (Standard_True, Loc)));
2131 end if;
2133 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
2134 Set_Specification (Body_Node, Proc_Spec_Node);
2135 Set_Declarations (Body_Node, New_List);
2137 if Parent_Subtype_Renaming_Discrims then
2139 -- N is a Derived_Type_Definition that renames the parameters
2140 -- of the ancestor type. We initialize it by expanding our
2141 -- discriminants and call the ancestor _init_proc with a
2142 -- type-converted object
2144 Append_List_To (Body_Stmts,
2145 Build_Init_Call_Thru (Parameters));
2147 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
2148 Build_Discriminant_Assignments (Body_Stmts);
2150 if not Null_Present (Type_Definition (N)) then
2151 Append_List_To (Body_Stmts,
2152 Build_Init_Statements (
2153 Component_List (Type_Definition (N))));
2154 end if;
2156 else
2157 -- N is a Derived_Type_Definition with a possible non-empty
2158 -- extension. The initialization of a type extension consists
2159 -- in the initialization of the components in the extension.
2161 Build_Discriminant_Assignments (Body_Stmts);
2163 Record_Extension_Node :=
2164 Record_Extension_Part (Type_Definition (N));
2166 if not Null_Present (Record_Extension_Node) then
2167 declare
2168 Stmts : constant List_Id :=
2169 Build_Init_Statements (
2170 Component_List (Record_Extension_Node));
2172 begin
2173 -- The parent field must be initialized first because
2174 -- the offset of the new discriminants may depend on it
2176 Prepend_To (Body_Stmts, Remove_Head (Stmts));
2177 Append_List_To (Body_Stmts, Stmts);
2178 end;
2179 end if;
2180 end if;
2182 -- Add here the assignment to instantiate the Tag
2184 -- The assignement corresponds to the code:
2186 -- _Init._Tag := Typ'Tag;
2188 -- Suppress the tag assignment when Java_VM because JVM tags are
2189 -- represented implicitly in objects. It is also suppressed in
2190 -- case of CPP_Class types because in this case the tag is
2191 -- initialized in the C++ side.
2193 if Is_Tagged_Type (Rec_Type)
2194 and then not Is_CPP_Class (Rec_Type)
2195 and then not Java_VM
2196 then
2197 Init_Tag :=
2198 Make_Assignment_Statement (Loc,
2199 Name =>
2200 Make_Selected_Component (Loc,
2201 Prefix => Make_Identifier (Loc, Name_uInit),
2202 Selector_Name =>
2203 New_Reference_To (First_Tag_Component (Rec_Type), Loc)),
2205 Expression =>
2206 New_Reference_To
2207 (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc));
2209 -- The tag must be inserted before the assignments to other
2210 -- components, because the initial value of the component may
2211 -- depend ot the tag (eg. through a dispatching operation on
2212 -- an access to the current type). The tag assignment is not done
2213 -- when initializing the parent component of a type extension,
2214 -- because in that case the tag is set in the extension.
2215 -- Extensions of imported C++ classes add a final complication,
2216 -- because we cannot inhibit tag setting in the constructor for
2217 -- the parent. In that case we insert the tag initialization
2218 -- after the calls to initialize the parent.
2220 Init_Tag :=
2221 Make_If_Statement (Loc,
2222 Condition => New_Occurrence_Of (Set_Tag, Loc),
2223 Then_Statements => New_List (Init_Tag));
2225 if not Is_CPP_Class (Etype (Rec_Type)) then
2226 Prepend_To (Body_Stmts, Init_Tag);
2228 -- Ada 2005 (AI-251): Initialization of all the tags
2229 -- corresponding with abstract interfaces
2231 if Ada_Version >= Ada_05
2232 and then not Is_Interface (Rec_Type)
2233 then
2234 Init_Secondary_Tags (Rec_Type);
2235 end if;
2237 else
2238 declare
2239 Nod : Node_Id := First (Body_Stmts);
2241 begin
2242 -- We assume the first init_proc call is for the parent
2244 while Present (Next (Nod))
2245 and then (Nkind (Nod) /= N_Procedure_Call_Statement
2246 or else not Is_Init_Proc (Name (Nod)))
2247 loop
2248 Nod := Next (Nod);
2249 end loop;
2251 Insert_After (Nod, Init_Tag);
2252 end;
2253 end if;
2254 end if;
2256 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
2257 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2258 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2259 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2261 if not Debug_Generated_Code then
2262 Set_Debug_Info_Off (Proc_Id);
2263 end if;
2265 -- Associate Init_Proc with type, and determine if the procedure
2266 -- is null (happens because of the Initialize_Scalars pragma case,
2267 -- where we have to generate a null procedure in case it is called
2268 -- by a client with Initialize_Scalars set). Such procedures have
2269 -- to be generated, but do not have to be called, so we mark them
2270 -- as null to suppress the call.
2272 Set_Init_Proc (Rec_Type, Proc_Id);
2274 if List_Length (Body_Stmts) = 1
2275 and then Nkind (First (Body_Stmts)) = N_Null_Statement
2276 then
2277 Set_Is_Null_Init_Proc (Proc_Id);
2278 end if;
2279 end Build_Init_Procedure;
2281 ---------------------------
2282 -- Build_Init_Statements --
2283 ---------------------------
2285 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
2286 Check_List : constant List_Id := New_List;
2287 Alt_List : List_Id;
2288 Statement_List : List_Id;
2289 Stmts : List_Id;
2291 Per_Object_Constraint_Components : Boolean;
2293 Decl : Node_Id;
2294 Variant : Node_Id;
2296 Id : Entity_Id;
2297 Typ : Entity_Id;
2299 function Has_Access_Constraint (E : Entity_Id) return Boolean;
2300 -- Components with access discriminants that depend on the current
2301 -- instance must be initialized after all other components.
2303 ---------------------------
2304 -- Has_Access_Constraint --
2305 ---------------------------
2307 function Has_Access_Constraint (E : Entity_Id) return Boolean is
2308 Disc : Entity_Id;
2309 T : constant Entity_Id := Etype (E);
2311 begin
2312 if Has_Per_Object_Constraint (E)
2313 and then Has_Discriminants (T)
2314 then
2315 Disc := First_Discriminant (T);
2316 while Present (Disc) loop
2317 if Is_Access_Type (Etype (Disc)) then
2318 return True;
2319 end if;
2321 Next_Discriminant (Disc);
2322 end loop;
2324 return False;
2325 else
2326 return False;
2327 end if;
2328 end Has_Access_Constraint;
2330 -- Start of processing for Build_Init_Statements
2332 begin
2333 if Null_Present (Comp_List) then
2334 return New_List (Make_Null_Statement (Loc));
2335 end if;
2337 Statement_List := New_List;
2339 -- Loop through components, skipping pragmas, in 2 steps. The first
2340 -- step deals with regular components. The second step deals with
2341 -- components have per object constraints, and no explicit initia-
2342 -- lization.
2344 Per_Object_Constraint_Components := False;
2346 -- First step : regular components
2348 Decl := First_Non_Pragma (Component_Items (Comp_List));
2349 while Present (Decl) loop
2350 Loc := Sloc (Decl);
2351 Build_Record_Checks
2352 (Subtype_Indication (Component_Definition (Decl)), Check_List);
2354 Id := Defining_Identifier (Decl);
2355 Typ := Etype (Id);
2357 if Has_Access_Constraint (Id)
2358 and then No (Expression (Decl))
2359 then
2360 -- Skip processing for now and ask for a second pass
2362 Per_Object_Constraint_Components := True;
2364 else
2365 -- Case of explicit initialization
2367 if Present (Expression (Decl)) then
2368 Stmts := Build_Assignment (Id, Expression (Decl));
2370 -- Case of composite component with its own Init_Proc
2372 elsif not Is_Interface (Typ)
2373 and then Has_Non_Null_Base_Init_Proc (Typ)
2374 then
2375 Stmts :=
2376 Build_Initialization_Call
2377 (Loc,
2378 Make_Selected_Component (Loc,
2379 Prefix => Make_Identifier (Loc, Name_uInit),
2380 Selector_Name => New_Occurrence_Of (Id, Loc)),
2381 Typ,
2382 True,
2383 Rec_Type,
2384 Discr_Map => Discr_Map);
2386 -- Case of component needing simple initialization
2388 elsif Component_Needs_Simple_Initialization (Typ) then
2389 Stmts :=
2390 Build_Assignment
2391 (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id)));
2393 -- Nothing needed for this case
2395 else
2396 Stmts := No_List;
2397 end if;
2399 if Present (Check_List) then
2400 Append_List_To (Statement_List, Check_List);
2401 end if;
2403 if Present (Stmts) then
2405 -- Add the initialization of the record controller before
2406 -- the _Parent field is attached to it when the attachment
2407 -- can occur. It does not work to simply initialize the
2408 -- controller first: it must be initialized after the parent
2409 -- if the parent holds discriminants that can be used
2410 -- to compute the offset of the controller. We assume here
2411 -- that the last statement of the initialization call is the
2412 -- attachement of the parent (see Build_Initialization_Call)
2414 if Chars (Id) = Name_uController
2415 and then Rec_Type /= Etype (Rec_Type)
2416 and then Has_Controlled_Component (Etype (Rec_Type))
2417 and then Has_New_Controlled_Component (Rec_Type)
2418 then
2419 Insert_List_Before (Last (Statement_List), Stmts);
2420 else
2421 Append_List_To (Statement_List, Stmts);
2422 end if;
2423 end if;
2424 end if;
2426 Next_Non_Pragma (Decl);
2427 end loop;
2429 if Per_Object_Constraint_Components then
2431 -- Second pass: components with per-object constraints
2433 Decl := First_Non_Pragma (Component_Items (Comp_List));
2435 while Present (Decl) loop
2436 Loc := Sloc (Decl);
2437 Id := Defining_Identifier (Decl);
2438 Typ := Etype (Id);
2440 if Has_Access_Constraint (Id)
2441 and then No (Expression (Decl))
2442 then
2443 if Has_Non_Null_Base_Init_Proc (Typ) then
2444 Append_List_To (Statement_List,
2445 Build_Initialization_Call (Loc,
2446 Make_Selected_Component (Loc,
2447 Prefix => Make_Identifier (Loc, Name_uInit),
2448 Selector_Name => New_Occurrence_Of (Id, Loc)),
2449 Typ, True, Rec_Type, Discr_Map => Discr_Map));
2451 elsif Component_Needs_Simple_Initialization (Typ) then
2452 Append_List_To (Statement_List,
2453 Build_Assignment
2454 (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id))));
2455 end if;
2456 end if;
2458 Next_Non_Pragma (Decl);
2459 end loop;
2460 end if;
2462 -- Process the variant part
2464 if Present (Variant_Part (Comp_List)) then
2465 Alt_List := New_List;
2466 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
2468 while Present (Variant) loop
2469 Loc := Sloc (Variant);
2470 Append_To (Alt_List,
2471 Make_Case_Statement_Alternative (Loc,
2472 Discrete_Choices =>
2473 New_Copy_List (Discrete_Choices (Variant)),
2474 Statements =>
2475 Build_Init_Statements (Component_List (Variant))));
2477 Next_Non_Pragma (Variant);
2478 end loop;
2480 -- The expression of the case statement which is a reference
2481 -- to one of the discriminants is replaced by the appropriate
2482 -- formal parameter of the initialization procedure.
2484 Append_To (Statement_List,
2485 Make_Case_Statement (Loc,
2486 Expression =>
2487 New_Reference_To (Discriminal (
2488 Entity (Name (Variant_Part (Comp_List)))), Loc),
2489 Alternatives => Alt_List));
2490 end if;
2492 -- For a task record type, add the task create call and calls
2493 -- to bind any interrupt (signal) entries.
2495 if Is_Task_Record_Type (Rec_Type) then
2497 -- In the case of the restricted run time the ATCB has already
2498 -- been preallocated.
2500 if Restricted_Profile then
2501 Append_To (Statement_List,
2502 Make_Assignment_Statement (Loc,
2503 Name => Make_Selected_Component (Loc,
2504 Prefix => Make_Identifier (Loc, Name_uInit),
2505 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
2506 Expression => Make_Attribute_Reference (Loc,
2507 Prefix =>
2508 Make_Selected_Component (Loc,
2509 Prefix => Make_Identifier (Loc, Name_uInit),
2510 Selector_Name =>
2511 Make_Identifier (Loc, Name_uATCB)),
2512 Attribute_Name => Name_Unchecked_Access)));
2513 end if;
2515 Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
2517 declare
2518 Task_Type : constant Entity_Id :=
2519 Corresponding_Concurrent_Type (Rec_Type);
2520 Task_Decl : constant Node_Id := Parent (Task_Type);
2521 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
2522 Vis_Decl : Node_Id;
2523 Ent : Entity_Id;
2525 begin
2526 if Present (Task_Def) then
2527 Vis_Decl := First (Visible_Declarations (Task_Def));
2528 while Present (Vis_Decl) loop
2529 Loc := Sloc (Vis_Decl);
2531 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
2532 if Get_Attribute_Id (Chars (Vis_Decl)) =
2533 Attribute_Address
2534 then
2535 Ent := Entity (Name (Vis_Decl));
2537 if Ekind (Ent) = E_Entry then
2538 Append_To (Statement_List,
2539 Make_Procedure_Call_Statement (Loc,
2540 Name => New_Reference_To (
2541 RTE (RE_Bind_Interrupt_To_Entry), Loc),
2542 Parameter_Associations => New_List (
2543 Make_Selected_Component (Loc,
2544 Prefix =>
2545 Make_Identifier (Loc, Name_uInit),
2546 Selector_Name =>
2547 Make_Identifier (Loc, Name_uTask_Id)),
2548 Entry_Index_Expression (
2549 Loc, Ent, Empty, Task_Type),
2550 Expression (Vis_Decl))));
2551 end if;
2552 end if;
2553 end if;
2555 Next (Vis_Decl);
2556 end loop;
2557 end if;
2558 end;
2559 end if;
2561 -- For a protected type, add statements generated by
2562 -- Make_Initialize_Protection.
2564 if Is_Protected_Record_Type (Rec_Type) then
2565 Append_List_To (Statement_List,
2566 Make_Initialize_Protection (Rec_Type));
2567 end if;
2569 -- If no initializations when generated for component declarations
2570 -- corresponding to this Statement_List, append a null statement
2571 -- to the Statement_List to make it a valid Ada tree.
2573 if Is_Empty_List (Statement_List) then
2574 Append (New_Node (N_Null_Statement, Loc), Statement_List);
2575 end if;
2577 return Statement_List;
2579 exception
2580 when RE_Not_Available =>
2581 return Empty_List;
2582 end Build_Init_Statements;
2584 -------------------------
2585 -- Build_Record_Checks --
2586 -------------------------
2588 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
2589 Subtype_Mark_Id : Entity_Id;
2591 begin
2592 if Nkind (S) = N_Subtype_Indication then
2593 Find_Type (Subtype_Mark (S));
2594 Subtype_Mark_Id := Entity (Subtype_Mark (S));
2596 -- Remaining processing depends on type
2598 case Ekind (Subtype_Mark_Id) is
2600 when Array_Kind =>
2601 Constrain_Array (S, Check_List);
2603 when others =>
2604 null;
2605 end case;
2606 end if;
2607 end Build_Record_Checks;
2609 -------------------------------------------
2610 -- Component_Needs_Simple_Initialization --
2611 -------------------------------------------
2613 function Component_Needs_Simple_Initialization
2614 (T : Entity_Id) return Boolean
2616 begin
2617 return
2618 Needs_Simple_Initialization (T)
2619 and then not Is_RTE (T, RE_Tag)
2620 and then not Is_RTE (T, RE_Vtable_Ptr)
2622 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
2624 and then not Is_RTE (T, RE_Interface_Tag);
2625 end Component_Needs_Simple_Initialization;
2627 ---------------------
2628 -- Constrain_Array --
2629 ---------------------
2631 procedure Constrain_Array
2632 (SI : Node_Id;
2633 Check_List : List_Id)
2635 C : constant Node_Id := Constraint (SI);
2636 Number_Of_Constraints : Nat := 0;
2637 Index : Node_Id;
2638 S, T : Entity_Id;
2640 begin
2641 T := Entity (Subtype_Mark (SI));
2643 if Ekind (T) in Access_Kind then
2644 T := Designated_Type (T);
2645 end if;
2647 S := First (Constraints (C));
2649 while Present (S) loop
2650 Number_Of_Constraints := Number_Of_Constraints + 1;
2651 Next (S);
2652 end loop;
2654 -- In either case, the index constraint must provide a discrete
2655 -- range for each index of the array type and the type of each
2656 -- discrete range must be the same as that of the corresponding
2657 -- index. (RM 3.6.1)
2659 S := First (Constraints (C));
2660 Index := First_Index (T);
2661 Analyze (Index);
2663 -- Apply constraints to each index type
2665 for J in 1 .. Number_Of_Constraints loop
2666 Constrain_Index (Index, S, Check_List);
2667 Next (Index);
2668 Next (S);
2669 end loop;
2671 end Constrain_Array;
2673 ---------------------
2674 -- Constrain_Index --
2675 ---------------------
2677 procedure Constrain_Index
2678 (Index : Node_Id;
2679 S : Node_Id;
2680 Check_List : List_Id)
2682 T : constant Entity_Id := Etype (Index);
2684 begin
2685 if Nkind (S) = N_Range then
2686 Process_Range_Expr_In_Decl (S, T, Check_List);
2687 end if;
2688 end Constrain_Index;
2690 --------------------------------------
2691 -- Parent_Subtype_Renaming_Discrims --
2692 --------------------------------------
2694 function Parent_Subtype_Renaming_Discrims return Boolean is
2695 De : Entity_Id;
2696 Dp : Entity_Id;
2698 begin
2699 if Base_Type (Pe) /= Pe then
2700 return False;
2701 end if;
2703 if Etype (Pe) = Pe
2704 or else not Has_Discriminants (Pe)
2705 or else Is_Constrained (Pe)
2706 or else Is_Tagged_Type (Pe)
2707 then
2708 return False;
2709 end if;
2711 -- If there are no explicit stored discriminants we have inherited
2712 -- the root type discriminants so far, so no renamings occurred.
2714 if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
2715 return False;
2716 end if;
2718 -- Check if we have done some trivial renaming of the parent
2719 -- discriminants, i.e. someting like
2721 -- type DT (X1,X2: int) is new PT (X1,X2);
2723 De := First_Discriminant (Pe);
2724 Dp := First_Discriminant (Etype (Pe));
2726 while Present (De) loop
2727 pragma Assert (Present (Dp));
2729 if Corresponding_Discriminant (De) /= Dp then
2730 return True;
2731 end if;
2733 Next_Discriminant (De);
2734 Next_Discriminant (Dp);
2735 end loop;
2737 return Present (Dp);
2738 end Parent_Subtype_Renaming_Discrims;
2740 ------------------------
2741 -- Requires_Init_Proc --
2742 ------------------------
2744 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
2745 Comp_Decl : Node_Id;
2746 Id : Entity_Id;
2747 Typ : Entity_Id;
2749 begin
2750 -- Definitely do not need one if specifically suppressed
2752 if Suppress_Init_Proc (Rec_Id) then
2753 return False;
2754 end if;
2756 -- If it is a type derived from a type with unknown discriminants,
2757 -- we cannot build an initialization procedure for it.
2759 if Has_Unknown_Discriminants (Rec_Id) then
2760 return False;
2761 end if;
2763 -- Otherwise we need to generate an initialization procedure if
2764 -- Is_CPP_Class is False and at least one of the following applies:
2766 -- 1. Discriminants are present, since they need to be initialized
2767 -- with the appropriate discriminant constraint expressions.
2768 -- However, the discriminant of an unchecked union does not
2769 -- count, since the discriminant is not present.
2771 -- 2. The type is a tagged type, since the implicit Tag component
2772 -- needs to be initialized with a pointer to the dispatch table.
2774 -- 3. The type contains tasks
2776 -- 4. One or more components has an initial value
2778 -- 5. One or more components is for a type which itself requires
2779 -- an initialization procedure.
2781 -- 6. One or more components is a type that requires simple
2782 -- initialization (see Needs_Simple_Initialization), except
2783 -- that types Tag and Interface_Tag are excluded, since fields
2784 -- of these types are initialized by other means.
2786 -- 7. The type is the record type built for a task type (since at
2787 -- the very least, Create_Task must be called)
2789 -- 8. The type is the record type built for a protected type (since
2790 -- at least Initialize_Protection must be called)
2792 -- 9. The type is marked as a public entity. The reason we add this
2793 -- case (even if none of the above apply) is to properly handle
2794 -- Initialize_Scalars. If a package is compiled without an IS
2795 -- pragma, and the client is compiled with an IS pragma, then
2796 -- the client will think an initialization procedure is present
2797 -- and call it, when in fact no such procedure is required, but
2798 -- since the call is generated, there had better be a routine
2799 -- at the other end of the call, even if it does nothing!)
2801 -- Note: the reason we exclude the CPP_Class case is because in this
2802 -- case the initialization is performed in the C++ side.
2804 if Is_CPP_Class (Rec_Id) then
2805 return False;
2807 elsif not Restriction_Active (No_Initialize_Scalars)
2808 and then Is_Public (Rec_Id)
2809 then
2810 return True;
2812 elsif (Has_Discriminants (Rec_Id)
2813 and then not Is_Unchecked_Union (Rec_Id))
2814 or else Is_Tagged_Type (Rec_Id)
2815 or else Is_Concurrent_Record_Type (Rec_Id)
2816 or else Has_Task (Rec_Id)
2817 then
2818 return True;
2819 end if;
2821 Id := First_Component (Rec_Id);
2823 while Present (Id) loop
2824 Comp_Decl := Parent (Id);
2825 Typ := Etype (Id);
2827 if Present (Expression (Comp_Decl))
2828 or else Has_Non_Null_Base_Init_Proc (Typ)
2829 or else Component_Needs_Simple_Initialization (Typ)
2830 then
2831 return True;
2832 end if;
2834 Next_Component (Id);
2835 end loop;
2837 return False;
2838 end Requires_Init_Proc;
2840 -- Start of processing for Build_Record_Init_Proc
2842 begin
2843 Rec_Type := Defining_Identifier (N);
2845 -- This may be full declaration of a private type, in which case
2846 -- the visible entity is a record, and the private entity has been
2847 -- exchanged with it in the private part of the current package.
2848 -- The initialization procedure is built for the record type, which
2849 -- is retrievable from the private entity.
2851 if Is_Incomplete_Or_Private_Type (Rec_Type) then
2852 Rec_Type := Underlying_Type (Rec_Type);
2853 end if;
2855 -- If there are discriminants, build the discriminant map to replace
2856 -- discriminants by their discriminals in complex bound expressions.
2857 -- These only arise for the corresponding records of protected types.
2859 if Is_Concurrent_Record_Type (Rec_Type)
2860 and then Has_Discriminants (Rec_Type)
2861 then
2862 declare
2863 Disc : Entity_Id;
2865 begin
2866 Disc := First_Discriminant (Rec_Type);
2868 while Present (Disc) loop
2869 Append_Elmt (Disc, Discr_Map);
2870 Append_Elmt (Discriminal (Disc), Discr_Map);
2871 Next_Discriminant (Disc);
2872 end loop;
2873 end;
2874 end if;
2876 -- Derived types that have no type extension can use the initialization
2877 -- procedure of their parent and do not need a procedure of their own.
2878 -- This is only correct if there are no representation clauses for the
2879 -- type or its parent, and if the parent has in fact been frozen so
2880 -- that its initialization procedure exists.
2882 if Is_Derived_Type (Rec_Type)
2883 and then not Is_Tagged_Type (Rec_Type)
2884 and then not Is_Unchecked_Union (Rec_Type)
2885 and then not Has_New_Non_Standard_Rep (Rec_Type)
2886 and then not Parent_Subtype_Renaming_Discrims
2887 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
2888 then
2889 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
2891 -- Otherwise if we need an initialization procedure, then build one,
2892 -- mark it as public and inlinable and as having a completion.
2894 elsif Requires_Init_Proc (Rec_Type)
2895 or else Is_Unchecked_Union (Rec_Type)
2896 then
2897 Build_Offset_To_Top_Functions;
2898 Build_Init_Procedure;
2899 Set_Is_Public (Proc_Id, Is_Public (Pe));
2901 -- The initialization of protected records is not worth inlining.
2902 -- In addition, when compiled for another unit for inlining purposes,
2903 -- it may make reference to entities that have not been elaborated
2904 -- yet. The initialization of controlled records contains a nested
2905 -- clean-up procedure that makes it impractical to inline as well,
2906 -- and leads to undefined symbols if inlined in a different unit.
2907 -- Similar considerations apply to task types.
2909 if not Is_Concurrent_Type (Rec_Type)
2910 and then not Has_Task (Rec_Type)
2911 and then not Controlled_Type (Rec_Type)
2912 then
2913 Set_Is_Inlined (Proc_Id);
2914 end if;
2916 Set_Is_Internal (Proc_Id);
2917 Set_Has_Completion (Proc_Id);
2919 if not Debug_Generated_Code then
2920 Set_Debug_Info_Off (Proc_Id);
2921 end if;
2922 end if;
2923 end Build_Record_Init_Proc;
2925 ----------------------------
2926 -- Build_Slice_Assignment --
2927 ----------------------------
2929 -- Generates the following subprogram:
2931 -- procedure Assign
2932 -- (Source, Target : Array_Type,
2933 -- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
2934 -- Rev : Boolean)
2935 -- is
2936 -- Li1 : Index;
2937 -- Ri1 : Index;
2939 -- begin
2940 -- if Rev then
2941 -- Li1 := Left_Hi;
2942 -- Ri1 := Right_Hi;
2943 -- else
2944 -- Li1 := Left_Lo;
2945 -- Ri1 := Right_Lo;
2946 -- end if;
2948 -- loop
2949 -- if Rev then
2950 -- exit when Li1 < Left_Lo;
2951 -- else
2952 -- exit when Li1 > Left_Hi;
2953 -- end if;
2955 -- Target (Li1) := Source (Ri1);
2957 -- if Rev then
2958 -- Li1 := Index'pred (Li1);
2959 -- Ri1 := Index'pred (Ri1);
2960 -- else
2961 -- Li1 := Index'succ (Li1);
2962 -- Ri1 := Index'succ (Ri1);
2963 -- end if;
2964 -- end loop;
2965 -- end Assign;
2967 procedure Build_Slice_Assignment (Typ : Entity_Id) is
2968 Loc : constant Source_Ptr := Sloc (Typ);
2969 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
2971 -- Build formal parameters of procedure
2973 Larray : constant Entity_Id :=
2974 Make_Defining_Identifier
2975 (Loc, Chars => New_Internal_Name ('A'));
2976 Rarray : constant Entity_Id :=
2977 Make_Defining_Identifier
2978 (Loc, Chars => New_Internal_Name ('R'));
2979 Left_Lo : constant Entity_Id :=
2980 Make_Defining_Identifier
2981 (Loc, Chars => New_Internal_Name ('L'));
2982 Left_Hi : constant Entity_Id :=
2983 Make_Defining_Identifier
2984 (Loc, Chars => New_Internal_Name ('L'));
2985 Right_Lo : constant Entity_Id :=
2986 Make_Defining_Identifier
2987 (Loc, Chars => New_Internal_Name ('R'));
2988 Right_Hi : constant Entity_Id :=
2989 Make_Defining_Identifier
2990 (Loc, Chars => New_Internal_Name ('R'));
2991 Rev : constant Entity_Id :=
2992 Make_Defining_Identifier
2993 (Loc, Chars => New_Internal_Name ('D'));
2994 Proc_Name : constant Entity_Id :=
2995 Make_Defining_Identifier (Loc,
2996 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
2998 Lnn : constant Entity_Id :=
2999 Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
3000 Rnn : constant Entity_Id :=
3001 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3002 -- Subscripts for left and right sides
3004 Decls : List_Id;
3005 Loops : Node_Id;
3006 Stats : List_Id;
3008 begin
3009 -- Build declarations for indices
3011 Decls := New_List;
3013 Append_To (Decls,
3014 Make_Object_Declaration (Loc,
3015 Defining_Identifier => Lnn,
3016 Object_Definition =>
3017 New_Occurrence_Of (Index, Loc)));
3019 Append_To (Decls,
3020 Make_Object_Declaration (Loc,
3021 Defining_Identifier => Rnn,
3022 Object_Definition =>
3023 New_Occurrence_Of (Index, Loc)));
3025 Stats := New_List;
3027 -- Build initializations for indices
3029 declare
3030 F_Init : constant List_Id := New_List;
3031 B_Init : constant List_Id := New_List;
3033 begin
3034 Append_To (F_Init,
3035 Make_Assignment_Statement (Loc,
3036 Name => New_Occurrence_Of (Lnn, Loc),
3037 Expression => New_Occurrence_Of (Left_Lo, Loc)));
3039 Append_To (F_Init,
3040 Make_Assignment_Statement (Loc,
3041 Name => New_Occurrence_Of (Rnn, Loc),
3042 Expression => New_Occurrence_Of (Right_Lo, Loc)));
3044 Append_To (B_Init,
3045 Make_Assignment_Statement (Loc,
3046 Name => New_Occurrence_Of (Lnn, Loc),
3047 Expression => New_Occurrence_Of (Left_Hi, Loc)));
3049 Append_To (B_Init,
3050 Make_Assignment_Statement (Loc,
3051 Name => New_Occurrence_Of (Rnn, Loc),
3052 Expression => New_Occurrence_Of (Right_Hi, Loc)));
3054 Append_To (Stats,
3055 Make_If_Statement (Loc,
3056 Condition => New_Occurrence_Of (Rev, Loc),
3057 Then_Statements => B_Init,
3058 Else_Statements => F_Init));
3059 end;
3061 -- Now construct the assignment statement
3063 Loops :=
3064 Make_Loop_Statement (Loc,
3065 Statements => New_List (
3066 Make_Assignment_Statement (Loc,
3067 Name =>
3068 Make_Indexed_Component (Loc,
3069 Prefix => New_Occurrence_Of (Larray, Loc),
3070 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
3071 Expression =>
3072 Make_Indexed_Component (Loc,
3073 Prefix => New_Occurrence_Of (Rarray, Loc),
3074 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
3075 End_Label => Empty);
3077 -- Build exit condition
3079 declare
3080 F_Ass : constant List_Id := New_List;
3081 B_Ass : constant List_Id := New_List;
3083 begin
3084 Append_To (F_Ass,
3085 Make_Exit_Statement (Loc,
3086 Condition =>
3087 Make_Op_Gt (Loc,
3088 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
3089 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
3091 Append_To (B_Ass,
3092 Make_Exit_Statement (Loc,
3093 Condition =>
3094 Make_Op_Lt (Loc,
3095 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
3096 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
3098 Prepend_To (Statements (Loops),
3099 Make_If_Statement (Loc,
3100 Condition => New_Occurrence_Of (Rev, Loc),
3101 Then_Statements => B_Ass,
3102 Else_Statements => F_Ass));
3103 end;
3105 -- Build the increment/decrement statements
3107 declare
3108 F_Ass : constant List_Id := New_List;
3109 B_Ass : constant List_Id := New_List;
3111 begin
3112 Append_To (F_Ass,
3113 Make_Assignment_Statement (Loc,
3114 Name => New_Occurrence_Of (Lnn, Loc),
3115 Expression =>
3116 Make_Attribute_Reference (Loc,
3117 Prefix =>
3118 New_Occurrence_Of (Index, Loc),
3119 Attribute_Name => Name_Succ,
3120 Expressions => New_List (
3121 New_Occurrence_Of (Lnn, Loc)))));
3123 Append_To (F_Ass,
3124 Make_Assignment_Statement (Loc,
3125 Name => New_Occurrence_Of (Rnn, Loc),
3126 Expression =>
3127 Make_Attribute_Reference (Loc,
3128 Prefix =>
3129 New_Occurrence_Of (Index, Loc),
3130 Attribute_Name => Name_Succ,
3131 Expressions => New_List (
3132 New_Occurrence_Of (Rnn, Loc)))));
3134 Append_To (B_Ass,
3135 Make_Assignment_Statement (Loc,
3136 Name => New_Occurrence_Of (Lnn, Loc),
3137 Expression =>
3138 Make_Attribute_Reference (Loc,
3139 Prefix =>
3140 New_Occurrence_Of (Index, Loc),
3141 Attribute_Name => Name_Pred,
3142 Expressions => New_List (
3143 New_Occurrence_Of (Lnn, Loc)))));
3145 Append_To (B_Ass,
3146 Make_Assignment_Statement (Loc,
3147 Name => New_Occurrence_Of (Rnn, Loc),
3148 Expression =>
3149 Make_Attribute_Reference (Loc,
3150 Prefix =>
3151 New_Occurrence_Of (Index, Loc),
3152 Attribute_Name => Name_Pred,
3153 Expressions => New_List (
3154 New_Occurrence_Of (Rnn, Loc)))));
3156 Append_To (Statements (Loops),
3157 Make_If_Statement (Loc,
3158 Condition => New_Occurrence_Of (Rev, Loc),
3159 Then_Statements => B_Ass,
3160 Else_Statements => F_Ass));
3161 end;
3163 Append_To (Stats, Loops);
3165 declare
3166 Spec : Node_Id;
3167 Formals : List_Id := New_List;
3169 begin
3170 Formals := New_List (
3171 Make_Parameter_Specification (Loc,
3172 Defining_Identifier => Larray,
3173 Out_Present => True,
3174 Parameter_Type =>
3175 New_Reference_To (Base_Type (Typ), Loc)),
3177 Make_Parameter_Specification (Loc,
3178 Defining_Identifier => Rarray,
3179 Parameter_Type =>
3180 New_Reference_To (Base_Type (Typ), Loc)),
3182 Make_Parameter_Specification (Loc,
3183 Defining_Identifier => Left_Lo,
3184 Parameter_Type =>
3185 New_Reference_To (Index, Loc)),
3187 Make_Parameter_Specification (Loc,
3188 Defining_Identifier => Left_Hi,
3189 Parameter_Type =>
3190 New_Reference_To (Index, Loc)),
3192 Make_Parameter_Specification (Loc,
3193 Defining_Identifier => Right_Lo,
3194 Parameter_Type =>
3195 New_Reference_To (Index, Loc)),
3197 Make_Parameter_Specification (Loc,
3198 Defining_Identifier => Right_Hi,
3199 Parameter_Type =>
3200 New_Reference_To (Index, Loc)));
3202 Append_To (Formals,
3203 Make_Parameter_Specification (Loc,
3204 Defining_Identifier => Rev,
3205 Parameter_Type =>
3206 New_Reference_To (Standard_Boolean, Loc)));
3208 Spec :=
3209 Make_Procedure_Specification (Loc,
3210 Defining_Unit_Name => Proc_Name,
3211 Parameter_Specifications => Formals);
3213 Discard_Node (
3214 Make_Subprogram_Body (Loc,
3215 Specification => Spec,
3216 Declarations => Decls,
3217 Handled_Statement_Sequence =>
3218 Make_Handled_Sequence_Of_Statements (Loc,
3219 Statements => Stats)));
3220 end;
3222 Set_TSS (Typ, Proc_Name);
3223 Set_Is_Pure (Proc_Name);
3224 end Build_Slice_Assignment;
3226 ------------------------------------
3227 -- Build_Variant_Record_Equality --
3228 ------------------------------------
3230 -- Generates:
3232 -- function _Equality (X, Y : T) return Boolean is
3233 -- begin
3234 -- -- Compare discriminants
3236 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
3237 -- return False;
3238 -- end if;
3240 -- -- Compare components
3242 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
3243 -- return False;
3244 -- end if;
3246 -- -- Compare variant part
3248 -- case X.D1 is
3249 -- when V1 =>
3250 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
3251 -- return False;
3252 -- end if;
3253 -- ...
3254 -- when Vn =>
3255 -- if False or else X.Cn /= Y.Cn then
3256 -- return False;
3257 -- end if;
3258 -- end case;
3259 -- return True;
3260 -- end _Equality;
3262 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
3263 Loc : constant Source_Ptr := Sloc (Typ);
3265 F : constant Entity_Id :=
3266 Make_Defining_Identifier (Loc,
3267 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
3269 X : constant Entity_Id :=
3270 Make_Defining_Identifier (Loc,
3271 Chars => Name_X);
3273 Y : constant Entity_Id :=
3274 Make_Defining_Identifier (Loc,
3275 Chars => Name_Y);
3277 Def : constant Node_Id := Parent (Typ);
3278 Comps : constant Node_Id := Component_List (Type_Definition (Def));
3279 Stmts : constant List_Id := New_List;
3280 Pspecs : constant List_Id := New_List;
3282 begin
3283 -- Derived Unchecked_Union types no longer inherit the equality function
3284 -- of their parent.
3286 if Is_Derived_Type (Typ)
3287 and then not Is_Unchecked_Union (Typ)
3288 and then not Has_New_Non_Standard_Rep (Typ)
3289 then
3290 declare
3291 Parent_Eq : constant Entity_Id :=
3292 TSS (Root_Type (Typ), TSS_Composite_Equality);
3294 begin
3295 if Present (Parent_Eq) then
3296 Copy_TSS (Parent_Eq, Typ);
3297 return;
3298 end if;
3299 end;
3300 end if;
3302 Discard_Node (
3303 Make_Subprogram_Body (Loc,
3304 Specification =>
3305 Make_Function_Specification (Loc,
3306 Defining_Unit_Name => F,
3307 Parameter_Specifications => Pspecs,
3308 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
3309 Declarations => New_List,
3310 Handled_Statement_Sequence =>
3311 Make_Handled_Sequence_Of_Statements (Loc,
3312 Statements => Stmts)));
3314 Append_To (Pspecs,
3315 Make_Parameter_Specification (Loc,
3316 Defining_Identifier => X,
3317 Parameter_Type => New_Reference_To (Typ, Loc)));
3319 Append_To (Pspecs,
3320 Make_Parameter_Specification (Loc,
3321 Defining_Identifier => Y,
3322 Parameter_Type => New_Reference_To (Typ, Loc)));
3324 -- Unchecked_Unions require additional machinery to support equality.
3325 -- Two extra parameters (A and B) are added to the equality function
3326 -- parameter list in order to capture the inferred values of the
3327 -- discriminants in later calls.
3329 if Is_Unchecked_Union (Typ) then
3330 declare
3331 Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));
3333 A : constant Node_Id :=
3334 Make_Defining_Identifier (Loc,
3335 Chars => Name_A);
3337 B : constant Node_Id :=
3338 Make_Defining_Identifier (Loc,
3339 Chars => Name_B);
3341 begin
3342 -- Add A and B to the parameter list
3344 Append_To (Pspecs,
3345 Make_Parameter_Specification (Loc,
3346 Defining_Identifier => A,
3347 Parameter_Type => New_Reference_To (Discr_Type, Loc)));
3349 Append_To (Pspecs,
3350 Make_Parameter_Specification (Loc,
3351 Defining_Identifier => B,
3352 Parameter_Type => New_Reference_To (Discr_Type, Loc)));
3354 -- Generate the following header code to compare the inferred
3355 -- discriminants:
3357 -- if a /= b then
3358 -- return False;
3359 -- end if;
3361 Append_To (Stmts,
3362 Make_If_Statement (Loc,
3363 Condition =>
3364 Make_Op_Ne (Loc,
3365 Left_Opnd => New_Reference_To (A, Loc),
3366 Right_Opnd => New_Reference_To (B, Loc)),
3367 Then_Statements => New_List (
3368 Make_Return_Statement (Loc,
3369 Expression => New_Occurrence_Of (Standard_False, Loc)))));
3371 -- Generate component-by-component comparison. Note that we must
3372 -- propagate one of the inferred discriminant formals to act as
3373 -- the case statement switch.
3375 Append_List_To (Stmts,
3376 Make_Eq_Case (Typ, Comps, A));
3378 end;
3380 -- Normal case (not unchecked union)
3382 else
3383 Append_To (Stmts,
3384 Make_Eq_If (Typ,
3385 Discriminant_Specifications (Def)));
3387 Append_List_To (Stmts,
3388 Make_Eq_Case (Typ, Comps));
3389 end if;
3391 Append_To (Stmts,
3392 Make_Return_Statement (Loc,
3393 Expression => New_Reference_To (Standard_True, Loc)));
3395 Set_TSS (Typ, F);
3396 Set_Is_Pure (F);
3398 if not Debug_Generated_Code then
3399 Set_Debug_Info_Off (F);
3400 end if;
3401 end Build_Variant_Record_Equality;
3403 -----------------------------
3404 -- Check_Stream_Attributes --
3405 -----------------------------
3407 procedure Check_Stream_Attributes (Typ : Entity_Id) is
3408 Comp : Entity_Id;
3409 Par_Read : constant Boolean :=
3410 Stream_Attribute_Available (Typ, TSS_Stream_Read)
3411 and then not Has_Specified_Stream_Read (Typ);
3412 Par_Write : constant Boolean :=
3413 Stream_Attribute_Available (Typ, TSS_Stream_Write)
3414 and then not Has_Specified_Stream_Write (Typ);
3416 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
3417 -- Check that Comp has a user-specified Nam stream attribute
3419 ----------------
3420 -- Check_Attr --
3421 ----------------
3423 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
3424 begin
3425 if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
3426 Error_Msg_Name_1 := Nam;
3427 Error_Msg_N
3428 ("|component& in limited extension must have% attribute", Comp);
3429 end if;
3430 end Check_Attr;
3432 -- Start of processing for Check_Stream_Attributes
3434 begin
3435 if Par_Read or else Par_Write then
3436 Comp := First_Component (Typ);
3437 while Present (Comp) loop
3438 if Comes_From_Source (Comp)
3439 and then Original_Record_Component (Comp) = Comp
3440 and then Is_Limited_Type (Etype (Comp))
3441 then
3442 if Par_Read then
3443 Check_Attr (Name_Read, TSS_Stream_Read);
3444 end if;
3446 if Par_Write then
3447 Check_Attr (Name_Write, TSS_Stream_Write);
3448 end if;
3449 end if;
3451 Next_Component (Comp);
3452 end loop;
3453 end if;
3454 end Check_Stream_Attributes;
3456 -----------------------------
3457 -- Expand_Record_Extension --
3458 -----------------------------
3460 -- Add a field _parent at the beginning of the record extension. This is
3461 -- used to implement inheritance. Here are some examples of expansion:
3463 -- 1. no discriminants
3464 -- type T2 is new T1 with null record;
3465 -- gives
3466 -- type T2 is new T1 with record
3467 -- _Parent : T1;
3468 -- end record;
3470 -- 2. renamed discriminants
3471 -- type T2 (B, C : Int) is new T1 (A => B) with record
3472 -- _Parent : T1 (A => B);
3473 -- D : Int;
3474 -- end;
3476 -- 3. inherited discriminants
3477 -- type T2 is new T1 with record -- discriminant A inherited
3478 -- _Parent : T1 (A);
3479 -- D : Int;
3480 -- end;
3482 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
3483 Indic : constant Node_Id := Subtype_Indication (Def);
3484 Loc : constant Source_Ptr := Sloc (Def);
3485 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
3486 Par_Subtype : Entity_Id;
3487 Comp_List : Node_Id;
3488 Comp_Decl : Node_Id;
3489 Parent_N : Node_Id;
3490 D : Entity_Id;
3491 List_Constr : constant List_Id := New_List;
3493 begin
3494 -- Expand_Record_Extension is called directly from the semantics, so
3495 -- we must check to see whether expansion is active before proceeding
3497 if not Expander_Active then
3498 return;
3499 end if;
3501 -- This may be a derivation of an untagged private type whose full
3502 -- view is tagged, in which case the Derived_Type_Definition has no
3503 -- extension part. Build an empty one now.
3505 if No (Rec_Ext_Part) then
3506 Rec_Ext_Part :=
3507 Make_Record_Definition (Loc,
3508 End_Label => Empty,
3509 Component_List => Empty,
3510 Null_Present => True);
3512 Set_Record_Extension_Part (Def, Rec_Ext_Part);
3513 Mark_Rewrite_Insertion (Rec_Ext_Part);
3514 end if;
3516 Comp_List := Component_List (Rec_Ext_Part);
3518 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
3520 -- If the derived type inherits its discriminants the type of the
3521 -- _parent field must be constrained by the inherited discriminants
3523 if Has_Discriminants (T)
3524 and then Nkind (Indic) /= N_Subtype_Indication
3525 and then not Is_Constrained (Entity (Indic))
3526 then
3527 D := First_Discriminant (T);
3528 while Present (D) loop
3529 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
3530 Next_Discriminant (D);
3531 end loop;
3533 Par_Subtype :=
3534 Process_Subtype (
3535 Make_Subtype_Indication (Loc,
3536 Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
3537 Constraint =>
3538 Make_Index_Or_Discriminant_Constraint (Loc,
3539 Constraints => List_Constr)),
3540 Def);
3542 -- Otherwise the original subtype_indication is just what is needed
3544 else
3545 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
3546 end if;
3548 Set_Parent_Subtype (T, Par_Subtype);
3550 Comp_Decl :=
3551 Make_Component_Declaration (Loc,
3552 Defining_Identifier => Parent_N,
3553 Component_Definition =>
3554 Make_Component_Definition (Loc,
3555 Aliased_Present => False,
3556 Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));
3558 if Null_Present (Rec_Ext_Part) then
3559 Set_Component_List (Rec_Ext_Part,
3560 Make_Component_List (Loc,
3561 Component_Items => New_List (Comp_Decl),
3562 Variant_Part => Empty,
3563 Null_Present => False));
3564 Set_Null_Present (Rec_Ext_Part, False);
3566 elsif Null_Present (Comp_List)
3567 or else Is_Empty_List (Component_Items (Comp_List))
3568 then
3569 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3570 Set_Null_Present (Comp_List, False);
3572 else
3573 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
3574 end if;
3576 Analyze (Comp_Decl);
3577 end Expand_Record_Extension;
3579 ------------------------------------
3580 -- Expand_N_Full_Type_Declaration --
3581 ------------------------------------
3583 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
3584 Def_Id : constant Entity_Id := Defining_Identifier (N);
3585 B_Id : constant Entity_Id := Base_Type (Def_Id);
3586 Par_Id : Entity_Id;
3587 FN : Node_Id;
3589 begin
3590 if Is_Access_Type (Def_Id) then
3592 -- Anonymous access types are created for the components of the
3593 -- record parameter for an entry declaration. No master is created
3594 -- for such a type.
3596 if Has_Task (Designated_Type (Def_Id))
3597 and then Comes_From_Source (N)
3598 then
3599 Build_Master_Entity (Def_Id);
3600 Build_Master_Renaming (Parent (Def_Id), Def_Id);
3602 -- Create a class-wide master because a Master_Id must be generated
3603 -- for access-to-limited-class-wide types whose root may be extended
3604 -- with task components, and for access-to-limited-interfaces because
3605 -- they can be used to reference tasks implementing such interface.
3607 elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
3608 and then (Is_Limited_Type (Designated_Type (Def_Id))
3609 or else
3610 (Is_Interface (Designated_Type (Def_Id))
3611 and then
3612 Is_Limited_Interface (Designated_Type (Def_Id))))
3613 and then Tasking_Allowed
3615 -- Do not create a class-wide master for types whose convention is
3616 -- Java since these types cannot embed Ada tasks anyway. Note that
3617 -- the following test cannot catch the following case:
3619 -- package java.lang.Object is
3620 -- type Typ is tagged limited private;
3621 -- type Ref is access all Typ'Class;
3622 -- private
3623 -- type Typ is tagged limited ...;
3624 -- pragma Convention (Typ, Java)
3625 -- end;
3627 -- Because the convention appears after we have done the
3628 -- processing for type Ref.
3630 and then Convention (Designated_Type (Def_Id)) /= Convention_Java
3631 then
3632 Build_Class_Wide_Master (Def_Id);
3634 elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
3635 Expand_Access_Protected_Subprogram_Type (N);
3636 end if;
3638 elsif Has_Task (Def_Id) then
3639 Expand_Previous_Access_Type (Def_Id);
3640 end if;
3642 Par_Id := Etype (B_Id);
3644 -- The parent type is private then we need to inherit
3645 -- any TSS operations from the full view.
3647 if Ekind (Par_Id) in Private_Kind
3648 and then Present (Full_View (Par_Id))
3649 then
3650 Par_Id := Base_Type (Full_View (Par_Id));
3651 end if;
3653 if Nkind (Type_Definition (Original_Node (N)))
3654 = N_Derived_Type_Definition
3655 and then not Is_Tagged_Type (Def_Id)
3656 and then Present (Freeze_Node (Par_Id))
3657 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
3658 then
3659 Ensure_Freeze_Node (B_Id);
3660 FN := Freeze_Node (B_Id);
3662 if No (TSS_Elist (FN)) then
3663 Set_TSS_Elist (FN, New_Elmt_List);
3664 end if;
3666 declare
3667 T_E : constant Elist_Id := TSS_Elist (FN);
3668 Elmt : Elmt_Id;
3670 begin
3671 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
3673 while Present (Elmt) loop
3674 if Chars (Node (Elmt)) /= Name_uInit then
3675 Append_Elmt (Node (Elmt), T_E);
3676 end if;
3678 Next_Elmt (Elmt);
3679 end loop;
3681 -- If the derived type itself is private with a full view, then
3682 -- associate the full view with the inherited TSS_Elist as well.
3684 if Ekind (B_Id) in Private_Kind
3685 and then Present (Full_View (B_Id))
3686 then
3687 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
3688 Set_TSS_Elist
3689 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
3690 end if;
3691 end;
3692 end if;
3693 end Expand_N_Full_Type_Declaration;
3695 ---------------------------------
3696 -- Expand_N_Object_Declaration --
3697 ---------------------------------
3699 -- First we do special processing for objects of a tagged type where this
3700 -- is the point at which the type is frozen. The creation of the dispatch
3701 -- table and the initialization procedure have to be deferred to this
3702 -- point, since we reference previously declared primitive subprograms.
3704 -- For all types, we call an initialization procedure if there is one
3706 procedure Expand_N_Object_Declaration (N : Node_Id) is
3707 Def_Id : constant Entity_Id := Defining_Identifier (N);
3708 Typ : constant Entity_Id := Etype (Def_Id);
3709 Loc : constant Source_Ptr := Sloc (N);
3710 Expr : constant Node_Id := Expression (N);
3711 New_Ref : Node_Id;
3712 Id_Ref : Node_Id;
3713 Expr_Q : Node_Id;
3715 begin
3716 -- Don't do anything for deferred constants. All proper actions will
3717 -- be expanded during the full declaration.
3719 if No (Expr) and Constant_Present (N) then
3720 return;
3721 end if;
3723 -- Make shared memory routines for shared passive variable
3725 if Is_Shared_Passive (Def_Id) then
3726 Make_Shared_Var_Procs (N);
3727 end if;
3729 -- If tasks being declared, make sure we have an activation chain
3730 -- defined for the tasks (has no effect if we already have one), and
3731 -- also that a Master variable is established and that the appropriate
3732 -- enclosing construct is established as a task master.
3734 if Has_Task (Typ) then
3735 Build_Activation_Chain_Entity (N);
3736 Build_Master_Entity (Def_Id);
3737 end if;
3739 -- Default initialization required, and no expression present
3741 if No (Expr) then
3743 -- Expand Initialize call for controlled objects. One may wonder why
3744 -- the Initialize Call is not done in the regular Init procedure
3745 -- attached to the record type. That's because the init procedure is
3746 -- recursively called on each component, including _Parent, thus the
3747 -- Init call for a controlled object would generate not only one
3748 -- Initialize call as it is required but one for each ancestor of
3749 -- its type. This processing is suppressed if No_Initialization set.
3751 if not Controlled_Type (Typ)
3752 or else No_Initialization (N)
3753 then
3754 null;
3756 elsif not Abort_Allowed
3757 or else not Comes_From_Source (N)
3758 then
3759 Insert_Actions_After (N,
3760 Make_Init_Call (
3761 Ref => New_Occurrence_Of (Def_Id, Loc),
3762 Typ => Base_Type (Typ),
3763 Flist_Ref => Find_Final_List (Def_Id),
3764 With_Attach => Make_Integer_Literal (Loc, 1)));
3766 -- Abort allowed
3768 else
3769 -- We need to protect the initialize call
3771 -- begin
3772 -- Defer_Abort.all;
3773 -- Initialize (...);
3774 -- at end
3775 -- Undefer_Abort.all;
3776 -- end;
3778 -- ??? this won't protect the initialize call for controlled
3779 -- components which are part of the init proc, so this block
3780 -- should probably also contain the call to _init_proc but this
3781 -- requires some code reorganization...
3783 declare
3784 L : constant List_Id :=
3785 Make_Init_Call (
3786 Ref => New_Occurrence_Of (Def_Id, Loc),
3787 Typ => Base_Type (Typ),
3788 Flist_Ref => Find_Final_List (Def_Id),
3789 With_Attach => Make_Integer_Literal (Loc, 1));
3791 Blk : constant Node_Id :=
3792 Make_Block_Statement (Loc,
3793 Handled_Statement_Sequence =>
3794 Make_Handled_Sequence_Of_Statements (Loc, L));
3796 begin
3797 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
3798 Set_At_End_Proc (Handled_Statement_Sequence (Blk),
3799 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
3800 Insert_Actions_After (N, New_List (Blk));
3801 Expand_At_End_Handler
3802 (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
3803 end;
3804 end if;
3806 -- Call type initialization procedure if there is one. We build the
3807 -- call and put it immediately after the object declaration, so that
3808 -- it will be expanded in the usual manner. Note that this will
3809 -- result in proper handling of defaulted discriminants. The call
3810 -- to the Init_Proc is suppressed if No_Initialization is set.
3812 if Has_Non_Null_Base_Init_Proc (Typ)
3813 and then not No_Initialization (N)
3814 then
3815 -- The call to the initialization procedure does NOT freeze
3816 -- the object being initialized. This is because the call is
3817 -- not a source level call. This works fine, because the only
3818 -- possible statements depending on freeze status that can
3819 -- appear after the _Init call are rep clauses which can
3820 -- safely appear after actual references to the object.
3822 Id_Ref := New_Reference_To (Def_Id, Loc);
3823 Set_Must_Not_Freeze (Id_Ref);
3824 Set_Assignment_OK (Id_Ref);
3826 Insert_Actions_After (N,
3827 Build_Initialization_Call (Loc, Id_Ref, Typ));
3829 -- If simple initialization is required, then set an appropriate
3830 -- simple initialization expression in place. This special
3831 -- initialization is required even though No_Init_Flag is present.
3833 -- An internally generated temporary needs no initialization because
3834 -- it will be assigned subsequently. In particular, there is no
3835 -- point in applying Initialize_Scalars to such a temporary.
3837 elsif Needs_Simple_Initialization (Typ)
3838 and then not Is_Internal (Def_Id)
3839 then
3840 Set_No_Initialization (N, False);
3841 Set_Expression (N, Get_Simple_Init_Val (Typ, Loc, Esize (Def_Id)));
3842 Analyze_And_Resolve (Expression (N), Typ);
3843 end if;
3845 -- Generate attribute for Persistent_BSS if needed
3847 if Persistent_BSS_Mode
3848 and then Comes_From_Source (N)
3849 and then Is_Potentially_Persistent_Type (Typ)
3850 and then Is_Library_Level_Entity (Def_Id)
3851 then
3852 declare
3853 Prag : Node_Id;
3854 begin
3855 Prag :=
3856 Make_Linker_Section_Pragma
3857 (Def_Id, Sloc (N), ".persistent.bss");
3858 Insert_After (N, Prag);
3859 Analyze (Prag);
3860 end;
3861 end if;
3863 -- If access type, then we know it is null if not initialized
3865 if Is_Access_Type (Typ) then
3866 Set_Is_Known_Null (Def_Id);
3867 end if;
3869 -- Explicit initialization present
3871 else
3872 -- Obtain actual expression from qualified expression
3874 if Nkind (Expr) = N_Qualified_Expression then
3875 Expr_Q := Expression (Expr);
3876 else
3877 Expr_Q := Expr;
3878 end if;
3880 -- When we have the appropriate type of aggregate in the expression
3881 -- (it has been determined during analysis of the aggregate by
3882 -- setting the delay flag), let's perform in place assignment and
3883 -- thus avoid creating a temporary.
3885 if Is_Delayed_Aggregate (Expr_Q) then
3886 Convert_Aggr_In_Object_Decl (N);
3888 else
3889 -- In most cases, we must check that the initial value meets any
3890 -- constraint imposed by the declared type. However, there is one
3891 -- very important exception to this rule. If the entity has an
3892 -- unconstrained nominal subtype, then it acquired its constraints
3893 -- from the expression in the first place, and not only does this
3894 -- mean that the constraint check is not needed, but an attempt to
3895 -- perform the constraint check can cause order order of
3896 -- elaboration problems.
3898 if not Is_Constr_Subt_For_U_Nominal (Typ) then
3900 -- If this is an allocator for an aggregate that has been
3901 -- allocated in place, delay checks until assignments are
3902 -- made, because the discriminants are not initialized.
3904 if Nkind (Expr) = N_Allocator
3905 and then No_Initialization (Expr)
3906 then
3907 null;
3908 else
3909 Apply_Constraint_Check (Expr, Typ);
3910 end if;
3911 end if;
3913 -- If the type is controlled we attach the object to the final
3914 -- list and adjust the target after the copy. This
3915 -- ??? incomplete sentence
3917 if Controlled_Type (Typ) then
3918 declare
3919 Flist : Node_Id;
3920 F : Entity_Id;
3922 begin
3923 -- Attach the result to a dummy final list which will never
3924 -- be finalized if Delay_Finalize_Attachis set. It is
3925 -- important to attach to a dummy final list rather than not
3926 -- attaching at all in order to reset the pointers coming
3927 -- from the initial value. Equivalent code exists in the
3928 -- sec-stack case in Exp_Ch4.Expand_N_Allocator.
3930 if Delay_Finalize_Attach (N) then
3931 F :=
3932 Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
3933 Insert_Action (N,
3934 Make_Object_Declaration (Loc,
3935 Defining_Identifier => F,
3936 Object_Definition =>
3937 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
3939 Flist := New_Reference_To (F, Loc);
3941 else
3942 Flist := Find_Final_List (Def_Id);
3943 end if;
3945 Insert_Actions_After (N,
3946 Make_Adjust_Call (
3947 Ref => New_Reference_To (Def_Id, Loc),
3948 Typ => Base_Type (Typ),
3949 Flist_Ref => Flist,
3950 With_Attach => Make_Integer_Literal (Loc, 1)));
3951 end;
3952 end if;
3954 -- For tagged types, when an init value is given, the tag has to
3955 -- be re-initialized separately in order to avoid the propagation
3956 -- of a wrong tag coming from a view conversion unless the type
3957 -- is class wide (in this case the tag comes from the init value).
3958 -- Suppress the tag assignment when Java_VM because JVM tags are
3959 -- represented implicitly in objects. Ditto for types that are
3960 -- CPP_CLASS, and for initializations that are aggregates, because
3961 -- they have to have the right tag.
3963 if Is_Tagged_Type (Typ)
3964 and then not Is_Class_Wide_Type (Typ)
3965 and then not Is_CPP_Class (Typ)
3966 and then not Java_VM
3967 and then Nkind (Expr) /= N_Aggregate
3968 then
3969 -- The re-assignment of the tag has to be done even if the
3970 -- object is a constant.
3972 New_Ref :=
3973 Make_Selected_Component (Loc,
3974 Prefix => New_Reference_To (Def_Id, Loc),
3975 Selector_Name =>
3976 New_Reference_To (First_Tag_Component (Typ), Loc));
3978 Set_Assignment_OK (New_Ref);
3980 Insert_After (N,
3981 Make_Assignment_Statement (Loc,
3982 Name => New_Ref,
3983 Expression =>
3984 Unchecked_Convert_To (RTE (RE_Tag),
3985 New_Reference_To
3986 (Node
3987 (First_Elmt
3988 (Access_Disp_Table (Base_Type (Typ)))),
3989 Loc))));
3991 -- For discrete types, set the Is_Known_Valid flag if the
3992 -- initializing value is known to be valid.
3994 elsif Is_Discrete_Type (Typ) and then Expr_Known_Valid (Expr) then
3995 Set_Is_Known_Valid (Def_Id);
3997 elsif Is_Access_Type (Typ) then
3999 -- For access types set the Is_Known_Non_Null flag if the
4000 -- initializing value is known to be non-null. We can also set
4001 -- Can_Never_Be_Null if this is a constant.
4003 if Known_Non_Null (Expr) then
4004 Set_Is_Known_Non_Null (Def_Id, True);
4006 if Constant_Present (N) then
4007 Set_Can_Never_Be_Null (Def_Id);
4008 end if;
4009 end if;
4010 end if;
4012 -- If validity checking on copies, validate initial expression
4014 if Validity_Checks_On
4015 and then Validity_Check_Copies
4016 then
4017 Ensure_Valid (Expr);
4018 Set_Is_Known_Valid (Def_Id);
4019 end if;
4020 end if;
4022 -- Cases where the back end cannot handle the initialization directly
4023 -- In such cases, we expand an assignment that will be appropriately
4024 -- handled by Expand_N_Assignment_Statement.
4026 -- The exclusion of the unconstrained case is wrong, but for now it
4027 -- is too much trouble ???
4029 if (Is_Possibly_Unaligned_Slice (Expr)
4030 or else (Is_Possibly_Unaligned_Object (Expr)
4031 and then not Represented_As_Scalar (Etype (Expr))))
4033 -- The exclusion of the unconstrained case is wrong, but for now
4034 -- it is too much trouble ???
4036 and then not (Is_Array_Type (Etype (Expr))
4037 and then not Is_Constrained (Etype (Expr)))
4038 then
4039 declare
4040 Stat : constant Node_Id :=
4041 Make_Assignment_Statement (Loc,
4042 Name => New_Reference_To (Def_Id, Loc),
4043 Expression => Relocate_Node (Expr));
4044 begin
4045 Set_Expression (N, Empty);
4046 Set_No_Initialization (N);
4047 Set_Assignment_OK (Name (Stat));
4048 Set_No_Ctrl_Actions (Stat);
4049 Insert_After (N, Stat);
4050 Analyze (Stat);
4051 end;
4052 end if;
4053 end if;
4055 -- For array type, check for size too large
4056 -- We really need this for record types too???
4058 if Is_Array_Type (Typ) then
4059 Apply_Array_Size_Check (N, Typ);
4060 end if;
4062 exception
4063 when RE_Not_Available =>
4064 return;
4065 end Expand_N_Object_Declaration;
4067 ---------------------------------
4068 -- Expand_N_Subtype_Indication --
4069 ---------------------------------
4071 -- Add a check on the range of the subtype. The static case is partially
4072 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
4073 -- to check here for the static case in order to avoid generating
4074 -- extraneous expanded code.
4076 procedure Expand_N_Subtype_Indication (N : Node_Id) is
4077 Ran : constant Node_Id := Range_Expression (Constraint (N));
4078 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
4080 begin
4081 if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
4082 Nkind (Parent (N)) = N_Slice
4083 then
4084 Resolve (Ran, Typ);
4085 Apply_Range_Check (Ran, Typ);
4086 end if;
4087 end Expand_N_Subtype_Indication;
4089 ---------------------------
4090 -- Expand_N_Variant_Part --
4091 ---------------------------
4093 -- If the last variant does not contain the Others choice, replace it with
4094 -- an N_Others_Choice node since Gigi always wants an Others. Note that we
4095 -- do not bother to call Analyze on the modified variant part, since it's
4096 -- only effect would be to compute the contents of the
4097 -- Others_Discrete_Choices node laboriously, and of course we already know
4098 -- the list of choices that corresponds to the others choice (it's the
4099 -- list we are replacing!)
4101 procedure Expand_N_Variant_Part (N : Node_Id) is
4102 Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
4103 Others_Node : Node_Id;
4104 begin
4105 if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
4106 Others_Node := Make_Others_Choice (Sloc (Last_Var));
4107 Set_Others_Discrete_Choices
4108 (Others_Node, Discrete_Choices (Last_Var));
4109 Set_Discrete_Choices (Last_Var, New_List (Others_Node));
4110 end if;
4111 end Expand_N_Variant_Part;
4113 ---------------------------------
4114 -- Expand_Previous_Access_Type --
4115 ---------------------------------
4117 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
4118 T : Entity_Id := First_Entity (Current_Scope);
4120 begin
4121 -- Find all access types declared in the current scope, whose
4122 -- designated type is Def_Id.
4124 while Present (T) loop
4125 if Is_Access_Type (T)
4126 and then Designated_Type (T) = Def_Id
4127 then
4128 Build_Master_Entity (Def_Id);
4129 Build_Master_Renaming (Parent (Def_Id), T);
4130 end if;
4132 Next_Entity (T);
4133 end loop;
4134 end Expand_Previous_Access_Type;
4136 ------------------------------
4137 -- Expand_Record_Controller --
4138 ------------------------------
4140 procedure Expand_Record_Controller (T : Entity_Id) is
4141 Def : Node_Id := Type_Definition (Parent (T));
4142 Comp_List : Node_Id;
4143 Comp_Decl : Node_Id;
4144 Loc : Source_Ptr;
4145 First_Comp : Node_Id;
4146 Controller_Type : Entity_Id;
4147 Ent : Entity_Id;
4149 begin
4150 if Nkind (Def) = N_Derived_Type_Definition then
4151 Def := Record_Extension_Part (Def);
4152 end if;
4154 if Null_Present (Def) then
4155 Set_Component_List (Def,
4156 Make_Component_List (Sloc (Def),
4157 Component_Items => Empty_List,
4158 Variant_Part => Empty,
4159 Null_Present => True));
4160 end if;
4162 Comp_List := Component_List (Def);
4164 if Null_Present (Comp_List)
4165 or else Is_Empty_List (Component_Items (Comp_List))
4166 then
4167 Loc := Sloc (Comp_List);
4168 else
4169 Loc := Sloc (First (Component_Items (Comp_List)));
4170 end if;
4172 if Is_Return_By_Reference_Type (T) then
4173 Controller_Type := RTE (RE_Limited_Record_Controller);
4174 else
4175 Controller_Type := RTE (RE_Record_Controller);
4176 end if;
4178 Ent := Make_Defining_Identifier (Loc, Name_uController);
4180 Comp_Decl :=
4181 Make_Component_Declaration (Loc,
4182 Defining_Identifier => Ent,
4183 Component_Definition =>
4184 Make_Component_Definition (Loc,
4185 Aliased_Present => False,
4186 Subtype_Indication => New_Reference_To (Controller_Type, Loc)));
4188 if Null_Present (Comp_List)
4189 or else Is_Empty_List (Component_Items (Comp_List))
4190 then
4191 Set_Component_Items (Comp_List, New_List (Comp_Decl));
4192 Set_Null_Present (Comp_List, False);
4194 else
4195 -- The controller cannot be placed before the _Parent field since
4196 -- gigi lays out field in order and _parent must be first to
4197 -- preserve the polymorphism of tagged types.
4199 First_Comp := First (Component_Items (Comp_List));
4201 if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
4202 and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
4203 then
4204 Insert_Before (First_Comp, Comp_Decl);
4205 else
4206 Insert_After (First_Comp, Comp_Decl);
4207 end if;
4208 end if;
4210 New_Scope (T);
4211 Analyze (Comp_Decl);
4212 Set_Ekind (Ent, E_Component);
4213 Init_Component_Location (Ent);
4215 -- Move the _controller entity ahead in the list of internal entities
4216 -- of the enclosing record so that it is selected instead of a
4217 -- potentially inherited one.
4219 declare
4220 E : constant Entity_Id := Last_Entity (T);
4221 Comp : Entity_Id;
4223 begin
4224 pragma Assert (Chars (E) = Name_uController);
4226 Set_Next_Entity (E, First_Entity (T));
4227 Set_First_Entity (T, E);
4229 Comp := Next_Entity (E);
4230 while Next_Entity (Comp) /= E loop
4231 Next_Entity (Comp);
4232 end loop;
4234 Set_Next_Entity (Comp, Empty);
4235 Set_Last_Entity (T, Comp);
4236 end;
4238 End_Scope;
4240 exception
4241 when RE_Not_Available =>
4242 return;
4243 end Expand_Record_Controller;
4245 ------------------------
4246 -- Expand_Tagged_Root --
4247 ------------------------
4249 procedure Expand_Tagged_Root (T : Entity_Id) is
4250 Def : constant Node_Id := Type_Definition (Parent (T));
4251 Comp_List : Node_Id;
4252 Comp_Decl : Node_Id;
4253 Sloc_N : Source_Ptr;
4255 begin
4256 if Null_Present (Def) then
4257 Set_Component_List (Def,
4258 Make_Component_List (Sloc (Def),
4259 Component_Items => Empty_List,
4260 Variant_Part => Empty,
4261 Null_Present => True));
4262 end if;
4264 Comp_List := Component_List (Def);
4266 if Null_Present (Comp_List)
4267 or else Is_Empty_List (Component_Items (Comp_List))
4268 then
4269 Sloc_N := Sloc (Comp_List);
4270 else
4271 Sloc_N := Sloc (First (Component_Items (Comp_List)));
4272 end if;
4274 Comp_Decl :=
4275 Make_Component_Declaration (Sloc_N,
4276 Defining_Identifier => First_Tag_Component (T),
4277 Component_Definition =>
4278 Make_Component_Definition (Sloc_N,
4279 Aliased_Present => False,
4280 Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));
4282 if Null_Present (Comp_List)
4283 or else Is_Empty_List (Component_Items (Comp_List))
4284 then
4285 Set_Component_Items (Comp_List, New_List (Comp_Decl));
4286 Set_Null_Present (Comp_List, False);
4288 else
4289 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
4290 end if;
4292 -- We don't Analyze the whole expansion because the tag component has
4293 -- already been analyzed previously. Here we just insure that the tree
4294 -- is coherent with the semantic decoration
4296 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
4298 exception
4299 when RE_Not_Available =>
4300 return;
4301 end Expand_Tagged_Root;
4303 -----------------------
4304 -- Freeze_Array_Type --
4305 -----------------------
4307 procedure Freeze_Array_Type (N : Node_Id) is
4308 Typ : constant Entity_Id := Entity (N);
4309 Base : constant Entity_Id := Base_Type (Typ);
4311 begin
4312 if not Is_Bit_Packed_Array (Typ) then
4314 -- If the component contains tasks, so does the array type. This may
4315 -- not be indicated in the array type because the component may have
4316 -- been a private type at the point of definition. Same if component
4317 -- type is controlled.
4319 Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
4320 Set_Has_Controlled_Component (Base,
4321 Has_Controlled_Component (Component_Type (Typ))
4322 or else Is_Controlled (Component_Type (Typ)));
4324 if No (Init_Proc (Base)) then
4326 -- If this is an anonymous array created for a declaration with
4327 -- an initial value, its init_proc will never be called. The
4328 -- initial value itself may have been expanded into assign-
4329 -- ments, in which case the object declaration is carries the
4330 -- No_Initialization flag.
4332 if Is_Itype (Base)
4333 and then Nkind (Associated_Node_For_Itype (Base)) =
4334 N_Object_Declaration
4335 and then (Present (Expression (Associated_Node_For_Itype (Base)))
4336 or else
4337 No_Initialization (Associated_Node_For_Itype (Base)))
4338 then
4339 null;
4341 -- We do not need an init proc for string or wide [wide] string,
4342 -- since the only time these need initialization in normalize or
4343 -- initialize scalars mode, and these types are treated specially
4344 -- and do not need initialization procedures.
4346 elsif Root_Type (Base) = Standard_String
4347 or else Root_Type (Base) = Standard_Wide_String
4348 or else Root_Type (Base) = Standard_Wide_Wide_String
4349 then
4350 null;
4352 -- Otherwise we have to build an init proc for the subtype
4354 else
4355 Build_Array_Init_Proc (Base, N);
4356 end if;
4357 end if;
4359 if Typ = Base and then Has_Controlled_Component (Base) then
4360 Build_Controlling_Procs (Base);
4362 if not Is_Limited_Type (Component_Type (Typ))
4363 and then Number_Dimensions (Typ) = 1
4364 then
4365 Build_Slice_Assignment (Typ);
4366 end if;
4367 end if;
4369 -- For packed case, there is a default initialization, except if the
4370 -- component type is itself a packed structure with an initialization
4371 -- procedure.
4373 elsif Present (Init_Proc (Component_Type (Base)))
4374 and then No (Base_Init_Proc (Base))
4375 then
4376 Build_Array_Init_Proc (Base, N);
4377 end if;
4378 end Freeze_Array_Type;
4380 -----------------------------
4381 -- Freeze_Enumeration_Type --
4382 -----------------------------
4384 procedure Freeze_Enumeration_Type (N : Node_Id) is
4385 Typ : constant Entity_Id := Entity (N);
4386 Loc : constant Source_Ptr := Sloc (Typ);
4387 Ent : Entity_Id;
4388 Lst : List_Id;
4389 Num : Nat;
4390 Arr : Entity_Id;
4391 Fent : Entity_Id;
4392 Ityp : Entity_Id;
4393 Is_Contiguous : Boolean;
4394 Pos_Expr : Node_Id;
4395 Last_Repval : Uint;
4397 Func : Entity_Id;
4398 pragma Warnings (Off, Func);
4400 begin
4401 -- Various optimization are possible if the given representation is
4402 -- contiguous.
4404 Is_Contiguous := True;
4405 Ent := First_Literal (Typ);
4406 Last_Repval := Enumeration_Rep (Ent);
4407 Next_Literal (Ent);
4409 while Present (Ent) loop
4410 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
4411 Is_Contiguous := False;
4412 exit;
4413 else
4414 Last_Repval := Enumeration_Rep (Ent);
4415 end if;
4417 Next_Literal (Ent);
4418 end loop;
4420 if Is_Contiguous then
4421 Set_Has_Contiguous_Rep (Typ);
4422 Ent := First_Literal (Typ);
4423 Num := 1;
4424 Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));
4426 else
4427 -- Build list of literal references
4429 Lst := New_List;
4430 Num := 0;
4432 Ent := First_Literal (Typ);
4433 while Present (Ent) loop
4434 Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
4435 Num := Num + 1;
4436 Next_Literal (Ent);
4437 end loop;
4438 end if;
4440 -- Now build an array declaration
4442 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4443 -- (v, v, v, v, v, ....)
4445 -- where ctype is the corresponding integer type. If the representation
4446 -- is contiguous, we only keep the first literal, which provides the
4447 -- offset for Pos_To_Rep computations.
4449 Arr :=
4450 Make_Defining_Identifier (Loc,
4451 Chars => New_External_Name (Chars (Typ), 'A'));
4453 Append_Freeze_Action (Typ,
4454 Make_Object_Declaration (Loc,
4455 Defining_Identifier => Arr,
4456 Constant_Present => True,
4458 Object_Definition =>
4459 Make_Constrained_Array_Definition (Loc,
4460 Discrete_Subtype_Definitions => New_List (
4461 Make_Subtype_Indication (Loc,
4462 Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
4463 Constraint =>
4464 Make_Range_Constraint (Loc,
4465 Range_Expression =>
4466 Make_Range (Loc,
4467 Low_Bound =>
4468 Make_Integer_Literal (Loc, 0),
4469 High_Bound =>
4470 Make_Integer_Literal (Loc, Num - 1))))),
4472 Component_Definition =>
4473 Make_Component_Definition (Loc,
4474 Aliased_Present => False,
4475 Subtype_Indication => New_Reference_To (Typ, Loc))),
4477 Expression =>
4478 Make_Aggregate (Loc,
4479 Expressions => Lst)));
4481 Set_Enum_Pos_To_Rep (Typ, Arr);
4483 -- Now we build the function that converts representation values to
4484 -- position values. This function has the form:
4486 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4487 -- begin
4488 -- case ityp!(A) is
4489 -- when enum-lit'Enum_Rep => return posval;
4490 -- when enum-lit'Enum_Rep => return posval;
4491 -- ...
4492 -- when others =>
4493 -- [raise Constraint_Error when F "invalid data"]
4494 -- return -1;
4495 -- end case;
4496 -- end;
4498 -- Note: the F parameter determines whether the others case (no valid
4499 -- representation) raises Constraint_Error or returns a unique value
4500 -- of minus one. The latter case is used, e.g. in 'Valid code.
4502 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4503 -- the code generator making inappropriate assumptions about the range
4504 -- of the values in the case where the value is invalid. ityp is a
4505 -- signed or unsigned integer type of appropriate width.
4507 -- Note: if exceptions are not supported, then we suppress the raise
4508 -- and return -1 unconditionally (this is an erroneous program in any
4509 -- case and there is no obligation to raise Constraint_Error here!) We
4510 -- also do this if pragma Restrictions (No_Exceptions) is active.
4512 -- Representations are signed
4514 if Enumeration_Rep (First_Literal (Typ)) < 0 then
4516 -- The underlying type is signed. Reset the Is_Unsigned_Type
4517 -- explicitly, because it might have been inherited from
4518 -- parent type.
4520 Set_Is_Unsigned_Type (Typ, False);
4522 if Esize (Typ) <= Standard_Integer_Size then
4523 Ityp := Standard_Integer;
4524 else
4525 Ityp := Universal_Integer;
4526 end if;
4528 -- Representations are unsigned
4530 else
4531 if Esize (Typ) <= Standard_Integer_Size then
4532 Ityp := RTE (RE_Unsigned);
4533 else
4534 Ityp := RTE (RE_Long_Long_Unsigned);
4535 end if;
4536 end if;
4538 -- The body of the function is a case statement. First collect case
4539 -- alternatives, or optimize the contiguous case.
4541 Lst := New_List;
4543 -- If representation is contiguous, Pos is computed by subtracting
4544 -- the representation of the first literal.
4546 if Is_Contiguous then
4547 Ent := First_Literal (Typ);
4549 if Enumeration_Rep (Ent) = Last_Repval then
4551 -- Another special case: for a single literal, Pos is zero
4553 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
4555 else
4556 Pos_Expr :=
4557 Convert_To (Standard_Integer,
4558 Make_Op_Subtract (Loc,
4559 Left_Opnd =>
4560 Unchecked_Convert_To (Ityp,
4561 Make_Identifier (Loc, Name_uA)),
4562 Right_Opnd =>
4563 Make_Integer_Literal (Loc,
4564 Intval =>
4565 Enumeration_Rep (First_Literal (Typ)))));
4566 end if;
4568 Append_To (Lst,
4569 Make_Case_Statement_Alternative (Loc,
4570 Discrete_Choices => New_List (
4571 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
4572 Low_Bound =>
4573 Make_Integer_Literal (Loc,
4574 Intval => Enumeration_Rep (Ent)),
4575 High_Bound =>
4576 Make_Integer_Literal (Loc, Intval => Last_Repval))),
4578 Statements => New_List (
4579 Make_Return_Statement (Loc,
4580 Expression => Pos_Expr))));
4582 else
4583 Ent := First_Literal (Typ);
4585 while Present (Ent) loop
4586 Append_To (Lst,
4587 Make_Case_Statement_Alternative (Loc,
4588 Discrete_Choices => New_List (
4589 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
4590 Intval => Enumeration_Rep (Ent))),
4592 Statements => New_List (
4593 Make_Return_Statement (Loc,
4594 Expression =>
4595 Make_Integer_Literal (Loc,
4596 Intval => Enumeration_Pos (Ent))))));
4598 Next_Literal (Ent);
4599 end loop;
4600 end if;
4602 -- In normal mode, add the others clause with the test
4604 if not Restriction_Active (No_Exception_Handlers) then
4605 Append_To (Lst,
4606 Make_Case_Statement_Alternative (Loc,
4607 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4608 Statements => New_List (
4609 Make_Raise_Constraint_Error (Loc,
4610 Condition => Make_Identifier (Loc, Name_uF),
4611 Reason => CE_Invalid_Data),
4612 Make_Return_Statement (Loc,
4613 Expression =>
4614 Make_Integer_Literal (Loc, -1)))));
4616 -- If Restriction (No_Exceptions_Handlers) is active then we always
4617 -- return -1 (since we cannot usefully raise Constraint_Error in
4618 -- this case). See description above for further details.
4620 else
4621 Append_To (Lst,
4622 Make_Case_Statement_Alternative (Loc,
4623 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4624 Statements => New_List (
4625 Make_Return_Statement (Loc,
4626 Expression =>
4627 Make_Integer_Literal (Loc, -1)))));
4628 end if;
4630 -- Now we can build the function body
4632 Fent :=
4633 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
4635 Func :=
4636 Make_Subprogram_Body (Loc,
4637 Specification =>
4638 Make_Function_Specification (Loc,
4639 Defining_Unit_Name => Fent,
4640 Parameter_Specifications => New_List (
4641 Make_Parameter_Specification (Loc,
4642 Defining_Identifier =>
4643 Make_Defining_Identifier (Loc, Name_uA),
4644 Parameter_Type => New_Reference_To (Typ, Loc)),
4645 Make_Parameter_Specification (Loc,
4646 Defining_Identifier =>
4647 Make_Defining_Identifier (Loc, Name_uF),
4648 Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
4650 Result_Definition => New_Reference_To (Standard_Integer, Loc)),
4652 Declarations => Empty_List,
4654 Handled_Statement_Sequence =>
4655 Make_Handled_Sequence_Of_Statements (Loc,
4656 Statements => New_List (
4657 Make_Case_Statement (Loc,
4658 Expression =>
4659 Unchecked_Convert_To (Ityp,
4660 Make_Identifier (Loc, Name_uA)),
4661 Alternatives => Lst))));
4663 Set_TSS (Typ, Fent);
4664 Set_Is_Pure (Fent);
4666 if not Debug_Generated_Code then
4667 Set_Debug_Info_Off (Fent);
4668 end if;
4670 exception
4671 when RE_Not_Available =>
4672 return;
4673 end Freeze_Enumeration_Type;
4675 ------------------------
4676 -- Freeze_Record_Type --
4677 ------------------------
4679 procedure Freeze_Record_Type (N : Node_Id) is
4680 Comp : Entity_Id;
4681 Def_Id : constant Node_Id := Entity (N);
4682 Predef_List : List_Id;
4683 Type_Decl : constant Node_Id := Parent (Def_Id);
4685 Renamed_Eq : Node_Id := Empty;
4686 -- Could use some comments ???
4688 Wrapper_Decl_List : List_Id := No_List;
4689 Wrapper_Body_List : List_Id := No_List;
4691 begin
4692 -- Build discriminant checking functions if not a derived type (for
4693 -- derived types that are not tagged types, we always use the
4694 -- discriminant checking functions of the parent type). However, for
4695 -- untagged types the derivation may have taken place before the
4696 -- parent was frozen, so we copy explicitly the discriminant checking
4697 -- functions from the parent into the components of the derived type.
4699 if not Is_Derived_Type (Def_Id)
4700 or else Has_New_Non_Standard_Rep (Def_Id)
4701 or else Is_Tagged_Type (Def_Id)
4702 then
4703 Build_Discr_Checking_Funcs (Type_Decl);
4705 elsif Is_Derived_Type (Def_Id)
4706 and then not Is_Tagged_Type (Def_Id)
4708 -- If we have a derived Unchecked_Union, we do not inherit the
4709 -- discriminant checking functions from the parent type since the
4710 -- discriminants are non existent.
4712 and then not Is_Unchecked_Union (Def_Id)
4713 and then Has_Discriminants (Def_Id)
4714 then
4715 declare
4716 Old_Comp : Entity_Id;
4718 begin
4719 Old_Comp :=
4720 First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
4721 Comp := First_Component (Def_Id);
4722 while Present (Comp) loop
4723 if Ekind (Comp) = E_Component
4724 and then Chars (Comp) = Chars (Old_Comp)
4725 then
4726 Set_Discriminant_Checking_Func (Comp,
4727 Discriminant_Checking_Func (Old_Comp));
4728 end if;
4730 Next_Component (Old_Comp);
4731 Next_Component (Comp);
4732 end loop;
4733 end;
4734 end if;
4736 if Is_Derived_Type (Def_Id)
4737 and then Is_Limited_Type (Def_Id)
4738 and then Is_Tagged_Type (Def_Id)
4739 then
4740 Check_Stream_Attributes (Def_Id);
4741 end if;
4743 -- Update task and controlled component flags, because some of the
4744 -- component types may have been private at the point of the record
4745 -- declaration.
4747 Comp := First_Component (Def_Id);
4749 while Present (Comp) loop
4750 if Has_Task (Etype (Comp)) then
4751 Set_Has_Task (Def_Id);
4753 elsif Has_Controlled_Component (Etype (Comp))
4754 or else (Chars (Comp) /= Name_uParent
4755 and then Is_Controlled (Etype (Comp)))
4756 then
4757 Set_Has_Controlled_Component (Def_Id);
4758 end if;
4760 Next_Component (Comp);
4761 end loop;
4763 -- Creation of the Dispatch Table. Note that a Dispatch Table is
4764 -- created for regular tagged types as well as for Ada types deriving
4765 -- from a C++ Class, but not for tagged types directly corresponding to
4766 -- the C++ classes. In the later case we assume that the Vtable is
4767 -- created in the C++ side and we just use it.
4769 if Is_Tagged_Type (Def_Id) then
4771 if Is_CPP_Class (Def_Id) then
4773 -- Because of the new C++ ABI compatibility we now allow the
4774 -- programer to use the Ada tag (and in this case we must do
4775 -- the normal expansion of the tag)
4777 if Etype (First_Component (Def_Id)) = RTE (RE_Tag)
4778 and then Underlying_Type (Etype (Def_Id)) = Def_Id
4779 then
4780 Expand_Tagged_Root (Def_Id);
4781 end if;
4783 Set_All_DT_Position (Def_Id);
4784 Set_Default_Constructor (Def_Id);
4786 else
4787 -- Usually inherited primitives are not delayed but the first Ada
4788 -- extension of a CPP_Class is an exception since the address of
4789 -- the inherited subprogram has to be inserted in the new Ada
4790 -- Dispatch Table and this is a freezing action (usually the
4791 -- inherited primitive address is inserted in the DT by
4792 -- Inherit_DT)
4794 -- Similarly, if this is an inherited operation whose parent is
4795 -- not frozen yet, it is not in the DT of the parent, and we
4796 -- generate an explicit freeze node for the inherited operation,
4797 -- so that it is properly inserted in the DT of the current type.
4799 declare
4800 Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
4801 Subp : Entity_Id;
4803 begin
4804 while Present (Elmt) loop
4805 Subp := Node (Elmt);
4807 if Present (Alias (Subp)) then
4808 if Is_CPP_Class (Etype (Def_Id)) then
4809 Set_Has_Delayed_Freeze (Subp);
4811 elsif Has_Delayed_Freeze (Alias (Subp))
4812 and then not Is_Frozen (Alias (Subp))
4813 then
4814 Set_Is_Frozen (Subp, False);
4815 Set_Has_Delayed_Freeze (Subp);
4816 end if;
4817 end if;
4819 Next_Elmt (Elmt);
4820 end loop;
4821 end;
4823 if Underlying_Type (Etype (Def_Id)) = Def_Id then
4824 Expand_Tagged_Root (Def_Id);
4825 end if;
4827 -- Unfreeze momentarily the type to add the predefined primitives
4828 -- operations. The reason we unfreeze is so that these predefined
4829 -- operations will indeed end up as primitive operations (which
4830 -- must be before the freeze point).
4832 Set_Is_Frozen (Def_Id, False);
4833 Make_Predefined_Primitive_Specs
4834 (Def_Id, Predef_List, Renamed_Eq);
4835 Insert_List_Before_And_Analyze (N, Predef_List);
4837 -- Ada 2005 (AI-391): For a nonabstract null extension, create
4838 -- wrapper functions for each nonoverridden inherited function
4839 -- with a controlling result of the type. The wrapper for such
4840 -- a function returns an extension aggregate that invokes the
4841 -- the parent function.
4843 if Ada_Version >= Ada_05
4844 and then not Is_Abstract (Def_Id)
4845 and then Is_Null_Extension (Def_Id)
4846 then
4847 Make_Controlling_Function_Wrappers
4848 (Def_Id, Wrapper_Decl_List, Wrapper_Body_List);
4849 Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
4850 end if;
4852 Set_Is_Frozen (Def_Id, True);
4853 Set_All_DT_Position (Def_Id);
4855 -- Add the controlled component before the freezing actions
4856 -- referenced in those actions.
4858 if Has_New_Controlled_Component (Def_Id) then
4859 Expand_Record_Controller (Def_Id);
4860 end if;
4862 -- Suppress creation of a dispatch table when Java_VM because the
4863 -- dispatching mechanism is handled internally by the JVM.
4865 if not Java_VM then
4867 -- Ada 2005 (AI-251): Build the secondary dispatch tables
4869 declare
4870 ADT : Elist_Id := Access_Disp_Table (Def_Id);
4872 procedure Add_Secondary_Tables (Typ : Entity_Id);
4873 -- Internal subprogram, recursively climb to the ancestors
4875 --------------------------
4876 -- Add_Secondary_Tables --
4877 --------------------------
4879 procedure Add_Secondary_Tables (Typ : Entity_Id) is
4880 E : Entity_Id;
4881 Iface : Elmt_Id;
4882 Result : List_Id;
4883 Suffix_Index : Int;
4885 begin
4886 -- Climb to the ancestor (if any) handling private types
4888 if Present (Full_View (Etype (Typ))) then
4889 if Full_View (Etype (Typ)) /= Typ then
4890 Add_Secondary_Tables (Full_View (Etype (Typ)));
4891 end if;
4893 elsif Etype (Typ) /= Typ then
4894 Add_Secondary_Tables (Etype (Typ));
4895 end if;
4897 if Present (Abstract_Interfaces (Typ))
4898 and then
4899 not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
4900 then
4901 Iface := First_Elmt (Abstract_Interfaces (Typ));
4902 Suffix_Index := 0;
4904 E := First_Entity (Typ);
4905 while Present (E) loop
4906 if Is_Tag (E) and then Chars (E) /= Name_uTag then
4907 Make_Secondary_DT
4908 (Typ => Def_Id,
4909 Ancestor_Typ => Typ,
4910 Suffix_Index => Suffix_Index,
4911 Iface => Node (Iface),
4912 AI_Tag => E,
4913 Acc_Disp_Tables => ADT,
4914 Result => Result);
4916 Append_Freeze_Actions (Def_Id, Result);
4917 Suffix_Index := Suffix_Index + 1;
4918 Next_Elmt (Iface);
4919 end if;
4921 Next_Entity (E);
4922 end loop;
4923 end if;
4924 end Add_Secondary_Tables;
4926 -- Start of processing to build secondary dispatch tables
4928 begin
4929 -- Handle private types
4931 if Present (Full_View (Def_Id)) then
4932 Add_Secondary_Tables (Full_View (Def_Id));
4933 else
4934 Add_Secondary_Tables (Def_Id);
4935 end if;
4937 Set_Access_Disp_Table (Def_Id, ADT);
4938 Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
4939 end;
4940 end if;
4942 -- Make sure that the primitives Initialize, Adjust and Finalize
4943 -- are Frozen before other TSS subprograms. We don't want them
4944 -- Frozen inside.
4946 if Is_Controlled (Def_Id) then
4947 if not Is_Limited_Type (Def_Id) then
4948 Append_Freeze_Actions (Def_Id,
4949 Freeze_Entity
4950 (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
4951 end if;
4953 Append_Freeze_Actions (Def_Id,
4954 Freeze_Entity
4955 (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
4957 Append_Freeze_Actions (Def_Id,
4958 Freeze_Entity
4959 (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
4960 end if;
4962 -- Freeze rest of primitive operations
4964 Append_Freeze_Actions
4965 (Def_Id, Predefined_Primitive_Freeze (Def_Id));
4966 Append_Freeze_Actions
4967 (Def_Id, Init_Predefined_Interface_Primitives (Def_Id));
4968 end if;
4970 -- In the non-tagged case, an equality function is provided only for
4971 -- variant records (that are not unchecked unions).
4973 elsif Has_Discriminants (Def_Id)
4974 and then not Is_Limited_Type (Def_Id)
4975 then
4976 declare
4977 Comps : constant Node_Id :=
4978 Component_List (Type_Definition (Type_Decl));
4980 begin
4981 if Present (Comps)
4982 and then Present (Variant_Part (Comps))
4983 then
4984 Build_Variant_Record_Equality (Def_Id);
4985 end if;
4986 end;
4987 end if;
4989 -- Before building the record initialization procedure, if we are
4990 -- dealing with a concurrent record value type, then we must go through
4991 -- the discriminants, exchanging discriminals between the concurrent
4992 -- type and the concurrent record value type. See the section "Handling
4993 -- of Discriminants" in the Einfo spec for details.
4995 if Is_Concurrent_Record_Type (Def_Id)
4996 and then Has_Discriminants (Def_Id)
4997 then
4998 declare
4999 Ctyp : constant Entity_Id :=
5000 Corresponding_Concurrent_Type (Def_Id);
5001 Conc_Discr : Entity_Id;
5002 Rec_Discr : Entity_Id;
5003 Temp : Entity_Id;
5005 begin
5006 Conc_Discr := First_Discriminant (Ctyp);
5007 Rec_Discr := First_Discriminant (Def_Id);
5009 while Present (Conc_Discr) loop
5010 Temp := Discriminal (Conc_Discr);
5011 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
5012 Set_Discriminal (Rec_Discr, Temp);
5014 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
5015 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
5017 Next_Discriminant (Conc_Discr);
5018 Next_Discriminant (Rec_Discr);
5019 end loop;
5020 end;
5021 end if;
5023 if Has_Controlled_Component (Def_Id) then
5024 if No (Controller_Component (Def_Id)) then
5025 Expand_Record_Controller (Def_Id);
5026 end if;
5028 Build_Controlling_Procs (Def_Id);
5029 end if;
5031 Adjust_Discriminants (Def_Id);
5032 Build_Record_Init_Proc (Type_Decl, Def_Id);
5034 -- For tagged type, build bodies of primitive operations. Note that we
5035 -- do this after building the record initialization experiment, since
5036 -- the primitive operations may need the initialization routine
5038 if Is_Tagged_Type (Def_Id) then
5039 Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
5040 Append_Freeze_Actions (Def_Id, Predef_List);
5042 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5043 -- inherited functions, then add their bodies to the freeze actions.
5045 if Present (Wrapper_Body_List) then
5046 Append_Freeze_Actions (Def_Id, Wrapper_Body_List);
5047 end if;
5049 -- Populate the two auxiliary tables used for dispatching
5050 -- asynchronous, conditional and timed selects for synchronized
5051 -- types that implement a limited interface.
5053 if Ada_Version >= Ada_05
5054 and then not Restriction_Active (No_Dispatching_Calls)
5055 and then Is_Concurrent_Record_Type (Def_Id)
5056 and then Implements_Interface (
5057 Typ => Def_Id,
5058 Kind => Any_Limited_Interface,
5059 Check_Parent => True)
5060 then
5061 Append_Freeze_Actions (Def_Id,
5062 Make_Select_Specific_Data_Table (Def_Id));
5063 end if;
5064 end if;
5065 end Freeze_Record_Type;
5067 ------------------------------
5068 -- Freeze_Stream_Operations --
5069 ------------------------------
5071 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
5072 Names : constant array (1 .. 4) of TSS_Name_Type :=
5073 (TSS_Stream_Input,
5074 TSS_Stream_Output,
5075 TSS_Stream_Read,
5076 TSS_Stream_Write);
5077 Stream_Op : Entity_Id;
5079 begin
5080 -- Primitive operations of tagged types are frozen when the dispatch
5081 -- table is constructed.
5083 if not Comes_From_Source (Typ)
5084 or else Is_Tagged_Type (Typ)
5085 then
5086 return;
5087 end if;
5089 for J in Names'Range loop
5090 Stream_Op := TSS (Typ, Names (J));
5092 if Present (Stream_Op)
5093 and then Is_Subprogram (Stream_Op)
5094 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
5095 N_Subprogram_Declaration
5096 and then not Is_Frozen (Stream_Op)
5097 then
5098 Append_Freeze_Actions
5099 (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
5100 end if;
5101 end loop;
5102 end Freeze_Stream_Operations;
5104 -----------------
5105 -- Freeze_Type --
5106 -----------------
5108 -- Full type declarations are expanded at the point at which the type is
5109 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
5110 -- declarations generated by the freezing (e.g. the procedure generated
5111 -- for initialization) are chained in the Actions field list of the freeze
5112 -- node using Append_Freeze_Actions.
5114 function Freeze_Type (N : Node_Id) return Boolean is
5115 Def_Id : constant Entity_Id := Entity (N);
5116 RACW_Seen : Boolean := False;
5117 Result : Boolean := False;
5119 begin
5120 -- Process associated access types needing special processing
5122 if Present (Access_Types_To_Process (N)) then
5123 declare
5124 E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
5125 begin
5126 while Present (E) loop
5128 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
5129 RACW_Seen := True;
5130 end if;
5132 E := Next_Elmt (E);
5133 end loop;
5134 end;
5136 if RACW_Seen then
5138 -- If there are RACWs designating this type, make stubs now
5140 Remote_Types_Tagged_Full_View_Encountered (Def_Id);
5141 end if;
5142 end if;
5144 -- Freeze processing for record types
5146 if Is_Record_Type (Def_Id) then
5147 if Ekind (Def_Id) = E_Record_Type then
5148 Freeze_Record_Type (N);
5150 -- The subtype may have been declared before the type was frozen. If
5151 -- the type has controlled components it is necessary to create the
5152 -- entity for the controller explicitly because it did not exist at
5153 -- the point of the subtype declaration. Only the entity is needed,
5154 -- the back-end will obtain the layout from the type. This is only
5155 -- necessary if this is constrained subtype whose component list is
5156 -- not shared with the base type.
5158 elsif Ekind (Def_Id) = E_Record_Subtype
5159 and then Has_Discriminants (Def_Id)
5160 and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
5161 and then Present (Controller_Component (Def_Id))
5162 then
5163 declare
5164 Old_C : constant Entity_Id := Controller_Component (Def_Id);
5165 New_C : Entity_Id;
5167 begin
5168 if Scope (Old_C) = Base_Type (Def_Id) then
5170 -- The entity is the one in the parent. Create new one
5172 New_C := New_Copy (Old_C);
5173 Set_Parent (New_C, Parent (Old_C));
5174 New_Scope (Def_Id);
5175 Enter_Name (New_C);
5176 End_Scope;
5177 end if;
5178 end;
5180 if Is_Itype (Def_Id)
5181 and then Is_Record_Type (Underlying_Type (Scope (Def_Id)))
5182 then
5183 -- The freeze node is only used to introduce the controller,
5184 -- the back-end has no use for it for a discriminated
5185 -- component.
5187 Set_Freeze_Node (Def_Id, Empty);
5188 Set_Has_Delayed_Freeze (Def_Id, False);
5189 Result := True;
5190 end if;
5192 -- Similar process if the controller of the subtype is not present
5193 -- but the parent has it. This can happen with constrained
5194 -- record components where the subtype is an itype.
5196 elsif Ekind (Def_Id) = E_Record_Subtype
5197 and then Is_Itype (Def_Id)
5198 and then No (Controller_Component (Def_Id))
5199 and then Present (Controller_Component (Etype (Def_Id)))
5200 then
5201 declare
5202 Old_C : constant Entity_Id :=
5203 Controller_Component (Etype (Def_Id));
5204 New_C : constant Entity_Id := New_Copy (Old_C);
5206 begin
5207 Set_Next_Entity (New_C, First_Entity (Def_Id));
5208 Set_First_Entity (Def_Id, New_C);
5210 -- The freeze node is only used to introduce the controller,
5211 -- the back-end has no use for it for a discriminated
5212 -- component.
5214 Set_Freeze_Node (Def_Id, Empty);
5215 Set_Has_Delayed_Freeze (Def_Id, False);
5216 Result := True;
5217 end;
5218 end if;
5220 -- Freeze processing for array types
5222 elsif Is_Array_Type (Def_Id) then
5223 Freeze_Array_Type (N);
5225 -- Freeze processing for access types
5227 -- For pool-specific access types, find out the pool object used for
5228 -- this type, needs actual expansion of it in some cases. Here are the
5229 -- different cases :
5231 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
5232 -- ---> don't use any storage pool
5234 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
5235 -- Expand:
5236 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
5238 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5239 -- ---> Storage Pool is the specified one
5241 -- See GNAT Pool packages in the Run-Time for more details
5243 elsif Ekind (Def_Id) = E_Access_Type
5244 or else Ekind (Def_Id) = E_General_Access_Type
5245 then
5246 declare
5247 Loc : constant Source_Ptr := Sloc (N);
5248 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
5249 Pool_Object : Entity_Id;
5250 Siz_Exp : Node_Id;
5252 Freeze_Action_Typ : Entity_Id;
5254 begin
5255 if Has_Storage_Size_Clause (Def_Id) then
5256 Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
5257 else
5258 Siz_Exp := Empty;
5259 end if;
5261 -- Case 1
5263 -- Rep Clause "for Def_Id'Storage_Size use 0;"
5264 -- ---> don't use any storage pool
5266 if Has_Storage_Size_Clause (Def_Id)
5267 and then Compile_Time_Known_Value (Siz_Exp)
5268 and then Expr_Value (Siz_Exp) = 0
5269 then
5270 null;
5272 -- Case 2
5274 -- Rep Clause : for Def_Id'Storage_Size use Expr.
5275 -- ---> Expand:
5276 -- Def_Id__Pool : Stack_Bounded_Pool
5277 -- (Expr, DT'Size, DT'Alignment);
5279 elsif Has_Storage_Size_Clause (Def_Id) then
5280 declare
5281 DT_Size : Node_Id;
5282 DT_Align : Node_Id;
5284 begin
5285 -- For unconstrained composite types we give a size of zero
5286 -- so that the pool knows that it needs a special algorithm
5287 -- for variable size object allocation.
5289 if Is_Composite_Type (Desig_Type)
5290 and then not Is_Constrained (Desig_Type)
5291 then
5292 DT_Size :=
5293 Make_Integer_Literal (Loc, 0);
5295 DT_Align :=
5296 Make_Integer_Literal (Loc, Maximum_Alignment);
5298 else
5299 DT_Size :=
5300 Make_Attribute_Reference (Loc,
5301 Prefix => New_Reference_To (Desig_Type, Loc),
5302 Attribute_Name => Name_Max_Size_In_Storage_Elements);
5304 DT_Align :=
5305 Make_Attribute_Reference (Loc,
5306 Prefix => New_Reference_To (Desig_Type, Loc),
5307 Attribute_Name => Name_Alignment);
5308 end if;
5310 Pool_Object :=
5311 Make_Defining_Identifier (Loc,
5312 Chars => New_External_Name (Chars (Def_Id), 'P'));
5314 -- We put the code associated with the pools in the entity
5315 -- that has the later freeze node, usually the acces type
5316 -- but it can also be the designated_type; because the pool
5317 -- code requires both those types to be frozen
5319 if Is_Frozen (Desig_Type)
5320 and then (No (Freeze_Node (Desig_Type))
5321 or else Analyzed (Freeze_Node (Desig_Type)))
5322 then
5323 Freeze_Action_Typ := Def_Id;
5325 -- A Taft amendment type cannot get the freeze actions
5326 -- since the full view is not there.
5328 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
5329 and then No (Full_View (Desig_Type))
5330 then
5331 Freeze_Action_Typ := Def_Id;
5333 else
5334 Freeze_Action_Typ := Desig_Type;
5335 end if;
5337 Append_Freeze_Action (Freeze_Action_Typ,
5338 Make_Object_Declaration (Loc,
5339 Defining_Identifier => Pool_Object,
5340 Object_Definition =>
5341 Make_Subtype_Indication (Loc,
5342 Subtype_Mark =>
5343 New_Reference_To
5344 (RTE (RE_Stack_Bounded_Pool), Loc),
5346 Constraint =>
5347 Make_Index_Or_Discriminant_Constraint (Loc,
5348 Constraints => New_List (
5350 -- First discriminant is the Pool Size
5352 New_Reference_To (
5353 Storage_Size_Variable (Def_Id), Loc),
5355 -- Second discriminant is the element size
5357 DT_Size,
5359 -- Third discriminant is the alignment
5361 DT_Align)))));
5362 end;
5364 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
5366 -- Case 3
5368 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5369 -- ---> Storage Pool is the specified one
5371 elsif Present (Associated_Storage_Pool (Def_Id)) then
5373 -- Nothing to do the associated storage pool has been attached
5374 -- when analyzing the rep. clause
5376 null;
5377 end if;
5379 -- For access-to-controlled types (including class-wide types and
5380 -- Taft-amendment types which potentially have controlled
5381 -- components), expand the list controller object that will store
5382 -- the dynamically allocated objects. Do not do this
5383 -- transformation for expander-generated access types, but do it
5384 -- for types that are the full view of types derived from other
5385 -- private types. Also suppress the list controller in the case
5386 -- of a designated type with convention Java, since this is used
5387 -- when binding to Java API specs, where there's no equivalent of
5388 -- a finalization list and we don't want to pull in the
5389 -- finalization support if not needed.
5391 if not Comes_From_Source (Def_Id)
5392 and then not Has_Private_Declaration (Def_Id)
5393 then
5394 null;
5396 elsif (Controlled_Type (Desig_Type)
5397 and then Convention (Desig_Type) /= Convention_Java)
5398 or else
5399 (Is_Incomplete_Or_Private_Type (Desig_Type)
5400 and then No (Full_View (Desig_Type))
5402 -- An exception is made for types defined in the run-time
5403 -- because Ada.Tags.Tag itself is such a type and cannot
5404 -- afford this unnecessary overhead that would generates a
5405 -- loop in the expansion scheme...
5407 and then not In_Runtime (Def_Id)
5409 -- Another exception is if Restrictions (No_Finalization)
5410 -- is active, since then we know nothing is controlled.
5412 and then not Restriction_Active (No_Finalization))
5414 -- If the designated type is not frozen yet, its controlled
5415 -- status must be retrieved explicitly.
5417 or else (Is_Array_Type (Desig_Type)
5418 and then not Is_Frozen (Desig_Type)
5419 and then Controlled_Type (Component_Type (Desig_Type)))
5420 then
5421 Set_Associated_Final_Chain (Def_Id,
5422 Make_Defining_Identifier (Loc,
5423 New_External_Name (Chars (Def_Id), 'L')));
5425 Append_Freeze_Action (Def_Id,
5426 Make_Object_Declaration (Loc,
5427 Defining_Identifier => Associated_Final_Chain (Def_Id),
5428 Object_Definition =>
5429 New_Reference_To (RTE (RE_List_Controller), Loc)));
5430 end if;
5431 end;
5433 -- Freeze processing for enumeration types
5435 elsif Ekind (Def_Id) = E_Enumeration_Type then
5437 -- We only have something to do if we have a non-standard
5438 -- representation (i.e. at least one literal whose pos value
5439 -- is not the same as its representation)
5441 if Has_Non_Standard_Rep (Def_Id) then
5442 Freeze_Enumeration_Type (N);
5443 end if;
5445 -- Private types that are completed by a derivation from a private
5446 -- type have an internally generated full view, that needs to be
5447 -- frozen. This must be done explicitly because the two views share
5448 -- the freeze node, and the underlying full view is not visible when
5449 -- the freeze node is analyzed.
5451 elsif Is_Private_Type (Def_Id)
5452 and then Is_Derived_Type (Def_Id)
5453 and then Present (Full_View (Def_Id))
5454 and then Is_Itype (Full_View (Def_Id))
5455 and then Has_Private_Declaration (Full_View (Def_Id))
5456 and then Freeze_Node (Full_View (Def_Id)) = N
5457 then
5458 Set_Entity (N, Full_View (Def_Id));
5459 Result := Freeze_Type (N);
5460 Set_Entity (N, Def_Id);
5462 -- All other types require no expander action. There are such cases
5463 -- (e.g. task types and protected types). In such cases, the freeze
5464 -- nodes are there for use by Gigi.
5466 end if;
5468 Freeze_Stream_Operations (N, Def_Id);
5469 return Result;
5471 exception
5472 when RE_Not_Available =>
5473 return False;
5474 end Freeze_Type;
5476 -------------------------
5477 -- Get_Simple_Init_Val --
5478 -------------------------
5480 function Get_Simple_Init_Val
5481 (T : Entity_Id;
5482 Loc : Source_Ptr;
5483 Size : Uint := No_Uint) return Node_Id
5485 Val : Node_Id;
5486 Result : Node_Id;
5487 Val_RE : RE_Id;
5489 Size_To_Use : Uint;
5490 -- This is the size to be used for computation of the appropriate
5491 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
5493 Lo_Bound : Uint;
5494 Hi_Bound : Uint;
5495 -- These are the values computed by the procedure Check_Subtype_Bounds
5497 procedure Check_Subtype_Bounds;
5498 -- This procedure examines the subtype T, and its ancestor subtypes and
5499 -- derived types to determine the best known information about the
5500 -- bounds of the subtype. After the call Lo_Bound is set either to
5501 -- No_Uint if no information can be determined, or to a value which
5502 -- represents a known low bound, i.e. a valid value of the subtype can
5503 -- not be less than this value. Hi_Bound is similarly set to a known
5504 -- high bound (valid value cannot be greater than this).
5506 --------------------------
5507 -- Check_Subtype_Bounds --
5508 --------------------------
5510 procedure Check_Subtype_Bounds is
5511 ST1 : Entity_Id;
5512 ST2 : Entity_Id;
5513 Lo : Node_Id;
5514 Hi : Node_Id;
5515 Loval : Uint;
5516 Hival : Uint;
5518 begin
5519 Lo_Bound := No_Uint;
5520 Hi_Bound := No_Uint;
5522 -- Loop to climb ancestor subtypes and derived types
5524 ST1 := T;
5525 loop
5526 if not Is_Discrete_Type (ST1) then
5527 return;
5528 end if;
5530 Lo := Type_Low_Bound (ST1);
5531 Hi := Type_High_Bound (ST1);
5533 if Compile_Time_Known_Value (Lo) then
5534 Loval := Expr_Value (Lo);
5536 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
5537 Lo_Bound := Loval;
5538 end if;
5539 end if;
5541 if Compile_Time_Known_Value (Hi) then
5542 Hival := Expr_Value (Hi);
5544 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
5545 Hi_Bound := Hival;
5546 end if;
5547 end if;
5549 ST2 := Ancestor_Subtype (ST1);
5551 if No (ST2) then
5552 ST2 := Etype (ST1);
5553 end if;
5555 exit when ST1 = ST2;
5556 ST1 := ST2;
5557 end loop;
5558 end Check_Subtype_Bounds;
5560 -- Start of processing for Get_Simple_Init_Val
5562 begin
5563 -- For a private type, we should always have an underlying type
5564 -- (because this was already checked in Needs_Simple_Initialization).
5565 -- What we do is to get the value for the underlying type and then do
5566 -- an Unchecked_Convert to the private type.
5568 if Is_Private_Type (T) then
5569 Val := Get_Simple_Init_Val (Underlying_Type (T), Loc, Size);
5571 -- A special case, if the underlying value is null, then qualify it
5572 -- with the underlying type, so that the null is properly typed
5573 -- Similarly, if it is an aggregate it must be qualified, because an
5574 -- unchecked conversion does not provide a context for it.
5576 if Nkind (Val) = N_Null
5577 or else Nkind (Val) = N_Aggregate
5578 then
5579 Val :=
5580 Make_Qualified_Expression (Loc,
5581 Subtype_Mark =>
5582 New_Occurrence_Of (Underlying_Type (T), Loc),
5583 Expression => Val);
5584 end if;
5586 Result := Unchecked_Convert_To (T, Val);
5588 -- Don't truncate result (important for Initialize/Normalize_Scalars)
5590 if Nkind (Result) = N_Unchecked_Type_Conversion
5591 and then Is_Scalar_Type (Underlying_Type (T))
5592 then
5593 Set_No_Truncation (Result);
5594 end if;
5596 return Result;
5598 -- For scalars, we must have normalize/initialize scalars case
5600 elsif Is_Scalar_Type (T) then
5601 pragma Assert (Init_Or_Norm_Scalars);
5603 -- Compute size of object. If it is given by the caller, we can use
5604 -- it directly, otherwise we use Esize (T) as an estimate. As far as
5605 -- we know this covers all cases correctly.
5607 if Size = No_Uint or else Size <= Uint_0 then
5608 Size_To_Use := UI_Max (Uint_1, Esize (T));
5609 else
5610 Size_To_Use := Size;
5611 end if;
5613 -- Maximum size to use is 64 bits, since we will create values
5614 -- of type Unsigned_64 and the range must fit this type.
5616 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
5617 Size_To_Use := Uint_64;
5618 end if;
5620 -- Check known bounds of subtype
5622 Check_Subtype_Bounds;
5624 -- Processing for Normalize_Scalars case
5626 if Normalize_Scalars then
5628 -- If zero is invalid, it is a convenient value to use that is
5629 -- for sure an appropriate invalid value in all situations.
5631 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
5632 Val := Make_Integer_Literal (Loc, 0);
5634 -- Cases where all one bits is the appropriate invalid value
5636 -- For modular types, all 1 bits is either invalid or valid. If
5637 -- it is valid, then there is nothing that can be done since there
5638 -- are no invalid values (we ruled out zero already).
5640 -- For signed integer types that have no negative values, either
5641 -- there is room for negative values, or there is not. If there
5642 -- is, then all 1 bits may be interpretecd as minus one, which is
5643 -- certainly invalid. Alternatively it is treated as the largest
5644 -- positive value, in which case the observation for modular types
5645 -- still applies.
5647 -- For float types, all 1-bits is a NaN (not a number), which is
5648 -- certainly an appropriately invalid value.
5650 elsif Is_Unsigned_Type (T)
5651 or else Is_Floating_Point_Type (T)
5652 or else Is_Enumeration_Type (T)
5653 then
5654 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
5656 -- Resolve as Unsigned_64, because the largest number we
5657 -- can generate is out of range of universal integer.
5659 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
5661 -- Case of signed types
5663 else
5664 declare
5665 Signed_Size : constant Uint :=
5666 UI_Min (Uint_63, Size_To_Use - 1);
5668 begin
5669 -- Normally we like to use the most negative number. The
5670 -- one exception is when this number is in the known
5671 -- subtype range and the largest positive number is not in
5672 -- the known subtype range.
5674 -- For this exceptional case, use largest positive value
5676 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
5677 and then Lo_Bound <= (-(2 ** Signed_Size))
5678 and then Hi_Bound < 2 ** Signed_Size
5679 then
5680 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
5682 -- Normal case of largest negative value
5684 else
5685 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
5686 end if;
5687 end;
5688 end if;
5690 -- Here for Initialize_Scalars case
5692 else
5693 -- For float types, use float values from System.Scalar_Values
5695 if Is_Floating_Point_Type (T) then
5696 if Root_Type (T) = Standard_Short_Float then
5697 Val_RE := RE_IS_Isf;
5698 elsif Root_Type (T) = Standard_Float then
5699 Val_RE := RE_IS_Ifl;
5700 elsif Root_Type (T) = Standard_Long_Float then
5701 Val_RE := RE_IS_Ilf;
5702 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
5703 Val_RE := RE_IS_Ill;
5704 end if;
5706 -- If zero is invalid, use zero values from System.Scalar_Values
5708 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
5709 if Size_To_Use <= 8 then
5710 Val_RE := RE_IS_Iz1;
5711 elsif Size_To_Use <= 16 then
5712 Val_RE := RE_IS_Iz2;
5713 elsif Size_To_Use <= 32 then
5714 Val_RE := RE_IS_Iz4;
5715 else
5716 Val_RE := RE_IS_Iz8;
5717 end if;
5719 -- For unsigned, use unsigned values from System.Scalar_Values
5721 elsif Is_Unsigned_Type (T) then
5722 if Size_To_Use <= 8 then
5723 Val_RE := RE_IS_Iu1;
5724 elsif Size_To_Use <= 16 then
5725 Val_RE := RE_IS_Iu2;
5726 elsif Size_To_Use <= 32 then
5727 Val_RE := RE_IS_Iu4;
5728 else
5729 Val_RE := RE_IS_Iu8;
5730 end if;
5732 -- For signed, use signed values from System.Scalar_Values
5734 else
5735 if Size_To_Use <= 8 then
5736 Val_RE := RE_IS_Is1;
5737 elsif Size_To_Use <= 16 then
5738 Val_RE := RE_IS_Is2;
5739 elsif Size_To_Use <= 32 then
5740 Val_RE := RE_IS_Is4;
5741 else
5742 Val_RE := RE_IS_Is8;
5743 end if;
5744 end if;
5746 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
5747 end if;
5749 -- The final expression is obtained by doing an unchecked conversion
5750 -- of this result to the base type of the required subtype. We use
5751 -- the base type to avoid the unchecked conversion from chopping
5752 -- bits, and then we set Kill_Range_Check to preserve the "bad"
5753 -- value.
5755 Result := Unchecked_Convert_To (Base_Type (T), Val);
5757 -- Ensure result is not truncated, since we want the "bad" bits
5758 -- and also kill range check on result.
5760 if Nkind (Result) = N_Unchecked_Type_Conversion then
5761 Set_No_Truncation (Result);
5762 Set_Kill_Range_Check (Result, True);
5763 end if;
5765 return Result;
5767 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
5769 elsif Root_Type (T) = Standard_String
5770 or else
5771 Root_Type (T) = Standard_Wide_String
5772 or else
5773 Root_Type (T) = Standard_Wide_Wide_String
5774 then
5775 pragma Assert (Init_Or_Norm_Scalars);
5777 return
5778 Make_Aggregate (Loc,
5779 Component_Associations => New_List (
5780 Make_Component_Association (Loc,
5781 Choices => New_List (
5782 Make_Others_Choice (Loc)),
5783 Expression =>
5784 Get_Simple_Init_Val
5785 (Component_Type (T), Loc, Esize (Root_Type (T))))));
5787 -- Access type is initialized to null
5789 elsif Is_Access_Type (T) then
5790 return
5791 Make_Null (Loc);
5793 -- No other possibilities should arise, since we should only be
5794 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
5795 -- returned True, indicating one of the above cases held.
5797 else
5798 raise Program_Error;
5799 end if;
5801 exception
5802 when RE_Not_Available =>
5803 return Empty;
5804 end Get_Simple_Init_Val;
5806 ------------------------------
5807 -- Has_New_Non_Standard_Rep --
5808 ------------------------------
5810 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
5811 begin
5812 if not Is_Derived_Type (T) then
5813 return Has_Non_Standard_Rep (T)
5814 or else Has_Non_Standard_Rep (Root_Type (T));
5816 -- If Has_Non_Standard_Rep is not set on the derived type, the
5817 -- representation is fully inherited.
5819 elsif not Has_Non_Standard_Rep (T) then
5820 return False;
5822 else
5823 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
5825 -- May need a more precise check here: the First_Rep_Item may
5826 -- be a stream attribute, which does not affect the representation
5827 -- of the type ???
5828 end if;
5829 end Has_New_Non_Standard_Rep;
5831 ----------------
5832 -- In_Runtime --
5833 ----------------
5835 function In_Runtime (E : Entity_Id) return Boolean is
5836 S1 : Entity_Id := Scope (E);
5838 begin
5839 while Scope (S1) /= Standard_Standard loop
5840 S1 := Scope (S1);
5841 end loop;
5843 return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
5844 end In_Runtime;
5846 ------------------
5847 -- Init_Formals --
5848 ------------------
5850 function Init_Formals (Typ : Entity_Id) return List_Id is
5851 Loc : constant Source_Ptr := Sloc (Typ);
5852 Formals : List_Id;
5854 begin
5855 -- First parameter is always _Init : in out typ. Note that we need
5856 -- this to be in/out because in the case of the task record value,
5857 -- there are default record fields (_Priority, _Size, -Task_Info)
5858 -- that may be referenced in the generated initialization routine.
5860 Formals := New_List (
5861 Make_Parameter_Specification (Loc,
5862 Defining_Identifier =>
5863 Make_Defining_Identifier (Loc, Name_uInit),
5864 In_Present => True,
5865 Out_Present => True,
5866 Parameter_Type => New_Reference_To (Typ, Loc)));
5868 -- For task record value, or type that contains tasks, add two more
5869 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
5870 -- We also add these parameters for the task record type case.
5872 if Has_Task (Typ)
5873 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
5874 then
5875 Append_To (Formals,
5876 Make_Parameter_Specification (Loc,
5877 Defining_Identifier =>
5878 Make_Defining_Identifier (Loc, Name_uMaster),
5879 Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
5881 Append_To (Formals,
5882 Make_Parameter_Specification (Loc,
5883 Defining_Identifier =>
5884 Make_Defining_Identifier (Loc, Name_uChain),
5885 In_Present => True,
5886 Out_Present => True,
5887 Parameter_Type =>
5888 New_Reference_To (RTE (RE_Activation_Chain), Loc)));
5890 Append_To (Formals,
5891 Make_Parameter_Specification (Loc,
5892 Defining_Identifier =>
5893 Make_Defining_Identifier (Loc, Name_uTask_Name),
5894 In_Present => True,
5895 Parameter_Type =>
5896 New_Reference_To (Standard_String, Loc)));
5897 end if;
5899 return Formals;
5901 exception
5902 when RE_Not_Available =>
5903 return Empty_List;
5904 end Init_Formals;
5906 -------------------------------------
5907 -- Make_Predefined_Primitive_Specs --
5908 -------------------------------------
5910 procedure Make_Controlling_Function_Wrappers
5911 (Tag_Typ : Entity_Id;
5912 Decl_List : out List_Id;
5913 Body_List : out List_Id)
5915 Loc : constant Source_Ptr := Sloc (Tag_Typ);
5916 Prim_Elmt : Elmt_Id;
5917 Subp : Entity_Id;
5918 Actual_List : List_Id;
5919 Formal_List : List_Id;
5920 Formal : Entity_Id;
5921 Par_Formal : Entity_Id;
5922 Formal_Node : Node_Id;
5923 Func_Spec : Node_Id;
5924 Func_Decl : Node_Id;
5925 Func_Body : Node_Id;
5926 Return_Stmt : Node_Id;
5928 begin
5929 Decl_List := New_List;
5930 Body_List := New_List;
5932 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
5934 while Present (Prim_Elmt) loop
5935 Subp := Node (Prim_Elmt);
5937 -- If a primitive function with a controlling result of the type has
5938 -- not been overridden by the user, then we must create a wrapper
5939 -- function here that effectively overrides it and invokes the
5940 -- abstract inherited function's nonabstract parent. This can only
5941 -- occur for a null extension. Note that functions with anonymous
5942 -- controlling access results don't qualify and must be overridden.
5943 -- We also exclude Input attributes, since each type will have its
5944 -- own version of Input constructed by the expander. The test for
5945 -- Comes_From_Source is needed to distinguish inherited operations
5946 -- from renamings (which also have Alias set).
5948 if Is_Abstract (Subp)
5949 and then Present (Alias (Subp))
5950 and then not Comes_From_Source (Subp)
5951 and then Ekind (Subp) = E_Function
5952 and then Has_Controlling_Result (Subp)
5953 and then not Is_Access_Type (Etype (Subp))
5954 and then not Is_TSS (Subp, TSS_Stream_Input)
5955 then
5956 Formal_List := No_List;
5957 Formal := First_Formal (Subp);
5959 if Present (Formal) then
5960 Formal_List := New_List;
5962 while Present (Formal) loop
5963 Append
5964 (Make_Parameter_Specification
5965 (Loc,
5966 Defining_Identifier =>
5967 Make_Defining_Identifier (Sloc (Formal),
5968 Chars => Chars (Formal)),
5969 In_Present => In_Present (Parent (Formal)),
5970 Out_Present => Out_Present (Parent (Formal)),
5971 Parameter_Type =>
5972 New_Reference_To (Etype (Formal), Loc),
5973 Expression =>
5974 New_Copy_Tree (Expression (Parent (Formal)))),
5975 Formal_List);
5977 Next_Formal (Formal);
5978 end loop;
5979 end if;
5981 Func_Spec :=
5982 Make_Function_Specification (Loc,
5983 Defining_Unit_Name =>
5984 Make_Defining_Identifier (Loc, Chars (Subp)),
5985 Parameter_Specifications =>
5986 Formal_List,
5987 Result_Definition =>
5988 New_Reference_To (Etype (Subp), Loc));
5990 Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
5991 Append_To (Decl_List, Func_Decl);
5993 -- Build a wrapper body that calls the parent function. The body
5994 -- contains a single return statement that returns an extension
5995 -- aggregate whose ancestor part is a call to the parent function,
5996 -- passing the formals as actuals (with any controlling arguments
5997 -- converted to the types of the corresponding formals of the
5998 -- parent function, which might be anonymous access types), and
5999 -- having a null extension.
6001 Formal := First_Formal (Subp);
6002 Par_Formal := First_Formal (Alias (Subp));
6003 Formal_Node := First (Formal_List);
6005 if Present (Formal) then
6006 Actual_List := New_List;
6007 else
6008 Actual_List := No_List;
6009 end if;
6011 while Present (Formal) loop
6012 if Is_Controlling_Formal (Formal) then
6013 Append_To (Actual_List,
6014 Make_Type_Conversion (Loc,
6015 Subtype_Mark =>
6016 New_Occurrence_Of (Etype (Par_Formal), Loc),
6017 Expression =>
6018 New_Reference_To
6019 (Defining_Identifier (Formal_Node), Loc)));
6020 else
6021 Append_To
6022 (Actual_List,
6023 New_Reference_To
6024 (Defining_Identifier (Formal_Node), Loc));
6025 end if;
6027 Next_Formal (Formal);
6028 Next_Formal (Par_Formal);
6029 Next (Formal_Node);
6030 end loop;
6032 Return_Stmt :=
6033 Make_Return_Statement (Loc,
6034 Expression =>
6035 Make_Extension_Aggregate (Loc,
6036 Ancestor_Part =>
6037 Make_Function_Call (Loc,
6038 Name => New_Reference_To (Alias (Subp), Loc),
6039 Parameter_Associations => Actual_List),
6040 Null_Record_Present => True));
6042 Func_Body :=
6043 Make_Subprogram_Body (Loc,
6044 Specification => New_Copy_Tree (Func_Spec),
6045 Declarations => Empty_List,
6046 Handled_Statement_Sequence =>
6047 Make_Handled_Sequence_Of_Statements (Loc,
6048 Statements => New_List (Return_Stmt)));
6050 Set_Defining_Unit_Name
6051 (Specification (Func_Body),
6052 Make_Defining_Identifier (Loc, Chars (Subp)));
6054 Append_To (Body_List, Func_Body);
6056 -- Replace the inherited function with the wrapper function
6057 -- in the primitive operations list.
6059 Override_Dispatching_Operation
6060 (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec));
6061 end if;
6063 Next_Elmt (Prim_Elmt);
6064 end loop;
6065 end Make_Controlling_Function_Wrappers;
6067 ------------------
6068 -- Make_Eq_Case --
6069 ------------------
6071 -- <Make_Eq_if shared components>
6072 -- case X.D1 is
6073 -- when V1 => <Make_Eq_Case> on subcomponents
6074 -- ...
6075 -- when Vn => <Make_Eq_Case> on subcomponents
6076 -- end case;
6078 function Make_Eq_Case
6079 (E : Entity_Id;
6080 CL : Node_Id;
6081 Discr : Entity_Id := Empty) return List_Id
6083 Loc : constant Source_Ptr := Sloc (E);
6084 Result : constant List_Id := New_List;
6085 Variant : Node_Id;
6086 Alt_List : List_Id;
6088 begin
6089 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
6091 if No (Variant_Part (CL)) then
6092 return Result;
6093 end if;
6095 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
6097 if No (Variant) then
6098 return Result;
6099 end if;
6101 Alt_List := New_List;
6103 while Present (Variant) loop
6104 Append_To (Alt_List,
6105 Make_Case_Statement_Alternative (Loc,
6106 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
6107 Statements => Make_Eq_Case (E, Component_List (Variant))));
6109 Next_Non_Pragma (Variant);
6110 end loop;
6112 -- If we have an Unchecked_Union, use one of the parameters that
6113 -- captures the discriminants.
6115 if Is_Unchecked_Union (E) then
6116 Append_To (Result,
6117 Make_Case_Statement (Loc,
6118 Expression => New_Reference_To (Discr, Loc),
6119 Alternatives => Alt_List));
6121 else
6122 Append_To (Result,
6123 Make_Case_Statement (Loc,
6124 Expression =>
6125 Make_Selected_Component (Loc,
6126 Prefix => Make_Identifier (Loc, Name_X),
6127 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
6128 Alternatives => Alt_List));
6129 end if;
6131 return Result;
6132 end Make_Eq_Case;
6134 ----------------
6135 -- Make_Eq_If --
6136 ----------------
6138 -- Generates:
6140 -- if
6141 -- X.C1 /= Y.C1
6142 -- or else
6143 -- X.C2 /= Y.C2
6144 -- ...
6145 -- then
6146 -- return False;
6147 -- end if;
6149 -- or a null statement if the list L is empty
6151 function Make_Eq_If
6152 (E : Entity_Id;
6153 L : List_Id) return Node_Id
6155 Loc : constant Source_Ptr := Sloc (E);
6156 C : Node_Id;
6157 Field_Name : Name_Id;
6158 Cond : Node_Id;
6160 begin
6161 if No (L) then
6162 return Make_Null_Statement (Loc);
6164 else
6165 Cond := Empty;
6167 C := First_Non_Pragma (L);
6168 while Present (C) loop
6169 Field_Name := Chars (Defining_Identifier (C));
6171 -- The tags must not be compared they are not part of the value.
6172 -- Note also that in the following, we use Make_Identifier for
6173 -- the component names. Use of New_Reference_To to identify the
6174 -- components would be incorrect because the wrong entities for
6175 -- discriminants could be picked up in the private type case.
6177 if Field_Name /= Name_uTag then
6178 Evolve_Or_Else (Cond,
6179 Make_Op_Ne (Loc,
6180 Left_Opnd =>
6181 Make_Selected_Component (Loc,
6182 Prefix => Make_Identifier (Loc, Name_X),
6183 Selector_Name =>
6184 Make_Identifier (Loc, Field_Name)),
6186 Right_Opnd =>
6187 Make_Selected_Component (Loc,
6188 Prefix => Make_Identifier (Loc, Name_Y),
6189 Selector_Name =>
6190 Make_Identifier (Loc, Field_Name))));
6191 end if;
6193 Next_Non_Pragma (C);
6194 end loop;
6196 if No (Cond) then
6197 return Make_Null_Statement (Loc);
6199 else
6200 return
6201 Make_Implicit_If_Statement (E,
6202 Condition => Cond,
6203 Then_Statements => New_List (
6204 Make_Return_Statement (Loc,
6205 Expression => New_Occurrence_Of (Standard_False, Loc))));
6206 end if;
6207 end if;
6208 end Make_Eq_If;
6210 -------------------------------------
6211 -- Make_Predefined_Primitive_Specs --
6212 -------------------------------------
6214 procedure Make_Predefined_Primitive_Specs
6215 (Tag_Typ : Entity_Id;
6216 Predef_List : out List_Id;
6217 Renamed_Eq : out Node_Id)
6219 Loc : constant Source_Ptr := Sloc (Tag_Typ);
6220 Res : constant List_Id := New_List;
6221 Prim : Elmt_Id;
6222 Eq_Needed : Boolean;
6223 Eq_Spec : Node_Id;
6224 Eq_Name : Name_Id := Name_Op_Eq;
6226 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
6227 -- Returns true if Prim is a renaming of an unresolved predefined
6228 -- equality operation.
6230 -------------------------------
6231 -- Is_Predefined_Eq_Renaming --
6232 -------------------------------
6234 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
6235 begin
6236 return Chars (Prim) /= Name_Op_Eq
6237 and then Present (Alias (Prim))
6238 and then Comes_From_Source (Prim)
6239 and then Is_Intrinsic_Subprogram (Alias (Prim))
6240 and then Chars (Alias (Prim)) = Name_Op_Eq;
6241 end Is_Predefined_Eq_Renaming;
6243 -- Start of processing for Make_Predefined_Primitive_Specs
6245 begin
6246 Renamed_Eq := Empty;
6248 -- Spec of _Size
6250 Append_To (Res, Predef_Spec_Or_Body (Loc,
6251 Tag_Typ => Tag_Typ,
6252 Name => Name_uSize,
6253 Profile => New_List (
6254 Make_Parameter_Specification (Loc,
6255 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6256 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6258 Ret_Type => Standard_Long_Long_Integer));
6260 -- Spec of _Alignment
6262 Append_To (Res, Predef_Spec_Or_Body (Loc,
6263 Tag_Typ => Tag_Typ,
6264 Name => Name_uAlignment,
6265 Profile => New_List (
6266 Make_Parameter_Specification (Loc,
6267 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6268 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6270 Ret_Type => Standard_Integer));
6272 -- Specs for dispatching stream attributes
6274 declare
6275 Stream_Op_TSS_Names :
6276 constant array (Integer range <>) of TSS_Name_Type :=
6277 (TSS_Stream_Read,
6278 TSS_Stream_Write,
6279 TSS_Stream_Input,
6280 TSS_Stream_Output);
6281 begin
6282 for Op in Stream_Op_TSS_Names'Range loop
6283 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
6284 Append_To (Res,
6285 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
6286 Stream_Op_TSS_Names (Op)));
6287 end if;
6288 end loop;
6289 end;
6291 -- Spec of "=" if expanded if the type is not limited and if a
6292 -- user defined "=" was not already declared for the non-full
6293 -- view of a private extension
6295 if not Is_Limited_Type (Tag_Typ) then
6296 Eq_Needed := True;
6298 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
6299 while Present (Prim) loop
6301 -- If a primitive is encountered that renames the predefined
6302 -- equality operator before reaching any explicit equality
6303 -- primitive, then we still need to create a predefined
6304 -- equality function, because calls to it can occur via
6305 -- the renaming. A new name is created for the equality
6306 -- to avoid conflicting with any user-defined equality.
6307 -- (Note that this doesn't account for renamings of
6308 -- equality nested within subpackages???)
6310 if Is_Predefined_Eq_Renaming (Node (Prim)) then
6311 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
6313 elsif Chars (Node (Prim)) = Name_Op_Eq
6314 and then (No (Alias (Node (Prim)))
6315 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
6316 N_Subprogram_Renaming_Declaration)
6317 and then Etype (First_Formal (Node (Prim))) =
6318 Etype (Next_Formal (First_Formal (Node (Prim))))
6319 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean
6321 then
6322 Eq_Needed := False;
6323 exit;
6325 -- If the parent equality is abstract, the inherited equality is
6326 -- abstract as well, and no body can be created for for it.
6328 elsif Chars (Node (Prim)) = Name_Op_Eq
6329 and then Present (Alias (Node (Prim)))
6330 and then Is_Abstract (Alias (Node (Prim)))
6331 then
6332 Eq_Needed := False;
6333 exit;
6334 end if;
6336 Next_Elmt (Prim);
6337 end loop;
6339 -- If a renaming of predefined equality was found
6340 -- but there was no user-defined equality (so Eq_Needed
6341 -- is still true), then set the name back to Name_Op_Eq.
6342 -- But in the case where a user-defined equality was
6343 -- located after such a renaming, then the predefined
6344 -- equality function is still needed, so Eq_Needed must
6345 -- be set back to True.
6347 if Eq_Name /= Name_Op_Eq then
6348 if Eq_Needed then
6349 Eq_Name := Name_Op_Eq;
6350 else
6351 Eq_Needed := True;
6352 end if;
6353 end if;
6355 if Eq_Needed then
6356 Eq_Spec := Predef_Spec_Or_Body (Loc,
6357 Tag_Typ => Tag_Typ,
6358 Name => Eq_Name,
6359 Profile => New_List (
6360 Make_Parameter_Specification (Loc,
6361 Defining_Identifier =>
6362 Make_Defining_Identifier (Loc, Name_X),
6363 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6364 Make_Parameter_Specification (Loc,
6365 Defining_Identifier =>
6366 Make_Defining_Identifier (Loc, Name_Y),
6367 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6368 Ret_Type => Standard_Boolean);
6369 Append_To (Res, Eq_Spec);
6371 if Eq_Name /= Name_Op_Eq then
6372 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
6374 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
6375 while Present (Prim) loop
6377 -- Any renamings of equality that appeared before an
6378 -- overriding equality must be updated to refer to
6379 -- the entity for the predefined equality, otherwise
6380 -- calls via the renaming would get incorrectly
6381 -- resolved to call the user-defined equality function.
6383 if Is_Predefined_Eq_Renaming (Node (Prim)) then
6384 Set_Alias (Node (Prim), Renamed_Eq);
6386 -- Exit upon encountering a user-defined equality
6388 elsif Chars (Node (Prim)) = Name_Op_Eq
6389 and then No (Alias (Node (Prim)))
6390 then
6391 exit;
6392 end if;
6394 Next_Elmt (Prim);
6395 end loop;
6396 end if;
6397 end if;
6399 -- Spec for dispatching assignment
6401 Append_To (Res, Predef_Spec_Or_Body (Loc,
6402 Tag_Typ => Tag_Typ,
6403 Name => Name_uAssign,
6404 Profile => New_List (
6405 Make_Parameter_Specification (Loc,
6406 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6407 Out_Present => True,
6408 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6410 Make_Parameter_Specification (Loc,
6411 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
6412 Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
6413 end if;
6415 -- Generate the declarations for the following primitive operations:
6417 -- disp_asynchronous_select
6418 -- disp_conditional_select
6419 -- disp_get_prim_op_kind
6420 -- disp_get_task_id
6421 -- disp_timed_select
6423 -- for limited interfaces and synchronized types that implement a
6424 -- limited interface.
6426 if Ada_Version >= Ada_05
6427 and then
6428 ((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
6429 or else
6430 (Is_Concurrent_Record_Type (Tag_Typ)
6431 and then Implements_Interface (
6432 Typ => Tag_Typ,
6433 Kind => Any_Limited_Interface,
6434 Check_Parent => True)))
6435 then
6436 Append_To (Res,
6437 Make_Subprogram_Declaration (Loc,
6438 Specification =>
6439 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
6441 Append_To (Res,
6442 Make_Subprogram_Declaration (Loc,
6443 Specification =>
6444 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
6446 Append_To (Res,
6447 Make_Subprogram_Declaration (Loc,
6448 Specification =>
6449 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
6451 Append_To (Res,
6452 Make_Subprogram_Declaration (Loc,
6453 Specification =>
6454 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
6456 Append_To (Res,
6457 Make_Subprogram_Declaration (Loc,
6458 Specification =>
6459 Make_Disp_Timed_Select_Spec (Tag_Typ)));
6460 end if;
6462 -- Specs for finalization actions that may be required in case a
6463 -- future extension contain a controlled element. We generate those
6464 -- only for root tagged types where they will get dummy bodies or
6465 -- when the type has controlled components and their body must be
6466 -- generated. It is also impossible to provide those for tagged
6467 -- types defined within s-finimp since it would involve circularity
6468 -- problems
6470 if In_Finalization_Root (Tag_Typ) then
6471 null;
6473 -- We also skip these if finalization is not available
6475 elsif Restriction_Active (No_Finalization) then
6476 null;
6478 elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
6479 if not Is_Limited_Type (Tag_Typ) then
6480 Append_To (Res,
6481 Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
6482 end if;
6484 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
6485 end if;
6487 Predef_List := Res;
6488 end Make_Predefined_Primitive_Specs;
6490 ---------------------------------
6491 -- Needs_Simple_Initialization --
6492 ---------------------------------
6494 function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
6495 begin
6496 -- Check for private type, in which case test applies to the
6497 -- underlying type of the private type.
6499 if Is_Private_Type (T) then
6500 declare
6501 RT : constant Entity_Id := Underlying_Type (T);
6503 begin
6504 if Present (RT) then
6505 return Needs_Simple_Initialization (RT);
6506 else
6507 return False;
6508 end if;
6509 end;
6511 -- Cases needing simple initialization are access types, and, if pragma
6512 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
6513 -- types.
6515 elsif Is_Access_Type (T)
6516 or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
6517 then
6518 return True;
6520 -- If Initialize/Normalize_Scalars is in effect, string objects also
6521 -- need initialization, unless they are created in the course of
6522 -- expanding an aggregate (since in the latter case they will be
6523 -- filled with appropriate initializing values before they are used).
6525 elsif Init_Or_Norm_Scalars
6526 and then
6527 (Root_Type (T) = Standard_String
6528 or else Root_Type (T) = Standard_Wide_String
6529 or else Root_Type (T) = Standard_Wide_Wide_String)
6530 and then
6531 (not Is_Itype (T)
6532 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
6533 then
6534 return True;
6536 else
6537 return False;
6538 end if;
6539 end Needs_Simple_Initialization;
6541 ----------------------
6542 -- Predef_Deep_Spec --
6543 ----------------------
6545 function Predef_Deep_Spec
6546 (Loc : Source_Ptr;
6547 Tag_Typ : Entity_Id;
6548 Name : TSS_Name_Type;
6549 For_Body : Boolean := False) return Node_Id
6551 Prof : List_Id;
6552 Type_B : Entity_Id;
6554 begin
6555 if Name = TSS_Deep_Finalize then
6556 Prof := New_List;
6557 Type_B := Standard_Boolean;
6559 else
6560 Prof := New_List (
6561 Make_Parameter_Specification (Loc,
6562 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
6563 In_Present => True,
6564 Out_Present => True,
6565 Parameter_Type =>
6566 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
6567 Type_B := Standard_Short_Short_Integer;
6568 end if;
6570 Append_To (Prof,
6571 Make_Parameter_Specification (Loc,
6572 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
6573 In_Present => True,
6574 Out_Present => True,
6575 Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
6577 Append_To (Prof,
6578 Make_Parameter_Specification (Loc,
6579 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
6580 Parameter_Type => New_Reference_To (Type_B, Loc)));
6582 return Predef_Spec_Or_Body (Loc,
6583 Name => Make_TSS_Name (Tag_Typ, Name),
6584 Tag_Typ => Tag_Typ,
6585 Profile => Prof,
6586 For_Body => For_Body);
6588 exception
6589 when RE_Not_Available =>
6590 return Empty;
6591 end Predef_Deep_Spec;
6593 -------------------------
6594 -- Predef_Spec_Or_Body --
6595 -------------------------
6597 function Predef_Spec_Or_Body
6598 (Loc : Source_Ptr;
6599 Tag_Typ : Entity_Id;
6600 Name : Name_Id;
6601 Profile : List_Id;
6602 Ret_Type : Entity_Id := Empty;
6603 For_Body : Boolean := False) return Node_Id
6605 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
6606 Spec : Node_Id;
6608 begin
6609 Set_Is_Public (Id, Is_Public (Tag_Typ));
6611 -- The internal flag is set to mark these declarations because
6612 -- they have specific properties. First they are primitives even
6613 -- if they are not defined in the type scope (the freezing point
6614 -- is not necessarily in the same scope), furthermore the
6615 -- predefined equality can be overridden by a user-defined
6616 -- equality, no body will be generated in this case.
6618 Set_Is_Internal (Id);
6620 if not Debug_Generated_Code then
6621 Set_Debug_Info_Off (Id);
6622 end if;
6624 if No (Ret_Type) then
6625 Spec :=
6626 Make_Procedure_Specification (Loc,
6627 Defining_Unit_Name => Id,
6628 Parameter_Specifications => Profile);
6629 else
6630 Spec :=
6631 Make_Function_Specification (Loc,
6632 Defining_Unit_Name => Id,
6633 Parameter_Specifications => Profile,
6634 Result_Definition =>
6635 New_Reference_To (Ret_Type, Loc));
6636 end if;
6638 -- If body case, return empty subprogram body. Note that this is
6639 -- ill-formed, because there is not even a null statement, and
6640 -- certainly not a return in the function case. The caller is
6641 -- expected to do surgery on the body to add the appropriate stuff.
6643 if For_Body then
6644 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
6646 -- For the case of Input/Output attributes applied to an abstract type,
6647 -- generate abstract specifications. These will never be called,
6648 -- but we need the slots allocated in the dispatching table so
6649 -- that typ'Class'Input and typ'Class'Output will work properly.
6651 elsif (Is_TSS (Name, TSS_Stream_Input)
6652 or else
6653 Is_TSS (Name, TSS_Stream_Output))
6654 and then Is_Abstract (Tag_Typ)
6655 then
6656 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
6658 -- Normal spec case, where we return a subprogram declaration
6660 else
6661 return Make_Subprogram_Declaration (Loc, Spec);
6662 end if;
6663 end Predef_Spec_Or_Body;
6665 -----------------------------
6666 -- Predef_Stream_Attr_Spec --
6667 -----------------------------
6669 function Predef_Stream_Attr_Spec
6670 (Loc : Source_Ptr;
6671 Tag_Typ : Entity_Id;
6672 Name : TSS_Name_Type;
6673 For_Body : Boolean := False) return Node_Id
6675 Ret_Type : Entity_Id;
6677 begin
6678 if Name = TSS_Stream_Input then
6679 Ret_Type := Tag_Typ;
6680 else
6681 Ret_Type := Empty;
6682 end if;
6684 return Predef_Spec_Or_Body (Loc,
6685 Name => Make_TSS_Name (Tag_Typ, Name),
6686 Tag_Typ => Tag_Typ,
6687 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
6688 Ret_Type => Ret_Type,
6689 For_Body => For_Body);
6690 end Predef_Stream_Attr_Spec;
6692 ---------------------------------
6693 -- Predefined_Primitive_Bodies --
6694 ---------------------------------
6696 function Predefined_Primitive_Bodies
6697 (Tag_Typ : Entity_Id;
6698 Renamed_Eq : Node_Id) return List_Id
6700 Loc : constant Source_Ptr := Sloc (Tag_Typ);
6701 Res : constant List_Id := New_List;
6702 Decl : Node_Id;
6703 Prim : Elmt_Id;
6704 Eq_Needed : Boolean;
6705 Eq_Name : Name_Id;
6706 Ent : Entity_Id;
6708 begin
6709 -- See if we have a predefined "=" operator
6711 if Present (Renamed_Eq) then
6712 Eq_Needed := True;
6713 Eq_Name := Chars (Renamed_Eq);
6715 else
6716 Eq_Needed := False;
6717 Eq_Name := No_Name;
6719 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
6720 while Present (Prim) loop
6721 if Chars (Node (Prim)) = Name_Op_Eq
6722 and then Is_Internal (Node (Prim))
6723 then
6724 Eq_Needed := True;
6725 Eq_Name := Name_Op_Eq;
6726 end if;
6728 Next_Elmt (Prim);
6729 end loop;
6730 end if;
6732 -- Body of _Alignment
6734 Decl := Predef_Spec_Or_Body (Loc,
6735 Tag_Typ => Tag_Typ,
6736 Name => Name_uAlignment,
6737 Profile => New_List (
6738 Make_Parameter_Specification (Loc,
6739 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6740 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6742 Ret_Type => Standard_Integer,
6743 For_Body => True);
6745 Set_Handled_Statement_Sequence (Decl,
6746 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6747 Make_Return_Statement (Loc,
6748 Expression =>
6749 Make_Attribute_Reference (Loc,
6750 Prefix => Make_Identifier (Loc, Name_X),
6751 Attribute_Name => Name_Alignment)))));
6753 Append_To (Res, Decl);
6755 -- Body of _Size
6757 Decl := Predef_Spec_Or_Body (Loc,
6758 Tag_Typ => Tag_Typ,
6759 Name => Name_uSize,
6760 Profile => New_List (
6761 Make_Parameter_Specification (Loc,
6762 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6763 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6765 Ret_Type => Standard_Long_Long_Integer,
6766 For_Body => True);
6768 Set_Handled_Statement_Sequence (Decl,
6769 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6770 Make_Return_Statement (Loc,
6771 Expression =>
6772 Make_Attribute_Reference (Loc,
6773 Prefix => Make_Identifier (Loc, Name_X),
6774 Attribute_Name => Name_Size)))));
6776 Append_To (Res, Decl);
6778 -- Bodies for Dispatching stream IO routines. We need these only for
6779 -- non-limited types (in the limited case there is no dispatching).
6780 -- We also skip them if dispatching or finalization are not available.
6782 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
6783 and then No (TSS (Tag_Typ, TSS_Stream_Read))
6784 then
6785 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
6786 Append_To (Res, Decl);
6787 end if;
6789 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
6790 and then No (TSS (Tag_Typ, TSS_Stream_Write))
6791 then
6792 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
6793 Append_To (Res, Decl);
6794 end if;
6796 -- Skip bodies of _Input and _Output for the abstract case, since
6797 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
6799 if not Is_Abstract (Tag_Typ) then
6800 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
6801 and then No (TSS (Tag_Typ, TSS_Stream_Input))
6802 then
6803 Build_Record_Or_Elementary_Input_Function
6804 (Loc, Tag_Typ, Decl, Ent);
6805 Append_To (Res, Decl);
6806 end if;
6808 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
6809 and then No (TSS (Tag_Typ, TSS_Stream_Output))
6810 then
6811 Build_Record_Or_Elementary_Output_Procedure
6812 (Loc, Tag_Typ, Decl, Ent);
6813 Append_To (Res, Decl);
6814 end if;
6815 end if;
6817 -- Generate the bodies for the following primitive operations:
6819 -- disp_asynchronous_select
6820 -- disp_conditional_select
6821 -- disp_get_prim_op_kind
6822 -- disp_get_task_id
6823 -- disp_timed_select
6825 -- for limited interfaces and synchronized types that implement a
6826 -- limited interface. The interface versions will have null bodies.
6828 if Ada_Version >= Ada_05
6829 and then
6830 not Restriction_Active (No_Dispatching_Calls)
6831 and then
6832 ((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
6833 or else
6834 (Is_Concurrent_Record_Type (Tag_Typ)
6835 and then Implements_Interface (
6836 Typ => Tag_Typ,
6837 Kind => Any_Limited_Interface,
6838 Check_Parent => True)))
6839 then
6840 Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
6841 Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
6842 Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
6843 Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
6844 Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
6845 end if;
6847 if not Is_Limited_Type (Tag_Typ) then
6849 -- Body for equality
6851 if Eq_Needed then
6852 Decl :=
6853 Predef_Spec_Or_Body (Loc,
6854 Tag_Typ => Tag_Typ,
6855 Name => Eq_Name,
6856 Profile => New_List (
6857 Make_Parameter_Specification (Loc,
6858 Defining_Identifier =>
6859 Make_Defining_Identifier (Loc, Name_X),
6860 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6862 Make_Parameter_Specification (Loc,
6863 Defining_Identifier =>
6864 Make_Defining_Identifier (Loc, Name_Y),
6865 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6867 Ret_Type => Standard_Boolean,
6868 For_Body => True);
6870 declare
6871 Def : constant Node_Id := Parent (Tag_Typ);
6872 Stmts : constant List_Id := New_List;
6873 Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
6874 Comps : Node_Id := Empty;
6875 Typ_Def : Node_Id := Type_Definition (Def);
6877 begin
6878 if Variant_Case then
6879 if Nkind (Typ_Def) = N_Derived_Type_Definition then
6880 Typ_Def := Record_Extension_Part (Typ_Def);
6881 end if;
6883 if Present (Typ_Def) then
6884 Comps := Component_List (Typ_Def);
6885 end if;
6887 Variant_Case := Present (Comps)
6888 and then Present (Variant_Part (Comps));
6889 end if;
6891 if Variant_Case then
6892 Append_To (Stmts,
6893 Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
6894 Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
6895 Append_To (Stmts,
6896 Make_Return_Statement (Loc,
6897 Expression => New_Reference_To (Standard_True, Loc)));
6899 else
6900 Append_To (Stmts,
6901 Make_Return_Statement (Loc,
6902 Expression =>
6903 Expand_Record_Equality (Tag_Typ,
6904 Typ => Tag_Typ,
6905 Lhs => Make_Identifier (Loc, Name_X),
6906 Rhs => Make_Identifier (Loc, Name_Y),
6907 Bodies => Declarations (Decl))));
6908 end if;
6910 Set_Handled_Statement_Sequence (Decl,
6911 Make_Handled_Sequence_Of_Statements (Loc, Stmts));
6912 end;
6913 Append_To (Res, Decl);
6914 end if;
6916 -- Body for dispatching assignment
6918 Decl :=
6919 Predef_Spec_Or_Body (Loc,
6920 Tag_Typ => Tag_Typ,
6921 Name => Name_uAssign,
6922 Profile => New_List (
6923 Make_Parameter_Specification (Loc,
6924 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6925 Out_Present => True,
6926 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6928 Make_Parameter_Specification (Loc,
6929 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
6930 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6931 For_Body => True);
6933 Set_Handled_Statement_Sequence (Decl,
6934 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6935 Make_Assignment_Statement (Loc,
6936 Name => Make_Identifier (Loc, Name_X),
6937 Expression => Make_Identifier (Loc, Name_Y)))));
6939 Append_To (Res, Decl);
6940 end if;
6942 -- Generate dummy bodies for finalization actions of types that have
6943 -- no controlled components.
6945 -- Skip this processing if we are in the finalization routine in the
6946 -- runtime itself, otherwise we get hopelessly circularly confused!
6948 if In_Finalization_Root (Tag_Typ) then
6949 null;
6951 -- Skip this if finalization is not available
6953 elsif Restriction_Active (No_Finalization) then
6954 null;
6956 elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
6957 and then not Has_Controlled_Component (Tag_Typ)
6958 then
6959 if not Is_Limited_Type (Tag_Typ) then
6960 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
6962 if Is_Controlled (Tag_Typ) then
6963 Set_Handled_Statement_Sequence (Decl,
6964 Make_Handled_Sequence_Of_Statements (Loc,
6965 Make_Adjust_Call (
6966 Ref => Make_Identifier (Loc, Name_V),
6967 Typ => Tag_Typ,
6968 Flist_Ref => Make_Identifier (Loc, Name_L),
6969 With_Attach => Make_Identifier (Loc, Name_B))));
6971 else
6972 Set_Handled_Statement_Sequence (Decl,
6973 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6974 Make_Null_Statement (Loc))));
6975 end if;
6977 Append_To (Res, Decl);
6978 end if;
6980 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
6982 if Is_Controlled (Tag_Typ) then
6983 Set_Handled_Statement_Sequence (Decl,
6984 Make_Handled_Sequence_Of_Statements (Loc,
6985 Make_Final_Call (
6986 Ref => Make_Identifier (Loc, Name_V),
6987 Typ => Tag_Typ,
6988 With_Detach => Make_Identifier (Loc, Name_B))));
6990 else
6991 Set_Handled_Statement_Sequence (Decl,
6992 Make_Handled_Sequence_Of_Statements (Loc, New_List (
6993 Make_Null_Statement (Loc))));
6994 end if;
6996 Append_To (Res, Decl);
6997 end if;
6999 return Res;
7000 end Predefined_Primitive_Bodies;
7002 ---------------------------------
7003 -- Predefined_Primitive_Freeze --
7004 ---------------------------------
7006 function Predefined_Primitive_Freeze
7007 (Tag_Typ : Entity_Id) return List_Id
7009 Loc : constant Source_Ptr := Sloc (Tag_Typ);
7010 Res : constant List_Id := New_List;
7011 Prim : Elmt_Id;
7012 Frnodes : List_Id;
7014 begin
7015 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
7016 while Present (Prim) loop
7017 if Is_Internal (Node (Prim)) then
7018 Frnodes := Freeze_Entity (Node (Prim), Loc);
7020 if Present (Frnodes) then
7021 Append_List_To (Res, Frnodes);
7022 end if;
7023 end if;
7025 Next_Elmt (Prim);
7026 end loop;
7028 return Res;
7029 end Predefined_Primitive_Freeze;
7031 -------------------------
7032 -- Stream_Operation_OK --
7033 -------------------------
7035 function Stream_Operation_OK
7036 (Typ : Entity_Id;
7037 Operation : TSS_Name_Type) return Boolean
7039 Has_Inheritable_Stream_Attribute : Boolean := False;
7041 begin
7042 if Is_Limited_Type (Typ)
7043 and then Is_Tagged_Type (Typ)
7044 and then Is_Derived_Type (Typ)
7045 then
7046 -- Special case of a limited type extension: a default implementation
7047 -- of the stream attributes Read and Write exists if the attribute
7048 -- has been specified for an ancestor type.
7050 Has_Inheritable_Stream_Attribute :=
7051 Present (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
7052 end if;
7054 return
7055 not (Is_Limited_Type (Typ)
7056 and then not Has_Inheritable_Stream_Attribute)
7057 and then not Has_Unknown_Discriminants (Typ)
7058 and then RTE_Available (RE_Tag)
7059 and then RTE_Available (RE_Root_Stream_Type)
7060 and then not Restriction_Active (No_Dispatch)
7061 and then not Restriction_Active (No_Streams);
7062 end Stream_Operation_OK;
7063 end Exp_Ch3;