Merge from mainline
[official-gcc.git] / gcc / ada / checks.adb
blob6a58415a0bf2a46b7b888bab94f9d2036c3e1833
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Pakd; use Exp_Pakd;
33 with Exp_Util; use Exp_Util;
34 with Elists; use Elists;
35 with Eval_Fat; use Eval_Fat;
36 with Freeze; use Freeze;
37 with Lib; use Lib;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Eval; use Sem_Eval;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Res; use Sem_Res;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Sinfo; use Sinfo;
53 with Sinput; use Sinput;
54 with Snames; use Snames;
55 with Sprint; use Sprint;
56 with Stand; use Stand;
57 with Targparm; use Targparm;
58 with Tbuild; use Tbuild;
59 with Ttypes; use Ttypes;
60 with Urealp; use Urealp;
61 with Validsw; use Validsw;
63 package body Checks is
65 -- General note: many of these routines are concerned with generating
66 -- checking code to make sure that constraint error is raised at runtime.
67 -- Clearly this code is only needed if the expander is active, since
68 -- otherwise we will not be generating code or going into the runtime
69 -- execution anyway.
71 -- We therefore disconnect most of these checks if the expander is
72 -- inactive. This has the additional benefit that we do not need to
73 -- worry about the tree being messed up by previous errors (since errors
74 -- turn off expansion anyway).
76 -- There are a few exceptions to the above rule. For instance routines
77 -- such as Apply_Scalar_Range_Check that do not insert any code can be
78 -- safely called even when the Expander is inactive (but Errors_Detected
79 -- is 0). The benefit of executing this code when expansion is off, is
80 -- the ability to emit constraint error warning for static expressions
81 -- even when we are not generating code.
83 -------------------------------------
84 -- Suppression of Redundant Checks --
85 -------------------------------------
87 -- This unit implements a limited circuit for removal of redundant
88 -- checks. The processing is based on a tracing of simple sequential
89 -- flow. For any sequence of statements, we save expressions that are
90 -- marked to be checked, and then if the same expression appears later
91 -- with the same check, then under certain circumstances, the second
92 -- check can be suppressed.
94 -- Basically, we can suppress the check if we know for certain that
95 -- the previous expression has been elaborated (together with its
96 -- check), and we know that the exception frame is the same, and that
97 -- nothing has happened to change the result of the exception.
99 -- Let us examine each of these three conditions in turn to describe
100 -- how we ensure that this condition is met.
102 -- First, we need to know for certain that the previous expression has
103 -- been executed. This is done principly by the mechanism of calling
104 -- Conditional_Statements_Begin at the start of any statement sequence
105 -- and Conditional_Statements_End at the end. The End call causes all
106 -- checks remembered since the Begin call to be discarded. This does
107 -- miss a few cases, notably the case of a nested BEGIN-END block with
108 -- no exception handlers. But the important thing is to be conservative.
109 -- The other protection is that all checks are discarded if a label
110 -- is encountered, since then the assumption of sequential execution
111 -- is violated, and we don't know enough about the flow.
113 -- Second, we need to know that the exception frame is the same. We
114 -- do this by killing all remembered checks when we enter a new frame.
115 -- Again, that's over-conservative, but generally the cases we can help
116 -- with are pretty local anyway (like the body of a loop for example).
118 -- Third, we must be sure to forget any checks which are no longer valid.
119 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
120 -- used to note any changes to local variables. We only attempt to deal
121 -- with checks involving local variables, so we do not need to worry
122 -- about global variables. Second, a call to any non-global procedure
123 -- causes us to abandon all stored checks, since such a all may affect
124 -- the values of any local variables.
126 -- The following define the data structures used to deal with remembering
127 -- checks so that redundant checks can be eliminated as described above.
129 -- Right now, the only expressions that we deal with are of the form of
130 -- simple local objects (either declared locally, or IN parameters) or
131 -- such objects plus/minus a compile time known constant. We can do
132 -- more later on if it seems worthwhile, but this catches many simple
133 -- cases in practice.
135 -- The following record type reflects a single saved check. An entry
136 -- is made in the stack of saved checks if and only if the expression
137 -- has been elaborated with the indicated checks.
139 type Saved_Check is record
140 Killed : Boolean;
141 -- Set True if entry is killed by Kill_Checks
143 Entity : Entity_Id;
144 -- The entity involved in the expression that is checked
146 Offset : Uint;
147 -- A compile time value indicating the result of adding or
148 -- subtracting a compile time value. This value is to be
149 -- added to the value of the Entity. A value of zero is
150 -- used for the case of a simple entity reference.
152 Check_Type : Character;
153 -- This is set to 'R' for a range check (in which case Target_Type
154 -- is set to the target type for the range check) or to 'O' for an
155 -- overflow check (in which case Target_Type is set to Empty).
157 Target_Type : Entity_Id;
158 -- Used only if Do_Range_Check is set. Records the target type for
159 -- the check. We need this, because a check is a duplicate only if
160 -- it has a the same target type (or more accurately one with a
161 -- range that is smaller or equal to the stored target type of a
162 -- saved check).
163 end record;
165 -- The following table keeps track of saved checks. Rather than use an
166 -- extensible table. We just use a table of fixed size, and we discard
167 -- any saved checks that do not fit. That's very unlikely to happen and
168 -- this is only an optimization in any case.
170 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
171 -- Array of saved checks
173 Num_Saved_Checks : Nat := 0;
174 -- Number of saved checks
176 -- The following stack keeps track of statement ranges. It is treated
177 -- as a stack. When Conditional_Statements_Begin is called, an entry
178 -- is pushed onto this stack containing the value of Num_Saved_Checks
179 -- at the time of the call. Then when Conditional_Statements_End is
180 -- called, this value is popped off and used to reset Num_Saved_Checks.
182 -- Note: again, this is a fixed length stack with a size that should
183 -- always be fine. If the value of the stack pointer goes above the
184 -- limit, then we just forget all saved checks.
186 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
187 Saved_Checks_TOS : Nat := 0;
189 -----------------------
190 -- Local Subprograms --
191 -----------------------
193 procedure Apply_Float_Conversion_Check
194 (Ck_Node : Node_Id;
195 Target_Typ : Entity_Id);
196 -- The checks on a conversion from a floating-point type to an integer
197 -- type are delicate. They have to be performed before conversion, they
198 -- have to raise an exception when the operand is a NaN, and rounding must
199 -- be taken into account to determine the safe bounds of the operand.
201 procedure Apply_Selected_Length_Checks
202 (Ck_Node : Node_Id;
203 Target_Typ : Entity_Id;
204 Source_Typ : Entity_Id;
205 Do_Static : Boolean);
206 -- This is the subprogram that does all the work for Apply_Length_Check
207 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
208 -- described for the above routines. The Do_Static flag indicates that
209 -- only a static check is to be done.
211 procedure Apply_Selected_Range_Checks
212 (Ck_Node : Node_Id;
213 Target_Typ : Entity_Id;
214 Source_Typ : Entity_Id;
215 Do_Static : Boolean);
216 -- This is the subprogram that does all the work for Apply_Range_Check.
217 -- Expr, Target_Typ and Source_Typ are as described for the above
218 -- routine. The Do_Static flag indicates that only a static check is
219 -- to be done.
221 type Check_Type is (Access_Check, Division_Check);
222 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
223 -- This function is used to see if an access or division by zero check is
224 -- needed. The check is to be applied to a single variable appearing in the
225 -- source, and N is the node for the reference. If N is not of this form,
226 -- True is returned with no further processing. If N is of the right form,
227 -- then further processing determines if the given Check is needed.
229 -- The particular circuit is to see if we have the case of a check that is
230 -- not needed because it appears in the right operand of a short circuited
231 -- conditional where the left operand guards the check. For example:
233 -- if Var = 0 or else Q / Var > 12 then
234 -- ...
235 -- end if;
237 -- In this example, the division check is not required. At the same time
238 -- we can issue warnings for suspicious use of non-short-circuited forms,
239 -- such as:
241 -- if Var = 0 or Q / Var > 12 then
242 -- ...
243 -- end if;
245 procedure Find_Check
246 (Expr : Node_Id;
247 Check_Type : Character;
248 Target_Type : Entity_Id;
249 Entry_OK : out Boolean;
250 Check_Num : out Nat;
251 Ent : out Entity_Id;
252 Ofs : out Uint);
253 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
254 -- to see if a check is of the form for optimization, and if so, to see
255 -- if it has already been performed. Expr is the expression to check,
256 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
257 -- Target_Type is the target type for a range check, and Empty for an
258 -- overflow check. If the entry is not of the form for optimization,
259 -- then Entry_OK is set to False, and the remaining out parameters
260 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
261 -- entity and offset from the expression. Check_Num is the number of
262 -- a matching saved entry in Saved_Checks, or zero if no such entry
263 -- is located.
265 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
266 -- If a discriminal is used in constraining a prival, Return reference
267 -- to the discriminal of the protected body (which renames the parameter
268 -- of the enclosing protected operation). This clumsy transformation is
269 -- needed because privals are created too late and their actual subtypes
270 -- are not available when analysing the bodies of the protected operations.
271 -- To be cleaned up???
273 function Guard_Access
274 (Cond : Node_Id;
275 Loc : Source_Ptr;
276 Ck_Node : Node_Id) return Node_Id;
277 -- In the access type case, guard the test with a test to ensure
278 -- that the access value is non-null, since the checks do not
279 -- not apply to null access values.
281 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
282 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
283 -- Constraint_Error node.
285 function Selected_Length_Checks
286 (Ck_Node : Node_Id;
287 Target_Typ : Entity_Id;
288 Source_Typ : Entity_Id;
289 Warn_Node : Node_Id) return Check_Result;
290 -- Like Apply_Selected_Length_Checks, except it doesn't modify
291 -- anything, just returns a list of nodes as described in the spec of
292 -- this package for the Range_Check function.
294 function Selected_Range_Checks
295 (Ck_Node : Node_Id;
296 Target_Typ : Entity_Id;
297 Source_Typ : Entity_Id;
298 Warn_Node : Node_Id) return Check_Result;
299 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
300 -- just returns a list of nodes as described in the spec of this package
301 -- for the Range_Check function.
303 ------------------------------
304 -- Access_Checks_Suppressed --
305 ------------------------------
307 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
308 begin
309 if Present (E) and then Checks_May_Be_Suppressed (E) then
310 return Is_Check_Suppressed (E, Access_Check);
311 else
312 return Scope_Suppress (Access_Check);
313 end if;
314 end Access_Checks_Suppressed;
316 -------------------------------------
317 -- Accessibility_Checks_Suppressed --
318 -------------------------------------
320 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
321 begin
322 if Present (E) and then Checks_May_Be_Suppressed (E) then
323 return Is_Check_Suppressed (E, Accessibility_Check);
324 else
325 return Scope_Suppress (Accessibility_Check);
326 end if;
327 end Accessibility_Checks_Suppressed;
329 -------------------------
330 -- Append_Range_Checks --
331 -------------------------
333 procedure Append_Range_Checks
334 (Checks : Check_Result;
335 Stmts : List_Id;
336 Suppress_Typ : Entity_Id;
337 Static_Sloc : Source_Ptr;
338 Flag_Node : Node_Id)
340 Internal_Flag_Node : constant Node_Id := Flag_Node;
341 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
343 Checks_On : constant Boolean :=
344 (not Index_Checks_Suppressed (Suppress_Typ))
345 or else
346 (not Range_Checks_Suppressed (Suppress_Typ));
348 begin
349 -- For now we just return if Checks_On is false, however this should
350 -- be enhanced to check for an always True value in the condition
351 -- and to generate a compilation warning???
353 if not Checks_On then
354 return;
355 end if;
357 for J in 1 .. 2 loop
358 exit when No (Checks (J));
360 if Nkind (Checks (J)) = N_Raise_Constraint_Error
361 and then Present (Condition (Checks (J)))
362 then
363 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
364 Append_To (Stmts, Checks (J));
365 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
366 end if;
368 else
369 Append_To
370 (Stmts,
371 Make_Raise_Constraint_Error (Internal_Static_Sloc,
372 Reason => CE_Range_Check_Failed));
373 end if;
374 end loop;
375 end Append_Range_Checks;
377 ------------------------
378 -- Apply_Access_Check --
379 ------------------------
381 procedure Apply_Access_Check (N : Node_Id) is
382 P : constant Node_Id := Prefix (N);
384 begin
385 -- We do not need checks if we are not generating code (i.e. the
386 -- expander is not active). This is not just an optimization, there
387 -- are cases (e.g. with pragma Debug) where generating the checks
388 -- can cause real trouble).
390 if not Expander_Active then
391 return;
392 end if;
394 -- No check if short circuiting makes check unnecessary
396 if not Check_Needed (P, Access_Check) then
397 return;
398 end if;
400 -- Otherwise go ahead and install the check
402 Install_Null_Excluding_Check (P);
403 end Apply_Access_Check;
405 -------------------------------
406 -- Apply_Accessibility_Check --
407 -------------------------------
409 procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
410 Loc : constant Source_Ptr := Sloc (N);
411 Param_Ent : constant Entity_Id := Param_Entity (N);
412 Param_Level : Node_Id;
413 Type_Level : Node_Id;
415 begin
416 if Inside_A_Generic then
417 return;
419 -- Only apply the run-time check if the access parameter
420 -- has an associated extra access level parameter and
421 -- when the level of the type is less deep than the level
422 -- of the access parameter.
424 elsif Present (Param_Ent)
425 and then Present (Extra_Accessibility (Param_Ent))
426 and then UI_Gt (Object_Access_Level (N),
427 Type_Access_Level (Typ))
428 and then not Accessibility_Checks_Suppressed (Param_Ent)
429 and then not Accessibility_Checks_Suppressed (Typ)
430 then
431 Param_Level :=
432 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
434 Type_Level :=
435 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
437 -- Raise Program_Error if the accessibility level of the the access
438 -- parameter is deeper than the level of the target access type.
440 Insert_Action (N,
441 Make_Raise_Program_Error (Loc,
442 Condition =>
443 Make_Op_Gt (Loc,
444 Left_Opnd => Param_Level,
445 Right_Opnd => Type_Level),
446 Reason => PE_Accessibility_Check_Failed));
448 Analyze_And_Resolve (N);
449 end if;
450 end Apply_Accessibility_Check;
452 ---------------------------
453 -- Apply_Alignment_Check --
454 ---------------------------
456 procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id) is
457 AC : constant Node_Id := Address_Clause (E);
458 Typ : constant Entity_Id := Etype (E);
459 Expr : Node_Id;
460 Loc : Source_Ptr;
462 Alignment_Required : constant Boolean := Maximum_Alignment > 1;
463 -- Constant to show whether target requires alignment checks
465 begin
466 -- See if check needed. Note that we never need a check if the
467 -- maximum alignment is one, since the check will always succeed
469 if No (AC)
470 or else not Check_Address_Alignment (AC)
471 or else not Alignment_Required
472 then
473 return;
474 end if;
476 Loc := Sloc (AC);
477 Expr := Expression (AC);
479 if Nkind (Expr) = N_Unchecked_Type_Conversion then
480 Expr := Expression (Expr);
482 elsif Nkind (Expr) = N_Function_Call
483 and then Is_Entity_Name (Name (Expr))
484 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
485 then
486 Expr := First (Parameter_Associations (Expr));
488 if Nkind (Expr) = N_Parameter_Association then
489 Expr := Explicit_Actual_Parameter (Expr);
490 end if;
491 end if;
493 -- Here Expr is the address value. See if we know that the
494 -- value is unacceptable at compile time.
496 if Compile_Time_Known_Value (Expr)
497 and then (Known_Alignment (E) or else Known_Alignment (Typ))
498 then
499 declare
500 AL : Uint := Alignment (Typ);
502 begin
503 -- The object alignment might be more restrictive than the
504 -- type alignment.
506 if Known_Alignment (E) then
507 AL := Alignment (E);
508 end if;
510 if Expr_Value (Expr) mod AL /= 0 then
511 Insert_Action (N,
512 Make_Raise_Program_Error (Loc,
513 Reason => PE_Misaligned_Address_Value));
514 Error_Msg_NE
515 ("?specified address for& not " &
516 "consistent with alignment ('R'M 13.3(27))", Expr, E);
517 end if;
518 end;
520 -- Here we do not know if the value is acceptable, generate
521 -- code to raise PE if alignment is inappropriate.
523 else
524 -- Skip generation of this code if we don't want elab code
526 if not Restriction_Active (No_Elaboration_Code) then
527 Insert_After_And_Analyze (N,
528 Make_Raise_Program_Error (Loc,
529 Condition =>
530 Make_Op_Ne (Loc,
531 Left_Opnd =>
532 Make_Op_Mod (Loc,
533 Left_Opnd =>
534 Unchecked_Convert_To
535 (RTE (RE_Integer_Address),
536 Duplicate_Subexpr_No_Checks (Expr)),
537 Right_Opnd =>
538 Make_Attribute_Reference (Loc,
539 Prefix => New_Occurrence_Of (E, Loc),
540 Attribute_Name => Name_Alignment)),
541 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
542 Reason => PE_Misaligned_Address_Value),
543 Suppress => All_Checks);
544 end if;
545 end if;
547 return;
549 exception
550 when RE_Not_Available =>
551 return;
552 end Apply_Alignment_Check;
554 -------------------------------------
555 -- Apply_Arithmetic_Overflow_Check --
556 -------------------------------------
558 -- This routine is called only if the type is an integer type, and
559 -- a software arithmetic overflow check must be performed for op
560 -- (add, subtract, multiply). The check is performed only if
561 -- Software_Overflow_Checking is enabled and Do_Overflow_Check
562 -- is set. In this case we expand the operation into a more complex
563 -- sequence of tests that ensures that overflow is properly caught.
565 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
566 Loc : constant Source_Ptr := Sloc (N);
567 Typ : constant Entity_Id := Etype (N);
568 Rtyp : constant Entity_Id := Root_Type (Typ);
569 Siz : constant Int := UI_To_Int (Esize (Rtyp));
570 Dsiz : constant Int := Siz * 2;
571 Opnod : Node_Id;
572 Ctyp : Entity_Id;
573 Opnd : Node_Id;
574 Cent : RE_Id;
576 begin
577 -- Skip this if overflow checks are done in back end, or the overflow
578 -- flag is not set anyway, or we are not doing code expansion.
580 if Backend_Overflow_Checks_On_Target
581 or else not Do_Overflow_Check (N)
582 or else not Expander_Active
583 then
584 return;
585 end if;
587 -- Otherwise, we generate the full general code for front end overflow
588 -- detection, which works by doing arithmetic in a larger type:
590 -- x op y
592 -- is expanded into
594 -- Typ (Checktyp (x) op Checktyp (y));
596 -- where Typ is the type of the original expression, and Checktyp is
597 -- an integer type of sufficient length to hold the largest possible
598 -- result.
600 -- In the case where check type exceeds the size of Long_Long_Integer,
601 -- we use a different approach, expanding to:
603 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
605 -- where xxx is Add, Multiply or Subtract as appropriate
607 -- Find check type if one exists
609 if Dsiz <= Standard_Integer_Size then
610 Ctyp := Standard_Integer;
612 elsif Dsiz <= Standard_Long_Long_Integer_Size then
613 Ctyp := Standard_Long_Long_Integer;
615 -- No check type exists, use runtime call
617 else
618 if Nkind (N) = N_Op_Add then
619 Cent := RE_Add_With_Ovflo_Check;
621 elsif Nkind (N) = N_Op_Multiply then
622 Cent := RE_Multiply_With_Ovflo_Check;
624 else
625 pragma Assert (Nkind (N) = N_Op_Subtract);
626 Cent := RE_Subtract_With_Ovflo_Check;
627 end if;
629 Rewrite (N,
630 OK_Convert_To (Typ,
631 Make_Function_Call (Loc,
632 Name => New_Reference_To (RTE (Cent), Loc),
633 Parameter_Associations => New_List (
634 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
635 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
637 Analyze_And_Resolve (N, Typ);
638 return;
639 end if;
641 -- If we fall through, we have the case where we do the arithmetic in
642 -- the next higher type and get the check by conversion. In these cases
643 -- Ctyp is set to the type to be used as the check type.
645 Opnod := Relocate_Node (N);
647 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
649 Analyze (Opnd);
650 Set_Etype (Opnd, Ctyp);
651 Set_Analyzed (Opnd, True);
652 Set_Left_Opnd (Opnod, Opnd);
654 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
656 Analyze (Opnd);
657 Set_Etype (Opnd, Ctyp);
658 Set_Analyzed (Opnd, True);
659 Set_Right_Opnd (Opnod, Opnd);
661 -- The type of the operation changes to the base type of the check
662 -- type, and we reset the overflow check indication, since clearly
663 -- no overflow is possible now that we are using a double length
664 -- type. We also set the Analyzed flag to avoid a recursive attempt
665 -- to expand the node.
667 Set_Etype (Opnod, Base_Type (Ctyp));
668 Set_Do_Overflow_Check (Opnod, False);
669 Set_Analyzed (Opnod, True);
671 -- Now build the outer conversion
673 Opnd := OK_Convert_To (Typ, Opnod);
674 Analyze (Opnd);
675 Set_Etype (Opnd, Typ);
677 -- In the discrete type case, we directly generate the range check
678 -- for the outer operand. This range check will implement the required
679 -- overflow check.
681 if Is_Discrete_Type (Typ) then
682 Rewrite (N, Opnd);
683 Generate_Range_Check (Expression (N), Typ, CE_Overflow_Check_Failed);
685 -- For other types, we enable overflow checking on the conversion,
686 -- after setting the node as analyzed to prevent recursive attempts
687 -- to expand the conversion node.
689 else
690 Set_Analyzed (Opnd, True);
691 Enable_Overflow_Check (Opnd);
692 Rewrite (N, Opnd);
693 end if;
695 exception
696 when RE_Not_Available =>
697 return;
698 end Apply_Arithmetic_Overflow_Check;
700 ----------------------------
701 -- Apply_Array_Size_Check --
702 ----------------------------
704 -- The situation is as follows. In GNAT 3 (GCC 2.x), the size in bits
705 -- is computed in 32 bits without an overflow check. That's a real
706 -- problem for Ada. So what we do in GNAT 3 is to approximate the
707 -- size of an array by manually multiplying the element size by the
708 -- number of elements, and comparing that against the allowed limits.
710 -- In GNAT 5, the size in byte is still computed in 32 bits without
711 -- an overflow check in the dynamic case, but the size in bits is
712 -- computed in 64 bits. We assume that's good enough, and we do not
713 -- bother to generate any front end test.
715 procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
716 Loc : constant Source_Ptr := Sloc (N);
717 Ctyp : constant Entity_Id := Component_Type (Typ);
718 Ent : constant Entity_Id := Defining_Identifier (N);
719 Decl : Node_Id;
720 Lo : Node_Id;
721 Hi : Node_Id;
722 Lob : Uint;
723 Hib : Uint;
724 Siz : Uint;
725 Xtyp : Entity_Id;
726 Indx : Node_Id;
727 Sizx : Node_Id;
728 Code : Node_Id;
730 Static : Boolean := True;
731 -- Set false if any index subtye bound is non-static
733 Umark : constant Uintp.Save_Mark := Uintp.Mark;
734 -- We can throw away all the Uint computations here, since they are
735 -- done only to generate boolean test results.
737 Check_Siz : Uint;
738 -- Size to check against
740 function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
741 -- Determines if Decl is an address clause or Import/Interface pragma
742 -- that references the defining identifier of the current declaration.
744 --------------------------
745 -- Is_Address_Or_Import --
746 --------------------------
748 function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
749 begin
750 if Nkind (Decl) = N_At_Clause then
751 return Chars (Identifier (Decl)) = Chars (Ent);
753 elsif Nkind (Decl) = N_Attribute_Definition_Clause then
754 return
755 Chars (Decl) = Name_Address
756 and then
757 Nkind (Name (Decl)) = N_Identifier
758 and then
759 Chars (Name (Decl)) = Chars (Ent);
761 elsif Nkind (Decl) = N_Pragma then
762 if (Chars (Decl) = Name_Import
763 or else
764 Chars (Decl) = Name_Interface)
765 and then Present (Pragma_Argument_Associations (Decl))
766 then
767 declare
768 F : constant Node_Id :=
769 First (Pragma_Argument_Associations (Decl));
771 begin
772 return
773 Present (F)
774 and then
775 Present (Next (F))
776 and then
777 Nkind (Expression (Next (F))) = N_Identifier
778 and then
779 Chars (Expression (Next (F))) = Chars (Ent);
780 end;
782 else
783 return False;
784 end if;
786 else
787 return False;
788 end if;
789 end Is_Address_Or_Import;
791 -- Start of processing for Apply_Array_Size_Check
793 begin
794 -- Do size check on local arrays. We only need this in the GCC 2
795 -- case, since in GCC 3, we expect the back end to properly handle
796 -- things. This routine can be removed when we baseline GNAT 3.
798 if Opt.GCC_Version >= 3 then
799 return;
800 end if;
802 -- No need for a check if not expanding
804 if not Expander_Active then
805 return;
806 end if;
808 -- No need for a check if checks are suppressed
810 if Storage_Checks_Suppressed (Typ) then
811 return;
812 end if;
814 -- It is pointless to insert this check inside an init proc, because
815 -- that's too late, we have already built the object to be the right
816 -- size, and if it's too large, too bad!
818 if Inside_Init_Proc then
819 return;
820 end if;
822 -- Look head for pragma interface/import or address clause applying
823 -- to this entity. If found, we suppress the check entirely. For now
824 -- we only look ahead 20 declarations to stop this becoming too slow
825 -- Note that eventually this whole routine gets moved to gigi.
827 Decl := N;
828 for Ctr in 1 .. 20 loop
829 Next (Decl);
830 exit when No (Decl);
832 if Is_Address_Or_Import (Decl) then
833 return;
834 end if;
835 end loop;
837 -- First step is to calculate the maximum number of elements. For
838 -- this calculation, we use the actual size of the subtype if it is
839 -- static, and if a bound of a subtype is non-static, we go to the
840 -- bound of the base type.
842 Siz := Uint_1;
843 Indx := First_Index (Typ);
844 while Present (Indx) loop
845 Xtyp := Etype (Indx);
846 Lo := Type_Low_Bound (Xtyp);
847 Hi := Type_High_Bound (Xtyp);
849 -- If any bound raises constraint error, we will never get this
850 -- far, so there is no need to generate any kind of check.
852 if Raises_Constraint_Error (Lo)
853 or else
854 Raises_Constraint_Error (Hi)
855 then
856 Uintp.Release (Umark);
857 return;
858 end if;
860 -- Otherwise get bounds values
862 if Is_Static_Expression (Lo) then
863 Lob := Expr_Value (Lo);
864 else
865 Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
866 Static := False;
867 end if;
869 if Is_Static_Expression (Hi) then
870 Hib := Expr_Value (Hi);
871 else
872 Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
873 Static := False;
874 end if;
876 Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
877 Next_Index (Indx);
878 end loop;
880 -- Compute the limit against which we want to check. For subprograms,
881 -- where the array will go on the stack, we use 8*2**24, which (in
882 -- bits) is the size of a 16 megabyte array.
884 if Is_Subprogram (Scope (Ent)) then
885 Check_Siz := Uint_2 ** 27;
886 else
887 Check_Siz := Uint_2 ** 31;
888 end if;
890 -- If we have all static bounds and Siz is too large, then we know
891 -- we know we have a storage error right now, so generate message
893 if Static and then Siz >= Check_Siz then
894 Insert_Action (N,
895 Make_Raise_Storage_Error (Loc,
896 Reason => SE_Object_Too_Large));
897 Error_Msg_N ("?Storage_Error will be raised at run-time", N);
898 Uintp.Release (Umark);
899 return;
900 end if;
902 -- Case of component size known at compile time. If the array
903 -- size is definitely in range, then we do not need a check.
905 if Known_Esize (Ctyp)
906 and then Siz * Esize (Ctyp) < Check_Siz
907 then
908 Uintp.Release (Umark);
909 return;
910 end if;
912 -- Here if a dynamic check is required
914 -- What we do is to build an expression for the size of the array,
915 -- which is computed as the 'Size of the array component, times
916 -- the size of each dimension.
918 Uintp.Release (Umark);
920 Sizx :=
921 Make_Attribute_Reference (Loc,
922 Prefix => New_Occurrence_Of (Ctyp, Loc),
923 Attribute_Name => Name_Size);
925 Indx := First_Index (Typ);
926 for J in 1 .. Number_Dimensions (Typ) loop
927 if Sloc (Etype (Indx)) = Sloc (N) then
928 Ensure_Defined (Etype (Indx), N);
929 end if;
931 Sizx :=
932 Make_Op_Multiply (Loc,
933 Left_Opnd => Sizx,
934 Right_Opnd =>
935 Make_Attribute_Reference (Loc,
936 Prefix => New_Occurrence_Of (Typ, Loc),
937 Attribute_Name => Name_Length,
938 Expressions => New_List (
939 Make_Integer_Literal (Loc, J))));
940 Next_Index (Indx);
941 end loop;
943 -- Emit the check
945 Code :=
946 Make_Raise_Storage_Error (Loc,
947 Condition =>
948 Make_Op_Ge (Loc,
949 Left_Opnd => Sizx,
950 Right_Opnd =>
951 Make_Integer_Literal (Loc,
952 Intval => Check_Siz)),
953 Reason => SE_Object_Too_Large);
955 Set_Size_Check_Code (Defining_Identifier (N), Code);
956 Insert_Action (N, Code, Suppress => All_Checks);
957 end Apply_Array_Size_Check;
959 ----------------------------
960 -- Apply_Constraint_Check --
961 ----------------------------
963 procedure Apply_Constraint_Check
964 (N : Node_Id;
965 Typ : Entity_Id;
966 No_Sliding : Boolean := False)
968 Desig_Typ : Entity_Id;
970 begin
971 if Inside_A_Generic then
972 return;
974 elsif Is_Scalar_Type (Typ) then
975 Apply_Scalar_Range_Check (N, Typ);
977 elsif Is_Array_Type (Typ) then
979 -- A useful optimization: an aggregate with only an others clause
980 -- always has the right bounds.
982 if Nkind (N) = N_Aggregate
983 and then No (Expressions (N))
984 and then Nkind
985 (First (Choices (First (Component_Associations (N)))))
986 = N_Others_Choice
987 then
988 return;
989 end if;
991 if Is_Constrained (Typ) then
992 Apply_Length_Check (N, Typ);
994 if No_Sliding then
995 Apply_Range_Check (N, Typ);
996 end if;
997 else
998 Apply_Range_Check (N, Typ);
999 end if;
1001 elsif (Is_Record_Type (Typ)
1002 or else Is_Private_Type (Typ))
1003 and then Has_Discriminants (Base_Type (Typ))
1004 and then Is_Constrained (Typ)
1005 then
1006 Apply_Discriminant_Check (N, Typ);
1008 elsif Is_Access_Type (Typ) then
1010 Desig_Typ := Designated_Type (Typ);
1012 -- No checks necessary if expression statically null
1014 if Nkind (N) = N_Null then
1015 null;
1017 -- No sliding possible on access to arrays
1019 elsif Is_Array_Type (Desig_Typ) then
1020 if Is_Constrained (Desig_Typ) then
1021 Apply_Length_Check (N, Typ);
1022 end if;
1024 Apply_Range_Check (N, Typ);
1026 elsif Has_Discriminants (Base_Type (Desig_Typ))
1027 and then Is_Constrained (Desig_Typ)
1028 then
1029 Apply_Discriminant_Check (N, Typ);
1030 end if;
1032 if Can_Never_Be_Null (Typ)
1033 and then not Can_Never_Be_Null (Etype (N))
1034 then
1035 Install_Null_Excluding_Check (N);
1036 end if;
1037 end if;
1038 end Apply_Constraint_Check;
1040 ------------------------------
1041 -- Apply_Discriminant_Check --
1042 ------------------------------
1044 procedure Apply_Discriminant_Check
1045 (N : Node_Id;
1046 Typ : Entity_Id;
1047 Lhs : Node_Id := Empty)
1049 Loc : constant Source_Ptr := Sloc (N);
1050 Do_Access : constant Boolean := Is_Access_Type (Typ);
1051 S_Typ : Entity_Id := Etype (N);
1052 Cond : Node_Id;
1053 T_Typ : Entity_Id;
1055 function Is_Aliased_Unconstrained_Component return Boolean;
1056 -- It is possible for an aliased component to have a nominal
1057 -- unconstrained subtype (through instantiation). If this is a
1058 -- discriminated component assigned in the expansion of an aggregate
1059 -- in an initialization, the check must be suppressed. This unusual
1060 -- situation requires a predicate of its own (see 7503-008).
1062 ----------------------------------------
1063 -- Is_Aliased_Unconstrained_Component --
1064 ----------------------------------------
1066 function Is_Aliased_Unconstrained_Component return Boolean is
1067 Comp : Entity_Id;
1068 Pref : Node_Id;
1070 begin
1071 if Nkind (Lhs) /= N_Selected_Component then
1072 return False;
1073 else
1074 Comp := Entity (Selector_Name (Lhs));
1075 Pref := Prefix (Lhs);
1076 end if;
1078 if Ekind (Comp) /= E_Component
1079 or else not Is_Aliased (Comp)
1080 then
1081 return False;
1082 end if;
1084 return not Comes_From_Source (Pref)
1085 and then In_Instance
1086 and then not Is_Constrained (Etype (Comp));
1087 end Is_Aliased_Unconstrained_Component;
1089 -- Start of processing for Apply_Discriminant_Check
1091 begin
1092 if Do_Access then
1093 T_Typ := Designated_Type (Typ);
1094 else
1095 T_Typ := Typ;
1096 end if;
1098 -- Nothing to do if discriminant checks are suppressed or else no code
1099 -- is to be generated
1101 if not Expander_Active
1102 or else Discriminant_Checks_Suppressed (T_Typ)
1103 then
1104 return;
1105 end if;
1107 -- No discriminant checks necessary for an access when expression
1108 -- is statically Null. This is not only an optimization, this is
1109 -- fundamental because otherwise discriminant checks may be generated
1110 -- in init procs for types containing an access to a not-yet-frozen
1111 -- record, causing a deadly forward reference.
1113 -- Also, if the expression is of an access type whose designated
1114 -- type is incomplete, then the access value must be null and
1115 -- we suppress the check.
1117 if Nkind (N) = N_Null then
1118 return;
1120 elsif Is_Access_Type (S_Typ) then
1121 S_Typ := Designated_Type (S_Typ);
1123 if Ekind (S_Typ) = E_Incomplete_Type then
1124 return;
1125 end if;
1126 end if;
1128 -- If an assignment target is present, then we need to generate
1129 -- the actual subtype if the target is a parameter or aliased
1130 -- object with an unconstrained nominal subtype.
1132 if Present (Lhs)
1133 and then (Present (Param_Entity (Lhs))
1134 or else (not Is_Constrained (T_Typ)
1135 and then Is_Aliased_View (Lhs)
1136 and then not Is_Aliased_Unconstrained_Component))
1137 then
1138 T_Typ := Get_Actual_Subtype (Lhs);
1139 end if;
1141 -- Nothing to do if the type is unconstrained (this is the case
1142 -- where the actual subtype in the RM sense of N is unconstrained
1143 -- and no check is required).
1145 if not Is_Constrained (T_Typ) then
1146 return;
1148 -- Ada 2005: nothing to do if the type is one for which there is a
1149 -- partial view that is constrained.
1151 elsif Ada_Version >= Ada_05
1152 and then Has_Constrained_Partial_View (Base_Type (T_Typ))
1153 then
1154 return;
1155 end if;
1157 -- Nothing to do if the type is an Unchecked_Union
1159 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1160 return;
1161 end if;
1163 -- Suppress checks if the subtypes are the same.
1164 -- the check must be preserved in an assignment to a formal, because
1165 -- the constraint is given by the actual.
1167 if Nkind (Original_Node (N)) /= N_Allocator
1168 and then (No (Lhs)
1169 or else not Is_Entity_Name (Lhs)
1170 or else No (Param_Entity (Lhs)))
1171 then
1172 if (Etype (N) = Typ
1173 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1174 and then not Is_Aliased_View (Lhs)
1175 then
1176 return;
1177 end if;
1179 -- We can also eliminate checks on allocators with a subtype mark
1180 -- that coincides with the context type. The context type may be a
1181 -- subtype without a constraint (common case, a generic actual).
1183 elsif Nkind (Original_Node (N)) = N_Allocator
1184 and then Is_Entity_Name (Expression (Original_Node (N)))
1185 then
1186 declare
1187 Alloc_Typ : constant Entity_Id :=
1188 Entity (Expression (Original_Node (N)));
1190 begin
1191 if Alloc_Typ = T_Typ
1192 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1193 and then Is_Entity_Name (
1194 Subtype_Indication (Parent (T_Typ)))
1195 and then Alloc_Typ = Base_Type (T_Typ))
1197 then
1198 return;
1199 end if;
1200 end;
1201 end if;
1203 -- See if we have a case where the types are both constrained, and
1204 -- all the constraints are constants. In this case, we can do the
1205 -- check successfully at compile time.
1207 -- We skip this check for the case where the node is a rewritten`
1208 -- allocator, because it already carries the context subtype, and
1209 -- extracting the discriminants from the aggregate is messy.
1211 if Is_Constrained (S_Typ)
1212 and then Nkind (Original_Node (N)) /= N_Allocator
1213 then
1214 declare
1215 DconT : Elmt_Id;
1216 Discr : Entity_Id;
1217 DconS : Elmt_Id;
1218 ItemS : Node_Id;
1219 ItemT : Node_Id;
1221 begin
1222 -- S_Typ may not have discriminants in the case where it is a
1223 -- private type completed by a default discriminated type. In
1224 -- that case, we need to get the constraints from the
1225 -- underlying_type. If the underlying type is unconstrained (i.e.
1226 -- has no default discriminants) no check is needed.
1228 if Has_Discriminants (S_Typ) then
1229 Discr := First_Discriminant (S_Typ);
1230 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1232 else
1233 Discr := First_Discriminant (Underlying_Type (S_Typ));
1234 DconS :=
1235 First_Elmt
1236 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1238 if No (DconS) then
1239 return;
1240 end if;
1242 -- A further optimization: if T_Typ is derived from S_Typ
1243 -- without imposing a constraint, no check is needed.
1245 if Nkind (Original_Node (Parent (T_Typ))) =
1246 N_Full_Type_Declaration
1247 then
1248 declare
1249 Type_Def : constant Node_Id :=
1250 Type_Definition
1251 (Original_Node (Parent (T_Typ)));
1252 begin
1253 if Nkind (Type_Def) = N_Derived_Type_Definition
1254 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1255 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1256 then
1257 return;
1258 end if;
1259 end;
1260 end if;
1261 end if;
1263 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1265 while Present (Discr) loop
1266 ItemS := Node (DconS);
1267 ItemT := Node (DconT);
1269 exit when
1270 not Is_OK_Static_Expression (ItemS)
1271 or else
1272 not Is_OK_Static_Expression (ItemT);
1274 if Expr_Value (ItemS) /= Expr_Value (ItemT) then
1275 if Do_Access then -- needs run-time check.
1276 exit;
1277 else
1278 Apply_Compile_Time_Constraint_Error
1279 (N, "incorrect value for discriminant&?",
1280 CE_Discriminant_Check_Failed, Ent => Discr);
1281 return;
1282 end if;
1283 end if;
1285 Next_Elmt (DconS);
1286 Next_Elmt (DconT);
1287 Next_Discriminant (Discr);
1288 end loop;
1290 if No (Discr) then
1291 return;
1292 end if;
1293 end;
1294 end if;
1296 -- Here we need a discriminant check. First build the expression
1297 -- for the comparisons of the discriminants:
1299 -- (n.disc1 /= typ.disc1) or else
1300 -- (n.disc2 /= typ.disc2) or else
1301 -- ...
1302 -- (n.discn /= typ.discn)
1304 Cond := Build_Discriminant_Checks (N, T_Typ);
1306 -- If Lhs is set and is a parameter, then the condition is
1307 -- guarded by: lhs'constrained and then (condition built above)
1309 if Present (Param_Entity (Lhs)) then
1310 Cond :=
1311 Make_And_Then (Loc,
1312 Left_Opnd =>
1313 Make_Attribute_Reference (Loc,
1314 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1315 Attribute_Name => Name_Constrained),
1316 Right_Opnd => Cond);
1317 end if;
1319 if Do_Access then
1320 Cond := Guard_Access (Cond, Loc, N);
1321 end if;
1323 Insert_Action (N,
1324 Make_Raise_Constraint_Error (Loc,
1325 Condition => Cond,
1326 Reason => CE_Discriminant_Check_Failed));
1327 end Apply_Discriminant_Check;
1329 ------------------------
1330 -- Apply_Divide_Check --
1331 ------------------------
1333 procedure Apply_Divide_Check (N : Node_Id) is
1334 Loc : constant Source_Ptr := Sloc (N);
1335 Typ : constant Entity_Id := Etype (N);
1336 Left : constant Node_Id := Left_Opnd (N);
1337 Right : constant Node_Id := Right_Opnd (N);
1339 LLB : Uint;
1340 Llo : Uint;
1341 Lhi : Uint;
1342 LOK : Boolean;
1343 Rlo : Uint;
1344 Rhi : Uint;
1345 ROK : Boolean;
1347 begin
1348 if Expander_Active
1349 and then not Backend_Divide_Checks_On_Target
1350 and then Check_Needed (Right, Division_Check)
1351 then
1352 Determine_Range (Right, ROK, Rlo, Rhi);
1354 -- See if division by zero possible, and if so generate test. This
1355 -- part of the test is not controlled by the -gnato switch.
1357 if Do_Division_Check (N) then
1358 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1359 Insert_Action (N,
1360 Make_Raise_Constraint_Error (Loc,
1361 Condition =>
1362 Make_Op_Eq (Loc,
1363 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1364 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1365 Reason => CE_Divide_By_Zero));
1366 end if;
1367 end if;
1369 -- Test for extremely annoying case of xxx'First divided by -1
1371 if Do_Overflow_Check (N) then
1372 if Nkind (N) = N_Op_Divide
1373 and then Is_Signed_Integer_Type (Typ)
1374 then
1375 Determine_Range (Left, LOK, Llo, Lhi);
1376 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1378 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1379 and then
1380 ((not LOK) or else (Llo = LLB))
1381 then
1382 Insert_Action (N,
1383 Make_Raise_Constraint_Error (Loc,
1384 Condition =>
1385 Make_And_Then (Loc,
1387 Make_Op_Eq (Loc,
1388 Left_Opnd =>
1389 Duplicate_Subexpr_Move_Checks (Left),
1390 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1392 Make_Op_Eq (Loc,
1393 Left_Opnd =>
1394 Duplicate_Subexpr (Right),
1395 Right_Opnd =>
1396 Make_Integer_Literal (Loc, -1))),
1397 Reason => CE_Overflow_Check_Failed));
1398 end if;
1399 end if;
1400 end if;
1401 end if;
1402 end Apply_Divide_Check;
1404 ----------------------------------
1405 -- Apply_Float_Conversion_Check --
1406 ----------------------------------
1408 -- Let F and I be the source and target types of the conversion.
1409 -- The Ada standard specifies that a floating-point value X is rounded
1410 -- to the nearest integer, with halfway cases being rounded away from
1411 -- zero. The rounded value of X is checked against I'Range.
1413 -- The catch in the above paragraph is that there is no good way
1414 -- to know whether the round-to-integer operation resulted in
1415 -- overflow. A remedy is to perform a range check in the floating-point
1416 -- domain instead, however:
1417 -- (1) The bounds may not be known at compile time
1418 -- (2) The check must take into account possible rounding.
1419 -- (3) The range of type I may not be exactly representable in F.
1420 -- (4) The end-points I'First - 0.5 and I'Last + 0.5 may or may
1421 -- not be in range, depending on the sign of I'First and I'Last.
1422 -- (5) X may be a NaN, which will fail any comparison
1424 -- The following steps take care of these issues converting X:
1425 -- (1) If either I'First or I'Last is not known at compile time, use
1426 -- I'Base instead of I in the next three steps and perform a
1427 -- regular range check against I'Range after conversion.
1428 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1429 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1430 -- F'Machine (T) and let Lo_OK be (Lo >= I'First). In other words,
1431 -- take one of the closest floating-point numbers to T, and see if
1432 -- it is in range or not.
1433 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1434 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1435 -- F'Rounding (T) and let Hi_OK be (Hi <= I'Last).
1436 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1437 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1439 procedure Apply_Float_Conversion_Check
1440 (Ck_Node : Node_Id;
1441 Target_Typ : Entity_Id)
1443 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1444 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1445 Loc : constant Source_Ptr := Sloc (Ck_Node);
1446 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1447 Target_Base : constant Entity_Id := Implementation_Base_Type
1448 (Target_Typ);
1449 Max_Bound : constant Uint := UI_Expon
1450 (Machine_Radix (Expr_Type),
1451 Machine_Mantissa (Expr_Type) - 1) - 1;
1452 -- Largest bound, so bound plus or minus half is a machine number of F
1454 Ifirst,
1455 Ilast : Uint; -- Bounds of integer type
1456 Lo, Hi : Ureal; -- Bounds to check in floating-point domain
1457 Lo_OK,
1458 Hi_OK : Boolean; -- True iff Lo resp. Hi belongs to I'Range
1460 Lo_Chk,
1461 Hi_Chk : Node_Id; -- Expressions that are False iff check fails
1463 Reason : RT_Exception_Code;
1465 begin
1466 if not Compile_Time_Known_Value (LB)
1467 or not Compile_Time_Known_Value (HB)
1468 then
1469 declare
1470 -- First check that the value falls in the range of the base
1471 -- type, to prevent overflow during conversion and then
1472 -- perform a regular range check against the (dynamic) bounds.
1474 Par : constant Node_Id := Parent (Ck_Node);
1476 pragma Assert (Target_Base /= Target_Typ);
1477 pragma Assert (Nkind (Par) = N_Type_Conversion);
1479 Temp : constant Entity_Id :=
1480 Make_Defining_Identifier (Loc,
1481 Chars => New_Internal_Name ('T'));
1483 begin
1484 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1485 Set_Etype (Temp, Target_Base);
1487 Insert_Action (Parent (Par),
1488 Make_Object_Declaration (Loc,
1489 Defining_Identifier => Temp,
1490 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1491 Expression => New_Copy_Tree (Par)),
1492 Suppress => All_Checks);
1494 Insert_Action (Par,
1495 Make_Raise_Constraint_Error (Loc,
1496 Condition =>
1497 Make_Not_In (Loc,
1498 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1499 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1500 Reason => CE_Range_Check_Failed));
1501 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1503 return;
1504 end;
1505 end if;
1507 -- Get the bounds of the target type
1509 Ifirst := Expr_Value (LB);
1510 Ilast := Expr_Value (HB);
1512 -- Check against lower bound
1514 if abs (Ifirst) < Max_Bound then
1515 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1516 Lo_OK := (Ifirst > 0);
1517 else
1518 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1519 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1520 end if;
1522 if Lo_OK then
1524 -- Lo_Chk := (X >= Lo)
1526 Lo_Chk := Make_Op_Ge (Loc,
1527 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1528 Right_Opnd => Make_Real_Literal (Loc, Lo));
1530 else
1531 -- Lo_Chk := (X > Lo)
1533 Lo_Chk := Make_Op_Gt (Loc,
1534 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1535 Right_Opnd => Make_Real_Literal (Loc, Lo));
1536 end if;
1538 -- Check against higher bound
1540 if abs (Ilast) < Max_Bound then
1541 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1542 Hi_OK := (Ilast < 0);
1543 else
1544 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1545 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1546 end if;
1548 if Hi_OK then
1550 -- Hi_Chk := (X <= Hi)
1552 Hi_Chk := Make_Op_Le (Loc,
1553 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1554 Right_Opnd => Make_Real_Literal (Loc, Hi));
1556 else
1557 -- Hi_Chk := (X < Hi)
1559 Hi_Chk := Make_Op_Lt (Loc,
1560 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1561 Right_Opnd => Make_Real_Literal (Loc, Hi));
1562 end if;
1564 -- If the bounds of the target type are the same as those of the
1565 -- base type, the check is an overflow check as a range check is
1566 -- not performed in these cases.
1568 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1569 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1570 then
1571 Reason := CE_Overflow_Check_Failed;
1572 else
1573 Reason := CE_Range_Check_Failed;
1574 end if;
1576 -- Raise CE if either conditions does not hold
1578 Insert_Action (Ck_Node,
1579 Make_Raise_Constraint_Error (Loc,
1580 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
1581 Reason => Reason));
1582 end Apply_Float_Conversion_Check;
1584 ------------------------
1585 -- Apply_Length_Check --
1586 ------------------------
1588 procedure Apply_Length_Check
1589 (Ck_Node : Node_Id;
1590 Target_Typ : Entity_Id;
1591 Source_Typ : Entity_Id := Empty)
1593 begin
1594 Apply_Selected_Length_Checks
1595 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1596 end Apply_Length_Check;
1598 -----------------------
1599 -- Apply_Range_Check --
1600 -----------------------
1602 procedure Apply_Range_Check
1603 (Ck_Node : Node_Id;
1604 Target_Typ : Entity_Id;
1605 Source_Typ : Entity_Id := Empty)
1607 begin
1608 Apply_Selected_Range_Checks
1609 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1610 end Apply_Range_Check;
1612 ------------------------------
1613 -- Apply_Scalar_Range_Check --
1614 ------------------------------
1616 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
1617 -- flag off if it is already set on.
1619 procedure Apply_Scalar_Range_Check
1620 (Expr : Node_Id;
1621 Target_Typ : Entity_Id;
1622 Source_Typ : Entity_Id := Empty;
1623 Fixed_Int : Boolean := False)
1625 Parnt : constant Node_Id := Parent (Expr);
1626 S_Typ : Entity_Id;
1627 Arr : Node_Id := Empty; -- initialize to prevent warning
1628 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1629 OK : Boolean;
1631 Is_Subscr_Ref : Boolean;
1632 -- Set true if Expr is a subscript
1634 Is_Unconstrained_Subscr_Ref : Boolean;
1635 -- Set true if Expr is a subscript of an unconstrained array. In this
1636 -- case we do not attempt to do an analysis of the value against the
1637 -- range of the subscript, since we don't know the actual subtype.
1639 Int_Real : Boolean;
1640 -- Set to True if Expr should be regarded as a real value
1641 -- even though the type of Expr might be discrete.
1643 procedure Bad_Value;
1644 -- Procedure called if value is determined to be out of range
1646 ---------------
1647 -- Bad_Value --
1648 ---------------
1650 procedure Bad_Value is
1651 begin
1652 Apply_Compile_Time_Constraint_Error
1653 (Expr, "value not in range of}?", CE_Range_Check_Failed,
1654 Ent => Target_Typ,
1655 Typ => Target_Typ);
1656 end Bad_Value;
1658 -- Start of processing for Apply_Scalar_Range_Check
1660 begin
1661 if Inside_A_Generic then
1662 return;
1664 -- Return if check obviously not needed. Note that we do not check
1665 -- for the expander being inactive, since this routine does not
1666 -- insert any code, but it does generate useful warnings sometimes,
1667 -- which we would like even if we are in semantics only mode.
1669 elsif Target_Typ = Any_Type
1670 or else not Is_Scalar_Type (Target_Typ)
1671 or else Raises_Constraint_Error (Expr)
1672 then
1673 return;
1674 end if;
1676 -- Now, see if checks are suppressed
1678 Is_Subscr_Ref :=
1679 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1681 if Is_Subscr_Ref then
1682 Arr := Prefix (Parnt);
1683 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1684 end if;
1686 if not Do_Range_Check (Expr) then
1688 -- Subscript reference. Check for Index_Checks suppressed
1690 if Is_Subscr_Ref then
1692 -- Check array type and its base type
1694 if Index_Checks_Suppressed (Arr_Typ)
1695 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1696 then
1697 return;
1699 -- Check array itself if it is an entity name
1701 elsif Is_Entity_Name (Arr)
1702 and then Index_Checks_Suppressed (Entity (Arr))
1703 then
1704 return;
1706 -- Check expression itself if it is an entity name
1708 elsif Is_Entity_Name (Expr)
1709 and then Index_Checks_Suppressed (Entity (Expr))
1710 then
1711 return;
1712 end if;
1714 -- All other cases, check for Range_Checks suppressed
1716 else
1717 -- Check target type and its base type
1719 if Range_Checks_Suppressed (Target_Typ)
1720 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1721 then
1722 return;
1724 -- Check expression itself if it is an entity name
1726 elsif Is_Entity_Name (Expr)
1727 and then Range_Checks_Suppressed (Entity (Expr))
1728 then
1729 return;
1731 -- If Expr is part of an assignment statement, then check
1732 -- left side of assignment if it is an entity name.
1734 elsif Nkind (Parnt) = N_Assignment_Statement
1735 and then Is_Entity_Name (Name (Parnt))
1736 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1737 then
1738 return;
1739 end if;
1740 end if;
1741 end if;
1743 -- Do not set range checks if they are killed
1745 if Nkind (Expr) = N_Unchecked_Type_Conversion
1746 and then Kill_Range_Check (Expr)
1747 then
1748 return;
1749 end if;
1751 -- Do not set range checks for any values from System.Scalar_Values
1752 -- since the whole idea of such values is to avoid checking them!
1754 if Is_Entity_Name (Expr)
1755 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1756 then
1757 return;
1758 end if;
1760 -- Now see if we need a check
1762 if No (Source_Typ) then
1763 S_Typ := Etype (Expr);
1764 else
1765 S_Typ := Source_Typ;
1766 end if;
1768 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1769 return;
1770 end if;
1772 Is_Unconstrained_Subscr_Ref :=
1773 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1775 -- Always do a range check if the source type includes infinities
1776 -- and the target type does not include infinities. We do not do
1777 -- this if range checks are killed.
1779 if Is_Floating_Point_Type (S_Typ)
1780 and then Has_Infinities (S_Typ)
1781 and then not Has_Infinities (Target_Typ)
1782 then
1783 Enable_Range_Check (Expr);
1784 end if;
1786 -- Return if we know expression is definitely in the range of
1787 -- the target type as determined by Determine_Range. Right now
1788 -- we only do this for discrete types, and not fixed-point or
1789 -- floating-point types.
1791 -- The additional less-precise tests below catch these cases
1793 -- Note: skip this if we are given a source_typ, since the point
1794 -- of supplying a Source_Typ is to stop us looking at the expression.
1795 -- could sharpen this test to be out parameters only ???
1797 if Is_Discrete_Type (Target_Typ)
1798 and then Is_Discrete_Type (Etype (Expr))
1799 and then not Is_Unconstrained_Subscr_Ref
1800 and then No (Source_Typ)
1801 then
1802 declare
1803 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1804 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1805 Lo : Uint;
1806 Hi : Uint;
1808 begin
1809 if Compile_Time_Known_Value (Tlo)
1810 and then Compile_Time_Known_Value (Thi)
1811 then
1812 declare
1813 Lov : constant Uint := Expr_Value (Tlo);
1814 Hiv : constant Uint := Expr_Value (Thi);
1816 begin
1817 -- If range is null, we for sure have a constraint error
1818 -- (we don't even need to look at the value involved,
1819 -- since all possible values will raise CE).
1821 if Lov > Hiv then
1822 Bad_Value;
1823 return;
1824 end if;
1826 -- Otherwise determine range of value
1828 Determine_Range (Expr, OK, Lo, Hi);
1830 if OK then
1832 -- If definitely in range, all OK
1834 if Lo >= Lov and then Hi <= Hiv then
1835 return;
1837 -- If definitely not in range, warn
1839 elsif Lov > Hi or else Hiv < Lo then
1840 Bad_Value;
1841 return;
1843 -- Otherwise we don't know
1845 else
1846 null;
1847 end if;
1848 end if;
1849 end;
1850 end if;
1851 end;
1852 end if;
1854 Int_Real :=
1855 Is_Floating_Point_Type (S_Typ)
1856 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
1858 -- Check if we can determine at compile time whether Expr is in the
1859 -- range of the target type. Note that if S_Typ is within the bounds
1860 -- of Target_Typ then this must be the case. This check is meaningful
1861 -- only if this is not a conversion between integer and real types.
1863 if not Is_Unconstrained_Subscr_Ref
1864 and then
1865 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
1866 and then
1867 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
1868 or else
1869 Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
1870 then
1871 return;
1873 elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
1874 Bad_Value;
1875 return;
1877 -- In the floating-point case, we only do range checks if the
1878 -- type is constrained. We definitely do NOT want range checks
1879 -- for unconstrained types, since we want to have infinities
1881 elsif Is_Floating_Point_Type (S_Typ) then
1882 if Is_Constrained (S_Typ) then
1883 Enable_Range_Check (Expr);
1884 end if;
1886 -- For all other cases we enable a range check unconditionally
1888 else
1889 Enable_Range_Check (Expr);
1890 return;
1891 end if;
1892 end Apply_Scalar_Range_Check;
1894 ----------------------------------
1895 -- Apply_Selected_Length_Checks --
1896 ----------------------------------
1898 procedure Apply_Selected_Length_Checks
1899 (Ck_Node : Node_Id;
1900 Target_Typ : Entity_Id;
1901 Source_Typ : Entity_Id;
1902 Do_Static : Boolean)
1904 Cond : Node_Id;
1905 R_Result : Check_Result;
1906 R_Cno : Node_Id;
1908 Loc : constant Source_Ptr := Sloc (Ck_Node);
1909 Checks_On : constant Boolean :=
1910 (not Index_Checks_Suppressed (Target_Typ))
1911 or else
1912 (not Length_Checks_Suppressed (Target_Typ));
1914 begin
1915 if not Expander_Active then
1916 return;
1917 end if;
1919 R_Result :=
1920 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
1922 for J in 1 .. 2 loop
1923 R_Cno := R_Result (J);
1924 exit when No (R_Cno);
1926 -- A length check may mention an Itype which is attached to a
1927 -- subsequent node. At the top level in a package this can cause
1928 -- an order-of-elaboration problem, so we make sure that the itype
1929 -- is referenced now.
1931 if Ekind (Current_Scope) = E_Package
1932 and then Is_Compilation_Unit (Current_Scope)
1933 then
1934 Ensure_Defined (Target_Typ, Ck_Node);
1936 if Present (Source_Typ) then
1937 Ensure_Defined (Source_Typ, Ck_Node);
1939 elsif Is_Itype (Etype (Ck_Node)) then
1940 Ensure_Defined (Etype (Ck_Node), Ck_Node);
1941 end if;
1942 end if;
1944 -- If the item is a conditional raise of constraint error,
1945 -- then have a look at what check is being performed and
1946 -- ???
1948 if Nkind (R_Cno) = N_Raise_Constraint_Error
1949 and then Present (Condition (R_Cno))
1950 then
1951 Cond := Condition (R_Cno);
1953 if not Has_Dynamic_Length_Check (Ck_Node)
1954 and then Checks_On
1955 then
1956 Insert_Action (Ck_Node, R_Cno);
1958 if not Do_Static then
1959 Set_Has_Dynamic_Length_Check (Ck_Node);
1960 end if;
1961 end if;
1963 -- Output a warning if the condition is known to be True
1965 if Is_Entity_Name (Cond)
1966 and then Entity (Cond) = Standard_True
1967 then
1968 Apply_Compile_Time_Constraint_Error
1969 (Ck_Node, "wrong length for array of}?",
1970 CE_Length_Check_Failed,
1971 Ent => Target_Typ,
1972 Typ => Target_Typ);
1974 -- If we were only doing a static check, or if checks are not
1975 -- on, then we want to delete the check, since it is not needed.
1976 -- We do this by replacing the if statement by a null statement
1978 elsif Do_Static or else not Checks_On then
1979 Rewrite (R_Cno, Make_Null_Statement (Loc));
1980 end if;
1982 else
1983 Install_Static_Check (R_Cno, Loc);
1984 end if;
1986 end loop;
1988 end Apply_Selected_Length_Checks;
1990 ---------------------------------
1991 -- Apply_Selected_Range_Checks --
1992 ---------------------------------
1994 procedure Apply_Selected_Range_Checks
1995 (Ck_Node : Node_Id;
1996 Target_Typ : Entity_Id;
1997 Source_Typ : Entity_Id;
1998 Do_Static : Boolean)
2000 Cond : Node_Id;
2001 R_Result : Check_Result;
2002 R_Cno : Node_Id;
2004 Loc : constant Source_Ptr := Sloc (Ck_Node);
2005 Checks_On : constant Boolean :=
2006 (not Index_Checks_Suppressed (Target_Typ))
2007 or else
2008 (not Range_Checks_Suppressed (Target_Typ));
2010 begin
2011 if not Expander_Active or else not Checks_On then
2012 return;
2013 end if;
2015 R_Result :=
2016 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2018 for J in 1 .. 2 loop
2020 R_Cno := R_Result (J);
2021 exit when No (R_Cno);
2023 -- If the item is a conditional raise of constraint error,
2024 -- then have a look at what check is being performed and
2025 -- ???
2027 if Nkind (R_Cno) = N_Raise_Constraint_Error
2028 and then Present (Condition (R_Cno))
2029 then
2030 Cond := Condition (R_Cno);
2032 if not Has_Dynamic_Range_Check (Ck_Node) then
2033 Insert_Action (Ck_Node, R_Cno);
2035 if not Do_Static then
2036 Set_Has_Dynamic_Range_Check (Ck_Node);
2037 end if;
2038 end if;
2040 -- Output a warning if the condition is known to be True
2042 if Is_Entity_Name (Cond)
2043 and then Entity (Cond) = Standard_True
2044 then
2045 -- Since an N_Range is technically not an expression, we
2046 -- have to set one of the bounds to C_E and then just flag
2047 -- the N_Range. The warning message will point to the
2048 -- lower bound and complain about a range, which seems OK.
2050 if Nkind (Ck_Node) = N_Range then
2051 Apply_Compile_Time_Constraint_Error
2052 (Low_Bound (Ck_Node), "static range out of bounds of}?",
2053 CE_Range_Check_Failed,
2054 Ent => Target_Typ,
2055 Typ => Target_Typ);
2057 Set_Raises_Constraint_Error (Ck_Node);
2059 else
2060 Apply_Compile_Time_Constraint_Error
2061 (Ck_Node, "static value out of range of}?",
2062 CE_Range_Check_Failed,
2063 Ent => Target_Typ,
2064 Typ => Target_Typ);
2065 end if;
2067 -- If we were only doing a static check, or if checks are not
2068 -- on, then we want to delete the check, since it is not needed.
2069 -- We do this by replacing the if statement by a null statement
2071 elsif Do_Static or else not Checks_On then
2072 Rewrite (R_Cno, Make_Null_Statement (Loc));
2073 end if;
2075 else
2076 Install_Static_Check (R_Cno, Loc);
2077 end if;
2078 end loop;
2079 end Apply_Selected_Range_Checks;
2081 -------------------------------
2082 -- Apply_Static_Length_Check --
2083 -------------------------------
2085 procedure Apply_Static_Length_Check
2086 (Expr : Node_Id;
2087 Target_Typ : Entity_Id;
2088 Source_Typ : Entity_Id := Empty)
2090 begin
2091 Apply_Selected_Length_Checks
2092 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2093 end Apply_Static_Length_Check;
2095 -------------------------------------
2096 -- Apply_Subscript_Validity_Checks --
2097 -------------------------------------
2099 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2100 Sub : Node_Id;
2102 begin
2103 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2105 -- Loop through subscripts
2107 Sub := First (Expressions (Expr));
2108 while Present (Sub) loop
2110 -- Check one subscript. Note that we do not worry about
2111 -- enumeration type with holes, since we will convert the
2112 -- value to a Pos value for the subscript, and that convert
2113 -- will do the necessary validity check.
2115 Ensure_Valid (Sub, Holes_OK => True);
2117 -- Move to next subscript
2119 Sub := Next (Sub);
2120 end loop;
2121 end Apply_Subscript_Validity_Checks;
2123 ----------------------------------
2124 -- Apply_Type_Conversion_Checks --
2125 ----------------------------------
2127 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2128 Target_Type : constant Entity_Id := Etype (N);
2129 Target_Base : constant Entity_Id := Base_Type (Target_Type);
2130 Expr : constant Node_Id := Expression (N);
2131 Expr_Type : constant Entity_Id := Etype (Expr);
2133 begin
2134 if Inside_A_Generic then
2135 return;
2137 -- Skip these checks if serious errors detected, there are some nasty
2138 -- situations of incomplete trees that blow things up.
2140 elsif Serious_Errors_Detected > 0 then
2141 return;
2143 -- Scalar type conversions of the form Target_Type (Expr) require
2144 -- a range check if we cannot be sure that Expr is in the base type
2145 -- of Target_Typ and also that Expr is in the range of Target_Typ.
2146 -- These are not quite the same condition from an implementation
2147 -- point of view, but clearly the second includes the first.
2149 elsif Is_Scalar_Type (Target_Type) then
2150 declare
2151 Conv_OK : constant Boolean := Conversion_OK (N);
2152 -- If the Conversion_OK flag on the type conversion is set
2153 -- and no floating point type is involved in the type conversion
2154 -- then fixed point values must be read as integral values.
2156 Float_To_Int : constant Boolean :=
2157 Is_Floating_Point_Type (Expr_Type)
2158 and then Is_Integer_Type (Target_Type);
2160 begin
2161 if not Overflow_Checks_Suppressed (Target_Base)
2162 and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
2163 and then not Float_To_Int
2164 then
2165 Set_Do_Overflow_Check (N);
2166 end if;
2168 if not Range_Checks_Suppressed (Target_Type)
2169 and then not Range_Checks_Suppressed (Expr_Type)
2170 then
2171 if Float_To_Int then
2172 Apply_Float_Conversion_Check (Expr, Target_Type);
2173 else
2174 Apply_Scalar_Range_Check
2175 (Expr, Target_Type, Fixed_Int => Conv_OK);
2176 end if;
2177 end if;
2178 end;
2180 elsif Comes_From_Source (N)
2181 and then Is_Record_Type (Target_Type)
2182 and then Is_Derived_Type (Target_Type)
2183 and then not Is_Tagged_Type (Target_Type)
2184 and then not Is_Constrained (Target_Type)
2185 and then Present (Stored_Constraint (Target_Type))
2186 then
2187 -- An unconstrained derived type may have inherited discriminant
2188 -- Build an actual discriminant constraint list using the stored
2189 -- constraint, to verify that the expression of the parent type
2190 -- satisfies the constraints imposed by the (unconstrained!)
2191 -- derived type. This applies to value conversions, not to view
2192 -- conversions of tagged types.
2194 declare
2195 Loc : constant Source_Ptr := Sloc (N);
2196 Cond : Node_Id;
2197 Constraint : Elmt_Id;
2198 Discr_Value : Node_Id;
2199 Discr : Entity_Id;
2201 New_Constraints : constant Elist_Id := New_Elmt_List;
2202 Old_Constraints : constant Elist_Id :=
2203 Discriminant_Constraint (Expr_Type);
2205 begin
2206 Constraint := First_Elmt (Stored_Constraint (Target_Type));
2208 while Present (Constraint) loop
2209 Discr_Value := Node (Constraint);
2211 if Is_Entity_Name (Discr_Value)
2212 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2213 then
2214 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2216 if Present (Discr)
2217 and then Scope (Discr) = Base_Type (Expr_Type)
2218 then
2219 -- Parent is constrained by new discriminant. Obtain
2220 -- Value of original discriminant in expression. If
2221 -- the new discriminant has been used to constrain more
2222 -- than one of the stored discriminants, this will
2223 -- provide the required consistency check.
2225 Append_Elmt (
2226 Make_Selected_Component (Loc,
2227 Prefix =>
2228 Duplicate_Subexpr_No_Checks
2229 (Expr, Name_Req => True),
2230 Selector_Name =>
2231 Make_Identifier (Loc, Chars (Discr))),
2232 New_Constraints);
2234 else
2235 -- Discriminant of more remote ancestor ???
2237 return;
2238 end if;
2240 -- Derived type definition has an explicit value for
2241 -- this stored discriminant.
2243 else
2244 Append_Elmt
2245 (Duplicate_Subexpr_No_Checks (Discr_Value),
2246 New_Constraints);
2247 end if;
2249 Next_Elmt (Constraint);
2250 end loop;
2252 -- Use the unconstrained expression type to retrieve the
2253 -- discriminants of the parent, and apply momentarily the
2254 -- discriminant constraint synthesized above.
2256 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2257 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2258 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2260 Insert_Action (N,
2261 Make_Raise_Constraint_Error (Loc,
2262 Condition => Cond,
2263 Reason => CE_Discriminant_Check_Failed));
2264 end;
2266 -- For arrays, conversions are applied during expansion, to take
2267 -- into accounts changes of representation. The checks become range
2268 -- checks on the base type or length checks on the subtype, depending
2269 -- on whether the target type is unconstrained or constrained.
2271 else
2272 null;
2273 end if;
2274 end Apply_Type_Conversion_Checks;
2276 ----------------------------------------------
2277 -- Apply_Universal_Integer_Attribute_Checks --
2278 ----------------------------------------------
2280 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2281 Loc : constant Source_Ptr := Sloc (N);
2282 Typ : constant Entity_Id := Etype (N);
2284 begin
2285 if Inside_A_Generic then
2286 return;
2288 -- Nothing to do if checks are suppressed
2290 elsif Range_Checks_Suppressed (Typ)
2291 and then Overflow_Checks_Suppressed (Typ)
2292 then
2293 return;
2295 -- Nothing to do if the attribute does not come from source. The
2296 -- internal attributes we generate of this type do not need checks,
2297 -- and furthermore the attempt to check them causes some circular
2298 -- elaboration orders when dealing with packed types.
2300 elsif not Comes_From_Source (N) then
2301 return;
2303 -- If the prefix is a selected component that depends on a discriminant
2304 -- the check may improperly expose a discriminant instead of using
2305 -- the bounds of the object itself. Set the type of the attribute to
2306 -- the base type of the context, so that a check will be imposed when
2307 -- needed (e.g. if the node appears as an index).
2309 elsif Nkind (Prefix (N)) = N_Selected_Component
2310 and then Ekind (Typ) = E_Signed_Integer_Subtype
2311 and then Depends_On_Discriminant (Scalar_Range (Typ))
2312 then
2313 Set_Etype (N, Base_Type (Typ));
2315 -- Otherwise, replace the attribute node with a type conversion
2316 -- node whose expression is the attribute, retyped to universal
2317 -- integer, and whose subtype mark is the target type. The call
2318 -- to analyze this conversion will set range and overflow checks
2319 -- as required for proper detection of an out of range value.
2321 else
2322 Set_Etype (N, Universal_Integer);
2323 Set_Analyzed (N, True);
2325 Rewrite (N,
2326 Make_Type_Conversion (Loc,
2327 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2328 Expression => Relocate_Node (N)));
2330 Analyze_And_Resolve (N, Typ);
2331 return;
2332 end if;
2334 end Apply_Universal_Integer_Attribute_Checks;
2336 -------------------------------
2337 -- Build_Discriminant_Checks --
2338 -------------------------------
2340 function Build_Discriminant_Checks
2341 (N : Node_Id;
2342 T_Typ : Entity_Id) return Node_Id
2344 Loc : constant Source_Ptr := Sloc (N);
2345 Cond : Node_Id;
2346 Disc : Elmt_Id;
2347 Disc_Ent : Entity_Id;
2348 Dref : Node_Id;
2349 Dval : Node_Id;
2351 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
2353 ----------------------------------
2354 -- Aggregate_Discriminant_Value --
2355 ----------------------------------
2357 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
2358 Assoc : Node_Id;
2360 begin
2361 -- The aggregate has been normalized with named associations. We
2362 -- use the Chars field to locate the discriminant to take into
2363 -- account discriminants in derived types, which carry the same
2364 -- name as those in the parent.
2366 Assoc := First (Component_Associations (N));
2367 while Present (Assoc) loop
2368 if Chars (First (Choices (Assoc))) = Chars (Disc) then
2369 return Expression (Assoc);
2370 else
2371 Next (Assoc);
2372 end if;
2373 end loop;
2375 -- Discriminant must have been found in the loop above
2377 raise Program_Error;
2378 end Aggregate_Discriminant_Val;
2380 -- Start of processing for Build_Discriminant_Checks
2382 begin
2383 -- Loop through discriminants evolving the condition
2385 Cond := Empty;
2386 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2388 -- For a fully private type, use the discriminants of the parent type
2390 if Is_Private_Type (T_Typ)
2391 and then No (Full_View (T_Typ))
2392 then
2393 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2394 else
2395 Disc_Ent := First_Discriminant (T_Typ);
2396 end if;
2398 while Present (Disc) loop
2399 Dval := Node (Disc);
2401 if Nkind (Dval) = N_Identifier
2402 and then Ekind (Entity (Dval)) = E_Discriminant
2403 then
2404 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2405 else
2406 Dval := Duplicate_Subexpr_No_Checks (Dval);
2407 end if;
2409 -- If we have an Unchecked_Union node, we can infer the discriminants
2410 -- of the node.
2412 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2413 Dref := New_Copy (
2414 Get_Discriminant_Value (
2415 First_Discriminant (T_Typ),
2416 T_Typ,
2417 Stored_Constraint (T_Typ)));
2419 elsif Nkind (N) = N_Aggregate then
2420 Dref :=
2421 Duplicate_Subexpr_No_Checks
2422 (Aggregate_Discriminant_Val (Disc_Ent));
2424 else
2425 Dref :=
2426 Make_Selected_Component (Loc,
2427 Prefix =>
2428 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2429 Selector_Name =>
2430 Make_Identifier (Loc, Chars (Disc_Ent)));
2432 Set_Is_In_Discriminant_Check (Dref);
2433 end if;
2435 Evolve_Or_Else (Cond,
2436 Make_Op_Ne (Loc,
2437 Left_Opnd => Dref,
2438 Right_Opnd => Dval));
2440 Next_Elmt (Disc);
2441 Next_Discriminant (Disc_Ent);
2442 end loop;
2444 return Cond;
2445 end Build_Discriminant_Checks;
2447 ------------------
2448 -- Check_Needed --
2449 ------------------
2451 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
2452 N : Node_Id;
2453 P : Node_Id;
2454 K : Node_Kind;
2455 L : Node_Id;
2456 R : Node_Id;
2458 begin
2459 -- Always check if not simple entity
2461 if Nkind (Nod) not in N_Has_Entity
2462 or else not Comes_From_Source (Nod)
2463 then
2464 return True;
2465 end if;
2467 -- Look up tree for short circuit
2469 N := Nod;
2470 loop
2471 P := Parent (N);
2472 K := Nkind (P);
2474 if K not in N_Subexpr then
2475 return True;
2477 -- Or/Or Else case, left operand must be equality test
2479 elsif K = N_Op_Or or else K = N_Or_Else then
2480 exit when N = Right_Opnd (P)
2481 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2483 -- And/And then case, left operand must be inequality test
2485 elsif K = N_Op_And or else K = N_And_Then then
2486 exit when N = Right_Opnd (P)
2487 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
2488 end if;
2490 N := P;
2491 end loop;
2493 -- If we fall through the loop, then we have a conditional with an
2494 -- appropriate test as its left operand. So test further.
2496 L := Left_Opnd (P);
2498 if Nkind (L) = N_Op_Not then
2499 L := Right_Opnd (L);
2500 end if;
2502 R := Right_Opnd (L);
2503 L := Left_Opnd (L);
2505 -- Left operand of test must match original variable
2507 if Nkind (L) not in N_Has_Entity
2508 or else Entity (L) /= Entity (Nod)
2509 then
2510 return True;
2511 end if;
2513 -- Right operand of test mus be key value (zero or null)
2515 case Check is
2516 when Access_Check =>
2517 if Nkind (R) /= N_Null then
2518 return True;
2519 end if;
2521 when Division_Check =>
2522 if not Compile_Time_Known_Value (R)
2523 or else Expr_Value (R) /= Uint_0
2524 then
2525 return True;
2526 end if;
2527 end case;
2529 -- Here we have the optimizable case, warn if not short-circuited
2531 if K = N_Op_And or else K = N_Op_Or then
2532 case Check is
2533 when Access_Check =>
2534 Error_Msg_N
2535 ("Constraint_Error may be raised (access check)?",
2536 Parent (Nod));
2537 when Division_Check =>
2538 Error_Msg_N
2539 ("Constraint_Error may be raised (zero divide)?",
2540 Parent (Nod));
2541 end case;
2543 if K = N_Op_And then
2544 Error_Msg_N ("use `AND THEN` instead of AND?", P);
2545 else
2546 Error_Msg_N ("use `OR ELSE` instead of OR?", P);
2547 end if;
2549 -- If not short-circuited, we need the ckeck
2551 return True;
2553 -- If short-circuited, we can omit the check
2555 else
2556 return False;
2557 end if;
2558 end Check_Needed;
2560 -----------------------------------
2561 -- Check_Valid_Lvalue_Subscripts --
2562 -----------------------------------
2564 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2565 begin
2566 -- Skip this if range checks are suppressed
2568 if Range_Checks_Suppressed (Etype (Expr)) then
2569 return;
2571 -- Only do this check for expressions that come from source. We
2572 -- assume that expander generated assignments explicitly include
2573 -- any necessary checks. Note that this is not just an optimization,
2574 -- it avoids infinite recursions!
2576 elsif not Comes_From_Source (Expr) then
2577 return;
2579 -- For a selected component, check the prefix
2581 elsif Nkind (Expr) = N_Selected_Component then
2582 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2583 return;
2585 -- Case of indexed component
2587 elsif Nkind (Expr) = N_Indexed_Component then
2588 Apply_Subscript_Validity_Checks (Expr);
2590 -- Prefix may itself be or contain an indexed component, and
2591 -- these subscripts need checking as well
2593 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2594 end if;
2595 end Check_Valid_Lvalue_Subscripts;
2597 ----------------------------------
2598 -- Null_Exclusion_Static_Checks --
2599 ----------------------------------
2601 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2602 K : constant Node_Kind := Nkind (N);
2603 Typ : Entity_Id;
2604 Related_Nod : Node_Id;
2605 Has_Null_Exclusion : Boolean := False;
2607 begin
2608 pragma Assert (K = N_Parameter_Specification
2609 or else K = N_Object_Declaration
2610 or else K = N_Discriminant_Specification
2611 or else K = N_Component_Declaration);
2613 Typ := Etype (Defining_Identifier (N));
2615 pragma Assert (Is_Access_Type (Typ)
2616 or else (K = N_Object_Declaration and then Is_Array_Type (Typ)));
2618 case K is
2619 when N_Parameter_Specification =>
2620 Related_Nod := Parameter_Type (N);
2621 Has_Null_Exclusion := Null_Exclusion_Present (N);
2623 when N_Object_Declaration =>
2624 Related_Nod := Object_Definition (N);
2625 Has_Null_Exclusion := Null_Exclusion_Present (N);
2627 when N_Discriminant_Specification =>
2628 Related_Nod := Discriminant_Type (N);
2629 Has_Null_Exclusion := Null_Exclusion_Present (N);
2631 when N_Component_Declaration =>
2632 if Present (Access_Definition (Component_Definition (N))) then
2633 Related_Nod := Component_Definition (N);
2634 Has_Null_Exclusion :=
2635 Null_Exclusion_Present
2636 (Access_Definition (Component_Definition (N)));
2637 else
2638 Related_Nod :=
2639 Subtype_Indication (Component_Definition (N));
2640 Has_Null_Exclusion :=
2641 Null_Exclusion_Present (Component_Definition (N));
2642 end if;
2644 when others =>
2645 raise Program_Error;
2646 end case;
2648 -- Enforce legality rule 3.10 (14/1): A null_exclusion is only allowed
2649 -- of the access subtype does not exclude null.
2651 if Has_Null_Exclusion
2652 and then Can_Never_Be_Null (Typ)
2654 -- No need to check itypes that have the null-excluding attribute
2655 -- because they were checked at their point of creation
2657 and then not Is_Itype (Typ)
2658 then
2659 Error_Msg_N
2660 ("(Ada 2005) already a null-excluding type", Related_Nod);
2661 end if;
2663 -- Check that null-excluding objects are always initialized
2665 if K = N_Object_Declaration
2666 and then No (Expression (N))
2667 then
2668 -- Add a an expression that assignates null. This node is needed
2669 -- by Apply_Compile_Time_Constraint_Error, that will replace this
2670 -- node by a Constraint_Error node.
2672 Set_Expression (N, Make_Null (Sloc (N)));
2673 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
2675 Apply_Compile_Time_Constraint_Error
2676 (N => Expression (N),
2677 Msg => "(Ada 2005) null-excluding objects must be initialized?",
2678 Reason => CE_Null_Not_Allowed);
2679 end if;
2681 -- Check that the null value is not used as a single expression to
2682 -- assignate a value to a null-excluding component, formal or object;
2683 -- otherwise generate a warning message at the sloc of Related_Nod and
2684 -- replace Expression (N) by an N_Contraint_Error node.
2686 declare
2687 Expr : constant Node_Id := Expression (N);
2689 begin
2690 if Present (Expr)
2691 and then Nkind (Expr) = N_Null
2692 then
2693 case K is
2694 when N_Discriminant_Specification |
2695 N_Component_Declaration =>
2696 Apply_Compile_Time_Constraint_Error
2697 (N => Expr,
2698 Msg => "(Ada 2005) NULL not allowed in"
2699 & " null-excluding components?",
2700 Reason => CE_Null_Not_Allowed);
2702 when N_Parameter_Specification =>
2703 Apply_Compile_Time_Constraint_Error
2704 (N => Expr,
2705 Msg => "(Ada 2005) NULL not allowed in"
2706 & " null-excluding formals?",
2707 Reason => CE_Null_Not_Allowed);
2709 when N_Object_Declaration =>
2710 Apply_Compile_Time_Constraint_Error
2711 (N => Expr,
2712 Msg => "(Ada 2005) NULL not allowed in"
2713 & " null-excluding objects?",
2714 Reason => CE_Null_Not_Allowed);
2716 when others =>
2717 null;
2718 end case;
2719 end if;
2720 end;
2721 end Null_Exclusion_Static_Checks;
2723 ----------------------------------
2724 -- Conditional_Statements_Begin --
2725 ----------------------------------
2727 procedure Conditional_Statements_Begin is
2728 begin
2729 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2731 -- If stack overflows, kill all checks, that way we know to
2732 -- simply reset the number of saved checks to zero on return.
2733 -- This should never occur in practice.
2735 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2736 Kill_All_Checks;
2738 -- In the normal case, we just make a new stack entry saving
2739 -- the current number of saved checks for a later restore.
2741 else
2742 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2744 if Debug_Flag_CC then
2745 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2746 Num_Saved_Checks);
2747 end if;
2748 end if;
2749 end Conditional_Statements_Begin;
2751 --------------------------------
2752 -- Conditional_Statements_End --
2753 --------------------------------
2755 procedure Conditional_Statements_End is
2756 begin
2757 pragma Assert (Saved_Checks_TOS > 0);
2759 -- If the saved checks stack overflowed, then we killed all
2760 -- checks, so setting the number of saved checks back to
2761 -- zero is correct. This should never occur in practice.
2763 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2764 Num_Saved_Checks := 0;
2766 -- In the normal case, restore the number of saved checks
2767 -- from the top stack entry.
2769 else
2770 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2771 if Debug_Flag_CC then
2772 w ("Conditional_Statements_End: Num_Saved_Checks = ",
2773 Num_Saved_Checks);
2774 end if;
2775 end if;
2777 Saved_Checks_TOS := Saved_Checks_TOS - 1;
2778 end Conditional_Statements_End;
2780 ---------------------
2781 -- Determine_Range --
2782 ---------------------
2784 Cache_Size : constant := 2 ** 10;
2785 type Cache_Index is range 0 .. Cache_Size - 1;
2786 -- Determine size of below cache (power of 2 is more efficient!)
2788 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
2789 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2790 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
2791 -- The above arrays are used to implement a small direct cache
2792 -- for Determine_Range calls. Because of the way Determine_Range
2793 -- recursively traces subexpressions, and because overflow checking
2794 -- calls the routine on the way up the tree, a quadratic behavior
2795 -- can otherwise be encountered in large expressions. The cache
2796 -- entry for node N is stored in the (N mod Cache_Size) entry, and
2797 -- can be validated by checking the actual node value stored there.
2799 procedure Determine_Range
2800 (N : Node_Id;
2801 OK : out Boolean;
2802 Lo : out Uint;
2803 Hi : out Uint)
2805 Typ : constant Entity_Id := Etype (N);
2807 Lo_Left : Uint;
2808 Hi_Left : Uint;
2809 -- Lo and Hi bounds of left operand
2811 Lo_Right : Uint;
2812 Hi_Right : Uint;
2813 -- Lo and Hi bounds of right (or only) operand
2815 Bound : Node_Id;
2816 -- Temp variable used to hold a bound node
2818 Hbound : Uint;
2819 -- High bound of base type of expression
2821 Lor : Uint;
2822 Hir : Uint;
2823 -- Refined values for low and high bounds, after tightening
2825 OK1 : Boolean;
2826 -- Used in lower level calls to indicate if call succeeded
2828 Cindex : Cache_Index;
2829 -- Used to search cache
2831 function OK_Operands return Boolean;
2832 -- Used for binary operators. Determines the ranges of the left and
2833 -- right operands, and if they are both OK, returns True, and puts
2834 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
2836 -----------------
2837 -- OK_Operands --
2838 -----------------
2840 function OK_Operands return Boolean is
2841 begin
2842 Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
2844 if not OK1 then
2845 return False;
2846 end if;
2848 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2849 return OK1;
2850 end OK_Operands;
2852 -- Start of processing for Determine_Range
2854 begin
2855 -- Prevent junk warnings by initializing range variables
2857 Lo := No_Uint;
2858 Hi := No_Uint;
2859 Lor := No_Uint;
2860 Hir := No_Uint;
2862 -- If the type is not discrete, or is undefined, then we can't
2863 -- do anything about determining the range.
2865 if No (Typ) or else not Is_Discrete_Type (Typ)
2866 or else Error_Posted (N)
2867 then
2868 OK := False;
2869 return;
2870 end if;
2872 -- For all other cases, we can determine the range
2874 OK := True;
2876 -- If value is compile time known, then the possible range is the
2877 -- one value that we know this expression definitely has!
2879 if Compile_Time_Known_Value (N) then
2880 Lo := Expr_Value (N);
2881 Hi := Lo;
2882 return;
2883 end if;
2885 -- Return if already in the cache
2887 Cindex := Cache_Index (N mod Cache_Size);
2889 if Determine_Range_Cache_N (Cindex) = N then
2890 Lo := Determine_Range_Cache_Lo (Cindex);
2891 Hi := Determine_Range_Cache_Hi (Cindex);
2892 return;
2893 end if;
2895 -- Otherwise, start by finding the bounds of the type of the
2896 -- expression, the value cannot be outside this range (if it
2897 -- is, then we have an overflow situation, which is a separate
2898 -- check, we are talking here only about the expression value).
2900 -- We use the actual bound unless it is dynamic, in which case
2901 -- use the corresponding base type bound if possible. If we can't
2902 -- get a bound then we figure we can't determine the range (a
2903 -- peculiar case, that perhaps cannot happen, but there is no
2904 -- point in bombing in this optimization circuit.
2906 -- First the low bound
2908 Bound := Type_Low_Bound (Typ);
2910 if Compile_Time_Known_Value (Bound) then
2911 Lo := Expr_Value (Bound);
2913 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
2914 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
2916 else
2917 OK := False;
2918 return;
2919 end if;
2921 -- Now the high bound
2923 Bound := Type_High_Bound (Typ);
2925 -- We need the high bound of the base type later on, and this should
2926 -- always be compile time known. Again, it is not clear that this
2927 -- can ever be false, but no point in bombing.
2929 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
2930 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
2931 Hi := Hbound;
2933 else
2934 OK := False;
2935 return;
2936 end if;
2938 -- If we have a static subtype, then that may have a tighter bound
2939 -- so use the upper bound of the subtype instead in this case.
2941 if Compile_Time_Known_Value (Bound) then
2942 Hi := Expr_Value (Bound);
2943 end if;
2945 -- We may be able to refine this value in certain situations. If
2946 -- refinement is possible, then Lor and Hir are set to possibly
2947 -- tighter bounds, and OK1 is set to True.
2949 case Nkind (N) is
2951 -- For unary plus, result is limited by range of operand
2953 when N_Op_Plus =>
2954 Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
2956 -- For unary minus, determine range of operand, and negate it
2958 when N_Op_Minus =>
2959 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2961 if OK1 then
2962 Lor := -Hi_Right;
2963 Hir := -Lo_Right;
2964 end if;
2966 -- For binary addition, get range of each operand and do the
2967 -- addition to get the result range.
2969 when N_Op_Add =>
2970 if OK_Operands then
2971 Lor := Lo_Left + Lo_Right;
2972 Hir := Hi_Left + Hi_Right;
2973 end if;
2975 -- Division is tricky. The only case we consider is where the
2976 -- right operand is a positive constant, and in this case we
2977 -- simply divide the bounds of the left operand
2979 when N_Op_Divide =>
2980 if OK_Operands then
2981 if Lo_Right = Hi_Right
2982 and then Lo_Right > 0
2983 then
2984 Lor := Lo_Left / Lo_Right;
2985 Hir := Hi_Left / Lo_Right;
2987 else
2988 OK1 := False;
2989 end if;
2990 end if;
2992 -- For binary subtraction, get range of each operand and do
2993 -- the worst case subtraction to get the result range.
2995 when N_Op_Subtract =>
2996 if OK_Operands then
2997 Lor := Lo_Left - Hi_Right;
2998 Hir := Hi_Left - Lo_Right;
2999 end if;
3001 -- For MOD, if right operand is a positive constant, then
3002 -- result must be in the allowable range of mod results.
3004 when N_Op_Mod =>
3005 if OK_Operands then
3006 if Lo_Right = Hi_Right
3007 and then Lo_Right /= 0
3008 then
3009 if Lo_Right > 0 then
3010 Lor := Uint_0;
3011 Hir := Lo_Right - 1;
3013 else -- Lo_Right < 0
3014 Lor := Lo_Right + 1;
3015 Hir := Uint_0;
3016 end if;
3018 else
3019 OK1 := False;
3020 end if;
3021 end if;
3023 -- For REM, if right operand is a positive constant, then
3024 -- result must be in the allowable range of mod results.
3026 when N_Op_Rem =>
3027 if OK_Operands then
3028 if Lo_Right = Hi_Right
3029 and then Lo_Right /= 0
3030 then
3031 declare
3032 Dval : constant Uint := (abs Lo_Right) - 1;
3034 begin
3035 -- The sign of the result depends on the sign of the
3036 -- dividend (but not on the sign of the divisor, hence
3037 -- the abs operation above).
3039 if Lo_Left < 0 then
3040 Lor := -Dval;
3041 else
3042 Lor := Uint_0;
3043 end if;
3045 if Hi_Left < 0 then
3046 Hir := Uint_0;
3047 else
3048 Hir := Dval;
3049 end if;
3050 end;
3052 else
3053 OK1 := False;
3054 end if;
3055 end if;
3057 -- Attribute reference cases
3059 when N_Attribute_Reference =>
3060 case Attribute_Name (N) is
3062 -- For Pos/Val attributes, we can refine the range using the
3063 -- possible range of values of the attribute expression
3065 when Name_Pos | Name_Val =>
3066 Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
3068 -- For Length attribute, use the bounds of the corresponding
3069 -- index type to refine the range.
3071 when Name_Length =>
3072 declare
3073 Atyp : Entity_Id := Etype (Prefix (N));
3074 Inum : Nat;
3075 Indx : Node_Id;
3077 LL, LU : Uint;
3078 UL, UU : Uint;
3080 begin
3081 if Is_Access_Type (Atyp) then
3082 Atyp := Designated_Type (Atyp);
3083 end if;
3085 -- For string literal, we know exact value
3087 if Ekind (Atyp) = E_String_Literal_Subtype then
3088 OK := True;
3089 Lo := String_Literal_Length (Atyp);
3090 Hi := String_Literal_Length (Atyp);
3091 return;
3092 end if;
3094 -- Otherwise check for expression given
3096 if No (Expressions (N)) then
3097 Inum := 1;
3098 else
3099 Inum :=
3100 UI_To_Int (Expr_Value (First (Expressions (N))));
3101 end if;
3103 Indx := First_Index (Atyp);
3104 for J in 2 .. Inum loop
3105 Indx := Next_Index (Indx);
3106 end loop;
3108 Determine_Range
3109 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
3111 if OK1 then
3112 Determine_Range
3113 (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
3115 if OK1 then
3117 -- The maximum value for Length is the biggest
3118 -- possible gap between the values of the bounds.
3119 -- But of course, this value cannot be negative.
3121 Hir := UI_Max (Uint_0, UU - LL);
3123 -- For constrained arrays, the minimum value for
3124 -- Length is taken from the actual value of the
3125 -- bounds, since the index will be exactly of
3126 -- this subtype.
3128 if Is_Constrained (Atyp) then
3129 Lor := UI_Max (Uint_0, UL - LU);
3131 -- For an unconstrained array, the minimum value
3132 -- for length is always zero.
3134 else
3135 Lor := Uint_0;
3136 end if;
3137 end if;
3138 end if;
3139 end;
3141 -- No special handling for other attributes
3142 -- Probably more opportunities exist here ???
3144 when others =>
3145 OK1 := False;
3147 end case;
3149 -- For type conversion from one discrete type to another, we
3150 -- can refine the range using the converted value.
3152 when N_Type_Conversion =>
3153 Determine_Range (Expression (N), OK1, Lor, Hir);
3155 -- Nothing special to do for all other expression kinds
3157 when others =>
3158 OK1 := False;
3159 Lor := No_Uint;
3160 Hir := No_Uint;
3161 end case;
3163 -- At this stage, if OK1 is true, then we know that the actual
3164 -- result of the computed expression is in the range Lor .. Hir.
3165 -- We can use this to restrict the possible range of results.
3167 if OK1 then
3169 -- If the refined value of the low bound is greater than the
3170 -- type high bound, then reset it to the more restrictive
3171 -- value. However, we do NOT do this for the case of a modular
3172 -- type where the possible upper bound on the value is above the
3173 -- base type high bound, because that means the result could wrap.
3175 if Lor > Lo
3176 and then not (Is_Modular_Integer_Type (Typ)
3177 and then Hir > Hbound)
3178 then
3179 Lo := Lor;
3180 end if;
3182 -- Similarly, if the refined value of the high bound is less
3183 -- than the value so far, then reset it to the more restrictive
3184 -- value. Again, we do not do this if the refined low bound is
3185 -- negative for a modular type, since this would wrap.
3187 if Hir < Hi
3188 and then not (Is_Modular_Integer_Type (Typ)
3189 and then Lor < Uint_0)
3190 then
3191 Hi := Hir;
3192 end if;
3193 end if;
3195 -- Set cache entry for future call and we are all done
3197 Determine_Range_Cache_N (Cindex) := N;
3198 Determine_Range_Cache_Lo (Cindex) := Lo;
3199 Determine_Range_Cache_Hi (Cindex) := Hi;
3200 return;
3202 -- If any exception occurs, it means that we have some bug in the compiler
3203 -- possibly triggered by a previous error, or by some unforseen peculiar
3204 -- occurrence. However, this is only an optimization attempt, so there is
3205 -- really no point in crashing the compiler. Instead we just decide, too
3206 -- bad, we can't figure out a range in this case after all.
3208 exception
3209 when others =>
3211 -- Debug flag K disables this behavior (useful for debugging)
3213 if Debug_Flag_K then
3214 raise;
3215 else
3216 OK := False;
3217 Lo := No_Uint;
3218 Hi := No_Uint;
3219 return;
3220 end if;
3221 end Determine_Range;
3223 ------------------------------------
3224 -- Discriminant_Checks_Suppressed --
3225 ------------------------------------
3227 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3228 begin
3229 if Present (E) then
3230 if Is_Unchecked_Union (E) then
3231 return True;
3232 elsif Checks_May_Be_Suppressed (E) then
3233 return Is_Check_Suppressed (E, Discriminant_Check);
3234 end if;
3235 end if;
3237 return Scope_Suppress (Discriminant_Check);
3238 end Discriminant_Checks_Suppressed;
3240 --------------------------------
3241 -- Division_Checks_Suppressed --
3242 --------------------------------
3244 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3245 begin
3246 if Present (E) and then Checks_May_Be_Suppressed (E) then
3247 return Is_Check_Suppressed (E, Division_Check);
3248 else
3249 return Scope_Suppress (Division_Check);
3250 end if;
3251 end Division_Checks_Suppressed;
3253 -----------------------------------
3254 -- Elaboration_Checks_Suppressed --
3255 -----------------------------------
3257 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3258 begin
3259 -- The complication in this routine is that if we are in the dynamic
3260 -- model of elaboration, we also check All_Checks, since All_Checks
3261 -- does not set Elaboration_Check explicitly.
3263 if Present (E) then
3264 if Kill_Elaboration_Checks (E) then
3265 return True;
3267 elsif Checks_May_Be_Suppressed (E) then
3268 if Is_Check_Suppressed (E, Elaboration_Check) then
3269 return True;
3270 elsif Dynamic_Elaboration_Checks then
3271 return Is_Check_Suppressed (E, All_Checks);
3272 else
3273 return False;
3274 end if;
3275 end if;
3276 end if;
3278 if Scope_Suppress (Elaboration_Check) then
3279 return True;
3280 elsif Dynamic_Elaboration_Checks then
3281 return Scope_Suppress (All_Checks);
3282 else
3283 return False;
3284 end if;
3285 end Elaboration_Checks_Suppressed;
3287 ---------------------------
3288 -- Enable_Overflow_Check --
3289 ---------------------------
3291 procedure Enable_Overflow_Check (N : Node_Id) is
3292 Typ : constant Entity_Id := Base_Type (Etype (N));
3293 Chk : Nat;
3294 OK : Boolean;
3295 Ent : Entity_Id;
3296 Ofs : Uint;
3297 Lo : Uint;
3298 Hi : Uint;
3300 begin
3301 if Debug_Flag_CC then
3302 w ("Enable_Overflow_Check for node ", Int (N));
3303 Write_Str (" Source location = ");
3304 wl (Sloc (N));
3305 pg (N);
3306 end if;
3308 -- Nothing to do if the range of the result is known OK. We skip
3309 -- this for conversions, since the caller already did the check,
3310 -- and in any case the condition for deleting the check for a
3311 -- type conversion is different in any case.
3313 if Nkind (N) /= N_Type_Conversion then
3314 Determine_Range (N, OK, Lo, Hi);
3316 -- Note in the test below that we assume that if a bound of the
3317 -- range is equal to that of the type. That's not quite accurate
3318 -- but we do this for the following reasons:
3320 -- a) The way that Determine_Range works, it will typically report
3321 -- the bounds of the value as being equal to the bounds of the
3322 -- type, because it either can't tell anything more precise, or
3323 -- does not think it is worth the effort to be more precise.
3325 -- b) It is very unusual to have a situation in which this would
3326 -- generate an unnecessary overflow check (an example would be
3327 -- a subtype with a range 0 .. Integer'Last - 1 to which the
3328 -- literal value one is added.
3330 -- c) The alternative is a lot of special casing in this routine
3331 -- which would partially duplicate Determine_Range processing.
3333 if OK
3334 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3335 and then Hi < Expr_Value (Type_High_Bound (Typ))
3336 then
3337 if Debug_Flag_CC then
3338 w ("No overflow check required");
3339 end if;
3341 return;
3342 end if;
3343 end if;
3345 -- If not in optimizing mode, set flag and we are done. We are also
3346 -- done (and just set the flag) if the type is not a discrete type,
3347 -- since it is not worth the effort to eliminate checks for other
3348 -- than discrete types. In addition, we take this same path if we
3349 -- have stored the maximum number of checks possible already (a
3350 -- very unlikely situation, but we do not want to blow up!)
3352 if Optimization_Level = 0
3353 or else not Is_Discrete_Type (Etype (N))
3354 or else Num_Saved_Checks = Saved_Checks'Last
3355 then
3356 Set_Do_Overflow_Check (N, True);
3358 if Debug_Flag_CC then
3359 w ("Optimization off");
3360 end if;
3362 return;
3363 end if;
3365 -- Otherwise evaluate and check the expression
3367 Find_Check
3368 (Expr => N,
3369 Check_Type => 'O',
3370 Target_Type => Empty,
3371 Entry_OK => OK,
3372 Check_Num => Chk,
3373 Ent => Ent,
3374 Ofs => Ofs);
3376 if Debug_Flag_CC then
3377 w ("Called Find_Check");
3378 w (" OK = ", OK);
3380 if OK then
3381 w (" Check_Num = ", Chk);
3382 w (" Ent = ", Int (Ent));
3383 Write_Str (" Ofs = ");
3384 pid (Ofs);
3385 end if;
3386 end if;
3388 -- If check is not of form to optimize, then set flag and we are done
3390 if not OK then
3391 Set_Do_Overflow_Check (N, True);
3392 return;
3393 end if;
3395 -- If check is already performed, then return without setting flag
3397 if Chk /= 0 then
3398 if Debug_Flag_CC then
3399 w ("Check suppressed!");
3400 end if;
3402 return;
3403 end if;
3405 -- Here we will make a new entry for the new check
3407 Set_Do_Overflow_Check (N, True);
3408 Num_Saved_Checks := Num_Saved_Checks + 1;
3409 Saved_Checks (Num_Saved_Checks) :=
3410 (Killed => False,
3411 Entity => Ent,
3412 Offset => Ofs,
3413 Check_Type => 'O',
3414 Target_Type => Empty);
3416 if Debug_Flag_CC then
3417 w ("Make new entry, check number = ", Num_Saved_Checks);
3418 w (" Entity = ", Int (Ent));
3419 Write_Str (" Offset = ");
3420 pid (Ofs);
3421 w (" Check_Type = O");
3422 w (" Target_Type = Empty");
3423 end if;
3425 -- If we get an exception, then something went wrong, probably because
3426 -- of an error in the structure of the tree due to an incorrect program.
3427 -- Or it may be a bug in the optimization circuit. In either case the
3428 -- safest thing is simply to set the check flag unconditionally.
3430 exception
3431 when others =>
3432 Set_Do_Overflow_Check (N, True);
3434 if Debug_Flag_CC then
3435 w (" exception occurred, overflow flag set");
3436 end if;
3438 return;
3439 end Enable_Overflow_Check;
3441 ------------------------
3442 -- Enable_Range_Check --
3443 ------------------------
3445 procedure Enable_Range_Check (N : Node_Id) is
3446 Chk : Nat;
3447 OK : Boolean;
3448 Ent : Entity_Id;
3449 Ofs : Uint;
3450 Ttyp : Entity_Id;
3451 P : Node_Id;
3453 begin
3454 -- Return if unchecked type conversion with range check killed.
3455 -- In this case we never set the flag (that's what Kill_Range_Check
3456 -- is all about!)
3458 if Nkind (N) = N_Unchecked_Type_Conversion
3459 and then Kill_Range_Check (N)
3460 then
3461 return;
3462 end if;
3464 -- Debug trace output
3466 if Debug_Flag_CC then
3467 w ("Enable_Range_Check for node ", Int (N));
3468 Write_Str (" Source location = ");
3469 wl (Sloc (N));
3470 pg (N);
3471 end if;
3473 -- If not in optimizing mode, set flag and we are done. We are also
3474 -- done (and just set the flag) if the type is not a discrete type,
3475 -- since it is not worth the effort to eliminate checks for other
3476 -- than discrete types. In addition, we take this same path if we
3477 -- have stored the maximum number of checks possible already (a
3478 -- very unlikely situation, but we do not want to blow up!)
3480 if Optimization_Level = 0
3481 or else No (Etype (N))
3482 or else not Is_Discrete_Type (Etype (N))
3483 or else Num_Saved_Checks = Saved_Checks'Last
3484 then
3485 Set_Do_Range_Check (N, True);
3487 if Debug_Flag_CC then
3488 w ("Optimization off");
3489 end if;
3491 return;
3492 end if;
3494 -- Otherwise find out the target type
3496 P := Parent (N);
3498 -- For assignment, use left side subtype
3500 if Nkind (P) = N_Assignment_Statement
3501 and then Expression (P) = N
3502 then
3503 Ttyp := Etype (Name (P));
3505 -- For indexed component, use subscript subtype
3507 elsif Nkind (P) = N_Indexed_Component then
3508 declare
3509 Atyp : Entity_Id;
3510 Indx : Node_Id;
3511 Subs : Node_Id;
3513 begin
3514 Atyp := Etype (Prefix (P));
3516 if Is_Access_Type (Atyp) then
3517 Atyp := Designated_Type (Atyp);
3519 -- If the prefix is an access to an unconstrained array,
3520 -- perform check unconditionally: it depends on the bounds
3521 -- of an object and we cannot currently recognize whether
3522 -- the test may be redundant.
3524 if not Is_Constrained (Atyp) then
3525 Set_Do_Range_Check (N, True);
3526 return;
3527 end if;
3529 -- Ditto if the prefix is an explicit dereference whose
3530 -- designated type is unconstrained.
3532 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3533 and then not Is_Constrained (Atyp)
3534 then
3535 Set_Do_Range_Check (N, True);
3536 return;
3537 end if;
3539 Indx := First_Index (Atyp);
3540 Subs := First (Expressions (P));
3541 loop
3542 if Subs = N then
3543 Ttyp := Etype (Indx);
3544 exit;
3545 end if;
3547 Next_Index (Indx);
3548 Next (Subs);
3549 end loop;
3550 end;
3552 -- For now, ignore all other cases, they are not so interesting
3554 else
3555 if Debug_Flag_CC then
3556 w (" target type not found, flag set");
3557 end if;
3559 Set_Do_Range_Check (N, True);
3560 return;
3561 end if;
3563 -- Evaluate and check the expression
3565 Find_Check
3566 (Expr => N,
3567 Check_Type => 'R',
3568 Target_Type => Ttyp,
3569 Entry_OK => OK,
3570 Check_Num => Chk,
3571 Ent => Ent,
3572 Ofs => Ofs);
3574 if Debug_Flag_CC then
3575 w ("Called Find_Check");
3576 w ("Target_Typ = ", Int (Ttyp));
3577 w (" OK = ", OK);
3579 if OK then
3580 w (" Check_Num = ", Chk);
3581 w (" Ent = ", Int (Ent));
3582 Write_Str (" Ofs = ");
3583 pid (Ofs);
3584 end if;
3585 end if;
3587 -- If check is not of form to optimize, then set flag and we are done
3589 if not OK then
3590 if Debug_Flag_CC then
3591 w (" expression not of optimizable type, flag set");
3592 end if;
3594 Set_Do_Range_Check (N, True);
3595 return;
3596 end if;
3598 -- If check is already performed, then return without setting flag
3600 if Chk /= 0 then
3601 if Debug_Flag_CC then
3602 w ("Check suppressed!");
3603 end if;
3605 return;
3606 end if;
3608 -- Here we will make a new entry for the new check
3610 Set_Do_Range_Check (N, True);
3611 Num_Saved_Checks := Num_Saved_Checks + 1;
3612 Saved_Checks (Num_Saved_Checks) :=
3613 (Killed => False,
3614 Entity => Ent,
3615 Offset => Ofs,
3616 Check_Type => 'R',
3617 Target_Type => Ttyp);
3619 if Debug_Flag_CC then
3620 w ("Make new entry, check number = ", Num_Saved_Checks);
3621 w (" Entity = ", Int (Ent));
3622 Write_Str (" Offset = ");
3623 pid (Ofs);
3624 w (" Check_Type = R");
3625 w (" Target_Type = ", Int (Ttyp));
3626 pg (Ttyp);
3627 end if;
3629 -- If we get an exception, then something went wrong, probably because
3630 -- of an error in the structure of the tree due to an incorrect program.
3631 -- Or it may be a bug in the optimization circuit. In either case the
3632 -- safest thing is simply to set the check flag unconditionally.
3634 exception
3635 when others =>
3636 Set_Do_Range_Check (N, True);
3638 if Debug_Flag_CC then
3639 w (" exception occurred, range flag set");
3640 end if;
3642 return;
3643 end Enable_Range_Check;
3645 ------------------
3646 -- Ensure_Valid --
3647 ------------------
3649 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3650 Typ : constant Entity_Id := Etype (Expr);
3652 begin
3653 -- Ignore call if we are not doing any validity checking
3655 if not Validity_Checks_On then
3656 return;
3658 -- Ignore call if range checks suppressed on entity in question
3660 elsif Is_Entity_Name (Expr)
3661 and then Range_Checks_Suppressed (Entity (Expr))
3662 then
3663 return;
3665 -- No check required if expression is from the expander, we assume
3666 -- the expander will generate whatever checks are needed. Note that
3667 -- this is not just an optimization, it avoids infinite recursions!
3669 -- Unchecked conversions must be checked, unless they are initialized
3670 -- scalar values, as in a component assignment in an init proc.
3672 -- In addition, we force a check if Force_Validity_Checks is set
3674 elsif not Comes_From_Source (Expr)
3675 and then not Force_Validity_Checks
3676 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3677 or else Kill_Range_Check (Expr))
3678 then
3679 return;
3681 -- No check required if expression is known to have valid value
3683 elsif Expr_Known_Valid (Expr) then
3684 return;
3686 -- No check required if checks off
3688 elsif Range_Checks_Suppressed (Typ) then
3689 return;
3691 -- Ignore case of enumeration with holes where the flag is set not
3692 -- to worry about holes, since no special validity check is needed
3694 elsif Is_Enumeration_Type (Typ)
3695 and then Has_Non_Standard_Rep (Typ)
3696 and then Holes_OK
3697 then
3698 return;
3700 -- No check required on the left-hand side of an assignment
3702 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3703 and then Expr = Name (Parent (Expr))
3704 then
3705 return;
3707 -- No check on a univeral real constant. The context will eventually
3708 -- convert it to a machine number for some target type, or report an
3709 -- illegality.
3711 elsif Nkind (Expr) = N_Real_Literal
3712 and then Etype (Expr) = Universal_Real
3713 then
3714 return;
3716 -- An annoying special case. If this is an out parameter of a scalar
3717 -- type, then the value is not going to be accessed, therefore it is
3718 -- inappropriate to do any validity check at the call site.
3720 else
3721 -- Only need to worry about scalar types
3723 if Is_Scalar_Type (Typ) then
3724 declare
3725 P : Node_Id;
3726 N : Node_Id;
3727 E : Entity_Id;
3728 F : Entity_Id;
3729 A : Node_Id;
3730 L : List_Id;
3732 begin
3733 -- Find actual argument (which may be a parameter association)
3734 -- and the parent of the actual argument (the call statement)
3736 N := Expr;
3737 P := Parent (Expr);
3739 if Nkind (P) = N_Parameter_Association then
3740 N := P;
3741 P := Parent (N);
3742 end if;
3744 -- Only need to worry if we are argument of a procedure
3745 -- call since functions don't have out parameters. If this
3746 -- is an indirect or dispatching call, get signature from
3747 -- the subprogram type.
3749 if Nkind (P) = N_Procedure_Call_Statement then
3750 L := Parameter_Associations (P);
3752 if Is_Entity_Name (Name (P)) then
3753 E := Entity (Name (P));
3754 else
3755 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
3756 E := Etype (Name (P));
3757 end if;
3759 -- Only need to worry if there are indeed actuals, and
3760 -- if this could be a procedure call, otherwise we cannot
3761 -- get a match (either we are not an argument, or the
3762 -- mode of the formal is not OUT). This test also filters
3763 -- out the generic case.
3765 if Is_Non_Empty_List (L)
3766 and then Is_Subprogram (E)
3767 then
3768 -- This is the loop through parameters, looking to
3769 -- see if there is an OUT parameter for which we are
3770 -- the argument.
3772 F := First_Formal (E);
3773 A := First (L);
3775 while Present (F) loop
3776 if Ekind (F) = E_Out_Parameter and then A = N then
3777 return;
3778 end if;
3780 Next_Formal (F);
3781 Next (A);
3782 end loop;
3783 end if;
3784 end if;
3785 end;
3786 end if;
3787 end if;
3789 -- If we fall through, a validity check is required. Note that it would
3790 -- not be good to set Do_Range_Check, even in contexts where this is
3791 -- permissible, since this flag causes checking against the target type,
3792 -- not the source type in contexts such as assignments
3794 Insert_Valid_Check (Expr);
3795 end Ensure_Valid;
3797 ----------------------
3798 -- Expr_Known_Valid --
3799 ----------------------
3801 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
3802 Typ : constant Entity_Id := Etype (Expr);
3804 begin
3805 -- Non-scalar types are always considered valid, since they never
3806 -- give rise to the issues of erroneous or bounded error behavior
3807 -- that are the concern. In formal reference manual terms the
3808 -- notion of validity only applies to scalar types. Note that
3809 -- even when packed arrays are represented using modular types,
3810 -- they are still arrays semantically, so they are also always
3811 -- valid (in particular, the unused bits can be random rubbish
3812 -- without affecting the validity of the array value).
3814 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
3815 return True;
3817 -- If no validity checking, then everything is considered valid
3819 elsif not Validity_Checks_On then
3820 return True;
3822 -- Floating-point types are considered valid unless floating-point
3823 -- validity checks have been specifically turned on.
3825 elsif Is_Floating_Point_Type (Typ)
3826 and then not Validity_Check_Floating_Point
3827 then
3828 return True;
3830 -- If the expression is the value of an object that is known to
3831 -- be valid, then clearly the expression value itself is valid.
3833 elsif Is_Entity_Name (Expr)
3834 and then Is_Known_Valid (Entity (Expr))
3835 then
3836 return True;
3838 -- If the type is one for which all values are known valid, then
3839 -- we are sure that the value is valid except in the slightly odd
3840 -- case where the expression is a reference to a variable whose size
3841 -- has been explicitly set to a value greater than the object size.
3843 elsif Is_Known_Valid (Typ) then
3844 if Is_Entity_Name (Expr)
3845 and then Ekind (Entity (Expr)) = E_Variable
3846 and then Esize (Entity (Expr)) > Esize (Typ)
3847 then
3848 return False;
3849 else
3850 return True;
3851 end if;
3853 -- Integer and character literals always have valid values, where
3854 -- appropriate these will be range checked in any case.
3856 elsif Nkind (Expr) = N_Integer_Literal
3857 or else
3858 Nkind (Expr) = N_Character_Literal
3859 then
3860 return True;
3862 -- If we have a type conversion or a qualification of a known valid
3863 -- value, then the result will always be valid.
3865 elsif Nkind (Expr) = N_Type_Conversion
3866 or else
3867 Nkind (Expr) = N_Qualified_Expression
3868 then
3869 return Expr_Known_Valid (Expression (Expr));
3871 -- The result of any operator is always considered valid, since we
3872 -- assume the necessary checks are done by the operator. For operators
3873 -- on floating-point operations, we must also check when the operation
3874 -- is the right-hand side of an assignment, or is an actual in a call.
3876 elsif
3877 Nkind (Expr) in N_Binary_Op or else Nkind (Expr) in N_Unary_Op
3878 then
3879 if Is_Floating_Point_Type (Typ)
3880 and then Validity_Check_Floating_Point
3881 and then
3882 (Nkind (Parent (Expr)) = N_Assignment_Statement
3883 or else Nkind (Parent (Expr)) = N_Function_Call
3884 or else Nkind (Parent (Expr)) = N_Parameter_Association)
3885 then
3886 return False;
3887 else
3888 return True;
3889 end if;
3891 -- For all other cases, we do not know the expression is valid
3893 else
3894 return False;
3895 end if;
3896 end Expr_Known_Valid;
3898 ----------------
3899 -- Find_Check --
3900 ----------------
3902 procedure Find_Check
3903 (Expr : Node_Id;
3904 Check_Type : Character;
3905 Target_Type : Entity_Id;
3906 Entry_OK : out Boolean;
3907 Check_Num : out Nat;
3908 Ent : out Entity_Id;
3909 Ofs : out Uint)
3911 function Within_Range_Of
3912 (Target_Type : Entity_Id;
3913 Check_Type : Entity_Id) return Boolean;
3914 -- Given a requirement for checking a range against Target_Type, and
3915 -- and a range Check_Type against which a check has already been made,
3916 -- determines if the check against check type is sufficient to ensure
3917 -- that no check against Target_Type is required.
3919 ---------------------
3920 -- Within_Range_Of --
3921 ---------------------
3923 function Within_Range_Of
3924 (Target_Type : Entity_Id;
3925 Check_Type : Entity_Id) return Boolean
3927 begin
3928 if Target_Type = Check_Type then
3929 return True;
3931 else
3932 declare
3933 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
3934 Thi : constant Node_Id := Type_High_Bound (Target_Type);
3935 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
3936 Chi : constant Node_Id := Type_High_Bound (Check_Type);
3938 begin
3939 if (Tlo = Clo
3940 or else (Compile_Time_Known_Value (Tlo)
3941 and then
3942 Compile_Time_Known_Value (Clo)
3943 and then
3944 Expr_Value (Clo) >= Expr_Value (Tlo)))
3945 and then
3946 (Thi = Chi
3947 or else (Compile_Time_Known_Value (Thi)
3948 and then
3949 Compile_Time_Known_Value (Chi)
3950 and then
3951 Expr_Value (Chi) <= Expr_Value (Clo)))
3952 then
3953 return True;
3954 else
3955 return False;
3956 end if;
3957 end;
3958 end if;
3959 end Within_Range_Of;
3961 -- Start of processing for Find_Check
3963 begin
3964 -- Establish default, to avoid warnings from GCC
3966 Check_Num := 0;
3968 -- Case of expression is simple entity reference
3970 if Is_Entity_Name (Expr) then
3971 Ent := Entity (Expr);
3972 Ofs := Uint_0;
3974 -- Case of expression is entity + known constant
3976 elsif Nkind (Expr) = N_Op_Add
3977 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3978 and then Is_Entity_Name (Left_Opnd (Expr))
3979 then
3980 Ent := Entity (Left_Opnd (Expr));
3981 Ofs := Expr_Value (Right_Opnd (Expr));
3983 -- Case of expression is entity - known constant
3985 elsif Nkind (Expr) = N_Op_Subtract
3986 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3987 and then Is_Entity_Name (Left_Opnd (Expr))
3988 then
3989 Ent := Entity (Left_Opnd (Expr));
3990 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
3992 -- Any other expression is not of the right form
3994 else
3995 Ent := Empty;
3996 Ofs := Uint_0;
3997 Entry_OK := False;
3998 return;
3999 end if;
4001 -- Come here with expression of appropriate form, check if
4002 -- entity is an appropriate one for our purposes.
4004 if (Ekind (Ent) = E_Variable
4005 or else
4006 Ekind (Ent) = E_Constant
4007 or else
4008 Ekind (Ent) = E_Loop_Parameter
4009 or else
4010 Ekind (Ent) = E_In_Parameter)
4011 and then not Is_Library_Level_Entity (Ent)
4012 then
4013 Entry_OK := True;
4014 else
4015 Entry_OK := False;
4016 return;
4017 end if;
4019 -- See if there is matching check already
4021 for J in reverse 1 .. Num_Saved_Checks loop
4022 declare
4023 SC : Saved_Check renames Saved_Checks (J);
4025 begin
4026 if SC.Killed = False
4027 and then SC.Entity = Ent
4028 and then SC.Offset = Ofs
4029 and then SC.Check_Type = Check_Type
4030 and then Within_Range_Of (Target_Type, SC.Target_Type)
4031 then
4032 Check_Num := J;
4033 return;
4034 end if;
4035 end;
4036 end loop;
4038 -- If we fall through entry was not found
4040 Check_Num := 0;
4041 return;
4042 end Find_Check;
4044 ---------------------------------
4045 -- Generate_Discriminant_Check --
4046 ---------------------------------
4048 -- Note: the code for this procedure is derived from the
4049 -- emit_discriminant_check routine a-trans.c v1.659.
4051 procedure Generate_Discriminant_Check (N : Node_Id) is
4052 Loc : constant Source_Ptr := Sloc (N);
4053 Pref : constant Node_Id := Prefix (N);
4054 Sel : constant Node_Id := Selector_Name (N);
4056 Orig_Comp : constant Entity_Id :=
4057 Original_Record_Component (Entity (Sel));
4058 -- The original component to be checked
4060 Discr_Fct : constant Entity_Id :=
4061 Discriminant_Checking_Func (Orig_Comp);
4062 -- The discriminant checking function
4064 Discr : Entity_Id;
4065 -- One discriminant to be checked in the type
4067 Real_Discr : Entity_Id;
4068 -- Actual discriminant in the call
4070 Pref_Type : Entity_Id;
4071 -- Type of relevant prefix (ignoring private/access stuff)
4073 Args : List_Id;
4074 -- List of arguments for function call
4076 Formal : Entity_Id;
4077 -- Keep track of the formal corresponding to the actual we build
4078 -- for each discriminant, in order to be able to perform the
4079 -- necessary type conversions.
4081 Scomp : Node_Id;
4082 -- Selected component reference for checking function argument
4084 begin
4085 Pref_Type := Etype (Pref);
4087 -- Force evaluation of the prefix, so that it does not get evaluated
4088 -- twice (once for the check, once for the actual reference). Such a
4089 -- double evaluation is always a potential source of inefficiency,
4090 -- and is functionally incorrect in the volatile case, or when the
4091 -- prefix may have side-effects. An entity or a component of an
4092 -- entity requires no evaluation.
4094 if Is_Entity_Name (Pref) then
4095 if Treat_As_Volatile (Entity (Pref)) then
4096 Force_Evaluation (Pref, Name_Req => True);
4097 end if;
4099 elsif Treat_As_Volatile (Etype (Pref)) then
4100 Force_Evaluation (Pref, Name_Req => True);
4102 elsif Nkind (Pref) = N_Selected_Component
4103 and then Is_Entity_Name (Prefix (Pref))
4104 then
4105 null;
4107 else
4108 Force_Evaluation (Pref, Name_Req => True);
4109 end if;
4111 -- For a tagged type, use the scope of the original component to
4112 -- obtain the type, because ???
4114 if Is_Tagged_Type (Scope (Orig_Comp)) then
4115 Pref_Type := Scope (Orig_Comp);
4117 -- For an untagged derived type, use the discriminants of the
4118 -- parent which have been renamed in the derivation, possibly
4119 -- by a one-to-many discriminant constraint.
4120 -- For non-tagged type, initially get the Etype of the prefix
4122 else
4123 if Is_Derived_Type (Pref_Type)
4124 and then Number_Discriminants (Pref_Type) /=
4125 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4126 then
4127 Pref_Type := Etype (Base_Type (Pref_Type));
4128 end if;
4129 end if;
4131 -- We definitely should have a checking function, This routine should
4132 -- not be called if no discriminant checking function is present.
4134 pragma Assert (Present (Discr_Fct));
4136 -- Create the list of the actual parameters for the call. This list
4137 -- is the list of the discriminant fields of the record expression to
4138 -- be discriminant checked.
4140 Args := New_List;
4141 Formal := First_Formal (Discr_Fct);
4142 Discr := First_Discriminant (Pref_Type);
4143 while Present (Discr) loop
4145 -- If we have a corresponding discriminant field, and a parent
4146 -- subtype is present, then we want to use the corresponding
4147 -- discriminant since this is the one with the useful value.
4149 if Present (Corresponding_Discriminant (Discr))
4150 and then Ekind (Pref_Type) = E_Record_Type
4151 and then Present (Parent_Subtype (Pref_Type))
4152 then
4153 Real_Discr := Corresponding_Discriminant (Discr);
4154 else
4155 Real_Discr := Discr;
4156 end if;
4158 -- Construct the reference to the discriminant
4160 Scomp :=
4161 Make_Selected_Component (Loc,
4162 Prefix =>
4163 Unchecked_Convert_To (Pref_Type,
4164 Duplicate_Subexpr (Pref)),
4165 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4167 -- Manually analyze and resolve this selected component. We really
4168 -- want it just as it appears above, and do not want the expander
4169 -- playing discriminal games etc with this reference. Then we
4170 -- append the argument to the list we are gathering.
4172 Set_Etype (Scomp, Etype (Real_Discr));
4173 Set_Analyzed (Scomp, True);
4174 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4176 Next_Formal_With_Extras (Formal);
4177 Next_Discriminant (Discr);
4178 end loop;
4180 -- Now build and insert the call
4182 Insert_Action (N,
4183 Make_Raise_Constraint_Error (Loc,
4184 Condition =>
4185 Make_Function_Call (Loc,
4186 Name => New_Occurrence_Of (Discr_Fct, Loc),
4187 Parameter_Associations => Args),
4188 Reason => CE_Discriminant_Check_Failed));
4189 end Generate_Discriminant_Check;
4191 ---------------------------
4192 -- Generate_Index_Checks --
4193 ---------------------------
4195 procedure Generate_Index_Checks (N : Node_Id) is
4196 Loc : constant Source_Ptr := Sloc (N);
4197 A : constant Node_Id := Prefix (N);
4198 Sub : Node_Id;
4199 Ind : Nat;
4200 Num : List_Id;
4202 begin
4203 Sub := First (Expressions (N));
4204 Ind := 1;
4205 while Present (Sub) loop
4206 if Do_Range_Check (Sub) then
4207 Set_Do_Range_Check (Sub, False);
4209 -- Force evaluation except for the case of a simple name of
4210 -- a non-volatile entity.
4212 if not Is_Entity_Name (Sub)
4213 or else Treat_As_Volatile (Entity (Sub))
4214 then
4215 Force_Evaluation (Sub);
4216 end if;
4218 -- Generate a raise of constraint error with the appropriate
4219 -- reason and a condition of the form:
4221 -- Base_Type(Sub) not in array'range (subscript)
4223 -- Note that the reason we generate the conversion to the
4224 -- base type here is that we definitely want the range check
4225 -- to take place, even if it looks like the subtype is OK.
4226 -- Optimization considerations that allow us to omit the
4227 -- check have already been taken into account in the setting
4228 -- of the Do_Range_Check flag earlier on.
4230 if Ind = 1 then
4231 Num := No_List;
4232 else
4233 Num := New_List (Make_Integer_Literal (Loc, Ind));
4234 end if;
4236 Insert_Action (N,
4237 Make_Raise_Constraint_Error (Loc,
4238 Condition =>
4239 Make_Not_In (Loc,
4240 Left_Opnd =>
4241 Convert_To (Base_Type (Etype (Sub)),
4242 Duplicate_Subexpr_Move_Checks (Sub)),
4243 Right_Opnd =>
4244 Make_Attribute_Reference (Loc,
4245 Prefix => Duplicate_Subexpr_Move_Checks (A),
4246 Attribute_Name => Name_Range,
4247 Expressions => Num)),
4248 Reason => CE_Index_Check_Failed));
4249 end if;
4251 Ind := Ind + 1;
4252 Next (Sub);
4253 end loop;
4254 end Generate_Index_Checks;
4256 --------------------------
4257 -- Generate_Range_Check --
4258 --------------------------
4260 procedure Generate_Range_Check
4261 (N : Node_Id;
4262 Target_Type : Entity_Id;
4263 Reason : RT_Exception_Code)
4265 Loc : constant Source_Ptr := Sloc (N);
4266 Source_Type : constant Entity_Id := Etype (N);
4267 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4268 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4270 begin
4271 -- First special case, if the source type is already within the
4272 -- range of the target type, then no check is needed (probably we
4273 -- should have stopped Do_Range_Check from being set in the first
4274 -- place, but better late than later in preventing junk code!
4276 -- We do NOT apply this if the source node is a literal, since in
4277 -- this case the literal has already been labeled as having the
4278 -- subtype of the target.
4280 if In_Subrange_Of (Source_Type, Target_Type)
4281 and then not
4282 (Nkind (N) = N_Integer_Literal
4283 or else
4284 Nkind (N) = N_Real_Literal
4285 or else
4286 Nkind (N) = N_Character_Literal
4287 or else
4288 (Is_Entity_Name (N)
4289 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4290 then
4291 return;
4292 end if;
4294 -- We need a check, so force evaluation of the node, so that it does
4295 -- not get evaluated twice (once for the check, once for the actual
4296 -- reference). Such a double evaluation is always a potential source
4297 -- of inefficiency, and is functionally incorrect in the volatile case.
4299 if not Is_Entity_Name (N)
4300 or else Treat_As_Volatile (Entity (N))
4301 then
4302 Force_Evaluation (N);
4303 end if;
4305 -- The easiest case is when Source_Base_Type and Target_Base_Type
4306 -- are the same since in this case we can simply do a direct
4307 -- check of the value of N against the bounds of Target_Type.
4309 -- [constraint_error when N not in Target_Type]
4311 -- Note: this is by far the most common case, for example all cases of
4312 -- checks on the RHS of assignments are in this category, but not all
4313 -- cases are like this. Notably conversions can involve two types.
4315 if Source_Base_Type = Target_Base_Type then
4316 Insert_Action (N,
4317 Make_Raise_Constraint_Error (Loc,
4318 Condition =>
4319 Make_Not_In (Loc,
4320 Left_Opnd => Duplicate_Subexpr (N),
4321 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4322 Reason => Reason));
4324 -- Next test for the case where the target type is within the bounds
4325 -- of the base type of the source type, since in this case we can
4326 -- simply convert these bounds to the base type of T to do the test.
4328 -- [constraint_error when N not in
4329 -- Source_Base_Type (Target_Type'First)
4330 -- ..
4331 -- Source_Base_Type(Target_Type'Last))]
4333 -- The conversions will always work and need no check
4335 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4336 Insert_Action (N,
4337 Make_Raise_Constraint_Error (Loc,
4338 Condition =>
4339 Make_Not_In (Loc,
4340 Left_Opnd => Duplicate_Subexpr (N),
4342 Right_Opnd =>
4343 Make_Range (Loc,
4344 Low_Bound =>
4345 Convert_To (Source_Base_Type,
4346 Make_Attribute_Reference (Loc,
4347 Prefix =>
4348 New_Occurrence_Of (Target_Type, Loc),
4349 Attribute_Name => Name_First)),
4351 High_Bound =>
4352 Convert_To (Source_Base_Type,
4353 Make_Attribute_Reference (Loc,
4354 Prefix =>
4355 New_Occurrence_Of (Target_Type, Loc),
4356 Attribute_Name => Name_Last)))),
4357 Reason => Reason));
4359 -- Note that at this stage we now that the Target_Base_Type is
4360 -- not in the range of the Source_Base_Type (since even the
4361 -- Target_Type itself is not in this range). It could still be
4362 -- the case that the Source_Type is in range of the target base
4363 -- type, since we have not checked that case.
4365 -- If that is the case, we can freely convert the source to the
4366 -- target, and then test the target result against the bounds.
4368 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4370 -- We make a temporary to hold the value of the converted
4371 -- value (converted to the base type), and then we will
4372 -- do the test against this temporary.
4374 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4375 -- [constraint_error when Tnn not in Target_Type]
4377 -- Then the conversion itself is replaced by an occurrence of Tnn
4379 declare
4380 Tnn : constant Entity_Id :=
4381 Make_Defining_Identifier (Loc,
4382 Chars => New_Internal_Name ('T'));
4384 begin
4385 Insert_Actions (N, New_List (
4386 Make_Object_Declaration (Loc,
4387 Defining_Identifier => Tnn,
4388 Object_Definition =>
4389 New_Occurrence_Of (Target_Base_Type, Loc),
4390 Constant_Present => True,
4391 Expression =>
4392 Make_Type_Conversion (Loc,
4393 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4394 Expression => Duplicate_Subexpr (N))),
4396 Make_Raise_Constraint_Error (Loc,
4397 Condition =>
4398 Make_Not_In (Loc,
4399 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4400 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4402 Reason => Reason)));
4404 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4405 end;
4407 -- At this stage, we know that we have two scalar types, which are
4408 -- directly convertible, and where neither scalar type has a base
4409 -- range that is in the range of the other scalar type.
4411 -- The only way this can happen is with a signed and unsigned type.
4412 -- So test for these two cases:
4414 else
4415 -- Case of the source is unsigned and the target is signed
4417 if Is_Unsigned_Type (Source_Base_Type)
4418 and then not Is_Unsigned_Type (Target_Base_Type)
4419 then
4420 -- If the source is unsigned and the target is signed, then we
4421 -- know that the source is not shorter than the target (otherwise
4422 -- the source base type would be in the target base type range).
4424 -- In other words, the unsigned type is either the same size
4425 -- as the target, or it is larger. It cannot be smaller.
4427 pragma Assert
4428 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4430 -- We only need to check the low bound if the low bound of the
4431 -- target type is non-negative. If the low bound of the target
4432 -- type is negative, then we know that we will fit fine.
4434 -- If the high bound of the target type is negative, then we
4435 -- know we have a constraint error, since we can't possibly
4436 -- have a negative source.
4438 -- With these two checks out of the way, we can do the check
4439 -- using the source type safely
4441 -- This is definitely the most annoying case!
4443 -- [constraint_error
4444 -- when (Target_Type'First >= 0
4445 -- and then
4446 -- N < Source_Base_Type (Target_Type'First))
4447 -- or else Target_Type'Last < 0
4448 -- or else N > Source_Base_Type (Target_Type'Last)];
4450 -- We turn off all checks since we know that the conversions
4451 -- will work fine, given the guards for negative values.
4453 Insert_Action (N,
4454 Make_Raise_Constraint_Error (Loc,
4455 Condition =>
4456 Make_Or_Else (Loc,
4457 Make_Or_Else (Loc,
4458 Left_Opnd =>
4459 Make_And_Then (Loc,
4460 Left_Opnd => Make_Op_Ge (Loc,
4461 Left_Opnd =>
4462 Make_Attribute_Reference (Loc,
4463 Prefix =>
4464 New_Occurrence_Of (Target_Type, Loc),
4465 Attribute_Name => Name_First),
4466 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4468 Right_Opnd =>
4469 Make_Op_Lt (Loc,
4470 Left_Opnd => Duplicate_Subexpr (N),
4471 Right_Opnd =>
4472 Convert_To (Source_Base_Type,
4473 Make_Attribute_Reference (Loc,
4474 Prefix =>
4475 New_Occurrence_Of (Target_Type, Loc),
4476 Attribute_Name => Name_First)))),
4478 Right_Opnd =>
4479 Make_Op_Lt (Loc,
4480 Left_Opnd =>
4481 Make_Attribute_Reference (Loc,
4482 Prefix => New_Occurrence_Of (Target_Type, Loc),
4483 Attribute_Name => Name_Last),
4484 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4486 Right_Opnd =>
4487 Make_Op_Gt (Loc,
4488 Left_Opnd => Duplicate_Subexpr (N),
4489 Right_Opnd =>
4490 Convert_To (Source_Base_Type,
4491 Make_Attribute_Reference (Loc,
4492 Prefix => New_Occurrence_Of (Target_Type, Loc),
4493 Attribute_Name => Name_Last)))),
4495 Reason => Reason),
4496 Suppress => All_Checks);
4498 -- Only remaining possibility is that the source is signed and
4499 -- the target is unsigned
4501 else
4502 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4503 and then Is_Unsigned_Type (Target_Base_Type));
4505 -- If the source is signed and the target is unsigned, then
4506 -- we know that the target is not shorter than the source
4507 -- (otherwise the target base type would be in the source
4508 -- base type range).
4510 -- In other words, the unsigned type is either the same size
4511 -- as the target, or it is larger. It cannot be smaller.
4513 -- Clearly we have an error if the source value is negative
4514 -- since no unsigned type can have negative values. If the
4515 -- source type is non-negative, then the check can be done
4516 -- using the target type.
4518 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4520 -- [constraint_error
4521 -- when N < 0 or else Tnn not in Target_Type];
4523 -- We turn off all checks for the conversion of N to the
4524 -- target base type, since we generate the explicit check
4525 -- to ensure that the value is non-negative
4527 declare
4528 Tnn : constant Entity_Id :=
4529 Make_Defining_Identifier (Loc,
4530 Chars => New_Internal_Name ('T'));
4532 begin
4533 Insert_Actions (N, New_List (
4534 Make_Object_Declaration (Loc,
4535 Defining_Identifier => Tnn,
4536 Object_Definition =>
4537 New_Occurrence_Of (Target_Base_Type, Loc),
4538 Constant_Present => True,
4539 Expression =>
4540 Make_Type_Conversion (Loc,
4541 Subtype_Mark =>
4542 New_Occurrence_Of (Target_Base_Type, Loc),
4543 Expression => Duplicate_Subexpr (N))),
4545 Make_Raise_Constraint_Error (Loc,
4546 Condition =>
4547 Make_Or_Else (Loc,
4548 Left_Opnd =>
4549 Make_Op_Lt (Loc,
4550 Left_Opnd => Duplicate_Subexpr (N),
4551 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4553 Right_Opnd =>
4554 Make_Not_In (Loc,
4555 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4556 Right_Opnd =>
4557 New_Occurrence_Of (Target_Type, Loc))),
4559 Reason => Reason)),
4560 Suppress => All_Checks);
4562 -- Set the Etype explicitly, because Insert_Actions may
4563 -- have placed the declaration in the freeze list for an
4564 -- enclosing construct, and thus it is not analyzed yet.
4566 Set_Etype (Tnn, Target_Base_Type);
4567 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4568 end;
4569 end if;
4570 end if;
4571 end Generate_Range_Check;
4573 ---------------------
4574 -- Get_Discriminal --
4575 ---------------------
4577 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4578 Loc : constant Source_Ptr := Sloc (E);
4579 D : Entity_Id;
4580 Sc : Entity_Id;
4582 begin
4583 -- The entity E is the type of a private component of the protected
4584 -- type, or the type of a renaming of that component within a protected
4585 -- operation of that type.
4587 Sc := Scope (E);
4589 if Ekind (Sc) /= E_Protected_Type then
4590 Sc := Scope (Sc);
4592 if Ekind (Sc) /= E_Protected_Type then
4593 return Bound;
4594 end if;
4595 end if;
4597 D := First_Discriminant (Sc);
4599 while Present (D)
4600 and then Chars (D) /= Chars (Bound)
4601 loop
4602 Next_Discriminant (D);
4603 end loop;
4605 return New_Occurrence_Of (Discriminal (D), Loc);
4606 end Get_Discriminal;
4608 ------------------
4609 -- Guard_Access --
4610 ------------------
4612 function Guard_Access
4613 (Cond : Node_Id;
4614 Loc : Source_Ptr;
4615 Ck_Node : Node_Id) return Node_Id
4617 begin
4618 if Nkind (Cond) = N_Or_Else then
4619 Set_Paren_Count (Cond, 1);
4620 end if;
4622 if Nkind (Ck_Node) = N_Allocator then
4623 return Cond;
4624 else
4625 return
4626 Make_And_Then (Loc,
4627 Left_Opnd =>
4628 Make_Op_Ne (Loc,
4629 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
4630 Right_Opnd => Make_Null (Loc)),
4631 Right_Opnd => Cond);
4632 end if;
4633 end Guard_Access;
4635 -----------------------------
4636 -- Index_Checks_Suppressed --
4637 -----------------------------
4639 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
4640 begin
4641 if Present (E) and then Checks_May_Be_Suppressed (E) then
4642 return Is_Check_Suppressed (E, Index_Check);
4643 else
4644 return Scope_Suppress (Index_Check);
4645 end if;
4646 end Index_Checks_Suppressed;
4648 ----------------
4649 -- Initialize --
4650 ----------------
4652 procedure Initialize is
4653 begin
4654 for J in Determine_Range_Cache_N'Range loop
4655 Determine_Range_Cache_N (J) := Empty;
4656 end loop;
4657 end Initialize;
4659 -------------------------
4660 -- Insert_Range_Checks --
4661 -------------------------
4663 procedure Insert_Range_Checks
4664 (Checks : Check_Result;
4665 Node : Node_Id;
4666 Suppress_Typ : Entity_Id;
4667 Static_Sloc : Source_Ptr := No_Location;
4668 Flag_Node : Node_Id := Empty;
4669 Do_Before : Boolean := False)
4671 Internal_Flag_Node : Node_Id := Flag_Node;
4672 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
4674 Check_Node : Node_Id;
4675 Checks_On : constant Boolean :=
4676 (not Index_Checks_Suppressed (Suppress_Typ))
4677 or else
4678 (not Range_Checks_Suppressed (Suppress_Typ));
4680 begin
4681 -- For now we just return if Checks_On is false, however this should
4682 -- be enhanced to check for an always True value in the condition
4683 -- and to generate a compilation warning???
4685 if not Expander_Active or else not Checks_On then
4686 return;
4687 end if;
4689 if Static_Sloc = No_Location then
4690 Internal_Static_Sloc := Sloc (Node);
4691 end if;
4693 if No (Flag_Node) then
4694 Internal_Flag_Node := Node;
4695 end if;
4697 for J in 1 .. 2 loop
4698 exit when No (Checks (J));
4700 if Nkind (Checks (J)) = N_Raise_Constraint_Error
4701 and then Present (Condition (Checks (J)))
4702 then
4703 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
4704 Check_Node := Checks (J);
4705 Mark_Rewrite_Insertion (Check_Node);
4707 if Do_Before then
4708 Insert_Before_And_Analyze (Node, Check_Node);
4709 else
4710 Insert_After_And_Analyze (Node, Check_Node);
4711 end if;
4713 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
4714 end if;
4716 else
4717 Check_Node :=
4718 Make_Raise_Constraint_Error (Internal_Static_Sloc,
4719 Reason => CE_Range_Check_Failed);
4720 Mark_Rewrite_Insertion (Check_Node);
4722 if Do_Before then
4723 Insert_Before_And_Analyze (Node, Check_Node);
4724 else
4725 Insert_After_And_Analyze (Node, Check_Node);
4726 end if;
4727 end if;
4728 end loop;
4729 end Insert_Range_Checks;
4731 ------------------------
4732 -- Insert_Valid_Check --
4733 ------------------------
4735 procedure Insert_Valid_Check (Expr : Node_Id) is
4736 Loc : constant Source_Ptr := Sloc (Expr);
4737 Exp : Node_Id;
4739 begin
4740 -- Do not insert if checks off, or if not checking validity
4742 if Range_Checks_Suppressed (Etype (Expr))
4743 or else (not Validity_Checks_On)
4744 then
4745 return;
4746 end if;
4748 -- If we have a checked conversion, then validity check applies to
4749 -- the expression inside the conversion, not the result, since if
4750 -- the expression inside is valid, then so is the conversion result.
4752 Exp := Expr;
4753 while Nkind (Exp) = N_Type_Conversion loop
4754 Exp := Expression (Exp);
4755 end loop;
4757 -- Insert the validity check. Note that we do this with validity
4758 -- checks turned off, to avoid recursion, we do not want validity
4759 -- checks on the validity checking code itself!
4761 Validity_Checks_On := False;
4762 Insert_Action
4763 (Expr,
4764 Make_Raise_Constraint_Error (Loc,
4765 Condition =>
4766 Make_Op_Not (Loc,
4767 Right_Opnd =>
4768 Make_Attribute_Reference (Loc,
4769 Prefix =>
4770 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
4771 Attribute_Name => Name_Valid)),
4772 Reason => CE_Invalid_Data),
4773 Suppress => All_Checks);
4775 -- If the expression is a a reference to an element of a bit-packed
4776 -- array, it is rewritten as a renaming declaration. If the expression
4777 -- is an actual in a call, it has not been expanded, waiting for the
4778 -- proper point at which to do it. The same happens with renamings, so
4779 -- that we have to force the expansion now. This non-local complication
4780 -- is due to code in exp_ch2,adb, exp_ch4.adb and exp_ch6.adb.
4782 if Is_Entity_Name (Exp)
4783 and then Nkind (Parent (Entity (Exp))) = N_Object_Renaming_Declaration
4784 then
4785 declare
4786 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
4787 begin
4788 if Nkind (Old_Exp) = N_Indexed_Component
4789 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
4790 then
4791 Expand_Packed_Element_Reference (Old_Exp);
4792 end if;
4793 end;
4794 end if;
4796 Validity_Checks_On := True;
4797 end Insert_Valid_Check;
4799 ----------------------------------
4800 -- Install_Null_Excluding_Check --
4801 ----------------------------------
4803 procedure Install_Null_Excluding_Check (N : Node_Id) is
4804 Loc : constant Source_Ptr := Sloc (N);
4805 Typ : constant Entity_Id := Etype (N);
4807 procedure Mark_Non_Null;
4808 -- After installation of check, marks node as non-null if entity
4810 -------------------
4811 -- Mark_Non_Null --
4812 -------------------
4814 procedure Mark_Non_Null is
4815 begin
4816 if Is_Entity_Name (N) then
4817 Set_Is_Known_Null (Entity (N), False);
4819 if Safe_To_Capture_Value (N, Entity (N)) then
4820 Set_Is_Known_Non_Null (Entity (N), True);
4821 end if;
4822 end if;
4823 end Mark_Non_Null;
4825 -- Start of processing for Install_Null_Excluding_Check
4827 begin
4828 pragma Assert (Is_Access_Type (Typ));
4830 -- No check inside a generic (why not???)
4832 if Inside_A_Generic then
4833 return;
4834 end if;
4836 -- No check needed if known to be non-null
4838 if Known_Non_Null (N) then
4839 return;
4840 end if;
4842 -- If known to be null, here is where we generate a compile time check
4844 if Known_Null (N) then
4845 Apply_Compile_Time_Constraint_Error
4847 "null value not allowed here?",
4848 CE_Access_Check_Failed);
4849 Mark_Non_Null;
4850 return;
4851 end if;
4853 -- If entity is never assigned, for sure a warning is appropriate
4855 if Is_Entity_Name (N) then
4856 Check_Unset_Reference (N);
4857 end if;
4859 -- No check needed if checks are suppressed on the range. Note that we
4860 -- don't set Is_Known_Non_Null in this case (we could legitimately do
4861 -- so, since the program is erroneous, but we don't like to casually
4862 -- propagate such conclusions from erroneosity).
4864 if Access_Checks_Suppressed (Typ) then
4865 return;
4866 end if;
4868 -- Otherwise install access check
4870 Insert_Action (N,
4871 Make_Raise_Constraint_Error (Loc,
4872 Condition =>
4873 Make_Op_Eq (Loc,
4874 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
4875 Right_Opnd => Make_Null (Loc)),
4876 Reason => CE_Access_Check_Failed));
4878 Mark_Non_Null;
4879 end Install_Null_Excluding_Check;
4881 --------------------------
4882 -- Install_Static_Check --
4883 --------------------------
4885 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
4886 Stat : constant Boolean := Is_Static_Expression (R_Cno);
4887 Typ : constant Entity_Id := Etype (R_Cno);
4889 begin
4890 Rewrite (R_Cno,
4891 Make_Raise_Constraint_Error (Loc,
4892 Reason => CE_Range_Check_Failed));
4893 Set_Analyzed (R_Cno);
4894 Set_Etype (R_Cno, Typ);
4895 Set_Raises_Constraint_Error (R_Cno);
4896 Set_Is_Static_Expression (R_Cno, Stat);
4897 end Install_Static_Check;
4899 ---------------------
4900 -- Kill_All_Checks --
4901 ---------------------
4903 procedure Kill_All_Checks is
4904 begin
4905 if Debug_Flag_CC then
4906 w ("Kill_All_Checks");
4907 end if;
4909 -- We reset the number of saved checks to zero, and also modify
4910 -- all stack entries for statement ranges to indicate that the
4911 -- number of checks at each level is now zero.
4913 Num_Saved_Checks := 0;
4915 for J in 1 .. Saved_Checks_TOS loop
4916 Saved_Checks_Stack (J) := 0;
4917 end loop;
4918 end Kill_All_Checks;
4920 -----------------
4921 -- Kill_Checks --
4922 -----------------
4924 procedure Kill_Checks (V : Entity_Id) is
4925 begin
4926 if Debug_Flag_CC then
4927 w ("Kill_Checks for entity", Int (V));
4928 end if;
4930 for J in 1 .. Num_Saved_Checks loop
4931 if Saved_Checks (J).Entity = V then
4932 if Debug_Flag_CC then
4933 w (" Checks killed for saved check ", J);
4934 end if;
4936 Saved_Checks (J).Killed := True;
4937 end if;
4938 end loop;
4939 end Kill_Checks;
4941 ------------------------------
4942 -- Length_Checks_Suppressed --
4943 ------------------------------
4945 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
4946 begin
4947 if Present (E) and then Checks_May_Be_Suppressed (E) then
4948 return Is_Check_Suppressed (E, Length_Check);
4949 else
4950 return Scope_Suppress (Length_Check);
4951 end if;
4952 end Length_Checks_Suppressed;
4954 --------------------------------
4955 -- Overflow_Checks_Suppressed --
4956 --------------------------------
4958 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
4959 begin
4960 if Present (E) and then Checks_May_Be_Suppressed (E) then
4961 return Is_Check_Suppressed (E, Overflow_Check);
4962 else
4963 return Scope_Suppress (Overflow_Check);
4964 end if;
4965 end Overflow_Checks_Suppressed;
4967 -----------------
4968 -- Range_Check --
4969 -----------------
4971 function Range_Check
4972 (Ck_Node : Node_Id;
4973 Target_Typ : Entity_Id;
4974 Source_Typ : Entity_Id := Empty;
4975 Warn_Node : Node_Id := Empty) return Check_Result
4977 begin
4978 return Selected_Range_Checks
4979 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4980 end Range_Check;
4982 -----------------------------
4983 -- Range_Checks_Suppressed --
4984 -----------------------------
4986 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
4987 begin
4988 if Present (E) then
4990 -- Note: for now we always suppress range checks on Vax float types,
4991 -- since Gigi does not know how to generate these checks.
4993 if Vax_Float (E) then
4994 return True;
4995 elsif Kill_Range_Checks (E) then
4996 return True;
4997 elsif Checks_May_Be_Suppressed (E) then
4998 return Is_Check_Suppressed (E, Range_Check);
4999 end if;
5000 end if;
5002 return Scope_Suppress (Range_Check);
5003 end Range_Checks_Suppressed;
5005 -------------------
5006 -- Remove_Checks --
5007 -------------------
5009 procedure Remove_Checks (Expr : Node_Id) is
5010 Discard : Traverse_Result;
5011 pragma Warnings (Off, Discard);
5013 function Process (N : Node_Id) return Traverse_Result;
5014 -- Process a single node during the traversal
5016 function Traverse is new Traverse_Func (Process);
5017 -- The traversal function itself
5019 -------------
5020 -- Process --
5021 -------------
5023 function Process (N : Node_Id) return Traverse_Result is
5024 begin
5025 if Nkind (N) not in N_Subexpr then
5026 return Skip;
5027 end if;
5029 Set_Do_Range_Check (N, False);
5031 case Nkind (N) is
5032 when N_And_Then =>
5033 Discard := Traverse (Left_Opnd (N));
5034 return Skip;
5036 when N_Attribute_Reference =>
5037 Set_Do_Overflow_Check (N, False);
5039 when N_Function_Call =>
5040 Set_Do_Tag_Check (N, False);
5042 when N_Op =>
5043 Set_Do_Overflow_Check (N, False);
5045 case Nkind (N) is
5046 when N_Op_Divide =>
5047 Set_Do_Division_Check (N, False);
5049 when N_Op_And =>
5050 Set_Do_Length_Check (N, False);
5052 when N_Op_Mod =>
5053 Set_Do_Division_Check (N, False);
5055 when N_Op_Or =>
5056 Set_Do_Length_Check (N, False);
5058 when N_Op_Rem =>
5059 Set_Do_Division_Check (N, False);
5061 when N_Op_Xor =>
5062 Set_Do_Length_Check (N, False);
5064 when others =>
5065 null;
5066 end case;
5068 when N_Or_Else =>
5069 Discard := Traverse (Left_Opnd (N));
5070 return Skip;
5072 when N_Selected_Component =>
5073 Set_Do_Discriminant_Check (N, False);
5075 when N_Type_Conversion =>
5076 Set_Do_Length_Check (N, False);
5077 Set_Do_Tag_Check (N, False);
5078 Set_Do_Overflow_Check (N, False);
5080 when others =>
5081 null;
5082 end case;
5084 return OK;
5085 end Process;
5087 -- Start of processing for Remove_Checks
5089 begin
5090 Discard := Traverse (Expr);
5091 end Remove_Checks;
5093 ----------------------------
5094 -- Selected_Length_Checks --
5095 ----------------------------
5097 function Selected_Length_Checks
5098 (Ck_Node : Node_Id;
5099 Target_Typ : Entity_Id;
5100 Source_Typ : Entity_Id;
5101 Warn_Node : Node_Id) return Check_Result
5103 Loc : constant Source_Ptr := Sloc (Ck_Node);
5104 S_Typ : Entity_Id;
5105 T_Typ : Entity_Id;
5106 Expr_Actual : Node_Id;
5107 Exptyp : Entity_Id;
5108 Cond : Node_Id := Empty;
5109 Do_Access : Boolean := False;
5110 Wnode : Node_Id := Warn_Node;
5111 Ret_Result : Check_Result := (Empty, Empty);
5112 Num_Checks : Natural := 0;
5114 procedure Add_Check (N : Node_Id);
5115 -- Adds the action given to Ret_Result if N is non-Empty
5117 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
5118 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
5119 -- Comments required ???
5121 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
5122 -- True for equal literals and for nodes that denote the same constant
5123 -- entity, even if its value is not a static constant. This includes the
5124 -- case of a discriminal reference within an init proc. Removes some
5125 -- obviously superfluous checks.
5127 function Length_E_Cond
5128 (Exptyp : Entity_Id;
5129 Typ : Entity_Id;
5130 Indx : Nat) return Node_Id;
5131 -- Returns expression to compute:
5132 -- Typ'Length /= Exptyp'Length
5134 function Length_N_Cond
5135 (Expr : Node_Id;
5136 Typ : Entity_Id;
5137 Indx : Nat) return Node_Id;
5138 -- Returns expression to compute:
5139 -- Typ'Length /= Expr'Length
5141 ---------------
5142 -- Add_Check --
5143 ---------------
5145 procedure Add_Check (N : Node_Id) is
5146 begin
5147 if Present (N) then
5149 -- For now, ignore attempt to place more than 2 checks ???
5151 if Num_Checks = 2 then
5152 return;
5153 end if;
5155 pragma Assert (Num_Checks <= 1);
5156 Num_Checks := Num_Checks + 1;
5157 Ret_Result (Num_Checks) := N;
5158 end if;
5159 end Add_Check;
5161 ------------------
5162 -- Get_E_Length --
5163 ------------------
5165 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
5166 Pt : constant Entity_Id := Scope (Scope (E));
5167 N : Node_Id;
5168 E1 : Entity_Id := E;
5170 begin
5171 if Ekind (Scope (E)) = E_Record_Type
5172 and then Has_Discriminants (Scope (E))
5173 then
5174 N := Build_Discriminal_Subtype_Of_Component (E);
5176 if Present (N) then
5177 Insert_Action (Ck_Node, N);
5178 E1 := Defining_Identifier (N);
5179 end if;
5180 end if;
5182 if Ekind (E1) = E_String_Literal_Subtype then
5183 return
5184 Make_Integer_Literal (Loc,
5185 Intval => String_Literal_Length (E1));
5187 elsif Ekind (Pt) = E_Protected_Type
5188 and then Has_Discriminants (Pt)
5189 and then Has_Completion (Pt)
5190 and then not Inside_Init_Proc
5191 then
5193 -- If the type whose length is needed is a private component
5194 -- constrained by a discriminant, we must expand the 'Length
5195 -- attribute into an explicit computation, using the discriminal
5196 -- of the current protected operation. This is because the actual
5197 -- type of the prival is constructed after the protected opera-
5198 -- tion has been fully expanded.
5200 declare
5201 Indx_Type : Node_Id;
5202 Lo : Node_Id;
5203 Hi : Node_Id;
5204 Do_Expand : Boolean := False;
5206 begin
5207 Indx_Type := First_Index (E);
5209 for J in 1 .. Indx - 1 loop
5210 Next_Index (Indx_Type);
5211 end loop;
5213 Get_Index_Bounds (Indx_Type, Lo, Hi);
5215 if Nkind (Lo) = N_Identifier
5216 and then Ekind (Entity (Lo)) = E_In_Parameter
5217 then
5218 Lo := Get_Discriminal (E, Lo);
5219 Do_Expand := True;
5220 end if;
5222 if Nkind (Hi) = N_Identifier
5223 and then Ekind (Entity (Hi)) = E_In_Parameter
5224 then
5225 Hi := Get_Discriminal (E, Hi);
5226 Do_Expand := True;
5227 end if;
5229 if Do_Expand then
5230 if not Is_Entity_Name (Lo) then
5231 Lo := Duplicate_Subexpr_No_Checks (Lo);
5232 end if;
5234 if not Is_Entity_Name (Hi) then
5235 Lo := Duplicate_Subexpr_No_Checks (Hi);
5236 end if;
5238 N :=
5239 Make_Op_Add (Loc,
5240 Left_Opnd =>
5241 Make_Op_Subtract (Loc,
5242 Left_Opnd => Hi,
5243 Right_Opnd => Lo),
5245 Right_Opnd => Make_Integer_Literal (Loc, 1));
5246 return N;
5248 else
5249 N :=
5250 Make_Attribute_Reference (Loc,
5251 Attribute_Name => Name_Length,
5252 Prefix =>
5253 New_Occurrence_Of (E1, Loc));
5255 if Indx > 1 then
5256 Set_Expressions (N, New_List (
5257 Make_Integer_Literal (Loc, Indx)));
5258 end if;
5260 return N;
5261 end if;
5262 end;
5264 else
5265 N :=
5266 Make_Attribute_Reference (Loc,
5267 Attribute_Name => Name_Length,
5268 Prefix =>
5269 New_Occurrence_Of (E1, Loc));
5271 if Indx > 1 then
5272 Set_Expressions (N, New_List (
5273 Make_Integer_Literal (Loc, Indx)));
5274 end if;
5276 return N;
5278 end if;
5279 end Get_E_Length;
5281 ------------------
5282 -- Get_N_Length --
5283 ------------------
5285 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5286 begin
5287 return
5288 Make_Attribute_Reference (Loc,
5289 Attribute_Name => Name_Length,
5290 Prefix =>
5291 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5292 Expressions => New_List (
5293 Make_Integer_Literal (Loc, Indx)));
5295 end Get_N_Length;
5297 -------------------
5298 -- Length_E_Cond --
5299 -------------------
5301 function Length_E_Cond
5302 (Exptyp : Entity_Id;
5303 Typ : Entity_Id;
5304 Indx : Nat) return Node_Id
5306 begin
5307 return
5308 Make_Op_Ne (Loc,
5309 Left_Opnd => Get_E_Length (Typ, Indx),
5310 Right_Opnd => Get_E_Length (Exptyp, Indx));
5312 end Length_E_Cond;
5314 -------------------
5315 -- Length_N_Cond --
5316 -------------------
5318 function Length_N_Cond
5319 (Expr : Node_Id;
5320 Typ : Entity_Id;
5321 Indx : Nat) return Node_Id
5323 begin
5324 return
5325 Make_Op_Ne (Loc,
5326 Left_Opnd => Get_E_Length (Typ, Indx),
5327 Right_Opnd => Get_N_Length (Expr, Indx));
5329 end Length_N_Cond;
5331 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5332 begin
5333 return
5334 (Nkind (L) = N_Integer_Literal
5335 and then Nkind (R) = N_Integer_Literal
5336 and then Intval (L) = Intval (R))
5338 or else
5339 (Is_Entity_Name (L)
5340 and then Ekind (Entity (L)) = E_Constant
5341 and then ((Is_Entity_Name (R)
5342 and then Entity (L) = Entity (R))
5343 or else
5344 (Nkind (R) = N_Type_Conversion
5345 and then Is_Entity_Name (Expression (R))
5346 and then Entity (L) = Entity (Expression (R)))))
5348 or else
5349 (Is_Entity_Name (R)
5350 and then Ekind (Entity (R)) = E_Constant
5351 and then Nkind (L) = N_Type_Conversion
5352 and then Is_Entity_Name (Expression (L))
5353 and then Entity (R) = Entity (Expression (L)))
5355 or else
5356 (Is_Entity_Name (L)
5357 and then Is_Entity_Name (R)
5358 and then Entity (L) = Entity (R)
5359 and then Ekind (Entity (L)) = E_In_Parameter
5360 and then Inside_Init_Proc);
5361 end Same_Bounds;
5363 -- Start of processing for Selected_Length_Checks
5365 begin
5366 if not Expander_Active then
5367 return Ret_Result;
5368 end if;
5370 if Target_Typ = Any_Type
5371 or else Target_Typ = Any_Composite
5372 or else Raises_Constraint_Error (Ck_Node)
5373 then
5374 return Ret_Result;
5375 end if;
5377 if No (Wnode) then
5378 Wnode := Ck_Node;
5379 end if;
5381 T_Typ := Target_Typ;
5383 if No (Source_Typ) then
5384 S_Typ := Etype (Ck_Node);
5385 else
5386 S_Typ := Source_Typ;
5387 end if;
5389 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5390 return Ret_Result;
5391 end if;
5393 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5394 S_Typ := Designated_Type (S_Typ);
5395 T_Typ := Designated_Type (T_Typ);
5396 Do_Access := True;
5398 -- A simple optimization
5400 if Nkind (Ck_Node) = N_Null then
5401 return Ret_Result;
5402 end if;
5403 end if;
5405 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5406 if Is_Constrained (T_Typ) then
5408 -- The checking code to be generated will freeze the
5409 -- corresponding array type. However, we must freeze the
5410 -- type now, so that the freeze node does not appear within
5411 -- the generated condional expression, but ahead of it.
5413 Freeze_Before (Ck_Node, T_Typ);
5415 Expr_Actual := Get_Referenced_Object (Ck_Node);
5416 Exptyp := Get_Actual_Subtype (Ck_Node);
5418 if Is_Access_Type (Exptyp) then
5419 Exptyp := Designated_Type (Exptyp);
5420 end if;
5422 -- String_Literal case. This needs to be handled specially be-
5423 -- cause no index types are available for string literals. The
5424 -- condition is simply:
5426 -- T_Typ'Length = string-literal-length
5428 if Nkind (Expr_Actual) = N_String_Literal
5429 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
5430 then
5431 Cond :=
5432 Make_Op_Ne (Loc,
5433 Left_Opnd => Get_E_Length (T_Typ, 1),
5434 Right_Opnd =>
5435 Make_Integer_Literal (Loc,
5436 Intval =>
5437 String_Literal_Length (Etype (Expr_Actual))));
5439 -- General array case. Here we have a usable actual subtype for
5440 -- the expression, and the condition is built from the two types
5441 -- (Do_Length):
5443 -- T_Typ'Length /= Exptyp'Length or else
5444 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
5445 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
5446 -- ...
5448 elsif Is_Constrained (Exptyp) then
5449 declare
5450 Ndims : constant Nat := Number_Dimensions (T_Typ);
5452 L_Index : Node_Id;
5453 R_Index : Node_Id;
5454 L_Low : Node_Id;
5455 L_High : Node_Id;
5456 R_Low : Node_Id;
5457 R_High : Node_Id;
5458 L_Length : Uint;
5459 R_Length : Uint;
5460 Ref_Node : Node_Id;
5462 begin
5464 -- At the library level, we need to ensure that the
5465 -- type of the object is elaborated before the check
5466 -- itself is emitted. This is only done if the object
5467 -- is in the current compilation unit, otherwise the
5468 -- type is frozen and elaborated in its unit.
5470 if Is_Itype (Exptyp)
5471 and then
5472 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
5473 and then
5474 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
5475 and then In_Open_Scopes (Scope (Exptyp))
5476 then
5477 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
5478 Set_Itype (Ref_Node, Exptyp);
5479 Insert_Action (Ck_Node, Ref_Node);
5480 end if;
5482 L_Index := First_Index (T_Typ);
5483 R_Index := First_Index (Exptyp);
5485 for Indx in 1 .. Ndims loop
5486 if not (Nkind (L_Index) = N_Raise_Constraint_Error
5487 or else
5488 Nkind (R_Index) = N_Raise_Constraint_Error)
5489 then
5490 Get_Index_Bounds (L_Index, L_Low, L_High);
5491 Get_Index_Bounds (R_Index, R_Low, R_High);
5493 -- Deal with compile time length check. Note that we
5494 -- skip this in the access case, because the access
5495 -- value may be null, so we cannot know statically.
5497 if not Do_Access
5498 and then Compile_Time_Known_Value (L_Low)
5499 and then Compile_Time_Known_Value (L_High)
5500 and then Compile_Time_Known_Value (R_Low)
5501 and then Compile_Time_Known_Value (R_High)
5502 then
5503 if Expr_Value (L_High) >= Expr_Value (L_Low) then
5504 L_Length := Expr_Value (L_High) -
5505 Expr_Value (L_Low) + 1;
5506 else
5507 L_Length := UI_From_Int (0);
5508 end if;
5510 if Expr_Value (R_High) >= Expr_Value (R_Low) then
5511 R_Length := Expr_Value (R_High) -
5512 Expr_Value (R_Low) + 1;
5513 else
5514 R_Length := UI_From_Int (0);
5515 end if;
5517 if L_Length > R_Length then
5518 Add_Check
5519 (Compile_Time_Constraint_Error
5520 (Wnode, "too few elements for}?", T_Typ));
5522 elsif L_Length < R_Length then
5523 Add_Check
5524 (Compile_Time_Constraint_Error
5525 (Wnode, "too many elements for}?", T_Typ));
5526 end if;
5528 -- The comparison for an individual index subtype
5529 -- is omitted if the corresponding index subtypes
5530 -- statically match, since the result is known to
5531 -- be true. Note that this test is worth while even
5532 -- though we do static evaluation, because non-static
5533 -- subtypes can statically match.
5535 elsif not
5536 Subtypes_Statically_Match
5537 (Etype (L_Index), Etype (R_Index))
5539 and then not
5540 (Same_Bounds (L_Low, R_Low)
5541 and then Same_Bounds (L_High, R_High))
5542 then
5543 Evolve_Or_Else
5544 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
5545 end if;
5547 Next (L_Index);
5548 Next (R_Index);
5549 end if;
5550 end loop;
5551 end;
5553 -- Handle cases where we do not get a usable actual subtype that
5554 -- is constrained. This happens for example in the function call
5555 -- and explicit dereference cases. In these cases, we have to get
5556 -- the length or range from the expression itself, making sure we
5557 -- do not evaluate it more than once.
5559 -- Here Ck_Node is the original expression, or more properly the
5560 -- result of applying Duplicate_Expr to the original tree,
5561 -- forcing the result to be a name.
5563 else
5564 declare
5565 Ndims : constant Nat := Number_Dimensions (T_Typ);
5567 begin
5568 -- Build the condition for the explicit dereference case
5570 for Indx in 1 .. Ndims loop
5571 Evolve_Or_Else
5572 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
5573 end loop;
5574 end;
5575 end if;
5576 end if;
5577 end if;
5579 -- Construct the test and insert into the tree
5581 if Present (Cond) then
5582 if Do_Access then
5583 Cond := Guard_Access (Cond, Loc, Ck_Node);
5584 end if;
5586 Add_Check
5587 (Make_Raise_Constraint_Error (Loc,
5588 Condition => Cond,
5589 Reason => CE_Length_Check_Failed));
5590 end if;
5592 return Ret_Result;
5593 end Selected_Length_Checks;
5595 ---------------------------
5596 -- Selected_Range_Checks --
5597 ---------------------------
5599 function Selected_Range_Checks
5600 (Ck_Node : Node_Id;
5601 Target_Typ : Entity_Id;
5602 Source_Typ : Entity_Id;
5603 Warn_Node : Node_Id) return Check_Result
5605 Loc : constant Source_Ptr := Sloc (Ck_Node);
5606 S_Typ : Entity_Id;
5607 T_Typ : Entity_Id;
5608 Expr_Actual : Node_Id;
5609 Exptyp : Entity_Id;
5610 Cond : Node_Id := Empty;
5611 Do_Access : Boolean := False;
5612 Wnode : Node_Id := Warn_Node;
5613 Ret_Result : Check_Result := (Empty, Empty);
5614 Num_Checks : Integer := 0;
5616 procedure Add_Check (N : Node_Id);
5617 -- Adds the action given to Ret_Result if N is non-Empty
5619 function Discrete_Range_Cond
5620 (Expr : Node_Id;
5621 Typ : Entity_Id) return Node_Id;
5622 -- Returns expression to compute:
5623 -- Low_Bound (Expr) < Typ'First
5624 -- or else
5625 -- High_Bound (Expr) > Typ'Last
5627 function Discrete_Expr_Cond
5628 (Expr : Node_Id;
5629 Typ : Entity_Id) return Node_Id;
5630 -- Returns expression to compute:
5631 -- Expr < Typ'First
5632 -- or else
5633 -- Expr > Typ'Last
5635 function Get_E_First_Or_Last
5636 (E : Entity_Id;
5637 Indx : Nat;
5638 Nam : Name_Id) return Node_Id;
5639 -- Returns expression to compute:
5640 -- E'First or E'Last
5642 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
5643 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
5644 -- Returns expression to compute:
5645 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
5647 function Range_E_Cond
5648 (Exptyp : Entity_Id;
5649 Typ : Entity_Id;
5650 Indx : Nat)
5651 return Node_Id;
5652 -- Returns expression to compute:
5653 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
5655 function Range_Equal_E_Cond
5656 (Exptyp : Entity_Id;
5657 Typ : Entity_Id;
5658 Indx : Nat) return Node_Id;
5659 -- Returns expression to compute:
5660 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
5662 function Range_N_Cond
5663 (Expr : Node_Id;
5664 Typ : Entity_Id;
5665 Indx : Nat) return Node_Id;
5666 -- Return expression to compute:
5667 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
5669 ---------------
5670 -- Add_Check --
5671 ---------------
5673 procedure Add_Check (N : Node_Id) is
5674 begin
5675 if Present (N) then
5677 -- For now, ignore attempt to place more than 2 checks ???
5679 if Num_Checks = 2 then
5680 return;
5681 end if;
5683 pragma Assert (Num_Checks <= 1);
5684 Num_Checks := Num_Checks + 1;
5685 Ret_Result (Num_Checks) := N;
5686 end if;
5687 end Add_Check;
5689 -------------------------
5690 -- Discrete_Expr_Cond --
5691 -------------------------
5693 function Discrete_Expr_Cond
5694 (Expr : Node_Id;
5695 Typ : Entity_Id) return Node_Id
5697 begin
5698 return
5699 Make_Or_Else (Loc,
5700 Left_Opnd =>
5701 Make_Op_Lt (Loc,
5702 Left_Opnd =>
5703 Convert_To (Base_Type (Typ),
5704 Duplicate_Subexpr_No_Checks (Expr)),
5705 Right_Opnd =>
5706 Convert_To (Base_Type (Typ),
5707 Get_E_First_Or_Last (Typ, 0, Name_First))),
5709 Right_Opnd =>
5710 Make_Op_Gt (Loc,
5711 Left_Opnd =>
5712 Convert_To (Base_Type (Typ),
5713 Duplicate_Subexpr_No_Checks (Expr)),
5714 Right_Opnd =>
5715 Convert_To
5716 (Base_Type (Typ),
5717 Get_E_First_Or_Last (Typ, 0, Name_Last))));
5718 end Discrete_Expr_Cond;
5720 -------------------------
5721 -- Discrete_Range_Cond --
5722 -------------------------
5724 function Discrete_Range_Cond
5725 (Expr : Node_Id;
5726 Typ : Entity_Id) return Node_Id
5728 LB : Node_Id := Low_Bound (Expr);
5729 HB : Node_Id := High_Bound (Expr);
5731 Left_Opnd : Node_Id;
5732 Right_Opnd : Node_Id;
5734 begin
5735 if Nkind (LB) = N_Identifier
5736 and then Ekind (Entity (LB)) = E_Discriminant then
5737 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
5738 end if;
5740 if Nkind (HB) = N_Identifier
5741 and then Ekind (Entity (HB)) = E_Discriminant then
5742 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
5743 end if;
5745 Left_Opnd :=
5746 Make_Op_Lt (Loc,
5747 Left_Opnd =>
5748 Convert_To
5749 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
5751 Right_Opnd =>
5752 Convert_To
5753 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
5755 if Base_Type (Typ) = Typ then
5756 return Left_Opnd;
5758 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
5759 and then
5760 Compile_Time_Known_Value (High_Bound (Scalar_Range
5761 (Base_Type (Typ))))
5762 then
5763 if Is_Floating_Point_Type (Typ) then
5764 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
5765 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
5766 then
5767 return Left_Opnd;
5768 end if;
5770 else
5771 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
5772 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
5773 then
5774 return Left_Opnd;
5775 end if;
5776 end if;
5777 end if;
5779 Right_Opnd :=
5780 Make_Op_Gt (Loc,
5781 Left_Opnd =>
5782 Convert_To
5783 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
5785 Right_Opnd =>
5786 Convert_To
5787 (Base_Type (Typ),
5788 Get_E_First_Or_Last (Typ, 0, Name_Last)));
5790 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
5791 end Discrete_Range_Cond;
5793 -------------------------
5794 -- Get_E_First_Or_Last --
5795 -------------------------
5797 function Get_E_First_Or_Last
5798 (E : Entity_Id;
5799 Indx : Nat;
5800 Nam : Name_Id) return Node_Id
5802 N : Node_Id;
5803 LB : Node_Id;
5804 HB : Node_Id;
5805 Bound : Node_Id;
5807 begin
5808 if Is_Array_Type (E) then
5809 N := First_Index (E);
5811 for J in 2 .. Indx loop
5812 Next_Index (N);
5813 end loop;
5815 else
5816 N := Scalar_Range (E);
5817 end if;
5819 if Nkind (N) = N_Subtype_Indication then
5820 LB := Low_Bound (Range_Expression (Constraint (N)));
5821 HB := High_Bound (Range_Expression (Constraint (N)));
5823 elsif Is_Entity_Name (N) then
5824 LB := Type_Low_Bound (Etype (N));
5825 HB := Type_High_Bound (Etype (N));
5827 else
5828 LB := Low_Bound (N);
5829 HB := High_Bound (N);
5830 end if;
5832 if Nam = Name_First then
5833 Bound := LB;
5834 else
5835 Bound := HB;
5836 end if;
5838 if Nkind (Bound) = N_Identifier
5839 and then Ekind (Entity (Bound)) = E_Discriminant
5840 then
5841 -- If this is a task discriminant, and we are the body, we must
5842 -- retrieve the corresponding body discriminal. This is another
5843 -- consequence of the early creation of discriminals, and the
5844 -- need to generate constraint checks before their declarations
5845 -- are made visible.
5847 if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
5848 declare
5849 Tsk : constant Entity_Id :=
5850 Corresponding_Concurrent_Type
5851 (Scope (Entity (Bound)));
5852 Disc : Entity_Id;
5854 begin
5855 if In_Open_Scopes (Tsk)
5856 and then Has_Completion (Tsk)
5857 then
5858 -- Find discriminant of original task, and use its
5859 -- current discriminal, which is the renaming within
5860 -- the task body.
5862 Disc := First_Discriminant (Tsk);
5863 while Present (Disc) loop
5864 if Chars (Disc) = Chars (Entity (Bound)) then
5865 Set_Scope (Discriminal (Disc), Tsk);
5866 return New_Occurrence_Of (Discriminal (Disc), Loc);
5867 end if;
5869 Next_Discriminant (Disc);
5870 end loop;
5872 -- That loop should always succeed in finding a matching
5873 -- entry and returning. Fatal error if not.
5875 raise Program_Error;
5877 else
5878 return
5879 New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5880 end if;
5881 end;
5882 else
5883 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5884 end if;
5886 elsif Nkind (Bound) = N_Identifier
5887 and then Ekind (Entity (Bound)) = E_In_Parameter
5888 and then not Inside_Init_Proc
5889 then
5890 return Get_Discriminal (E, Bound);
5892 elsif Nkind (Bound) = N_Integer_Literal then
5893 return Make_Integer_Literal (Loc, Intval (Bound));
5895 -- Case of a bound that has been rewritten to an
5896 -- N_Raise_Constraint_Error node because it is an out-of-range
5897 -- value. We may not call Duplicate_Subexpr on this node because
5898 -- an N_Raise_Constraint_Error is not side effect free, and we may
5899 -- not assume that we are in the proper context to remove side
5900 -- effects on it at the point of reference.
5902 elsif Nkind (Bound) = N_Raise_Constraint_Error then
5903 return New_Copy_Tree (Bound);
5905 else
5906 return Duplicate_Subexpr_No_Checks (Bound);
5907 end if;
5908 end Get_E_First_Or_Last;
5910 -----------------
5911 -- Get_N_First --
5912 -----------------
5914 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
5915 begin
5916 return
5917 Make_Attribute_Reference (Loc,
5918 Attribute_Name => Name_First,
5919 Prefix =>
5920 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5921 Expressions => New_List (
5922 Make_Integer_Literal (Loc, Indx)));
5923 end Get_N_First;
5925 ----------------
5926 -- Get_N_Last --
5927 ----------------
5929 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
5930 begin
5931 return
5932 Make_Attribute_Reference (Loc,
5933 Attribute_Name => Name_Last,
5934 Prefix =>
5935 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5936 Expressions => New_List (
5937 Make_Integer_Literal (Loc, Indx)));
5938 end Get_N_Last;
5940 ------------------
5941 -- Range_E_Cond --
5942 ------------------
5944 function Range_E_Cond
5945 (Exptyp : Entity_Id;
5946 Typ : Entity_Id;
5947 Indx : Nat) return Node_Id
5949 begin
5950 return
5951 Make_Or_Else (Loc,
5952 Left_Opnd =>
5953 Make_Op_Lt (Loc,
5954 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5955 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5957 Right_Opnd =>
5958 Make_Op_Gt (Loc,
5959 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5960 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5962 end Range_E_Cond;
5964 ------------------------
5965 -- Range_Equal_E_Cond --
5966 ------------------------
5968 function Range_Equal_E_Cond
5969 (Exptyp : Entity_Id;
5970 Typ : Entity_Id;
5971 Indx : Nat) return Node_Id
5973 begin
5974 return
5975 Make_Or_Else (Loc,
5976 Left_Opnd =>
5977 Make_Op_Ne (Loc,
5978 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5979 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5980 Right_Opnd =>
5981 Make_Op_Ne (Loc,
5982 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5983 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5984 end Range_Equal_E_Cond;
5986 ------------------
5987 -- Range_N_Cond --
5988 ------------------
5990 function Range_N_Cond
5991 (Expr : Node_Id;
5992 Typ : Entity_Id;
5993 Indx : Nat) return Node_Id
5995 begin
5996 return
5997 Make_Or_Else (Loc,
5998 Left_Opnd =>
5999 Make_Op_Lt (Loc,
6000 Left_Opnd => Get_N_First (Expr, Indx),
6001 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6003 Right_Opnd =>
6004 Make_Op_Gt (Loc,
6005 Left_Opnd => Get_N_Last (Expr, Indx),
6006 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
6007 end Range_N_Cond;
6009 -- Start of processing for Selected_Range_Checks
6011 begin
6012 if not Expander_Active then
6013 return Ret_Result;
6014 end if;
6016 if Target_Typ = Any_Type
6017 or else Target_Typ = Any_Composite
6018 or else Raises_Constraint_Error (Ck_Node)
6019 then
6020 return Ret_Result;
6021 end if;
6023 if No (Wnode) then
6024 Wnode := Ck_Node;
6025 end if;
6027 T_Typ := Target_Typ;
6029 if No (Source_Typ) then
6030 S_Typ := Etype (Ck_Node);
6031 else
6032 S_Typ := Source_Typ;
6033 end if;
6035 if S_Typ = Any_Type or else S_Typ = Any_Composite then
6036 return Ret_Result;
6037 end if;
6039 -- The order of evaluating T_Typ before S_Typ seems to be critical
6040 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
6041 -- in, and since Node can be an N_Range node, it might be invalid.
6042 -- Should there be an assert check somewhere for taking the Etype of
6043 -- an N_Range node ???
6045 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6046 S_Typ := Designated_Type (S_Typ);
6047 T_Typ := Designated_Type (T_Typ);
6048 Do_Access := True;
6050 -- A simple optimization
6052 if Nkind (Ck_Node) = N_Null then
6053 return Ret_Result;
6054 end if;
6055 end if;
6057 -- For an N_Range Node, check for a null range and then if not
6058 -- null generate a range check action.
6060 if Nkind (Ck_Node) = N_Range then
6062 -- There's no point in checking a range against itself
6064 if Ck_Node = Scalar_Range (T_Typ) then
6065 return Ret_Result;
6066 end if;
6068 declare
6069 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
6070 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
6071 LB : constant Node_Id := Low_Bound (Ck_Node);
6072 HB : constant Node_Id := High_Bound (Ck_Node);
6073 Null_Range : Boolean;
6075 Out_Of_Range_L : Boolean;
6076 Out_Of_Range_H : Boolean;
6078 begin
6079 -- Check for case where everything is static and we can
6080 -- do the check at compile time. This is skipped if we
6081 -- have an access type, since the access value may be null.
6083 -- ??? This code can be improved since you only need to know
6084 -- that the two respective bounds (LB & T_LB or HB & T_HB)
6085 -- are known at compile time to emit pertinent messages.
6087 if Compile_Time_Known_Value (LB)
6088 and then Compile_Time_Known_Value (HB)
6089 and then Compile_Time_Known_Value (T_LB)
6090 and then Compile_Time_Known_Value (T_HB)
6091 and then not Do_Access
6092 then
6093 -- Floating-point case
6095 if Is_Floating_Point_Type (S_Typ) then
6096 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
6097 Out_Of_Range_L :=
6098 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
6099 or else
6100 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
6102 Out_Of_Range_H :=
6103 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
6104 or else
6105 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
6107 -- Fixed or discrete type case
6109 else
6110 Null_Range := Expr_Value (HB) < Expr_Value (LB);
6111 Out_Of_Range_L :=
6112 (Expr_Value (LB) < Expr_Value (T_LB))
6113 or else
6114 (Expr_Value (LB) > Expr_Value (T_HB));
6116 Out_Of_Range_H :=
6117 (Expr_Value (HB) > Expr_Value (T_HB))
6118 or else
6119 (Expr_Value (HB) < Expr_Value (T_LB));
6120 end if;
6122 if not Null_Range then
6123 if Out_Of_Range_L then
6124 if No (Warn_Node) then
6125 Add_Check
6126 (Compile_Time_Constraint_Error
6127 (Low_Bound (Ck_Node),
6128 "static value out of range of}?", T_Typ));
6130 else
6131 Add_Check
6132 (Compile_Time_Constraint_Error
6133 (Wnode,
6134 "static range out of bounds of}?", T_Typ));
6135 end if;
6136 end if;
6138 if Out_Of_Range_H then
6139 if No (Warn_Node) then
6140 Add_Check
6141 (Compile_Time_Constraint_Error
6142 (High_Bound (Ck_Node),
6143 "static value out of range of}?", T_Typ));
6145 else
6146 Add_Check
6147 (Compile_Time_Constraint_Error
6148 (Wnode,
6149 "static range out of bounds of}?", T_Typ));
6150 end if;
6151 end if;
6153 end if;
6155 else
6156 declare
6157 LB : Node_Id := Low_Bound (Ck_Node);
6158 HB : Node_Id := High_Bound (Ck_Node);
6160 begin
6162 -- If either bound is a discriminant and we are within
6163 -- the record declaration, it is a use of the discriminant
6164 -- in a constraint of a component, and nothing can be
6165 -- checked here. The check will be emitted within the
6166 -- init proc. Before then, the discriminal has no real
6167 -- meaning.
6169 if Nkind (LB) = N_Identifier
6170 and then Ekind (Entity (LB)) = E_Discriminant
6171 then
6172 if Current_Scope = Scope (Entity (LB)) then
6173 return Ret_Result;
6174 else
6175 LB :=
6176 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6177 end if;
6178 end if;
6180 if Nkind (HB) = N_Identifier
6181 and then Ekind (Entity (HB)) = E_Discriminant
6182 then
6183 if Current_Scope = Scope (Entity (HB)) then
6184 return Ret_Result;
6185 else
6186 HB :=
6187 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6188 end if;
6189 end if;
6191 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6192 Set_Paren_Count (Cond, 1);
6194 Cond :=
6195 Make_And_Then (Loc,
6196 Left_Opnd =>
6197 Make_Op_Ge (Loc,
6198 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6199 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
6200 Right_Opnd => Cond);
6201 end;
6203 end if;
6204 end;
6206 elsif Is_Scalar_Type (S_Typ) then
6208 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6209 -- except the above simply sets a flag in the node and lets
6210 -- gigi generate the check base on the Etype of the expression.
6211 -- Sometimes, however we want to do a dynamic check against an
6212 -- arbitrary target type, so we do that here.
6214 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6215 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6217 -- For literals, we can tell if the constraint error will be
6218 -- raised at compile time, so we never need a dynamic check, but
6219 -- if the exception will be raised, then post the usual warning,
6220 -- and replace the literal with a raise constraint error
6221 -- expression. As usual, skip this for access types
6223 elsif Compile_Time_Known_Value (Ck_Node)
6224 and then not Do_Access
6225 then
6226 declare
6227 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6228 UB : constant Node_Id := Type_High_Bound (T_Typ);
6230 Out_Of_Range : Boolean;
6231 Static_Bounds : constant Boolean :=
6232 Compile_Time_Known_Value (LB)
6233 and Compile_Time_Known_Value (UB);
6235 begin
6236 -- Following range tests should use Sem_Eval routine ???
6238 if Static_Bounds then
6239 if Is_Floating_Point_Type (S_Typ) then
6240 Out_Of_Range :=
6241 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6242 or else
6243 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6245 else -- fixed or discrete type
6246 Out_Of_Range :=
6247 Expr_Value (Ck_Node) < Expr_Value (LB)
6248 or else
6249 Expr_Value (Ck_Node) > Expr_Value (UB);
6250 end if;
6252 -- Bounds of the type are static and the literal is
6253 -- out of range so make a warning message.
6255 if Out_Of_Range then
6256 if No (Warn_Node) then
6257 Add_Check
6258 (Compile_Time_Constraint_Error
6259 (Ck_Node,
6260 "static value out of range of}?", T_Typ));
6262 else
6263 Add_Check
6264 (Compile_Time_Constraint_Error
6265 (Wnode,
6266 "static value out of range of}?", T_Typ));
6267 end if;
6268 end if;
6270 else
6271 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6272 end if;
6273 end;
6275 -- Here for the case of a non-static expression, we need a runtime
6276 -- check unless the source type range is guaranteed to be in the
6277 -- range of the target type.
6279 else
6280 if not In_Subrange_Of (S_Typ, T_Typ) then
6281 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6282 end if;
6283 end if;
6284 end if;
6286 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6287 if Is_Constrained (T_Typ) then
6289 Expr_Actual := Get_Referenced_Object (Ck_Node);
6290 Exptyp := Get_Actual_Subtype (Expr_Actual);
6292 if Is_Access_Type (Exptyp) then
6293 Exptyp := Designated_Type (Exptyp);
6294 end if;
6296 -- String_Literal case. This needs to be handled specially be-
6297 -- cause no index types are available for string literals. The
6298 -- condition is simply:
6300 -- T_Typ'Length = string-literal-length
6302 if Nkind (Expr_Actual) = N_String_Literal then
6303 null;
6305 -- General array case. Here we have a usable actual subtype for
6306 -- the expression, and the condition is built from the two types
6308 -- T_Typ'First < Exptyp'First or else
6309 -- T_Typ'Last > Exptyp'Last or else
6310 -- T_Typ'First(1) < Exptyp'First(1) or else
6311 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6312 -- ...
6314 elsif Is_Constrained (Exptyp) then
6315 declare
6316 Ndims : constant Nat := Number_Dimensions (T_Typ);
6318 L_Index : Node_Id;
6319 R_Index : Node_Id;
6320 L_Low : Node_Id;
6321 L_High : Node_Id;
6322 R_Low : Node_Id;
6323 R_High : Node_Id;
6325 begin
6326 L_Index := First_Index (T_Typ);
6327 R_Index := First_Index (Exptyp);
6329 for Indx in 1 .. Ndims loop
6330 if not (Nkind (L_Index) = N_Raise_Constraint_Error
6331 or else
6332 Nkind (R_Index) = N_Raise_Constraint_Error)
6333 then
6334 Get_Index_Bounds (L_Index, L_Low, L_High);
6335 Get_Index_Bounds (R_Index, R_Low, R_High);
6337 -- Deal with compile time length check. Note that we
6338 -- skip this in the access case, because the access
6339 -- value may be null, so we cannot know statically.
6341 if not
6342 Subtypes_Statically_Match
6343 (Etype (L_Index), Etype (R_Index))
6344 then
6345 -- If the target type is constrained then we
6346 -- have to check for exact equality of bounds
6347 -- (required for qualified expressions).
6349 if Is_Constrained (T_Typ) then
6350 Evolve_Or_Else
6351 (Cond,
6352 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
6354 else
6355 Evolve_Or_Else
6356 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6357 end if;
6358 end if;
6360 Next (L_Index);
6361 Next (R_Index);
6363 end if;
6364 end loop;
6365 end;
6367 -- Handle cases where we do not get a usable actual subtype that
6368 -- is constrained. This happens for example in the function call
6369 -- and explicit dereference cases. In these cases, we have to get
6370 -- the length or range from the expression itself, making sure we
6371 -- do not evaluate it more than once.
6373 -- Here Ck_Node is the original expression, or more properly the
6374 -- result of applying Duplicate_Expr to the original tree,
6375 -- forcing the result to be a name.
6377 else
6378 declare
6379 Ndims : constant Nat := Number_Dimensions (T_Typ);
6381 begin
6382 -- Build the condition for the explicit dereference case
6384 for Indx in 1 .. Ndims loop
6385 Evolve_Or_Else
6386 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6387 end loop;
6388 end;
6390 end if;
6392 else
6393 -- Generate an Action to check that the bounds of the
6394 -- source value are within the constraints imposed by the
6395 -- target type for a conversion to an unconstrained type.
6396 -- Rule is 4.6(38).
6398 if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
6399 declare
6400 Opnd_Index : Node_Id;
6401 Targ_Index : Node_Id;
6403 begin
6404 Opnd_Index
6405 := First_Index (Get_Actual_Subtype (Ck_Node));
6406 Targ_Index := First_Index (T_Typ);
6408 while Opnd_Index /= Empty loop
6409 if Nkind (Opnd_Index) = N_Range then
6410 if Is_In_Range
6411 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6412 and then
6413 Is_In_Range
6414 (High_Bound (Opnd_Index), Etype (Targ_Index))
6415 then
6416 null;
6418 -- If null range, no check needed
6420 elsif
6421 Compile_Time_Known_Value (High_Bound (Opnd_Index))
6422 and then
6423 Compile_Time_Known_Value (Low_Bound (Opnd_Index))
6424 and then
6425 Expr_Value (High_Bound (Opnd_Index)) <
6426 Expr_Value (Low_Bound (Opnd_Index))
6427 then
6428 null;
6430 elsif Is_Out_Of_Range
6431 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6432 or else
6433 Is_Out_Of_Range
6434 (High_Bound (Opnd_Index), Etype (Targ_Index))
6435 then
6436 Add_Check
6437 (Compile_Time_Constraint_Error
6438 (Wnode, "value out of range of}?", T_Typ));
6440 else
6441 Evolve_Or_Else
6442 (Cond,
6443 Discrete_Range_Cond
6444 (Opnd_Index, Etype (Targ_Index)));
6445 end if;
6446 end if;
6448 Next_Index (Opnd_Index);
6449 Next_Index (Targ_Index);
6450 end loop;
6451 end;
6452 end if;
6453 end if;
6454 end if;
6456 -- Construct the test and insert into the tree
6458 if Present (Cond) then
6459 if Do_Access then
6460 Cond := Guard_Access (Cond, Loc, Ck_Node);
6461 end if;
6463 Add_Check
6464 (Make_Raise_Constraint_Error (Loc,
6465 Condition => Cond,
6466 Reason => CE_Range_Check_Failed));
6467 end if;
6469 return Ret_Result;
6470 end Selected_Range_Checks;
6472 -------------------------------
6473 -- Storage_Checks_Suppressed --
6474 -------------------------------
6476 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
6477 begin
6478 if Present (E) and then Checks_May_Be_Suppressed (E) then
6479 return Is_Check_Suppressed (E, Storage_Check);
6480 else
6481 return Scope_Suppress (Storage_Check);
6482 end if;
6483 end Storage_Checks_Suppressed;
6485 ---------------------------
6486 -- Tag_Checks_Suppressed --
6487 ---------------------------
6489 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6490 begin
6491 if Present (E) then
6492 if Kill_Tag_Checks (E) then
6493 return True;
6494 elsif Checks_May_Be_Suppressed (E) then
6495 return Is_Check_Suppressed (E, Tag_Check);
6496 end if;
6497 end if;
6499 return Scope_Suppress (Tag_Check);
6500 end Tag_Checks_Suppressed;
6502 end Checks;