Merge from mainline
[official-gcc.git] / boehm-gc / include / gc_cpp.h
blob4f56f0d965fcf360112686fb0cdfb86fe315a468
1 #ifndef GC_CPP_H
2 #define GC_CPP_H
3 /****************************************************************************
4 Copyright (c) 1994 by Xerox Corporation. All rights reserved.
6 THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 Permission is hereby granted to use or copy this program for any
10 purpose, provided the above notices are retained on all copies.
11 Permission to modify the code and to distribute modified code is
12 granted, provided the above notices are retained, and a notice that
13 the code was modified is included with the above copyright notice.
14 ****************************************************************************
16 C++ Interface to the Boehm Collector
18 John R. Ellis and Jesse Hull
20 This interface provides access to the Boehm collector. It provides
21 basic facilities similar to those described in "Safe, Efficient
22 Garbage Collection for C++", by John R. Elis and David L. Detlefs
23 (ftp://ftp.parc.xerox.com/pub/ellis/gc).
25 All heap-allocated objects are either "collectable" or
26 "uncollectable". Programs must explicitly delete uncollectable
27 objects, whereas the garbage collector will automatically delete
28 collectable objects when it discovers them to be inaccessible.
29 Collectable objects may freely point at uncollectable objects and vice
30 versa.
32 Objects allocated with the built-in "::operator new" are uncollectable.
34 Objects derived from class "gc" are collectable. For example:
36 class A: public gc {...};
37 A* a = new A; // a is collectable.
39 Collectable instances of non-class types can be allocated using the GC
40 (or UseGC) placement:
42 typedef int A[ 10 ];
43 A* a = new (GC) A;
45 Uncollectable instances of classes derived from "gc" can be allocated
46 using the NoGC placement:
48 class A: public gc {...};
49 A* a = new (NoGC) A; // a is uncollectable.
51 Both uncollectable and collectable objects can be explicitly deleted
52 with "delete", which invokes an object's destructors and frees its
53 storage immediately.
55 A collectable object may have a clean-up function, which will be
56 invoked when the collector discovers the object to be inaccessible.
57 An object derived from "gc_cleanup" or containing a member derived
58 from "gc_cleanup" has a default clean-up function that invokes the
59 object's destructors. Explicit clean-up functions may be specified as
60 an additional placement argument:
62 A* a = ::new (GC, MyCleanup) A;
64 An object is considered "accessible" by the collector if it can be
65 reached by a path of pointers from static variables, automatic
66 variables of active functions, or from some object with clean-up
67 enabled; pointers from an object to itself are ignored.
69 Thus, if objects A and B both have clean-up functions, and A points at
70 B, B is considered accessible. After A's clean-up is invoked and its
71 storage released, B will then become inaccessible and will have its
72 clean-up invoked. If A points at B and B points to A, forming a
73 cycle, then that's considered a storage leak, and neither will be
74 collectable. See the interface gc.h for low-level facilities for
75 handling such cycles of objects with clean-up.
77 The collector cannot guarantee that it will find all inaccessible
78 objects. In practice, it finds almost all of them.
81 Cautions:
83 1. Be sure the collector has been augmented with "make c++".
85 2. If your compiler supports the new "operator new[]" syntax, then
86 add -DGC_OPERATOR_NEW_ARRAY to the Makefile.
88 If your compiler doesn't support "operator new[]", beware that an
89 array of type T, where T is derived from "gc", may or may not be
90 allocated as a collectable object (it depends on the compiler). Use
91 the explicit GC placement to make the array collectable. For example:
93 class A: public gc {...};
94 A* a1 = new A[ 10 ]; // collectable or uncollectable?
95 A* a2 = new (GC) A[ 10 ]; // collectable
97 3. The destructors of collectable arrays of objects derived from
98 "gc_cleanup" will not be invoked properly. For example:
100 class A: public gc_cleanup {...};
101 A* a = new (GC) A[ 10 ]; // destructors not invoked correctly
103 Typically, only the destructor for the first element of the array will
104 be invoked when the array is garbage-collected. To get all the
105 destructors of any array executed, you must supply an explicit
106 clean-up function:
108 A* a = new (GC, MyCleanUp) A[ 10 ];
110 (Implementing clean-up of arrays correctly, portably, and in a way
111 that preserves the correct exception semantics requires a language
112 extension, e.g. the "gc" keyword.)
114 4. Compiler bugs:
116 * Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the
117 destructors of classes derived from gc_cleanup won't be invoked.
118 You'll have to explicitly register a clean-up function with
119 new-placement syntax.
121 * Evidently cfront 3.0 does not allow destructors to be explicitly
122 invoked using the ANSI-conforming syntax t->~T(). If you're using
123 cfront 3.0, you'll have to comment out the class gc_cleanup, which
124 uses explicit invocation.
126 5. GC name conflicts:
128 Many other systems seem to use the identifier "GC" as an abbreviation
129 for "Graphics Context". Since version 5.0, GC placement has been replaced
130 by UseGC. GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined.
132 ****************************************************************************/
134 #include "gc.h"
136 #ifndef THINK_CPLUS
137 # define GC_cdecl
138 #else
139 # define GC_cdecl _cdecl
140 #endif
142 #if ! defined( GC_NO_OPERATOR_NEW_ARRAY ) \
143 && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \
144 && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \
145 || (defined(__GNUC__) && \
146 (__GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 6)) \
147 || (defined(__WATCOMC__) && __WATCOMC__ < 1050))
148 # define GC_NO_OPERATOR_NEW_ARRAY
149 #endif
151 #if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY)
152 # define GC_OPERATOR_NEW_ARRAY
153 #endif
155 #if ! defined ( __BORLANDC__ ) /* Confuses the Borland compiler. */ \
156 && ! defined ( __sgi )
157 # define GC_PLACEMENT_DELETE
158 #endif
160 enum GCPlacement {UseGC,
161 #ifndef GC_NAME_CONFLICT
162 GC=UseGC,
163 #endif
164 NoGC, PointerFreeGC};
166 class gc {public:
167 inline void* operator new( size_t size );
168 inline void* operator new( size_t size, GCPlacement gcp );
169 inline void* operator new( size_t size, void *p );
170 /* Must be redefined here, since the other overloadings */
171 /* hide the global definition. */
172 inline void operator delete( void* obj );
173 # ifdef GC_PLACEMENT_DELETE
174 inline void operator delete( void*, void* );
175 # endif
177 #ifdef GC_OPERATOR_NEW_ARRAY
178 inline void* operator new[]( size_t size );
179 inline void* operator new[]( size_t size, GCPlacement gcp );
180 inline void* operator new[]( size_t size, void *p );
181 inline void operator delete[]( void* obj );
182 # ifdef GC_PLACEMENT_DELETE
183 inline void gc::operator delete[]( void*, void* );
184 # endif
185 #endif /* GC_OPERATOR_NEW_ARRAY */
188 Instances of classes derived from "gc" will be allocated in the
189 collected heap by default, unless an explicit NoGC placement is
190 specified. */
192 class gc_cleanup: virtual public gc {public:
193 inline gc_cleanup();
194 inline virtual ~gc_cleanup();
195 private:
196 inline static void GC_cdecl cleanup( void* obj, void* clientData );};
198 Instances of classes derived from "gc_cleanup" will be allocated
199 in the collected heap by default. When the collector discovers an
200 inaccessible object derived from "gc_cleanup" or containing a
201 member derived from "gc_cleanup", its destructors will be
202 invoked. */
204 extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}
206 #ifdef _MSC_VER
207 // Disable warning that "no matching operator delete found; memory will
208 // not be freed if initialization throws an exception"
209 # pragma warning(disable:4291)
210 #endif
212 inline void* operator new(
213 size_t size,
214 GCPlacement gcp,
215 GCCleanUpFunc cleanup = 0,
216 void* clientData = 0 );
218 Allocates a collectable or uncollected object, according to the
219 value of "gcp".
221 For collectable objects, if "cleanup" is non-null, then when the
222 allocated object "obj" becomes inaccessible, the collector will
223 invoke the function "cleanup( obj, clientData )" but will not
224 invoke the object's destructors. It is an error to explicitly
225 delete an object allocated with a non-null "cleanup".
227 It is an error to specify a non-null "cleanup" with NoGC or for
228 classes derived from "gc_cleanup" or containing members derived
229 from "gc_cleanup". */
232 #ifdef _MSC_VER
233 /** This ensures that the system default operator new[] doesn't get
234 * undefined, which is what seems to happen on VC++ 6 for some reason
235 * if we define a multi-argument operator new[].
236 * There seems to be really redirect new in this environment without
237 * including this everywhere.
239 void *operator new[]( size_t size );
241 void operator delete[](void* obj);
243 void* operator new( size_t size);
245 void operator delete(void* obj);
247 // This new operator is used by VC++ in case of Debug builds !
248 void* operator new( size_t size,
249 int ,//nBlockUse,
250 const char * szFileName,
251 int nLine );
252 #endif /* _MSC_VER */
255 #ifdef GC_OPERATOR_NEW_ARRAY
257 inline void* operator new[](
258 size_t size,
259 GCPlacement gcp,
260 GCCleanUpFunc cleanup = 0,
261 void* clientData = 0 );
263 The operator new for arrays, identical to the above. */
265 #endif /* GC_OPERATOR_NEW_ARRAY */
267 /****************************************************************************
269 Inline implementation
271 ****************************************************************************/
273 inline void* gc::operator new( size_t size ) {
274 return GC_MALLOC( size );}
276 inline void* gc::operator new( size_t size, GCPlacement gcp ) {
277 if (gcp == UseGC)
278 return GC_MALLOC( size );
279 else if (gcp == PointerFreeGC)
280 return GC_MALLOC_ATOMIC( size );
281 else
282 return GC_MALLOC_UNCOLLECTABLE( size );}
284 inline void* gc::operator new( size_t size, void *p ) {
285 return p;}
287 inline void gc::operator delete( void* obj ) {
288 GC_FREE( obj );}
290 #ifdef GC_PLACEMENT_DELETE
291 inline void gc::operator delete( void*, void* ) {}
292 #endif
294 #ifdef GC_OPERATOR_NEW_ARRAY
296 inline void* gc::operator new[]( size_t size ) {
297 return gc::operator new( size );}
299 inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {
300 return gc::operator new( size, gcp );}
302 inline void* gc::operator new[]( size_t size, void *p ) {
303 return p;}
305 inline void gc::operator delete[]( void* obj ) {
306 gc::operator delete( obj );}
308 #ifdef GC_PLACEMENT_DELETE
309 inline void gc::operator delete[]( void*, void* ) {}
310 #endif
312 #endif /* GC_OPERATOR_NEW_ARRAY */
315 inline gc_cleanup::~gc_cleanup() {
316 GC_register_finalizer_ignore_self( GC_base(this), 0, 0, 0, 0 );}
318 inline void gc_cleanup::cleanup( void* obj, void* displ ) {
319 ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}
321 inline gc_cleanup::gc_cleanup() {
322 GC_finalization_proc oldProc;
323 void* oldData;
324 void* base = GC_base( (void *) this );
325 if (0 != base) {
326 // Don't call the debug version, since this is a real base address.
327 GC_register_finalizer_ignore_self(
328 base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base),
329 &oldProc, &oldData );
330 if (0 != oldProc) {
331 GC_register_finalizer_ignore_self( base, oldProc, oldData, 0, 0 );}}}
333 inline void* operator new(
334 size_t size,
335 GCPlacement gcp,
336 GCCleanUpFunc cleanup,
337 void* clientData )
339 void* obj;
341 if (gcp == UseGC) {
342 obj = GC_MALLOC( size );
343 if (cleanup != 0)
344 GC_REGISTER_FINALIZER_IGNORE_SELF(
345 obj, cleanup, clientData, 0, 0 );}
346 else if (gcp == PointerFreeGC) {
347 obj = GC_MALLOC_ATOMIC( size );}
348 else {
349 obj = GC_MALLOC_UNCOLLECTABLE( size );};
350 return obj;}
353 #ifdef GC_OPERATOR_NEW_ARRAY
355 inline void* operator new[](
356 size_t size,
357 GCPlacement gcp,
358 GCCleanUpFunc cleanup,
359 void* clientData )
361 return ::operator new( size, gcp, cleanup, clientData );}
363 #endif /* GC_OPERATOR_NEW_ARRAY */
366 #endif /* GC_CPP_H */